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Editorial for the Special Issue “Air Quality Research Using
Remote Sensing”

Maria João Costa 1,2,3,* and Daniele Bortoli 1,2,3
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7000-671 Évora, Portugal

2 Earth Remote Sensing Laboratory (EaRSLab), Institute of Research and Advanced Training, University of
Évora, 7000-671 Évora, Portugal

3 Department of Physics, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
* Correspondence: mjcosta@uevora.pt

Air pollution is a worldwide environmental hazard with serious consequences for
health and climate as well as for agriculture, ecosystems, and cultural heritage, among oth-
ers. According to the WHO, there are 8 million premature deaths every year resulting from
exposure to ambient air pollution. In addition, more than 90% of the world’s population
lives in places where air quality is poor, exceeding the recommended limits; most of these
places are in low- or middle-income countries. Air pollution and climate influence each
other through complex physicochemical interactions in the atmosphere, altering the Earth’s
energy balance, with implications for climate change and air quality.

It is vital to measure specific atmospheric parameters and pollutant concentrations,
monitor their variations, and analyze different scenarios with the aim of assessing air
pollution levels and developing early-warning and forecast systems; such developments
provide a means of improving air quality and assuring public health in favor of a reduction
in air pollution casualties and a mitigation of climate change phenomena. Eleven research
papers were published in this Special Issue, comprising one communication paper [1],
seven articles [2–8], two technical notes [9,10], and one letter [11]. The published research
signals the potential of applying remote sensing data in air quality studies, including
combination with in situ data [1,3,6,8], modeling approaches [2,9,11], and the synergy of
different instrumentations and techniques [4,5,7,10]. Significant pollutants considered in
the studies include aerosols—using PM2.5 and aerosol optical depth (AOD) as quantifica-
tion variables [1,2,4,5,9]—nitrogen dioxide (NO2) [7,8,11], formaldehyde (HCHO) [3], and
carbon monoxide (CO) [6,10], among others [10].

The influence of meteorology on seasonal PM2.5 concentrations and AOD was ana-
lyzed, providing insight that may contribute to improving the retrievals of surface PM2.5
from satellite AOD [2]. The mechanisms of PM2.5 regional transport from biomass burning
in Southeast Asia were examined for a case study during springtime, with an empha-
sis on the role of meteorology [9]. Furthermore, the influence of urban form on PM2.5
surface concentrations was investigated, providing a seasonal analysis method which is
relevant for urban planning strategies surrounding air quality improvement in populated
areas [4]. New methods combining remote sensing data and additional ancillary datasets
with machine learning algorithms were proposed, allowing us to retrieve surface PM2.5 con-
centrations [1] and AOD [5]. Such prediction schemes can provide significant information
for advances in air quality research.

The importance of drones for monitoring limited areas, often in areas of difficult access,
is increasingly being recognized. An application of drones over a wastewater treatment
plant, permitting the real-time monitoring of gaseous pollutants, was demonstrated in [10],
and open challenges were identified.

An evaluation of satellite retrievals of HCHO, a recognized hazardous air pollutant,
using ground-based data was carried out for a ten-year period [3]. Results suggest that

Remote Sens. 2022, 14, 5566. https://doi.org/10.3390/rs14215566 https://www.mdpi.com/journal/remotesensing1
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satellite results are more prone to seasonal variations than ground-based measurements
and show evidence of a latitude dependency with a seasonal bias. Studies of satellite
retrievals in comparison with ground-based measurements are very pertinent considering
the use of new Earth observation sensors for air quality monitoring. CO concentration
variability was also assessed from both satellite and ground-based measurements [6]. The
authors of [6] examined the horizontal and vertical variations in CO concentrations caused
by the COVID-19 lockdown in 2020 and compared the contributions from different sources
with results from 2019.

The distribution and trends of tropospheric NO2 at a global scale were analyzed for a
13-year period using satellite retrievals [8]. Ground-based measurements were also used for
comparison purposes. Hotspots of high concentrations of this air pollutant were identified,
as well as regions of negative and positive trends during the period of study. The highest
concentrations of tropospheric NO2 were detected in recent years, indicating the importance
of monitoring anthropogenic emissions and implementing further actions for their reduction.
The authors of [11] used satellite data combined with air quality modelling to estimate the
impact of the COVID-19 lockdown on tropospheric NO2, while analyzing the role of meteo-
rology and sampling variability in the process. Satellite data were used in combination with
data from ground-based NO2 concentration measurements, NOx emissions, land uses, road
networks, and population densities, in order to develop a regression model for determining
surface NO2 with a high spatial resolution [7]. The model was applied at a city scale, with
the results highlighting the key role of Earth observation technologies in support of exposure
assessments and policy development for air quality control.

The publications in this Special Issue highlight the importance and topicality of air
quality studies and the potential of remote sensing, particularly from Earth observation
platforms, in contributing to this topic.
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Machine Learning-Based Approach Using Open Data to
Estimate PM2.5 over Europe
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1 Department of Geomatics, Faculty of Civil Engineering, Czech Technical University in Prague,
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2 Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University,
128 43 Prague, Czech Republic; lukas.brodsky@natur.cuni.cz
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Abstract: Air pollution is currently considered one of the most serious problems facing humans. Fine
particulate matter with a diameter smaller than 2.5 micrometres (PM2.5) is a very harmful air pollutant
that is linked with many diseases. In this study, we created a machine learning-based scheme to
estimate PM2.5 using various open data such as satellite remote sensing, meteorological data, and
land variables to increase the limited spatial coverage provided by ground-monitors. A space-time
extremely randomised trees model was used to estimate PM2.5 concentrations over Europe, this
model achieved good results with an out-of-sample cross-validated R2 of 0.69, RMSE of 5 μg/m3, and
MAE of 3.3 μg/m3. The outcome of this study is a daily full coverage PM2.5 dataset with 1 km spatial
resolution for the three-year period of 2018–2020. We found that air quality improved throughout
the study period over all countries in Europe. In addition, we compared PM2.5 levels during the
COVID-19 lockdown during the months March–June with the average of the previous 4 months and
the following 4 months. We found that this lockdown had a positive effect on air quality in most
parts of the study area except for the United Kingdom, Ireland, north of France, and south of Italy.
This is the first study that depends only on open data and covers the whole of Europe with high
spatial and temporal resolutions. The reconstructed dataset will be published under free and open
license and can be used in future air quality studies.

Keywords: PM2.5; AOD; machine learning; Europe; open data

1. Introduction

Air quality monitoring is one of the most important fields when it comes to the
individual’s health due to the high risks related to its low quality. Fine particulate matter
is an air pollutant that consists of liquid and solid molecules such as acid condensates,
sulphates, and nitrates that have negative effects on human health [1]. The harmful effects
of these particles vary depending on the concentrations, time exposure, and the particulate
diameter. Risks are higher when the diameter gets smaller; PM2.5 can penetrate deep
into the lungs and may reach the blood circulation causing dangerous diseases such as
cardiovascular problems, diabetes, prenatal disorder, and even mortality [2–5]. The effects
are more notable in urban areas, where higher population density can be found, and
more exposure will occur [6]. The form of the urban area plays an important role in the
concentration of PM2.5 [7].

The U.S. Environmental Protection Agency (EPA) has set an annual average standard
of 12 μg/m3 and a daily (24 h) of 35 μg/m3 for PM2.5 and when the amounts of these
pollutants in the ambient air exceed these limits that could cause serious health issues [8].
The revised Directive 2008/50/EC of the European Parliament (EP) and of the Council
on ambient air quality and cleaner air for Europe set limit values of annual PM2.5 to
25 μg/m3 since 1 January 2015 and not to exceed 20 μg/m3 since 1 January 2020. PM2.5

Remote Sens. 2022, 14, 3392. https://doi.org/rs14143392 https://www.mdpi.com/journal/remotesensing5
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ground-based monitors are used to measure PM2.5 with high accuracy. These stations
are considered the backbone in almost all analyses related to these particles. However,
the high cost of establishing these monitors limits the overall spatial coverage and the
researchers who are focusing on air quality were seeking new methodologies to increase
the spatial coverage so they have a better understanding on larger geographical scales.
Numerous techniques were used to increase PM2.5 spatial coverage, in other words, to
estimate the pollutant concentrations in the areas where no monitors exist. Examples of that
are interpolation techniques that count only on the ground stations [9,10]. The accuracy of
these interpolations is highly related to the spatial distribution of the stations; although
they can have good estimations in the areas that are surrounded by the network stations,
they will probably fail to have good estimations where there is a lack of the stations [9].
Land use regression (LUR) models were also used to analyse pollution, particularly in
densely populated areas [11,12].

Satellite remote sensing provides wide spatial coverage compared to the spatial cover-
age obtained from ground monitors. Aerosol optical depth (AOD) is an air quality indicator
that can be observed from satellite remote sensing, and it is defined as the measure of the
columnar atmospheric aerosol content. Numerous studies have found a positive corre-
lation between satellite-based AOD and surface particulate matter [13,14]. Researchers
have utilised satellite AOD to estimate PM2.5 by developing different types of models such
as physical models that were built based on the physical relationship between AOD and
surface PM2.5 [15]. Statistical methods which train the relationship between AOD and
PM2.5 using different statistical models [16,17] are suitable for the regions with a sufficient
number of ground stations since they require a large amount of training data [18]. The
generalised additive model (GAM) empowers the AOD–PM relationship by adding me-
teorological and land use information [19]. In the last few decades, artificial intelligence
models have been applied to estimate PM2.5 and were found to give a better description
of the complex non-linear relationship between PM2.5, AOD, and other independent vari-
ables than the previously mentioned methods [18] based on the usage of machine learning
algorithms [20–22] or deep neural networks [23,24]. These algorithms utilise satellite ob-
servations, various modelled meteorological variables, population, land use, land cover,
etc., to estimate PM2.5. The importance of the inputs differs from one area to another, but
generally, they can enhance PM2.5 estimations since counting solely on AOD to estimate
near-surface particulate matter values is not sufficient [25]. AOD without other variables
was not enough to provide good PM2.5 estimations over Europe [26]. In Great Britain,
AOD was not among the 15 most important variables when predicting PM2.5 levels [20].
Satellite AOD are more correlated with surface PM when the aerosols are well mixed within
the planetary boundary layer height (PBLH) [9]. A global study found that 69% of the
total AOD are within the PBLH [27], other studies have shown that temperature plays an
important role in capturing AOD and understanding its vertical distribution that improve
PM analysis [28]. Moreover, a higher humidity atmosphere is likely to have higher AOD
without affecting the levels of PM2.5 [9]. Other meteorological variables that affect PM2.5
are the precipitation that showed a negative correlation in some areas [29] and a positive
correlation in other parts of the world [30], and wind speed (WS) that also has different
effects from one area to another [30,31].

In this study, we report the modelling of spatiotemporal heterogeneity of PM2.5 using
machine learning to generate daily estimations of PM2.5 over the European Union member
states, together with the United Kingdom, Iceland, Liechtenstein, Norway, Switzerland,
Albania, Bosnia and Herzegovina, Kosovo, Montenegro, North Macedonia, and Serbia [32].
We will refer to the area of study as “Europe” located inside the coordinates box 26◦W,
72◦N, 42◦E, and 36◦S. The total study area covers 13,391,504 of 1 km grid cells; 5,450,009 of
the total cell number are located over land. The study period covers the years 2018–2020
with full coverage of 1 km spatial resolution using various open data. In the following
sections, we will introduce the study area and period and present the preliminary data that
were tested while building the predicting model.

6
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2. Primary Data

In this section, we will introduce the primary data we investigated while building the
model. Not all these data were utilised while building the model. The chosen data can be
found in Section 3.3.

2.1. PM2.5 Measurements

PM2.5 observations were collected from 848 stations across Europe represented in
Figure 1. Data was downloaded from OpenAQ which is a non-profit organisation that
collects air quality data from different governmental and research institutions and provides
it to the users [33].

Figure 1. The location of PM2.5 ground stations with the number of valid measurements used in this study.

For each station, data between 10 a.m. and 2 p.m. local time were averaged where there
are at least 2 available observations to be consistent with MODIS satellites overpassing.
We identified a skewed distribution for PM2.5 as shown in Figure 2, we calculated the
25th percentile (Q1), the 75th percentile (Q2) of the dataset, and the inter-quartile range
(IQR = Q3 − Q1). All PM2.5 values that are higher than 2 × (Q3 + 3 × IQR which is refer
as outer fence [34]) were removed, which counted less than 1% of the total data. The
number of valid PM2.5 observations was 123,248 in 2018, 143,048 in 2019, and 158,964 in
2020 totalling 425,260 observations throughout the study period.

Figure 2. The distribution of the measured PM2.5 used in this study.

7
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2.2. AOD Data

AOD data were downloaded from GHADA, which is a Geo-Harmonized Atmo-
spheric Dataset for Aerosol optical depth at 550 nm [35]. It contains daily estimations of
AOD550 over Europe with 1 km spatial resolution. GHADA was built based on the MODIS
MCD19A2 product [36] and modelled AOD data from Copernicus Atmosphere Monitoring
Service (CAMS) [37] that were used to overcome the high percentage of gaps found in
the MCD19A2 product. This dataset showed good results when validated with NASA’s
Aerosols Robotic Network (AERONET).

2.3. Meteorological Data

Meteorological data of the following variables wind component u, wind component
v, PBLH, total column water vapour, total perception, evaporation, surface pressure, and
temperature at 2 m (T2m) were collected from ERA5-Land which is a reanalysis dataset
offering a consistent view of the development of land parameters over several decades with
a spatial resolution of ~9 km. ERA5-Land was produced by replaying the land component
of the European Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis [38].
Relative humidity was collected from ERA5 with 0.25 × 0.25 horizontal resolution.

2.4. Digital Elevation Model

The Japan Aerospace Exploration Agency (JAXA) provides a worldwide digital sur-
face model with a horizontal resolution of ~30 m by the Panchromatic Remote-sensing
Instrument for Stereo Mapping (PRISM), which was carried on the Advanced Land
Observing Satellite “ALOS” [39]. Data were accessed on the 8 March 2021 from https:
//www.eorc.jaxa.jp/ALOS/.

2.5. Normalised Difference Vegetation Index

MODIS Terra satellite provides a monthly normalised difference vegetation index
(NDVI) product called MOD13A3 [40]. It has 1 km spatial resolution, and it quantifies
vegetation presence with values ranging between −1 and 1. NDVI is commonly expressed
as shown in Equation (1):

NDVI =
NIR − Red
NIR + Red

(1)

where NIR and Red are spectral reflectance values in the near-infrared and red wavelengths.

2.6. Land Cover

Land cover data were extracted from the 2018 CORINE Land Cover (CLC) inventory
that was built based on ortho-rectified satellite images having a spatial resolution ranging
from 5 m to 60 m and were aggregated into 100 m. We grouped the original 44 CLC classes
into seven level 1 classes defined as: agricultural areas, artificial areas, continues urban
areas, discontinues urban areas, forests, industrial areas, and water surfaces. Then, we
calculated the percentage of each class in every 1 × 1 km2 grid cell.

2.7. Population Data

Population data was extracted from the Visible Infrared Imaging Radiometer Suite
(VIIRS) night-time lights (NTL) data by averaging the monthly data of the year 2019.

3. Methodology

3.1. Data Pre-Processing

All data were reprojected to the European Terrestrial Reference System 1989 (EPSG:3035)
that uses metres as measuring units. This system is used for statistical mapping and other
purposes which requires a true area representation, using a 1 km grid cell with bilinear
interpolation method for ECMWF data and the cubic convolution for the ALOS elevation
model. In addition, we calculated WS based on the two wind U and V components.
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A spatio-temporal dataset was created by extracting the information from all input
data at the locations of PM2.5 stations. The Julian day, month, and year were added as the
temporal information; longitude and latitude were added as the spatial information. The
generated dataset was used to train and test the model.

3.2. Model Development

We first analysed the linear relationship between the primary independent variables
and PM2.5 values. PBLH was negatively correlated to PM2.5 with Pearson correlation of
r = −0.24. Most of the meteorological variables were also negatively related to PM2.5 with
r = −0.2 for WS, r = −0.15 for T2m, r = −0.13 for RH, and r = −0.1 for TP. AOD and
evaporation had the highest positive correlation with PM2.5 r = 0.14. Based on this initial
data exploratory analysis, we excluded some primary inputs that had high correlation with
other inputs such as skin temperature, which was correlated to T2m with r = 0.93. We
tested linear models to estimate PM2.5. These models suffered from underfitting issues and
failed to describe the relationship between the independent variables and PM2.5. Therefore,
we used a more complex algorithm called Extremely Randomised Trees (ET).

ET is a very similar decision tree-based ensemble method to the widely used Random
Forest (RF). Both algorithms are composed of large number of trees, where the final decision
is obtained from the prediction of every tree by majority vote in classification problems and
arithmetic average in regression problems. Both algorithms have the same growing tree
procedure and selecting the partition of each node. Additionally, both algorithms randomly
choose a subset of input features.

ET, on the other hand, strongly randomises the selection of both attribute and cut point
while splitting a tree node using the whole learning sample to grow the trees which adds
randomisation, making it a more robust algorithm against overfitting. From computational
point of view, the complexity of the tree growing procedure is on the order of N log N
with respect to learning sample size [41]. The main parameters in the ET splitting process
are the number of attributes that are randomly selected at each node and the minimum
sample size for splitting a node. For further information on how the ET algorithm operates
refer to Table 1 in [41]. In addition to accuracy, the ET algorithm has higher computational
efficiency than the RF algorithm since it chooses the splits randomly and does not look
for the optimum split as the latter one [41]. The number of estimators (number of trees in
the forest), the maximum depth of the trees, the number of samples required to split an
internal node, and the minimum number of samples required to be at a leaf node were the
main parameters while tuning our model.

Table 1. The dependent and independent variables used to build the ET model.

Name of the Variable Unit Minimum Maximum Mean STD

PM2.5 μg/m3 2 80 11.81 9.26
Aerosol optical depth - 0.01 3.12 0.13 0.08

PBLH m 73.90 3420.17 933.39 463.59
WS m/s 0.23 18.12 3.88 2.13
T2m K 249.86 314.15 287.03 8.17

Relative Humidity % 0.04 110.82 68.53 22.93
Total precipitation mm 0 8 0.1 0.3

Total Column Water
Vapour Kg/m2 0.95 50.61 16.76 7.88

NDVI - −0.3 0.73 0.25 0.12
Evaporation mm −0.744 0.065 −0.164 0.109

Elevation m −3.88 914.26 151.66 156.01

To reduce model complexity due to the large number of independent variables we
excluded the input variables based on the feature importance in the ET algorithm. Besides
the spatio-temporal information, we used PM2.5 with the independent variables that are
shown in Table 1 to develop our model.
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3.3. Model Validation
3.3.1. Sample-Based Cross Validation

Cross validation (CV) is a common method to analyse the model performance and
detect potential overfitting problems where the model achieves high accuracy on the
training set and performs badly on new data or the test set. We applied a 10-fold CV
where all samples in the training dataset were randomly divided into 10 equal subsets.
Then, in each round, 9 subsets were used to fit the model, and the remaining subset
was used for testing the model performance [42]. This approach is used widely in PM
studies [20,21,43–45].

3.3.2. Spatial and Temporal 10-Fold Cross Validation

In this validation, we divided the samples based on two factors. For the spatial 10-fold
cross validation we splatted the data based on the location of the stations, the stations were
divided randomly into 10 folds. In each fold, the model was trained on the samples from
90% of the stations and the samples from the remaining 10% for testing. For the temporal
10-fold cross validation, we divided the samples into 10 folds based on the Julian day and
applied the cross validation in a similar way to the previously mentioned one.

4. Results

The results of sample-based, spatial, and temporal 10-fold cross validation are shown
in Table 2. The density scatter plot for the sample-based cross validation is shown in
Figure 3.

Table 2. R2, RMSE, and MAE of the sample-based 10-CV, spatial 10-CV, and the temporal 10-CV.

10-CV R2 RMSE MAE

Sample-based 0.69 5.0 3.3
Spatial 0.69 4.9 3.2

Temporal 0.53 6.1 4.1

Figure 3. Density scatter plot of the sample-based 10-CV results of the model.

It must be noted that PM2.5 levels in general are low in Europe when compared to more
polluted areas and this is reflected by the low RMSE we obtained in our study when com-
pared to some studies outside Europe with higher R2 values [44,45]. Our model proved its
efficiency in predicting PM2.5 when our results (out-of-sample R2 = 0.69, RMSE = 5 μg/m3)
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were comparable with results obtained from a recent study over a smaller geographic area
in Europe (Great Britain; out-of-sample R2 = 0.77, RMSE = 4 μg/m3) [20]. It is also noted
that the model underestimates high PM2.5 values (>40 μg/m3) since such values are not
abundant over our study area.

To justify the difference in the model performance spatially and temporally, we applied
site-based cross validation where we used samples from one station as the test set, and the
samples from all remaining stations were used to train the model. We applied this method
to analyse the model performance spatially, since the standard 10-CV may not be able to
detect potential spatial overfitting [18].

The results are shown in Figure 4. The model performs well in most of the locations
in Central Europe with an average R2~0.7. A total of 63% of all stations in Europe have
R2 > 0.6. The accuracy of the model is lower in the northern and southern parts of Europe.
However, the RMSE and MAE are relatively small even in the northern and southern parts.

 

Figure 4. Spatial distribution of the site-based cross validation of coefficient of determination, the
root mean square error, and the mean absolute error.
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5. Creating PM2.5 Maps

Daily PM2.5 maps during MODIS satellite overpassing were created for the period
2018–2020 over Europe. Figure 5 shows the average PM2.5 for the year 2018, 2019, and 2020.

 

 

 

Figure 5. The average PM2.5 for the years 2018, 2019, and 2020 over Europe.
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A significant decline in PM2.5 levels has occurred over Europe throughout the study
period. Poland had the highest PM2.5 average level in the year 2018 with an average
level~19.5 μg/m3, in 2019 Romania had the highest average~16.5 μg/m3 whereas Serbia
had the highest average in 2020 with an average~15.8 μg/m3. Finland had the lowest PM2.5
average level in all three years with 7.1 in 2018, 6.3 in 2019, and 5.8 in 2020. Comparing the
results of the average PM2.5 levels for the years 2018, 2019, and 2020 were highly compatible
with the reports of the European Environment Agency (EEA). According to EEA the highest
PM2.5 concentrations were found in central and eastern Europe and northern Italy. For
the central and western parts, the main reason for high PM2.5 is the usage of solid fuels
with older vehicle compared to other parts of Europe [46], besides using the solid fuels
for heating as was found in Poland [47]. For the northern part of Italy, the high levels
of PM2.5 are due to the combination of a high density of anthropogenic emissions and
meteorological conditions [46,48]. Furthermore, Milan, the largest city in the north of Italy
previously reported levels of PM2.5 exceeding the safety limit set by the EU [49].

As an application, we used the proposed machine learning-based prediction approach
in PM2.5 levels analysis to study the effect of the COVID-19 lockdown (March to June of the
year 2020) on air quality over Europe. As an attempt to verify the influence of the lockdown
on air quality, we compared the average PM2.5 of the previous 4 months (November to
December in 2019 and January to February 2020) and the following 4 months (July to
October 2020) to the 4 months of the lockdown by calculating the relative percentage
difference (RPD). By doing so, we masked the general improvement trend in air quality
over Europe. RPD calculated using Equation (2).

RPD =
PM2.5 (lockdown)− PM2.5 avg(before lockdown, after lockdown)

PM2.5 avg(before lockdown, after lockdown)
× 100 (2)

We found a significant improvement in air quality over Europe except for UK, Ireland,
north of France, and south of Italy as shown in Figure 6. Our results are in agreement
with another study over Poland (Eastern Europe), where the air quality represented by
PM2.5 has significantly improved in the months of March to April in 2020 when the authors
compared to the same months from the previous two years [50]. Interestingly, the unusual
increase in PM2.5 levels in the UK was consistent with what was reported in [51] as the
authors justified such increase by unusual meteorological conditions. The latter conditions
may also justify the increase in PM2.5 over northern France. In Italy, where people were
spending most of their time at home, the increased house heating during the lockdown
period limited the decrease in PM2.5 levels besides the effects of the agriculture sector that
kept performing during the lockdown [52].

 

Figure 6. Relative percentage difference of PM2.5 for the lock down period of the year 2020 with the
average of the previous 4 months and the following 4 months.
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6. Discussion

In this study, we proposed the first machine learning-based scheme to estimate PM2.5
levels over Europe with high spatial resolution of 1 km. We trained an extra trees model
using observed PM2.5 from 848 stations as the target variable. AOD, different meteorological
variables, land variables, and NDVI as the independent variables.

The sample-based 10-fold CV showed that our model underestimates high PM2.5
values (>40 μg/m3) which may limit the model ability to detect hazard situations. This
underestimation occurred since high PM2.5 values were not common over our study area
as shown in Figure 2. The spatial cross validation showed that the model estimates PM2.5
with a higher R2 in the areas with high ground stations density the compared to the areas
with a lower density. The occurred spatial overfitting is expected to happen due to spatially
unbalanced data.

In Central Europe (Czech Republic, Poland, Slovakia, and surrounding areas), the
model performed with a higher R2 compared to the northern and southern parts of Eu-
rope. However, the RMSE in Central Europe was comparably higher than the ones in
the previously mentioned parts. This is due to the fact that the average PM2.5 value in
Central Europe is higher and have more variations than the northern and southern parts.
The highest RMSE in Central Europe can be found in three stations in the Czech Republic.
These stations are located near mining areas with higher PM2.5 values compared to other
stations that are mostly located in urban areas. This issue can be potentially solved by
including a detailed land cover data with an appropriate classification for each station
which is usually difficult to achieve on a large scale such as in our study.

Having unbalanced spatial-temporal data made the modelling more complex than
other studies which focused on smaller areas with well-balanced data and with similar
instruments in measuring PM2.5 values. However, by tuning the parameters in the model,
we were able to achieve acceptable results for most parts of our study area. The effect of
the chosen independent variables in estimating PM2.5 differs across the study area. We
analysed the spatial potential relationships of the independent variables in estimating
PM2.5 by calculating feature importance in four parts of Europe: north-west (latitude > 50
and longitude < 10), north-east (latitude > 50 and longitude > 10), south-west (latitude < 50
and longitude < 10), and south-east (latitude < 50 and longitude > 10). AOD and PBLH
had the most feature importance in all parts of Europe with an average of 10.4% and 14.1%,
respectively. WS and temperature had more effect in estimating PM2.5 in the south of
Europe compared to the north. Rh had more importance in estimating PM2.5 in the western
part of Europe compared to the eastern part.

Table 3 shows the effects of AOD and the most important meteorological variables
on PM2.5 estimates. We tried to train multiple models based on the area. However, this
approach did not improve the overall performance over the whole study area.

Table 3. The effects (%) of AOD and the most important meteorological variables on PM2.5 estimations
in the four chosen parts of our study area.

Independent
Variable

North-West North-East South-West South-East

AOD 13.25 8.81 10.43 9.11
BLH 15.89 15.22 14.98 10.41
T2m 8.62 6.25 10.13 10.71
Rh 6.41 3.99 5.82 4.71
E 3.58 5.99 3.44 7.96

WS 5.18 4.25 7.32 5.82
TCWV 4.469 3.63 4.55 4.07

7. Conclusions

In this study, we developed a spatio-temporal machine learning model to estimate
daily PM2.5 levels for the years 2018–2020 with 1 km spatial resolution over Europe using

14



Remote Sens. 2022, 14, 3392

open data from multiple sources such as remote sensing satellite-based products, meteoro-
logical reanalysis datasets, and other land variables.

The developed model was used to estimate PM2.5 values over 5,450,009 land cells
(1 km2) for a 3-year period (1096 days) totalling more than 5.973 billion estimations with a
good sample-based CV coefficient of 0.69, RMSE of 5 μg/m3, and MAE of 3.3 μg/m3.

We calculated the yearly average of PM2.5 levels, and we found that PM2.5 values have
dropped in almost all parts of Europe during the study period.

The full coverage dataset of PM2.5 that we produced can be used to investigate air
quality over Europe with higher spatial resolution compared to the available products
which may provide better understanding in time series analysis in this field.
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Abstract: PM2.5 retrieval from satellite-observed aerosol optical depth (AOD) is still challenging
due to the strong impact of meteorology. We investigate influences of meteorology changes on the
inter-annual variations of AOD and surface PM2.5 in China between 2006 and 2017 using a nested
3D chemical transport model, GEOS-Chem, by fixing emissions at the 2006 level. We then identify
major meteorological elements controlling the inter-annual variations of AOD and surface PM2.5

using multiple linear regression. We find larger influences of meteorology changes on trends of
AOD than that of surface PM2.5. On the seasonal scale, meteorology changes are beneficial to AOD
and surface PM2.5 reduction in spring (1–50%) but show an adverse effect on aerosol reduction in
summer. In addition, major meteorological elements influencing variations of AOD and PM2.5 are
similar between spring and fall. In winter, meteorology changes are favorable to AOD reduction
(−0.007 yr−1, −1.2% yr−1; p < 0.05) but enhanced surface PM2.5 between 2006 and 2017. The
difference in winter is mainly attributed to the stable boundary layer that isolates surface PM2.5 from
aloft. The significant decrease in AOD over the years is related to the increase in meridional wind
speed at 850 hPa in NCP (p < 0.05). The increase of surface PM2.5 in NCP in winter is possibly related
to the increased temperature inversion and more stable stratification in the boundary layer. This
suggests that previous estimates of wintertime surface PM2.5 using satellite measurements of AOD
corrected by meteorological elements should be used with caution. Our findings provide potential
meteorological elements that might improve the retrieval of surface PM2.5 from satellite-observed
AOD on the seasonal scale.

Keywords: meteorology; PM2.5; AOD

1. Introduction

Fine particle (PM2.5) lowers visibility [1,2], affects human health [3], modifies cloud
properties [4], and exerts radiative forcing on the Earth’s surface and at the top of the
atmosphere [5]. Accurate estimates of high spatio-temporal resolution of surface PM2.5
concentrations is critical for assessing its effects. However, national-wide in situ measure-
ments of surface PM2.5 in China were unavailable until 2013. To study the driving forces
of long-term variations of surface PM2.5, many studies use long-term measurements of
fog–haze days [6], visibilities [7], and conducive weather conditions [8] as approximations.
Specifically, Niu et al. showed that in the past three decades, the doubled frequencies of
fog events in wintertime over eastern-central China was strongly related to the weakening
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of the East Asian winter monsoon (EAWM), which showed decreased surface wind speed
and number of cold air outbreaks and increased relative humidity and frequency of light
wind events [6]. Li et al. found that the number of wintertime fog–haze days correlates
with the inter-annual variations of the winter monsoon index, with a correlation coefficient
of −0.41 [9]. Shi et al. also found that wind speed change in the lower troposphere explains
81.6% of the visibility variance between 1960 and 2014 in Eastern China [7]. Lower wind
speed decreased dust emissions, and this decrease moderated the wintertime land–sea
surface air temperature difference and further decreased wind speed [10]. However, these
meteorological approximations only partly reflect the aerosol variations, and their in situ
observations are sparse.

Many studies use satellite observations of aerosol optical depth (AOD, [11]) to retrieve
surface PM2.5. AOD are observed with large spatio-temporal coverage by remote sensing
instruments on board satellites. For example, the total Ozone Mapping Spectroradiome-
ter [12], the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, [13]), and the
moderate resolution imaging spectrora-diometer [14]. A number of studies [15–17] have
developed different methods, such as statistical relations [18] and machine learning [15], to
derive surface PM2.5 with high spatiotemporal resolution in China to study the long-term
exposure of population to surface PM2.5. However, studies showed that AOD–surface
PM2.5 relations show large spatial and temporal variations (e.g., r = 0.17–0.57, varying
within regions in China [19]). Meteorological elements, such as cloud cover, wind speed,
boundary layer height, and relative humidity, are used to correct the AOD–surface PM2.5
relation for better prediction of surface PM2.5 ([11,20–22]). However, to the knowledge of
the authors, no study has systematically quantified the different responses of AOD and
surface PM2.5 to changes in meteorological elements to better understand the AOD–surface
PM2.5 relations.

In this study, we systematically quantify the contributions of meteorology changes
to the inter-annual variations of AOD and surface PM2.5 in different seasons and regions
in China between 2006 and 2017 by fixing emissions at the 2006 level using a nested
global 3D chemical transport model, GEOS-Chem. We study the relationship of AOD
and surface PM2.5 in different regions and seasons and their relationship with mesoscale
weather patterns. We further identify the major meteorological elements that control the
inter-annual variations of AOD and surface PM2.5 in key regions during different seasons
using multiple linear regressions.

2. Materials and Methods

2.1. Model Description

We used the nested 3D chemical transport model, GEOS-Chem version 11.01, over
Asia to simulate surface PM2.5 and AOD. The nested model has a horizontal resolution of
0.5◦ latitude × 0.667◦ longitude, with boundary conditions archived from global simula-
tions at 2◦ latitude × 2.5◦ longitude. We simulated AOD in Asia between 2006 and 2017 [23]
with a model spin-up of one month. The model was driven with Modern-Era Retrospective
analysis for Research and Application, Version 2 (MERRA-2) meteorological fields. We
ran GEOS-Chem with full gaseous chemistry and online aerosol calculations, including
sulphate-nitrate-ammonium particles [24], black carbon (BC, [25,26]), primary [27] and
secondary organic carbon (OC, [28]), natural dusts [29–31], and sea salts [32]. The model
coupled aerosol and gas-phase chemistry through nitrate and ammonium partitioning,
sulphur chemistry, secondary organic aerosol formation, and uptake of acidic gases by
sea salt and dust [24]. We used monthly Asian anthropogenic emissions of SO2, NOx, BC,
OC, NMVOCs, and NH3 from [33]. We developed anthropogenic emission inventories of
these gases and aerosols from industrial, transport, residential, and agricultural sectors in
China between 2006 and 2017 using a bottom-up approach [34]. We used daily open fire
emissions from the Global Fire Emissions Database, Version 4. Dust emissions followed
Fairlie et al. [29] with an improved dust size distribution scheme from [31]. Dry deposition
of aerosols followed a resistance-in-series method [35] with updates of dry deposition
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velocity [36]. Wet removal of aerosols in convective updrafts and large-scale precipita-
tion followed Liu et al. [37], with updates of below-cloud and in-cloud scavenging in ice
clouds [38,39] and in-cloud scavenging in mixed-phase clouds [40].

Assuming external mixing, AOD at wavelength λ in each layer was estimated as the
sum of AODs of each component i

τλ =
n

∑
i=1

3
4

miQλ,i

ρire f f ,i
=

n

∑
i=1

miβλ,i

where τλ is AOD at wavelength λ, n is the number of aerosol components, mi is aerosol mass
concentration of component i, Qλ ,i is extinction efficiency factor at wavelength λ calculated
with Mie theory, ρi is aerosol mass density, reff,i is particle effective radius. We accounted for
the hygroscopicity growth of aerosol particles, as all parameters in the above equation are
functions of relative humidity for hydrophilic aerosol components. We used the updated
aerosol size distribution and refractive index [41] to calculate Qλ,i and reff,i in a Mie code.
Uncertainties of the model-simulated AOD stemmed from aerosol vertical profiles and
assumptions on aerosol physical and chemical properties, including mixing state, density,
refractive index, and hygroscopic growth [42]. Among the aerosol physical and chemical
properties, the mixing state is the most important factor, causing an uncertainty of between
30 and 35% on the simulated AOD [42]. Uncertainties caused by other properties were less
than 10% [42]. We used in situ station radiometer AOD measurements, AOD measurements
from a moderate resolution imaging spectrora-diometer, and surface in situ measurements
of PM2.5 to validate model simulations (see details in Supplementary Materials S1 and S2).

We conducted two experiments to quantify the contributions of meteorological changes
in AOD and surface PM2.5 in China. In the BASE simulation, we used varying meteorology
and emissions from 2006 to 2017. The observed and simulated inter-annual variations and
trends of annual mean AOD and surface PM2.5 are discussed in Supplementary Materials
S3. To investigate the contribution of meteorology, we kept emissions at the level of 2006
and varying meteorology in simulation FIXEMISS. The inter-annual variations of AOD
and surface PM2.5 in this experiment reflect the effects of varying meteorology. Comparing
trends of AOD and surface PM2.5 simulated by the two experiments shows the relative
contribution of meteorology changes in these variations.

2.2. Multiple Linear Regression

We analysed results in three hot spot key regions, including the North China Plain
(NCP: 35–41◦N, 110–120◦E), the Yangtze River Delta (YRD: 27–35◦N, 116–122◦E), and the
Pearl River Delta (PRD: 22–25◦N, 110–117◦E) as shown in Figure S1. We built multiple
linear regression models for all the target regions during the four seasons to investigate
the contribution of meteorological elements to variations of AOD and surface PM2.5. The
candidate variables included temperature (T), zonal wind speed (U), meridional wind
speed (V), vertical air movement (O), relative humidity (RH), potential vorticity (PV) at
surface, 850 hPa and 500 hPa, pressure at surface (PS), sea level pressure (SLP), tropopause
pressure (TROPPT), planetary boundary layer height (PBLH), and precipitation (PREC).
The list of abbreviations is shown in Table S2. To avoid redundancy, we use adjusted (adj)
the R2 criterion to determine the best subset of regressors.

adj R2 = 1 − (1 − R2)(n − 1)
n − k − 1

(1)

where k is the number of model parameters, n is the number of pairs of data in the data set,
R2 is the coefficient of determination because the inclusion of the penalty term n − k − 1,
adj R2 decreases when redundant variables are included. We used a stepwise procedure
to select variables. Subsets with the smallest number of variables and largest adj R2

are regarded as the best predictors. GEOS-Chem-simulated and the best multiple linear
regression model-fitted AOD and surface PM2.5 are shown in Figures 1 and 2.
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Figure 1. GEOS-Chem-simulated (solid line) and multiple linear regression-predicted (dashed line)
monthly mean AOD in NCP, YRD, and PRD.

Figure 2. GEOS-Chem-simulated (solid line) and multiple linear regression-predicted (dashed line)
monthly mean PM2.5 in NCP, YRD, and PRD.
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3. Results

3.1. Meteorology Changes Have Larger Influences on Inter-Annual Variations of AOD than Those
of Surface PM2.5

GEOS-Chem shows that the influence of meteorology changes on AOD trends between
2006 and 2017 is relatively larger than their influences on surface PM2.5 (Table 1). Contri-
butions from meteorology changes to downward trends of annual mean AOD are 33% in
PRD, larger than that of surface PM2.5 (23%). In YRD, meteorology changes reduce AOD
by 10%, but are counter-productive with regard to surface PM2.5 reduction. Meteorology
changes show negligible effects on trends of AOD and surface PM2.5 in NCP. In spring,
meteorology changes between 2006 and 2017 are favorable to AOD and surface PM2.5
reduction. GEOS-Chem attributes 36%, 22%, and 50% of AOD reduction in NCP, YRD,
and PRD, respectively, to meteorology changes during the 12 years. However, for surface
PM2.5 reduction, the contributions of meteorology changes are much smaller: 1% in NCP,
12% in YRD, and 40% in PRD. In summer, meteorology changes show adverse effects on
aerosol reduction during the 12 years. AOD enhancements due to meteorology change
offset 42%, 25%, and 33% of the reduction caused by anthropogenic emission control in
NCP, YRD, and PRD, respectively. Influences of meteorology changes on surface PM2.5
are much smaller in NCP (5%) and PRD (10%). In fall, the model suggests a significant
adverse effect of meteorology on aerosols in NCP between 2006 and 2017 (+0.011 yr−1 and
+0.26 μg m−3 yr−1). These enhancements offset the reduction caused by anthropogenic
emission control by 85% for AOD and by 11% for surface PM2.5, respectively. Meteorology
changes contribute 25% and 40% to the total reduction in AOD in YRD and PRD (Table 1).
Their contributions to surface PM2.5 reductions are much lower, with 8% in NCP and 35%
in YRD.

Table 1. GEOS-Chem-simulated inter-annual trends of annual and seasonal mean AOD (yr−1, %
yr−1 in parentheses) and surface PM2.5 (μg m−3 yr−1 and % yr−1 in parentheses) in NCP, YRD, and
PRD between 2006 and 2017.

NCP YRD PRD

Annual
BASE

AOD −0.020 (−2.1) * −0.020 (−2.9) * −0.012 (−2.7) *
PM2.5 −2.61 (−3.4) * −2.12 (−2.9) * −1.45 (−2.7) *

FIXEMISS
AOD 0.001 (0.1) −0.002 (−0.2) −0.004 (−0.8) *
PM2.5 0.14 (0.2) 0.11 (0.2) −0.33 (−0.8) *

Spring
BASE

AOD −0.028 (−2.3) + −0.027 (−2.6) * −0.015 (−2.1) #
PM2.5 −2.57 (−3.1) * −3.13 (−4.0) * −2.01 (−4.5) *

FIXEMISS
AOD −0.010 (−0.8) −0.006 (−0.5) −0.009 (−1.2)
PM2.5 −0.03 (0.0) −0.38 (−0.4) −0.81 (−1.6)

Summer
BASE

AOD −0.021 (−1.8) # −0.018 (−2.8) # −0.004 (−1.6)
PM2.5 −2.33 (−3.1) * −1.53 (−3.1) + −0.81 (−3.8) *

FIXEMISS
AOD 0.011 (0.9) 0.006 (0.8) 0.002 (0.5)
PM2.5 0.12 (0.1) 0.67 (1.2) 0.09 (0.0)

Fall
BASE

AOD −0.005 (−0.7) −0.016 (−3.2) * −0.017 (−4.4) +
PM2.5 −2.11 (−2.9) * −1.67 (−3.7) * −1.70 (−4.6) *

FIXEMISS
AOD 0.011 (1.4) # −0.004 (−0.6) −0.007 (−1.7)
PM2.5 0.26 (0.3) −0.13 (−0.2) −0.60 (−1.3) #

Winter
BASE

AOD −0.025 (−4.5) * −0.021 (−3.9) * −0.013 (−3.1) *
PM2.5 −3.45 (−4.2) * −2.14 (−3.7) * −1.27 (−3.3) *

FIXEMISS
AOD −0.007 (−1.2) * −0.004 (−0.6) −0.001 (−0.2)
PM2.5 0.23 (0.2) 0.27 (0.4) 0.09 (0.2)

# Significant at 90% level (0.05 < p < 0.1); + significant at 95% level (0.01 < p < 0.05); * significant at 99% level
(p < 0.01).
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The larger influence of meteorology changes on AOD than surface PM2.5 is attributable
to several reasons. First, emissions have larger influence on surface PM2.5 than aloft. Second,
PM2.5 concentration decreases with increasing altitude. Mathematically, the same amount
of meteorology changes show relatively larger effects on smaller PM2.5 concentrations.
Third, observations show that change rates of meteorological elements are amplified
with elevation [43,44]. Warming [44] and change of wind speed [43] are more rapid at
higher elevations.

3.2. Meteorology Changes in Spring Are Beneficial to Aerosol Reduction

We used multiple linear regression to identify major meteorological elements that
possibly have large influences on inter-annual variations of AOD and surface PM2.5. We
found that meteorological elements that might influence inter-annual variations of AOD
and surface PM2.5 in spring are similar and mainly related to RH and wind speed. In
addition, increasing wind speed in spring is, possibly, the main reason for the beneficial
effects of meteorology changes in AOD and surface PM2.5 reduction. We found that
the inter-annual variations of AOD in NCP is strongly related to the variations of T at
850 hPa, surface RH, and O at 850 hPa, explaining 53% of AOD variations between 2006
and 2017 (Table 2). For surface PM2.5, the latter two elements explain 53% of the inter-
annual variations (Table 3). In YRD, wind speeds at different altitudes are important
factors controlling the inter-annual variations of both AOD and surface PM2.5. Surface
PM2.5 has a stronger correlation with wind speed. Westerly wind at the surface in YRD
increases at a rate of 0.07 m s−1 yr−1 (5.4% yr−1, p < 0.05), which possibly contributed
to the reduction in AOD and surface PM2.5 in this region. In PRD, the contributions
from meteorology (−0.009 yr−1, 1.7% of 12-year mean AOD) and emission reduction
(−0.010 yr−1) are comparable. Multiple linear regression suggests that AOD in PRD is
strongly correlated to surface meridional wind velocity and zonal wind velocity difference
between the surface and 850 hPa. The former increased at a rate of 0.04 m s−1 yr−1 (1.1%
of 12-year mean, p = 0.13) between 2006 and 2017, possibly causing decreasing aerosol
concentration. The latter increased at a rate of 0.05 m s−1 yr−1, indicating that dynamic
instability was enhanced over the 12 years, favorable for pollution mitigation.

Table 2. Meteorological parameters that explain the AOD variations in NCP, YRD, and PRD in
different seasons.

NCP YRD PRD

Variables adj R2 Variables adj R2 Variables adj R2

Spring

T850hPa 0.34 Vsurface 0.18 V850hPa 0.11
RHsurface 0.48 Usurface 0.36 dUsurf-850hPa 0.42
O850hPa 0.53 TROPPT 0.42 PBLH 0.56

dTsurf-850hPa 0.59 PVsurface 0.48 PV500hPa 0.63
PBLH 0.67 dV850hPa–500hPa 0.53

O500hPa 0.62

Summer

dVsurf-850hPa 0.31 U500hPa 0.72 T500hPa 0.21
Vsurface 0.64 PREC 0.31
O850hPa 0.70 V500hPa 0.38

RH850hPa 0.72 O850hPa 0.46

Fall

O850hPa 0.13 SLP 0.47 PS 0.12
SLP 0.28 PV850hPa 0.57 SLP 0.59

PVsurface 0.36 dV850hPa–500hPa 0.72 U500hPa 0.70
RHsurface 0.45

Winter

V850hPa 0.74 RH850hPa 0.55 RH850hPa 0.28
O500hPa 0.80 PV500hPa 0.64 PV500hPa 0.45

TROPPT 0.83 Vsurface 0.73 U500hPa 0.52
PBLH 0.56
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Table 3. Meteorological elements that explain inter-annual variations of surface PM2.5 in NCP, YRD,
and PRD between 2006 and 2017 in different seasons.

NCP YRD PRD

Variables adj R2 Variables adj R2 Variables adj R2

Spring

RHsurface 0.32 Vsurface 0.44 V850hPa 0.40
O850hPa 0.53 Usurface 0.59 dUsurf-850hPa 0.59

O500hPa 0.61
V500hPa 0.68

Summer

dVsurf-850hPa 0.26 U500hPa 0.70 T500hPa 0.13
Vsurface 0.60 PREC 0.24
PREC 0.67 V500hPa 0.34

O850hPa 0.40

Fall

SLP 0.45 SLP 0.66 PS 0.46
PVsurface 0.48 PV850hPa 0.72 SLP 0.76
RHsurface 0.61 Vsurface 0.78 U500hPa 0.81
O850hPa 0.65

Winter

RHsurface 0.48 Usurface 0.24 Vsurface 0.19
PBLH 0.66 dU850hPa–500hPa 0.33 T850hPa 0.36

dT850hPa–500hPa 0.76 TROPPT 0.36 PV850hPa 0.49
V500hPa_NCP 0.45

We estimated the correlation of AOD (surface PM2.5) among different regions to
investigate spatial variations of aerosols. We found that AOD in NCP and YRD in spring
are highly correlated (r = 0.77, Table 4), but surface PM2.5 in the two regions are not
(r = 0.09). This pattern of correlations in the two regions is related to the activity of the West
Pacific Sub-Tropical High system (WPSTH, Figure 3). AOD in NCP and YRD show similar
correlation with the area (r = 0.29 and 0.31) and strength (r = 0.24 and 0.24) of the WPSTH.
Surface PM2.5 in YRD is also related to the two indices (r = 0.33 and 0.25), but surface
PM2.5 in NCP is not (r = −0.02 and 0.05). Very few studies have investigated the effects of
meteorology on the distribution of aerosols in China in spring. A recent study [45] showed
that the activity of the WPSTH and Northeast Asia anticyclone system are important
to the distribution of PM2.5 in NCP. They showed that the climatology of the winds at
850 hPa in spring over NCP and YRD is northwesterly. In an anomalous southeasterly
wind year, wind speed is reduced and RH increases in Eastern China, resulting in high
aerosol concentrations in the region.

Table 4. Correlation coefficients of seasonal mean AOD and surface PM2.5 between 2006 and 2017
among NCP, YRD, and PRD.

NCP~YRD NCP~PRD PRD~YRD

Spring AOD 0.50 −0.13 0.31
PM2.5 0.09 −0.29 0.10

Summer
AOD 0.78 0.30 0.27
PM2.5 0.83 0.22 0.28

Fall
AOD 0.55 0.69 0.66
PM2.5 0.77 0.79 0.76

Winter
AOD 0.77 0.15 0.39
PM2.5 0.43 0.14 0.29

3.3. Meteorology Changes in Summer Are Unfavourable to Aerosol Reduction

GEOS-Chem shows that meteorology changes in summer between 2006 and 2017 offset
aerosol pollution control efforts in NCP, YRD, and PRD (Table 1). We used two indices to de-
scribe the East Asian summer monsoon (EASM) in this study (Figure 4). Index 1 is the mean
meridional wind speed at 850 hPa in Eastern Asia (20–40◦N, 110–125◦E), reflecting activity
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of the monsoon system in the whole region [46]. Index 2 is the zonal wind speed difference
at 200 hPa between Northern (40–50◦N, 110–150◦E) and Southern (25–35◦N, 110–150◦E)
China, reflecting the different variations between the two regions [47]. We found that AOD
and surface PM2.5 in the three regions are moderately to strongly correlated with both
EASM Index 1 and Index 2 (Table 5). Both indices show that EASM weakened between 2006
and 2017 (Index 1: −0.023 m s−1 yr−1; Index 2: −0.004 m s−1 yr−1, Figure 4). As a result,
AOD in the three target regions increased at rates from 0.006–0.011 yr−1, and surface PM2.5
increased at rates from 0.09–0.67 μg m−3 yr−1 (Table 1). If the enhancement of surface PM2.5
was totally attributed to wind speed changes, the sensitivity is from 0.09–0.67 μg m−3 %−1,
in general agreement with a recent estimate (0–0.5 μg m−3 %−1, [48]).

(a) (b) 

Figure 3. Correlation coefficients of AOD (a) and surface PM2.5 (b) with area, strength, ridge position,
and western extension index of Western Pacific sub-tropical high system in spring.

Figure 4. Monthly mean EASM Index 1, Index 2 and EAWM between 2006 and 2017.

26



Remote Sens. 2022, 14, 2762

Table 5. Correlation coefficients of East Asia monsoon system with AOD and surface PM2.5 in NCP,
YRD, and PRD in summer and winter between 2006 and 2017.

NCP YRD PRD

EASM Index1
AOD 0.61 0.35 −0.29
PM2.5 0.57 0.27 −0.30

EASM Index2
AOD −0.67 −0.82 −0.33
PM2.5 −0.67 −0.76 −0.45

EAWM
AOD 0.50 0.51 0.15
PM2.5 0.42 0.31 0.18

In each region, AOD and surface PM2.5 are strongly correlated (r = 0.93–0.98) because
of the strong vertical mixing in summer. AOD in NCP and YRD are strongly correlated in
summer (r = 0.78). However, their correlations with AOD in PRD are relatively low (r = 0.30
and 0.27). Similar relationships of surface PM2.5 among the three regions are also shown. In
different regions, the correlations of aerosols with EASM indices are different. In NCP, both
AOD and surface PM2.5 are strongly positively related to EASM Index 1 (r = 0.57–0.61) and
negatively related to Index 2 (r = −0.67). EASM Index 1 and Index 2 together explain from
65–69% of the inter-annual variations of AOD and surface PM2.5, indicating that both the
activity of EASM in the whole Eastern China and the difference between the Northern and
Southern China are critical to the inter-annual variations of aerosols in NCP. In contrast,
AOD and surface PM2.5 in YRD are strongly correlated with EASM Index 2 (r = −0.76−0.82)
but weakly correlated with Index 1 (r = 0.27–0.35), indicating that the zonal wind velocity
difference at 200 hPa between Northern and Southern China is possibly more important to
the inter-annual variations of aerosols in YRD.

We found that EASM Index 2 is strongly correlated with the position of the ridge of
the WPSTH system (r = 0.89), indicating that the zonal wind difference between Northern
and Southern China is possibly affected by the activity of the WPSTH system. A study [49]
showed that, in addition to wind velocity, the ridge position of the WPSTH also strongly
affects the distribution of precipitation in China in summer. The climatological pattern of
precipitation is more present north of the Yangtze River region and less in Southern China.
When the ridge shifts southward, the distribution of precipitation is the opposite. When the
ridge shifts northward, two rain-belts show in Southern and Northern China. The humid
maritime air mass brought to inland China by EASM shows dual effects on aerosols. The
abundant water vapour enhances the hygroscopic growth of sulphate-nitrate-ammonia
and, thus, increases aerosol concentrations, while large precipitation removes aerosols from
the atmosphere and reduces aerosol concentrations. In NCP, AOD is more affected by RH,
while surface PM2.5 is more affected by precipitation [50]. Both EASM Index 1 and Index 2
are weakly correlated with AOD and surface PM2.5 (r = −0.29–0.45) in PRD, indicating that
EASM has limited influence on aerosol distribution in this region. Surface PM2.5 shows
similar relationships. Regression analysis shows that major meteorological elements in PRD
only explains ~40% of the inter-annual variations of aerosols in this region. Meteorology
influences on aerosols in PRD need further investigation.

3.4. Meteorology Changes in Fall Show Different Effects on Trends of Aerosols in Different Key Regions

GEOS-Chem suggests adverse effects of meteorology changes on aerosol reduction
in NCP, but beneficial effects in YRD and PRD between 2006 and 2017. The significant
enhancements of aerosols in NCP (+0.011 yr−1 and +0.26 μg m−3 yr−1) offset the reduction
caused by anthropogenic emission control by 85% for AOD and by 11% for surface PM2.5,
respectively. We found that PV in NCP decreased at a rate of −0.02 PVU yr−1 (p < 0.05),
and RH at 850 hPa increased at a rate of 0.002 yr−1. Both changes favored the enhancement
of aerosol concentration in this region. In contrast, meteorology changes contributed from
8–25% and 35–40% to the total reduction in aerosols in YRD and PRD (Table 1). In YRD, PV
at 850 hPa became stronger over the years at a rate of +0.01 PVU yr−1 (p = 0.004), likely
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reducing aerosols in this region. In PRD, meridional wind speed at 500 hPa increased
(+0.07 m s−1 yr−1), related to the decline in aerosols in this region.

GEOS-Chem shows that AOD in NCP, YRD, and PRD have strong correlations in
fall (r = 0.55–0.69). The surface PM2.5 in the three regions show even larger correlation
coefficients (r = 0.76–0.79). In addition, AOD and surface PM2.5 in each region are also
highly correlated (r = 0.81–0.94), similar to summer. Major meteorological elements that
affect AOD and surface PM2.5 in each region are similar. A recent study [51] showed that in
fall, Eastern China is dominated by large-scale stable circulation patterns without frequent
disturbances of small-scale weather systems. Vertically, downward motion dominates.
Multiple linear regressions suggest that sea level pressure is the major controlling factor
that affects the inter-annual variations of AOD and surface PM2.5, particularly for the latter,
in each region (Tables 2 and 3). We found that sea level pressure among the three regions is
also moderately to highly correlated (r = 0.50–0.75), which partly explains the correlation of
aerosols among the three regions.

3.5. Meteorology Changes in Winter Show Opposite Effects on Trends of AOD and Surface PM2.5

GEOS-Chem suggests that from 8–30% of the downward trends in AOD in NCP
(−0.024 yr−1), YRD (−0.021 yr−1), and PRD (−0.013 yr−1) are attributable to meteorology
changes. In contrast, meteorology changes show adverse effects on surface PM2.5 reduction
over the 12 years, offsetting from 7–9% of the reductions caused by anthropogenic emission
control. The opposite effects of meteorology changes on AOD and surface PM2.5 variations
are mainly due to the isolation of PM2.5 at the surface and aloft by the stable boundary
layer in winter. The boundary layer is more stable and vertical mixing is weaker in winter
than in other seasons. Thus, the correlations of surface PM2.5 and AOD in winter in the
three regions are much weaker than those during other seasons, with correlation coefficients
of 0.44 in NCP, −0.01 in YRD, and 0.21 in PRD. This pattern is possibly partly explained
with the dual effects of EAWM on haze–fog variations in Eastern China [52]. Cold wave
activity in winter advects aerosol away and cleans up the region. However, the activity
of the Siberian High system may reduce the near surface wind speed and enhance the
stratification stability, thus, favoring pollution accumulation.

Major meteorological elements controlling the inter-annual variations of AOD and
surface PM2.5 are completely different. In NCP, a local northerly wind speed at 850 hPa
explains 74% of the inter-annual variations of AOD between 2006 and 2017 (Table 2). This
wind speed increases at a rate of +0.15 m s−1 yr−1 (p < 0.1), partly explaining the decrease
in AOD in the region (−0.007 yr−1, p < 0.05). The increasing wind speed in NCP is related
to the enhanced Siberian High due to the rapid warming of the Barents-Kara Sea region [53].
Different from AOD, inter-annual variations of surface PM2.5 in NCP are mainly affected
by surface RH, boundary layer height, and the temperature difference between 850 hPa and
500 hPa. This temperature difference increases over the 12 years, although it is statistically
insignificant (+0.1 K yr−1, p = 0.33), favouring aerosol accumulation. These changes are
in-line with surface PM2.5 enhancement in NCP during these years (+0.23 μg m−3, p = 0.70).

AOD in YRD is strongly correlated with AOD in NCP (r = 0.77), but surface PM2.5 in
the two regions are only weakly correlated (r = 0.43). We used meridional wind speed at
850 hPa in Eastern Asia (25–50◦N, 115–145◦E) as an indicator of the strength of EAWM ([46],
Figure 4). The EAWM index is moderately correlated with AOD in NCP (r = 0.52) and
YRD (r = 0.52), but relatively weakly related to surface PM2.5 in NCP (r = 0.42) and YRD
(r = 0.31). This correlation pattern suggests that surface PM2.5 in YRD is less affected by the
850 hPa wind speed in Eastern Asia.

Multiple linear regressions suggest that the inter-annual variations of AOD in YRD
are mainly affected by RH at 850 hPa, potential vorticity at 500 hPa, and surface meridional
wind velocity. We found that RH at 850 hPa decreased (−0.003 yr−1, p = 0.29), but surface
wind increased (0.046 m s−1 yr−1, p = 0.29), favouring aerosol accumulation and, thus,
possibly enhancing AOD reduction. Meteorological elements determining the variations of
surface PM2.5 include surface zonal wind velocity, dynamic instability, tropopause height,
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and meridional wind speed at 500 hPa in NCP. The former three elements explain 36%
of the inter-annual variations of surface PM2.5. Including the last element explains 9%
more variations, suggesting that transport from NCP to YRD is likely important to surface
PM2.5 in YRD in winter. We found that meridional wind speed at 500 hPa in NCP increases
over the years (+0.15 m s−1 yr−1, p = 0.03), indicating that transport from NCP to YRD is
possibly increasing. As a result, surface PM2.5 in YRD is increasing.

Similar as in NCP and YRD, meteorological elements that influence the inter-annual
variations of AOD and surface PM2.5 are also completely different in PRD. Increasing zonal
wind speed at 500 hPa (+0.17 m s−1 yr−1, 0.8% of 12-year mean), and decreasing potential
vorticity at 500 hPa (−0.004 PVU yr−1) and PBLH (−2.9 m yr−1), are related to the decrease
in AOD in this region. Meteorological elements affecting surface PM2.5 include surface
meridional velocity, temperature at 850 hPa, and potential vorticity.

4. Discussion

We showed that the weakening of EASM and the enhancing of AOD and surface PM2.5
between 2006 and 2017 are statistically insignificant, but the trends are still worth notice
because they are in-line with the inter-decadal trend as reported by previous studies [54].
Zhu et al. [54] showed that the decadal-scale-weakening of EASM (index: +0.31 between
1948 and 1979 versus −0.32 between 1980 and 2010) within the last thirty years led to
increases in aerosol concentration in Northern China by 20%. In addition, the monsoon
system also affects the spatial distribution of aerosols. During an active monsoon year,
AOD had a positive anomaly in NCP and a negative anomaly in PRD. During a weak
monsoon year, the anomalies were the opposite [55,56].

We found that the weakening of EAWM enhances surface PM2.5 in the three key
regions, in general agreement with [57], which showed that with fixed emissions, meteo-
rological conditions led to an increase in haze in Beijing during winter between 2002 and
2016. In contrast, Wang et al. [58] found that EAWM was significantly anti-correlated with
surface PM2.5 in Beijing between 2005 and 2016, with a correlation coefficient of ~0.75. The
difference between the two studies can be attributed to several reasons. First, we analyzed a
much larger region, NCP, in this study than in [58], which focused on a city Beijing. Second,
we separated the contribution from anthropogenic emissions and meteorology using a
chemical transport model, but Wang et al. [58] used surface in situ observations, which
do not distinguish the contributions of meteorology changes from anthropogenic emis-
sions control. Thus, their strong correlation is possibly due to the concurrent downward
trends of EAWM index and surface PM2.5. Stronger EAWM circulation brings more cold
and dry air to NCP and YRD [50] and cleans up the regions. A weaker monsoon barely
reaches YRD and even farther north, and favors the accumulation of pollutants [6]. The
long-term weakening trend and the inter-annual variations of EAWM were further related
to the subtropical Western Pacific Sea surface temperature anomaly [59,60], Arctic sea ice,
Eurasian snow [61,62], and El Niño–Southern Oscillation [63]. It is predicted that EAWM
would keep the weakening trend in the future (2050–2099), with increased frequency and
persistence of conducive weather conditions [8]. This suggests that future meteorology
conditions are possibly unfavorable to pollution dissipation.

Very few studies have investigated the influence of meteorology on aerosols in China
in spring and fall. PM2.5 in Eastern China is related to the inter-annual variations of Asia
Polar Vortex intensity [64], North Atlantic Oscillation, and the North Atlantic Sea surface
temperature [45] in spring. The influence of synoptic systems on AOD distribution in
fall China was investigated [51] and it was found that heavy pollution events with high
AOD (>0.6) in Eastern China is associated with a uniform surface pressure field or a steady
westerly in the middle troposphere, while clean episodes (AOD < 0.4) occur when strong
northwest cold air advection prevails or air masses are transported from sea to land. Further
related, by [65], are the haze days in fall to the abnormally warming sea surface temperature
over the North Atlantic subtropical and the Western North Pacific.
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Most of the previous studies [15,20,51] use cloud cover, wind speed, PBLH, and RH to
correct PM2.5 retrieval. Specifically, ref. [43] found large spatio-temporal diurnal variations
of correlation of AOD and PM2.5 in China using measurement data and found that the
distribution was strongly affected by cloud fraction, PBLH, and RH. Gong et al. also
found that vertical correction by PBLH was important to PM2.5 retrieval in Northwestern
China [22]. In other regions, vertical correction via CALIOP ratio is recommended [22].
We also suggest that these elements are important to AOD and surface PM2.5, but we
recommend the inclusion sea level pressure and surface pressure in fall.

Our findings have implications for future surface PM2.5 retrieval from satellite-observed
AOD. We investigated the controlling meteorological elements of AOD and surface PM2.5
variations over 12 years, including the long-term trends and inter-annual variations. We
found that the controlling meteorological elements vary with regions and seasons. Thus,
surface PM2.5 retrieval from satellite AOD should probably consider using different mete-
orological elements in different seasons. In addition, GEOS-Chem simulation with fixed
anthropogenic emissions at the 2006 level showed that meteorology changes throughout
the 12 years reduces AOD but enhances surface PM2.5 in China during winter, and a
multiple linear regression model suggests that the controlling meteorological elements of
AOD and surface PM2.5 are completely different. Thus, previous estimates, which used
meteorological elements to correct surface PM2.5 retrieval in winter, should be used with
caution, as the long-term trend of surface PM2.5 is possibly overestimated. We suggest the
use other correction schemes to correct surface PM2.5 retrieval in the future, such as the
CALIOP ratio and correlation coefficient of AOD and surface PM2.5.

5. Conclusions

We studied the effects of meteorology changes on trends in AOD and surface PM2.5 in
the key regions NCP, YRD, and PRD in China between 2006 and 2017 using a 3D chemical
transport model, GEOS-Chem, by fixing emissions at the 2006 level. We further identified
major meteorological elements controlling the inter-annual variations of AOD and surface
PM2.5 using multiple linear regressions.

We found that meteorology changes made larger contributions to trends in AOD than
surface PM2.5 during spring, summer, and fall between 2006 and 2017. Meteorological
changes contributed from 22–50% of AOD reduction in spring, larger than their contribu-
tions to surface PM2.5 (1–40%). The decrease in aerosols is possibly related to an increase
in westerly wind speed (0.07 ms−1 yr−1, 5.4% yr−1, p < 0.05) in YRD and an increase in
meridional wind velocity (0.04 ms−1 yr−1, 1.1% of 12-year mean) and dynamic instability
(0.05 ms−1 yr−1) in PRD. In summer, meteorological changes offset from 25–42% of AOD
reduction caused by anthropogenic emission changes. For surface PM2.5, the contributions
were from 5–10%. The adverse effects are possibly related to the weakening of EASM. In
fall, meteorology changes offset 85% of AOD reduction and 11% of surface PM2.5 reduction
induced by emission changes in NCP. In contrast, from 25–40% of AOD reduction and
8–35% of surface PM2.5 reduction is attributed to meteorology changes. Sea level pressure
and surface pressure are critical to aerosol distribution in fall. In winter, meteorology
changes were beneficial to AOD decreasing, but were unfavourable to surface PM2.5 reduc-
tions in NCP, YRD, and PRD in between 2006 and 2017. The stable boundary layer in winter
suppressed vertical mixing, resulting in a weak correlation of AOD and surface PM2.5 in
each region. Thus, meteorological elements controlling the inter-annual variations of PM2.5
and AOD in each region were completely different. The northerly wind speed at 850 hPa
explained 72% of the inter-annual variations of AOD in NCP. The increase in this wind
(−0.045 ms−1 yr−1, p < 0.1) lowered AOD in this region (−0.007 yr−1). In other regions, the
trends were statistical insignificant. Thus, previous estimates, which used meteorological
elements to correct surface PM2.5 retrieval in winter, should be used with caution. Our
study provides possible meteorological elements to correct surface PM2.5 retrieval from
satellite AOD measurements on a seasonal scale.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14122762/s1, Figure S1: SONET sites and key regions in China:
North China Plain (NCP, 35–41◦N, 110–120◦E), the Yangtze River Delta (YRD, 27–35◦N, 116–122◦E),
and the Pearl River Delta (PRD, 22–25◦N, 110–117◦E); Figure S2: Monthly mean AOD from SONET
(blue line) MODIS (red line) and GEOS-Chem (black line) averaged for 2013–2015. Beijing and
Songshan are in the NCP region. Shanghai, Zhoushan, Nanjing and Hefei are in the YRD region.
Guangzhou is in the PRD region; Figure S3: GEOS-Chem simulated monthly mean AOD components
averaged for 2013–2015; Figure S4: Observed (red line) and GEOS-Chem simulated (BASE, black line)
monthly mean surface PM2.5 concentrations (μg m-3) in NCP, YRD and PRD in 2013–2017; Figure S5:
Observed (red line) and GEOS-Chem simulated (BASE, black line) annual and seasonal mean surface
PM2.5 concentrations (μg m−3) in NCP, YRD and PRD in 2013–2017. The vertical lines are standard
deviations of daily means in each season in each year; Figure S6: Ratio of annual and seasonal
mean AOD relative to their values in 2006 from MODIS (red line) and GEOS-Chem simulations in
2006–2017. Three experiments are shown: varying meteorology and varying emissions (BASE, black
line), varying meteorological fields with fixed emissions in 2006 (FIXEMISS, purple line), varying
emissions with meteorological fields fixed in 2009 (FIXMET, blue line). See text for details. Figure S7:
Similar as Figure S6, but for surface PM2.5. Table S1: Statistics of MODIS observed and GEOS-Chem
simulated AOD compared to SONET AOD observations at 16 sites; Table S2: List of abbreviations.
References [14,30,31,39,66–76] are cited in the Supplementary Materials.
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Abstract: This study evaluates formaldehyde (HCHO) over the U.S. from 2006 to 2015 by comparing
ground monitor data from the Air Quality System (AQS) and a satellite retrieval from the Ozone
Monitoring Instrument (OMI). Our comparison focuses on the utility of satellite data to inform
patterns, trends, and processes of ground-based HCHO across the U.S. We find that cities with
higher levels of biogenic volatile organic compound (BVOC) emissions, including primary HCHO,
exhibit larger HCHO diurnal amplitudes in surface observations. These differences in hour-to-hour
variability in surface HCHO suggests that satellite agreement with ground-based data may depend
on the distribution of emission sources. On a seasonal basis, OMI exhibits the highest correlation
with AQS in summer and the lowest correlation in winter. The ratios of HCHO in summer versus
other seasons show pronounced seasonal variability in OMI, likely due to seasonal changes in the
vertical HCHO distribution. The seasonal variability in HCHO from satellite is more pronounced
than at the surface, with seasonal variability 20–100% larger in satellite than surface observations. The
seasonal variability also has a latitude dependency, with more variability in higher latitude regions.
OMI agrees with AQS on the interannual variability in certain periods, whereas AQS and OMI do
not show a consistent decadal trend. This is possibly due to a rather large interannual variability in
HCHO, which makes the small decadal drift less significant. Temperature also explains part of the
interannual variabilities. Small temperature variations in the western U.S. are reflected with more
quiescent HCHO interannual variability in that region. The decrease in summertime HCHO in the
southeast U.S. could also be partially explained by a small and negative trend in local temperatures.

Keywords: formaldehyde; trend; OMI; satellite; monitor; annual; seasonal; temperature

1. Introduction

Formaldehyde (HCHO) is a carcinogen and mutagen that has been categorized by
the U.S. Environmental Protection Agency (EPA) as one of 187 Hazardous Air Pollutants
(HAPs). HCHO can be either primary (emitted) or secondary (chemically produced).
Global background HCHO concentration primarily comes from the oxidation of methane or
methanol [1,2]. In the continental boundary layer (PBL), HCHO is most often formed by the
oxidation of non-methane volatile organic compounds (VOCs) [3,4]. The dominant biogenic
precursor of HCHO is isoprene, which comes from vegetation and can quickly oxidize
to form HCHO [5,6]. The reaction of HCHO with OH, as well as HCHO photolysis [7],
among other loss pathways, results in a lifetime of HCHO on the order of hours [8]. On
shorter time scales, biomass burning and wildfires are also sources for instantaneous
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elevated HCHO [9]. The major emission sources for anthropogenic VOCs include fuelwood
production, utilization of gasoline, and biomass burning [10,11].

To support air quality management and public health assessments, the U.S. maintains
several networks and programs to monitor HCHO at the surface. These include the In-
teragency Monitoring of Protected Visual Environments (IMPROVE), National Air Toxics
Trends Stations (NATTS), and Photochemical Assessment Monitoring Stations (PAMS)
networks. Data from these networks are archived through the EPA Air Quality System
(AQS) Ambient Monitoring Archive (AMA) for hazardous air pollutants (available at
https://www3.epa.gov/ttnamti1/toxdat.html#data; accessed on 30 August 2017). Several
methods are used for in situ measurements of HCHO, including spectroscopic, colorimet-
ric, chromatographic, and fluorometric techniques, which are discussed in detail by [12].
Among these techniques, the EPA commonly uses the chromatographic technique with
2,4-Dinitrophenylhydrazine (DNPH) [13] to measure HCHO, though there may be some
bias with this method, such as interference from ozone, nitrogen dioxides, and water
vapor [14–17].

Between 2006 and 2015, there were 338 ground-based monitors operated by states, local
agencies, and tribes throughout the U.S. in compliance with EPA standards on archiving and
measuring HCHO. Of these 338 total stations, the measurement frequency of HCHO varies,
with stations reporting either 1 h (10 stations), 3 h (41 stations), or 24 h concentrations
(322 stations). Most stations measured HCHO by collecting air samples via cartridges
coated with DNPH and analyzing those samples using the High-Performance Liquid
Chromatography (HPLC) method. Even among these monitors, there are significant gaps
in the data records of every station.

Satellite observations offer the potential to complement this limited surface monitor-
ing network. Satellite retrievals of HCHO bear relevance to air quality planning as an
indicator of HCHO exposure, as well as VOC emissions, VOC reactivity, and associated
ozone formation. This study compares satellite and ground-based HCHO with the goal of
assessing spatial and temporal HCHO patterns and the appropriate role of satellite vertical
column density (VCD) as a potential proxy for near-surface HCHO.

Currently, four polar-orbiting satellite instruments detect HCHO, including: the
Ozone Monitoring Instrument (OMI) onboard the Aura satellite [18], which has a local
overpass time in the early afternoon at 13:30 and a spatial resolution of 24 × 13 km2; the
Tropospheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor, with
the same overpass time as OMI, but finer resolution [19] of 3.5 × 5.5 km2 as of August
2019; the Ozone Mapping and Profiler Suite (OMPS) on the Suomi NPP satellite [20], which
also has an overpass time of 13:30, but with a spatial resolution of 50 × 50 km2; and the
Global Ozone Monitoring Experiment-2 (GOME-2) on the Metop satellite series [21], with a
local overpass time of 09:30 and a spatial resolution of 80 × 40 km2. In addition to these
polar-orbiting satellites, a number of instruments are planned for or have recently reached
geostationary orbit: Tropospheric Emissions: Monitoring of Pollution (TEMPO), from the
National Aeronautics and Space Administration (NASA; spatial resolution: 2 km × 4.5 km)
in 2022; Sentinel-4 from the European Space Agency (ESA; spatial resolution: 8 km × 8 km)
in 2023; and Geostationary Environment Monitoring Spectrometer (GEMS), from the Korea
Aerospace Research Institute (KARI; spatial resolution: 7 km × 8 km), which launched
successfully in early 2020. These satellites will provide continuous observation of HCHO
over North America, Europe, and Asia, respectively [22–24].

Satellite observations of HCHO have been used to advance the understanding of
atmospheric chemistry, e.g., refs. [25–33], as well as for air quality management to protect
public health [34–37]. Because of HCHO’s strong detectability from space, its local footprint
due to a short atmospheric lifetime, and its high yield from VOCs, HCHO has been used as
an indicator of total VOCs in the atmosphere [38–40]. Combined with satellite derived NO2,
HCHO has been used to support the assessment of the ozone production regime [36,41,42]
and has even been used in decision-making contexts [43].
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As satellite data usage expands, there is interest in the relevance of satellite products to
better characterize emissions and near-surface concentrations. Much of work has focused
on satellite observations of NO2. For example, ref. [44] used satellite observations of
NO2 to constrain emissions of NOx (NO + NO2) at the surface, ref. [45] used a model-
derived scaling factor to scale satellite observations of NO2 to near-surface amounts, and
ref. [46] found similar responses to weather variables for both surface and column NO2.
Ref. [47] found a good correlation between surface and column NO2, discovering that both
datasets captured weekly cycles over Leicester, England; ref. [48] found strong seasonal
and weekly cycles in both datasets over Israeli cities in 2006; and ref. [49] found that both
datasets showed a small weekly cycle in NO2 in Beijing. Similar work with satellite HCHO
includes studies by [50,51], who evaluated relationships among 17 years of satellite-based
HCHO, biogenic isoprene emissions, and land cover datasets, by [52–54], who characterized
anthropogenic emissions, and by [34], who used satellite HCHO to evaluate differing
chemical transport model configurations over the continental U.S., and following [45],
explored the utility of scaling satellite HCHO to near-surface amounts, and by [55], who
derived surface HCHO amounts from TROPOMI and surface monitor observations using a
neural network technique.

Fewer studies have compared satellite and surface HCHO observations. The majority
of previous studies using both in situ and remote measurements of HCHO have focused
on global patterns and VOC emissions. Between 2004 and 2014, ref. [26] found that
OMI HCHO decreased in the eastern U.S., central South America, and across Europe,
but increased in India and central-eastern China. That same study found that HCHO is
highest in the early afternoon in the mid-latitudes by differencing the morning overpass of
GOME-2 with the afternoon overpass of OMI [26]. Several studies have used satellite-based
HCHO observations to infer the spatial distribution of isoprene over the U.S., e.g., [4,38,56].
Between 2005 and 2014, OMI HCHO increased over the U.S. overall, but decreased in the
southeast [57]. HCHO trends have been found to be largely dependent on temperature and
fire events [26,56,58–61], as well as anthropogenic emission sources [53,57,62,63].

This study informs potential applications of satellite-based HCHO within the health
and air quality communities, which focus on near-surface concentrations. We evaluate the
diurnal, seasonal, and interannual trends for HCHO over the U.S. by comparing HCHO
from satellite retrievals with those from ground-based measurements. We assess HCHO
data availability from EPA monitoring stations (Section 2.1), diurnal cycles (Section 3),
seasonal variability (Section 4), and interannual trends (Section 5). In Section 6, we connect
our results with previous findings to evaluate mechanisms that could potentially explain
some of the observed behaviors. Finally, we conclude our results in Section 7.

2. Data and Methods

We evaluated HCHO for the U.S. between 2006 and 2015 from ground measurements
and satellite retrievals. Ground monitor data for HCHO comes from the EPA Air Quality
System (AQS) Ambient Monitoring Archive (AMA) for hazardous air pollutants, which
includes data collected from the IMPROVE, NATTS, and PAMS networks. Satellite HCHO
observations have been retrieved from the measurements of the NASA Earth Observing
System’s OMI instrument as a part of the Quality Assurance for Essential Climate Variables
project (QA4ECV; available at http://www.qa4ecv.eu/; accessed on 24 July 2019).

2.1. Ground-Based Measurements

In this study, we used AQS HCHO concentrations (μg m−3) which have been con-
verted to local meteorological conditions (using local pressure and temperature) from
standard conditions. Detailed conversion is available in the Quality Assurance Summary
Report for HAPs (https://www3.epa.gov/ttn/amtic/files/toxdata/techmemo2017.pdf;
accessed on 30 August 2017). As described in this report, we eliminated data that are
flagged as non-detect or below measurement detection limit. Of the 338 monitors in the
AMA between 2006 and 2015, we only used data from sites with the DNPH/HPLC method.
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We choose to use publicly available data in a manner consistent with the use of monitoring
data by air quality managers and by the EPA for the National Air Toxics Assessment.

There are significant gaps in the data records of every station, which we characterize
as the percentage of available data for each available reporting frequency (Table 1). Percent
availability is calculated as the number of available measurements divided by the total
number of possible measurements at each station’s measurement frequency. We find that
no station offered more than 50% data coverage across the 10-year period of analysis.
Ten stations measured HCHO at an hourly frequency, with one site, located at St. Louis,
Missouri, having data coverage of 38% of all days. The other nine stations have below
1% of data coverage. Forty-one sites measured HCHO with a 3 h frequency, but only two
stations in Los Angeles County in California (Burbank and Pico Rivera) had data coverage
over more than 10% of the days in the study period, and these sites only had measurements
in July, August, and September.

Table 1. Number of HCHO ground monitoring stations in the United States, with data distributed by
the EPA AQS. Stations are grouped based on data availability, and by measurement frequency (hourly,
3 h, and 24 h). Data availability is calculated as the percentage of measurements available from
2006 to 2015 relative to the potential number of measurements during this period at the monitor’s
reporting frequency. The three sites used for analysis of the diurnal HCHO cycle are marked in
bold, which include the 1 h site with 30–40% data availability (St. Louis, MO, USA), and the two 3 h
site with 10–20% data availability (Burbank, CA, USA; Pico Rivera, CA, USA). These three sites are
marked as triangle in Figure 1.

Percent Available 1 h Frequency 3 h Frequency 24 h Frequency

0–10% 9 39 230
10–20% 0 2 70
20–30% 0 0 18
30–40% 1 0 3
40–50% 0 0 1

Total stations 10 41 322

For our diurnal analysis, we relied on the three stations that offered >10% data cov-
erage in a 1 h or 3 h measurement frequency. For our seasonal and interannual analyses,
we used data from sites with a 24 h measurement frequency and six or more samplings
of each season throughout 2006 to 2015 continuously. For comparison, only 37 sites have
one or more measurements per month, so we chose the seasonal average basis to include
more monitors. The threshold of six samples each season was selected to balance temporal
and geographic coverage of monitors. For thresholds less than six samples per season,
more monitors would be available (58 monitors at a threshold of five samples per season;
64 monitors with a threshold of one sample per season). For thresholds greater than six
samples per season, fewer monitors would be available (41 monitors at a threshold of
seven samples per season; 10 monitors with a threshold of ten samples per season). We
removed five outlier stations which had significantly large maximum over median values
in each seasonal average (larger than two standard deviations among all stations), since
these sites might not be representative for interannual trend studies and cannot represent
regional conditions. This approach yielded 45 ground monitor stations for the seasonal
and interannual analyses. The black symbols in Figure 1 identify the locations of the AQS
stations used in this study: circles (45 sites) indicate the stations used in seasonal and
interannual analyses; triangles (3 sites) indicate sites included in the diurnal analysis.
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Figure 1. 2006–2015 annual average HCHO vertical column density from OMI. Four U.S. regions
are designated for analysis, with region name aside the map. Overall, for studying diurnal patterns,
there are three sites: two in the Western U.S. and one in the Midwest. These stations are labeled as
triangles. For seasonal and interannual studies, there are 45 AQS stations (10 in the west, 6 in the
Midwest, 14 in the southeast and 15 in the northeast) that are labeled as circles. For more details on
monitoring sites, please see Section 2.1 and Table 1.

2.2. Satellite Observations

We used the HCHO Level-3 product, with horizontal resolution at 0.25◦ × 0.25◦,
from OMI onboard the Aura satellite, for which the U.S. overpass occurs in the early
afternoon. We used the OMI retrieval algorithm from the EU FP7-project QA4ECV
(hereafter abbreviated OMI unless otherwise specified) [64,65]. The QA4ECV algorithm
utilizes a fitting window ranging from 328.5 to 359 nm from OMI. We removed data
with solar zenith angles greater than 70 degrees and cloud fractions greater than 40%.
We also removed data that are quality flagged or influenced by the OMI row anomaly
(http://projects.knmi.nl/omi/research/product/rowanomaly-background; accessed on
24 July 2019). Detailed descriptions of this algorithm are described by [66].

Compared to other instruments with data covering any of our 2006–2015 study years
(GOME2A, GOME2B, OMPS), OMI offers the highest spatial retrieval resolution of HCHO
at 24 × 13 km2 at nadir, as discussed by [67]. Aura’s early afternoon overpass time
corresponds with the average daily peak amount of HCHO at mid-latitudes [26,68]. Fol-
lowing [69], who compared trends in satellite- and ground-based observations of NO2, we
use OMI HCHO VCD. While the total vertical column density indicates the number of
molecules between the satellite and ground, tropospheric HCHO accounts for the majority
of the total column amount. We use OMI HCHO observations for all seasons from 2006 to
2015 and compare with AQS measurements to evaluate OMI’s ability to indicate surface
HCHO trends.

OMI has exhibited a positive drift since 2008, possibly due to instrumental degrada-
tion [70,71]. The QA4ECV algorithm applied a background correction over the remote
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Pacific to reduce HCHO slant column uncertainty. Note that this approach assumes that
the remote Pacific HCHO is only due to the oxidation of methane [66].

Ref. [56] notes an instrument detection threshold of ~4 × 1015 molec cm−2; here, we
present all values for thoroughness and for the purpose of evaluating whether winter
HCHO values from OMI agree with AQS observations [26,72].

Figure 1 shows oversampled OMI 2006–2015 averaged HCHO for the continental U.S.
On average, HCHO column amounts are higher where precursor emissions of isoprene
are high, e.g., [38]. In particular, the southeastern U.S. shows elevated HCHO column
amounts (≥9 × 1015 molec cm−2). Amounts in other regions are lower, except in areas in
the Western U.S. corresponding to mountainous terrain and national parks, where average
amounts exceed 8 × 1015 molec cm−2. High values may be caused by isoprene emissions
and/or anthropogenic emissions associated with industries, such as oil and gas extraction,
or caused by direct and precursor emissions from fires [73].

Unless otherwise noted, all analyses were conducted with seasonal average data over
a three-month period (DJF: December January February; MAM: March April May; JJA: June
July August; SON: September October November). Although the QA4ECV data would
be appropriate for monthly average analysis, we chose to average by season due to the
limited availability of data from the AQS monitors. We checked the impact of constraining
AQS HCHO data to include only measurements taken when local cloudiness was <40%.
As we screened for cloudiness in the OMI dataset, we found a high correlation (r = 0.999)
between the seasonal mean of all 24 h ground measurements and the seasonal mean of
AQS measurements under the same OMI viewing conditions described above, with the
subset data having a small mean bias (−0.005 μg m−3; Supplementary Material Figure S1).
In order to obtain continuous seasonal data, we used all available AQS data with a 24 h
measurement frequency.

2.3. Emissions Data

We compared AQS and OMI HCHO with the EPA’s National Emissions Inventory
(NEI, available at https://www.epa.gov/; accessed on 23 October 2017). Every three
years, the NEI reports the annual summations from different emissions sources for various
air pollutants. We considered NEI HCHO emissions from biogenic, anthropogenic, and
wildfire sources to assess their contributions to observed HCHO abundance. Biogenic
HCHO comes from vegetation and soil, anthropogenic HCHO is mostly due to fuel com-
bustion and transportation, and wildfire is a single category that contributes significantly
to HCHO amounts in the western U.S. We considered the 2008 NEI in this study for the
diurnal section in which all three diurnal sites have only 2008 HCHO in common. This
NEI includes biogenic emissions calculated using the Biogenic Emission Inventory System
version 3.14 (BEIS) with land use data from the Biogenic Emissions Land use Database
version 3 (BELD3) [74]. We used 2008 NEI county-level data for each station in our diurnal
analysis and state-level data for studying seasonal and interannual trends.

3. Diurnal Cycle of HCHO

Given the limitations of the observational dataset, we focused our analysis on summer
months, when data are consistently available. For our evaluation of HCHO diurnal cycles,
we used data from three urban AQS sites (St. Louis, Burbank, and Pico Rivera) with 1- and
3 h measurement frequencies available in July, August, and September (JAS) from 2006 to
2010. The St. Louis site is located in St. Louis County in Missouri, while both the Burbank
and Pico Rivera sites are located in Los Angeles County in California. We excluded days
without full-day measurements (8 measurements per day for three-hour frequency and
24 measurements per day for hourly frequency). Figure 2 shows JAS mean HCHO for
each year at three diurnal sites (note the different y-axes for each plot, due to the large
differences in HCHO levels across the three sites).
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Figure 2. HCHO mixing ratios from ground-based AQS monitors at three sites ((a): Burbank, CA;
(b): St. Louis, MO; (c): Pico Rivera, CA) from 2006 to 2010. Solid lines show June, August, September
(JAS) average diurnal cycle with complete measurements (24 measurements per day for 1 h site or
8 measurements per day for 3 h site). The shaded area indicates standard deviation in that averaging
year. Different years are labeled in different colors, indicated in the bottom right. OMI overpass time
(13:30 local time) is labeled with a vertical dashed line at each site.

In general, diurnal patterns in HCHO are affected by direct and precursor emissions,
chemical reactions, and vertical and horizontal mixing. Biogenic precursor emissions are
expected to peak in the mid- to late afternoon when photosynthetically active radiation
and temperature are high [75]. Formaldehyde yields from these precursors tend to peak
mid-day with elevated isoprene oxidation [76]. Vertical mixing of trace gases such as
HCHO and its precursors will also vary as diurnal heating drives changes in mixed layer
depth, e.g., ref. [77].

From 2006 to 2010, Burbank and Pico Rivera show clear diurnal trends with peaks
ranging between 5 and 30 μg m−3 around 11:00 LT (Figure 2a,c). Observations at St. Louis
indicate a less significant diurnal pattern, with peak values at 14:00 and 20:00 LT in 2010,
9:00 LT in 2007, and all years showing minima between 4:00 and 5:00 LT (Figure 2b). It is
noteworthy that for both 2007 and 2008, Burbank shows HCHO values over 15 μg m−3,
which are almost three-times greater than concentrations observed in other years (Figure 2a).
Since Burbank is 5 km southwest of the Angeles National Forest, these high concentrations
could be due to significant wildfire emissions in 2007 and 2008. This wildfire enhancement
is consistent with the NEI, which indicates that wildfires yielded 296 tons of HCHO for Los
Angeles County in 2008, compared to 48 tons in 2011 and 36 tons in 2014. However, Pico
Rivera, another station in Los Angeles County, did not record anomalously high HCHO
in 2007 and 2008 (Figure 2c). This could be due to the fact that the Pico Rivera monitor is
20 km south of the Angeles National Forest. In Figure 2, we overlaid the OMI overpass
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time (13:30 LT) for each AQS site and found that with the exception of the St. Louis site in
2009 and 2010, OMI generally passes the sites after the peak in HCHO.

To better describe the amount of diurnal variability at each site, we quantified the
amplitude of the diurnal pattern in AQS data, presented in Table 2. We differentiated
between absolute amplitude (Aabs) and relative amplitude (Arel) and calculated mean
amplitudes from 2006 to 2010 at the three sites. Amplitudes for 2008 were compared with
NEI emissions reported for that year. We defined Aabs as the difference in value between
the daily maximum and minimum, in μg m−3, and Arel as the ratio between Aabs and the
daily average value to represent the difference between the two, expressed as a percentage.
Overall, Burbank and Pico Rivera, with clear diurnal patterns, show larger amplitudes (Aabs
of 5.94 μg m−3 and 4.70 μg m−3, respectively, and Arel of 53.92% and 80.47%, respectively)
than St. Louis (Aabs of 2.74 μg m−3 and Arel of 34.70%; Table 2). These differences are likely
the result of differences in HCHO sources. We extracted NEI emissions for total VOCs
and for HCHO in 2008 where the three sites have data in common (Table 3). In both Los
Angeles and St. Louis counties, direct HCHO emissions only account for a small portion
compared to total VOC emissions, regardless of emission sector. Overall Los Angeles has
four times more total VOC emissions and ten times more direct HCHO emissions than
those in St. Louis. Both counties also indicate more anthropogenic sources of HCHO and
total VOCs than biogenic sources, with different anthropogenic to biogenic ratios.

Table 2. 2006–2010 and 2008 (NEI reported year) mean June, August, September (JAS) diurnal
HCHO amplitudes at the three AQS sites in Figure 2. Aabs is the absolute amplitude, and Arel is the
relative amplitude.

Aabs (μg m−3) Arel (%)

2006–2010 2008 2006–2010 2008

Burbank, CA 5.94 8.05 53.92 38.65
Pico Rivera, CA 4.70 5.13 80.47 91.62
St. Louis, MO 2.74 1.76 34.70 29.86

Table 3. 2008 NEI total VOC and HCHO emissions at St. Louis and Los Angeles county, along with
anthropogenic to biogenic emissions ratio.

Total VOC Emissions (Kilotons) HCHO Emissions (Tons)

St. Louis Los Angeles St. Louis Los Angeles

Biogenic 6.48 70.68 101.43 1213.80
Anthropogenic 36.33 111.75 338.58 2733.73

Wild Fire 0 4.76 0 295.65
Anthro/Bio Ratio 5.61 1.58 3.34 2.25

For total VOC emissions, St. Louis has above five-times more anthropogenic emissions
than biogenic emissions, in which the major anthropogenic source is on-road, non-diesel,
and light-duty vehicles. Direct HCHO emissions at St. Louis also have a higher ratio
between anthropogenic and biogenic sources, in which on-road vehicles from the mobile
sector contribute to more than half of the anthropogenic HCHO emissions. Although Los
Angeles has much higher emissions than St. Louis, it has a lower ratio of anthropogenic to
biogenic VOC and HCHO emissions (~2 versus ~5 in St. Louis). As indicated by [78], the
reactivity of anthropogenic VOCs (emissions mostly coming from motor vehicles) remains
consistent with temperature, but the reactivity of biogenic VOCs grows exponentially with
temperature. Therefore, higher contributions of anthropogenic emissions could explain the
lack of a diurnal cycle in St. Louis County compared to the two sites in Los Angeles County.

However, since we only use three sites and they are all in urban areas, these results
might have a sample size and location bias. Hourly retrievals of HCHO from geostationary
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satellites, when available, could be used to evaluate how anthropogenic versus biogenic
emissions affect the diurnal cycle of HCHO over wider areas.

4. Regional HCHO Seasonality Analysis

To assess seasonal patterns in HCHO, we divided the continental U.S. into four
geographical regions (shown in Figure 1) generally following regions defined by the U.S.
Census. There are 6 AQS stations in the Midwest; these have a humid continental climate
(hot summer) and crops as the dominant Plant Functional Type (PFT). There are 15 AQS
sites in the Northeast; these have humid continental climate with a cool summer, and
broadleaf trees as the dominant PFT. The southeast has 14 stations, a humid subtropical
climate, and a mixture of broadleaf and fine leaf trees, shrubs, crops, and grass as the PFTs.
The west has 10 sites, a mixture of Mediterranean, semi-arid, and desert climate, and shrubs
and grassland as the PFTs. Since AQS sites are not evenly distributed in each zone, they
might not be representative of the entire region. For consistency, we used OMI coincident
pixels at these 45 AQS sites for all of the AQS-OMI comparison analyses.

4.1. Overall AQS-OMI Seasonal Correlation

Figure 3 compares HCHO AQS and OMI observations for each season at 45 ground
monitor stations. Abundance of HCHO varies seasonally, with greater amounts of biogenic
precursors in warm seasons at all sampling sites (corresponding with the 45 ground
monitors). To obtain continuous winter averages, we combined January and February data
with December data from the previous year. For these seasonal evaluations, we considered
2007 to be the first year of analysis, which includes December 2006. Each symbol represents
seasonal HCHO averaged from 2007 to 2015 at one AQS station, with symbols color-coded
by region.

As shown in Figure 3, correlations between AQS and OMI peak in summer and drop to
a minimum in winter. This result is consistent with [35], who reported a larger contribution
of near-surface HCHO in summer months, and a lower vertical gradient in winter. The
summer has a larger fraction of column HCHO in the boundary layer, consistent with the
positive correlation between AQS and OMI in warm months.

We find a positive correlation between AQS and OMI HCHO in all four geographical
regions for every season except for winter, where the correlations becomes negative or
insignificant for most regions. This could be due to the fact that winter has (1) greater
solar zenith angles in the northern hemisphere, (2) frequent cloud coverage, and (3) lower
HCHO emissions that are below the OMI detection limit. AQS and OMI have consistently
high agreement in the Northeast (r = 0.49, 0.65, 0.87, and 0.56 for DJF, MAM, JJA, and
SON, respectively), and a slightly weaker but consistent correlation in the west (r = 0.25,
0.61, 0.71, and 0.67 for DJF, MAM, JJA, and SON, respectively). AQS and OMI show high
agreement in the Midwest and southeast during JJA, but weak or even negative correlation
in other seasons.
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Figure 3. Spatial correlation of 2007–2015 average HCHO from 45 AQS sites (x-axis) and coincident
OMI pixels (y-axis). Each point represents a single site, with OMI and AQS values averaged over
the season. Points are color coded to reflect their region, and spatial correlation coefficient r values
in different regions are shown in the legend. Each panel represents average values for: (a) winter,
(b) spring, (c) summer, and (d) autumn.

4.2. Seasonal Variability

We evaluated seasonal variability by comparing the HCHO ratios of summer to the
other three seasons. Previous studies indicate that in the U.S., summertime HCHO amounts
are higher than in winter due to higher summertime temperatures, leading to an increase
in biogenic VOC emissions and HCHO production [4,58,72]. This increase is characterized
by the seasonal variability in surface-level HCHO, estimated by the GEOS-Chem model
using the ratio of yearly mean to summer amounts. For both AQS (measured in μg m−3)
and OMI (measured in 1015 molec cm−2), we calculated the unitless ratio of the summer
JJA average to winter DJF average, JJA to spring MAM average, and JJA to autumn SON
average. These ratios are given in Figure 4 for each region as box plots.
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Figure 4. Summer to all other season ratios from AQS and OMI for the Midwest (a), northeast (b),
west (c), and southeast (d). Red lines indicate regional median, green triangles indicate regional
mean, and cycles represent extreme values.

Overall, as seen in Figure 4, both AQS and OMI HCHO have summer to other season
ratios >1 in all four regions, with peak ratios in JJA/DJF and similar ratios between
JJA/MAM and JJA/SON, indicating a clear seasonal cycle with maximum HCHO in
summer, minimum HCHO in winter, and similar amounts in spring and autumn. For all
four regions, OMI shows more pronounced ratios than AQS, which reflects the greater
variability in column amounts compared to near-surface amounts seen in Figure 3. Among
those regions, OMI ratios mostly bias high in the higher latitude regions in the Midwest
and Northeast by a factor or 1.3 to 2.8 depending on different seasons compared to AQS,
despite these regions having strong correlation between AQS and OMI in summer from
Figure 3. OMI ratios have less overestimation in the two lower latitude regions in the
southeast and west, though still bias high with a factor between 1.2 to 1.3, with larger bias
in winter (up to 1.9 greater than AQS ratios).

5. Interannual Trends

In Section 4.2, we showed that HCHO exhibits a strong seasonal cycle. To assess
HCHO’s interannual variability between 2006 and 2015, we deseasonalized the seasonal
mean values for each region, using observations from all 45 AQS stations and collocated
OMI data. We also calculated the line of best fit for the deseasonalized data in each region.
Endpoints are SON average 2006 and SON 2015 to avoid seasonality affecting the trend.
Figure 5 shows the mean deseasonalized HCHO for AQS and OMI in each region (solid
lines). These plots are overlaid with collocated seasonal average 2 m temperature from the
North American Regional Reanalysis (NARR) [79], to indicate the role of temperature in
the variability of each data set. The slopes from the linear regression and the associated
standard errors are indicated in each panel.
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Figure 5. 2006–2015 AQS and OMI HCHO deseasonalized interannual trends averaged by season in
the (a) Midwest, (b) northeast, (c) west, and (d) southeast. Blue lines indicate AQS trends, red lines
represent OMI trends, and yellow represents 2 m temperature from the North American Regional
Reanalysis (NARR) data, sampled at the AQS monitor locations. Solid lines are the mean seasonal
HCHO abundance or temperatures, and shaded areas are the standard deviation. Region name and
number of stations in the region are labeled at the top of each figure, along with the slope of the line
of best fit and the standard errors associated with the slopes.

After deseasonlizing the data, AQS and OMI show some consistency in certain periods.
For example, both AQS and OMI captured the double peak in HCHO in 2010–2012 over the
Midwest (Figure 5a). Both AQS and OMI HCHO also show elevated amounts in the west
in summer of 2008 (Figure 5c), possibly corresponding to local fire emissions. However, the
vertical and horizontal transport of VOC emissions from fires are more likely captured by
satellite observations, and then affect regional trends downstream of fires more in the OMI
record than in AQS.

During the entire ten-year period, the slopes from the linear regression on AQS and
OMI do not aways agree. Since the standard errors associated with the slopes are rather
large, this indicates HCHO did not have a significant and monotonic drift during 2006–2015.
There are two exceptions: AQS in the west does indicate a significant increasing trend at
a rate of 0.059 ± 0.019 μg m−3 yr−1, and AQS in the southeast is decreasing at a rate of
0.029 ± 0.027 μg m−3 yr−1 from 2006 to 2015. The large standard error in the southeast
AQS data could partially come from the winter in 2014, when the regional mean is skewed
by a few exceptionally high values.

In all regions, the increase in HCHO is partially explained by temperature trends, as
shown by the NARR data. The west, which shows a significant increase in AQS HCHO,
also shows the greatest warming at a rate of 0.181 ± 0.046 ◦C yr−1. However, this large
increase is not captured by OMI, despite OMI having high agreement in seasonal variability
with AQS. The interannual variations in temperature are also more quiescent in the western
U.S. than in other regions, which could partially explain smaller year-to-year variations in
HCHO in the West.
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We used the same best fit linear regression to consider interannual changes for each
season (Figure 6) and yearly mean for every grid box from OMI. We see a significant
increase in California at around 0.3 × 1015 molec cm−2 per year; this is mostly contributed
by an increase in MAM. The broader southeast and northeast regions experienced a strong
increase in HCHO during DJF but were offset by a strong decrease in JJA. Such a decrease
in HCHO could be partially explained by summertime cooling in the southeast U.S. over
the past few decades [80,81].

Figure 6. Map of the U.S. with 2006–2015 OMI HCHO trend in (a) all seasons, (b) winter, (c) spring,
(d) summer, and (e) autumn.

Though OMI (co-located with AQS sites) indicates a decreasing trend that is opposite
to AQS and NARR in the west (Figure 5c), there is a significant increase in OMI HCHO
over large area of California, Oregon and Washington (Figure 6). Thus, using the OMI
co-located pixels at AQS sites might not be indicative of the entire region.

6. Discussion

The evaluation of diurnal, seasonal, and interannual HCHO suggests that satellite-
derived HCHO serves as a useful indicator for surface HCHO change on seasonal to
interannual timescales. While surface-to-column agreement varies in space and time, the
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combined analysis of these two datasets informs the chemical and meteorological processes
that impact HCHO.

This study builds on the earlier work of [72], with a greater focus on seasonality,
temperature, and comparison between satellite and ground-based data. Whereas ref. [72]
evaluated May-September change of temperature-corrected HCHO, we examine all seasons
without removing temperature effects with the goal of characterizing the degree to which
satellite data can inform near-surface trends and patterns.

The weighting function for OMI HCHO peaks in the upper troposphere [26], so it
is well established that satellite data does not capture the same surface air as measured
by the AQS monitors. With such differing physical characteristics between observation
methods, it would be challenging to reconstruct ground level HCHO merely from satellite
data. For example, ref. [82] reviewed methodologies of calculating surface level PM2.5 from
satellite observed aerosol optical depth, which requires either a chemistry transport model
or a statistical model based on empirical relations from the existing data. Future work to
derive surface level HCHO from satellite observations could be made possible with such
large datasets, such as the newly available EPA Air Quality Time Series (EQATES) project
(available online, https://www.epa.gov/cmaq/equates; accessed on 21 April 2022).

Additionally, validation studies have shown that satellite HCHO tends to be biased low
when column amounts are high (e.g., summer) and biased high when column amounts are
low (e.g., winter), which would tend to dampen the OMI HCHO seasonal cycle [83–85]. Our
observational results corroborate [35], who found that surface HCHO is a more significant
contributor to column HCHO in the summer, based on model simulations. Despite the low
agreement between AQS and OMI data in the winter, both datasets capture a consistent
seasonal cycle and consistent interannual trends over certain periods.

Our findings suggest that temperature sensitivity of column HCHO is greater than
near-surface HCHO. The seasonal amplitude of HCHO is higher in OMI data than in AQS
in all regions, which may be due to the larger role of secondary HCHO in the column versus
the surface. Furthermore, the warming across the 2006–2015 period leads to a stronger
increase in the HCHO column in most regions, and a less-pronounced increase (or decrease)
in the AQS monitor data, except in the west. The authors in [46] found that column NO2
is more sensitive to temperature than surface NO2, both in observations (monitors versus
satellite) and in a numerical model; the same appears to be true for HCHO. As discussed
by [72,86], trends in HCHO are attributable to a range of land use and emissions changes,
independent of temperature. The impact of local emissions is evident in our results as
well. In our analysis of diurnal HCHO at three sites with sufficient ground-data (Section 3),
we found a mid-day peak in HCHO only at sites dominated by biogenic VOC emissions
(Burbank and Pico Rivera in California). The increased temperature in the middle of the day
accelerates the emission and oxidation of isoprene, consistent with [76]. Although current-
generation satellites provide daily (or less frequent) HCHO data, the sensitivity of HCHO
to temperature, including as a function of biogenic VOC emissions versus anthropogenic
VOC emissions, would be a valuable application of future hourly HCHO observations from
geostationary satellites.

7. Conclusions

As a pollutant with direct health impacts and an indicator of ozone formation, HCHO
has emerged as an atmospheric species of interest for air quality management. Ground
monitoring data of HCHO is limited, and satellite data may complement the sparse network
with spatially continuous information on HCHO abundance. Multiple satellites can detect
HCHO, but these data are only beginning to be applied to operational and health-relevant
applications. For user communities interested in the interpretation of satellite data, a key
question is the agreement in spatial and temporal patterns between ground-based and
space-based measurements. Our comparison focuses on the utility of satellite data to
inform patterns, trends, and processes of ground-based HCHO across the U.S.
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Over our study period, HCHO data were available from 338 sites managed by the EPA.
However, only 45 of these had continuous seasonal measurements in the time range, and
only three stations provided hourly and three-hour measurement frequencies that had more
than 10% data available and passed quality control. Of those three sites, the two sites with
larger diurnal amplitudes (in Los Angeles County) had a lower anthropogenic/biogenic
ratio for both direct HCHO emissions and for total VOC emissions, as compared to the site
with the smaller diurnal amplitude (in St. Louis county). These relative diurnal changes
indicate that the origin of VOC emissions may be an important driver of diurnal HCHO
patterns. In addition to emissions, chemistry and meteorology also play important roles
in affecting the diurnal cycle of HCHO. With the upcoming availability of hourly HCHO
data from TEMPO, Sentinel-4, and GEMS, it will be interesting to assess how the diurnal
amplitude of HCHO changes between areas dominated by biogenic versus anthropogenic
emissions. We expect that areas with larger anthropogenic emissions will exhibit a weaker
diurnal signal.

On a seasonal basis, OMI exhibits the highest correlation with AQS in summer and
the lowest correlation in winter. These results are consistent with past work indicating
that boundary layer HCHO is a greater contributor to the summertime HCHO column
and less so in the winter [35]. Combining summer to other season ratios showed OMI bias
is high compared to AQS in all regions, but with different factors depending on different
regions. Seasonal differences across the regions are likely due to the differences in dominant
plant types in each area, as well as VOC emissions in young versus mature trees [87].
The overestimation of the ratios from OMI suggests a more pronounced sensitivity to
temperature in the HCHO column than in surface HCHO concentrations.

There are emerging opportunities to study HCHO and its trends in the near future
from both ground- and space-based platforms. In 2021, U.S. states, in coordination with the
EPA, established 27 new Photochemical Assessment Monitoring Stations (PAMS), which
provide hourly ground-based HCHO measurements (official and supporting documents
available at https://www.regulations.gov/document/EPA-HQ-OAR-2019-0137-0013; ac-
cessed on 22 April 2022). Additionally, ozone nonattainment areas have been required to
develop Enhanced Monitoring Plans (EMP), which would expand observations of meteo-
rology and VOCs, potentially including observations of columnar VOCs from PANDORA
spectrometers [88]. In addition to these monitoring programs, next generation satellite-
based observations are expected to provide high-resolution and hourly column HCHO
measurements. Further analysis of space- versus ground-based measurements, using these
next-generation platforms, will maximize the relevance of Earth-observing satellites to air
quality and public health user communities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14092191/s1, Figure S1: All available AQS data from 2006
to 2015 calculated for every season (x-axis) compared with seasonal mean AQS under same OMI
viewing conditions (y-axis), with correlation coefficient r = 0.999, mean bias = −0.005 μg m−3. Red
dotted line indicates 1-1 ratio.
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Abstract: Exploring how urban form affects the Particulate Matter 2.5 (PM2.5) concentration could
help to find environmentally friendly urbanization. According to the definition of geography, this
paper constructs a comprehensive urban form evaluation index system applicable to many aspects.
Four urban form metrics, as well as road density and five control variables are selected. Based on
2015 data on China’s 340 prefecture-level cities, the spatial regression model and geographically
weighted regression model were used to explore the relationship between the urban form evaluation
index system and PM2.5 pollution. The main results show that the spatial distribution of PM2.5 in
China follows an increasing trend from northwest to southeast. Urban form indicators such as AI, LPI,
PLAND, LSI and road density were all significantly related to PM2.5 concentrations. More compact
urban construction, lower fragmentation of urban land, and lower density of the road network are
conducive factors for improving air quality conditions. In addition, affected by seasonal changes, the
correlation between urban form and PM2.5 concentration in spring and winter is higher than that
in summer and winter. This study confirmed that a reasonable urban planning strategies are very
important for improving air quality.

Keywords: urban form; PM2.5; landscape metrics; geographically weighted regression

1. Introduction

In the past several decades, with the rapid urbanization and industrialization across
many regions of the world, atmospheric pollution became increasingly serious and is
already a major social problem [1,2]. Especially in China, as the largest developing country,
the rate of urbanization increased from 17.9% to 54.8% in years between 1978 and 2015 years
and continues to increase [3,4]. The average Particulate Matter 2.5 (PM2.5) concentration in
cities reached 62 μgm−3, 60.8 μgm−3, and 57 μgm−3 in 2013, 2014, and 2015, respectively.
China became the most PM2.5-polluted area in the world [5]. PM2.5 is considered one of the
most important pollutants because of its indirect impacts on health, agriculture production,
atmospheric visibility, and climate environment [6,7]. In 2001–2006, 165 prefectures’ annual
PM2.5 levels had far and away beyond the national atmosphere quality standard of China
(NAQSC, annual average < 35 μgm−3) [8]. Many studies showed that PM2.5 is a key
atmosphere pollutant threatening public health [9,10]. An increase of PM2.5 concentration
by 10 μg/m3 causes a 0.40% increase in all-course mortality, a 1.43% increase in deaths
caused by respiratory failure, and a 0.53% increase in deaths caused by cardiovascular
failure [11]. It is estimated that PM2.5 pollution caused 1.2 million premature deaths in
China in 2010 and nearly 35% of worldwide deaths [12].

To explore the factors that affect PM2.5 concentration can help to better analyze the
effects of PM2.5 pollution. A number of literatures showed that human activities and
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natural factors act on PM2.5 pollution concentrations either through direct or indirect
influences. These influences may be social economy [2,13], the industrial structure [5],
climate change [14], seasonality [15], or the prevalence of monsoons [16]. For example,
Xu found that economic growth had the large impact on PM2.5 [5]. Most studies found a
clear reverse “U-shaped” curve between economic development levels, urbanization, and
atmosphere pollution, and with improving economy levels, most cities are at a stage of
increasing pollution levels [2,17]. It was confirmed that PM2.5 pollution is influenced by
seasons and regions, and the highest levels were found in winter despite differences in
temperature and relative humidity among different regions. He and his colleague applied
the global regression model, and found that increased fossil energy consumption leads to
an increase in PM2.5 concentrations, while elevation, precipitation, temperature, and GDP
per capita are all likely to reduce the impact of PM2.5 pollution [18].

Moreover, many studies showed that urban planning exert a positive effect on the
reduction of PM2.5 levels over recent years. Examples for these factors are a reasonable
urban form, the moderate reduction of road density, building density, population ratios,
and improving green spaces [19]. Of course, there are also studies that used comprehensive
indicators in the urbanization process to explore the impact on PM2.5, for example, the
Liveability and Health Index (LHI) [20]. Urban form, which includes a city area as well as
its shape and layout, can be defined as urban land use organization and human activity
arrangement [21], and it is usually measured by several landscape indicators of a city.
PM2.5 pollution is affected by vehicle use, green land, pollutant diffusion, and the heat
island effect [22]. Research proved that higher urban compactness and less fragmentation
(i.e., the largest patch index (LPI)) can reduce PM2.5 pollution in China [23,24]. However,
other studies argued that motor vehicles are the main cause of atmospheric pollutants
emission in cities, and there is a strong correlation between PM2.5 and mortality in the
traffic emission [25]; thus, a more compact development alone may still increase local PM2.5
concentrations and also cause more population to be affected by PM2.5 [26]. In the USA,
controlling the population, the level of urbanization, and the mixing of different land cover
types were found to be important influencing factors between pollutant levels and atmo-
spheric quality [27,28]. In addition, the distance from the main road, the standard deviation
of the building floor, and the average floor are the main urban morphological characteristics
that affect the spatial variation of a variety of pollutants [29]. In the above analysis, because
of the complexity of socioeconomic and natural conditions, the relationship between urban
form and PM2.5 may be inconsistent and complex. Scientific urban planning can effectively
reduce urban PM2.5. Therefore, it is necessary to explore the effect of urban form on PM2.5.

Investigating PM2.5 concentration is important for research. A large number of ex-
periments used to study the relationship between PM2.5 and urban form to identify better
approaches for reducing atmosphere pollution. Most studies used linear regression models
to analyze the urban form indexes that are related to PM2.5 pollution and estimated the
coefficient of form indexes in the model [30]. In addition, spatial econometric models and
the Environmental Kuznets curve (EKC) hypothesis were used to study the socioeconomic
and natural factors on urban atmosphere pollution [13,31]. Most studies mainly obtained
urban form data through urban land use data and calculated the urban landscape pattern
index to represent specific characteristics of the urban form. Most models selected class area
(CA), number of patches (NP), patch density (PD), LPI, area-weighted mean shape index
(AWMSI), percentage of landscape (PLAND), aggregation index (AI), landscape shape
index (LSI), contiguity index (CONTIG), effective mesh size (MESH), interspersion juxta-
position index (IJI), and other landscape pattern indexes [32,33]. PM2.5 data are obtained
in three main ways: monitoring real-time data through environmental observation sites,
monitoring through experimental instruments, and estimating PM2.5 concentrations using
atmospheric aerosol optical depth (AOD) data obtained from remote sensing images [34].
The latter can compensate for the shortcomings of experimental technology and ground
monitoring sites and provides large-scale and real-time continuous observation data [35].
Although many studies explored the correlation between urban form and PM2.5 pollution
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at different scales from different-sized cities to urban agglomerations to countries, more
specific urban form indicators need to be analyzed in the case of China. For example, there
is a lack of variables explaining the effects of local meteorological conditions on the spatial
aggregation and dispersion of PM2.5 pollution. The geographical conditions of China are
complex, and the urban forms of different geographical locations vary greatly; therefore, it
is necessary to develop more specific urban form indicators to evaluate the shape of cities
from different aspects and to measure the urban forms of China more adequately.

To develop more effective urban development strategies that can alleviate air pollution,
as well as integrate the strengths and weaknesses of previous scientific research, this paper
assesses the relationship between urban form and PM2.5. For this, multisource data is used
to establish an index system of urban form. Estimates of PM2.5 concentrations are based
on AOD data. Based on 340 prefecture-level cities in China, the linear regression model is
applied to study the correlation between urban form and PM2.5. Next, a geographically
weighted regression (GWR) model is used to analyze the geographical differentiation of
the impact urban form exerts on pollutant emissions. PM2.5 concentration data and other
natural factors are derived from satellite-derived data. Then, a comprehensive evaluation
system of urban form indicators was established by using land use data and road network
data. Next, the results of the linear regression method and GWR model between urban form
and PM2.5 concentration are analyzed. The paper ends with a discussion of the research
results and presents relevant policy implications.

2. Data and Methods

2.1. Data Sources

Data were collected on the scale of 340 prefecture-level cities to explore the effect of
urban form on PM2.5 concentration of this study. Table 1 provides the data framework and
variables abbreviations for the study. By reference to other research findings as well as
our own experimental results [21,36], this research assumes that the urban form will affect
the PM2.5 concentration through road density, AI, LPI, PLAND, LSI, population density,
per capita GDP, and the proportion of secondary industry. Compared with that of other
studies, these indicators are combined from the perspective of urban form and economic
development. Then, these eight aspects are combined to quantify urban form indicators. In
China, different regions have large climatic differences. Both temperature and precipitation
significantly impact atmosphere pollution [37], and therefore, these are used as explanatory
variables.

Table 1. Abbreviation summary.

Category Variable Name Abbreviation

Independent variable Fine particles matter PM2.5

Explanatory variable

Aggregation index AI
Largest patch index LPI

Percentage of landscape PLAND
Landscape shape index LSI

Road density RD
GDP per capita PCGDP

Population density PD
Proportion of the secondary

industrial output-value SIP

Temperature TEM
Precipitation PRE

Methods

Geographically weighted
regression GWR

Ordinary least squares OLS
Spatial error model SEM
Spatial lag model SLM
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2.1.1. PM2.5 Concentration Data Estimation

Many studies used AOD to estimate the concentration of PM2.5 pollution, and many
experiments proved a significant correlation between PM2.5 levels and satellite-obtained
AOD. Therefore, satellite remote sensing AOD is an effective tool for PM2.5 pollution
monitoring. In this study, MERRA-2 was mainly used to estimate PM2.5 levels. The
dataset was compiled by NASA’s Goddard Earth Science Data and Information Ser-vice
Center (GESDISC, https://daac.gsfc.nasa.gov/ (accessed on 10 August 2021)), used an
upgraded version of the Goddard Earth Observing System Model, Version 5 (GEOS-5)
data assimilation system. The spatial resolution of MERRA2 data is 0.5◦ × 0.625◦, and the
temporal resolution is daily. Combined with the GEOS-5 model, the annual and monthly
averages of near-surface PM2.5 concentrations were obtained from the AOD observations
in the MERRA-2 data set. For data verification, 200 prefecture-level cities were selected,
and their urban pollution point data from the China National Environmental Monitoring
Centre were compared to the satellite data. As shown in Figure 1, data verification found a
high correlation coefficient (R2 = 0.688) between the PM2.5 obtained by satellite and field
observations. Thus, satellite data can be used to analyze spatial distribution characteristics.
Because of the lack of collection and estimation of nitrate aerosols in the adopted data
sources and models, the overall PM2.5 value is low (accounting for only 20% of the PM2.5
level on severely polluted days), but this was shown to impose little influence on the overall
spatial distribution pattern [38].

Figure 1. Scatter plot of observation data vs. satellite-retrieved PM2.5 data. Note: ** indicate
significance levels at 5% levels.

2.1.2. Urban Form Data

Urban form can be defined as the physical characteristics of urban built-up areas,
such as their size, shape, and density. Related research on the relationship between urban
form and atmospheric quality showed that atmospheric quality is closely related to the
fragmentation, size, shape, accessibility, and continuity of the urban form [23]. The land-
scape patch index is widely used to describe the characteristics of urban land use, as it
can scientifically represent the urban form. In the landscape patch of construction land,
total built-up area (TA), patch density (PD), mean patch area (MPA), PLAND, LPI, area
weighted mean fractal dimension (AWMFD), edge density (ED), LSI, and AI were used to
represent the fragmentation, size, shape, accessibility, and continuity of the urban form [39].
Those indices were calculated based on the land use and land cover dataset (1 × 1 km),
obtained by remote sensing classification from Landsat 8 data of 2015.
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However, multiple collinearity among these indexes is high. To avoid downstream
problems, four indicators were selected based on a variance inflation factor of less than
7.5 [40]. AI indicates the degree of land concentration, and values range within 0–100 (the
higher the value, the better the urban land use connectivity). LPI represents the proportion
of the maximum patch area to the total land area, with a value range of 0–100 (the higher
the value, the lower the city continuity and fragmentation). PLAND is used to measure
the size of the area occupied by urban construction land in the whole urban landscape,
with a value range of 0–100. LSI indicates the complexity of the shape of a city (the larger
the value, the more fragmented urban construction land). These above-mentioned four
indicators (i.e., AI, LPI, PLAND, and LSI) represent the expansion of urban construction
area, the compactness and fragmentation of construction form, and the complexity of the
internal landscape.

In addition, road density is used as a representation of the scale of the urban road
network, which is a good measure of urban traffic accessibility. A large amount of traffic
increases the concentration of atmosphere pollution, especially in areas next to roads; car
exhausts discharge into the atmosphere, and the movement of cars transports dust from
the ground into the air, which causes atmospheric pollution [41]. The road network of
China was downloaded from OpenStreetMap (https://www.openstreetmap.org/ (accessed
on 10 August 2021)) and computed through ArcGIS 10.x platform. Table 2 provides the
calculation method and simple description of 5 urban form indexes.

Table 2. Main urban form indexes in this study.

Index Formula Description

Aggregation index AI =
[

gii
maxgii

]
× 100 Measure of the natural connectivity of urban construction land

Largest patch index LPI =
maxi

j(aij)
TA (100) Measure of the superiority of urban construction land landscape

Percentage of landscape PLAND = pt =
∑n

j=1 amn

P × 100
Measure of the proportion of urban construction land in the

entire urban landscape

Landscape shape index LSI = 0.25 ∑m
k=1 e∗ik√

TA

Measure of the fragmentation and complexity of urban
construction land

Road density RD = (length)km
(area)km2 Measure the ratio of road length to area in city

2.1.3. Control Variables

The level of air pollution emissions was influenced by many variables indirectly
related to urban form. Therefore, it is necessary to employ a more accurate statistical
assessment of the association between urban form and air pollution using control variables.

As socioeconomic data, this paper mainly selects GDP per capita, population density,
and the secondary industry proportion (SIP). GDP per capita refers to the economic de-
velopment of a city. Economic development is the ultimate goal of urban development.
According to the EKC, China’s economy is ahead of the EKC peak; thus, economic devel-
opment causes more energy consumption and construction activities, which may be the
main source of urban PM2.5 pollution [42]. Population density is defined as the number of
people per unit of land area, and a significant correlation between population density and
atmospheric pollution was found [22]. This paper mainly adopts the population density of
urban built-up areas, which is an important indicator of the current status of urban popula-
tion distribution. SIP refers to the proportion of the output value of the secondary industry
within the total industrial output value, which is an important source of urban atmospheric
pollutants. The secondary industry encompasses many energy-intensive industries, mainly
fossil-fuel power plants, steel mills, cement plants, and chemical plants [2]. The Overall
Energy Balance Sheet for National Bureau of Statistics showed that nearly 70% of China’s
energy consumption is concentrated in the secondary industry. Therefore, compared with
that of other industries, the secondary industry emits more atmospheric pollutants [43].
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The data of these three indicators all originate from the “China City Statistical Yearbook”
of 2015, where missing and partially imputed data were replaced with relevant data from
adjacent years (which was the case in 1.5% of the sample).

As natural factors, temperature (TEM) and precipitation (PRE) were selected to mea-
sure the city’s climatic characteristics. Meteorological factors play an important role in the
concentrations of PM2.5 in China (more precipitation and the lower the temperature, the
lowed the concentration of pollutants) [37]. Latitude and longitude grid data of China were
extracted from the acquired MERRA-2 data set, and interpolation processing and regional
statistics at 340 prefecture-level cities were performed in the ArcGIS 10.2 software.

2.2. Statistical Models

China has obvious characteristics of regional differentiation, and atmosphere pollution
also presents typical regional characteristics. Air pollution between regions has a strong
spatial correlation; thus, the air pollution concentration of a city will affect the air quality of
nearby cities.

As typical global linear regression model, the ordinary least squares (OLS) model
is a common method to quantify the statistical relationship between independent and
dependent variables. OLS can be used to study the correlation between urban form and
PM2.5. However, the OLS model ignores the influence of spatial heterogeneity, which may
lead to evaluation bias [39]. Because of the existing spatial correlation among influencing
factors, several spatial regression models were selected to solve the problem by controlling
these potential spatial correlations. This paper used the spatial lag model (SLM) and the
spatial error model (SEM). SLM explains the influence of variables of the surrounding
area by adding lag variables to the model, while SEM considers the spatial dependence of
dependent variables (that may otherwise be missed) by adding error terms to the model.
The OLS model can be described as:

S = βn +
ρ

∑
m=1

βmαm + ε (1)

where S is the dependent variable, βn is the intercept, βm is the regression coefficient
corresponding to the explanatory variable m, and ε is the random error value. This model
can represent the intensity of the relationship between PM2.5 and urban form indicators.

The SLM model can be expressed as:

y = β0 + μ
p

∑
i=1

Wiy +
p

∑
i=1

βixi + ε (2)

where μ is the regression coefficient of the spatial lag term, representing the influencing
degree of adjacent spatial units on the spatial unit. This value has certain directivity, and
the larger the spatial influence degree, the greater the spatial influence degree. W is the
spatial weight matrix of n × n, and Wi is the spatial lag dependent variable of the spatial
weight matrix W. The parameter β mainly reflects the influence of the independent variable
on the dependent variable and the effect of spatial distance on each spatial unit. In this
model, inverse distance was used as the weight of the spatial lag term.

The SEM model can be represented as follows:

y = β0 +
p

∑
i=1

βixi + ω
p

∑
i=1

W ′
iε (3)

where y is the dependent variable. W is the spatial weight matrix, where the inverse distance
was used to calculate the spatial error matrix. β0 is a normal distributed random error
vector. Parameter βi is the influence coefficient of independent variable x on dependent
variable y, and W ′

i is the spatial error coefficient of the dependent variable vector, which
represents the spatial autocorrelation of the spatial error.
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All results of the three regression models can be used to explain the relationship
between dependent and independent variables, and the statistical results can be compared
by the measurement coefficient (R2) and Akaike information criterion (AIC) in the model.
Both values can be measured relative to a model that is more suitable for this paper. The
higher the R2 value, the smaller the AIC value, indicating that the model is more suitable.
All calculation procedures are conducted in Geoda 2017 software.

2.3. Geographically Weighted Regression

In this study, atmospheric pollution presents typical regional characteristics. In other
words, the air quality between neighboring cities is geographically closely related. Re-
gression analysis assumes that the regression parameters have no relationship with the
geographic location of the sample data, and the spatial characteristics are not considered.
The research results do not reflect geographic location characteristics well. In addition,
as a spatial autocorrelation index, the results of the bivariate Moran index of PM2.5 and
10 indicators are statistically significant (e.g., LPI, AI, and PLAND) and have obvious
spatial autocorrelation.

To identify the influence of spatial location, GWR is used to assess the influence of
urban morphology of different regions on PM2.5 concentration. GWR is an extension of the
OLS linear regression model. It uses local regression, embeds spatial position information
of the data into the regression parameters, establishes the local weight of the spatial position
matrix, and estimates the regression parameters point by point through the local weighted
least squares method, to quantify spatial heterogeneity. The model construction is expressed
as follows:

yi = βo(ui, vi) +
n

∑
z−1

βz(ui, vi)xiz + εi (4)

where the dependent variable yi represents the PM2.5 concentration of city i, βo(ui, vi)
represents the constant term of city i, xiz represents the explanatory variable, βz(ui, vi)
represents the regression parameter of the independent variable at the data sampling point,
and εi Represents the accumulation error term.

The parameter β f (ui, vi) can be estimated by the following formula:

β f (ui, vi) =
(

XTW(ui, vi)X
)−1

XTW(ui, vi)y (5)

where β f (ui, vi) is the parameter estimation value of (ui, vi), W(ui, vi) is an n × n spatial
weight matrix, the nondiagonal original element value of which is 0, and the diagonal
element data is the spatial weight of the observation data of city i. The choice of the
spatial weight function is the core of GWR model estimation, and directly determines
the correctness of the model parameter estimation. To avoid estimation error caused by
less sample data around individual sampling points, this model uses the Gaussian kernel
function as the spatial weight function:

Wij =

{ [
1 − (dsi/dmax)

2
]2

0

dsi ≤ dmax
otherwise

(6)

where dsi represents the distance between sampling points s and i, and dmax represents the
maximum distance between neighboring cities and the city to be assessed.

For the GWR model, bandwidth is important for determining the spatial weight calcu-
lation scheme. The smoothness of the model is controlled by bandwidth. Different spatial
weighting functions are used to obtain different bandwidths. Fotheringham proposed how
to obtain the optimal bandwidth [44]. The standard is the best bandwidth when the AIC of
the GWR model is smallest. Therefore, AIC is used to determine the bandwidth.
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The formula of the AIC is shown in the following:

AIC = −2InLθL,x + 2q (7)

where L
(
θ̂L, x

)
is the likelihood function of the model, θ̂L is the maximum likelihood

estimation of θ, x is a random sample, and q is the number of unknown parameters. The
GWR tool in ArcGIS 10.2 was used to build the model.

3. Results

3.1. Spatial Distribution Characteristics of PM2.5

Figure 2 illustrates the geographic distribution of the average PM2.5 concentrations
of China’s cities in 2015, clearly indicating that the spatial distribution of PM2.5 is hetero-
geneous. Overall, cities in eastern China tend to have higher PM2.5 levels than cities in
western China, and cities in northern China have higher PM2.5 levels than cities in southern
China. Specifically, areas with highest PM2.5 levels are concentrated in the North China
Plain and Sichuan Basin, as well as in parts of the Northwest China. Among these, the high
PM2.5 level-area of the northwest region is mainly caused by the Taklamakan desert (the
world’s second largest desert), where perennial wind and sand influx causes extremely
rich suspended particulate matter; therefore, the concentration of PM2.5 in the desert area
is high. The level of economic development in the North China Plains is high. The de-
velopment of pollution-intensive industries in North China promotes regional economic
development, and therefore, man-made atmospheric pollutant emissions are very large. In
the southwest region, area with high PM2.5 pollution is mainly concentrated in the Sichuan
Basin, a region that is particularly affected by humidity and precipitation, which causes
rich suspended particles in the atmosphere. Moreover, the special structure of the terrain
is not conducive to the spread of pollutants, and the population of the region causes high
levels of anthropogenic pollution emissions. Because of its elevation, the Qinghai–Tibet
Plateau has a thin atmosphere, these conditions are not conducive for the formation and
accumulation of particulate matter in the atmosphere. Therefore, the lowest PM2.5 levels
were found in the Qinghai–Tibet Plateau. The global Moran’s I index for PM2.5 levels were
0.765 (p < 0.01), indicating a relatively strong positive spatial correlation. Local indicators
on PM2.5 spatial association (LISA) maps show similar typical distributions, with a high
PM2.5 cluster in the North China Plains and a low PM2.5 cluster in the Northeast China and
the Qinghai-Tibet Plateau regions (Figure 3). Seasonally, winter had the highest PM2.5 level,
followed by spring, autumn, and summer. However, North China has always been a region
with severe PM2.5 pollution, especially in winter, where the climate is not conducive to the
diffusion of atmospheric pollutants [45]. On a seasonal scale, winter had the highest PM2.5
level, followed by spring, autumn, and summer. However, North China was always a
region with severe PM2.5 pollution, especially in winter, where the climate is not conducive
to the diffusion of atmospheric pollutants. It is worth noting that Southern China always
had low PM2.5 pollution because of its advantageous climate (Figure 4).
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Figure 2. Spatial distribution of PM2.5 levels at prefecture-city level in China.

Figure 3. Local indicators on PM2.5 spatial association (or LISA) maps of prefecture-level cities in
China.

Figure 4. Spatio-temporal distribution of PM2.5 levels of prefecture-level cities in spring, summer,
autumn, and winter.
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3.2. Correlations between Urban Form and PM2.5

Table 3 shows the results of global regression model analysis (i.e., OLS, SLM, and
SEM). The results of suitability statistics such as R2, AIC, and log-likelihood imply that
the spatial analysis technique is more suitable for this data. R2 values of OLS, SLM, and
SEM models are 0.601, 0.943, and 0.874, respectively. These results show that the spatial
effect is important in regression analysis and thus, ignoring the spatial effect will reduce
the effectiveness of the model. In addition, R2, AIC, and log-likelihood test results show
that the spatial lag effect is more significant.

Table 3. Global regression results.

Variable Classic OLS Model Spatial Lag Model Spatial Error Model

Coefficient t-Statistic Coefficient z-Value Coefficient z-Value

LPI −1.209 *** −4.652 −0.075 ** −0.620 −0.327 ** −2.241
AI 0.076 1.202 0.068 *** 2.826 0.0424 1.214

PLAND 0.861 *** 5.298 −0.062 ** −0.753 0.226 ** 2.454
LSI 0.226 *** 2.664 0.018 ** 0.520 0.034 ** 0.722
SIP 0.095 * 1.875 −0.006 −0.263 −0.019 −0.661

PRGDP 2.99 × 107 0.013 −1.64 ×
106 −0.174 1.55 × 105 1.176

PD 0.0004 0.430 −0.0002 −0.492 0.0003 0.694
TEM 1.737 *** 12.340 2.878 *** 17.104 0.646 *** 6.369
PER −2.341 *** −4.759 −2.038 ** −2.397 −1.013 *** −3.542
RD −0.191 −0.129 −0.214 −0.320 −1.005 −1.223

Note: ***, **, or * indicate significance levels at the 1%, 5%, and 10% levels, respectively. OLS model: R2: 0.601,
Log likelihood: −1224.72, p-value: 0.000; AIC: 2471.45. SLM: R-squared: 0.943, Log likelihood: −954.714, p-value:
0.000, AIC: 1931.43. SEM: R-squared: 0.874, Log likelihood: −1057.64; p-value: 0.000, AIC: 2139.28.

The results of OLS indicate that most urban form indicators are significantly correlated
with PM2.5 concentrations, and six urban form indicators showed significantly (p < 0.01)
positive relationships with city-level annual mean PM2.5 levels. Among these six significant
factors, LPI, PLAND, and LSI also have a significant impact. LPI has a significant negative
correlation with PM2.5 levels, indicating that a better continuity of the urban form leads to a
lower fragmentation, and a better atmospheric quality. PLAND and LSI were significantly
positively correlated with PM2.5 levels, indicating that the more complex the urban form,
the worse the atmospheric quality. AI indicators on PM2.5 concentration is not significant.
The four landscape pattern indicators indicate that the fragmentation and complexity of
the urban form exert a significant impact on PM2.5 levels, and thus, more attention should
be focused on urban form area expansion and the internal composition of fragmentation
and complexity. RD is negatively correlated with PM2.5 levels, and the higher the density
of the road network, the lower the atmospheric pollution levels. In addition, there is a
significant negative correlation between temperature and precipitation and PM2.5 pollution,
which confirms that meteorological conditions are conducive to the spread and reduction
of atmospheric pollutants. Among other control indicators, SIP has a significantly positive
impact on PM2.5 pollution, and PD and PRGDP are positively correlated with PM2.5 levels.
Therefore, the development of the secondary industry has a more significant impact on
atmospheric pollution.

The SLM model has the best regression results, indicating that urban form and atmo-
spheric pollution have clear spatial dependence. Among the major urban form indicators,
LPI was significantly negatively correlated with PM2.5 levels, AI, PLAND, and LSI were
significantly positively correlated with PM2.5 pollution, and RD was negatively correlated
with PM2.5 levels. In addition, the correlation between temperature and precipitation on
PM2.5 was significant (the more precipitation, the lower the temperature), which is benefi-
cial for reducing PM2.5 concentrations in the atmosphere. This is consistent with literature.
Therefore, clear spatial correlation exists between urban form indicators and PM2.5 levels.
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the analysis process of the global regression model analysis has limitations. The GWR
model can be used for further analysis by adding the relationship of spatial location.

3.3. Spatial Features of Urban Form on PM2.5

The coefficient of determination of the GWR model was 0.77, and the results of AIC
and variance analysis (F test) showed that the results of the model are statistically significant.
All 10 variables show noncollinearity and are used under the AIC minimization standard.
The GWR model is superior to the OLS model. Figure 5 shows a distribution map of the
regression fitting coefficient R2 in the regression results for prefecture-level cities. The
spatial distribution of R2 shows that the fitting results of the 10 variables of the urban form
range between 0.43 and 0.83, indicating that the 10 indicators selected in this paper exert a
stronger comprehensive impact on urban PM2.5 levels. Moreover, the R2 value in the spatial
distribution decreases from north to south. Therefore, the urban form system has a stronger
explanatory power for the urban form of the northern region. On the one hand, this paper
uses temperature and precipitation as control variables of two natural factors. They exert a
significant positive effect on reducing atmospheric pollutants. The role of climatic factors is
more significant in the south, thus reducing the concentration of urban PM2.5 pollution. On
the other hand, this may be due to a lack of estimation of nitrate levels in the PM2.5 data
used in this paper, and therefore, the impact of using a large amount of coal for heating in
winter in northern regions may be underestimated, resulting in a low degree of fitting for
northern regions. The further south a city is located, the more the explanatory power for
PM2.5 of the urban form decreases.

Figure 5. Local R2 distribution characteristics according to geographically weighted regression (GWR)
model.

In the GWR model, each urban form index has a specific regression coefficient for the
influence degree of PM2.5 levels, and each coefficient has a different spatial distribution
law (Figure 6). The spatial distribution can more intuitively depict the influencing effect
and changing trend between different urban form indicators and cities. In addition, dif-
ferent indicators exert different positive and negative impacts on PM2.5 levels, and their
proportions differ. This also indicates that the influence index is not spatially stable and
shows spatial heterogeneity (Figure 5). The directions of significant relationships were not
the same for the studied cities, even for the same factor.
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Figure 6. Spatial distribution of local relationship between PM2.5 and 10 factors for prefecture-level
cities in China.

The regression coefficient of urban form index decreases in the order of RD, PLAND,
LPI, LSI, and AI. The correlation between road density and PM2.5 levels is highest. Con-
struction dust from the construction phase of roads is the main cause of PM2.5 pollution,
followed by pollution caused by motor vehicle driving, as well as more harmful gases that
are discharged during traffic congestions. The regression coefficient ranges from 7.7 to 4.0
and decreases from northeast to southwest. In China’s major urban areas, the density of
road networks is negatively correlated with PM2.5 concentrations. Improvement of the road
network system can effectively reduce traffic congestions and atmospheric pollution. The
correlation coefficient between PLAND and PM2.5 concentrations is high and negative. This
coefficient mainly measures the size of the area occupied by urban construction land in the
whole urban landscape. The influencing factor follows a decreasing trend from center to
surrounding areas. Cities where construction land is the main land use type are more likely
to cause atmospheric pollution. Developed areas in the south are less affected but may be
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affected by increasing levels of urban construction, where the application of scientific dust
reduction measures and the use of green materials are conducive for reducing emissions
of atmospheric pollutants such as building dust. Cities in part of the central and western
regions are more susceptible to the impact of the area of construction land. Therefore,
reasonable increases of urban construction area and improvement of the level of building
construction technology (e.g., green building materials and dust reduction) can reduce
PM2.5 concentrations to a certain extent. LPI exerts a significant influence on urban PM2.5
concentrations, where a continuous increase of LPI indicates that the landscape dominance
of urban construction land increases, the degree of spatial connection increases, and the
intensity of human activities also increases. The values range from −1.9 to 2.8 and increase
from north to south with the continuous development of urban construction, which causes
more atmospheric pollution. In southern China, driven by the reform and opening up
policy, the urbanization level grows faster, and human activities are more intense. This
indicates that enhancing the connectivity and dominance of urban construction land has a
significant impact on reducing PM2.5 concentrations. A higher LSI index indicates stronger
fragmentation and more complicated urban areas. Most regression coefficients between LSI
and PM2.5 concentrations are positive, with values ranging from −0.12 to 0.69, indicating
that a higher LSI value represents higher levels of PM2.5 pollution. The spatial increase from
north to south may be due to the complexity and fragmentation of the shape of the land-
scape of urban construction land, which leads to an increase of people’s daily commuting
time and distance, thus also increasing the pollution caused by the heavy use of commuting
means. The impact degree of the southern region is large, indicating that the complexity
of urban landscape in the southern region is more likely to affect the PM2.5 levels. AI is
used to measure the agglomeration and compactness of urban construction land. The
regression coefficient ranges from −0.17 to 0.31, and it changes from negative to positive
from north to south. The higher the compactness of urban construction land, the lower the
PM2.5 concentrations. Compact urban construction can shorten people’s travel distance,
improve the efficiency of land use, and reduce energy consumption. Therefore, in the
process of urban development, compact and continuous urban construction is conducive to
the improvement of urban atmospheric quality.

Among control indicators, the influences of the three socioeconomic factors on urban
PM2.5 pollution show clear spatial differences. In most urban areas, SIP has a significant
positive effect on PM2.5 concentrations, indicating that industrial activities aggravate the
PM2.5 concentrations in Chinese cities, which is consistent with the literature. The effect
of SIP on PM2.5 concentrations in southern China is strong, indicating that reducing the
proportion of output of the secondary industry in southern China can significantly improve
atmospheric quality. At the same time, the population density in the southeast coastal areas
exerts a greater impact on the PM2.5 concentrations. Economic development prompted
the migration of many people to the south to work or live. The increased population
density has caused more man-made atmospheric pollutant emissions, which strongly
impact atmospheric pollution. The overall coefficient of PCGDP is low and its influence is
weak. However, in the process of urban development, the improvement of the economic
level exerts a significant positive effect on reducing PM2.5 pollution levels.

Reasonable increases in the area of urban construction land and improvements of the
level of construction, reducing the fragmentation of urban construction land, compacting
urban construction, improving traffic accessibility, applying a reasonable road network
density are all very beneficial factors for the improvement of urban atmospheric quality.
These can, to a certain extent, reduce the concentration of PM2.5. However, as urbanization
continues to increase, the different geographical location, scale and level of construction,
and development of the city should be considered according to local conditions, thus
providing planning and construction guidance. Urban form can affect PM2.5 concentrations
from different aspects. Urban area, geographical location, and economic development level
have an impact, and thus also need further discussion and analysis in the future.
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4. Discussion

On an annual scale, urban planning factors (e.g., the area of urban construction land,
construction fragmentation, and road network density) all exert a specific influence on
PM2.5 levels. At the same time, the economic development of a city is also closely related
to PM2.5 levels. China’s rapid urbanization led to structural changes of its economy, and
large areas of land are being used by energy-intensive and labor-intensive industries.
In addition, many people move from rural areas to cities, where the population grows
rapidly, which increases the release of large amounts of man-made atmospheric pollutants
emission. The study showed that temperature and precipitation (as control variables)
were significantly correlated with PM2.5 concentrations in 340 cities in China, and climatic
factors played a significant role for reducing atmosphere pollution. Therefore, we further
discussed this paper discusses the relationship between urban form and PM2.5 in different
seasons. Seasonality can affect atmospheric quality through changes in precipitation,
wind, relative humidity, monsoons, and other diffusion conditions [16,30]. When seasonal
variations are considered, different seasons exert different impacts on PM2.5 through
different urban form indicators. The SLM model achieved the best regression results,
and the relationship between urban form and PM2.5 in different seasons is discussed
through this model (Table 4).

Table 4. Spatial lag model results for different seasons in China during 2015.

Variable Spring Summer Autumn Winter

LPI −0.289 ** (−2.044) −0.489 *** (−3.751) −0.231(−1.522) −0.258 * (−1.775)
AI 0.054(1.581) 0.0524 * (1.681) 0.044(1.219) 0.027(−0.773)

PLAND 0.243 *** (2.793) 0.320 *** (3.943) 0.133(1.382) 0.240 *** (−2.652)
LSI 0.055 (1.210) −0.050(−1.144) 0.049(1.015) 0.026 (−0.555)
RD −1.573 * (−1.991) −0.516 (−0.703) −0.674 (−0.800) −1.728 ** (−2.139)
SIP −0.011 (−0.404) −0.015(−0.597) −0.026(−0.892) −0.015(−0.523)

PCGDP 1.04 × 105(0.813) −5.63 × 106 (−0.480) 6.06 × 106(0.449) 3.20 × 105 ** (−2.410)
PD 4.14 × 105(0.089) 0.0002(0.409) 0.0003 (0.646) 0.0002 (−0.481)

PRE −0.217 (−1.315) −0.247 ** (−2.123) −1.508 *** (−4.530) −0.392 (−1.062)
TEM 0.543 *** (7.021) 0.484 *** (6.327) 0.621 *** (6.415) 0.282 *** (−4.705)

R2 0.843 0.892 0.879 0.918
Log likelihood −1043.98 −1019.82 −1071.09 −1067.61

AIC 2111.96 2063.64 2166.19 2159.22
p-value 0.000 0.000 0.000 0.000

Note: ***, **, or * indicate significance levels at the 1%, 5%, and 10% levels, respectively.

Table 4 shows the results of the regression model, in which the R2, log-likelihood,
AIC, and other statistical results are significantly higher, indicating that the SLM regression
model in this study has a relatively good fit. This model can accurately assess the impact
of seasonal changes in the urban form on PM2.5 concentrations. In addition, the seasonal
analysis according to the GWR model shows that the regression coefficients of the impact
of each city’s form index on the level of PM2.5 pollution have different spatial distribu-
tion patterns (Figure 7). As shown in Table 4, seasonal variation significantly affects the
relationship between urban form and PM2.5 concentration.
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Figure 7. Local R2 derived from multivariate GWR model in spring, summer, autumn, and winter.

The four main findings of this study are summarized in the following: firstly, a signifi-
cant correlation exists between urban form and PM2.5 concentrations in all four seasons,
with the highest R2 value in winter. Secondly, the temperature and precipitation in the
control variables always exerted a significant impact on PM2.5 concentrations, while other
socioeconomic indicators had no significant impact on PM2.5 concentrations. Thirdly, the
effect of PLAND and PM2.5 concentrations is significantly positively correlated, while that
of LPI and PM2.5 concentrations is significantly negatively correlated in spring, summer,
and winter. Fourthly, a negative correlation was found between the density of urban
road network and PM2.5 concentrations. Specifically, in spring, LPI, PLAND, and RD
significantly impact PM2.5 concentrations, with regression coefficients of −0.289, 0.243, and
−1.537, respectively. In the summer, urban compactness (AI = 0.052) can decrease the PM2.5
concentration to some extent. LPI (−0.489) and PLAND (0.320) were all significantly associ-
ated with PM2.5 concentrations. In the autumn, the correlation between urban form and
PM2.5 concentrations was not significant. In the winter, PLAND (0.240) was significantly
positively correlated with the PM2.5 concentrations. LPI (−0.258) and RD (−1.728) were
significantly negatively correlated with PM2.5 concentrations.

Therefore, data analysis showed that seasonal change exerts a certain influence on the
relationship between urban form indicators and PM2.5 concentrations. Especially in spring
and winter, increasing the connectivity of urban construction land and improving the
efficiency of land use within a city can effectively decrease urban PM2.5 concentrations [15].
Moreover, increasing the road connectivity also exerts a significant effect on reducing
atmosphere pollution. However, the season of autumn does not exert a significant effect on
the relationship between urban form and PM2.5 concentrations. In contrast, the indicators
between urban form and PM2.5 are more significantly correlated in spring and winter,
and relatively less in summer and autumn. Firstly, the previous analysis on an annual
scale shows that the compact and continuous urban construction land, the reduction of
urban land fragmentation, and the reasonable road network density are all conducive to
reducing urban atmospheric pollutant emissions. Secondly, seasonal changes are mainly
reflected by different climatic variables. The strong Asian monsoon during summer and
the subtropical high during autumn result in favorable weather conditions that clean the
air from atmospheric pollutants, as they enhance the mobility of the atmosphere above
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urban centers. The summer monsoon climate moves more precipitation to North China,
and at the same time increases the wind speed under the subtropical high pressure. These
meteorological conditions are conducive to reducing atmosphere pollutants [16]. Under
such climatic conditions, small changes in the structure of building areas or land areas
near the ground exert little impact on atmospheric pollutants. Finally, low temperatures in
winter and spring cause the atmospheric flow to sink and wind speeds are also lower than
in summer [15]. In addition, more coal is burnt in the north in winter, and the resulting
atmospheric pollutants cannot easily spread and remain concentrated near the ground.
Under these conditions, the irregular urban form near the ground has a more significant
impact on PM2.5 concentrations. Therefore, seasonal changes exert a significant impact
on PM2.5 concentrations. When exploring the relationship between urban form and PM2.5
concentrations, focusing on the results of spring and winter is more effective.

There are many factors that affect the PM2.5 concentration, but our research just fo-
cused on the urban form. In addition, industrial areas, greenness area, vegetation coverage,
transportation and other factors also have a significant impact on PM2.5 concentration.
Therefore, there are some limitations of this study. Firstly, more influencing factors should
be considered, such as the emission forces, change of pollution effects, LHI [20], meteoro-
logical conditions, the development levels of different cities and environmental conditions
that surround the region of interest. These factors have an important effect on PM2.5 and are
also associated with PM2.5 through interaction. They can all improve our indicator system.
By selecting typical cities for further research, further problems may be identified. Secondly,
the classification accuracy of urban land use data can be improved, and the impact of dif-
ferent land use patterns of urban construction land on PM2.5 pollution can be explored. For
example, extract the industrial area in city for research. Thirdly, experiment with different
research methods and data sources. For example, compare the remote sensing estimated
PM2.5 concentration obtained by different sensors; compare the results of different research
models; compare the impact levels of more influencing factors on the PM2.5 concentration,
and so on.

5. Conclusions

Exploring the relationship between PM2.5 pollution and urban form helps to better
understand the distribution of PM2.5 pollution, provide suggestions for urban planning,
and the government with exploring a more sustainable and environmentally friendly
development model for cities. Therefore, this study selected 340 prefecture-level cities in
China to explore the relationship between urban form and PM2.5 pollution via regression
analysis and GWR model. The following lists the main conclusions and recommendations:

Firstly, the distribution of PM2.5 pollution showed spatial heterogeneity, with an
increasing trend from northwest to southeast. Areas with high PM2.5 concentrations are
mainly located on the North China Plain, which is greatly affected by human activities.
The southwest and parts of the northwest are affected by climatic factors, and thus, their
PM2.5 concentrations are also high. The climatic and human activity conditions on the
Qinghai–Tibet Plateau are not conducive to the accumulation of PM2.5 pollution, and thus,
this area was always less polluted. Affected by seasonal changes, the PM2.5 concentration
decreases in the respective order of winter, spring, autumn, and summer.

Secondly, most urban form indicators are significantly related to PM2.5 concentration.
The results of the GWR model show that the spatial distribution decreases from north
to south, and the urban form indicators system exerts a stronger influence on cities in
northern regions. In general, better continuity is associated with a lower the degree of
fragmentation, and a higher compactness and reasonable density of the road network are
conducive to reducing the PM2.5 concentrations. In addition, meteorological conditions
are also conducive to the diffusion and reduction of atmospheric pollutants. Thirdly, on a
seasonal scale, seasonal changes impact pollution levels, but not all urban form indicators
are significantly related to PM2.5 concentrations. Affected by seasonal changes, more urban
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form indicators were significantly correlated with PM2.5 concentrations during spring and
winter compared with summer and autumn.

This research used a large data set and confirmed that a good urban form exerts a
positive effect on reducing PM2.5 concentrations. In the future development, the proportion
of the secondary industry in the urban area should be reduced, green industries should
be developed, atmospheric pollutant treatment technologies should be improved, and
pollution sources should be controlled to reduce emissions. In areas with low pollution
values, protection measures should be increased. More importantly, in urban planning, the
blind expansion of urban land should be avoided, the compactness of the urban form, the
efficiency of land use, and the transportation network in the city should be improved, and
various forms of public transportation should be offered.

There are three main limitations of this study. Firstly, many factors influence PM2.5
pollution, and the geographical location, climatic conditions, and development levels of
different cities are all different. By selecting typical cities for further research, further
problems may be identified. Secondly, the classification accuracy of urban land use data
can be improved, and the impact of different land use patterns of urban construction land
on PM2.5 pollution can be explored. Thirdly, different research methods and data can be
used to improve the accuracy of pollution source data, as well as research models, and
different data methods can be utilized to further explore the estimation of PM2.5 levels and
relevant influencing factors.
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Abstract: The recent COVID-19 pandemic affected various aspects of life. Several studies established
the consequences of pandemic lockdown on air quality using satellite remote sensing. However, such
studies have limitations, including low spatial resolution or incomplete spatial coverage. Therefore,
in this paper, we propose a machine learning-based scheme to solve the pre-mentioned limitations
by training an optimized space-time extra trees model for each year of the study period. The results
have shown that our trained models reach a prediction accuracy up to 95% when predicting the
missing values in the MODIS MCD19A2 Aerosol Optical Depth (AOD) product. The outcome of the
mentioned scheme was a geo-harmonized atmospheric dataset for aerosol optical depth at 550 nm
with 1 km spatial resolution and full coverage over Europe. As an application, we used the proposed
machine learning based prediction approach in AOD levels analysis. We compared the mean AOD
levels between the lockdown period from March to June in 2020 and the mean AOD values of the
same period for the past 5 years. We found that AOD levels dropped over most European countries
in 2020 but increased in several eastern and western countries. The Netherlands had the most
significant average decrease in AOD levels (19%), while Spain had the highest average increase (10%).
Moreover, we analyzed the relationship between the relative percentage difference of AOD and four
meteorological variables. We found a positive correlation between AOD and relative humidity and a
negative correlation between AOD and wind speed. The value of the proposed prediction scheme is
further emphasized by taking into consideration that the reconstructed dataset can be used for future
air quality studies concerning Europe.

Keywords: aerosol optical depth; CAMS; COVID-19; machine learning; MODIS

1. Introduction

The Severe Acute Respiratory Syndrome-COronaVIrus Diseases 2019 (SARS-COVID-
19) pandemic made humanity reconsider how to adapt their daily activities. By late June
2020, the EU average infection rate was around 160 per million inhabitants [1]. In general,
most European countries started applying restrictions in March 2020. These restrictions
included lockdown, contain, various kinds of curfew, mandatory face masks, etc. By
18 March 2020, more than 250 million people in Europe were in lockdown [2].

Despite the unfortunate losses in human lives and the economy, there could be a bright
side to this pandemic when it comes to air quality. Some studies showed that air quality
has improved under the applied restrictions. For example, only two weeks of lockdown
reduced urban air pollution in Spain, with essential differences among pollutants. The most
considerable reduction was in black carbon and Nitrogen Dioxide (NO2) by 45–51% [3].

According to data released in 2019–2020 by the National Aeronautics and Space
Administration (NASA) and the European Space Agency (ESA), NO2 was reduced up to
30% in some regions that were highly affected by COVID-19 lockdowns such as Wuhan in
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China, Italy, Spain, and the USA [4]. Similar results were found in Poland when comparing
air quality observations for the year 2020 in five major cities with the same time periods
as in the previous two years. In addition, AOD concentrations were reduced in April and
May of 2020 by nearly 23% and 18% as compared to 2018–2019 [5].

During the lockdown in China, there was a significant drop in NO2 (−37%), SO2
(−64%), and AOD (−8%) for the year 2020, when compared with the 11 year mean average
(2009–2019) [6]. Another study of the eastern part of China, where AOD levels are usually
high (AOD > 0.7), showed that the emission of pollutants in the first three months of
2020 has decreased when compared to the same period of the previous year [7]. In India,
the AOD level was greatly decreased (~45%) during the COVID-19 lockdown periods
compared to the mean AOD level in the previous 20 years [8]. Similarly, significant
reductions in black carbon concentration (~8.4%) and AOD (10.8%) were observed in
southern India during the first lockdown period (25 March–14 April 2020) when compared
to the pre-lockdown period (1–24 March 2020) over the selected measuring location [9].

In this study, we focused on AOD, which is defined as a measure of the columnar
atmospheric aerosol content. High AOD concentrations have a negative impact on all
living things by affecting the respiratory system and reducing naked eye visibility. AOD is
measured either from ground-based stations or retrieved by satellites measurements. AOD
satellite-based products provide a vast spatial coverage compared to the limited number of
ground stations [10].

Due to the correlation between AOD and particulate matter (PM), AOD satellite
products are commonly used to retrieve surface PM [11–13]. This justifies the increasing
interest in AOD satellite products. Many sensors retrieve AOD at different spatial and
temporal resolutions [14], such as the Total Ozone Mapping Spectrometer (TOMS) [15],
the Ozone Monitoring Instrument (OMI) [16], the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) [17], the Geostationary Operational Environmental Satellite (GOES) [18], the
Advanced Himawari Imager (AHI) [19], the Multi-angle Imaging SpectroRadiometer
(MISR) [20], and the widely used Moderate Resolution Imaging Spectroradiometer (MODIS)
which we used in our study.

MODIS instrumentations have been carried on both the Terra and Aqua satellites in
sun-synchronous polar orbits, since 1999 and 2002, respectively. They can record the earth’s
surface reflectance and emittance with a 2330 km swath every one to two days [21]. MODIS
measures 36 spectral bands between 0.4 and 14.4 μm wavelengths at many different spatial
resolutions that provide a great opportunity to study the aerosol thickness and parameters
characterizing aerosol size from space with good accuracy and on a worldwide scale.

MODIS provides various AOD products based on different aerosol retrieval algo-
rithms. The most common algorithms are the Dark Target (DT) [22,23], the Deep Blue
(DB) [24,25], and the Multi-Angle Implementation of Atmospheric Correction for MODIS
(MAIAC) [26] which is the algorithm used to generate the MODIS MCD19A2 product with
1 km spatial resolution.

However, AOD satellite-based products have a great number of gaps due to cloud
cover and snow reflectance. An analysis of the spatial and temporal distribution of clouds
retrieved by MODIS over 12 years of continuous observations from the Terra satellite and
over 9 years from the Aqua satellite showed that clouds cover ~67% of the earth’s surface
worldwide and ~55% over land [27]. To solve this issue, it has become common to use
machine learning and deep learning algorithms in developing models that fill the gaps
in satellite-based products either by removing the clouds [28], applying spatiotemporal
interpolation [29], or merging different sources of data to predict gaps-free images [30].
Therefore, in this study, we propose a machine learning-based scheme to fill the gaps in
MODIS MAIAC AOD retrievals and to generate daily, full coverage, high-resolution AOD
maps over Europe. Such maps will minimize time series analysis bias and uncertainty
while investigating the influence of COVID-19 lockdown on AOD levels.
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2. Material and Data

2.1. Study Area and Period

The study area is shown in Figure 1. It includes the “Continental EU,” hence EEA
(European Economic Area), and the United Kingdom, Switzerland, Serbia, Bosnia and
Herzegovina, Montenegro, Kosovo, North Macedonia, and Albania [31]. In this paper, we
refer to the area of study as “Europe” located inside this coordinates box 26◦ W, 72◦ N, 42◦
E, and 36◦ S. The total study area covers 13,391,504 of 1 km grid cells; 5,450,009 of the total
cell number are located over land. The study period covers the months of March–June
from the years 2015–2020.

 
Figure 1. The study area with AERONET stations shown as black dots.

2.2. Data

In this section, we summarize different data used throughout our study.

2.2.1. MODIS Data

MCD19A2 daily product from MODIS collection 6 was released and made publicly
available on 30 May 2018. It was generated from both the Aqua and Terra satellites and
delivered in Hierarchical Data Format [26]. MCD19A2 has a 1 km spatial resolution and
uses the MAIAC algorithm that utilizes time series (TMS) analyses, a set of image-based and
pixel processing to enhance the precision of cloud recognition, AOD, and other atmospheric
rectification [32,33]. Daily MODIS MCD19A2 data were downloaded, and two science
datasets (SDS) were extracted; AOD green band (at 550 nm) and AOD quality assurance
layer (AOD_QA), which was used to retrieve only pixels with the best quality. We created
daily mosaics that cover the study area.

2.2.2. Copernicus Atmosphere Monitoring Service (CAMS) Data

In this study, modeled AOD at 550 nm data with 80 km spatial resolution produced
by the European center for medium-range weather forecasts Atmospheric Composition
Reanalysis 4 (EAC4) was used to fill the gaps in the MODIS MCD19A2 product. Reanalysis
merges model data with worldwide observations into a compatible dataset generated by an
atmospheric model that uses the laws of physics and chemistry. EAC4 estimates modeled
AOD every 3 h using the 4D-Var assimilation method [34].

2.2.3. Digital Elevation Model

The elevation of the grid cells was added as a land predictor in our study. The Japan
Aerospace Exploration Agency (JAXA) provides a worldwide digital surface model for
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scientific research and other geospatial services. It provides a horizontal resolution (~30 m)
by the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), which was
carried on the Advanced Land Observing Satellite “ALOS” [35]. Data was accessed in
March 2021 from (https://www.eorc.jaxa.jp/ALOS/).

2.2.4. Ground-Based AOD Data

NASA’s Aerosols Robotic Network (AERONET) is considered one of the most reliable
aerosol networks [36]. AERONET measures direct solar and sky radiance in various
channels every 15 min at the local point to compute columnar AOD at intervals from 350 to
1020 nm with low expected uncertainties ranging between 0.01 to 0.02 under cloud-free
conditions [37]. There are several categories of AERONET data: level 1.0 (unscreened),
level 1.5 (cloud screened), and level 2.0 (cloud screened and quality assured).

In this study, AERONET level 2.0 quality assurance observations were used from
57 stations over Europe, as shown in Figure 1. Since AERONET stations do not measure
AOD at 550 nm, available measurements at the nearest two wavelengths to 550 nm (440 or
500 nm as λ1 and 675 nm as λ2) for each station were interpolated to 550 nm using the
Ångström’s turbidity equation represented in Equation (1) [21,38].

τa(λ) = βλ−α (1)

where τa(λ) is the AOD at λ wavelength in micrometers, β is the Angstrom’s turbidity
coefficient, and α is the band index represented in Equation (2).

α = − ln(τa(λ1)/τa(λ2))

ln(λ1/λ2)
(2)

AOD values at two different wavelengths λ1, λ2 are related by Equation (3).

τa(λ1) = τa(λ2) ∗
(

λ1

λ2

)−α

(3)

2.2.5. European Centre for Medium-Range Weather Forecasts reanalysis (ECMWF)

ERA-5 is the fifth generation of ECMWF reanalysis for the global climate and weather.
Hourly data between 10 a.m. and 2 p.m. of U and V wind components, total precipitation,
and 2 m surface temperature for the months of March–June of the years 2015–2020 with
0.1◦ spatial resolution were extracted from the ERA-5 land hourly data. Relative humidity
data between 10 a.m. and 2 p.m. at 0.25◦ spatial resolution was extracted from the ERA-5
monthly averaged data.

All used data shown in Table 1 were reprojected to the European Terrestrial Reference
System 1989 (EPSG:3035), using a 1 km grid cell with bilinear interpolation method for
CAMSAOD and ECMWF data and the cubic convolution for the ALOS elevation model. All
values of MODISAOD, CAMSAOD, and elevations were assigned to the closest grid cell.

Table 1. Summary of data used in this study.

Product Spatial Resolution Temporal Resolution Layer

MODIS
MCD19A2 1 km Daily AOD-055

Quality Assurance (QA)
CAMS 80 km 3 h Total aerosol optical depth at 550 nm

ALOS DSM 30 m - Elevations
AERONET - ~15 min Level 2.0

ECMWF
ERA-5 0.1◦ Hourly

Wind U and V components
Total precipitation

2 m surface temperature
ECMWF
ERA-5 0.25◦ Monthly Relative humidity
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3. Methodology

In this study, we created a Geo-Harmonized Atmospheric Dataset for Aerosol opti-
cal depth (GHADA) that covers the study area. Three stages were applied to generate
GHADA: first, we merged the Terra and Aqua datasets of the MODIS MCD19A2 prod-
uct by applying a simple average for all pixels that passed the quality assurance criteria
(QACloudMask = Clear and QAAdjacencyMask = Clear) of this product. Second, we created a
machine learning model for every year of the study period to predict AOD values over the
study area. MCD19A2 high-quality retrievals were used as the dependent variable, and
since the Terra satellite is passing locally around 10:30 a.m. and the Aqua satellite passes
around 1:30 p.m., we used the modeled AOD from CAMS at the closest three times per
day to the satellites passing (9 a.m., 12 p.m., and 3 p.m.). In addition, the spatiotemporal
information for the grid cells was used as independent variables. Finally, we filled MODIS
MCD19A2 gaps with the predicted AOD by merging the outputs from stages one and two.
We validated the daily maps of GHADA with ground-based observation, and then we
utilized this dataset to analyze how the COVID-19 lockdown has affected AOD levels over
Europe during the period of March–June 2020 by comparing AOD levels for this period
with the average AOD levels in the last five years (2015–2019) for the same months.

4. Space-Time Models

In this section, we propose a novel approach based on the Extremely Randomized
Trees (ET) to predict the missing AOD values in the MODIS MCD19A2 product. First,
we illustrate the principles of the ETs and discuss their suitability for the AOD prediction
problem. Second, we describe in detail the proposed ET training and parameters setting
for AOD prediction.

4.1. Extra Trees Algorithm

ET is a tree-based ensemble learning method used in our study to deal with the
supervised regression and create prediction models for AOD. The idea behind ET is to
strongly randomize the selection of both attributes and cut points while splitting a tree
node. Unlike the widely used random forest algorithm that chooses the optimum split, ET
chooses it randomly, which further reduces bias and variance. When needed, the latter
algorithm creates independent randomized trees of learning sample output values [38].

The number of attributes that are randomly selected at each node (K) and the minimum
sample size for splitting a node (nmin) are the two main parameters in the ET splitting
process. This procedure is applied several times with the whole learning dataset to create
an ensemble model that aggregates the predictions of the decision trees to obtain the final
estimation by majority vote in classification problems and arithmetic average in regression
problems. In addition to accuracy, ET has high computational efficiency [39], which is
required when dealing with big data problems.

4.2. Improved Spatiotemporal Information

To determine the spatial and temporal correlation between MAIACAOD and CAMSAOD,
we included the following independent variables. For space, we used both the elevations
of the grid cells and the great circle distance (D) between each grid cell and a reference
point on a sphere identified by their latitudes and longitudes using the haversine approach
(Equations (4)–(6)). For time, we used the day of the year (DOY) to calculate the radian
time (Rt) for the grid cells on different days in a year to improve model handling of the
seasonal cycle, Equation (7) [40].

θ = ƒ(λi,t, ϕi,t) = haversin(ϕ1 −ϕ2) + cos(ϕ1) ∗ cos(ϕ2) ∗ haversin(λ1 − λ2) (4)

haversin(θ) = sin2(
θ

2
) =

1 − cos(θ)
2

(5)

Di,t = r ∗ archaversin(θ) = 2 ∗ r ∗ arcsin
(√

θ
)

(6)
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Rti,t = cos
(

2π ∗ DOYi, t
T

)
(7)

where θ is the central angle between two points in space, ϕ1 and ϕ2 denote the geographical
latitudes in radians of two points in space, λ1 and λ2 denote the geographical longitudes
in radians of two points in space, r denotes the earth’s radius in km, DOY represents the
day of the year, T represents the total number of days in the year, for every grid cell (i) on
day (t).

For each year between 2015–2020, the model was built using Equation (8).

AODi,t = ƒ(CAMS-9i,t, CAMS-12i,t, CAMS-15i,t, Di,t, Hi,t, Rti,t) (8)

where for each grid cell (i) on day (t): AODi,t is the target AOD value, CAMS-x represents
the AOD value extracted from CAMS at hour x, Di,t represents the great circle distance,
Hi,t represents the elevation, Rti,t represents the temporal information identified by the
radian time.

5. Results

In this section, we present the results of the space-time ET models when predicting
the MAIAC AOD values. Then we utilize these models to generate AOD maps over the
study area. The validation process is also stated below. Finally, these maps were used to
analyze the effects of COVID-19 lockdowns on AOD levels, as discussed in Section 5.4.

5.1. Models

Due to the great number of MODISAOD -CAMSAOD pairs over land in the study
area (on average 380 million pairs per year), representative subsets consisting of ~10% of
the whole population (all MODISAOD -CAMSAOD pairs per year) were chosen using the
Kolmogorov–Smirnov test to be used as learning dataset for a space-time model for each
year. Then for each learning dataset, we used the k-fold cross-validation (where k = 5) to
train and validate each model. In this method, the learning dataset is divided into 5 folds,
which means 80% of the pairs in the learning dataset are used as a training set for the model,
and the remaining 20% are used for validation. This procedure was repeated five times
to test the model on each fold. Based on learning curve results, we found that increasing
the learning dataset size to 15% only increased the accuracy of the models by less than
1%, and the curve reaches a plateau beyond this percentage. Therefore, to decrease the
computational complexity, we used ~10% of the whole population as a learning dataset. In
other words, a learning dataset size of 10% is enough to reach satisfactory accuracy for each
year of the study period. The optimized models (number of trees = 30, maximum depth
of the tree = 50) were tested on the remaining ~90% (approximately 340 million pairs) of
the population.

The results of the trained models for each year are summarized in Table 2. All models
achieved high accuracies when predicting MAIAC AOD with a correlation of determination
(R2) ranging between 92.5% to 95% and root mean squared errors from 0.016 to 0.02. These
high achieved accuracies with the relatively small errors show the efficiency of our space-
time models in predicting the missing AOD values and emphasize the appropriateness
of exploitation modeled AOD with improved spatiotemporal information in improving
satellite AOD data.
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Table 2. Results of the space-time extremely randomized models used to predict the missing AOD in
the MODIS MCD19A2 product for each year of the study period.

Year R-Squared (%) RMSE MAE

2015 95 0.017 0.011
2016 94.3 0.018 0.011
2017 93.8 0.018 0.011
2018 92.5 0.02 0.012
2019 92.9 0.019 0.012
2020 94.1 0.016 0.010

Feature importance was calculated based on the reduction in sum of squared errors
whenever a variable is chosen to split. Mean importance scores were calculated for all
selected input variables of the models (see Figure 2). CAMSAOD at 12:00 p.m. is the most
influential variable, accounting for ~33% of MODISAOD estimates. The other two modeled
AOD at 9:00 a.m. and 3:00 p.m. contributed by 18% and 24%, respectively. The radian
time and the great circle distance had almost the same influence (10–10.4%). Finally, the
elevation had the lowest influence, with ~5% on MODISAOD estimates.

Figure 2. Mean importance scores (%) of independent variables to AOD estimates for the space-time
extremely randomized models.

5.2. AOD Maps

We used the optimized space-time models to predict the missing values in the daily
MCD19A2 data of the study period. Then we used these predictions to fill the gaps in
this product. The outputs of the previous processes were daily AOD maps with 1 km
spatial resolution and full coverage over Europe for the period of March–June in the years
2015–2020. To analyze the COVID-19 lockdown effects on AOD levels, we calculated the
average AOD levels for the months’ March–June of the years 2015–2019 and compared
these levels with the same period of the year 2020 (see Figure 3). Moreover, we generated
daily AOD maps for the period of January 2018–June 2020 to validate GHADA through all
seasons and not solely during the chosen lockdown months.
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(a) (b) 

Figure 3. The average AOD values for the months March–June of (a) the years 2015–2019 and (b) of the year 2020 during
the chosen lockdown period.

5.3. Validation with AERONET

With the assumption that the aerosol column is relatively uniform within a certain
time-space boundary [41], the validation of satellite-based AOD products is usually per-
formed between AOD retrievals within the spatiotemporal window and the corresponding
AERONET observations [42]. An acceptable accuracy of AOD products can be achieved
when 66% of retrievals fall within expected error envelopes (EE) [23,43]. We used for
validation the average AERONET level 2.0 quality assurance observations between 10 a.m.
and 2 p.m. from 57 stations across Europe during the period of January 2018–June 2020. We
chose two spatial diameters, 20 km and 50 km, with AERONET stations in the center for val-
idation and statistical analysis that extensively uses root-mean-square error (RMSE), mean
absolute error (MAE), expected error (EE) envelopes, and the fraction of AOD retrievals of
the total number (N) falling within EE envelope (Equations (9)–(13)).

RMSE =

√
1
N ∑(AODGHADA − AODAERONET)

2 (9)

MAE =
1
N ∑| AODGHADA − AODAERONET | (10)

Bias =
1
N ∑(AODGHADA − AODAERONET) (11)

EE = ± (0.05 + 0.15 ∗ AODAERONET) (12)

AODAERONET − |EE| ≤ AODGHADA ≤ AODAERONET + |EE| (13)

The statistical analysis between daily GHADA maps and AERONET observations
has shown similar validation results for the two chosen spatial diameters with ~84% of
the samples falling within the EE, good correlations R ~ 76–77%, and relatively small
RMSE ~ 0.066–0.067, refer to Table 3.

Table 3. Validation results of GHADA with AERONET at two spatial diameters, where N is the total
number of sample points.

D (Km) N R MAE RMSE Bias EE(%)

20 10916 0.762 0.043 0.067 −0.014 83.7
50 12212 0.767 0.043 0.066 −0.014 83.7
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Figure 4 represents the density scatter plots for the validation of AOD at 550 nm from
GHADA with the AERONET stations at the two chosen spatial diameters.

Figure 4. Density scatter plots of validation AOD at 550 nm from GHADA with 57 AERONET stations between 10 a.m. and
2 p.m. at two spatial diameters of 20 km and 50 km. The colored scale bar stands for the frequency of occurrence.

5.4. AOD Relative Percentage Difference

The variations in AOD levels were calculated for each grid cell using the Relative
Percentage Difference (RPD) Equation (14).

RPD =
AOD2020 − AOD2015–2019

AOD2015–2019
∗100 (14)

where AOD2020 is the mean AOD value in the study period of 2020 and AOD2015–2019 is the
mean AOD value for the study period covering 2015–2019. The changes are presented in
Figure 5.

Figure 5. Relative percentage difference of AOD over Europe for the months March–June of the year
2020 and the same months of the previous 5 years.

6. Discussion

In this study, a machine learning-based scheme was used to overcome the limitations in
time series analysis concerning AOD. A new dataset for AOD at 550 nm with full coverage
over Europe and with 1 km spatial resolution (GHADA) was built. We trained an extra
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trees model for each year (2015–2020) using the MODIS MCD19A2 as the target variable
and CAMS modeled AOD with improved spatiotemporal information as the independent
variables. Results showed that the trained models had high accuracies ranging between
92.5–95% when estimating the missing MAIACAOD retrievals. We compared the AOD550
from GHADA and surface observations at 57 AERONET sites over Europe, with two spatial
diameters around these AERONET stations within the period of January 2018–June 2020.
The overall comparison with ground-based measurements showed a good correlation,
with a bias as low as 0.014 and R ~ 0.76. Then we used GHADA to study the influence of
COVID-19 pandemic lockdown on AOD levels over Europe in the months March–June by
comparing it to AOD levels in the same months for the past five years (2015–2019). The
most important advantage of our study when compared to similar work is that we used
daily full-coverage AOD maps with high spatial resolution when calculating the average
AOD values before and after the lockdown. Such complete coverage reduces bias and
uncertainty in such time-series analyses. As shown above, in Figure 5, we have found that
AOD levels decreased by 10–30% over most countries of the study area in 2020, mainly the
countries located at the center of the analyzed area, while AOD levels increased over the
countries that are located on the boundaries of the study area. In the west, AOD increased
over Spain and Portugal; in the east, AOD increased over Romania, Bulgaria, Moldova,
and Kosovo; in the north, the level slightly increased over Iceland. The decrease in AOD
levels was the greatest in the Netherlands, with an average decrease of 20%, while Spain
had the highest average increase in AOD levels by 10%. It must be noted that the five
AERONET stations in Spain included in this study did not reflect the average increase in
AOD over the whole country due to their limited spatial coverage.

As an attempt to justify the findings in areas of increased AOD, we investigated the
relationship between the RPD in AOD for the months March–June of the year 2020 and the
previous five years and the RPD for four meteorological variables (relative humidity, wind
speed, surface temperature, and total precipitation) calculated for the times of MODIS
satellites overpassing (10 a.m. to 2 p.m.). We found a close trend between relative humidity
and AOD. Spain, Portugal, northern Norway, eastern Belarus, and southern Bulgaria had
higher RPD in both AOD and relative humidity. Spain and Portugal had the highest
increase of 10–23% in relative humidity. In agreement, areas of decreased humidity had
lower RPD of AOD; however, such correlation is to a lower extent than the effect of
increased humidity. An exception to this finding is Romania, where RPD in humidity was
decreased however AOD was increased. Regarding wind speed, RPD decreased by ~18%
in Spain and Portugal, where AOD had a significant increase. Also, the northern part of
Italy and the western part of Austria had a clear inverse trend between AOD and wind
speed. The average relative humidity over Spain was 65% during the lockdown period
of the year 2020. High relative humidity combined with a low average wind speed of
less than ~3 m/s play an important role in increasing AOD. Our findings are consistent
with [44], where they associated higher humidity and lower wind speed with higher AOD.
We found no direct relationship between RPD of neither surface temperature nor total
precipitation and RPD of AOD, all of which strengthens the argument that lowering AOD
is a consequence of the lockdown. Although we proved that AOD levels increased over
Spain, other pollutants such as NO2 were decreased, which is attributed to the difference
in the source of these pollutants as discussed elsewhere [44]. Figure 6 shows the RPD of
relative humidity and RPD of wind speed between the lockdown months of the year 2020
and the same period of the previous five years.
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(a) (b) 

Figure 6. Relative percentage difference of (a) relative humidity and (b) wind speed over Europe between 10 a.m. and
2 p.m. for the months March–June of the year 2020 and the same months of the previous 5 years.

Nevertheless, it must be noted that the average AOD levels over Europe are rela-
tively low (AOD < 0.3) compared to other more polluted regions, where more prominent
differences in AOD levels can be observed, for example, as published in [8] where AOD
levels over India were investigated. In addition, the extent of restrictions imposed and the
adherence to them may contribute to the significance of the change in AOD levels.

7. Conclusions

The advancement of machine learning algorithms provides solutions for AOD satellite-
based data drawbacks such as low spatial resolution and gaps caused by persistent clouds,
cloud contamination, and high surface reflectance and opens new horizons for studies that
can influence decision making. A machine learning-based scheme was used to enhance
time series analysis of AOD over the study period. Space-time extremely randomized
trees models were built to fill the gaps in the MCD19A2 product of the moderate imaging
spectroradiometer (MODIS). The output was a geo-harmonized atmospheric dataset for
aerosol optical depth (GHADA) with complete coverage of 1 km spatial resolution over
Europe. To the best of our knowledge, GHADA is the first dataset with this coverage and
resolution for Europe, and we are the first to analyze how COVID-19 affected AOD levels
over Europe with gaps-free AOD maps at high spatial resolution.

We compared AOD levels during the chosen lockdown period to the mean AOD
values during the same period in the previous five years. We found a general decrease
trend in the countries located at the center of the study area, with the Netherlands scoring
the highest average decrease. In contrast, AOD levels increased in the eastern and western
European countries as it is distinctly visible in Kosovo and Spain, respectively. We found a
correlation between high humidity and low wind speed with AOD increase, which justifies
such an increase in countries like Spain and Portugal. We excluded surface temperature
and total precipitation as contributing factors to the detected changes in AOD levels, which
in return makes COVID-19 lockdown the major cause for the decrease in AOD levels.

Once GHADA is made publicly accessible, it can be used to investigate air quality
over Europe with 1 km spatial resolution and improve time series analysis, overcoming the
gaps encountered during such studies. The lockdown that happened due to the pandemic
generally lowered AOD levels; however, such lockdown is not the ultimate solution to
control AOD levels. Cleaner sources of energy and road transport are needed to maintain
lower levels of AOD and good air quality. Based on our obtained results, we recommend
utilizing machine learning to solve time series analysis limitations and to conduct various
applications concerning air quality.
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Abstract: The nationwide lockdown due to the COVID-19 pandemic in 2020 reduced industrial
and human activities in China. In this study, we investigate atmospheric carbon monoxide (CO)
concentration changes during the lockdown from observations at the surface and from two satellites
(TROPOspheric Monitoring Instrument (TROPOMI) and Infrared Atmospheric Sounding Interferom-
eter (IASI)). It is found that the average CO surface concentration in 2020 was close to that in 2019
before the lockdown, and became 18.7% lower as compared to 2019 during the lockdown. The spatial
variation of the change in the CO surface concentration is high, with an 8–27% reduction observed
for Beijing, Shanghai, Chengdu, Zhengzhou, and Guangzhou, and almost no change in Wuhan. The
TROPOMI and IASI satellite observations show that the CO columns decreased by 2–13% during the
lockdown in most regions in China. However in South China, there was an 8.8% increase in the CO
columns observed by TROPOMI and a 36.7% increase observed by IASI, which is contrary to the
23% decrease in the surface CO concentration. The enhancement of the CO column in South China
is strongly affected by the fire emissions transported from Southeast Asia. This study provides an
insight into the impact of COVID-19 on CO concentrations both at the surface and in the columns in
China, and it can be extended to evaluate other areas using the same approach.

Keywords: carbon monoxide; COVID-19; China; surface concentration; TROPOMI; IASI

1. Introduction

The COVID-19 worldwide pandemic has caused millions of deaths, reported by the
World Health Organization (WHO) coronavirus disease dashboard. The first COVID-
19 patient was detected in Wuhan, Hubei Province, China, in December 2019, and then
the disease quickly spread to the whole country before the Chinese New Year 2020 [1].
To prevent the further spread of the outbreak, the Chinese government carried out a
nationwide lockdown starting on 23 January 2020 in Wuhan and extending rapidly (in
6 days) to all other provinces [2]. The lockdown outside of Hubei province was eased at
the beginning of March, while it continued to 25 March for Hubei province and to 8 April
for Wuhan [3].

The strict measures related to COVID-19 had a large impact on economic activities,
including energy production, industrial activities, and transportation [4,5]. As a result, the
emissions of many atmospheric components were significantly reduced [6–9]. There was a
3.7% decrease in Chinese carbon dioxide (CO2) emissions in the first half of 2020 related to
the COVID-19 pandemic [10]. The reduction mainly occurred in January and February, and
the CO2 emissions in March returned to the emission level of 2019 [11] as the lockdowns
were gradually relaxed. Bauwens et al. reported an average 40% decrease in nitrogen
dioxide (NO2) column concentration from satellite measurements over Chinese cities due
to measures against the coronavirus outbreak [12]. Based on NO2 surface observations,
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Feng et al. pointed out that nitrogen oxide (NOX) emissions were reduced by 36% in China
due to the COVID-19 lockdown measures [13].

CO is a pollutant that also plays an important role in atmospheric chemistry, e.g.,
the formation of tropospheric ozone. CO is predominantly removed by OH [14], and the
lifetime of CO is relatively long (weeks to months) as compared to other air pollutants [15].
The main atmospheric CO sources are anthropogenic emissions and biomass burning [16],
primarily when carbon fuels are not burned completely. According to the Emissions
Database for Global Atmospheric Research (EDGAR) v5.0 [17], the anthropogenic CO
emissions in China are dominated by residential cooking and heating, and combustion for
manufacturing, the power industry, and road transportation.

Previous studies have been carried out to understand the reduction in CO surface
concentration due to the COVID-19 lockdown in China on city and regional scales. There
was an average 22.7% decrease in the CO surface concentration in Wuhan during the
lockdown as compared to the period before lockdown [18]. Shi and Brasseur found that the
CO surface concentration during the lockdown decreased from 1.2–1.5 to 0.7–1.0 mg/m3

before the lockdown in northern China [19]. However, there is a large seasonal variation in
CO surface concentrations in eastern Asia, with a maximum in winter and a minimum in
summer [20], which has not been taken into account in the these studies. The atmospheric
compositions can also be observed by the satellite remote sensing technique using their
absorption or emission spectra, which has been applied to understand the CO column
changes due to the COVID-19 lockdown in China [21,22]. It is important to compare the
CO concentration changes observed by the surface and satellite measurements. However,
to our knowledge, few studies have been performed to investigate this. Here, we aim at
looking into the changes in CO concentration due to the COVID-19 lockdown in China
using both surface and satellite observations, and investigating whether CO reduction can
be observed by both surface and satellite observations. The data and method are presented
in Section 2. To reduce the impact from the seasonal variation of CO, the observations in
2020 are compared to similar observations in 2019. In Section 3, the changes in CO surface
concentrations in China and the variations at six megacities are discussed. In addition, the
column-averaged dry-air mole fraction of CO (XCO) observed from the TROPOspheric
Monitoring Instrument (TROPOMI) onboard the Sentinel 5 Precursor (S5P) satellite and
the CO column observed from the Infrared Atmospheric Sounding Interferometer (IASI)
onboard the Meteorological Operational (Metop)-B satellite are analyzed and compared to
the surface measurements. The discussions about the results as well as the limitations of
this study are carried out in Section 4 and the conclusions are drawn in Section 5.

2. Materials and Methods

2.1. Data

Hourly CO surface observations are carried out at air pollution monitoring sites by the
Ministry of Ecology and Environment of China (http://www.mee.gov.cn/, accessed on 10
March 2021). The CO concentration is reported in units of mg/m3. In this study, we used
the sites where observations were available in both 2019 and 2020: we found 1375 sites
in China (Figure 1), including 12 sites at Beijing, 10 sites at Shanghai, 11 sites at Wuhan,
10 sites at Chengdu, 9 sites at Zhengzhou, and 12 sites at Guangzhou. Note that few sites
were in western China, and most sites were located in highly polluted regions with large
CO anthropogenic emissions.

The offline level 2 CO product from the TROPOMI was used in this study, which
was downloaded from https://scihub.copernicus.eu/ accessed on 10 March 2021. The
XCO product was retrieved from the 2.3 μm spectral range of the shortwave infrared
solar radiance measurements under clear-sky conditions; it is sensitive to the tropospheric
boundary layer [23]. The spatial resolution of the TROPOMI XCO observations was
7.2 × 7.2 km2 for the footprint at nadir before 6 August 2019 and changed to 7.2 × 5.6 km2

afterwards. The overpass time was about 13:00. The TROPOMI CO level 2 measure-
ments were filtered out with the qa_value less than 0.5, which is recommended by the

90



Remote Sens. 2021, 13, 1129

user guide (https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Carbon-
Monoxide-Level-2-Product-Readme-File, accessed on 10 March 2021). After that, the daily
TROPOMI level 2 observations were binned to 0.05◦ × 0.05◦ (latitude by longitude) grids
as the level 3 data, and we studied the CO changes based on these level 3 daily products.

Figure 1. The location of the air pollution sites (light gray dots), six megacities (white hexagons) and
regions (red boxes), together with the CO anthropogenic emission annual mean in 2015 from the
Emissions Database for Global Atmospheric Research (EDGAR) v5.0 inventory.

The IASI level 2 CO column dataset was processed using the Fast Optimal Re-
trievals on Layers for IASI (FORLI) software [24] by the Université Libre de Bruxelles,
Laboratoire Atmosphères, Milieux, Observations Spatiales (ULB-LATMOS) before 14
May 2019 (v20140922) and by the European Organisation for the Exploitation of Me-
teorological Satellites (EUMETSAT) afterward (v6.5.0), which was downloaded from
https://iasi.aeris-data.fr/cos_iasi_b_arch/ accessed on 10 March 2021. The field of view at
nadir of the IASI instrument is about 12 km. The CO is retrieved from the thermal infrared
spectra in the spectral range 4.58 to 4.69 μm, so that IASI CO product is more sensitive to
the mid- and upper-troposphere, and less sensitive to the lower-troposphere [25]. IASI
provides both daytime and nighttime CO measurements (9:30 and 21:30). As the diurnal
variation in CO at the mid- and upper-troposphere is much weaker than for the surface,
we used both daytime and nighttime IASI CO observations to generate the 0.5◦ × 0.5◦
daily product.

As fire emissions are an important source of CO, we used the Visible Infrared Imaging
Radiometer Suite (VIIRS) 375 m data [26] onboard the Suomi National Polar-Orbiting
Partnership (Suomi NPP) satellite to understand the fire impacts in 2019 and 2020. The
VIIRS sensor has a swath width of 3060 km, which is able to provide complete coverage
of the Earth everyday. There are 22 spectral channels, between 0.412 μm and 12.01 μm:
16 channels are moderate resolution bands (M-bands), which have a spatial resolution
of 750 m at the nadir; 5 channels are imaging resolution bands (I-bands), which have
a spatial resolution of 375 m at the nadir; 1 channel is a one day/night panchromatic
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band with a spatial resolution of 750 m [27]. The VIIRS fire data were download from
https://firms.modaps.eosdis.nasa.gov/ accessed on 10 March 2021.

Apart from the measurements, four emission datasets were used to understand the CO
anthropogenic and wildfire fluxes in China. The EDGAR v5.0 and the Regional Emission
Inventory in Asia (REAS) v3.2 [28] were used to estimate the CO anthropogenic emissions
in China. Note that both the EDGAR v5.0 and the REAS v3.2 only hold data up to 2015
for CO, and there is no information about the CO anthropogenic emissions in 2019 and
2020. The Global Fire Assimilation System (GFAS) [29] and the Fire Inventory from NCAR
(FINN) [30] were used to understand the CO wildfire emissions. The GFAS and FINN data
are up to date and available for both 2019 and 2020, as they use satellite measurements as
the inputs. For both the anthropogenic and wildfire emissions, two datasets were compared
to each other to assess the uncertainty.

2.2. Method

The surface and satellite CO data in 2020 were compared to similar observations
in 2019 during four periods: the month before the Chinese New Year (BCNY; before
lockdown), the month after the Chinese New Year (ACNY; lockdown), the month be-
tween 11 March and 10 April (3/11–4/10), and the month between 11 April and 10 May
(4/11–5/10). To reduce the impact of the Spring Festival, the national holidays in 2019
(4 February to 10 February) and 2020 (24 January to 2 February) were not considered in
our study. We considered that in 2019, BCNY was between 1 January and 3 February,
and ACNY was between 11 February and 10 March, and that in 2020, BCNY was be-
tween 1 January and 23 January, and ACNY was between 3 February and 10 March. From
3/11–4/10, the lockdown was relaxed at most places in China except Hubei Province, and
from 4/10–5/10, the lockdown was officially ended throughout the whole of China. The
four periods in 2019 and 2020 are summarized in Figure 2.

Figure 2. The four periods (before the Chinese New Year (BCNY), after the Chinese New Year
(ACNY), 3/11–4/10, and 4/11–5/10) in 2019 and 2020. Note that the Chinese New Year (CNY)
national holiday was not considered in this study.

According to the European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA5 reanalysis data, the winds at 850 hPa above China during these four periods, espe-
cially for the first three periods, were similar in 2019 and 2020 (Figure S1). The layer at 850
hPa (about 1.5 km a.s.l.) is between the lower troposphere and the free atmosphere, as it is
close to the Planetary Boundary Layer (PBL) height. On a small scale, such as in a city, the
winds in 2019 and 2020 could be very different, but the winds in 2019 and 2020 were gener-
ally similar in both wind speed and wind direction on a large scale, such as for the whole of
China. Therefore, it is indicated that the changes in CO concentration during the COVID-19
lockdown on the national scale had limited influence from meteorological conditions.

The relative difference in CO concentration at the surface observed by the air pollution
sites or in the column observed by the satellite measurements during these periods between
2020 and 2019 was calculated as (ΔCO = (2020− 2019)/2019× 100%). Then, the mean and
standard deviation (std) of the differences were derived from all measurement locations
(sites or grids) within a city, a region, or the whole of China:
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ΔCOm =
∑(ΔCOi)

N
, (1)

ΔCOstd =

√
∑(ΔCOi − ΔCOm)2

N
, (2)

where N is the total number of locations and i is the index of the location. To reduce the
impact from outliers, we also used the median when comparing CO changes at the surface
with those in the column.

3. Results and Discussions

3.1. CO Surface Concentration

The CO surface concentrations during the four periods in 2019, together with the
relative differences between 2020 and 2019, are shown in Figure 2. The mean CO concen-
trations were 1.21, 1.00, 0.74, 0.71 mg/m3 during BCNY, ACNY, 3/11–4/10, and 4/11–5/10
in 2019, respectively. There was a large month-to-month variation, and the average CO
concentration during ACNY was about 17% less than that during BCNY in 2019.

The mean and std of the relative difference between 2020 and 2019 at all sites are
1.1 ± 24.3%, −18.7 ± 22.2%, −6.2 ± 20.2%, and −4.8 ± 23.6% during BCNY, ACNY,
3/11–4/10, and 4/11–5/10, respectively (Table 1). The CO concentrations during BCNY in
2019 and 2020 were at the same level. The mean difference during ACNY indicates that
there was an 18.7% reduction in CO surface concentration due to the COVID-19 lockdown.
The reduction in CO surface concentration is also observed for 3/11–4/10 and 4/11–5/10,
but the amplitudes become much weaker as compared to that during ACNY. The large std
(20–24%) suggests that the spatial variability of CO surface concentration changes across
China is high, as CO is affected by local as well as transported emissions from hundreds
and thousands of kilometers away due to its lifetime of weeks to months.

Table 1. The mean and standard deviation (std) of the relative change in CO surface concentrations.

BCNY ACNY 3/11–4/10 4/11–5/10

China (1375 sites) 1.1 ± 24.3% −18.7 ± 22.2% −6.2 ± 20.2% −4.8 ± 23.6%
Beijing (12 sites) −12.5 ± 5.6% −8.0 ± 11.3% −15.6 ± 14.4% 13.1 ± 5.2%
Shanghai (10 sites) 8.9 ± 2.6% −20.3 ± 3.1% −25.4 ± 2.1% 7.1 ± 3.1%
Wuhan (11 sites) −20.0 ± 2.4% 0.4 ± 2.7% −6.5 ± 4.8% −23.1 ± 2.7%
Chengdu (10 sites) 1.1 ± 2.8% −27.0 ± 3.4% −16.2 ± 5.1% −15.8 ± 6.1%
Zhengzhou (9 sites) −3.1 ± 5.3% −25.0 ± 6.0% −12.4 ± 4.1% −17.2 ± 2.1%
Guangzhou (12 sites) −13.7 ± 1.9% −25.9 ± 2.3% −6.9 ± 4.0% −10.5 ± 3.7%

As the change in CO surface concentration varied with location (Figure 3), we in-
vestigated in detail six megacities (Beijing, Shanghai, Wuhan, Chengdu, Zhengzhou, and
Guangzhou). The hourly means and stds of CO surface concentrations in these cities
during the four periods in 2019 and 2020, together with their relative changes between 2020
and 2019, are shown in Figure 4. The diurnal variations of CO surface concentrations in
these cities are similar, with two peaks around 10:00 and 24:00 local hours. During BCNY,
the phase and amplitude of the diurnal variations in 2020 were close to those in 2019.
During ACNY, except in Wuhan, the peak-to-peak amplitudes of the diurnal variations
became smaller in 2020 as compared to 2019 despite the large stds. Large reductions of the
CO surface concentrations of 20–27% are observed during ACNY at Shanghai, Chengdu,
Zhengzhou, and Guangzhou. Reductions by 6–25% in the CO surface concentration are
also observed from 3/11–4/10 in these cities. A reduction during BCNY is also observed
in Guangzhou, but it is less significant as compared to that during ACNY. However in
Beijing, the reduction of the CO surface concentration during ACNY was only 8%, which is
less than the observed 12% reduction during BCNY and 16% reduction from 3/11–4/10.
The relatively low reduction in CO during ACNY in Beijing was affected by the mete-
orological background. Previous studies found that the wind speed was decreased by
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20% and the PBL heights were generally lower during the lockdown period as compared
to the climatology for Beijing, leading to higher surface concentrations of atmospheric
pollutants [31,32].

Figure 3. The mean CO surface concentrations in units of mg/m3 observed at all sites in China during
BCNY, ACNY, 3/11–4/10, and 4/11–5/10 in 2019 (first column) and 2020 (second column), together
with their percentage differences between 2020 and 2019 ((2020–2019)/2019×100%) (third column).
The six megacities are marked as the purple (a,b) and yellow (c) circles.

The city of Wuhan shows a behavior that is different from the five other cities: the
CO surface concentration in 2020 was even slightly larger than that in 2019 during ACNY
but was about 20% less than that in 2019 during BCNY. As the city was hit heavily by the
virus, the most strict measures were carried out in Wuhan. More than a 50% reduction
in atmospheric NO2 concentrations was observed from both satellite measurements of
column abundances [12] and surface in-situ observations [18] during the lockdown period.
Apart from anthropogenic emissions, biomass burning is also an important CO source [33].
The VIIRS satellite observed many fires (burning or combustion at places giving out bright
light, heat, and smoke) in Wuhan and in the northern area of Wuhan during BCNY, and the
fires were almost extinguished during ACNY in 2019. In contrast to 2019, there was almost
no fire observed during BCNY, but more fires existed during ACNY in 2020 (Figure S2).
First, we looked at the CO wildfire emissions from the GFAS during BCNY and ACNY in
2019 and 2020. Consistent with VIIRS fire measurements, the CO wildfire emissions during
BCNY in 2019 were higher than those in 2020, and the CO wildfire emissions during ACNY
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in 2019 were lower than those in 2020. However, the CO wildfire emissions were much
lower as compared to the CO anthropogenic emissions from the EDGAR v5.0 and the
REAS v3.2 around Wuhan (Figure S3). There were two things to be addressed there: (1) to
assess the uncertainty of the CO wildfire emission, we compared the GFAS with the FINN.
It was found that the difference between GFAS and FINN CO wildfire emissions around
Wuhan was within 20%; (2) the anthropogenic CO emission from EDGAR v5.0 or REAS
v3.2 was only available for 2015, and it was decreasing during the last decade in China
with an annual change of about 3–4% [34]. Even though we took the 4%/year decrease
in the CO anthropogenic emissions into account, the contributions from the CO wildfire
emissions were still less than 1.0% of the CO anthropogenic emissions during ACNY and
BCNY in 2019 and 2020 within the 1.0◦ × 1.0◦ box around Wuhan. In summary, the change
in CO surface concentration in Wuhan cannot be explained by the local wildfire emissions
(biomass burning). Second, we looked at the concentrations of other air pollutants (NO2,
SO2, PM2.5, PM10) in 2019 and 2020 in Wuhan (Figure S4). The averaged NO2, SO2, PM2.5,
PM10 concentrations during BCNY in 2020 were 17%, 9%, 34%, and 31% less than those in
2019. The decreases of those four air pollutants are consistent with the 20% decrease in CO
during BCNY in 2020 as compared to 2019. The averaged NO2, PM2.5, PM10 concentrations
in Wuhan during ACNY in 2020 were 51%, 43% and 42% less than those in 2019. However,
SO2 and CO increased slightly during ACNY in 2020 as compared to 2019. The similar
behavior of CO and SO2 suggests that these two gases come from common sources, e.g.,
the burning of fossil fuels by power plants and other industrial facilities. Finally, we
looked at the VIIRS and MODIS fire observations inside Wuhan, where more fires were
observed above a large coke factory (Wuhan Pingmei Wugang Joint Coking Company)
during ACNY in 2020 as compared to 2019 (Figure S5). According to the sources of SO2,
CO, and NOX in Asia [35], it is inferred that the CO and SO2 emissions from industry (such
as the coke factory) during ACNY in 2020 were larger than the reduced emissions from
road transportation.

3.2. CO Column Observed from Satellites

The TROPOMI XCO and IASI CO column measurements in 2019, together with the
relative differences between 2020 and 2019 during the four periods, are shown in Figure 5.
In general, the TROPOMI and IASI measurements have a similar spatial distribution
in China. The means and stds of XCO observed by TROPOMI in 2019 in China are
110.1 ± 24.1, 109.7 ± 24.9, 113.3 ± 26.9, and 112.9 ± 22.8 ppb during the BCNY, ACNY,
3/11–4/10, and 4/11–5/10 periods, respectively. There is almost no change in the mean
XCO in China during these four periods, which is different from the large month-to-month
variation of CO surface concentration. The means and stds of CO columns observed
by IASI in 2019 in China are 1.83 ± 0.47 × 1018, 1.98 ± 0.50 × 1018, 2.18 ± 0.54 × 1018

and 2.25 ± 0.53 × 1018 molecules/cm2 during BCNY, ACNY, 3/11–4/10, and 4/11–5/10
periods, respectively. The month-to-month change of the CO column is opposite to that
observed at the surface.

As satellite measurements are contaminated by cloud, the variability in them is
relatively high. To reduce random uncertainty, the satellite measurements (both TROPOMI
and IASI) were averaged on regional scales, and we focused on the CO changes in four
regions with high values (Figure 5a2,c2; Figure 1): North, East, and Central China (A);
South China (B), Sichuan basin (C), and Urumqi region (D). The quantitative estimates
of the CO changes are shown in Figure 6 and Table 2. The medians of the XCO relative
changes during ACNY in 2020 relative to 2019 observed by the TROPOMI satellite are
−10.5%, 8.8%, −1.9%, and −4.6% in regions A, B, C, and D, respectively. The medians of
the CO column relative changes during ACNY in 2020 relative to 2019 observed by the
IASI satellite are −13.3%, 36.7%, −1.8%, and −3.6% in regions A, B, C, and D, respectively.
The largest reduction in CO concentration was found by both satellites in Region A during
ACNY in 2020, with a minimum in the region between Zhengzhou and Beijing. The
reductions in the CO column during ACNY were also significant in Regions C and D,
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especially when we compare the CO changes during ACNY to the changes during BCNY,
3/11–4/10, and 4/11–5/10. However, there was an 8.8% increase in XCO observed by
TROPOMI and a 36.7% increase in CO columns observed by IASI for Region B, which was
related to the fires in Southeast Asia, and will be discussed later. To compare the satellite
with the surface observations, the relative changes in CO surface concentrations for the
same regions are also shown in Figure 6. The medians of the relative changes in CO surface
concentrations during ACNY in 2020 as compared to that in 2019 are −25.1%, −23.1%,
−15.8%, and −18.2%, for Regions A, B, C, and D, respectively. At these regions, the CO
surface concentrations decreased dramatically during the lockdown and then increased
afterward, with Region A being the most prominent.

Figure 4. Upper: the hourly means (solid line) and standard deviations (shadow) of CO surface
concentrations observed in Beijing, Shanghai, Wuhan, Chengdu, Zhengzhou, and Guangzhou during
BCNY (first column), ACNY (second column), 3/11–4/10 (third column), and 4/11–5/10 (last

column) in 2019 and 2020. Lower: the relative changes in CO surface concentrations between 2020
and 2019 in these six megacities during BCNY, ACNY, 3/11–4/10, and 4/11–5/10.
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Figure 5. The TROPOspheric Monitoring Instrument (TROPOMI) satellite XCO observations in units
of ppb (a1–a4) and the Infrared Atmospheric Sounding Interferometer (IASI) CO column observations
in unit of molec./cm2 (c1–c4) over China during BCNY, ACNY, 3/11–4/10, and 4/11–5/10 in 2019,
together with the relative differences between 2020 and 2019 ((2020–2019)/2019 × 100%) (TROPOMI:
b1–b4, IASI: d1–d4). The six megacities are marked as the purple and black circles. The four regions
are marked in (a2,c2).

The surface and satellite observations both showed reductions during ACNY in
Regions A, C, and D, but the reduction in CO columns was less significant as compared
to the reduction in the CO surface concentrations. The satellites observe the column CO
abundance. The CO partial columns in the PBL only account for 20–40% of the total
columns in these regions according to the Copernicus Atmosphere Monitoring Service
(CAMS) operational model [36]. Assuming that there is no change in CO partial columns
above the PBL, the magnitude of the CO total column reduction is expected to be 2.5–5 times
less than that at the surface. In this case, the relative changes in CO during ACNY in 2020
observed by the satellite and surface observations are generally in good agreement for
Regions A, C, and D.

A large disagreement between the satellite and surface observations was found in
Region B, where the CO surface concentrations were significantly reduced (>20%) dur-
ing the lockdown in 2020, while the TROPOMI and IASI observations show that the CO
during ACNY and 3/11–4/10 in 2020 was much larger than that in 2019. As the weather
conditions between January and March (cool and dry) are favorable for burning, there
are vast numbers of fires that emerge across the countryside in Southeast Asia (Myanmar,
Laos, Thailand, and Cambodia). The VIIRS satellite detected more fires in Southeast Asia
during ACNY and 3/11–4/10 in 2020 as compared to 2019 (Figure 7). The CO columns
in Southeast Asia observed by TROPOMI and IASI during ACNY and 3/11–4/10 in 2020
were also increased as compared to 2019 (Figure 5). The CO wildfire emissions from GFAS
in March 2019 and March 2020 in Southeast Asia (blue box in Figure 7) were 1.75 × 10−10

and 9.88 × 10−10 kg/m2/s, respectively. Both the absolute values and the variation of
CO wildfire emissions in Southeast Asia are comparable to the CO anthropogenic emis-
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sion annual means in 2015 in Region B of 1.05 × 10−9 kg/m2/s from REAS v3.2 and of
7.13 × 10−10 kg/m2/s from EDGAR v5.0. As CO has a lifetime of about weeks to months,
CO observed in Region B could be transported from the surrounding areas. The 3-day back-
ward trajectories of 2m-height air at local noon for each day during ACNY and 3/11–4/10
in 2020 were simulated by the Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model driven by the National Centers for Environmental/Prediction Global
Data Assimilation System (NCEP/GDAS) meteorological data with a 1.0◦ × 1.0◦ (latitude
by longitude) spatial resolution. Note that we only plotted the backward trajectories at
the center of Region B, as the wind is generally harmonized in this region. The backward
trajectories from 2 m height at the center of Region B suggest that the CO surface concentra-
tion in this region has little influence from the fire in Southeast Asia. The 3-day backward
trajectories from a 2 km height at the center of Region B show that the fire emission in
Southeast Asia can be transported to South China, which is consistent with the winds at
750 hPa from the ERA5 reanalysis data. As a result, the CO column in Region B is strongly
affected by the fire in Southeast Asia, and more fires in 2020 led to a CO enhancement
in the free troposphere in South China during the lockdown observed by the satellite.
The CO increase during ACNY and 3/11–4/10 in 2020 observed by IASI was even larger
than that observed by TROPOMI, as the IASI retrieval is more sensitive to the mid- and
upper-troposphere.

Table 2. The median of the relative changes in CO surface concentration observed by surface
measurements, and in CO columns observed by TROPOMI and IASI satellite measurements during
four periods in each region.

BCNY ACNY 3/11–4/10 4/11–5/10

Surface Region A −5.9% −25.1% −9.4% −7.0%
Region B −16.7% −23.1% −7.3% −16.4%
Region C −2.4% −15.8% −7.0% −2.6%
Region D −1.7% −18.2% −19.8% −14.0%

TROPOMI Region A −1.3% −10.5% 0.6% 5.5%
Region B 0.2% 8.8% 11.7% −6.4%
Region C 7.0% −1.9% 3.0% 3.7%
Region D 0.1% −4.6% 1.8% 3.9%

IASI Region A 3.5% −13.3% 2.8% 4.1%
Region B −2.9% 36.7% 20.6% −3.2%
Region C 9.4% −1.8% 16.6% 3.8%
Region D −0.3% −3.6% 0.8% 0.6%
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Figure 6. Box plots of the CO changes from the surface (a), TROPOMI (b), and IASI observations (c)
during 4 periods in 2020 against those in 2019. Each box plot shows the values of relative difference
for the maximum (top of solid line), 75th percentile (top of box), median (line through middle of box),
25th percentile (bottom of box) and minimum (bottom of solid line) of the distribution.
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Figure 7. The number of fires observed by the Visible Infrared Imaging Radiometer Suite (VIIRS)
satellite in 0.5◦ × 0.5◦ (latitude by longitude) grids over Southeast Asia (blue box) together with the
wind at the 750 hPa from the ERA5 reanalysis data during ACNY and 3/11–4/10 in 2019 (left) and
the difference in the number of fires between 2020 and 2019 (right). The green and black lines in
the right panels are 3-day backward trajectories at 12:00 (local time) from 2 m and 2 km heights at
the center of Region B (red box) for each day during ACNY and 3/11–4/10 2020 simulated by the
Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model.

4. Discussions

In this study, we investigated CO changes based on both CO surface measurements
and satellite column measurements. CO reduction was observed by both surface and
satellite observations during the COVID-19 lockdown at most places in China. We have
highlighted the importance of seasonal variations of CO surface concentration, which
must be taken into account when looking at the CO changes during the COVID-19 lock-
down, but have not been done in several previous studies [18,19]. In addition, we found
that the specific changes in the industrial emissions at the city scale are important to the
changes in CO surface concentration at Wuhan, which are suggested by the simultaneous
SO2 measurements and VIIRS/MODIS fire measurements. However, the limitation of
this study is that the impact of the industrial emission on the CO change was only dis-
cussed qualitatively, because up-to-date CO anthropogenic emissions for the year 2020
are not currently available. A further study could focus on the application of the inverse
modeling approach with the surface CO measurements as the inputs to optimize each
anthropogenic component.

Different from the CO surface concentration, the changes in CO columns during the
COVID-19 lockdown in China observed by TROPOMI satellite measurements using the
difference between 2019 and 2020 in this study are similar to the results using only 2020
measurements before and after the lockdown [21], because the XCO means from TROPOMI
were almost the same during these four periods. However, the month-to-month variation

100



Remote Sens. 2021, 13, 1129

in CO columns observed by IASI cannot be ignored. In order to reduce the uncertainty, the
satellite measurements were only discussed with the median values during each period
on the regional scale. The changes in the CO columns observed by satellites are generally
consistent with those at the surface in most regions in China under the assumption that the
CO concentration above the PBL is not greatly changed. The assumption works well for
NOx [12], as it has a short lifetime of several hours in the atmosphere. However, due to the
relatively long lifetime of CO, the assumption does not work for CO in Region B, where the
CO concentration above the PBL was strongly affected by the fire emissions transported
from Southeast Asia. We addressed the fact that the CO changes in the free atmosphere are
important when comparing the surface and satellite measurements.

5. Conclusions

Surface observations have shown that CO concentrations were at the same level during
BCNY in 2019 and 2020, and there was a mean reduction of 18.7% during ACNY in 2020 as
compared to 2019, from 1375 sites in China due to the COVID-19 lockdown. Reductions
in CO surface concentration were also observed from 3/11–4/10 and 4/11–5/10 in 2020,
but they were smaller than the reduction during ACNY. As the spatial variability of CO
surface concentration changes across China is high, we investigated the CO changes at six
megacities specifically. Large reductions in CO concentration between 20% and 27% during
ACNY in 2020 were found in Shanghai, Chengdu, Zhengzhou, and Guangzhou. The CO
surface reduction during ACNY in Beijing was only 8%, which may be explained by the
exceptional meteorological conditions in that period in 2020. The most strict measures
related to COVID-19 were carried out at Wuhan, but there was no decrease in the CO
surface concentration observed during the lockdown in 2020 as compared to 2019. By
looking at other air pollutants in Wuhan, we found that NO2, PM2.5 and PM10 were
significantly reduced (>40%) during ACNY in 2020 as compared to 2019, and SO2 and
CO were both slightly increased. The similar behavior of CO and SO2 suggests that they
came from common sources, e.g., the burning of fossil fuels by industrial facilities. The
TROPOMI and IASI CO column observations captured the reduction in CO columns (by 2
to 13%) during ACNY in Regions A, C, and D, but the reductions in CO columns were less
significant than the reductions in the surface CO concentrations. However, the TROPOMI
and IASI observations show that there were 8.8% and 36.7% CO column enhancements
during ACNY in 2020 in Region B, which is contrary to the significant reduction (>20%)
observed in CO surface concentrations.
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292/13//1129/s1, Figure S1: the wind above China during four periods in 2019 and 2020. Figure
S2: VIIRS fire map around Wuhan during BCNY and ACNY in 2019 and 2020. Figure S3: GFAS CO
wildfire emissions around Wuhan during BCNY and ACNY in 2019 and 2020, together with the CO
anthropogenic emissions from EDGAR v5.0 and REAS v3.2 around Wuhan in 2015. Figure S4: The
time series of CO, SO2, NOx, PM2.5 and PM10 in Wuhan. Figure S5: VIIRS fire map inside Wuhan
during BCNY and ACNY in 2019 and 2020.
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Abstract: Previous studies have reported that intra-urban variability of NO2 concentrations is even
higher than inter-urban variability. In recent years, an increasing number of studies have developed
satellite-derived land use regression (LUR) models to predict ground-level NO2 concentrations,
though only a few have been conducted at a city scale. In this study, we developed a satellite-derived
LUR model to predict seasonal NO2 concentrations at a city scale by including satellite-retrieved NO2

tropospheric column density, population density, traffic indicators, and NOx emission data. The R2

of model fitting and 10-fold cross validation were 0.70 and 0.61 for the satellite-derived seasonal LUR
model, respectively. The satellite-based LUR model captured seasonal patterns and fine gradients
of NO2 variations at a 100 m × 100 m resolution and demonstrated that NO2 pollution in winter is
1.46 times higher than that in summer. NO2 concentrations declined significantly with increasing
distance from roads and with increasing distance from the city center. In Suzhou, 84% of the total
population lived in areas with NO2 concentrations exceeding the annual-mean standard at 40 μg/m3

in 2014. This study demonstrated that satellite-retrieved data could help increase the accuracy and
temporal resolution of the traditional LUR models at a city scale. This application could support
exposure assessment at a high resolution for future epidemiological studies and policy development
pertaining to air quality control.

Keywords: satellite-based; NO2; land use regression; exposure assessment

1. Introduction

Nitrogen dioxide (NO2) is not only a primary pollutant mainly from fossil fuel emis-
sions but also a secondary pollutant arising in large part from a photochemical conversion
combining NO with O3 [1,2]. It is a common indicator for traffic-related air pollution and
proven to be associated with a myriad of adverse health effects. NO2 has been positively
linked to lung cancer mortality in California by the American Cancer Society Cancer Pre-
vention II Study [3]. In China, short-term exposure to NO2 was significantly associated with
total natural causes mortality and cardiorespiratory disease mortality across 272 cities [4].
Even at or below the current European Air quality limit values, the associations between
NO2 exposure and adverse effects have been found for both short-term and long-term
exposure in Europe [5]. In previous epidemiological studies, exposure to NO2 was mostly
evaluated using ground-based fixed monitoring data, interpolation methods, or land use
regression (LUR) models [6,7].
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The concentrations of NO2 may decline at a distance of several hundred meters from
emission sources [8], and the spatial distributions of NO2 differ significantly between, and
especially within, cities [9,10]. In Canada, variations in NO2 concentrations within a city
further showed a stronger association with cause-specific mortality than that between
cities [11]. Thus, it is an essential issue to evaluate intra-urban NO2 concentrations with
a high spatial resolution for epidemiological studies. The LUR models are one of the
most common assessment methods used to capture spatial variability of NO2 with a
high spatial resolution, and have been applied in NO2-related cohort studies in Europe
and the United States [9,12–15]. Land use regression models also have been developed
for predicting NO2 concentrations in Chinese cities, including Shanghai, Tianjin, and
Wuhan [16–18]. Traditional LUR models highly depend on land use data and have
lower temporal resolution, but these do not satisfy the flexible requirements of exposure
assessment in epidemiological studies.

Satellite data have been proven to be one of the key predictors for estimating ambient
NO2 concentrations with a high temporal resolution [19–21]. Specifically, a study in Western
Europe indicated that the adjusted R2 of LUR models with satellite data was increased by
0.02–0.06 compared to the models without satellite data with the R2 of 0.48–0.56 [22]. Other
studies showed that the satellite-based LUR models could expand the temporal resolution
of traditional LUR models for predicting air pollutants’ concentrations, from annual level
to monthly or seasonal scales [19,23–25]. NO2 column density from the Ozone Monitoring
Instrument (OMI) aboard satellite Aura is the most commonly used dataset for establishing
satellite-based LUR or machine learning models [26–28]. The satellite-based LUR models
not only expanded the temporal resolution of traditional ones [19], but also simultaneously
helped improve model performance [22,29,30]. However, in China, most of these studies
were conducted at regional or national scales [21,31]; whether satellite data can improve
the resolution and model performance of LUR models at a city scale, has not been fully
evaluated. In addition, the row anomaly of OMI led to a large amount of missing data
at the daily level [32], hence OMI NO2 column density data might be inappropriate to be
directly used to assess NO2 exposure levels within a city at a daily scale, and some studies
resampled the data at a seasonal scale [33].

Therefore, in this study, we developed a satellite-derived LUR model, in a Chinese
metropolis, to capture intra-urban NO2 temporal variations at a seasonal level with a high
spatial resolution. This model with a high spatial resolution is expected to capture the
finer gradients of NO2 variations within a city at a higher temporal resolution than that of
the traditional LUR model, which could provide more accurate exposure assessment for
epidemiological studies.

2. Materials and Methods

2.1. Study Area

Suzhou is a city located in southeastern Jiangsu Province of East China (Figure 1). It
includes five urban districts (Gusu, Huqiu, Wuzhong, Xiangcheng, and Wujiang) and four
satellite cities (Changshu, Taicang, Kunshan, and Zhangjiagang). Suzhou is one of five
urban locations in the China Kadoorie Biobank (CKB) cohort that have focused on common
chronic diseases since 2004 [34]. We developed a satellite-derived LUR model in Suzhou
as a case study to establish the methodology for the assessment of exposure to NO2 of
the CKB cohort study to support the next phase of air pollution-related epidemiological
studies. Suzhou covered 8488.42 km2 in 2018 and about 42.5% of the total area was covered
by waterbody. The total registered population in Suzhou reached 7.04 million by the end
of 2018 (http://tjj.suzhou.gov.cn/sztjj/tjnj/2019/zk/indexce.htm). Suzhou is located in a
subtropical monsoon climate zone with four distinct seasons.
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Figure 1. The location of Suzhou in China and the NO2 monitoring sites in Suzhou that were used in this study.

2.2. Data

The database included data on NO2 monitoring, NO2 tropospheric column density
from the OMI instrument, population density, road network, land use parameters, and
NOx emissions.

2.2.1. Monitoring Data

Daily NO2 monitoring data of 20 fixed air quality stations were obtained from the
National Environmental Monitoring Network, and the locations of the stations are shown
in Figure 1. In accordance with the Chinese Ambient Air Quality Standard (GB3095-2012),
at least 20 hourly measurements were included to calculate the daily NO2 concentration;
at least 27 daily values were needed to calculate monthly concentrations (25 daily values
for February); at least 324 daily values were needed to calculate the annual concentration.
Most of the fixed stations were located in areas with a relatively high population density to
represent the averaged exposure levels for public health.

2.2.2. Satellite Data

The OMI instrument is on board the National Aeronautics and Space Administration
(NASA) Aura satellite that was launched in 2004. It measures radiances across 270–500 nm
of the ultraviolet and visible waveband. Global tropospheric vertical column NO2 density
data of OMI level 2 (OMNO2) product, with a spatial resolution of 13 km × 24 km at
nadir [35], are available online at a daily time step and were downloaded from NASA
Goddard Earth Sciences Data and Information Services Center (https://earthdata.nasa.
gov/). Cloud cover and a dynamic row anomaly problem of OMI were responsible for a
significantly high rate of missing values of daily data. The “row anomaly” occurred due
to the technical issues of the OMI, which has produced invalid data in the center-right
part of each swath of observations since 2008 [32]. Within a city, the high missing rate
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might cause low availability of OMI NO2 tropospheric column density data at a daily level.
Therefore, seasonal resampling was done by averaging all daily OMI NO2 tropospheric
column density data falling inside a 40 km × 40 km grid to fill the gap caused by missing
data and smooth the noise [33]. The satellite data were then interpolated to the fixed
monitoring stations using an inverse distance weighted (IDW) method.

2.2.3. Other Predictors
Land Use Parameters

Land use data (agricultural, forest, grassland, waterbody, urban and built up, and un-
used land) from 2014 were interpreted from the Landsat TM5 dataset (https://earthexplorer.
usgs.gov/) with a 30 m spatial resolution (Figure 2). Specifically, agricultural land included
dry land and paddy fields; forest land included dense forests, shrub forests, loose forests,
and other forests; grassland included highly-covered grassland; waterbody included rivers,
lakes, beaches, bottomlands, and reservoirs; urban and built up land included urban and
rural settlements and other built-up land; unused land included bare rock and sand. In
Suzhou, the major land use types were urban and built-up land, agricultural land, and
waterbody; and agricultural land mainly consisted of paddy fields. To optimize the cor-
relation between NO2 measurements and land use predictors, different buffer distances
were applied, from 100 m to 5000 m, at 100-m intervals, around the 20 fixed monitoring
sites [10,17,36]. The areas of each land use type were then calculated within these buffer
zones separately.

 

Figure 2. The spatial distribution of types of land use in this study in Suzhou in 2014.
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Road Network

Lengths of major roads and distances to the nearest major road were calculated as indi-
cators of traffic emissions. Types of roads included expressways, national roads, provincial
roads, urban expressways, county roads, town roads, and other roads. Then, expressways,
national roads, provincial roads, and urban expressways were merged as major roads.
Within the buffers from 100 m to 5000 m (at 100 m intervals) around the 20 fixed monitoring
sites, the lengths of major roads were then calculated [6,17]. Distance from monitoring sites
to the nearest major road, inverse of the distance, and logarithmic transformation of the
inverse distance were also calculated as indicators of traffic emissions [6,10].

Population Density

Population density data were obtained from the Oak Ridge National Laboratory
(ORNL)’s LandScan 2014 global database at 30” × 30” resolution in raster format (http:
//www.ornl.gov/sci/landscan/), which were then interpolated to the NO2 monitoring
stations using the IDW method. The population data, with an ESRI binary raster format, is
approximately at a 1 km × 1 km resolution and each grid represents an average population
number within the grid at an annual level (https://landscan.ornl.gov/documentation).
Figure 3 shows the spatial distribution of the population in Suzhou in 2014, suggesting
that more people tended to live in the center of five urban districts and four satellite cities
in Suzhou.

 
Figure 3. The distribution of population and major roads in Suzhou.
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NOx Emissions

NOx emission inventory data were collected from the Multiresolution Emission Inven-
tory of China (MEIC, http://www.meicmodel.org) at a spatial resolution of 1 km × 1 km.
The industrial NO2 emissions from power plants and non-power plants were computed
separately within buffer zones of 1 km to 10 km, at 1-km intervals, around each monitor-
ing site.

2.3. Model Development and Evaluation

A traditional LUR model was developed, as the first step, to select the most optimized
predictors from all parameters with a linear regression model [6,10,20,36]. Since the OMI
NO2 tropospheric column density was aggregated at a seasonal level to fill the gap caused
by the high missing rate of the satellite data [32], this model was developed at a seasonal
level [37,38]. First, we set every potential variable a prior direction. Second, manual
backward supervised regression was conducted based on NO2 seasonal concentrations to
select the most optimized predictor variables. Predictors were kept in the model if they
satisfied the criteria proposed by previous studies [6,10,17]: (1) the variables improved
the model R2 by at least 1%; (2) the effect directions of the variables were consistent with
the prior directions; (3) the variables that were already in the model did not change their
effect directions; (4) the variable would be excluded from the model if the p value was
less than 0.1. This process continued until there were no more variables meeting the
criteria. Variance inflation factors (VIFs) were calculated as an indicator of multicollinearity.
Variables with VIF values greater than three were removed from the satellite-based LUR
model and this step was repeated.

In the second step, a linear mixed effects model was developed (see Equation (1)) by in-
volving random effects of OMI NO2 tropospheric column density [23,37]. The advantage of
employing this model was to include the variability of associations between NO2 concentra-
tions and OMI NO2 tropospheric column density over time. Similar satellite-based models
had been developed for predicting PM2.5 concentrations in a national assessment [37]
and PM10 concentrations within a city in Shanghai [23]. In this model, the OMI NO2
tropospheric column density had both random effect and fixed effect coefficients, which
represented seasonal variability in the association between NO2 measurements and OMI
NO2 tropospheric column density and the average effect of satellite measurements on the
ground NO2 measurements for the whole year, respectively [23,37]. The model structure
can be summarized as:

NO2,st = (β0 + β0’) + (β1 + β1’) OMIst + βisXis + εst (1)

where NO2,st indicates the mean observed NO2 concentrations (μg/m3) at the fixed station
s in season t; OMIst is the only independent variable with both fixed and random effects,
which represents OMI NO2 tropospheric column density data at the fixed station s in
season t; β0 and β0’ are the intercepts of the fixed and season-specific random effects for
the model, respectively; β1 and β1’indicate the fixed and season-specific random slopes for
OMIst, respectively; Xis represents a series of predictors, which are selected by satisfying
the criteria from the first step; and βis represents the fixed slope for predictor i at the fixed
station s; and εst is the error term at the fixed station s in season t.

In the third step, 10-fold cross validation (CV) was applied to evaluate the model
performance [17,37]: 90% of the data were randomly selected for model development,
which was used to predict NO2 concentrations of the remaining 10% of the data; and
this process was repeated 10 times. Root mean squared error (RMSE) was calculate as
the standard deviation of the residuals. RMSE and R2 were used to evaluate the model’s
performance by comparing measured and predicted NO2 concentrations during model
development and 10-fold CV, respectively. The relative prediction error (RPE, defined as
RMSE divided by the mean NO2 measurements) from 10-fold CV was then calculated to
evaluate prediction accuracy.
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In the fourth step, seasonal prediction maps of NO2 concentrations in Suzhou were
produced based on the satellite-derived LUR models, at a 100 m × 100 m resolution at a
seasonal timescale. In addition, we further calculated annual-mean and seasonal-mean
population-weighted NO2 concentrations in Suzhou [39] (see Equation (2)).

CPop = ∑Popi × Ci/∑Popi (2)

where CPop indicates the annual-mean or seasonal-mean population-weighted NO2 expo-
sure concentrations in Suzhou; Popi represents the population density of grid i; and Ci
indicates the estimated annual-mean or seasonal-mean NO2 concentrations of grid i.

Figure 4 shows the workflow for the development of the satellite-derived LUR model
in our study. Statistical analyses were performed with nlme packages (https://www.
rdocumentation.org/packages/nlme/versions/3.1-151/topics/nlme) of R3.6.1.

 

Figure 4. Workflow for the development of the satellite-derived LUR model.
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3. Results

3.1. Descriptive Statistics Analyses

In 2014, the annual-mean NO2 was 46.23 μg/m3 in Suzhou, with the lowest concen-
tration of 36.52 μg/m3 recorded in summer and the highest concentration of 53.22 μg/m3

in winter, as measured at fixed monitoring sites. Among all predictors, the Pearson’s corre-
lation coefficient between seasonal OMI NO2 tropospheric column density and seasonal
NO2 measurements was highest with the value of 0.65.

3.2. Model Development and Evaluation

After variable selection, as the results of the first step, the satellite-derived LUR model
included four predictors: NO2 tropospheric column density from OMI, population density,
log transformed inverse of nearest distances to major roads (Log_distance), and NO2
non-power plants emissions within a 10-km buffer zone (Table 1). The R2 and RMSE of
this model were 0.63 and 5.76 μg/m3, respectively. The R2 and RMSE of the 10-fold CV
were 0.59 and 6.09 μg/m3, respectively. The VIFs of the four variables were all less than 2,
showing weak multicollinearity among them.

Table 1. The traditional land use regression (LUR) model for predicting NO2 concentrations.

Variables β SE p Value

Intercept 33.57 5.13 <0.001
NO2 tropospheric

column density 0.85 0.11 <0.001

Population density 0.00016 0.0001 0.043
Log_distance 2.92 1.38 0.038

Non-power emissions
within 10 km buffer zone 0.0001 0.00003 0.002

The results of the second step, including the estimated coefficients of fixed effects
of the four predictor variables, are shown in Table 2. All predictors were positively and
significantly associated with measured NO2 concentrations, with p values less than 0.05.
The absolute contribution (IQR × β), for each influencing predictor, was calculated as the
regression coefficient (β) of fixed effects multiplied by the inter-quartile range (IQR) of
the corresponding predictor. The results indicated that the non-power emissions within a
10-km buffer zone and OMI NO2 tropospheric column density contributed most to NO2
concentrations, because they had higher IQR × β values (Table 2).

Table 2. The fixed effects of the satellite-derived LUR model for predicting NO2 concentrations.

Variables β SE p Value IQR × β 1

Intercept 39.617 7.348 <0.001
NO2 tropospheric column density 0.618 0.293 0.039 4.389

Population density 0.00016 0.0001 0.029 1.976
Log_distance 3.240 1.272 0.013 1.546

Non-power emissions within 10-km buffer zone 0.0001 0.00003 <0.001 4.792
1 represents the regression coefficient (β) of fixed effects multiplied by the inter-quartile range (IQR) for each predictor at 20 monitoring sites.

The R2 and RMSE of the seasonal satellite-derived LUR model were 0.70 and 5.24 μg/m3,
respectively. The R2 and RMSE of the 10-fold CV were 0.61 and 5.91 μg/m3, respectively,
for the seasonal model (Figure 5). The RPE from 10-fold CV was 12.78%, which indicated
a relatively high predicting accuracy at the seasonal level. The linear mixed effects model
performed better than the traditional linear regression model, suggesting the importance of
considering the seasonal variability of the association between ground NO2 measurements
and OMI NO2 tropospheric column density.
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Figure 5. Scatter plots of measured and predicted NO2 concentrations from model fitting (left), and 10-fold cross validation
(right), respectively, for the satellite-derived linear mixed effects model at a seasonal timescale.

3.3. Spatiotemporal Trends of Predicting NO2 Concentrations

Predictive maps of NO2 concentrations with a spatial resolution of 100 m × 100 m
were produced at a seasonal timescale (Figure 6). The seasonal pattern of predicted
NO2 concentrations agreed well with field measurements. Mean NO2 concentration
was highest in winter (47.3 μg/m3) in Suzhou, which was 1.46 times higher than that
in summer. The spatial patterns of NO2 predictions were similar at different seasons
throughout the year. Maps with high spatial resolution showed that severe NO2 pollution
occurred along the major roads and declined significantly with increasing distance from
the road. Urban centers with high population density and an intensive road network also
experienced higher NO2 concentrations than that of the rural areas (Figure 6). For example,
in summer, the maximum NO2 concentration (58.99 μg/m3) that occurred in urban areas
was 2.77 times higher than the minimum value (21.33 μg/m3) in rural areas; and in winter,
the maximum concentration (76.93 μg/m3) was 2.03 times higher compared to the lowest
value (37.91 μg/m3) in rural areas. The results indicated that the NO2 concentration was
generally higher in urban areas than that in rural areas both in winter and summer.

The population-weighted annual mean NO2 concentration in 2014 was 44.94 μg/m3

in Suzhou, higher than the annual-mean predicted concentration of 41.4 μg/m3 and also
higher than the annual-mean NO2 standard of 40 μg/m3 defined in the Chinese National
Ambient Air Quality Standards (GB 3095-2012). In winter, 99% of the total population lived
in areas with NO2 concentrations exceeding 40 μg/m3 in Suzhou (Table 3).

Table 3. Population-weighted NO2 exposure concentrations.

Parameter Annual Spring Summer Autumn Winter

Population-weighted
concentration (μg/m3) 44.94 46.33 35.64 46.59 51.21

Proportion (%) * 84 92 22 96 99

* Proportion: Proportion of population living in areas with NO2 concentrations exceeding 40 μg/m3.
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Figure 6. NO2 spatial distribution at the seasonal level in Suzhou, 2014.

4. Discussion

Our study built a satellite-derived LUR model with OMI NO2 tropospheric column
density data to predict NO2 concentrations at seasonal timescales with a high spatial
resolution (100 m × 100 m) in Suzhou. The R2 values of model fitting and 10-fold CV were
0.70 and 0.61 at seasonal timescales, respectively, reflecting the relatively high stability of
the model.

Our seasonal satellite-derived LUR model performance was comparable with previous
satellite-based LUR models on NO2 concentration assessment at global, national, and
regional scales. For the global satellite-based LUR model, the R2 and MAE (mean absolute
error) for the model were 0.54 and 3.7 ppb at a 100 m×100 m resolution, respectively [20].
The adjusted R2 values of models with satellite data were 0.48–0.58 in 17 contiguous
countries of Western Europe [22]. The R2 of the model fitting and CV were 0.79 and 0.77
of the national satellite-derived LUR in the United States, respectively [19]. Similarly,
in China, Xu et al. and Yang et al. developed satellite-derived LUR models at national
and regional scales, respectively [21,31]. The R2 of 10-fold cross-validation (CV) was 0.78
for the national model in 2015 [31], and the R2 of model fitting was 0.61 for the regional
model [21]. Although increasing studies have used machine learning methods with satellite
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data to evaluate NO2 concentrations based on a large number of measurements from fixed
monitors at regional or national scales [40–43], the training data may be insufficient to
develop machine learning models within a city because of the limited number of fixed
stations in this study. The comparison suggested that our satellite-derived LUR model,
including satellite-retrieved NO2 tropospheric column density, population density, traffic
indicators, and NOx emission data, predicted ground NO2 concentrations with relatively
high accuracy based on the fixed stations in Suzhou.

In terms of NO2 concentration, our results exhibited significant spatial variability
within a city at a fine spatial resolution (100 m × 100 m), and found a distinctive decline
with increasing distance from the roads and significant differences between urban and
rural areas. The high variability within a city suggested that exposure assessments of
NO2 might be inaccurate if they just depended on measurements of a limited number
of fixed monitoring sites. This high spatial heterogeneity may be mainly dependent
on NO2 pollution-related sources, such as traffic and industrial emissions. Traffic and
industrial emissions are known as the main sources of NO2, contributing to the high
spatial heterogeneity of NO2 concentrations along roads and within a city. On one hand,
NO2 is emitted as a primary pollutant from these sources. On the other hand, NO2 is
also a secondary pollutant [1,2]. In our study, NO2 concentrations were significantly
higher along roads and declined gradually with increased distance from roads in Suzhou,
consistent with previous results of NO2 spatial heterogeneity along roads [8]. The variables
indicating traffic-related sources in our study were also frequently used in the previous LUR
models for NO2 concentrations assessment [6,17,36]. Additionally, industrial emissions, an
important influencing predictor for NO2 assessment in our model, had also been found to
be an important variable in the previous LUR models to predict ground NO2 concentrations
within cities such as in Shanghai and Tianjin [16,17]. A recent study observed a notable
decrease of NO2 concentrations during the Chinese New Year holiday in 2020 led by the
novel coronavirus (COVID-19) lockdown compared to those before or after this period
in Suzhou [44]. A sharp decline in traffic emissions and a slight reduction in industry
emissions caused by the shut-down policies might be the main contributors to the decrease
of NO2 concentrations during the lockdown period in Suzhou [44], suggesting that both
traffic and industrial emissions are crucial sources of NO2 in Suzhou. Additionally, our
results found that mean NO2 concentrations were higher in winter compared to that in
summer. This was consistent with the previous studies on the seasonal pattern of NO2
concentrations in China [24,45]. In winter, NO2-related emissions are stronger due to
more emissions from coal combustion for heating; while meteorological conditions are less
favorable and could impede the dispersion and transportation of NO2 pollution [44,46,47].
Both of these might be contributors to the higher NO2 concentrations in winter [44,46,47].
Our results in Figure 6 showed an approximately lower ratio between urban and rural
NO2 concentrations in winter compared to those in summer. This might be due to more
coal combustion for the heating of houses in rural areas in winter compared to that in
urban areas [48].

As another influencing factor for NO2 spatial heterogeneity, the spatial pattern of pop-
ulation density was highly consistent with that of NO2 predictions in Suzhou, suggesting
that population density can be used as an indicator of anthropogenic emissions that reflects
a series of emissions including traffic, industrial process, and heating sources [6]. High
population density not only intensified the NO2 pollution, but also resulted in an increased
exposure of populations to high NO2 levels. In this study, 84% of the population were
exposed to higher NO2 levels than the national annual-mean NO2 standards (40 μg/m3)
in Suzhou in 2014; while the proportion of the population exposed to concentrations ex-
ceeding the World Health Organization (WHO) annual NO2 standards (40 μg/m3) was
only 8% in Western Europe [39], which was much smaller than that in Suzhou. This might
be because a high population density and high concentrations of air pollution coexist in
Chinese cities. For example, many residential buildings are located along major roads
for the convenience of transportation, and residents living in these buildings might be
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both influenced by the traffic-related emissions and housing heating emissions, especially
during winter in the rural areas. Our results suggested that policy makers should take
effective interventions for these areas of higher NO2 concentrations, especially for urban
regions with the higher population density, which is an urgent need for the public health.

The satellite-based LUR model also expanded the temporal resolution and improved
the accuracy of seasonal NO2 predictions. Land use data, including land cover, road net-
work, and population data, used in traditional LUR models commonly have lower temporal
resolution, whereas the NO2 tropospheric column density data could represent temporal
variability of NO2 concentration with a strong correlation with ground NO2 concentration.
Previous studies mostly employed satellite data to expand the temporal resolution of the
LUR model for the assessment of NO2 concentrations to seasonal or monthly timescales at
national or regional scales [19,21,30]; however, few satellite-based LUR models on NO2 con-
centrations assessment have been developed at a city scale considering the local influencing
factors with a flexible timescale in China. In this study, we developed a satellite-based LUR
model in Suzhou to capture the fine gradients of NO2 concentrations at a spatial resolution
of 100 m × 100 m. More importantly, our predictions captured the significant seasonal
variability of NO2 concentrations within a city, which could not be achieved by traditional
LUR models. These findings suggested that the satellite-derived model could provide
exposure assessment of NO2 concentrations at a flexible timescale for epidemiological
studies and scientific evidence for protecting residents from NO2 pollution.

Our study has several limitations. First, the OMI NO2 tropospheric column density
for spatial prediction was relatively coarse (13 km × 24 km). Satellite-based NO2 data
with a higher spatial resolution could help improve the model performance in the future
when they are available. Second, our model was developed at a seasonal level rather than
a daily level. The cloud cover and row anomaly problem of OMI lead to missing data at a
daily level within a city; therefore, we resampled OMI data at a seasonal level to fill the
gap. Satellite-based NO2 data with a lower missing rate might help improve the temporal
resolution of our model in the future. Third, traffic counts are an ideal predictor to identify
the traffic emissions, but these were not accessible for this study. We used major road
lengths and distance to the nearest major road as surrogates of traffic counts to indicate
the influence of traffic emissions on NO2 concentrations. This was also applied as a traffic
variable in NO2 LUR models in the European Study of Cohorts for Air Pollution Effects
(ESCAPE) project and other studies of the development of NO2 LUR models [6,36].

5. Conclusions

In summary, the satellite-derived LUR model could predict seasonal NO2 concen-
trations at a 100 m × 100 m resolution with relatively high accuracy, at a city scale. This
model could capture the fine gradients both along the road and within the urban-rural
areas for each season based on the satellite data. According to the predictions, we found
that 84% of the city’s total population lived in areas with NO2 concentrations exceeding
the national annual standard of NO2 of 40 μg/m3 in Suzhou in 2014. Hence, reducing NO2
concentrations is urgently needed, especially for urban areas with a higher population
density. This model and its predictions could support policy developments in the control
of air quality and accurate exposure assessment for future epidemiological studies.
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Abstract: Nitrogen dioxide (NO2) is an important air pollutant with both environmental and
epidemiological effects. The main aim of this study is to analyze spatial patterns and temporal
trends in tropospheric NO2 concentrations globally using data from the satellite-based Ozone
Monitoring Instrument (OMI). Additional aims are to compare the satellite data with ground-based
observations, and to find the timing and magnitude of greatest breakpoints in tropospheric NO2

concentrations for the time period 2005–2018. The OMI NO2 concentrations showed strong
relationships with the ground-based observations, and inter-annual patterns were especially well
reproduced. Eastern USA, Western Europe, India, China and Japan were identified as hotspot
areas with high concentrations of NO2. The global average trend indicated slightly increasing NO2

concentrations (0.004 × 1015 molecules cm−2 y−1) in 2005–2018. The contribution of different regions
to this global trend showed substantial regional differences. Negative trends were observed for
most of Eastern USA, Western Europe, Japan and for parts of China, whereas strong, positive trends
were seen in India, parts of China and in the Middle East. The years 2005 and 2007 had the highest
occurrence of negative breakpoints, but the trends thereafter in general reversed, and the highest
tropospheric NO2 concentrations were observed for the years 2017–2018. This indicates that the
anthropogenic contribution to air pollution is still a major issue and that further actions are necessary
to reduce this contribution, having a substantial impact on human and environmental health.

Keywords: tropospheric NO2 concentrations; nitrogen dioxide; OMI; spatio-temporal trends; DBEST;
PolyTrend; time-series analysis; breakpoint detection

1. Introduction

Air pollution is one of the main threats to human health, ecosystems and climate on a global
scale [1,2]. The global population is growing substantially, and more than half of the world’s
population now live in urban areas. Large urban areas and high population densities are hotspots for
air pollution [1,3]. According to the World Health Organization (WHO), about 3 million people die
annually due to ambient air pollution, mainly in low- and middle-income countries, and about 90% of
the world’s population are exposed to air that exceeds the WHO air quality guidelines [4].

Nitrogen dioxide (NO2) is one of the most important air pollutants in the atmosphere [5] and linked
to a number of both environmental and epidemiological effects [2,6]. It is formed in processes where
nitrogen reacts with oxygen in high temperatures, e.g., through lightning and the combustion of
fuels [7]. The main anthropogenic sources of NO2 emissions are transport, industry processes and
energy production [8]. Some of the main environmental effects linked to high NO2 concentrations are
acidification, eutrophication and photochemical formation of ozone (O3) [6,7,9]. NO2 also modifies the
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radiative balance in the atmosphere and influences the atmospheric lifetime of greenhouse gases [10,11].
NO2 is toxic at high concentrations, and the epidemiological effects include respiratory illnesses
such as lung cancer, asthma exacerbations and cardiopulmonary mortality [2,5,7,12]. NO2 has a
short atmospheric lifetime, on average 3.8 ± 1.0 h (mean ± 1 standard deviation) [8] as it reacts with
sunlight, which triggers the production of hydroxyl radical OH [13]. Therefore, high concentrations
of tropospheric NO2 are mainly confined to its emission sources, which in general are urban and
industrialized areas [2,5].

Monitoring of NO2 concentrations can be done with ground-based monitoring stations. However,
monitoring stations tend to be clustered in city centers, have a small spatial coverage and are often
lacking in developing countries [2,14]. Ground-based air quality monitoring is thereby unevenly
distributed, and large areas are under-represented [14,15]. An alternative approach to monitor air
pollution is the usage of remotely sensed satellite data that increase the spatial coverage. Major advances
have been made over the past decades to use satellite sensors to monitor atmospheric pollutants [1].
Satellite monitoring of NO2 started in 1995 with the Global Ozone Monitoring Experiment (GOME)
instrument [3]. Since then, other satellite instruments have been used to monitor tropospheric NO2,
such as GOME-2, the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY), the Ozone Monitoring Instrument (OMI) and the recent TROPOspheric Monitoring
Instrument (TROPOMI) aboard Sentinel-5 Precursor. Out of these instruments, OMI offers the
longest continuous monitoring record (ongoing since 2004) and has a relatively high spatial resolution
(13 × 24 km2 at nadir) [6,7]. Potential errors in estimating NO2 concentrations from satellite data
include uncertainties in surface albedo, aerosols, cloud parameters, slant column density and air mass
factor calculations [2,6,16]. Therefore, for satellite-based products to be trustworthy, the data need to be
compared against other observations of NO2 concentrations, such as from ground-based monitoring
stations [17].

Studies of long-term trends in air pollution provide information about likely changes and distribution
patterns that are useful for assessing the effects of emission mitigation efforts [18–20]. Such studies
investigating NO2 trends using OMI data and validating derived results against ground-based
measurements have been performed previously. For instance, there are studies on NO2 trends over
USA [2,15,21], over China [22], Russia [23], in eight European cities [1] and in cities around the globe [24].
These studies have reported declining NO2 trends in their respective study areas and relationship
between OMI and ground-based measurements with correlation coefficients ranging between 0.3 and
0.93. NO2 trend studies on a global scale have also been performed previously using various satellite
sensors, but these studies have overall found both negative and positive trends [3,5,19,25,26].

For trend analysis, one of the most widely used methods is the ordinary least-squares (OLS) linear
regression, as performed in most of the above-mentioned studies. These simple linear models only
provide partial insights on the mechanism essential for an appropriate attribution of drivers of changes.
Actual changes can abruptly occur caused by climatic extreme events, anthropogenic mitigations
efforts or changes in contributing factors to air pollution. These changes may only be visible for a short
period in time, despite having long-lasting effects, and will therefore remain undetected using such
traditional linear trend models [27–29].

Recent advances in time-series and breakpoint analysis open new possibilities for studying
tropospheric NO2 concentrations observed by Earth observation satellites, as they allow for the
detection of nonlinear trends and turning points in the concentrations. Nonlinear trend models
(e.g., PolyTrend) can separate trends into linear and nonlinear trend types [30]. Piecewise linear
models, such as Break For Additive Season and Trend (BFAST) [27] or Detecting Breakpoints and
Estimating Segments in Trend (DBEST) [29], allow for separating time-series into individual segments,
capturing dynamics in specific explanatory variables [28,31–33]. By using these methods, dynamics in
tropospheric NO2 concentrations may be better characterized by capturing specific atmospheric
conditions and stages of pollution development through time.

Hence, the main aim of this paper is to analyze global and regional patterns and trends in
tropospheric NO2 concentrations using a continuous time-series of tropospheric NO2 concentrations
from the OMI instrument from 2005 to 2018 with novel methods within time-series and breakpoint
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analyses. Specifically, we aim at (1) comparing the OMI data against NO2 concentrations from
ground-based monitoring stations, (2) analyzing spatial patterns and temporal (nonlinear) trends,
(3) investigating whether regional differences can be found in global NO2 concentrations and
(4) spatially explicitly detecting major breakpoints in NO2 concentrations and estimating their timing
and magnitude at global scale.

2. Materials and Methods

2.1. Satellite-Based NO2 Dataset

Aura is one of the National Aeronautics and Space Administration’s (NASA) Earth Observing
System (EOS) satellites. It was launched in 2004 with the mission to collect data of global air
pollution and to monitor the chemistry and dynamics of Earth’s atmosphere on a daily basis [34].
Aboard Aura there are four instruments, one of which is OMI [34,35]. OMI is a nadir-looking push
broom hyperspectral imaging spectrometer that measures reflected solar radiation in the ultraviolet and
the visible light (UV/VIS) channels of the electromagnetic spectrum (wavelength range of 264–504 nm)
with a spectral resolution of 0.42–0.63 nm [36,37].

We used the OMI/Aura level 3 NO2 (OMNO2d) standard product (the cloud screened subset 4)
downloaded from NASA’s Earth Observation data collection [38]. The OMNO2d product contains
composites of daily total tropospheric column NO2 data with a spatial resolution of 0.25◦ × 0.25◦.
In this study, we used OMI data from 1 January 2005 until 31 December 2018 (in total, 5092 daily
OMNO2d files considering 21 gaps in the daily data files). We also excluded all pixels with less than
50 days of data per year, in order to minimize influences of errors in the retrieval process.

2.2. Ground-Based NO2 Dataset

The ground-based data are annual averages (n = 6093) of daily observations of atmospheric
NO2 concentrations (n = 1,706,830) from monitoring stations in the USA between the years 2005 to
2018, provided by the United States Environmental Protection Agency (US EPA) [39]. The reference
method used by the US EPA for collection of ambient NO2 is chemiluminescence analysis [40] based on
the reaction of nitric oxide (NO) with ozone (O3). The principle of the method is that a sample of
ambient gas enters a reaction chamber where NO molecules react with O3 to form NO2. The reaction
produces a quantity of light, a phenomenon known as chemiluminescence. The intensity of the light,
which is proportional to the concentration of NO2, is then measured to determine the concentration of
NO2 [40,41].

2.3. Comparison against Ground Observations

The daily OMI NO2 data were first averaged monthly, and thereafter annually. Annual averages
were used since this study focuses on long-term trends, and it is therefore the inter-annual variability
that must be validated. The annual averages were then compared to corresponding ground-based
NO2 data in order to verify the validity of OMI NO2 product. Since the two datasets use different
units (1015 molecules cm−2 for the satellite-based data and part per billion (ppb) for the ground-based
data), we calculated z-scores using the z-statistic ((data value − average)/standard deviation) for both
datasets. The relationships between the two datasets were quantified using the root-mean-square error
(RMSE), and by goodness-of-fit when fitting the ordinary least-squares linear regression on the z-scores
for the two datasets.

2.4. Analysis of Spatial Patterns and Temporal Trends

The spatial patterns were analyzed by averaging all OMI NO2 data pixel-wise over the study
period. For analyzing the temporal trends, time-series of annual mean NO2 concentration were first
calculated. Then we applied PolyTrend to analyze and classify trends in the annual NO2 time-series
2005–2018. We also applied the DBEST program to detect the greatest significant breakpoints in the
annual NO2 time-series and estimate their timing and magnitude. The PolyTrend and DBEST analyses

123



Remote Sens. 2020, 12, 3526

were both performed at pixel level having a statistical significance threshold (α) of 0.05. Pixels with
an absolute value of annual average tropospheric NO2 concentration below the OMI detection limit
(0.5 × 1015 molec.cm−2) [42] were excluded from the trend analyses.

2.4.1. Nonlinear Trend Analysis with PolyTrend

PolyTrend is an automated method with an algorithm that accounts for nonlinear change in a
trend [30]. It uses a polynomial fitting-based scheme that divides trends into linear and nonlinear trend
behaviors and then subdivides the nonlinear trends into classes of cubic, quadratic, and concealed
trend types. The linear trend type means that the trend line has a uniform direction over the study
period (either increasing or decreasing). The quadratic trend type is a trend line with one bend in
its curve, implying that the cell has experienced one direction-change in its trend line over the study
period (i.e., first positive and then negative trend, or vice versa). The cubic trend type means that the
trend line has two bends, implying that corresponding cell has experienced more than one change
in the trend direction over the study period (i.e., first decreasing followed by increasing and then
again decreasing change, or vice versa). The concealed trend type consists of cells with either cubic or
quadratic trend types, but with no significant net change in tropospheric NO2 concentrations over the
study period. We refer to Jamali et al. [30] for more details.

2.4.2. Breakpoint Analysis with DBEST

DBEST was developed for analyzing time-series of satellite sensor data, and it uses a segmentation
method for two main algorithms of trend generalization and change detection [29]. We used its
change detection algorithm in order to detect breakpoints with greatest change in tropospheric NO2

concentrations. Our input data in DBEST were the pixel-wise time-series of the annual average NO2

concentrations data.
First, DBEST tests for the occurrence of discontinuities, in this case of tropospheric NO2

concentrations, by analyzing the absolute differences between consecutive data points and comparing
this to the first level-shift-threshold set by the user (Table 1). If the difference is greater than the first
level-shift-threshold, then it tests whether or not this difference caused a significant shift in the mean
level of tropospheric NO2 concentrations and persisted over the duration-threshold. If the mean
level before and after this identified discontinuity is greater than the second level-shift-threshold,
DBEST considers this a level-shift point. DBEST then repeats this process for all data points, sorts them
into descending order based on the absolute value of tropospheric NO2 concentrations difference,
and tests if the spacing between a data point and an identified level-shift point is at least the
duration-threshold. The trend component of the time-series is then segmented using a peak/valley
detector function and a method that draws a straight line through detected peak/valley points and
compares perpendicular distances to the non-peak and non-valley points between them with the
distance-threshold parameter. If the distance is greater than this threshold, these points are added
to the set of detected peak/valley points and level-shift points, all of which are called turning points.
Detected turning points are then fit to the tropospheric NO2 concentrations trend using piecewise
linear modelling, and those turning points that minimize the Bayesian Information Criterion (BIC) [43]
are considered breakpoints. Here, we used the change detection algorithm of DBEST with a set
value (2) for the number of significant breakpoints of interest for detection (Table 1), and as such,
DBEST identifies a final set of greatest significant breakpoints as requested by user. The results of
the change detection algorithm include the starting time of the breakpoints (break date); the change
duration, or the temporal period over which this change occurred; the change value, or the amount of
change that occurred over this time period; the change type, whether the change is abrupt (level-shift)
or non-abrupt; the change significance, based on the statistical significance level (α = 0.05).
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Table 1. DBEST setting parameters, description and the threshold values used in this study.

Parameter Description Set Value

Algorithm
The algorithm used by DBEST

(either generalization or
change detection)

change detection

Data type
Cyclical for time-series with

seasonal cycle, and non-cyclical for
time-series without seasonal cycle

non-cyclical

Seasonality
The seasonality period for cyclical

data, and empty for
non-cyclical data

empty

First level-shift-threshold
The lowest absolute difference

allowed in input data before and
after a breakpoint

0.1 × 1015 molecules cm−2

Duration-threshold

The lowest time period
(time steps) within which the shift
in the mean level before and after

the breakpoint persists

2 years

Second level-shift-threshold

The lowest absolute difference
allowed in the means of the data

calculated over the
duration-threshold before and

after the breakpoint

0.5 × 1015 molecules cm−2

Distance-threshold An internal fitting parameter
computed by DBEST default

Breakpoint number
The number of greatest
breakpoints of interest

for detection
2

Alpha (α)
Statistical significance level used

for testing significance of
detected breakpoints

0.05

Here, the annual average tropospheric NO2 concentrations time-series data were set as non-cyclical
type (Table 1). The first level-shift-threshold was set to 0.1 × 1015 molecules cm−2 and the second
level-shift-threshold to 0.5 × 1015 molecules cm-2. It is recommended that the first level-shift-threshold
be set to a smaller value than that for the second level-shift-threshold [29]. Therefore, if a detected change
was quick (between two consecutive observations/years) and large enough (0.1 × 1015 molecules cm−2)
to shift the mean over the user-set duration (2 years) by 0.5 × 1015 molecules cm−2 before and after the
point, it was characterized as an abrupt change, otherwise it was considered a non-abrupt change,
provided that it was a significant breakpoint. The distance-threshold is normally set to be a default
that is derived internally by DBEST.

3. Results

3.1. Data Comparison against Ground Observations

The comparison of OMI data against ground-based observations showed a strong relationship
(Pearson’s correlation coefficient R = 0.65) that was statistically significant (p-value < 0.01) (Figure 1).
The relationship was equally strong (R = 0.65) when separating the analysis into a comparison of
how well OMI captured the spatial variability (data averaged site-wise; Figure 1b). The OMI data
were most successful at reproducing the inter-annual variability (data averaged annually), for which
the observations were in a very close relationship with the ground-based observations (R = 0.99)
(Figure 1c). The ordinary least-squares linear trend in annual averages of the z-scores in OMI NO2

concentrations (−0.220 ± 0.027 z-scores y−1; R2 = 0.85) was very similar to the corresponding trend in
the ground-based NO2 concentrations (−0.218 ± 0.022 z-scores y−1; R2 = 0.83).
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Figure 1. Comparison between z-scores from Ozone Monitoring Instrument (OMI)-based and
ground-based tropospheric NO2 concentrations. (a) All annual averages of the ground-based stations
against the annual averages of the corresponding OMI pixels. (b) The site-wise average for each
ground-based station against the corresponding OMI-based pixels. (c) The annual averages of all
ground-based stations against the annual averages of all corresponding OMI-based pixels. Included are
also the ordinary least-squares linear regression (red) with corresponding regression equation and
coefficient of determination (R2), the root-mean-square errors (RMSE) and the number of data points
(n). Slope of the linear regression fit indicates Pearson’s correlation coefficient (R). The black lines are
the one-to-one lines.

3.2. Spatial Patterns

There is a distinct difference in the NO2 concentration distribution between the northern and southern
hemispheres, where the higher concentrations are almost exclusively found in the northern hemisphere
(Figure 2a). The primary hotspot areas are USA (Figure 2b), Western Europe (Figure 2c), and India,
China and Japan (Figure 2d). While the mean global NO2 concentration was 0.2 × 1015 molecules cm−2,
The Netherlands, Belgium, Germany, France, UK, Italy and Spain had the highest average NO2

concentration (on average 1.91 × 1015 molecules cm−2), followed by Japan (0.91 × 1015 molecules cm−2),
India(0.43 × 1015 molecules cm−2), USA(0.38 × 1015 molecules cm−2)andChina(0.36 × 1015 molecules cm−2)
(Table 2). The maximum NO2 concentration was for China (28.24 × 1015 molecules cm−2) followed by Japan
(14.28 × 1015 molecules cm−2), Italy (11.84 × 1015 molecules cm−2), Germany (11.34 × 1015 molecules cm−2),
USA (11.25 × 1015 molecules cm−2) and India (9.22 × 1015 molecules cm−2). Due to their high concentrations
in tropospheric NO2, we selected these areas as focus areas used for further analysis in the remaining part of
the study.
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Figure 2. Spatial distribution of tropospheric NO2 concentrations (1015 molecules cm−2) averaged over
the years 2005–2018: (a) globally; (b) USA; (c) Europe; (d) India, China, Japan. Pixels with less than
50 days of data per year were excluded.

Table 2. The average, maximum and range of tropospheric NO2 concentrations (1015 molecules cm−2),
2005–2018, for the focus areas. Included are the trends in tropospheric NO2 concentrations averaged
country-wise, as well as their strongest positive and negative trend slope (1015 molecules cm−2 y−1).

Country
Average NO2
Concentration

Max NO2
Concentration

Average Range Average Trend
Strongest Trend Slope

+ −
USA 0.38 11.25 10.87 −0.033 0.055 −0.732

The Netherlands 4.63 9.34 4.70 −0.132 0.000 −0.298

Belgium 3.43 9.26 5.83 −0.143 0.000 −0.285

Germany 1.67 11.34 9.72 −0.035 0.096 −0.361

UK 0.93 7.87 6.94 −0.089 0.016 −0.348

Spain 0.60 5.66 5.06 −0.044 0.012 −0.336

Italy 1.00 11.84 10.84 −0.070 0.047 −0.527

France 1.12 7.42 6.30 −0.042 0.015 −0.309

India 0.43 9.22 8.79 0.040 0.302 −0.031

China 0.36 28.24 27.88 0.014 0.363 −0.946

Japan 0.91 14.28 13.37 −0.049 0.036 −0.671

Global 0.20 28.24 28.04 0.004 0.363 −0.969

3.3. Temporal Trends

Significant trends in NO2 concentrations were observed largely over land and to a much
lower degree over oceans along boundaries with lands (Figure 3). With the insignificant no-trends
masked out, 79.55% of the remaining cells had positive trend whereas 20.45% had negative trend.
The increasing trends were distributed over large parts of land, but the decreasing trends were
generally observed over USA (Figure 3a), Western Europe (Figure 3b), Japan and the eastern
parts of China (Figure 3c). The global average trend in 2005–2018 was slightly increasing
(0.004 × 1015 molecules cm−2 y−1); however, the regional negative trends were strong enough to
compensate for the global rising trend of NO2 concentrations over larger areas. Globally, the strongest
negative trend was −0.969 × 1015 molecules cm−2 y−1 while the strongest positive trend was only
0.363 × 1015 molecules cm−2 y−1 (Table 2).
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Areas with high average NO2 concentrations, except India and western parts of
China (Figure 2), generally showed negative trends (Figure 3; Table 2). On average,
the strongest negative trends were found in Europe (Belgium: −0.143 × 1015 molecules cm−2 y−1;
Netherlands: −0.132 × 1015 molecules cm−2 y−1; U.K.: −0.089 × 1015 molecules cm−2 y−1;
Italy: −0.070 × 1015 molecules cm−2 y−1) followed by Japan (−0.049 × 1015 molecules cm−2 y−1)
and USA (−0.033 × 1015 molecules cm−2 y−1). The average trend was positive over India and
the Middle East. The strongest positive average trend (0.040 × 1015 molecules cm−2 y−1) was for
India. Although the strongest negative trend in the focus areas (−0.946 × 1015 molecules cm−2 y−1)
was for China, the average trend for the entire country was just slightly increasing
(0.014 × 1015 molecules cm−2 y−1) because strong increasing trends (0.363 × 1015 molecules cm−2 y−1)
were observed over large parts of the country as well (Figure 3c).

3.3.1. Trend Types

In a global context, the linear trend was the dominant trend type with a spatial coverage of
61.98%, out of which 54.47% were positive and 7.51% negative (Figure 4a, Table 3). The concealed
trend was the second trend type with 21.89% spatial coverage and mainly found over east of China
and Southwestern Europe (Figure 4c,d). For the remaining trends, 9.77% were quadratic and 6.36%
were cubic, out of which the majority was found over the eastern parts of USA (Figure 4a) and west of
Europe (Spain and Portugal) (Figure 4b,c). In the focus areas, the dominant trend type was different
for different areas. In the USA, the nonlinear trends (67.59%) were spatially more than the linear trends
(32.41%) (Figure 4a, Table 3). In the focus areas in Europe, the most common trend type was linear
(negative), except for Spain where the nonlinear trends, particularly the quadratic negative trends
(57.96%), were dominant (Figure 4c, Table 3). The most common trend type over India was linear
(increasing) (84.36%), and over Japan was linear (decreasing) (43.03%). China was the country with
the largest proportion of nonlinear concealed trends in NO2 concentration (45.81%); it was also the
second country with the highest proportion of linearly increasing trends (39.19%) after India (84.36%)
(Figure 4c,d, Table 3).

3.3.2. Breakpoints in Tropospheric NO2 Concentrations

The global tropospheric NO2 concentrations showed a slightly decreasing trend from 2005 to
2008, followed by a small, positive change (0.03 × 1015 molecules cm−2) starting in 2008, and then
a gradual increasing trend between 2011 and 2018 (Figure 5a). The annual average reached its
highest values towards the end of the period in 2017–2018 (0.66 × 1015 and 0.67 × 1015 molecules
cm−2). Among the focus areas, only India showed a similar trend behavior but at a higher NO2

level and with a much greater positive change (0.20 × 1015 molecules cm−2) in 2015 (Figure 5d).
Japan was also similar in showing a linear long-term trend with only one breakpoint change but
different in that the detected breakpoint was a great negative change (−0.47 × 1015 molecules cm−2),
thus resulting in an overall decreasing trend (Figure 5f). In contrast, the number of the greatest
changes detected in NO2 concentrations over USA, Europe and China was two. The two greatest
changes of USA (−0.50 × 1015 molecules cm−2 and −0.08 × 1015 molecules cm−2) as well as Europe
(−0.08 × 1015 molecules cm−2 and −0.16 × 1015 molecules cm−2) were both negative and started either
in the beginning (2004–2005) or towards the end of the studied period (2013–2016) (Figure 5b,c).
The first greatest change detected over China was positive (0.78 × 1015 molecules cm−2) and started in
2008, but then a second big reverse change (−0.81 × 1015 molecules cm−2) happened in 2011 (Figure 5e).
These two almost equally big but opposite changes (upward and then downward) with no relax time
in between caused the overall NO2 trend being insignificant with no net-change in NO2 concentrations
throughout the time period over China. This type of significant nonlinear trend was identified as
concealed trend type (Figure 5e).
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Figure 3. The slope of trend in tropospheric NO2 concentrations obtained by using the annual average
tropospheric NO2 concentrations data series, 2005–2018, in PolyTrend: (a) globally; (b) USA; (c) Europe;
(d) India, China, Japan. Insignificant no-trends were masked out (α = 0.05).

Figure 4. The type of trend in tropospheric NO2 concentrations obtained by using the annual average
tropospheric NO2 concentration data series, 2005–2018, in PolyTrend: (a) globally; (b) USA; (c) Europe;
(d) India, China, Japan. Insignificant no-trends were masked out (α = 0.05).
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Table 3. Spatial coverage (%) of the significant increasing and decreasing trend types globally and in
the focus areas with hotspots in average NO2 concentration. Insignificant no-trends were masked out
(α = 0.05).

Trend Types 1

Lin.
+

Lin.
−

Quad.
+

Quad.
−

Cub.
+

Cub.
−

Conc.
+

Conc.
−

Cell
Count

USA 7.51 24.90 1.17 25.98 1.20 16.82 8.15 14.27 8052

The Netherlands 0.00 82.35 0.00 0.00 0.00 13.73 0.00 3.92 51

Belgium 0.00 98.04 0.00 0.00 0.00 1.96 0.00 0.00 51

Germany 4.51 68.44 0.41 2.46 0.41 5.74 2.87 15.16 244

UK 0.00 94.23 0.00 2.41 0.00 0.96 0.96 1.44 416

Spain 0.13 6.44 0.00 57.96 0.13 10.10 2.28 22.98 792

Italy 0.59 75.81 0.00 14.45 0.00 2.07 3.83 3.25 339

France 0.00 87.31 0.00 7.02 0.00 0.90 1.34 3.43 670

India 84.36 0.03 9.64 0.03 4.53 0.03 1.07 0.34 3840

China 39.19 0.85 10.89 0.53 2.64 0.09 33.46 12.35 10,259

Japan 10.09 43.03 0.00 11.87 0.89 13.06 9.19 11.87 337

Global 54.47 7.51 6.19 3.58 4.56 1.80 14.33 7.56 123,256
1. Lin = linear, Quad = quadratic, Cub = cubic, Conc = concealed.

Figure 5. Time-series of annual average tropospheric NO2 concentrations, 2005–2018, with a segmented
trend estimated by Detecting Breakpoints and Estimating Segments in Trend (DBEST): (a) globally;
(b) USA; (c) Europe; (d) India; (e) China; (f) Japan. The line segments in red denote breakpoints with
greatest change (1015 molecules cm−2), and the dashed curves denote the type of trend estimated
by PolyTrend.

Figure 6a shows the greatest breakpoint change detected in the annual average NO2 concentrations
at pixel level. The spatial patterns of the detected short-term changes were similar to the long-term

130



Remote Sens. 2020, 12, 3526

overall trends observed over lands (Figure 3): positive breakpoints were found over large areas in all
continents (79.4%) and negative breakpoints mainly over the focus areas (20.6%). The greatest negative
drop was for China (−12.41 × 1015 molecules cm−2), followed by USA (−5.60 × 1015 molecules cm−2),
Italy (−3.81 × 1015 molecules cm−2) and Japan (−3.78 × 1015 molecules cm−2) and then the other
focus countries in Europe (Figure 6a, Table 4). The greatest positive change was also for China
(6.65 × 1015 molecules cm−2) followed by India (2.13 × 1015 molecules cm−2). Range of the change
values was therefore the highest for China (19.06 × 1015 molecules cm−2) and the least for Netherlands
(1.59 × 1015 molecules cm−2) and Belgium (1.75 × 1015 molecules cm−2), where the average changes
were high and no positive change was detected at all (Table 4). The type of majority of the detected
greatest changes was non-abrupt, indicating that most of the changes occurred gradually over time,
except for Belgium where the changes mainly happened abruptly (56.86%).

Figure 6. The breakpoint with greatest change in tropospheric NO2 concentrations obtained by using
the annual average tropospheric NO2 concentration data series, 2005–2018, in Detecting Breakpoints and
Estimating Segments in Trend (DBEST). (a) Magnitude of the change. (b) Starting time of the change.
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Table 4. The values of the greatest breakpoint changes in tropospheric NO2 concentrations
(1015 molecules cm−2), the within-country average and range of changes, as well as the distribution of
the type of the changes detected by Detecting Breakpoints and Estimating Segments in Trend (DBEST).

Major Change

Average Change

Range of
Change Values

Change Type (%)

Positive Negative Abrupt Non-Abrupt

USA 1.20 −5.60 −0.60 6.80 10.20 89.80

The Netherlands - −2.59 −1.54 1.59 35.29 64.71

Belgium - −2.50 −1.66 1.75 56.86 43.14

Germany 1.44 −3.28 −1.37 4.72 22.54 77.46

UK 0.98 −2.57 −0.98 3.56 14.77 85.23

Spain 0.54 −2.50 −0.54 3.04 9.10 90.90

Italy 1.23 −3.81 −0.91 5.04 17.70 82.30

France 0.53 −3.11 −0.83 3.64 9.25 90.75

India 2.13 −1.01 0.41 3.14 2.23 97.77

China 6.65 −12.41 0.28 19.06 22.13 77.87

Japan 0.76 −3.78 −0.73 4.54 16.02 83.98
Global 6.68 −12.41 0.09 19.06 4.15 95.85

The starting time of the major drops in tropospheric NO2 concentrations is most often detected
during the period of 2005–2009 for USA (89.6% of cells), Japan (78.8%) and Europe (57.8%) (Figure 6b).
For India, the greatest positive change started most often during 2015–2017 (41.1% of cells). For China,
the biggest positive change started mostly during 2008–2010 (54.3%) and then the greatest drop
happened during 2011–2014 (88.7%).

In a global context, the years 2005 and 2007 were by far the years with the highest occurrence
of negative breakpoints (27.7% and 17.4% respectively), indicating a major event during this period
that had global effects and particularly in the focus areas (Figure 6a; Figure 7a). The time period with
high occurrence of global positive breakpoints was 2008 to 2015, and the years 2008 and 2015 had the
highest rates (12.4% and 12.2% respectively) (Figure 7b).

Figure 7. The temporal distribution of the global breakpoints with the greatest change in tropospheric
NO2 concentrations detected over the years 2005–2018. The values on the y-axis are in percentage (%).
(a) The greatest negative changes. (b) The greatest positive changes.

4. Discussion

The relationship between the satellite-based and the ground-based datasets supports previous
OMI validation studies. For instance, the Pearson’s correlation coefficient R was 0.65, which is within
the middle of the range (0.40–0.80) of several other studies [1,2,15,22]. The statistical comparison
further indicated that OMI was more successful at estimating the temporal component than the spatial
component (Figure 1b,c). This can partially be explained since the ground-based monitoring stations
are focused on a certain emission source (e.g., traffic locations), whereas an OMI pixel (13 × 24 km2)
covers a larger area with potential emission sources both within and downwind from the pixel [1].
The strong relationships with the ground-based observations still indicate that OMI data are useful
giving spatially explicit time-series of tropospheric NO2 concentrations to study global patterns
and trends.

The spatial distribution of average NO2 concentrations found in this study (Figure 2)
resembles those in other studies [5,19,25,26], confirming that the focus areas are indeed the main
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hotspots of tropospheric NO2 concentrations globally. According to Krotkov et al. [25], the highest
NO2 concentrations coincide with urban areas with high populations and industrialized regions.
NO2 concentrations are generally much lower over oceans than that over land since there are no
sources of NO2 emissions except for passing ships [44]. This indicates that the trends observed along
offshore boundaries are possibly caused by atmospheric deposition of NO2 transported from their
source by large-scale circulation [45]. According to Peters et al. [44], satellite instruments have issues
with detecting trace gases over oceans because of the low NO2 concentrations often being below the
detection limit of the instruments (0.5 × 1015 molecules cm−2).

The global and regional trends seen (Figure 3) generally agree with the results from previous studies.
Previous studies have shown increasing trends over both India and China [5,19,25,26], where our results
show increasing trends over both countries too (Figure 3). The decreasing trend with major drop in
NO2 that we observed over Eastern USA confirms the previous study by Krotkov et al. [46] reporting a
dramatic decrease in OMI NO2 from 2005 to 2015, as a result of both technological improvements
and stricter regulation of emissions. In agreement with our trend results derived for Western Europe,
recently Wang et al. [47] observed decreasing trends over Netherlands, Belgium, Germany and Italy,
as detected in OMI NO2 concentrations for 2012–2018. The trend results seem to be consistent among
studies with data used from different satellite instruments and/or study periods [5,19,25,26].

Decreases of NO2 concentrations can primarily be attributed to either local-, regional-
or country-level environmental regulations, improvements in emission control technology
(e.g., power plants and vehicles), or economic changes and the associated effects in energy usage [24,25].
Since the spatial distribution of average concentrations and significant decreasing trends correlate well,
this indicates that environmental regulations and technological improvements in the countries with
the most severe pollution have had a positive effect on concentrations of NO2. However, it should
also be noted that the two final years of this study period (2017–2018) were the years with the
highest average global concentrations. This clearly shows the importance of continuous satellite-based
monitoring of global patterns and trends in NO2 concentrations, also for assessing the effects of regional
environmental regulations and technological improvements to reduce emissions [48].

Linear regression models assume that changes occur linearly and gradually, which is not always
the case [30,49]. Here, a polynomial fitting-based scheme (PolyTrend) was used to account for nonlinear
trends. This polynomial approach thus helps to detect nonlinear trends in time-series that would not
be identified by an ordinary least-squares (i.e., linear model) approach. The linear trend type was
the dominant trend type globally (Figure 4; Table 3) as well as for Europe (except Spain), India and
Japan, indicating monotonic (non-decreasing or non-increasing) trends over these areas. The nonlinear
trends with a significant slope (quadratic and cubic) were mainly found over eastern parts of USA
and Spain. Since the curve of these trends has one (quadratic) or two (cubic) bends, this indicates
that the NO2 concentration trends in these areas either started with an increase and then decreased or
the opposite started with a decrease and then increased (quadratic), or with even more short-term
changes in the direction of the trend (cubic). The latter case is in agreement with the regional trend
curve for USA: a cubic trend starting with a short-term downward trend, then an upward trend,
and then again another downward trend (Figure 5b). The identified areas with the concealed trends,
mainly in the eastern parts of China and south of Spain, are new findings that, up to the best of our
knowledge, have not been reported yet. The reason is that the OLS method is often used in trend
studies, and such nonlinear trends are not detectable when OLS is applied for the entire studied period.
If OLS applies here, no significant trend in 2005–2018 is detected. However, the concealed changes are
credible patterns of nonlinear changes such as the greatest breakpoint changes we detected in NO2

concentrations over China.
The majority of the detected significant breakpoints were non-abrupt indicating that the

concentrations of NO2 changed gradually, possibly due to stricter environmental regulations or
economic cycles, as opposed to abrupt changes (e.g., in Belgium and Netherlands), which could be due
to power plants or industries that have been either opened or shut down suddenly. The years 2005 to 2009
were by far the years with the highest occurrence of negative breakpoints, and regional-scale reductions
of tropospheric NO2 concentrations were also observed for USA, Europe and Japan during these years
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(Figures 5–7). It has also previously been pointed out that 2008 was a year of significant reductions in
NO2 emissions (e.g., [21,22,50,51]) due to the start of the great economic recession [50,51]. This was
an event, which caused large-scale economic reductions and affected anthropogenic activity globally,
which in turn reduced the associated emissions of air pollution from, for example, vehicles, power
plants and industries. According to the results of this study, the largest change magnitudes in NO2

concentrations during 2005–2008 were found in USA and Japan. The European countries appear
to have suffered less, based on the changes in tropospheric NO2 concentrations (Figure 6, Table 4).
The negative breakpoint we found over Eastern China with a four-year duration (2011–2014) is in
general agreement with Li et al.’s [52] study of analyzing global change of tropospheric NO2 from
2012 to 2017 using data from the Ozone Mapping Profiler Suite (OMPS) Nadir Mapper (NM) onboard
the Suomi National Polar Partnership (SNPP). They reported a large decline of NO2 in Eastern China
started in 2013 and was almost entirely driven by wintertime decreases, thus indicating a decrease in
anthropogenic emissions over the area. Souri et al. [53] in‘their study of analyzing long-term trends
of OMI NO2 concentration 2005–2014 over East Asia, also found downward trends in Japan and
more developed Chinese cities such as Guangzhou and Beijing, and upward trends in the majority
of northern regions of China in 2010–2013. This supports the concealed trend (upward–downward)
we observed for China. Another study by Krotkov et al. [46] also showed similar severe declines of
NO2 in Eastern China in 2011–2014 due to an economic shutdown and government efforts to restrain
emissions from the power and industrial sectors. Likewise, the steepest increasing trend we observed
was over India, and they reported a fast-growing trend from 2005 to 2015 for India’s NO2 level from
coal power plants and smelters.

The time-series analysis methods used in this study (PolyTrend and DBEST) benefit from recent
developments, as mentioned earlier, but like many other methods they also have weaknesses. They work
on a pixel-by-pixel basis, and they consider each pixel’s time-series data as an isolated entity in their
trend classification and change detection procedure; the spatial behavior of adjacent areas is not used
to improve the robustness of trend/change detection [54]. Thus, the obtained trend and breakpoint
results should be interpreted with caution.

Future research could include multiple breakpoint detection analyses using data for pre- and
post-pandemic phases of COVID-19 to study impacts of possible changes in anthropogenic sources
of NO2 emissions (e.g., transport, industry processes and energy production) on air pollution and
tropospheric NO2 concentration trends.

5. Conclusions

This study contributes to the ongoing research regarding spatiotemporal patterns and trends in
tropospheric NO2 concentrations using data from the OMI instrument, and it investigates how the
tropospheric concentrations have changed globally and regionally over the period of 2005 through
2018. By applying novel techniques for analysis of time-series and their breakpoints, we quantified
long-term nonlinear trends and provided information about distribution patterns in the point in time
with the greatest changes.

1. Globally, the tropospheric NO2 concentration showed a slightly increasing long-term trend
(0.004 × 1015 molecules cm−2 y−1) for the time period 2005–2018. A significant, positive change
(0.03 × 1015 molecules cm−2) was observed during 2008–2011.

2. Over Eastern USA, we found a negative trend of NO2 concentration (−0.033 × 1015 molecules cm−2 y−1)
with two major breakpoint changes of −0.50 × 1015 and −0.08 × 1015 molecules cm−2 during
2005–2009 and 2013–2016, respectively.

3. Over Western Europe, the annual average NO2 concentration decreased slowly
(−0.008 × 1015 molecules cm−2 y−1) and in a nonlinear manner including two major drops of
−0.08 × 1015 and −0.16 × 1015 molecules cm−2 during 2006–2008 and 2016–2018, respectively.
Most of the breakpoints changes detected over Netherlands and Belgium were negative and of
abrupt type.
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4. Over India, the steepest rising long-term trend in NO2 concentration
(0.040 × 1015 molecules cm−2 y−1), among the other hot spot areas, was observed, and toward
the end of the study period (2015–2017) the NO2 concentration raised even at a higher rate.

5. Over China, the linear long-term trend was positive with a slight slope
(0.014 × 1015 molecules cm−2 y−1). However, by using the polynomial trend method, we found a
nonlinear concealed trend containing one major positive change (0.78 × 1015 molecules cm−2)
during 2008–2011 and one big negative change (−0.81 × 1015 molecules cm−2)
thereafter in 2011–2016.

6. Over Japan, a considerable drop in NO2 concentration (−0.47 × 1015 molecules cm−2)
was observed in 2005–2009, and the long-term NO2 trend became the strongest downward
trend (−0.049 × 1015 molecules cm−2 y−1) as compared to all other focus areas.

Despite the breakpoint changes detected for the focus areas, the linear trend was the dominant
trend type at global scale with a spatial coverage of 61.98%, out of which 54.47% were positive and 7.51%
negative. The concealed trends, mainly observed over Eastern China and South Spain, ranked second.
The years 2005 and 2007 were the years with the highest occurrence of negative breakpoints (27.7% and
17.4% respectively), indicating a major event during these years that had global effects and in the focus
areas in particular. However, the trend thereafter reversed, and throughout the study period, the years
2017–2018 had the highest tropospheric NO2 concentrations. This indicates that the anthropogenic
contribution to air pollution is still a major issue, and that further actions are necessary to reduce this
contribution. These techniques for analysis of time-series and their breakpoints could be used for
studying underlying causes to regional patterns in trends, possibly providing insights to impact of
environmental regulations and other actions to prevent air pollution, having substantial impact on
human and environmental health.
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Abstract: Southeast Asia is one of the largest biomass burning (BB) regions in the world, and the
air pollutants generated by this BB have an important impact on air pollution in southern China.
However, the mechanism of the cross-border transport of BB pollutants to neighboring regions is
yet to be understood. Based on the MODIS remote sensing products and conventional observation
data of meteorology and the environment, the WRF-Chem and FLEXPART-WRF models were used
to simulate a typical PM2.5 pollution episode that occurred during 24–26 March 2017 to analyze
the mechanism of cross-border transport of BB pollutants over Yunnan Plateau (YP) in southwest
China. During this air pollution episode, in conjunction with the flourishing BB activities over the
neighboring Indo-China Peninsula (ICP) regions in Southeast Asia, and driven by the southwesterly
winds prevailing from the ICP to YP, the cross-border transport of pollutants was observed along the
transport pathway with the lifting plateau topography in YP. Based on the proximity to the BB sources
in ICP, YP was divided into a source region (SR) and a receptor region (RR) for the cross-border
transport, and the negative and positive correlation coefficients (R) between PM2.5 concentrations
and wind speeds, respectively, were presented, indicating the different impacts of BB emissions
on the two regions. XSBN and Kunming, the representative SR and RR sites in the border and
hinterland of YP, respectively, have distinct mechanisms that enhance PM2.5 concentrations of air
pollution. The SR site is mainly affected by the ICP BB emissions with local accumulation in the
stagnant meteorological conditions, whereas the RR site is dominated by the regional transport of
PM2.5 with strong winds and vertical mixing. It was revealed that the large PM2.5 contributions of ICP
BB emissions lift from the lower altitudes in SR to the higher altitudes in RR for the regional transport
of PM2.5. Moreover, the contributions of regional transport of PM2.5 decrease with the increase in
transport distance, reflecting an important role of transport distance between the source–receptor
areas in air pollution change.
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1. Introduction

Haze pollution caused by aerosol especially PM2.5 has significant adverse effects on
environmental change and human health [1,2]. In this regard, research has paid a large
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amount of attention to the air pollution in emission source areas such as the Yangtze River
Delta, the Sichuan Basin, and the North China plain [3–5]. However, the Yunnan Plateau
(YP), which is a relatively clean region in Southwest China having an aerosol optical depth
(AOD) of ~0.1–0.2 [6,7], has lacked attention and studies on the mechanisms responsible
for air pollution change.

The regional transport of atmospheric pollutants is one of the major elements affecting
the air quality in China [8,9], and has become a critical part of the field of the atmospheric
environment [10–12]. Long-range transport, including cross-border transport of atmo-
spheric pollutants, can influence air quality in a large region [13–15]. As a result, strong
winds can easily transport PM2.5 from upstream source regions to downwind areas, result-
ing in a rise in PM2.5 concentrations [16,17]. Meanwhile, strong winds can also play a role
in sweeping local pollutants [18,19]. When the wind speed at source regions increases, air
pollutants can be carried to the downstream regions, thus causing a reduction in pollutants
in source regions. Therefore, it is an interesting topic of study to understand the role played
by winds in the regional atmospheric environment.

Southeast Asia is one of the largest biomass burning (BB) regions in the world, with
active fire activities in the spring [20]. As one of the major sources of PM2.5 emissions [21],
BB emissions can contribute 70–80% to the total PM2.5 in source regions [22,23]. Meanwhile,
PM2.5 generated by a large amount of BB emissions also has an impact on the downwind
regions, due to the regional transport driven by atmospheric circulation [24]. Air pollutants
produced from Southeast Asian BB emissions can be transported to Southwest China and
the Yangtze River Delta over long distances, and even to Taiwan Province, Japan, and the
entire East Asia. Although some studies found that air pollutants from BB in Southeast
Asia have a significant impact on the atmospheric environment of Southeast China and the
northwestern Pacific, few studies have investigated the influence of Southeast Asian BB on
air quality in southwest China, and especially the YP region [25–28].

The YP region is located on the southwest border of China, and has a complex to-
pography that gradually decreases from north to south, and southwesterly winds prevail
in the YP region throughout the year [29]. The Indo-China Peninsula (ICP) in Southeast
Asia, which adjoins the YP region, has shown high AOD values in the spring due to BB
emissions [30]. Therefore, the YP region is inevitably influenced by the regional transport of
air pollutants from Southeast Asia, especially ICP governed by southwesterly winds. How-
ever, the current studies on BB in Southeast Asia have mainly focused on the long-range
transport of air pollutants with the effect on atmospheric chemical compositions [31,32],
aerosols radiation [33–35], and climatic forcing [36,37]. Due to the lack of studies and
analyses on the mechanism of cross-border transport of BB emissions from ICP to the
bordering YP, the extent of the influence of BB on air quality in Southwest China is still not
well understood. Therefore, in a region such as that of YP, which has the complex terrain
of a plateau in a relatively clean environment, the underlying mechanism of air pollution
is worthy of in-depth investigation associated with the cross-border or transboundary
transport of PM2.5 from the Southeast Asian BB emissions.

In this study, we utilized the satellite-based MODIS remote sensing products and the
observational data of meteorology and air pollutants to investigate an air pollution event
that occurred during 24–26 March 2017 in the YP region associated with the cross-border
transport of PM2.5 from the BB emission sources in ICP. By utilizing the Weather Research
and Forecasting model coupled with Chemistry (WRF-Chem) and the Flexible Particle
dispersion model (FLEXPART) driven by WRF (FLEXPART-WRF), we simulated the spatial–
temporal variations in PM2.5 over Southwest China and Southeast Asia. The present study
explored how the regional PM2.5 transported from BB emission sources in ICP affects the
air quality in the downwind YP region, and the extent to which the regional transport of
PM2.5 from BB emissions affected PM2.5 concentrations in the air pollution episode in YP.
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2. Materials and Methods

2.1. Ground-Based Observation Data

To investigate the distribution of meteorological factors and PM2.5, and to validate the
performance of the WRF-Chem simulation, hourly data of surface PM2.5 concentrations
were obtained from the China National Environmental Monitoring Centre (CNEMC).
Hourly near-surface wind speed, relative humidity, and air temperature data were derived
from the China Meteorological Administration (CMA). The time we mention henceforth is
YP’s local time (UTC + 08:00 h).

2.2. MODIS Remote Sensing Products

The MODIS instrument is a multispectral sensor aboard the Aqua and TERRA satellites.
It contains 36 wavelength bands from 400 to 1440 nm and allows for the retrieval of aerosol
items to cover the entire globe in 1–2 days. The AOD products derived from MODIS
have been widely used at global or regional scales [38,39]. In this study, the MODIS Dark-
Target/Deep-Blue combined data of Collection 6.1 averaged from Terra and Aqua were
utilized to identify AOD’s geographic distribution and to validate the performance of the
WRF-Chem Model.

2.3. Model Configuration
2.3.1. WRF-Chem Model

Here, the WRF-Chem online coupling model version 3.9.1 [40] was utilized to simulate
an air pollution event that occurred over the YP. Two nested domains were used in the
configuration. The coarse domain with a horizontal resolution of 27 × 27 km covered
Southwest China and Southeast Asia, wherein the nested fine domain with a 9 × 9 km
horizontal resolution included most of the YP and its surrounding ICP regions (Figure 1a).
Thirty-two vertical hybrid layers were set from the surface to 50 hPa. The initial and
boundary conditions of the WRF-Chem simulation were obtained from the ERA-Interim
with a horizontal resolution of 0.75◦ × 0.75◦.

Multiple physical schemes are utilized in the WRF-Chem simulation, such as the
YSU boundary layer scheme [41], the Morrison 2 microphysics [42], the RRTMG radia-
tion scheme [43], and the unified Noah land surface model [44]. The RADM2 chemical
scheme [45] was selected for the atmospheric gas-phase chemistry mechanism. Table 1 lists
the primary parameterization schemes utilized in the modeling configuration.

Figure 1. (a) Two nesting domains of WRF-Chem modeling with the terrain heights (m in a.s.l.) over
the YP (outlined with dash red line) and surrounding regions in southwest China and Southeast
Asia. (b) Spatial distribution of averaged surface PM2.5 concentrations (color shaded circles with
black edges, μg m−3 in the upper color bar) observed at 16 urban sites (Table 2) from 24 to 26 March
2017 over YP, and spatial distribution of topographic height over YP and surrounding areas (color
contours, m in a.s.l. in the lower color bar).
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Table 1. Parameterization schemes for the WRF-Chem simulation.

Options Schemes

Microphysics Morrison 2-moment scheme (Morrison)
Longwave radiation Rapid Radiative Transfer Model for GCMs (RRTMG)
Shortwave radiation Rapid Radiative Transfer Model for GCMs (RRTMG)

Land-surface Noah Land Surface Model (Noah)
Boundary layer Yonsei University scheme (YSU)

Cumulus Improved version of the Grell–Devenyi ensemble scheme
(Grell 3-D)

Photolysis Madronich photolysis scheme (Madronich)
Chemistry The regional acid deposition model, version 2 (RADM2)

Aerosol particles The Modal Aerosol Dynamics Model for Europe
(MADE/SORGAM)

Table 2. Names of all sites in YP and their corresponding site numbers.

Number 1 2 3 4 5 6
Name Xishuangbanna Puer Lincang Yuxi Honghe Wenshan

Number 7 8 9 10 11 12
Name Dehong Baoshan Dali Chuxiong Kunming Qujing
Name 13 14 15 16

Number Nujiang Diqing Lijiang Zhaotong

2.3.2. Air Pollutant Emission Inventories

Three emissions were used to drive the WRF-Chem modeling. The anthropogenic
emission data were taken from MIX [46], which covers more than 30 different countries
and regions in Asia, based on a multi-scale data coupling method to include local source
inventories, such as ANL-India (India), CAPSS (Korea), REAS2 (Japan, Taiwan, China),
MEIC (anthropogenic sources in mainland China), and PKU-NH3 (ammonia emission
inventory in China). MIX consists of emissions from on-road mobile sources, agricultural
activities, power plants, industrial processes, and residential combustion.

Using the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which
includes more than 20 biogenic species [47], the online biogenic emissions were calculated.
The hourly BB emissions were obtained from the Fire Inventory from NCAR (FINN) [48].
The FINN was produced using land cover types and fire point emissions monitored by the
MODIS satellites (Terra and Aqua), combined with emission factors and combustible loads,
and includes particulate matter and gas emissions from biomass burning in agriculture,
forests, etc. The horizontal resolution of FINN is 1 km, and the vertical distribution of the
fire emission pollutants is calculated by the online plume-rise parameterization [49,50].

2.3.3. Numerical Experiments

Based on the modeling configurations, two numerical experiments were conducted
during 21–27 March 2017, of which the first two days were used as the spin-up time of
modeling a PM2.5 pollution episode. The experiments were: (1) a control experiment (CE),
with the MIX anthropogenic emission inventory, the MEGAN biogenic emission inventory,
and the FINN BB emission inventory in the modeling configuration; (2) a sensitivity
experiment (SE), which was the same as CE but with the BB emissions turned off over
two domains.

Through the comparison of the PM2.5 concentrations between CE and SE, the contri-
bution rates of BB emissions to PM2.5 concentrations for the air pollution episode were
evaluated by Equation (1):

Contribution rates =
PM2.5_CE − PM2.5_SE

PM2.5_CE
× 100% (1)

where PM2.5_CE and PM2.5_SE represent the results from CE and SE, respectively.
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2.3.4. FLEXPART-WRF Models

The Flexible Particle dispersion model (FLEXPART) [51,52] is a Lagrangian particle
diffusion model considering the processes of wet and dry depositions, turbulent diffu-
sion, and tracer transport [53]. FLEXPART driven by WRF (FLEXPART-WRF) has been
widely utilized to examine the potential sources and the long-distance transport of air
pollutants [54–56]. Based on this backward trajectory model, we followed the method
proposed by Chen et al. [57] and Yu et al. [55] to identify the upstream emission sources of
air pollution in the YP region.

2.4. WRF-Chem Modeling Validation

A credible simulation of meteorology is essential for the simulation of air pollutants
with WRF-Chem [58]. Therefore, the meteorological simulation in typical sites (sites 1–11 in
Figure 1b and Table 2 with average surface PM2.5 concentrations over 35 μg m−3 during the
pollution episode) was validated by comparing the modeling results with meteorological
observations of 10 m wind speed (WS10), 2 m relative humidity (RH2), and 2 m air
temperature (T2). Table 3 and Figure 2a–c list the statistical measures used to compare
the observed and simulated meteorological variables. R, RMSE, MB, and ME denote the
correlation coefficient, the root mean square, the mean bias, and the mean error, respectively.
The CE results of surface PM2.5 concentrations were validated with the observational data
in typical sites, and the statistical verification is shown in Table 4 and Figure 2d with the R,
RMSE, mean fractional bias (MFB), and mean fractional error (MFE).

Table 3. Statistical metrics between observed and simulated meteorological parameters averaged
over 11 typical sites during 24–26 March 2017. The “*” indicates R passed the 99.9% confidence level.

R RMSE MB ME

T2 (◦C) 0.92 * 2.71 −0.25 2.16
WS10 (m s−1) 0.65 * 2.03 0.10 1.51

RH2 (%) 0.80 * 14.11 −1.31 11.10

Figure 2. Scatter plots between observations and simulations of hourly meteorological parameters
and PM2.5 at 11 typical sites during 24–26 March 2017 (blue dots) with liner fitting lines (purple
solid lines) passing 99% significance level and 1:1 line (black dash lines) between observations
and simulations.
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Table 4. Statistical metrics of the comparisons from hourly observed and simulated surface PM2.5

concentrations at 11 typical sites during 24–26 March 2017. The “*” indicates R passed the 99.9%
confidence level.

R RMSE (μg m−3) MFB (%) MFE (%)

PM2.5 0.66 * 31.09 −21.30 33.26

Due to the different physical properties of AOD and PM2.5, there is no good linear
relationship between them [59]. Consequently, the vertically integrated concentrations of
PM2.5 above 700 hPa averaged from 24 to 26 March 2017 were compared with the MODIS
AOD shown in Figure 3b,c. The WRF-Chem simulation was evaluated to reasonably capture
the spatial distribution of AOD. Both AOD and PM2.5 concentrations increase gradually
from northern to southern YP, reaching maximum values in Laos and Vietnam near the
southeastern border of YP, and relatively large values in Beibu Gulf and Guangxi province.

Figure 3. (a) Spatial distribution of the monthly mean of MODIS AOD in 2017 over East and Southeast
Asia. (b) Spatial distribution of the daily mean of MODIS AOD and BB PM2.5 emissions from FINN
(red dots, emission rate > 3.5 μg m−3 s−1) during 24–26 March 2017 over Southeast Asia, with the
main BB emission sources marked in red rectangles and YP outlined with a bold black line. (c) Spatial
distribution of the hourly mean of PM2.5 concentrations (μg m−3) modeled from 24 to 26 March 2017
over YP and its surrounding areas; the PM2.5 concentrations were obtained by vertical integration
from 700 hPa upwards.

On the whole, the validation indicates that the meteorological variations and devel-
opment of PM2.5 concentrations were reasonably reproduced by the simulation results
of WRF-Chem during the air pollution episode, satisfying Boylan’s recommendation for
good modeling performance [60]. Thus, the WRF-Chem results could be utilized in the
investigation of the cross-border transport of PM2.5 from BB sources in Southeast Asia and
the influence on air pollution in YP, a clean region in Southwest China.

3. Results and Discussion

3.1. A Springtime Air Pollution Event Observed in YP

As shown in Figure 3a, in 2017, the AOD values were high in central-east China
compared to the low AOD values in YP and Southeast Asia. Previous studies on the
distributions of PM2.5 concentrations and AOD over China showed that the YP, which has
low PM2.5 pollution and low AOD, presents a clean atmospheric environment compared to
other regions of China [61,62].

However, against the background of such a clean atmospheric environment, an air
pollution event occurred over YP during 24–26 March 2017. Based on the observation
data obtained from CNEMC (Figure 1b) and MODIS (Figure 3b), the distribution of daily
average PM2.5 concentrations and AOD during the pollution period over YP showed
decreasing values with increasing distances to the Southeast Asian BB sources and the
uplifting topographic heights from the southern to northern YP. The red dots in Figure 3b
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show the spatial distribution of average BB PM2.5 emissions obtained from FINN during
the pollution period. There are few BB emissions in YP, whereas the three major emission-
intensive areas are in the neighboring ICP regions, which are in northern Myanmar, eastern
Myanmar, and northern Laos. We further summed the intensity of BB emissions in Domain
2 (Figure 1a) to obtain the hourly variation curve of BB emissions (Figure 4a). From 21 to
27 March 2017, the BB emission intensity and the PM2.5 concentrations in Xishuangbanna
(XSBN, site 1) showed consistent daily variations. The PM2.5 concentrations in XSBN
increased with increasing BB emission intensity (black arrows in Figure 4a). When the
intensity of BB emissions decreased and remained at a low level, the PM2.5 concentrations
also decreased rapidly. Moreover, the daily maximum PM2.5 concentrations and daily
maximum BB emission intensity also had a good one-to-one correspondence. The pollution
episode that occurred during 24–26 March over YP is in good agreement with the most
active BB activities compared to other days. The lagged correlation between BB emission
intensity and PM2.5 concentrations was further calculated with a lag time of 10 h. The
changes in the two values were estimated to have a good positive correlation (R = 0.45),
passing the significant level of 0.01, indicating the mechanism behind this pollution event
in YP has a strong link to BB emissions over ICP.

Figure 4. (a) Hourly changes in PM2.5 concentrations observed in XSBN (purple line) and BB
PM2.5 emission rate averaged in Domain 2 from FINN (red bar) The black arrows indicate the
PM2.5 concentrations increase with increasing BB emission intensity. (b) Hourly changes in PM2.5

concentrations in three downstream sites, XSBN, Yuxi, and Kunming, from 18:00 of 24 March to 06:00
of 26 March. The black arrow indicates the intervals of the lag time along with the regional PM2.5

transport from XSBN to Kunming during the air pollution episode.

It is noteworthy that the AOD reached its maximum in northern Laos and north-
western Vietnam near the southeastern border of YP (Figure 3b), which is attributed to
the convergence of the southeastern and southwestern winds (Figure 5c) and the obstruc-
tion effect of the large topographic height in both northern and eastern parts of this area
(Figure 1b). The dual effect of these two factors led to the accumulation of pollutants
because southwesterly winds prevailed in ICP and YP from the low to high altitude, and
the high mountains largely blocked the further transport of pollutants from this area to
the YP region. The present work mainly focuses on the effect of BB emissions on the air
quality of YP under the prevailing southwesterly winds. The pollution mechanism of this
high AOD area under the influence of BB emissions could be the material or objective for
further study.

To further understand the influence of prevailing southwesterly winds on the pollution
event on YP, we explored the hourly variations in PM2.5 concentrations from 18:00 h local
time on 24 March to 06:00 h on 26 March at three observational sites, XSBN, Yuxi, and
Kunming, which are in the major pollutants’ transport pathway (sites 1,4,11 in Figure 1b).
Driven by southwesterly winds, the surface PM2.5 peaks advanced northwards at 02:00
h on 25 March, from XSBN, at 10:00 on 25 March to Yuxi, and at 20:00 on 25 March to
Kunming, with a quasi-9 h time lag (Figure 4b). At 02:00 on 25 March (Figure 5a), the PM2.5
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concentrations reached more than 150 μg m−3 in many areas of ICP, and the PM2.5 in XSBN,
the southernmost border city in YP, peaked first. At this time, Yuxi and Kunming were
relatively clean, and the southwesterly winds prevailing in ICP and YP were conducive to
the cross-border transport of pollutants from the upward ICP to the downwind YP region.
About 8 h later, the pollutants were transported to Yuxi at 10:00 h on 25 March (Figure 5b).
With the strengthening of southwesterly winds, the pollutants were finally transported to
Kunming at 20:00 h on 25 March (Figure 5c), and the PM2.5 concentrations in most cities of
the central and southern YP reported an increase in PM2.5. This phenomenon reflects an
obvious characteristic of transport-type pollution events, and previous studies on transport-
type pollution events showed that pollutant concentrations have a good correlation with
wind speed [17,55]. This provided a motivation to further understand the relationship
between PM2.5 concentrations and wind speed during the pollution event that occurred
over YP, which is explained in the next sections.

Figure 5. Spatial distribution of surface PM2.5 concentrations and 10 m wind vectors simulated at (a)
02:00 of 25 March, (b) 10:00 of 25 March, and (c) 20:00 of 25 March. The purple arrows highlight the
major southwesterly winds, and the green arrow in (c) highlights the major southeasterly winds.

3.2. Correlation between Wind Speeds and PM2.5 Concentrations

The near-surface wind speeds at 10 m are correlated with the PM2.5 concentrations
over YP, and the spatial distribution of the correlation coefficients (R) is shown in Figure 6a.
The PM2.5 concentrations in XSBN, the closest site to the BB emissions in ICP, have a
significant negative correlation with wind speed, with an R-value of −0.71, passing the
significance level at 99%. This indicates that, when the near-surface wind speed increases,
more PM2.5 concentrations are exported from XSBN, presenting a similar effect over the
“source” region (SR) of PM2.5 emissions. The border sites on the southwestern part of YP,
which are close to the fire activities, all showed the similar effect. In the hinterland of YP,
which is further from the fire activities, positive correlations were observed between the
near-surface wind speeds and the PM2.5 concentrations.

Previous studies showed that a major transport channel of BB pollutants from the ICP
to southern China exists around 700 hPa [25], and the transport height is elevated with the
increase in distance between YP and ICP. Therefore, we further calculated the R between
surface PM2.5 concentrations and 700 hPa wind speed (Figure 6b), and the significant
positive correlations with R > 0.5 over the central and eastern regions of YP, where the
strong winds in the free troposphere play a crucial role in transporting air pollutants to
the surface. As a result, these areas are depicted as a “receptor” region (RR) in regional
PM2.5 transport, which is in good agreement with the study of Yu et al. [55]. The specific
mechanisms of air pollution that occurred in the “source” and “receptor” regions in the
regional PM2.5 transport are described in the following sections.
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Figure 6. Spatial distribution of correlation coefficients (R) between surface PM2.5 concentrations
and (a) 10 m wind speed and (b) 700 hPa wind speed in sites over YP (scatters), and distribution
of averaged (a) 10 m wind fields and (b) 700 hPa wind fields during 24–26 March 2017. The blue
and red rectangles in both (a,b) represent SR and RR, respectively. The red dots are the same as in
Figure 2b. The “*” indicates R passed the 99% confidence level.

3.3. The Different Mechanisms of PM2.5 Pollution in SR and RR

For XSBN, the representative site in SR, the pollution episode is divided into three
periods (Figure 7a), namely the formation period (P1), the maintenance period (P2), and
the dissipation period (P3). In P1, the weak wind speed decreased, the boundary layer
height was mostly below 1000 m, and the PM2.5 concentrations increased rapidly. Previous
studies showed that the transport distance plays a significant role in the regional transport
of PM2.5 from BB emissions. On strong BB days, the mean PM2.5 concentrations increase
sharply when the distance between the source region and the downwind region is less than
100 km [63]. Meanwhile, Figure 4a shows a synergistic daily variation in PM2.5 in XSBN
and BB emission intensity in ICP bordering YP. As a result, the BB emissions can affect
the PM2.5 concentrations in XSBN under the weak wind speed and low boundary layer
height. The PM2.5 emitted from fire activities is also transported over XSBN by channels
at high altitudes. The boundary layer height begins to increase in the second half of P1,
once above 3000 m, which is conducive to the development of turbulence. The turbulence
further promotes the vertical mixing of PM2.5 and facilitates the diffusion of PM2.5 from
high altitude to the ground, further aggravating the pollution.

 
Figure 7. Hourly variations in PM2.5 concentrations (red lines), wind speed (WS, blue lines), and
planetary boundary layer height (PBLH, black lines) at two representative sites: (a) XSBN in SR and
(b) Kunming in RR, from 16:00 of 24 March to 03:00 of 26 March. P1, P2, and P3 indicate the formation,
maintenance, and dissipation periods of the air pollution episode, respectively.

In P2, the fire activities ended in ICP (Figure 4a), and the vertical mixing process was
weakened simultaneously with decreasing boundary layer height. However, the PM2.5
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concentrations decreased slowly with the decreasing wind speed and boundary layer height.
Hence, XSBN shows a stable meteorological condition that is conducive to the maintenance
of air pollution [64,65]. Under this condition, the PM2.5 concentrations were continuously
over 150 μg m−3 and the PM2.5 residue lies on the surface. In P3, the wind speed and
boundary layer height increased simultaneously; as a result, the PM2.5 concentrations
decreased rapidly under the dual effect of horizontal and vertical diffusion. This resulted
in the end of P2. To summarize, the changes in PM2.5 in XSBN are mainly affected by BB
emissions, stagnant meteorological conditions, vertical mixing, and strong winds.

In Kunming, the representative site in RR (Figure 7b), although the PM2.5 concen-
trations increased during the event, the air quality still maintained a good level, which
is closely related to the fact that the site is far away from fire activities. In this area, me-
teorological conditions play a major role in controlling the PM2.5 changes under specific
processes. Kunming only experienced two periods i.e., the P1 and P3. With increasing
wind speed and boundary layer height, the prevailing southwesterly winds transported
PM2.5 over Kunming and then increased the ground PM2.5 concentrations through vertical
mixing of turbulence. After that, with decreasing boundary layer height and wind speed,
the vertical mixing effect diminished, and the PM2.5 concentrations decreased. As a result,
the changes in PM2.5 in Kunming were mainly affected by the regional transport of PM2.5
due to strong winds and vertical mixing.

3.4. Patterns of Regional PM2.5 Transport to Different YP Sites

The representative SR and RR sites in the border and hinterland of YP, XSBN, and Kun-
ming, respectively, were selected to estimate the contributions of regional PM2.5 transport
to air pollution in YP. The estimation was based on the air particle residence time during the
pollution period simulated by the FLEXPART-WRF model and three air pollutant emission
inventories described in Section 2.3.2. Each simulation was run for a 48-h rearward trajec-
tory of 50,000 air particles being released from two sites, and the air particle residence time
was calculated in a 0.1◦ × 0.1◦ horizontal spatial resolution. The air particle residence time
was further multiplied with the PM2.5 emission fluxes from three air pollutant emission
inventories to quantify the contribution of regional PM2.5 transport to PM2.5 concentrations
over the YP. Detailed methods can be found in Chen et al. [57] and Yu et al. [55].

Governed by the prevailing southwesterly winds, the regional transport of PM2.5 from
the BB emission source regions in ICP provided a significant contribution to the elevated
PM2.5 concentrations over XSBN and Kunming during 24–26 March 2017 (Figure 8). For
XSBN, the major pathway is the southwesterly route from southern and eastern Myanmar,
wherein the eastern regions of Myanmar bordering XSBN contribute the most. For Kun-
ming, the PM2.5 concentrations are dominated by multiple sources, and the major pathway
is the southwesterly route from eastern Myanmar. Moreover, there are two additional
minor sources from the northern regions of ICP bordering YP and the domestic area in
the east of Kunming. The short-range transport of PM2.5 has a major impact on PM2.5
concentrations over XSBN, whereas the PM2.5 concentrations over Kunming are dominated
by the long-range transport of PM2.5.

3.5. Contribution of BB Emissions to PM2.5 Concentrations over YP

The contribution rates of BB emissions to PM2.5 concentrations in YP were quantita-
tively estimated by Equation (1). The spatial distribution of the contribution rates to surface
PM2.5 concentrations in YP sites (Figure 9a) is highly similar to the distribution of PM2.5
concentrations in Figure 1b. The contribution rates gradually decrease along the transport
pathway following the lifting plateau topography in YP. The regional average contribution
rate over SR is larger than that in RR, with a difference of 23% (Table 5), and the regional
average contribution rate over the whole YP is up to 69%. Three sites with low contribution
rates (below 50%) are identified as Yuxi (site 4), Kunming (site 11), and Qujing (site 12). In
Yuxi and Kunming, which are the industrial cities of YP, the local anthropogenic emissions
are relatively higher, causing the reduction in BB contributions to PM2.5 concentrations. For
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Qujing, the farthest city from BB emission sources, the long transport distance and greater
topography height reduce the impact of BB contributions to local PM2.5 concentrations.
However, the contribution rate is still up to 41% against the clean background, which
further confirms the important impact of BB emissions on the air quality over YP.

Figure 8. Spatial distribution of contribution rates (color contours) to PM2.5 concentrations in (a)
XSBN and (b) Kunming with the major pathways of regional transport (red dash arrows) simulated
by the FLEXPART-WRF model from 08:00 of 24 March to 08:00 of 26 March.

 

Figure 9. Spatial distribution of the contribution rates of BB emissions to PM2.5 concentrations at
12 sites (the numbers 1–12) over YP: (a) at the surface and (b) at 700 hPa.
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Table 5. Regional average contribution rates of BB emissions over the Southeast Asian region to
PM2.5 concentrations at the surface and 700 hPa over SR and RR, and the regional average increments
from the surface to 700 hPa in the two regions.

SR RR

Surface 79% 56%
700 hPa 94% 90%

Increments 16% 34%

The pollutants from BB emissions have a characteristic of vertical distribution. As a
result, the contribution rates of BB emissions to PM2.5 concentrations at 700 hPa were further
analyzed (Figure 9b). Two distinctive features can be noticed: (1) The contribution rates in
most sites and the regional average contribution rate of YP increase with increasing altitude.
However, the increments in the SR sites are much smaller than those in RR, wherein the
regional average increment in SR is 16% from surface to 700 hPa, whereas that in RR is
34% (Table 5). The regional PM2.5 transport at high altitudes has a larger impact on RR
sites, which is consistent with the pollution mechanism discussed in Section 3.3. (2) In Yuxi
and Kunming, where the contribution rates of BB emissions to PM2.5 concentrations at the
surface are relatively small, the contribution rates increase more than 50% from the surface
to 700 hPa, indicating that BB emissions have a much greater impact on high-altitude PM2.5
concentrations than anthropogenic emissions.

Moreover, the regional average contribution rate over SR is larger than that in RR at
both the surface and 700 hPa (Table 5), but the difference between SR and RR (SR minus
RR) at the surface (23%) is much greater than that at 700 hPa (4%) due to the obstruction
effect of topographic height along the transport pathway. The contributions of regional
transport of PM2.5 from BB activities decrease with increasing transport distance, reflecting
an important role of transport distance between the source–receptor areas in changing the
air pollution.

4. Conclusions

Using MODIS remote sensing products and ground-based observations, and conduct-
ing model simulations with WRF-Chem and WRF-FLEXPART, the present study examined
an air pollution event that occurred over YP, resulting from the cross-border transport of
PM2.5 due to BB activities from ICP to YP. The aim was to explore how BB emissions in ICP
affect the air quality in the neighboring YP.

Under the prevailing southwesterly winds, the BB sources in ICP have different im-
pacts on the PM2.5 concentrations over SR and RR. XSBN and Kunming, the representative
sites in SR and RR, respectively, have distinct mechanisms enhancing PM2.5 concentrations
of air pollution. The SR site is mainly affected by Southeast Asian BB emissions with local
accumulation in the stagnant meteorological conditions, whereas the RR site is dominated
by the regional PM2.5 transport with strong winds and vertical mixing. XSBN and Kunming
also have different major pathways of regional PM2.5 transport. The PM2.5 concentrations in
XSBN are mainly affected by short-range transport of PM2.5, whereas long-range transport
of PM2.5 plays a dominating role in Kunming. The regional average PM2.5 contributions of
ICP BB emissions to surface PM2.5 over SR is larger than that in RR, with a difference of
23%; in addition, the regional average increments in the contribution from the surface to
700 hPa are 16% in SR and 34% in RR. It is revealed that the large PM2.5 contributions of
ICP BB emissions lift from the lower altitudes in SR to the higher altitudes in RR in regional
PM2.5 transport. Moreover, the contributions of regional transport of PM2.5 decrease with
an increase in transport distance, reflecting an important role of transport distance between
the source–receptor areas in changing the scenario of air pollution.

Based on the investigation of a springtime air pollution event in YP, which differs
from other regions such as Eastern China where pollution events happen frequently, the
study revealed the underlying mechanism of the pollution episode in YP and the extent to
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which the regional transport of PM2.5 from BB emissions affects PM2.5 concentrations in
YP. However, the MIX anthropogenic emissions in YP and ICP were produced based on
data from 2010, which contain more uncertainties compared to those of Eastern China. As
a result, future studies involving air pollution simulations can be greatly enhanced by a
more accurate emission inventory. To further understand the mechanisms in the regional
transport of PM2.5 from BB activities, future exploration can be conducted with the support
of multi-source satellite data, long-term ground observations, and a modeling study with
refined model schemes and data assimilation.
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Abstract: Wastewater treatment plants (WWTPs) are sources of greenhouse gases, hazardous air
pollutants and offensive odors. These emissions can have negative repercussions in and around the
plant, degrading the quality of life of surrounding neighborhoods, damaging the environment, and
reducing employee’s overall job satisfaction. Current monitoring methodologies based on fixed gas
detectors and sporadic olfactometric measurements (human panels) do not allow for an accurate
spatial representation of such emissions. In this paper we use a small drone equipped with an array
of electrochemical and metal oxide (MOX) sensors for mapping odorous gases in a mid-sized WWTP.
An innovative sampling system based on two (10 m long) flexible tubes hanging from the drone
allowed near-source sampling from a safe distance with negligible influence from the downwash
of the drone’s propellers. The proposed platform is very convenient for monitoring hard-to-reach
emission sources, such as the plant’s deodorization chimney, which turned out to be responsible
for the strongest odor emissions. The geo-localized measurements visualized in the form of a two-
dimensional (2D) gas concentration map revealed the main emission hotspots where abatement
solutions were needed. A principal component analysis (PCA) of the multivariate sensor signals
suggests that the proposed system can also be used to trace which emission source is responsible for
a certain measurement.

Keywords: drone; UAV; gas sensors; odour; air pollution; industrial emissions; mapping; environ-
mental monitoring

1. Introduction

The monitoring of emissions to air is a key element in preventing and reducing pollu-
tion from industrial installations, in ensuring a high level of protection of the environment,
and in minimizing odor impact to the surrounding population. Industrial activities such
as production of energy, intensive rearing of poultry and pigs or waste management are
sources of greenhouse gases (GHGs), hazardous air pollutants (HAPs) and offensive odors.
In 2017, emissions from waste management sites made up 3% of total GHG emissions and
5% of particulate matter (PM) emissions in Spain [1]. These facilities are also responsible
for many citizen complaints to the local authorities regarding odor annoyance episodes [2].
The objectives of monitoring are many and diverse. For example, monitoring can be applied
to assess compliance with environmental permit requirements; check the performance of
odor abatement systems; determine the relative contribution of different sources to the
overall emissions; report emissions for national and international inventories, e.g., the
Pollutant Release and Transfer Registers (PRTRs); and many others [3].
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In Europe, industrial air emissions are regulated by the Industrial Emissions Directive
2010/75/EU (IED) [4]. The IED and national regulations impose requirements on the
monitoring approach to be used for a particular installation, for example the requirement
for continuous monitoring of certain pollutants with specific instruments. The accepted
monitoring methodologies and reference instruments for each type of gas are described in
the Best Available Technique (BAT) document [5]. The quantification of the total emissions
of an installation often requires the assessment of channeled (point-like) emissions and
diffuse emissions including fugitive emissions. Channeled emissions are relatively easy to
monitor with automated measuring systems (AMS) permanently installed on-site. How-
ever, the quantification of diffuse emissions might not be easy with AMS and is, in general,
labor- and cost-intensive due to the number of potential sources.

To simplify the measurement of diffuse emissions, the European IED specifies that
“measurements techniques based on the use of a transportable measurement platform, despite
being less accurate than reference methods, may be used to supplement the information supplied
by fixed measurements for the determination of the spatial concentration distribution or for the
assessment of diffusive gas emissions”. The advantage of a portable instrument over a set of
fixed analyzers installed on different locations of the plant is the lower investment and
operational costs, as well as higher spatial resolution of the measurements. However,
manually scanning an entire plant with a portable instrument is a tedious and risky task.
The use of terrestrial robots may seem the most obvious solution to this problem, however
their limited maneuverability hinders their practical application in realistic scenarios which
often include obstacles (e.g., buildings, stairs, trees, etc.) and elevated emission sources
(e.g., chimneys, flares).

Aerial surveys with small drones (<10 kg) equipped with gas detectors are a promising
cost-effective and safe alternative for emission monitoring in industrial plants [6]. Both
fixed- and rotary-wing drones can be used, however rotorcrafts are preferred for this
application due to key practical advantages such as vertical take-off and landing (VTOL),
autonomous hovering, high maneuverability, and low cruise speed. Drones equipped
with laser-based methane detectors have been demonstrated with great success in the
oil and gas (O&G) industry, e.g., for quantifying whole-site methane emissions [7] and
detecting fugitive methane leaks [8–10]. The main O&G companies are already testing this
technology in their plants [11–13]. Similar platforms have been recently used in solid waste
landfills (SWLs) for identifying surface methane hotspots [14].

Wastewater treatment plants (WWTPs) are another scenario where small drones could
improve the monitoring of plant emissions/odors. To the best of our knowledge, there are
no reports of drones being used for emission monitoring or odor sensing of WWTPs. In
this case, the major emission problem is not methane, but odorous compounds produced
during wastewater treatment, such as hydrogen sulfide (H2S), ammonia (NH3), mercaptans,
or volatile organic compounds (VOCs) which can produce odor impact in workers and
communities living nearby these facilities, even at low concentration levels [3]. Current
odor assessment methodologies in WWTPs are mostly based on walkover surveys with
portable H2S detectors or via olfactometric measurements involving expensive human
panels, which leads to odor measurements with poor temporal and spatial resolution. The
idea of using drones to monitor odorous emissions in WWTPs is very interesting because
they can measure the concentration of key odorous compounds in different locations of the
plant including hard-to-reach locations, and with higher spatial resolution, less risk, and
lower cost than existing methods. This information can then be used by plant operators for
(i) feedback into the industrial processes, (ii) as input for atmospheric dispersion models to
estimate the odor emission rate and then to predict odor impact in the plant vicinity, and
(iii) to identify fugitive emissions.

The two main challenges associated with the application of drones for monitoring
emissions in WWTPs are (i) the lack of reliable and lightweight sensors to detect the rele-
vant compounds and (ii) the plume distortion produced by the downwash of the rotating
propellers. While methane can be selectively detected with laser-based spectrometers
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amenable for drone integration, detection of H2S, NH3 or VOCs at the required concen-
tration levels is yet not feasible with lightweight optical analyzers. In this case, the most
straightforward approach is to use low-cost chemical sensors, such as electrochemical
cells (EC) or metal oxide (MOX or MOS) sensors, which inherently have limited perfor-
mance [15]. Electrochemical sensors offer decent selectivity (though not comparable to
optical analysers) for compounds such as CO, SO2, NH3 or NO/NO2 (among many others)
and are often the technology of choice when any of these compounds is targeted [16].
MOX sensors operating in the (default) isothermal mode are not selective but are more
sensitive, faster, and cheaper than electrochemical cells [17]. These features make them very
popular in robotic studies addressing gas source localization and mapping tasks [18–20]
where selectivity is not critical because artificial gas sources releasing a single compound
(typically ethanol) are normally used.

Up to now, the use of drones fitted with low-cost chemical sensors has been mostly
explored in relatively simple scenarios, such as indoor areas [19] or outdoor environ-
ments [21,22], using artificial gas sources. A few exceptions exist at the industrial and
academic level. For example, Aeromon (Helsinki, Finland) has been regularly using their
BH-12 multi-sensor system (based on electrochemical cells) for monitoring the emission per-
formance of vessels and checking compliance with the new emission regulations regarding
fuel sulfur content (FSC). The DR1000 “Flying Lab” from Scentroid (Whitchurch-Stouffville,
ON, Canada), which uses EC and MOX sensors, has been used for monitoring the quality
of fuel used for domestic heating in Poland. The recently announced Muve C360 from
FLIR Systems (Wilsonville, OR, USA) is a multi-gas detector completely integrated in a DJI
M210 drone for emergency responders, industrial safety, and environmental monitoring.
At the research level, drones equipped with electrochemical sensors have been used for
atmospheric research studies, e.g. analysing the composition of volcanic plumes [23],
among other applications [6].

Despite the many advantages offered by rotorcrafts, the intense downwash generated
by the propellers is a main problem for chemical sensing applications in which the drone
has to fly close to point or surface emitters. In these cases, the downwash strongly distorts
the gas distribution, leading to gross errors in the sensor readings. This is a well-known
problem that has received lots of attention from the research community. The downwash
has been simulated by numerical methods (e.g., computer fluid dynamics, CFD) and empir-
ically characterized using smoke tracers, anemometers, and particle tracking velocimetry
(PTV) [6]. These studies show that the downwash is particularly strong in the vertical axis
underneath the drone where its influence can extend up to several meters (depending on
the drone´s take-off weight).

The downwash is the main factor to be considered in the design of gas sampling
systems for drones, or for optimizing sensor placement, especially for point-like sensors or
closed-path optical analysers. Although the sensing elements can be directly exposed to
the air sample, it is more convenient to place them in a sensor chamber with an aspiration
system. This provides more flexibility regarding the sampling point and more control in
the sample delivery. The few existing commercial systems using low-cost sensors (e.g.,
Aeromon BH-12, Scentroid DR1000 and FLIR Muve C360) implement a rigid horizontal
sampling tube (1–2 m length) to aspirate the gas sample from outside the rotors’ influence
zone [23,24]. This type of boom is very convenient for monitoring elevated and channeled
sources, such as chimneys or flares, but has practical inconveniences for diffusive area
sources such as those encountered in WWTPs. In this case, the problem is that a drone
implementing a rigid horizontal probe would have to fly very close to the ground or nearby
obstacles to sample the space directly above the source, which is risky and leads to a strong
mixing (dilution) of the emissions because of the downwash.

The goal of our current research is to develop a drone to monitor and map odorous
emissions in WWTPs. For that, we use a commercial drone (DJI Matrice 600) fitted with
a custom payload based on an array of low-cost gas sensors (electrochemical and MOX
sensors) and an innovative sampling system consisting of an aspiration pump connected
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to a 10-m sampling tube suspended from the drone. This system allows the drone to
sample the emission sources with negligible effect from the downwash and, at the same
time, fly at sufficient height above the obstacles to minimize the operational risks. This
paper presents the first preliminary set of experiments carried out in a real WWTP in
Murcia (Spain). The objectives of these initial measurements are to (i) check if the signals
recorded by the drone are consistent with the expected concentrations based on previous
measurements with hand-held detectors; (ii) build rough concentration maps of the most
relevant compounds to understand their spatial distribution and identify the emission
hotspots; and (iii) assess if the different emission sources can be identified based on the
multivariate patterns produced by the sensor array. We will discuss some of the challenges
encountered during these tests, and how future developments could overcome them.

2. Materials and Methods

2.1. Test Site

Field measurements were carried out in the WWTP of Molina del Segura (Murcia,
Spain), which is operated by Depuración de Aguas del Mediterráneo (DAM). The plant
(Figure 1) has an extension of 35,000 m2 and serves a population of 290,000 inhabitants.
Five emission sources (settler stage A, bioreactor stage A, sludge hoppers, sludge thickener,
and deodorization chimney) were suggested by the plant manager as elements with the
highest emissions based on previous measurement campaigns using hand-held detectors
and olfactometric campaigns (human panels). Therefore, the aerial mapping was focused
on a region of ~4500 m2 centered around these sources. An ultrasonic anemometer (Model:
WindSonic, Gill Instruments, Lymington, UK) placed at 10 m a.g.l. in a clear area without
nearby obstacles continuously measured wind speed and direction.

Figure 1. Map of the WWTP of Molina del Segura with the five main emission sources highlighted in red. The aerial
mapping was focused on a 4500 m2 squared region centered around these sources.

2.2. Drone and Payload

A rotary-wing drone was selected for this application due to its ability to hover, slow
flight speed and vertical takeoff and landing (VTOL). These characteristics are essential for
close-up monitoring of emission sources, safe navigation around the plant infrastructure,
and high-resolution mapping. The selected drone was the Matrice 600 Pro (DJI Interna-
tional, Nanshan, Shenzhen, China) which has a high payload capacity (6 kg) and allows
for a flight time between 15 min (fully loaded) and 30 min (unloaded). The drone was
equipped with a custom gas sensing payload (Figure 2) composed of a custom-made elec-
tronic nose (e-nose) and a commercial multi-gas analyzer Dräger X-am 8000 (Drägerwerk
AG, Lübeck, Germany).
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Figure 2. DJI Matrice 600 Pro drone equipped with a custom e-nose and a Dräger X-am 8000 analyzer.
The inlets of both systems are connected to 10-m PTFE tubing.

Both sensor systems were attached underneath the drone using a custom mounting
plate, and their inlets were connected to 10-m PTFE tubing (hanging vertically from the
drone) to sample the region below the drone where the downwash has disappeared or
it is greatly reduced. The required length of the tubing was determined by measuring
the downwash influence with a hand-held anemometer placed below the loaded drone
while it was hovering at multiple altitudes. We prefer this sampling approach over the
horizontal tube because it allows the drone to fly over obstacles without risk. However,
using a long sampling tube also has practical problems: (i) a delay in the measurements
due to the sample transport, (ii) memory effects if some gases stick to the tubing walls, and
(iii) tilt of the tube due to wind or drone motion. The delay in the measurements and the
tilt of the tube lead to inaccuracies in the GPS marking of the sensor signals. To solve these
issues we attached a weight of 150 g to the end of the tube as a plumb bob (to keep the tube
as straight as possible during flight) and compensated the delay via software.

Regarding the e-nose architecture (Figure 3), it contains an array of 16 MOX sensors
(several TGS models, Figaro Engineering Inc., Osaka, Japan) operated at various tempera-
tures, a combo sensor for temperature, humidity and pressure, a flow sensor, GPS receiver,
and long-range ZigBee 868 MHz radio communication. The specifications of the e-nose
sensors are summarized in Table 1. A microcontroller reads the sensor signals and the GPS
position, and sends them to the base station through the radio link at a sampling frequency
of 0.2 Hz. A miniature pump delivers the gas flow to the sensing chamber at a flow rate of
1.8 L/min. Power is provided by a 7.4 V lithium polymer (LiPo) battery with 2200 mAh of
capacity, allowing continuous operation for approximately 2 h. The weight of the e-nose
including the battery is ~1200 g.

Figure 3. Internal architecture of the electronic nose.
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Table 1. Sensors included in the electronic nose.

Parameter Sensor Type Range Accuracy

VOCs 16× Metal oxide sensors - -
Temperature MEMS 40 to +85 ◦C ±1 ◦C

Humidity MEMS 0 to 100% RH ±3% r.h.
Pressure MEMS 30 to 110 kPa ±0.1 kPa
Flow rate Thermal 0 to 33 L/min ±3% m.v.

The Dräger X-am 8000 is equipped with four electrochemical sensors (for H2S, NH3,
mercaptans and amines), a photo-ionization detector (PID) for quantifying total VOCs,
an internal pump, an integrated battery, and weighs 550 g (Table 2). The sensor data are
logged every second in an internal memory which can store up to 210 h of measurements.

Table 2. Sensors included in the Dräger X-am 8000 analyzer.

Parameter Sensor Type Range Accuracy

H2S Electrochemical cell 0 to 100 ppm ±0.1 ppm
NH3 Electrochemical cell 0 to 300 ppm ±1 ppm

Amines Electrochemical cell 0 to 100 ppm ±1 ppm
Mercaptans Electrochemical cell 0 to 40 ppm ±0.5 ppm

VOCs Photo-ionization detector 0 to 2000 ppm ±0.1 ppm

2.3. Experimental Protocol

All measurements were carried out in a single day. The e-nose sensors were preheated
for 24 h before the start of the measurements to stabilize the sensors’ baseline. At the
beginning of the experiment the drone was positioned near the entry of the plant (P0 in
Figure 1), where no odor was perceivable, and measurements were taken for 7 min to
determine the sensors’ baseline. The drone took off from there and scanned the target
area slowly at a height of approximately 12 m, keeping the inlet of the sampling tube as
close as possible to the emission sources. The drone hovered for 5–7 min at each of the five
emission sources (highlighted in Figure 1) to capture the variability of the gas concentration
over time. The whole experiment took slightly less than 2 h to complete, which required
multiple sets of drone batteries.

2.4. Data Processing and Visualization

A laptop computer with a ZigBee 868 MHz radio antenna and a custom software
application developed in MATLAB R2019B (The MathWorks, Natick, MA, USA) was
used as base station to receive and log in real-time the data from the e-nose (timestamp,
sensor signals and GPS position). The measurement data stored in the internal memory
of the Dräger X-am 8000 (timestamp and sensor signals) was downloaded into the base
station at the end of the flight (no radio link available for this device). Data from both
instruments were merged into a single file, using linear interpolation (MATLAB interp1)
to synchronize the data to a common timestamp. Each entry of the log file is a tuple
(t, x, y, z, c1, . . . , c5, s1, . . . , s16) where t is the timestamp, x, y, z the spatial coordinates,
c1, . . . , c5 the concentration (ppmv, parts-per-million in volume) of the five gases measured
by the Dräger X-am 8000, and s1, . . . , s16 the MOX sensor resistances (Ω).

For data visualization, we used MATLAB and the Google Maps Javascript API to
produce a heatmap visualization of the geolocalized raw sensor data. In addition, a
principal component analysis (PCA) was used to visually determine if the different emission
sources could be clustered based on the sensor responses. For that, a PCA model with three
principal components was applied to the e-nose signals after logarithmic transformation
(to reduce the dynamic range and improve normality) and mean-centering. The PCA
modelling was done also in MATLAB.
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3. Results and Discussion

3.1. Weather Conditions

The weather conditions during the field measurements were favorable, with clear sky,
temperature between 18 and 20 ◦C, and 50% relative humidity. The wind direction was
predominantly north-west, with average wind speed of 10–15 km/h, and gusts of up to
50 km/h (Figure 4). The effect of wind on the sampling tube can be observed in Figure 5,
which shows pictures of the drone hovering above the five emission sources. For example,
while measuring at the settlers (P1) and the deodorization chimney (P4) the drone had to
be positioned slightly upwind to compensate the tilt of the sampling tube. The GPS signal
reception was good throughout the experiment, with more than 12 satellites in line-of-sight
(LOS) with the drone.

Figure 4. Wind speed and direction during the field measurements.

Figure 5. Drone hovering over the selected emission sources (P1–P5).
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3.2. Gas Concentration Measurements

The raw sensor signals throughout the experiment are shown in Figure 6. The highest
gas concentrations were recorded near the bioreactor stage A (P2) and the deodorization
chimney (P4). The high variability of the sensor signals at the chimney is a consequence
of the oscillations of the sampling tube around the chimney outlet due to the wind. The
oscillations of the sampling tube were less problematic in the area sources because, since
the concentration is more homogeneous, the exact location of the sampling point is not as
critical as in ducted (point-like) sources. Very low concentration of all gases was measured
near the settlers (P1) despite a strong malodor could be appreciated near this site. Only the
response of the MOX sensors was distinguishable from the blank measurements, which
may indicate that odor from this source was produced mostly by VOCs rather than by H2S
or NH3. A peak of 100 ppm of CO2 above the background level was measured near the
sludge hoppers (P3) during sludge discharge into a truck. Finally, low concentrations were
measured at the sludge thickener (P5) probably because it was covered.

Figure 6. Raw sensor signals during the field measurements.

The measured concentrations were in line with the expected values based on previous
measurement campaigns carried out at the same emission sources with a hand-held X-
am 8000 detector (Table 3). It is not surprising that the measured values during a single
day in very specific conditions (e.g., drone flight) differ from values obtained in other
measurement campaigns carried out at a different date. This is because the pattern of
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emissions in a WWTP is not stationary and there is a large variability in the emissions
depending on process factors (e.g., quality of influent water and flow rate) but also on
environmental conditions (wind, temperature, humidity, precipitation, etc.). There are also
seasonal trends. Thus, the recorded signals only represent the emissions during the time
of sampling. A comprehensive characterization of the emissions, which would require
a much more elaborated measurement campaign spanning several months, was out of
the scope of this preliminary measurements. Similarly, a precise characterization of the
uncertainty associated with the drone measurements is also subject of future experiments.
The goals of this preliminary work were less ambitious, e.g., showing that drone-based
measurements using the proposed sampling approach provide sensible signals.

Table 3. Comparison between drone-based measurements and those performed with a hand-held
X-am 8000 detector near the same emission sources.

Drone Hand-Held Detector

H2S 0–10 ppm 0–100 ppm
NH3 0–10 ppm 0–30 ppm

Amines 0–65 ppm 0–70 ppm
Mercaptans 0–1.5 ppm 0–1 ppm

VOCs 0–15 ppm 0–14 ppm

It should be noted that while the recorded signals give a clear indication of the char-
acteristics of emissions in the different sources, their exact values are subject to various
sources of uncertainty. While low-cost sensors can provide relatively good results in the
laboratory, their application in field conditions remains challenging. First of all, because
the sensors react not only to the target gas but also to interfering compounds. For ex-
ample, the response of an H2S electrochemical sensor is affected by the presence of SO2
or NH3 because of matrix effects. Uncontrolled or unknown variations in temperature,
humidity, and pressure can also affect the sensor signals, as can overheating due to direct
sunlight exposure. Strong winds also affect the measurements due to the oscillations of the
sampling line.

3.3. Gas Concentration Mapping

The sensor data was used to produce heatmaps indicative of the concentration of
each gas. An example of an H2S map is shown in Figure 7. As it was expected from the
analysis of the raw sensor signals, the H2S concentration hotspots are located near the
bioreactor stage A (P2) and the deodorization chimney (P4). These hotspots are shifted
a few meters with respect to the location of the emission sources due to the inaccuracy
of the GPS position (±3 m), the effect of wind on the gas dispersion, and the tilt of the
sampling tube with respect to the vertical axis of the drone where the GPS receiver is
located. This latter effect can be clearly seen in Figure 5 when the drone is sampling the
chimney. In order to keep the inlet of the sampling tube centered above the chimney, the
drone must be positioned a few meters upwind to compensate for the effect of wind on the
tubing. Because the GPS receiver is placed on the drone and not at the inlet of the tube, the
recorded position indicates the location of the drone and not the location where the gas is
being sampled. This could be solved in the future by either placing the GPS receiver at the
inlet of the tubing or using an on-board camera to track the position of the sampling inlet
and compensate the offset via software.
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Figure 7. Map of H2S concentration obtained from drone measurements.

3.4. Gas Source Identification

One research question of this work is whether the different emission sources could
be distinguished based on the e-nose signals. A PCA score plot of the signals recorded
while the drone was hovering over the sources revealed that this is indeed the case,
and the different emission sources are clustered in different regions of the PCA space
(Figure 8). This suggests that each source has a different gas composition, so the e-nose
could be potentially used to identify which source is responsible for a certain measurement.
Even the settler (P1) and sludge thickener (P5) could be differentiated from the blank
measurements (P0) despite the gas concentrations measured at these sources were very
close to the baseline level. This result, which may be a consequence of the low limit of
detection (LOD) of MOX sensors, should be confirmed with more measurement campaigns
and using external validation (blind) samples.

Figure 8. Principal component analysis (PCA) score plot of the e-nose signals.

4. Conclusions

This study has explored the possibility of using a small drone equipped with an array
of low-cost gas sensors for real-time monitoring of odorous emissions in a WWTP. The
drone was equipped with an innovative sampling system that allowed the drone to fly
at a safe distance from obstacles and minimize the impact of downwash into the sensor
signals. The proposed system was useful to measure gas concentrations near previously
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inaccessible emission sources, such as the deodorization chimney, which turned out to be
the main odor source in this plant. The geolocalized sensor signals were used to build H2S
concentration maps that highlighted the location of the main emission hotspots.

During these field measurements we faced several challenges that affect the operation
of the drone and the quality of the acquired data. The main challenge was the presence
of strong winds which affected the drone stability, made the sampling tube oscillate
considerably, and induced a high variability in the spatial distribution of the released gases.
Adding a weight at the end of the sampling line improved the stability of the measurements.
Flying above the obstacles was key to minimize the operational risks considering the strong
and unpredictable wind gusts present in our flights. Real-time visual feedback from the
sensor signals was very helpful for fine-tuning the position of the sampling inlet close to the
different emission sources (especially channeled sources). Nonetheless, the geolocalization
of the sensor measurements was inaccurate under strong winds because the GPS receiver
and the inlet of the sampling line were not necessarily in the same vertical axis. Two
possible solutions to improve this in future experiments are (i) to place the GPS receiver at
the inlet of the tubing or (ii) using an on-board camera to track the position of the sampling
inlet and compensate the GPS offset via software.

Another problem that we want to address in future works is the quantification of
odor concentration (e.g., in standardized units such as ou/m3 [24]) from drone-based
measurements. This is much more challenging than quantification of individual gas
concentrations, as the relationship between the components of a gas mixture and the
perceived odour concentration is non-linear and subject to synergic and masking effects [25].
We also plan to combine the drone measurements with atmospheric dispersion models,
such as CALPUFF [26], to predict the impact outside of the plant. The proposed platform
could be applied in the future to other industrial sectors, such as solid waste landfills,
composting plants, and animal farms.
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Abstract: A lockdown was implemented in Canada mid-March 2020 to limit the spread of
COVID-19. In the wake of this lockdown, declines in nitrogen dioxide (NO2) were observed from
the TROPOspheric Monitoring Instrument (TROPOMI). A method is presented to quantify how
much of this decrease is due to the lockdown itself as opposed to variability in meteorology and
satellite sampling. The operational air quality forecast model, GEM-MACH (Global Environmental
Multi-scale - Modelling Air quality and CHemistry), was used together with TROPOMI to determine
expected NO2 columns that represents what TROPOMI would have observed for a non-COVID
scenario. Applying this methodology to southern Ontario, decreases in NO2 emissions due to the
lockdown were seen, with an average 40% (roughly 10 kt[NO2]/yr) in Toronto and Mississauga and
even larger declines in the city center. Natural and satellite sampling variability accounted for as
much as 20–30%, which demonstrates the importance of taking meteorology into account. A model
run with reduced emissions (from 65 kt[NO2]/yr to 40 kt[NO2]/yr in the Greater Toronto Area) based
on emission activity data during the lockdown period was found to be consistent with TROPOMI
NO2 columns.

Keywords: air pollution; TROPOMI; COVID; nitrogen oxides

1. Introduction

The outbreak of Coronavirus disease in late 2019 (COVID-19) reached Canada in early 2020,
with the first Canadian COVID-related death reported in early March 2020 [1]. By mid-March,
provinces were beginning to limit the size of gatherings and initiating an overall lockdown of their
populations. In Ontario, the lockdown was announced on 16 March 2020. This greatly disrupted
traffic patterns, with traffic density observed to decrease by roughly 50–60% by early April [2].
Travel restrictions also greatly curtailed air travel. These circumstances provided a unique and
unprecedented natural experiment where emissions patterns were rapidly and drastically altered,
especially in southern Ontario, home to the Greater Toronto Area (GTA), the most populous urban area
in Canada [3]. The GTA consists of the City of Toronto and four surrounding regional municipalities
(see Supplement Material Figure S1) and includes many limited-access highways and expressways,
rail lines, and Toronto Pearson International Airport, Canada’s busiest airport [4]. Its population in
2016 was over 6.4 million [3]. Ultimately, changing emissions in the GTA and the rest of southern
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Ontario associated with the pandemic allow for testing and refining of emissions from different sectors,
most notably those from vehicle traffic.

One pollutant that is associated with combustion processes such as vehicle traffic is nitrogen
dioxide (NOx = NO2 + NO). NOx has adverse effects on human and environmental health: it is a key
ingredient in smog, as precursors to both ozone and particulate matter, and can contribute to acid
deposition. NOx concentrations strongly correlate with local emission sources due to its short lifetime
of a few hours [5,6] and, because of the high and localized enhancements compared to background
levels, NOx is a good tracer of human activity near cities. For example, urban NOx displays a strong
weekly and diurnal cycle resulting from differences in traffic and manufacturing activity on weekends
versus weekdays [7,8]. Observed NO2 is not merely a function of NOx emissions; but is also a function
of the local chemical environment and meteorology. For example, it is well known that NO2 impacts its
own chemical lifetime [5]. Furthermore, meteorological parameters such as cloud cover, temperature,
and wind speed and direction all have a strong effect on local NO2 enhancements [9–11]. Given this
temporal and spatial variability in NO2, precisely where and when observations are made is also
very important. Taken together, one important challenge when interpreting changes in NO2 lies in
disentangling potential changes in emissions from natural and sampling variability.

Satellite observations can help to identify NOx emissions and their variation globally. Declines in
NO2 emissions, following the lockdown, have previously been observed by satellite instruments in
China, India, Europe and North America [12–15]. In this study, observations from the European Space
Agency’s Sentinel-5p Tropospheric Monitoring Instrument (TROPOMI), in conjunction with forecasts
from Environment and Climate Change Canada’s (ECCC) operational regional air quality forecast
model GEM-MACH (Global Environmental Multi-scale - Modelling Air quality and CHemistry) [16,17],
are used to isolate the impact of the COVID associated lockdown on NO2 levels in southern Ontario,
Canada. In this study, we show that combining satellite observations and model output, it is possible to
determine the impact of meteorology and sampling variability on the observed NO2 column changes.
The air quality model is further used to determine how possible lockdown-associated emission
reductions impact the NO2 columns, and whether those match the observed changes.

2. Materials and Methods

In the context of satellite remote sensing, one method, and the most straightforward, to assess the
impact of the COVID lockdown on NO2 is to directly compare the COVID period with a non-COVID
period, perhaps using the same period from different years [13]. However, in order to completely
isolate the COVID signal, this method assumes that among the two periods being compared, (i) baseline
emissions do not differ, (ii) natural or seasonal variability in winds, sunlight, temperature, and other
meteorological parameters are not important, (iii) differences in satellite sampling do not play any role,
and (iv) any differences in the satellite retrieval algorithm are minimal. For many locations, including
the Canadian domain studied here, differences in interannual NOx emission changes should be small.
However, meteorological variability can be important, and given that, sampling variability is also likely
to lead to differences between the two periods. In the case of TROPOMI, different retrieval algorithms
were used for spring 2019 vs. spring 2020 (v1.2 until April 2019 and thereafter v1.3, differences include
the treatment of “negative” cloud fractions and the lower limit of the tropospheric air mass factor
(AMF) relaxed influencing the quality flag [18]). While differences tend to be small, it is difficult at
present to completely eliminate this as a possible source of difference.

With these confounding factors in mind, the method presented here is the one in which the ECCC’s
operational GEM-MACH air quality model forecasts are used to control for non-COVID factors such as
sampling variability, meteorological variability, and other sources of variability. Furthermore, to limit
potential differences in the retrieval algorithm between 2019 and 2020, the two periods considered are
consecutive in 2020: a pre-COVID period and the COVID-lockdown period.
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2.1. TROPOMI Observations

Observations of NO2 from TROPOMI (2017-present [19]), an Earth-viewing spectrometer, are used
here. TROPOMI has a resolution of 3.5 × 5.5 km2 (since August 2019, before 3.5 × 7 km2) at nadir
and measures back-scattered ultraviolet/visible/solar-infrared sunlight from which NO2 vertical
column density (VCD), or the vertically-integrated NO2 number density, can be derived. Details
on the retrieval algorithm can be found elsewhere [20], but in short: a spectral fit is performed
matching laboratory-measured NO2 absorption cross-sections and other relevant parameters to these
observed spectra which provide a determination of the NO2 slant column densities (SCDs), or the
number density integrated along the path of the sunlight through the atmosphere. In a second step,
the stratospheric component of the SCD is determined using a chemical data assimilated system
and subtracted [21]. Finally, the remaining tropospheric SCD is converted to a VCD using an
AMF which quantifies the sensitivity of the satellite to a particular scene which depends on factors
such as shape of the NO2 profile, surface reflectivity, viewing geometry, and clouds. In this work,
an alternative AMF is used which better accounts for the presence of snow and uses higher resolution
NO2 profile shapes to improve the effective spatial resolution [22,23]; see Supplement material for more
information [24–33]. A radiative transfer model is used to calculate AMFs [34] which depend on the
following factors: solar and viewing geometry, surface pressure, the presence and pressure of clouds,
scene reflectivity and the vertical distribution of the NO2 via VCD=SCD/AMF. Similar, as in the
original TROPOMI AMF, the aerosols are corrected for implicitly [21]. Lastly, the TROPOMI data are
filtered to use only the highest quality data (qa_value > 0.75 and the cloud cover of the pixels is at most
30%). The TROPOMI tropspheric NO2 columns have been validated in a number of studies against
ground-based, aircraft and other satellite observations [35–40]. The alternative AMFs have a smaller
bias between ground-based and aircraft-borne observations over cities or near industry [23,41,42].
An evaluation of the TROPOMI NO2 observations over the GTA in 2020 shows overall good agreement
with ground-based remote-sensing PANDORA [43] measurements (see Figure S8).

2.2. GEM-MACH Air Quality Forecast Model

The Canadian operational air quality forecast model, GEM-MACH [16,17,44,45], is used in this
work. GEM-MACH consists of an on-line chemical transport module that is embedded within
ECCC’s Global Environmental Multi-scale (GEM), weather forecast model, and is applied over a
domain that covers most of North America. It includes emissions, chemistry, dispersion, and removal
process representations for 41 gaseous and eight particle chemical species, and provides hourly
concentrations between the surface and 0.1 Pa (on 80 hybrid vertical levels) with a 10 × 10 km2 grid
cell. The standard operational model run inputs hourly emissions fields that are prepared using
the Sparse Matrix Operator Kernel Emissions (SMOKE) [46] that account for seasonal, weekly and
daily variations. The performance of GEM-MACH has previously been evaluated against surface and
remote-sensing measurements [16,44,47–51]. A performance evaluation of NO2 forecasts for spring
2019 for Canada by the version of the air quality modelling system used in this study was carried out
before it was implemented operationally in September 2019. As an indication of the quality of the
pre-pandemic forecasts to be expected in this study, it was that found that NO2 forecasts for Canada
for that period had a mean bias of 1.4 ppbv, a correlation coefficient of 0.57, and a root mean square
error of 7.8 ppbv [48]. Additionally, an evaluation with PANDORA ground-based measurements
was performed over the GTA for 2020, and showed overall good agreement with the model NO2

VCDs (see Figure S9). The current version of the emissions files used by the operational model
are based on a Canadian emissions inventory compiled for the 2013 base year and a 2017 projected
U.S. inventory [48]. While using year-specific NOx emissions is ideal, suitable emission inventories
are not available in a timely manner. Alternative non-operational runs were also performed for a
limited time period between 15 March and 10 May 2020 with projected Canadian 2020 emissions and
COVID-modified emissions for vehicle, aircraft, manufacturing, and residential sectors (see Section 3
for details). The Canadian 2020 anthropogenic emissions are based on projected national emission
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inventory that was generated by ECCC for policy studies [52]. The projections include expected
changes in population, economic activity and energy use over a five-year period, from 2015 to 2020.

GEM-MACH output is used in this study for two purposes. The first is to provide profile shapes
which are used in the calculation of revised TROPOMI AMFs as discussed above in Section 2.1,
following the method proposed by Palmer et al. [34] and McLinden et al. [22]. These alternative AMFs
(not the operational TROPOMI AMFs) are used to convert TROPOMI SCDs into VCDs. Thus, it is
possible to carry out the direct comparison between our TROPOMI NO2 VCDs and those obtained
from the GEM-MACH (further details can be found in the supplement material). The second is to
determine the time evolution of NO2 on standard “business as usual” (BAU) input emissions that
do not account for COVID impacts, which can then be contrasted with that observed by TROPOMI.
In both cases, NO2 profiles are obtained from operational forecasts, are run at 10 km spatial resolution
and are launched every 12 h (and every 24 h for the special runs).

In this study, we integrate the model NO2 profiles to obtain VCD values. The operational
GEM-MACH model currently does not include NOx sources in the free troposphere (such as lightning
and aircraft at cruising altitude); as a consequence the model NOx concentrations are near zero above
the boundary layer. We obtain a more realistic free tropospheric column from GEOS-Chem [53],
a 3-D model of atmospheric chemistry model (monthly averages between 18-21 UTC, from 2 km to
12 km; 0.5 × 0.67◦ resolution, version v8-03-01; http://www.geos-chem.org), these partial columns
are on the order of 1014 molec/cm2 and small compared to the partial columns in the boundary layer
(see Figure S7), similar corrections have been applied in previous studies [22,23,49]. The model VCDs
are then sampled (and filtered) in space and time at each TROPOMI pixel, and are filtered like the
TROPOMI observations.

2.3. Determination of Expected NO2

GEM-MACH model output is used to estimate the impact of: (1) COVID measures on NO2 levels,
(2) changes from any other possible sources of variability, including seasonal, inter-annual, or even
shorter-term meteorological variability, and (3) the TROPOMI sampling variability. GEM-MACH
forecasts using standard emissions inventories for both the pre-lockdown and lockdown periods are
sampled at each TROPOMI pixel and overpass time.

Comparing pre-lockdown and lockdown TROPOMI observations together with pre-lockdown
and lockdown GEM-MACH predictions provides an estimate of the changes in NOx emissions purely
due to the lockdown, as this method accounts for effects of meteorology, seasonality, and sampling
variability. The expected TROPOMI VCDs, VT,e, under a BAU scenario, are determined from the
TROPOMI VCDs before the lockdown and are adjusted by the relative change seen in the model
forecasts (GEM-MACH and free troposphere from GEOS-Chem ) between the two time periods:

VT,e(tcovid) = VT(tpre) · VModel(tcovid)

VModel(tpre)
. (1)

When averaging over time to produce spatially resolved maps, observations from 15 February
to 15 March 2020 and 16 March to 8 May 2020 are used for the pre-lockdown and lockdown time
periods, respectively. This end date is associated with some traffic rebound and increased emissions
throughout May 2020 (see Section 3). When averaging over a larger area to produce a time series,
15-day running means are used (the satellite data need to be averaged over multiple days in order
to obtain enough data over this area, approximately 50% of observations are filtered due to clouds).
The expected columns for the 15-day running means are estimated as in Equation (1), where VT,e(tcovid)

and VModel(tcovid) are the 15-day means for a specific day.
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3. Results and Discussions

3.1. Spatial Averaging over Southern Ontario

Figure 1 shows the TROPOMI and operational GEM-MACH NO2 VCDs averaged over the
pre-lockdown and lockdown periods. There is excellent agreement between TROPOMI, panel (a),
and GEM-MACH, panel (d), across southern Ontario for the pre-lockdown period in terms of both
spatial distribution and magnitudes which provides confidence that the NOx emissions inventory and
the model itself can accurately represent the complex physics and photochemistry of the real world.

Figure 1. TROPOMI averaged VCDs over southern Ontario are shown for (a) a pre-lockdown
(16 February–15 March 2020) and (b) a lockdown (16 March–8 May 2020) period. The relative
differences ((lockdown-pre-lockdown)/pre-lockdown) are shown in panel (c) for areas that exceed
3 × 1015 molec/cm2 in the pre-lockdown period. Panels (d–f) are the same but for the operational
GEM-MACH model BAU NO2 VCDs, sampled at the time and location of the TROPOMI pixels.

When comparing TROPOMI observations between the pre-lockdown and lockdown periods,
panel (a)–(c), there is a large decrease in VCDs over the GTA, the Windsor-Detroit urban area
(which straddles the Canada-U.S. border), and virtually the entire domain. Decreases in the urban areas
can reach or exceed 50%, and in parts of the GTA the decline can even exceed 60%. However, there is
also a decrease predicted by GEM-MACH, despite not accounting for COVID-related emissions
reductions as shown in panels (d)–(f). This is due to a combination of a seasonal effect in which
increased sunlight means a decrease in NOx lifetime and less NOx present as NO2, but also expected
seasonal changes in emissions (see Supplement Material Figure S2). This effect is on the order of 25%
over the GTA between the two time periods, and is especially large because it occurs during the change
from cold season to warm season.

Even using several weeks of TROPOMI observations, meteorological and sampling variability can
impact the average. Spring 2020 was colder than 2019 and particularly cloudy over southern Ontario,
leading to fewer cloud-free overpasses on which to base an average. This can have an impact on the
averages, since approximately 50% of TROPOMI data are removed due to cloud cover, so that the
remaining cloud-free observations are more representative of fair weather conditions. To determine
the impact of the sampling variability, GEM-MACH averages are determined using all days over the
entire domain, versus only those sampled as TROPOMI (qa > 0.75). For the average NO2 between
16 March and 8 May 2020, sampling variability can lead to differences as large as 10% near cities
(see Supplement material Figure S3).
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As a test of the methodology to create expected TROPOMI columns for the COVID-19 period from
the change in the model forecasts, the same procedure was applied to TROPOMI observations and
operational GEM-MACH output from 2019. In this case, differences between expected and TROPOMI
observations should be minimal, because no unusual emission reductions occurred in 2019. As can
been seen in Figure 2d,e, differences are small, suggesting the method is generally reliable. Averaged
over the GTA, differences are 0–2%.

Figure 2. The figures show the expected and observed TROPOMI averaged NO2 VCDs over southern
Ontario for 2020 and 2019. Expected and observed TROPOMI average VCD fields for the lockdown
period (16 March–8 May 2020) are shown in panels (a,b), respectively. The same is shown in panels (d,e),
but for 16 March–8 May 2019. Relative differences ((observed-expected)/expected; for areas that exceed
3 × 1015 molec/cm2) between the TROPOMI observations and the expected columns are shown in
panel (c,f) for 2020 and 2019, respectively. Note that panel (b) is the same as Figure 1b.

3.2. COVID-Scenario Model Run

To help evaluate the difference between expected and observed TROPOMI NO2 columns,
as shown in Figure 2, GEM-MACH is re-run using an alternative emissions scenario designed to
represent COVID-19 emissions changes: (i) a 30% reduction in industrial NOx emissions, (ii) a 60%
reduction for traffic NOx emissions, (iii) an 80% reduction in aircraft NOx emissions (landings and
takeoffs), and (iv) a 20% increase of residential fuel NOx emissions due to people staying at home.
Emissions of other air pollutants emitted by these source types (CO, VOC, NH3, SO2, PM2.5, PM10)
are also changed by these same percentages. The change of emissions is based on the following:
(i) similar emission scenarios from Europe [11], (ii) an estimate of daily driving activities which
showed a reduction of 50–65% decrease [2], (iii) the reduction of airline flights which were 79% lower
in April 2020 compared to April 2019 [54], and (iv) Google mobility Reports [55] showed an 20%
increase spent in residential spaces and thus an increase of 20% is applied to residential emissions.
Over the entire GTA, average emissions decline from 65 kt[NO2]/yr pre-lockdown to 40 kt[NO2]/yr
lockdown (around noon; see Figures S3, S5, S6, and Table S2). Note that only Canadian emissions are
adjusted in this way due to the challenge of representing the complicated mixture of city-, county-,
and state-level responses to COVID-19 in the U.S., but given the short atmospheric lifetime of NOx

this is unlikely to make a big difference to NO2 levels except close to the international border (further
details can be found in the supplement on the impact of trans-border NO2 transport, Figure S10).
The results of this emissions scenario run are shown and compared to TROPOMI observations in
Figure 3 (for 1 April to 8 May 2020). Good agreement is evident over much of southern Ontario.
The TROPOMI observations are approximately 20–30% higher than the model output in Hamilton
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(an industrial city), where industry emissions might be underestimated, and parts of Mississauga,
where airport or vehicle traffic emissions might be underestimated in the model run.

Figure 3. Model NO2 VCDs from the reduced emissions scenario (a) and observed TROPOMI NO2

VCDs (b) over southern Ontario averaged over the period 1 April – 8 May 2020. The relative differences
((observations-model)/model) are shown in panel (c) for areas that exceed 3 × 1015 molec/cm2.
Note that emissions have only been reduced in Canada; thus, large differences can be seen for the US
cities near the border, especially Detroit.

3.3. Temporal Changes over Toronto

An alternative method of considering these various data sources is to average spatially and look
at temporal changes. Figure 4 shows a time series of 15-day running average NO2 over the Toronto and
Mississauga area (part of the GTA with the highest emissions and population density, this area also
includes Toronto Pearson Airport; see Supplement Material Figure S1). TROPOMI observations show
a decline after the lockdown was announced (Figure 4a), the expected columns agree well with the
TROPOMI observations during the pre-lockdown period, but, differences emerge after the lockdown
begins as emissions are reduced, but the model assumes BAU emissions. The alternate model run
with reduced emissions (Figure 4b) represents the decline observed by TROPOMI quite well and over
the same time period, both the TROPOMI observations and the model predict a drop of roughly 40%
over the GTA core (using data from 16 March to 8 May 2020) as a result of the lockdown. When the
2019 and 2020 satellite data are compared directly, however, the drop is only about half as much (20%),
as the meteorology and sampling variability of the satellite are largely different in that area between
2019 and 2020. Note that the satellite data indicate that the peak of the emissions decline in Toronto
and Mississauga occurred in mid-April. Throughout May 2020, the satellite measurements suggest
that the NOx emissions began to increase again gradually (Figure 4a), though they are still lower than
BAU emissions. Ontario entered Phase 1 of its re-opening on 19 May 2020, when certain restrictions
were lifted.
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Figure 4. Timeseries of 15-day running mean of NO2 VCDs over Toronto and Mississauga for
7 February to 9 June 2020, panel (a) shows the TROPOMI observations (navy), the expected columns
(magenta). The timeseries of 2019 TROPOMI observations (grey) for the same period is shown as a
reference. The red line indicates the percentage emission reductions based on the difference between
the TROPOMI observations and expected columns. Panel (b) shows NO2 columns from the model
predictions sampled like TROPOMI assuming a BAU scenario with 2020 updated emissions (blue)
and a 2020 COVID reduced emissions scenario (purple). The percentage decrease in model predicted
VCDs (red line) is estimated from the difference between the two model runs, the red dashed line
shows the drop for perfect sampling. Average emission reductions are highlighted using observations
between 16 March to 8 May 2020. Approximately 200 observations are averaged for the 15-day mean,
the resulting standard errors are plotted, however, the standard error is seen to be small and on the
order of 1013–1014 molec/cm2.

4. Conclusions

We present a method to disentangle the effects of meteorology and sampling variability on the
observed NO2 changes, from the lockdown-related changes in NOx emissions. During the period from
16 March to 8 May 2020, NO2 columns in the center of the GTA decreased by nearly 60% compared to
the previous month. About 25% of this decrease is associated with meteorological and seasonal changes
independent of the COVID-19 pandemic. Even the TROPOMI sampling variability itself can impact
the magnitude of the observed NO2 columns over the course of one or two months averaging (∼10%).
From the TROPOMI observations and GEM-MACH air quality model results, we estimate that due
to the lockdown the NO2 columns in Toronto and Mississauga declined by over 40%. These changes
vary spatially, and in certain locations columns declined by over 50%. Applying the same method to
2019 observations leads to a 0–2% decline over the GTA, which is expected as there were no emission
declines in spring 2019, which gives confidence that the method is robust.
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A special model run with reduced NOx emissions of vehicle traffic, aircraft, and industry based on
lockdown activity data [2,54,55] compares well with the TROPOMI observations during the lockdown
and returned similar NO2 declines in the GTA. Although, spatial patterns over cities are somewhat
visible, it is hard to disentangle the emission reductions by sector with our methodology. Nevertheless,
emission changes of (i) a 30% reduction in industry, (ii) a 60% reduction for traffic, (iii) an 80% reduction
in aircraft landings and takeoffs, and (iv) a 20% increase in residential fuel combustion, represent
the TROPOMI NO2 observations well, at least in southern Ontario. In the GTA, NOx emissions of
40 kt[NO2]/yr represent the observations well, this is a drop of over 37% compared to a BAU scenario.
The drop in the input emissions is almost identical to the drop determined from the model NO2 VCDs
(36%) over the same area which further indicates that the method presented works well.

This study highlights the importance of considering meteorological and sampling variability
when estimating emission reductions. One needs to be cautious when simply comparing two months,
since the effects of meteorological and sampling variability are not negligible when only a short
series of data is averaged. We show that spring 2019 and 2020 were, with regards to the meteorology,
very different years and simply looking at the difference results in about half the NOx emission decline
as compared to considering the meteorology. Further, the emission decline may vary strongly spatially,
especially in cities. This can make it difficult to compare different studies unless the exact same areas
are considered. The unique lockdown period associated with the 2020 COVID-19 pandemic can further
be used to check and refine our existing emissions inventories for NOx and other pollutants by looking
at spatial and temporal distributions of available satellite and surface measurements for a number of
different urban areas.
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