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Preface to ”Singularly Perturbed Problems:

Asymptotic Analysis and Approximate Solution”

This book collects papers which were published in the Special Issue “Singularly Perturbed

Problems: Asymptotic Analysis and Approximate Solution” of the Axioms journal. These papers

represent various aspects of singular perturbation theory and its applications.

In their contribution, Margarita Besova and Vasiliy Kachalov develop the axiomatic approach

in the analytic theory of singular perturbations in the frame of topological algebras. This allows the

authors to present the main concepts of the singular perturbation analytical theory with maximal

generality.

Dana Bibulova, Burkhan Kalimbetov and Valeriy Safonov consider a singularly perturbed

integral–differential equation with a rapidly oscillating inhomogeneity and with a rapidly decreasing

kernel of the integral operator of Fredholm type. For this equation, the authors construct and justify

the regularized (in the sense of S.A. Lomov) asymptotic solution.

The contribution by Abduhafiz Bobodzhanov, Valeriy Safonov and Vasiliy Kachalov is devoted

to the analysis of one singularly perturbed integral equation with weakly and rapidly varying kernels.

The authors study the influence of the weakly varying integral kernel on the asymptotic solution of

this equation. Additionally, using the method of holomorphic regularization, the authors consider

the problem of constructing pseudo-analytic solutions of singularly perturbed problems.

The paper by Yuli D. Chashechkin and Artem A. Ochirov applies the theory of singular

perturbation to study the propagation of two-dimensional periodic perturbations, including capillary

and gravitational surface waves, in a viscous continuously stratified fluid.

Vasile Drăgan studies a stochastic linear–quadratic optimal control problem, the dynamics of

which are described by a system of singularly perturbed Itô differential equations with two fast

time scales. The author derives the proper stabilizing asymptotic solution from the algebraic Riccati

equation associated with this problem. Using this asymptotic solution, the author designs the

suboptimal control with the gain matrices not depending upon the small parameters.

In their contribution, Alexander Eliseev and Tatjana Ratnikova consider a singularly perturbed

Cauchy problem for a two-dimensional differential equation with a “simple” turning point. Using the

regularization method of S.A. Lomov, the authors construct and justify the asymptotic solution to the

problem under consideration. Additionally, under proper additional conditions on the considered

problem, the authors show that the series, representing the asymptotic solution, converges and that

its sum represents the exact solution to the singularly perturbed Cauchy problem.

The contribution by Valery Y. Glizer considers a singularly perturbed linear time-dependent

controlled system with multiple point-wise delays and distributed delays in the state and control

variables. It is assumed that the delays are small, in the order of a small positive multiplier for a part

of the derivatives in the system. Both types of the considered system, standard and nonstandard,

are analyzed. For each of these types, two much simpler, parameter-free subsystems (the slow and

fast ones) are associated with the original system. The author establishes that the proper kinds of

controllability of the slow and fast subsystems yield the complete Euclidean space controllability of

the original system for all sufficiently small values of the singular perturbation parameter.

Burkhan Kalimbetov and Valeriy Safonov consider a system with rapidly oscillating coefficients.

This system includes an integral operator with an exponentially varying kernel. The authors develop

an algorithm for the regularization method (in the sense of S.A. Lomov) for this system. They also

analyze the influence of the integral term on the asymptotic behavior of the solution to the original

ix



system.

The paper by Galina Kurina considers an initial value problem for a class of singularly perturbed

systems in the case where the matrix of the coefficients for the state variable is singular (the critical

case). The author applies the orthogonal projector method for the construction and justification the

asymptotic solution to the considered problem.

In their paper, Galina Kurina and Margarita Kalashnikova apply the direct scheme method for

the asymptotic solution of a weakly nonlinearly perturbed linear–quadratic optimal control problem

with three-tempo state variables. Asymptotic expansions for the optimal control, optimal trajectory

and optimal value of the minimized functional of the considered problem are derived and justified.

Monotonic (non-increasing) behavior is established for the asymptotic expansion of the optimal value

of the functional with respect to the order of this expansion.

Tatiana Ratnikova studies the singularly perturbed Cauchy problem for a parabolic equation in

the case of violation of stability conditions of the limit–operator spectrum. This case is due to the

presence of a “simple” turning point in the equation. Using the Lomov’s regularization method, the

author constructs a uniform asymptotic solution to the considered problem and proves the asymptotic

convergence of the regularized series.

The contribution by Olga Tsekhan is devoted to undertaking an analysis of complete

controllability of a linear time-invariant singularly perturbed system, with multiple commensurate

non-small delays in the slow state variables. An extension of the Chang-type time-scale separation

of a singularly perturbed system to the considered time delay system is carried out. Based on

this time-scale separation of the original system, sufficient conditions are obtained for its complete

controllability. These conditions are independent of the parameter of singular perturbation, while

they provide the complete controllability of the original system for all sufficiently small values of this

parameter.

Vladimir Turetsky and Valery Y. Glizer consider a finite-horizon zero-sum linear–quadratic

differential game, modeling a pursuit–evasion problem. In the game’s cost functional, the cost of

the control of the minimizing player is much smaller than the cost of the control of the maximizing

player and the cost of the state variable. This smallness is due to a positive small multiplier (a

small parameter) for the quadratic form of the minimizing player’s control in the cost functional.

Parameter-free sufficient conditions for the existence of the game’s solution, valid for all sufficiently

small values of the parameter, are presented. The boundedness with respect to the small parameter of

the time realizations of the players’ optimal state feedback controls, along the corresponding game’s

trajectory, is established. The best achievable game value from the minimizing player’s viewpoint

is derived. A relation is established between solutions of the original game and the game that is

obtained from the original one by replacing the small parameter with zero.

The paper by Robert Vrabel considers the problem of asymptotic behavior of the solutions

for one class of non-resonant, singularly perturbed linear Neumann boundary value problems.

The approach, proposed by the author for analysis of asymptotic behavior of the solution to such

problems, is based on the study of an integral equation associated with this problem.

I express my sincere gratitude to all of the authors for their contributions to this book.

Valery Y. Glizer

Editor
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Abstract: Introduced by S.A. Lomov, the concept of a pseudoanalytic (pseudoholomorphic) solution
laid the foundation for the development of the singular perturbation analytical theory. In order for
this concept to work in case of linear problems, an apparatus for the theory of exponential type vector
spaces was developed. When considering nonlinear singularly perturbed problems, an algebraic
approach is currently used. This approval is based on the properties of algebra homomorphisms for
holomorphic functions with various numbers of variables, as a result of which it is possible to obtain
pseudoholomorphic solutions. In this paper, formally singularly perturbed equations are considered
in topological algebras, which allows the authors to formulate the main concepts of the singular
perturbation analytical theory from the standpoint of maximal generality.

Keywords: ε-regular function; invariants of equations and systems; ε-pseudoregular solution;
essentially singular manifold

MSC: 34E15

1. Introduction

The basic concept of the singular perturbation analytic theory is the concept pseudoholomorphic
solution, i.e., such a solution, which can be presented as a series in powers of a small parameter that
converges in the usual sense (and not asymptotically). The nature of this convergence is determined
by the topology of the spaces in which the investigated problems are considered. As a rule, spaces of
holomorphic functions (of one or several variables) are used. In this regard, it was possible to formulate
the main principles for the theory of singularly perturbed differential equations and systems—under
fairly general assumptions that they possess holomorphics in small parameter first integrals [1,2].
Moreover, a connection between the first integrals and homomorphisms of algebras of holomorphic
functions with various numbers of variables was established. The pseudoholomorphic solutions
themselves are obtained as a result of applying the implicit function theorem. In the presented
paper, all of these constructions will be carried out in topological algebras for formally singularly
perturbed equations.

2. Algebraic and Analytic Aspects of the Theory of Singular Perturbations

Let Ja be a complete topological commutative algebra with unit e and let X, Y1, . . . , Yk, . . . be a
sequence of open sets Ja. Let us denote by A0, A1, . . . , Ak, . . . the spaces of functions continuous on
the sets X, X × Y1, . . . , X × Y1 × . . . × Yk, . . . respectively with their values in Ja. Let us formulate the
block I of necessary conditions:

(1◦) If the sequence {xi}∞
i=0 is a bounded set [3] in Ja, then the series x0 + εx1 + . . . + εixi + . . .

converges at |ε| < 1.

Axioms 2020, 9, 9; doi:10.3390/axioms9010009 www.mdpi.com/journal/axioms
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(2◦) If the sequence {hi,k}∞
i=1 ⊂ Ak is such that the series

∞

∑
i=0

εihi,k(x, y1, . . . , yk) (1)

converges on each set T × T1 × . . . × Tk, where T is an arbitrary compact from X; T1 is an arbitrary
compact from Y1, · · · ; Tk is an arbitrary compact set from Yk in some neighborhood of the value
ε = 0, the function Φ ∈ A0 and it can be extended to all Ja, then we have

Φ

(
∞

∑
i=0

εihi,k

)
= Φ(h0,k) +

∞

∑
i=1

εigi,k

and the last row with coefficients from Ak is convergent.

Definition 1. The function f (x, y1, . . . , yk, ε) ∈ Ak represented by (1), is called ε-regular.

(3◦) If the system ⎧⎪⎨⎪⎩
F1(x, y1, . . . , yk, ε) = q1,
· · · · · · · · · · · · · · · · · · · · ·
Fk(x, y1, . . . , yk, ε) = qk

with ε-regular left-hand sides is uniquely solvable with respect to {y1, . . . , yk} for ε = 0 in some
neighborhood of the point x0 ∈ X, then it is also uniquely solvable in some neighborhood of the
same point and thus functions ym(x, ε) ∈ A0 (m = 1, k) are ε-regular.

Remark 1. The conditions of the block I are satisfied if Ja = C, X, Y1, Y2, . . . are simply connected regions,
A0, A1, . . . are spaces of holomorphic functions on X, X × Y1, X × Y1 × Y2, . . . respectively.

In order to formulate the conditions of block II, we give some definitions.

Definition 2. s-product of tuples ϕ = {ϕ1, . . . , ϕk} and ψ = {ψ1, . . . , ψk} is a function ϕ s©ψ = ϕ1ψ1 +

. . . + ϕkψk.

Definition 3. Let f ∈ Ak, ϕi(x) ∈ A0, i = 1, k. The composition f and ϕ = {ϕ1, . . . , ϕk} is determined by
the formula f ◦ϕ = f (x, ϕ1(x), . . . , ϕk(x)) as usual.

Block of conditions II:

(1◦) All algebras A0, A1, . . . , Ak, . . . contain constant functions and linear functions. We consider the
embeddings A0 ⊂ A1 ⊂ . . . ⊂ Ak ⊂ . . . together with topologies to be obvious.

(2◦) On all spaces A0, A1, . . . , Ak, . . ., a linear operation ∂0 is defined such that ∂0 p = 0, where p is a
constant function, ∂0x = e and ∂0 f = 0 if f ∈ Ak and does not depend on x. On each space Ak
(k = 1, 2, . . .), linear operations {∂i}k

i=1 are defined and they comply with the following laws:

(a) ∂i p = 0, i = 1, k, where p ∈ Ak is a constant function;
(b) ∂iyi = e, i = 1, k;
(c) if the function f ∈ Ak does not depend on ym, then ∂i f = 0 for i �= m.

(3◦) The operations {∂i}∞
i=0 form a commutative ring.

(4◦) An operation d is introduced, and it satisfies the following rules:

(a) d ≡ ∂0 on A0;
(b) d( f ◦ g) = ∂0 f · ∂0g ∀ f , g ∈ A0;
(c) if f ∈ Ak, ϕi(x) ∈ A0 (i = 1, k), ϕ = {ϕ1, . . . , ϕk}, then d( f ◦ ϕ) = ∂ f s©∂ϕ, where

∂ f ≡ {∂0 f , ∂1 f , . . . , ∂k f }, ∂0ϕ = {e, ∂0 ϕ1, . . . , ∂0 ϕk} are tuples of length (k + 1).

2
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(5◦) For every natural number k in the algebra Ak, there exist a lot of tuples f = { f1(x, y1, . . . , yk),
. . . , fk(x, y1, . . . , yk)} such that the operator Df

k = f s©∂, where ∂ = {∂1, . . . , ∂k}, with a specially
defined domain D(Df

k) is surjective and has the inverse Jf
k , which has the following property:

for arbitrary compact sets T ⊂ X, T1 ⊂ Y1, . . . , Tk ⊂ Yk there is a number C > 0 such that, for an
arbitrary function ϕ(x) ∈ A0, the set Γϕ

k = {C−n(Jf
k∂0)

n ϕ(x, y1, . . . , yk) ∈ T × T1 × . . . × Tk}∞
n=1

is bounded in Ja.

Let us consider the case k = 1. We investigate the following equation:

εdy1 = F(x, y1), (2)

in which F ∈ A1 and ε is a small complex parameter. The function y1(x) ∈ A0 satisfying the
initial condition

y1(x0, ε) = y0
1, (3)

where x0 ∈ X, y0
1 ∈ Y1, is required to be found.

Definition 4. The invariant of Equation (2) is the function U(x, y1, ε) ∈ A1, which turns into a constant on
the solution y1(x, ε) of this equation.

Theorem 1. When the blocks of conditions I and II are satisfied, then Equation (2) has ε-regular invariants.

Proof of Theorem 1. If U(x, y, ε) is an invariant of the Equation (2), then, as it follows from Definition 4,
we have

ε∂0U + DF
1 U = 0, (4)

where DF
1 = F∂1.

We seek a solution of Equation (4) in the form of a series in powers of ε:

U(x, y1, ε) = U0(x, y1) + εU1(x, y1) + . . . + εnUn(x, y1) + . . . (5)

for the coefficients of the equation above the following series of equations holds:

DF
1 U0 = 0,

DF
1 U1 = −∂0U0,

· · · · · · · · · · · · · · ·
DF

1 Un = −∂0Un−1.
· · · · · · · · · · · · · · ·

(6)

As a solution to the first equation of this series, we take an arbitrary function ϕ(x) ∈ A0. To satisfy
the condition (5◦) of block II, we assume that the domain of the surjective operator DF

1 consists of
functions from A1 that vanish when y1 = y0

1 ∀x ∈ X, and the inverse operator JF
1 is such that, for any

compact sets T ⊂ X, T1 ⊂ Y1, there exists a number C > 0 such that, for an arbitrary function
ϕ(x) ∈ A0 set Γϕ

1 = {C−n(JF
1 ∂0)

n ϕ, (x, y1) ∈ T × T1}∞
n=1 is limited in Ja.

As a result, all equations of the series (6), starting from the second, are uniquely solvable:

U(x, y1, ε) = ϕ − ε(JF
1 ∂0)ϕ + . . . + (−1)nεn(JF

1 ∂0)
n ϕ + . . . (7)

and this series converges in some neighborhood of the value ε = 0 on the set T × T1. Theorem 1
is proved.

3
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Remark 2. As it comes out from the form of series (7), we can consider U(x, y1, ε) for each fixed ε as the image
of the linear operator Hε : A0 → A1 given by the formula

Hε = I − ε(JF
1 ∂0) + . . . + (−1)nεn(JF

1 ∂0)
n + . . . ,

where I is the identity operator. Thus, U = Hε[ϕ].

Theorem 2. {Hε} forms a ε-regular family for homomorphisms of the algebra A0 into the algebra A1.

Proof of Theorem 2. Let U and V be invariants of the Equation (2). Obviously, then there exists a
function Φ such that V = Φ(U), and therefore Hε[ϕ(x)] = Φ(Hε[x]). If in this equality we put y1 = y0

1,
then ϕ(x) = Φ(x) ∀x ∈ X, therefore

Hε[ϕ(x)] = ϕ(Hε[x]). (8)

The equality (8) is called the commutation relation.
Now, let ϕ1(x), ϕ2(x) ∈ A0; then,

Hε[ϕ1 ϕ2] = (ϕ1 ϕ2)(Hε[x]) = ϕ1(Hε[x])ϕ2(Hε[x]) = Hε[ϕ1]Hε[ϕ2],

where Hε : A0 → A1 is a homomorphism. Theorem 2 is proved.

For the concepts given below, we need a definition introduced by S.A. Lomov for the notion of
the essentially singular manifold [4].

Definition 5. Let ϕ(x) ∈ A0, ϕ(x0) = 0, Φ ∈ A0, let it allow continuation to all Ja, and let T0 be some
compact from X containing the point x0. The set Q+(ϕ, Φ, T0) = {q : Φ(ϕ(x)/ε), x ∈ T0, ε > 0} is called
an essentially singular variety generated by the point ε = 0. Moreover, we say that it has the correct structure if

Q+ =
∞⋃

m=1

Πm,

where Π1 ⊂ Π2 ⊂ . . . is an increasing compact system.

We introduce the concept of ε-pseudoregularity necessary for studying the analytic properties of
a solution of y(x, ε).

Definition 6. The solution to the problems (2), (3) is called ε-pseudoregular if y1(x, ε) = Ỹ(x, ϕ(x)/ε, ε), in
which ϕ(x) ∈ A0; the function Ỹ(x, η, ε) is ε-regular for all (x, η) ∈ T0 × G where T0 is some compact set
containing the point x0, G is some unlimited set from Ja.

Theorem 3. If the essentially singular manifold Q+(ϕ, Φ, T0) is a bounded set in Ja and the equation

(JF
1 ∂0)ϕ = ϕ(x)/ε (9)

has a unique solution of the form y1 = Y1,0(x, q)
∣∣
q=Φ(ϕ(x)/ε)

such that the function Y1,0(x, q) coincides with the
contraction to the set T0 × Q+ of some function from A1, then problems (2), (3) have a ε-pseudoregular solution.

Proof of Theorem 3. For the invariant represented by the Formula (7), we compose the equality

(JF
1 ∂0)ϕ − ε(JF

1 ∂0)
2 ϕ + . . . + (−1)n−1εn−1(JF

1 ∂0)
n ϕ + . . . = ϕ(x)/ε,

4
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which defines the solution to the problems (2), (3). We apply the function Φ to its left-hand and
right-hand sides and, using the condition (2◦) of block I, we obtain the following equality:

Φ((JF
1 ∂0)ϕ) + εΨ(x, y1, ε) = q, (10)

where Ψ(x, y1, ε) is some ε-regular function.
Let the small parameter ε > 0 in Equation (2) be such that the following expression holds:

{q : q = Φ(ϕ(x)/ε), x ∈ T0} = Πm

for some natural number m (depending on ε). In accordance with the theorem conditions and the
condition (3◦) of block I, Equation (10) is solvable in some neighborhood σxq of each point (x, q) ∈
T0 × Πm and has a solution y1 = Y1(x, q, ε) that is ε-regular in a neighborhood of |ε| < εxq, where
εxq > 0 and is determined by this neighborhood. From the cover {σxq} of the compact set T0 × Πm, we
choose the finite subcover {σxq}N

i=1. Then, y1 = Y1(x, q, ε) will be a ε-regular function in the smallest
neighborhood of the point ε = 0 defined by a finite subcover; the function y1 = Y1(x, Φ(ϕ(x)/ε), ε)

will give a ε-pseudoregular solution to the problem (2), (3) on the part T̃0 ⊂ T0 such that the set
{(x, q) : x ∈ T̃0, q = Φ(ϕ(x)/ε)} ⊂ T0 × Πm. The theorem is proved.

3. Invariants and ε-Pseudoregular Solutions of Systems of Equations

We take into the consideration the system of equations⎧⎪⎨⎪⎩
εdy1 = F1(x, y1, . . . , yk),
· · · · · · · · · · · · · · · · · · · · ·
εdyk = Fk(x, y1, . . . , yk),

(11)

the right-hand sides of which belong to the algebra Ak. It is required to find its solution y(x, ε) =

{y1(x, ε), . . . , yk(x, ε)} satisfying the initial conditions

y1(x0, ε) = y0
1, . . . , yk(x0, ε) = y0

k . (12)

We rewrite system (11) by introducing the following denotation:

F(x, y) = {F1(x, y), . . . , Fk(x, y)},
y0 = {y0

1, . . . , y0
k}.

Thus, we have
εdy = F(x, y),
y(x0, ε) = y0 (13)

to be the initial investigated problem.

Definition 7. The function U(x, y, ε) ∈ Ak is called the invariant of the system (11) if it turns into a constant
on the solution y(x, ε).

We formulate a theorem similar to Theorem 1.

Theorem 4. The system (11) has ε-regular invariants.

Proof of Theorem 4. The proof is carried out according to the same scheme as in the case of a single
equation.

5
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Definition 8. The solution of the y(x, ε) problem (13) is called ε-pseudoregular if y(x, ε) = Ỹ(x,ϕ(x)/ε, ε),
in which ϕ(x) = {ϕ1(x), . . . , ϕk(x)}, ϕi(x) ∈ A0 (i = 1, k) and the function Ỹ(x, η, ε) in which η =

(η1, . . . , ηk), is ε-regular for all (x, η1, . . . , ηk) ∈ T0 × G1 × . . . × Gk where T0 is some compact set from X
containing x0 and Gi (i = 1, k) are unbounded sets from Ja.

Theorem 5. Let the following conditions be fulfilled:

(1◦) The functions Φi and ϕi are such that the essentially singular manifolds Q+
i (ϕi, Φi, T0) (i = 1, k) are

bounded sets in Ja.
(2◦) The equation D F

k V = e has the solutions {V1(x, y), . . . , Vk(x, y)} such that system⎧⎪⎨⎪⎩
∂0 ϕ1 · V1(x, y)) = ϕ1(x)/ε,
· · · · · · · · · · · · · · · · · · · · · · · ·
∂0 ϕk · Vk(x, y)) = ϕk(x)/ε

has the only solution

y = Y0(x, q)

∣∣∣∣ q=(q1,...,qk)
qi=Φi(ϕi(x)/ε)

,

and each component Y0,i(x, q) (i = 1, k) of it coincides with the restriction to the set T0 × Q+
1 × . . . × Q+

k
of some function from Ak.

Then, the solution y(x, ε) of the problem (13) is ε-pseudoregular.

Proof of Theorem 5. We write the equalities for the invariants of the system (11) in the following form:⎧⎪⎨⎪⎩
∂0 ϕ1 · V1(x, y)− ε(J Fk ∂0)

2 ϕ1 + ε2(J Fk ∂0)
3 ϕ1 − . . . = ϕ1(x)/ε,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∂0 ϕk · Vk(x, y)− ε(J Fk ∂0)

2 ϕk + ε2(J Fk ∂0)
3 ϕk − . . . = ϕk(x)/ε.

(14)

In order for this system to determine the solution of the problem (11), (12) (or (13)), we assume
(see condition (5◦) of block II) that D(D F

k ) consists of functions that vanish when y = y0 for any x ∈ X
and Vi(x, y0) = 0, i = 1, k.

We apply the functions Φ1, . . . , Φk to the equations of the system (14), respectively. Then, in
accordance with the condition (2◦) of block I, we obtain the system⎧⎪⎨⎪⎩

Φ1(∂0 ϕ1 · V1(x, y)) + εΨ1(x, y, ε) = q1,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Φk(∂0 ϕk · Vk(x, y)) + εΨk(x, y, ε) = qk.

(15)

Let the small parameter ε > 0 in the system (13) be such that

{qi : qi = Φi(ϕ(x)/ε), x ∈ T0} = Πmi , i = 1, k

for natural m1, . . . , mk. By the condition of the (2◦) Theorem 5, the system (15) for ε = 0 has a
unique solution y = Y0(x, q) and, therefore, in accordance with the condition (3◦) of block I, this
system is solvable in some neighborhood σxq of each point (x, q) ∈ T0 × Πm1 × . . . × Πmk , and its
solution Y(x, q, ε) is ε-regular there for |ε| < εxq. After that, from the cover {σxq} of the compact
set T0 × Πm1 × . . . × Πmk , we choose a finite subcover and Y(x, q, ε) will be ε-regular in the minimal
neighborhood from the neighborhood of ε = 0 corresponding to a finite subcover. As in the proof of
Theorem 3, we choose T̃0 ⊂ T0, a compact set on which there exists a ε-regular solution

6
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y(x, ε) = Y(x, q, ε)

∣∣∣∣qi=Φi(ϕi(x)/ε)

(i=1,k)

.

The theorem is proved.

4. Concrete Implementations of the Theory

In this section of the article, we assume that Ja = C, X = P0 ≡ {z ∈ C : |z − z0| < r0},
Yi = Pi ≡ {wi ∈ C : |wi − w0

i | < ri}, i = 1, k. We shall use the following denotations w = {w1, . . . , wk},
w0 = {w0

1, . . . , w0
k}, Pk = P1 × . . . × Pk a polycircle of Ck.

Let A0 be the algebra of holomorphic functions in the P0 circle of the variable z; let A1 be the
algebra of holomorphic functions in the P0 × P1 bicircle of the variables (z, w1), . . .; let Ak be the
algebra of holomorphic functions of the variables (z, w1, . . . , wk) in the polycircle P0 × Pk. It is clear
that, if ∂0 = ∂z, ∂1 = ∂w1 , . . ., ∂k = ∂wk , then all the conditions of block I and the conditions (1◦)— (4◦)
of block II are satisfied. In the concepts given below, we show that the condition (5◦) also holds under
fairly general assumptions.

Thus, we investigate the Cauchy problem for ε > 0:

ε
dw

dz
= F(z, w), z ∈ P̃0 = {z ∈ C : |z − z0| < r̃0, 0 < r̃0 < r0},

w(z0, ε) = w0,
(16)

where F(z, w) = {F1(z, w), . . . , Fk(z, w)}, Fi(z, w) ∈ Ak for i = 1, k.
From the nonlinear system (16), we come to the linear equation of its integrals (invariants):

ε∂zU+ D F
k U = 0. (17)

Here, D F
k = F1∂w1 + . . .+ Fk∂wk is the linear partial differential operator of the first order in partial

derivatives: U = {U[1], . . . , U[k]}, where {U[i]}k
i=1 is the system of independent integrals.

First of all, we present an integral method for solving inhomogeneous linear differential equations
of the first order with partial derivatives [5].

Let Λ be a holomorphically smooth surface in Ck and we need to solve the initial problem

D F
k V = f , f ∈ Ak,

V
∣∣
w∈Λ= 0.

(18)

Let us suppose that the surface Λ is given by the coordinates w̃ = {w̃1, . . . , w̃k−1} and, namely,
Λ = {w ∈ Ck : wi = λ(w̃), i = 1, k}, where λi(w̃) are functions holomorphic in some region Ck−1.
Next, we compose the equation system for the characteristic equation

dw

ds
= F(z, w), (19)

in which s ∈ C is an independent variable, and z acts as a parameter. Let w = g(z, w̃, s) be a solution
to the system (19) with the initial condition

w
∣∣
s=0= λ(w̃),

where λ = {λ1, . . . , λk}.
The existence and uniqueness theorem guarantees the unique solvability of the system g(z, w̃, s) =

w relative to w̃ and s: s = S(z, w), w̃ = W̃(z, w). We denote the operator of replacing variables (s, w̃)

by the variable w by R(z) and the backward replacement operator is denoted by R−1(z, s):

7
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R(z)[χ(z, s, w̃)] = χ(z, S(z, w), W̃(z, w)),

R−1(z, s)[θ(z, w)] = θ(z, g(z, w̃, s)).

Then, as you know, if the phase trajectories in the system of characteristics are transversal (not
tangent) to the surface Λ, then a solution to the Cauchy problem (17) exists, is unique, and is expressed
by the following formula:

V(z, w) =

s∫
0

f (z, g(z, w̃, s1))ds1

∣∣∣∣ s=S(z,w),
w̃=W̃(z,w)

. (20)

We return to Equation (18). We have

U(z, w, ε) = U0(z, w) + εU1(z, w) + . . . + εnUn(z, w) + . . . , (21)

and, as this takes place
D F

k U0(z, w) = 0,

D F
k U1(z, w) = −∂zU0(z, w),

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
D F

k Un(z, w) = −∂zUn−1(z, w).
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

(22)

As a solution to the first equation of this series, we take the vector function U0 =

{ϕ1(z), . . . , ϕk(z)}, ϕi(z) ∈ A0 for i = 1, k. The solution to the second equation of the series (22) is the
vector function U1 = {−∂z ϕ1V[1], . . . , −∂z ϕkV[k]} where {V[1], . . . , V[k]} are functionally independent
solutions of the equation D F

k V = 1 and such that V[i](z, w0) = 0 ∀z ∈ P0, i = 1, k. We find solutions to
other equations using Formula (20), assuming that w0 ∈ Λ:

U2(z, w) = −R(z)
s∫

0
R−1(z, s1)∂zU1(z, w)ds1,

U3(z, w) = R(z)
s∫

0
ds1R−1(z, s1)∂zR(z)

s1∫
0

R−1(z, s2)∂zU1(z, w)ds2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Un(z, w) = (−1)n−1R(z)

s∫
0

ds1R−1(z, s1)∂zR(z)
s1∫
0

ds2R−1(z, s2)∂z . . .

. . . R(z)
sn−2∫
0

R−1(z, sn−1)∂zU1(z, w)dsn−1.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(23)

Next, to each natural n ≥ 2, we associate (n − 1) concentric circles Cm = {z : |z − z0| = tm} where

tm = r̃0 +
r − r̃0

n − 1
m, m = 1, n − 1

and r̃0 < r < r0.
These circles are situated at the same distance from each other:

ρ = tn−1 − tn−2 = . . . = t2 − r̃0 =
r − r̃0

n − 1
.

8
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We use the equalities (23) with the Cauchy integral formula:

U2(z, w) = − 1
2πi R(z)

s∫
0

R−1(z, s1)
∮
C1

dz1
(z1−z)2 U1(z1, w)ds1,

U3(z, w) = 1
(2πi)2 R(z)

s∫
0

ds1R−1(z, s1)
∮
C1

dz1
(z1−z)2 R(z1)

s1∫
0

R−1(z1, s2)
∮
C2

dz2
(z2−z1)2 U1(z2, w)ds2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Un(z, w) = (−1)n−1

(2πi)n−1 R(z)
s∫

0
ds1R−1(z, s1)

∮
C1

dz1
(z1−z)2 R(z1)

s1∫
0

ds2R−1(z1, s2)
∮
C2

dz2
(z2−z1)2 . . .

. . . R(zn−2)
sn−2∫
0

R−1(zn−2, sn−1)
∮

Cn−1

dzn−1
(zn−1−zn−2)2 U1(zn−1, w)dsn−1.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(24)

We represent Un(z, w) in the following form:

Un(z, w) =
(−1)n−1

(2πi)n−1

s∫
0

ds1

s1∫
0

ds2 . . .

sn−2∫
0

dsn−1

∮
C1

dz1

(z − z1)2 . . .
∮

Cn−2

dzn−2

(zn−3 − zn−2)2 ·

·
∮

Cn−1

R(z)R−1(z, s1)R(z1)R−1(z1, s2) . . . R(zn−2)R−1(zn−2, sn−1)U1(zn−1, w)dzn−1

(zn−2 − zn−1)2 .

Let ‖ · ‖k be the norm in Ck; then, for all z ∈ P̂0 = {z ∈ C : |z − z0| < r0} and all w from some
subregion P̂k of the polycircle Pk, the following inequality takes place:

‖Un(z, w)‖k ≤
∣∣∣∣ s∫

0

ds1

s1∫
0

ds2 . . .

sn−2∫
0

dsn−1

∣∣∣∣ 1
(2π)n−1 Hn−1‖U1(z, w)‖k,

where

Hn−1 =
∮
C1

|d z1|
|z− z1|2 . . .

∮
Cn−1

|d zn−1|
|zn−2−zn−1|2 =

=
2π∫
0

t1dα

t2
1+|z|2−2t1|z| cos α

. . .
2π∫
0

tn−1dα

t2
n−1+t2

n−2−2tn−1tn−2 cos α
=

= (2π)n−1t1t2...tn−1

(t1−|z|2)(t2
2−t2

1)...(t2
n−1−t2

n−2)
≤ (2π)n−1rn−1

0 (n−1)n−1

2n−2 r̃ n−1
0 (r−r̃0)

n−1 .

As we have ∣∣∣∣ s∫
0

ds1

s1∫
0

ds2 . . .

sn−2∫
0

dsn−1

∣∣∣∣= |s|n−1

(n − 1)!
,

then

‖Un(z, w)‖k ≤ rn−1
0 (n − 1)n−1

2n−2 r̃ n−1
0 (r − r̃0)n−1(n − 1)!

‖U1(z, w)‖k,

and from that the convergence of the series (21) on any compact set from the set P̂0 × P̂k follows.
Thus, it is proved that the components of the vector U(z, w, ε) form an independent system of

integrals (invariants) and are holomorphic (ε-regular) at the point ε = 0. It is also clear that there is a
statement similar to Theorem 5 on the existence of a pseudoholomorphic (ε-pseudoregular) solution of
the Cauchy problem (16). Without loss of generality, we assume that z0 = 0.

9
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Theorem 6. Let the entire functions {Φ1, . . . , Φk} and the functions {ϕ1(z), . . . , ϕk(z)}
which are holomorphic in the circle P0 be such that the essentially singular manifolds
{Q+

1 (ϕ1, Φ1, T0), . . . , Q+
k (ϕk, Φk, T0)} created by the functions described above where T0 is some segment of

the real axis, the left end of which coincides with the origin and belongs to the circle P̂0, are sets bounded in C;
and the system of equations ⎧⎪⎨⎪⎩

ϕ′
1(z)V1(z, w) = ϕ1(z)/ε,

· · · · · · · · · · · · · · · · · · · · ·
ϕ′

k(z)Vk(z, w) = ϕk(z)/ε,

in which {V1(z, w), . . . , Vk(z, w)} are independent solutions of the equation D F
k V = 1, has a solution of

the form

w = W0(z, q)

∣∣∣∣
q={Φ1(ϕ1(z)/ε),...,Φk(ϕk(z)/ε)}

,

each component W0,i(z, q) (i = 1, k) of it is holomorphic on the set T0 × Q+
1 × . . . × Q+

k . Then, the solution
w(z, ε) of the initial problem (16) is pseudoholomorphic at the point ε = 0 (ε-pseudoregular).

It should be noted [6] that this solution can be continued in a pseudoholomorphic way for a fixed
ε > 0 from some segment [0, T̃0] (see the end of the proof of Theorem 5) by segment [0, T0].

5. Conclusions

Further development of the axiomatic approach in the analytical singular perturbation theory will
allow us to consider a more general class of equations with a small parameter, in particular, an analogue
of nonlinear differential equations in partial derivatives (for example, equations of the Navier–Stokes
type, etc.). This is very urgent since the range of problems leading to singularly perturbed problems
is constantly expanding. In this sense, the ”Dyson argument” that appeared in theoretical physics is
quite indicative—the solutions of the equations arising in astrophysics can depend holomorphically
on the gravitational constant only after isolating a revealing the essentially singular manifold [7].

As for the current state of the singular perturbation of theory, the asymptotic approach prevails
there. In our opinion, when solving most singularly perturbed equations, the following methods are
used: the Vasilieva–Butuzov–Nefedov boundary function method [8,9], the Maslov method [10], the
Lomov regularization method [4,11], and the Bogolyubov–Krylov–Mitropolsky average method [12,13].
In the case of more specific situations, these methods are combined and new approaches to the
asymptotic integration are proposed [14].
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Abstract: This article investigates an equation with a rapidly oscillating inhomogeneity and with a
rapidly decreasing kernel of an integral operator of Fredholm type. Earlier, differential problems of
this type were studied in which the integral term was either absent or had the form of a Volterra-type
integral. The presence of an integral operator and its type significantly affect the development of
an algorithm for asymptotic solutions, in the implementation of which it is necessary to take into
account essential singularities generated by the rapidly decreasing kernel of the integral operator.
It is shown in tise work that when passing the structure of essentially singular singularities changes
from an integral operator of Volterra type to an operator of Fredholm type. If in the case of the
Volterra operator they change with a change in the independent variable, then the singularities
generated by the kernel of the integral Fredholm-type operators are constant and depend only on
a small parameter. All these effects, as well as the effects introduced by the rapidly oscillating
inhomogeneity, are necessary to take into account when developing an algorithm for constructing
asymptotic solutions to the original problem, which is implemented in this work.

Keywords: singular perturbation; integro-differential equation; rapidly oscillating inhomogeneity;
regularization; asymptotic convergence

MSC: 34K26; 45J05

1. Introduction

Integro-differential equations

Lεy(t, ε) ≡ ε
dy
dt − a(t)y − ∫ α

0 e
1
ε

∫ α
s μ(θ)dθK(t, s)y(s, ε)ds =

= h1(t) + h2(t)e
iβ(t)

ε , y(0, ε) = y0, t ∈ [0, T]

(1)

with rapidly changing Volterra-type kernels (α = t) have been studied from various
positions in a number of works (see, for example, [1] and its bibliography). The prob-
lems were considered on the construction of a regularized asymptotics for the solution
of problem type (1) in the case of stability of the operator a(t) and the spectral value μ(t)
of the kernel of the integral operator [2–7]. As for the integro-differential equations (1)
with rapidly changing kernels of the Fredholm type (α = T), it was assumed that the
results obtained for the Volterra equations are automatically extended to equations of the
Fredholm type. However, when considering the simplest case of scalar Equation (1) for
(see, for example, [8–14]) it turned out that the spectral value does not participate in the
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regularization of problem (1) (in contrast to the case α = t), and the coefficients of the
elements of the space of resonance-free solutions (in the terminology of S.A. Lomov [15–17]
depend on the exponentials

σ1 = exp{ 1
ε

∫ 1
0 a(θ)dθ}, σ2 = exp{ i

ε

∫ 1
0 β′(θ)dθ}, σ3 = exp{ 1

ε

∫ 1
0 μ(θ)dθ},

σ4 = exp{ i
ε β(0)}, (β′(t) > 0 ∀t ∈ [0, 1])

bounded for ε → +0, if a(t) < 0 and μ(t) < 0, β′(t) > 0 (t ∈ [0, 1]), β(t) is a real function).
Therefore, the regularization of problem (1) and the theory of normal and unique solvability
of the corresponding iterative problems do not fit into the previously developed scheme
for equations of the Volterra type and should be revised, taking into account those changes
which are introduced by the Fredholm operator. Fredholm-type integro-differential equa-
tions with slow and rapidly changing kernels have been studied in [18]. In recent years, the
main attention of researchers has been focused on the development of asymptotic solutions
for integro-differential equations with rapidly oscillating coefficients in the presence of
rapidly oscillating inhomogeneities [19]. Therefore, in this paper, an attempt is made to
create an algorithm for constructing an asymptotic solution of problem (1) at ε → +0.
Without a loss of generality, we can assume that α = T = 1, and we will proceed to the
study of the problem (1).

Thus, in this paper we consider the following Cauchy problem:

Lεy(t, ε) ≡ ε
dy
dt − a(t)y − ∫ 1

0 e
1
ε

∫ 1
s μ(θ)dθK(t, s)y(s, ε)ds =

= h1(t) + h2(t)e
iβ(t)

ε , y(0, ε) = y0, t ∈ [0, 1]

(2)

with the Fredholm type of integral operator.

2. Regularization of the Problem (1)

The problem (1) will be considered under the following conditions:

(1) a(t), μ(t), β(t) ∈ C∞([0, 1],R), h1(t), h2(t) ∈ ([0, 1],C), K(t, s) ∈ C∞({0 ≤ s ≤ t ≤ 1},C);

(2) a(t) �= μ(t), μ(t) < 0, a(t) < 0∀t ∈ [0, 1].
Let us denote λ1(t) ≡ a(t), λ2(t) ≡ iβ′(t), λ3(t) ≡ μ(t) and call the set

{
λj(t)

}
the

spectrum of problem (1). We introduce the regularizing variables

τj =
1
ε

∫ t

0
λj(θ)dθ =

ψj(t)
ε

, j = 1, 2

along the points of the spectrum λ1(t) and λ2(t) of the problem (1) (in this case, as will be
shown below, the variable τ3 = ε−1

∫ t
0 λ3(θ)dθ does not participate in the regularization).

For the “extension” ỹ(t, τ, ε) we obtain the following problem:

Lεỹ(t, τ, ε) ≡ ε
∂ỹ
∂t +

2
∑

j=1
λj(t)

∂ỹ
∂τj

− λ1(t)ỹ − ∫ 1
0 e

1
ε

∫ 1
s λ3(θ)dθK(t, s)ỹ(s, ψ(s)

ε , ε)ds =

= h1(t) + h2(t)eτ2 σ4, ỹ(0, 0, ε) = y0, t ∈ [0, 1]
(3)

where τ = (τ1, τ2), ψ = (ψ1, ψ2). The function ỹ(t, τ, ε) satisfies the necessary regularization
condition: ỹ(t, ψ(t)

ε , ε) ≡ y(t, ε)(y(t, ε) is the exact solution to problem (1)). However,
problem (3) cannot be considered completely regularized, since the integral term

Jỹ ≡ J
(

ỹ(t, τ, ε)|t=s,τ=ψ(s)/ε

)
=
∫ 1

0
e

1
ε

∫ 1
s λ3(θ)dθK(t, s)ỹ(s,

ψ(s)
ε

, ε)ds. (4)
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has not been regularized in it. For its regularization, as is known, it is necessary to
introduce a class Mε, that is asymptotically invariant with respect to the operator J (see [15],
pp. 62–64).

Definition 1. We say that a vector function y(t, τ, σ) belongs to the space U, if it is represented by
a sum of the form

y(t, τ) ≡ y(t, τ, σ) = y0(t, σ) +
2

∑
j=1

yj(t, σ)eτj (5)

where the functions yj(t, σ) are polynomials in σ = (σ1, . . . , σ4) with coefficients from the class
C∞([0, 1],C), i.e.,

yj(t, σ) = ∑
Nj
|m|=0 y(m1,...,m4)

j (t)σm1
1 · · · σm4

4 ,

y(m1,...,m4)
j (t) ∈ C∞([0, 1],C), 0 ≤ |m| ≡ m1 + · · ·+ m4, Ni < ∞, j = 0, 1, 2.

We take as Mε the class U|
τ=

ψ(t)
ε

. It should be shown that the image Jy(t, τ) on functions (4) can

be represented in the form of a series

∞

∑
k=0

εk

(
2

∑
j=1

z(k)j (t, σ)eτj + z(k)0 (t, σ)

)
|
τ=

ψ(t)
ε

,

converging asymptotically to Jy at ε → +0 (uniformly with respect to t ∈ [0, 1]). Substituting (5)
in, we will have

Jy(t, τ, σ) =
∫ 1

0
K(t, s)y0(s, σ)e

1
ε

∫ 1
s λ3(θ)dθds+

2

∑
j=1

∫ 1

0
K(t, s)yj(s, σ)e

1
ε

∫ 1
s λ3(θ)dθ+ 1

ε

∫ s
0 λj(θ)dθds.

We take the integrals here by parts:

J0(t, ε) =
∫ 1

0
e

1
ε

∫ 1
s λ3(θ)dθK(t, s)y0(s, σ)ds = ε

∫ 1

0

K(t, s)y0(s, σ)

−λ3(s)
d(exp

(
1
ε

∫ 1

s
λ3(θ)dθ

)
) =

= ε[
K(t, 1)y0(1, σ)

−λ3(1)
− K(t, 0)y0(0, σ)

−λ3(0)
σ3]− ε

∫ 1

0
exp
(

1
ε

∫ 1

s
λ3(θ)dθ

)
∂

∂s
(

K(t, s)y0(s, σ)

−λ3(s)
)ds =

=
∞

∑
ν=0

(−1)νεν+1[(Iν
0 (K(t, s)y0(s, σ)))s=1 − (Iν

0 (K(t, s)y0(s, σ)))s=0σ3], (5a)

Jj(t, ε) =
∫ 1

0
exp
(

1
ε

∫ 1

s
λ3(θ)dθ +

1
ε

∫ s

0
λj(θ)dθ

)
K(t, s)yj(s, σ)ds ≡

≡ σ3

∫ 1

0
exp
(

1
ε

∫ s

0
(λj(θ)− λ3(θ))dθ

)
K(t, s)yj(s, σ)ds ≡

≡ σ3ε
∫ 1

0

K(t, s)yj(s, σ)

λj(s)− λ3(s)
d(exp

(
1
ε

∫ s

0
(λj(θ)− λ3(θ))dθ

)
) =

= εσ3[
K(t, 1)yj(1, σ)

λj(1)− λ3(1)
σj

σ3
− K(t, 0)yj(0, σ)

(λj(0)− λ3(0))
]−

−εσ3

∫ 1

0
exp
(

1
ε

∫ s

0
(λj(θ)− λ3(θ))dθ

)
∂

∂s

(
K(t, s)yj(s, σ)

λj(s)− λ3(s)

)
ds =

15



Axioms 2022, 11, 141

=
∞

∑
ν=0

(−1)νεν+1
[
(Iν

j (K(t, s)yj(s, σ)))s=1σj − (Iν
j (K(t, s)yj(s, σ)))s=0σ3

]
(5b)

where j = 1, 2 and the operators are introduced:

I0
0 = 1

−λ3(s)
, Iν

0 = 1
−λ3(s)

∂
∂s Iν−1

0 , (ν ≥ 1),

I0
j = 1

λj(s)−λ3(s)
, Iν

j = 1
λj(s)−λ3(s)

∂
∂s Iν−1

j , (ν ≥ 1, j = 1, 2).
(5c)

It is easy to show (see, for example, [20], pp. 291–294) that the series (5a, b) converge asymptot-
ically (at ε → +0) to the corresponding integrals Jj(t, ε) (uniformly with respect to t ∈ [0, 1]), and

hence the image Jy(t, τ) is represented as series ∑∞
k=0 εk(∑2

j=1 z(k)j (t, σ)eτj +z(k)0 (t, σ)g)|
τ=

ψ(t)
ε

,

also converging asymptotically to Jy(t, τ) uniformly with respect to t ∈ [0, 1]). Thus, it is shown
that the class Mε = U|

τ=
ψ(t)

ε

is asymptotically invariant with respect to the operator J.

Now let ỹ(t, τ, ε) be an arbitrary continuous in (t, τ) ∈ [0, 1]× Π(Π = {τ : Reτj ≤ 0, j =
1, 2} function represented by the series

ỹ(t, τ, ε) =
∞

∑
k=0

εkyk(t, τ, σ), yk(t, τ, σ) ∈ U (6)

converging asymptotically at ε → +0 (uniformly with respect to t ∈ [0, 1]). Substituting (6) into
(4) and collecting the coefficients at the same degrees of ε, we obtain the series

Jỹ(t, τ, ε) =
∞

∑
k=0

εk Jyk(t, τ, σ) =
∞

∑
r=0

εr
r

∑
s=0

Rr−sys(t, τ, σ)

converging asymptotically to Jỹ for ε → +0 (uniformly in t ∈ [0, 1]). Here Rν : U → U (the
operators of order in ε) are of the following form:

R0y(t, τ, σ) ≡ 0,

R1(t, τ, σ) =

[
K(t, 1)y0(1, σ)

−λ3(1)
− K(t, 0)y0(0, σ)

−λ3(0)
σ3

]
+

+
2

∑
j=1

[
K(t, 1)yj(1, σ)

λj(1)− λ3(1)
σj −

K(t, 0)yj(0, σ)

λj(0)− λ3(0)
σ3

]
, (6a)

Rν+1y(t, τ, σ) = (−1)ν[(Iν
0 (K(t, s)y0(s, σ)))s=1 − (Iν

0 (K(t, s)y0(s, σ)))s=0σ3]+

+
2

∑
j=1

(−1)ν
[
(Iν

j (K(t, s)yj(s, σ)))
s=1

− (Iν
j (K(t, s)yj(s, σ)))

s=0
σ3

]
(6b)

where Iν
j are the operators (5c), j = 0, 2, ν ≥ 0, introduced above, and y(t, τ, σ) is the function (5).

Definition 2. By a formal extension of an operator J, we mean an operator J̃, acting on any
continuous in (t, τ) ∈ [0, 1]× Π function ỹ(t, τ, ε) of the form (6) according to the law

J̃ỹ ≡ J̃

(
∞

∑
k=0

εkyk(t, τ, σ)

)
=

∞

∑
r=0

εr
r

∑
s=0

Rr−sys(t, τ, σ). (7)

Equality (7) is the basis for the definition of the operator J̃, extended with respect to the integral
operator J. Despite the fact that the extension J̃ of the operator J is defined formally, it is quite
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possible to use it (see Theorem 3 below) when constructing an asymptotic solution of finite order in
ε. Now we can write the problem completely regularized with respect to the original (1):

Lεỹ(t, τ, σ, ε) ≡ ε
∂ỹ
∂t + ∑2

j=1 λj(t)
∂ỹ
∂τj

− λ1(t)ỹ − J̃ỹ =

= h1(t) + h2(t)eτ2 σ4, ỹ(t, τ, ε)|t=0,τ=0 = y0
(8)

where the operator J̃ has the form (7).

3. Iterative Problems and Their Solvability in the Space U

Substituting (6) into (8) and equating the coefficients at the same degrees of ε, we
obtain the following iterative problems:

Ly0(t, τ, σ) ≡ ∑2
j=1 λj(t)

∂y0
∂τj

− λ1(t)y0 =

= h1(t) + h2(t)eτ2 σ4, y0(0, 0) = y0;
(90)

Ly1(t, τ, σ) = −∂y0

∂t
+ R1y0, y1(0, 0) = 0; (91)

Ly2(t, τ, σ) = −∂y1

∂t
+ R1y1 + R2y0, y2(0, 0) = 0; (92)

· · ·

Lyk(t, τ, σ) = −∂yk−1
∂t

+ Rky0 + . . . + R1yk−1, yk(0, 0) = 0, k ≥ 1. (9k)

Each of the iterative problems (9k) has the form

Ly(t, τ, σ) ≡
2

∑
j=1

λj(t)
∂y
∂τj

− λ1(t)y = H(t, τ, σ), y(0, 0, σ) = y∗ (10)

where H(t, τ, σ) = H0(t, σ) + ∑2
j=1 Hj(t, σ)eτj . We introduce in the space U a scalar product

(for each t ∈ [0, 1] and σ) :

< y(t, τ, σ), z(t, τ, σ) >≡< ∑2
j=1 yj(t, σ)eτj + y0(t, σ), ∑2

j=1 zj(t, σ)eτj+

+z0(t, σ) >
de f
= ∑2

j=0(yj(t, σ), zj(t, σ))

where (∗, ∗) is the usual scalar product in C. Let us prove the following statement.

Theorem 1. Let H(t, τ) ∈ U, and conditions (1) and (2) be satisfied. Then, for the solvability of
Equation (10) in the space U , it is necessary and sufficient that

< H1(t, τ, σ), eτ1 >≡ 0 ⇔ H1(t, σ) ≡ 0, ∀t ∈ [0, 1]. (11)

Proof. Defining the solution of the Equation (10) in the form of function (5), we obtain
the identity

2

∑
j=1

[
λj(t)− λ1(t)

]
yj(t, σ)eτj − λ1(t)y0(t, σ) = H0(t, σ) +

2

∑
j=1

Hj(t, σ)eτj .

17
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Equating here separately the free terms and the coefficients at the exponentials eτj , we
will have

−λ1(t)y0(t, σ) = H0(t, σ), (120)[
λj(t)− λ1(t)

]
yj(t, σ) = Hj(t, σ), j = 1, 2. (12j)

Since λ1(t) �= 0∀t ∈ [0, 1], that the Equation (120) has a unique solution

y0(t, σ) = − H0(t, σ)

λ1(t, σ)
. (13)

Since λ1(t) is a real function and λ2(t) = iβ′(t) is purely imaginary, the Equation (122) has
a unique solution in the space C∞([0, 1],C). For the solvability of the Equation (121) in the
space C∞([0, 1],C) it is necessary and sufficient for identity (11) to hold. Thus, Theorem 1
is proved.

Remark 1. It follows from the Equalities (120)–(13) that under conditions (1) and (2) and condition
(11), Equation (10) has the following solution in the space U:

y(t, τ, σ) = y0(t, σ) + α1(t, σ)eτ1 + y2(t, σ)eτ2 (14)

where α1(t, σ) ∈ C∞([0, 1],C) is an arbitrary function,

y0(t, σ) = −λ−1
1 (t)H0(t, σ), y2(t, σ) = (λ2(t)− λ1(t))

−1H2(t, σ).

Thus, the solution (14) of the Equation (10) is determined ambiguously in the space U. Let now
y∗ ∈ C be a fixed constant vector. Consider the following problem:

y(0, 0, σ) = y∗,

< − ∂y
∂t + R1y + Q(t, τ, σ), eτ1 >≡ 0, ∀t ∈ [0, 1]

(15)

where Q(t, τ, σ) = Q0(t, σ) + ∑2
j=1 Qi(t, σ)eτj is the well-known vector function of the space U,

and R1 is the order operator described above (see (6a)). Let us prove the following statement.

Theorem 2. Let conditions (1) and (2) be satisfied and the vector function H(t, τ, σ) ∈ U satisfies
the orthogonality conditions (11). Then the problem (10) under additional conditions (15) has a
unique solution in the space U.

Proof. Since the condition (11) is satisfied, Equation (10) has a solution in the space U in the
form of the function (14), where α1(t, σ) ∈ C∞([0, 1],C) is an arbitrary function. Submitting
(14) to the condition y(0, 0) = y∗, we have

y∗ = y0(0, σ) + α1(0, σ) +
H2(0, σ)

λ2(0)− λ1(0)
⇔

⇔ α1(0, σ) = y∗ +
H0(0, σ)

λ1(0)
− H2(0, σ)

λ2(0)− λ1(0)
.

Let us now subordinate (14) to the second condition (15):

−∂y0

∂t
+ R1y0 + Q(t, τ) = −ẏ0(t, σ)− α̇1(t, σ)eτ1 − ẏ2(t, σ)eτ2+

+

[
K(t, 1)y0(1, σ)

−λ3(1)
σ3 − K(t, 0)y0(0, σ)

−λ3(0)

]
+

[
K(t, 1)α1(1, σ)

λ1(1)− λ3(1)
σ1 − K(t, 0)α1(0, σ)

λ1(0)− λ3(0)
σ3

]
+
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+

[
K(t, 1)y2(1, σ)

λ2(1)− λ3(1)
σ2 − K(t, 0)y2(0, σ)

λ2(0)− λ3(0)
σ3

]
+ Q(t, τ).

Considering that here the expressions in square brackets do not contain an exponent eτ1 ,
we perform scalar multiplication in the second equality (15). This gives

−α̇1(t, σ) + Q1(t) = 0 ⇔ α1(t, σ) =
∫ t

0
Q1(θ)dθ + y∗ +

H0(0, σ

λ1(0)
− H2(0, σ)

λ2(0)− λ1(0)

and hence, we construct the solution (14) of the problem (10) in the space U in a unique
way. Theorem 2 is proved.

4. Construction of the Solution to the First Iterative Problem

Let us apply Theorem 1 to iterative problems (9k). Since the right-hand side h1(t) +
h2(t)eτ2 σ4 of the Equation (90) satisfies condition (11), the solution y0(t, τ) ∈ U of the first
iterative problem (90) has the form

y0(t, τ, σ) =
h1(t)

−λ1(t)
+ α

(0)
1 (t, σ)eτ1 +

h2(t)
λ2(t)− λ1(t)

eτ2 σ4 (16)

where α
(0)
1 (t, σ) ∈ C∞[0, 1] is an arbitrary function. Submitting this solution to the initial

condition y0(0, 0, σ) = y0, we find

h1(0)
−λ1(0)

+ α
(0)
1 (0, σ) + h2(0)

λ2(0)−λ1(0)
σ4 = y0 ⇔

⇔ α
(0)
1 (0, σ) = y0 + h1(0)

λ1(0)
− h2(0)

λ2(0)−λ1(0)
σ4.

(17)

For the final calculation of the function α
(0)
1 (t, σ), it is necessary to write down conditions

(11) for the next iterative problem (91). Since R1y0(t, τ) does not contain an exponent, then,
under the orthogonality conditions (11), it can be omitted and an equality can be obtained
α̇
(0)
1 (t, σ) = 0, which, taking into account the initial condition (17), leads to an unambiguous

calculation of the function

α
(0)
1 (t, σ) = y0 +

h1(0)
λ1(0)

− h2(0)
λ2(0)− λ1(0)

σ4 = const

and hence to an unambiguous calculation of the solution (16) of the first iterative problem
(90) in the space U.

Remark 2. The solution of the following problem (91) is determined from the system

Ly1(t, τ, σ) = − ∂y0
∂t + R1y0, y1(0, 0) = 0,

< − ∂y1
∂t + R1y1 + R2y0, eτ1 >≡ 0∀t ∈ [0, 1].

(18)

As in the previous case, the expression R1y1 and R2y0 does not contain an exponent eτ1 , therefore,
under orthogonality conditions (18), they can be omitted, and then the solution y1(t, τ) ∈ U of the
iterative problem (91) will be determined from the system

Ly1(t, τ, σ) = −∂y0

∂t
+ R1y0, y1(0, 0) = 0,

< −∂y1

∂t
, eτ1 >≡ 0∀t ∈ [0, 1].

19



Axioms 2022, 11, 141

The same situation takes place for all subsequent iterative problems (9k)(k ≥ 2). Thus, the influence
of the Fredholm-type integral operator in (1) affects only the formation of particular solutions
of equations for functions α

(k)
1 (t, σ), while in Volterra systems the kernel K(t, s) of the integral

operator participates in the formation of common solutions for these functions.

5. Justification of the Asymptotic Convergence of Formal Solutions to the
Exact Solutions

Applying Theorems 1 and 2 to iterative problems (9k), we can uniquely calculate their
solutions yk(t, τ, σ) in the space U. Denote the N-th partial sum of series (6) by SN(t, τ, σ),
and through yεN(t) = SN(t,

ψ(t)
ε , ε) is the restriction of this sum at τ = ψ(t)

ε . It is easy to
prove the following assertion (see, for example, [15], pp. 37–40).

Lemma 1. Let conditions (1) and (2) be satisfied. Then the function yεN(t) is a formal asymptotic
solution of the problem (1) of order N, that is, it satisfies the problem

ε
dyεN

dt − a(t)yεN − ∫ 1
0 exp

(
1
ε

∫ 1
s μ(θ)dθ

)
K(t, s)yεN(s)ds =

= h1(t) + h2(t)e
iβ(t)

ε + εN+1FN(t, ε), yεN(0) = y0

(19)

where ||FN(t, ε)||C[0,1] ≤ F̄(F̄ > 0 is a constant independent of ε at ε ∈ (0, ε0], ε0 is small enough).
To prove the Theorem on the estimate of the remainder term, we first consider the integro-

differential equation

ε dz
dt = a(t)z +

∫ 1
0 exp

(
1
ε

∫ 1
s μ(θ)dθ

)
K(t, s)z(s, ε)ds+H(t, ε), z(0, ε) = 0 (200)

and try to estimate the norm of its solution z(t, ε) in terms of the norm of the right-hand side H(t, ε).

The function Y(t, s, ε) = e
1
ε

∫ t
s a(θ)dθ is the fundamental Cauchy solution for a homogeneous equation

εż = a(t)z. Under conditions (1) and (2) it is uniformly bounded, i.e., ||Y(t, s, ε)|| ≤ c0 = const
for all (t, s, ε) ∈ {0 ≤ s ≤ t ≤ 1, ε > 0}. Let us convert the Equation (200), using Y(t, s, ε); we
obtain the equivalent integral equation

z(t, ε) =
1
ε

∫ t

0
e

1
ε

∫ t
x a(θ)dθ(

∫ 1

0

(
e

1
ε

∫ 1
s μ(θ)dθ

)
K(x, s)z(s, ε)ds)dx +

1
ε

∫ t

0
e

1
ε

∫ t
x a(θ)dθ H(x, ε)dx.

Denoting H1(t, ε) ≡ ∫ t
0 e

1
ε

∫ t
x a(θ)dθ H(x, ε)dx and changing the order of integration in the iterated

integral, we obtain the following integral equation of the Fredholm type:

z(t, ε) =
∫ 1

0
exp
(

1
ε

∫ 1

s
μ(θ)dθ

)
G(t, s, ε)z(s, ε)ds +

H1(t, ε)

ε
(20)

where G(t, s, ε) = 1
ε

∫ t
0 e

1
ε

∫ t
x a(θ)dθK(x, s)dx. Let us show that the kernel G(t, s, ε) of this equation

is uniformly bounded for 0 ≤ s, t ≤ 1, i.e., which the following statement holds.

Lemma 2. Let conditions (1) and (2) be satisfied. Then the kernel G(t, s, ε) is uniformly bounded,
i.e., |G(t, s, ε)| ≤ M for all (s, t, ε) ∈ [0, 1]× [0, 1]× (0,+∞).

Proof. Using the operation of integration by parts, we have

G(t, s, ε) = 1
ε

∫ t
0 e

1
ε

∫ t
x a(θ)dθK(x, s)dx =

∫ t
0

K(x,s)
−a(x) dxe

1
ε

∫ t
x a(θ)dθ =

= K(x,s)
−a(x) e

1
ε

∫ t
x a(θ)dθ |x=t

x=0 − ∫ t
0 e

1
ε

∫ t
x a(θ)dθ ∂

∂x

(
K(x,s)
−a(x)

)
dx =

20
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=

[
K(t, s)
−a(t)

− K(0, s)
−a(0)

e
1
ε

∫ t
0 a(θ)dθ

]
−
∫ t

0
e

1
ε

∫ t
x a(θ)dθ ∂

∂x

(
K(x, s)
−a(x)

)
dx.

Hence, it is clear that under conditions (1) and (2) the kernel G(t, s, ε) is uniformly
bounded, i.e., |G(t, s, ε)| ≤ M for all 0 ≤ s, t ≤ 1, ε > 0. The Lemma 2 is proved.

We now turn to the proof of the correct solvability of Equation (20). To do this, we will
try to estimate the norm of the resolvent R(t, s, ε) of the kernel K̃(t, s, ε) = exp

(
1
ε

∫ 1
s μ(θ)dθ

)
G(t, s, ε) of integral Equation (20). Let us denote χ = min

t∈[0,1]
Re(−μ(t)) and estimate the

iterated kernels of the integral operator of this system. By Lemma 2, for all 0 ≤ s, t ≤ 1 and
ε > 0 we have

|K̃1(t, s, ε)| ≡ |K̃(t, s, ε)| ≤ M;

|K̃2(t, s, ε)| ≡ |
∫ 1

0
K̃(t, x, ε)K̃1(x, s, ε)dx| ≡

≡ |
∫ 1

0
exp
(

1
ε

∫ 1

x
μ(θ)dθ

)
G(t, x, ε) exp

(
1
ε

∫ 1

s
μ(θ)dθ

)
G(x, s, ε)dx| ≤

≤ M2
∫ 1

0
exp
(

1
ε

∫ 1

x
Re μ(θ)dθ

)
dx ≤ M2

∫ 1

0
exp
(
−χ(1 − x)

ε

)
dx =

≤ M2ε
exp
(
− χ(1−x)

ε

)
x

∣∣∣∣∣∣
x=1

x=0

=
M2ε

χ
(1 − e

χ
ε ) ≤ M2

ε
,

|K̃3(t, s, ε)| ≡ |
∫ 1

0
K̃(t, x, ε)K̃2(x, s, ε)dx| ≤

∫ 1

0
|K̃(t, s, ε)| · |K̃2(x, s, ε)|dx ≤

≤ M2

χ
ε
∫ 1

0

(
1
ε

∫ 1

x
Re μ(θ)dθ

)
|G(t, x, ε)|dx ≤ M3

χ
ε
∫ 1

0
exp
(
−χ(1 − x)

ε

)
dx ≤ M3ε2

χ2 .

Suppose now that, for n = r ≥ 1, the estimate

|K̃r(t, s, ε)| ≤ Mrεr−1

χr−1 , 0 ≤ s, t ≤ 1, ε > 0

holds. Let us show that this estimate is also true for n = r + 1. Indeed,

|K̃r+1(t, s, ε)| ≡
∫ 1

0
|K̃(t, x, ε)K̃r(x, s, ε)dx| ≤

∫ 1

0
|K̃(t, x, ε)| · |K̃r(x, s, ε)|dx ≤

≤ Mrεr−1

χr−1

∫ 1
0 |K̃(t, x, ε)|dx = Mr+1εr−1

χr−1
ε
χ e−

χ(1−x)
ε |x=1

x=0 =

= Mr+1εr

χr

(
1 − e−

χ
ε

)
≤ Mr+1εr

χr (0 ≤ s, t ≤ 1, ε > 0).

So, for all 0 ≤ s, t ≤ 1, ε > 0 we have proved the estimate

|K̃n(t, s, ε)| ≤ Mnεn−1

χn−1 (n = 1, 2, 3, . . .).

But then the resolvent

R(t, s, ε) ≡ K̃1(t, s, ε) + K̃2(t, s, ε) + · · ·+ K̃n(t, s, ε) + · · · ≡
∞

∑
n=1

K̃n(t, s, ε)
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majorized by a number series

∞

∑
n=1

Mnεn−1

χn−1 ≡ M
∞

∑
n=1

(
Mε

χ

)n−1
=

M
1 − Mε

χ

converging absolutely for 0 < ε < χ
M . This means that the series for the resolvent converges

absolutely and uniformly in (s, t) : 0 ≤ s, t ≤ 1 for all ε ∈ (0, χ
2M ]. In this case, we have

the estimate
|R(t, s, ε)| ≤ M

1 − Mε
χ

≤ 2M,

at (s, t, ε) : 0 ≤ s, t ≤ 1, 0 < ε ≤ ε0 (where ε0 > 0 is small enough). Consequently, for
ε ∈ (0, ε0] Equation (20) (and hence the equivalent Equation (200)) is uniquely solvable in
the class C1([0, 1],C) and its solution is represented in the form

z(t, ε) =
1
ε

H1(t, ε) +
1
ε

∫ 1

0
R(t, s, ε)H1(t, s, ε)ds

for any right-hand side H1(t, ε) ≡ ∫ t
0 Y(t, x, ε)H(x, ε)dx. From this we derive the estimate

||z(t, ε)||C[0,1] ≤
1
ε
||H1(t, ε)||C[0,1] +

1
ε

2M||H1(t, ε)|| ≤

≤ 1
ε

(
||H(t, ε)||C[0,1] + 2Mc0||H(t, ε)||C[0,1]

)
≤ c̄0

||H(t, ε)||C[0,1]

ε

where c̄0 = c0(1+ 2M) > 0 is a constant independent of ε ∈ (0, ε0]. The following statement
is proved.

Lemma 3. Let conditions (1) and (2) be satisfied. Then, for sufficiently small ε(0 < ε ≤ ε0), the
Equation (200) is uniquely solvable in the class C1([0, 1],C) and its solution satisfies the estimate

||z(t, ε)||C[0,1] ≤
c̄0

ε
||H(t, ε)||C[0,1]

where the constant c̄0 > 0 does not depend on ε(0 < ε ≤ ε0].

Remark 3. Correct solvability of the integral system (20) means that the integral operator
∫ 1

0

exp
(

1
ε

∫ 1
s μ(θ)dθ

)
G(t, s, ε)z(s, ε)ds has no eigenvalues in the space C([0, 1],C) (for sufficiently

small ε > 0).

We apply Lemma 3 to prove the following statement.

Theorem 3. Let conditions (1) and (2) be satisfied. Then the problem (1) is uniquely solvable in the
class C1([0, 1],C) and its solution y(t, ε) satisfies the estimate

||y(t, ε)− yεN(t)||C[0,1] ≤ cNεN+1, N = 0, 1, 2, . . .

where yεN(t) is the narrowing (for τ = ψ(t)
ε ), N-th partial sum of the series (6) (with coefficients

yk(t, τ) ∈ U satisfying the iterative problems (9k)), and the constant cN > 0 does not depend on ε
at ε ∈ (0, ε0](ε0 > 0 is small enough).
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Proof. The problem (1) is uniquely solvable, since it is reduced to the problem (200) by a
change y − y0 = z. By Lemma 1, for the difference ΔN(t, ε) = y(t, ε)− yεN(t) , we obtain
the equation

ε
ΔN
dt

= a(t)ΔN(t, ε)+
∫ 1

0
exp
(

1
ε

∫ 1

s
μ(θ)dθ

)
K(t, s)ΔN(s, ε)ds − εN+1FN(t, ε), ΔN(t, ε) = 0.

It has the form of the problem (20) with inhomogeneity H(t, ε) ≡ −εN+1FN(t, ε). By
Lemma 3, we have the estimate

||ΔN(t, ε)||C[0,1] ≡ ||y(t, ε)− yεN(t)||C[0,1] ≤
c̄0

ε
εN+1||FN(t, ε)||C[0,1] ≤ c̄0 F̄NεN ≡ c̄N−1εN

and, therefore, for ΔN+1(t, ε) = y(t, ε)− yε,N+1(t) will have the estimate

||ΔN+1(t, ε)||C[0,1] ≡||(y(t, ε)− yεN(t))− εN+1yN+1(t,
ψ(t)

ε )||C[0,1] ≤ c̄NεN+1.

Hence, we obtain that

c̄NεN+1 ≥ ||y(t, ε)− yεN(t)||C[0,1] − εN+1||yN+1(t,
ψ(t)

ε
)||C[0,1]

or ||y(t, ε)− yεN(t)||C[0,1] ≤ cNεN+1, where cN = c̄N + ȳN > 0, ||yN+1(t,
ψ(t)

ε )||C[0,1] ≤ ȳN ,
and the constant cN does not depend on ε ∈ (0, ε0], where ε0 > 0 is small enough. The
Theorem 3 is proved.

According to this Theorem 3, the leading term of the asymptotics of the solution the
problem (1) has the form (see Formula (16))

yε0(t, σ) = h1(t)
−λ1(t)

+ α
(0)
1 (t, σ)e

1
ε

∫ t
0 a(θ)dθ + h2(t)

λ2(t)−λ1(t)
e

i
ε

∫ t
0 β′(θ)dθσ4 =

= h1(t)
−λ1(t)

+
[
y0 + h1(0)

λ1(0)
− h2(0)

λ2(0)−λ1(0)
e

i
ε β(0)

]
e

1
ε

∫ t
0 a(θ)dθ+ h2(t)

λ2(t)−λ1(t)
e

i
ε β(t).

(21)

It is clearly seen here how the rapidly oscillating inhomogeneity affects the asymptotic
behavior of the solution to Equation (1), but the contribution of the integral operator∫ 1

0 e
1
ε

∫ T
s μ(θ)dθK(t, s)y(s, ε)ds to it is not found; therefore, we calculate the next term of the

asymptotics.
Substituting the solution to the problem in the right-hand side, we obtain the following

equation:

Ly1(t, τ, σ) = −∂y0

∂t
+ R1y0 =

= − ∂

∂t

(
− h1(t)

λ1(t)
+ α

(0)
1 (t, σ)eτ1 +

h2(t)
λ2(t)− λ1(t)

eτ2 σ4

)
+ R1y0 =

=

(
h1(t)
λ1(t)

)•
− α̇

(0)
1 (t, σ)eτ1 −

(
h2(t)

λ2(t)− λ1(t)

)•
eτ2 σ4−

−
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
σ3 − K(t, 0)h1(0, σ)

λ3(0)λ1(0)

]
+

[
K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1−
K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
σ3

]
+

+

[
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4 − K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ3σ4

]
=

(
h1(t)
λ1(t)

)•
− α̇

(0)
1 (t, σ)eτ1−

−
(

h2(t)
λ2(t)− λ1(t)

)•
eτ2 σ4 +

K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1 +
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4−
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−
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3.

Defining the solution of this equation as an element

y1(t, τ) = y(1)0 (t, σ) +
2

∑
j=1

y(1)j (t, σ)eτj

of the space U, we arrive at the following equality:

∑2
j=1
[
λj(t)− λ1(t)

]
y(1)j (t, σ)eτj − λ1(t)y

(1)
0 (t, σ) =

=

(
h1(t)
λ1(t)

)•
− α̇

(0)
1 (t, σ)eτ1 −

(
h2(t)

λ2(t)− λ1(t)

)•
eτ2 σ4+

+
K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1 +
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4−

−
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3.

Equating here separately the free terms and the coefficients at the exponentials eτj , we
will have

−λ1(t)y
(1)
0 (t, σ) =

(
h1(t)
λ1(t)

)•
+

K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1+

+
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4 −
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3.

0 · y(1)1 (t, σ) = −α̇
(0)
1 (t, σ),

[λ2(t)− λ1(t)]y
(1)
2 (t, σ) = −

(
h2(t)

λ2(t)− λ1(t)

)•
σ4.

Since the orthogonality condition α̇
(0)
1 (t, σ) ≡ 0 is satisfied, these equations have solutions

in the form of functions:

y(1)0 (t, σ) = − 1
λ1(t)

{(
h1(t)
λ1(t)

)•
+

K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1+

+
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4 −
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3

}
,

y(1)2 (t, σ) = −
(

h2(t)
λ2(t)−λ1(t)

)•

λ2(t)− λ1(t)
σ4
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and y(1)1 (t, σ) = α
(1)
1 (t, σ) ∈ C∞[0, 1] is an arbitrary function. Thus, the solution to the

problem (91) will be as follows:

y1(t, τ, σ) = − 1
λ1(t)

{(
h1(t)
λ1(t)

)•
+ K(t,0)h1(0,σ)

λ3(0)λ1(0)
+

K(t,1)α(0)1 (1,σ)
λ1(1)−λ3(1)

σ2
1 + K(t,1)h2(1,σ)

[λ2(1)−λ3(1)]2
σ2

2 σ4−

−
[

K(t,1)h1(1,σ)
λ3(1)λ1(1)

+
K(t,0)α(0)1 (0,σ)
λ1(0)−λ3(0)

+ K(t,0)h2(0,σ)
[λ2(0)−λ3(0)]2

σ4

]
σ3

}
+α

(1)
1 (t, σ)eτ1 −

(
h2(t)

λ2(t)−λ1(t)

)•

λ2(t)−λ1(t)
eτ2 σ4

where α
(1)
1 (t, σ) ∈ C∞[0, 1] is an arbitrary function that is calculated in the process of

solving the next iterative problem (92). As a result, we obtain an asymptotic solution of the
first order:

yε1(t) =
h1(t)

−λ1(t)
+

[
y0 +

h1(0)
λ1(0)

− h2(0)
λ2(0)− λ1(0)

σ4

]
e

1
ε

∫ t
0 a(θ)dθ +

h2(t)
λ2(t)− λ1(t)

e
i
ε

∫ t
0 β′(θ)dθσ4−

− ε

λ1(t)

{(
h1(t)
λ1(t)

)•
+

K(t, 0)h1(0, σ)

λ3(0)λ1(0)
+

K(t, 1)α(0)1 (1, σ)

λ1(1)− λ3(1)
σ2

1 +
K(t, 1)h2(1, σ)

[λ2(1)− λ3(1)]2
σ2

2 σ4−

−
[

K(t, 1)h1(1, σ)

λ3(1)λ1(1)
+

K(t, 0)α(0)1 (0, σ)

λ1(0)− λ3(0)
+

K(t, 0)h2(0, σ)

[λ2(0)− λ3(0)]2
σ4

]
σ3

}
+εα

(1)
1 (t, σ)e

1
ε

∫ t
0 a(θ)dθ−

−ε

(
h2(t)

λ2(t)−λ1(t)

)•

λ2(t)− λ1(t)
σ4e

i
ε

∫ t
0 β′(θ)dθ

from which it is seen that the kernel of the integral operator affects only the formation of
particular solutions of iterative problems (9k) and particular solutions of equations for the
functions α

(k)
1 (t, σ).

In conditions of solvability of the type (11), as already mentioned above, the integral
operator does not participate. This is the main difference between integro-differential
equations of Fredholm type from equations of Volterra type, where the kernel of the integral
operator significantly affects the construction of the general solution of the equations for
functions α

(k)
1 (t, σ) (see, for example, [20]).

6. Conclusions

Since the terms of order ε in yε1(t) uniformly tend to zero, when ε → +0, then the
behavior of the exact solution of the problem (1) as the small parameter tends to zero
completely is determined by its main term of asymptotics (21): after leaving the point
y = y0 at t = 0 , the exact solution y(t, ε) of the problem (1) (for t > 0 and ε → +0) will
perform fast oscillations around the “degenerate solution” ¯̄y(t) = h1(t)

−λ1(t)
, not tending for

any limit.
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Abstract: We consider a singularly perturbed integral equation with weakly and rapidly varying
kernels. The work is a continuation of the studies carried out previously, but these were focused
solely on rapidly changing kernels. A generalization for the case of two kernels, one of which
is weakly, and the other rapidly varying, has not previously been carried out. The aim of this
study is to investigate the effects introduced into the asymptotics of the solution of the problem
by a weakly varying integral kernel. In the second part of the work, the problem of constructing
exact (more precise, pseudo-analytic) solutions of singularly perturbed problems is considered on
the basis of the method of holomorphic regularization developed by one of the authors of this paper.
The power series obtained with the help of this method for the solutions of singularly perturbed
problems (in contrast to the asymptotic series constructed in the first part of this paper) converge in
the usual sense.

Keywords: singularly perturbed; integral equations; regularization of the integral; weakly and
rapidly changing kernel; holomorphic integrals; family of homomorphisms; asymptotic and
pseudoholomorphic solutions

1. Introduction

In the first part of this work, we consider a singularly perturbed equation in which integral
operators contain both weakly and rapidly changing kernels. The problem of constructing a regularized
asymptotic solution for this problem, uniformly applicable over the entire time interval under
consideration, was previously solved but only for rapidly varying kernels (see, for example
References [1–4]). A generalization for the case of two kernels, one of which is weakly, and the other
rapidly varying, has not previously been carried out. The aim of the present study is to investigate
the effects introduced into the asymptotics of the solution by a weakly varying kernel. Notice that
this problem was not considered from the point of view of other methods of asymptotic integration
(for example, using the methods of References [5–7]).

The second part of our paper is devoted to the construction of approximate solutions of singularly
perturbed problems using the method of holomorphic regularization [8,9]. The analysis of asymptotic
methods for solving singularly perturbed problems shows that the solutions of such problems depend
in two ways on a small parameter: regularly and singularly. This dependence is especially vividly
demonstrated by the method of regularization of Lomov. Moreover, regularized series representing

Axioms 2019, 8, 27; doi:10.3390/axioms8010027 www.mdpi.com/journal/axioms
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solutions of singularly perturbed problems can converge in the usual sense. In this connection,
it became necessary to study a special class of functions—pseudoholomorphic functions. This very
important part of the complex analysis is designed to substantiate the main provisions of the so-called
analytic theory of singular perturbations. On the other hand, the relevance of the theory is also
supported by the fact that pseudoholomorphic functions, in contrast to holomorphic functions,
are determined when the conditions of the implicit function theorem are violated.

The concept of a pseudoanalytic (pseudoholomorphic) function and the associated concept of
an essentially singular manifold are of a general mathematical nature, although they arose in the
framework of the regularization method for singular perturbations. First of all, they reflect the new
concept of a pseudoholomorphic solution of singularly perturbed problems, i.e., such a solution,
which is representable in the form of a series converging in the usual (but not asymptotic) sense in
powers of a small parameter. We must also take into account the fact that the modern mathematical
theory of the boundary layer [1], along with the Vasilyeva–Butuzov–Nefedov boundary-function
method [5] and the method of barrier functions [10], widely uses the notion of a pseudoholomorphic
solution. The importance of considering singularly perturbed problems from the standpoint of
the method of pseudoholomorphic solutions is illustrated by applications (see, for example,
References [11,12]).

2. An Equivalent Integro-Differential System and Its Regularization

We consider the singularly perturbed equation

εy (t, ε) =
∫ t

0
e

1
ε

∫ t
s μ(θ)dθK2(t, s)y(s, ε)ds +

∫ t

0
K1(t, s)y(s, ε)ds + h(t), t ∈ [0, T]. (1)

Differentiating Equation (1) with respect to t, will have

ε2
(

dy(t,ε)
dt

)
=

t
∫
0

(
μ (t) e

∫ t
s μ(θ) dθ

ε K2 (t, s) y (s, ε) + ε · e
∫ t

s μ(θ) dθ
ε

(
∂
∂t K2 (t, s)

)
y (s, ε)

)
ds+

+ε · K2 (t, t) y (t, ε) + ε ·
t
∫
0

(
∂
∂t K1 (t, s)

)
y (s, ε) ds + ε · K1 (t, t) y (t, ε) + ε · d

dt h (t) ,

or
ε2 dy

dt = (K1 (t, t) + K2 (t, t)) εy + μ (t) z+

+
t
∫
0

e
∫ t

s μ(θ) dθ
ε ∂

∂ t K2 (t, s) εy (s, ε) ds +
t
∫
0

∂
∂ t K1 (t, s) εy (s, ε) ds + ε · d

dt h (t) ,
(2)

where z (t, ε) =
t
∫
0

e
1
ε

t
∫
s

μ(θ)dθ
K2 (t, s) y (s, ε) ds. By differentiating this function with respect to t,

we also obtain

ε
dz
dt

= μ (t) · z +
t
∫
0

(
ε · e

∫ t
s μ(θ) dθ

ε

(
∂

∂t
K2 (t, s)

)
y (s, ε)

)
ds + ε · K2 (t, t) y. (3)

Finally, denoting by εy = v, rewriting Equations (2) and (3) in the form

ε dv
dt = (K1 (t, t) + K2 (t, t)) v + μ (t) z+

+
t
∫
0

e
∫ t

s μ(θ) dθ
ε ∂

∂ t K2 (t, s) v (s, ε) ds +
t
∫
0

∂
∂ t K1 (t, s) v (s, ε) ds + ε · ḣ (t) ,

ε dz
dt = μ (t) · z +

t
∫
0

(
e

∫ t
s μ(θ) dθ

ε

(
∂
∂t K2 (t, s)

)
v (s, ε)

)
ds + K2 (t, t) v.

We have obtained an integro-differential system of equations
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ε

(
dv
dt
dz
dt

)
=

(
K1 (t, t) + K2 (t, t) μ (t)

K2 (t, t) μ (t)

)(
v
z

)
+

+
∫ t

0 e
∫ t

s μ(θ) dθ
ε

(
∂

∂ t K2 (t, s) 0
∂
∂t K2 (t, s) 0

)(
v (s, ε)

z (s, ε)

)
ds +

∫ t
0

(
∂

∂ t K1 (t, s) 0
0 0

)(
v (s, ε)

z (s, ε)

)
ds+

+ε

(
ḣ (t)

0

)
,

(
v (0, ε)

z (0, ε)

)
=

(
h (0)

0

)
,

or
ε dw

dt = A(t)w +
∫ t

0 B (t, s)w(s, ε)ds+

+
∫ t

0 e
1
ε

∫ t
s μ(θ)dθG (t, s)w(s, ε)ds + εH(t), w(0, ε) = w0 ≡

(
h (0)

0

)
,

(4)

where w = {v, z}, matrixes A(t), A1(t), B (t, s) , G(t, s), and the vector function H (t) have the form

A (t) =

(
K1 (t, t) + K2 (t, t) μ (t)

K2 (t, t) μ (t)

)
, B (t, s) =

(
∂K1(t,s)

∂t 0
0 0

)
,

G (t, s) =

(
∂K2(t,s)

∂t 0
∂K2(t,s)

∂t 0

)
, H(t) =

(
ḣ (t)

0

)
, w0 ≡

(
h (0)

0

)
.

The roots of the characteristic equation of matrix A (t) :

λ2 − (μ (t) + K1 (t, t) + K2 (t, t)) λ + μ (t)K1 (t, t) = 0

form the spectrum σ (A (t)) = {λ1 (t) , λ2 (t)} of the matrix A (t) . We assume that the
following conditions hold:

1) h(t), μ (t) ∈ C∞([0, T],C), Kj (t, s) ∈ C∞(0 ≤ s ≤ t ≤ T,C), j = 1, 2;
2) μ (t) �= 0, Re μ (t) ≤ 0 , λj (t) �= 0, Re λj (t) ∀t ∈ [0, T] , j = 1, 2.

We denote by λ3 (t) ≡ μ (t) and (according to the method [13] of Lomov) we introduce
regularizing variables

τj =
1
ε

∫ t

0
λj(θ)dθ ≡ ψj(t)

ε
, j = 1, 2, 3. (5)

For the extension w̃ = {v(t, τ, ε), z(t, τ, ε)}, we get the following system:

∂w̃
∂t + ∑3

j=1 λj (t) ∂w̃
∂τj

− A(t)w̃ − ∫ t
0 B (t, s) w̃(s, ψ(s)

ε , ε)ds−
− ∫ t

0 e
1
ε

∫ t
s λ3(θ)dθG (t, s) w̃(s, ψ(s)

ε , ε)ds = εH(t), w̃(t, τ, ε)|t=0, τ=0 = w0,
(6)

where τ = (τ1, τ2, τ3) , ψ = (ψ1, ψ2, ψ3) . However, Equation (6) cannot be considered completely
regularized, since the integral operator

Jw̃ =
∫ t

0
B (t, s) w̃(s,

ψ (s)
ε

, ε)ds +
∫ t

0
e

1
ε

∫ t
s λ3(θ)dθG (t, s) w̃(s,

ψ (s)
ε

, ε)ds

has not been regularized. To regularize the operator Jw̃, we introduce a class Mε = U|
τ=

ψ(t)
ε

,

asymptotically invariant with respect to the operator J (see Reference [13], p. 62). In this case,
we take as the space U the vector-valued functions representable by the sums of the form

w(t, τ) =
3

∑
j=1

wj(t)e
τj + w0(t), wj(t) ∈ C([0, T],C2), j = 0, 3. (7)
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We must show that the image Jw(t, τ) of the functions of the form of Equation (7) can be
represented in the form of a series

Jw(t, τ) =
∞

∑
k=0

εk(
3

∑
j=1

w(k)
1 (t)eτj + w(0)

0 (t))|
τ=

ψ(t)
ε

,

converging asymptotically to Jw (as ε → +0) and that this convergence is uniform with respect to
t ∈ [0, T]. Substituting Equation (7) into Jw(t, τ), we obtain

Jw (t, τ) =
∫ t

0 B (t, s)
(

∑3
j=1 wj(s)e

1
ε

∫ s
0 λj(θ)dθ + w0(s)

)
ds+

+
∫ t

0 e
1
ε

∫ t
s λ3(θ)dθG (t, s)

(
∑3

j=1 wj(s)e
1
ε

∫ s
0 λj(θ)dθ + w0(s)

)
ds ≡

≡ ∫ t
0 B (t, s)w0(s)ds +

∫ t
0 e

1
ε

∫ t
s λ3(θ)dθG (t, s)w0(s)ds+

+∑3
j=1
∫ t

0 B (t, s)wj(s)e
1
ε

∫ s
0 λj(θ)dθds+

+∑3
j=1
∫ t

0 G (t, s)wj(s)e
1
ε

∫ s
0 λj(θ)dθ+ 1

ε

∫ t
s λ3(θ)dθds ≡

≡ ∫ t
0 B (t, s)w0(s)ds + e

1
ε

∫ t
0 λ3(θ)dθ

∫ t
0 G (t, s)w3(s)ds+

+
∫ t

0 e
1
ε

∫ t
s λ3(θ)dθG (t, s)w0(s)ds + ∑3

j=1
∫ t

0 B (t, s)wj(s)e
1
ε

∫ s
0 λj(θ)dθds+

+∑2
k=1
∫ t

0 G (t, s)wk(s)e
1
ε

∫ s
0 λk(θ)dθ+ 1

ε

∫ t
s λ3(θ)dθds.

(7a)

Applying the operation of integration by parts, we find that∫ t
0 e

1
ε

∫ t
s λ3(θ)dθG (t, s)w0(s)ds = −ε

∫ t
0

G(t,s)w0(s)
λ3(s)

de
1
ε

∫ t
s λ3(θ)dθ =

= ε
[

G(t,0)w0(0)
λ3(0)

e
1
ε

∫ t
0 λ3(θ)dθ − G(t,t)w0(t)

λ3(t)

]
+

+ε
∫ t

0 e
1
ε

∫ t
s λ3(θ)dθ ∂

∂s

(
G(t,s)w0(s)

λ3(s)

)
ds =

= ∑∞
m=0 εm+1[

(
Im
3 (G (t, s)w0 (s))

)
s=0 e

1
ε

∫ t
0 λ3(θ)dθ − (Im

3 (G (t, s)w0 (s))
)

s=t];∫ t
0 B (t, s)wj(s)e

1
ε

∫ s
0 λj(θ)dθds = ε

∫ t
0

B(t,s)wj(s)
λj(s)

de
1
ε

∫ s
0 λj(θ)dθ =

= ε
[ B(t,t)wj(t)

λj(t)
e

1
ε

∫ t
0 λj(θ)dθ − B(t,0)wj(0)

λj(0)

]
−

− ∫ t
0

∂
∂s

( B(t,s)wj(s)
λj(s)

)
e

1
ε

∫ s
0 λj(θ)dθds =

= ∑∞
m=0 (−1)m εm+1[

(
Im
j
(

B (t, s)wj (s)
))

s=t
e

1
ε

∫ t
0 λj(θ)dθ −

(
Im
j
(

B (t, s)wj (s)
))

s=0
];∫ t

0 G (t, s)wk(s)e
1
ε

∫ s
0 λk(θ)dθ+ 1

ε

∫ t
s λ3(θ)dθds = e

1
ε

∫ t
0 λ3(θ)dθ

∫ t
0 e

1
ε

∫ s
0 [λk(θ)−λ3(θ)]dθG (t, s)wk(s)ds =

= εe
1
ε

∫ t
0 λ3(θ)dθ

∫ t
0

G(t,s)wk(s)
λk(s)−λ3(s)

de
1
ε

∫ s
0 [λk(θ)−λ3(θ)]dθ =

= εe
1
ε

∫ t
0 λ3(θ)dθ{[∫ t

0
G(t,t)wk(t)
λk(t)−λ3(t)

e
1
ε

∫ t
0 [λk(θ)−λ3(θ)]dθ − G(t,0)wk(0)

λk(0)−λ3(0)
]−

− ∫ t
0 e

1
ε

∫ s
0 [λk(θ)−λ3(θ)]dθ ∂

∂s

(
G(t,s)wk(s)
λk(s)−λ3(s)

)
ds} =

= ε[
∫ t

0
G(t,t)wk(t)
λk(t)−λ3(t)

e
1
ε

∫ t
0 λk(θ)dθ − G(t,0)wk(0)

λk(0)−λ3(0)
e

1
ε

∫ t
0 λ3(θ)dθ ]−

−εe
1
ε

∫ t
0 λ3(θ)dθ

∫ t
0 e

1
ε

∫ s
0 (λk(θ)−λ3(θ))dθ ∂

∂s

(
G(t,s)wk(s)
λk(s)−λ3(s)

)
ds =

= ∑∞
m=0 (−1)m εm+1[

(
Im
k3 (G (t, s)wk(s))

)
s=t e

1
ε

∫ t
0 λk(θ)dθ−

−(Im
k3 (G (t, s)wk(s))

)
s=0e

1
ε

∫ t
0 λ3(θ)dθ ],

where operators are introduced:

I0
j = 1

λj(s)
, Im

j = 1
λj(s)

∂
∂s Im−1

j , m ≥ 1, j = 1, 2, 3;

I0
k3 = 1

λk(s)−λ3(s)
, Im

k3 = 1
λk(s)−λ3(s)

∂
∂s Im−1

k3 , m ≥ 1, k = 1, 2.
(8)
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Consequently, for the operator Jw (t, τ) there is a decomposition

Jw (t, τ) ≡ ∫ t
0 B (t, s)w0(s)ds + e

1
ε

∫ s
0 λ3(θ)dθ

∫ t
0 G (t, s)w3(s)ds+

+∑∞
m=0 εm+1[

(
Im
3 (G (t, s)w0 (s))

)
s=0 e

1
ε

∫ t
0 λ3(θ)dθ − (Im

3 (G (t, s)w0 (s))
)

s=t]

+∑∞
m=0 (−1)m εm+1 ∑3

j=1[
(

Im
j
(

B (t, s)wj (s)
))

s=t
e

1
ε

∫ t
0 λj(θ)dθ−

−
(

Im
j
(

B (t, s)wj (s)
))

s=0
]+

+∑∞
m=0 (−1)m εm+1 ∑2

k=1[
(

Im
k3 (G (t, s)wk(s))

)
s=t e

1
ε

∫ t
0 λk(θ)dθ−

−
(

Im
k3 (G (t, s)wk(s)) e

1
ε

∫ t
0 λ3(θ)dθ

)
s=0

].

(9)

It is not hard to show (see Reference [14]) that the series on the right-hand side of Equation (9)
converges to Jw(t, ε) (as ε → +0) uniformly with respect to t ∈ [0, T]. We introduce operators of order
(on ε ) Rν : U → U:

R0w (t, τ) ≡ ∫ t
0 B (t, s)w0(s)ds + eτ3

∫ t
0 G (t, s)w3(s)ds,

R1w (t, τ) =
G(t,0)w0(0)

λ3(0)
eτ3 − G(t,t)w0(t)

λ3(t)
+

+
3
∑

j=1

[ B(t,t)wj(t)
λj(t)

eτj − B(t,0)wj(0)
λj(0)

]
+

+
2
∑

k=1

[
(G(t,t)wk(t))
λk(t)−λ3(t)

eτk − (G(t,0)wk(0))
λk(0)−λ3(0)

eτ3
]

,

(10)

Rm+1w (t, τ) = [
(

Im
3 (G (t, s)w0 (s))

)
s=0eτ3 − (Im

3 (G (t, s)w0 (s))
)

s=t]+

+(−1)m 3
∑

j=1
[
(

Im
j
(

B (t, s)wj (s)
))

s=t
eτj −

(
Im
j
(

B (t, s)wj (s)
))

s=0
]+

+(−1)m 2
∑

k=1
[
(

Im
k3 (G (t, s)wk(s))

)
s=te

τk − (Im
k3 (G (t, s)wk(s)) eτ3

)
s=0],

m ≥ 1, τ = ψ(t)
ε .

Then, the image Jw(t, τ) can be written in the form

Jw(t, τ) = R0w(t, τ) +
∞

∑
m=0

εm+1Rm+1w(t, τ), (11)

where τ = ψ(t)
ε . We now extend the operator J on the series of the form

w̃(t, τ, ε) =
∞

∑
k=0

εkwk(t, τ) (12)

with coefficients wk(t, τ) ∈ U, k ≥ 0. The formal extension J̃ of the operator J on the series of the form
of Equation (12) is called the operator

J̃w̃(t, τ, ε)
de f
=

∞

∑
ν=0

εν
ν

∑
s=0

Rν−sws(t, τ). (13)

In spite of the fact that the extension in Equation (13) of the operator J is defined formally, it is
quite possible to use it (see Theorem 3 below) in constructing an asymptotic solution of a finite order
in ε. Now, it is easy to write out the regularized (with respect to Equation (1)) problem:

∂w̃
∂t

+
3

∑
j=1

λj (t)
∂w̃
∂τj

− A(t)w̃ − J̃w̃ = εH(t), w̃(t, τ, ε)|t=0, τ=0 = w0. (14)
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3. The Solvability of Iterative Problems and the Asymptotic Convergence of Formal Solutions to
the Exact Ones

Substituting the series of Equation (12) into Equation (14) and equating the coefficients for the
same powers of ε, we obtain the following iteration problems:

L0w0(t, τ) ≡
3

∑
j=1

λj (t)
∂w0

∂τj
− A(t)w0 − R0w0 = 0, w0(0, 0) = w0; (15a)

L0w1(t, τ) = −∂w0

∂t
+ R1w0 + H (t) , w1(0, 0) = 0; (15b)

L0w2(t, τ) = −∂w1

∂t
+ R1w1 + R2w0; w2(0, 0) = 0; (15c)

· · ·
L0wk(t, τ) = − ∂wk−1

∂t + R1(t)wk−1 + R2wk−2+

+... + Rkw0, wk(0, 0) = 0, k ≥ 1,
(15d)

where R0w (t, τ) ≡ R0

(
∑3

j=1 w1(t)e
τj + w0(t)

)
=
∫ t

0 B (t, s)w0(s)ds + eτ3
∫ t

0 G (t, s)w3(s)ds.
Turning to the formulation of theorems on the normal and unique solvability of the iterative

problems of Equations (15a)–(15d), we denote by

ϕj (t) ≡
(

ϕ1
j (t)

ϕ2
j (t)

)
=

(
λj (t)− μ (t)

K2 (t, t)

)
, j = 1, 2,

the eigenvectors of the matrix A(t). As the eigenvectors χj(t) of the matrix A∗(t) we take the columns
of the matrix

(
Φ−1 (t)

)∗ ≡ (χ1 (t) , χ2 (t)) , where Φ (t) = (ϕ1 (t) , ϕ2 (t)) is the matrix whose columns
are the eigenvectors of the matrix A(t). Therefore, if ϕj (t) is λj (t)-eigenvector of the matrix A(t),
then χj(t) is an λ̄j (t)-eigenvector of the matrix A∗(t), and the systems

{
ϕj (t)

}
and {χk (t)} are

biorthonormal (see Reference [14], pp. 81–83), that is,

(
ϕj (t) , χk (t)

) ≡ δjk =

{
1, j = k,
0, j �= k

(j, k = 1, 2) .

Each of the iterative systems of Equation (15d) has the form

L0w(t, τ) ≡
3

∑
j=1

λj (t)
∂w
∂τj

− A(t)w − R0w = P(t, τ), (16)

where P(t, τ) = ∑3
j=1 Pj(t)e

τj + P0(t) ∈ U. We prove the following assertion.

Theorem 1. Suppose that the conditions (1) –(2) are satisfied and P(t, τ) ∈ U. Then, the system of
Equation (16) is solvable in the space U if and only if

(Pj(t), χj(t)) ≡ 0 ∀t ∈ [0, T], j = 1, 2 . (17)

Proof. We will determine the solution of the system of Equation (16) as the sum of Equation (7).
Substituting Equation (7) into Equation (16) and equating separately the coefficients of eτj and the free
terms, we have

(λk (t) I − A (t))wk (t) = Pk (t) , k = 1, 2, (18a)

(λ3 (t) I − A (t))w3 (t)−
∫ t

0
G (t, s)w3 (s) ds = P3 (t) , (18b)
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−A (t)w0 (t)−
∫ t

0
B (t, s)w0 (s) ds = P0 (t) . (18c)

For the systems of Equation (18a) to be solvable in space C∞ ([0, T] ,C2), it is necessary and
sufficient that the identities of Equation (17) hold (see, for example, Reference [14], p. 84). Moreover,
these systems have a solution in the form of vector functions

wk (t) = αk (t) ϕk (t) +
2

∑
s=1,s �=k

(Pk (t) , χs (t))
λk (t)− λs (t)

ϕs (t) , k = 1, 2,

where αk (t) ∈ C∞ ([0, T] ,C1) are arbitrary functions. Since λ3 (t) /∈ σ (A (t)) and 0 /∈ σ (A (t)),
the systems of Equations (18b) and (18c) can also be rewritten in the form

w3 (t)−
∫ t

0 (λ3 (t) I − A (t))−1 G (t, s)w3 (s) ds = (λ3 (t) I − A (t))−1 P3 (t) ,
w0 (t) +

∫ t
0 A−1 (t) B (t, s)w0 (s) ds = −A−1 (t) P0 (t) .

(19)

These Volterra integral systems have kernels belonging to the class C∞ ([0, T] ,C2×2) , so they
have unique solutions in the space C∞ ([0, T] ,C2) . The theorem is proved.

Remark 1. It follows from the proof of Theorem 1 that if the conditions of Equation (17) are satisfied, then the
system of Equation (17) has the following solution in the space U :

w(t, τ) = ∑2
k=1

[
αk (t) ϕk (t) + ∑2

s=1,s �=k pks (t) ϕs (t)
]

eτk + w3 (t) eτ3 + w0 (t) ,(
pks (t) ≡ (Pk(t),χs(t))

λk(t)−λs(t)
, k, s = 1, 2

)
,

(20)

where αk (t) ∈ C∞ ([0, T] ,C1) are arbitrary functions, and vector-valued functions w3 (t) , w0 (t) are solutions
of the integral systems of Equation (19).

We now consider the system of Equation (16) under additional conditions

w(0, 0) = w∗,
< − ∂w

∂t + R1w + Q(t, τ), χj(t)e
τj >≡ 0, j = 1, 2,

(21)

where Q(t, τ) = ∑3
j=1 Qj(t)e

τj + Q0(t) are known functions of class U, w∗ ∈ C2 is a known constant
vector, the operator R1 is defined by the equality of Equation (10), and by the <,> we denote the inner
product (for each t ∈ [0, T]) in space U :

< p(t, u), q(t, u) >≡<
3

∑
j=1

pj(t)e
τj + p0(t),

3

∑
j=1

qj(t)e
τj + q0(t) >

de f
=

3

∑
k=0

(pk(t), qk(t)),

where ( , ) is an ordinary inner product in C2. The following assertion holds true.

Theorem 2. Suppose that the conditions (1)–(2) hold and the vector function P(t, τ) ∈ U satisfies the conditions
of Equation (17). Then, the system of Equation (16) under additional conditions of Equation (21) is uniquely
solvable in U.

Proof. Since the conditions of Equation (17) are satisfied, the system of Equation (16) has a solution for
Equation (20) in the space U, where αj (t) are arbitrary functions for now. Subordinating Equation (18)
to the initial condition w(0, 0) = w∗, we obtain the equality

α1 (0) ϕ1 (0) + p12 (0) ϕ2 (0) + α2 (0) ϕ2 (0) + p21 (0) ϕ1 (0) = w∗,
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where w∗ = w∗ − w3 (0)− w0 (0) . Multiplying both sides of this equation scalarly in turn by χ1(0) and
χ2 (0), taking into account the biorthonormality of the eigenvector systems

{
ϕj (t)

}
,{χk (t)}, we have

α1 (0) = (w∗, χ1 (0))− p21 (0) , α2 (0) = (w∗, χ2 (0))− p12 (0) . (22)

We now calculate the expression − ∂w
∂t + R1w + Q(t, τ). Taking into account Equation (21) and the

form of the operator R1w (t, τ) , we have (here and everywhere below, a fatty dot denotes differentiation
with respect to t.)

− ∂w
∂t + R1w + Q(t, τ) = − ∑2

k=1 (αk (t) ϕk (t) + pks (t) ϕs (t))
• eτk−

−ẇ3 (t) eτ3 − ẇ0 (t) +
G(t,0)w0(0)

λ3(0)
eτ3 − G(t,t)w0(t)

λ3(t)
+

+∑3
j=1

[ B(t,t)wj(t)
λj(t)

eτj − B(t,0)wj(0)
λj(0)

]
+

+∑2
k=1

[
G(t,t)wk(t)
λk(t)−λ3(t)

eτk − G(t,0)wk(0)
λk(0)−λ3(0)

eτ3
]
+ ∑3

j=1 Qj(t)e
τj + Q0(t).

When writing the conditions of Equation (21) in this expression, it is necessary to preserve only
terms containing exponentials eτ1 and eτ2 , that is, Equation (21) is equivalent to the conditions

< − 2
∑

k=1

(
αk (t) ϕk (t) +

2
∑

s=1,s �=k
pks (t) ϕs (t)

)•
eτk+

+
2
∑

k=1

(
B(t,t)
λk(t)

+ G(t,t)
λk(t)−λ3(t)

)(
αk (t) ϕk (t) +

2
∑

s=1,s �=k
pks (t) ϕs (t)

)
eτk+

+
2
∑

k=1
Qj(t)eτk , χj (t) eτj >≡ 0, j = 1, 2,

or

(−(α1 (t) ϕ1 (t) + p12 (t) ϕ2 (t))
• +

(
B(t,t)
λ1(t)

+ G(t,t)
λ1(t)−λ3(t)

)
(α1 (t) ϕ1 (t) + p12 (t) ϕ2 (t)) +

+Q1 (t) , χ1 (t)) ≡ 0,

(−(α2 (t) ϕ2 (t) + p21 (t) ϕ1 (t))
• +

(
B(t,t)
λ2(t)

+ G(t,t)
λ2(t)−λ3(t)

)
(α2 (t) ϕ2 (t) + p21 (t) ϕ1 (t)) +

+Q2 (t) , χ2 (t)) ≡ 0.

Performing inner multiplication here, we obtain differential equations

α̇1 (t) +
(

ϕ̇1 (t)−
(

B (t, t)
λ1 (t)

+
G (t, t)

λ1 (t)− λ3 (t)

)
ϕ1 (t) , χ1 (t)

)
α1 (t) = g1 (t) ,

α̇2 (t) +
(

ϕ̇2 (t)−
(

B (t, t)
λ2 (t)

+
G (t, t)

λ2 (t)− λ3 (t)

)
ϕ2 (t) , χ2 (t)

)
α2 (t) = g2 (t) ,

where gj (t) are known scalar functions, j = 1, 2. Adding the initial conditions of Equation (22) to
these equations, we find uniquely the functions αj (t) in the solution of Equation (20) of the system of
Equation (16), and therefore, we construct a solution of this system in the space U in a unique way.
The theorem is proved.

Applying Theorems 1 and 2 to iterative problems, we uniquely determine their solutions in space
U and construct the series of Equation (12). As in Reference [2], we prove the following assertion.

Theorem 3. Assume that the conditions (1)–(2) are satisfied for the system of Equation (2). Then, for
ε ∈ (0, ε0 ] (ε0 > 0 is sufficiently small) the system of Equation (2) has a unique solution w(t, ε) ∈ C1([0, T],C2);
and here we have the estimate

||w(t, ε)− wεN(t)||C[0,T] ≤ cNεN+1, N = 0, 1, 2, ...,
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where wεN(t) is the restriction (for τ = ψ(t)
ε ) N-partial sum of the series of Equation (12) (with coefficients

wk (t, τ) ∈ U, satisfying the iterative problems of Equation (15d)), the constant cN > 0 does not depend on ε

at ε ∈ (0, ε0].

Since y (t, ε) = 1
ε v (t, ε) , the series

1
ε

∞

∑
k=0

vk

(
t,

ψ (t)
ε

)
≡ 1

ε
v0

(
t,

ψ (t)
ε

)
+ v1

(
t,

ψ (t)
ε

)
+ εv2

(
t,

ψ (t)
ε

)
+ ...

is an asymptotic solution (for ε → +0 ) of the original problem of Equation (1), that is, the estimate

||y(t, ε)−
N

∑
k=−1

εkvk+1

(
t,

ψ (t)
ε

)
||C[0,T] ≤ CNεN+1, N = −1, 0, 1, ..., (23)

is correct, where the constant CN > 0 does not depend on ε ∈ (0, ε0].

Conclusion 1. The influence of the weakly varying integral kernel K0(t, s) on the asymptotic
of the solution of the problem of Equation (1) consists of two factors: Firstly, the kernel K0(t, s)
participates in the formation of the matrix A(t) and its eigenvectors and eigenvalues, secondly, it
participates in the construction of the limit operator L0, which leads to an additional integral system
w0 (t) +

∫ t
0 A−1 (t) B (t, s)w0 (s) ds = −A−1 (t) P0 (t) in the solvability of conditions Equation (17) of

iterative problems.

4. The Limit Transition in the Problem of Equation (1). Solving the Initialization Problem

It follows from Equation (23) that the exact solution of the problem of Equation (1) is represented
in the form

y (t, ε) = 1
ε v0

(
t, ψ(t)

ε

)
+ v1

(
t, ψ(t)

ε

)
+ εF (t, ε) ,

‖F (t, ε)‖Cn ≤ F̄ = const (∀ (t, ε) ∈ [0, T]× (0, ε0]) ,
(24)

therefore, in order to study the passage to the limit (for ε → +0) in the solution of the
problem of Equation (1), it is necessary to find the solutions of the two iteration problems of
Equation (15d) (k = 0, 1) under the conditions of Equation (18) for the solvability of the third problems
of Equation (15c). We start with the problem of Equation (15a):

L0w0(t, τ) ≡ 3
∑

j=1
λj (t)

∂w0
∂τj

− A(t)w0 − R0w0 = 0, w0(0, 0) = w0(
R0w (t, τ) =

∫ t
0 B (t, s)w0(s)ds + eτ3

∫ t
0 G (t, s)w3(s)ds

)
.

(15a)

Since the right-hand side of the system of Equation (15a) P(0) (t, τ) = ∑3
j=1 P(0)

j (t) eτj + P(0)
0 (t)

is identically zero, it has (according to Theorem 1) a solution

w0(t, τ) =
2

∑
k=1

α
(0)
k (t) ϕk (t) eτk + w(0)

3 (t) eτ3 + w(0)
0 (t) ,

where the vector functions w(0)
3 (t) , w(0)

0 (t) satisfy the equations

w(0)
3 (t)− ∫ t

0 (λ3 (t) I − A (t))−1 G (t, s)w(0)
3 (s) ds = 0,

w(0)
0 (t) +

∫ t
0 A−1 (t) B (t, s)w0 (s) ds = 0.

These equations are homogeneous, and therefore, they have the unique solutions
w(0)

3 (t) = w(0)
0 (t) ≡ 0, and the solution of the system of Equation (15a) is written in the form
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w0(t, τ) =
2

∑
k=1

α
(0)
k (t) ϕk (t) eτk . (25)

Let χk (t) =
{

χ1
k (t) , χ2

k (t)
}

, k = 1, 2. Subordinating Equation (24) to the initial condition
w0(0, 0) = w0 , we find the values

α
(0)
k (0) =

(
w0, χk (0)

)
= h (0) χ̄1

k (0) , k = 1, 2. (26)

For the final computation of the functions α
(0)
k (t), we pass to the next iteration problem

L0w1(t, τ) = −
2

∑
k=1

(
α
(0)
k (t) ϕk (t)

)•
eτk + R1w0 + H (t) , w1(0, 0) = 0, (15b)

where
R1w0 = R1

(
∑2

k=1 α
(0)
k (t) ϕk (t) eτk

)
=

= ∑3
j=1

[
B(t,t)α(0)j (t)ϕk(t)

λj(t)
eτj − B(t,0)α(0)j (0)ϕj(0)

λj(0)

]
+

+∑2
k=1

[
G(t,t)α(0)k (t)ϕk(t)

λk(t)−λ3(t)
eτk − G(t,0)α(0)k (0)ϕk(0)

λk(0)−λ3(0)
eτ3

]
.

Keeping, as in Theorem 2, only the terms containing exponentials eτ1 and eτ2 , we write down
conditions of Equation (17) in the form (see Equation (26)):

α̇
(0)
k (t) =

(
B (t, t) ϕk (t)

λk (t)
+

G (t, t) ϕk (t)
λk (t)− λ3 (t)

− ϕ̇k (t) , χk (t)
)

α
(0)
k (t) ,

α
(0)
k (0) = h (0) χ̄1

k (0) , k = 1, 2,

from which we find that
α
(0)
k (t) = h (0) χ̄1

k (0) e
∫ t

0 qk(θ)dθ , k = 1, 2, (27)

where it is denoted: qk (t) ≡
(

B(t,t)ϕk(t)
λk(t)

+ G(t,t)ϕk(t)
λk(t)−λ3(t)

− ϕ̇k (t) , χk (t)
)

, k = 1, 2. Thus, the solution of

the problem of Equation (15a) is found in the form of Equation (25), where the functions α
(0)
k (t)

are Equation (27). Similarly, we can find the solution of the problem of Equation (15b). However,
having in mind to solve the initialization problem in the future, we must put v0

(
t, ψ(t)

ε

)
≡ 0 in

Equation (24). This identity holds if and only if α
(0)
k (t) ≡ 0 (k = 1, 2) ⇔ h (0) = 0 (remember

that v0

(
t, ψ (t)

ε

)
=

2
∑

k=1
α
(0)
k (t)ϕ1

k (t) e
ψk(t)

ε , ϕ1
j (t) = λj (t)− μ (t) , j = 1, 2 and see Equation (27)),

we will therefore carry out further calculations for h (0) = 0. In this case, w0 (t, τ) ≡ 0, R1w0 ≡ 0,
and the problem of Equation (15b) takes the form

L0w1(t, τ) ≡
3

∑
j=1

λj (t)
∂w1

∂τj
− A(t)w1 − R0w1 = H (t) , w1(0, 0) = 0.

Since here P(1) (t, τ) = H (t)
(

P(1)
j (t) ≡ 0, j = 1, 2, 3, P(1)

0 (t) = H (t)
)

, in formula

w1(t, τ) =
2

∑
k=1

[
α
(1)
k (t) ϕk (t) +

2

∑
s=1,s �=k

p(1)ks (t) ϕs (t)

]
eτk + w(1)

3 (t) eτ3 + w(1)
0 (t)
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for the solution of the problem of Equation (15b) functions p(1)ks (t) ≡ 0 (k, s = 1, 2) , functions w(1)
3 (t)

and w(1)
0 (t) are solutions of the integral equations

w(1)
3 (t)− ∫ t

0 (λ3 (t) I − A (t))−1 G (t, s)w(1)
3 (s) ds = 0 ⇔ w(1)

3 (t) ≡ 0,

w(1)
0 (t) +

∫ t
0 A−1 (t) B (t, s)w(1)

0 (s) ds = −A−1 (t) H (t) ,
(28)

therefore, the solution of the problem will be as follows:

w1(t, τ) =
2

∑
k=1

α
(1)
k (t) ϕk (t) eτk + w(1)

0 (t) , (29)

where α
(1)
k (t), for the time being, are arbitrary functions, k = 1, 2, and the vector-valued function

w(1)
0 (t) is a solution of the system of Equation (28). Subordinating Equation (29) to the initial condition

w1(0, 0) = 0, we obtain

∑2
k=1 α

(1)
k (0) ϕk (0) = −w(1)

0 (0) ≡ A−1 (0) H (0) ⇒
α
(1)
k (0) =

(
A−1 (0) H (0) , χk (0)

)
=
(

H (0) , A−1 (0) χk (0)
)
=

=
(

H (0) , λ̄k (0) χk (0)
)
= λk (0) (H (0) , χk (0)) ,

i.e., {
α
(1)
1 (0) = λ1 (0) ḣ (0) χ̄1

1 (0) ,

α
(1)
2 (0) = λ2 (0) ḣ (0) χ̄1

2 (0) .
(30)

For the final calculation of the solution of Equation (29) of the problem of Equation (15b), let us
pass to the following problem (note that w0 ≡ 0):

L0w2(t, τ) = −∂w1

∂t
+ R1w1, w2(0, 0) = 0. (15c)

Substituting here the function of Equation (29), we obtain the system

L0w2(t, τ) = − ∑2
k=1

(
α
(1)
k (t) ϕk (t)

)•
eτk+

+
G(t,0)w(1)

0 (0)
λ3(0)

eτ3 − G(t,t)w(1)
0 (t)

λ3(t)
+

+∑3
j=1

[
B(t,t)α(1)j (t)ϕj(t)

λj(t)
eτj − B(t,0)α(1)j (0)ϕj(0)

λj(0)

]
+

+∑2
k=1

[
G(t,t)α(1)k (t)ϕk(t)

λk(t)−λ3(t)
eτk − G(t,0)α(1)k (0)ϕk(0)

λk(0)−λ3(0)
eτ3

]
= 0.

Keeping here, as in Theorem 2, only terms containing exponentials eτ1 and eτ2 , we write the
conditions of Equation (17) for the solvability of this system in the form

α̇
(1)
k (t) =

(
B(t,t)ϕk(t)

λk(t)
+ G(t,t)ϕk(t)

λk(t)−λ3(t)
− ϕ̇k (t) , χk (t)

)
α
(1)
k (t) ,

α
(1)
1 (0) = λ1 (0) ḣ (0) χ̄1

1 (0) , α
(1)
2 (0) = λ2 (0) ḣ (0) χ̄1

2 (0) ,

from which we uniquely find the functions α
(1)
k (t) :

α
(1)
k (t) = λk (0) ḣ (0) χ̄1

k (0) e
∫ t

0 qk(θ)dθ , k = 1, 2,

and therefore, we uniquely construct the solution of Equation (29) of the problem of Equation (15b).
In this case, the equality holds (remember that w0 (t, τ) ≡ 0)
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w (t, ε) = ε

⎛⎝ 2

∑
k=1

λk (0) ḣ (0) χ̄1
k (0) e

t∫
0

qk(θ)dθ

ϕk (t) e
ψk(t)

ε + w(1)
0 (t)

⎞⎠+ ε2F1 (t, ε) ⇒

⇒ y (t, ε) =
2

∑
k=1

λk (0) ḣ (0) χ̄1
k (0) e

t∫
0

qk(θ)dθ

ϕ1
k (t) e

ψk(t)
ε + v(1)0 (t) + ε f1 (t, ε) , (31)

where w(1)
0 (t) =

{
v(1)0 (t) , z(1)0 (t)

}
is the solution of the integral system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v(1)0 (t) +
t∫
0

(
∂
∂t K1 (t, s)

)
v(1)0 (s)

K1 (t, t)
ds = −

d
dt h (t)

K1 (t, t)
,

z(1)0 (t)−
⎛⎝ t∫

0

K2 (t, t)
(

∂
∂t K1 (t, s)

)
v(1)0 (s)

μ (t)K1 (t, t)
ds

⎞⎠ =
K2 (t, t)

(
d
dt h (t)

)
μ (t)K1 (t, t)

.

(32a)

It follows from Equation (31) that when Re λk (t) < 0 (∀t ∈ [0, T] , k = 1, 2) there is a passage to
the limit ∥∥∥y (t, ε)− v(1)0 (t)

∥∥∥
C[δ,T]

→ 0 (ε → +0) ,

where δ ∈ (0, T) is an arbitrary fixed constant, and w(1)
0 (t) =

{
v(1)0 (t) , z(1)0 (t)

}
. However, in our case,

there can be purely imaginary eigenvalues (Re λk (t) ≡ 0) , so the indicated limit transition does not
hold. The following problem is posed: to find a class Σ = {h (t) , K1 (t, s) , K2 (t, s)} of initial data of
Equation (1) for which the passage to the limit∥∥∥y (t, ε)− v(1)0 (t)

∥∥∥
C[0,T]

→ 0 (ε → +0) , (∗)

takes place on the whole segment [0, T] , including the boundary layer zone. This task is called the
initialization problem. . It is clear from Equation (31) that the limit transition (∗) occurs if and only if
ḣ (0) = 0, therefore, the following result follows from Equation (32a).

Theorem 4. Suppose that the conditions (1)–(2) are satisfied. Then, the passage to the limit (∗) holds if and
only if h (0) = ḣ (0) = 0 (here, v(1)0 (t) is the solution of the first equation of the system of Equation (32a)).

Conclusion 2. Thus, the initialization class Σ has the form Σ =
{

h (t) : h (0) = ḣ (0) = 0
}

. Here,
the kernels Kj (t, s) can be arbitrary, provided that conditions (1)–(2) are satisfied.

Example 1. Consider the equation

εy (t, ε) =

t∫
0

e−
1
ε (t−s) (e−s − 1

)
y (s, ε) ds +

t∫
0

(−2e−sy (s, ε)
)

ds + t2. (32b)

Here, h (t) = t2, μ (t) = −1, K1 (t, s) = −2e−s, K2 (t, s) = e−s − 1. The characteristic equation of

the matrix A (t) =

[
−e−t − 1 −1

e−t − 1 −1

]
has two roots λ1 (t) = −2, λ2 (t) = −e−t. Using the algorithm

developed above, we find that

v(1)0 (t) +
t∫
0

(
∂
∂t K1 (t, s)

)
v(1)0 (s)

K1 (t, t)
ds = −

d
dt h (t)

K1 (t, t)
⇔ v(1)0 (t) = tet.
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Since ḣ (0) = 0, the main term of the asymptotic of the solution of our Equation (32b) coincides with
v(1)0 (t) (see Equation (31)). By Theorem 4, there is a passage to the limit:∥∥y (t, ε)− tet∥∥

C[0,T] → 0 (ε → +0) .

We note that the function v(1)0 (t) = tet is a solution of the integral equation
t∫
0
(−2e−sy (s)) ds + t2 = 0,

which is degenerative with respect to Equation (1). If only h (0) = 0, but ḣ (0) �= 0, then from Equation (31),
we would have obtained that

y (t, ε) = v1

(
t,

ψ (t)
ε

)
+ εF (t, ε) ,

and the function v1

(
t, ψ(t)

ε

)
contains exponents e

−2t
ε and e

1
ε (e−t−1), which prevent uniform convergence of the

solution y (t, ε) on the whole interval [0, T] to the limit function. In this case, uniform convergence will occur
only outside the boundary layer [δ, T] (δ ∈ (0, T)) .

The analysis of asymptotic methods for solving singularly perturbed problems shows that the
solutions of such problems depend in two ways on a small parameter: regularly and singularly.
This dependence is especially vividly demonstrated by the method of regularization of Lomov. Moreover,
regularized series representing solutions of singularly perturbed problems can converge in the usual
sense. In this connection, it became necessary to study a special class of functions—pseudoholomorphic
functions. This very important part of the complex analysis is designed to substantiate the
main provisions of the so-called analytic theory of singular perturbations. On the other hand,
the relevance of the theory is also dictated by the fact that pseudoholomorphic functions, in contrast
to holomorphic functions, are determined when the conditions of the implicit function theorem are
violated. The concept of a pseudoanalytic (pseudoholomorphic) function and the associated concept
of an essentially singular manifold are of a general mathematical nature, although they arose in the
framework of the regularization method for singular perturbations. First of all, they reflect the new
concept of a pseudoholomorphic solution of singularly perturbed problems, i.e., such a solution, which
is representable in the form of a series converging in the usual (but not asymptotic) sense in powers of
a small parameter. We must also take into account the fact that the modern mathematical theory of the
boundary layer [13], along with the Vasilyeva–Butuzov–Nefedov’s boundary-function method [5,6],
widely uses the concept of a pseudoholomorphic solution. The following sections of our work are
devoted to the construction of exactly such solutions [15].

5. Pseudoholomorphic Functions in the Theory of Singular Perturbations. Basic Concepts
and Statements

We consider the set of functions F(z, w, ε), where w = (w1, . . . , wk),F = (F1, . . . , Fk), holomorphic
in a polydisc D = Dz0 × Dw0 × D0, in which

Dz0 = {z : |z − z0| < R0}, Dw0 = {w : |wj − w0,j| < Rj, j = 1, k}, D0 = {ε : |ε| < ε0}.

Definition 1. A function w(z, ε), defined implicitly by the equation

F(z, w, ε) = 0, (33)

is said to be pseudoholomorphic at a point of ε = 0 of rank r, if the following conditions are satisfied:
10. F(z0, w0, 0) = 0;
20. ∂wj Fi

∣∣∣
ε=0

= 0 ∀(z, w) ∈ Dz0 × Dw0 , i = 1, r, j = 1, k;

30. det || fij|| �= 0 ∀(z, w) ∈ Dz0 × Dw0 , where fij = ∂2
εwj

Fi

∣∣∣
ε=0

, i = 1, r, j = 1, k; fij = ∂wj Fi

∣∣∣
ε=0

,

i = r + 1, k, j = 1, k.
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40. w(z, ε) is unbounded in any sufficiently small neighborhood of a point ε = 0 and there exists a set
E0 ⊂ D0, for which the point ε = 0 is a limit point and such that it is bounded on a set Tz0 × E0, where Tz0 is
a compact that belongs Dz0 and contains a point z0.

From definition , it follows that

Fi(z, w, ε) = ϕi(z)− εUi,1(z, w)− . . . − εnUi,n(z, w)− . . . , i = 1, r ;
Fi(z, w, ε) = Ui,0(z, w) + εUi,1(z, w) + . . . + εnUi,n(z, w) + . . . , i = r + 1, k ,

(34)

and these series converge uniformly on any compact set Dz0 × Dw0 in some neighborhood of the point
ε = 0 (depending on the compact).

We compose the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

U1,1(z, w) = ϕ1(z)/ε,
...

Ur,1(z, w) = ϕr(z)/ε,
Ur+1,0(z, w) = 0,

...
Uk,0(z, w) = 0,

(35)

which will be used in the future. We shall call Equation (35) the main system.
Suppose that the entire functions Ψ1, . . . , Ψr of one variable with the asymptotic values a1, . . . , ar

are such that the sets ωi = {qi : qi = Ψi(ϕi(z)/ε)} ⊂ Cqi are bounded if z ∈ Tz0 and ε ∈ E0, where Tz0

and Ez0 are sets satisfying the condition 40 of the Definitions 1. We also assume that the points ai close
these sets: ω̄i = ωi ∪ {ai}, i = 1, r. We introduce the notations: Ψ = (Ψ1, . . . , Ψr), ϕ = (ϕ1, . . . , ϕr),
a = (a1, . . . , ar).

Definition 2. The set Ω(Ψ, ϕ, Tz0 , E0) = ω1 × . . . × ωr ⊂ Cq1 × . . . × Cq2 is called an essentially
singular manifold, generated by the functions Ψ and ϕ on the set Tz0 × E0; we call the set
Ω̄(Ψ, ϕ, Tz0 , E0)=ω̄1 × . . . × ω̄r an extended essentially singular manifold.

Let us formulate sufficient conditions for the existence of a pseudoholomorphic function. For this,
along with the system of Equation (35), we consider the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

U1,1(z, w) = q1,
...

Ur,1(z, w) = qr,
Ur+1,0(z, w) = 0,

...
Uk,0(z, w) = 0.

(36)

Theorem 5. If a functionw = W0(z, q) that is a solution of the system of Equation (36) is holomorphic on
a compact Q̄ = Tz0 × Ω̄(Ψ, ϕ, Tz0 , E0) and maps it to a polydisk Dw0 , then the function w(z, ε), implicitly
defined by Equation (33), is pseudoholomorphic at the point ε = 0.
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Proof. We represent the vector of Equation (33) in the form of a system as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

U1,1(z, w) + εU1,2(z, w) + . . . + εnU1,n+1(z, w) + . . . = ϕ1(z)/ε,
...

Ur,1(z, w) + εUr,2(z, w) + . . . + εnUr,n+1(z, w) + . . . = ϕr(z)/ε,
Ur+1,0(z, w) + εUr+1,1(z, w) + . . . + εnUr+1,n(z, w) + . . . = 0,

...
Uk,0(z, w) + εUk,1(z, w) + . . . + εnUk,n(z, w) + . . . = 0,

(37)

and calculate the values of the functions Ψ1, . . . , Ψr from the left and right parts of the first r equations:

Ψ1(U1,1(z, w) + εU1,2(z, w) + . . . + εnU1,n+1(z, w) + . . .) = Ψ1(ϕ1(z)/ε),
...

Ψr(Ur,1(z, w) + εUr,2(z, w) + . . . + εnUr,n+1(z, w) + . . .) = Ψr(ϕr(z)/ε),

and then in the left-hand sides of these equations we distinguish the main terms:

Ψ1(U1,1(z, w)) + εV1(z, w, ε) = Ψ1(ϕ1(z)/ε),
...

Ψr(Ur,1(z, w)) + εVr(z, w, ε) = Ψr(ϕr(z)/ε).
(38)

Using the notations introduced earlier, we rewrite the system of Equation (36):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1(U1,1(z, w)) + εV1(z, w, ε) = q1,
...

Ψr(Ur,1(z, w)) + εVr(z, w, ε) = qr,
Ur+1,0(z, w) = 0,

...
Uk,0(z, w) = 0.

(39)

When ε = 0, the system of Equation (39) has a solution w = W0(z, q), holomorphic on a set
Q̄, that which maps to a compact, belonging to Dw0 , and therefore, in accordance with the implicit
function theorem, in some neighborhood σzq of each point (z, q) ∈ Q̄ this system has a solution
w that is holomorphic at the point ε = 0 : W(z, q, ε) = ∑∞

n=0 εnWn(z, q). From the covering {σzq}
of a compact set Q̄, we choose a finite subcover, then the function W(z, q, ε) will be holomorphic
uniformly on Q̄ in a neighborhood |ε| < ε1, where ε1 is the smallest number of the corresponding
finite subcoverings. The boundedness of the function w(z, ε) = W(z, Ψ1(ϕ1(z)/ε), . . . , Ψr(ϕr(z)/ε), ε)

for ε → 0 (ε ∈ E0) follows from the fact that the point (z, ε) belongs to an extended essentially singular
manifold Ω̄(Ψ, ϕ, Tz0 , E0). The theorem is proved.

Remark 2. It follows from Theorem 5 that a pseudoholomorphic function decomposes into a power series with
coefficients that depend in a singular way on ε:

W(z, ε) =
∞

∑
n=0

εnWn(z, Ψ1(ϕ1(z)/ε), . . . , Ψr(ϕr(z)/ε)) (40)

and this series converges for |ε| < ε1 (ε ∈ E0) uniformly on Tz0 .

6. *-Pseudoholomorphic Functions

In applications, for example, in the mathematical theory of the boundary layer [3], we have to
impose less restrictive conditions on pseudomorphic functions.

41



Axioms 2019, 8, 27

Definition 3. A *-transformation of a function F(z, w, ε) = (F1, ..., Fk) , defined by the equalities of
Equation (34), is a vector-valued function of (k + 3) variables:

F∗(z, w, ε, ε∗) = (F∗1(z, w, ε, ε∗), . . . , F∗k(z, w, ε, ε∗)),

where the components with numbers i = 1, r have the form

F∗i(z, w, ε, ε∗) = ϕi(z)− ε∗Ui,1(z, w)− . . . − ε∗εn−1U1,n(z, w)− . . . ,

(that is, they are obtained from Fi(z, w, ε) by replacing εn by ε∗εn−1, n = 1, 2, . . .), and when i = r + 1, k they
remain unchanged: F∗i(z, w, ε, ε∗) ≡ Fi(z, w, ε).

Obviously, the function F∗(z, w, ε, ε∗) is holomorphic in a polydisc D × D0∗, where D0∗ = { ε∗ :
|ε ∗ | < ε0}, and the equation F∗(z, w, ε, ε∗) = 0 implicitly defines a functionw = w∗(z, ε, ε∗) for which
the equality w(z, ε) = w∗(z, ε, ε∗) holds true.

Definition 4. A function w(z, ε) is said to be *-pseudoholomorphic, if the function w∗(z, ε, ε∗) is holomorphic
with respect to the second variable at the point ε = 0 uniformly with respect toz ∈ Tz0 for each fixed ε∗ ∈ E0.

Theorem 6. If a function W0(z, q) is holomorphic on a set Q = Tz0 × Ω(Ψ, ϕ, Tz0 , E0) and maps it to
a polydisk Dw0 , then the function w(z, ε) is * -pseudoholomorphic at a point ε = 0.

Proof. We fix ε∗ ∈ E0, then choose arbitrarily z ∈ Tz0 , and let q∗ = Ψ(ϕ(z)/ε∗). It is clear that
for the system ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1(U1,1(z, w)) + εV1(z, w, ε) = q1∗,
...

Ψr(Ur,1(z, w)) + εVr(z, w, ε) = qr∗,
Fr+1(z, w, ε) = 0,

...
Fk(z, w, ε) = 0

(41)

the conditions of the implicit function theorem are satisfied, and since the set of all such q∗ compacts
(for a fixed ε∗and z ∈ Tz0 ), the proof is completed in the same way as in the previous theorem.

Corollary 1. Thus, the solution of the system of Equation (41) can be represented in the form of a series in
powers of ε :

w(z, ε, ε∗) =
∞

∑
n=0

εnWn(z, Ψ1(ϕ1(z)/ε∗), . . . , Ψr(ϕr(z)/ε∗)) (42)

which converges uniformly on Tz0 at |ε| < ε1, where ε1 > 0 and depends on ε∗. In addition, from the proof of
Theorem 6, it follows that if ε∗ = ε (ε is fixed and belongs to the circle of convergence of this series), then uniform
convergence will be observed even on a narrower set Tz0∗ ⊂ Tz0 (z0 ∈ Tz0∗ ).

The main question that arises in connection with the notion of *-pseudoholomorphy is the
following: when can a *-pseudoholomorphic function be extended to the whole compact Tz0?
The answer to this question will be given in the scalar case, i.e., when n = r = 1. Note that in this case

F(z, w, ε) = ϕ(z)− εU1(z, w)− . . . − εnUn(z, w)− . . . (43)

and ∂wU1(z, w) �= 0 in the in bidisk Dz0 × Dw0 .
Furthermore, we assume that the condition (R) is fulfilled: all the functions participating in the

analysis take real values, when their arguments are real.
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Let A(Dz0) and A(Dz0 × Dw0), where Dw0 = {w : |w − w0| < R} be the algebras of holomorphic
functions, respectively, in the domains Dz0 and Dz0 × Dw0 . In connection with the condition (R),
we will assume that z0 and w0 are real.

Theorem 7. If {Hε} is a holomorphic at the point ε = 0 family of homomorphisms of an algebra A(Dz0) into an
algebra A(Dz0 × Dw0) such that H0 = I and the functions ϕ(z), F (z, w, ε) ≡ Hε[ϕ(z)] satisfy the condition
(R), and the conditions of Theorem 6 on the compact set Tz0 = [z0, z0 + Δ] ⊂ Dz0 hold true, then the function
w(z, ε), implicitly defined by the equation F (z, w, ε) = 0, admits a pseudoholomorphic extension to Tz0 .

We preface the proof of Theorem 7 with the following lemma.

Lemma 1. The mappings Hε : A(Dz0) → A(Dz0 × Dw0) for each sufficiently small ε satisfy the
commutation relation

Hε[ϕ(z)] = ϕ(Hε[z]). (44)

Proof. Indeed, since ϕ(z) ∈ Az0 , then ϕ(z) = ∑∞
k=0 ck(z − z0)

k, and, therefore,

Hε

[
∞

∑
k=0

ck(z − z0)
k

]
=

∞

∑
k=0

ck Hε[(z − z0)
k] =

∞

∑
k=0

ck(Hε[z − z0])
k =

=
∞

∑
k=0

ck(Hε[z]− Hε[z0])
k =

∞

∑
k=0

ck(Hε[z]− z0)
k = ϕ(Hε[z]),

thus, Equation (44) is proved.

Proof of Theorem 7. We differentiate Equation (12) with respect to z and w:

∂zHε[ϕ(z)] = ϕ′(Hε[z])∂zHε[z],
∂wHε[ϕ(z)] = ϕ′(Hε[z])∂w Hε[z],

from which, it follows that
εFz + f (z, w, ε)Fw = 0, (45)

where f (z, w, ε) = −ε∂z Hε[z]/∂wHε[z] is a holomorphic function at the point ε = 0, which differs from
zero in the domain Dz0 × Dw0 for a sufficiently small ε. Equation (45) is the equation of integrals of the
differential equation

ε
dw
dz

= f (z, w, ε), (46)

and we seek its solution in the form of a series in powers of ε , assuming the operator ∂z to be
a subordinate operator f ∂w. We have [8], for an arbitrary function ϕ(z) ∈ Az0 , that

F (z, w, ε) ≡ Hε[ϕ(z)] =
= ϕ(z)− ε

∫ w
w0

ϕ′(z)dw1
f (z,w1,ε) + ε2

∫ w
w0

(
∂
∂z

∫ w1
w0

ϕ′(z)dw2
f (z,w2,ε)

)
dw1

f (z,w1,ε) − . . . .
(47)

By uniqueness, the solution of the equation F (z, w, ε) = 0 is the solution w̃1(z, ε) of the Cauchy
problem for the differential Equation (46) with the initial condition w̃1(z0, ε) = w0, which, in accordance
with Theorem 7, is a *-pseudoholomorphic function in a neighborhood |ε| < ε1 (see Corollary 1) and is
defined on some interval [z0, z0 + Δ1] ⊂ [z0, z0 + Δ] (recall that Equation (46) is considered in the real
domain). We will assume that the small parameter in Equation (46) satisfies the inequality 0 < ε < ε1,
ϕ′(z) < 0 ∀z ∈ [z0, z0 + Δ]. We show how in the real case we can find Δ1. Thus, the series

W̃1(z, ε, ε∗) =
∞

∑
n=0

εnWn(z, Ψ(ϕ(z)/ε∗)), (48)
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where Ψ is an entire function, that satisfies Theorem 6, in the scalar case, converges uniformly
on the interval Tz0 = [z0, z0 + Δ] (ε∗ and ε are fixed!). Suppose also (without loss of generality)
that an essentially singular manifold is a half-open interval (p, Ψ(0)), where p is the asymptotic
value of the function Ψ, and hence the set Q = Tz0 × Ω(Ψ, ϕ, Tz0 , E0) is a rectangle. If ε > ε∗,
then w1(z, ε) = W̃1(z, ε, ε) it is defined on the entire segment Tz0 (ie Δ1 = Δ), because the
graph of the function q = ϕ(z) completely belongs to Q. If ε < ε∗, then w1(z, ε) = W̃1(z, ε, ε),
where z ∈ [z0, z0 + Δ1] and Δ1 is found from the equation ϕ(z0 + Δ1)/ε = ϕ(z0 + Δ1)/ε∗. We now
consider the Cauchy problem

ε dw
dz = f (z, w, ε),

w(z1, ε) = v1,
(49)

where z1 = z0 + Δ1, v1 = w̃1(z1, ε). The general integral of this equation can be represented in the form

∫ w

v1

ϕ′(z)dw1

f (z, w1, ε)
− ε

∫ w

v1

(
∂

∂z

∫ w1

v1

ϕ′(z)dw2

f (z, w2, ε)

)
dw1

f (z, w1, ε)
+ . . . =

ϕ(z)− ϕ(z1)

ε
. (50)

The solution w̃2(z, ε), obtained from it, is defined on the interval [z1, z2], where z2 = z1 + Δ2

and Δ2 is determined from the equation ϕ(z1+Δ2)−ϕ(z1)
ε = ϕ(z0+Δ)

ε∗ . If |ϕ′(z)| ≤ l ∀z ∈ Tz0 ,
then in accordance with the Lagrange theorem we have

Δ2 ≥ εϕ(z0 + Δ)
ε∗l

. (51)

Then, Equation (46) is considered with the initial condition w(z2, ε) = v2, when v2 = w̃2(z2, ε).
A general integral analogous to Equation (50) is constructed, and so on. Since the estimate of
Equation (51) is constant on an interval Tz0 , then in a finite number of steps the solution will be
constructed on it. The Theorem is proved.

We give two examples of constructing pseudoholomorphic solutions in the real domain.

Example 2. We consider the Cauchy problem for the scalar equation (n = r = 1){
εy′ = f (t, y), t ∈ [t0, T],
y(t0, ε) = y0.

(52)

We assume that the function f (t, y) admits a holomorphic extension to the bidisk Dt0 × Dy0 , where Dt0 = {z :
|z − t0 | < R0, R0 > T}, Dy0 = {w : |w − y0| < R}, and is not equal to zero there. Then, the general
integral has the form:

ϕ(t)− εϕ′(t)
∫ y

y0

dy1
f (t,y1)

+ ε
∫ y

y0

(
∂
∂t

∫ y1
y0

ϕ′(t)dy2
f (t,y2)

)
dy1

f (t,y1)
−

−ε2
∫ y

y0

(
∂
∂t

∫ y1
y0

(
∂
∂t

∫ y2
y0

ϕ′(t)dy3
f (t,y3)

)
dy2

f (t,y2)

)
dy1

f (t,y1)
+ . . . = 0.

Hence, we obtain a *-pseudoholomorphic solution

y(t, ε) =
∞

∑
n=0

εnYn

(
t,

ϕ(z)
ε

)
, (53)

where ϕ(t) ∈ A t0 and such that the conditions of Theorem 6 are satisfied.
We write out the formulas for the first terms of the series of Equation (53):

Y1 = − V1

V2

∣∣∣∣
y=Y0(t,ϕ(t)/ε)

, Y2 = − V11V2
2 − 2V12V1V2 + V22V2

1
2V2

2

∣∣∣∣∣
y=Y0(t,ϕ(t)/ε)

,
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where

V1 = −
∫ y

y0

(
∂

∂t

∫ y1

y0

ϕ′(t)dy2

f (t, y2)

)
dy1

f (t, y1)
;

V2 =
ϕ′(t)
f (t, y)

;

V11 = 2
∫ y

y0

(
∂

∂t

∫ y1

y0

(
∂

∂t

∫ y2

y0

ϕ′(t)dy3

f (t, y3)

)
dy2

f (t, y2)

)
dy1

f (t, y1)
;

V12 = − 1
f (t, y)

(
∂

∂t

∫ y

y0

ϕ′(t)dy1

f (t, y1)

)
;

V22 = − ϕ′(t) f ′y(t, y)
f 2(t, y)

.

We recall that y = Y0(t, ϕ(t)/ε) is the bounded solution (for ε → +0 ) of the equation

ϕ′(t)
∫ y

y0

dy1

f (t, y1)
=

ϕ(t)
ε

.

In particular, if f (t, y) = y2 − e2t, t0 = 0, y0 = 0, then

y(t, ε) = etth
1 − et

ε
+

ε

2
th2 1 − et

ε
+ . . . .

Example 3. Consider the Cauchy problem for Tikhonov’s system [7] (here, n = 2, r = 1){
y′ = g(t, y, v),
εv′ = f (t, y, v), t ∈ [t0, T],

y(t0, ε) = y0, v(t0, ε) = v0.
(54)

Denote by ȳ(t) the solution of the limit problem f (t, y, y′) = 0, y(t0) = 0, and by L = ∂t + g∂y – the
first-order linear partial differential operator. Then,⎧⎨⎩ ϕ(t)− ε

∫ v
v0

ϕ′(t)dv1
f (t,y,v1)

− ε2
∫ v

v0

(
L
∫ v1

v0

ϕ′(t)dv2
f (t,y,v2)

)
dv1

f (t,y,v1)
− . . . = 0,

y − ȳ(t)− ε
∫ v

v0

L(y−ȳ(t))dv1
f (t,y,v1)

+ ε2
∫ v

v0

(
L
∫ v1

v0

L(y−ȳ(t))dv2
f (t,y,v2)

)
dv1

f (t,y,v1)
− . . . = 0

are independent first integrals of the system of Equation (54). Hence, we obtain a *-pseudoholomorphic solution
of this system:

y(t, ε) = ȳ(t) + ε
∫ v

v0

L(y − ȳ(t))dv1

f (t, y, v1)

∣∣∣∣ y = ȳ(t)
v = V0(t, ϕ(t)/ε)

+ . . . ;

v(t, ε) = V0(t, ϕ(t)/ε) + ε
f (t,y,v)
ϕ′(t)

[∫ v
v0

(
L
∫ v1

v0

ϕ′(t)dv2
f (t,y,v2)

)
dv1

f (t,y,v1)
−

− ∫ v
v0

L(y−ȳ(t))dv1
f (t,y,v1)

· ∂
∂y

∫ v
v0

ϕ′(t)dv1
f (t,y,v1)

] ∣∣∣ y = ȳ(t)
v = V0(t, ϕ(t)/ε)

+ . . . .

Here, v = V0(t, ϕ(t)/ε) is the bounded solution (for ε → +0 ) of the equation

ϕ′(t)
∫ v

v0

dv1

f (t, ȳ(t), v1)
=

ϕ(t)
ε

.
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Conclusion 3. The algorithms developed in this paper allow one to theoretically substantiate
two main approaches in the general theory of singular perturbations: an approach related to
approximate (asymptotic) solutions, and an approach related to pseudoholomorphic (exact) solutions
of such problems.
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Abstract: The theory of singular perturbations in a unified formulation is used, for the first time,
to study the propagation of two-dimensional periodic perturbations, including capillary and grav-
itational surface waves and accompanying ligaments in the 10−4 < ω < 103 s−1 frequency range,
in a viscous continuously stratified fluid. Dispersion relations for flow constituents are given, as
well as expressions for phase and group velocities for surface waves and ligaments in physically
observable variables. When the wave-length reaches values of the order of the stratification scale, the
liquid behaves as homogeneous. As the wave frequency approaches the buoyancy frequency, the
energy transfer rate decreases: the group velocity of surface waves tends to zero, while the phase
velocity tends to infinity. In limiting cases, the expressions obtained are transformed into known
wave dispersion expressions for an ideal stratified or actually homogeneous fluid.

Keywords: waves; ligaments; gradient flow; singular solution; stratification; viscous fluid

1. Introduction

Waves on the surface of rivers, seas and oceans became one of the main objects of
theoretical research as the first fundamental equations of continuum mechanics and closed
systems of equations were formulated [1–3]. Due to a large difference in the physical prop-
erties of the atmosphere and water [4], the theory of waves evolved with the approximation
of the homogeneity and immutability of the density of the contacting media. B. Franklin in
the 18th century observed the water–olive oil interface motion in a ship’s lighting lamp and
pointed out that the variability of density with depth should be taken into account when
analyzing the wave phenomena in a liquid [5].

The results of the analysis of the first papers, which considered the variability of
the density of the liquid in depth, were presented [6], but for some unknown reason,
mathematicians and mechanics did not pay attention to these topics. For example, such
a fundamental characteristic as the buoyancy frequency calculated in [7], which is the
limiting frequency for propagating internal waves in a continuously stratified fluid, escaped
from attention. Independently the buoyancy frequency was re-discovered as the natural
oscillation frequency of probe balls drifting in a stratified atmosphere [8] and later it was
associated with the local extreme in the spectrum of high-frequency pressure oscillations
recorded by a microbarograph [9].

Due to the practical importance of the issue, for a long time, researchers have been
concentrating their efforts on studying periodic phenomena in a liquid in the context of the
force action of waves on obstacles and the wave resistance of bodies moving in a liquid.
The scientists assumed the constancy of density and incompressibility of the liquid [10]
to be the most important qualities. Nowadays the constant density approximation is still
considered high priority in the description of wave processes [11].

In theoretical works much attention is paid to the study of nonlinear properties of
waves. The first heuristic discovery—the theory of periodic nonlinear vortex waves [12]—is

Axioms 2022, 11, 402. https://doi.org/10.3390/axioms11080402 https://www.mdpi.com/journal/axioms47



Axioms 2022, 11, 402

significant in wave theory development. The approach was extended in [13,14], then
analyzed in [15] and it has recently been supplemented with new results [16,17]. Another
large cycle of studies of nonlinear waves, initiated by observations of a solitary wave in a
shipping channel [18], is successfully proceeding at the present time. The number of various
model equations [19,20] for the description of nonlinear wave properties is continuously
increasing [21].

Seminal works [22,23] occupied a special place among the first publications. In these
studies, the parameters of infinitesimal waves were determined, the waves of finite am-
plitude were calculated and showed the existence of the wave transfer of matter (Stokes
drift) using the methods of the regular perturbations theory. The mass transfer is caused
by nonlinear effects, which are distinctly revealed in the deviation of the waveform from
the ideal one, i.e., in a nonlinear wave, the crests become sharper, and the troughs become
flatter. The limiting angle between the tangents to the right and left sides of the crest is
calculated as α = 120◦ in [23], and as α = 90◦ in [13]. It depends on the nonlinearity
parameter ε = ω2ζ0/g [24] when describing the propagating potential waves of finite
amplitude by means of Lambert’s complex functions (ζ0 and ω are the amplitude and
frequency of the wave, g is the gravity acceleration).

Calculations of the viscous attenuation of waves in a deep liquid and a channel of finite
depth were carried out by asymptotic methods in a linear and nonlinear
formulation [6,25,26]. Such calculations continue to be conducted at the present time
using various approximations [27–30].

The “boundary layer” ideas (i.e., a mathematical model of the flow adjacent to the
surface of the liquid, in which the influence of viscosity is considerably revealed), which
were formulated at the beginning of the 20th century, had a significant impact on the
development of the theory of waves in a liquid. The approximation of the boundary
layer, accompanied by the reformulation of the defining equations [31], stimulated the
development of the search for new analytical methods of finding their solutions [32]. The
analysis of the wave equations by the theory of regular perturbations methods showed that
in a homogeneous liquid with kinematic viscosity ν, a surface gravitational wave with a
frequencyω is accompanied by a boundary layer with a specific thickness δω =

√
2ν/ω.

Separate boundary layers are formed on the free surface and on the solid bottom of the
channel through which the waves propagate [33].

The boundary layer greatly influences all the parameters of fluid flows, namely pres-
sure distribution, velocity and substance transfer characteristics [34]. Corrections of the
theory formulas [33] due to the viscous attenuation of waves were later calculated in the
second order of the perturbation theory [35]. The analysis of the dispersion relation for
surface gravitational waves and accompanying boundary layers in a viscous liquid, supple-
mented by calculations of the attenuation coefficient and the scale of spatial attenuation of
the wave was carried out in [36].

A more complex model of a “double boundary layer”, inside which there is a periodic
boundary layer with a length scale δω =

√
2ν/ω, was proposed to describe standing

waves [37].
With the frequency increasing, the surface tension influences more the pattern of

waves on the surface of the liquid. The surface tension coefficient σ is a parameter that
determines the type of dispersion relation for short waves [38] and accompanying fine
constituents [39]. The surface tension changes the dependences of the group and phase
velocity, the attenuation coefficient and the velocity of matter transfer Uρ on frequencyω,
wave vector k or wavelength λ. The pattern of waves generated by a short-range localized
source in a viscous liquid, taking into account the effects of surface tension, was calculated
in [40].

The data of the first systematic experimental studies of surface waves, which were
conducted in laboratory basins at the end of the 19th century [41], generally showed
satisfactory agreement with the calculations of velocity in the liquid thickness [23]. The
visualization of the velocity profile using a “marker” (i.e., a colored wake of a submerging
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particle) showed the existence of a drift in the near-surface and bottom layers in the
direction of wave propagation and slow counterflow in the middle of the liquid layer [42].
Additional cleaning from dust and film of the target liquid surface and consideration of
viscous attenuation in the calculations of the near-surface boundary layer significantly
reduced the difference between the data of calculations and experiments in a laboratory
channel [43]. The observations of rearrangement of the distribution pattern of initially
homogeneous suspension in the field of standing gravity waves in a vertically oscillating
basin are given in [44].

In the field of propagating gravitational-capillary waves (5 < ω < 50 Hz), the sub-
stance of the colored drop is distributed unevenly over the surface of the primary cavity [45],
the same as in the case of a drop merging with a target liquid at rest [46]. In the evolutionary
process a slowly drifting colored primary contact area, a near-surface jet with a vortex
head and a sinking ring vortex remain in the distribution pattern of the substance. There
is a pronounced fibrous structure in the distribution of the drop substance in the target
fluid [45].

Widespread capillary waves, which are observed in various rivers, seas and oceans,
are caused by weak wind gusts in calm [47] and are certainly present on the slopes of large
gravitational waves [48] in the stormy open ocean [49] and coastal regions [50]. Capillary
waves contribute to the formation of bubbles, drops and foam [51] and participate in the
processes of generating sound packets when drops fall [52]. Drop impact sounds form rain
noise [53], which is one of the main sources determining the acoustic background of the
ocean [54].

The capillary ripples determine the roughness and the real area of the contact surface.
The estimation of their influence on the transfer of momentum, energy and matter between
the atmosphere and the hydrosphere is of scientific and practical interest. A continuously
expanding list of scientific tasks supports the interest in studying the dynamics of capillary
waves in a wide range of conditions.

The analysis of the additional dissipation of short gravitational and gravitational-
capillary waves caused by “parasitic” capillary waves on the slopes of longer waves in a
laboratory pool are given in [55]. The presence of a surfactant film dampens short capillary
waves, which in turn amplifies decimeter waves [56]. The discussion of modern optical
methods for studying capillary waves and the data of detailed experiments is carried out
in [57]. A review of papers on the nonlinear interaction of coexisting waves of different
frequencies within the framework of the theory of “wave turbulence” is presented in [58].
The basic mechanism of energy transfer in weak turbulence theory is validated experimen-
tally in the gravity (four-wave interactions) and capillary (three-wave interactions) regimes.
Advanced experiments enable the achievement of full spatiotemporal reconstruction of the
wave field in a weakly or strong nonlinear regime, to infer wave statistics as well as waves’
nonlinear dispersion relationship, to compare with theory [58]. The study in [59] discusses
the influence of attenuation on nonlinear interactions of short waves and surface waves
and the properties of “wave turbulence”. In all cases, the density of the liquid is assumed
to be homogeneous.

However, in real conditions, the influence of differences in atmospheric and hydro-
sphere temperatures, insolation, radiative heat transfer, variability in the concentration of
dissolved and suspended particles and flows ensure the heterogeneity of the density profile
throughout the depth of the liquid [60]. The same happens in a thin near-surface layer,
where temperature changes rapidly with depth and forms a “cold” or “warm” film [61].

The given study of the properties of surface waves and accompanying fine components
in a viscous stably stratified liquid is based on a complete system of fundamental equations,
which was firstly collected in [62] and later was considered in [63,64]. In this paper, a
reduced system of the fundamental equations in which the density variability is preserved
without considering variations in temperature, salinity or pressure that cause it to change
is used. This system of equations is analyzed by methods of the singular perturbations
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theory [65] taking into account the compatibility condition [66], enabling calculation of both
the waves themselves and the family of accompanying fine constituents (i.e., ligaments).

Analysis of the solutions of the fundamental equations system in a continuously
stratified fluid has shown that for periodic flows (with a frequency less than the buoyancy
frequency), regular solutions describe waves. The wave frequency ω is related to the
wave number k by an algebraic dispersion relationω = ω(k, Ak), which may include the
amplitude A [66,67].

Singular solutions describe ligaments perturbations—extended in some direction and
fine in others—outlining wave beams. The transverse scale of the ligaments δνω is deter-
mined by the kinematic viscosity of the liquid ν and the wave frequencyω: δνω =

√
ν/ω

(Stokes scale) or equivalent parameter with the buoyancy frequency N: δνN =
√
ν/N. The

number and positions of the ligaments in space are determined by the geometry of the
source, the amplitude and frequency of its oscillations. Calculations of internal wave beams
and accompanying ligaments in stratified liquids and gases are given in [68,69].

In this paper, a dispersion equation in a linear approximation for two-dimensional pe-
riodic perturbations on the surface of a viscous exponentially stratified liquid is constructed
for the first time. The properties of its complete solutions are analyzed. Approximate solu-
tions are obtained by perturbation theory. Regular solutions describe waves in the range
from infra-low frequency to gravitational-capillary and capillary waves. The dispersion
relations continuously transform into the well-known formulas of the theory of waves in
a homogeneous viscous or ideal liquid. Singular solutions characterize ligaments—fine
constituents that complement waves. Graphs of the dependence of the wavelengths and
ligaments on the frequency, phase and group velocity of the constituents on the wavelength
are given. The results can be used to solve problems of generation and propagation of
surface waves with physically justified initial and boundary conditions and comparison
with a high-resolution experiment.

2. Periodic Flows in a Viscous Exponentially Stratified Fluid

We consider the propagation of periodic perturbations over the surface of a viscous
exponentially stratified fluid in a uniform gravity field. The undisturbed liquid filling
the lower half-space is regarded to be incompressible; meanwhile the effects of thermal
conductivity and diffusion are neglected.

We perform the study in a Cartesian coordinate system Oxyz in which the plane
Oxy coincides with the equilibrium position of a free surface of the liquid, and the axis
Oz is directed vertically upwards against the direction of the gravity acceleration g. The
undisturbed density distribution over depth is exponential ρ0(z) = ρ00 exp(−z/Λ). It is
characterized by reference density ρ00(z0) (i.e., the density value at the equilibrium level
z = z0), as well as the scale Λ = |d ln ρ/dz|−1, frequency N =

√
g/Λ and buoyancy period

Tb = 2π/N.
Mostly, changes of real fluids density are usually small and produce a small impact on

the inertial properties of the flows. Nevertheless, the conservation of terms describing the
stratification effects in the governing equations set is important since gravity acceleration
is large. In this regard, it is useful to consider three types of medium: stratified fluids
when buoyancy scale Λ, frequency N and period Tb which are included in the list of main
parameters; then very weakly stratified fluids, when the scale of buoyancy substantially
exceeds the values of other length scales of the problem (so called potentially homogeneous
fluid) and actually homogeneous liquid whose density is assumed to be constant in the
entire space [70]. Using a weak but variable density helps to save the rank of complete
non-linear set and order of the linearized set of governing equations [66,71] and analyzes
additional solutions which are lost in approximation of homogeneous fluid.

Depending on the magnitude of the density gradient created by the corresponding
temperature or salinity distributions, it is customary to distinguish strongly and weakly
stratified fluids, as well as potentially and actually homogeneous fluids. The values of the
characteristic physical quantities are given in Table 1 [70].
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Table 1. Values of characteristic physical quantities.

Parameter

Fluids

Stratified (SF) Homogeneous (HF)

Strongly Weakly Potentially Actually

Buoyancy frequency N, s−1 1 0.01 0.00001 0.0

Period Tb 6.28 s 10.5 min 7.3 days ∞

Scale 9.8 m 100 km 108 km ∞

Viscous wave scale Lgν
N = 3

√
gν/N, cm 2.14 200 2 · 105 ∞

Stokes microscale δνN =
√
ν/N, cm 0.1 1.0 30 ∞

Strong stratification ( Tb ∼ 10 s) is created in laboratory installations. Relatively weak
stratification ( Tb ∼ 10 min) is observed in natural conditions. Figure 1 shows the density–
depth dependencies for exponential stratification (solid line) and for linear stratification
(dotted line) for a strongly stratified fluid N = 1 s−1.

 

Figure 1. The density–depth dependencies for exponential stratification (solid line) and for linear
stratification (dotted line) for strongly stratified fluid (N = 1 s−1, ν = 0.01 St, σ = 72 dyn/cm,
ρ00 = 1.0 g/cm3).

To compare the properties of exponentially and linearly stratified media, we ana-
lyze the changes in the density gradient with depth. For exponential stratification, the
magnitude of the density gradient depends on the vertical coordinate z.

dρ
dz

= −ρ00
Λ

e− z
Λ (1)

For linear stratification, the density gradient does not depend on the depth:

dρ
dz

= −ρ00
Λ

(2)

For small variations z � Λ the dependencies of the density gradient are not distin-
guishable for exponential and linear stratification. The exponent can be represented as a
Taylor series expansion over a small parameter z/Λ and expression (1) will be written as
follows:

dρ
dz

= −ρ00
Λ

e− z
Λ � −ρ00

Λ

(
1 − z

Λ
+

z2

2Λ2

)
(3)

The numerical values for the stratification scale for a strongly stratified fluid are
Λ = 9.81 · 102 cm, and for a weakly stratified fluid Λ = 9.81 · 106 cm. At depths of less
than 10% of the stratification scale, it can be argued with a high degree of accuracy that
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the calculations in the model of a linearly stratified fluid and exponentially stratified fluid
coincide.

We study below two-dimensional periodic flows of the form A = A0 exp i(kx −ωt)
with a positive definite frequency ω and a complex wave number k, the imaginary part of
which characterizes the spatial attenuation of the flow. The disturbances which are homoge-
neous in the direction of the transverse horizontal coordinate y are selected. They include
the displacement of the free surface position ζ(x, t). The velocity u = uxex + uzez with
horizontal and vertical velocity components ux, uz in an incompressible fluid (divu = 0) is
represented by derivatives of the stream function ψ:

ux = ∂zψ, uz = −∂xψ (4)

The expression for the density of the liquid ρ = ρ00(r0(z) + s(x, z, t)) replacing the
equation of state in [66] includes the initial distribution r0(z) and the perturbation caused
by the examined periodic flow s(x, z, t).

Taking into account these assumptions, the system of continuity and Navier–Stokes
equations is extremely simplified and takes the traditional form [62,63,69]:

z < ζ :

⎧⎨⎩
ρ = ρ00(r(z) + s(x, z, t))

ρ∂tu + ρ(u · ∇)u − ρνΔu = ρg − ∇P
∂tρ+ div(ρu) = 0

(5)

Kinematic and dynamic boundary conditions on a perturbed surface are traditional [62]:

z = ζ :

⎧⎨⎩
∂t(z − ζ) + u · ∇(z − ζ) = 0
τ · (n · ∇u) + n(τ · ∇u) = 0
P − P0 − σ∇ · n − 2ρνn(n · ∇u) = 0

n = ∇(z−ζ)
|∇(z−ζ)| =

−∂xζex+ez√
1+(∂xζ)2 , τ = ex+∂xζez√

1+(∂xζ)2 ,

(6)

where P is the hydrodynamic pressure, σ = γuprho00 is the total coefficient of the surface
tension of the liquid, n and τ are the vectors of the external normal and tangent to the free
surface of the liquid, respectively.

The studied problem includes the following dimensional parameters: density ρ and its
gradient dρ

dz , dynamic μ and density-normalized kinematic viscosity ν = μ/ρ, gravity accel-
eration g, surface tension coefficient σ and density-normalized surface tension coefficient
γ = σ/ρ, amplitude A, frequencyω period Tω = 2π/ω and wavelength λ. The wave is
also characterized by a wave vector k, the modulus of which is related to the wavelength
λ = 2π/|k|.

In the transition to a mathematical description, physical quantities serve as the basis
for the introduction of characteristic scales of length, time and speed. These scales are used
in the physical interpretation of the results obtained, assessing the degree of influence of
various physical factors.

The degree of relative influence of viscosity and gravity on fluid flows is characterized
by the scale δνg = 3

√
ν2/g that appears in [71].

Traditionally, stratification is characterized by its own length scale which takes into ac-
count or neglect the effects of compressibility, the frequency N =

√
g/Λ, period Tb = 2π/N

and the inverse value of the buoyancy frequency TN = Tb/2π. The stratification itself is
characterized by a combinational viscous wave scale Lgν

N = (gν)1/3/N [72,73], as well as
a length scale δνN =

√
ν/N– a functional analogue of the dissipative Stokes microscale

δνω =
√
ν/ω.

The dualism of the nature of surface waves, whose properties depend on the gravity
acceleration g, normalized coefficients of surface tension γ and kinematic viscosity ν results
in the introduction of several scales, including the capillary length δ

γ
g =

√
γ/g. The
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inequality λ < δ
γ
g indicates the severity of surface force effects, and λ >> δ

γ
g —indicates

the severity of gravitational effects.
The structure of near-surface flows is also characterized by a known proper velocity

scale vc = γ/ν and an additional time scale of kinematic nature Tγ
νg = vc/g = γ/νg.

Wave propagation is characterized by group cg = ∂ω
∂k and phase velocity cph = ωk

k2 .
Ratios of uniform scales form a set of dimensionless parameters, parts of which are

used in further calculations.

2.1. Equations of Periodic Flows and Dispersion Relations for Plane Infinitesimal Waves

To simplify expressions, we accept the initial density distribution to be exponential, as
it is customary in most models:

ρ0(z) = ρ00r(z) = ρ00 exp(−z/Λ) (7)

The change of variables proposed in [74] allows the transformation of the equations
of motion for an arbitrary smooth density profile into equations with constant coefficients
that determine the preferential choice of the exponential density profile.

Further calculations are carried out in the Boussinesq approximation, considering the
smallness of absolute density variations in stratified media (in particular, a small value of
the wavelength and buoyancy scale ratio C = λ/Λ). The density variations are neglected
everywhere, except for the term with a large coefficient (i.e., the gravity acceleration g). In
this approximation, the system (5) takes the form:⎧⎨⎩

∂tzψ+ ∂zψ∂xzψ− ∂xψ∂zzψ− ν∂zΔψ+ ∂xP = 0
g(r + s)− g − ∂txψ+ ∂xψ∂xzψ− ∂zψ∂xxψ− ν∂xΔψ+ ∂zP = 0
∂ts + ∂zψ∂xs − ∂xψ∂z(r + s) = 0

(8)

In a linear approximation the system (8) reduces to:⎧⎨⎩
∂tzψ− ν∂zΔψ+ ∂xP = 0
g(r + s)− g − ∂txψ− ν∂xΔψ+ ∂zP = 0
∂ts − ∂xψ∂zr = 0

(9)

Cross-differentiation of spatial coordinates of the upper and middle equations of the
system (9) allows getting rid of pressure:{

∂tΔψ− g∂xs − νΔΔψ = 0
∂ts − ∂xψ∂zr = 0

(10)

Subtraction of the second equation, differentiated by coordinate and multiplied by a
coefficient g from the first equation of the system (10), differentiated by time, allows getting
rid of the function s(x, z, t):

∂ttΔψ− ν∂tΔΔψ+ ∂xxψ∂zr = 0 (11)

Equation (11) takes the next form for an exponentially stratified fluid (7):

∂ttΔψ− ν∂tΔΔψ+ N2 exp(−z/Λ)∂xxψ = 0, N =
√

g/Λ (12)

The boundary conditions (6) for all variables of the infinitesimal waves
A = A0 exp(ikx − iωt) are traditionally carried away from the wave surface z = ζ to
the unperturbed level z = 0 and take the form

z = 0

⎧⎨⎩
∂tζ + ∂xψ = 0
−ρgζ + ρ00P + 2ρ00ν∂xzψ+ σ∂xxζ = 0
∂zzψ− ∂xxψ = 0

(13)
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The small coefficient (kinematic viscosity ν), which ensures slow attenuation of the
wave as it propagates in the liquid, allows the classification of the system (12) as a system
of singularly perturbed equations and the application of the theory of singular perturba-
tions [65] for its analysis. The compatibility condition, which requires the analysis of all
the roots of the dispersion equation and the system (12) solutions, should be taken into
account [66].

For surface waves withω > N, the solution of Equation (12) is sought in the form of
plane waves:

ψ =
(

A+eikx x−iωt + A−e−ikx x−iωt
)(

ekzz + βekl z
)

(14)

Here kz corresponds to the regular solution of the dispersion equation, and kl corre-
sponds to the singular solution of the dispersion equation.

We obtain the shape of the deviation of the free surface of the liquid, the condition
of the relationship between the amplitudes of the regular and singular component by
substituting (14) into Equation (12) and boundary conditions (13):

ζ = kx
ω

(
A+eikx x−iωt − A−e−ikx x−iωt

)
(1 + β)

β = − k2
x+k2

z
k2

x+k2
l

(15)

as well as the dispersion relations:⎧⎨⎩ −N2k2
x + ez/Λ

(
k2

x − k2
z,l

)
ω
(

ik2
xν− ik2

z,lν+ω
)
= 0

gk2
x − 3ik2

xkz,lνω+ kz,l

(
ik2

z,lν−ω
)
ω+ k4

xγ = 0, γ = σ/ρ00
(16)

Calculated for the first time the expressions (16) are transformed into the relations
for a viscous homogeneous fluid and for an ideal exponentially stratified fluid in limiting
transitions N → 0 and ν → 0 respectively. Similar dispersion relations for internal waves
and ligaments in the thickness of a stratified fluid were presented in [75].

2.2. Solution of the Dispersion Equation

It is convenient to analyze the dispersion relations (13) in a dimensionless form. The
time scale will be the parameter, which is inverse to the buoyancy frequency N, and
the viscous wave scale Lν = (νg)1/3/N is chosen as the length scale. The ratios of the

eigenscales of the problem δ =

(
δ

γ
g

δνN

)2
= γ

g · N
v and ε = Lv

Λ = Nν1/3

g2/3 are used to construct

new dimensionless parameters δ, ε involved in further calculations. Then, expressions (16)
could be rewritten in a dimensionless form:⎧⎨⎩ −k2∗x + iez/Λ

(
k2∗x − k2

∗z,l

)2
εω∗ + ez/Λ

(
k2∗x − k2

∗z,l

)
ω2∗ = 0

k2∗x + k4∗xδε− 3ik2∗xk∗z,lε
2ω∗ + ik3

∗z,lε
2ω∗ − k∗z,lεω

2∗ = 0
δ = Nγ/νg, ε = Nν1/3/g2/3

(17)

The upper dispersion relation in (17) has regular solutions, which we have denoted
k∗z, and singular solutions, which are denoted k∗l . For a large number of real liquids, the
parameter ε � 1 and regular solutions are found by direct decomposition over a small
parameter ε:

k∗z = k∗0z + εk∗1z + ε
2k∗2z + . . . (18)

Substituting (18) into the upper expression in (17) we obtain up to the terms of the
order O

(
ε2):

k∗z = ±
√
ω2∗ − e−z/Λ

ω∗
k∗x ± ε ie−2z/Λk3∗x

2ω4∗
√
ω2∗ − e−z/Λ

(19)
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Since the equations in the system (17) have the fourth degree, it is necessary to find
two more solutions, which are singular perturbed ones in the form of decomposition [65]:

k∗l = ε−η
(

k∗0l + εk∗1l + ε
2k∗2l + . . .

)
(20)

The parameter η in (20) is chosen in such a way that at the highest degree the main
term of the decomposition persists. Substituting instead of k∗l in the upper expression in
(17) k∗l = ε−ηk∗0l and equating the exponents ε in different terms we get:

1 − 4η = −2η
1 − 4η = 1 − 2η
1 − 4η = 0
1 − 2η = −2η
1 − 2η = 0
−2η = 0

(21)

At the highest degree, the main term of the decomposition remains only at η = 1/2.
Substituting the value η = 1/2 in (20) and then in (17) up to the terms of the order O

(
ε3/2

)
we get:

k∗l = ± (1 − i)
√
ω∗√

2ε
±

(1 + i)
(

e−z/Λ +ω2∗
)

k2∗x

2
√

2ω5/2∗

√
ε (22)

Leaving only the main terms of ε in the lower dispersion relation (17), we obtain the
dispersion equation for the regular part of the solution:

k∗x +

(
k3∗xδ −ω∗

√
ω2∗ − 1

)
ε = 0 (23)

For the singular part of the solution, leaving only the main terms of the expansion of ε,
we obtain:

1 + k2∗xδε+
(1 + i)

(
1 − 2ω2∗

)
√

2ω∗
ε3/2 = 0 (24)

The solution of the dispersion Equation (23) for the regular wave part is:

k∗x = − 21/3

α + α
3·21/3δε

k∗x = 1±i
√

3
22/3α

− (1∓i
√

3)α

6·21/3δε

α =
(

27δ2ε3ω∗
√
ω2∗ − 1 +

√
108δ3ε3 + 729δ4ε6ω2∗(ω2∗ − 1)

)1/3
(25)

From the condition of the physical realization of the solution (i.e., the damping of the
flow with depth) it follows that only roots with Re(k∗z) > 0 possess a physical meaning.
Decomposing the solution (25) for the regular wave part into a Taylor series, we obtain:

k∗x = ω∗ε
√
ω2∗ − 1 + O

(
ε4)

k∗x = ± i√
δε

−ω∗ε
√

ω2∗−1
2 + O

(
ε5/2

) (26)

With consideration of (19) and the condition Re(k∗z) > 0, it can be seen that we
implement only one root of (26) and finally for the regular wave solution we get:

k∗x = − 21/3

α + α
3·21/3δε

k∗z =

√
ω2∗−e−z/Λ

ω∗

(
− 21/3

α + α
3·21/3δε

)
+ ε

ie−2z/Λ
(
− 21/3

α + α

3·21/3δε

)3

2ω4∗
√

ω2∗−e−z/Λ

(27)
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We perform similar transformations for singular ligament-solution. The solutions (24),
which are found taking into account (22) and the conditions of the physical implementation
of the roots Re(k∗l) > 0 of the singular ligament, take the form:

k∗x = ±
√
(δε)−1(((1 + i)(2ω2∗ − 1)/

√
2ω∗

)
ε3/2 − 1

)
k∗l =

(1−i)2δω3∗+(1+i)(e−z/Λ+ω2∗)(((1+i)(2ω2∗−1)/
√

2ω∗)ε3/2−1)
2
√

2ω5/2∗ δ
√
ε

(28)

Expressions (27), (28) describe new dispersion relations for surface waves (27) and
associated ligaments (28) in a viscous exponentially stratified fluid.

2.3. Low Frequency Waves

The solution for low frequency waves (ω < N) is sought as the sum of the propagation
of gravitational waves (waves with wave number components kz) and fine perturbation
(with wave number component ks) as well:

ψ =
(

A+eikx x−iωt + A−e−ikx x−iωt
)(

αeikzz + βe−ikzz + χeksz
)

(29)

Substituting (26) into (9) leads to dispersion relations:{ −N2k2
x + ez/Λ(k2

x + k2
z
)
ω
(
ik2

xν+ ik2
zν+ω

)
= 0

−N2k2
x + iez/Λ(k2

s − k2
x
)
ω
(
k2

sν− k2
xν+ iω

)
= 0

(30)

Substituting solution (29) into the boundary conditions (13), we obtain an expression
for the shape of the free surface and additional relations. These additional relations
determine the relationship between the amplitudes of the various components of periodic
motion:

ζ =
(

A+eikx x−iωt − A−e−ikx x−iωt
)
(α + β+ χ)kx/ω (31)

(α + β)
(

k2
x − k2

z

)
+ χ

(
k2

x + k2
s

)
= 0 (32)

k2
x

(
g + γk2

x

)
(α + β+ χ) + νω

(
kz(α − β)

(
3k2

x + k2
z

)
+ iχks

(
k2

s − 3k2
x

))
−ω2(ikz(α − β)− χks) = 0 (33)

In a dimensionless form, the dispersion relations (30) take the form:⎧⎨⎩ −k2∗x + iez/Λ(k2∗x − k2∗s
)2
εω∗ + ez/Λ(k2∗x − k2∗s

)
ω2∗ = 0

−k2∗x + iez/Λ
(

k2∗x + k2
∗z,l

)2
εω∗ + ez/Λ

(
k2∗x + k2

∗z,l

)
ω2∗ = 0

(34)

The expressions for the surface component of periodic motion, up to the notation,
coincide with the dispersion equations of surface waves discussed above. For low frequency
waves, we will look for regular wave solutions in the form of expansion (18) and up to the
terms of the order O

(
ε2):

k∗z = ±
√

e−z/Λ −ω2∗
ω∗

k∗x ∓ ε ie−2z/Λk3∗x

2ω4∗
√
ω2∗ − e−z/Λ

(35)

Similarly to surface waves case, we find singular solutions of the dispersion equation
for low frequency waves using decomposition (20). Just as in the case of high frequency
surface waves ω > N, the exponent of the degree η = 1/2 is the only one that satisfies
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the condition of the main term of the decomposition at the highest degree kl . Making a
substitution up to the terms of the order O

(
ε3/2

)
we get:

k∗l = ± (1 + i)
√
ω∗√

2ε
∓

(1 − i)
(

e−z/Λ +ω2∗
)

k2∗x

2
√

2ω5/2∗

√
ε (36)

From the relation (32) we obtain that

χ = (α + β)
k2

z − k2
x

k2
x + k2

s
(37)

α + β+ χ = (α + β)
k2

s + k2
z

k2
x + k2

s
(38)

From the ratio (33) follows:

α + β = − 2i
(
k2

s + k2
x
)
kzα
(
3k2

xν+ k2
zν− iω

)
ω

ik2
x(k2

s + k2
z)(g + k2

xγ)− (ks + ikz)(−k2
s k2

x + 3k4
x + 4iksk2

xkz + (k2
s + k2

x)k2
z)νω− (ks − ikz)(ik2

x + kskz)ω2 (39)

In the low viscosity approximation, we obtain that

α + β � 0, χ � −(α + β) = 0 (40)

The relations (40) correspond to the situation when all the energy is concentrated in
gravitational waves.

2.4. Periodic Flows on the Surface of a Viscous Exponentially Stratified Liquid

First of all, let us consider the dependence of the wavelength λ on the frequency of the
wave motionω. We define the wavelength as follows:

λ = 2π/
√

Re(k2
x) + Im(k2

z) (41)

This method of determination of the wavelength is due to the fact that the imaginary
part of the wave number kx component and the real part of the wave number kz compo-
nent are responsible for the spatial attenuation of motion and are not impactful to wave
propagation. Substituting the dispersion relations (27) in (32), we can construct the desired
dependencies. Figure 2 shows the dependence of the wavelength on the frequency of wave
motion λ(ω).

The velocity of movement of the phase front of structures (wave and ligament) and
the rate of energy transfer are of particular interest. The phase front moves with the phase
velocity of the wave (and its analogue for the singular solution):

cph = ωk/|k|2 (42)

The energy is transferred with a group velocity cgr, which is defined as follows:

cgr =

{(
∂kx

∂ω

)−1
,
(

∂kz,l

∂ω

)−1
}

(43)

Figure 3 shows the dependencies for the phase (dashed line) and group (solid line)
velocities.
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Figure 2. The dependence of the wavelength on the frequency of wave motion in a viscous exponen-
tially stratified fluid for a periodic solution. The curves indicated by the letter (W) are constructed for
a liquid with ν = 0.01 St, σ = 72 dyn/cm, ρ00 = 1 g/cm3, and by the letter (Gl)—for a liquid with
glycerin parameters (ν = 11.746 St, ρ00 = 1.26 g/cm3, σ = 64.7 dyn/cm). The numbers indicate a
different degree of stratification. Index (1) corresponds to a weak pycnocline N = 0.001 s−1, index (2)
to a weakly stratified fluid N = 0.01 s−1, and index (3) to a strongly stratified fluid N = 1 s−1 for
water and glycerin.

Figures 2 and 3 show that viscosity has a noticeable effect on capillary waves with
a wavelength λ < δ

γ
g , and the stratification influences the waves with frequencies close

to the buoyancy frequency N. With the advent of stratification, a forbidden part of the
spectrum appears for surface waves (with frequencies lower than the buoyancy frequency).
With the tending to the stratification frequency, the group velocity goes to zero, and the
phase velocity tends to infinity. A similar pattern is observed when electromagnetic waves
propagate in waveguides. The size of the waveguide sets a certain critical size, beyond
which the electromagnetic wave does not propagate in the waveguide channel. In stratified
fluids, this mechanism is not due to external geometric constraints, but is determined by
the characteristics of the medium (stratification).

(a) 

Figure 3. Cont.
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(b) 

Figure 3. Dependences of the phase (dashed lines) and group (solid lines) velocities on the frequency
of wave motion (a) and on the wavelength (b) in a viscous exponentially stratified fluid for a periodic
solution. The curves indicated by the letter (W) are constructed for a liquid with water parameters,
and by the letter (Gl)—for a liquid with glycerin parameters. The numbers indicate a different degree
of stratification. Indexes (1) and (6) correspond to a weak pycnocline N = 0.001 s−1, indexes (2) and
(5) correspond to a weakly stratified liquid N = 0.01 s−1 and indexes (3) and (4) correspond to a
strongly stratified liquid N = 1 s−1.

3. Reduction to Approximation of Actually Homogeneous Fluid

The fine constituents of periodic flows—ligaments—are a consequence of the dissipa-
tive properties of the medium, which exist not only in stratified, but also in homogeneous
liquids. They are described by singular solutions of dispersion equations, the appearance
of which can be observed experimentally in the structure of flows in an inhomogeneous
medium. If the effects associated with buoyancy are neglected, then the density of the
liquid can be considered as actually homogeneous:

ρ = ρ00 ≡ const (44)

and the basic equations of motion are simplified. For a viscous homogeneous liquid in a 2D
formulation in a linear approximation equations for the stream function are shortened to:

∂tΔψ− νΔΔψ = 0 (45)

Equation (45) can also be obtained by performing a limiting transition N → 0 in (12).
The boundary conditions that are removed to the equilibrium surface in the case of a
homogeneous liquid are as follows:

z = 0

⎧⎨⎩
∂tζ + ∂xψ = 0
−gζ + P + 2ν∂xzψ+ γ∂xxζ = 0
∂zzψ− ∂xxψ = 0

(46)

Similarly to the basic equations of motion, the boundary conditions (46) can also be
obtained from the boundary conditions (13) using a limit transition N → 0 . Substitution of
the solution in the form of a propagating wave

ψ = A+ exp(kzz + ikxx − iωt) + A− exp(kzz − ikxx − iωt) (47)

in (45) leads to dispersion relations between the components of the wave number:(
k2

x − k2
z

)(
ν
(

k2
x − k2

z

)
− iω

)
= 0 (48)
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The relation (48) naturally decomposes into two solutions:

k2
z = k2

x
k2

l = k2
x +

iω
ν

(49)

Here, the reassignment of one solution kz into kl is introduced. The component kz
corresponds to the wave solution, and the component kl corresponds to the ligament
solution. Taking into account (49), the solution of the problem in the form of a propagating
wave is transformed into:

ψ = (A+ exp(ikxx − iωt) + A− exp(−ikxx − iωt))(exp(kzz) + B exp(klz)) (50)

Substituting (50) into the kinematic boundary condition, we obtain the relationship
between the amplitudes of the velocity field and the deviation of the free surface from the
equilibrium value:

ζ =
kx

ω
(1 + B)(A− exp(−ikxx − iωt)− A+ exp(ikxx − iωt)) (51)

and substitution of (50) into the dynamic condition for tangential tensions leads to the
expression for the amplitude of the ligament component:

B = −
(
k2

x + k2
z
)(

k2
x + k2

l
) = −2k2

x

(
2k2

x +
iω
ν

)−1
(52)

Getting rid of the pressure in the dynamic boundary condition and taking normal
components, we rewrite it as:

ν∂tzΔψ− ∂ttzψ+ g∂xxψ+ 2ν∂txzzψ− γ∂xxxxψ = 0 (53)

Substituting the solution (50) into the boundary conditions (53) taking into account
(49) leads to the dispersion relation for the wave constituent:

γk3
z − 2iνωk2

z + gkz −ω2 = 0 (54)

and ligament constituent:

γ

(
k2

l − iω
ν

)2
− 2iνω

(
k2

l − iω
ν

)
kl + g

(
k2

l − iω
ν

)
+ωkl

(
iνk2

l −ω
)
= 0 (55)

It can be noticed that Equations (54) and (55) are also obtained from (16) with a
limit transition N → 0 . Further we will transfer the dispersion relations (54) and (55) to
dimensionless forms in the same way as it has been done in the previous paragraph. We will
choose our own viscous scale δνg = 3

√
ν2/g as the length scale, and the ratio as the time scale

will be Tγ
νg = γ/νg and the decomposition parameter ε =

3

√(
δνg

)6
/
(
δ

γ
g
)6

= 3
√
(ν4g)/γ3.

In a dimensionless form, the conventional dispersion Equation [15] for the wave
component of the solution will be rewritten taking into account (54):

k3∗x − 2iε2ω∗k2∗x + εk∗x − ε3ω2∗ = 0 (56)

The solution of Equation (56) is obtained by the standard method and takes the form:

k∗
x =

2
3

iε2ω∗ − ε
(
3 + 4ε3ω∗2)

3β
+

1
3
β (57)
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kx = 2
3 iε2ω∗ ± 1

6 i
(
±i +

√
3
)
β+

(1±i
√

3)ε(3+4ε3ω∗2)
6·22/3β

β =
(
−8iε6ω∗3 + 9

2ε
3ω∗(−2i + 3ω∗) + 3

2

√
3
√
ε3(4 − 32iε6ω∗5 + ε3ω∗2(4 + 9ω∗(−4i + 3ω∗)))

)1/3 (58)

Decomposition (57) into a Taylor series by a small parameter ε at least up to the
summands O

(
ε9/2

)
gives the expression:

k∗z = ε2ω2∗ + O
(
ε9/2

)
(59)

Decomposition of the roots (58) into a Taylor series by a small parameter ε at least up
to the summands O

(
ε9/2

)
gives the expression:

k∗z = ±1
8

i
√
ε
(

8 ± 4ε3/2ω∗(2 + iω∗) + ε3ω2∗
(

4 − 4iω∗ + 3ω2∗
))

+ O
(
ε9/2

)
(60)

As it follows from the condition of the physical realization of the roots Re(kz) > 0,
considering the positive definite frequency of the wave motion, only one root, which is
given by the expression (57), can be physically realized This solution describes the wave
part of a periodic motion in a liquid.

To analyze the dispersion equation for a ligament solution (55) and carry out the
nondimensionalization procedure, the characteristic scales can be selected the same as in
the wave solution. Then in a dimensionless form, the dispersion equation (55) is written as:

k4
∗l − 2iεω∗k2

∗l − ε2ω2∗ − 3iε2k3
∗lω∗ − 3ε3k∗lω

2∗ + εk2
∗l − iε2ω∗ + iε2ω∗k3

∗l − ε3k∗lω
2∗ = 0 (61)

Equation (61) has four roots. The analysis shows that the spatial attenuation condition
is satisfied for one root only. Due to the cumbersomeness of the expression, the calculated
solution is not given here.

Let us construct the dispersion dependences of the components of periodic motion
in log–log scales in dimensional variables for liquids with glycerin and water parameters.
Figure 4 shows the dependence of the wavelength λ on the frequency for the wave compo-
nent (a) and the analog of the wavelength δi on the frequency for the ligament component
(b). The letter (W) indicates the dependencies for water and the letter (Gl) indicates the
dependencies for glycerin.

  
(a) (b) 

Figure 4. Wavelength dependences of the wave solution (a) and the ligament solution (b) on the
frequency in a viscous homogeneous fluid. The curves indicated by the letter (W) are constructed for
a liquid with water parameters, and by the letter (Gl)—for a liquid with glycerin parameters.

Figure 5 shows the dependences of the phase and group velocity on the frequency
of periodic motion for the wave component of periodic motion (a) and the ligament
associated with the wave component (b). The dependences are constructed for liquids
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with the parameters of water and glycerin. Figure 6 shows similar dependencies, but on
the wavelength. There are several remarkable velocities in a viscous homogeneous liquid.
The minimum group velocity and the velocity at which the group and phase velocities are
compared. We show that the velocities are compared when the value of the phase velocity
is minimal. The extremum condition for the phase velocity will be written as:

∂ωcph = ∂ω
(ω

k

)
=

1
k2 (k −ω∂ωk) = 0 (62)

  
(a) (b) 

Figure 5. Dependences of the phase (dashed lines) and group (solid lines) velocities on the frequency
of the wave solution (a) and the ligament solution (b) on the frequency in a viscous homogeneous
fluid. The curves indicated by the letter (W) are constructed for a liquid with water parameters, and
by the letter (Gl) for a liquid with glycerin parameters.

  
(a) (b) 

Figure 6. Dependences of the phase (dashed lines) and group (solid lines) velocities on the wavelength
of the wave solution (a) and the ligament solution (b) on the frequency in a viscous homogeneous
fluid. The curves indicated by the letter (W) are constructed for a liquid with water parameters, and
by the letter (Gl) for a liquid with glycerin parameters.

The ratio (62) leads us to equality:

cph =
ω

k
= (∂ωk)−1 = cgr (63)

The minimum value of the group velocity for a liquid with water parameters is
cW

grmin = 17.71 cm/s and is achieved at frequency ωW
grmin = 40.53 s−1 and wavelength

λW
grmin = 4.33 cm. For a liquid with glycerin parameters, the corresponding values are

as follows: cGl
grmin = 29.39 cm/s at the frequency ωW

grmin = 21.05 s−1 and wavelength

λGl
grmin = 14.88 cm. The minimum phase velocity for a liquid with water parameters
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is cW
phmin = 23.05 cm/s at the frequency ωW

phmin = 84.82 s−1 and wavelength λW
phmin =

1.71 cm. For a liquid with glycerin parameters, the corresponding values are as follows:
cGl

phmin = 40.85 cm/s at frequencyωW
phmin = 38.96 s−1 and wavelength λGl

phmin = 6.59 cm.
The viscosity of the liquid affects the capillary wave motion. An increase in viscosity

leads to an increase in the wavelength at a constant frequency in the region of capillary
waves. As a consequence, the values of the phase and group velocity increase. The
characteristic values of fluid velocities for the wave component of periodic motion increase
with increasing viscosity and shift to the region of lower frequencies (longer wavelengths).
Taking into account the viscosity in the model makes it possible to calculate, in addition to
the wave component, the ligament component of periodic motion in a liquid.

4. Reduction to Inviscid Fluid

In an inviscid exponentially stratified fluid, the equations of motion and boundary
conditions (12), (13) are reduced ν → 0 :

z < ζ :

⎧⎨⎩
ρ = ρ00(r(z) + s(x, z, t))
ρ∂tu + ρ(u · ∇)u = ρg − ∇P
∂tρ+ div(ρu) = 0

(64)

z < 0: ∂ttΔψ+ N2 exp(−z/Λ)∂xxψ = 0 (65)

z = 0:
{

∂tζ + ∂xψ = 0
−ρgζ + uprho00P + σ∂xxζ = 0

(66)

Dispersion relations in an inviscid liquid allow us to obtain only the wave component
of periodic motion. The dispersion relations for the wave component are obtained using
the limit transition ν → 0 from expressions (16) and (30) for high frequency (compared to
the buoyancy frequency) and low frequency oscillations, respectively. For high-frequency
wave disturbances of the free surface (ω > N) we obtain:{ −N2k2

x + ez/Λ(k2
x − k2

z
)
ω2 = 0

gk2
x − kzω

2 + k4
xγ = 0

(67)

For low frequency waves (ω < N):{ −N2k2
x + ez/Λ(k2

x + k2
z
)
ω2 = 0

−N2k2
x − ez/Λ(k2

s − k2
x
)
ω2 = 0

(68)

Thus, the approximation of an ideal fluid enables us to find solutions that describe the
wave constituent of periodic motion in the region of gravitational waves quite well. In the
region of capillary waves, the wave constituent calculated in the model of an ideal liquid
underestimates the value of the wavelength at a given frequency. Note that in the model of
an ideal fluid, it is impossible to obtain a solution for the ligament constituent of periodic
motion along the free surface of the fluid. This makes the solution incomplete.

5. Discussion

For the first time the theory of singular perturbations was used to describe the propaga-
tion of two-dimensional periodic perturbations over the surface of a viscous exponentially
stratified incompressible fluid occupying the lower half-space. Calculations were per-
formed in a single formulation in a wide frequency range, which includes the propagation
of capillary, gravitational and internal waves. The system of equations, which includes
the equations of continuity, momentum transfer and density profile with depth, replacing
the equation of state, is solved together with physically justified kinematic and dynamic
conditions on a free surface, taking into account the effect of surface tension. The theory
of singular perturbations with respect to the compatibility condition was applied to study
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the propagation of infinitesimal harmonic flows with a positive definite frequency and a
complex wavenumber, which considers spatial attenuation.

A complete set of solutions of the obtained dispersion relation for infinitesimal periodic
perturbations includes two inseparable constituents of periodic flows. The theory of regular
perturbations determines the parameters of gravitational-capillary or infra-low-frequency
waves with a frequency lower than the buoyancy frequency.

The accompanying fine constituents that are ligaments are calculated by the methods
of the theory of singular perturbations. The dispersion equation designed for infinitesimal
periodic perturbations describes the relationship between the components of the wave
vector in periodic flows in a wide frequency range 10−4 < ω < 103 s−1 which includes
infra-low frequency, gravitational and capillary waves. The result, represented by length-
frequency dependence, is convenient for experimental determination. The dependences of
phase and group wave velocities on frequency and wavelength have also been obtained.

The dependences of phase and group velocities of regular perturbations (i.e., waves in
water and glycerin) on frequency and wavelength have been represented in graphs. Wave
properties are significantly modified during the transition through buoyancy frequency.
The group velocity of wave propagation tends to zero and the phase one tends to infinity
with the approximation of wave and buoyancy frequencies. Viscosity has a significant
influence on short waves when their length becomes compared to or less than capillary
scale λ < δ

γ
g =

√
γ/g.

The wave parameters are calculated in an actual homogeneous liquid in the limit of the
buoyancy frequency N → 0 as well as in a constant density approximation ρ ≡ const, Tb =
0 taking into account the compatibility conditions. These calculations correspond to the
given results.

Singular solutions describe ligaments (i.e., thin currents accompanying waves in a
viscous stratified or homogeneous liquid). To compare them we have shown the graphs
of the dependence of the wavelength and scale of the ligaments on the wave frequency
in a viscous homogeneous liquid. The sizes of the ligaments differ by several orders of
magnitude at low frequencies. The dependences of the phase and group velocities of waves
and ligaments on the frequency and wavelength are also given.

The application of the theory of singular perturbations makes it possible to design com-
plete solutions of the dispersion equation and the system of fundamental equations without
additional hypotheses and limitations of the type of boundary layer approximation [33,34].

The evolving approach admits the extrapolation to the investigation of
three-dimensional periodic perturbations. In this case, propagating surface waves accom-
pany several types of ligaments, as well as internal waves in the thickness of a continuously
stratified liquid [68,69].

In general cases, both waves and ligaments continuously interact with each other and
generate new groups of flow constituents [75]. The influence of forcing together with the
effects of nonlinearity and dissipation causes the evolution of the wave structure, which
has different shapes at the phases of growth and attenuation.

In the low frequency range, the forcibly oscillating free surface of a stratified ocean
can be a source of internal and inertial waves that transfer energy into the ocean. Internal
waves, in turn, interact non-linearly with each other [76], generating new wave groups
and ligaments (i.e., accompanying flows that cause the observed modulation of the surface
waves) [77]).

6. Conclusions

The analysis of the linearized reduced version of the fundamental equations system
by the methods of the theory of singular perturbations has been carried out with respect
to the compatibility condition. It showed that the complete solutions describe waves
propagating over the surface of a viscous stratified incompressible fluid, and small-scale
constituents that are ligaments accompanying the waves. In extreme cases that are in limit
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of viscous homogeneous liquid, ideal stratified and ideal homogeneous liquid, the obtained
dispersion relations for waves transfer to the widely known ones.

The experimental studies of the fine structure of surface waves in a continuously
stratified liquid with high-resolution instruments that allow recording the influence of all
constituents of periodic flows are of great interest. We should pay particular attention to
the use of high-resolution optical methods for recording variations in the density gradient,
and highly sensitive temperature or electrical conductivity sensors in a liquid with salt
stratification.
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Abstract: In this paper a stochastic optimal control problem described by a quadratic performance
criterion and a linear controlled system modeled by a system of singularly perturbed Itô differential
equations with two fast time scales is considered. The asymptotic structure of the stabilizing solution
(satisfying a prescribed sign condition) to the corresponding stochastic algebraic Riccati equation
is derived. Furthermore, a near optimal control whose gain matrices do not depend upon small
parameters is discussed.
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1. Introduction

In the last 40 years, special attention was paid to the singular perturbation techniques applied
in both analysis and synthesis of control laws with prescribed performance specifications for the
regulation of systems whose mathematical models are described by a system of differential equations
of high dimension, and also contain a number of small parameters multiplying derivatives of a part of
the state variables of the physical phenomenon under discussion.

The large number of differential equations of the mathematical model of a physical process may
be caused by the presence of some “parasitic” parameters such as small time constants, resistances,
inductances, capacitances, moments of inertia, small masses, etc.

The presence of such small parameters is often a source of stiffness due to the simultaneous
occurrence of slow and fast phenomena. It is known that the stiffness can produce ill-conditioning of the
numerical computation involved in the process of designing the optimal control. This inconvenience
leads to the idea to simplify the mathematical model by neglecting the small parameters occurring in
the original model. Besides the stiffness, the necessity of the simplification of the mathematical model
by neglecting the small parameters is also imposed by the fact that, in many applications, the values of
these parasitic quantities are not exactly known. A fundamental problem is to check if the optimal
control design based on the reduced model provides a satisfactory behavior of the full system which
contains fast phenomena neglected during the designing process.

Remarkable results were obtained in the problem of the design of some near optimal controllers
in the case of some deterministic systems with several time scales. Such results may be found in the
monographs [1–4]. A common feature of the approaches in these works is the use of the singular
perturbations techniques, initially developed in connection with the study of qualitative properties of
the solutions of some classes of differential equations starting with the classical work of Tichonov [5].
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The interest for studying different problems regarding the singularly perturbed controlled systems is
still increasing. For the reader’s convenience, we refer to the recent papers [6–10].

Lately, the interest for studying optimal control problems for stochastic systems modeled by
singularly perturbed Itô differential equations also increased. Unlike the deterministic case, where the
reduced model is obtained by simply removing the small parameters, in the case of stochastic optimal
control problems driven by systems of singularly perturbed Itô differential equations, the definition
of the reduced model is not always intuitive and it is strongly dependent upon the intensity of the
white noise type perturbations affecting the diffusion part of the fast equations of the mathematical
model. Hence, problems related to singularly perturbed stochastic systems could not be viewed as
simple extensions of there deterministic counterparts. This makes the study of this class of systems a
challenging (and relatively not fully investigated) topic. The main results obtained in this field were
published in [11–14].

Very few results have been reported in the literature dealing with several fast time scales. We cite
here [15] for the deterministic case and [16] for the stochastic framework. Pursuing our efforts in the
study of singularly perturbed stochastic systems, we consider in this paper a stochastic optimal control
problem described by a quadratic performance criterion and a linear controlled system modeled by a
system of singularly perturbed Itô differential equations with two fast time scales.

Unlike [17] in the deterministic case or [14] in the stochastic case, where the fast time scales have
the same order of magnitude, in the present work, we consider the case in which the two fast time
scales have different order of magnitude. More precisely, if εj > 0, j = 1, 2 are the small parameters
associated with the two fast time scales, the ratio ε2

ε1
becomes the third small parameter which needs

to be considered in the asymptotic analysis performed here. The most part of our study is devoted
to the analysis of the asymptotic structure of the stabilizing solution of the algebraic Riccati equation
involved in the computation of the optimal control of the optimization problem under consideration.
The main tool in the derivation of the asymptotic structure of the stabilizing solution of the algebraic
Riccati equation under consideration around the origin (ε1, ε2, ε2

ε1
) = (0, 0, 0) is the implicit functions

theorem. To this end, we first investigate the solvability of the system of reduced equations obtained
setting εk = 0, k = 1, 2 and ε2

ε1
= 0 in the original algebraic Riccati equation. Unlike the deterministic

case, in the stochastic framework considered in this paper, the system of the reduced equations is a
system of strongly interconnected Riccati type algebraic equations. For this system of interconnected
Riccati type equations we introduce the concept of stabilizing solution and provide a set of necessary
and sufficient conditions which guarantee the existence of such a solution. Further, employing the
stabilizing solution of the system of the reduced equations and the corresponding stabilizing gain
matrices we show that one may apply the implicit functions theorem to obtain the existence, as well as
the asymptotic structure of, the stabilizing solution of the algebraic Riccati equation associated with the
optimal control problem under consideration. Based on the dominant part independent of the small
parameters of the stabilizing gain matrix, we construct a near optimal control whose gain matrices can
be computed without the knowledge of the precise values of the small parameters associated with the
fast time scales.

The paper is organized as follows: Section 2 provides the model description and the problem
formulation. In Section 3 we show how the system of reduced Riccati equations, which are not
dependent upon the small parameters, can be derived. Also, we introduce the concept of the stabilizing
solution for the system of reduced algebraic Riccati equations. Then, we provide conditions which
guarantee the existence of this stabilizing solution. In Section 4, we obtain the existence and the
asymptotic structure of the stabilizing solution for the Riccati equation associated with the original
linear quadratic control problem. Finally, we show how the asymptotic structure of the stabilizing
feedback gain can be used to construct a near optimal control.
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2. The Problem

Let us consider the stochastic optimal control problem asking for the minimization of the
quadratic functional

J(x0; u) = E[

∞̂

0

(
2

∑
j,k=0

xT
j (t)Mjkxk(t) + 2

2

∑
j=0

xT
j (t)Lju(t) + uT(t)Ru(t))dt (1)

along with the trajectories of the controlled system having the state space representation described by
the following system of singularly perturbed Itô differential equations

dx0(t) = (A00(ε)x0(t) + A01(ε)x1(t) + A02(ε)x2(t) + B0(ε)u(t))dt+

+ (C00(ε)x0(t) + C01(ε)x1(t) + C02(ε)x2(t) + D0(ε)u(t))dw(t)

x0(0) = x0
0 (2)

εkdxk(t) = (Ak0(ε)x0(t) + Ak1(ε)x1(t) + Ak2(ε)x2(t) + Bk(ε)u(t))dt+

+
√

εk(Ck0(ε)x0(t) + Ck1(ε)x1(t) + Ck2(ε)x2(t) + Dk(ε)u(t))dw(t)

xk(0) = x0
k , k = 1, 2.

In (1) and (2) u(t) ∈ Rm is the vector of the control parameters and x(t) =(
xT

0 (t) xT
1 (t) xT

2 (t)
)T ∈ Rn is the vector of state parameters, x0 =(

x0T
0 x1T

0 x2T
0

)T
, n = n0 + n1 + n2; xj(t) ∈ Rnj , 0 ≤ j ≤ 2.

In (1), Mjk = MT
kj, 0 ≤ k, j ≤ 2, R = RT . In (2), εk > 0 are small parameters often not

exactly known.
In order to make more intuitive the developments in this paper we assume that the small

parameters εk, k = 1, 2 satisfy the assumption:

H1) εk = ϕk(η), where ϕk : [0, η∗] → [0, ∞) are nondecreasing functions with the properties:
(i) ϕk(η) = 0 if and only if η = 0, k = 1, 2.
(ii) lim

η→0+
ϕk(η) = 0; lim

η→0+

ϕ2(η)
ϕ1(η)

= 0.

In the sequel, the dependence of εk upon the parameter η will be suppressed.

Remark 1. According to the terminology used in the framework of singularly perturbed differential equations,
x0(t) will be called slow state variables while x1(t), x2(t) will be named fast state variables. From the
condition imposed to the values of the ratio ε2

ε1
in H1), it follows that the states x2(t) are faster than x1(t). That

is why under the assumption H1) system (2) is a controlled system with two fast time scales.

In the deterministic framework, the asymptotic structure of the solutions of some systems with
several time fast scales was studied in [18] while in [19] were derived uniform upper bounds of the
block components of the fundamental matrix solution of the systems of linear differential equations
with several fast time scales.

In (2), {w(t)}t≥0 is a 1-dimensional standard Wiener process defined on a given probability space
(Ω, F , P). The consideration of the case with an 1-dimensional standard Wiener process is only to easy
the exposition. The extension to the case of a multidimensional Wiener process can be done without
difficulty.

Regarding the coefficients of system (2), we make the following assumption:

H2) ε = (ε1, ε2) → (Ajk(ε), Bj(ε), Cjk(ε), Dj(ε)) are C1 matrix valued functions defined on a
neighborhood of the origin (ε1, ε2) = (0, 0).
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We set

A(ε) =

⎛⎜⎝ A00(ε) A01(ε) A02(ε)
1
ε1

A10(ε)
1
ε1

A11(ε)
1
ε1

A12(ε)
1
ε2

A20(ε)
1
ε2

A21(ε)
1
ε2

A22(ε)

⎞⎟⎠ ,B(ε) =

⎛⎜⎝ B0(ε)
1
ε1

B1(ε)
1
ε2

B2(ε)

⎞⎟⎠ ,

C(ε) =

⎛⎜⎝ C00(ε) C01(ε) C02(ε)
1√
ε1

C10(ε)
1√
ε1

C11(ε)
1√
ε1

C12(ε)
1√
ε2

C20(ε)
1√
ε2

C21(ε)
1√
ε2

C22(ε)

⎞⎟⎠ ,D(ε) =

⎛⎜⎝ D0(ε)
1√
ε1

D1(ε)
1√
ε2

D2(ε)

⎞⎟⎠ (3)

M =

⎛⎜⎝ M00 M01 M02

MT
01 M11 M12

MT
02 MT

12 M22

⎞⎟⎠ = MT ,L =

⎛⎜⎝ L0

L1

L2

⎞⎟⎠ . (4)

With these notations (1) and (2) may be written in a compact form as:

J(x0; u) = E[

∞̂

0

(xT(t)Mx(t) + 2xT(t)Lu(t) + uT(t)Ru(t))dt] (5)

and

dx(t) = (A(ε)x(t) +B(ε)u(t))dt + (C(ε)x(t) +D(ε)u(t))dw(t) (6)

x(0) = x0.

One sees that for each ε = (ε1, ε2) fixed, the optimal control asking for the minimization of the
quadratic cost (5) in the class of controls that stabilizes system (6) is a standard stochastic linear
quadratic optimal control problem, which was studied starting with [20].

In [21,22] it was shown that a stochastic linear quadratic control problem, with control dependent
terms in the diffusion part of the controlled system, is still well possed even if the cost weight matrices
of the states and the control are allowed to be indefinite. The optimal control is given by:

uopt(t) = −(R +DT(ε)X̃(ε)D(ε))−1(BT(ε)X̃(ε) +DT(ε)X̃(ε)C(ε) +LT)x(t) (7)

where X̃(ε) is the unique stabilizing solution of the algebraic Riccati equation of stochastic control
(SARE):

AT(ε)X + XA(ε) +CT(ε)XC(ε)− (XB(ε) +CT(ε)XD(ε) +L)× (8)

×(R +DT(ε)XD(ε))−1(BT(ε)X +DT(ε)XC(ε) +LT) +M = 0

satisfying the sign condition

R +DT(ε)XD(ε) > 0. (9)

The condition (9) supplies the absence of the information regarding the sign of the matrix R.
In [22], necessary and sufficient conditions that guarantee the existence of the stabilizing solution of a
SARE were provided as (8) satisfying the sign condition (9) and a procedure for numerical computation
of this solution using the so called semidefinite programming (SDP) was proposed. Also, an iterative
procedure for numerical computation of the constrained SARE of type (8) and (9) was proposed in
Section 5.8 from [23]. Unfortunately, the way in which the small parameters εk > 0, k = 1, 2 affect the
coefficients of SARE (8) and (9) may produce ill-conditioning of the numerical computation involved
in obtaining the stabilizing solution X̃(ε) of the SARE under consideration. In order to avoid the
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ill-conditioning of the numerical computations generated by the high difference between the order
of magnitude of the coefficients, knowledge of the asymptotic structure of the solution X̃(ε) in a
neighborhood of the origin ε = (ε1, ε2) = (0, 0) is useful. As a consequence of such a study, a system
of Riccati type equations not depending upon the small parameters εk, k = 1, 2, often named a system
of reduced algebraic Riccati equations, which allows us to compute the dominant part of the solution
X̃(ε) can be displayed.

In the deterministic case, see for example [1–4,24], the system of reduced algebraic Riccati
equations is obtained by simply removing all of the small parameters. In the stochastic framework,
when the controlled systems are modeled by singularly perturbed Itô differential equations, the
definition of the system of reduced algebraic Riccati equations cannot be done by a simple neglection
of the small parameters. From [11] or [12,25], one sees that the definition of the system of reduced
algebraic Riccati equations is strongly dependent upon the magnitude of the white noise perturbations
affecting the equations of the fast variables in the controlled system.

In order to obtain the asymptotic structure with respect to the small parameters εk > 0, k = 1, 2 of
the stabilizing solution of SARE (8), we shall use the implicit functions theorem. To this end, we need
a rigourous definition of the corresponding system of reduced algebraic Riccati equations (SRARE)
and to point out a special kind of solution of this system which helps us to apply the implicit functions
theorem. That is why in the next section we shall show how the system of reduced algebraic Riccati
equations in the case of SARE (8) and (9) can be defined. Next, we shall introduce a concept of
stabilizing solution of the obtained SRARE and we shall provide a set of conditions which guarantee
the existence of this stabilizing solution of SRARE. In Section 4, using reasoning based on the implicit
functions theorem, we shall obtain the asymptotic structure of the stabilizing solution of SARE (8)
satisfying the sign condition (9), as well as the asymptotic structure of the corresponding stabilizing
feedback gain.

3. The System of Reduced Algebraic Riccati Equations

3.1. Derivation of the System of Reduced Algebraic Riccati Equations

Setting F = −(R + DT(ε)XD(ε))−1(BT(ε)X + DT(ε)XC(ε) + LT) one obtains that if X is a
solution of SARE (8) satisfying the sign condition (9), then (X, F) is a solution of the system:

Γ(X, ε)F +BT(ε)X +DT(ε)XC(ε) +LT = 0

AT(ε)X + XA(ε) +CT(ε)XC(ε)− FTΓ(X, ε)F +M = 0 (10)

Γ(X, ε) = R +DT(ε)XD(ε).

Conversely, if (X, F) is a solution of system (10) satisfying Γ(X, ε) > 0, then X is a solution of the
constrained SARE (8) and (9). To obtain the asymptotic structure of the stabilizing solution of SARE (8)
and (9), we shall analyse the asymptotic structure of the solution (X̃(ε), F̃(ε)) of system (10) with the
additional property that the closed-loop system

dx(t) = (A(ε) +B(ε)F̃(ε))x(t)dt + (C(ε) +D(ε)F̃(ε))x(t)dw(t) (11)

is exponentially stable in mean square (ESMS).
We are looking for the solution (X, F) of (10) having the partition:

X =

⎛⎜⎝ X00 ε1X01 ε2X02

ε1XT
01 ε1X11 ε2X12

ε2XT
02 ε2XT

12 ε2X22

⎞⎟⎠ , F =
(

F0 F1 F2

)
(12)

where Xjk ∈ Rnj×nk , Fk ∈ Rm×nk , 0 ≤ j, k ≤ 2.
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Employing the partitions (3) and (4) of the coefficients of SARE (8) we may obtain a partition of
system (10).

To ease the exposition, let us regroup the block components from (3), (4) and (12) as:

A(ε) = Π−1(ε)

(
A11(ε) A12(ε)

A21(ε) A22(ε)

)
, (13a)

B(ε) = Π−1(ε)

(
B1(ε)

B2(ε)

)
, (13b)

C(ε) = Π−1(
√

ε)

(
C11(ε) C12(ε)

C21(ε) C22(ε)

)
, (13c)

D(ε) = Π−1(
√

ε)

(
D1(ε)

D2(ε)

)
, (13d)

M =

(
M11 M12

MT
12 M22

)
, (13e)

L =

(
L1

L2

)
, (13f)

where

Π(ε) = diag(In0 , ε1 In1 , ε2 In2), (14a)

A11(ε) =

(
A00(ε) A01(ε)

A10(ε) A11(ε)

)

A12(ε) =

(
A02(ε)

A12(ε)

)
,A21(ε) =

(
A20(ε) A21(ε)

)
(14b)

B1(ε) =

(
B0(ε)

B1(ε)

)
, (14c)

C11(ε) =

(
C00(ε) C01(ε)

C10(ε) C11(ε)

)

C12(ε) =

(
C02(ε)

C12(ε)

)
,C21(ε) =

(
C20(ε) C21(ε)

)
(14d)

D1(ε) =

(
D0(ε)

D1(ε)

)
, (14e)

M11 =

(
M00 M01

MT
01 M11

)
,M12 =

(
M02

M12

)
,L1 =

(
L0

L1

)
(14f)

From (12) one obtains the following structure of X and F:

X = Π(ε)

(
U1(X, ε) Δ(ε)X12

XT
12 X22

)
(15)

F =
(

F1 F2

)
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where

U1(X, ε) =

(
X00 ε1X01

XT
01 X11

)
(16a)

X12 =

(
X02

X12

)
(16b)

Δ(ε) = diag(ε2 In0 , ε2/ε1 In1), (16c)

F1 =
(

F0 F1

)
. (16d)

We also have

Π−1(
√

ε)XΠ−1(
√

ε) =

(
U2(X, ε) Δ(

√
ε)X12

XT
12Δ(

√
ε) X22

)
(17)

where U2(X, ε) =

(
X00

√
ε1X01√

ε1XT
01 X11

)
, Δ(

√
ε) = diag(

√
ε2 In0 ,

√
ε2
ε1

In1).

With these notations we obtain the following partition of system (10)

BT
1 (ε)U1(X, ε) + BT

2 (ε)X
T
12 +DT

1 (ε)U2(X, ε)C11(ε) + DT
2 (ε)X

T
12Δ(

√
ε)C11(ε)+ (18a)

+DT
1 (ε)Δ(

√
ε)X12C21(ε) + DT

2 (ε)X22C21(ε) +LT
1 + Γ(X, ε)F1 = 0

BT
1 (ε)Δ(ε)X12 + BT

2 (ε)X22 +DT
1 (ε)U2(X, ε)C12(ε) + DT

2 (ε)X
T
12Δ(

√
ε)C12(ε)+ (18b)

+DT
1 (ε)Δ(

√
ε)X12C22(ε) + DT

2 (ε)X22C22(ε) + LT
2 + Γ(X, ε)F2 = 0

AT
11(ε)U1(X, ε) + UT

1 (X, ε)A11(ε) +AT
21(ε)X

T
12 +X12A21(ε)+

CT
11(ε)U2(X, ε)C11(ε) +CT

21(ε)X
T
12Δ(

√
ε)C11(ε) +CT

11(ε)Δ(
√

ε)X12C21(ε)+ (18c)

+CT
21(ε)X22C21(ε)− FT

1 Γ(X, ε)F1 +M11 = 0

AT
11(ε)Δ(ε)X12 +AT

21(ε)X22 + UT
1 (X, ε)A12(ε) +X12 A22(ε)+

CT
11(ε)U2(X, ε)C12(ε) +CT

21(ε)X
T
12Δ(

√
ε)C12(ε) +CT

11(ε)Δ(
√

ε)X12C22(ε)+ (18d)

CT
21(ε)X22C22(ε)− FT

1 Γ(X, ε)F2 +M12 = 0

AT
12(ε)Δ(ε)X12 + AT

22(ε)X22 +XT
12Δ(ε)A12(ε) + X22 A22(ε) +CT

12(ε)U2(X, ε)C12(ε)+

+CT
22(ε)X

T
12Δ(

√
ε)C12(ε) +CT

12(ε)Δ(
√

ε)X12C22(ε) + CT
22(ε)X22C22(ε)− (18e)

−FT
2 Γ(X, ε)F2 + M22 = 0

Γ(X, ε) = R +DT
1 (ε)U2(X, ε)D1(ε) + DT

2 (ε)X
T
12Δ(

√
ε)D1(ε)+

+DT
1 (ε)Δ(

√
ε)X12D2(ε) + DT

2 (ε)X22D2(ε) (18f)
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Setting formally εj = 0, j = 1, 2 and ε2
ε1

= 0, in (18) we obtain the equations:

BT
1 (0)U1(X, 0) + BT

2 (0)X
T
12 +DT

1 (0)U2(X, 0)C11(0)+

+DT
2 (0)X22C22 +LT

1 + Γ(X, 0)F1 = 0 (19a)

BT
2 (0)X22 +DT

1 (0)U2(X, 0)C12(0) + DT
2 (0)X22C22(0) + LT

2 + Γ(X, 0)F2 = 0 (19b)

AT
11(0)U1(X, 0) + UT

1 (X, 0)A11(0) +AT
12(0)X

T
12 +X12A21(0)+

+CT
11(0)U2(X, 0)C11(0) +CT

21(0)X22C21(0)− FT
1 Γ(X, 0)F1 +M11 = 0 (19c)

AT
21(0)X22 + UT

1 (X, 0)A12(0) +X12 A22(0) +CT
11(0)U2(X, 0)C12(0)+

+CT
21(0)X22C22(0)− FT

1 Γ(X, 0)F2 +M12 = 0 (19d)

AT
22(0)X22 + X22 A22(0) +CT

12(0)U2(X, 0)C12(0)+

+CT
22(0)X22C22(0)− FT

2 Γ(X, 0)F2 + M22 = 0 (19e)

Γ(X, 0) = R +DT
1 (0)U2(X, 0)D1(0) + DT

2 (0)X22D2(0). (19f)

Having in mind (15) and (16), we remark that (19) is a system of nonlinear algebraic equations with
the unknowns (X00, X01, X11, X02, X12, X22, F0, F1, F2) ∈ Sn0 ×Rn0×n1 ×Sn1 ×Rn0×n2 ×Rn1×n2 ×Sn2 ×
Rm×n0 ×Rm×n1 ×Rm×n2 .

We recall that Sq denotes the linear space of symmetric matrices of size q × q.
Assuming that A22(0) is invertible we obtain from (19d):

X12 = −AT
21(0)X22 A−1

22 (0)− UT
1 (X, 0)A12(0)A−1

22 (0)−CT
11(0)U2(X, 0)C12(0)A−1

22 (0) (20)

−CT
21(0)X22C22(0)A−1

22 (0) + FT
1 Γ(X, 0)F2 A−1

22 (0)−M12 A−1
22 (0).

Substituting (20) in (19a) and (19c) we obtain after algebraic calculations:

(B1(0)−A12(0)A−1
22 (0)B2(0))TU1(X, 0) + (D1(0)−C12(0)A−1

22 (0)B2(0))TU2(X, 0)

×(C11(0)−C12(0)A−1
22 (0)C21(0)) + (D2(0)− C22(0)A−1

22 (0)B2(0))TX22(C21(0)−
−C22(0)A−1

22 (0)A21(0)) + (Im + F2 A−1
22 (0)B2(0))TΓ(X, 0)(F1 − F2 A−1

22 (0)A21(0)) + (21a)

+(L1 +M12 A−1
22 (0)B2(0))T − (L2 − M22 A−1

22 (0)B2(0))T A−1
22 (0)A21(0) = 0

(A11(0)−A12(0)A−1
22 (0)A21(0))TU1(X, 0) + UT

1 (X, 0)(A11(0)−A12(0)A−1
22 A21(0)) +

+(C11(0)−C12(0)A−1
22 (0)A21(0))TU2(X, 0)(C11(0)−C12(0)A−1

22 (0)A21(0)) +

+(C21(0)− C22(0)A−1
22 (0)A21(0))TX22(C21(0)− C22(0)A−1

22 (0)A21(0))−
−(F1 − F2 A−1

22 (0)A21(0))TΓ(X, 0)(F1 − F2 A−1
22 (0)A21(0)) +M11 −M12 A−1

22 (0)A21(0)− (21b)

−AT
21(0)A−T

22 (0)MT
12 +AT

21(0)A−T
22 (0)M22 A−1

22 (0)A21(0) = 0
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Using (3) written for (ε1, ε2) = (0, 0) we introduce the notations(
A1

00 A1
01

A1
10 A1

11

)
� A11(0)−A12(0)A−1

22 (0)A21(0) (22a)(
C1

00 C1
01

C1
10 C1

11

)
� C11(0)−C12(0)A−1

22 (0)A21(0) (22b)(
C1

20 C1
22

)
� C21(0)− C22(0)A−1

22 (0)A21(0) (22c)(
B1

0
B1

1

)
� B1(0)−A12(0)A−1

22 (0)B2(0) (22d)(
D1

0
D1

1

)
� D1(0)−C12(0)A−1

22 (0)B2(0) (22e)

D1
2 � D2(0)− C22(0)A−1

22 (0)B2(0) (22f)(
M1

00 M1
01

(M1
01)

T M1
11

)
� M11 −M12 A−1

22 (0)A21(0)−AT
21(0)A−T

22 (0)MT
12 +

+AT
21(0)A−T

22 (0)M22 A−1
22 (0)A21(0) (22g)(

L1
0

L1
1

)
� L1−AT

21(0)A−T
22 (0)L2−(M12−AT

21(0)A−T
22 (0)M22)A−1

22 (0)B2(0) (22h)

R1 = R−LT
2 A−1

22 (0)B2(0)−BT
2 (0)A−T

22 (0)L2+

+BT
2 (0)A−T

22 (0)M22 A−1
22 (0)B2(0). (22i)

The next result allows us to reduce the number of equations and the number of unknowns of system
(19).

Lemma 1. Assume that A22(0) is invertible.
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(i) If (X00, X01, X11, X02, X12, X22, F0, F1, F2) is a solution of system (19) with the property that A22(0) +
B2(0)F2 is an invertible matrix, then (X00, X01, X11, X22, F1

0 , F1
1 , F2) is a solution of the following system

(B1
0)

TX00 + (B1
1)

TXT
01 +

2

∑
j=0

(D1
j )

TXjjC1
j0 + (L1

0)
T + Γ1(X00, X11, X22)F1

0 = 0 (23a)

(B1
1)

TX11 +
2

∑
j=0

(D1
j )

TXjjC1
j1 + (L1

1)
T + Γ1(X00, X11, X22)F1

1 = 0 (23b)

BT
2 (0)X22 +

2

∑
j=0

DT
j (0)XjjCj2(0) + LT

2 + Γ(X00, X11, X22)F2 = 0 (23c)

(A1
00)

TX00 + (A1
10)

TXT
01 + X00 A1

00 + X01 A1
10 +

2

∑
j=0

(C1
j0)

TXjjC1
j0−

−(F1
0 )

TΓ1(X00, X11, X22)F1
0 + M1

00 = 0 (23d)

(A1
10)

TX11 + X00 A1
01 + X01 A1

11 +
2

∑
j=0

(C1
j0)

TXjjC1
j1−

(F1
0 )

TΓ1(X00, X11, X22)F1
1 + M1

01 = 0 (23e)

(A1
11)

TX11 + X11 A1
11 +

2

∑
j=0

(C1
j1)

TXjjC1
j1 − (F1

1 )
TΓ1(X00, X11, X22)F1

1 + M1
1 = 0 (23f)

AT
22(0)X22 + X22 A22(0) +

2

∑
j=0

CT
j2(0)XjjCj2(0)− FT

2 Γ(X00, X11, X22)F2 + M22 = 0 (23g)

Γ1(X00, X11, X22) = R1 +
2

∑
j=0

(D1
j )

TXjjD1
j (23h)

Γ(X00, X11, X22) = R +
2

∑
j=0

DT
j (0)XjjDj(0) (23i)

where

F1
j � (Im + F2 A−1

22 (0)B2(0))−1(Fj − F2 A−1
22 (0)A2j(0)), j = 0, 1. (24)

(ii) If (X00, X01, X11, X22, F1
0 , F1

1 , F2) is a solution of system (23) with the property that A22(0) + B2(0)F2

is an invertible matrix, then (X00, X01, X11, X02, X12, F0, F1, F2) is a solution of system (19) where

Fj = (Im + F2 A−1
22 (0)B2(0))F1

j + F2 A−1
22 (0)A2j(0), j = 0, 1 (25)

and

X02 = −[AT
20(0)X22 + X00 A02(0) + X01 A12(0) +

2

∑
j=0

CT
j0(0)XjjCj2(0)−

−(F0)
T(R +

2

∑
j=0

DT
j (0)XjjDj(0)) + F2 + M02]A−1

22 (0) (26a)

X12 = −[AT
21(0)X22 + X11 A12(0) +

2

∑
j=0

CT
j1(0)XjjCj2(0)−

−FT
1 (R +

2

∑
j=0

DT
j (0)XjjDj(0))F2 + M12]A−1

22 (0) (26b)
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Proof. The result follows directly combining (21) with (19b), (19c) and taking into account
(22). It is worth noticing that if A22(0) and A22(0) + B2(0)F2 are invertible, then
Im + F2 A−1

22 (0)B2(0) is invertible too.

Assuming that A1
11 is invertible we may compute X01 from (23e) as:

X01 = −[(A1
10)

TX11 + X00 A1
01 +

2

∑
j=0

(C1
j0)

TXjjC1
j1 −

−(F1
0 )

T(R1 +
2

∑
j=0

(D1
j )

TXjjD1
j )F1

1 + M1
01](A1

11)
−1. (27)

Substituting (27) in (23a) and (23d) we obtain after some algebraic calculation the equations:

(B1
01 − A1

01(A1
11)

−1B1
1)

TX00 +
2

∑
j=0

(D1
j − C1

j1(A1
11)

−1B1
1)

TXjj×

(C1
j0−C1

j1(A1
11)

−1 A1
10)+(Im+F1

1 (A1
11)

−1B1
1)Γ

1(X00, X11, X22)(F1
0 −F1

1 (A1
11)

−1 A1
10) (28a)

+(L1
0−M1

01(A1
11)

−1B1
1)

T−(R1
1)

T(A1
11)

−1 A1
10+(B1

1)
T(A1

11)
−T M1

11(A1
11)

−1 A1
10 = 0

(A1
00 − A1

01(A1
11)

−1 A1
10)

TX00 + X00(A1
00 − A1

01(A1
11)

−1 A1
10) +

2

∑
j=0

(C1
j0 − C1

j1(A1
11)

−1 A1
10)

T×

Xjj(C1
j0−C1

j1(A1
11)

−1 A1
10)−(F1

0 − F1
1 (A1

11)
−1 A1

10)
TΓ1(X00, X11, X22)(F1

0 −F1
1 (A1

11)
−1 A1

10) (28b)

+M1
00−(A1

10)
T(A1

11)
−T(M1

01)
T−M1

01(A1
11)

−1 A1
10+(A1

10)
T(A1

11)
−T M1

11(A1
11)

−1 A1
10 = 0

We introduce the notations:

A0
00 = A1

00 − A1
01(A1

11)
−1 A1

10 (29a)

B0
0 = B1

0 − A1
01(A1

11)
−1B1

1 (29b)

C0
j0 = C1

j0 − C1
j1(A1

11)
−1 A1

10 (29c)

D0
j = D1

j − C1
j (A1

11)
−1B1

1, 0 ≤ j ≤ 2 (29d)

M0
00 = M1

00 − (A1
10)

T(A1
11)

−T(M1
01)

T − M1
01(A1

11)
−1 A1

10 +

+(A1
10)

T(A1
11)

−T M1
11(A1

11)
−1 A1

10 (29e)

L0
0 = L1

0 − (A1
10)

T(A1
11)

−T L1
1 − (M1

01 − (A1
10)

T(A1
11)

−T M1
11)(A1

11)
−1B1

1 (29f)

R0 = R1 − (B1
1)

T(A1
11)

−T L1
1 − (L1

1)
T(A1

11)
−1B1

1 + (B1
1)

T(A1
11)

−T M1
11(A1

11)
−1B1

1. (29g)

The next result allows us to reduce the number of unknowns and the number of the equations in
system (23).

Lemma 2. Assume that the matrices A22(0) and A1
11 are invertible.
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(i) If (X00, X01, X11, X22, F1
0 , F1

1 , F2) is a solution of system (23) such that A1
11 + B1

1 F1
1 is an invertible

matrix, then (X00, X11, X22, F1
0 , F1

1 , F2
2 ) is a solution of the following system:

(B0
00)

TX00 +
2

∑
j=0

(D0
j )

TXjjC0
j0 + (L0

0)
T + Γ0(X00, X11, X22)F0

0 = 0 (30a)

(B1
11)

TX11 +
2

∑
j=0

(D1
j )

TXjjC1
j1 + (L1

1)
T + Γ1(X00, X11, X22)F1

1 = 0 (30b)

(B2
2)

TX22 +
2

∑
j=0

(D2
j )

TXjjC2
j2 + (L2

2)
T + Γ2(X00, X11, X22)F2

2 = 0 (30c)

(A0
00)

TX00 + X00 A0
00 +

2

∑
j=0

(C0
j0)

TXjjC0
j0 − (F0

0 )
TΓ0(X00, X11, X22)F0

0 + M0
00 = 0 (30d)

(A1
11)

TX11 + X11 A1
11 +

2

∑
j=0

(C1
j1)

TXjjC1
j1 − (F1

1 )
TΓ1(X00, X11, X22)F1

1 + M1
11 = 0 (30e)

(A2
22)

TX22 + X22 A2
22 +

2

∑
j=0

(C2
j2)

TXjjC2
j2 − (F2

2 )
TΓ2(X00, X11, X22)F2

2 + M2
22 = 0 (30f)

Γk(X00, X11, X22) � Rk +
2

∑
j=0

(Dk
j )

TXjjDk
j , k = 0, 1, 2 (30g)

where

F0
0 � (Im + F1

1 (A1
11)

−1B1
1)

−1(F1
0 − F1

1 (A1
11)

−1 A1
10) (31a)

F2
2 � F2 (31b)

and

A2
22 � A22(0), B2

2 � B2(0), C2
j2 � Cj2(0), D2

j � Dj(0), 0 ≤ j ≤ 2,

L2
2 = L2, M2

22 = M22, R2 � R (32)

(ii) If (X00, X11, X22, F0
0 , F1

1 , F2
2 ) is a solution of system (30) with the property that

A1
11 + B1

11F1
1 is an invertible matrix, then (X00, X01, X11, X22, F1

0 , F1
1 , F2) is a solution of system (23),

where

F1
0 = (Im + F1

1 (A1
11)

−1B1
1)F0

0 + F1
1 (A1

11)
−1 A1

10 (33)

F2 = F2
2

and X01 is computed via (27).

Proof. The proof may be done by direct calculation implying (23), (27), (33). The notations (32) were
adopted only for the sake of symmetry of the equations (30).
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For the values of Xjj for which the matrices Γk(X00, X11, X22) are invertible, we may eliminate the
unknowns Fk

kk from (30) obtaining the following system of nonlinear equations with the unknown
(X0, X1, X2) := (X00, X11, X22) :

(Ak
kk)

TXk + Xk Ak
kk +

2

∑
j=0

(Ck
jk)

TXjCk
jk − (XkBk

k +
2

∑
j=0

(Ck
jk)

TXjDk
j + Lk

k)×

(Γk(X0, X1, X2))
−1((Bk

k)
TXk +

2

∑
j=0

(Dk
j )

TXjCk
jk + (Lk

k)
T) + Mk

kk = 0, (34a)

Γk(X0, X1, X2) = Rk +
2

∑
j=0

(Dk
j )

TXjDk
j , k = 0, 1, 2. (34b)

Remark 2. (a) In the deterministic case, i.e., the special case of (2) when Cjk(ε) = 0, Dj(ε) = 0, j, k = 0, 1, 2,
system (34) reduces to

(Ak
kk)

TXk + Xk Ak
kk − (XkBk

k + Lk
k)(Rk)−1((Bk

k)
TXk + (Lk

k)
T) + Mk

k = 0, k = 0, 1, 2. (35)

System (35) is a system of three uncoupled algebraic Riccati equations of lower dimensions named the system
of reduced algebraic Riccati equations (for details see e.g., [24]). That is why, in the sequel, system (34) will
be named system of reduced algebraic Riccati equations (SRARE), associated with SARE (8). We shall
see that in this stochastic framework, system (34), plays a similar role as system (35) in the deterministic case.
Unlike the deterministic case, where the system of reduced algebraic Riccati Equation (35) is obtained by simply
removing the small parameters εk, k = 1, 2 in the controlled system, in the stochastic framework SRARE (34)
cannot be obtained directly by such a procedure.

(b) When Cjk(0) = 0, Dj(0) = 0, j = 1, 2, k = 0, 1, 2, system (34) becomes the system of reduced algebraic
Riccati equations derived in [16]. In this special case (34) is:

(A0
00)

TX0 + X0 A0
00 + (C0

00)
TX0C0

00 − (X0B0
0 + (C0

00)
TX0D0

0 + L0
0)×

(R0 + (D0
0)

TX0D0
0)

−1((B0
0)

TX0 + (D0
0)

TX0C0
00 + (L0

0)
T) + M0

00 = 0 (36a)

(A1
11)

TX1 + X1 A1
11 + (C1

01)
TX0C1

01 − (X1B1
1 + (C1

01)
TX0D1

0 + L1
1)×

(R1 + (D1
0)

TX0D1
0)

−1((B1
1)

TX1 + (D1
0)

TX0C1
01 + (L1

1)
T) + M1

11 = 0 (36b)

(A2
22)

TX2 + X2 A2
22 + (C2

02)
TX0C2

02 − (X2B2
2 + (C2

02)
TX0D2

0 + L2
2)×

(R2 + (D2
0)

TX0D2
0)

−1((B2
2)

TX2 + (D2
0)

TX0C2
02 + (L2

2)
T) + M2

22 = 0. (36c)

One sees that (36a) is the SARE of type (8) associated with the stochastic reduced linear quadratic optimal control
problem described by

dx0(t) = (A0
00x0(t) + B0

0u(t))dt + (C0
00x0(t) + D0

0u(t))dw(t), x0(0) = x0
0

and

J0(x0
0; u) = E[

∞̂

0

(xT
0 (t)M0

00x0(t) + 2xT
0 (t)L0

0u(t) + uT(t)R0u(t))dt].

The Equations (36b) and (36c) can be interpreted as algebraic Riccati equations associated with some deterministic
reduced linear quadratic control problems described by:

ẋk(t) = Ak
kkxk(t) + Bk

ku(t)

xk(0) = x0
k
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and

Jk(x0
k , u) =

∞̂

0

(xT
k (t)M̃kxk(t) + 2xT

k (t)L̃ku(t) + uT(t)R̃ku(t)dt

where
M̃k = Mk

k + (Ck
0k)

Tx0Ck
0k

L̃k = Lk
k + (Ck

0k)
Tx0Dk

0

R̃k = Rk + (Dk
0)

Tx0Dk
0, k = 1, 2.

The solution X0 of SARE (36a) is involved as a parameter that affects the weights matrices from the performance
criteria Jk(x0

k ; u).
(c) A complete decoupling of the equations from SRARE (34) may be possible in the special case when the

following conditions are simultaneously satisfied:

Dj(0) = 0, j = 0, 1, 2, Cjk(0) = 0, k = 1, 2, Cil(0) = 0, i = 1, 2, l = 0, 1, 2.

In the next subsection we introduce the concept of stabilizing solution of SRARE (34) and we shall
provide a set of conditions equivalent to the existence of that solution.

3.2. The Stabilizing Solution of the SRARE

Let X be the linear space defined by X = Sn0 × Sn1 × Sn2 . An element X lies in X if and only if
X = (X0, X1, X2), Xk being symmetric matrices of size nk × nk.
On X we introduce the inner product

< X, Y >=
2

∑
j=0

Tr[Xj, Yj] (37)

for all X = (X0, X1, X2), Y = (Y0, Y1, Y2) ∈ X. In (37) Tr[·] is the trace operator. Equipped with the
inner product (37), X becomes a finite dimensional real Hilbert space.

On X we consider the order relation � induced by the closed, solid, convex cone

X = {X ∈ X|X = (X0, X1, X2), Xj ≥ 0, j = 0, 1, 2}.

Here, Xj ≥ 0 means that Xj is a positive semidefinite matrix. In the sequel, we rewrite SRARE (34) as a
generalized Riccati equation on X as

ATX + XA + Π1[X]− (XB + Π2[X] + L)× (38)

(R + Π3[X])
−1(XB + Π2[X] + L)T + M = 0

where A = (A0
00, A1

11, A2
22) ∈ Rn0×n0 ×Rn1×n1 ×Rn2×n2 , B = (B0

0, B1
1, B2

2) ∈ Rn0×m ×Rn1×m ×Rn2×m,
L = (L0

0, L1
1, L2

2) ∈ Rn0×m ×Rn1×m ×Rn2×m, M = (M0
0, M1

1, M2
2) ∈ X, R = (R0, R1, R2) ∈ Sm × Sm ×
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Sm, X → Π1[X] : X → X, X → Π2[X] : X → Rn0×m ×Rn1×m ×Rn2×n, X → Π3[X] : X → Sm ×Sm ×Sm

are defined by

Π1[X] =
2

∑
j=0

((C0
j0)

TXjC0
j0, (C1

j1)
TXjC1

j1, (C2
j2)

TXjXjC2
j2)

Π2[X] =
2

∑
j=0

((C0
j0)

TXjD0
j , (C1

j1)
TXjD1

j , (C2
j2)

TXjD2
j ) (39)

Π3[X] =
2

∑
j=0

((D0
j )

TXjD0
j , (D1

j )
TXjD1

j , (D2
j )

TXjD2
j ).

Based on the operators Πk, k = 1, 2, 3 we may define the following operator
X → Π[X] � (Π1[X], Π2[X], Π3[X]).

A feedback gain is a triple of the form F = (F0, F1, F2) where Fk ∈ Rm×nk , k = 0, 1, 2. For
any feedback gain F, we associate the following linear operator: X → LF[X] : X → X by LF[X] =

(LF0[X], LF1[X], LF2[X]), where for each k = 0, 1, 2 we have:

LFk[X] = (Ak
kk + Bk

k Fk)Xk + Xk(Ak
kk + Bk

k Fk)
T +

2

∑
j=0

(Ck
jk + Dk

j Fk)Xj(Ck
jk + Dk

j Fk)
T . (40)

The next result summarizes some useful properties of the operator LF.

Proposition 1. (i) The adjoint operator L∗
F of the operator LF (with respect to the inner product (37)) is given

by L∗
F[X] = (L∗

F0[X], L∗
F1[X], L∗

F2[X]), where for each k = 0, 1, 2 :

L∗
Fk[X] = (Ak

kk + Bk
k Fk)

TXk + Xk(Ak
kk + Bk

k Fk) +
2

∑
j=0

(Ck
jk + Dk

j Fk)
TXj(Ck

jk + Dk
j Fk). (41)

(ii) The operator LF generates positive evolution on the space X i.e., eLFtX+ ⊂ X+ for all t ≥ 0.
(iii) The spectrum of the linear operator LF is located in the half plane C− = {λ ∈ C, Reλ < 0} if and

only if there exists Y = (Y0, Y1, Y2) � 0 such that LF[Y] ≺ 0.

Proof. (i) follows by direct calculation specializing the definition of the adjoint operator to the case of
the operator defined in (40) and the inner product (37).

(ii) follows applying Corollary 2.2.6 from [23].
(iii) follows from the equivalence (iv) ↔ (v) in the Corollary 2.3.9 from [23].

Now we are in the position to introduce the concept of stabilizing solution of SRARE (34).

Definition 1. A solution X̃ = (X̃0, X̃1, X̃2) of SRARE (34) is named stabilizing solution if the spectrum of
the linear operator LF̃ is located in the half plane C−, LF̃ being the linear operator of type (40) associated with
the feedback gain F̃ = (F̃0, F̃1, F̃2), where for each k = 0, 1, 2

F̃k � −(Rk +
2

∑
j=0

(Dk
j )

TX̃jDk
j )

−1((Bk
k)

TX̃k +
2

∑
j=0

(Dk
j )

TX̃jCk
jk + (Lk

k)
T). (42)

Before stating the result providing the conditions which guarantee the existence of the stabilizing
solution of SRARE (34), we introduce the concept of stabilizability of the triple (A, B, Π).
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Definition 2. We say that the triple (A, B, Π) is stabilizable if there exists a feedback gain F = (F0, F1, F2)

with the property that the spectrum of the corresponding linear operator LF of type (40) is inclosed in the
half-plane C−.

The next result provides a set of conditions equivalent to the stabilizability of the triple (A, B, Π).

Proposition 2. The following are equivalent:
(i) the triple (A, B, Π) is stabilizable,
(ii) there exist Y = (Y0, Y1, Y2), Z = (Z0, Z1, Z2), Yk ∈ Snk , Yk > 0, Zk ∈ Rm×nk , k = 0, 1, 2, satisfying

the following system of LMIs: (
Ξk

1(Y, Z) Ξk
2(Y, Z)

(Ξk
2(Y, Z))T Ξk

3(Y)

)
< 0 (43)

where
Ξk

1(Y, Z) = Ak
kkYk + Yk(Ak

kk)
T + Bk

k Zk + ZT
k (Bk

k)
T

Ξk
2(Y, Z) =

(
Ck

0kY0 + Dk
0Z0 Ck

1kY1 + Dk
1Z1 Ck

2kY2 + Dk
2Z2

)
, k = 0, 1, 2

Ξk
3(Y) = diag(−Y0, −Y1, −Y2).

Furthermore, if (Y, Z) is a solution of the system of LMIs (43), then F = (Z0Y−1
0 , Z1Y−1

1 , Z2Y−1
2 ) is a

stabilizing feedback gain.

Proof. Following from (iii) of Proposition 3 combined with Schur complement technique.

To obtain the asymptotic structure of the stabilizing solution of SARE (8) satisfying the sign
condition (9), we shall look for conditions under which SRARE (34) has a stabilizing solution X̃ =

(X̃0, X̃1, X̃2) satisfying the sign conditions

Rk +
2

∑
j=0

(Dk
j )

TX̃jDk
j > 0, k = 0, 1, 2. (44)

Theorem 1. Assume that the matrices A2
22 � A22(0) and A1

11 � A11(0) − A12(0)A−1
22 (0)A21(0) are

invertible. Under these conditions the following are equivalent:
(i) (a) the triple (A, B, Π) is stabilizable,

(b) there exists Y = (Y0, Y1, Y2) ∈ X satisfying the following system of LMIs(
Θ1k(Y) + Mk

kk Θ2k(Y) + Lk
k

(Θ2k(Y) + Lk
k)

T Θ3k(Y) + Rk

)
> 0 (45)

where

Θ1k(Y) = (Ak
kk)

TYk + Yk Ak
kk +

2

∑
j=0

(Ck
jk)

TYjCk
jk

Θ2k(Y) = YkBk
k +

2

∑
j=0

(Ck
jk)

TYjDk
j

Θ3k(Y) =
2

∑
j=0

(Dk
j )

TYjDk
j , k = 0, 1, 2,

(ii) the SRARE (34) has a unique stabilizing solution X̃ = (X̃0, X̃1, X̃2) satisfying the sign conditions (44).
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Proof. (hint) (i) ⇒ (ii). For each p = 0, 1, ... one computes Xp+1 = (Xp+1
0 , Xp+1

1 , Xp+1
2 ) as the unique

solution of the linear equation on X

L∗
Fp [Xp+1] + M + LFp + (Fp)TLT + (Fp)TRFp +

γ2

p + 1
I = 0 (46)

where L∗
Fp is the adjoint of the linear operator LFp described by (41) with F replaced by Fp, I =

(In0 , In1 , In2) ∈ X. In (46), Fp = (Fp
0 , Fp

1 , Fp
2 ) are given by

Fp
k = −(Rk +

2

∑
j=0

(Dk
j )

TXp
j Dk

j )
−1((Bk

k)
TXp

k +
2

∑
j=0

(Dk
j )

TXp
j Ck

jk + (Lk
k)

T), p ≥ 1. (47)

When p = 0 the feedback gain F0 = (F0
0 , F0

1 , F0
2 ) is obtained based on the assumption of stabilizability

of the triple (A, B, Π). It has the property that the spectrum of the corresponding linear operator
LF0 is located in the half place C−. One shows inductively for p = 1, 2, ... that the spectrum of each
operator LFp is located in the half plane C−. Hence, Xp+1 is well defined as the unique solution of
the linear Equation (46). Moreover, based on the assumption (i) b) from the statement, one gets that
Xp � Xp+1 � Y, ∀p ≥ 0, where Y is a solution of the LMIs (45). So, we have obtained that the sequence
{Xp}p≥0 is convergent.

We set X̃ = lim
p→∞

Xp. One proves that under the considered assumptions, X̃ obtained in this way,

is just the stabilizing solution of SRARE (34). Since, Ỹ � Y, where Y is a solution of (45), it follows
that X̃ satisfies the sign conditions (44). The uniqueness of the stabilizing solution of SRARE (34) that
satisfies the sign condition (44) is a direct consequence of its maximality property.

The proof of the implication (ii) → (i) is based on the fact that if the Riccati equation of type (38)
has a stabilizing solution X̃, satisfying the sign condition (44), then the algebraic Riccati type equation
obtained replacing in (38) the term M by M + δI has a small enough solution for δ < 0. The details are
omitted.

Remark 3. The iterations described by (46) and (47) can be used for numerical computation of the stabilizing
solution (X̃0, X̃1, X̃2) of SRARE (34) satisfying the sign conditions (44).

4. The Main Results

4.1. The Asymptotic Structure of the Stabilizing Solution of SARE

In this section we shall use the stabilizing solution of SRARE (34) to derive the asymptotic
structure of the stabilizing solution of SARE (8) satisfying the sign condition (9).
Let X̃ = (X̃0, X̃1, X̃2) be the stabilizing solution of SRARE (34) satisfying the sign conditions (44). Let
F̃ = (F̃0, F̃1, F̃2) be the corresponding stabilizing feedback gain associated via (42). We set

F̃1
0 � (Im + F̃1(A1

11)
−1B1

1)F̃0 + F̃1(A1
11)

−1 A1
10 (48a)

F̃1
1 � F̃1 (48b)

X̃01 � −[(A1
10)

TX̃1 + X̃0 A1
01 +

2

∑
j=0

(C1
j0)

TX̃jC1
j1− (49)

−(F̃1
0 )

T(R1 +
2

∑
j=0

(D1
j )

TX̃jD1
j )F̃1

1 + M1
01](A1

11)
−1
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From (42), (48) and (49) we obtain via Lemma 2 (ii) that (X̃0, X̃01, X̃1, X̃2, F̃1
0 , F̃1

1 , F̃2) is a solution of
system (23). To this end, we took into account that if the eigenvalues of the linear operator LF̃ are
inclosed in the half plane C− then the matrix A1

11 + B1
1 F̃1

1 is a Hurwitz matrix. Hence, it is invertible.
Further, we define

˜̃Fj � (Im + F̃2 A−1
22 (0)B2(0))F̃1

j + F̃2 A−1
22 (0)A2j(0), j = 0, 1 (50a)

˜̃F2 � F̃2 (50b)

X̃02 � −[AT
20(0)X̃2 + X̃0 A02(0) + X̃01 A12(0) +

2

∑
j=0

CT
j0(0)X̃jCj2(0)−

− ˜̃F
T
0 (R +

2

∑
j=0

DT
j (0)X̃jDj(0)) ˜̃F2 + M02]A−1

22 (0) (51a)

X̃12 � −[AT
21(0)X̃2 + X̃1 A12(0) +

2

∑
j=0

CT
j1(0)X̃jCj2(0)−

− ˜̃F
T
1 (R +

2

∑
j=0

DT
j (0)X̃jDj(0)) ˜̃F2 + M12]A−1

22 (0). (51b)

Since the eigenvalues of the linear operator LF̃ are in the half plane C−, we deduce via (50b) that the
matrix A22(0) + B2(0) ˜̃F2 is a Hurwitz matrix. Hence, it is invertible.

Applying Lemma 1 (ii), we deduce that (X̃0, X̃01, X̃1, X̃02, X̃12, X̃2, ˜̃F0, ˜̃F1, ˜̃F2) is a solution of system
(19) constructed starting from the stabilizing solution (X̃0, X̃1, X̃2) of SRARE (34).

Now, we are in the position to state the first main result of this paper:

Theorem 2. Assume: (a) the assumptions H1) and H2) are fulfilled;
(b) the matrices A22(0) and A11(0)− A12(0)A−1

22 (0)A21(0) are invertible;
(c) conditions from (i) of Theorem 1 are fulfilled.
Under these conditions there exists μ∗ > 0 with the property that for any εk > 0, k = 1, 2, such that

0 < ε1 + ε2 +
ε2
ε1

≤ (μ∗)2, the SARE (8) has a stabilizing solution X̃(ε1, ε2) satisfying the sign condition (9).
Furthermore X̃(ε1, ε2) and the corresponding stabilizing feedback gain F̃(ε1, ε2) have the asymptotic structure:

X̃(ε1, ε2) =

⎛⎜⎝ X̃1 + O(μ) ε1(X̃01 + O(μ)) ε2(X̃02 + O(μ))

ε1(X̃01 + O(μ))T ε1(X̃1 + O(μ)) ε2(X̃12 + O(μ))

ε2(X̃02 + O(μ))T ε2(X̃12 + O(μ))T ε2(X̃2 + O(μ))

⎞⎟⎠ (52)

F̃(ε1, ε2) =
(

˜̃F0 + O(μ) ˜̃F1 + O(μ) ˜̃F2 + O(μ)
)

(53)

where μ = (ε1 + ε2 +
ε2
ε1
)

1
2 , (X̃01, X̃02, X̃12) being computed by (49) and (51) based on the stabilizing solution

(X̃0, X̃1, X̃2) of SRARE (34) satisfying the sign conditions (44) and ˜̃Fk are computed by (48) and (50) starting
from the stabilizing feedback gains F̃j, j = 0, 1, 2, associated with the stabilizing solution of SRARE (34).

Proof. The existence of the stabilizing solution X̃(ε1, ε2), as well as the asymptotic structure from (52)
and (53), are obtained applying the implicit functions theorem in the case of system (18). To this end,
we regard system (18) as an equation of the form:

Φ(W, ξ) = 0 (54)

86



Axioms 2019, 8, 30

on the finite dimensional Banach space W � Sn0 × Rn0×n1 × Sn1 × Rn0×n2 × Rn1×n2 ×
Sn2 × Rm×n0 × Rm×n1 × Rm×n2 . In (54), W = (X0, X01, X1, X02, X12, X2, F0, F1, F2) and

ξ = (
√

ε1,
√

ε2,
√

ε2
ε1
). From (18) one sees that W → Φ(W, ξ) is a C∞-function and from the assumption

H2) we have that ξ → Φ(W, ξ) is a C1-function in a neighborhood of the origin 0 = (0, 0, 0).
We also remark that the reduced equation Φ(W, 0) = 0 coincides with system (19). So, from the
developments in the first part of this section we deduce that (W̃, 0) is a solution of the Equation (54)
when W̃ = (X̃0, X̃01, X̃1, X̃02, X̃12, X̃2, ˜̃F0, ˜̃F1, ˜̃F2). Let ΦW(W̃, 0) be the partial derivative of Φ(W, ξ)

evaluated in (W, ξ) = (W̃, 0).
First we show that the operator Ŵ → �W(W̃, 0)[Ŵ] : W → W is injective.
To this end we consider the linear equation

ΦW(W̃, 0)[Ŵ] = 0 (55)

with the unknowns Ŵ = (X̂0, X̂01, X̂1, X̂02, X̂12, X̂2, F̂0, F̂1, F̂2) ∈ W. After some algebraic manipulations
one obtains that (55) reduces to the linear equation

L∗̃
F
[Ŷ] = 0 (56)

with the unknowns Ŷ = (X̂0, X̂1, X̂2) ∈ X and LF̃ is the operator of type (40) associated with the
stabilizing feedback gain F̃ = (F̃0, F̃1, F̃2). Equation (56) only has the solution Ŷ = (0, 0, 0) because the
spectrum of the linear operator LF̃ lies in the half plane C−. Finally, one obtains that Equation (55) has
only the zero solution. This means that the kernel of the linear operator Ŵ → ΦW(W̃, 0)[Ŵ] is the null
subspace. Since W is a finite dimensional vector space, we may conclude that Ŵ → ΦW(W̃, 0)[Ŵ] is
invertible. Hence, we may apply the implicit functions theorem (see [26]) in the case of Equation (54).
This allows us to deduce that there exist μ0 > 0 and a C1-function ξ → W(ξ) : B(0, μ0) → W, which
satisfy Φ(W(ξ), ξ) = 0, for all ξ ∈ B(0, μ0) � {ξ ∈ R3||ξ| < μ0}. Further, W(ξ) = W̃ + O(|ξ|),
which yields

Xj(ε1, ε2) = X̃j + O(|ξ|), 0 ≤ j ≤ 2

X01(ε1, ε2) = X̃01 + O(|ξ|), (57)

Xk2(ε1, ε2) = X̃k2 + O(|ξ|), k = 0, 1

Fl(ε1, ε2) = ˜̃Fl + O(|ξ|), 0 ≤ l ≤ 2.

Plugging (57) into (12) we obtain (52), (53). We also obtain that (X̃(ε1, ε2), F̃(ε1, ε2)), constructed as
above, satisfies (10). On the other hand, from (18f) and (52) we deduce that there exists 0 ≤ μ1 ≤ μ0

with the property that X̃(ε1, ε2) satisfies (9) for any ε1 > 0, ε2 > 0, such that ε1 + ε2 +
ε2
ε1

< μ2
1. Thus,

we have obtained that X̃(ε1, ε2) with the asymptotic structure given in (52) is a solution of SARE (8)
which satisfies (9).

By a standard argument, based on singular perturbations technique, one shows that there exists
0 < μ∗ ≤ μ1 such that the closed-loop system (11), where F̃1(ε1, ε2) has the asymptotic structure (53),
is ESMS. Therefore, X̃(ε1, ε2) defined by (52) is just the stabilizing solution of (8) for any ε1 > 0, ε2 > 0
such that ε1 + ε2 +

ε2
ε1

≤ (μ∗)2. Thus the proof is complete.

In the sequel, (̃̃F0 ˜̃F1 ˜̃F2) will be named dominant part of the stabilizing feedback gain.

4.2. A Near Optimal Control

In this subsection, we show that the dominant part of the optimal gain matrix F̃(ε1, ε2) can be
used to obtain a near optimal stabilizing feedback gain for the optimal control problem described by
the quadratic functional (1) and the stochastic controlled system (2).
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We consider the control

uapp(t) = ˜̃F0x0(t) + ˜̃F1x1(t) + ˜̃F2x2(t) (58)

˜̃F being constructed by (48) and (50) based on the stabilizing feedback gains F̃j associated with the
stabilizing solution (X̃0, X̃1, X̃2) of SRARE (34).

Setting, Fapp =
(

˜̃F0, ˜̃F1, ˜̃F2

)
we may rewrite (58) in the following compact form:

uapp(t) = Fappx(t). (59)

Substituting (59) in (6) we obtain the closed-loop system

dx(t) = (A(ε) +B(ε)Fapp)x(t)dt + (C(ε) +D(ε)Fapp)x(t)dw(t). (60)

The next result provides an upper bound of the deviation of the value J(x0; uapp) from the minimal
value J(x0, uopt).

Theorem 3. Assume that the assumptions of Theorem 2 are fulfilled. Then there exist μ̃ > 0 such that the
closed-loop system (60) is ESMS for any εk > 0, k = 1, 2 which satisfy ε1 + ε2 +

ε2
ε1

< μ̃2. Moreover, the loss
of the performance produced by the use of the control (59) instead of the optimal control (7) is given by

0 ≤ J(x0, uapp)− J(x0, uopt) ≤ γ(ε1 + ε2 +
ε2

ε1
)|x0|2.

Proof. This may be done following a similar technique as the one used in [12] in the case of a single
fast time scale. The details are omitted.

5. Conclusions

The goal of the work has been the derivation of the asymptotic structure of the stabilizing solution
of an algebraic Riccati equation arising in connection with a stochastic linear quadratic optimal control
problem for a controlled system described by singularly perturbed Itô differential equations with two
fast time scales.

The main conclusion of our study is that, in the stochastic case when the controlled system
contains state multiplicative and/or control multiplicative white noise perturbations, the reduced
system of algebraic Riccati equations cannot be directly obtained by neglecting the small parameters
associated with the fast time scales of the controlled system as in the deterministic framework.

In Section 3 we have shown in detail how the system of reduced algebraic Riccati equations can
be defined in the considered stochastic framework. In the second part of Section 3, we have introduced
the concept of a stabilizing solution of SRARE, and we have provided a set of conditions equivalent to
the existence of this kind of solution of SRARE which satisfy a prescribed sign condition of type (44).
Employing the stabilizing solution of SRARE, as well as the corresponding stabilizing feedback gains,
we have obtained the asymptotic structure of the stabilizing solution of SARE and of the corresponding
stabilizing feedback gain. The dominant part of the stabilizing feedback gain was used to construct a
near optimal control whose gain matrices do not depend upon the small parameters associated with the
fast time scales. The extension of the study to the case of singularly perturbed linear stochastic systems
with N fast time scales, also including more complex systems such as jump Markov perturbations [27],
Levy noise perturbations [28] and semi-Markov switched systems [29] remains a challenge for future
research.
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Abstract: By Lomov’s S.A. regularization method, we constructed an asymptotic solution of the
singularly perturbed Cauchy problem in a two-dimensional case in the case of violation of stability
conditions of the limit-operator spectrum. In particular, the problem with a ”simple” turning point
was considered, i.e., one eigenvalue vanishes for t = 0 and has the form tm/na(t) (limit operator is
discretely irreversible). The regularization method allows us to construct an asymptotic solution that
is uniform over the entire segment [0, T], and under additional conditions on the parameters of the
singularly perturbed problem and its right-hand side, the exact solution.

Keywords: singularly perturbed Cauchy problem; regularized asymptotic solution; rational ”simple”
turning point

1. Introduction

This work consists of five parts. The first part is an introduction. The second part is nomenclature.
The third part presents the formulation of the Cauchy problem in the two-dimensional case if stability
conditions for the spectrum of the limit operator are violated (the spectrum-stability condition means
that eigenvalues of the operator A(τ) satisfy conditions λ1(τ) �= λ2(τ), τ ∈ [0, T] and λi �= 0, i = 1, 2).

A ”simple” pivot point of a limit operator (matrix A(τ)) is understood when one eigenvalue
vanishes at one point (i.e., matrix A(τ) is irreversible at this point). In [1], the case was considered of
when one of the eigenvalues that had the form τna(τ), a(τ) �= 0, n was natural; in [2] the features of
the solution were identified and described for a rational ”simple” turning point in the one-dimensional
case (when the eigenvalue had the form τm/na(τ), a(τ) �= 0).

In this article, we consider the case with a ”simple” turning point when one of the two eigenvalues
of the operator vanishes at τ = 0 and has the form τm/na(τ), a(τ) �= 0.

The fourth part describes the formalism of the Lomov regularization method [1,3,4] that allows
one to construct an asymptotic solution uniform over the entire segment [0, T], under additional
conditions on the parameters of a singularly perturbed problem, and its right side is the exact solution.
The idea of this paper goes back to [1], in which methods were developed for solving a singularly
perturbed Cauchy problem in the case of a ”simple” turning point of a limit operator with a natural
exponent. A lemma is given on the estimation of basic singular functions, a theorem on the point
solvability of iterative problems is proved, and the leading term of the asymptotic behavior of a
singularly perturbed Cauchy problem is written out.

In the fifth part of the paper, we prove a theorem on the asymptotic behavior of a regularized
series and a theorem on the passage to the limit as a small parameter tends to zero. For a parabolic

Axioms 2019, 8, 124; doi:10.3390/axioms8040124 www.mdpi.com/journal/axioms
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equation, an example of solving a singularly perturbed Cauchy problem with a fractional turning
point λ(τ) = τ1/2 is given.

The sixth part is the conclusion.

2. Problem Formulation

Consider the Cauchy problem:{
ε̄u̇(τ) = A(τ)u(τ) + h(τ),
u(0, ε) = u0,

(1)

where

(1) τ is a variable, τ ∈ [0, T];
(2) u(τ) is a function, u(τ) ∈ C∞[0, T];
(3) A(τ) is a matrix of size (2 × 2), A(τ) ∈ C∞(0, T];
(4) h(τ) is a function, h(τ) ∈ C∞[0, T];
(5) λ1(τ), λ2(τ) are eigenvalues of matrix A(τ); λ1(τ) �= λ2(τ), τ ∈ [0, T]; λ2(τ) = τm/na(τ), where

a(τ) < 0, τ ∈ [0, T], a(τ) ∈ C∞[0, T];
(6) m, n are natural numbers;
(7) Re λ1(τ) ≤ 0;
(8) A(t) ∈ C∞[0, T], where t = τ1/n;
(9) ε̄, ε = ε̄/n ∈ R there is a small parameter of the problem.

We make the change of variables in Problem (1): t = τ1/n. Then τm/n = tm and

du
dτ

=
du
dt

· dt
dτ

= u̇(t)
1
n

τ(1−n)/n = u̇(t)
1
n

t1−n.

Equation (1) takes the form:

ε̄

n
u̇(t)t1−n = A(tn)u(t) + h(tn)

or
ε̄

n
u̇(t) = tn−1 A(tn)u(t) + tn−1h(tn).

Denote ε̄/n = ε, tn−1 A(tn) = B(t). Task (1) takes the form:{
εu̇(t) = B(t)u(t) + tn−1h(tn),
u(0, ε) = u0.

(2)

Operator B(t) has eigenvalues λ̄1(t) = tn−1λ1(tn), λ̄2(t) = tpa(tn), where p = m + n − 1,
and corresponding vectors ē1(t) = e1(tn), ē2(t) = e2(tn), where e1(τ), e2(τ) are eigenvectors of
operator A(τ), i.e.,

B(t)ē1(t) = λ̄1(t)ē1(t) = tn−1λ1(tn)e1(tn);

B(t)ē2(t) = λ̄2(t)ē2(t) = tpa(tn)e1(tn).

Methods for solving the Cauchy problem (2) are described in [1]. Basic singularities (2) have
the form:

eϕi(t)/ε, i = 1, 2; σi(t, ε) = eϕ2(t)/ε

t∫
0

e−ϕ2(s)/εsids, i = 0, p − 1; (3)
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where ϕ1(t) =
t∫

0

sn−1λ1(sn)ds, ϕ2(t) =
t∫

0

spa(sn)ds.

Singularities (3) in the source variables have the form

eϕ1(τ)/ε̄, eϕ2(τ)/ε̄, σi(τ, ε) = eϕ2(τ)/ε̄

τ∫
0

e−ϕ2(s)/εs(i+1−n)/nds, i = 0, p − 1;

where ϕ1(τ) =

τ∫
0

λ1(s)ds, ϕ2(τ) =

τ∫
0

a(s)sm/nds.

3. Formalism of Regularization Method

Point ε = 0 for Problem (1) is special in the sense that classical existence theorems for the solution
of the Cauchy problem do not take place. Therefore, in solving this problem, essentially singular
singularities arise. When the stability condition for spectrum A(t) is satisfied, singular singularities
are described using exponentials of the form:

eϕi(t)/ε, ϕi(t) =
t∫

0

λi(s)ds, i = 1, 2, λ1(t) �= λ2(t), λi(t) �= 0, t ∈ [0, T],

where ϕi(t) is a smooth function (in the general case, complex) of a real variable t. To solve linear
homogeneous equations, such singularities have been described by Liouville [5–8].

If stability conditions are violated for at least one point of the spectrum of operator A(t),
then besides exponentially essentially singularities in the solution of the inhomogeneous equation,
singularities of the following form also appear:

σi = eϕ1(t)/ε

t∫
0

e−ϕ1(s)/εsids, i = 0, k − 1,

(k is the extreme zero of λ1(t)), which, for ε → 0, has a power character of decreasing under the
corresponding restrictions on λ1(t), while it is assumed that the remaining points of the spectrum do
not vanish at t = 0.

Singularly perturbed problems arise in cases when the domain of definition of the initial operator,
depending on ε with ε �= 0, does not coincide with the domain of definition of the limit operator with
ε = 0. When studying problems with a ”simple” turning point, additional conditions arise when
the domain of values of the original operator does not coincide with the domain of values of the
limit operator.

Further, we need estimates of functions describing the basic singularities.

Lemma 1. Let the conditions on the spectrum of operator A(t) 5)÷ 7) be satisfied. Then, the estimates hold:
(a) if ∀t ∈ [0, T] Reλi(t) ≤ 0, i = 1, 2, then

∣∣e 1
ε

t∫
0

λ̄i(s)ds∣∣≤ C, |σk(t, ε)| ≤ C,

where C is a constant, k = 0, p − 1, p = m + n − 1;
(b) if Re λ1(t) ≤ −α < 0, Re a(t) ≤ −α < 0, then

∣∣e 1
ε

t∫
0

λ̄1(s)ds∣∣≤ e−
αtn
εn ,

∣∣e 1
ε

t∫
0

λ̄2(s)ds∣∣≤ e−
αtp+1
ε(p+1) , |σk(t, ε)| ≤ Cε

k+1
p+1 , k = 0, p − 1, p = m + n − 1.
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Proof of Lemma 1. (a) In this case, estimates are obvious.

(b)
∣∣e 1

ε

t∫
0

λ̄1(s)ds∣∣≤ e
− α

ε

t∫
0

sn−1ds
= e−

αtn
εn ,

∣∣e 1
ε

t∫
0

λ̄2(s)ds∣∣≤ e
− α

ε

t∫
0

spds
= e−

αtp+1
ε(p+1) ,

|σk(t, s)| =
∣∣∣∣ t∫

0

e
1
ε

t∫
s

λ̄2(s)ds
skds

∣∣∣∣≤ t∫
0

e
− α

ε

t∫
s

sp
1 ds1

skds =
t∫

0

e−
α(tp+1−sp+1)

ε(p+1) skds =

t∫
0

e
αsp+1
ε(p+1) skds

e
αtp+1
ε(p+1)

=

=

ε
k+1
p+1

t/ε1/(p+1)∫
0

e
αξ p+1

p+1 ξkdξ

e
αtp+1
ε(p+1)

.

Denote τ = t
ε1/(p+1) . Consider a fraction when τ → ∞; then, we have

τ∫
0

e
αξ p+1

p+1 ξkdξ

e
ατp+1

p+1

∼ τk

ατp −→
τ→∞

0, as k < p.

Consequently, σk(t, ε) = O(ε
k+1
p+1 ).

Remark 1. Estimates in the source variables have the form:

∣∣e 1
ε

t∫
0

λ1(s)ds∣∣≤ e−
αt
ε ,

∣∣e 1
ε

t∫
0

λ2(s)ds∣∣≤ e−
αtm/n+1
ε(m/n+1) , σk(t, ε) = O(ε

k+1
m/n+1 ).

According to the regularization method, we seek a solution of Problem (2) in the form

u(t, ε) = x(t, ε)eϕ1(t)/ε + y(t, ε)eϕ2(t)/ε +
p−1

∑
i=0

zi(t, ε)σi(t, ε) + W(t, ε), (4)

where x(t, ε), y(t, ε), W(t, ε), zi(t, ε), i = 0, p − 1 are smooth with respect to t functions that depend on
power on ε. Substituting Problem (4) into Problem (2), we get system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B(t)− λ̄1(t))x(t, ε) = εẋ(t, ε),
(B(t)− λ̄2(t))y(t, ε) = εẏ(t, ε),
(B(t)− λ̄2(t))zi(t, ε) = εżi(t, ε), i = 0, p − 1,

B(t)W(t, ε) = εẆ(t, ε)− tn−1h(tn) +
p−1

∑
i=0

tizi(t, ε),

x(0, ε) + y(0, ε) + W(0, ε) = u0.

(5)

Decomposing the unknown vector functions in a series in powers of ε, we obtain a series of
iterative problems: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B(t)− λ̄1(t))xk(t) = ẋk−1(t),
(B(t)− λ̄2(t))yk(t) = ẏk−1(t),
(B(t)− λ̄2(t))zi

k(t, ε) = żi
k−1(t), i = 0, p − 1,

B(t)Wk(t) = Ẇk−1(t)− δk
0tn−1h(tn) +

p−1

∑
i=0

tizi
k−1(t),

xk(0) + yk(0) + Wk(0) = δ0
k u0.

(6)

To solve iterative Problems (6), we formulate a point-solvability theorem.
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Theorem 1. Let the following equation be given:

B(t)u(t) ≡ tn−1 A(tn) = tn−sh(tn), 0 ≤ s ≤ n − 1 (7)

and let the following conditions are met:

(1) B(t) has eigenvalues λ̄1(t) = tn−1λ1(tn), λ̄2(t) = tpa(tn) and eigenvectors ē1(t), ē2(t);
(2) h(tn) ∈ C∞[0, T].

Then, Problem (7) is solvable if and only if

(a) h1(0) = 0, s = 2, n − 1;

(b) h(k)2 = 0, k = 0,
[

m + s − 1
n

]
, s = 0, n − 1,

where h1(tn), h2(tn) are the components of decomposition h(t) on the basis of eigenvectors of operator B(t);
u1(tn), u2(tn) are the components of the expansion of u(t) on the basis of eigenvectors of operator B(t).

Proof of Theorem 1. Let us prove the need. Let system{
tn−1λ1(tn)u1(t) = tn−sh1(tn),
tpa(tn)u2(t) = tn−sh2(tn)

(8)

have a solution. Then,

(1) the first equation of System (8) is solvable:

(a) if s = 0, 1, then u1(t) = t1−s h1(tn)

λ1(tn)
,

(b) if s = 2, n − 1, then h1(0) = 0 and u1(t) = tn+1−s h̄1(tn)

λ1(tn)
, where h1(tn) = tnh̄1(tn);

(2) the second equation of System (8) is solvable if (k + 1)n − s ≤ p < (k + 2)n − s, which is

equivalent to h(k)2 (0) = 0, k = 0,
[

m + s − 1
n

]
and u2(t) = tn−j h̄2(tn)

a(tn)
, 0 ≤ j ≤ n − 1.

Sufficiency is obvious.

Consider Problem (6) as k = −1:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(B(t)− λ̄1(t))x−1(t) = 0,
(B(t)− λ̄2(t))y−1(t) = 0,
(B(t)− λ̄2(t))zi

−1(t) = 0, i = 0, p − 1,
B(t)W−1(t) = 0,
x−1(0) + y−1(0) + W−1(0) = 0.

(9)

Solution (9) has the form

x−1(t) = α1
−1(t)ē1(t), y−1(t) = β2

−1(t)ē2(t), zi
−1(t) = γi,2

−1(t)ē2(t),
W−1(t) ≡ 0, α1

−1(0) = 0, β2
−1(0) = 0.

Functions x−1(t), y−1(t), zi
−1(t) are determined at the next iteration step k = 0 from the solvability

conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B(t)− λ̄1(t))x0(t) = ẋ−1(t),
(B(t)− λ̄2(t))y0(t) = ẏ−1(t),
(B(t)− λ̄2(t))zi

0(t) = żi
−1(t), i = 0, p − 1,

B(t)W0(t) = −tnh(tn) +
p−1

∑
i=0

tizi
−1(t),

x0(0) + y0(0) + W0(0) = u0.

(10)
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Let be
˙̄ei(t) = ėi(tn) = ntn−1C1

i (t
n)ē1(t) + ntn−1C2

i (t
n)ē2(t), i = 1, 2.

Denote by C̄j
i (t) = ntn−1Cj

i (t
n), i, j = 1, 2. Then

˙̄ei(t) =
2

∑
j=1

C̄j
i (t)ēj(t), i = 1, 2.

System (10) takes the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B(t)− λ̄1(t))x0(t) = (α̇1
−1(t) + C̄1

1(t)α
1
−1(t))ē1(t) + α1

−1(t)C̄
2
1(t)ē2(t),

(B(t)− λ̄2(t))y0(t) = (β̇2
−1(t) + C̄2

2(t)β2
−1(t))ē2(t) + β2

−1(t)C̄
1
2(t)ē1(t),

(B(t)− λ̄2(t))zi
0(t) = (γ̇i,2

−1(t) + C̄2
2(t)γ

i,2
−1(t))ē2(t) + γi,2

−1(t)C̄
1
2(t)ē1(t), i = 0, p − 1,

B(t)W0(t) = −tnh(tn) +
p−1

∑
i=0

tizi
−1(t),

x0(0) + y0(0) + W0(0) = u0.

(11)

The conditions for the solvability of System (11) and the initial conditions at the k = −1 step
imply that α1

−1(t) ≡ 0, β2
−1(t) ≡ 0. To determine zi

−1(t), we wrote by coordinate the equation for the
W0(t) of System (11):⎧⎪⎪⎨⎪⎪⎩

λ̄1(t)W1
0 (t) ≡ tn−1λ1(tn)W1

0 (t) = −tn−1h1(tn),

λ̄2(t)W2
0 (t) ≡ tpa(tn)W2

0 (t) = −tn−1h2(tn) +
p−1

∑
i=0

tiγi,2
−1(t).

(12)

Then, W1
0 (t) = − h1(tn)

λ1(tn)
. On the basis of the point-solvability theorem, we obtained:

γn−1,2
−1 (0) = h2(0), γ2n−1,2

−1 (0) = ḣ2(0), · · · , γ
(k+1)n−1,2
−1 (0) =

h(k)2 (0)
k!

e
−

t∫
0

C̄2
2(s)ds

,

where k = [m/n] is the integer part, so when order ord(ti) is equal to order ord(t(j+1)n−1) in the
expansion of tn−1h(tn) in Taylor–Maclaurin series, other γi,2

−1(0) = 0. Thus, the solution is determined
at step k = −1:

u−1(t, ε) =
[m/n]

∑
i=0

γ
(i+1)n−1,2
−1 (t)ē2(t)σ(i+1)n−1(t, ε), (13)

where γ
(i+1)n−1,2
−1 (t) =

h(i)2 (0)
i!

e
−

t∫
0

C̄2
2(s)ds

.
The solution at zero step k = 0 is written in the form

x0(t) = α1
0(t)ē1(t), y0(t) = β2

0(t)ē2(t),

zi
0(t) =

⎡⎢⎢⎢⎣
γi,2

0 (t)ē2(t), ord(ti) �= ord(t(j+1)n−1),

γi,2
0 (t)ē2(t)− γi,2

−1(t)
C̄1

2(t)
λ̄1(t)−λ̄2(t)

ē1(t), ord(ti) = ord(t(j+1)n−1),

i = 0, p − 1, j = 0, [m/n],

W0(t) = − h1(tn)

λ1(tn)
ē1(t) + tn−s H0(tn)ē2(t),

(14)

where

(a) s =
{

m
n

}
n is the remainder of dividing m by n;
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(b) tn−sH0(tn) ≡
−tn−1h(tn) +

[m/n]
∑

i=0
t(i+1)n−1γ

(i+1)n−1,2
−1 (t)

tpa(tn)
.

Arbitrary functions α1
0(t), β2

0(t), γi,2
0 (t) are determined from the conditions for the solvability of

the system at step k = 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B(t)− λ̄1(t))x1(t) = (α̇1
0(t) + C̄1

1(t)α
1
0(t))ē1(t) + α1

0(t)C̄
2
1(t)ē2(t),

(B(t)− λ̄2(t))y1(t) = (β̇2
0(t) + C̄2

2(t)β2
0(t))ē2(t) + β2

0(t)C̄
1
2(t)ē1(t),

(B(t)− λ̄1(t))zi
1(t) = (γ̇i,2

0 (t) + C̄2
2(t)γ

i,2
0 (t))ē2(t) + γi,2

0 (t)C̄1
2(t)ē1(t),

ord(ti) �= ord(t(j+1)n−1),

(B(t)− λ̄2(t))zi
1(t) =

(
γ̇i,2

0 (t) + C̄2
2(t)γ

i,2
0 (t)− γi,2

−1(t)
C̄1

2(t)C̄
2
1(t)

λ̄1(t)−λ̄2(t)

)
ē2(t)+

+

(
γ̇i,2

0 (t)C̄1
2(t)−

(
γi,2

−1(t)
C̄1

2(t)
λ̄1(t)−λ̄2(t)

)·
−γi,2

−1(t)
C̄1

2(t)C̄
1
1(t)

λ̄1(t)−λ̄2(t)

)
ē1(t),

ord(ti) = ord(t(j+1)n−1), i = 0, p − 1, j = 0, [m/n],

B(t)W1(t) = Ẇ0(t) +
p−1

∑
i=0

tizi
0(t),

x1(0) + y1(0) + W1(0) = 0.

(15)

The solvability theorem of System (15) gives

α1
0(t) =

(
u0

1 +
h1(0)
λ1(0)

)
e
−

t∫
0

C̄1
1(s)ds

, β1
0(t) ≡ u0

2e
−

t∫
0

C̄2
2(s)ds

.

Consider the equation for W1(t). Given the expression for C̄j
i (t) = ntn−1Cj

i (t
n), this equation can

be written as follows:

B(t)W1(t) = tn−1(Ẇ0)1(t)ē1(t) + tn−1−s(Ẇ0)2(t)ē2(t) +
p−1

∑
i=0

tizi
0(t). (16)

Consider Equation (16) component-wise:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ̄1(t)W1

1 (t) = tn−1(Ẇ0)1(t)−
[m/n]

∑
i=0

γ
(i+1)n−1,2
−1 (t)

C̄1
2(t)t

(i+1)n−1

λ̄1(t)− λ̄2(t)
,

λ̄2(t)W2
1 (t) = tn−1−s(Ẇ0)2(t) +

p−1

∑
i=0

tiγi,2
0 (t).

(17)

Solution of the first equation of System (17) is written as follows:

W1
1 (t) =

(Ẇ0)1(t)
λ1(tn)

−
[m/n]

∑
i=0

γ
(i+1)n−1,2
−1 (t)

nC1
2(t

n)tin

λ1(tn)(λ1(tn)− tma(tn))
.

For the solvability of the second equation of System (17), it is necessary and sufficient that

γ
(i+1)n−1−s,2
0 (0) = − (Ẇ0)

(i)
2 (0)
i!

, i = 0,
[

m + s
n

]
,

here
[

m + s
n

]
=

[[
m
n

]
+

2s
n

]
=

[
m
n

]
+

[
2s
n

]
.
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The other γ
j,2
0 (0) = 0, j �= (i + 1)n − 1 − s, j = 0, p − 1. Defining γi,2

0 (0), we can write the
expression for zi

0(t):

(a) if j = (i + 1)n − 1 − s, i = 0,
[

m
n

]
+

[
2s
n

]
, then

γ
j,2
0 (t) = − (Ẇ0)

(i)
2 (0)
i!

e
−

t∫
0

C̄2
2(s)ds

, zj
0(t) = γ

j,2
0 (t)C̄2(t);

(b) if j �= (i + 1)n − 1 − s,j = (i + 1)n − 1, then

γ
j,2
0 (t) = e

−
t∫

0
C̄2

2(s)ds t∫
0

e

s∫
0

C̄2
2(z)ds

γ
j,2
−1(s)

C̄1
2(s)C̄

2
1(s)

λ̄1(s)− λ̄2(s)
ds,

zj
0(t) = γ

j,2
0 (t)ē2(t)− γ

j,2
−1(t)

C̄1
2(t)

λ̄1(t)− λ̄2(t)
ē1(t);

(c) if j �= (i + 1)n − 1 − s,j �= (i + 1)n − 1, then

γ
j,2
0 (t) ≡ 0, zj,2

0 (t) ≡ 0.

The solution of the second equation of System (17) is written as follows:

W2
1 (t) = tn(1−{ 2s

n })H1(tn),

where H1(tn) =

tn−s−1(Ẇ0)2 −
p−1
∑

i=0
tiγi,2

0 (t)

tpa(tn)
.

Thus, the solution is determined at the zero iterative step:

u0(t, ε) = α1
0(t)ē1(t)e−ϕ1(t)/ε + β2

0(t)ē2(t)eϕ2(t)/ε +
[ m

n ]+[
2s
n ]

∑
i=0

z(i+1)n−1−s
0 (t)σ(i+1)n−1−s(t, ε)

+
[ m

n ]

∑
i=0

z(i+1)n−1
0 (t)σ(i+1)n−1(t, ε)− h1(tn)

λ1(tn)
ē1(t) + tn−s H0(tn)ē2(t).

Similarly, according to this scheme, the solutions of subsequent iteration problems are determined.
Thus, we can get an expression for any member of a regularized series.

We write the main term of the asymptotics of Problem (2):

umain =
1
ε

u−1(t, ε) + u0(t, ε).

4. Limit-Transition Theorem

To prove the asymptoticity of a regularized series, we prove a theorem on estimating the remainder
term for ε → 0.

Let be u(t, ε) =
n

∑
k=−1

εkuk(t, ε) + εn+1Rn(t, ε), where

uk(t, ε) = xk(t)eϕ1(t)/ε + yk(t)eϕ2(t)/ε +
p−1

∑
i=0

zi
k(t)σi(t, ε) + Wk(t). (18)
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Substituting Problem (18) into Problem (1), we obtain the Cauchy problem for the remainder
Rn(t, ε): {

εṘn(t, ε) = B(t)Rn(t, ε) + H(t, ε),
R(0, ε) = 0,

(19)

where

H(t, ε) = −
(

ẋn(t)eϕ1(t)/ε + ẏn(t)eϕ2(t)/ε +
p−1

∑
i=0

żn(t)σi(t, ε) +

(
Ẇn(t) +

p−1

∑
i=0

tizi
n(t)

))
,

in this case, it is assumed that H(t, ε) satisfies the conditions of the solvability theorem.

Theorem 2. Let Cauchy Problem (1) be given and Conditions 1–9 be satisfied. Then, the estimate is correct∥∥∥∥∥u(t, ε)−
n

∑
k=−1

εkuk(t, ε)

∥∥∥∥∥ ≤ Cεn+1,

where C > 0 in the norm C[0, T] for any (t, ε) ∈ [0, T]× (0, ε0], ‖x(t)‖C[0,T] = max
t∈[0,T]

|x(t)|.

Proof of Theorem 2. Solution (19) is written as follows:

Rn(t, ε) =
1
ε

t∫
0

Uε(t, s)H(s, ε)ds, (20)

where Uε(t, s) is resolving operator (fundamental solution system) satisfying system{
εU̇ε(t, s) = B(t)Uε(t, s),
Uε(t, s)

∣∣
s=t= I.

(21)

Let S(t) be a matrix of eigenvectors ē1(t), ē2(t) of operator B(t). Then, System (21) is equivalent to
system {

εV̇ε(t, s) = Λ(t)Vε(t, s)− εS−1(t)Ṡ(t)Vε(t, ε),
Vε(t, s)

∣∣
s=t= S−1(0),

(22)

here, Λ(t) =

(
λ̄1(t) 0

0 λ̄2(t)

)
, Vε(t, s) = S−1(t)Uε(t, s). We reduce System (22) to an integral equation

Vε(t, s) = e
1
ε

t∫
s

Λ(s1)ds1
S−1(0)−

t∫
s

e
1
ε

t∫
s1

Λ(s2)ds2

S−1(s1)Ṡ(s1)Vε(s1, ε)ds1. (23)

Let us estimate Equation (23) at the norm C[0, T]. Using the conditions on the spectrum of operator
B(t), we obtain

‖Vε(t, s)‖ ≤ C1‖S−1(0)‖+ C2

t∫
s

‖Vε(s1, s)‖ds1.

Using the Bellman–Gronuola inequality, we obtain ‖Uε(t, s)‖ ≤ C on [0, T].
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To estimate the remaining term, it is important to take into account that operator B(t) is invertible on
vector functions that satisfy the conditions of the solvability theorem. Then, integrating over parts of
Solution (20), we obtain chain of equalities

Rn(t, ε) =
1
ε

t∫
0

Uε(t, s)H(s, ε)ds =
1
ε

t∫
0

Uε(t, s)B(s)B−1(s)H(s, ε)ds =

= −Uε(t, s)B−1(s)H(s, ε)
∣∣t
0+

t∫
0

Uε(t, s)
d
ds

B−1(s)H(s, ε)ds =

= −B−1(t)H(t, ε) + Uε(t, s)B−1(s)H(s, ε)
∣∣
s=0+

t∫
0

Uε(t, s)
d
ds

B−1(s)H(s, ε)ds.

Since, by virtue of Conditions 1–9, H(t, ε) admits estimate ‖H(t, ε)‖ ≤ C1 in norm C[0, T], then
remainder Rn(t, ε) satisfies estimate

‖Rn(t, ε)‖ ≤ C2 ∀(t, ε) ∈ [0, T]× (0, ε0].

Therefore, the asymptoticity of series
∞

∑
k=−1

εkuk(t, ε) is proved.

Theorem 3 (The limit theorem). Let Cauchy Problem (1) be given and have satisfied the conditions:

(1) Conditions 1–9;
(2) h(i)2 (0) = 0, i = 0, [m/n], where h2(t) is the second coordinate in the expansion of h(t) = h1(t)e1(t) +

h2(t)e2(t) in eigenvectors of the original matrix.

Then,

(1) for any δ > 0 t ∈ [δ, T], Reλi(t) ≤ −α < 0

lim
ε→0

u(t, ε) = −A−1(t)h(t);

(2) if Reλi(t) = 0, then
u(t, ε)

weak−→
ε→0

−A−1(t)h(t) in a weak sense.

Proof of Theorem 3. (1) Conditions h(i)2 (0) = 0, i = 0, [m/n] cause u−1(t, ε) = 0. Then,

umain(t) = u0(t, ε).

By virtue of the singularity estimates described in the lemma, it follows that for any δ > 0 t ∈ [δ, T]

lim
ε→0

u0(t, ε) = −B−1(t)tn−1h(tn),

equivalent in source variables lim
ε→0

u0(t, ε) = −A−1(t)h(t).

(2) If Reλi(t) ≡ 0, i = 1, 2, then singularities are rapidly oscillating exponents as ε → 0. From here,
according to Lebesgue’s lemma, for any ϕ(t) ∈ C(0, T)

T∫
0

(u0(t, ε) + A−1(t)h(t))ϕ(s)dt −→
ε→0

0.

100



Axioms 2019, 8, 124

Example 1. Consider the Cauchy problem for a parabolic equation⎧⎨⎩ ε
∂u
∂t

− ε2 ∂2u
∂x2 = −√

tu + h(x, t),

u(x, 0) = ϕ(x), −∞ < x < ∞,

where ϕ(x), h(x, t) ∈ C∞
0 (−∞, ∞) are smooth functions with compact support.

Using the technique of the regularization method outlined above, we obtain the principal term of the asymptotics
of the solution:

u(x, t) =
1
ε

h(x, 0)e−
2
3ε t3/2

t∫
0

e
2s3/2

3ε ds + ϕ(x)e−
2t3/2

3ε − ḣ(x, 0)
2

e−
2t3/2

3ε

t∫
0

e
2s3/2

3ε
ds√

s
+

+th′′(x, 0)e−
2t3/2

3ε

t∫
0

e
2s3/2

3ε ds +
h(x, t)− h(x, 0)√

t
.

5. Conclusions

In this paper, the regularization method was developed into the class of singularly perturbed
Cauchy problems in the case of a simple rational turning point for the limit operator (for ε = 0).
The main singularities of the solution are highlighted:

eϕ1(t)/ε, eϕ2(t)/ε, σi(t, ε) = eϕ2(t)/ε

t∫
0

e−ϕ2(s)/εs(i+1−n)/nds, i = 0, p − 1,

which allowed us to present the solution in the form:

u(t, ε) = x(t, ε)eϕ1(t)/ε + y(t, ε)eϕ2(t)/ε +
p−1

∑
i=0

zi(t, ε)σi(t, ε) + W(t, ε),

where x(t, ε), y(t, ε), W(t, ε), zi(t, ε), i = 0, p − 1 are t smooth functions that depend on power ε.
Estimates of the main singularities for ε → 0 were given, and theorems on the solvability of

iterative problems were proved. A theorem on the asymptotic convergence of the solution of the
problem was proved, and conditions on the right-hand side of h(t) were described, under which the
passage to the limit theorem is valid. An example of solving the Cauchy problem for a parabolic
equation with a fractional turning point λ(τ) = τ1/2 was given.
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Nomenclature

u(t), x(t), y(t), zi(t), i = 0, m + n − 1, w(t), h(t) a vector of a function of a real variable
A(t), B(t) matrices of order 2 × 2
λ1, λ2 eigenvalues of matrix A
λ̄1, λ̄2 eigenvalues of matrix B
e1, e2 eigenvectors of matrix A
ē1, ē2 eigenvectors of matrix B
ε a small task parameter
S(t) a matrix of eigenvectors ē1, ē2

Λ(t) a matrix of eigenvalues of matrix B
Rn the remainder term of the asymptotic series
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1. Introduction

Differential systems with a small positive multiplier for a part of the highest order derivatives,
called singularly perturbed differential systems, are adequate mathematical models for real-life
processes with two-time-scale dynamics. In real-life problems, the small multiplier (a parameter
of singular perturbation) can be a time constant, a mass, a capacitance, a geotropic reaction, and
some other parameters in physics, chemistry, engineering, biology, medicine, etc (see e.g., [1–3] and
references therein). An important class of singularly perturbed differential systems represents the
systems with small time delays (of order the parameter of singular perturbation). Such systems arise in
various real-life applications, for instance, in nuclear engineering [4], in botany [5], in physiology and
medicine [6,7], in control engineering [8], and in communication engineering [9,10]. Distributed small
delays appear, for instant, in stabilizing controls of singularly perturbed systems with small delays
(either point-wise, or distributed, or point-wise and distributed) [11]. In such a case, a closed-loop
system contains a distributed small delay. The stabilizing property of a distributed small delay also is
used in the present paper (see Sections 3.3, 3.4 and 4.2).

Various topics in theory and applications of singularly perturbed controlled systems, without
and with delays in state and control variables, were extensively investigated in the literature (see
e.g., [1,12–14] and references therein).

Controllability of a system is one of its basic properties. This property means the ability to transfer
the system from any position of a given set of initial positions to any position of a given set of terminal
positions in a finite time by a proper choice of the control function. Different types of controllability
for systems without or with delays were extensively studied in the literature (see e.g., [15–18] and
references therein). To check whether a singularly perturbed system is controllable in a proper sense,
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the corresponding controllability conditions can be directly applied for any specified value of the
small parameter ε > 0 of singular perturbation. However, the stiffness, as well as a possible high
dimension of the singularly perturbed system, can considerably complicate this application. Moreover,
such an application depends on the value of ε, and it should be repeated if this parameter changes.
Furthermore, in most of real-life problems the current value of ε is unknown. These circumstances
are crucial in the analysis of the controllability of singularly perturbed systems. They motivate the
derivation of conditions, which being independent of ε, guarantee the controllability of a singularly
perturbed system for all sufficiently small values of this parameter, i.e., robustly with respect to ε.

Controllability of singularly perturbed systems was analyzed in a number of works. Thus,
in [19–22], the complete controllability of some linear and nonlinear undelayed systems was studied
using the separation of time scales concept (see e.g., [1]). In [23] the robust complete Euclidean space
controllability, as well as the controllability with respect to the slow state variable and with respect to
the fast state variable, were studied for a linear standard singularly perturbed time-invariant system
with a single nonsmall pointwise state delay. In [24,25], using the separation of time scales concept,
parameter free conditions of complete Euclidean space controllability were obtained for linear standard
singularly perturbed systems with pointwise and distributed small state delays. In [26], this result
was extended to nonstandard singularly perturbed systems with multiple pointwise and distributed
small delays in the state variables. In [27], parameter-free complete Euclidean space controllability
conditions, which are not based on the separation of time-scales concept, were derived for a class
of linear singularly perturbed systems with small state delays. In [28], a singularly perturbed linear
time-dependent controlled system with a single small pointwise delay in the state and control variables
was considered. Parameter-free conditions of the complete Euclidean space controllability were
established for standard and nonstandard types of this system. In [29], a singularly perturbed linear
time-dependent system with small state delays (multiple point-wise and distributed) was studied.
Along with the set of time delay differential equations describing the dynamics of this system, a set
of delay-free algebraic equations, describing the system’s output, also was considered. Based on
the separation of time-scales concept, different parameter-free sufficient conditions for the Euclidean
space output controllability of this system were established. In [30], the complete Euclidean space
controllability for one class of singularly perturbed systems with nonsmall delays (point-wise and
distributed) in the state variables was studied. In [31], the defining equations method was used for
analysis of the complete Euclidean space controllability of a linear singularly perturbed neutral type
system with a single nonsmall pointwise delay. The particular cases of the Euclidean space output
controllability, the controllability with respect to the slow state variable and the controllability with
respect to the fast state variable, also were studied.

In the present paper, we consider a singularly perturbed linear time-varying system with
multiple small point-wise delays and with small distributed delays in the state and control variables.
The complete Euclidean space controllability of this system, robust with respect to ε, is studied.
This study is based on a transformation of the complete Euclidean space controllability of the original
system with delays in the state and the control to an equivalent output controllability of a new
singularly perturbed system with only state delays. In the new system, the original control variable
becomes an additional fast state variable. The Euclidean dimension of the slow mode equation in
the new system is the same as in the original system, while the Euclidean dimension of the fast
mode equation is larger than such a dimension in the original system. Further analysis is carried
out based on the asymptotic decomposition of the original and transformed systems. Each system
is decomposed into two much simpler ε-free subsystems, slow and fast ones. Equivalence of proper
kinds of controllability of the slow subsystems, corresponding to the original and transformed systems,
is established. Also, it is established the equivalence of proper kinds of controllability of the fast
subsystems. Assuming the controllability of the slow and fast subsystems, associated with the
transformed system, the Euclidean space output controllability of the latter is established for all
sufficiently small values of ε > 0. Then, using the above mentioned equivalence of the controllability
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of the original and transformed systems, as well as of their slow and fast subsystems, the complete
Euclidean space controllability of the original system, robust with respect to ε, is deduced from the
assumption on proper kinds of controllability of its slow and fast subsystems. Note that the original
system of the present paper is much more general than the original system of [28]. Moreover, in the
present paper we propose another, more general, approach to the analysis of the nonstandard case
of the original system. Also, we propose here much simpler proof of the Euclidean space output
controllability of the transformed system.

The paper is organized as follows. In the next section, the rigorous problem statement, the main
definitions and the objective of the paper are formulated. Some auxiliary results, including the
transformation of the original system, are presented in Section 3. Section 4 is devoted to main results
of the paper. An illustrative example is solved in Section 5. Conclusions are placed in Section 6.

The following main notations are applied in the paper:

1. En is the n-dimensional real Euclidean space.
2. The Euclidean norm of either a vector or a matrix is denoted by ‖ · ‖.
3. The upper index T denotes the transposition either of a vector x (xT) or of a matrix A (AT).
4. In denotes the identity matrix of dimension n.
5. The notation On1×n2 is used for the zero matrix of the dimension n1 × n2, excepting the cases

where the dimension of zero matrix is obvious. In such cases, we use the notation 0 for the
zero matrix.

6. L2[t1, t2; En] denotes the linear space of all vector-valued functions x(·) : [t1, t2] → En square
integrable in the interval [t1, t2]; for any x(·) ∈ L2[t1, t2; En] and y(·) ∈ L2[t1, t2; En], the inner
product in this space is defined as:

〈
x(·), y(·)〉L2 =

∫ t2

t1

xT(t)y(t)dt;

the norm of any x(·) ∈ L2[t1, t2; En] is defined as:

‖x(·)‖L2 =

(∫ t2

t1

xT(t)x(t)dt
)1/2

.

7. L2
loc[t̄,+∞; En] denotes the linear space of all vector-valued functions x(·) : [t̄,+∞) → En square

integrable in any subinterval [t1, t2] ⊂ [t̄,+∞).
8. W1,2[t1, t2; En] denotes the corresponding Sobolev space, i.e., the linear space of all vector-valued

functions x(·) : [t1, t2] → En square integrable in the interval [t1, t2] with the first derivatives
(generalized) square integrable in this interval.

9. col(x, y), where x ∈ En, y ∈ Em, denotes the column block-vector of the dimension n + m with
the upper block x and the lower block y, i.e., col(x, y) = (xT , yT)T .

10. Reλ denotes the real part of a complex number λ.

2. Problem Formulation and Main Definitions

2.1. Original System

Consider the controlled system

dx(t)
dt = ∑N

j=0
[
A1j(t, ε)x(t − εhj) + A2j(t, ε)y(t − εhj)

]
+
∫ 0
−h
[
G1(t, η, ε)x(t + εη) + G2(t, η, ε)y(t + εη)

]
dη

+∑N
j=0 B1j(t, ε)u(t − εhj) +

∫ 0
−h H1(t, η, ε)u(t + εη)dη, t ≥ 0,

(1)
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ε
dy(t)

dt = ∑N
j=0
[
A3j(t, ε)x(t − εhj) + A4j(t, ε)y(t − εhj)

]
+
∫ 0
−h
[
G3(t, η, ε)x(t + εη) + G4(t, η, ε)y(t + εη)

]
dη

+∑N
j=0 B2j(t, ε)u(t − εhj) +

∫ 0
−h H2(t, η, ε)u(t + εη)dη, t ≥ 0,

(2)

where x(t) ∈ En, y(t) ∈ Em, u(t) ∈ Er (u(t) is a control); ε > 0 is a small parameter; N ≥ 1 is an
integer; 0 = h0 < h1 < h2 < · · · < hN = h are some given constants independent of ε; Aij(t, ε),
Gi(t, η, ε), Bkj(t, ε), Hk(t, η, ε), (i = 1, . . . , 4; j = 0, . . . , N; k = 1, 2) are matrix-valued functions of
corresponding dimensions, given for t ≥ 0, η ∈ [−h, 0] and ε ∈ [0, ε0], (ε0 > 0); the functions Aij(t, ε)

and Bkj(t, ε), (i = 1, . . . , 4; j = 0, . . . , N; k = 1, 2) are continuous in (t, ε) ∈ [0,+∞) × [0, ε0]; the
functions Gi(t, η, ε) and Hk(t, η, ε), (i = 1, . . . , 4; k = 1, 2) are piecewise continuous in η ∈ [−h, 0]
for any (t, ε) ∈ [0,+∞) × [0, ε0]; the functions Gi(t, η, ε) and Hk(t, η, ε), (i = 1, . . . , 4; k = 1, 2) are
continuous with respect to (t, ε) ∈ [0,+∞)× [0, ε0] uniformly in η ∈ [−h, 0].

For any given ε ∈ (0, ε0] and u(·) ∈ L2
loc[−εh,+∞; Er], the system (1)-(2) is a linear time-dependent

nonhomogeneous functional-differential system. It is infinite-dimensional with the state variables(
x(t), x(t + εη)

)
and

(
y(t), y(t + εη)

)
, η ∈ [−h, 0]. Moreover, (1)-(2) is a singularly perturbed system.

The Equation (1) is the slow mode of this system, while the Equation (2) is its fast mode.

Definition 1. For a given ε ∈ (0, ε0], the system (1)-(2) is said to be completely Euclidean space controllable
at a given time instant tc > 0 if for any x0 ∈ En, y0 ∈ Em, u0 ∈ Er, ϕx(·) ∈ L2[−εh, 0; En],
ϕy(·) ∈ L2[−εh, 0; Em], ϕu(·) ∈ L2[−εh, 0; Er], xc ∈ En and yc ∈ Em there exists a control function
u(·) ∈ W1,2[0, tc; Er] satisfying u(0) = u0, for which the system (1)-(2) with the initial and terminal conditions

x(τ) = ϕx(τ), y(τ) = ϕy(τ), u(τ) = ϕu(τ), τ ∈ [−εh, 0), (3)

x(0) = x0, y(0) = y0, (4)

x(tc) = xc, y(tc) = yc, (5)

has a solution.

2.2. Asymptotic Decomposition of the Original System

For the sake of further analysis, let us decompose asymptotically the original singularly perturbed
system (1)-(2) into two much simpler ε-free subsystems, the slow and fast ones. The slow subsystem is
obtained from (1)-(2) by setting formally ε = 0 in these controlled functional-differential equations,
which yields

dxs(t)
dt

= A1s(t)xs(t) + A2s(t)ys(t) + B1s(t)us(t), t ≥ 0, (6)

0 = A3s(t)xs(t) + A4s(t)ys(t) + B2s(t)us(t), t ≥ 0, (7)

where xs(t) ∈ En and ys(t) ∈ Em are state variables; us(t) ∈ Er is a control;

Ais(t) =
N

∑
j=0

Aij(t, 0) +
∫ 0

−h
Gi(t, η, 0)dη, i = 1, . . . , 4, (8)

Bks(t) =
N

∑
j=0

Bkj(t, 0) +
∫ 0

−h
Hk(t, η, 0)dη, k = 1, 2. (9)

The slow subsystem (6)-(7) is a descriptor (differential-algebraic) system, and it is delay-free
and ε-free.

If
det A4s(t) �= 0, t ≥ 0, (10)
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we can eliminate the state variable ys(t) from the slow subsystem (6)-(7). Such an elimination yields
the differential equation with respect to xs(t)

dxs(t)
dt

= Ās(t)xs(t) + B̄s(t)us(t), t ≥ 0, (11)

where
Ās(t) = A1s(t)− A2s(t)A−1

4s (t)A3s(t), B̄s(t) = B1s(t)− A2s(t)A−1
4s (t)B2s(t). (12)

The differential Equation (11) also is called the slow subsystem, associated with the original
system (1)-(2).

The fast subsystem is derived from (2) in the following way: (a) the terms containing the state
variable

(
x(t), x(t + εη)

)
, η ∈ [−h, 0] are removed from (2); (b) the transformations of the variables

t = t1 + εξ, y(t1 + εξ)
�
= y f (ξ), u(t1 + εξ)

�
= u f (ξ) are made in the resulting system, where t1 ≥ 0 is

any fixed time instant.
Thus, we obtain the system

dy f (ξ)

dξ
=

N

∑
j=0

A4j(t1 + εξ, ε)y f (ξ − hj) +
∫ 0

−h
G4(t1 + εξ, η, ε)y f (ξ + η)dη

+
N

∑
j=0

B2j(t1 + εξ, ε)u f (ξ − hj) +
∫ 0

−h
H2(t1 + εξ, η, ε)u f (ξ + η)dη.

Finally, setting formally ε = 0 in this system and replacing t1 with t yield the fast subsystem

dy f (ξ)

dξ = ∑N
j=0 A4j(t, 0)y f (ξ − hj) +

∫ 0
−h G4(t, η, 0)y f (ξ + η)dη

+∑N
j=0 B2j(t, 0)u f (ξ − hj) +

∫ 0
−h H2(t, η, 0)u f (ξ + η)dη, ξ ≥ 0,

(13)

where t ≥ 0 is a parameter; y f (ξ) ∈ Em, u f (ξ) ∈ Er;
(
y f (ξ), y f (ξ + η)

)
, η ∈ [−h, 0] is a state variable,

while
(
u f (ξ), u f (ξ + η)

)
, η ∈ [−h, 0] is a control variable.

The new independent variable ξ is called the stretched time, and it is expressed by the original
time t in the form ξ = (t − t1)/ε. Thus, for any t > t1, ξ → +∞ as ε → +0.

The fast subsystem (13) is a differential equation with state and control delays. It is of a lower
Euclidean dimension than the original system (1)-(2), and it is ε-free.

Definition 2. Subject to (10), the system (11) is said to be completely controllable at a given time instant tc > 0
if for any x0 ∈ En and xc ∈ En there exists a control function us(·) ∈ L2[0, tc; Er], for which (11) has a solution
xs(t), t ∈ [0, tc], satisfying the initial and terminal conditions

xs(0) = x0, xs(tc) = xc. (14)

Definition 3. The system (6)-(7) is said to be impulse-free controllable with respect to xs(t) at a given time
instant tc > 0 if for any x0 ∈ En and xc ∈ En there exists a control function us(·) ∈ L2[0, tc; Er], for
which (6)-(7) has an impulse-free solution col(xs(t), ys(t)), t ∈ [0, tc], satisfying the initial and terminal
conditions (14).

Definition 4. For a given t ≥ 0, the system (13) is said to be completely Euclidean space controllable if for
any y0 ∈ Em, u0 ∈ Er, ϕy f (·) ∈ L2[−h, 0; Em], ϕu f (·) ∈ L2[−h, 0; Er] and yc ∈ Em there exist a number
ξc > 0, independent of y0, u0, ϕy f (·), ϕu f (·) and yc, and a control function u f (·) ∈ W1,2[0, ξc; Er] satisfying
u f (0) = u0, for which the system (13) with the initial and terminal conditions

y f (η) = ϕy f (η), u f (η) = ϕu f (η), η ∈ [−h, 0); y f (0) = y0, (15)
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y f (ξc) = yc, (16)

has a solution.

2.3. Objective of the Paper

The objective of the paper is the following: using the ε-independent assumptions on the
controllability of the systems (11) and (13), as well as (6)-(7) and (13), to establish the complete
Euclidean space controllability of the original singularly perturbed system (1)-(2) for all sufficiently
small values of ε > 0, i.e., robustly with respect to this parameter.

3. Auxiliary Results

In this section, some properties of systems with state and control delays are studied. Based on
these results, in the next section different parameter-free conditions for the complete Euclidean space
controllability of the original singularly perturbed system are derived.

3.1. Auxiliary System with Delay-Free Control

Consider the differential system, consisting of the Equations (1), (2) and the equation

ε
du(t)

dt
= −u(t) + v(t), t ≥ 0. (17)

In this new system,
(
x(t), x(t + εη)

)
,
(
y(t), y(t + εη)

)
,
(
u(t), u(t + εη)

)
, η ∈ [−h, 0] are state variables,

while v(t) ∈ Er is a control. Thus, in the system (1), (2), (17) only the state variables have delays, while
the control is delay-free. Moreover, in contrast with the original system (1)-(2), the new system contains
two fast modes, the Equations (2) and (17).

For the new system (1), (2), (17), we consider the algebraic output equation

ζ(t) = Zcol
(
x(t), y(t), u(t)

)
, t ≥ 0, (18)

where the (n + m)× (n + m + r)-matrix Z has the block form

Z =
(

In+m, 0
)

. (19)

Let us rewrite the system (1), (2), (17), (18) in a new form, more convenient for the further analysis.
For a given ε ∈ (0, ε0], let us introduce into the consideration the block vector ω(t) =

col
(
y(t), u(t)

)
, t ≥ −εh, and the block matrices

A1j(t, ε) = A1j(t, ε), A2j(t, ε) =
(

A2j(t, ε), B1j(t, ε)
)

, j = 0, 1, . . . , N, t ≥ 0, (20)

A3j(t, ε) =

(
A3j(t, ε)

Or×n

)
, j = 0, 1, . . . , N, t ≥ 0, (21)

A40(t, ε) =

(
A40(t, ε) B20(t, ε)

Or×m − Ir

)
, t ≥ 0, (22)

A4j(t, ε) =

(
A4j(t, ε) B2j(t, ε)

Or×m Or×r

)
, j = 1, . . . , N, t ≥ 0, (23)

G1(t, η, ε) = G1(t, η, ε), G2(t, η, ε) =
(

G2(t, η, ε), H1(t, η, ε)
)

, t ≥ 0, η, ∈ [−h, 0], (24)
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G3(t, η, ε) =

(
G3(t, η, ε)

Or×n

)
, G4(t, η, ε) =

(
G4(t, η, ε) H2(t, η, ε)

Or×m Or×r

)
,

t ≥ 0, η ∈ [−h, 0],
(25)

B1 = On×r, B2 =

(
Om×r

Ir

)
. (26)

Based on the above introduced vector and matrices, we can rewrite the auxiliary system (1), (2),
(17), (18) in the equivalent form

dx(t)
dt

=
N

∑
j=0

[
A1j(t, ε)x(t − εhj) +A2j(t, ε)ω(t − εhj)

]
+
∫ 0

−h

[
G1(t, η, ε)x(t + εη) + G2(t, η, ε)ω(t + εη)

]
dη, t ≥ 0, (27)

ε
dω(t)

dt
=

N

∑
j=0

[
A3j(t, ε)x(t − εhj) +A4j(t, ε)ω(t − εhj)

]
+
∫ 0

−h

[
G3(t, η, ε)x(t + εη) + G4(t, η, ε)ω(t + εη)

]
dη + B2v(t), t ≥ 0, (28)

ζ(t) = Zcol
(
x(t), ω(t)

)
, t ≥ 0. (29)

Definition 5. For a given ε ∈ (0, ε0], the system (27)-(28), (29) is said to be Euclidean space output
controllable at a given time instant tc > 0 if for any x0 ∈ En, ω0 ∈ Em+r, ϕx(·) ∈ L2[−εh, 0; En],
ϕω(·) ∈ L2[−εh, 0; Em+r] and ζc ∈ En+m there exists a control function v(·) ∈ L2[0, tc; Er], for which
the solution col

(
x(t), ω(t)

)
, t ∈ [0, tc] of the system (27)-(28) with the initial conditions

x(τ) = ϕx(τ), ω(τ) = ϕω(τ), τ ∈ [−εh, 0); x(0) = x0, ω(0) = ω0

satisfies the terminal condition Zcol
(

x(tc), ω(tc)
)
= ζc.

Proposition 1. For a given ε ∈ (0, ε0], the system (1)-(2) is completely Euclidean space controllable at a given
time instant tc > 0, if and only if the system (27)-(28), (29) is Euclidean space output controllable at this
time instant.

Proof. The proposition is proven similarly to [28] (Lemma 1).

Now, let us decompose asymptotically the system (27)-(28), (29) into the slow and fast subsystems.
We start with the slow subsystem. The dynamic part of this subsystem is obtained from (27)-(28) by
setting there formally ε = 0. The output part of the slow subsystem is obtained from (29) by removing
formally the term with the Euclidean part ω(t) of the fast state variable

(
ω(t), ω(t + εη)

)
, η ∈ [−h, 0].

Thus, the slow subsystem has the form

dxs(t)
dt

= A1s(t)xs(t) +A2s(t)ωs(t), t ≥ 0, (30)

0 = A3s(t)xs(t) +A4s(t)ωs(t) + B2vs(t), t ≥ 0, (31)

ζs(t) = xs(t), t ≥ 0, (32)

where xs(t) ∈ En and ωs(t) ∈ Em+r are state variables; vs(t) ∈ Er is a control; ζs(t) ∈ En is an output;
ωs(t) = col

(
ys(t), us(t)

)
, ys ∈ Em, us(t) ∈ Er;
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Ais(t) =
N

∑
j=0

Aij(t, 0) +
∫ 0

−h
Gi(t, η, 0)dη, i = 1, . . . , 4, (33)

or using (8)-(9), (20)–(25)

A1s(t) = A1s(t), A2s(t) =
(

A2s(t), B1s(t)
)

,

A3s(t) =

(
A3s(t)
Or×n

)
, A4s(t) =

(
A4s(t) B2s(t)
Or×m − Ir

)
.

(34)

From the expression for A4s(t) we have that det A4s(t) = (−1)r det A4s(t). Thus, det A4s(t) �= 0,
t ≥ 0 if and only if det A4s(t) �= 0, t ≥ 0. Therefore, subject to (10), the differential-algebraic
system (30)-(31) can be converted to the differential equation

dxs(t)
dt

= Ās(t)xs(t) + B̄s(t)vs(t), t ≥ 0, (35)

where

Ās(t) = A1s(t)− A2s(t)A−1
4s (t)A3s(t), B̄s(t)vs(t) = −A2s(t)A−1

4s (t)B2. (36)

Using the Equations (34) and (36), the Equation (35) can be rewritten as:

dxs(t)
dt

= Ās(t)xs(t) + B̄s(t)vs(t), t ≥ 0, (37)

where the matrix-valued coefficients Ās(t) and B̄s(t) are given in (12). Hence, subject to (10), the
slow subsystem associated with (27)-(28), (29) consists of the differential Equation (37) and the output
Equation (32).

Remark 1. Comparison of the differential Equations (37) and (11) directly yields that the former can be obtained
from the latter by replacing in it us(t) with vs(t), and vice versa. Moreover, the output in the system (37), (32)
coincides with xs(t). Hence, the output controllability of this system means its controllability with respect to
xs(t). Therefore, the output controllability of (37), (32) coincides with the complete controllability of (37) and,
thus, it is equivalent to the complete controllability of the system (11).

Remark 2. Similarly to Remark 1, since the output in the system (30)-(31), (32) coincides with xs(t), then an
output controllability of this system coincides with a proper controllability of its dynamic part (30)-(31) with
respect to xs(t).

Definition 6. The system (30)-(31) is said to be impulse-free controllable with respect to xs(t) at a given time
instant tc > 0 if for any x0 ∈ En and xc ∈ En there exists a control function vs(·) ∈ L2[0, tc; Er], for which
(30)-(31) has an impulse-free solution col(xs(t), ωs(t)), t ∈ [0, tc], satisfying the initial and terminal conditions
xs(0) = x0 and xs(tc) = xc.

Proposition 2. The system (6)-(7) is impulse-free controllable with respect to xs(t) at a given time instant
tc > 0 if and only if the system (30)-(31) is impulse-free controllable with respect to xs(t) at this time instant.

Proof. Eliminating the component us(t) of the state variable ωs(t) from the system (30)-(31), we convert
the latter to the equivalent system consisting of the equation us(t) = vs(t) and the system

dxs(t)
dt

= A1s(t)xs(t) + A2s(t)ys(t) + B1s(t)vs(t), t ≥ 0, (38)
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0 = A3s(t)xs(t) + A4s(t)ys(t) + B2s(t)vs(t), t ≥ 0, (39)

where Ais(t), Bks(t), (i = 1, . . . , 4; k = 1, 2) are given in (8)-(9).
Therefore, the impulse-free controllability with respect to xs(t) of the system (30)-(31) is equivalent

to such a controllability of the system (38)-(39). Now, the comparison of the latter with the system (6)-(7)
directly yields the statement of the proposition.

Proceed to the fast subsystem, associated with the system (27)-(28), (29). The dynamic part
of this subsystem is constructed similarly to the fast subsystem (13), associated with the original
system (1)-(2). The output part of the fast subsystem is obtained from (29) by removing formally the
term with the Euclidean part x(t) of the state variable

(
x(t), x(t + εη)

)
, η ∈ [−h, 0]. Thus the fast

subsystem, associated with the auxiliary system (27)-(28), (29), consists of the differential equation

dω f (ξ)

dξ
=

N

∑
j=0

A4j(t, 0)ω f (ξ − hj) +
∫ 0

−h
G4(t, η, 0)ω f (ξ + η)dη + B2v f (ξ), ξ ≥ 0, (40)

and the output equation

ζ f (ξ) = Ω f ω f (ξ), ξ ≥ 0, Ω f =
(

Im, Om×r
)
, (41)

where t ≥ 0 is a parameter; ω f (ξ) ∈ Em+r;
(
ω f (ξ), ω f (ξ + η)

)
is a state variable; v f (ξ) ∈ Er is a

control; ζ f (ξ) ∈ Em is an output.
Note that in contrast with the system (13), in the differential system (40) only the state variable

has delays, while the control is undelayed.

Definition 7. For a given t ≥ 0, the system (40)-(41) is said to be Euclidean space output controllable if for
any ω0 ∈ Em+r, ϕω f (·) ∈ L2[−h, 0; Em+r] and ζ f c ∈ Em there exist a number ξc > 0, independent of ω0,
ϕω f (·) and ζ f c, and a control function v f (·) ∈ L2[0, ξc; Er], for which the solution ω f (ξ), ξ ∈ [0, ξc] of the
differential Equation (40) with the initial conditions

ω f (η) = ϕω f (η), η ∈ [−h, 0); ω f (0) = ω0 (42)

satisfies the terminal condition
Ω f ω f (ξc) = ζ f c. (43)

Lemma 1. For a given t ≥ 0, the system (13) is completely Euclidean space controllable if and only if the
system (40)-(41) is Euclidean space output controllable.

Proof. Sufficiency. Let us assume that, for some given t ≥ 0, the system (40)-(41) is Euclidean space
output controllable. Let ω0 ∈ Em+r, ϕω f (·) ∈ L2[−h, 0; Em+r] and ζ f c ∈ Em be arbitrary given. Then,
there exists a number ξc > 0, independent of ω0, ϕω f (·) and ζ f c, and a control function v f (·) ∈
L2[0, ξc; Er], for which the differential Equation (40) with the initial (42) and terminal (43) conditions
has a solution ω f (ξ), ξ ∈ [0, ξc]. Let us represent the vector ω0 and the vector-valued function ω f (ξ)

in the block form as: ω0 = col
(
y0, u0

)
, y0 ∈ Em, u0 ∈ Er; ω f (ξ) = col

(
y f (ξ), u f (ξ)

)
, y f (ξ) ∈ Em,

u f (ξ) ∈ Er, ξ ∈ [0, ξc]. Also, we represent the vector-valued function ϕω f (η) in the block form as:
ϕω f (η) = col

(
ϕy f (η), ϕu f (η)

)
, η ∈ [−h, 0]. Note, that the component u f (ξ) of the above mentioned

solution ω f (ξ) to the boundary-valued problem (40), (42), (43) satisfies the conditions u f (η) = ϕu f (η),
η ∈ [−h, 0) and u f (0) = u0. Moreover, since v f (·) ∈ L2[0, ξc; Er], then u f (ξ) ∈ W1,2[0, ξc; Er]. Thus, for
the control function u f (ξ), the vector-valued function y f (ξ), ξ ∈ [0, ξc] is a solution of the system (13)
satisfying the initial condition (15) and the terminal conditions y f (ζc) = ζ f c. Hence, re-denoting ζ f c as
yc and using Definition 4, we directly obtain that, for the given t ≥ 0, the system (13) is completely

111



Axioms 2019, 8, 36

Euclidean space controllable. This completes the proof of the sufficiency.
Necessity. The necessity is proven similarly to the sufficiency.

Thus, the lemma is proven.

3.2. Output Controllability of the Auxiliary System and its Slow and Fast Subsystems: Necessary and
Sufficient Conditions

3.2.1. Output Controllability of the Auxiliary System

For a given ε ∈ (0, ε0], let us consider the block vector z(t) = col
(
x(t), ω(t)

)
, t ≥ −εh, and the

block matrices

Aj(t, ε) =

(
A1j(t, ε) A2j(t, ε)
1
ε A3j(t, ε) 1

ε A4j(t, ε)

)
, j = 0, 1, . . . , N, (44)

G(t, η, ε) =

(
G1(t, η, ε) G2(t, η, ε)
1
ε G3(t, η, ε) 1

ε G4(t, η, ε)

)
, B(ε) =

(
B1
1
ε B2

)
=

(
On×r
1
ε B2

)
. (45)

Thus, the auxiliary system (27)-(29), can be rewritten in the equivalent form

dz(t)
dt

=
N

∑
j=0

Aj(t, ε)z(t − εhj) +
∫ 0

−h
G(t, η, ε)z(t + εη)dη + B(ε)v(t), t ≥ 0, (46)

ζ(t) = Zz(t), t ≥ 0. (47)

It is clear that the system (46)-(47) is equivalent to the auxiliary system (27)-(29).

Definition 8. For a given ε ∈ (0, ε0], the system (46)-(47) is said to be Euclidean space output controllable at a
given time instant tc > 0 if for any z0 ∈ En+m+r, ϕz(·) ∈ L2[−εh, 0; En+m+r], and ζc ∈ En+m there exists a
control function v(·) ∈ L2[0, tc; Er], for which the solution z(t), t ∈ [0, tc] of the system (46) with the initial
conditions z(τ) = ϕz(τ), τ ∈ [−h, 0), z(0) = z0 satisfies the terminal condition Zz(tc) = ζc.

Let, for a given ε ∈ (0, ε0], the (n+m+ r)× (n+m+ r)-matrix-valued function Ψ(σ, ε), σ ∈ [0, tc]

be a solution of the terminal-value problem

dΨ(σ,ε)
dσ = − ∑N

j=0
(Aj(σ + εhj, ε)

)TΨ(σ + εhj, ε)

− ∫ 0
−h
(G(t − εη, η, ε

)TΨ(σ − εη, ε)dη, σ ∈ [0, tc),

Ψ(tc, ε) = In+m+r; Ψ(σ, ε) = 0, σ > tc,

(48)

where it is assumed that Aij(t, ε) = Aij(tc, ε), Gi(t, η, ε) = Gi(tc, η, ε), t > tc, η ∈ [−h, 0], ε ∈ [0, ε0],
(i = 1, . . . , 4; j = 1, . . . , N). Due to the results of [32] (Section 4.3), Ψ(σ, ε) exists and is unique for
σ ∈ [0, tc], ε ∈ (0, ε0].

Consider the following two matrices of the dimensions (n + m + r)× (n + m + r) and (n + m)×
(n + m), respectively:

W(tc, ε) =
∫ tc

0
ΨT(σ, ε)B(ε)BT(ε)Ψ(σ, ε)dσ (49)

and
WZ(tc, ε) = ZW(tc, ε)ZT . (50)

Proposition 3. For a given ε ∈ (0, ε0], the auxiliary system (27)-(29) is Euclidean space output controllable at
a given time instant tc > 0 if and only if the matrix WZ(tc, ε) is nonsingular, i.e., det WZ(tc, ε) �= 0.

Proof. By virtue of the results of [29] (Corollary 1), the system (46)-(47) is Euclidean space output
controllable at the time instant tc if and only if det WZ(tc, ε) �= 0. Since this system is equivalent to the
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auxiliary system (27)-(29), then, due to Definitions 5 and 8, the auxiliary system also is Euclidean space
output controllable at tc if and only if det WZ(tc, ε) �= 0. This completes the proof of the proposition.

3.2.2. Output Controllability of the Slow and Fast Subsystems Associated with the Auxiliary System

We start with the slow subsystem (37).
Let, for a given tc > 0, the n × n-matrix-valued function Ψs(σ), σ ∈ [0, tc] be the unique solution

of the terminal-value problem

dΨs(σ)

dσ
= −(Ās(σ)

)TΨs(σ), σ ∈ [0, tc), Ψs(tc) = In. (51)

Consider the n × n-matrix

Ws(tc) =
∫ tc

0
ΨT

s (σ)B̄s(σ)B̄T
s (σ)Ψs(σ)dσ. (52)

By virtue of the results of [15], we have the following proposition.

Proposition 4. Let the condition (10) be fulfilled in the interval [0, tc]. Then, the slow subsystem (37), associated
with the auxiliary system (27)-(29), is completely controllable at the time instant tc, if and only if the matrix
Ws(tc) is nonsingular, i.e., det Ws(tc) �= 0.

Proceed to the fast subsystem (40)-(41).
Let, for any given t ≥ 0, the (m + r) × (m + r)-matrix-valued function Ψ f (ξ, t) be the unique

solution of the following initial-value problem:

dΨ f (ξ)

dξ
=

N

∑
j=0

(A4j(t, 0)
)TΨ f (ξ − hj)

+
∫ 0

−h

(G4(t, η, 0)
)TΨ f (ξ + η)dη, ξ > 0,

Ψ f (ξ) = 0, ξ < 0, Ψ f (0) = Im+r.

(53)

Consider the m × m-matrix-valued function

Wf (ξ, t) = Ω f

∫ ξ

0
ΨT

f (ρ, t)B2BT
2 Ψ f (ρ, t)dρΩT

f , ξ ≥ 0, t ≥ 0. (54)

By virtue of the results of [29] (Corollary 1), we have the following assertion.

Proposition 5. For a given t ≥ 0, the fast subsystem (40)-(41) of the auxiliary system (27)-(29) is Euclidean
space output controllable if and only if there exists a number ξc > 0 such that the matrix Wf (ξc, t) is nonsingular,
i.e., det Wf (ξc, t) �= 0.

3.3. Linear Control Transformation in the Auxiliary System

Let us transform the control v(t) in the auxiliary system (27)-(28), (29) as follows:

v(t) = K1(t)ω(t) +
∫ 0

−h
K2(t, η)ω(t + εη)dη + w(t), (55)

where w(t) ∈ Er is a new control; K1(t) and K2(t, η) are any specified matrix-valued functions of the
dimension r × (m + r) given for t ≥ 0, η ∈ [−h, 0]; K1(t) is continuous for t ≥ 0; K2(t, η) is continuous
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with respect to t ≥ 0 uniformly in η ∈ [−h, 0], and this function is piecewise continuous in η ∈ [−h, 0]
for any t ≥ 0.

Due to this transformation, the dynamic part (27)-(28) of the system (27)-(28), (29) becomes as:

dx(t)
dt

=
N

∑
j=0

[
A1j(t, ε)x(t − εhj) +A2j(t, ε)ω(t − εhj)

]
+
∫ 0

−h

[
G1(t, η, ε)x(t + εη) + G2(t, η, ε)ω(t + εη)

]
dη, t ≥ 0, (56)

ε
dω(t)

dt
=

N

∑
j=0

[
A3j(t, ε)x(t − εhj) +AK

4j(t, ε)ω(t − εhj)
]

+
∫ 0

−h

[
G3(t, η, ε)x(t + εη) + GK

4 (t, η, ε)ω(t + εη)
]
dη + B2w(t), t ≥ 0, (57)

where
AK

40(t, ε) = A40(t, ε) + B2K1(t), AK
4j(t, ε) = A4j(t, ε), j = 1, . . . , N, (58)

GK
4 (t, η, ε) = G4(t, η, ε) + B2K2(t, η). (59)

Proposition 6. For a given ε ∈ (0, ε0], the system (27)-(28), (29) is Euclidean space output controllable at a
given time instant tc > 0, if and only if the system (56)-(57), (29) is Euclidean space output controllable at this
time instant.

Proof. The proposition is proven similarly to [29] (Lemma 3).

As a direct consequence of Propositions 1 and 6, we obtain the following assertion.

Corollary 1. For a given ε ∈ (0, ε0], the system (1)-(2) is completely Euclidean space controllable at a given
time instant tc > 0, if and only if the system (56)-(57), (29) is Euclidean space output controllable at this
time instant.

Now, let us decompose asymptotically the singularly perturbed system (56)-(57), (29) into the slow
and fast subsystems. This decomposition is carried out similarly to that for the system (27)-(28), (29).
Thus, the slow subsystem, associated with (56)-(57), (29), consists of the differential-algebraic system

dxs(t)
dt

= A1s(t)xs(t) +A2s(t)ωs(t), t ≥ 0, (60)

0 = A3s(t)xs(t) +AK
4s(t)ωs(t) + B2ws(t), t ≥ 0, (61)

and the output Equation (32). In (60)-(61), (32), xs(t) ∈ En and ωs(t) ∈ Em+r are state variables;
ws(t) ∈ Er is a control; ζs(t) ∈ En is an output; Als(t), (l = 1, 2, 3) are given in (33);

AK
4s(t) =

N

∑
j=0

AK
4j(t, 0) +

∫ 0

−h
GK

4 (t, η, 0)dη. (62)

If
det AK

4s(t) �= 0, t ≥ 0, (63)

the differential-algebraic system (60)-(61) can be reduced to the differential equation with respect
to xs(t)

dxs(t)
dt

= Ā K
s (t)xs(t) + B̄ K

s (t)ws(t), t ≥ 0, (64)
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where

Ā K
s (t) = A1s(t)− A2s(t)

(AK
4s(t)

)−1A3s(t),

B̄ K
s (t) = −A2s(t)

(AK
4s(t)

)−1B2.

Thus, subject to (63), the slow subsystem associated with (56)-(57), (29) is (64), (32).
The fast subsystem, associated with (56)-(57), (29), consists of the differential equation with

state delays

dω f (ξ)

dξ
=

N

∑
j=0

AK
4j(t, 0)ω f (ξ − hj) +

∫ 0

−h
GK

4 (t, η, 0)ω f (ξ + η)dη

+B2w f (ξ), ξ ≥ 0, (65)

and the output Equation (41). Note, that in (65), (41), t ≥ 0 is a parameter, while ξ is an independent
variable. Moreover, in this system, ω f (ξ) ∈ Em+r;

(
ω f (ξ), ω f (ξ + η)

)
, η ∈ [−h, 0) is a state variable;

w f (ξ) ∈ Er, (w f (ξ) is a control); ζ f (ξ) ∈ Em, (ζ f (ξ) is an output).

Remark 3. Since the output in the slow subsystem in both forms, (60)-(61), (32) and (64), (32), coincides with
the state variable xs(t), then an output controllability of the slow subsystem is a controllability of its dynamic
part with respect to xs(t). Namely, for the slow subsystem in the form (60)-(61), (32) such a controllability is
the impulse-free controllability of the system (60)-(61) with respect to xs(t). For the slow subsystem in the form
(64), (32), the controllability with respect to xs(t) is the complete controllability of the system (64).

Proposition 7. The system (30)-(31) is impulse-free controllable with respect to xs(t) at a given time instant
tc > 0 if and only if the system (60)-(61) is impulse-free controllable with respect to xs(t) at this time instant.

Proof. The proposition is proven similarly to [26] (Lemma 3).

Based on Propositions 2 and 7, we directly obtain the following corollary.

Corollary 2. The system (6)-(7) is impulse-free controllable with respect to xs(t) at a given time instant tc > 0
if and only if the system (60)-(61) is impulse-free controllable with respect to xs(t) at this time instant.

Proposition 8. Let the condition (63) be satisfied. Then, the system (60)-(61) is impulse-free controllable with
respect to xs(t) at a given time instant tc > 0, if and only if the system (64) is completely controllable at this
time instant.

Proof. The proposition is proven similarly to [26] (Theorem 2).

Proposition 9. Let the conditions (10) and (63) be valid. Then, the system (37) (and therefore, the system (11))
is completely controllable at a given time instant tc > 0 if and only if the system (64) is completely controllable
at this time instant.

Proof. The proposition is proven similarly to [25] (Lemma 3.6).

By virtue of the results of [29] (Lemma 6), we have the following assertion.

Proposition 10. For a given t ≥ 0, the system (40)-(41) is Euclidean space output controllable if and only if
the system (65), (41) is Euclidean space output controllable.

Based on Lemma 1 and Propositions 10, we directly have the following corollary.
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Corollary 3. For a given t ≥ 0, the system (13) is completely Euclidean space controllable if and only if the
system (65), (41) is Euclidean space output controllable.

3.4. Hybrid Set of Riccati-Type Matrix Equations

Let us denote
S22

�
= B2BT

2 . (66)

Consider the following set, consisting of one algebraic and two differential equations (ordinary
and partial) for matrices P , Q, and R:

P(t)A40(t, 0) +AT
40(t, 0)P(t)− P(t)S22P(t) +Q(t, 0) +QT(t, 0) + Im+r = 0, (67)

dQ(t,η)
dη =

(
AT

40(t, 0)− P(t)S22

)
Q(t, η) + P(t)G4(t, η, 0)

+∑N−1
j=1 P(t)A4j(t, 0)δ(η + hj) +R(t, 0, η),

(68)

(
∂

∂η
+

∂

∂χ

)
R(t, η, χ) = GT

4 (t, η, 0)Q(t, χ)

+QT(t, η)G4(t, χ, 0) +
N−1

∑
j=1

AT
4j(t, 0)Q(t, χ)δ(η + hj) (69)

+
N−1

∑
j=1

QT(t, η)A4j(t, 0)δ(χ + hj)− QT(t, η)S22(t, 0)Q(t, χ),

where t ≥ 0 is a parameter; η ∈ [−h, 0] and χ ∈ [−h, 0] are independent variables; δ(·) is the Dirac
delta-function.

The set of the Equations (67)-(69) is subject to the boundary conditions

Q(t, −h) = P(t)A4N(t, 0),

R(t, −h, η) = AT
4N(t, 0)Q(t, η), R(t, η, −h) = QT(t, η)A4N(t, 0).

(70)

Let tc > 0 be a given time instant.
In what follows of this subsection, we assume:

(I) The matrix-valued functions A4j(t, 0), (j = 0, 1, . . . , N) are continuously differentiable in the
interval [0, tc].

(II) The matrix-valued function G4(t, η, 0) is continuously differentiable with respect to t ∈ [0, tc]

uniformly in η ∈ [−h, 0].
(III) The matrix-valued function G4(t, η, 0) is piece-wise continuous with respect to η ∈ [−h, 0] for

each t ∈ [0, tc].

For the sake of the further analysis of the set (67)-(70), we introduce the following definition.
For a given t ∈ [0, tc], consider the state-feedback control in the fast subsystem (40)

ṽ f
(
ω f ,ξ

)
= K̃1 f (t)ω f (ξ) +

∫ 0

−h
K̃2 f (t, η)ω f (ξ + η)dη, (71)

where ω f ,ξ =
{

ω f (ξ + η), η ∈ [−h, 0]
}

, K̃1 f (t) and K̃2 f (t, η) are an r × m-matrix and an r ×
m-matrix-valued function of η, respectively; K̃2 f (t, η) is piece-wise continuous in the interval [−h, 0].

Definition 9. For a given t ∈ [0, tc], the fast subsystem (40) is called L2-stabilizable if there exists the
state-feedback control (71) such that for any given ω0 ∈ Em+r, ϕω f (·) ∈ L2[−h, 0; Em+r], the solution ω̃ f (ξ)
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of (40) with v f (ξ) = ṽ f
(
ω f ,ξ

)
and subject to the initial conditions (42) satisfies the inclusion ω̃ f (ξ) ∈

L2[0,+∞; Em+r].

The following proposition is a direct consequence of the results of [33] (Theorems 5.9 and 6.1).

Proposition 11. Let the assumption (III) be valid. Let, for any t ∈ [0, tc], the fast subsystem (40) be
L2-stabilizable. Then, for any t ∈ [0, tc], the set of the Equations (67)-(69) subject to the boundary conditions
(70) has the unique solution

{P(t), Q(t, η), R(t, η, χ), (η, χ) ∈ [−h, 0]× [−h, 0]
}

such that:

(a) PT(t) = P(t);
(b) the matrix-valued function Q(t, η) is piece-wise absolutely continuous in η ∈ [−h, 0] with the bounded

jumps at η = −hj, (j = 1, . . . , N − 1);
(c) the matrix-valued function R(t, η, χ) is piece-wise absolutely continuous in η ∈ [−h, 0] and in χ ∈

[−h, 0] with the bounded jumps at η = −hj1 and χ = −hj2 , (j1 = 1, . . . , N − 1; j2 = 1, . . . , N − 1),
moreover, RT(t, η, χ) = R(t, χ, η);

(d) all roots λ(t) of the equation

det

[
λIm −

(
A40(t, 0)− S22P(t)

)
− ∑N

j=1 A4j(t, 0) exp(−λhj)

− ∫ 0
−h

(
G4(t, η, 0)− S22Q(t, η)

)
exp(λη)dη

]
= 0

(72)

satisfy the inequality
Reλ(t) < −2γ(t), t ∈ [0, tc], (73)

where γ(t) > 0 is some function of t.

By virtue of the results of [34] (Lemmas 4.1, 4.2 and 3.2), we directly have the following three assertions.

Proposition 12. Let the assumptions (I)-(III) be valid. Let, for any t ∈ [0, tc], the fast subsystem (40) be
L2-stabilizable. Then, the matrices P(t), Q(t, η), R(t, η, χ) are continuous functions of t ∈ [0, tc] uniformly
in (η, χ) ∈ [−h, 0]× [−h, 0].

Proposition 13. Let the assumptions (I)-(III) be valid. Let, for any t ∈ [0, tc], the fast subsystem (40)
be L2-stabilizable. Then, the derivatives dP(t)/dt, ∂Q(t, η)/∂t, ∂R(t, η, χ)/∂t exist and are continuous
functions of t ∈ [0, tc] uniformly in (η, χ) ∈ [−h, 0]× [−h, 0].

Proposition 14. Let the assumptions (I)-(III) be valid. Let, for any t ∈ [0, tc], the fast subsystem (40) be
L2-stabilizable. Then, there exists a positive number γ̄ such that all roots λ(t) of the Equation (72) satisfy the
inequality λ(t) < −2γ̄, t ∈ [0, tc].

4. Parameter-Free Controllability Conditions

In this section, we derive ε-free sufficient conditions for the Euclidean space output controllability
of the auxiliary system (27)-(28), (29) and ε-free sufficient conditions for the complete Euclidean space
controllability of the original system (1)-(2).

Let tc > 0 be a given time instant independent of ε.

4.1. Case of the Standard System (1)-(2)

In this subsection, we assume that the condition (10) holds for all t ∈ [0, tc]. In the literature,
singularly perturbed systems with such a feature are called standard (see e.g., [1,12]).

In what follows, we also assume:
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(AI) The matrix-valued functions Aij(t, ε), Bkj(t, ε), (i = 1, . . . , 4; j = 0, 1, . . . , N; k = 1, 2), are
continuously differentiable with respect to (t, ε) ∈ [0, tc]× [0, ε0].

(AII) The matrix-valued functions Gi(t, η, ε), (i = 1, . . . , 4) are piece-wise continuous with respect
to η ∈ [−h, 0] for each (t, ε) ∈ [0, tc] × [0, ε0], and they are continuously differentiable with
respect to (t, ε) ∈ [0, tc]× [0, ε0] uniformly in η ∈ [−h, 0].

(AIII) The matrix-valued functions Hk(t, η, ε), (k = 1, 2) are piece-wise continuous with respect
to η ∈ [−h, 0] for each (t, ε) ∈ [0, tc] × [0, ε0], and they are continuously differentiable with
respect to (t, ε) ∈ [0, tc]× [0, ε0] uniformly in η ∈ [−h, 0].

(AIV) All roots λ(t) of the equation

det

[
λIm −

N

∑
j=0

A4j(t, 0) exp(−λhj)−
∫ 0

−h
G4(t, η, 0) exp(λη)dη

]
= 0 (74)

satisfy the inequality Reλ(t) < −2β for all t ∈ [0, tc], where β > 0 is some constant.

Lemma 2. (Main Lemma) Let the assumptions (AI)-(AIV) be valid. Let the system (37) be completely
controllable at the time instant tc. Let, for t = tc, the system (40)-(41) be Euclidean space output controllable.
Then, there exists a positive number ε1, (ε1 ≤ ε0), such that for all ε ∈ (0, ε1], the singularly perturbed system
(27)-(28), (29) is Euclidean space output controllable at the time instant tc.

Proof of the lemma is presented in Section 4.3.

Remark 4. Note that the Euclidean space output controllability for singularly perturbed systems with small
state delays was studied in [29]. In this paper, the case of the standard original system was treated in Theorems
1–3 where different ε-free sufficient conditions for the Euclidean space output controllability of the original
system were formulated. These conditions depend considerably on relations between the Euclidean dimensions of
the state and output variables of the system. However, due to the specific form (19) of the matrix of the coefficients
Z in the output equation of the system (27)-(28), (29), only Theorem 1 of [29] and only in the very specific
case n ≤ r is applicable to this system. Therefore, in Section 4.3, we present the proof of Lemma 2 which is not
based on the results of [29]. In particular, this proof is uniformly valid for all relations between the Euclidean
dimensions of the state and output variables of the system (27)-(28), (29).

Theorem 1. Let the assumptions (AI)-(AIV) be valid. Let the system (11) be completely controllable at the time
instant tc. Let, for t = tc, the system (13) be completely Euclidean space controllable. Then, for all ε ∈ (0, ε1],
the singularly perturbed system (1)-(2) is completely Euclidean space controllable at the time instant tc.

Proof. Based on Proposition 1, Remark 1 and Lemma 1, the theorem directly follows from
Lemma 2.

4.2. Case of the Nonstandard System (1)-(2)

In this subsection, in contrast with the previous one, we consider the case where the condition
(10) does not hold at least for one value of t ∈ [0, tc]. In the literature, singularly perturbed systems with
such a feature are called nonstandard (see e.g., [1,12]). Since the condition (10) is not satisfied for some
t̄ ∈ [0, tc], then det A4s(t̄) = 0. The latter, along with the Equation (8), means that one of the roots λ(t̄)
of the Equation (74) equals zero. Thus, in the case of the nonstandard system (1)-(2) the assumption
(AIV) is not valid. Therefore, in this subsection, we replace this assumption as follows.

We assume:

(AV) For all t ∈ [0, tc] and any complex number λ with Reλ ≥ 0, the following equality is valid:

rank
[

FA(t, λ)− λIm , FB(t, λ)
]
= m, (75)
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where
FA(t, λ) = ∑N

j=0 A4j(t, 0) exp(−λhj) +
∫ 0
−h G4(t, η, 0) exp(λη)dη,

FB(t, λ) = ∑N
j=0 B2j(t, 0) exp(−λhj) +

∫ 0
−h H2(t, η, 0) exp(λη)dη.

(76)

Lemma 3. Let the assumption (AV) be valid. Then, for all t ∈ [0, tc] and any complex number λ with Reλ ≥ 0,
the following equality is valid:

rank

[
∑N

j=0 A4j(t, 0) exp(−λhj)

+
∫ 0
−h G4(t, η, 0) exp(λη)dη − λIm+r , B2

]
= m + r.

(77)

Proof. Using the block form of the matrices A4j(t, ε), (j = 0, 1, . . . , N), G4(t, η, ε), B2 (see the
Equations (22), (23), (25), (26)), we can rewrite the block matrix in the left-hand side of (77) as follows:(

∑N
j=0 A4j(t, 0) exp(−λhj) +

∫ 0
−h G4(t, η, 0) exp(λη)dη − λIm+r , B2

)
=(

FA(t, λ)− λIm FB(t, λ) Om×r

Or×m − (λ + 1)Ir Ir

)
.

(78)

The Equation (78), along with the Equation (75), directly yields the Equation (77), which completes the
proof of the lemma.

Corollary 4. Let the assumption (AV) be valid. Then, for any t ∈ [0, tc], the fast subsystem (40) is
L2-stabilizable.

Proof. The corollary is a direct consequence of Lemma 3 and the results of [35] (Theorem 3.5).

Theorem 2. Let the assumptions (AI)-(AIII),(AV) be valid. Let the system (6)-(7) be impulse-free controllable
with respect to xs(t) at the time instant tc. Let, for t = tc, the system (13) be completely Euclidean space
controllable. Then, there exists a positive number ε2, (ε2 ≤ ε0), such that for all ε ∈ (0, ε2], the singularly
perturbed system (1)-(2) is completely Euclidean space controllable at the time instant tc.

Proof. Let us start with the auxiliary system (27)-(28), (29). Due to the assumptions (AI)-(AIII) and the
Equations (20)-(26), the matrix-valued coefficients of this system satisfy the conditions similar to the
assumptions (AI) and (AII) on the matrix-valued functions Aij(t, ε) and Gi(t, η, ε), (i = 1, . . . , 4; j =
0, 1, . . . , N).

For a given ε ∈ (0, ε0] in the auxiliary system (27)-(28), (29), let us make the control transformation
(55), where

K1(t) = −BT
2 P(t), K2(t, η) = −BT

2 Q(t, η), t ∈ [0, tc], η ∈ [−h, 0], (79)

and P(t) and Q(t, η) are the components of the solution to the problem (67)-(69), (70) mentioned in
Proposition 11. As a result of this transformation, we obtain the system (56)-(57), (29). By virtue of
Corollary 4 and Propositions 11, 13, the matrix-valued coefficients of this system satisfy the conditions
similar to the assumptions (AI) and (AII) on the matrix-valued functions Aij(t, ε) and Gi(t, η, ε),
(i = 1, . . . , 4; j = 0, 1, . . . , N).

The slow and fast subsystems, associated with (56)-(57), (29), are (60)-(61) and (65), (41),
respectively. Since the system (6)-(7) is impulse-free controllable with respect to xs(t) at the time
instant tc, then due to Corollary 2, the system (60)-(61) is impulse-free controllable with respect to
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xs(t) at the time instant tc. Furthermore, since, for t = tc, the system (13) is completely Euclidean
space controllable, then due to Corollary 3, the system (65), (41) for t = tc is Euclidean space output
controllable. By virtue of Corollary 4 and Propositions 11, 14, the value λ = 0 is not a root of the
Equation (72) for all t ∈ [0, tc]. Hence, the matrix AK

4s(t), given by (62), (79), is invertible for all
t ∈ [0, tc]. Thus, the slow subsystem (60)-(61) is reduced to the differential Equation (64). Therefore,
due to Proposition 8, the above mentioned impulse-free controllability of the system (60)-(61) yields
the complete controllability of the system (64) at the time instant tc. Now, by application of Lemma 2
to the system (56)-(57), (29), we directly obtain the existence of a positive number ε2, (ε2 ≤ ε0), such
that for all ε ∈ (0, ε2], this system is Euclidean space output controllable at the time instant tc. Finally,
using Corollary 1 yields the complete Euclidean space controllability of the system (1)-(2) at the time
instant tc for all ε ∈ (0, ε2], which completes the proof of the theorem.

4.3. Proof of Main Lemma (Lemma 2)

In the proof of Main Lemma, the following two auxiliary proposition are used.

4.3.1. Auxiliary Propositions

For any given t ∈ [0, tc] and any complex number μ, let us consider the matrix

W(t, μ) =
N

∑
j=0

A4j(t, 0) exp(−μhj) +
∫ 0

−h
G4(t, η, 0) exp(μη)dη, (80)

where A4j(t, ε), (j = 0, 1, . . . , N) and G4(t, η, ε) are given in (22)-(23) and (25), respectively.

Proposition 15. Let the assumption (AIV) be valid. Then, all roots μ(t) of the equation

det
[
μIm+r − W(t, μ)

]
= 0 (81)

satisfy the inequality Reμ(t) < −2ν for all t ∈ [0, tc], where ν = min{β, 1/4}.

Proof. Using (22)-(23), (25) and (80), we obtain for all t ∈ [0, tc]:

det
[
μIm+r − W(t, μ)

]
=

det

[
μIm −

N

∑
j=0

A41(t, 0) exp(−λhj)−
∫ 0

−h
G4(t, η, 0) exp(μη)dη

]
(μ + 1)r,

meaning that for any t ∈ [0, tc] the set of all roots μ(t) of the Equation (81) consists of all roots of the
Equation (74) and the root μ(t) ≡ −1 of the multiplicity r. This observation, along with the assumption
(AIV), directly yields the statement of the proposition.

Let us partition the matrix-valued function Ψ(σ, ε), given by the terminal-value problem (48), into
blocks as:

Ψ(σ, ε) =

(
Ψ1(σ, ε) Ψ2(σ, ε)

Ψ3(σ, ε) Ψ4(σ, ε)

)
, (82)

where the blocks Ψ1(σ, ε), Ψ2(σ, ε), Ψ3(σ, ε) and Ψ4(σ, ε) are of the dimensions n × n, n × (m + r),
(m + r)× n and (m + r)× (m + r), respectively.

Proposition 16. Let the assumptions (AI)-(AIV) be valid. Then, there exists a positive number ε0, (ε0 ≤
ε0), such that for all ε ∈ (0, ε0] the matrix-valued functions Ψ1(σ, ε), Ψ2(σ, ε), Ψ3(σ, ε), Ψ4(σ, ε) satisfy
the inequalities:
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∥∥Ψ1(σ, ε)− Ψ1s(σ)
∥∥ ≤ aε,

∥∥Ψ2(σ, ε)‖ ≤ a, σ ∈ [0, tc], (83)

∥∥Ψ3(σ, ε)− εΨ3s(σ)
∥∥ ≤ aε

[
ε + exp(−ν(tc − σ)/ε)

]
, σ ∈ [0, tc], (84)

∥∥Ψ4(σ, ε)− Ψ4 f
(
(tc − σ)/ε

)∥∥ ≤ aε, σ ∈ [0, tc], (85)

where

Ψ1s(σ) = Ψs(σ), Ψ3s(σ) = −
(
AT

4s(σ)
)−1AT

2s(σ)Ψs(σ), σ ∈ [0, tc],

Ψ4 f (ξ) = Ψ f (ξ, tc), ξ ≥ 0;

the matrix-valued functions Ψs(σ) and Ψ f (ξ, t) are given by the terminal-value problem (51) and the
initial-value problem (53), respectively; a > 0 is some constant independent of ε.

Proof. Based on Proposition 15, the validity of the inequalities (83)-(85) is proven similarly to [25]
(Lemma 3.2).

Remark 5. By virtue of Proposition 15 and the results of [36], we have the inequality∥∥Ψ4 f (ξ)
∥∥ ≤ a exp(−2νξ), ξ ≥ 0, (86)

where a > 0 is some constant.

4.3.2. Main Part of the Proof

Due to Proposition 3, in order to prove Main Lemma, it is necessary and sufficient to show the
existence of a positive number ε1 such that

det WZ(tc, ε) �= 0 ∀ε ∈ (0, ε1], (87)

where the (n + m)× (n + m)-matrix WZ(tc, ε) is defined by the Equations (49)-(50).
Let, for a given ε ∈ (0, ε0], the matrix W1(tc, ε) of the dimension n × n, the matrix W2(tc, ε) of

the dimension n × (m + r) and the matrix W3(tc, ε) of the dimension (m + r)× (m + r) be the upper
left-hand, upper right-hand and lower right-hand blocks, respectively, of the symmetric matrix W(tc, ε),
given by the Equation (49). Thus,

W(tc, ε) =

(
W1(tc, ε) W2(tc, ε)

WT
2 (tc, ε) W3(tc, ε)

)
. (88)

Using (49), and the block representations of the matrices B(ε) and Ψ(σ, ε) (see the Equations (45)
and (82)), we obtain

W1(tc, ε) =
∫ tc

0

[
ΨT

1 (σ, ε)S11Ψ1(σ, ε) + (1/ε)ΨT
3 (σ, ε)ST

12Ψ1(σ, ε)

+(1/ε)ΨT
1 (σ, ε)S12Ψ3(σ, ε) + (1/ε2)ΨT

3 (σ, ε)S22Ψ3(σ, ε)
]
dσ,

(89)

W2(tc, ε) =
∫ tc

0

[
ΨT

1 (σ, ε)S11Ψ2(σ, ε) + (1/ε)ΨT
3 (σ, ε)ST

12Ψ2(σ, ε)

+(1/ε)ΨT
1 (σ, ε)S12Ψ4(σ, ε) + (1/ε2)ΨT

3 (σ, ε)S22Ψ4(σ, ε)
]
dσ,

(90)

121



Axioms 2019, 8, 36

W3(tc, ε) =
∫ tc

0

[
ΨT

2 (σ, ε)S11Ψ2(σ, ε) + (1/ε)ΨT
4 (σ, ε)ST

12Ψ2(σ, ε)

+(1/ε)ΨT
2 (σ, ε)S12Ψ4(σ, ε) + (1/ε2)ΨT

4 (σ, ε)S22Ψ4(σ, ε)
]
dσ,

(91)

where, due to (45),
S11 = B1BT

1 = On×n, S12 = B1BT
2 = On×(m+r),

S22 = B2BT
2 =

(
Om×m Om×r

Or×m Ir

)
.

(92)

The latter, along with (89)-(91), yields

W1(tc, ε) = (1/ε2)
∫ tc

0
ΨT

3 (σ, ε)S22Ψ3(σ, ε)dσ, (93)

W2(tc, ε) = (1/ε2)
∫ tc

0
ΨT

3 (σ, ε)S22Ψ4(σ, ε)dσ, (94)

W3(tc, ε) = (1/ε2)
∫ tc

0
ΨT

4 (σ, ε)S22Ψ4(σ, ε)dσ. (95)

Let us estimate the matrices W1(tc, ε), W2(tc, ε) and W3(tc, ε). We start with W1(tc, ε). Denote

ΔΨ3(σ, ε)
�
= Ψ3(σ, ε)− εΨ3s(σ). (96)

Using this notation, we can rewrite the expression (93) for W1(tc, ε) as:

W1(tc, ε) = (1/ε2)
∫ tc

0

[
ε2ΨT

3s(σ)S22Ψ3s(σ) + εΨT
3s(σ)S22ΔΨ3(σ, ε)

+ε
(
ΔΨ3(σ, ε)

)TS22Ψ3s(σ) +
(
ΔΨ3(σ, ε)

)TS22ΔΨ3(σ, ε)
]
dσ. (97)

Due to Proposition 16 (see the Equation (84)) and the Equation (96), we have ‖ΔΨ3(σ, ε)‖ ≤ aε
[
ε +

exp(−ν(tc − σ)/ε)
]
, σ ∈ [0, tc], ε ∈ (0, ε0]. Applying this inequality to the expression (97) for the

matrix W1(tc, ε), we obtain the inequality∥∥∥∥W1(tc, ε)−
∫ tc

0
ΨT

3s(σ)S22Ψ3s(σ)dσ

∥∥∥∥ ≤ aε, ε ∈ (0, ε0], (98)

where a > 0 is some constant independent of ε.
Now, let us treat the integral in the left-hand side of (98). Using the Equation (86), we have

W1s
�
=
∫ tc

0 ΨT
3s(σ)S22Ψ3s(σ)dσ

=
∫ tc

0 ΨT
s (σ)A2s(σ)A−1

4s (σ)S22

(
AT

4s(σ)
)−1AT

2s(σ)Ψs(σ)dσ.
(99)

Taking into account the block form of the matrices B2, A2s(σ) and A4s(σ) (see the Equations (26), (34))
and the expression for B̄s(σ) (see the Equation (12)), we obtain
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A2s(σ)A−1
4s (σ)B2 =(

A2s(σ), B1s(σ)
)( A4s(σ) B2s(σ)

Or×m − Ir

)−1(
Om×r

Ir

)
=

(
A2s(σ), B1s(σ)

)( A−1
4s (σ) A−1

4s (σ)B2s(σ)

Or×m − Ir

)(
Om×r

Ir

)
=

(
A2s(σ)A−1

4s (σ), A2s(σ)A−1
4s (σ)B2s(σ)− B1s(σ)

)( Om×r

Ir

)
=

−(B1s(σ)− A2s(σ)A−1
4s (σ)B2s(σ)

)
= −B̄s(σ).

(100)

Finally, using the expression for S22 (see the Equations (92)), as well as the Equations (52), (99) and
(100), we obtain that W1s = Ws(tc). The latter, along with (98), yields∥∥W1(tc, ε)− Ws(tc)

∥∥ ≤ aε, ε ∈ (0, ε0], (101)

where a > 0 is some constant independent of ε.
Similarly to (101), we obtain the existence of a positive number ε̄0 ≤ ε0 such that the following

inequalities are satisfied:∥∥W2(tc, ε)
∥∥ ≤ a,

∥∥εW3(tc, ε)− W3 f (tc)
∥∥ ≤ aε, ε ∈ (0, ε̄0], (102)

where a > 0 is some constant independent of ε;

W3 f (tc) =
∫ +∞

0
ΨT

f (ρ, tc)B2BT
2 Ψ f (ρ, tc)dρ. (103)

By virtue of the inequality (86), the integral in the expression for W3 f (tc) converges.
Now, let us proceed to analysis of the matrix WZ(tc, ε). Using the Equations (19), (50) and (88),

we obtains the following block representation of the matrix WZ(tc, ε):

WZ(tc, ε) =

(
W1(tc, ε) W21(tc, ε)

WT
21(tc, ε) W31(tc, ε)

)
, (104)

where W21(tc, ε) is the left-hand block of the dimension n × m of the matrix W2(tc, ε), while W31(tc, ε)

is the upper left-hand block of the dimension m × m of the matrix W3(tc, ε).
By virtue of (102), we immediately have that

‖W21(tc, ε)‖ ≤ a, ‖εW31(tc, ε)− W3 f ,1(tc)‖ ≤ aε, ε ∈ (0, ε̄0], (105)

where W3 f ,1(tc) is the upper left-hand block of the dimension m × m of the matrix W3 f (tc).
Let us show that

det W3 f ,1(tc) ≥ b, (106)

where b > 0 is some number.
Note that W3 f ,1(tc) can be represented as:

W3 f ,1(tc) = Ω f W3 f (tc)ΩT
f , (107)

where Ω f is given in (41).
Comparison of the expressions for Wf (ξ, t) and W3 f ,1(tc) (see the Equations (54) and (107)),

and use of expression for W3 f (tc) (see the Equation (103)) yield that

W3 f ,1(tc) = lim
ξ→+∞

Wf (ξ, tc). (108)
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Let us observe that, for any ξ > 0 and t ∈ [0, tc], the matrix Wf (ξ, t) is positive semi-definite.
Moreover, since the system (40)-(41) is Euclidean space output controllable for t = tc, then by virtue
of Proposition 5, det Wf (ξc, tc) �= 0 with some ξc > 0. Therefore, det Wf (ξc, tc) > 0 and Wf (ξc, tc) is a
positive definite matrix.

For any ξ > ξc, we have

Wf (ξ, tc) = Wf (ξc, tc) + Ω f

∫ ξ

ξc
ΨT

f (ρ, t)B2BT
2 Ψ f (ρ, t)dρΩT

f ,

and the second addend in the right-hand side of this equation is a positive semi-definite matrix. Hence,
by use of the results of [37], we obtain that

det Wf (ξ, tc) ≥ det Wf (ξc, tc) > 0, ξ > ξc.

The latter, along with the equality (108), directly yields the inequality (106), where b = det Wf (ξc, tc).
Now, we proceed to the proof of the inequality (87). Let us introduce into the consideration

the matrix

L(ε) =

(
In On×m

Om×n
√

εIm

)
.

For any ε > 0, det L(ε) > 0.
Using the Equation (104), we obtain

L(ε)WZ(tc, ε)L(ε) =

⎛⎜⎝ W1(tc, ε)
√

εW21(tc, ε)

√
εWT

21(tc, ε) εW31(tc, ε)

⎞⎟⎠ .

Calculating the limit of the determinant of this matrix as ε → +0, and using the inequalities (101),
(105), (106) and Proposition 4, we obtain

lim
ε→+0

det
(

L(ε)WZ(tc, ε)L(ε)
)
= det

(
Ws(tc) 0
0 W3 f ,1(tc)

)
= det Ws(tc)det W3 f ,1(tc) �= 0.

This inequality, along with the inequality det L(ε) > 0, ε > 0, implies the existence of a positive number
ε1 such that the inequality (87) is valid. This completes the proof of Main Lemma.

5. Examples

5.1. Example 1

Consider the following system, a particular case of (1)-(2),

dx(t)
dt

= x(t)− 4y(t) + 5y(t − ε) +
∫ 0

−2
ηx(t + εη)dη

+(t − 5)u(t)− tu(t − ε), t ≥ 0,

ε
dy(t)

dt
= 3x(t) + (t − 5)y(t)− x(t − ε)− x(t − 2ε) + y(t − ε) (109)

+(t − 2)u(t) + tu(t − ε), t ≥ 0,

where x(t), y(t) and u(t) are scalars, i.e., n = m = r = 1; h1 = 1, h2 = h = 2.
We study the complete Euclidean space controllability of the system (109) at the time instant

tc = 2 for all sufficiently small ε > 0. For this purpose, let us write down the slow and fast subsystems

124



Axioms 2019, 8, 36

associated with (109). Begin with the slow subsystem. For the system (109), the matrix A4s(t), given
in (8), becomes a scalar and has the form A4s(t) = t − 4. Thus, the condition (10) is satisfied for all
t ∈ [0, 2], meaning that the slow subsystem associated with (109) can be reduced to the differential
Equation (11), i.e.,

dxs(t)
dt

=
t − 3
4 − t

xs(t) +
7t − 22
4 − t

us(t), t ∈ [0, 2]. (110)

Due to (13), the fast subsystem associated with the system (109) is

dy f (ξ)

dξ
= (t − 5)y f (ξ) + y f (ξ − 1) + (t − 2)u f (ξ) + tu f (ξ − 1), ξ ≥ 0, (111)

where t ∈ [0, 2] is a parameter. It should be noted the following. Although the delay in the original
system (109) is 2ε, the delay in the fast subsystem is 1 (but not 2), meaning that in this subsystem the
coefficients for the terms with the delay 2 equal zero. Therefore, in what follows, it is sufficient to
analyze the fast subsystem with the delay 1.

It is seen directly that the assumptions (AI)-(AIII) are satisfied for the system (109). Let us show
the fulfillment of the assumption (AIV) for this system. Indeed, the Equation (74) becomes as:

λ − t + 5 − exp(−λ) = 0. (112)

For Reλ ≥ −0.5, one obtains the following:

Re
(
λ − t + 5 − exp(−λ)

) ≥ 2.85 − t > 0 ∀t ∈ [0, 2],

meaning that all roots λ(t) of the Equation (112) satisfy the inequality Reλ(t) < −0.5, t ∈ [0, 2]. Thus,
for the system (109) and tc = 2, the assumption (AIV) is satisfied with β = 0.25. Since the assumptions
(AI)-(AIII) also are satisfied for the system (109) and tc = 2, one can try to use Theorem 1 in order to
find out whether the system (109) is completely Euclidean space controllable at tc = 2 for all sufficiently
small values of ε > 0. For this purpose, proper kinds of controllability of the systems (110) and (111)
should be analyzed. Let us start with the system (110). Since the coefficient for us(t) in (110) differs
from zero for t ∈ [0, 2], this system is completely controllable at the time instant tc = 2.

Proceed to the system (111). Due to Lemma 1, for the given t = tc = 2, this system is completely
Euclidean space controllable if for this value of t the auxiliary system (40)-(41) with the scalar control
v f (ξ) is Euclidean space output controllable. For t = 2, this system becomes

dω f (ξ)

dξ = Ãω f (ξ) + H̃ω f (ξ − 1) + B̃v f (ξ),

ζ f (ξ) = Z̃ω f (ξ), ξ ≥ 0,
(113)

where

Ã = −
(

3 0
0 1

)
, H̃ =

(
1 2
0 0

)
, B̃ =

(
0
1

)
, Z̃ = (1 , 0).

Note that the Euclidean dimension of the state variable in (113) is n f =2, while such dimensions
of the control and the output are r f = 1 and q f = 1, respectively. To verify the Euclidean space
output controllability of the system (113), we apply the algebraic criterion for such a controllability
of a time-invariant differential-difference system (see [38,39]). Using this criterion, we are going to
show that the system (113) is Euclidean space output controllable at any given instant ξc ∈ (1, 2] of the
stretched time ξ. For this purpose, we construct the following matrices:
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Ã0 = Ã = −
(

3 0
0 1

)
, Ã1 =

(
Ã0 O2×2

H̃ Ã0

)
=

⎛⎜⎜⎜⎝
−3 0 0 0

0 − 1 0 0
1 2 − 3 0
0 0 0 − 1

⎞⎟⎟⎟⎠ ,

Ẽ0 = I2, Ẽ1 =
(
O2×2, I2

)
, Z̃0 = Z̃, Z̃1 = Z̃Ẽ1 = (0, 0, 1, 0),

C̃0 = I2, B̃0 = B̃, B̃1 = C̃1B̃,

where

C̃1 =

(
I2

exp
(

Ã0
)
C̃0

)
=

⎛⎜⎜⎜⎝
1 0
0 1
exp(−3) 0
0 exp(−1)

⎞⎟⎟⎟⎠ .

Hence,

B̃1 =

⎛⎜⎜⎜⎝
0
1
0
exp(−1)

⎞⎟⎟⎟⎠ .

Due to the results of [38,39], the system (113) is Euclidean space output controllable at a given
value ξc ∈ (1, 2] of the independent variable ξ, if and only if the rank of the following matrix
equals to q f :

D̃ =
(
Z̃0B̃0, . . . , Z̃0 Ã

n f −1
0 B̃0, Z̃1B̃1, . . . , Z̃1 Ã

2n f −1
1 B̃1

)
.

Since each block of the matrix D̃ is scalar and q f = 1, then it is sufficient to show that at least one
block in this matrix differs from zero. Remember that n f = 2. Therefore, Z̃1 Ã1B̃1 is a block of D̃.
Calculating this block, we obtain Z̃1 Ã1B̃1 = 2 �= 0, meaning that rankD̃ = q f = 1. Thus, the system
(113) is Euclidean space output controllable with any given value ξc ∈ (1, 2] mentioned in Definition 7.
Hence, the system (111) is completely Euclidean space controllable. Therefore, by virtue of Theorem 1,
the system (109) is completely Euclidean space controllable at tc = 2 robustly with respect to ε > 0 for
all its sufficiently small values.

5.2. Example 2

Consider the following particular case of the system (1)-(2):

dx(t)
dt

= 2(t − 1)x(t) + 4y(t)− 2tx(t − ε)− y(t − ε)

+tu(t)− u(t − ε) +
∫ 0

−1
2tηu(t + εη)dη, t ≥ 0, (114)

ε
dy(t)

dt
= 4x(t)− y(t)− 2x(t − ε) + y(t − ε) + 2u(t)− u(t − ε), t ≥ 0,

where x(t), y(t) and u(t) are scalars, i.e., n = m = r = 1; h = 1.
In this example, like in the previous one, we study the complete Euclidean space controllability

of the considered system. We study this controllability at the time instant tc = 2 for all sufficiently
small ε > 0.

The asymptotic decomposition of the system (114) yields the slow and fast subsystems, respectively,

dxs(t)
dt = −2xs(t) + 3ys(t)− us(t), t ≥ 0,

0 = 2xs(t) + us(t), t ≥ 0,
(115)
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and

dy f (ξ)

dξ
= −y f (ξ) + y f (ξ − 1) + 2u f (ξ)− u f (ξ − 1), ξ ≥ 0. (116)

It is seen that the assumptions (AI)-(AIII) are satisfied for the system (114). The condition (10) is
not satisfied for this system, meaning that (114) is a nonstandard system, and it does not satisfy the
assumption (AIV). Indeed, for the system (114), the Equation (74) becomes as:

λ + 1 − exp(−λ) = 0. (117)

For this equation, λ = 0 is a single root with the nonnegative real part.
Let us show the fulfillment of the assumption (AV) for the system (114). The matrix in the

Equation (75) becomes as: [− 1 + exp(−λ)− λ , 2 − exp(−λ)
]
. (118)

For λ = 0, the rank of this matrix equals to the Euclidean dimension of the fast subsystem m = 1.
Since λ = 0 is a single root with the nonnegative real part of the Equation (117), then the rank of the
matrix (118) equals m = 1 for all complex λ with Reλ ≥ 0. Thus, the assumption (AV) is fulfilled for
the system (114).

Now, let us find out whether the systems (115) and (116) are controllable in the sense mentioned
in Theorem 2. We start with (115). Let x0 and xc be any given numbers. Let ϑ = (xc − x0)/6. One can
verify immediately that for the numbers x0 and xc, there exists a control us(t) ∈ L2[0, 2; E1], namely,

us(t) = −2x0 − 3ϑt2,

such that the system (115), subject to the initial xs(0) = x0 and terminal xs(2) = xc conditions, has an
impulse-free solution, namely,

xs(t) = x0 + 1.5ϑt2, ys(t) = ϑt.

Thus, the system (115) is impulse-free controllable with respect to xs(t) at the time instant tc = 2.
Proceed to (116). The complete Euclidean space controllability of this system is shown similarly to
such a kind of controllability of the system (111) in the previous example. Now, using Theorem 2,
we obtain the complete Euclidean space controllability of the system (114) at the time instant tc = 2
robustly with respect to ε > 0 for all its sufficiently small values.

6. Conclusions

In this paper, a singularly perturbed linear time-dependent controlled differential system with
time delays (multiple point-wise and distributed) in the state and control variables was analyzed. The
case where the delays are small of the order of a small positive multiplier ε for a part of the derivatives
in the differential equations was treated. The complete Euclidean space controllability of the considered
system, robust with respect to the small parameter ε, was studied. This study uses the asymptotic
decomposition of the original system into two lower dimensions ε-free subsystems, the slow and fast
ones. The slow subsystem is a differential-algebraic delay-free system. This subsystem, subject to a
proper assumption, can be converted to a differential equation. The fast subsystem is a differential
system with multiple point-wise delays and distributed delays in the state and the control. It was
shown that proper kinds of controllability of the slow and fast subsystems yield the complete Euclidean
space controllability of the original system valid for all sufficiently small values of ε.
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1. Introduction

In the study of various issues related to dynamic stability, with the properties of media with a
periodic structure, in the study of other applied problems, one has to deal with differential equations
with rapidly oscillating coefficients. Equations of this kind can describe some mechanical or electrical
systems that are under the influence of high-frequency external forces, automatic control systems
with a linear adjustable object, etc. As an example, we can cite the principle of operation of an
oscillator with a small mass and a nonlinear restoring force, in which a high-frequency periodic force
with a large amplitude acts. The presence of high-frequency terms creates serious problems for their
direct numerical solutions. Therefore, asymptotic methods are usually applied to such equations
first, the most famous of which are the Feshchenko–Shkil–Nikolenko splitting method [1–5] and the
Lomov’s regularization method [6–8]. It should also be noted that singularly perturbed equations are
the object of study by several Russian researchers, as well as other scientists (see, for example [9–22]).

In this paper, the Lomov’s regularization method is generalized to previously unexplored
integro-differential equations with rapidly oscillating coefficients and with rapidly decreasing kernels
of the form

ε
dz
dt

− a(t)z − εg(t) cos
β(t)

ε
z −

∫ t

t0

e
1
ε

∫ t
s μ(θ)dθK(t, s)z(s, ε)ds = h(t), z(t0, ε) = z0, t ∈ [t0, T] (1)

where z = z(t, ε), h(t), β′(t) > 0, a(t) > 0, μ(t) < 0, a(t) �= μ(t) (∀t ∈ [t0, T]) , g(t) are scalar
functions, z0 is a constant, ε > 0 is a small parameter. In the case β (t) = 2γ (t) , and of the absence of
an integral term, such a system was considered in [6–8].
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The limit operator a(t) has a spectrum λ1 (t) = a(t), functions λ2 (t) = −iβ′ (t) and
λ3 (t) = +iβ′ (t) are associated with the presence in Equation (1) of a rapidly oscillating cos β(t)

ε ,
and the function λ4 (t) = μ(t) characterizes the rapid change in the kernel of the integral operator.

We introduce the following notations:
λ (t) = (λ1 (t) , ..., λ4 (t)) ,
m = (m1, ..., m4) is multi-index with non-negative components mj, j = 1, 4,
|m| = ∑4

j=1 mj is multi-index height m,

(m, λ (t)) = ∑4
j=1 mjλj (t) .

Assume that the following conditions are met:
(1) a(t), β(t), μ(t) ∈ C∞ ([t0, T] , R) , g(t), h(t) ∈ C∞ ([t0, T] , C) ,

K(t, s) ∈ C∞ {t0 ≤ s ≤ t ≤ T,C} ;
(2) the relations (m, λ (t)) = 0, (m, λ (t)) = λj (t) , j ∈ {1, ..., 4} for all multi-indices m with

|m| ≥ 2 or are not fulfilled for any t ∈ [t0, T] , or are fulfilled identically on the whole segment
t ∈ [t0, T] .

In other words, resonant multi-indices are exhausted by the following sets

Γ0 = {m : (m, λ (t)) ≡ 0, |m| ≥ 2, ∀t ∈ [t0, T]} ,
Γj =

{
m : (m, λ (t)) ≡ λj (t) , |m| ≥ 2, ∀t ∈ [t0, T]

}
, j = 1, 4.

Under these conditions, we will develop an algorithm for constructing a regularized [6] asymptotic
solution of the problem (1).

2. Regularization of the Problem (1)

Denote by σj = σj (ε) independent of the t quantities σ1 = e− i
ε β(t0), σ2 = e+

i
ε β(t0), and rewrite

the Equation (1) in the form

L z(t, ε) ≡ ε dz
dt − a(t)z − ε

g(t)
2

(
e−

i
ε

∫ t
t0

β′(θ)dθ
σ1 + e+

i
ε

∫ t
t0

β′(θ)dθ
σ2

)
z−

− ∫ t
t0

e
1
ε

∫ t
s μ(θ)dθK(t, s)z(s, ε)ds = h(t), z(t0, ε) = z0, t ∈ [t0, T].

(2)

We introduce regularizing variables

τj =
1
ε

∫ t

t0

λj(θ)dθ ≡ ψj(t)
ε

, j = 1, 4 (3)

and instead of problem (2) we consider the problem

L z̃ (t, τ, ε) ≡ ε ∂z̃
∂t + ∑4

j=1 λj(t) ∂z̃
∂τj

− λ1(t)z̃ − ε
g(t)

2 (eτ2 σ1 + eτ3 σ2) z̃−
− ∫ t

t0
e

1
ε

∫ t
s λ4(θ)dθK(t, s)z̃

(
s, ψ(s)

ε , ε
)

ds = h(t), z̃(t, τ, ε)|t=t0,τ=0 = z0, t ∈ [t0, T]
(4)

for the function z̃ = z̃ (t, τ, ε) , where it is indicated (according to (3)): τ = (τ1, ..., τ4) , ψ = (ψ1, ..., ψ4) .
It is clear that if z̃ = z̃ (t, τ, ε) is the solution of the problem (4), then the function z = z̃

(
t, ψ(t)

ε , ε
)

is an
exact solution of the problem (2), therefore, the problem (4) is an extension of the problem (2).

However, (4) cannot be considered completely regularized, since the integral term

Jz̃ =
∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) z̃

(
s,

ψ(s)
ε

, ε

)
ds

has not been regularized in it. To regularize J, we introduce a class Mε, asymptotically invariant with
respect to the operator Jz̃ (see [6]; p. 62).
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We first consider the space U of functions z (t, τ) , representable by sums

z (t, τ, σ) = z0 (t, σ) + ∑4
i=1 zi (t, σ) eτi + ∑∗

2≤|m|≤Nz
zm (t, σ) e(m,τ),

z0 (t, σ) , zi (t, σ) , zm (t, σ) ∈ C∞ ([t0, T] , C) , i = 1, 4, 2 ≤ |m| ≤ Nz
(5)

where the asterisk ∗ above the sum sign indicates that in it the summation for |m| ≥ 2 occurs only over
nonresonant multi-indices m = (m1, ..., m4) , i.e., over m /∈ ⋃4

i=0 Γi.
Note that in (5) the degree Nz of the polynomial z (t, τ, σ) to exponentials eτj depends on the

element z. The elements of the space U depend on bounded in ε > 0 constants σ1 = σ1 (ε) and
σ2 = σ2 (ε), which do not affect the development of the algorithm described below, therefore in the
notation of element (5) of this space U we omit the dependence on σ = (σ1, σ2) for brevity. We show
that the class Mε = U|τ=ψ(t)/ε is asymptotically invariant with respect to the operator J.

The image of the operator J on the element (5) of the space U has the form:

Jz (t, τ) =
∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) z0 (s) ds +

4

∑
i=1

∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) zi (s) e

1
ε

∫ s
t0

λi(θ)dθds+

+
∗
∑

2≤|m|≤Nz

∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) zm (s) e

1
ε

∫ s
t0
(m,λ(θ))dθds =

=
∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) z0 (s) ds + e

1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) z4 (s) ds+

+
4

∑
i=1,i �=4

e
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) zi (s) e
1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθds+

+
∗
∑

2≤|m|≤Nz

e
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) zm (s) e
1
ε

∫ s
t0
(m−e4,λ(θ))dθds.

Integrating in parts, we have

J0 (t, ε) =
∫ t

t0

K (t, s) z0 (s) e
1
ε

∫ s
t0

λ4(θ)dθds = ε
∫ t

t0

K (t, s) z0 (s)
λ4 (s)

de
1
ε

∫ s
t0

λ4(θ)dθ
=

= ε
K (t, s) z0 (s)

λ4 (s)
e

1
ε

∫ s
t0

λ4(θ)dθ
∣∣∣∣s=t

s=t0

− ε
∫ t

t0

(
∂

∂s
K (t, s) z0 (s)

λ4 (s)

)
e

1
ε

∫ s
t0

λ4(θ)dθds =

= ε

[
K (t, t) z0 (t)

λ4 (t)
e

1
ε

∫ t
t0

λ4(θ)dθ − K (t, t0) z0 (t0)

λ4 (t0)

]
− ε

∫ t

t0

(
∂

∂s
K (t, s) z0 (s)

λ4 (s)

)
e

1
ε

∫ s
t0

λ4(θ)dθds.

Continuing this process further, we obtained the decomposition

J0 (t, ε) = ∑∞
ν=0(−1)νεν+1

[(
Iν
0 (K (t, s) z0 (s))

)
s=t e

1
ε

∫ t
t0

λ4(θ)dθ − (Iν
0 (K (t, s) z0 (s))

)
s=t0

]
,

I0
0 =

1
λ4 (s)

·, Iν
0 =

1
λ4 (s)

∂

∂s
Iν−1
0 (ν ≥ 1) .

Next, apply the same operation to the integrals:

J4,i (t, ε) = e
1
ε

∫ t
t0

λ4(θ)dθ ∫ t
t0

K (t, s) zi (s) e
1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθds =

= εe
1
ε

∫ t
t0

λ4(θ)dθ ∫ t
t0

K(t,s)zi(s)
λi(s)−λ4(s)

de
1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθ

=
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= εe
1
ε

∫ t
t0

λ4(θ)dθ

[
K (t, s) zi (s)

λi (s)− λ4 (s)
e

1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθ

∣∣∣∣s=t

s=t0

−

− ε
∫ t

t0

(
∂

∂s
K (t, s) zi (s)

λi (s)− λ4 (s)

)
e

1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθds

]
=

= ε

[
K(t,t)zi(t)

λi(t)−λ4(t)
e

1
ε

∫ t
t0

λi(θ)dθ − K(t,t0)zi(t0)
λi(t0)−λ4(t0)

e
1
ε

∫ t
t0

λ4(θ)dθ
]
−

−εe
1
ε

∫ t
t0

λ4(θ)dθ ∫ t
t0

(
∂
∂s

K(t,s)zi(s)
λi(s)−λ4(s)

)
e

1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθds =

= ∑∞
ν=0(−1)νεν+1

[(
Iν
i (K (t, s) zi (s))

)
s=t e

1
ε

∫ t
t0

λi(θ)dθ − (Iν
i (K (t, s) zi (s))

)
s=t0

e
1
ε

∫ t
t0

λ4(θ)dθ
]

,

I0
i =

1
λi (s)− λ4 (s)

·, Iν
i =

1
λi (s)− λ4 (s)

∂

∂s
Iν−1
i , ν ≥ 1, i = 1, 3 .

Denote bay e4 = (0, 0, 0, 1). Then

Jm (t, ε) = e
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) zm (s) e
1
ε

∫ s
t0
(m−e4,λ(θ))dθds =

= εe
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) zm (s)
(m − e4, λ (s))

de
1
ε

∫ s
t0
(m−e4,λ(θ))dθ

=

= εe
1
ε

∫ t
t0

λ4(θ)dθ
[

K (t, s) zm (s)
(m − e4, λ (s))

e
1
ε

∫ s
t0
(m−e4,λ(θ))dθ

∣∣∣∣s=t

s=t0

−

−
∫ t

t0

(
∂

∂s
K (t, s) zm (s)
(m − e4, λ (s))

)
e

1
ε

∫ s
t0
(m−e4,λ(θ))dθds] =

=
∞

∑
ν=0

(−1)νεν+1[
(

Iν
4,m (K (t, s) zm (s))

)
s=te

1
ε

∫ t
t0
(m,λ(θ))dθ−

− (Iν
4,m (K (t, s) zm (s))

)
s=t0

e
1
ε

∫ t
t0

λ4(θ)dθ
],

I0
4,m =

1
(m − e4, λ (s))

·, Iν
4,m =

1
(m − e4, λ (s))

∂

∂s
Iν−1
4,m , ν ≥ 1,

2 ≤ |m| ≤ Nz.

Here it is taken into account that (m − e4, λ (s)) �= 0, since by the definition of the space U
multi-indices m /∈ Γ4. The image of the operator J on the space U element (5) is represented as a series

Jz (t, τ) = e
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) z4 (s) ds +
∞

∑
ν=0

(−1)νεν+1
[
(Iν

0 (K (t, s) z0 (s)))s=t e
1
ε

∫ t
t0

λ4(θ)dθ−

− (Iν
0 (K (t, s) z0 (s)))s=t0

]
+

4

∑
i=1,i �=4

∞

∑
ν=0

(−1)νεν+1
[
(Iν

i (K (t, s) zi (s)))s=t e
1
ε

∫ t
t0

λi(θ)dθ −

− (Iν
i (K (t, s) zi (s)))s=t0

e
1
ε

∫ t
t0

λ4(θ)dθ
]
+

+
∗
∑

2≤|m|≤Nz

∞

∑
ν=0

(−1)νεν+1
[(

Iν
4,m (K (t, s) zm (s))

)
s=t e

1
ε

∫ t
t0
(m,λ(θ))dθ−

− (Iν
4,m (K (t, s) zm (s))

)
s=t0

e
1
ε

∫ t
t0

λ4(θ)dθ
]

, τ = ψ (t) /ε.
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It is easy to show (see, for example, [23], pp. 291–294) that this series converges asymptotically for
ε → +0 (uniformly in t ∈ [t0, T]). This means that the class Mε is asymptotically invariant (for ε → +0)
with respect to the operator J.

Let as introduce the operators Rν: U → U, acting on each element z (t, τ) ∈ U of the form (5)
according to the law:

R0z (t, τ) = eτ4

∫ t

t0

K (t, s) z4 (s) ds, (60)

R1z (t, τ) =

[(
I0
0 (K (t, s) z0 (s))

)
s=t

eτ4 −
(

I0
0 (K (t, s) z0 (s))

)
s=t0

]
+

+
3

∑
i=1

[(
I0
i (K (t, s) zi (s))

)
s=t

eτi −
(

I0
i (K (t, s) zi (s))

)
s=t0

eτ4

]
+ (61)

+
∗
∑

2≤|m|≤Nz

[(
I0
4,m (K (t, s) zm (s))

)
s=t

e(m,τ) −
(

I0
4,m (K (t, s) zm (s))

)
s=t0

eτ4

]
,

Rν+1z (t, τ) =
[
(Iν

0 (K (t, s) z0 (s)))s=t eτ4 − (Iν
0 (K (t, s) z0 (s)))s=t0

]
+

+
3

∑
i=1

(−1)ν
[
(Iν

i (K (t, s) zi (s)))s=t eτi − (Iν
i (K (t, s) zi (s)))s=t0

eτ4
]
+ (6ν+1)

+
∗
∑

2≤|m|≤Nz

[(
Iν
4,m (K (t, s) zm (s))

)
s=t e(m,τ) − (Iν

4,m (K (t, s) zm (s))
)

s=t0
eτ4
]

, ν ≥ 1.

Let now z̃ (t, τ, ε) be an arbitrary continuous function in (t, τ) ∈ [t0, T]× {τ : Reτj ≤ 0, j = 1, 4
}

with the asymptotic expansion

z̃ (t, τ, ε) =
∞

∑
k=0

εkzk (t, τ) , zk (t, τ) ∈ U, (7)

converging as ε → +0 (uniformly in (t, τ) ∈ [t0, T] × {τ : Reτj ≤ 0, j = 1, 4
}

). Then the image
Jz̃ (t, τ, ε) of this function is expanded in the asymptotic series

Jz̃ (t, τ, ε) =
∞

∑
k=0

εk Jzk (t, τ) =
∞

∑
r=0

εr
r

∑
s=0

Rr−szs (t, τ) |τ=ψ(t)/ε.

This equality is the basis for introducing the extension of the operator J on the series type (7):

J̃ z̃ (t, τ, ε) ≡ J̃

(
∞

∑
k=0

εkzk (t, τ)

)
de f
=

∞

∑
r=0

εr
r

∑
s=0

Rr−szs (t, τ) .

Although the operator J̃ is formally defined, its usefulness is obvious, since in practice they
usually construct the N-th approximation of the asymptotic solution of problem (2), in which only the
N-th partial sums of the series (7) will take part, which do not have a formal but true meaning. Now we
can write down a problem that is completely regularized with respect to the original problem (2):

L z̃ (t, τ, ε) ≡ ε ∂z̃
∂t + ∑4

j=1 λj (t) ∂z̃
∂τj

− λ1(t)z̃ − ε
g(t)

2 (eτ2 σ1 + eτ3 σ2) z̃ − J̃ z̃ = h(t),

z̃(t, τ, ε)|t=t0,τ=0 = z0, t ∈ [t0, T].
(8)
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3. Iterative Problems and Their Solvability in the Space U

Substituting series (7) into (8) and equating the coefficients for the same powers ε, we obtain the
following iterative problems:

L z0 (t, τ) ≡
4

∑
j=1

λj (t)
∂z0

∂τj
− λ1(t)z0 − R0z0 = h (t) , z0 (t0, 0) = z0; (90)

L z1 (t, τ) = −∂z0

∂t
+

g(t)
2

(eτ2 σ1 + eτ3 σ2) z0 + R1z0, z1 (t0, 0) = 0; (91)

L z2 (t, τ) = −∂z1

∂t
+

g(t)
2

(eτ2 σ1 + eτ3 σ2) z1 + R1z1 + R2z0, z0 (t0, 0) = 0; (92)

· · ·
L zk (t, τ) = −∂zk−1

∂t
+

g(t)
2

(eτ2 σ1 + eτ3 σ2) zk−1 + Rkz0 + ... + R1zk−1, zk (t0, 0) = 0, k ≥ 1. (9k)

Each of the iterative problems can be written as

L z (t, τ) ≡
4

∑
j=1

λj (t)
∂z
∂τj

− λ1(t)z − R0z = H (t, τ) , z (t0, 0) = z∗, (10)

where H (t, τ) = H0 (t) + ∑4
i=1 Hi (t) eτi + ∑∗

2≤|m|≤NH
Hm (t) e(m,τ) is the known function of the space

U, z∗ is the known number of complex the space C, and the operator R0 has the form (see (60))

R0z ≡ R0

⎛⎝ z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤Nz

zm (t) e(m,τ)

⎞⎠ de f
= eτ4

∫ t

t0

K (t, s) z4 (s) ds.

We introduce the scalar product (for each t ∈ [t0, T]) in the space U :

< z, w >≡< z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤Nz

zm (t) e(m,τ),

w0 (t) +
4

∑
i=1

wi (t) eτi +
∗
∑

2≤|m|≤Nw

wm (t) e(m,τ) >
de f
=

de f
= (z0 (t) , w0 (t)) +

4

∑
i=1

(zi (t) , wi (t)) +
∗
∑

2≤|m|≤min(Nz ,Nw)

(zm (t) , wm (t)) ,

where (∗ , ∗) we denote the ordinary scalar product in the complex space C: (u, v) = u · v̄. We prove
the following statement.

Theorem 1. Suppose that conditions (1) and (2) are satisfied and the right-hand side H (t, τ) = H0 (t) +
+∑4

i=1 Hi (t) eτi + ∑∗
2≤|m|≤NH

Hm (t) e(m,τ) of the Equation (10) belongs to the space U. Then for the
solvability of the Equation (10) in U it is necessary and sufficient that the identities

< H (t, τ) , eτ1 >≡ 0, ∀t ∈ [t0, T] (11)

hold true.

136



Axioms 2020, 9, 131

Proof. We will determine the solution of the Equation (10) in the form of an element (5) of the space U:

z (t, τ) = z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤NH

zm (t) e(m,τ). (12)

Substituting (12) into the Equation (10), we have

−λ1 (t) z0 (t) +
4

∑
i=1

[λi (t)− λ1 (t)] zi (t) eτi +
∗
∑

2≤|m|≤NH

[(m, λ (t))− λ1 (t)] zm (t) e(m,τ)−

−eτ4

∫ t

t0

K (t, s) z4 (s) ds = H0 (t) +
4

∑
i=1

Hi (t) eτi +
∗
∑

2≤|m|≤NH

Hm (t) e(m,τ).

Equating here separately the free terms and coefficients at the same exponents, we obtained the
following equations:

−λ1 (t) z0 (t) = H0 (t) , (130)

[λi (t)− λ1 (t)] zi (t) = Hi (t) , i = 1, 3; (13i)

[λ4 (t)− λ1 (t)] z4 (t)−
∫ t

t0

K (t, s) z4 (s) ds = H4 (t) ; (134)

[(m, λ (t))− λ1 (t)] zm (t) = Hm (t) , m /∈ Γ1, 2 ≤ |m| ≤ NH . (13m)

Since the function λ1 (t) �= 0 ∀t ∈ [t0, T], the Equation (130) has a unique solution
z0(t) = −λ−1

1 (t) H0(t). Since λ4 (t)− λ1 (t) �= 0 ∀t ∈ [t0, T], then the Equation (134) can be written as

z4 (t) =
∫ t

t0

(
[λ4 (t)− λ1 (t)]

−1 K (t, s)
)

z4 (s) ds − [λ4 (t)− λ1 (t)]
−1 H4 (t) . (14)

Due to the smoothness of the kernel
(
[λ4 (t)− λ1 (t)]

−1 K (t, s)
)

and heterogeneity

− [λ4 (t)− λ1 (t)]
−1 H4 (t), this Volterra integral equation has a unique solution

z4 (t) ∈ C∞ ([t0, T] , C) . The Equations (132) and (133) also have unique solutions

zi (t) = [λi (t)− λ1 (t)]
−1 Hi (t) ∈ C∞ ([t0, T] , C) , i = 2, 3,

since λi (t) �= λ1 (t) , i = 2, 3. The Equation (131) is solvable in the space C∞ ([t0, T] , C) if and only
if identities (H1 (t) , eτ1) ≡ 0 ∀t ∈ [t0, T] hold. It is easy to see that this identity coincides with
identity (11).

Further, since (m, λ (t)) �= λ1 (t) , 2 ≤ |m| ≤ NH (∀m /∈ Γ1), then the Equation (13m) has a
unique solution

zm (t) = [(m, λ (t)) I − A (t)]−1 Hm (t) ∈ C∞ ([t0, T] , C) , 2 ≤ |m| ≤ NH .

Thus, condition (11) is necessary and sufficient for the solvability of the Equation (10) in the space
U. The Theorem 1 is proved.

Remark 1. If identity (11) holds, then under conditions (1) and (2), the Equation (10) has the following solution
in the space U :

z (t, τ) = z0 (t) + ∑4
i=1 zi (t) eτi + ∑∗

2≤|m|≤NH
zm (t) e(m,τ) ≡ z0 (t) + α1 (t) eτ1+

+h21(t)eτ2 + h31(t)eτ3 + z4 (t) eτ4 + ∑∗
2≤|m|≤NH

Pm (t) e(m,τ),
(15)
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where α1 (t) ∈ C∞ ([t0, T] , C) are arbitrary function, z0 (t) = −λ−1
1 (t)H0(t), z4 (t) is the solution of the

integral Equation (14), and introduced notations

h21(t) ≡ H2 (t)
λ2 (t)− λ1 (t)

, h31(t) ≡ H3 (t)
λ3 (t)− λ1 (t)

, Pm (t) ≡ [(m, λ (t))− λ1 (t)]
−1 Hm (t) .

4. The Remainder Term Theorem

Along with problem (10), we consider the equation

L w (t, τ) = −∂z
∂t

+
g (t)

2
(eτ2 σ1 + eτ3 σ2) z + R1z + Q (t, τ) , (16)

where z = z (t, τ) is the solution (15) of Equation (10), Q (t, τ) ∈ U is the known function of the space U
(this form will have problems (9k+1) after calculating the solution of the problem (9k) in U). The right
side of this equation:

G (t, τ) ≡ −∂z
∂t

+
g (t)

2
(eτ2 σ1 + eτ3 σ2) z + R1z + Q (t, τ) =

= − ∂

∂t

⎡⎣z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤NH

zm (t) e(m,τ)

⎤⎦+

+
g (t)

2
(eτ2 σ1 + eτ3 σ2)

⎡⎣z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤NH

zm (t) e(m,τ)

⎤⎦+ R1z + Q (t, τ) ,

may not belong to the space U, if z = z (t, τ) ∈ U. Indeed, taking into account the form (15) of function
z = z (t, τ) ∈ U, we consider in G (t, τ) , for example, the terms

Z (t, τ) ≡ g (t)
2

(eτ2 σ1 + eτ3 σ2)

[
z0 (t) +

4

∑
i=1

zi (t) eτi+
∗
∑

2≤|m|≤NH

zm (t) e(m,τ)

⎤⎦ =

=
g (t)

2
z0 (t) (eτ2 σ1 + eτ3 σ2) +

4

∑
i=1

g (t)
2

zi (t)
(
eτi+τ2 σ1 + eτi+τ3 σ2

)
+

+
g (t)

2
(eτ2 σ1 + eτ3 σ2)

∗
∑

2≤|m|≤NH

Pm (t) e(m,τ).

Function Z (t, τ) /∈ U, since it contains resonant exponentials
eτ2+τ3 = e(m,τ)|m=(0,1,1,0), eτ2+(m,τ) (m2 + 1 = m3) , eτ3+(m,τ) (m3 + 1 = m2) , and, therefore,
the right-hand side G (t, τ) = Z (t, τ) of the Equation (16) also does not belong to the U. Then, according
to the well-known theory (see [6], p. 234), we need to embed ∧: G (t, τ) → Ĝ (t, τ) the right-hand side
G (t, τ) of the Equation (16) into the space U. This operation is defined as follows.

Let the function G (t, τ) = ∑N
|m|=0 wm (t) e(m,τ) contain resonant exponentials, i.e., G (t, τ), it has

the form

G (t, τ) = w0 (t) +
4

∑
i=1

wi (t) eτi +
4

∑
j=0

N

∑
|mj|=2:mj∈Γj

wmj
(t) e(mj ,τ) +

N

∑
|m|=2,m �=mj ,j=0,4

wm (t) e(m,τ).

Then

Ĝ (t, τ) = w0 (t) +
4

∑
i=1

wi (t) eτi +
4

∑
j=0

N

∑
|mj|=2: mj∈Γj

wmj
(t) eτj +

N

∑
|m|=2,m �=mj ,j=0,4

wm (t) e(m,τ).
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Therefore, the embedding operation acts only on the resonant exponentials and replaces them
with a unit or exponents eτj of the first dimension according to the rule:(

e(m,τ)|m∈Γ0

)∧
= e0 = 1,

(
e(m,τ)|m∈Γj

)∧
= eτj , j = 1, 4.

Therefore, the right-hand sides of iterative problems (9k) (if they solve sequentially) may not
belong to the space U. Then, according to [6] (p. 234), the right-hand sides of these problems must be
embedded in U according to the above rule. As a result, we obtained the following problems:

Lz0 (t, τ) ≡
4

∑
j=1

λj (t)
∂z0

∂τj
− A(t)z0 − R0z0 = h (t) , z0 (t0, 0) = z0; (90)

Lz1 (t, τ) = −∂z0

∂t
+

[
g(t)

2
(eτ2 σ1 + eτ3 σ2) z0

]∧
+ R1z0, z1 (t0, 0) = 0; (91)

Lz2 (t, τ) = −∂z1

∂t
+

[
g(t)

2
(eτ2 σ1 + eτ3 σ2) z1

]∧
+ R1z1 + R2z0, z0 (t0, 0) = 0; (92)

· · ·
Lzk (t, τ) = − ∂zk−1

∂t +
[

g(t)
2 (eτ2 σ1 + eτ3 σ2) zk−1

]∧
+ Rkz0 + ... + R1zk−1,

zk (t0, 0) = 0, k ≥ 1
(9k)

(images of linear operators ∂
∂t and Rν do not need to be embedded in the space U, since these operators

act from U to U). Such a replacement will not affect the construction of an asymptotic solution to
the original problem (1) (or its equivalent problem (2)), since the narrowing τ = ψ(t)

ε of the series of
problems

(
9k
)

will coincide with the series of problems (9k) (see [6], pp. 234–235).
It is easy to show that applying Theorem 1 to iterative problems

(
9k
)
, we can find their solutions

uniquely in the space U. As a result, we can construct series (7) with coefficients zk(t, τ) ∈ U. As in [23]
(pp. 303–308), we proved the following statement.

Theorem 2. Suppose that conditions (1)–(2) are satisfied for the Equation (2). Then, when ε ∈ (0, ε0](ε0 > 0
is sufficiently small) the Equation (2) has a unique solution z(t, ε) ∈ C1([t0, T],C); at the same time there is
the estimate

||z(t, ε)− zεN(t)||C[t0,T] ≤ cNεN+1, ∀N = 0, 1, 2, . . . ,

where zεN(t) is the narrowing (for τ = ψ(t)
ε ) N-th partial sum of the series (7) (with coefficients zk (t, τ) ∈ U

satisfying the iterative problems (9k)), and the constant cN > 0 does not depend ε on ε ∈ (0, ε0].

5. Construction of the Solution of the First Iteration Problem in the Space U

Using Theorem 1, we will tried to find a solution to the first iterative problem
(
90
)
. Since the

right-hand side h (t) of the equation
(
90
)

satisfies condition (11), this equation has (according to (15)) a
solution in the space U in the form

z0 (t, τ) = z(0)0 (t) + α
(0)
1 (t) eτ1 , (17)

where α
(0)
1 (t) ∈ C∞ ([t0, T] , C) are arbitrary function, z(0)0 (t) = − h(t)

λ1(t)
. Subordinating (17) to the

initial condition z0 (t0, 0) = z0, we have

z(0)0 (t0) + α
(0)
1 (t0) = z0 ⇔ α

(0)
1 (t0) = z0 + λ−1

1 (t0) h (t0) .
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To fully calculate the function α
(0)
1 (t), we pass to the next iterative problem

(
91
)
. Substituting the

solution (17) of the equation
(
90
)

, into it, we arrived at the following equation:

L z1 (t, τ) = − d
dt

(
z(0)0 (t)

)
− d

dt

(
α
(0)
1 (t)

)
eτ1 +

K (t, t) z(0)0 (t)
λ4 (t)

eτ4−

−K (t, t0) z(0)0 (t0)

λ4 (t0)
+

g(t)
2

(eτ2 σ1 + eτ3 σ2)
(

z(0)0 (t) + α
(0)
1 (t) eτ1

)
+ (18)

+
K (t, t) α

(0)
1 (t)

λ1 (t)
eτ1 −

K (t, t0) α
(0)
j (t0)

λ1 (t0)
,

(here we used the expression (61) for R1z (t, τ) and took into account that when z (t, τ) = z0 (t, τ) in
the sum (61) only terms with eτ1 and remain eτ4 ). Let us calculate

M =

[
g(t)

2
(eτ2 σ1 + eτ3 σ2)

(
z(0)0 (t) + α

(0)
1 (t) eτ1

)]∧
=

=
1
2

g (t)
[
σ1α

(0)
1 (t) eτ2+τ1 + σ2α

(0)
1 (t) eτ3+τ1 + σ1z(0)0 (t) eτ2 + σ2z(0)0 (t) eτ3

]∧
.

Let us analyze the exponents of the second dimension included here for their resonance:

eτ2+τ1 |τ=ψ(t)/ε = e
1
ε

∫ t
t0
(−iβ′(θ)+a(θ))dθ ,

−iβ′ + a =

⎡⎢⎢⎢⎢⎢⎣
0,

a,
−iβ′,
+iβ′,
μ,

⇔ ∅;

eτ3+τ1 |τ=ψ(t)/ε = e
1
ε

∫ t
t0
(+iβ′(θ)+a(θ))dθ ,

+iβ′ + a =

⎡⎢⎢⎢⎢⎢⎣
0,

a,
−iβ′,
+iβ′,
μ,

⇔ ∅.

Thus, exponents eτ2+τ1 ang eτ3+τ1 are not resonant. Then, for solvability the Equation (18) it is
necessary and sufficient that the condition

− d
dt

(
α
(0)
1 (t)

)
+

K (t, t) α
(0)
1 (t)

λ1 (t)
= 0

is satisfied. Attaching the initial condition α
(0)
1 (t0) = z0 + λ−1

1 (t0) h (t0) , to this equation, we found
uniquely the function

α
(0)
1 (t) = α

(0)
1 (t0) exp

{∫ t

t0

K (s, s)
λ1 (s)

ds
}

,

and therefore, we uniquely calculate the solution (17) of the problem
(
90
)

in the space U. In this case,
the leading term of the asymptotics of the solution to the problem (2) has the form

zε0 (t) = z(0)0 (t) + α
(0)
1 (t0) exp

{∫ t

t0

K (s, s)
λ1 (s)

ds
}

e
1
ε

∫ t
t0

λ1(θ)dθ ,

where α
(0)
1 (t0) = z0 + A−1 (t0) h (t0) , z(0)0 (t) = −λ−1

1 (t0) h (t) .

Example. Consider a model problem

ε
dz
dt

= −z − ε cos
t2 + t

ε
z −

∫ t

t0

e
−2(t−s)

ε · t · s · z(s, ε)ds + h(t), z(t0, ε) = z0, t ∈ [t0, T](t0 ≥ 0), (19)
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were a(t) ≡ 1, μ(t) ≡ −2, β(t) ≡ t2 + t, K(t, s) ≡ t · s. The main term of the asymptotic solution of this
problem has the form

zε0 (t) = h(t) + [z0 − h(t0)] exp [
t3
0 − t3

3
]exp[

t − t0

ε
]. (20)

For ε → +0 the function zε0 (t) tends to the solution of the degenerate equation −z + h(t) = 0
uniformly on any interval [t0 + δ, T](0 < δ ≤ T − t0) and at the point t = t0 takes on the value
zε0 (t0) = z0. It is seen from (20) that the leading term of the asymptotics of the solution to problem (19)
does not depend on cos t2+t

ε and spectral value μ(t) ≡ −2, but depends on the kernel K(t, s) ≡ t · s .

Further calculations show that already the asymptotic solution zε1 (t) = zε0 (t)+ εz1

(
t, ψ(t)

ε

)
of the first

order will depend on both μ(t) ≡ −2, and the frequency β′(t) = 2t + 1 of the rapidly oscillating cosine.

6. Conclusions

The function zε0 (t) shows that when passing from a differential equation of type (1) (K(t, s) ≡ 0)
to an integro-differential one (K(t, s) �= 0 ), the main term of the asymptotic is influenced by the
kernel K(t, s) of the integral operator. However, the main term of the asymptotics is not affected by
the spectral values of the integral operator μ(t) and rapidly oscillating coefficients. Their effects are
detected when constructing the next approximation zε1 (t).
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Abstract: Under some conditions, an asymptotic solution containing boundary functions was
constructed in a paper by Vasil’eva and Butuzov (Differ. Uravn. 1970, 6(4), 650–664 (in Russian);
English transl.: Differential Equations 1971, 6, 499–510) for an initial value problem for weakly
non-linear differential equations with a small parameter standing before the derivative, in the case of
a singular matrix A(t) standing in front of the unknown function. In the present paper, the orthogonal
projectors onto kerA(t) and kerA(t)′ (the prime denotes the transposition) are used for asymptotics
construction. This approach essentially simplifies understanding of the algorithm of asymptotics
construction.

Keywords: singular perturbations; initial value problems; asymptotics; critical case; projector approach

1. Introduction

The bibliography of publications devoted to singularly perturbed problems is very extensive.
Most of them deal with problems in which a degenerate equation, following from the original
one where a small parameter is equal to zero, is resolvable with respect to a fast component of an
unknown variable. If it is not so, then this more complicated case is known as critical [1], singular [2],
nonstandard [3], or as a case where the unperturbed (degenerate) system is situated on the spectrum [4].
Numerous applications of singularly perturbed systems in the critical case have been listed in [5].

Vasil’eva and Butuzov were the first to study initial value problems for singularly perturbed
differential and difference systems in the critical case. Asymptotic solutions of boundary value
problems for such systems have been obtained in [1,2,6]. Numerical methods for singularly perturbed
systems in the critical case have been researched in [7] for initial value problems, and in [8] for
boundary value problems.

An asymptotic solution containing boundary functions for the initial value problem of the weakly
non-linear differential equation in a real m-dimensional space X:

ε
dx
dt

= A(t)x + ε f (x, t, ε), t ∈ [0, T], (1)

x(0, ε) = x0, (2)

where x = x(t, ε) ∈ X and the matrix A(t) is singular, has been constructed in [4]. A discrete analogue
of problem (1)-(2) was also considered. The results from this paper are also presented in [1,9]. In these

Axioms 2019, 8, 56; doi:10.3390/axioms8020056 www.mdpi.com/journal/axioms
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publications, the purpose of studying equations of the last form is also explained. Here and further
ε ≥ 0 means a small parameter, and the m × m matrix A(t) and the m-dimensional vector-function
f (x, t, ε) are sufficiently smooth with respect to their arguments.

In contrast [4], the projector approach will be used in this paper for constructing an asymptotic
solution of problem (1)-(2). It allows us to represent the algorithm of the boundary functions method
for constructing an asymptotic solution of initial-value singularly perturbed problems in the critical
case more clearly than in [4].

Note that the projector approach has been used in [10] for constructing the zero-order asymptotic
solution for a singularly perturbed linear-quadratic control problem in the critical case.

We will assume the same assumptions as in [4] that the matrix A(t) has for each t ∈ [0, T] m
eigenvalues λ1(t), λ2(t), ..., λm(t), and that they satisfy the conditions:

Assumption 1. λj(t) = 0 for j = 1, 2, ..., k, k < m.

Assumption 2. All k eigenvectors v1(t), v2(t), ..., vk(t) of the matrix A(t), corresponding to λj(t) = 0,
j = 1, 2, ..., k, are linearly independent.

Following [4], we will here use eigenvectors having the same smoothness as the matrix A(t).
The existence of such eigenvectors has been proved in [11].

Furthermore, some assumptions will be yet added.
The transposition will be denoted by the prime. By I, as usual, we mean the identity operator.

For the expansion of a function w(ε) into the series with respect to integer non-negative powers of ε

w(t, ε) = ∑
j≥0

εjwj(t), we introduce the notation [w(ε)]j = wj.

The paper is organized as follows. In Section 2, we present the standard decomposition of the
original system (1) into systems with respect to functions from the asymptotic solution, depending on t,
and with respect to so-called boundary functions, depending on the argument t/ε. In the next section,
we introduce orthogonal projectors of the space X onto kerA(t) and kerA(t)′. Based on these projectors,
the algorithm of constructing the zero-order asymptotic approximation of a solution of problem (1)-(2)
is given in Section 4, and the algorithm of constructing the n-th order asymptotic approximation, n ≥ 1,
is developed in Section 5. Tables 1 and 2 in these two sections show the sequence of actions for finding
asymptotics terms. In the sixth section, we present an example illustrating the projector approach for
constructing the first-order asymptotic approximation. The last section presents our conclusions.

2. Problem Decomposition

In view of [4], we will seek the asymptotic solution of problem (1)-(2) in the form:

x(t, ε) = x(t, ε) + Πx(τ, ε), (3)

where x(t, ε) = ∑j≥0 εjxj(t), Πx(τ, ε) = ∑j≥0 εjΠjx(τ), τ = t/ε. Functions Πjx(τ) will be found as
in [4] with the help of the additional condition

Πjx(τ) → 0 as τ → +∞. (4)

Following tradition (see, for instance, [1], p. 8), a series ∑j≥0 εjxj(t) with terms depending on the
original argument t is called regular series, in contrast with boundary series ∑j≥0 εjΠjx(τ) consisting
of so-called boundary functions depending on the argument τ ≥ 0, which are essential only for
arguments in some vicinities of points where additional conditions are prescribed (in a vicinity of zero
in the considered case).

As usual in the theory of singular perturbations, the following representation will be used

f (x(t, ε) + Πx(τ, ε), t, ε) ≡ f + Π f ,
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where f = f (x(t, ε), t, ε) = ∑j≥0 εj f j(t) and Π f = f (x(ετ, ε) + Πx(τ, ε), ετ, ε) − f (x(ετ, ε), ετ, ε) =

∑j≥0 εjΠj f (τ).
Substituting expansion (3) into (1) and equating terms of the same order of ε separately depending

on t and τ, we obtain the following equations for the terms of series (3):

dxj−1(t)
dt

= A(t)xj(t) + f j−1(t), (5)

dΠjx(τ)
dτ

= A(0)Πjx(τ) + Πj−1 f (τ) + [(A(ετ)− A(0))Πx(τ, ε)]j, (6)

where j = 0, 1, ...,

[(A(ετ)− A(0))Πx(τ, ε)]j =
j−1

∑
k=0

1
(j − k)!

dj−k A
dtj−k (0)Πkx(τ).

In order to write equations (5) and (6) in the same forms for the cases j = 0 and j > 0, we suppose
that terms of expansions with negative indices are equal to zero.

Substituting expansion (3) into (2) and equating terms of the same order of ε, we obtain
the equalities:

x0(0) + Π0x(0) = x0, (7)

xj(0) + Πjx(0) = 0, j > 0. (8)

3. Space Decomposition

Further, we will use the decompositions of the space X in the orthogonal sums (see, for
instance, [12], p. 38)

X = kerA(t)⊕ imA(t)′ = kerA(t)′ ⊕ imA(t).

Orthogonal projectors P(t) and Q(t) of the space X onto the subspaces kerA(t) and kerA(t)′,
respectively, corresponding to the decompositions of the space X into two last orthogonal sums, will
be applied. We can write the explicit form of these projectors. Namely, let V(t) = (v1(t), ..., vk(t)) and
S(t) = (s1(t), ..., sk(t)), where s1(t), ..., sk(t) are the eigenvectors of the matrix A(t)′ corresponding
to eigenvalues λj(t) = 0, j = 1, ..., k. Following [9], we believe that the eigenvectors si(t) have been
chosen in such a way that V(t)′S(t) is the k × k identity matrix. We explain that this is possible.
The invertibility of the matrix V(t)′S(t) is proved in [1]. If V(t)′S(t) = B(t) �= I, then we take the
columns of the matrix S(t)B(t)−1 as s1(t), ..., sk(t).

It easily follows from Assumption 2 that the k × k matrices V(t)′V(t) and S(t)′S(t) are invertible.
It is not difficult to see that P(t) = V(t)(V(t)′V(t))−1V(t)′ and Q(t) = S(t)(S(t)′S(t))−1S(t)′

are orthogonal projectors of the space X onto the subspaces kerA(t) and kerA(t)′, respectively,
corresponding to the decompositions of the space X into the orthogonal sums.

The operator
A(t) = (I − Q(t))A(t)(I − P(t)) : imA(t)′ −→ imA(t)

has the inverse operator. It will be denoted as A(t)+ = (I − P(t))A(t)+(I − Q(t)).
The following condition is assumed.

Assumption 3. For each t ∈ [0, T] the operator (I − P(t))A(t)(I − P(t)) : imA(t)′ → imA(t)′ is
stable—that is, all eigenvalues of this operator have negative real parts.

It is not difficult to prove that the operator Q(t)P(t) : kerA(t) → kerA(t)′ is invertible. Let us
take a vector x from kerA(t). Then, x = V(t)c(t), where c(t) = (c1(t), c2(t), ..., ck(t))′ and ci(t),
i = 1, 2, ..., k, are some scalar functions. Consider the equation Q(t)P(t)x = 0. It follows from this
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that V(t)′S(t)(S(t)′S(t))−1S(t)′V(t)c(t) = 0. Since V(t)′S(t) is a k × k identity matrix, then c(t) = 0,
which gives the provable invertibility.

4. Zero-Order Asymptotic Solution

From (5), we have the equation for x0(t):

A(t)x0(t) = 0.

Hence,
(I − P(t))x0(t) = 0. (9)

Using (9), we find from (7) the initial value

(I − P(0))Π0x(0) = (I − P(0))x0. (10)

From (6), we have the equation for Π0x(τ)

dΠ0x(τ)
dτ

= A(0)Π0x(τ).

This equation is equivalent to two ones:

d(I − P(0))Π0x(τ)
dτ

= (I − P(0))A(0)(I − P(0))Π0x(τ), (11)

d(P(0)Π0x(τ))
dτ

= P(0)A(0)(I − P(0))Π0x(τ). (12)

In view of Assumption 3, we obtain a unique solution of initial problem (10)-(11) satisfying
the inequality

‖ (I − P(0))Π0x(τ) ‖ ≤ c exp (−ατ), τ ≥ 0,

with some positive constants c and α independent of τ (see, for instance, [13], p. 106). In this estimate,
any norm may be used, since all norms in a finite dimensional space are equivalent. Functions
satisfying the last inequality are called exponential-type boundary functions.

From (12), we get the equality P(0)Π0x(τ) = P(0)Π0x(0) +
τ∫
0

P(0)A(0)(I − P(0))Π0x(s) ds.

Since P(0)Π0x(τ) → 0 as τ → +∞, then P(0)Π0x(0) = − ∫ +∞
0 P(0)A(0)(I − P(0))Π0x(s) ds. Using

the exponential estimate for (I − P(0))Π0x(s), we uniquely define the exponential-type boundary
function P(0)Π0x(τ), namely,

P(0)Π0x(τ) = −
∫ +∞

τ
P(0)A(0)(I − P(0))Π0x(s) ds. (13)

Hence, the exponential-type boundary function Π0x(τ) has been found. Then, we can get the
initial value from (7):

P(0)x0(0) = P(0)(x0 − Π0x(0)). (14)

In view of (5), the equation for x1(t) has the form

A(t)x1(t) = − f 0(t) +
dx0(t)

dt
.

Taking into account (9), we can write the solvability condition for the last equation in the form

Q(t)
d(P(t)x0(t))

dt
= Q(t) f (P(t)x0(t), t, 0).
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Since
d(P(t)x(t))

dt
=

d(P(t)2x(t))
dt

=
d(P(t))

dt
P(t)x(t) + P(t)

d(P(t)x(t))
dt

, (15)

we obtain the equation

d(P(t)x0(t))
dt = (Q(t)P(t))−1Q(t)(− dP(t)

dt P(t)x0(t) + f (P(t)x0(t), t, 0))
+(I − P(t)) dP(t)

dt P(t)x0(t).
(16)

If operator A(t) is constant, then projectors P(t) = P and Q(t) = Q are constant too, and the last
equation has the form

d(Px0(t))
dt

= (QP)−1Q f (Px0(t), t, 0). (17)

We will yet assume the condition.

Assumption 4. Problem (14)–(16) has a unique solution on the segment [0, T].

A similar assumption regarding the solvability of some initial-value problem for a non-linear
equation of the smaller dimension than the original one was presented in [1] (Assumption IV, p. 13).

Thus, the function x0(t) is defined. Hence, the zero-order asymptotics for a solution of
problem (1)-(2) is found.

The following Table 1 shows the sequence of finding zero-order asymptotics terms.

Table 1. The algorithm for finding the zero-order asymptotics terms.

Asymptotics Terms Formulas

(I − P(t))x0(t) = 0 (9)
(I − P(0))Π0x(τ) (10), (11)

P(0)Π0x(τ) (13)
P(t)x0(t) (14), (16)

5. Higher-Order Asymptotic Solutions

Suppose that the terms xj(t) and Πjx(τ) of expansion (3), j = 0, 1, ..., n − 1, n ≥ 1, have
been found.

From equation (5) with j = n, we obtain the relation

A(t)xn(t) =
dxn−1(t)

dt
− f n−1(t),

where the right-hand side is known. Applying the operator I-Q(t) to this equation, we have

(I − Q(t))A(t)(I − P(t))xn(t) = (I − Q(t))(
dxn−1(t)

dt
− f n−1(t)).

From here, we find:

(I − P(t))xn(t) = A(t)+(I − Q(t))(
dxn−1(t)

dt
− f n−1(t)). (18)

Then, we can find from (8) with j = n the initial value

(I − P(0))Πnx(0) = −(I − P(0))xn(0). (19)
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The equation (6) with j = n has the form

dΠnx(τ)
dτ

= A(0)Πnx(τ) + Πn−1 f (τ) + [(A(ετ)− A(0))Πx(τ, ε)]n.

This equation is equivalent to two ones.

d(I − P(0))Πnx(τ)
dτ

= (I − P(0))A(0)(I − P(0))Πnx(τ) + (I − P(0))Πn−1 f (τ)+

+(I − P(0))[(A(ετ)− A(0))Πx(τ, ε)]n,
(20)

d(P(0)Πnx(τ))
dτ

= P(0)(A(0)(I − P(0))Πnx(τ) + Πn−1 f (τ)+

+[(A(ετ)− A(0))Πx(τ, ε)]n).
(21)

The sum of two last summands in the right-hand side in (20) is a known exponential-type
boundary function. Therefore, in view of Assumption 3, we can find from (19) and (20) the
exponential-type boundary function (I − P(0))Πnx(τ). Note that the proof of exponential estimates
for boundary functions is given in detail in monograph [14].

As the function in the braces on the right-hand side in (21) is a known exponential-type boundary
function, we can get from (21) the exponential-type boundary function P(0)Πnx(τ), namely

P(0)Πnx(τ) = − ∫ +∞
τ P(0)(A(0)(I − P(0))Πnx(s) + Πn−1 f (s)

+[(A(εs)− A(0))Πx(s, ε)]n) ds.
(22)

Hence, the exponential-type boundary function Πnx(τ) is defined. Then, we can find from (8)
with j = n the initial value

P(0)xn(0) = −P(0)Πnx(0). (23)

Writing out equation (5) with j = n + 1, we get

dxn(t)
dt

= A(t)xn+1(t) + f n(t).

The solvability condition for this equation has the form

Q(t)
d(P(t)xn(t))

dt
= Q(t)( f n(t)−

d((I − P(t))xn(t))
dt

).

In view of (15), we obtain from here the equation

d(P(t)xn(t))
dt

= (Q(t)P(t))−1Q(t)( f n(t) +
dP(t)

dt
P(t)xn(t)−

−d((I − P(t))xn(t))
dt

) + (I − P(t))
dP(t)

dt
P(t)xn(t).

(24)

If operator A(t) is constant, then this equation has the form:

d(Pxn(t))
dt

= (QP)−1Q( f n(t)−
d((I − P)xn(t))

dt
). (25)

It should be noted that equation (24) is linear with respect to P(t)xn(t). As (I − P(t))xn(t) has
been found (see (18)), we can define the function P(t)xn(t) from (23) and (24).

Hence, we have found the terms of the n-th order in expansion (3).
The following Table 2 shows the sequence of finding the n-th order terms in expansion (3).
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Table 2. The algorithm for finding the n-th order asymptotics terms, n ≥ 1.

Asymptotics Terms Formulas

(I − P(t))xn(t) (18)
(I − P(0))Πnx(τ) (19), (20)

P(0)Πnx(τ) (22)
P(t)xn(t) (23),(24)

The previous arguments have, as a consequence, the following assertion.

Theorem 1. Under Assumptions 1–4, the asymptotic solution of problem (1)-(2) in form (3) can be constructed
with the help of orthogonal projectors onto kerA(t) and kerA(t)′. The order of finding the asymptotics terms is
the following: (I − P(t))xj(t), (I − P(0))Πjx(τ), P(0)Πjx(τ), P(t)xj(t), j ≥ 0.

6. Illustrative Example

Consider the following initial value problem of form (1)-(2) on the segment [0, T]:

ε
dy
dt

= −y + εz2,

ε
dz
dt

= y,
(26)

y(0, ε) = 1, z(0, ε) = 1. (27)

Here, t ∈ [0, 0.3], x(t, ε) = (y(t, ε), z(t, ε))′; y = y(t, ε), z = z(t, ε) ∈ IR; x0 = (1, 1)′,

A(t) = A =

(
−1 0
1 0

)
, f (x, t, ε) =

(
z2

0

)
.

Hence,

λ1 = 0, λ2 = −1, kerA = {(0, a)′}, V = (0, 1)′, kerA′ = {(a, a)′},

S = (1, 1)′, imA = {(−a, a)′}, imA′ = {(a, 0)′},

P =

(
0 0
0 1

)
, I − P =

(
1 0
0 0

)
, Q =

(
1/2 1/2
1/2 1/2

)
,

(I − P)A(I − P) =

(
−1 0
0 0

)
: imA′ → imA′,

(QP)−1 =

(
0 0
0 2

)
: kerA′ → kerA, A+ =

(
−1/2 1/2

0 0

)
: imA → imA′.

We will construct the first-order approximation for the asymptotic solution of problem (26)-(27)
using projectors P and Q.

Relation (9), in this case, has the form:(
1 0
0 0

)(
y0(t)
z0(t)

)
=

(
y0(t)

0

)
=

(
0
0

)
.

Therefore, y0(t) = 0.
From (10), we get Π0y(0) = 1.
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Equation (11) has the form:

d
dτ

(
Π0y(τ)

0

)
=

(
−Π0y(τ)

0

)
.

Taking into account the initial value Π0y(0) = 1 found from (10), we obtain from the last equation
Π0y(τ) = e−τ .

From (13), we find Π0z(τ) = − ∫ +∞
τ Π0y(s)ds = −e−τ .

From (14) and (17) we derive, respectively,(
0 0
0 1

)(
y0(0)
z0(0)

)
=

(
0

z0(0)

)
=

(
0 0
0 1

)((
1
1

)
−
(

1
−1

))
=

(
0
2

)
.

d
dt

(
0

z0(t)

)
=

(
0 0
0 2

)(
1/2 1/2
1/2 1/2

)(
(z0(t))2

0

)
=

(
0

(z0(t))2

)
,

In view of the last two relations, we have z0(t) = 1/(0.5 − t).
It is easy to verify that conditions 1–4 are satisfied for problem (26)-(27).
Thus, we have found the zero-order asymptotic solution of form (3) x̃0(t, ε) for the solution of

problems (26)-(27). Namely, we have

ỹ0(t, ε) = e−τ ,

z̃0(t, ε) = 1/(0.5 − t)− e−τ , τ = t/ε.

Now, we will seek for the first-order asymptotics.
Equation (18) for n = 1 has the form:(
y1(t)

0

)
=

(
−1/2 1/2

0 0

)(
1/2 −1/2

−1/2 1/2

)(
d
dt

(
0

z0(t)

)
−
(
(z0(t))2

0

))
=

(
1/(0.5 − t)2

0

)
.

Therefore, y1(t) = 1/(0.5 − t)2.
From (19) with n = 1, we get Π1y(0) = −4.
Equation (20) for n = 1 has the form:

d
dτ

(
Π1y(τ)

0

)
=

(
−Π1y(τ) + 4Π0z(τ) + (Π0z(τ))2

0

)
.

From the last two relations, we obtain Π1y(τ) = −(3 + 4τ + e−τ)e−τ .
From (22) with n = 1, we find Π1z(τ) = − ∫ +∞

τ Π1y(s) ds = (7 + 4τ + e−τ/2)e−τ .
From (23) and (25) with n = 1, we derive, respectively,

d
dt

(
0

z1(t)

)
=

(
0 0
0 2

)(
1/2 1/2
1/2 1/2

)((
2z0(t)z1(t)

0

)
− d

dt

(
y1(t)

0

))
=

(
0

2z0(t)z1(t)− dy1(t)/dt

)
,

(
0

z1(0)

)
=

(
0

−Π1z(0)

)
.

In view of the last two relations, we have z1(t) = (ln(0.5 − t)2 − 15/8 + ln4)/(0.5 − t)2.
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Thus, we have found for problems (26)-(27) the first-order asymptotic solution of form (3) x̃1(t, ε).
Namely, we have

ỹ1(t, ε) = ỹ0(t, ε) + ε(y1(t) + Π1y(τ)),

z̃1(t, ε) = z̃0(t, ε) + ε(z1(t) + Π1z(τ)).

Of course, these results can be obtained using the algorithm from [4], but we would like to
demonstrate here the use of projectors for finding asymptotics terms. The results obtained by Maple 13
are given in Figures 1 and 2. They have been presented for the completeness of the paper. The solid
line represents the exact solution; the dash-dotted line—the solution of the degenerate problem, the
line consisting of squares represents the zero-order approximation; and the dash line represents the
the first-order approximation. These graphs show that an asymptotic solution is closer to the exact one
if we use higher-order asymptotics. If we use the smaller value of ε, then it will result in an asymptotic
solution more similar to the exact one. The graphs of the solution of the degenerate problem and the
zero-order approximation illustrate the known property of boundary functions that are essential only
for arguments in some vicinities of points where additional conditions are prescribed.

Figure 1. Trajectory y(t, ε) with ε = 0.01 and its approximations.

Figure 2. Trajectory z(t, ε) with ε = 0.01 and its approximations.
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7. Conclusions

This paper dealt with a new approach to the algorithm of the method of boundary functions
from [4] for asymptotic solving initial value problem of form (1)-(2) in the critical case. Namely, the
algorithm was formulated with the help of orthogonal projectors of the space X onto kerA(t) and
kerA(t)′. Such an approach clearly shows the structure of the algorithm for finding asymptotics terms,
given in Tables 1 and 2 of the paper.
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Abstract: The paper deals with an application of the direct scheme method, consisting of immediately
substituting a postulated asymptotic solution into a problem condition and determining a series of
control problems for finding asymptotics terms, for asymptotics construction of a solution of a weakly
nonlinearly perturbed linear-quadratic optimal control problem with three-tempo state variables. For
the first time, explicit formulas for linear-quadratic optimal control problems, from which all terms of
the asymptotic expansion are found, are justified, and the estimates of the proximity between the
asymptotic and exact solutions are proved for the control, state trajectory, and minimized functional.
Non-increasing of the minimized functional, if a next approximation to the optimal control is used,
following from the proposed algorithm of the asymptotics construction, is also established.

Keywords: optimal control problems; weak nonlinear perturbations; three-tempo variables; asymptotic
solutions; the direct scheme method; estimates of asymptotic solution

MSC: 34H05; 34E13

1. Introduction

Systems with two-tempo variables are the main object in the study of singularly
perturbed control problems (see, for instance, the reviews [1–3]). However, many practical
problems contain multi-tempo fast variables. For instance, such variables arise in models
of chain chemical reactions [4], fuel cells with a proton membrane [5], electrical chains [6],
electromechanical processes in a synchronous machine [7], power systems [8], nuclear
reactors [9], aircraft [10], ocean currents [11], rolling mills [12], two-wheeled carriages [13],
forest pests [14], and epidemics [15].

Various asymptotic and numerical (see, for instance, [16]) methods are used for study-
ing singularly perturbed systems with many small parameters standing before derivatives.
Basic methods of asymptotic analysis are boundary functions method [17] and integral
manifolds method ([18], ch. 7–10), which reduce the considered problem to a problem
of simpler structure. The limit passage of an initial problem solution of a system with
many small parameters at derivatives, when these parameters tend to zero, was studied for
the first time by A.N. Tikhonov [19] and I.S. Gradstein [20]. Asymptotic solution of such
problems was first constructed by A.B. Vasil’eva [21].

There are two approaches to constructing asymptotic solutions of optimal control
problems. The traditional one is based on an asymptotic solution of a system following
from control optimality conditions. Another approach, called the direct scheme method,
consists of immediately substituting a postulated asymptotic expansion of a solution into
the problem condition and receiving a series of problems for finding asymptotic terms.
For two-tempo systems, it is presented, for example, in [22,23]. This method allows for
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establishing non-increasing of values of the minimized functional if a next optimal control
approximation is used. Moreover, standard programs for solving optimal control problems
can be applied for finding asymptotics terms. The direct scheme method has been, for
instance, used in [24] to obtain any order asymptotic solution of a linear-quadratic optimal
control problem with cheap controls of different costs.

The present paper deals with an asymptotic solution construction for the problem Pε

with weak nonlinear perturbations in a quadratic performance index and in a linear state
equation. Namely, the following functional

Jε(u) =
∫ T

0
(1/2(w(t, ε)′W(t)w(t, ε) + u(t, ε)′R(t)u(t, ε)) + εF(w(t, ε), u(t, ε), t, ε)) dt (1)

is minimized on trajectories of three-tempo singularly perturbed system

E(ε)dw(t, ε)

dt
= A(t)w(t, ε) + B(t)u(t, ε) + ε f (w(t, ε), u(t, ε), t, ε), t ∈ [0, T], (2)

with the initial condition
w(0, ε) = w0. (3)

Here, ε is a non-negative small parameter, T > 0 is fixed, the prime means transpo-
sition; w(t, ε) = (x(t, ε)′, y(t, ε)′, z(t, ε)′)′, x(t, ε) ∈ IRn1 , y(t, ε) ∈ IRn2 , z(t, ε) ∈ IRn3 ,
u(t, ε) ∈ IRm; E(ε) = diag(In1 , εIn2 , ε2 In3), Ini is the identity matrix of order ni,

f = (
(1)
f ′ ,

(2)
f ′ ,

(3)
f ′ )′,

(i)
f ∈ IRni , B = (

(1)
B′ ,

(2)
B′ ,

(3)
B′)′,

(i)
B : IRm → IRni , i = 1, 3; all functions in

(1), (2) are sufficiently smooth with respect to their arguments; for all t ∈ [0, T] matrices
W(t), R(t) are symmetric, moreover, W(t), R(t) and S(t) = B(t)R(t)−1B(t)′ are positive
definite.

It is assumed that the stability of the matrices A33 and A22 − A23 A−1
33 A32 takes place.

Here, and further Aij, i, j = 1, 3, mean matrices from a block representation of a matrix A
with number of rows and columns n1, n2, n3.

In contrast to [25], where optimal control problems for finding some zero order asymp-
totics terms for a solution of a nonlinear singularly perturbed problem with three-tempo
state variables were formulated, here, explicit expressions of problems for receiving all
asymptotic terms are obtained. Note that explicit formulas are very useful for research
applying asymptotic methods for solving practical problems.

It should be noted that some results concerning the algorithm of asymptotic solving
problem (1)–(3) have been presented in [26], but rigorous proofs and estimates are absent
there. Note that [26] deal with matrices in (1), (2) depending on ε. However, expanding
these matrices with respect to non-negative integer powers of ε and including terms
depending on ε into the small nonlinearities, we obtain the problem Pε in our statement.

It is well known that, if a linear-quadratic problem is nonsingular, then its solving is
reduced to solving a system of linear differential equations resolved with respect to derivatives.
Under studying nonlinear singularly perturbed optimal control problems, it is ordinarily
assumed that the control problem is nonsingular, i.e., an optimal control is presented as an
explicit function with respect to state and costate variables. See e.g., [27], where, apparently
for the first time, singular perturbations methods were used for optimal control problems. In
the present paper, unlike these cases, we do not assume the non-singularity of the considered
problem for all ε and, for obtaining asymptotic estimates, we analyze a nonlinear singularly
perturbed differential-algebraic system.

The essential new results obtained in this paper for problem (1)–(3) are the following:

1. The rigorous justification of explicit forms of linear-quadratic optimal control prob-
lems, solutions of which are used under constructing an asymptotic solution of
nonlinear problem (1)–(3);
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2. The proof of estimates of the proximity between the exact solution and asymptotic
one obtained by the direct scheme method for the control, state trajectory of system
(2), (3), and functional (1);

3. The proof of non-increasing values of functional (1) under using new asymptotic
approximations to the optimal control and constructing minimized sequences.

Throughout the paper, the coefficient with εi in an expansion of a function ω = ω(ε)
in a series in powers of ε will be denoted by ωi or [ω]i. The k-th partial sum of a series
will be denoted by upper wave and the low index k or by braces with the low index k, i.e.,
ω̃k = {ω}k = ∑k

j=0 εjωj. The functions with negative indices will be considered equal to
zero. Positive constants in estimates will be denoted as c and æ.

The paper is organized as follows: in Section 2, we present a formalism of asymp-
totics construction. Optimal control problems for finding asymptotic terms are given in
Section 3. Section 4 is devoted to justification of such a choice of control problems. Namely,
transformations of coefficients of expansion of minimized functional with respect to powers
of ε with even and odd indices are considered. Asymptotic estimates of the proximity
between the asymptotic and exact solutions are proved in Section 5. Non-increasing of the
minimized functional, if a next optimal control approximation is used, is also discussed in
this section. The last Section 6 contains conclusions.

2. Formalism of Asymptotics Construction

Following the boundary function method by A.B. Vasil’eva (see, for instance, [28]), we
will seek a solution of problem (1)–(3) in the form

ϑ(t, ε) = ϑ(t, ε) +
1

∑
i=0

(Πiϑ(τi, ε) + Qiϑ(σi, ε)). (4)

Here, ϑ(t, ε) = (w(t, ε)′, u(t, ε)′)′, ϑ(t, ε) = ∑j≥0 εjϑj(t), Πiϑ(τi, ε) = ∑j≥0 εjΠijϑ(τi), Qiϑ(σi,
ε) = ∑j≥0 εjQijϑ(σi), τi = t/εi+1, σi = (t − T)/εi+1, i = 0, 1, ϑj(t) are regular functions,
Πijϑ(τi) and Qijϑ(σi) are boundary functions of exponential type in neighborhoods t = 0
and t = T, respectively, i.e.,

‖Πijϑ(τi)‖ � c exp (−æτi), τi � 0, ‖Qijϑ(σi)‖ � c exp (æσi), σi � 0,

where c and æ are positive constants independent of the arguments of functions under study.
For any sufficiently smooth function G(w(t, ε), u(t, ε), t, ε), we will use the notation

G(ϑ(t, ε), t, ε) and the asymptotic representation

G(ϑ, t, ε) = G(t, ε) +
1

∑
i=0

(ΠiG(τi, ε) + QiG(σi, ε)), (5)

G(t, ε) = G(ϑ(t, ε), t, ε) = ∑j≥0 εjGj(t), Π0G(τ0, ε) = G(ϑ(ετ0, ε) + Π0ϑ(τ0, ε), ετ0, ε)

− G(ϑ(ετ0, ε), ετ0, ε) = ∑j≥0 εjΠ0jG(τ0), Π1G(τ1, ε) = G(ϑ(ε2τ1, ε) + Π0ϑ(ετ1, ε)

+ Π1ϑ(τ1, ε), ε2τ1, ε)− G(ϑ(ε2τ1, ε) + Π0ϑ(ετ1, ε), ε2τ1, ε) = ∑j≥0 εjΠ1jG(τ1),
Q0G(σ0, ε) = G(ϑ(T + εσ0, ε) + Q0ϑ(σ0, ε), T + εσ0, ε)− G(ϑ(T + εσ0, ε), T + εσ0, ε)
= ∑j≥0 εjQ0jG(σ0), Q1G(σ1, ε) = G(ϑ(T + ε2σ1, ε) + Q0ϑ(εσ1, ε) + Q1ϑ(σ1, ε), T + ε2σ1, ε)

− G(ϑ(T + ε2σ1, ε) + Q0ϑ(εσ1, ε), T + ε2σ1, ε) = ∑j≥0 εjQ1jG(σ1).

Substitute (4) in (1) and present the integrand in the form of sum (4). Passing in
the integrals from the expressions depending on τi, σi, i = 0, 1, to integrals over the
corresponding intervals [0,+∞) and (−∞, 0], we obtain the following expansion of the
functional (1)

Jε(u) = ∑
j≥0

εj Jj. (6)
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Substituting expansion (4) into system (2) and initial value (3), using (5), then equating
terms of the same powers of ε, separately depending on regular and different boundary
functions, we obtain relations for defining asymptotics terms.

Introducing the notation E1 = diag(In1 , 0, 0), E2 = diag(0, In2 , 0), E3 = diag(0, 0, In3),
and φ(ϑ, t, ε) = A(t)w(t, ε) + B(t)u(t, ε) + ε f (w(t, ε), u(t, ε), t, ε), we obtain the following
equations:

E1
dwj(t)

dt
+ E2

dwj−1(t)
dt

+ E3
dwj−2(t)

dt
= [φ(t, ε)]j, (7)

(E1 + E2)
dΠ0jw(τ0)

dτ0
+ E3

dΠ0(j−1)w(τ0)

dτ0
= E1[Π0φ(τ0, ε)]j−1

+(E2 + E3)[Π0φ(τ0, ε)]j,
(8)

(E1 + E2)
dQ0jw(σ0)

dσ0
+ E3

dQ0(j−1)w(σ0)

dσ0
= E1[Q0φ(σ0, ε)]j−1

+(E2 + E3)[Q0φ(σ0, ε)]j,
(9)

dΠ1jw(τ1)

dτ1
= E1[Π1φ(τ1, ε)]j−2 + E2[Π1φ(τ1, ε)]j−1 + E3[Π1φ(τ1, ε)]j, (10)

dQ1jw(σ1)

dσ1
= E1[Q1φ(σ1, ε)]j−2 + E2[Q1φ(σ1, ε)]j−1 + E3[Q1φ(σ1, ε)]j. (11)

From Equations (8)–(11) at j = 0, (10) and (11) at j = 1, we found the corresponding
boundary functions

E1Π00w(τ0) = 0, E1Π10w(τ1) = E1Π11w(τ1) = 0, E1Q00w(σ0) = 0,

E1Q10w(σ1) = E1Q11w(σ1) = 0, E2Π10w(τ1) = 0, E2Q10w(σ1) = 0.
(12)

In view of the last equalities, from (3), we obtain relations for initial values

E1w0(0) = E1w0, E1(w1(0) + Π01w(0)) = 0, (13)

E1(wj(0) + Π0jw(0) + Π1jw(0)) = 0, j ≥ 2, (14)

E2(w0(0) + Π00w(0)) = E2w0, (15)

E2(wj(0) + Π0jw(0) + Π1jw(0)) = 0, j ≥ 1, (16)

E3(wj(0) + Π0jw(0) + Π1jw(0)) =

{
E3w0, j = 0,
0, j ≥ 1.

(17)

Remark 1. If boundary functions Πijw, Qijw, i = 0, 1, j = 0, n − 1 have been found, then,
from Equations (8)–(11), it follows the corollary that functions E1Πinw(τi), E1Qinw(σi), i = 0, 1,
E2Π1nw(τ1), E2Q1nw(σ1), and E1Π1(n+1)w(τ1), E1Q1(n+1)w(σ1) are known.

3. Optimal Control Problems for Finding Asymptotics Terms

In this section, forms of control problems for finding asymptotics terms will be given.
In contrast to [26], the justification of these relations will be presented.

With the help of the notations,

ρ(ϑ, ψ, t, ε) = W(t)w(t, ε)− A(t)′ψ(t, ε) + ε(Fw(ϑ, t, ε)′ − fw(ϑ, t, ε)′ψ(t, ε)),

χ(ϑ, ψ, t, ε) = R(t)u(t, ε)− B(t)′ψ(t, ε) + ε(Fu(ϑ, t, ε)′ − fu(ϑ, t, ε)′ψ(t, ε)),

five optimal control problems Pj, ΠijP, QijP, i = 0, 1, for determining asymptotics terms in
expansion (4) will be written. Costate variables in these problems will be denoted as ψj(t),
Πijψ(τi), Qijψ(σi), i = 0, 1, respectively.
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Furthermore, the hat and the low index k in a function notation will mean that the
function is calculated with the functional argument equal to the k-th partial sum of the

corresponding expansion, e.g., f̂ k(t, ε) = f (ϑ̃k(t, ε), t, ε).
In the following expressions with ρ and χ in the performance indices of the formulated

optimal control problems, we take ψ(t, ε) = ∑∞
j=0 εj(ψj(t) + (εE1 + E2 + E3)(Π0jψ(τ0) +

Q0jψ(σ0)) + (ε2E1 + εE2 + E3)(Π1jψ(τ1) + Q1jψ(σ1))).
Regular functions ϑj(t), t ∈ [0, T], are determined as solutions of problems Pj, which

consist of minimizing the functional

J j(uj) = wj(T)′E1(Q0(j−1)ψ(0) + Q1(j−2)ψ(0)) +
T∫

0

(wj(t)′(
1
2

W(t)wj(t)

+[ρ̂j−1(t, ε)]j − E2
dψj−1(t)

dt
− E3

dψj−2(t)

dt
) + uj(t)′(

1
2

R(t)uj(t) + [χ̂j−1(t, ε)]j)) dt

on trajectories of system (7) with initial conditions from (13) or (14) in dependence on j.
The boundary functions Π0jϑ(τ0), τ0 ∈ [0,+∞) are determined from optimal control

problems Π0jP consisting of minimizing the functional

Π0j J(Π0ju) =
+∞∫
0

(Π0jw(τ0)
′(1

2
W(0)Π0jw(τ0) + [Π̂0(j−1)ρ(τ0, ε)]j − E3

dΠ0(j−1)ψ(τ0)

dτ0
)

+Π0ju(τ0)
′(1

2
R(0)Π0ju(τ0) + [Π̂0(j−1)χ(τ0, ε)]j)) dτ0

on trajectories of system (8) with the conditions Π0jx(+∞) = 0 and (15) or (16) in depen-
dence on j.

The boundary functions Q0jϑ(σ0), σ0 ∈ (−∞, 0], are determined from optimal control
problems Q0jP consisting of minimizing the functional

Q0j J(Q0ju) = Q0jw(0)′E2(ψj(T) + Q1(j−1)ψ(0))

+

0∫
−∞

(Q0jw(σ0)
′(1

2
W(T)Q0jw(σ0) + [Q̂0(j−1)ρ(σ0, ε)]j − E3

dQ0(j−1)ψ(σ0)

dσ0
)

+Q0ju(σ0)
′(1

2
R(T)Q0ju(σ0) + [Q̂0(j−1)χ(σ0, ε)]j)) dσ0

on trajectories of system (9) with the condition (E1 + E2)Q0jw(−∞) = 0.
The boundary functions Π1jϑ(τ1), τ1 ∈ [0,+∞), are determined from optimal control

problems Π1jP consisting of minimizing the functional

Π1j J(Π1ju) =
+∞∫
0

(Π1jw(τ1)
′(1

2
W(0)Π1jw(τ1) + [Π̂1(j−1)ρ(τ1, ε)]j)

+Π1ju(τ1)
′(1

2
R(0)Π1ju(τ1) + [Π̂1(j−1)χ(τ1, ε)]j)) dτ1

on trajectories of system (10) with the conditions (E1 + E2)Π1jw(+∞) = 0 and (17).
The boundary functions Q1jϑ(σ1), σ1 ∈ (−∞, 0], are determined from optimal control

problems Q1jP consisting of minimizing the functional

Q1j J(Q1ju) = Q1jw(0)′E3(ψj(T) + Q0jψ(0)) +
0∫

−∞

(Q1jw(σ1)
′(1

2
W(T)Q1jw(σ1)
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+[Q̂1(j−1)ρ(σ1, ε)]j) + Q1ju(σ1)
′(1

2
R(T)Q1ju(σ1) + [Q̂1(j−1)χ(σ1, ε)]j)) dσ1

on trajectories of system (11) with the condition Q1jw(−∞) = 0.

Remark 2. Though the original problem (1)–(3) is nonlinear, the considered optimal control
problems Pj, ΠijP, QijP, i = 0, 1, are linear-quadratic.

Solutions of the formulated optimal control problems can be found from the control
optimality conditions in the Pontryagin maximum principle form. Namely, a solution of
the problem Pj can be found from (7), (13), or (14) in dependence on j, and the relations

B(t)′ψj(t)− R(t)uj(t)− [χ̂j−1(t, ε)]j = 0, (18)

E1
dψj(t)

dt
= W(t)wj(t)− A(t)′ψj(t) + [ρ̂j−1(t, ε)]j − E2

dψj−1(t)

dt
− E3

dψj−2(t)

dt
, (19)

E1ψj(T) = −E1(Q0(j−1)ψ(0) + Q1(j−2)ψ(0)). (20)

A solution of the problem Π0jP with E1Π0jw(+∞) = 0 can be found from (8), (12)
and (15) or (16) in dependence on j, and the relations

B(0)′(E2 + E3)Π0jψ − R(0)Π0ju − [Π̂0(j−1)χ(τ0, ε)]j = 0, (21)

(E1 + E2)
dΠ0jψ

dτ0
= W(0)Π0jw − A(0)′(E2 + E3)Π0jψ

+[Π̂0(j−1)ρ(τ0, ε)]j − E3
dΠ0(j−1)ψ

dτ0
,

(22)

(E1 + E2)Π0jψ(+∞) = 0.

A solution of the problem Q0jP with (E1 + E2)Q0jw(−∞) = 0 can be found from (9),
(12) and the relations

B(T)′(E2 + E3)Q0jψ − R(T)Q0ju − [Q̂0(j−1)χ(σ0, ε)]j = 0,

(E1 + E2)
dQ0jψ

dσ0
= W(T)Q0jw − A(T)′(E2 + E3)Q0jψ

+[Q̂0(j−1)ρ(σ0, ε)]j − E3
dQ0(j−1)ψ

dσ0
,

E1Q0jψ(−∞) = 0, E2Q0jψ(0) = −E2(ψj(T) + Q1(j−1)ψ(0)). (23)

A solution of the problem Π1jP with (E1 + E2)Π1jw(+∞) = 0 can be found from (10),
(12), (17) in dependence on j, and the relations

B(0)′E3Π1jψ − R(0)Π1ju − [Π̂1(j−1)χ(τ1, ε)]j = 0, (24)

dΠ1jψ

dτ1
= W(0)Π1jw − A(0)′E3Π1jψ + [Π̂1(j−1)ρ(τ1, ε)]j, (25)

Π1jψ(+∞) = 0.

A solution of the problem Q1jP with Q1jw(−∞) = 0 can be found from (11), (12) in
dependence on j, and the relations

B(T)′E3Q1jψ − R(T)Q1ju − [Q̂1(j−1)χ(σ1, ε)]j = 0,

dQ1jψ

dσ1
= W(T)Q1jw − A(T)′E3Q1jψ + [Q̂1(j−1)ρ(σ1, ε)]j,
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(E1 + E2)Q1jψ(−∞) = 0, E3Q1jψ(0) = −E3(ψj(T) + Q0jψ(0)). (26)

In view of the control optimality condition in the Pontryagin maximum principle, a
solution of the problem (1)–(3) satisfies (2), (3) and the following relations, including the
costate variable ϕ(t, ε) = (ζ(t, ε)′, η(t, ε)′, θ(t, ε)′)′,

B(t)′ϕ − R(t)u − ε(Fu(ϑ, t, ε)′ − fu(ϑ, t, ε)′ϕ) = 0, (27)

E(ε)dϕ

dt
= W(t)w − A(t)′ϕ + ε(Fw(ϑ, t, ε)′ − fw(ϑ, t, ε)′ϕ), (28)

ϕ(T, ε) = 0. (29)

An asymptotic solution of problems (2), (3), (27)–(29) can be constructed in the form (4),
i.e., in addition, we set

ϕ(t, ε) = ϕ(t, ε) +
1

∑
i=0

(Πi ϕ(τi, ε) + Qi ϕ(σi, ε)), (30)

where all terms have the properties of the corresponding terms in (4).
Substitute asymptotic expansions (4), (30) into (27)–(29) and use presentation (5).

Introducing the notation g(ϑ, ϕ, t, ε) = ρ(ϑ, ϕ, t, ε), h(ϑ, ϕ, t, ε) = χ(ϑ, ϕ, t, ε) and equating
terms of the same power of ε separately depending on t, τi, σi, i = 0, 1, we obtain the
relations

B(t)′ϕj − R(t)uj − [ĥj−1(t, ε)]j = 0,

E1
dϕj

dt
+ E2

dϕj−1

dt
+ E3

dϕj−2

dt
= W(t)wj − A(t)′ϕj + [ĝj−1(t, ε)]j,

B(0)′Πij ϕ − R(0)Πiju − [Π̂i(j−1)h(τi, ε)]j = 0,

E1
dΠij ϕ

dτi
+ E2

dΠi(j−1)ϕ

dτi
+ E3

dΠi(j−2)ϕ

dτi
= W(0)Πi(j−i−1)w

−A(0)′Πi(j−i−1)ϕ + [Π̂i(j−i−2)g(τi, ε)]j−i−1,
(31)

B(T)′Qij ϕ − R(T)Qiju − [Q̂i(j−1)h(σi, ε)]j = 0,

E1
dQij ϕ

dσi
+ E2

dQi(j−1)ϕ

dσi
+ E3

dQi(j−2)ϕ

dσi
= W(T)Qi(j−i−1)w

−A(T)′Qi(j−i−1)ϕ + [Q̂i(j−i−2)g(σi, ε)]j−i−1,
(32)

ϕj(T) + Q0j ϕ(0) + Q1j ϕ(0) = 0. (33)

It follows from (31), (32) with j = 0 and i = j = 1 that

E1Π00 ϕ(τ0) = 0, E1Π10 ϕ(τ1) = E1Π11 ϕ(τ1) = 0, E1Q00 ϕ(σ0) = 0,

E1Q10 ϕ(σ1) = E1Q11 ϕ(σ1) = 0, E2Π10 ϕ(τ1) = 0, E2Q10 ϕ(σ1) = 0.

4. Justification of Formalism of Asymptotics Construction

This section deals with the establishment of a relation between the forms of coefficients
in the expansion (6) of the minimized functional with respect to powers of ε and the
expressions of the performance indices in optimal control problems formulated in the
previous section. The following theorem, which was given in [26] without any rigorous
proof, will be further justified.

Theorem 1. The sum Jj + Π1(j−1) J + Q1(j−1) J of the performance indices in problems Pj, Π1(j−1)P,
Q1(j−1)P is obtained by transforming the coefficient J2j in expansion (6) and dropping terms, which
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are known after solving problems Pk, Π0kP, Q0kP, k = 0, j − 1, Π1kP, Q1kP, k = 0, k − 2. The
sum Π0j J + Q0j J of the performance indices in problems Π0jP, Q0jP is obtained by transforming
the coefficient J2j+1 in expansion (6) and dropping terms, which are known after solving problems
Pk, k = 0, j, ΠikP, QikP, i = 0, 1, k = 0, j − 1.

Proof. Denote the integrand in (1) by means F(ϑ, t, ε). In view of (5), we can present Jk in
the form

Jk =
∫ T

0
Fk(t) dt +

∫ +∞

0
Π0(k−1)F(τ0) dτ0

+
∫ 0

−∞
Q0(k−1)F(σ0)dσ0+

∫ +∞

0
Π1(k−2)F(τ1)dτ1+

∫ 0

−∞
Q1(k−2)F(σ1) dσ1.

(34)

It is clear that the last expression contains the asymptotics terms with numbers more

than it is necessary in this theorem, for instance, F2n(t) = [F(ϑ̃2n(t, ε), t, ε)]2n. In order to
prove the theorem, we will use control optimality conditions for formulated previously
control problems.

It is evident that the coefficient J0 in (6) is the performance index in problem P0.
We will analyze the coefficient J1. In view of (34) with k = 1, we have

J1 =
∫ T

0
F1(t) dt +

∫ +∞

0
Π00F(τ0) dτ0 +

∫ 0

−∞
Q00F(σ0) dσ0

=
∫ T

0
(w1(t)′W(t)w0(t) + u1(t)′R(t)u0(t) + [F̂0(t, ε)]1) dt

+
∫ +∞

0
(

1
2
(Π00w(τ0)

′W(0)Π00w(τ0) + Π00u(τ0)
′R(0)Π00u(τ0))

+Π00w(τ0)
′W(0)w0(0) + Π00u(τ0)

′R(0)u0(0)) dτ0

+
∫ 0

−∞
(

1
2
(Q00w(σ0)

′W(T)Q00w(σ0) + Q00u(σ0)
′R(T)Q00u(σ0))

+Q00w(σ0)
′W(T)w0(T) + Q00u(σ0)

′R(T)u0(T)) dσ0.

Transforming the following expression from J1 with the help of control optimality
conditions for the problem P0 (see (18)–(20) with j = 0), the integration by parts, and
also (12), (7) with j = 1, (8), (9) with j = 0 and j = 1, and (15), we have∫ T

0
(w1(t)′W(t)w0(t) + u1(t)′R(t)u0(t)) dt +

∫ +∞

0
(Π00w(τ0)

′W(0)w0(0)

+Π00u(τ0)
′R(0)u0(0)) dτ0 +

∫ 0

−∞
(Q00w(σ0)

′W(T)w0(T) + Q00u(σ0)
′R(T)u0(T)) dσ0

=
∫ T

0
(w1(t)′(E1

dψ0(t)
dt

+ A(t)′ψ0(t)) + u1(t)′B(t)′ψ0(t)) dt

+
∫ +∞

0
(Π00w(τ0)

′(E1
dψ0
dt

(0) + A(0)′ψ0(0)) + Π00u(τ0)
′B(0)′ψ0(0)) dτ0

+
∫ 0

−∞
(Q00w(σ0)

′(E1
dψ0
dt

(T) + A(T)′ψ0(T)) + Q00u(σ0)
′B(T)′ψ0(T)) dσ0

= w1(t)′E1ψ0(t)|T0 +
∫ T

0
ψ0(t)

′(−E1
dw1

dt
(t) + A(t)w1(t) + B(t)u1(t)) dt

+
∫ +∞

0
ψ0(0)

′(A(0)Π00w(τ0) + B(0)Π00u(τ0)) dτ0

+
∫ 0

−∞
ψ0(T)

′(A(T)Q00w(σ0) + B(T)Q00u(σ0)) dσ0

= Π01w(0)′E1ψ0(0) +
∫ T

0
ψ0(t)

′(E2
dw0

dt
(t)− [φ̂0(t, ε)]1) dt
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+
∫ +∞

0
ψ0(0)

′(E1
dΠ01w(τ0)

dτ0
+ E2

dΠ00w(τ0)

dτ0
) dτ0

+
∫ 0

−∞
ψ0(T)

′(E1
dQ01w(σ0)

dσ0
+ E2

dQ00w(σ0)

dσ0
) dσ0

= Π01w(0)′E1ψ0(0) +
∫ T

0
ψ0(t)

′(E2
dw0

dt
(t)− [φ̂0(t, ε)]1) dt

−ψ0(0)
′(E1Π01w(0) + E2Π00w(0)) + ψ0(T)

′E2Q00w(0)

= ψ0(T)
′E2Q00w(0) +

∫ T

0
ψ0(t)

′(E2
dw0

dt
(t)− [φ̂0(t, ε)]1) dt − ψ0(0)

′E2(w0 − w0(0)).

Taking into account this relation and the previous expression for J1, and also drop-
ping terms, which are known after solving the problem P0, we see that the transformed
expression for J1 is the sum Π00 J + Q00 J.

Assuming that the problems P0, Π00P, Q00P have been solved, we transform by similar
way the coefficient J2 in (6). According to (34), J2 has the form:∫ T

0
F2(t) dt +

∫ +∞

0
Π01F(τ0) dτ0 +

∫ 0

−∞
Q01F(σ0) dσ0

+
∫ +∞

0
Π10F(τ1) dτ1 +

∫ 0

−∞
Q10F(σ1) dσ1.

Write down the unknown terms in F2(t)

w2(t)′W(t)w0(t) + u2(t)′R(t)u0(t) + w1(t)′(1/2W(t)w1(t) + Fw0(t)
′)

+u1(t)′(1/2R(t)u1(t) + Fu0(t)
′).

Transforming
∫ T

0 (w′
2Ww0 + u′

2Ru0) dt with the help of optimality conditions (18),
(19) at j = 0, integrating by parts, (7) at j = 2, (20) at j = 0, and dropping known terms,
we obtain −ψ0(0)

′(E1w2(0) + E2w1(0)) +ψ0(T)
′E2w1(T)−

∫ T
0 (w′

1E2dψ0/dt+ψ
′
0( f w0

w1 +

f u0
u1)) dt.

The unknown expression in Π01F(τ0) is

Π01w(τ0)
′W(0)(w0(0) + Π00w(τ0)) + Π00w(τ0)

′W(0)w1(0)

+Π01u(τ0)
′R(0)(u0(0) + Π01u(τ0)) + Π00u(τ0)

′R(0)u1(0).

The integral of this expression will be transformed using control optimality conditions
for problems P0 and Π00P, Equations (7) at j = 1, (8) at j = 1, 2, the formula of integration
by parts and Remark 1. Dropping known terms, we have −Π00ψ(0)′((E1 + E2)w1(0) +
E2Π01w(0))− ψ0(0)

′(E2Π01w(0) + E1Π02w(0)).
Similarly, we transform the third integral in J2, depending on an unknown expression∫ 0

−∞
(Q01w(σ0)

′W(T)(w0(T) + Q00w(σ0)) + Q00w(σ0)
′W(T)w1(T)

+Q01u(σ0)
′R(T)(u0(T) + Q00u(σ0)) + Q00u(σ0)

′R0(T)u1(T)) dσ0

= Q00ψ(0)′((E1 + E2)w1(T) + E2Q01w(0)) + ψ0(T)
′E2Q01w(0).

The unknown expression in Π10F(τ1) is

Π10w(τ1)
′W(0)(w0(0) + Π00w(0)) + Π10u(τ1)

′R(0)(u0(0) + Π00u(0))

+1/2(Π10w(τ1)
′W(0)Π10w(τ1) + Π10u(τ1)

′R(0)Π10u(τ1)).
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Transform the integral∫ +∞

0
(Π10w(τ1)

′W(0)(w0(0) + Π00w(0)) + Π10u(τ1)
′R(0)(u0(0) + Π00u(0))) dτ1

with the help of optimality conditions for problems P0, Π00P, (10) at j = 0, 1, 2, (12) and
integration by parts. Dropping known terms, we have −ψ0(0)

′(E1Π12w(0) + E2Π11w(0) +
E3Π10w(0))− Π00ψ(0)′(E2Π11w(0) + E3Π10w(0)).

Transforming in a similar way the fifth integral in J2, depending on unknown terms,
we obtain∫ 0

−∞
(Q10w(σ1)

′W(T)(w0(T) + Q00w(0)) + Q10u(σ1)
′R(T)(u0(T) + Q00u(0))

+1/2(Q10w(σ1)
′W(T)Q10w(σ1) + Q10u(σ1)

′R(T)Q10u(σ1))) dσ1

= ψ0(T)
′(E2Q11w(0) + E3Q10w(0)) + Q00ψ(0)′(E2Q11w(0) + E3Q10w(0))

+1/2
∫ 0

−∞
(Q10w(σ1)

′W(T)Q10w(σ1) + Q10u(σ1)
′R(T)Q10u(σ1)) dσ1.

Substituting the transformed relations into J2, taking into account the second equality
in (13), (14) at j = 2, (16) at j = 1, (17) and (23) at j = 0, and also Remark 1, and finally
dropping known terms, we obtain the theorem statement for the coefficient J2.

Introduce the notation

ϑ(t, ε)− ϑ̃j−1(t, ε) = Δjϑ(t, ε) +
1

∑
i=0

(ΔjΠiϑ(τi, ε) + ΔjQiϑ(σi, ε)), (35)

where Δjϑ(t, ε) = ϑ(t, ε) − ϑ̃j−1(t, ε) = εjϑj(t) + α(εj+1), ΔjΠiϑ(τi, ε) = Πiϑ(τi, ε) −
Π̃i(j−1)ϑ(τi, ε) = εjΠijϑ(τi) + α(εj+1), ΔjQiϑ(σi, ε) = Qiϑ(τi, ε)− Q̃i(j−1)ϑ(σi, ε) = εjQijϑ

(σi) + α(εj+1), i = 0, 1, α(εj+1) is a sum of the expansion terms of order εj+1 and higher.
Assuming that the problems Pj, Π0jP, Q0jP and Π1(j−1)P, Q1(j−1)P, j = 0, n − 1 have

been solved, we will transform each term in the coefficient J2n, having the presentation (34)
with k = 2n.

Using the notation (35), we can see that the unknown terms in F2n(t) are the following:

wn(t)′(1/2W(t)wn(t) + [F̂w(n−1)(t, ε)′]n−1)

+un(t)′(1/2R(t)un(t) + [F̂u(n−1)(t, ε)′]n−1)

+[Δn+1w(t, ε)′(W(t)w̃n−1(t, ε) + {εF̂w(n−1)(t, ε)′}n−1)]2n

+[Δn+1u(t, ε)′(R(t)ũn−1(t, ε) + {εF̂u(n−1)(t, ε)′}n−1)]2n.

Multiplying the Equations (18), (19) by εj, j = 0, k, and summing up the obtained
equations, we obtain the following relations

{R(t)ũk(t, ε) + εF̂u(k−1)(t, ε)′}k = {B(t)′ψ̃k(t, ε) + ε f̂ u(k−1)(t, ε)′ψ̃k−1(t, ε)}k,

{W(t)w̃k(t, ε) + εF̂w(k−1)(t, ε)′}k = {E(ε)dψ̃k(t, ε)

dt
}k

+{A(t)′ψ̃k(t, ε) + ε f̂ w(k−1)(t, ε)′ψ̃k−1(t, ε)}k.

(36)
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Substituting ϑ(t, ε) from (35) with j = n + 1 into (2) and equating terms depending on
t, we obtain the equation

E(ε)(dw̃n(t, ε)

dt
+

dΔn+1w(t, ε)

dt
) = A(t)(w̃n(t, ε) + Δn+1w(t, ε))

+B(t)(ũn(t, ε) + Δn+1u(t, ε)) + ε f (ϑ̃n(t, ε) + Δn+1ϑ(t, ε), t, ε).
(37)

We will use the next easily proved formula from [29], which is valid for any sufficiently
smooth vector functions a(t, ε), b(t, ε) and a matrix D(t, ε) of the corresponding size,

k = [{b(t, ε)}′
lD(t, ε)a(t, ε)]k

−[{b(t, ε)}′
lD(t, ε){a(t, ε)}k−l−1]k, k, l ∈ IN, k � l.

(38)

Using (36) with k = n − 1, (37), (38) with l = n − 1, k = 2n, we can rewrite∫ T

0
([Δn+1w(t, ε)′(W(t)w̃n−1(t, ε) + {εF̂w(n−1)(t, ε)′}n−1)]2n

+[Δn+1u(t, ε)′(R(t)ũn−1(t, ε) + {εF̂u(n−1)(t, ε)′}n−1)]2n) dt

in the following way

∫ T

0
([Δn+1w(t, ε)′{E(ε)dψ̃n−1(t, ε)

dt
}n−1]2n + [ψ̃n−1(t, ε)′(A(t)Δn+1w(t, ε)

+B(t)Δn+1u(t, ε)]2n + [Δn+1w(t, ε)′{ε f̂ w(n−1)(t, ε)′ψ̃n−1(t, ε)}n−1]2n

+[Δn+1u(t, ε)′{ε f̂ u(n−1)(t, ε)′ψ̃n−1(t, ε)}n−1〉]2n) dt

=
∫ T

0
([Δn+1w(t, ε)′{E(ε)dψ̃n−1(t, ε)

dt
}n−1]2n + [ψ̃n−1(t, ε)′(E(ε)(dΔn+1w(t, ε)

dt

+
dw̃n(t, ε)

dt
)− A(t)w̃n(t, ε)− B(t)ũn(t, ε)− ε f (ϑ̃n(t, ε) + Δn+1ϑ(t, ε), t, ε))]2n

+[ψ̃n−1(t, ε)′({ε f̂ w(n−1)(t, ε)}n−1Δn+1w(t, ε) + {ε f̂ u(n−1)(t, ε)}n−1Δn+1u(t, ε))]2n) dt.

Integrating by parts in the first term of the last expression, taking into account the

equality Δn+1ϑ(t, ε) = Δnϑ(t, ε)− εnϑn(t), decomposing f (ϑ̃n(t, ε) + Δn+1ϑ(t, ε), t, ε) in the

neighborhood of ϑ̃n−1(t, ε), and omitting known terms, we obtain

[Δn+1w(t, ε)′E(ε)ψ̃n−1(t, ε)]2n|T0 + (ψn−1(t)
′E2wn(t) + ψn−2(t)

′E3wn(t))|T0
+
∫ T

0
(w′

n(−E2
dψn−1

dt
− E3

dψn−2
dt

− [{ψ̃n−1(t, ε)′ε f̂ ϑ(n−1)(t, ε)}n(ε
nϑn + Δn+1ϑ(t, ε))]2n

+[ψ̃n−1(t, ε)′({ε f̂ w(n−1)(t, ε)}n−1Δn+1w(t, ε) + {ε f̂ u(n−1)(t, ε)}n−1Δn+1u(t, ε))]2n) dt

= [Δnw(t, ε)′(1
ε

E1 + E2 + εE3)ψ̃n−1(t, ε)]2n−1|T0

−
∫ T

0
(wn(t)′(E2

dψn−1
dt

+ E3
dψn−2

dt
+ [ε f̂ w(n−1)(t, ε)′ψ̃n−1(t, ε)]n)

+[un(t)′([ε f̂ u(n−1)(t, ε)′ψ̃n−1(t, ε)]n) dt.

Taking into account the last relation, omitting known terms, we obtain the following
expression for the first term of J2n:∫ T

0
F2n(t) dt = [Δnw(t, ε)′(1

ε
E1 + E2 + εE3)ψ̃n−1(t, ε)]2n−1|T0 + Jn
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−wn(T)′E1(Q0(n−1)ψ(0) + Q1(n−2)ψ(0)).

The next step is the transformation of the unknown parts of Π0(2n−1)F(τ0), which,
after substituting (35) and some transformations, is given below

[ΔnΠ0w(τ0, ε)′({W(ετ0)w̃n−1(ετ0, ε)}n−1 + {εF̂w(n−1)(ετ0, ε)′}n−1)]2n−1

+[ΔnΠ0u(τ0, ε)′({R(ετ0)ũn−1(ετ0, ε)}n−1 + {εF̂u(n−1)(ετ0, ε)′}n−1)]2n−1

+[(Δnw(ετ0, ε) + ΔnΠ0w(τ0, ε))′({W(ετ0)Π̃0(n−1)w(τ0, ε)}n−1

+{εΠ̂0(n−1)Fw(τ0, ε)′}n−1)]2n−1 + [(Δnu(ετ0, ε)

+ΔnΠ0u(τ0, ε))′({R(ετ0)Π̃0(n−1)u(τ0, ε)}n−1 + {εΠ̂0(n−1)Fu(τ0, ε)′}n−1)]2n−1.

Substituting ϑ(t, ε) from (35) into (2) and considering terms depending on τ0, we
obtain the equation

(
1
ε

E1 + E2 + εE3)(
dΠ̃0(n−1)w(τ0, ε)

dτ0
+

dΔnΠ0w(τ0, ε)

dτ0
)

= A(ετ0)(Π̃0(n−1)w(τ0, ε) + ΔnΠ0w(τ0, ε)) + B(ετ0)(Π̃0(n−1)u(τ0, ε)

+ΔnΠ0u(τ0, ε)) + ε( f (ϑ̃n−1(ετ0, ε) + Π̃0(n−1)ϑ(τ0, ε)

+Δnϑ(ετ0, ε) + ΔnΠ0ϑ(τ0, ε), ετ0, ε)− f (ϑ̃n−1(ετ0, ε) + Δnϑ(ετ0, ε), ετ0, ε)).

(39)

Using (36) with k = n − 1, (39) and (38), we transform the following expression:∫ +∞

0
([ΔnΠ0w(τ0, ε)′({W(ετ0)w̃n−1(ετ0, ε)}n−1 + {εF̂w(n−1)(ετ0, ε)′}n−1)]2n−1

+[ΔnΠ0u(τ0, ε)′({R(ετ0)ũn−1(ετ0, ε)}n−1 + {εF̂u(n−1)(ετ0, ε)′}n−1)]2n−1) dτ0.

Omitting known terms, we have

∫ +∞

0
([ΔnΠ0w(τ0, ε)′({E(ε)dψ̃n−1

dt
(ετ0, ε)}n−1 + {A(ετ0)

′ψ̃n−1(ετ0, ε)}n−1

+{ε f̂ w(n−1)(ετ0, ε)′ψ̃n−1(ετ0, ε)}n−1)]2n−1 + [ΔnΠ0u(τ0, ε)′({B(ετ0)
′ψ̃n−1(ετ0, ε)}n−1

+{ε f̂ u(n−1)(ετ0, ε)′ψ̃n−1(ετ0, ε)}n−1)]2n−1) dτ0 =
∫ +∞

0
(Π0nw′E1

dψn−1
dt

(0)

+[ΔnΠ0w(τ0, ε)′{(1
ε

E1 + E2 + εE3)
dψ̃n−2

dt
(ετ0, ε)}n−2]2n−2

+[ψ̃n−1(ετ0, ε)′(1
ε

E1 + E2 + εE3)
dΔnΠ0w

dτ0
(τ0, ε)]2n−1

−[ψ̃n−1(ετ0, ε)′(εΠ̂0(n−1) fϑ(τ0, ε)Δnϑ(ετ0, ε) + ε fϑ(ϑ̃n−1(ετ0, ε)

+Π̃0(n−1)ϑ(τ0, ε), ετ0, ε)ΔnΠ0ϑ(τ0, ε))]2n−1 + [ψ̃n−1(ετ0, ε)′(ε f̂ w(n−1)(ετ0, ε)ΔnΠ0w(τ0, ε)

+ε f̂ u(n−1)(ετ0, ε)ΔnΠ0u(τ0, ε))]2n−1) dτ0.

From here, applying the formula of integrating by parts and Remark 1, omitting
known terms, we obtain

−[ΔnΠ0w(0, ε)′(1
ε

E1 + E2 + εE3)ψ̃n−1(0, ε)]2n−1

−
∫ +∞

0
([ψ̃n−1(ετ0, ε)′(εΠ̂0(n−1) fϑ(Δnϑ(ετ0, ε) + ΔnΠ0ϑ(τ0, ε))]2n−1) dτ0.
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Multiplying the Equations (21), (22) by εj, j = 0, k, and summing up the obtained
equations, we obtain the equalities

{R(ετ0)Π̃0ku}k + {εΠ̂0(k−1)Fu(τ0, ε)′}k

= {B(ετ0)
′(εE1 + E2 + E3)Π̃0kψ}k + {εΠ̂0(k−1) fu(τ0, ε)′ψ̃k−1(ετ0, ε)}k

+{ε fu(ϑ̃k−1(ετ0, ε) + Π̃0(k−1)ϑ(τ0, ε), ετ0, ε)′(εE1 + E2 + E3)Π̃0(k−1)ψ}k,

{W(ετ0)Π̃0kw}k + {εΠ̂0(k−1)Fw(τ0, ε)′}k = {(E1 + E2 + εE3)
dΠ̃0kψ

dτ0
}k

+{A(ετ0)
′(εE1 + E2 + E3)Π̃0kψ}k + {εΠ̂0(k−1) fw(τ0, ε)′ψ̃k−1(ετ0, ε)}k

+{ε fw(ϑ̃k−1(ετ0, ε) + Π̃0(k−1)ϑ(τ0, ε), ετ0, ε)′(εE1 + E2 + E3)Π̃0(k−1)ψ}k.

(40)

We transform∫ +∞

0
([(Δnw(ετ0, ε) + ΔnΠ0w(τ0, ε))′({W(ετ0)Π̃0(n−1)w(τ0, ε)}n−1

+{εΠ̂0(n−1)Fw(τ0, ε)′}n−1)]2n−1 + [(Δnu(ετ0, ε)

+ΔnΠ0u(τ0, ε))′({R(ετ0)Π̃0(n−1)u(τ0, ε)}n−1 + {εΠ̂0(n−1)Fu(τ0, ε)′}n−1)]2n−1) dτ0.

Using (40) and (38), as a result, we obtain

∫ +∞

0
([(Δnw(ετ0, ε) + ΔnΠ0w(τ0, ε))′{(E1 + E2 + εE3)

dΠ̃0(n−1)ψ

dτ0
}n−1]2n−1

+[Π̃0(n−1)ψ
′(εE1 + E2 + E3)(A(ετ0)Δnw(ετ0, ε) + B(ετ0)Δnu(ετ0, ε))]2n−1

+[Π̃0(n−1)ψ
′(εE1 + E2 + E3)(A(ετ0)ΔnΠ0w(τ0, ε) + B(ετ0)ΔnΠ0u(τ0, ε))]2n−1

+[ψ̃n−1(ετ0, ε)′({εΠ̂0(n−1) fw(τ0, ε)}n−1(Δnw(ετ0, ε) + ΔnΠ0w(τ0, ε))

+{εΠ̂0(n−1) fu(τ0, ε)}n−1(Δnu(ετ0, ε) + ΔnΠ0u(τ0, ε)))]2n−1

+[Π̃0(n−1)ψ
′(εE1 + E2 + E3)({ε fw(ϑ̃n−1(ετ0, ε) + Π̃0(n−1)ϑ, ετ0, ε)}n−1(Δnw(ετ0, ε)

+ΔnΠ0w(τ0, ε)) + {ε fu(ϑ̃n−1(ετ0, ε) + Π̃0(n−1)ϑ, ετ0, ε)}n−1(Δnu(ετ0, ε)

+ΔnΠ0u(τ0, ε)))]2n−1) dτ0.

In view of (37) and (39), we obtain from the last expression, omitting known terms,
the following:

∫ +∞

0
([(Δnw(ετ0, ε) + ΔnΠ0w(τ0, ε))′{(E1 + E2 + εE3)

dΠ̃0(n−1)ψ(τ0, ε)

dτ0
}n−1]2n−1

+[Π̃0(n−1)ψ(τ0, ε)′(εE1 + E2 + E3)((E1 + εE2 + ε2E3)(
dw̃n−1(ετ0, ε)

dt

+
dΔnw(ετ0, ε)

dt
)− A(ετ0)w̃n−1(ετ0, ε)− B(ετ0)ũn−1(ετ0, ε)

−{ε f̂ ϑ(n−1)(ετ0, ε)}n−1Δnϑ(ετ0, ε))]2n−1

+[Π̃0(n−1)ψ(τ0, ε)′(εE1 + E2 + E3)((
1
ε

E1 + E2 + εE3)(
dΠ̃0(n−1)w(τ0, ε)

dτ0
+

dΔnΠ0w(τ0, ε)

dτ0
)

−A(ετ0)Π̃0(n−1)w(τ0, ε)− B(ετ0)Π̃0(n−1)u(τ0, ε)− {εΠ̂0(n−1) fϑ(τ0, ε)}n−1Δnϑ(ετ0, ε)

−{ε fϑ(ϑ̃n−1(ετ0, ε) + Π̃0(n−1)ϑ(τ0, ε), ετ0, ε)}n−1ΔnΠ0ϑ(τ0, ε))]2n−1

+[ψ̃n−1(ετ0, ε)′({εΠ̂0(n−1) fw(τ0, ε)}n−1(Δnw(ετ0, ε) + ΔnΠ0w(τ0, ε))
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+{εΠ̂0(n−1) fu(τ0, ε)}n−1(Δnu(ετ0, ε) + ΔnΠ0u(τ0, ε)))]2n−1

+[Π̃0(n−1)ψ(τ0, ε)′(εE1 + E2 + E3)({ε fw(ϑ̃n−1(ετ0, ε)

+Π̃0(n−1)ϑ(τ0, ε), ετ0, ε)}n−1(Δnw(ετ0, ε) + ΔnΠ0w(τ0, ε)) + {ε fu(ϑ̃n−1(ετ0, ε)

+Π̃0(n−1)ϑ(τ0, ε), ετ0, ε)}n−1(Δnu(ετ0, ε) + ΔnΠ0u(τ0, ε)))]2n−1) dτ0.

Integrating by parts in the last expression and dropping known terms, we obtain

−[(Δnw(0, ε) + ΔnΠ0w(0, ε))′(E1 + E2 + εE3)Π̃0(n−1)ψ(0, ε)]2n−1

+
∫ +∞

0
[ψ̃n−1(ετ0, ε)′{εΠ̂0(n−1) fϑ(τ0, ε)}n−1(Δnϑ(ετ0, ε) + ΔnΠ0ϑ(τ0, ε))]2n−1 dτ0.

Summing up the results, obtained from the transformed terms of the integral∫ +∞
0 Π0(2n−1)F dτ0, after dropping known terms, we have

−[ΔnΠ0w(0, ε)′(1
ε

E1 + E2 + εE3)ψ̃n−1(0, ε)]2n−1

−[(Δnw(0, ε) + ΔnΠ0w(0, ε))′(E1 + E2 + εE3)Π̃0(n−1)ψ(0, ε)]2n−1.

Performing similar transformations for
∫ 0
−∞ Q0(2n−1)F dσ0, we obtain the following

result:

[ΔnQ0w(0, ε)′(1
ε

E1 + E2 + εE3)ψ̃n−1(T, ε)]2n−1

+[(Δnw(T, ε) + ΔnQ0w(0, ε))′(E1 + E2 + εE3)Q̃0(n−1)ψ(0, ε)]2n−1.

Furthermore, we apply the analogous transformations for the forth term of J2n. The
integral over the interval [0,+∞) of unknown terms of Π1(2n−2)F(τ1) is presented as the
sum

4

∑
i=1

si +
∫ +∞

0
(Π1(n−1)w(τ1)

′([W(ε2τ1)w̃n−1(ε
2τ1, ε)]n−1 + [F̂w(n−2)(ε

2τ1, ε)′]n−2)

+Π1(n−1)u(τ1)
′([R(ε2τ1)ũn−1(ε

2τ1, ε)]n−1 + [F̂u(n−2)(ε
2τ1, ε)′]n−2)) dτ1

+
∫ +∞

0
(Π1(n−1)w(τ1)

′([W(ε2τ1)Π̃0(n−1)w(ετ1, ε)]n−1 + [Π̂0(n−2)Fw(ετ1, ε)′]n−2)

+Π1(n−1)u(τ1)
′([R(ε2τ1)Π̃0(n−1)u(ετ1, ε)]n−1 + [Π̂0(n−2)Fu(ετ1, ε)′]n−2)) dτ1

+
∫ +∞

0
(Π1(n−1)w(τ1)

′(1/2W(0)Π1(n−1)w(τ1) + [W(ε2τ1)Π̃1(n−2)w(τ1, ε)]n−1

+[Π̂1(n−2)Fw(τ1, ε)′]n−2) + Π1(n−1)u(τ1)
′(1/2R(0)Π1(n−1)u(τ1)

+[R(ε2τ1)Π̃1(n−2)u(τ1, ε)]n−1 + [Π̂1(n−2)Fu(τ1, ε)′]n−2)) dτ1,

(41)

where the expressions for si, i = 1, 4, will be written later when they will be transformed.
Substituting ϑ(t, ε) from (35) into (2) and considering terms depending on τ1, we

obtain the equation

(
1
ε2 E1 +

1
ε

E2 + E3)(
dΠ̃1(n−1)w(τ1, ε)

dτ1
+

dΔnΠ1w(τ1, ε)

dτ1
)

= A(ε2τ1)(Π̃1(n−1)w(τ1, ε) + ΔnΠ1w(τ1, ε)) + B(ε2τ1)(Π̃1(n−1)u(τ1, ε)

+ΔnΠ1u(τ1, ε)) + ε( f (ϑ̃n−1(ε
2τ1, ε) + Π̃0(n−1)ϑ(ετ1, ε) + Π̃1(n−1)ϑ(τ1, ε)

+Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε) + ΔnΠ1ϑ(τ1, ε), ε2τ1, ε)

− f (ϑ̃n−1(ε
2τ1, ε) + Π̃0(n−1)ϑ(ετ1, ε) + Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε), ε2τ1, ε)).

(42)
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Using (36) with k = n − 2 and t = ε2τ1 in the expression

s1 =
∫ +∞

0
([ΔnΠ1w(τ1, ε)′({W(ε2τ1)w̃n−2(ε

2τ1, ε)}n−2 + {εF̂w(n−2)(ε
2τ1, ε)′}n−2)]2n−2

+[ΔnΠ1u(τ1, ε)′({R(ε2τ1)ũn−2(ε
2τ1, ε)}n−2 + {εF̂u(n−2)(ε

2τ1, ε)′}n−2)]2n−2) dτ1,

we obtain

∫ +∞

0
([ΔnΠ1w(τ1, ε)′(E1 + εE2 + ε2E3)

dψ̃n−2
dt

(ε2τ1, ε))]2n−2

+[ΔnΠ1w(τ1, ε)′({A(ε2τ1)
′ψ̃n−2(ε

2τ1, ε)}n−2 + {ε f̂ w(n−2)(ε
2τ1, ε)′ψ̃n−2(ε

2τ1, ε)}n−2)]2n−2

+[ΔnΠ1u(τ1, ε)′({B(ε2τ1)
′ψ̃n−2(ε

2τ1, ε)}n−2 + {ε f̂ u(n−2)(ε
2τ1, ε)′ψ̃n−2(ε

2τ1, ε)}n−2)]2n−2) dτ1.

Then, applying (38) with k = 2n − 2, l = n − 2, and (42), we have

∫ +∞

0
([ΔnΠ1w(τ1, ε)′(E1 + εE2 + ε2E3)

dψ̃n−2
dt

(ε2τ1, ε)]2n−2

+[ ψ̃n−2(ε
2τ1, ε)′(A(ε2τ1)ΔnΠ1w(τ1, ε) + B(ε2τ1)ΔnΠ1u(τ1, ε))]2n−2

+[ψ̃n−2(ε
2τ1, ε)′(ε f̂ w(n−2)(ε

2τ1, ε)ΔnΠ1w(τ1, ε) + ε f̂ u(n−2)(ε
2τ1, ε)ΔnΠ1u(τ1, ε))]2n−2) dτ1

=
∫ +∞

0
([ΔnΠ1w(τ1, ε)′(E1 + εE2 + ε2E3)

dψ̃n−2
dt

(ε2τ1, ε)]2n−2

+[ψ̃n−2(ε
2τ1, ε)′(( 1

ε2 E1 +
1
ε

E2 + E3)(
dΠ̃1(n−1)w(τ1, ε)

dτ1
+

dΔnΠ1w(τ1, ε)

dτ1
)

−A(ε2τ1)Π̃1(n−1)w(τ1, ε)− B(ε2τ1)Π̃1(n−1)u(τ1, ε)− ε( f (ϑ̃n−1(ε
2τ1, ε) + Π̃0(n−1)ϑ(ετ1, ε)

+Π̃1(n−1)ϑ(τ1, ε) + Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε) + ΔnΠ1ϑ(τ1, ε), ε2τ1, ε)

− f (ϑ̃n−1(ε
2τ1, ε) + Π̃0(n−1)ϑ(ετ1, ε) + Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε), ε2τ1, ε)))]2n−2

+[ψ̃n−2(ε
2τ1, ε)′ε f̂ ϑ(n−2)(ε

2τ1, ε)ΔnΠ1ϑ(τ1, ε)]2n−2) dτ1.

Integrating by parts in the last relation, using Remark 1, dropping known terms, we
obtain

−[ΔnΠ1w(0, ε)′( 1
ε2 E1 +

1
ε

E2 + E3)ψ̃n−2(0, ε)]2n−2

+
∫ +∞

0
([ψ̃n−2(ε

2τ1, ε)′( 1
ε2 E1 +

1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2︸ ︷︷ ︸

{1}

+[ψ̃n−2(ε
2τ1, ε)′ε f̂ ϑ(n−2)(ε

2τ1, ε)ΔnΠ1ϑ(τ1, ε)]2n−2

−[ψ̃n−2(ε
2τ1, ε)′(εΠ̂1(n−2) fϑ(τ1, ε)(Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε))

+ε( f̂ ϑ(n−2)(ε
2τ1, ε)︸ ︷︷ ︸

{1}

+ Π̂0(n−2) fϑ(ετ1, ε)︸ ︷︷ ︸
{2}

+Π̂1(n−2) fϑ(τ1, ε))εn−1Π1(n−1)ϑ(τ1)

+ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ, ε2τ1, ε)ΔnΠ1ϑ(τ1, ε))]2n−2

− Π1(n−1)w(τ1)
′[A(ε2τ1)

′ψ̃n−2(ε
2τ1, ε)]n−1︸ ︷︷ ︸

{1}

− Π1(n−1)u(τ1)
′[B(ε2τ1)

′ψ̃n−2(ε
2τ1, ε)]n−1︸ ︷︷ ︸

{1}

) dτ1.

(43)
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Consider together the first integral in (41) and some terms with Π1(n−1)ϑ(τ1, ε) in the
transformed last expression for s1, marked by {1}, namely, the expression of the form∫ +∞

0
(Π1(n−1)w(τ1)

′([W(ε2τ1)w̃n−1(ε
2τ1, ε)]n−1 + [F̂w(n−2)(ε

2τ1, ε)′]n−2

−[A(ε2τ1)
′ψ̃n−2(ε

2τ1, ε)]n−1 − [ f̂ w(n−2)(ε
2τ1, ε)′ψ̃n−2(ε

2τ1, ε)]n−2)

+Π1(n−1)u(τ1)
′([R(ε2τ1)ũn−1(ε

2τ1, ε)]n−1 + [F̂u(n−2)(ε
2τ1, ε)′]n−2

−[B(ε2τ1)
′ψ̃n−2(ε

2τ1, ε)]n−1 − [ f̂ u(n−2)(ε
2τ1, ε)′ψ̃n−2(ε

2τ1, ε)]n−2)

+[ψ̃n−2(ε
2τ1, ε)′( 1

ε2 E1 +
1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2) dτ1.

Transforming this expression with the help of (36) with k = n − 1 and (10) at j =
n − 1, n, n + 1 and omitting some known terms, we have∫ +∞

0
(Π1(n−1)w(τ1)

′[E1
dψ̃n−1

dt
(ε2τ1, ε) + E2

dψ̃n−2
dt

(ε2τ1, ε) + E3
dψ̃n−3

dt
(ε2τ1, ε)]n−1

+ψn−1(0)
′(E1

dΠ1(n+1)w(τ1)

dτ1
+ E2

dΠ1nw(τ1)

dτ1
+ E3

dΠ1(n−1)w(τ1)

dτ1

+[ψ̃n−2(ε
2τ1, ε)′( 1

ε2 E1 +
1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
)]2n−2) dτ1.

From here, using Remark 1, integrating by parts and omitting known terms, we obtain

−ψn−1(0)
′(E1Π1(n+1)w(0) + E2Π1nw(0) + E3Π1(n−1)w(0)).

Further changes concern the expression

s2 =
∫ +∞

0
([ΔnΠ1w(τ1, ε)′({W(ε2τ1)Π̃0(n−2)w(ετ1, ε)}n−2

+{εΠ̂0(n−2)Fw(ετ1, ε)}n−2)]2n−2 + [ΔnΠ1u(τ1, ε)′({R(ε2τ1, ε)Π̃0(n−2)u(ετ1, ε)}n−2

+{εΠ̂0(n−2)Fu(ετ1, ε)}n−2)]2n−2) dτ1.

It will be transformed using (40) with k = n − 2 and (38) in the following way:

∫ +∞

0
([ΔnΠ1w(τ1, ε)′(E1 + E2 + εE3)

dΠ̃0(n−2)ψ(ετ1, ε)

dτ0
]2n−2

+[Π̃0(n−2)ψ(ετ1, ε)′(εE1 + E2 + E3)(A(ε2τ1)ΔnΠ1w(τ1, ε) + B(ε2τ1)ΔnΠ1u(τ1, ε))]2n−2

+[ΔnΠ1w(τ1, ε)′({εΠ̂0(n−2) fw(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{ε fw(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2

+[ΔnΠ1u(τ1, ε)′({εΠ̂0(n−2) fu(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2 + {ε fu(ϑ̃n−2(ε

2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2) dτ1.

From here, using (42) and omitting some known terms, we have

∫ +∞

0
([ΔnΠ1w(τ1, ε)′(E1 + E2 + εE3)

dΠ̃0(n−2)ψ(ετ1, ε)

dτ0
]2n−2 + [Π̃0(n−2)ψ(ετ1, ε)′(εE1

+E2 + E3)((
1
ε2 E1 +

1
ε

E2 + E3)(
dΠ̃1(n−1)w(τ1, ε)

dτ1
+

dΔnΠ1w(τ1, ε)

dτ1
)
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−A(ε2τ1)Π̃1(n−1)w(τ1, ε)− B(ε2τ1)Π̃1(n−1)u(τ1, ε)− εΠ̂1(n−2) fϑ(τ1, ε)(εn−1ϑn−1(ε
2τ1, ε)

+εn−1Π0(n−1)ϑ(ετ1, ε) + Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε))− ε fϑ(ϑ̃n−2(ε
2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)}n−2)(ε
n−1Π1(n−1)ϑ(τ1)

+ΔnΠ1ϑ(τ1, ε)))]2n−2 + [ΔnΠ1w(τ1, ε)′({εΠ̂0(n−2) fw(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{ε fw(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2

+[ΔnΠ1u(τ1, ε)′({εΠ̂0(n−2) fu(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2 + {ε fu(ϑ̃n−2(ε

2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2) dτ1.

Integrating by parts the first term in the last expression and dropping known terms, we
obtain

−[Π̃0(n−2)ψ(0, ε)′(1
ε

E1 +
1
ε

E2 + E3)ΔnΠ1w(0, ε)]2n−2

+
∫ +∞

0
([Π̃0(n−2)ψ(ετ1, ε)′(1

ε
E1 +

1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2︸ ︷︷ ︸

{2}
−[Π̃0(n−2)ψ(ετ1, ε)′(εE1 + E2 + E3)(εΠ̂1(n−2) fϑ(τ1, ε)(Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε))

+ε(Π̂1(n−2) fϑ(τ1, ε) + fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)︸ ︷︷ ︸

{2}

)εn−1Π1(n−1)ϑ(τ1)

+ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)ΔnΠ1ϑ(τ1, ε))]2n−2

− Π1(n−1)w(τ1)
′[A(ε2τ1)

′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1︸ ︷︷ ︸
{2}

− Π1(n−1)u(τ1)
′[B(ε2τ1)

′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1︸ ︷︷ ︸
{2}

+[ΔnΠ1ϑ(τ1, ε)′({εΠ̂0(n−2) fϑ(ετ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2 + {ε fϑ(ϑ̃n−2(ε

2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2)]2n−2) dτ1.

(44)

Consider together the second integral in (41) and some terms with Π1(n−1)ϑ(τ1, ε)
from (43) and (44), marked by {2}, namely the expression of the form∫ +∞

0
(Π1(n−1)w(τ1)

′([W(ε2τ1)Π̃0(n−1)w(ετ1, ε)]n−1 + [Π̂0(n−2)Fw(ετ1, ε)′]n−2

−[A(ε2τ1)
′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1 − [εΠ̂0(n−2) fw(ετ1, ε)′ψ̃n−2(ε

2τ1, ε)]n−1

−[ε fw(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1)

+Π1(n−1)u(τ1)
′([R(ε2τ1)Π̃0(n−1)u(ετ1, ε)]n−1 + [Π̂0(n−2)Fu(ετ1, ε)′]n−2

−[B(ε2τ1)
′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1 − [εΠ̂0(n−2) fu(ετ1, ε)′ψ̃n−2(ε

2τ1, ε)]n−1

−[ε fu(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)]n−1)

+[Π̃0(n−2)ψ(ετ1, ε)′(1
ε

E1 +
1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2) dτ1.
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We will transform this expression with the help of (40) with k = n − 1 and (10) with
j = n − 1, n. Omitting known terms, we obtain

∫ +∞

0
([Π̃0(n−2)ψ(ετ1, ε)′(1

ε
E1 +

1
ε

E2 + E3)
dΠ̃1(n−1)w(τ1, ε)

dτ1
]2n−2

+Π1(n−1)w(τ1)
′[(E1 + E2)

dΠ̃0(n−1)ψ

dτ0
(ετ1, ε) + E3

dΠ̃0(n−2)ψ

dτ0
(ετ1, ε)]n−1

+Π0(n−1)ψ(0)
′(E2

dΠ1nw(τ1)

dτ1
+ E3

dΠ1(n−1)w(τ1)

dτ1
)) dτ1.

Integrating by parts, using Remark 1 and omitting known terms, we have

−Π0(n−1)ψ(0)
′(E2Π1nw(0) + E3Π1(n−1)w(0)).

Multiplying Equations (24), (25) by εj, j = 0, n − 2 and summing up the obtained
results, we obtain the equalities

{R(ε2τ1)Π̃1(n−2)u(τ1, ε)}n−2 + {εΠ̂1(n−3)Fu(τ1, ε)′}n−2

= {B(ε2τ1)
′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)}n−2

+{εΠ̂1(n−3) fu(τ1, ε)′ψ̃n−3(ε
2τ1, ε)}n−2

+{εΠ̂1(n−3) fu(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−3)ψ(ετ1, ε)}n−2

+{ε fu(ϑ̃n−3(ε
2τ1, ε) + Π̃0(n−3)ϑ(ετ1, ε) + Π̃1(n−3)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1

+εE2 + E3)Π̃1(n−3)ψ(τ1, ε)}n−2,

(45)

{W(ε2τ1)Π̃1(n−2)w(τ1, ε)}n−2 + {εΠ̂1(n−3)Fw(τ1, ε)′}n−2 =
dΠ̃1(n−2)ψ(τ1, ε)

dτ1

+{A(ε2τ1)
′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)}n−2

+{εΠ̂1(n−3) fw(τ1, ε)′ψ̃n−3(ε
2τ1, ε)}n−2

+{εΠ̂1(n−3) fw(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−3)ψ(ετ1, ε)}n−2

+{ε fw(ϑ̃n−3(ε
2τ1, ε) + Π̃0(n−3)ϑ(ετ1, ε) + Π̃1(n−3)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1

+εE2 + E3)Π̃1(n−3)ψ(τ1, ε)}n−2.

(46)

We will transform the expression

s3 =
∫ +∞

0
([(Δnw(ε2τ1, ε) + ΔnΠ0w(ετ1, ε))′({W(ε2τ1)Π̃1(n−2)w(τ1, ε)}n−2

+{εΠ̂1(n−2)Fw(τ1, ε)′}n−2)]2n−2 + [(Δnu(ε2τ1, ε)

+ΔnΠ0u(ετ1, ε))′({R(ε2τ1)Π̃1(n−2)u(τ1, ε)}n−2 + {εΠ̂1(n−2)Fu(τ1, ε)′}n−2)]2n−2) dτ1.

Using (45), (46), (38) with k = 2n − 2, l = n − 2, (37), (39) and omitting known terms,
we have

∫ +∞

0
([(Δnw(ε2τ1, ε) + ΔnΠ0w(ετ1, ε))′

dΠ̃1(n−2)ψ(τ1, ε)

dτ1
]2n−2

+[Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2 + E3)((E1 + εE2 + ε2E3)(
dw̃n−1(ε

2τ1, ε)

dt

+
dΔnw(ε2τ1, ε)

dt
)− A(ε2τ1)w̃n−1(ε

2τ1, ε)− B(ε2τ1)ũn−1(ε
2τ1, ε)

−ε f̂ ϑ(n−2)(ε
2τ1, ε)(εn−1ϑn−1(ε

2τ1, ε) + Δnϑ(ε2τ1, ε)))]2n−2
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+[Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2 + E3)((
1
ε

E1 + E2 + εE3)(
dΠ̃0(n−1)w(ετ1, ε)

dτ0

+
dΔnΠ0w(ετ1, ε)

dτ0
)− A(ε2τ1)Π̃0(n−1)w(ετ1, ε)− B(ε2τ1)Π̃0(n−1)u(ετ1, ε)

−εΠ̂0(n−2) fϑ(ετ1, ε)(εn−1ϑn−1(ε
2τ1, ε) + Δnϑ(ε2τ1, ε))

−ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)(εn−1Π0(n−1)ϑ(ετ1, ε) + ΔnΠ0ϑ(ετ1, ε)))]2n−2

+[(Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε))′({εΠ̂1(n−2) fϑ(τ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{εΠ̂1(n−2) fϑ(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2 + {ε fϑ(ϑ̃n−2(ε
2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2

+E3)Π̃1(n−2)ψ(τ1, ε)}n−2)]2n−2) dτ1.

From here, applying the formula of integrating by parts, and omitting known terms,
we obtain the unknown part from s3

−[(Δnw(0, ε) + ΔnΠ0w(0, ε))′Π̃1(n−2)ψ(0, ε)]2n−2

−
∫ +∞

0
([Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2 + E3)(ε f̂ ϑ(n−2)(ε

2τ1, ε)Δnϑ(ε2τ1, ε)

+εΠ̂0(n−2) fϑ(ετ1, ε)Δnϑ(ε2τ1, ε)

+ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε), ε2τ1, ε)ΔnΠ0ϑ(ετ1, ε))]2n−2

−[(Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε))′({εΠ̂1(n−2) fϑ(τ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{εΠ̂1(n−2) fϑ(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2

+{ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε)

+Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)}n−2)]2n−2) dτ1.

Furthermore, applying the same algorithm, we will transform the expression

s4 =
∫ +∞

0
([ΔnΠ1w(τ1, ε)′({W(ε2τ1)Π̃1(n−2)w(τ1, ε)}n−2 + {εΠ̂1(n−2)Fw(τ1, ε)′}n−2)]2n−2

+[ΔnΠ1u(τ1, ε)′({R(ε2τ1)Π̃1(n−2)u(τ1, ε)}n−2 + {εΠ̂1(n−2)Fu(τ1, ε)′}n−2)]2n−2) dτ1.

Using (45), (46), (38) with k = 2n − 2, l = n − 2, (42) and omitting known terms, we
obtain

∫ +∞

0
([ΔnΠ1w(τ1, ε)′

dΠ̃1(n−2)ψ(τ1, ε)

dτ1
]2n−2 + [Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2 + E3)((

1
ε2 E1

+
1
ε

E2 + E3)(
dΠ̃1(n−1)w(τ1, ε)

dτ1
+

dΔnΠ1w(τ1, ε)

dτ1
)− A(ε2τ1)Π̃1(n−1)w(τ1, ε)

−B(ε2τ1)Π̃1(n−1)u(τ1, ε)− εΠ̂1(n−2) fϑ(τ1, ε)(Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε))

−ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)(τ1, ε), ε2τ1, ε)(εn−1Π1(n−1)ϑ(τ1)

+ΔnΠ1ϑ(τ1, ε)))]2n−2 + [ ΔnΠ1ϑ(τ1, ε)′({εΠ̂1(n−2) fϑ(τ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{εΠ̂1(n−2) fϑ(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2 + {ε fϑ(ϑ̃n−2(ε
2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2

+E3)Π̃1(n−2)ψ(τ1, ε)}n−2)]2n−2) dτ1.
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Due to formula of integrating by parts, after omitting known terms, we obtain the
following:

−[ΔnΠ1w(0, ε)′Π̃1(n−2)ψ(0, ε)]2n−2

+
∫ +∞

0
(Π1(n−1)w(τ1)

′(−[A(ε2τ1)
′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)]n−1

−[ε fw(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2

+E3)Π̃1(n−2)ψ(τ1, ε)]n−1)− Π1(n−1)u(τ1)
′([B(ε2τ1)

′(ε2E1 + εE2 + E3)Π̃1(n−2)ψ(τ1, ε)]n−1

−[ε fu(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1

+εE2 + E3)Π̃1(n−2)ψ(τ1, ε)]n−1)− [Π̃1(n−2)ψ(τ1, ε)′(ε2E1 + εE2

+E3)(εΠ̂1(n−2) fϑ(τ1, ε)(Δnϑ(ε2τ1, ε) + ΔnΠ0ϑ(ετ1, ε))

+ε fϑ(ϑ̃n−2(ε
2τ1, ε) + Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)ΔnΠ1ϑ(τ1, ε))]2n−2

+[ΔnΠ1ϑ(τ1, ε)′({εΠ̂1(n−2) fϑ(τ1, ε)′ψ̃n−2(ε
2τ1, ε)}n−2

+{εΠ̂1(n−2) fϑ(τ1, ε)′(εE1 + E2 + E3)Π̃0(n−2)ψ(ετ1, ε)}n−2 + {ε fϑ(ϑ̃n−2(ε
2τ1, ε)

+Π̃0(n−2)ϑ(ετ1, ε) + Π̃1(n−2)ϑ(τ1, ε), ε2τ1, ε)′(ε2E1 + εE2

+E3)Π̃1(n−2)ψ(τ1, ε)}n−2)]2n−2) dτ1.

Summing up the obtained terms of transformed expressions and considering sepa-
rately four groups of terms, depending on Δnϑ, ΔnΠ0ϑ, ΔnΠ1ϑ, and without these variables,
we can write out the transformed forth term of J2n in the following form:

−[ΔnΠ1w(0, ε)′(1
ε

E1 + E2 + εE3)ψ̃n−1(0, ε)]2n−1 − Π1(n−1)w(0)′E3(ψn−1(0)

+Π0(n−1)ψ(0))− [ΔnΠ1w(0, ε)′(E1 + E2 + εE3)Π̃0(n−1)ψ(0, ε)]2n−1

−[(Δnw(0, ε) + ΔnΠ0w(0, ε) + ΔnΠ1w(0, ε))′Π̃1(n−2)ψ(0, ε)]2n−2 + Π1(n−1) J.

Transforming the fifth term in J2n in the same way, we write the final result as

[ΔnQ1w(0, ε)′(1
ε

E1 + E2 + εE3)ψ̃n−1(T, ε)]2n−1

+[ΔnQ1w(0, ε)′(E1 + E2 + εE3)Q̃0(n−1)ψ(0, ε)]2n−1

+[(Δnw(T, ε) + ΔnQ0w(0, ε) + ΔnQ1w(0, ε))′Q̃1(n−2)ψ(0, ε)]2n−2 + Q1(n−1) J.

Substituting w(t, ε) from (35) in (3), we obtain the relation

w̃j−1(0, ε) + Δjw(0, ε) +
1

∑
i=0

(Π̃i(j−1)w(0, ε) + ΔjΠiw(0, ε)

+Q̃i(j−1)w(−T/εi+1, ε) + ΔjQiw(−T/εi+1, ε)) = w0.

(47)

Summing up (20) and the second relations in (23), (26), we obtain the equality

ψj(T) + E1(Q0(j−1)ψ(0) + Q1(j−2)ψ(0))

+E2(Q0jψ(0) + Q1(j−1)ψ(0)) + E3(Q0jψ(0) + Q1jψ(0)) = 0.

Multiplying this equation by εj, j = 0, n − 1, and summing up the obtained results,
we have

ψ̃n−1(T) + εE1(Q̃0(n−2)ψ(0) + εQ̃1(n−3)ψ(0))

+E2(Q̃0(n−1)ψ(0) + εQ̃1(n−2)ψ(0)) + E3(Q̃0(n−1)ψ(0) + Q̃1(n−1)ψ(0)) = 0.
(48)
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Summing up the remaining parts of the transformed terms for J2n, applying (47), (48)
to the non-integrand terms, taking into account Remark 1 and omitting known terms, we
finally have Jn + Π1(n−1) J + Q1(n−1) J, which proves Theorem 1 for J2n.

In addition to the previous assumption on solvability of the problems Pj, Π0jP, Q0jP
and Π1(j−1)P, Q1(j−1)P, j = 0, n − 1, we will assume that the problems Pn, Π1(n−1)P,
Q1(n−1)P have been solved.

Let us consider the coefficient J2n+1 having the form (34) with k = 2n + 1.
We transform separately the terms of J2n+1 using the previous algorithm for trans-

forming similar terms in J2n. Summing up the obtained expressions for five terms and
dropping known terms, we obtain the sum of the performance indices Π0n J + Q0n J.

Thus, Theorem 1 is completely proved.

5. Asymptotic Estimates

Suppose that the problems Pj, ΠijP, QijP, i = 0, 1, j = 0, n, have been solved. We will
prove asymptotic estimates of the proximity between the asymptotic solution obtained
by the direct scheme method ϑ̃n(t, ε) = ∑n

j=0 εj(ϑj(t) + ∑1
i=0 Πijϑ(τi) + Qijϑ(σi)) and the

exact solution of the problem Pε.
We will use here the notation for asymptotics remainder terms

rnw = w − w̃n = (rnx′, rny′, rnz′)′, rnu = u − ũn, rnϑ = ϑ − ϑ̃n = (rnw′, rnu′)′,

rn ϕ = ϕ − ϕ̃n = (rnζ ′, rnη′, rnθ′)′, X̃n =

(
x̃n

ζ̃n

)
,

Ỹn =

(
ỹn
η̃n

)
, Z̃n =

(
z̃n

θ̃n

)
, rnX =

(
rnx
rnζ

)
, rnY =

(
rny
rnη

)
, rnZ =

(
rnz
rnθ

)
.

(49)

In comparison with the notation in the previous section, we have, e.g., rnu = Δn+1u
and so on.

Since the matrix R(t) is positive definite, we obtain from (27) the following relation

u(t, ε) = R(t)−1B(t)′ϕ + εR(t)−1( fu(ϑ, t, ε)′ϕ − Fu(ϑ, t, ε)′).

Taking into account this equality and substituting the expressions for ϑ(t, ε), ϕ(t, ε)
from (49) into (2), (27) and (28), we obtain the equations for the remainders

rnu =
(1)
A(t)rnX +

(1)
B (t)rnY +

(1)
C (t)rnZ +

(1)
g (rnϑ, rn ϕ, t, ε), (50)

drnX
dt

=
(2)
A(t)rnX +

(2)
B (t)rnY +

(2)
C (t)rnZ +

(2)
g (rnϑ, rn ϕ, t, ε), (51)

ε
drnY

dt
=

(3)
A(t)rnX +

(3)
B (t)rnY +

(3)
C (t)rnZ +

(3)
g (rnϑ, rn ϕ, t, ε), (52)

ε2 drnZ
dt

=
(4)
A(t)rnX +

(4)
B (t)rnY +

(4)
C (t)rnZ +

(4)
g (rnϑ, rn ϕ, t, ε), (53)

where

(1)
A = (0 R−1

(1)
B′),

(1)
B = (0 R−1

(2)
B′),

(1)
C = (0 R−1

(3)
B′),

(2)
A =

(
A11 S11
W11 −A′

11

)
,
(2)
B =

(
A12 S12
W12 −A′

21

)
,
(2)
C =

(
A13 S13
W13 −A′

31

)
,

(3)
A =

(
A21 S′

12
W ′

12 −A′
12

)
,
(3)
B =

(
A22 S22
W22 −A′

22

)
,
(3)
C =

(
A23 S23
W23 −A′

32

)
,
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(4)
A =

(
A31 S′

13
W ′

13 −A′
13

)
,
(4)
B =

(
A32 S′

23
W ′

23 −A′
23

)
,
(4)
C =

(
A33 S33
W33 −A′

33

)
,

(1)
g (rnϑ, rn ϕ, t, ε) = R(t)−1B(t)′ ϕ̃n + ũn

+εR(t)−1( fu(ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ)− Fu(ϑ̃n + rnϑ, t, ε)′),

(2)
g (rnϑ, rn ϕ, t, ε) =

(2)
A(t)X̃n +

(2)
B (t)Ỹn +

(2)
C (t)Z̃n

−dX̃n/dt + ε
(2)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε),

(3)
g (rnϑ, rn ϕ, t, ε) =

(3)
A(t)X̃n +

(3)
B (t)Ỹn +

(3)
C (t)Z̃n

−εdỸn/dt + ε
(3)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε),

(4)
g (rnϑ, rn ϕ, t, ε) =

(4)
A(t)X̃n +

(4)
B (t)Ỹn +

(4)
C (t)Z̃n

−ε2dZ̃n/dt + ε
(4)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε),

(2)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε) = ((

(1)
B (t)R(t)−1( fu(ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ)− Fu(ϑ̃n

+rnϑ, t, ε)′) +
(1)
f (ϑ̃n + rnϑ, t, ε))′, (Fx(ϑ̃n + rnϑ, t, ε)′ −

(1)
fx (ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ))′)′,

(3)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε) = ((

(2)
B (t)R(t)−1( fu(ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ)− Fu(ϑ̃n

+rnϑ, t, ε)′) +
(2)
f (ϑ̃n + rnϑ, t, ε))′, (Fy(ϑ̃n + rnϑ, t, ε)′ −

(2)
fy (ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ))′)′,

(4)
h (ϑ̃n + rnϑ, ϕ̃n + rn ϕ, t, ε) = ((

(3)
B (t)R(t)−1( fu(ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ)− Fu(ϑ̃n

+rnϑ, t, ε)′) +
(3)
f (ϑ̃n + rnϑ, t, ε))′, (Fz(ϑ̃n + rnϑ, t, ε)′ −

(3)
fz (ϑ̃n + rnϑ, t, ε)′(ϕ̃n + rn ϕ))′)′.

For brevity, the arguments t, ε are dropped in some of the last relations.
In view of the algorithm of asymptotics construction, namely Equalities (12)–(17)

and (33), we obtain the boundary conditions

rnw(0, ε) = −Q̃0nw(−T/ε, ε)− Q̃1nw(−T/ε2, ε),

rn ϕ(T, ε) = −Π̃0n ϕ(T/ε, ε)− Π̃1n ϕ(T/ε2, ε).
(54)

Using variables’ changes,

ρnw(t, ε) = rnw(t, ε)− rnw(0, ε), ρn ϕ(t, ε) = rn ϕ(t, ε)− rn ϕ(T, ε) (55)

and the notation ρnυ(t, ε) = (rnu′, ρnw′, ρn ϕ′)′, system (50)–(54) can be written as

rnu =
(1)
A(t)ρnX +

(1)
B (t)ρnY +

(1)
C (t)ρnZ +

(1)
χ (ρnυ, t, ε), (56)
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dρnX
dt

=
(2)
A(t)ρnX +

(2)
B (t)ρnY +

(2)
C (t)ρnZ +

(2)
χ (ρnυ, t, ε), (57)

ε
dρnY

dt
=

(3)
A(t)ρnX +

(3)
B (t)ρnY +

(3)
C (t)ρnZ +

(3)
χ (ρnυ, t, ε), (58)

ε2 dρnZ
dt

=
(4)
A(t)ρnX +

(4)
B (t)ρnY +

(4)
C (t)ρnZ +

(4)
χ (ρnυ, t, ε), (59)

ρnw(0, ε) = 0, ρn ϕ(T, ε) = 0, (60)

where

ρnX =

(
ρnx
ρnζ

)
, ρnY =

(
ρny
ρnη

)
, ρnZ =

(
ρnz
ρnθ

)
,

(i)
χ (ρnυ, t, ε) =

(i)
g (rnu(t, ε), ρnw(t, ε) + rnw(0, ε), ρn ϕ(t, ε) + rn ϕ(T, ε), t, ε)+

+
(i)
A(t)

(
rnx(0, ε)
rnζ(T, ε)

)
+

(i)
B (t)

(
rny(0, ε)
rnη(T, ε)

)
+

(i)
C (t)

(
rnz(0, ε)
rnθ(T, ε)

)
, i = 1, 4.

Taking into account the algorithm of the asymptotics construction and the form of the

functions
(i)
χ , i = 1, 4, we obtain two important properties, namely:

(1) for t ∈ [0, T], 0 < ε � ε0, the following inequalities take place

‖(i)χ (0, t, ε)‖ ≤ cεn+1, i = 1, 4, ‖(3)χ (0, t, ε)‖ ≤ c(εn+1 + εn exp(−æt/ε2)

+εn exp(æ(t − T)/ε2)), ‖(2)χ (0, t, ε)‖ ≤ c(εn+1 + εn exp(−æt/ε)

+εn exp(æ(t − T)/ε) + εn−1 exp(−æt/ε2) + εn−1 exp(æ(t − T)/ε2)),

(61)

where c and æ are positive constants independent of t, ε,
(2) for any q > 0, there exist such constants δ = δ(q) and ε0 = ε0(q) that, for ‖υi‖C[0,T]

�
δ, i = 1, 2, 0 < ε � ε0

‖(i)χ (υ1, t, ε)− (i)
χ (υ2, t, ε)‖C[0,T]

� q‖υ1 − υ2‖C[0,T]
, i = 1, 4. (62)

It follows from the form of the matrix
(4)
C (t) that the boundary value problem

ε2 dZ
dt

=
(4)
C (t)Z, Z = (Z′

1, Z′
2)

′, Z1(0) = 0, Z2(T) = 0, (63)

is uniquely solvable [30]. Therefore, there exists a matrix Green function
(4)
G (t, s, ε) for this

problem.

For eigenvalues of the matrix
(4)
C (t), we suppose the condition:

I. λi(t) �= λj(t) for i �= j, t ∈ [0, T].

Then, in the matrix B =

(
B11 B12
B21 B22

)
, consisting of eigenvectors of the matrix

(4)
C (t), the matrices Bii, i = 1, 2, are nondegenerate. Hence, the condition 40 from ([28],
c.125) is valid and therefore due to ([28], n. 9) for sufficiently small ε > 0 the matrix Green

function
(4)
G (t, s, ε) satisfies the inequality

‖
(4)
G (t, s, ε)‖ ≤ c exp(−æ|t − s|/ε2), t, s ∈ [0, T]. (64)
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Furthermore, we need the following three lemmas.

Lemma 1. If G(t, s) is a matrix Green function of the boundary value problem

dx
dt

= A(t)x + f (t), t ∈ [0, T], Px(0) = 0, (I − P)x(T) = 0,

where the matrix A(t) is continuous with respect to t and invertible for all t ∈ [0, T], and P is a
projector, then

∂G(t, s)
∂t

= −A(t)
∂G(t, s)

∂s
A(s)−1, t �= s.

The proof of this lemma is given in [24]. It follows from the explicit form for the matrix
Green function

G(t, s) =
{ −V(t, 0)((I − P)V(T, 0)(I − P))−1(I − P)V(T, s), t � s,

V(t, s)− V(t, 0)((I − P)V(T, 0)(I − P))−1(I − P)V(T, s), t � s,
(65)

where V(t, s) = V(t)V(s)−1, dV(t, s)/dt = A(t)V(t, s), V(s, s) = I.

Lemma 2. The boundary value problem

E(0)dw
dt

= A(t)w + S(t)ϕ,

E(0)dϕ

dt
= W(t)w − A(t)′ϕ,

E(0)w(0) = 0, E(0)ϕ(T) = 0,

where w = (x′, y′, z′)′, ϕ = (ξ
′
, η′, θ

′
)′, is uniquely solvable.

Proof. Multiply scalarly the first equation of the considered system by ϕ and the second
equation in this system by x. Adding the obtained results, we have d/dt(ϕ′E(0)w) =
ϕ′S(t)ϕ + w′W(t)w. Integrating this equality over the interval [0, T], in view of the bound-
ary values, we obtain

∫ T
0 (ϕ′S(t)ϕ + w′W(t)w) dt = 0. Taking into account the positive

definiteness of S(t) and W(t), we obtain w(t) = ϕ(t) = 0, i.e., the unique solvability is
proved.

Lemma 3. If G is a contractive mapping in a Banach space X, x0 = 0, xk = G(xk−1), k = 1, 2, ...,
and ‖x1‖ � a, then ‖xk‖ � a/(1 − q).

See the proof of this lemma in [24].

Theorem 2. Solution ϑ∗(t, ε) of problem Pε for sufficiently small ε > 0, t ∈ [0, T], satisfy the
inequality

‖ϑ∗(t, ε)− ϑ̃n(t, ε)‖ ≤ cεn+1.

Proof. The proof of this theorem is based on transforming systems (56)–(59) with boundary
values (60) to a system of integral equations, using estimates for matrix Green functions
and applying to the obtained system the principle of contractive mappings.

Using Green function
(4)
G (t, s, ε), we have from (59) the integral equation

ρnZ(t, ε) =
1
ε2

T∫
0

(4)
G (t, s, ε)(

(4)
A(s)ρnX +

(4)
B (s)ρnY) ds +

(4)
G (ρnϑ, t, ε), (66)
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where
(4)
G (ρnυ, t, ε) = 1/ε2

∫ T
0

(4)
G (t, s, ε)

(4)
χ (ρnυ, s, ε) ds.

In view of (61), (62), and (64), the function
(4)
G (ρnϑ, t, ε) satisfies the properties (2) and

(3)
(4)
G (0, t, ε) � cεn+1.

Furthermore, we will denote functions, appearing under transformations of the problems

(56)–(60) with the properties (2) and (3), by
(j)
G (ϑ, t, ε), j = 1, 4. Specific forms of these

functions are omitted since they are insignificant for the proof.
In transforming (66), we will use the formula following from (63) and Lemma 1

(4)
G (t, s, ε) = −ε2 ∂

∂s
(
(4)
G (t, s, ε)

(4)
C (s)−1) + ε2

(4)
G (t, s, ε)

d
ds

(
(4)
C (s)−1), t �= s. (67)

We present the integral in (66), containing the first term on the right side in (67) as the
sum of integrals over the intervals [0, t] and [t, T] and integrate by parts. Taking into account

the jump of function
(4)
G (t, s, ε) at s = t, i.e., the equality

(4)
G (t, t + 0, ε) −

(4)
G (t, t − 0, ε) ≡

−I2n3 , following from (65), and estimate (64), we obtain

ρnZ(t, ε) = −
(4)
C (t)−1(

(4)
A(t)ρnX(t, ε) +

(4)
B (t)ρnY(t, ε))

+
(4)
G (t, 0, ε)

(4)
C (0)−1(

(4)
A(0)ρnX(0, ε) +

(4)
B (0)ρnY(0, ε))

−
(4)
G (t, T, ε)

(4)
C (T)−1(

(4)
A(T)ρnX(T, ε) +

(4)
B (T)ρnY(T, ε)) +

(4)
G (ρnυ, t, ε).

(68)

Substitute (68) into (58). Introducing the notation Λ(t) =
(3)
B (t) −

(3)
C(t)

(4)
C (t)−1

(4)
B (t),

we write the obtained equation in the following way:

ε
dρnY

dt
= (

(3)
A(t)−

(3)
C (t)

(4)
C (t)−1

(4)
A(t))ρnX(t, ε) + Λ(t)ρnY(t, ε)

+
(3)
C (t)(

(4)
G (t, 0, ε)

(4)
C (0)−1(

(4)
A(0)ρnX(0, ε) +

(4)
B (0)ρnY(0, ε))

−
(4)
G (t, T, ε)

(4)
C (T)−1(

(4)
A(T)ρnX(T, ε) +

(4)
B (T)ρnY(T, ε))) +

(3)
G (ρnϑ, t, ε).

(69)

Let us study the structure of the matrix Λ = Λ(t).
For brevity, we will sometimes omit the argument t. Due to our assumption, it follows

from [30] that the Hamiltonian matrix
(4)
C (t) is invertible and its inverse has the form

(4)

C−1 =

(
D1 D2
D3 −D′

1

)
, where D2 and D3 are symmetric. Similarly to the proof in [30] of

the non-negative definiteness of the matrices D2 and D3, it is proved that, in view of the
positive definiteness of S33 and W33, the matrices D2 and D3 are also positive definite.

Let the matrix Λ(t) have the block presentation
(

Λ1(t) Λ2(t)
Λ3(t) Λ4(t)

)
. Write out the

explicit expressions for Λi(t), i = 1, 4:

Λ1 = A22 − A23(D1 A32 + D2W ′
23)− S23(D3 A32 − D′

1W ′
23),

Λ2 = S22 − A23(D1S′
23 − D2 A′

23)− S23(D3S′
23 + D′

1 A′
23),

Λ3 = W22 − W23(D1 A32 + D2W ′
23) + A′

32(D3 A32 − D′
1W ′

23),

Λ4 = −A′
22 − W23(D1S′

23 − D2 A′
23) + A′

32(D3S′
23 + D′

1 A′
23).
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Comparing Λ1(t) with Λ4(t), it is not difficult to see that Λ4(t) = −Λ1(t)′. It also
follows from the form of the matrices Λ2(t) and Λ3(t) that these matrices are symmetric.

Introducing for an arbitrary b ∈ IRn2 the notation

b1 = A′
23b, b2 = S′

23b, b3 =

(
b

−(D′
1b1 + D3b2)

)
,

b4 = A32b, b5 = W ′
23b, b6 =

(
b

−(D1b4 + D2b5)

)
,

we obtain

b′Λ2b = b′
3

(
S22 S23
S′

23 S33

)
b3 + (D1b2 − D2b1)

′W33(D1b2 − D2b1)

+b′
1(D2 − D2W33D2 − D1S33D′

1)b1 + 2b′
1(D2W33D1 − D1S33D3)b2

+b′
2(D3 − D′

1W33D1 − D3S33D3)b2,

b′Λ3b = b′
6

(
W22 W23
W ′

23 W33

)
b6 + (D3b4 − D′

1b5)
′S33(D3b4 − D′

1b5)

+b′
4(D3 − D3S33D3 − D′

1W33D1)b4 + 2b′
4(D3S33D′

1 − D′
1W33D2)b5

+b′
5(D2 − D1S33D′

1 − D2W33D2)b5.

Taking into account the equalities

A33D1 + S33D3 = In3 , A33D2 − S33D′
1 = 0,

W33D1 − A′
33D3 = 0, W33D2 + A′

33D′
1 = In3 ,

we obtain that three last summands in the expressions for b′Λ2b and b′Λ3b are equal to
zero.

In view of positive definiteness of matrices S(t) and W(t), the matrices
(

S22 S23
S′

23 S33

)
,

S33,
(

W22 W23
W ′

23 S33

)
, W33 are positive definite too. Then, the positive definiteness of matri-

ces Λ2(t) and Λ3(t) follows from the obtained forms for b′Λ2(t)b and b′Λ3b.

Thus, the matrix Λ(t) has the form
(

Λ1(t) Λ2(t)
Λ3(t) −Λ1(t)′

)
, where Λ2(t) and Λ3(t) are

positive definite.
We will suppose yet one condition

I I. Eigenvalues of the matrix Λ(t) satisfy the condition I.
Then, the boundary value problem

ε
dY
dt

= Λ(t)Y, Y = (Y′
1, Y′

2)
′, Y1(0) = 0, Y2(T) = 0 (70)

has a unique solution and, for the corresponding matrix Green function
(3)
G (t, s, ε), the

following inequality is valid

‖
(3)
G (t, s, ε)‖ � c exp (-æ|t − s|/ε), t, s ∈ [0, T]. (71)

With the help of the Green function
(3)
G (t, s, ε), using (64), (71), we obtain from (69)

the following

ρnY(t, ε) =
1
ε

T∫
0

(3)
G (t, s, ε)(

(3)
A(s)−

(3)
C (s)

(4)
C (s)−1

(4)
A(s))ρnX(s, ε) ds +

(3)
G (ρnϑ, t, ε). (72)
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The following formula follows from Lemma 1 and (70)

(3)
G (t, s, ε) = −ε

∂

∂s
(
(3)
G (t, s, ε)Λ(s)−1) + ε

(3)
G (t, s, ε)

d
ds

(Λ(s)−1), t �= s. (73)

Using this formula, we present the integral in (72), containing the first term from the
right side (73), as a sum of integrals over the intervals [0, t] and [t, T] and integrate by parts.

In view of the jump of function
(3)
G (t, s, ε) at s = t and estimate (71), we have

ρnY(t, ε) = −Λ(t)−1(
(3)
A(t)−

(3)
C (t)

(4)
C (t)−1

(4)
A(t))ρnX(t, ε)

+
(3)
G (t, 0, ε)Λ(0)−1(

(3)
A(0)−

(3)
C (0)

(4)
C (0)−1

(4)
A(0))ρnX(0, ε)

−
(3)
G (t, T, ε)Λ(T)−1(

(3)
A(T)−

(3)
C (T)

(4)
C (T)−1

(4)
A(T))ρnX(T, ε) +

(3)
G (ρnϑ, t, ε).

(74)

Taking into account (68), (74), we obtain from (57) the following equation:

dρnX(t, ε)

dt
= Ω(t)ρnX(t, ε) + (

(2)
B (t)−

(2)
C (t)

(4)
C (t)−1

(4)
B (t))

×(
(3)
G (t, 0, ε)Λ(0)−1(

(3)
A(0)−

(3)
C (0)

(4)
C (0)−1

(4)
A(0))ρnX(0, 0)

−
(3)
G (t, T, ε)Λ(T)−1(

(3)
A(T)−

(3)
C (T)

(4)
C (T)−1

(4)
A(T))ρnX(T, ε)

+
(2)
C (t)(

(4)
G (t, 0, ε)

(4)
C (0)−1(

(4)
A(0)ρnX(0, ε) +

(4)
B (0)ρnY(0, ε))

−
(4)
G (t, T, ε)

(4)
C (T)−1(

(4)
A(T)ρnX(T, ε) +

(4)
B (T)ρnY(T, ε))

+
(2)
χ (ρnϑ, t, ε) +

(2)
G (ρnϑ, t, ε),

(75)

where

Ω(t) =
(2)
A(t)−

(2)
C (t)

(4)
C (t)−1

(4)
A(t)− (

(2)
B (t)−

(2)
C (t)

(4)
C (t)−1

(4)
B (t))Λ(t)−1(

(3)
A(t)

−
(3)
C (t)

(4)
C (t)−1

(4)
A(t)).

It follows from Lemma 2 that the boundary value problem

d
dt

(
x
ζ

)
= Ω(t)

(
x
ζ

)
, x(0) = 0, ζ(T) = 0

is uniquely solvable. Hence, there exists the matrix Green function
(2)
G (t, s) of the last

boundary value problem, which is bounded, i.e.,

‖
(2)
G (t, s)‖ ≤ c, t, s ∈ [0, T]. (76)

Due to (61), (62), (64), (71), and (76) from the expression of the solution ρnX(t, ε)
of Equation (75) with the boundary values from (60), written by the help of the matrix

Green function
(2)
G (t, s), it follows that ρnX(t, ε) =

(2)
G (ρnϑ, t, ε). Furthermore, from (74),

(68), and (56), and properties (1), (2), we successively obtain ρnY(t, ε) =
(3)
G (ρnϑ, t, ε),
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ρnZ(t, ε) =
(4)
G (ρnϑ, t, ε), rnu(t, ε) =

(1)
G (ρnϑ, t, ε). Thus, for determining ρnϑ, we have in the

space of continuous functions with values in IRm × IRn1 × IRn2 × IRn3 the equation

ρnϑ = G(ρnϑ, t, ε), (77)

where the function G for sufficiently small ε > 0, t ∈ [0, T] satisfies properties (2), (3). If we
will take in condition (2) q < 1, then G is a contraction mapping in C[0,T]. According to the
contractive mappings principle, Equation (77) has a unique solution, and this solution can
be found by the method of successive approximations.

According to (3) and Lemma 3, all successive approximations are not more than cεn+1.
Hence, a solution of the Equation (77) will have the same estimate. Due to (49) and (55), it
proves the theorem statement.

Theorem 3. Under conditions of Theorem 2, for sufficiently small ε > 0, the following inequality
for the performance index is valid

Jε(ũn)− Jε(u∗) ≤ cε2n+2.

Proof. Denoting by s̃ a solution of the problem (2)–(3) at u = ũn, we present the solution
of the problem Pε in the form w∗ = s̃ + δw, u∗ = ũn + Δu, then δw satisfies the system

E(ε)dδw
dt

= A(t)δw + B(t)Δu + ε( f (w∗, u∗, t, ε)− f (w∗ − δw, u∗ − Δu, t, ε)),

δw(0, ε) = 0.

In view of Theorem 2,
‖Δu‖ = ‖rnu‖ � cεn+1. (78)

Using this estimate and the condition of stability of the matrices A33 and A22 −
A23 A−1

33 A32, we can prove the estimate

‖δw(t, ε)‖ � cεn+1. (79)

Introducing the notation ΔJ = Jε(ũn)− Jε(u∗), we present it in the form

ΔJ =
1
2

T∫
0

(δw′W(t)δw + Δu′R(t)Δu) dt

+

T∫
0

(−δw′W(t)w∗ − Δu′R(t)u∗ + ε(F(w̃, ũn, t, ε)− F(w∗, u∗, t, ε)) dt.

Using control optimality condition (27), (28) for the problem (1)–(3), after integrating
by parts and taking into account the equation for δw and the boundary values δw(0, ε),
ϕ(T, ε), we have

ΔJ =
1
2

T∫
0

(δw′W(t)δw + Δu′R(t)Δu) dt + ε

T∫
0

(ϕ′( f (w∗, u∗, t, ε)

− f (w∗ − δw, u∗ − Δu, t, ε)− fw(w∗, u∗, t, ε)δw − fu(w∗, u∗, t, ε)Δu)

+F(w∗ − δw, u∗ − Δu, t, ε)− F(w∗, u∗, t, ε) + Fw(w∗, u∗, t, ε)δw + Fu(w∗, u∗, t, ε)Δu) dt.

From here, in view of (78) and (79), we obtain the theorem assertion.

Denote by ũi∗ the i-th order approximation for an optimal control constructed by the
direct scheme method.
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Theorem 4. For sufficiently small ε > 0, the following inequalities are valid

Jε(ũ∗(n−1)) � Jε(ũ∗(n−1) + εnu∗n)

� Jε(ũ∗(n−1) + εn(u∗n + Π0nu∗ + Q0nu∗)) � Jε(ũ∗n), n � 1.
(80)

If an addition to ũ∗(n−1) is non-zero, then the corresponding inequality is strict.

Proof. The proof of this theorem is based on Theorem 1.
Asymptotic solution of the form (4) can be constructed for a solution of problem

(2), (3) at control u = ũ∗n for each n. Moreover, the terms of these asymptotic solution
coincide with corresponding terms of asymptotic expansion of optimal trajectory to n-th
order inclusively.

Substitute expansions for ũ∗(n−1)(t, ε), ũ∗n(t, ε) and corresponding trajectories into
Jε(u). After applying the expansion (6) and Theorem 1, we see that the first 2n coefficients
from (6) coincided and a difference between Jε(ũ∗(n−1)) and Jε(ũ∗n) appears for the first
time in the coefficient J2n.

Taking into account the equality ũ∗n = ũ∗(n−1) + εn(u∗n + ∑1
i=0(Πinu∗ + Qinu∗)),

consider the expressions for the coefficients J2n, J2n+1 and J2n+2 separately.
If we omit the terms known after solving problems Pj, Π0jP, Q0jP, j = 0, n − 1, Π1jP,

Q1jP, j = 0, n − 2, we obtain from J2n the sum of the performance indices Jn + Π1(n−1) J +
Q1(n−1) J. For Jε(ũ∗n), we have Jn = Jn(un) and, for Jε(ũ∗(n−1)), we have Jn = Jn(0). Since
u∗n is found from the problem of minimizing the functional Jn, we obtain the first inequality
in (80).

By a similar way, we obtain from the form J2n+1 the sum Π0n J + Q0n J. For Jε(ũ∗n), we
have Π0n J = Π0n J(Π0nu∗), Q0n J = Q0n J(Q0nu∗). For Jε(ũ∗(n−1)), we have
Π0n J = Π0n J(0), Q0n J = Q0n J(0). Since Π0nu∗ and Q0nu∗ are found by means of minimiz-
ing the functionals Π0n J and Q0n J, respectively, we obtain the second inequality in (80).

Analogously, the third inequality in (80) follows from the form J2n+2.
The assertion concerning non-zero additions to ũ∗(n−1) follows from the unique solv-

ability of linear-quadratic control problems.

Remark 3. From Theorems 3 and 4, it follows that the sequences {ũ∗(n−1)}, {ũ∗(n−1) + εnu∗n},
{ũ∗(n−1) + εn(u∗n + Π0nu∗ + Q0nu∗)} are minimizing.

6. Conclusions

In this paper, unlike the previous one [26], devoted to a similar problem, detailed
proofs of linear-quadratic optimal control problems forms, from which terms of asymptotic
solution of given nonlinear optimal control problem are found, are presented in Theorem 1.
Note that all problems for finding asymptotic terms are obtained in an explicit form. It is
very comfortable for research applying asymptotic methods for solving practical problems.

For the first time, asymptotic estimates of the proximity between the exact and asymp-
totic solutions are established for the control, state trajectory in Theorem 2 and for the
minimized functional in Theorem 3.

It should be noted that, in view of Theorem 4, values of the minimized functional with
a control, which is an asymptotic approximation to the optimal control u∗ respectively of
the form ũ∗(n−1), ũ∗(n−1) + εnu∗n, ũ∗(n−1) + εn(u∗n + Π0nu∗ + Q0nu∗), ũ∗n, do not increase.
It follows from Theorem 3 that the corresponding sequences of the controls are minimizing.

In the future, it is useful to give a program realization of applying the direct scheme
method for problems of type (1)–(3). The results obtained in the paper can be used for
constructing asymptotic solutions of practical optimal control problems with three-tempo
state variables and weak nonlinear perturbations in a linear state equation and a quadratic
performance index.

The advantage of applying a direct scheme method is the possibility to use standard
software packages for solving optimal control problems in order to find terms of asymptotic
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solution. As it is proved in this paper, for problems with three-tempo state variables, the
found sequence of approximations to the optimal control {ũ∗n} is minimizing.
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Abstract: The aim of the research is to develop the regularization method. By Lomov’s regularization
method, we constructed a uniform asymptotic solution of the singularly perturbed Cauchy problem
for a parabolic equation in the case of violation of stability conditions of the limit-operator spectrum.
The problem with a “simple” turning point is considered in the case, when the eigenvalue vanishes
at t = 0 and has the form tm/na(t). The asymptotic convergence of the regularized series is proved.

Keywords: singularly perturbed Cauchy problem; parabolic equation; asymptotic solution;
rational “simple” turning point

1. Introduction

Singularly perturbed problems with an unstable spectrum of the limit operator for ordinary partial
differential equations and partial differential equations have been studied by many authors [1–8].
The most difficult of them are problems with point instability, namely turning points.

For the first time, these problems arose, in particular, in quantum mechanics. One of the first
methods of solution was the WKB method, a method of semiclassical calculation, which was developed
in 1926 by G. Wentzel, H.A. Kramers, and L. Brillouin. At the same time, H. Jeffreys generalized the
method of approximate solution of linear differential equations of the second order, including the
solution of the Schrodinger equation. Methods for solving problems with spectral features were and are
being developed by: the school of V.P. Maslov, the school of A.B. Vasilieva – V.F. Butuzov – N.N. Nefedov,
and the school of S.A. Lomov, among others.

The regularization method defines three groups of turning points.
1. “Simple” turning point: The eigenvalues of the limit operator are isolated from each other,

and one eigenvalue at separate points of t vanishes.
2. “Weak” turning point: At least one pair of eigenvalues intersect at separate points of t, but the

limit operator preserves the diagonal structure up to the intersection points. The eigenvector basis
remains smooth in t.

3. “Strong” turning point: At least one pair of eigenvalues intersect at separate points of t, but the
limit operator changes the diagonal structure to Jordan at the intersection points. The basis at the
intersection points loses its smoothness in t.

Classic turning points are of the third type. A feature of the problem with a “simple” turning
point presented in the article is the pointwise irreversibility of the limit operator tm/n.

In the present paper, using the Lomov’s regularization method [1], a regularized asymptotic
solution of the singularly perturbed Cauchy problem on the entire segment [0, T] for a parabolic
equation is constructed in the presence of a “simple” rational turning point of the limit operator.

The point ε = 0 for the singularly perturbed Cauchy problem is singular in the sense that the
classical existence theorems for the solution of the Cauchy problem do not hold at this point. Therefore,

Axioms 2020, 9, 138; doi:10.3390/axioms9040138 www.mdpi.com/journal/axioms
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in the solution of singularly perturbed problems, essentially special singularities arise that describe the
irregular dependence of the solution on ε [9].

One of the advantages of the regularization method is that it makes it possible to construct a
global asymptotic solution over the entire domain of integration, and, under certain conditions on the
coefficients of the equation, it gives an exact solution.

The fractional turning point of order 1/2 for an ordinary differential equation of the first order
was considered by the method of boundary functions by [6].

In this article, we continue on the “simple” rational turning point work carried out in [10,11].

2. Formulation of the Problem and Construction of an Asymptotic Solution

Consider the Cauchy problem⎧⎨⎩ ε
∂u
∂t

= ε2
(

∂

∂x

(
k(x)

∂u
∂x

))
− tm/na(t)u + h(x, t),

u(x, 0) = f (x), −∞ < x < +∞,
(1)

where u = u(x, t, ε) is a function depending on variables x and t and real parameters ε, ε > 0 and
ε << 1.

Let the following conditions be satisfied:

(1) h(x, t) ∈ C∞(R × [0, T]), the function h(x, t) and all its derivatives are bounded
on {R × [0, T]};

(2) k(x) ∈ C∞(R), k(x) ≥ k0 > 0;
(3) f (x) ∈ C∞(R), the function f (x) and all its derivatives are bounded to R;
(4) a(t) ∈ C∞([0, T]), a(t) > 0; and
(5) m, n ∈ N, p = m + n − 1, m/n = r is a fractional number.

(2)

These conditions ensure the existence and uniqueness of the bounded solution and the possibility
of constructing the asymptotic series of the problem (1) [12].

Singularly perturbed problems arise when the domain of definition of the initial operator
depending on ε at ε �= 0 does not coincide with the domain of definition of the limit operator at
ε = 0.

Under the stability condition for the spectrum of the limiting operator, essentially singular

singularities are described using exponentials of the form eϕi(t)/ε, ϕi(t) =
t∫

0
λi(s)ds, i = 1, n,

where λi(t) are the eigenvalues of the limit operator and ϕi(t) are smooth (in general, complex)
functions of a real variable t.

If the stability conditions for the limit operator are violated for at least one point of the spectrum
of the limit operator, then new singularities arise in the solution of the inhomogeneous equation.
When studying problems with a “simple” turning point, we are faced with a problem when the range
of values of the original operator does not coincide with the range of values of the limit operator.

Special singularities of the problem (1) have the form:

eϕi(t)/ε, ϕ(t) =
t∫

0

sm/na(s)ds, σi = e−ϕ(t)/ε

t∫
0

eϕ(s)/εs(i+1−n)/nds, i = 0, (p − 1).

We look for a solution u(x, t, ε) in the form [1,9]:

u(x, t, ε) = e−ϕ(t)/εX(x, t, ε) +
p−1

∑
i=0

Zi(x, t, ε)σi + W(x, t, ε). (3)
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We denote differentiation with respect to t by “ · ” and differentiation with respect to x by “ ′ ” or
∂

∂x . Substituting (3) into (1) we get the equation

ε

[
e−ϕ(t)/εẊ +

p−1

∑
i=0

(
t(i+1−n)/nZi + σi Żi

)
+ Ẇ

]
=

= ε2

[
e−ϕ(t)/ε ∂

∂x

(
k(x)

∂X
∂x

)
+

p−1

∑
i=0

∂

∂x

(
k(x)

∂Zi

∂x

)
σi +

∂

∂x

(
k(x)

∂W
∂x

)]
− tm/na(t)W + h(x, t).

By identifying the coefficients in the linear combination of e−ϕ(t)/ε, σi and 1, we obtain the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = ε
∂

∂x

(
k(x)

∂X
∂x

)
,

Żi = ε
∂

∂x

(
k(x)

∂Zi

∂x

)
, i = 0, (p − 1),

tm/na(t)W = −εẆ + ε2 ∂

∂x

(
k(x)

∂W
∂x

)
− ε

p−1

∑
i=0

t(i+1−n)/nZi + h(x, t),

X(x, 0) + W(x, 0) = f (x).

(4)

We look for a solution (4) in the form of power series in ε:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(x, t, ε) =
∞

∑
k=−1

εkXk(x, t),

Zi(x, t, ε) =
∞

∑
k=−1

εkZi
k(x, t), i = 0, (p − 1),

W(x, t, ε) =
∞

∑
k=−1

εkWk(x, t).

(5)

Substituting (5) into (4) we get a series of iterative tasks:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋk =
∂

∂x

(
k(x)

∂Xk−1
∂x

)
,

Żi
k =

∂

∂x

(
k(x)

∂Zi
k−1

∂x

)
, i = 0, (p − 1),

tm/na(t)Wk = −Ẇk−1 +
∂

∂x

(
k(x)

∂Wk−2
∂x

)
−

p−1

∑
i=0

t(i+1−n)/nZi
k−1 + δk

0h(x, t),

Xk(x, 0) + Wk(x, 0) = δk
0 f (x), k = −1, ∞; if the index (k − 1) ≤ −2,

(k − 2) ≤ −2, then the term is by definition 0.

(6)

To solve iterative problems, the solvability theorem is used (see Section 4).
Consider the system (6) with k = −1:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ẋ−1 = 0,
Żi

−1 = 0, i = 0, (p − 1),
tm/na(t)W−1 ≡ 0,
X−1(x, 0) + W−1(x, 0) = 0.

(7)

From (7) it follows that ⎧⎪⎨⎪⎩
X−1(x, t) = X−1(x, 0) = 0,
Zi

−1(x, t) = Zi
−1(x, 0), i = 0, (p − 1),

W−1(x, t) ≡ 0.
(8)
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The functions Zi
−1(x, 0) are found from the solvability condition for the system (6) for k = 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ0 = 0,

Żi
0 =

∂

∂x

(
k(x)

∂Zi
−1(x, 0)

∂x

)
, i = 0, (p − 1),

tm/na(t)W0 = −
p−1

∑
i=0

t(i+1−n)/nZi
−1(x, 0) + h(x, t),

X0(x, 0) + W0(x, 0) = f (x).

(9)

Let us expand h(x, t) by Maclaurin’s formula in t:

h(x, t) = h(x, 0) + tḣ(x, 0) + . . . + t[m/n]h[m/n](x, 0) + t[m/n]+1h0(x, t).

From the condition of solvability of the equation for W0 at t = 0, it follows that, if i+1−n
n = j,

i = 0, (p − 1), 0 ≤ j ≤ [m
n
]
, then

Z(j+1)n−1
−1 (x, 0) =

h(j)(x, 0)
j!

, (10)

where
[m

n
]

is the whole part of m/n; if i+1−n
n �= j, i = 0, (p − 1), 0 ≤ j ≤ [m

n
]
, then

Zi
−1(x, 0) = 0.

As a result, we get the solution at the (−1) iteration step:

u−1(x, t, ε) =
1
ε

[m/n]

∑
j=0

Z(j+1)n−1
−1 (x, 0)σ(j+1)n−1(t, ε) =

1
ε

[m/n]

∑
j=0

h(j)(x, 0)
j!

σ(j+1)n−1(t, ε). (11)

Considering (10) we can write the system (9) as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ0 = 0,
Żi

0 = 0, when i �= (j + 1)n − 1, 0 ≤ j ≤ [m/n],

Żi
0 =

∂

∂x

(
k(x)

∂Zi
−1(x, 0)

∂x

)
, i = (j + 1)n − 1, 0 ≤ j ≤ [m/n],

tm/na(t)W0 = −
[m/n]

∑
j=0

tjZ(j+1)n−1
−1 (x, 0) + h(x, t),

X0(x, 0) + W0(x, 0) = f (x).

(12)

The right-hand side of the equation with respect to W0 of the system (12), due to the choice of Zi
−1(x, 0),

satisfies the solvability theorem (see Section 4):

W0(x, t) =

h(x, t)−
[m/n]

∑
j=0

tjZ(j+1)n−1
−1 (x, 0)

tm/na(t)
= ts/nh0(x, t), 1 ≤ s ≤ n − 1 (13)

(s is an integer). Notice, that W0(x, 0) = 0.
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Solving (12) we get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X0(x, t) = X0(x, 0) = f (x),
Zi

0(x, t) = Zi
0(x, 0), i �= (j + 1)n − 1, 0 ≤ j ≤ [m/n],

Zi
0(x, t) = t

∂

∂x

(
k(x)

∂Zi
−1(x, 0)

∂x

)
+ Zi

0(x, 0), i = (j + 1)n − 1, i = 0, (p − 1),

W0(x, t) = ts/nh0(x, t),

(14)

where Zi
−1(x, 0) are determined from (10).

Zi
0(x, 0) at the iteration step k = 0 are unknown. The functions Zi

0(x, 0) are found from the
condition of solvability for t = 0 of the iterative problem for k = 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1(x, t) = f (x),

Żi
1(x, t) =

∂

∂x

(
k(x)

∂Zi
0(x, t)
∂x

)
, i = 0, (p − 1),

tm/na(t)W1(x, t) = −Ẇ0 −
p−1

∑
i=0

t(i+1−n)/nZi
0(x, t),

X1(x, 0) + W1(x, 0) = 0;

(15)

Ẇ0(x, t) =
s
n

t
s
n −1h0(x, t) + t

s
n ḣ0(x, t) = t

s
n −1

[ s
n

h0(x, t) + ḣ(x, t)t
]
=

= t
s
n −1h1(x, t) = t−{ m

n }h1(x, t),

where
{m

n
}

is the fractional part of m/n.
To determine W1(x, t), we subordinate the right side of the equation to the conditions of point

solvability. To do this, we expand h1(x, t) by Maclaurin’s formula in t:

Ẇ0(x, t) = t−{ m
n }h1(x, 0) + t−{ m

n }+1h1(x, 0) + . . . + t−{ m
n }+k hk(x, 0)

k!
+ t−{ m

n }+k+1h2(x, t), (16)

where k =
[m

n +
{m

n
}]

,
{m

n
}
= s

n , 1 ≤ s ≤ n − 1. Then,

(a) if j − {m
n
}
= i+1−n

n , i.e i = n(j + 1)− s − 1, j = 0, k, then Zi
0(x, 0) = − h(j)

1 (x, 0)
j!

;

(b) if i �= (j + 1)n − s − 1, j = 0, k, then Zi
0(x, 0) = 0.

(17)

Using this scheme, you can find a solution at any iteration step.
For u0(x, t, ε), we get

u0(x, t, ε) = e−ϕ(t)/ε f (x) +
p−1

∑
i=0

σiZi
0(x, t) +

h(x, t)−
[m/n]

∑
j=0

tjh(j)(x,0)
j!

tm/na(t)
, (18)

where Zi
0(x, t) are determined from (14) and (17).

Thus, the main term of the asymptotics of the solution is written in the form

umain(x, t, ε) =
1
ε

[m/n]

∑
j=0

h(j)(x, 0)
j!

σ(j+1)n−1(t, ε) + e−ϕ(t)/ε f (x) +
p−1

∑
i=0

σi(t, ε)Zi
0(x, t)+
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+

h(x, t)−
[m/n]

∑
j=0

h(j)(x,0)
j! tj

tm/na(t)
.

3. Remainder Estimate

Let (N + 1) iterative problems be solved. Then, the solution to the Cauchy problem can be
represented in the form

u(x, t, ε) =
N

∑
k=−1

uk(x, t, ε)εk + εN+1RN(x, t, ε). (19)

Substituting (19) into (1) and taking into account that uk(x, t, ε) are solutions to iterative problems,
we obtain the Cauchy problem for determining the remainder RN(x, t, ε):⎧⎨⎩ L(RN) = εṘN − ε2 ∂

∂x

(
k(x)

∂RN
∂x

)
+ tm/na(t)RN = H(x, t, ε),

RN(x, 0, ε) = 0, −∞ < x < +∞,
(20)

where
H(x, t, ε) = H1(x, t) + εH2(x, t, ε),

H1(x, t) = −ẆN +
∂

∂x

(
k(x)

∂WN−1

∂x

)
−

p−1

∑
i=0

t
i+1

n −1Zi
N(x, t),

H2(x, t, ε) = −e−ϕ(t)/ε ∂

∂x

(
k(x)

∂XN
∂x

)
− ∂

∂x

(
k(x)

∂WN
∂x

)
−

p−1

∑
i=0

∂

∂x

(
k(x)

∂Zi
N

∂x

)
σi(t, ε).

The remainder estimate is based on the maximum principle for parabolic problems [12].
This principle is used in the form of generality that we need to estimate the remainder. The classical
solution to the problem (1) is a function R(x, t, ε), continuous in QT = (−∞,+∞) × [0, T] × (0, ε],
having continuous ∂R

∂t , ∂R
∂x , ∂2R

∂x2 in QT , and satisfies Equation (1) and the initial conditions at t = 0 at all
points of QT .

Theorem 1 (remainder estimate). Let the conditions be satisfied:

(1) Conditions (1)–(5) of the Cauchy problem (1);
(2) |H(x, t, ε)| ≤ M1 ∀(x, t) ∈ (−∞,+∞)× [0, T] ∀ε ∈ (0, ε0], M1 > 0;
(3) k(x) < M(x2 + 1), |k′(x)| < M

√
x2 + 1, M > 0; and

(4) RN > −m, m > 0.

Then, |RN(x, t, ε)| ≤ M2 ∀(x, t) ∈ (−∞,+∞)× [0, T] ∀ε ∈ (0, ε0], M2 > 0.

Proof of Theorem 1. We denote tm/na(t) = q(t). We prove the theorem in two stages.
Stage 1. Consider the homogeneous Cauchy problem in the domain DL = {[−L, L]× [0, T]}:⎧⎨⎩ L(u) = ε

∂u
∂t

− ε2 ∂

∂x

(
k(x)

∂u
∂x

)
+ q(t)u = 0,

u(x, 0, ε) = 0.
(21)
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In the proof of this theorem, ideas from [12] are used to estimate the solution. We introduce the
function w = u + eαt/ε m

L2 (x2 + pt). Then,

L(w) = L(u) + L
(

eαt/ε m
L2 (x2 + pt)

)
=

= [(α + q)(x2 + pt) + εp − ε22xk′(x)− ε22k(x)]eαt/ε m
L2 ≥

≥ eαt/ε m
L2 [(α + q)(x2 + pt) + εp − ε22Mx

√
x2 + 1 − ε22M(x2 + 1)].

(1) For |x| ≥ 1,

L(w) ≥ eαt/ε m
L2 [(α + q)(x2 + pt) + εp − ε28Mx2] ≥ eαt/ε m

L2 [α − ε28M]x2.

Take α > ε2
08M, then L(w) ≥ 0.

(2) For |x| < 1,

L(w) ≥ eαt/ε m
L2 [(α + q)(x2 + pt) + εp − ε28M] ≥ eαt/ε m

L2 [p − ε8M]ε.

Take p > ε08M, then L(w) ≥ 0.
Besides,

w
∣∣
t=0= u

∣∣
t=0+

m
L2 x2 ≥ 0,

w
∣∣±L= u

∣∣±L+eαt/ε m
L2 (L2 + pt) ≥ −m + m = 0.

Hence, by the maximum theorem in a bounded domain, we have w ≥ 0 in DL, i.e.

u + eαt/ε m
L2 (x2 + pt) ≥ 0.

Letting L → +∞, we get u ≥ 0.
Stage 2. Consider the inhomogeneous Cauchy problem{

L(RN) = H(x, t, ε),
RN(x, 0, ε) = 0.

(22)

We introduce the function
w = ±RN +

M1t
ε

+ m.

Then,

L(w) = ±H + M1 + q(t)
(

M1t
ε

+ m
)

≥ 0, w
∣∣
t=0= m ≥ 0.

From the result of Stage 1, it follows that w ≥ 0 in D = (−∞,+∞) × [0, T] ∀ε ∈ (0, ε0], i.e.
±RN + M1t

ε + m ≥ 0. Consequently, |RN | ≤ M1t
ε + m ≤ M3

ε , M3 > 0. We write the remainder

RN = uN + εRN+1.

Then, |RN | ≤ |uN |+ ε M4
ε ≤ M2, M4 > 0. �

4. Appendix

Lemma 1 (on the solvability of iterative problems). Let the equation be given

tm/nZ(x, t) = F(x, t) (23)
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and conditions are met
F(x, t) ∈ C∞(R × [0, T]).

Then, Equation (23) is solvable in the class of smooth functions if and only if

∂Fk(x, 0)
∂t

= 0, k = 0,
[m

n

]
.

Proof of Lemma 1. We expand F(x, t) by Maclaurin’s formula in t:

F(x, t) = F(x, 0) + Ḟ(x, 0)t + . . . + F[m/n](x, 0)t[m/n] + t[m/n]+1 f (x, t).

Then, Equation (23) has the form

tm/nZ(x, t) = F(x, 0) + Ḟ(x, 0)t + . . . + F[m/n](x, 0)t[m/n] + t[m/n]+1 f (x, t).

Necessity, Let Equation (23) have a solution. For t = 0, we have 0 = F(x, 0):

tm/nZ(x, t) = F(x, t)− F(x, 0).

Dividing the equation by t if
[m

n
]
> 1:

t
m
n −1Z(x, t) =

F(x, t)− F(x, 0)
t

.

For t = 0, we get 0 = Ḟ(x, 0).
Continuing this process to step

[m
n
]
, we get Fk(x, 0) = 0 ∀k = 0,

[m
n
]
.

Adequacy: Let be F(x, 0) = Ḟ(x, 0) = . . . = F[m/n](x, 0) = 0. Then, Equation (23) has the form:

tm/nZ(x, t) = t[m/n]+1 f (x, t),

hence the decision Z(x, t) = t1−{ m
n } f (x, t).

5. Conclusions

The novelty of the article lies in the construction by the regularization method of an asymptotic
solution of a singularly perturbed Cauchy problem for a parabolic equation in the presence of a “simple”
rational turning point of the limit operator. The nature of this “simple” turning point affects the
structure of the functions describing the singular dependence of the solution on the parameter ε.
The asymptotic expansion of the constructed solution is justified using the maximum principle.
This approach can be applied both in the study of applied problems containing turning points and in
the construction of numerical algorithms for solving problems with spectral features.
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Abstract: The problem of complete controllability of a linear time-invariant singularly-perturbed
system with multiple commensurate non-small delays in the slow state variables is considered.
An approach to the time-scale separation of the original singularly-perturbed system by means of
Chang-type non-degenerate transformation, generalized for the system with delay, is used. Sufficient
conditions for complete controllability of the singularly-perturbed system with delay are obtained.
The conditions do not depend on a singularity parameter and are valid for all its sufficiently small
values. The conditions have a parametric rank form and are expressed in terms of the controllability
conditions of two systems of a lower dimension than the original one: the degenerate system and the
boundary layer system.

Keywords: time delay system; multiple commensurate delays; singular perturbation; decomposition;
Chang transformation; complete controllability; robust sufficient condition

1. Introduction

We consider a singularly-perturbed linear time-invariant system with a small multiplier for the
derivatives and with non-small commensurate delays in the slow state variables (SPLTISD).

Singularly-perturbed controlled systems (SPS) occur as models in automatic control theory,
nonlinear oscillation theory, quantum mechanics, gas dynamics, biology, chemical kinetics, and others
(see, e.g., the references in [1–3]). Time-delay systems arise from inherent time delays in the components
of the systems or from the deliberate introduction of time delays into the systems for control purposes.
Time delays occur often in systems in engineering, biology, chemistry, physics, ecology, economics,
technology, the social sphere, etc. (see, e.g., the references in [4,5]).

Controllability is one of the basic properties of controlled systems. This property is well known
from the mathematical theory of systems (Kalman) as the concept of the reachability of terminal states.
This means that it is possible to control a dynamic system from an arbitrary initial state to an arbitrary
final state using a set of admissible controls.

Time-delay systems can be represented by delay differential equations, which belong to the
class of functional differential equations and are infinite-dimensional systems [6,7]. Due to this
fact, the controllability concepts for systems with delay are more diverse, and their analysis is
significantly more complicated than for systems without delay. Different types of controllability
for infinite-dimensional systems were studied in the literature (see, e.g., [8–10] and the references
therein). There are several concepts of time delay system controllability that are a direct generalization
of the concept of controllability in the Kalman theory of systems: relative controllability (equivalently,
Rn or Euclidean-space controllability) (rank criterion [11]), complete controllability (formulation of the
problem: Krasovsky N.N., 1963; condition [12]), and pointwise controllability [13,14]).

Axioms 2019, 8, 71; doi:10.3390/axioms8020071 www.mdpi.com/journal/axioms
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Controllability in the full state space (approximate, functional controllability [15,16]) is quite
a restrictive concept [16]. For instance, many delay systems do not satisfy one of the necessary
conditions of approximate controllability, even though they often possess other good properties such
as stabilizability and spectral controllability. This suggests that from the controllability point of view,
the full state space is “too big”, and in the above-mentioned cases of controllability, the state (unlike
the classical works of Kalman) is not based on the concept of minimality. Therefore, one should search
for a “smaller space” in which a controllability would be characterized by less restrictive conditions
and would be related to stabilizability and spectral controllability. The concept of F-controllability,
weaker than the approximate controllability in the state space, has been introduced (see [16] and the
references therein). Works on the study of systems with delay on the basis of an approach of the space
of minimal states also appeared (see [17] and the references therein).

The functional controllability of systems with delay according to the approach, based on the notion
of time delay systems’ state minimality [17], turns out to be equivalent to the complete controllability,
which solves one of the most difficult problems of controllability for systems with delay: the problem
of complete damping of such systems in a finite time (total quieting, controllability to null function,
null controllability). The spectral criterion of complete controllability for a system with delay (without
parameter) was proven in [12,16,18] (see also the references in [17]). In [12,15,19] and a number of
other papers, these conditions were associated with parametric rank Kalman-type conditions.

Studying the controllability of SPS without delay is well known (see, e.g., the reviews of [1,20] and
the references therein). The controllability of SPS with delay has been studied much less (see [21–27],
reviews [1,20], and the references therein).

To check a proper type of controllability for a given SPS, corresponding controllability conditions
can be directly applied for any specified value of a small parameter of singular perturbation. However,
the stiffness, as well as a possible high dimension of the SPS, can considerably complicate this
application. Therefore, for example, with the direct use of rank controllability criteria [12,16,18],
the controllability matrix of such systems has a large dimension and is ill-conditioned. Correct
checking of the rank of such matrices can be complicated. Moreover, such an application depends on
the value of the parameter, i.e., it is not robust with respect to this parameter, while in most of real-life
problems, this value is unknown [28].

One of the approaches independent of the singular perturbation parameter controllability analysis
of SPS is based on the time scale separation concept (see, e.g., [29]). Using this concept, the complete
controllability of SPS without delays was analyzed in the works [29–31]. Parameter-free conditions of
complete Euclidean space controllability, robust with respect to the small parameter, were obtained for
linear singularly-perturbed time-invariant system with a single pointwise non-small delay in the state
variables in [21], for linear SPS with point-wise and distributed small delays (of the order of the small
parameter) in the state variables in [25–27,32,33], and for a linear singularly-perturbed neutral-type
system with a single non-small point-wise delay in [34].

The problem of functional controllability for SPS with delay has been investigated much less.
In [28], a singularly-perturbed linear time-dependent controlled system with multiple point-wise and
distributed state delays was considered (the delays were small in the fast state variable and non-small
in the slow state variable). It has been established that the approximate state-space controllability of
two parameter-free subsystems (the slow and fast ones), associated with the original system, yields the
approximate state-space controllability of the original system robustly with respect to the parameter
of singular perturbation for all its sufficiently small values. In [35], the conditions of controllability
in the L2

2[t1 − h, t1]× R2 space for linear stationary SPS with delay was obtained on the basis of the
state-space method.

One of the realizations of the time scale separation concept is Chang’s transformation with a
nondegenerate change of variables (for linear singularly-perturbed continuous-time varying systems
without delay, introduced in [36]). Generalizations of Chang-type transformation for linear SPS slowly
varying in time were proposed in [37,38] and on systems with many time scales in [39]. For SPS
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with delay, Chang-type transformations were constructed in [21,23,40,41]. In [40], the existence of a
continuous function on the small parameter linear transformation for partial decomposition of SPS
with distributed and concentrated non-small delays in slow and fast variables was proven. As a
result, in the transformed system, there is a connection between fast and slow variables only through
variables with delay. Constructed in [21,23], Chang-type transformation for a linear stationary SPS
with a constant (non-small) delay in the state was performed by a linear operator with a finite number
of delay operators and resulted in the original SPS with one delay in the state and without delay in
the control to split the subsystems: slow with many delays in the state and control and heterogeneity
depending on the initial conditions and fast with one delay in the state variable and with heterogeneity.
In [41], the change of variables for linear time-invariant SPS of functional-differential equations with
small concentrated and distributed delay in fast variables was constructed. The transformation in [42]
generalizes the transformation in [36] to linear stationary SPS with concentrated delay in the slow
variable. Unlike [21,23], this transformation was constructed in the form of an asymptotic series,
and the obtained slow and fast subsystems did not contain inhomogeneities with the exception of
control components.

In [29,43] and other papers, Chang’s transformation was applied to split the original system with
fast and slow variables into two independent subsystems and to obtain controllability conditions for
SPS without delay. The result of the non-degenerate transformation [21,23] was used to study the
relative controllability of the original SPS with delay. In [44], the sufficient conditions for complete
controllability based on Chang’s transformation [42] of linear stationary SPS with the single delay
were obtained (without detailed proof).

In this paper, the problem of complete controllability of a linear time-invariant singularly-
perturbed system with multiple commensurate non-small delays in the slow state variables on
the basis of the time scale separation concept is considered. The main differences of this work
from [28] are in the property under investigation (complete controllability) and in the method used
for the investigation (the method of non-degenerate variable transformation is evolved in this work).
The non-degenerate change of variables was developed in [42], where decoupling transformation in
the form of asymptotic series was constructed for a singular perturbed system with single non-small
delay. The exact separation is performed by means of non-degenerate transformation of the original
system. Two much simpler subsystems than the original SPS parameter-free ones are associated with
the original system. They are O (μ), close to the decoupled subsystems, the slow and fast ones. It is
established that the complete controllability of the slow and fast subsystems yields the complete
controllability of the original system.

Parameter-free sufficient conditions of complete controllability of the singularly-perturbed system
with non-small delay are obtained. The conditions are valid for all sufficiently small values of the
parameter of singular perturbation, i.e., robustly with respect to this parameter, and have a rank form.

The paper is organized as follows. In the second section, the problem is formulated, the main
definitions dependent on the parameter criterion of complete controllability of the considered system
are presented. Criteria of complete controllability for the fast and slow subsystems, associated with the
original one, are presented in Section 3. Section 4 is devoted to Chang-type decoupling transformation
in the form of asymptotic series for singular perturbed systems with non-small delay. Section 5 is
devoted to the main result. An illustrative example is presented in Section 6. The discussion and
conclusions are placed in Sections 7 and 8, respectively.

The following main notations and notions are applied in the paper:

• ′ means the transposition;
• In denotes the identity matrix of dimension n;
• C is the set of complex numbers;
• R is the set of real numbers;

• p Δ
= d

dt is a differential operator;
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• e−ph is a delay operator: e−phz(t) Δ
= z(t − h).

2. Singularly-Perturbed Linear Time-Invariant System with Delays and Its Complete
Controllability: Definitions

2.1. Singularly-Perturbed Linear Time-Invariant System with Delays

Consider the singularly-perturbed linear time-invariant system with multiple commensurate
delays in the slow state variables (SPLTISD):

ẋ(t) =
l

∑
j=0

A1jx(t − jh) + A2y(t) + B1u(t), x ∈ Rn1 , y ∈ Rn2 , (1)

μẏ(t) =
l

∑
j=0

A3jx(t − jh) + A4y(t) + B2u(t), u ∈ Rr, t ≥ 0, (2)

with the initial conditions:

x (0) = x0, y(0) = y0, x0 ∈ Rn1 , y0 ∈ Rn2 , x(θ) = ϕ(θ), θ ∈ [−lh, 0) . (3)

Here, 0 < h is a given constant, x is a slow variable, y is a fast variable, u is a control, u(t) ∈ U,
U is a set of piecewise continuous t ≥ 0 vector functions, μ is a small parameter, μ ∈ (0, μ0], μ0 �
1, Aij, i = 1, 3, j = 0, l, Ak, k = 2, 4, Bj, j = 1, 2, are constant matrices of appropriate dimensions,
and φ(θ), θ ∈ [−lh, 0), is a piecewise continuous n1 vector function. Assume that det A4 �= 0.

For a given μ > 0, using the notations p Δ
= d

dt , a differential operator, e−ph, and a delay operator,

e−phz(t) Δ
= z(t − h), introduce the following matrix-valued operators that depend on the parameter:

A
(

μ, e−ph
)
=

⎛⎝ A1

(
e−ph

)
A2

A3(e−ph)
μ

A4
μ

⎞⎠ , B (μ) =

(
B1
B2
μ

)
, μ > 0, (4)

where:

Ai

(
e−ph

)
Δ
=

l

∑
j=0

Aije−jph, i = 1, 3. (5)

Introduce also the vector z = (x′, y′)′. Using the above notations, we can rewrite SPLTISD (1)–(2)
in the equivalent operator form:

pz(t) = A
(

μ, e−ph
)

z(t) + B (μ) u(t), u ∈ Rr, t ≥ 0. (6)

From (6), we obtain the characteristic equation of the system (1)–(2):

w
(

μ, λ, e−λh
)

Δ
= det

[
λIn1+n2 − A

(
μ, e−λh

)]
= 0. (7)

For any fixed μ ∈ (0, μ0], by:

σ (μ) =
{

λ (μ) ∈ C : w
(

μ, λ, e−λh
)
= 0

}
(8)

denote the spectrum (set of the eigenvalues) of the SPLTISD (1).
From the known properties of the delay system spectrum [6,7] follows the characterization of the

SPLTISD spectrum (8) for any given μ ∈ (0, μ0].

Characterization 1. For a given μ ∈ (0, μ0], the following statements are true:

198



Axioms 2019, 8, 71

(a) the spectrum σ (μ) of the SPLTISD (1)–(2) consists of a finite or countable set of complex numbers;
(b) the real part of all SPLTISD (1)–(2) eigenvalues is bounded above by some real value γ;
(c) any vertical strip of the complex plane with a ≤ Re z ≤ b contains a finite number of SPLTISD eigenvalues;
(d) any two subsets of the set σ (μ) are separated on the complex plane by a vertical strip of nonzero width.

2.2. Definition and Dependent on the μ Criterion of Split Complete Controllability

Similar to [12], let us introduce the following definition.

Definition 1. For a given μ ∈ (0, μ0], the SPLTISD (1)–(2) is said to be completely controllable if for any
fixed initial conditions (3), there exist a time moment t1 < +∞ (t1 > (n1 + n2)h) and a piecewise continuous
control u(t), t ∈ [0, t1], such that for this control and the corresponding solution (x(t, μ), y(t, μ)) , t ≥ 0, of the
system (1)–(2) with the initial conditions (3), the following identities are valid:

(x(t, μ), y(t, μ)) ≡ 0, u(t) ≡ 0, t ≥ t1.

Definition 2. If there exists a number μ∗ > 0 for which SPLTISD (1)–(2) is completely controllable for any
μ ∈ (0, μ∗], we say that complete controllability is robust with respect to μ ∈ (0, μ∗].

For μ > 0, λ ∈ C, we introduce the following matrix-valued function:

N
(

μ, λ, e−λh
)

Δ
=
[
λIn1+n2 − A

(
μ, e−λh

)
, B (μ)

]
. (9)

The following criterion of the SPLTISD complete controllability for a fixed μ ∈ (0, μ0]

follows from [12].

Theorem 1. For a given μ ∈ (0, μ0], the SPLTISD (1)–(2) is completely controllable if and only if:

rankN
(

μ, λ, e−λh
)
= n1 + n2, ∀λ ∈ σ (μ) . (10)

2.3. Objective of the Paper

Our objective in this paper is the following. On the basis of a non-degenerate change of variables
in the original system, we prove the approximation of the original SPLTISD (1)–(2) by two independent
small parameter subsystems of lower dimension and obtain parametric rank-type sufficient conditions
for complete controllability of the original singularly-perturbed system in terms of the complete
controllability of these subsystems. The conditions do not depend on the parameter and are robust
with respect to μ for all its sufficiently small values.

3. Subsystems of SPLTISD

3.1. Slow and Fast Subsystems of SPLTISD

With the n1 + n2-dimensional system (1)–(3) is associated two independent μ subsystems: the
slow and the fast ones. The slow subsystem, the degenerate system (DS), has the form:

ẋs (t) =
l

∑
j=0

Asjxs(t − jh) + Bsus (t) , xs ∈ Rn1 , t ≥ 0, (11)

xs (0) = x0, xs(θ) = φ(θ), θ ∈ [−lh, 0) , (12)

where:

Asj
Δ
= A1j − A2 A−1

4 A3j, j = 0, l, Bs
Δ
= B1 − A2 A−1

4 B2, (13)
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and us(t) ∈ Rr (us is a control). Introducing the following matrix-valued operator:

As

(
e−ph

)
Δ
= A1

(
e−ph

)
− A2 A−1

4 A3

(
e−ph

)
, (14)

we can rewrite the degenerate system (11) in the operator form:

pxs (t) = As

(
e−ph

)
xs (t) + Bsus (t) , xs ∈ Rn1 , t ≥ 0, (15)

xs (0) = x0, xs(θ) = φ(θ), θ ∈ [−lh, 0) . (16)

The degenerate system (11) is a linear stationary n1-dimensional system with multiple
commensurate delays. It is obtained from (1)–(2) by setting there formally μ = 0, expressing
ys (t) = A−1

4

[
A3

(
e−ph

)
xs(t) + B2us(t)

]
from (2) and substituting it into (1).

The characteristic equation for the DS (11) is:

ws

(
λ, e−λh

)
Δ
= det

[
λIn1 − As

(
e−λh

)]
= 0, (17)

the spectrum of the DS (11):

σs =
{

λ ∈ C : ws

(
λ, e−λh

)
= 0

}
(18)

is a finite or countable set of complex numbers.
Since the DS (11) is a system with delay, properties similar to the properties from the

characterization 1 are valid for the spectrum (18).
The fast subsystem, the boundary layer system (BLS), has the form:

dy f (τ)

dτ
= A4y f (τ) + B2u f (τ), y f ∈ Rn2 , τ =

t
μ

≥ 0, (19)

y f (0) = y0 − A−1
4

[
A3

(
e−λh

)
φ(0) + B2us(0)

]
. (20)

Here, y f (τ) = y (μτ)− ys (μτ), u f (τ) = u (μτ)− us (μτ).
The boundary layer system (19) is a linear stationary n2-dimensional system without delay

and is derived from Equation (2) for the fast state variable y in the following way: (i) the terms
containing the slow state variable x are removed from Equation (2); (ii) the transformation of variables
t = μτ, y(μτ) = y f (τ), u(μτ) = u f (τ) is done in the resulting equation, where τ, y f and u f are new
independent variables (the stretched time), state and control, respectively.

The characteristic equation for the BLS (19) is:

w f (λ)
Δ
= det [λIn2 − A4] = 0. (21)

The spectrum of the BLS (19) is the finite set of complex numbers:

σf =
{

λ ∈ C : w f (λ) = 0
}

. (22)

Similar to [12,45], we introduce the following definitions.

Definition 3. The DS (11) is said to be completely controllable if for any fixed initial conditions (16), there exists
a time moment t1 < +∞ and a piecewise continuous control us(t), t ∈ [0, t1] such that for this control and
corresponding solution xs(t), t ≥ 0, of the system (11) with the initial conditions (16), the following identities
are true:

xs(t) ≡ 0, us(t) ≡ 0, t ≥ t1.
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Definition 4. The BLS (19) is said to be completely controllable if for any fixed initial conditions (20), there exist
a time moment τ1 < +∞ and a piecewise continuous control u f (τ), τ ∈ [0, τ1] such that for this control and
corresponding solution y f (τ), τ ≥ 0, of the system (14) with the initial conditions (20), the following equality
is true:

y f (τ1) = 0.

Note that the subsystems (11) and (19) have smaller dimensions than the original SPLTISD (1)–(2)
and do not depend on a small parameter μ.

The main objective of the article is to obtain the conditions of complete controllability of the
SPLTISD (1)–(2) (Definition 1) in terms of complete controllability of its subsystems (11) and (19)
(Definitions 3 and 4), robust with respect to μ for all its sufficiently small values (Definition 2).

3.2. Controllability of Subsystems

Define the matrix-valued functions:

Ns

(
λ, e−λh

)
Δ
=

[
λIn1 − As

(
e−λh

)
, Bs

]
, λ ∈ C, (23)

Nf (λ)
Δ
= [λIn2 − A4, B2] , λ ∈ C. (24)

Applying the conditions of complete controllability from [12] to DS (11) and BLS (19), we obtain
that the following theorems are valid.

Theorem 2. The DS (11) is completely controllable if and only if the following condition is valid:

rankNs

(
λ, e−λh

)
= n1 ∀λ ∈ σs. (25)

Theorem 3. The BLS (19) is completely controllable if and only if the following condition is valid:

rank Nf (λ) = n2 ∀λ ∈ σf . (26)

Along with Conditions (25) and (26), we formulate some more applicable conditions for the
complete controllability of the subsystems, which simplify the procedure for checking this property.
To do this, we define the matrix-valued function:

Ps (z)
Δ
=
[

Bs,As (z) Bs, ...,As
n1−1 (z) Bs

]
, z ∈ C, (27)

and the matrix:
Pf

Δ
=
[

B2,A4B2, ...,A4
n2−1B2

]
. (28)

The following theorem follows from the application to the subsystems (11) and (19) of the results
from [19] about the connection of the ranks of matrices (27) and (23).

Theorem 4. Let for some λ ∈ C:
rank Ps

(
e−λh

)
= n1. (29)

Then, for this λ:
rankNs

(
λ, e−λh

)
= n1. (30)

If we apply the well-known criterion of the controllability of a linear stationary system [45] to the
BLS (19), we obtain the following theorem:
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Theorem 5. The following equality:

rankN f (λ) = n2 ∀λ ∈ C (31)

holds if and only if:
rank P f = n2. (32)

In order to formulate the conditions of subsystems’ controllability, that do not require the
computation of all eigenvalues from (18) and (22), let us define the following set of complex numbers:

Zs = {z ∈ C : rank Ps (z) < n1} (33)

the set of numbers for which the matrix Ps (z) does not have full rank by rows.
Let πs (z) be the greatest common divisor of all minors of order n1 of the function matrix Ps (z)

(27). Taking into account (5), (14), (13), and (27), we have that πs (z) is a polynomial of degree ls no
higher than n1 and can be represented as:

πs (z) =
ls

∑
i=0

kiz, kls �= 0. (34)

Since the set Zs (33) coincides with the set of all roots of the polynomial πs (z), then:

Zs = {z ∈ C : πs (z) = 0}

and the set of Zs contains the finite numbers of elements.
Along with (33), let us define the set of complex numbers:

Λs =
{

λ ∈ C : e−λh = z, z ∈ Zs

}
, (35)

associated with Zs. The elements z ∈ Zs, λk ∈ Λs, are connected by the relation:

h λk = ln |z|+ i (arg z + 2πk) , z ∈ Zs, i =
√−1, k = 0, ±1, ±2, . . . . (36)

Since the set Zs consists of a finite number of elements, from the connection (36) between the sets
Λs and Zs, the validity follows:

Characterization 2. There are real numbers α, γ, α < γ, such that α < Re λ ≤ γ ∀λ ∈ Λs.

Define also the set:
Ωs

Δ
= σs ∩ Λs.

By virtue of the connection (36) between the elements of the sets (35) and (33) from Theorem 4, it
follows that the conditions (25) of complete controllability of DS (11) are sufficient to check only for
λ ∈ Ωs, and the following theorem holds [19].

Theorem 6. Let:

(1) there exists z ∈ C that:
rank Ps (z) = n1; (37)

(2)
rankNs (λ, z) = n1 ∀λ ∈ Ωs, z ∈ Zs. (38)

Then, the DS (11) is completely controllable.
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From [45] follows:

Theorem 7. The BLS (19) is completely controllable if and only if the following condition is satisfied:

rank Pf = n2. (39)

4. Decoupling Transformation for the SPLTISD

Similar to [42] for asymptotic decomposition of the SPLTISD, we introduce the change of variables:(
x (t)
y (t)

)
= G

(
μ, e−ph

)( ξ (t)
η (t)

)
, ξ (t) ∈ Rn1 , η (t) ∈ Rn2 , t ∈ T, (40)

G
(

μ, e−ph
)
=

⎛⎝ In 1 μH
(

μ, e−ph
)

−L
(

μ, e−ph
)

In2 − μ L
(

μ, e−ph
)
H
(

μ, e−ph
) ⎞⎠ , (41)

where H
(

μ, e−ph
)

and L
(

μ, e−ph
)

are the matrix-valued operators, depending on the parameter μ.
They are the solutions of the following matrix-valued functional equations (in order to reduce the
records, where this does not lead to ambiguous understanding, we omit the arguments

(
μ, e−λh

)
of

the matrix-valued operators H
(

μ, e−ph
)

, L
(

μ, e−ph
)
):

A3

(
e−ph

)
− A4L+ μ LA1

(
e−ph

)
− μ L A2L = 0,

μ
(
A1

(
e−ph

)
− A2L

)
H−H (A4 + μ L A2) + A2 = 0.

(42)

Notice that:

det G
(

μ, e−ph
)

≡ 1, G−1
(

μ, e−ph
)
=

(
In1 − μHL −μH

L In2

)
. (43)

By O(μ), we denote any vector function f (t, μ) , t ∈ [t1, t2] , with the following property: there
exist positive constants μ∗ and c such that the Euclidean norm | f (t, μ)| satisfies the inequality
| f (t, μ)| ≤ cμ for all μ ∈ (0, μ∗] and all t ∈ [t1, t2].

Lemma 1. Suppose that det A4 �= 0. Then, there exists a μ∗ > 0 such that for all μ ∈ [0, μ∗], there is a
continuous function depending on the μ solution L

(
μ, e−ph

)
, H
(

μ, e−ph
)

of Equation (42) that could be
represented in asymptotic series form:

L
(

μ, e−ph
)
=

k
∑

i=0
μiLi

(
e−ph

)
+ O

(
μk+1

)
,

H
(

μ, e−ph
)
=

k
∑

i=0
μiHi

(
e−ph

)
+ O

(
μk
)

,
(44)

where:
L0
(

e−ph
)
= A−1

4 A3

(
e−ph

)
, L1

(
e−ph

)
= A−2

4 A3

(
e−ph

)
A0

(
e−ph

)
,

A0

(
e−ph

)
= A1

(
e−ph

)
− A2 A−1

4 A3

(
e−ph

)
, H0 = A2 A−1

4 .
(45)

Proof. It is easy to prove the decomposition (44) according to the scheme of the proof of [29]. Continuity
is proven as in [40]. For the SPLTISD with a simple delay, see [42].

The next corollary follows from Lemma 1 if we substitute (44) into (42) and equate the coefficients
of equal powers of μ in the resulting equations.

203



Axioms 2019, 8, 71

Corollary 1. Let det A4 �= 0. A solution of matrix equations (42) can be found with any degree of accuracy
in the form of (44), where terms of the asymptotic series (44) can be found according to the following iterative
scheme (in order to reduce the records, we omit the arguments e−λh of the matrix-valued operators Lk

(
e−ph

)
,

Hk
(

e−ph
)
):

Lk+1 = A−1
4

(
LkA1

(
e−ph

)
− k

∑
j=0

Lk−j A2L
j

)
, L0

(
e−ph

)
= A−1

4 A3

(
e−ph

)
,

Hk+1 = A−1
4

(
A1

(
e−ph

)
Hk − A2

k
∑

i=0
LiHk−i − k

∑
i=0

HiLk−i A2

)
, H0 = A2 A−1

4 .
(46)

By using the SPLTISD (1)–(2) matrix parameters and the matrix-valued functions L
(

μ, e−ph
)

,

H
(

μ, e−ph
)

, we introduce the matrix-valued functions:

Aξ

(
μ, e−ph

)
Δ
= A1

(
e−ph

)
− A2L

(
μ, e−ph

)
,

Bξ

(
μ, e−ph

)
Δ
= B1 −H

(
μ, e−ph

)
B2 − μH

(
μ, e−ph

)
L
(

μ, e−ph
)

B1,

Aη

(
μ, e−ph

)
Δ
= A4 + μ L

(
μ, e−ph

)
A2,

Bη

(
μ, e−ph

)
Δ
= B2 + μL

(
μ, e−ph

)
B1.

(47)

Note here that due to Lemma 1, similar to [40], it is easy to prove that matrices from (47)
continuously depend on μ for [0, μ∗].

From (14), (13), (44), and (45), we have:

Aξ

(
μ, e−ph

)
= As

(
e−λh

)
+ O (μ) ,

Bξ

(
μ, e−ph

)
= Bs + O (μ),

Aη

(
μ, e−ph

)
= A4 + O (μ),

Bη

(
μ, e−ph

)
= B2 + O (μ).

(48)

As a result of the application to the system (1)–(2) of the transformation (40), taking into account
(43) and (47), the SPLTISD (1)–(2) goes into the equivalent system with separated motions:

ξ̇ (t) = Aξ

(
μ, e−ph

)
ξ (t) + Bξ

(
μ, e−ph

)
u (t) , ξ (t) ∈ Rn1 , (49)

μη̇ (t) = Aη

(
μ, e−ph

)
η (t) + Bη

(
μ, e−ph

)
u (t) , η (t) ∈ Rn2 , t > 0. (50)

Due to (48), the decoupled system (49) and (50) is O (μ)-close to the DS (11) and the BLS (19).
The decomposition (49) and (50) allows us to prove the separation (at sufficiently small μ) of the

SPLTISD spectrum σ (μ) (8) into two disjoint parts with “slow” and “fast” eigenvalues, as well as the
approximation of the SPLTISD spectrum σ (μ) (8) elements by the eigenvalues of σs (18) and σf (22).

Let us define:
wξ

(
μ, λ, e−λh

)
Δ
=
[
λIn1 − Aξ

(
μ, e−λh

)]
. (51)

Due to (48) and (17), we have:

wξ

(
μ, λ, e−λh

)
= ws

(
λ, e−λh

)
+ O (μ) . (52)

Theorem 8. For sufficiently small μ ∈ (0, μ0], the spectrum σ (μ) (8) of the SPLTISD (1)–(2) is separated
into two disjoint parts:

σ (μ) = σx (μ) ∪ σy (μ) , σx (μ) ∩ σy (μ) = ∅. (53)
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The “slow” part:
σx (μ) =

{
λ ∈ C : det

[
λIn1 − Aξ

(
μ, e−λh

)]
= 0

}
(54)

consists of elements that for sufficiently small μ are the functions λ(μ) that continuously depend on μ and tend
to the elements of the DS (11) spectrum (18) as μ → 0:

lim
μ→0

λi (μ) = λsi ∈ σs. (55)

The fast part:
σy (μ) =

{
λ ∈ C : det

[
λIn2 − Aη

(
μ, e−λh

)]
= 0

}
(56)

consists of n2 elements that tend to infinity, with the rate μ−1, and are of the form λi(μ)
μ , where:

lim
μ→0

λi (μ) = λ f i ∈ σf . (57)

If in the spectrum σs (18) of the DS (11), there are not multiple values and in the spectrum σf (22) of
BLS (19) there are not multiple values (it is allowed σs ∩ σf �= ∅), then the eigenvalues of the SPLTISD (1)–(2)
are approximated as:

λi (μ) = λsi + O (μ) , λsi ∈ σs, ∀λi (μ) ∈ σx, (58)

λi (μ) =
λ f i + O (μ)

μ
, λ f i ∈ σf , ∀λi (μ) ∈ σy. (59)

Proof. The separation (53) and the representation (58) and (59) of the SPLTISD spectrum can be proven
according to the scheme from [29]. The continuity of λ (μ) ∈ σx (μ) follows from the continuous
dependence of the roots of a quasi-polynomial with respect to its coefficients and Lemma 1.

Note that from Theorem 8 follows the continuity and, therefore, boundedness on μ ∈ [0, μ0] the
functions λ (μ) ∈ σx (μ).

Let us define:

Nξ

(
μ, λ, e−λh

)
Δ
=
[

λIn1 − Aξ

(
μ, e−λh

)
, Bξ

(
μ, e−λh

) ]
. (60)

Due to (48) and (23), the following equality is true:

Nξ

(
μ, λ, e−λh

)
= Ns

(
λ, e−λh

)
+ O (μ) , (61)

For μ ≥ 0, z ∈ C, we introduce the following matrix function:

Pξ (μ, z) Δ
=
[

Bξ(μ),Aξ (μ, z) Bξ(μ), ...,An1+n2−1
ξ (μ, z) Bξ(μ)

]
. (62)

For a given μ ≥ 0, define the following set of complex numbers:

Zξ (μ) =
{

z ∈ C : rank Pξ (μ, z) < n1
}

. (63)

Let πξ (μ, z) be the greatest common divisor of all minors of the order n1 of the function matrix
Pξ (μ, z). Taking into account (48), (27), (62), and (34), πξ (μ, z) can be represented as:

πξ (μ, z) =
ls

∑
i=0

ki (μ) z, ki (μ) = ki + O (μ) . (64)
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Since the set Zξ (63) coincides with the set of roots of the polynomial πξ (μ, z) (64), then:

Zξ =
{

z ∈ C : πξ (μ, z) = 0
}

.

By virtue of the continuous dependence of the roots of a polynomial with respect to its coefficients
for sufficiently small μ > 0, the elements z (μ) ∈ Zξ (μ) are continuous and, therefore, bounded
functions of μ.

For a given μ ∈ [0, μ0], define the set of complex numbers:

Λξ (μ) =
{

λ ∈ C : e−λh = z, z ∈ Zξ (μ)
}

,

associated with Z (μ). The elements z (μ) ∈ Zξ (μ), λk ∈ Λξ (μ), are connected by:

h λk (μ) = ln |z (μ)|+ i (arg z (μ) + 2πk) , z ∈ Zξ (μ) , i =
√−1, k = 0, ±1, ±2, . . . . (65)

By virtue of the connection (65) and the continuity of the functions z (μ) ∈ Zξ (μ), the functions
Reλk (μ) =

1
h ln |z (μ)| are also continuous for sufficiently small μ > 0.

5. Complete Controllability of a Singularly-Perturbed Linear Time-Invariant System with Delays

5.1. Auxiliary Results

Lemma 2. Let δ and α be two real numbers, δ < α, and:

ws

(
λ, e−λh

)
�= 0 ∀λ ∈ C : δ ≤ Re λ ≤ α. (66)

Then, there exists a positive number μ∗, such that for all μ ∈ [0, μ∗], the following inequalities hold:

wξ

(
μ, λ, e−λh

)
�= 0 ∀λ ∈ C : δ ≤ Re λ ≤ α. (67)

Proof. (By contradiction) Let the statement of the lemma be wrong. Then, two sequences {μi} and
{λi}, i = 1, 2, . . . exist such that:

(a) μi > 0, i = 1, 2, . . . ;
(b) limi→+∞ μi = 0;
(c) δ ≤ Re λi ≤ α, i = 1, 2, . . .
(d)

wξ

(
μi, λi, e−λih

)
= 0, i = 1, 2, . . . (68)

Two cases can be distinguished: (i) the sequence {λi}, i = 1, 2, . . . is bounded; (ii) the sequence
{λi}, i = 1, 2, . . . is unbounded. Begin with Case (i). In this case, there exists a convergent subsequence
of {λi}. For the sake of simplicity (but without loss of generality), we assume that this subsequence

coincides with {λi}. Let λ̄
Δ
= limi→±∞ λi. Due to Assumption (c),

δ ≤ Re λ̄ ≤ α. (69)

Calculating the limit of (68) for i → ∞, we obtain that ws

(
λ̄, e−λ̄h

)
= 0. The latter along with (69)

contradicts the assumption (66) of the lemma.
Proceed to Case (ii). In this case, there exists a subsequence of λi, which tends to infinity. For the

sake of simplicity (but without loss of generality), we assume that this subsequence coincides with λi.
Then, limi→+∞ λi = ±∞.

Using (51) and (48), Equation (68) can be rewritten in the form:

(−1)n1 λ
n1
i + λ

n1−1
i f1(λi, μi) + · · ·+ fn1(λi, μi) = 0, (70)
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where fi(λi, μi), j = 1, . . . , n1 are some functions of (λi, μi). The functions fi(λi, μi) are bounded
uniformly with respect to μi for all sufficiently large i.

Dividing Equation (70) by λ
n1
i and calculating the limit of the resulting one for i → +∞ yield the

contradiction (−1)n1 = 0. This contradiction and the contradiction obtained in Case (i) imply that the
statement of the lemma holds.

Lemma 3. Let α ∈ R such that ∀λ ∈ Λs : Re λ > α. Then, there exists a positive number μ̄ such that
Re λ (μ) ≥ α, ∀λ (μ) ∈ Λξ (μ) , for all μ ∈ (0, μ̄] .

Proof. Let the statement of the lemma be wrong. Then, three sequences {μi}, {λi}, and {zi}, exist
such that:

(a) μi > 0, i = 1, 2, . . . ;
(b) limi→+∞ μi = 0;
(c) λi ∈ Λξ (μi) ,
(d) Re λi < α, i = 1, 2, . . . ,
(e) Re λi = ln|zi|, i = 1, 2, . . .
(f)

πξ (μi, zi) = 0. (71)

Since the sequence {zi} is bounded, there exists a convergent subsequence of {zi}. For the sake
of simplicity (but without loss of generality), we assume that this subsequence coincides with {zi}.

Let z̄ Δ
= limi→±∞ zi, Reλ̄ = ln|z̄|, z̄ ∈ Zs. Due to Assumptions (c) and (d), in view of the continuous

dependence of Reλ(μ) ∈ Λξ on μ for μ ∈ [0, μ0], the following inequalities are satisfied:

Re λ̄ ≤ α, λ̄ ∈ Λs. (72)

Calculating the limit of (71) for i → ∞, we obtain that πs (z̄) = 0. The latter along with (72)
contradicts the assumption ∀λ ∈ Λs : Reλ > α of the lemma. This contradiction implies that the
statement of the lemma holds.

Lemma 4. Let α ∈ R such that ∀λ ∈ σs : Reλ > α. Then, there exists a positive number μ̂ such that
Reλ (μ) ≥ α, ∀λ (μ) ∈ σx (μ) , for all μ ∈ (0, μ̂].

Proof. Let the statement of the lemma be wrong. Then, two sequences {μi}, {λi} exist such that:
(a) μi > 0, i = 1, 2, . . . ;
(b) limi→+∞ μi = 0;
(c) λi ∈ σx (μi) ,
(d) Re λi < α, i = 1, 2, . . .
Let us note that the sequence {Reλi}, i = 1, 2, . . . is bounded. Therefore, there exists a convergent

subsequence of {Reλi}. For the sake of simplicity (but without loss of generality), we assume that

this corresponding subsequence coincides with {λi}. Let Reλ̄
Δ
= limi→±∞ Reλi, λ̄ ∈ σs. Due to

Assumptions (c) and (d), in view of the continuous dependence of λ(μ) ∈ σx on μ for μ ∈ [0, μ0]:

Re λ̄ ≤ α, λ̄ ∈ Λs. (73)

Calculating the limit of (71) for i → ∞, we obtain that rankPs (z̄) < n1. The latter along with (69)
contradicts the assumption (66) of the lemma.

Lemma 5. Let:
rankNs

(
λ, e−λh

)
= n1 ∀λ ∈ σs, (74)
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Then, there exists a positive number μ∗, such that for all μ ∈ (0, μ∗]:

rankNξ

(
μ, λ, e−λh

)
= n1 ∀λ ∈ σx (μ) . (75)

Proof. From the fact that σs is a countable set, the characterizations 2, it follows that there exist real
numbers δ, α, γ, δ < α < γ, such that:

(a) Re λ ≤ γ ∀λ ∈ σs;
(b) α < Re λ ≤ γ ∀λ ∈ Λs;
(c) ws

(
λ, e−λh

)
�= 0 ∀λ ∈ C : δ ≤ Re λ ≤ α.

By σ<δ
s , σ>α

s , denote the following subset of σs:

σ<δ
s = {λ ∈ σs : Re λ < δ} , σ>α

s = {λ ∈ σs : α < Re λ ≤ γ} .

Therefore,
σs = σ<δ

s ∪ σ>α
s .

In view of Theorem 4, (33) and (35), the condition (74) can be violated only for λ ∈ Λs,. Similarly,
we can prove that for a given μ > 0, the condition (75) can be violated only for λ ∈ Λξ . Due to Lemmas 4
and 3 for all sufficiently small μ > 0, it is true that Reλ (μ) ≥ α, ∀λ (μ) ∈ σ>α

x (μ), and ∀λ (μ) ∈ Λξ (μ) .
Due to Lemma 2 for all sufficiently small μ > 0, it is true that Reλ (μ) ≤ δ, ∀λ (μ) ∈ σ<δ

x (μ) . Therefore,
σ<δ

x (μ) ∪ Λξ (μ) = ∅, and the condition (75) is true ∀λ ∈ σ<δ
x (μ) for all sufficiently small μ > 0.

Then, similar to [29] (p. 75), it is proven that if for some λ, the condition (74) is true, then for the
same λ, the condition (75) is true for all sufficiently small μ > 0.

Due to the above-mentioned property (a), the characterization 1 (c), and the continuity of the
functions λ (μ) ∈ σξ (μ), it is possible to choose such μ∗, such that (74) follows (75).

5.2. Split Controllability: Parameter-Free Sufficient Conditions

Theorem 9. Let the DS (11) be completely controllable, i.e., the conditions (37) and (38) are fulfilled, and the
BLS is completely controllable, i.e., the condition (39) is fulfilled. Then, there exists a μ∗ ∈ (0, μ0] such that the
SPLTISD (1)–(2) is completely controllable for all μ ∈ (0, μ∗].

Proof. For a given μ ∈ (0, μ0], the SPLTISD (1)–(2) is completely controllable if and only if:

rankN
(

μ, λ, e−λh
)
= n1 + n2, ∀λ ∈ σ (μ) . (76)

Consider the matrix-valued function:

Nξη

(
μ, λ, e−λh

)
Δ
= G−1N

(
μ, λ, e−λh

)
diag {G, Er} , (77)

that by virtue of continuity with μ of the matrices (48), (9) for sufficiently small μ > 0 can be extended
by continuity at μ = 0.

By using (9), (43), and (47), it is easy to make sure that for μ ≥ 0:

Nξη

(
μ, λ, e−λh

)
=

⎛⎝ λIn1 − Aξ

(
μ, e−λh

)
0n1×n2 Bξ

(
μ, e−λh

)
0n2×n1 μλIn2 − Aη

(
μ, e−λh

)
Bη

(
μ, e−λh

) ⎞⎠ . (78)

Due to the invariance of the spectrum and preserving the matrix rank under nondegenerate
transformations, it is determined from (76) that the SPLTISD (1)–(2) is completely controllable at a
fixed μ > 0 if and only if:

rankNξ η
(

μ, λ, e−λh
)
= n1 + n2, ∀λ ∈ σ (μ) . (79)
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Due to (48) and (78), the condition (79) has a view: ∀λ ∈ σ (μ):

rank

(
λIn1 − As

(
e−λh

)
+ O (μ) 0n1×n2 Bs + O (μ)

0n2×n1 μλIn2 − A4 + O (μ) B2 + O (μ)

)
= n1 + n2. (80)

Let us show that the condition (80) is fulfilled for all sufficiently small μ > 0 if DS (11) and BLS (19)
are completely controllable.

Let DS (11) be completely controllable, i.e., (25) is true. Then, by Lemma 5, the following condition:

rankNξ

(
μ, λ, e−λh

)
= n1, ∀λ ∈ σx (μ) (81)

is true for all sufficiently small μ > 0.
Since for all sufficiently small μ > 0, the sets σx (μ) (54) and σy (μ) (56) have no elements in

common, then:

rank
[
μλIn2 − Aη

(
μ, e−λh

)]
= n2, ∀λ = λ (μ) ∈ σx (μ) = σ (μ) \ σy (μ) (82)

for all sufficiently small μ > 0. From the conditions (81) and (82), it follows that (80) is true for all
λ ∈ σx (μ) for all sufficiently small μ > 0.

Let BLS (19) is completely controllable, i.e., (26) is true. Then, since for all λ (μ) = 1
μ λi (μ) ∈ σy (μ),

it is true that λi (μ) →
μ→0

λ f i ∈ σf (see Theorem 8), and due to the finiteness of the set σf (22) in view

of the preservation of the full rank of a matrix under small regular perturbation, we have that the
condition:

rank
(

μλIn2 − A4 + O (μ) B2 + O (μ)
)
= n2, ∀λ (μ) ∈ σy (μ)

is true for all sufficiently small μ > 0. Since for all sufficiently small μ > 0, the sets σx (μ) and σx (μ)

have no elements in common, then:

rank
[
λIn1 − Aξ

(
μ, e−λh

)]
= n2, ∀λ = λ (μ) ∈ σy (μ) = σ (μ) \ σx (μ)

for all sufficiently small μ > 0. From the last conditions, it follows that the condition (80) is true for all
sufficiently small μ > 0 for all λ (μ) ∈ σy (μ).

Combining the above results, we have that if DS (11) is completely controllable and BLS (19)
is completely controllable, then the condition (80) is fulfilled for all sufficiently small μ > 0 for all
λ (μ) ∈ σ (μ).

Applying Theorems 6 and 7, we are convinced of the validity of the statement of Theorem 9.

According to the proven theorem, the complete controllability of the slow and fast subsystems
yields the complete controllability of the original system for all sufficiently small values of the
parameter of singular perturbation.

Note that the conditions (37)–(39) do not depend on the small parameter; they have a ranked form;
they are expressed through the matrix parameters of the SPLTISD and guarantee the preservation of
its complete controllability for all sufficiently small values of the parameter μ > 0. A similar statement
for SPS without delay was proven in [29] and with a single delay in [44].

It is not difficult to verify the condition (37). In addition, for a given μ ∈ (0, μ0], the condition (38)
may be violated only for λk that also are the roots of the DS (11) characteristic Equation (18), so the
verification of this condition (38) is necessary only for the λk view of (36) that comprise the roots of the
polynomial ws (λ, z) for z ∈ Zs.
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6. Example

In this section, we consider an illustrative example. Consider the following system, a particular
case of the SPLTISD (1)–(2),

ẋ1 (t) = −x1 (t) + 2x2 (t)− x2 (t − 1)− y (t) ,
ẋ2 (t) = −x1 (t) + 2x2 (t) + x1 (t − 1)− x2 (t − 1) ,
μẏ (t) = −x1 (t − 1)− y (t) + u (t) ,

(83)

with the parameters n1 = 2, n2 = r = 1, l = 1, h = 1 and matrices:

A10 =

(
−1 2
−1 2

)
, A11 =

(
0 −1
1 −1

)
, A2 =

(
−1
0

)
, B1 =

(
0
0

)
,

A30 =
(

0 0
)

, A31 =
(

−1 0
)

, A4 = (−1) , B2 = (1) .
(84)

The characteristic Equation (7) for the system (83) is:

w
(

μ, λ, e−λ
)
=

1
μ

(
λ (λ − 1) (1 + μλ)− μλe−λ

(
2 − e−λ − λ

))
= 0

and for sufficient small μ > 0 has the roots (8):

σ (μ) =

{
0, 1 + O (μ), − 1

μ
+ O (μ)

}
.

The DS (11) for SPLTISD (83) has the form:

ẋs1 (t) = −xs1 (t) + xs1 (t − 1) + 2xs2 (t)− xs2 (t − 1)− us (t) ,
ẋs2 (t) = −xs1 (t) + xs1 (t − 1) + 2xs2 (t)− xs2 (t − 1) ,

(85)

and the matrix parameters (13) for DS (85) have the form:

As0 =

(
−1 2
−1 2

)
, As1 =

(
1 −1
1 −1

)
, Bs =

(
−1
0

)
.

The BLS (19) for SPLTISD (83) has the form:

dy f (τ)

dτ
= −y f (τ) + u f (τ). (86)

The characteristic Equation (17) for the DS (85) is:

ws = λ2 − λ + 2e−λ(1 − e−λ) = 0,

and the characteristic Equation (21) for the BLS (86) is:

w f = λ + 1 = 0.

The spectra (18) of the DS (85) and the BLS (86) for (83): σs = {0, 1}, σf = {−1}.
Since the matrices (23) and (24) for (1)–(2) and (84):

Ns

(
λ, e−λh

)
=

[
λ + 1 − e−λ −1 − e−λ −1
2 − e−λ λ − 2 + e−λ 0

]
, Nf (λ) = [λ + 1, 1]
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have a full rank for all λ ∈ σs, all λ ∈ σf , respectively, then according to Theorem 2, the DS for (83) is
completely controllable and the BLS for (1)–(2) and (84) is completely controllable.

Then, with according to Theorem 9, there exists a μ∗ > 0 such that the SPLTISD (1)–(2) and (84) is
completely controllable for all μ ∈ (0, μ∗].

Let us show the validity of the conditions (37)–(39) for (1)–(2) and (84). We have:

Ps (z) =

[
−1 1 − z
0 1 − z

]
, πs (z) = −1 + z, Zs = {1} , Pf = [1, −1] .

It is obvious that (37) and (39) for SPLTISD (83) are valid. Since among the roots of the
polynomial ws (λ, 1) = λ (λ − 1), there are no numbers of the form λk = ln |1|+ i · 2πk, i =

√−1, k =

0, ±1, ±2, . . . , so Ωs = ∅, then we conclude that (38) is also fulfilled.
Thus, all the conditions of Theorem 9 are fulfilled for the system (83). This confirms the above

conclusion about the complete robust controllability of the SPLTISD (83) with respect to μ > 0 for all
sufficiently small values of this parameter.

7. Discussion

The rank condition of complete controllability [12] is also known as a condition of spectral
controllability and observability [46], and related to various structural properties of the system,
for example realization, modal control, completeness, etc. Therefore, the results of this work can be
used to obtain the conditions of similar properties for a singularly-perturbed system (1)–(2), robust
with respect to a small parameter and expressed in the form of rank parametric conditions for systems
of lower dimensions than the original system.

For complete controllable systems with delay, we can design static feedback controllers, providing
an arbitrary finite spectrum of a closed system [47,48]. In particular, by choosing a spectrum, a closed
system can be made asymptotically stable. Based on the decoupling transformation for the original
singularly-perturbed system, it is possible to construct a stabilizing feedback in the form of a composite
regulator that combines the stabilizing regulators of its slow and fast subsystems of lower dimensions
(see, e.g., [49]).

8. Conclusions

In this paper, a singularly-perturbed linear time-invariant controlled system with multiple
commensurate time delays in the slow state variables was considered. For this system, the complete
controllability, robust with respect to a small parameter μ, was studied. This study is based on the
Chang-type transformation of the original system, which decouples the original singularly-perturbed
system into two O (μ)-close to μ-free subsystems, slow and fast subsystems of smaller dimensions
than the original.

Based on the above-mentioned Chang-type transformation of the original singularly-perturbed
system, μ-free verifiable parametric rank-type sufficient conditions for the complete controllability
of this system were established. These conditions, being μ-free, provide the complete controllability
of the original singularly-perturbed system with delay for all sufficiently small values of μ > 0, i.e.,
robustly with respect to this parameter of singular perturbation.
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Abstract: In this work, a finite-horizon zero-sum linear-quadratic differential game, modeling a
pursuit-evasion problem, was considered. In the game’s cost function, the cost of the control of the
minimizing player (the minimizer/the pursuer) was much smaller than the cost of the control of
the maximizing player (the maximizer/the evader) and the cost of the state variable. This smallness
was expressed by a positive small multiplier (a small parameter) of the square of the L2-norm of
the minimizer’s control in the cost function. Parameter-free sufficient conditions for the existence of
the game’s solution (the players’ optimal state-feedback controls and the game value), valid for all
sufficiently small values of the parameter, were presented. The boundedness (with respect to the small
parameter) of the time realizations of the optimal state-feedback controls along the corresponding
game’s trajectory was established. The best achievable game value from the minimizer’s viewpoint
was derived. A relation between solutions of the original cheap control game and the game that
was obtained from the original one by replacing the small minimizer’s control cost with zero, was
established. An illustrative real-life example is presented.

Keywords: linear-quadratic differential game; cheap control; singular (degenerate) differential game;
pursuit-evasion game

1. Introduction

A cheap control problem is an extremal control problem where a control cost of at least
one of the decision makers is much smaller than a state cost in at least one cost function
of the problem. Cheap control problems appear in many topics of optimal control and
differential game theories. For example, such problems appear in the following topics:
(1) regularization of singular optimal controls (see, e.g., [1–4]); (2) limitation analysis for
optimal regulators and filters (see, e.g., [5–7]); (3) extremal control problems with high gain
control in dynamics (see, e.g., [8,9]); (4) inverse optimal control problems (see, e.g., [10]);
(5) robust optimal control of systems with uncertainties/disturbances (see, e.g., [11,12]);
(6) guidance problems (see, e.g., [13,14]).

The Hamilton boundary-value problem and the Hamilton–Jacobi–Bellman–Isaacs
equation, associated with the cheap control problem by solvability (control optimality)
conditions, are singularly perturbed because of the smallness of the control cost.

In the present paper, we considered one class of cheap control pursuit-evasion differ-
ential games. Cheap control differential games have been studied in a number of works
in the literature (see, e.g., [4,11,12,15,16] and references therein). In most of these studies,
the case where a state cost appeared in the integral part of the cost function was treated.
This feature allowed (subject to some additional condition on the state cost) the use of the
boundary function method [17] for an asymptotic analysis of the corresponding singularly
perturbed Hamilton–Jacobi–Bellman–Isaacs equation. Moreover, the time realization of the
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optimal state-feedback control with the small cost had an impulse-like behaviour, meaning
it was unbounded as the control cost tended to zero. To the best of our knowledge, cheap
control games, where the time realization of the state-feedback optimal control with the
small cost remains bounded as this cost tends to zero, were considered only in a few works
and only for specific problem settings. Thus in [13], a pursuit-evasion problem, modeled
by a linear-quadratic zero-sum differential game with time-invariant four-dimensional
dynamics and scalar controls of the players, was considered. In this game, the control cost
of the pursuer was assumed to be small. Moreover, the integral part of the game’s cost
function did not contain the state cost. By a linear state transformation, this cheap control
game was converted to a scalar linear-quadratic cheap control game. In this scalar game,
the time realization of the optimal state-feedback pursuer’s control against a bang–bang
evader’s control was analyzed. Sufficient conditions for the boundedness of this time real-
ization for all sufficiently small values of the pursuer’s control cost were derived. In [14],
a similar problem was solved in the case where the control costs of both the pursuer and
evader were small and had the same order of smallness. In [11], a more general pursuit-
evasion problem was studied. This problem was modeled by a linear-quadratic zero-sum
differential game with time-dependent six-dimensional dynamics. The controls of both
the pursuer and evader were scalar. The costs of these controls were small and had the
same order of smallness. The state cost was absent in the integral part of the game’s cost
function. This game also allowed a transformation to a scalar linear-quadratic cheap control
game. In this scalar game, the time realization of the optimal state-feedback pursuer’s
control against an open-loop bounded evader’s control was analyzed. Sufficient conditions,
guaranteeing that the time realization satisfied given constraints for all sufficiently small
values of the controls’ costs, were obtained. In [12], a robust tracking problem, modeled by
a linear-quadratic zero-sum differential game with time-dependent n-dimensional (n ≥ 1)
dynamics, was analyzed. The controls of both minimizing and maximizing players were
vector-valued. The costs of these controls were small and had the same order of smallness.
For this game, the limit behaviour of the state-dependent part of the cost function, gener-
ated by the optimal state-feedback control of the minimizing player (the minimizer) and
any L2-bounded open-loop control of the maximizing player (the maximizer), was studied.
Sufficient conditions, providing the tendency to zero of this part of the cost function as the
small controls’ costs approached zero (the exact tracking), were derived. Subject to these
conditions, necessary conditions for the boundedness of the time realization of the optimal
state-feedback minimizer’s control for all sufficiently small values of the controls’ costs
were obtained.

In the present work, we studied a much more general cheap control linear-quadratic
zero-sum differential game than those in [11,13,14]. For this game, an asymptotic analysis
of its solution was carried out in the case where the small control’s cost of the minimizer
tended to zero. In particular, the asymptotic behavior of the time realizations of both
players’ optimal state-feedback controls along the corresponding (optimal) trajectory of
the game was analyzed. The boundedness of these time realizations was established for
all sufficiently small values of the minimizer’s control cost. Moreover, in contrast to the
results of the work [12], the conditions for such boundedness were sufficient and they were
not restricted by any other specific conditions, such as the exact tracking in [12].

Also in the present work, we considered one more linear-quadratic zero-sum differ-
ential game. This game was obtained from the original cheap control game by replacing
the small control cost of the minimizer with zero. This new game was called a degenerate
game and was similar to the continuous/discrete time system obtained from a singularly
perturbed system by replacing a small parameter of singular perturbation with zero. The
relation between the original cheap control game and the degenerate game was established.

This paper is organised as follows. In Section 2, the problems of the paper (the cheap
control differential game and the degenerate differential game) are rigorously formulated,
main definitions and some preliminary results are presented and the objectives of the paper
are stated. In Section 3, the solution of the cheap control differential game is obtained and
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the asymptotic analysis of this solution is carried out. Section 4 is devoted to deriving
the solution of the degenerate differential game. In addition, some relations between the
solution of the cheap control differential game and the degenerate differential game are
established in this section. In Section 5, based on the theoretical results of the paper, one
interception problem in 3D space was studied. Conclusions of the paper are presented in
Section 6.

2. Preliminaries and Problem Statement

Consider the controlled system

ẋ = A(t)x + B(t)u + C(t)v, x(t0) = x0, t ∈ [t0, t f ], (1)

where x ∈ Rn, u ∈ Rr and v ∈ Rs are the state, the pursuer’s control and the evader’s
control, respectively; t0 is an initial time moment; t f is a final time moment; the matrix-
valued functions A(t), B(t) and C(t) of appropriate dimensions are continuous for t ∈
[t0, t f ]. The controls u(t) and v(t) are assumed to be measurable bounded functions for
t ∈ [t0, t f ].

The target set is a linear manifold

Tx = {x ∈ Rn : Dx + d = 0}, (2)

where D is a prescribed m × n-matrix (m < n) and d ∈ Rm is a prescribed vector. The
objective of the pursuer is to steer the system onto a target set at t = t f , whereas the evader
desires to avoid hitting the target set by exploiting feedback strategies u(t, x) and v(t, x),
respectively.

Let us consider the set Ux of all functions u = u(t, x) : [0, t f ]×Rn → Rr, which are
measurable w.r.t. t ∈ [0, t f ] for any fixed x ∈ Rn and satisfy the local Lipschitz condition
w.r.t. x ∈ Rn uniformly in t ∈ [0, t f ]. Similarly, we consider the set Vx of all functions
v = v(t, x) : [0, t f ]×Rn → Rs, which are measurable w.r.t. t ∈ [0, t f ] for any fixed x ∈ Rn

and satisfy the local Lipschitz condition w.r.t. x ∈ Rn uniformly in t ∈ [0, t f ].

Definition 1. Let us denote by Ux the set of all functions u(t, x) ∈ Ux satisfying the following con-
ditions: (1ux) the initial-value problem (1) for u(t) = u(t, x) and any fixed v(t) ∈ L2

(
[0, t f ],Rs)

has the unique absolutely continuous solution xu(t), t ∈ [0, t f ]; (2ux) u
(
t, xu(t)

) ∈ L2
(
[0, t f ],Rr).

Also, let us denote by Vx the set of all functions v(t, x) ∈ Vx satisfying the following conditions:
(1vx) the initial-value problem (1) for v(t) = v(t, x) and any fixed u(t) ∈ L2

(
[0, t f ],Rr) has the

unique absolutely continuous solution xv(t), t ∈ [0, t f ]; (2vx) v
(
t, xv(t)

) ∈ L2
(
[0, t f ],Rs).

In what follows, the set Ux is called the set of all admissible state-feedback controls (strategies)
of the pursuer, while the set Vx is called the set of all admissible state-feedback controls (strategies)
of the evader.

Below, two differential games modeling this conflict situation are formulated.

2.1. Cheap Control Differential Game

The first is the Cheap Control Differential Game (CCDG) with the dynamics (1) and
the cost function

J̃αβ(u, v) = |Dx(t f ) + d|2 + α

t f∫
t0

|u(t)|2dt − β

t f∫
t0

|v(t)|2dt, (3)

where |x| denotes the Euclidean norm of the vector x; α, β > 0 are the penalty coefficients
for the players’ control expenditure, and α is assumed to be small. The objectives of
the pursuer and the evader were to minimize and to maximize the cost function (3) by
u(·) ∈ Ux and v(·) ∈ Vx, respectively.
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The CCDG (1), (3) is a zero-sum linear-quadratic differential game (see, e.g., [18–22]).

Definition 2. Let u(t, x), (t, x) ∈ [t0, t f ] ×Rn, be any given admissible pursuer strategy, i.e.,
u(·) ∈ Ux. Then, the value

J̃u
αβ(u(·); t0, x0) = sup

v(t)∈L2([t0,t f ],Rs)
J̃αβ

(
u(·), v(t)

)
, (4)

calculated along the corresponding trajectories of the system (1), is called the guaranteed result of
the strategy u(·) in the CCDG.

The value
J̃u∗
αβ(t0, x0) = inf

u(·)∈Ux
J̃u
αβ(u(·); t0, x0) (5)

is called the upper value of the CCDG.
If the infimum value (5) is attained for ũ0

αβ(t, x) ∈ Ux, i.e.,

inf
u(·)∈Ux

J̃u
αβ(u(·); t0, x0) = min

u(·)∈Ux
J̃u
αβ(u(·); t0, x0)

and
ũ0

αβ(t, x) = arg min
u(·)∈Ux

J̃u
αβ(u(·); t0, x0), (6)

the strategy ũ0
αβ(t, x) is called the optimal strategy of the pursuer in the CCDG.

Definition 3. Let v(t, x), (t, x) ∈ [t0, t f ] × Rn, be any given admissible evader strategy, i.e.,
v(·) ∈ Vx. Then, the value

J̃v
αβ(v(·); t0, x0) = inf

u(t)∈L2([t0,t f ],Rr)
J̃αβ

(
u(t), v(·)), (7)

calculated along the corresponding trajectories of the system (1), is called the guaranteed result of
the strategy v(·) in the CCDG.

The value
J̃v∗
αβ(t0, x0) = sup

v(·)∈Vx

J̃v
αβ(v(·); t0, x0) (8)

is called the lower value of the CCDG.
If the supremum value (8) is attained for ṽ0

αβ(t, x) ∈ Vx, i.e.,

sup
v(·)∈Vx

J̃v
αβ(v(·); t0, x0) = max

v(·)∈Vx
J̃v
αβ(v(·); t0, x0)

and
ṽ0

αβ(t, x) = arg max
v(·)∈Vx

J̃v
αβ(v(·); t0, x0), (9)

the strategy ṽ0
αβ(t, x) is called the optimal strategy of the evader in the CCDG.

Definition 4. If
J̃u∗
αβ(t0, x0) = J̃v∗

αβ(t0, x0) � J̃0
αβ(t0, x0), (10)

then it is said that the CCDG has the game value J̃0
αβ.
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2.2. Singular (Degenerate) Differential Game

In this game the dynamics were the same as in the CCDG, i.e., (1), while the cost
function of this game was obtained from (3) by replacing α with zero:

J̃β(u, v) = |Dx(t f ) + d|2 − β

t f∫
0

|v(t)|2dt. (11)

The differential game (1), (11) is called the Singular Differential Game (SDG).

Remark 1. The sets of all admissible state-feedback controls (strategies) of the pursuer and the
evader in the SDG are the same as in the CCDG, i.e., Ux and Vx, respectively. The guaranteed
results J̃u

β (u(·); t0, x0) and J̃v
β(v(·); t0, x0) of any given strategies u(·) ∈ Ux and v(·) ∈ Vx in the

SDG are defined similarly to (4) and (7), respectively. Namely,

J̃u
β (u(·); t0, x0) = sup

v(t)∈L2([t0,t f ],Rs)
J̃β

(
u(·), v(t)

)
, (12)

J̃v
β(v(·); t0, x0) = inf

u(t)∈L2([t0,t f ],Rr)
J̃β

(
u(t), v(·)). (13)

The upper J̃u∗
β (t0, x0) and lower J̃v∗

β (t0, x0) values of the SDG are defined similarly to (5)
and (8), respectively. Namely,

J̃u∗
β (t0, x0) = inf

u(·)∈Ux
J̃u
β (u(·); t0, x0), (14)

J̃v∗
β (t0, x0) = sup

v(·)∈Vx

J̃v
β(v(·); t0, x0). (15)

If
J̃u∗
β (t0, x0) = J̃v∗

β (t0, x0) � J̃∗β(t0, x0), (16)

then J̃∗β(t0, x0) is called the value of the SDG.

Definition 5. The sequence of state-feedback controls {ũβ,k(·)}, ũβ,k(·) ∈ Ux, (k = 1, 2, ...), is
called minimizing in the SDG if

lim
k→∞

J̃u
β (ũβ,k(·); t0, x0) = J̃u∗

β (t0, x0). (17)

If there exists ũ∗
β(t, x) ∈ Ux, for which the upper value of the SDG is attained, this state-

feedback control is called an optimal state-feedback control of the pursuer in the SDG:

ũ∗
β(t, x) = arg min

u(·)∈Ux
J̃u
β (u(·); t0, x0). (18)

Definition 6. The sequence of state-feedback controls {ṽβ,k(·)}, ṽβ,k(·) ∈ Vx, (k = 1, 2, ...), is
called maximizing in the SDG if

lim
k→∞

J̃v
β(ṽβ,k(·); t0, x0) = J̃v∗

β (t0, x0). (19)

If there exists ṽ∗
β(t, x) ∈ Vx, for which the lower value of the SDG is attained, this state-

feedback control is called an optimal state-feedback control of the evader in the SDG:

ṽ∗
β(t, x) = arg max

v(·)∈Vx
J̃v
β(v(·); t0, x0). (20)
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Remark 2. Since the cost function (11) of the SDG does not contain a quadratic control cost of
u, its solution (if it exists) cannot be obtained either by the Isaacs’s MinMax principle or by the
Bellman–Isaacs equation method (see [23]). This justified calling this game singular. The CCDG
could be considered as a singularly perturbed SDG, whereas the SDG was a degenerate CCDG.

2.3. Reduction of the Games

Let Φ(t, τ) be the transition matrix of the homogeneous system ẋ = A(t)x. By
applying the state transformation

z = DΦ(t f , t)x + d, (21)

the system (1) is reduced to

ż = H1(t)u + H2(t)v, z(t0) = z0, t ∈ [t0, t f ], (22)

where m × r and m × s matrices H1(t) and H2(t) are

H1(t) = DΦ(t f , t)B(t), H2(t) = DΦ(t f , t)C(t), (23)

z0 = DΦ(t f , t0)x0 + d. (24)

Due to (21), for the reduced system (22), the cost functions (3) and (11) of the CCDG
and SDG become

Jαβ = |z(t f )|2 + α

t f∫
t0

|u(t)|2dt − β

t f∫
t0

|v(t)|2dt, (25)

and

Jβ = |z(t f )|2 − β

t f∫
t0

|v(t)|2dt, (26)

respectively.
The games (22), (25) and (22), (26) are called the Reduced Cheap Control Differential

Game (RCCDG) and the Reduced Singular Differential Game (RSDG), respectively.
Let us consider the set Uz of all functions u = u(t, z) : [0, t f ]×Rm → Rr, which are

measurable w.r.t. t ∈ [0, t f ] for any fixed z ∈ Rm and satisfy the local Lipschitz condition
w.r.t. z ∈ Rm uniformly in t ∈ [0, t f ]. Similarly, we consider the set Vz of all functions
v = v(t, z) : [0, t f ]×Rm → Rs, which are measurable w.r.t. t ∈ [0, t f ] for any fixed z ∈ Rm

and satisfy the local Lipschitz condition w.r.t. z ∈ Rm uniformly in t ∈ [0, t f ].

Definition 7. Let us denote by Uz the set of all functions u(t, z) ∈ Uz satisfying the following con-
ditions: (1uz) the initial-value problem (22) for u(t) = u(t, z) and any fixed v(t) ∈ L2

(
[0, t f ],Rs)

has the unique absolutely continuous solution zu(t), t ∈ [0, t f ]; (2uz) u
(
t, zu(t)

) ∈ L2
(
[0, t f ],Rr).

In addition, let us denote by Vz the set of all functions v(t, z) ∈ Vz satisfying the following con-
ditions: (1vz) the initial-value problem (22) for v(t) = v(t, z) and any fixed u(t) ∈ L2

(
[0, t f ],Rr)

has the unique absolutely continuous solution zv(t), t ∈ [0, t f ]; (2vx) v
(
t, zv(t)

) ∈ L2
(
[0, t f ],Rs).

In what follows, the set Uz is called the set of all admissible state-feedback controls (strategies)
of the pursuer in both games RCCDG and RSDG, while the set Vz is called the set of all admissible
state-feedback controls (strategies) of the evader in both games RCCDG and RSDG.

Remark 3. Based on Definition 7, the guaranteed results Ju
αβ(u(·); t0, z0) and Jv

αβ(v(·); t0, z0) of
any given strategies u(·) ∈ Uz and v(·) ∈ Vz in the RCCDG are defined similarly to (4) and (7),
respectively. The upper Ju∗

αβ(t0, z0) and lower Jv∗
αβ(t0, z0) values of the RCCDG are defined similarly

to (5) and (8), respectively. The optimal state-feedback controls of the pursuer u0
αβ(t, z) and the

220



Axioms 2022, 11, 214

evader v0
αβ(t, z), (t, z) ∈ [0, t f ]×Rm, are defined similarly to (6) and (9), respectively. The value

of the RCCDG J0
αβ(t0, z0) is defined similarly to (10).

Remark 4. Based on Definition 7, the guaranteed results Ju
β (u(·); t0, z0) and Jv

β(v(·); t0, z0) of
any given strategies u(·) ∈ Uz and v(·) ∈ Vz in the RSDG are defined similarly to (12) and (13),
respectively. The upper Ju∗

β (t0, z0) and lower Jv∗
β (t0, z0) values of the RSDG are defined similarly

to (14) and (15), respectively. The minimizing sequence {uβ,k(·)}, uβ,k(·) ∈ Uz, (k = 1, 2, ...),
and the optimal state-feedback control u∗

β(t, z) of the pursuer in the RSDG are defined similarly
to (17) and (18), respectively. The maximizing sequence {vβ,k(·)}, vβ,k(·) ∈ Vz, (k = 1, 2, ...), and
the optimal state-feedback control v∗

β(t, z) of the evader in the RSDG are defined similarly to (19)
and (20), respectively. The value of the RSDG J∗β(t0, z0) is defined similarly to (16).

Remark 5. If u0
αβ(t, z) and v0

αβ(t, z) are the optimal strategies of the pursuer and the evader in the
RCCDG, then the strategies

u0
αβ

(
t, DΦ(t f , t)x + d

)
and v0

αβ

(
t, DΦ(t f , t)x + d

)
, (27)

are optimal strategies of the pursuer and the evader in the CCDG.
If {uβ,k(t, z)}+∞

k=1 and {vβ,k(t, z)}+∞
k=1 are the minimizing sequence and the maximizing se-

quence in the RSDG, then the sequences{
uβ,k

(
t, DΦ(t f , t)x + d

)}+∞

k=1
and

{
vβ,k

(
t, DΦ(t f , t)x + d

)}+∞

k=1
(28)

are minimizing and maximizing sequences in the SDG. Moreover, if u∗
β(t, z) and v∗

β(t, z) are the
optimal strategies of the pursuer and the evader in the RSDG, then the strategies

u∗
β

(
t, DΦ(t f , t)x + d

)
and v∗

β

(
t, DΦ(t f , t)x + d

)
, (29)

are optimal strategies of the pursuer and the evader in the SDG.

2.4. Objectives of the Paper

In this paper, we investigated the asymptotic behaviour of the solution to the RCCDG
and the relation between the RCCDG and the RSDG solutions. In particular, the objectives
of the paper were:

(1) to establish the boundedness of the time realizations u0
αβ(t) = u0

αβ

(
t, z0

αβ(t)
)

,

v0
αβ(t) = v0

αβ

(
t, z0

αβ(t)
)

of the RCCDG optimal strategies along the corresponding

trajectory z0
αβ(t) of (22) for α → 0;

(2) to establish the best achievable RCCDG value from the pursuer’s point of view:

J0
best(t0, z0)

�
= inf

α∈(0,α0]
J0
αβ(t0, z0), (30)

where α0 > 0 is some sufficiently small number;
(3) to obtain the RSDG value, and establish the limiting relation between the values of

the RCCDG and the RSDG:

lim
α→0

J0
αβ(t0, z0) = J∗β(t0, z0); (31)

(4) to construct the RSDG pursuer’s minimizing sequence
{

uβ,k(·)
}+∞

k=1
and the evader’s

optimal state-feedback control v∗
β(·) based on the RCCDG solution.
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3. The RCCDG Solution and Its Asymptotic Properties

By virtue of [19–22], we obtained the RCCDG solution:

J0
αβ(t0, z0) = zT

0 Rαβ(t0)z0, (32)

u0
αβ(t, z) = − 1

α
HT

1 (t)Rαβ(t)z, (33)

v0
αβ(t, z) =

1
β

HT
2 (t)Rαβ(t)z, (34)

where the matrix-valued function Rαβ(t) is the solution of the Riccati matrix differential
equation

Ṙ = RQαβ(t)R, R(t f ) = Im, t ∈ [t0, t f ], (35)

Qαβ(t) =
1
α

H1(t)HT
1 (t)−

1
β

H2(t)HT
2 (t), (36)

HT denotes a transposed matrix and Im is the unit m × m-matrix.
The solution of (35) is readily obtained:

Rαβ(t) = S−1
αβ (t), t ∈ [t0, t f ], (37)

if and only if the matrix

Sαβ(t) = Im +

t f∫
t

Qαβ(τ)dτ (38)

is invertible for all t ∈ [t0, t f ].
Thus, the RCCDG is solvable if and only if

det
(
Sαβ(t)

) �= 0, t ∈ [t0, t f ]. (39)

Condition S. The system (22) is controllable with respect to u(t) at any interval [t, t f ],
t ∈ [t0, t f ).

Remark 6. By using the t-dependent controllability gramians

G1(t) =

t f∫
t

H1(τ)HT
1 (τ)dτ, t ∈ [t0, t f ), (40)

Condition S can be rewritten [18] as

det G1(t) > 0, t ∈ [t0, t f ). (41)

The following statement is a direct consequence of (Theorem 3.1 [24]).

Proposition 1. Let Condition S hold. Then, for any β > 0 there exists α̃ = α̃(β) such that the
condition (39) holds for all α > 0 satisfying

α ≤ α̃. (42)

Let z0
αβ(t) denote the optimal motion of (22) for u = u0

αβ(t, z), v = v0
αβ(t, z).

Proposition 2. Let Condition S hold. Then, there exists the bounded limit function

z̃(t) = lim
α→0

z0
αβ(t), t ∈ [t0, t f ], (43)
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which is independent of β. Moreover

lim
α→0

z0
αβ(t f ) = z̃(t f ) = 0. (44)

Proof. Let α > 0 satisfy (42). By substituting the optimal strategies (33) and (34) into the
system (22), due to (36), (37) and (38), the dynamics become

ż = −Qαβ(t)Rαβ(t)z. (45)

Define

y � Rαβ(t)z =

⎛⎜⎝Im +

t f∫
t

Qαβ(τ)dτ

⎞⎟⎠
−1

z. (46)

Then,

ẏ = −

⎛⎜⎝Im +

t f∫
t

Qαβ(τ)dτ

⎞⎟⎠
−1(−Qαβ(t)

)⎛⎜⎝Im +

t f∫
t

Qαβ(τ)dτ

⎞⎟⎠
−1

z+

⎛⎜⎝Im +

t f∫
t

Qαβ(τ)dτ

⎞⎟⎠
−1(−Qαβ(t)

)⎛⎜⎝Im +

t f∫
t

Qαβ(τ)dτ

⎞⎟⎠
−1

z = 0, (47)

yielding
y(t) ≡ c = const, t ∈ [t0, t f ]. (48)

For t = t0,

y(t0) = c =

⎛⎜⎝Im +

t f∫
t0

Qαβ(τ)dτ

⎞⎟⎠
−1

z0. (49)

Thus, due to (46) and (48), the solution z0
αβ(t) of (45) is

z0
αβ(t) =

⎛⎜⎝Im +

t f∫
t

Qαβ(τ)dτ

⎞⎟⎠
⎛⎜⎝Im +

t f∫
t0

Qαβ(τ)dτ

⎞⎟⎠
−1

z0. (50)

Due to (36) and (40),

z0
αβ(t) =

⎛⎜⎝Im +
1
α

G1(t)− 1
β

t f∫
t

H2(τ)HT
2 (τ)dτ

⎞⎟⎠
⎛⎜⎝Im +

1
α

G1(t0)− 1
β

t f∫
t0

H2(τ)HT
2 (τ)dτ

⎞⎟⎠
−1

z0. (51)

By factoring
1
α

out of both matrices, (51) becomes

z0
αβ(t) =

⎛⎜⎝αIm − α

β

t f∫
t

H2(τ)HT
2 (τ)dτ + G1(t)

⎞⎟⎠
⎛⎜⎝αIm − α

β

t f∫
t

H2(τ)HT
2 (τ)dτ + G1(t0)

⎞⎟⎠
−1

z0. (52)

Since the gramian G1(t0) is non-singular, the limit (43) is readily calculated for
t ∈ [t0, t f ]:

lim
α→0

z0
αβ(t) = G1(t)G−1

1 (t0)z0 � z̃(t). (53)
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For t = t f , (51) is

z0
αβ(t f ) = α

⎛⎜⎝αIm − α

β

t f∫
t0

H2(τ)HT
2 (τ)dτ + G1(t0)

⎞⎟⎠
−1

z0, (54)

and
lim
α→0

z0
αβ(t f ) = 0. (55)

Since G1(t f ) = 0, (53) yields
z̃(t f ) = 0. (56)

Equations (55) and (56) prove (44). This completes the proof of the proposition.

Proposition 3. Let Condition S hold. Then the time realizations u0
αβ(t) = u0

αβ(t, z0
αβ(t)),

v0
αβ(t) = v0

αβ(t, z0
αβ(t)) of the optimal strategies (33)–(34) are bounded for α → 0.

Proof. By substituting (50) into (33), by using (36) and (40), and by factoring
1
α

out of the
matrix, the time realization of the RCCDG optimal minimizer’s strategy is

u0
αβ(t) = −HT

1 (t)

⎛⎜⎝αIm + G1(t0)− α

β

t f∫
t0

H2(τ)HT
2 (τ)(τ)dτ

⎞⎟⎠
−1

z0. (57)

Thus, for any β > 0, there exists the bounded limit function

lim
α→0

u0
αβ(t) = −H1(t)G−1

1 (t0)z0 � ũ(t), t ∈ [t0, t f ]. (58)

Similarly, the time realization the RCCDG optimal maximizer’s strategy is

v0
αβ(t) =

α

β
HT

2 (t)

⎛⎜⎝αIm + G1(t0)− α

β

t f∫
t0

H2(τ)HT
2 (τ)(τ)dτ

⎞⎟⎠
−1

z0. (59)

yielding
lim
α→0

v0
αβ(t) = 0 � ṽ(t), t ∈ [t0, t f ]. (60)

Proposition 4. Let Condition S hold. Then the feedback strategies (33) and (34) are well defined
for α = 0 for all (t, z) ∈ [t0, t f )×Rm.

Proof. Similarly to (57), by factoring
1
α

from the gain of the strategy (33),

u0
αβ(t, z) = −HT

1 (t)

⎛⎜⎝αIm + G1(t)− α

β

t f∫
t

H2(τ)HT
2 (τ)(τ)dτ

⎞⎟⎠
−1

z, (61)

which is well defined for α = 0, (t, z) ∈ [t0, t f )×Rm:

lim
α→0

u0
αβ(t, z) = K̃(t)z � ũ(t, z), (62)
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where
K̃(t) = −HT

1 (t)G
−1
1 (t). (63)

Similarly to (59),

v0
αβ(t, z) =

α

β
HT

2 (t)

⎛⎜⎝αIm + G1(t)− α

β

t f∫
t

H2(τ)HT
2 (τ)(τ)dτ

⎞⎟⎠
−1

z, (64)

yielding
lim
α→0

v0
αβ(t, z) = 0 � ṽ(t, z), (65)

for all (t, z) ∈ [t0, t f )×Rm.

Remark 7. Due to (40), the gain (63) of the limit feedback ũ(t, z) is infinite for t → t f :

lim
t→t f

||K̃(t)|| = ∞, (66)

where || · || is the Euclidean norm of a matrix.

Remark 8. The limit motion z̃(t) given in (53) is generated by the limit feedback strategies ũ(t, z)
and ṽ(t, z)) given in (62) and (65), respectively. Moreover, their time realizations along z̃(t) are
equal to ũ(t) and ṽ(t) given in (58) and (60), respectively:

ũ(t, z̃(t)) = ũ(t), ṽ(t, z̃(t)) = ṽ(t). (67)

Proposition 5. Let Condition S hold. Then for any β > 0, the RCCDG game value satisfies

lim
α→0

J0
αβ(t0, z0) = 0. (68)

Moreover, all the terms of the optimal cost function (25) tend to zero for α → 0:

lim
α→0

|z0
αβ(t f )|2 = 0, (69)

lim
α→0

⎛⎜⎝α

t f∫
t0

|u0
αβ(t)|2dt

⎞⎟⎠ = 0, (70)

lim
α→0

⎛⎜⎝β

t f∫
t0

|v0
αβ(t)|2dt

⎞⎟⎠ = 0. (71)

Proof. By factoring
1
α

from the matrix Rαβ(t),

J0
αβ(t0, z0) = αzT

0

⎛⎜⎝αIm + G1(t0)− α

β

t f∫
t0

H2(τ)HT
2 (τ)(τ)dτ

⎞⎟⎠
−1

z0. (72)

Since the matrix G1(t0) is non-singular, (72) directly leads to (68).
The limiting Equation (69) is the consequence of (55); (70) holds, because, due to

Proposition 3, the limit time realization of the minimizer’s optimal strategy is bounded; (71)
follows from (60).
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Corollary 1. Let Condition S hold. Then,

J0
best(t0, z0) = 0. (73)

Proof. First of all, let us note that, due to Remark 6, the matrix G1(t0) is positive definite.
Therefore, using (72), we can conclude the following. There exists a positive number α0 ≤ α̃
such that, for all α ∈ (0, α0],

J0
αβ(t0, z0) ≥ 0. (74)

This inequality, along with the equality (68), directly yields the statement of the
corollary.

4. RSDG Solution

Lemma 1. Let Condition S hold. Then, there exists a positive number α0 < α̃, such that for all
α ∈ (0, α0] the guaranteed result Ju

β (u
0
αβ(·); t0, z0) of the pursuer’s state-feedback control u0

αβ(t, z)
in the RSDG satisfies the inequality

0 ≤ Ju
β (u

0
αβ(·); t0, z0) ≤ aα, (75)

where a > 0 is some value independent of α.

Proof. First of all, let us remember that u0
αβ(t, z) is the optimal pursuer’s control in the

RCCDG, and this control is given by Equation (33). Taking into account Remark 4 and
Equation (26), the guaranteed result of this control in the RSDG is calculated as follows:

Ju
β (u

0
αβ(·); t0, z0) = sup

v(t)∈L2

(
[t0,t f ],Rs

) Jβ(u0
αβ(·), v(·))

= sup
v(t)∈L2

(
[t0,t f ],Rs

)
(
|z(t f |2 − β

∫ t f

t0

|v(t)|2dt
)

(76)

along trajectories of the system

ż = H1(t)u0
αβ(t, z) + H2(t)v(t), t ∈ [t0, t f ], z(0) = z0. (77)

For any v(t) ∈ L2
(
[t0, t f ],Rs), we have the inequality

|z(t f )|2 − β
∫ t f

t0

|v(t)|2dt ≤ |z(t f |2 + α
∫ t f

t0

∣∣u0
αβ(t, z)

∣∣2dt − β
∫ t f

t0

|v(t)|2dt (78)

along trajectories of the system (77). Therefore,

0 ≤ sup
v(t)∈L2

(
[t0,t f ],Rs

)
(
|z(t f |2 − β

∫ t f

t0

|v(t)|2dt
)

≤

sup
v(t)∈L2

(
[t0,t f ],Rs

)
(
|z(t f |2 + α

∫ t f

t0

∣∣u0
αβ(t, z)

∣∣2dt − β
∫ t f

t0

|v(t)|2dt
)

. (79)

Since u0
αβ(t, z) is the optimal state-feedback control in the RCCDG, then using the form

of the cost function in this game (see Equation (25)) and the definition of the value in this
game (see Remark 3), we directly have

sup
v(t)∈L2

(
[t0,t f ],Rs

)
(
|z(t f |2 + α

∫ t f

t0

∣∣u0
αβ(t, z)

∣∣2dt − β
∫ t f

t0

|v(t)|2dt
)
= J0

αβ(t0, z0). (80)
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Remember that J0
αβ(t0, z0) is the RCCDG value given by Equation (32).

Further, using Equations (76), (80) and the inequality (79), we obtain immediately

0 ≤ Ju
β (u

0
αβ(·); t0, z0) ≤ J0

αβ(t0, z0). (81)

Now, the statement of the lemma directly follows from Equation (72) and the inequal-
ity (81).

Consider the following admissible state-feedback control of the maximizing player
(the evader) in the RSDG:

v̄0(t, z) ≡ 0, (t, z) ∈ [t0, t f ]×Rm. (82)

Lemma 2. Let Condition S hold. Then, the guaranteed result Jv
β(v̄

0(·); t0, z0) of v̄0(t, z) in the
RSDG is

Jv(v̄0(·); t0, z0) = 0. (83)

Proof. Substituting v(t) = v̄0(t, z) into the system (22) and the cost function (26) yields the
following system and cost function:

ż = H1(t)u, z(t0) = z0, t ∈ [t0, t f ], (84)

J̄(u(·)) = Jβ(u(·), v̄0(·)) = |z(t f )|2. (85)

Therefore, Jv(v̄0(·); t0, z0) is the infimum value with respect to u(t) ∈ L2

(
[t0, t f ],Rr

)
of the cost function (85) along trajectories of the system (84), i.e.,

Jv(v̄0(·); t0, z0) = inf
u(·)∈L2([t0,t f ],Rr)

J̄(u(·)). (86)

The optimal control problem (84) and (85) is singular (see, e.g., [3]), and the value
(86) can be derived similarly to this work. To do this, first, we replaced approximately the
singular problem (84) and (85) with the regular optimal control problem consisting of the
system (84) and the new cost function

J̄α(u(·)) �
= |z(t f )|2 + α

∫ t f

t0

|u(t)|2dt (87)

to be minimized by u(·) ∈ L2

(
[t0, t f ],Rr

)
along trajectories of the system (84). In (87),

α > 0 is a small parameter of the regularization.
For any given α > 0, the problem in (84), (87) is a linear-quadratic optimal control

problem. By virtue of the results of [25], we directly have that the solution (the optimal
control) of this problem is ū0

α(t) = −(1/α)HT
1 (t)R̄α(t)z̄α(t), and the optimal value of its

function has the form
J̄0
α = J̄α(ū0

α(·)) = zT
0 R̄α(t0)z0, (88)

where the m × m-matrix-valued function R̄α(t) is the solution of the terminal-value problem

˙̄Rα =
1
α

R̄αH1(t)HT
1 (t)R̄α, t ∈ [t0, t f ], R̄α(t f ) = Im, (89)

the vector-valued function z̄α(t) is the solution of the initial-value problem

˙̄zα = − 1
α

H1(t)HT
1 (t)R̄α(t)z̄α, t ∈ [t0, t f ], z(t0) = z0. (90)
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Using Remark 6, we obtain the unique solution of the problem (89) as follows:

R̄α(t) =
(

Im +
1
α

G1(t)
)−1

, t ∈ [t0, t f ], (91)

where the m × m-matrix-valued function G1(t) is given in Remark 6 (see (40) for t ∈ [t0, t f ]).
Substituting (91) into (88), we obtain after some rearrangement

J̄0
α = αzT

0
(
αIm + G1(t0

)−1z0, (92)

yielding the following inequality for all sufficiently small α > 0:

0 ≤ J̄0
α ≤ cα, (93)

where c > 0 is some value independent of α.
Using Equation (88) and inequality (93), we obtain for all sufficiently small α > 0:

0 ≤ inf
u(·)∈L2([t0,t f ],Rr)

J̄(u(·)) ≤ J̄(ū0
α(·)) ≤ J̄α(ū0

α(·)) = J̄0
α ≤ cα,

yielding

0 ≤ inf
u(·)∈L2([t0,t f ],Rr)

J̄(u(·)) ≤ cα.

The latter implies immediately

inf
u(·)∈L2([t0,t f ],Rr)

J̄(u(·)) = 0

which, along with Equation (86), proves the statement of the lemma.

Theorem 1. Let Condition S hold. Then, the RSDG value J∗β(t0, z0) exists and

J∗β(t0, z0) = 0. (94)

Proof. Let Ju∗
β (t0, z0) and Jv∗

β (t0, z0) be the upper and lower values of the RSDG, respec-
tively. Then, due to the definitions of these values (see Remark 4), we have

Ju∗
β (t0, z0) ≤ Ju

β (u
0
αβ(·); t0, z0), α ∈ (0, α0], (95)

Jv
β(v̄

0(·); t0, z0) ≤ Jv∗
β (t0, z0), (96)

Jv∗
β (t0, z0) ≤ Ju∗

β (t0, z0). (97)

Now, using the equality (83) and the inequalities (75), (95)–(97) yield

0 = Jv
β(v̄

0(·); t0, z0) ≤ Jv∗
β (t0, z0) ≤ Ju∗

β (t0, z0)

≤ Ju
β (u

0
αβ(·); t0, z0) ≤ aα, α ∈ (0, α0]. (98)

The latter implies

0 ≤ Jv∗
β (t0, z0) ≤ Ju∗

β (t0, z0) ≤ aα, α ∈ (0, α0]. (99)

From (99), for α → 0, we directly have Jv∗
β (t0, z0) = Ju∗

β (t0, z0) = 0, which proves the
theorem.
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Corollary 2. Let Condition S hold. Then,

J0
best(t0, z0) = J∗β(t0, z0). (100)

Proof. The statement of the corollary directly follows from Theorem 1 and Equation (73).

Corollary 3. Let Condition S hold. Then, the limit Equality (31) is valid.

Proof. The statement of the corollary is a direct consequence of Equations (68) and (94).

By {αk}+∞
k=1, we denote a sequence of numbers, satisfying the following conditions: (I)

αk ∈ (0, α0], (k = 1, 2, ...); (II) limk→+∞ αk = 0.

Theorem 2. Let Condition S hold. Then, the sequence of the pursuer’s state-feedback controls{
u0

αk β(t, z)
}+∞

k=1 is the minimizing sequence in the RSDG. The state-feedback control v̄0(t, z), given
by (82), is the optimal evader’s strategy in the RSDG.

Proof. From the chain of the equality and the inequalities (98) we obtain

lim
k→+∞

Ju
β (u

0
αk β(·); t0, z0) = Ju∗

β (t0, z0), (101)

meaning the validity of the first statement of the theorem.
Similarly, we have

Jv
β(v̄

0(·); t0, z0) = Jv∗
β (t0, z0), (102)

which implies the validity of the second statement of the theorem.

Remark 9. It should be noted that the optimal evader’s strategy v̄0(t, z) in the RSDG coincides with
the limit (as α → 0) of the optimal evader’s strategy in the RCCDG for all (t, z) ∈ [t0, t f )×Rm

(see Proposition 4 and Equation (65)). Also, it should be noted that the limit (as k → +∞) of the
minimizing sequence

{
u0

αk β(t, z)
}+∞

k=1 in the RSDG is ū(t, z) for all (t, z) ∈ [t0, t f ) × Rm (see
Proposition 4 and Equations (62) and (63)). However, the function ū(t, z) does not belong to the
set Uz. Therefore, this function does not belong to the set Uz, i.e., it is not an admissible pursuer’s
state-feedback control in the RSDG.

5. Example: Interception Problem in Three-Dimensional Space

5.1. Engagement Model and Its Reduction

Consider the engagement in 3D space of two flying vehicles (the interceptor or the
pursuer and the target or the evader), which has similar geometry to that considered
in [26,27]. In contrast to [26,27], we assumed that both the pursuer and the evader have
first-order dynamics controllers. Two mutually perpendicular control channels could have
different time constants: τp1 , τp2 for the pursuer’s controller and τe1 , τe2 for the evader’s one.

The equations of motion were written down in the line-of-sight coordinate system
where the axis X was the initial line-of-sight, the plane XY was the collision plane deter-
mined by the initial line-of-sight and the target’s velocity vectors and the plane XZ was
normal to XY.

Let (Xp, Yp, Zp) and (Xe, Ye, Ze) be the coordinates of the interceptor (the pursuer) and
the target (the evader), respectively. The relative separations in the Y and Z-directions were
Y = Yp − Ye and Z = Zp − Ze. By linearization along the initial line-of-sight, the equations
of motion were written down in the form (1) where the state vector was

x = (Y, Ẏ, Ÿp, Ÿe, Z, Ż, Z̈p, Z̈e)
T , (103)
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the players’ control vectors (lateral acceleration commands) were u = (u1, u2)
T (for the

pursuer) and v = (v1, v2)
T (for the evader); the final time t f was the time of achieving the

zero distance between the players along the axis X. The matrices in (1) were

A(t) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 −1/τp1 0 0 0 0 0
0 0 0 −1/τe1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1/τp2 0
0 0 0 0 0 0 0 −1/τe2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (104)

B(t) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

1/τp1 0
0 0
0 0
0 0
0 1/τp2

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C(t) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

1/τe1 0
0 0
0 0
0 0
0 1/τe2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (105)

In the pursuit problem, the target set was x1 = Y = 0, x5 = Z = 0, meaning that in (2),

D =

[
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

]
, d =

[
0
0

]
. (106)

Thus, in this example, n = 8, r = s = m = 2.
The transition matrix of the homogeneous system was readily obtained as

Φ(t f , t) =
[

Φ1(t f , t, τp1 , τe1) O4
O4 Φ1(t f , t, τp2 , τe2)

]
, (107)

where O4 is the zero 4 × 4 matrix,

Φ1(t f , t, τp, τe) =

⎡⎢⎢⎢⎣
1 t f − t −h(t, τp) h(t, τe)

0 1 −τp

(
1 − e−ϑ(t,τp)

)
τe

(
1 − e−ϑ(t,τe)

)
0 0 e−ϑ(t,τp) 0
0 0 0 e−ϑ(t,τe)

⎤⎥⎥⎥⎦, (108)

ϑ(t, τ) �
t f − t

τ
, (109)

h(t, τ) � τ2
(

e−ϑ(t,τ) + ϑ(t, τ)− 1
)

. (110)

Then, by applying the transformation (21) with D and d as in (106), the original system
was reduced to the two-dimensional system of the form (22), where

H1(t) =
[ −h(t, τp1) 0

0 −h(t, τp2)

]
, H2(t) =

[
h(t, τe1) 0

0 h(t, τe2)

]
. (111)

Explicitly, the system (22) became

ż1 = −h(t, τp1)u1 + h(t, τe1)v1, z1(t0) = z01 , t ∈ [t0, t f ],
ż2 = −h(t, τp2)u2 + h(t, τe2)v2 z2(t0) = z02 , t ∈ [t0, t f ].

(112)
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5.2. Reduced Cheap Control Game

In this example, the RCCDG cost function (25) is

Jαβ = z2
1(t f ) + z2

2(t f ) + α

t f∫
t0

[
u2

1(t) + u2
2(t)

]
dt − β

t f∫
t0

[
v2

1(t) + v2
2(t)

]
dt. (113)

Due to (111), the gramian (40) is calculated as

G1(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

t f∫
t

h2(η, τp1)dη 0

0

t f∫
t

h2(η, τp2)dη

⎤⎥⎥⎥⎥⎥⎥⎦, (114)

and

det G1(t) =

⎛⎜⎝ t f∫
t

h2(η, τp1)dη

⎞⎟⎠
⎛⎜⎝ t f∫

t

h2(η, τp2)dη

⎞⎟⎠. (115)

For all τ > 0, we have that h(t, τ) > 0, t ∈ [t0, t f ), and h(t f , τ) = 0. Therefore, the
condition (41), and, consequently, Condition S hold.

Due to the symmetry of the matrices (111), the matrix (37) is also symmetric:

Rαβ(t) =
[

rαβ1
(t) 0

0 rαβ2
(t)

]
, (116)

where
rαβi

(t) =
1

1 +
1
α

t f∫
t

h2(η, τpi )dη − 1
β

t f∫
t

h2(η, τei )dη

, i = 1, 2. (117)

Thus, the RCCDG is solvable if

1 +
1
α

t f∫
t

h2(η, τpi )dη − 1
β

t f∫
t

h2(η, τei )dη > 0, t ∈ [t0, t f ], i = 1, 2. (118)

Similarly to [24], it is proved that the solvability condition (118) yields the value α̃
in (42) as

α̃ = min{α̃1, α̃2}, (119)

where

α̃i = α̃i(β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μi(β)β, β <

t f∫
t0

h2(η, τei )dη,

+∞, β ≥
t f∫

t0

h2(η, τei )dη,

i = 1, 2, (120)

μi(β) =
1

max
t∈[t0,t̄i ]

Fi(t, β)
, i = 1, 2, (121)
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Fi(t, β) =

t̄i(β)∫
t

h2(η, τei )dη

t f∫
t

h2(η, τpi )dη

, i = 1, 2, (122)

the moments t̄i(β) ∈ (t0, t f ), i = 1, 2, satisfy

t f∫
t̄i(β)

h2(η, τei )dη = β, i = 1, 2. (123)

By using (32)–(34) and (116), the solution of the game (112) and (113) is

J0
αβ(t0, z0) = r1(t0)z2

01
+ r2(t0)z2

02
, (124)

u0
αβ(t, z) = − 1

α

(
h(t, τp1)r1(t)z1, h(t, τp2)r2(t)z2

)T
, (125)

v0
αβ(t, z) =

1
β

(
h(t, τe1)r1(t)z1, h(t, τe2)r2(t)z2

)T
. (126)

Let us consider the numerical example for t0 = 0 s, t f = 3 s, β = 0.1, τp1 = τp2 = 0.1 s,
τe1 = 0.15 s, τe2 = 0.2 s. For these parameters,

β = 0.1 <

t f∫
t0

h2(η, τe1)dη =

3∫
0

h2(η, 0.15)dη = 0.1737, (127)

β = 0.1 <

t f∫
t0

h2(η, τe2)dη =

3∫
0

h2(η, 0.2)dη = 0.293. (128)

In this example, the moments, defined by (123), are t̄1 = 0.4792 s, t̄2 = 0.8443 s (see
Figure 1).

Figure 1. Moments t̄i(β).

In Figure 2, the functions Fi(t, β), given by (122), are shown for t ∈ [t0, t̄i], i = 1, 2. It is
seen that these functions were decreasing. Therefore,

μi =
1

F1(0, β)
= 1.1035, μ2 =

1
F2(0, β)

= 0.4214. (129)
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Due to (119) and (120), α̃ = β min{μ1, μ2} = 0.04214.

Figure 2. Functions Fi(t, β).

In Figures 3 and 4, the components of the optimal trajectories z0
αβ(t) are shown for

decreasing values of α < α̃, along with the components of the corresponding limiting
function z̃(t). It is clearly seen that the optimal trajectories tended to z̃(t) for α → 0, and
z0

αβ(t f ) tended to zero.

Figure 3. Trajectories z0
αβ1

(t) and limiting function z̃1(t).

Figure 4. Trajectories z0
αβ2

(t) and limiting function z̃2(t).

The respective components of time realizations of the optimal strategies u0
αβ(·) and

v0
αβ(·), along with the components of the corresponding limiting functions ũ(t) and ṽ(t),
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are depicted in Figures 5–8, respectively. It is seen that the time realizations of the optimal
strategies tended to the corresponding limiting functions for α → 0, remaining bounded.

Figure 5. Time realizations u0
αβ1

(t) and limiting function ũ1(t).

Figure 6. Time realizations u0
αβ2

(t) and limiting function ũ2(t).

Figure 7. Time realizations v0
αβ1

(t) and limiting function ṽ1(t).
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Figure 8. Time realizations v0
αβ2

(t) and limiting function ṽ2(t).

The game value J0
αβ(t0, z0) is depicted in Figure 9 as a function of α. It is seen that it

tended to zero for α → 0.

Figure 9. The game value.

The respective terminal and integral terms of the cost function are shown in
Figures 10 and 11, respectively. It is seen that all components of the optimal cost tended to
zero for α → 0.

Figure 10. The terminal term of the cost function.
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Figure 11. Integral terms of the cost function.

Remark 10. From Equation (125), it was seen that the small control cost of the interceptor yielded
the high gain in its optimal state-feedback control. This important feature of the interceptor’s optimal
state-feedback control increased considerably the ability of the interceptor to capture the target.
One more important feature of the interceptor’s optimal state-feedback control was that the time
realization of this control along the optimal interception’s trajectory and, especially, the trajectory
itself, were bounded while the small parameter α tended to zero. Both aforementioned features
of the interceptor’s state-feedback control, obtained by solution of the cheap control game, were
extremely important in various real-life situations of a capture of a maneuverable flying target by a
maneuverable flying interceptor. It should be noted that if the small control cost of the interceptor
tended to zero, the ability of the interceptor to capture the target increased tending to the best
achievable result, which was the zero-miss distance at the end of the interception.

6. Conclusions

In this paper, a pursuit-evasion problem, modeled by a finite-horizon linear-quadratic
zero-sum differential game, was considered. In the game’s cost function, the penalty
coefficient for the minimizing player’s control expenditure was a small value α > 0.
Thus, the considered game was a zero-sum differential game with a cheap control of the
minimizing player. By the proper state transformation, the initially formulated game
was converted to a smaller Euclidean dimension differential game, called the reduced
game. This game, also was a cheap control game and it was treated in the sequel of
the paper. Due to the game’s solvability conditions, the solution of the reduced cheap
control game was converted to the solution of the terminal-value problem for the matrix
Riccati differential equation. Sufficient condition for the existence of the solution to this
terminal-value problem in the entire interval of the game’s duration was presented, and
the solution of this terminal-value problem was obtained. Using this solution, the value
of the reduced cheap control game, as well as the optimal state-feedback controls of the
minimizing player (the pursuer) and the maximizing player (the evader), were derived.
The trajectory of the game, generated by the optimal players’ state-feedback controls, (the
optimal trajectory), was obtained. The limits of the optimal trajectory, as well as of the time
realizations of the players’ optimal state-feedback controls along the optimal trajectory,
for α → 0 were calculated. By this calculation, the boundedness of the optimal trajectory
and the corresponding time realizations of the players’ optimal state-feedback controls for
α → 0 were shown. The limit of the game value for α → 0 also was calculated, yielding the
best achievable game value from the pursuer’s viewpoint. Along with the cheap control
game, its degenerate version was considered. This version was obtained from the cheap
control game by setting there formally α = 0, yielding the new zero-sum linear-quadratic
pursuit-evasion game. This new game was singular, because it could not be solved either
by the Isaacs’s MinMax principle or by the Bellman–Isaacs equation method. For this
singular game, the notion of the pursuer’s minimizing sequence of state-feedback controls
(instead of the pursuer’s optimal state-feedback control) was proposed. It was established
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that the α-dependent pursuer’s optimal state-feedback control in the cheap control game
constituted the pursuer’s minimizing sequence of state-feedback controls (as α → 0) in
the singular game. It was shown that the limit of this minimizing sequence was not an
admissible pursuer’s state-feedback control in the singular game. However, the evader’s
optimal state-feedback control and the value of the singular game coincided with the limits
(for α → 0) of the evader’s optimal state-feedback control and the value, respectively, of the
cheap control game. Based on the theoretical results of the paper, the interception problem
in 3D space, modeled by a zero-sum linear-quadratic game with the eight-dimensional
dynamics, was studied. Similarly to the theoretical part of the paper, the case of the small
penalty coefficient α > 0 for the pursuer’s (interceptor’s) control expenditure in the cost
function was considered. By proper linear state transformation, the original cheap control
game was reduced to the new cheap control game with the two-dimensional dynamics.
The asymptotic behaviour of the solution to this new game for α → 0 was analyzed.
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6. Braslavsky, J.H.; Seron, M.M.; Mayne, D.Q.; Kokotović, P.V. Limiting performance of optimal linear filters. Automatica 1999,

35, 189–199. [CrossRef]
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Abstract: In this brief note, we study the problem of asymptotic behavior of the solutions for non-
resonant, singularly perturbed linear Neumann boundary value problems εy′′ + ky = f (t), y′(a) = 0,
y′(b) = 0, k > 0, with an indication of possible extension to more complex cases. Our approach is
based on the analysis of an integral equation associated with this problem.
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1. Introduction

In this paper, we are dealing with the singularly perturbed linear problem

εy′′ + ky = f (t), k > 0, 0 < ε � 1, f ∈ C3([a, b]), (1)

with the Neumann boundary condition

y′(a) = 0, y′(b) = 0. (2)

The analysis of the differential equations under consideration is complicated by the
fact that all roots of characteristic equations of this differential equation are located on
the imaginary axis; that is, the differential equation is not hyperbolic. For the singularly
perturbed dynamical systems, the dynamics near a normally hyperbolic critical manifold
are well–known; see [1–5] for a geometric approach to the singular perturbation theory,
Refs. [6–9] for the lower and upper solution method and [10] for applications in control
theory. However, if the condition of normal hyperbolicity of a critical manifold is not
fulfilled, then the problem of existence and asymptotic behavior (as ε → 0+) of solutions
is hard to solve in general, and leads to the principal technical difficulties in nonlinear
cases; see, for example [11]. Thus, the considerations below may be instructive and helpful
for the analyses of this class of problems. The calculations that will follow (and thus, the
main result formulated in Theorem 1 below) can also be applied to nonlinear differential
equations, where the right-hand side of (1), (2) will have the function f (t, y) instead of f (t),
but in this case it will be necessary to guarantee that the set of solutions yε(t), ε → 0+, of
such problems also belong to the space C3([a, b]), and are uniformly bounded together
with their second and third derivatives on the interval [a, b] (Remark 2). The uniform
boundedness of the first derivatives follows from the boundary conditions imposed on the
solutions (2), and uniform boundedness of the second derivatives.

Despite these difficulties, we will prove that there are an infinite number of sequences
{εn}∞

n=0, εn → 0+, such that yεn(t) converge uniformly to u(t) on [a, b] for εn → 0+, where
yεn is a solution of the Problem (1), (2) with ε = εn and u represents the critical manifold for
our system, that is, a solution of the reduced problem ky = f (t) obtained from Equation (1)
for ε = 0.
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Henceforth, in this paper, for the values of parameter ε, we consider the closed intervals
Jn only, defined as

Jn �
[

k
(

b − a
(n + 1)π − λ

)2
, k
(

b − a
nπ + λ

)2
]

, n = 0, 1, 2, . . . ,

where λ > 0 is an arbitrarily small but fixed constant (λ � π/2), which guarantees the
existence and uniqueness to the solutions of (1), (2); that is, a non-resonant case.

Example 1. As an academic example, let us consider the linear problem

εy′′ + ky = et, t ∈ [a, b], k > 0, 0 < ε � 1,

y′(a) = 0, y′(b) = 0,

and its solution

yε(t) =
−ea cos

[√
k
ε (b − t)

]
+ eb cos

[√
k
ε (t − a)

]
√

k
ε (k + ε) sin

[√
k
ε (b − a)

] +
et

k + ε
.

Hence, for every sequence {εn}∞
n=0, εn ∈ Jn, the solution of the problem under consideration satisfies

yεn(t) =
et

k + εn
+ O(

√
εn)

and thus, the solutions converge uniformly on the interval [a, b] to the solution u(t) = et/k of the
reduced problem for n → ∞. The second term on the right-hand side denotes the convenient Big–O
notation. For better illustration, Figure 1 graphically shows the solutions for different values of the
parameter ε. The MATLAB code for Figure 1 is below, in Listing 1.
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Figure 1. Solutions of the Neumann boundary value problem from Example 1 on the interval [0, 1]
for k = 2 and ε = 0.001 (left) and ε = 0.0002 (right). A dashed line is used to draw the function
u(t) = et/k, the solution of the reduced problem.
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Listing 1. MATLAB code for Figure 1.

%bvp5cNeumann.m
format long;
a = 0;
b = 1;
k = 2;
eps = 0.0002;
ode = @(x,y) [y(2) ; (-k*y(1) + exp(x))/eps];
bc = @(ya,yb)[ya(2); yb(2)]; %Neumann BC
solinit = bvpinit(linspace(a,b,50),[1 0]);
sol = bvp5c(ode,bc,solinit);
x = linspace(a,b);
y = deval(sol,x);
X=x’; Y=y(1,:)’;
%[X Y]
plot(x,Y,’linewidth’,1.5);
hold on
plot(x,exp(x)/k, ’--’);
hold on
grid on
xlabel(’$t$’,’interpreter’,’latex’);
ylabel(’$y_{\varepsilon}(t)$’,’interpreter’,’latex’);
%print(’figure1’,’-deps’)

The main result of this note is the following theorem generalizing the Example 1 to all
right-hand sides f (t).

2. Main Result

Theorem 1. For all f ∈ C3([a, b]) and for every sequence {εn}∞
n=0, εn ∈ Jn there exists a unique

sequence of the solutions {yεn}∞
n=0 of the Problem (1), (2) satisfying

yεn → u uniformly on [a, b] for n → ∞.

More precisely,

yεn(t) =
f (t)

k
+ O(

√
εn) on [a, b]

for n → ∞ (⇒ εn → 0+) and, if f ′(a) = f ′(b) = 0, then on [a, b], the following asymptotics for
n → ∞ hold:

yεn(t) =
f (t)

k
+ O(εn) and y′

εn(t) =
f ′(t)

k
+ O(

√
εn).

Proof. First, we show that the function

yε(t) =
cos
[√

k
ε (t − a)

] b∫
a

cos
[√

k
ε (b − s)

]
f (s)

ε ds√
k
ε sin

[√
k
ε (b − a)

]

+

t∫
a

sin
[√

k
ε (t − s)

]
f (s)

ε√
k
ε

ds (3)
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is a solution of (1), (2). Differentiating (3) twice, taking into consideration the relation

d
dt

t∫
a

H(t, s) f (s)ds =
t∫

a

∂H(t, s)
∂t

f (s)ds + H(t, t) f (t),

we obtain that

y′
ε(t) =−

√
k
ε sin

[√
k
ε (t − a)

] b∫
a

cos
[√

k
ε (b − s)

]
f (s)

ε ds√
k
ε sin

[√
k
ε (b − a)

]

+

t∫
a

√
k
ε cos

[√
k
ε (t − s)

]
f (s)

ε√
k
ε

ds, (4)

y′′
ε (t) =−

(√
k
ε

)2
cos
[√

k
ε (t − a)

] b∫
a

cos
[√

k
ε (b − s)

]
f (s)

ε ds√
k
ε sin

[√
k
ε (b − a)

]

−
t∫

a

(√
k
ε

)2
sin
[√

k
ε (t − s)

]
f (s)

ε√
k
ε

ds +
f (t)

ε
. (5)

From (5) and (3), after a little algebraic rearrangement, we get

y′′
ε =

k
ε
(−yε) +

f (t)
ε

,

that is, yε is a solution of differential Equation (1), and from (4), it is easy to verify that this
solution of (1) satisfies the boundary condition (2).

Let t0 ∈ [a, b] be arbitrary, but fixed. Let us denote by I1 and I2 the integrals

I1 �
b∫

a

cos

[√
k
ε
(b − s)

]
f (s)

ε
ds

and

I2 �
t0∫

a

sin

[√
k
ε
(t0 − s)

]
f (s)

ε
ds.

Then

yε(t0) =

cos
[√

k
ε (t0 − a)

]
I1√

k
ε sin

[√
k
ε (b − a)

] +
I2√

k
ε

.

Integrating I1 and I2 by parts we obtain that

I1 =

√
ε

k
sin

[√
k
ε
(b − a)

]
f (a)

ε
+

b∫
a

√
ε

k
sin

[√
k
ε
(b − s)

]
f ′(s)

ε
ds,

I2 =

√
ε
k f (t0)

ε
−
√

ε

k
cos

[√
k
ε
(t0 − a)

]
f (a)

ε
−

t0∫
a

√
ε

k
cos

[√
k
ε
(t0 − s)

]
f ′(s)

ε
ds.
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Thus,

yε(t0) =
f (t0)

k
+

cos
[√

k
ε (t0 − a)

]
sin
[√

k
ε (b − a)

] b∫
a

sin

[√
k
ε
(b − s)

]
f ′(s)

k
ds

−
t0∫

a

cos

[√
k
ε
(t0 − s)

]
f ′(s)

k
ds.

Now, we estimate the difference yε(t0)− f (t0)
k . We have

∣∣∣∣yε(t0)− f (t0)

k

∣∣∣∣≤ 1
k sin λ

∣∣∣∣∣∣
b∫

a

sin

[√
k
ε
(b − s)

]
f ′(s)ds

∣∣∣∣∣∣
+

1
k

∣∣∣∣∣∣
t0∫

a

cos

[√
k
ε
(t0 − s)

]
f ′(s)ds

∣∣∣∣∣∣. (6)

The integrals in (6) converge to zero for ε = εn ∈ Jn as n → ∞. Indeed, with respect to the
assumption imposed on f we may integrate by parts in (6). Thus,

b∫
a

sin

[√
k
ε
(b − s)

]
f ′(s)ds =

[√
ε

k
cos

[√
k
ε
(b − s)

]
f ′(s)

]b

a

−
b∫

a

√
ε

k
cos

[√
k
ε
(b − s)

]
f ′′(s)ds

≤
√

ε

k

⎛⎝∣∣ f ′(a)
∣∣+ ∣∣ f ′(b)∣∣+

∣∣∣∣∣∣
b∫

a

cos

[√
k
ε
(b − s)

]
f ′′(s)ds

∣∣∣∣∣∣
⎞⎠

≤
√

ε

k

{∣∣ f ′(a)
∣∣+ ∣∣ f ′(b)∣∣+√ ε

k
(∣∣ f ′′(a)

∣∣+ (b − a)μ2
)}

(7)

and

t0∫
a

cos

[√
k
ε
(t0 − s)

]
f ′(s)ds =

[
−
√

ε

k
sin

[√
k
ε
(t0 − s)

]
f ′(s)

]t0

a

+

t0∫
a

√
ε

k
sin

[√
k
ε
(t0 − s)

]
f ′′(s)ds

≤
√

ε

k

⎛⎝∣∣ f ′(a)
∣∣+
∣∣∣∣∣∣

t0∫
a

sin

[√
k
ε
(t0 − s)

]
f ′′(s)ds

∣∣∣∣∣∣
⎞⎠

≤
√

ε

k

{∣∣ f ′(a)
∣∣+√ ε

k
(
μ1 +

∣∣ f ′′(a)
∣∣+ (b − a)μ2

)}
, (8)

where μ1 = max
t∈[a,b]

| f ′′(t)| and μ2 = max
t∈[a,b]

| f ′′′(t)|.
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Substituting (7) and (8) into (6), we obtain the a priori estimate of solutions of the
problem (1), (2) for all t0 ∈ [a, b] in the form∣∣∣∣yε(t0)− f (t0)

k

∣∣∣∣
≤ 1

k sin λ

√
ε

k

{∣∣ f ′(a)
∣∣+ ∣∣ f ′(b)∣∣+√ ε

k
(∣∣ f ′′(a)

∣∣+ (b − a)μ2
)}

+
1
k

√
ε

k

{∣∣ f ′(a)
∣∣+√ ε

k
(
μ1 +

∣∣ f ′′(a)
∣∣+ (b − a)μ2

)}
. (9)

Because the right-hand side of the inequality (9) is independent of t0, the convergence is
uniform on [a, b].

Analogously, using (4), for y′
ε(t0), we obtain for all t0 ∈ [a, b] the estimate∣∣∣∣y′

ε(t0)− f ′(t0)

k

∣∣∣∣
≤ 1

k sin λ

{∣∣ f ′(a)
∣∣+ ∣∣ f ′(b)∣∣+√ ε

k
(∣∣ f ′′(a)

∣∣+ (b − a)μ2
)}

+
1
k

{∣∣ f ′(a)
∣∣+√ ε

k
(∣∣ f ′′(a)

∣∣+ (b − a)μ2
)}

, (10)

where the constant on the right-hand side does not depend on t0 ∈ [a, b]. Theorem 1
is proved.

Remark 1. We conclude that in the case when f ′(a) = f ′(b) = 0,—that is, the solution u =
f (t)/k of a reduced problem satisfies the prescribed boundary conditions (2)—the convergence rate
of the solutions of (1), (2) to the function u on the interval [a, b] is even faster; namely, O(εn) for
εn ∈ Jn, as follows from (9).

For example, the Neumann boundary value problem εy′′ + ky = cos t, t ∈ [0, π], (2) k > 0,
ε = εn ∈ Jn, n = 0, 1, 2, . . . , has solution yε(t) = cos t/(k − ε) satisfying∣∣∣∣yε(t0)− cos(t0)

k

∣∣∣∣ = ε| cos(t0)|
k|k − ε| = O(ε)

for all t0 ∈ [0, π] as ε → 0+. Note here that ε ∈ Jn ⇒ k/ε �= 1.

Remark 2. As follows from the proof of Theorem 1, the boundedness of the set{|yεn(t)|+
∣∣y′

εn(t)
∣∣+ ∣∣y′′

εn(t)
∣∣+ ∣∣y′′′

εn(t)
∣∣, t ∈ [a, b], εn ∈ Jn, n = 0, 1, 2 . . .

}
implies |yεn(t)− u(t)| = O(

√
εn) for n → ∞ uniformly on [a, b] for the solutions yεn of the

nonlinear Neumann problem

εny′′ + ky = f (t, y), k > 0, f ∈ C3([a, b]×R), εn ∈ Jn,

where u is a solution of the reduced problem ky = f (t, y) defined on [a, b]. In the proof we just
replace f ′(s) with ∂ f

∂s +
∂ f
∂y y′

ε(s), and so on.

3. Conclusions

In this paper, we dealt with a standard problem in the field of singular perturbations,
namely the asymptotic behavior of the solutions when the parameter ε reaches zero, and
the relation of this limit to the solution of the reduced problem (ε = 0).

The problem, namely (1), (2) which we analyze in the paper looks seemingly simple,
but our approach represents a possible way of analyzing singularly perturbed problems
when the critical manifold (solution of the reduced problem) is not normally hyperbolic (the
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roots of the characteristic equation are located on the imaginary axis). The investigation of
this type of problem is still far from complete, and this article represents a small contribution
(perhaps rather an attempt) towards grasping it.
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