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Editorial

Advances in Modelling of Rainfall Fields

Davide Luciano De Luca 1,* and Andrea Petroselli 2,*

1 Department of Informatics, Modelling, Electronics and System Engineering, University of Calabria,
Arcavacata, 87036 Rende, Italy

2 Department of Economics, Engineering, Society and Business Organization (DEIM), Tuscia University,
01100 Viterbo, Italy

* Correspondence: davide.deluca@unical.it (D.L.D.L.); petro@unitus.it (A.P.)

Rainfall is the main input for all hydrological models, such as rainfall–runoff models
and the forecasting of landslides triggered by precipitation, with its comprehension being
clearly essential for effective water resource management as well. The need to improve
the modelling of rainfall fields constitutes a key aspect both for efficiently realizing early
warning systems and for carrying out analyses of future scenarios related to occurrences
and magnitudes for all induced phenomena.

The aim of this Special Issue was to provide a collection of innovative contributions
for rainfall modelling, focusing on hydrological scales and a context of climate changes.
The first group of papers regarded the study of global precipitation products and their
downscaled versions [1], the estimation of peak discharges in rainfall–runoff modeling
under different rainfall depth–duration–frequency formulations [2], stormwater infiltration
practices in rapidly urbanizing cities with the aim of designing resilient urban environ-
ments [3], and a novel temporal stochastic rainfall simulator [4] aiming to generate long and
high-resolution rainfall time series, with the advantage of being strongly user friendly and
parsimonious in terms of employed input parameters. Moreover, other works focused on
determining the quantities of runoff by knowing the amount of rainfall in order to calculate
the required quantities of water storage in reservoirs and to determine the likelihood of
flooding [5], some analyzed intrastorm pattern recognition through fuzzy clustering [6],
and others investigated the use and combination of pluviograph and daily records to
assess rain behavior in urban areas, selecting a suitable method that would provide the
best results of IDF relationships [7]. Finally, a sensitivity analysis of the rainfall–runoff
modeling parameters in data-scarce urban catchment areas was performed aiming to im-
prove the rainfall–runoff model calibration process [8], satellite-based rainfall estimations
were compared with ground data [9], machine learning and process-based models for
rainfall–runoff simulations were applied [10], and deep convective systems associated with
extreme rainfall storms were examined in tropical regions [11].

We believe that the contribution from the latest research outcomes presented in this
Special Issue can shed novel insights on the comprehension of the hydrological cycle and
all the phenomena that are a direct consequence of rainfall.

Moreover, all these proposed papers can clearly constitute a valid base of knowl-
edge for improving specific key aspects of rainfall modelling, mainly concerning climate
change and how it induces modifications in properties such as magnitude, frequency,
duration, and the spatial extension of different types of rainfall fields. The goal should
also consider providing useful tools to practitioners for quantifying important design met-
rics in transient hydrological contexts (quantiles of assigned frequency, hazard functions,
intensity–duration–frequency curves, etc.).

Author Contributions: Writing—original draft preparation, D.L.D.L. and A.P.; writing—review
and editing, D.L.D.L. and A.P. All authors have read and agreed to the published version of
the manuscript.

Hydrology 2022, 9, 142. https://doi.org/10.3390/hydrology9080142 https://www.mdpi.com/journal/hydrology1



Hydrology 2022, 9, 142

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tadesse, K.E.; Melesse, A.M.; Abebe, A.; Lakew, H.B.; Paron, P. Evaluation of Global Precipitation Products over Wabi Shebelle
River Basin, Ethiopia. Hydrology 2022, 9, 66. [CrossRef]

2. Gioia, A.; Lioi, B.; Totaro, V.; Molfetta, M.G.; Apollonio, C.; Bisantino, T.; Iacobellis, V. Estimation of Peak Discharges under
Different Rainfall Depth–Duration–Frequency Formulations. Hydrology 2021, 8, 150. [CrossRef]

3. Bastia, J.; Mishra, B.K.; Kumar, P. Integrative Assessment of Stormwater Infiltration Practices in Rapidly Urbanizing Cities:
A Case of Lucknow City, India. Hydrology 2021, 8, 93. [CrossRef]

4. De Luca, D.L.; Petroselli, A. STORAGE (STOchastic RAinfall GEnerator): A User-Friendly Software for Generating Long and
High-Resolution Rainfall Time Series. Hydrology 2021, 8, 76. [CrossRef]

5. Hamdan, A.N.A.; Almuktar, S.; Scholz, M. Rainfall-Runoff Modeling Using the HEC-HMS Model for the Al-Adhaim River
Catchment, Northern Iraq. Hydrology 2021, 8, 58. [CrossRef]

6. Vantas, K.; Sidiropoulos, E. Intra-Storm Pattern Recognition through Fuzzy Clustering. Hydrology 2021, 8, 57. [CrossRef]
7. Gámez-Balmaceda, E.; López-Ramos, A.; Martínez-Acosta, L.; Medrano-Barboza, J.P.; Remolina López, J.F.; Seingier, G.;

Daesslé, L.W.; López-Lambraño, A.A. Rainfall Intensity-Duration-Frequency Relationship. Case Study: Depth-Duration Ratio in
a Semi-Arid Zone in Mexico. Hydrology 2020, 7, 78. [CrossRef]

8. Ballinas-González, H.A.; Alcocer-Yamanaka, V.H.; Canto-Rios, J.J.; Simuta-Champo, R. Sensitivity Analysis of the Rainfall–Runoff
Modeling Parameters in Data-Scarce Urban Catchment. Hydrology 2020, 7, 73. [CrossRef]

9. Hamal, K.; Sharma, S.; Khadka, N.; Baniya, B.; Ali, M.; Shrestha, M.S.; Xu, T.; Shrestha, D.; Dawadi, B. Evaluation of MERRA-2
Precipitation Products Using Gauge Observation in Nepal. Hydrology 2020, 7, 40. [CrossRef]

10. Bhusal, A.; Parajuli, U.; Regmi, S.; Kalra, A. Application of Machine Learning and Process-Based Models for Rainfall-Runoff
Simulation in DuPage River Basin, Illinois. Hydrology 2022, 9, 117. [CrossRef]

11. Velásquez, N. Assessment of Deep Convective Systems in the Colombian Andean Region. Hydrology 2022, 9, 119. [CrossRef]

2



hydrology

Article

Evaluation of MERRA-2 Precipitation Products Using
Gauge Observation in Nepal

Kalpana Hamal 1,2, Shankar Sharma 3, Nitesh Khadka 2,4, Binod Baniya 5, Munawar Ali 2,6,

Mandira Singh Shrestha 7, Tianli Xu 8, Dibas Shrestha 3,* and Binod Dawadi 3,8,*

1 International Center for Climate and Environment Sciences, Institute of Atmospheric Physics,
Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China; kalpana@mail.iap.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China; nkhadka@imde.ac.cn (N.K.);
munawarali092@itpcas.ac.cn (M.A.)

3 Central Department of Hydrology and Meteorology, Tribhuvan University, Kirtipur,
Kathmandu 44613, Nepal; sharmash@itpcas.ac.cn

4 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
5 Department of Environmental Science, Patan Multiple Campus, Tribhuvan University, Lalitpur 44700, Nepal;

binod.baniya@pmc.tu.edu.np
6 Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
7 International Center for Integrated Mountain Development (ICIMOD), Kathmandu 44700, Nepal;

mandira.shrestha@icimod.org
8 Kathmandu Centre for Research and Education, Chinese Academy of Sciences-Tribhuvan University,

Kirtipur, Kathmandu 44613, Nepal; xutianli@itpcas.ac.cn
* Correspondence: st.dibas@yahoo.com (D.S.); dawadibinod@gmail.com (B.D.)

Received: 11 June 2020; Accepted: 9 July 2020; Published: 13 July 2020

Abstract: Precipitation is the most important variable in the climate system and the dominant driver
of land surface hydrologic conditions. Rain gauge measurement provides precipitation estimates
on the ground surface; however, these measurements are sparse, especially in the high-elevation
areas of Nepal. Reanalysis datasets are the potential alternative for precipitation measurement,
although it must be evaluated and validated before use. This study evaluates the performance of
second-generation Modern-ERA Retrospective analysis for Research and Applications (MERRA-2)
datasets with the 141-gauge observations from Nepal between 2000 and 2018 on monthly, seasonal,
and annual timescales. Different statistical measures based on the Correlation Coefficient (R), Mean
Bias (MB), Root-Mean-Square Error (RMSE), and Nash–Sutcliffe efficiency (NSE) were adopted to
determine the performance of both MERRA-2 datasets. The results revealed that gauge calibrated
(MERRA-C) underestimated, whereas model-only (MERRA-NC) overestimated the observed seasonal
cycle of precipitation. However, both datasets were able to reproduce seasonal precipitation cycle
with a high correlation (R ≥ 0.95), as revealed by observation. MERRA-C datasets showed a more
consistent spatial performance (higher R-value) to the observed datasets than MERRA-NC, while
MERRA-NC is more reasonable to estimate precipitation amount (lower MB) across the country. Both
MERRA-2 datasets performed better in winter, post-monsoon, and pre-monsoon than in summer
monsoon. Moreover, MERRA-NC overestimated the observed precipitation in mid and high-elevation
areas, whereas MERRA-C severely underestimated at most of the stations throughout all seasons.
Among both datasets, MERRA-C was only able to reproduce the observed elevation dependency
pattern. Furthermore, uncertainties in MERRA-2 precipitation products mentioned above are still
worthy of attention by data developers and users.

Keywords: MERRA-2; Nepal; precipitation; rain-gauge; reanalysis datasets

Hydrology 2020, 7, 40; doi:10.3390/hydrology7030040 www.mdpi.com/journal/hydrology

3



Hydrology 2020, 7, 40

1. Introduction

Precipitation is an important variable in atmospheric circulation for weather and climatic studies
and is the dominant driver of land surface hydrologic conditions [1–4]. However, precipitation is
a complex variable to predict and estimate as it varies highly in space and time due to large-scale
atmospheric circulation patterns and the geographic and topographic factors of the region [2,5].
Recent climate change has impacted precipitation distribution and triggered its extremes, such as
drought, floods, and soil erosion around the globe [6,7].

The precipitation is one of the crucial factors for causing major environmental changes and disasters,
such as drought, floods and landslides across Nepal [8–11]. Thus, understanding the precipitation
patterns and other changes in the hydrometeorological cycle requires high-resolution long-term
precipitation records. Rain gauge-based measurement typically provides precise measurement of
precipitation on the earth’s surface [12,13]. However, the spatial extent and temporal resolution
of rain gauge-based precipitation measurements in the country are inadequate to support the
creation of regional precipitation datasets. This is mainly true for high-elevation areas due to
the complex geography and remote location [9,14]. Meanwhile, the discontinuity and missing values
in meteorological data records even worsened the results and interpretation of precipitation [15].
Consequently, the newly developed climate and weather prediction model (reanalysis) and
satellite-based precipitation products (SBPPs) are the potential alternatives to precipitation measurement
for the station sparse region [16,17]. However, the existing satellite-based products have limited
(short period) period of precipitation records. For example, recent GPM IMERG and TRMM are only
available after 1998, and GSMaP product is no exception [18–21]. PERSIANN products are available
for a longer period, although most of the satellite products only provide precipitation data [22].
In contrary, reanalysis product provides comprehensive insights of weather and climate conditions
at the regular grid for long periods [23]. These reanalysis datasets assimilate the in situ and remote
sensing observations into Numerical Weather Prediction (NWP) model to provide global estimates of
land surface, oceanic and atmospheric conditions at different timescale [3]. Therefore, evaluation and
validation of reanalysis precipitation products are necessary for the improvement of product quality
and hydrometeorological research.

Reanalysis precipitation datasets have been evaluated for different applications around the
globe [24–29]. The performance of reanalysis precipitation datasets was relatively more reliable and
accurate in the flatter regions than that of complex terrains [30]. Different climatic models used in
reanalysis datasets may not resolve precipitation in areas of complex topographic relief with drastic
elevation changes (e.g., Nepal). The moisture convergence, in such areas, is locally determined and local
convective precipitation is strongly dependent upon local thermal forcing of the terrain. The reanalysis
datasets (ERA-Interim) overestimated the precipitation over the northern slope of the Himalaya [31].
Whereas, Modern-ERA Retrospective analysis for Research and Applications (MERRA) datasets show
more consistent performance to observed precipitation than ERA-Interim and CFSR in a complex
topography region of Central Asia [5]. Similarly, MERRA precipitation datasets reproduced observed
spatial patterns and their extremes over the United States [32]. The MERRA datasets were more
reasonable to capture inter-annual variation and long-term precipitation trends than other reanalysis
datasets over the East Asian domain [33].

A comprehensive evaluation and validation of global reanalysis datasets are very limited in Nepal.
For example, Barros and Lang [34] evaluated the performance of the National Center for Environmental
Prediction (NCPE-NCAR) reanalysis and found that precipitation was consistently underestimated in
Marshyangdi river basin (mid-elevation areas of central region) using a limited number of stations.
The authors also mentioned that these reanalysis datasets were able to present precipitation trends
and spatial variability. Meanwhile, Ichiyanagi et al. [35] found that NCEP datasets showed a positive
correlation between monthly, annual and seasonal precipitation with All India-Rainfall (AIR) in western
Nepal, while precipitation in eastern Nepal was negatively correlated. However, both studies did
not validate or compare their performance concerning observed datasets over the country. Moreover,
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systematic evaluation of new generation reanalysis product and inter-comparison (spatio-temporal
performance) with observed datasets, to date, has not yet been performed in Nepal. Therefore, this
study aims to address this research gap by evaluating the performance of second-generation MERRA
(MERRA-2) with 141-gauge observations from Nepal. Among the MERRA-2 product, model-only
datasets are selected to evaluate the accuracy of MERRA simulation, while gauge calibrated to quantify
the performance improvement after the gauge adjustment. The evaluation is based on monthly,
seasonal, and annual timescale, spanning the period of 19 years from 2000 to 2018. Further, the
evaluation of MERRA-2 precipitation product over unique topographic and climatic regions helps
to select these datasets for different hydrometeorological application and identify its tendency and
discrepancies, specific weaknesses, and strengths of the product under different circumstances.

2. Materials and Methods

2.1. Study Area

The study area includes the southern slopes of central Himalaya, Nepal. The lowlands (~60 m) in
the south to the high Himalayas (up to 8848 m) in the north represent varying landscapes, topography,
weather, and vegetation within a small width (average ~192 km) of the country (Figure 1). Nepal is
broadly divided into three Ecological zones, named as Terai (Lowland areas), hills, and mountains.
The wettest (Lumle) and driest (Mustang and Manang) areas of Nepal are located in the Gandaki
river basin. These areas explain how the topography mediates the precipitation distribution, i.e.,
being located in the windward (Lumle) and leeward (Manang and Mustang) side of the Annapurna
mountain ranges [9,36]. The Eastern, Central and Western regions are divided based on three major
river basins, namely, Koshi, Gandaki, and Karnali, respectively. Furthermore, the South Asian monsoon
and Western disturbances determine the climatology and distribution of the precipitation in Nepal.
South Asian monsoon brings widespread precipitation from June to September through the Bay of
Bengal, with higher amounts in the Central region than Eastern and Western regions [8,35]. Western
disturbances bring precipitation from December to February, which are eastward-moving air currents in
mid-latitudes that enter the Western region of Nepal passing through Iran, Afghanistan, Pakistan, and
northwest India [37,38]. The average annual precipitation during 1982–2015 in Nepal is 1428 mm [39].

 
Figure 1. The spatial distribution of 141 rain gauge network, and the elevation pattern over the
study area. The blue lines divide the three subregions (Western, Central, and Eastern) of the country.
The base map in the inset is from ESRI.
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2.2. Datasets

The meteorological station network of Nepal is maintained by the Department of Hydrology
and Meteorology (DHM). This network of gauge stations is irregularly distributed [4]; denser on
the southern lowlands (below 2500 m elevation) and sparse, especially in the northern mountainous
region (above 2500 m elevation), where the terrain is very complex (Figure 1). Such an irregular
distribution of network creates an information gap, which ultimately hinders precipitation-related
studies over the study areas. Most of the gauge-based datasets are manually collected and are
subjected to personnel and instrumental errors [40]. Additional errors for the gauges that are located
in high-elevation regions come from the wind effect. Initially, data from 400 stations were collected
from DHM (https://www.dhm.gov.np/contents/resources), and quality control was performed for each
station; according to WMO standard [41], a year having missing data more than 15% is excluded from
the analysis. After quality control, daily data from 141 DHM stations (with ~1044 km2 coverage by
single station) were selected from January 2000 to December 2018 for this study.

MERRA is an emerging reanalysis product of the National Aeronautics and Space Administration
(NASA) that provides long-term atmospheric and surface records globally [3,42]. MERRA is a modern
reanalysis system, which applies advanced numerical models and assimilation schemes to combine
gauge observations from multiple sources [42]. Based on the grid to point interpolation, MERRA
precipitation product applies three-dimension variational (3D-Var) data assimilation. The second
version of the MERRA reanalysis system (MERRA-2) is the latest atmospheric reanalysis of the
modern era, produced by NASA’s Global Modeling and Assimilation Office (GMAO) [43]. To provide
an advanced product for weather and climate applications, MERRA-2 uses the latest V5 Goddard
Earth Observing System Model (GOES) data assimilation with an updated grid to point statistical
interpolation system [44,45]. MERRA-2 includes two precipitation datasets, namely PRECTOT
(MERRA-NC) and PRECTOTCOR (MERRA-C). MERRA-NC is the model generated precipitation data,
while MERRA-C is corrected with CPC Unified Gauge-Based Analysis of Global Daily Precipitation
(CPCU) product and the CPC Merged Analysis of Precipitation (CMAP) based precipitation product.
With such an advanced and updated data assimilation system, MERRA-2 can be a good alternative
to monitor precipitation and hydrological application in the unique physiographic region, where
the station is very sparse. This study applies to mean monthly total precipitation (M2TMNXFLX)
MERRA-2 data, with a spatial resolution of 0.50◦ × 0.625◦, which was downloaded from NASA’s
website (https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX).

2.3. Methodology

Observed precipitation datasets are in point scale (station), while both MERRA-2 datasets
provide precipitation at a 0.5 km grid box. The complex topographic gradients and heterogeneous
distribution of rain gauge station within the study region restrain the accurate rainfall interpolation [46].
Thus, the point-to-pixel method was adopted to compare rain gauge observation with grid-based
MERRA-2 datasets [47–50]. Grid-based precipitation datasets were extracted to rain-gauge station
location using the original resolution of MERRA-2, instead of interpolating the gauge observations
to avoid accumulating additional errors by gridding the observed data [51,52]. Meanwhile, stations
falling under the same grid were averaged for better representation of the pixel precipitation with
station-based datasets.

Observed datasets are in daily timescale, while MERRA-2 in the monthly timescale. To make
consistent timescale at each station, monthly data are computed for the station with the availability
of more than 25 days of precipitation data in a month; else, the precipitation in a particular month
is considered a missing value. If the corresponding monthly data was missing from the observed
datasets, then the monthly precipitation data from MERRA-2 were also considered as a missing value
for consistency. The number of rain gauge with complete data series in each year during the study
period are presented in Figure S1.
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Mean, annual and seasonal precipitation (pre-monsoon, summer monsoon, post-monsoon, and
winter season) of the observed and both MERRA-2 datasets were calculated for each station. Further,
spatial consistency was performed by comparing the spatial distribution of mean precipitation at
different seasons, while for temporal consistency, monthly time-series, and annual cycle of precipitation
in all datasets are analyzed, respectively. Similarly, both of these datasets are compared for different
elevation bins to quantify the performance from low-elevation to high-elevation areas. Additionally,
two percentile-based precipitation indices (95th and 5th percentile threshold values of observed
datasets at each station) were calculated for different seasons. The total frequency of very wet events
(R95p) and very dry (R5p) events [53,54] is relevant for floods and agriculture management (drought)
over the region, respectively. The bias in the frequency of these two percentile indices (R95p and R5p)
for MERRA-2 product were calculated for each station.

Four different statistical metrics were calculated to quantify the performance of MERRA-2 datasets
(Equations (1)–(4)). The Root Mean Square Error (RMSE) measures the average magnitude of the
deviation of MERRA-2 dataset from the observed data. Bias (difference) measures any persistent
tendency of a dataset to either overestimate or underestimate; correlation coefficient (R) reflects the
strength and direction of the linear association between datasets; Nash–Sutcliffe efficiency (NSE)
determines the relative magnitude of the residual variance (noise) compared to the observed data
variance. RMSE and Bias Equations (1) and (2) indicate a perfect match between observed and
predicted values when it equals to 0, with increasing RMSE and mean bias (MB) values indicating
an increasingly poor consistency. The NSE Equation (3) ranges between −∞ and 1 and 1 being a
perfect score. The R-value in Equation (4) ranges between 0 and 1, with higher values indicating less
error variance.

RMSE =

√∑n
i=1(Ei −Oi)

2

n
(1)

MB =

(
E−O

)
n

(2)

NSE = 1−
∑n

i=1

(
Oi −O

)2 −∑n
i=1(Ei −Oi)

2

∑n
i=1

(
Oi −O

)2 (3)

R =

∑n
i=1

(
Oi −O

)(
Ei − E

)
√∑n

i=1

(
Oi −O

)2√∑n
i=1

(
Ei − E

)2 (4)

where, O is the observed data, E is the estimated precipitation by both MERRA-2 datasets, and n is the
sample size.

3. Results

3.1. Seasonal Pattern of Precipitation

The temporal evaluation of precipitation is critical for many different hydrometeorological
applications. The monthly precipitation time series (mm) of observed and MERRA-2 product average
over Nepal during the study period is shown in Figure 2. Among the MERRA-2 datasets, MERRA-NC
overestimated, while MERRA-C underestimated the observed precipitation throughout the study
period. The observed data revealed that precipitation peaks during the monsoon (June-September)
season. Meanwhile, both the datasets can capture high peaks of summer precipitation during
June-September. Further, the estimation of the pecipitation peaks was higher and lower for MERRA-NC
and MERRA-C during the monsoon season as compared to another season, respectively. MERRA-C
largely underestimated the observed precipitation between 2000 and 2003, while MERRA-NC
overestimated mainly after 2015. Meanwhile, MERRA-NC showed higher precipitation with more than
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800 mm/month in 2016, 2017, and 2018. MERRA-NC appeared more consistent with observation during
2000–2006, whereas MERRA-C during 2012–2018 (Figure 2). Large errors in MERRA-C during the early
2000s could be attributed to considerable changes in the gauge network over the reanalysis period.

The annual precipitation during the study period was in continuous fluctuation from 2000 to 2018,
and the overall pattern of both datasets was consistent with the observation (Figure A1). However, some
deviations were found for specific years: the observed rainfall reached a maximum and minimum value
in 2007 and 2005, respectively. Whereas, both MERRA-2 datasets were not in agreement: MERRA-C
and MERRA-NC showed maximum values in 2013 and 2017, respectively (Figure A1). Meanwhile,
changes in the performance of the MERRA-2 datasets may be related to improvements in algorithms
and additional data in recent years. The result indicates that rainfall simulation ability in MERRA-2
still needs further enhancement.

 
Figure 2. Monthly precipitation time-series (mm) from observed, MERRA-C, MERRA-NC average
over Nepal during 2000–2018.

Additionally, boxplots of the annual performance metrics (R, RMSE, MB) for MERRA-2 product
and observation are presented in Figure 3. These metrics were generated by comparing point data for
interannual timescale. MERRA-C datasets show the median R, RRMSE and MB of 0.64, 190.16 mm/year
and −152.44 mm/year, respectively. As similar to Figure A1, the model-only MERRA-NC overestimated
the annual precipitation amount with a larger error as indicated by higher RMSE values than MERRA-C.
Overall, MERRA-C depicts a slightly high median of R-value; however, the difference is nominal.

Figure 3. Boxplots for performance metrics (R, Root-Mean-Square Error (RMSE), mean bias (MB))
of MERRA-2 (MERRA-C and MERRA-NC) with observed datasets for annual timescale. The bold
values and magenta dot in the boxplot represent the median and mean values of the statistical
metrics, respectively.

The monthly cycle of the precipitation average over 2000–2018, shows the maximum precipitation
from June to September (summer, 80% of annual precipitation) in the observed dataset, followed by
pre-monsoon (13%), post-monsoon (4%), and winter (3%) (Figure 4). Precipitation initially increases in
June, reaching a peak during July, and decreasing in August and September. The highest precipitation
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of ~480 mm was observed in July and the lowest precipitation of ~30 mm during November and
December. A similar pattern is also shown by both MERRA-C and MERRA-NC (Figure 4). MERRA-C
and MERRA-NC showed the highest precipitation of ~300 mm and 650 mm in July, respectively. It is
worth noting that both datasets showed a significant error during the monsoon season as compared
to other seasons. Statistics metrics were also calculated by averaging all stations for monthly mean
precipitation value (Table 1). Among both datasets, MERRA-NC outperforms MERRA-C in estimating
the annual precipitation cycle with lower MB (39.35 mm/month) and RMSE (75.10 mm/month).
However, both datasets can capture monthly precipitation variation with a high correlation (R ≥ 0.95)
across the country.

Figure 4. Monthly precipitation cycle (mm/month) derived from observations, MERRA-C, and
MERRA-NC for study region from January 2000 to December 2018.

Table 1. The RMSE, MB, R, and Nash–Sutcliffe efficiency (NSE) between MERRA-2 and observed
datasets based on the monthly mean value from 2000 to 2018 over the study area. SD represents the
standard deviation of respective datasets.

Datasets
Mean

(mm/Month)
RMSE

(mm/Month)
MB

(mm/Month)
R NSE SD

MERRA-C 92.73 82.72 −56.72 1 0.73 104.48
MERRA-NC 188.80 75.10 39.35 0.99 0.78 229.42

3.2. Spatial Distribution of Precipitation

The mean annual precipitation is calculated (Figure 5) to study the spatially distributed
precipitation in observed and both MERRA-2 datasets. In general, the topographical characteristics
establish the large spatial variability of precipitation in the country. Precipitation tends to decrease
from east to west, with maximum annual precipitation (>3000 mm/year) was observed in mid-elevation
areas of the central region (Lumle areas), whereas the minimum precipitation (<500 mm/year) appeared
in the high-elevation areas of central and western region (Figure 5a). The presence of the high mountain
range in the central region (Figure 1) acts as a south-north (uplifting) moisture barrier and creates an
orographic ascent. This phenomenon generates a “rain shadow” to the northern slope (high elevation
areas of the central and western region) and considerably increase precipitation in the southern slope
of the mountainous region (Lumle). Among the MERRA-2 datasets, only MERRA-C demonstrated a
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spatial pattern similar to that of the observation, with a noticeable decreasing pattern from the east to
west (Figure 5b); and maximum precipitation (~1800 mm/year) in lower reaches of the eastern region,
followed by low-elevation areas of the central region (~1500 mm/year). Meanwhile, MERRA-NC
showed the annual precipitation with the range of 2500 to 4500 mm/year in mid-elevation areas of the
country, with the highest precipitation (~4500 mm/year) in the high-elevation of the central region
(Figure 5c). In general, MERRA-C underestimated, and MERRA-NC overestimated mean annual
precipitation across the country. However, the spatial patterns depicted by MERRA-C resemble the
known precipitation regime over the country, although differences exist in both datasets.

Figure 5. Spatial distribution of mean annual precipitation (mm/year) in (a) Observation, (b) MERRA-C,
and (c) MERRA-NC during 2000–2018.

Figure 6 shows the spatial distribution of MB at each station for different seasons calculated
by averaging monthly precipitation values of each station. The spatial distribution of MB varies
for different stations and seasons over the country. The large MB was observed in the monsoon
season as compared to other seasons. During the pre-monsoon season, MERRA-C overestimated,
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and MERRA-NC underestimated at most of the stations in low-elevation areas, while the latter
overestimated in high-elevation areas (Figure 6a,b). Both the datasets showed monsoon distribution as
similar to pre-monsoon, but with larger MB (Figure 6c,d). Meanwhile, in post-monsoon and winter
season, both datasets showed a very smaller MB and mostly underestimated by MERRA-C, while
overestimated by MERRA-NC at most of the stations across the country (Figure 6e–h). Model-only
datasets (MERRA-NC) overestimated the observed precipitation, especially in mid and high-elevation
areas, whereas, gauge adjusted MERRA-C severely underestimated the observed precipitation, except
for few stations. Among the different seasons, both datasets were more consistent with observed
datasets in the winter season followed by a post-monsoon, pre-monsoon, and summer monsoon.
This might be related to the amount of precipitation in respective seasons (less consistent for a higher
amount of precipitation). Overall, the result indicates that the gauge calibration in MERRA-2 effectively
reduces positive bias.

Figure 6. Spatial distribution of mean bias (MB) at each station in MERRA-C and MERRA-NC for
a different season, (a,b) pre-monsoon, (c,d) summer monsoon, (e,f) post-monsoon, and (g,h) winter,
respectively. Red and blue circles represent the underestimated and overestimated of precipitation
amount across the country, respectively.
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Statistical metrics were calculated to quantify the overall performance of the MERRA-2 product,
by averaging monthly datasets at each season and presented in Table 2. Performance metrics showed
noticeable differences between both datasets for different seasons. MERRA-C underestimated the
mean precipitation in all seasons, while MERRA-NC only underestimated during the pre-monsoon
season. RMSE in both datasets was very similar, indicating that these two datasets have a similar
magnitude of error distribution; however, slightly smaller RMSE and higher R in MERRA-C revealed
more spatial consistency with observed datasets. Gauge corrected MERRA-C performed reasonably
well with the lowest RMSE, and higher R in all seasons, although estimated precipitation (lower MB)
by MERRA-NC was more reliable during pre-monsoon. For the annual performance, MERRA-C
archived best overall performance with lower RMSE (86.46 mm/month), higher R (0.34), and NSE of
−0.87, although estimated precipitation amount by MERRA-NC was more reliable (lower MB) than
MERRA-C. In general, MERRA-C datasets showed more consistent spatial performance (lower RMSE,
higher R, and NSE closer to 1) with observed datasets, indicating that the gauge calibrated MERRA-C
is more reasonable to reproduce the spatial pattern of observed precipitation over the study area.

Table 2. Spatial performance of both MERRA-2 datasets for the different seasons during 2000–2018.
SD represents the standard deviation of respective datasets. The blue font shows the best performance
in the respective metrics.

Season Datasets
Mean

(mm/Month)
RMSE

(mm/Month)
MB

(mm/Month)
R NSE SD

Mean OBS
(mm/Month)

Pre-monsoon
MERRA-C 44.61 50.75 −33.82 0.44 −0.38 13.01

78.43
MERRA-NC 62.47 49.27 −15.95 0.37 −0.39 41.18

Summer
monsoon

MERRA-C 222.64 205 −130.02 0.3 −0.53 48.75
353.46

MERRA-NC 484.11 267.82 130.64 0.1 −1.62 183.28

Post-monsoon
MERRA-C 24.75 22.37 −10.51 0.5 0.10 8.55

35.26
MERRA-NC 49.21 26.96 13.95 0.46 −0.42 22.07

Winter
MERRA-C 10.48 7.35 −4.7 0.65 0.12 4.84

15.17
MERRA-NC 23.9 12.53 8.72 0.77 −1.85 13.39

Annual
MERRA-C 94.23 86.48 −57.04 0.34 -0.87 20.64

151.27
MERRA-NC 196.9 103.97 45.62 0.18 −1.27 77.08

Figure 7 shows the spatial distribution of correlation coefficient (R) and RMSE in summer monsoon
for both MERRA-2 datasets at each station during the study period (2000–2018). The previous result
shows that the large error occurs during the monsoon season (Table 2 and Figure 6) at most of the
stations across the country. Both of these MERRA-2 datasets showed a very similar correlation at most
of the station, although MERRA-C achieves a slightly higher correlation value at mid-elevation areas
of the central region (Figure 7a). MERRA-C showed the larger RMSE (>400 mm/month) at most of the
station located at high precipitation areas (central region), while MERRA-NC showed large RMSE at
most of the station over mid- and high elevation areas of central and western region (Figure 7b). It is
possible that the systematic error in MERRA-C was reduced from MERRA-NC due to bias correction,
but the random error might be the same in both the datasets. Hence, the results of comparison over
these mountainous regions are uncertain, indicating complex terrain lead to higher uncertainty in
rainfall estimates over these regions.
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Figure 7. Spatial distribution of (a) correlation coefficient (R) and (b) RMSE (mm/month) in MERRA-2
datasets for summer monsoon (JJAS) at each station during the study period.

3.3. Extreme Precipitation Events

The bias distribution of very wet (R95p) and very dry (R5p) precipitation events in both MERRA-2
datasets was calculated for different seasons. Figure 8 shows the spatial distribution of bias in the
total frequency of R95p at each station across the country. Both datasets show the large positive bias
(>10 events) at high-elevation areas of the country during the pre-monsoon (Figure 8a,b). In the
monsoon season, MERRA-NC largely overestimated (>20 events) at most of the stations in mid-and
high-elevation areas, whereas MERRA-C shows more consistent performance with smaller bias (<−10
events) at most of the stations (Figure 8c,d). For post-monsoon and winter season, MERRA-NC
overestimated, and MERRA-C underestimated the total frequency of very wet events (Figure 8e–h).
Overall, MERRA-NC shows large positive bias and tends to overestimate the frequency of very wet
events, while MERRA-C shows more consistent performance to reproduce the very wet events (smaller
bias) across the country.
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Figure 8. Spatial distribution of bias in very wet events (R95p) at each station for (a,b) pre-monsoon,
(c,d) monsoon, (e,f) post-monsoon, (g,h) winter between observed and MERRA-2 datasets, respectively.
Red and blue circles represent the underestimated and overestimated of R95p events across the
country, respectively.

Figure 9 shows the bias in total low intensity related extreme events (R5p) for different season
at each station over the country. Both datasets show very similar bias distribution of dry events
(mostly underestimated by >−10 events) during the pre-, post-monsoon, and winter season. In contrast,
MERRA-C largely overestimated (with larger bias>20 events) at most of the station during the monsoon
season (Figure 9c,d). In this season, MERRA-NC shows very consistent performance with smaller bias
(>−10 events). It is worth noting that MERRA-NC shows large error for R95p events, while MERRA-C
shows larger error for R5p during the monsoon season at most of the stations across the country.
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Figure 9. Spatial distribution of bias in very wet events (R5p) at each station for (a,b) pre-monsoon,
(c,d) monsoon, (e,f) post-monsoon, (g,h) winter between observed and MERRA-2 datasets, respectively.
Red and blue circles represent the underestimated and overestimated of R5p events across the
country, respectively.

3.4. Precipitation Based on the Elevation Gradient

Nepal is a mountainous country, and the precipitation distribution mainly depends on its
orography characteristics. Therefore, we examined the variability of mean annual precipitation for
individual rain gauge stations and partitioned the station data into a 500 m elevation range over the
study area. The elevation dependency was only calculated below 3000 m due to a limited number of
stations in high-elevation areas. Figure 10 presents the elevation dependency pattern of mean annual
precipitation over 19 years (2000–2018) from observed and both MERRA-2 datasets with the respective
number of stations at each interval. The observed data showed the annual precipitation slightly
increased from ~1800 mm/year to 2000 mm/year for elevations range 500–1000 m, and decrease to
1700 mm/year for elevations between 1000 and 1500 m with maximum precipitation of ~2200 mm/year
at an elevation range of 1500–2000 m. The pattern shows precipitation initially increases up to 2000
m elevation and decreases with increasing elevation. The MERRA-NC precipitation distribution
showed a sharp increase in the range between ~1400 mm/year and ~3200 mm/year for elevations
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below 2500 m, while the MERRA-C data showed the initial increase in precipitation up to 2000 m and
subsequent decrease with elevation, with the highest precipitation of ~1200 mm/year between 1500 and
2000 m elevation. Nevertheless, MERRA-C was able to reproduce the observed elevation dependency
pattern, and MERRA-NC fails to capture the pattern. It is worth to note that model-only MERRA-NC
datasets fail to reproduce the spatial pattern of precipitation (Figure 5), which might be the reason
for inconsistent elevation dependency pattern with observation. Some of these DHM gauges might
be the reason for the better overall performance of MERRA-C datasets. The result suggests that after
gauge calibration MERRA-C is able to reproduce the evident elevation dependency pattern; however,
significant underestimation was observed. The orographic effect on these datasets is further discussed
in Section 4.

Figure 10. Mean annual precipitation in observed and MERRA-2 datasets at different elevation range
with a respective number of the station during the study period.

4. Discussion

This study evaluates and quantifies the spatial and temporal performance of gauge calibrated
(MERRA-C) and model-only (MERRA-NC) gridded precipitation datasets from MERRA-2 product
using 141-gauge stations of Nepal. We found that MERRA-C datasets underestimated the monthly
precipitation cycle and MERRA-NC was largely overestimated, particularly in wet months. In terms of
seasonal performance, both the datasets performed poorly in monsoon season (when precipitation
amount was higher) than that of the other three seasons. Due to the complex mountainous terrain
and interference by wind, DHM gauges may not capture the actual precipitation in the study region.
Meanwhile, the lack of solid precipitation measurement in DHM station probably has an impact on
the performance of the MERRA-2 product during the winter season. The large uncertainties in the
reanalysis product for the wettest season are also reported in previous studies conducted in Assiniboine
River Basin (Canada–US border) by Xu et al. [55], Central Africa by Nkiaka et al. [56], and in India by
Shah and Mishra [57]. In contrast, Wang et al. [58] found that the reanalysis product showed large bias
during the winter season in the Eastern Fringe of Tibetan Plateau. Such uncertainties are primarily
related to topographic nature and precipitation distribution of the region. Furthermore, the variational
accuracy in interannual performance (Figures 3 and A1) is subject to errors from considerable changes in
the number gauge network over the reanalysis period and errors in the input gauge measurements [3].

The spatial distribution of observed precipitation showed large scale precipitation variability with
the highest precipitation in the central region (Figure 5). Due to the spatially heterogeneous pattern of
precipitation with complex physiography, model datasets have difficulty in resolving the orography
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effect [5]. The errors over the areas of complex orography may be partially related to the weakness of
reanalysis models in simulating the effects of complex terrain [55,58,59]. To minimize such uncertainties,
MERRA-C precipitation datasets utilize the several daily CPC gauge-based precipitation datasets
from different countries to calibrate the model-only MERRA-NC datasets. The CPC precipitation
datasets are derived from ground-based observation data, which is used to adjust MERRA-C datasets.
The performance of MERRA-C highly depends on the performance of CPC datasets and adjusted gauge
density within each grid box. Hence, the interpolation techniques to generate MERRA gridded datasets
from the point and sparse gauge measurements can introduce a considerable level of uncertainty into
the gridded dataset, particularly in the high-elevation and remote regions, where a sufficient number of
rain gauge stations are usually not available [13,60]. Meanwhile, 45 DHM gauge datasets are also used
to generate CPC datasets [61], although information of these assimilated gauge datasets is minimal.
The previous study also mentioned that the quality and temporal range of assimilated rain gauge
also significantly influence the performance of gauge calibrated precipitation product [62]. DHM rain
gauge stations are denser in lowland areas, while too sparse in high-elevation areas of the study region.
When these sparse gauges stations were used to calibrate model-only datasets, which may sometimes
deteriorate the accuracy of the calibrated product (Tables 1 and 2), it is worth noting that, after
gauge correction, MERRA-C moderately captured the spatial distribution of observed precipitation.
Similar to this result, most of the previous study revealed the improved performance of gauge calibrate
product over the denser gauge network in the larger basin area of West Africa by Nicholson et al. [63]
and Malaysia by Mahmud et al. [64]. Meanwhile, Balcutt et al. [65] evaluated the potential bias
correction techniques to improve the rainfall representations with spatially aggregated precipitation
for driving hydrological simulation in Nepal. These studies also mentioned that a higher number
of gauges at each grid during the interpolation would enhance the performance of the calibrated
product. Further, the dense gauge network is more representative to provide the actual distribution
of precipitation and also more able to capture the orographic effect than the sparse gauge network,
thus improving product accuracy [66]. Moreover, there are other various factors in the construction
process of MERRA-2, such as boundary layer parameterization, land–atmosphere interactions, and/or
convective precipitation parameterization, and this may cause the uncertainty to correctly reflecting
the observation precipitation pattern [67].

The evident elevation dependency pattern (i.e., precipitation initially increases with elevations up
to 2000 m and decrease with increasing elevation) is similar to previous studies conducted in the same
study region [8]. The high mountain blocks the large-scale monsoon flow moving upward and makes
the windward (leeward) side of the central region very wet (dry). As mentioned earlier, reanalysis
models have difficulty in resolving the orographic effect of precipitation; this might be the reason for the
highest precipitation above 2000 m in model-only MERRA-NC datasets (Figures 5 and 10). However,
after the gauge calibration, MERRA-C was able to reproduce the observed elevation dependency
pattern. The scatter plots with relative statistical metrics were further discussed to demonstrate
the overall performances of MERRA-2 product and observed datasets (Figure 11). The statistics
showed that MERRA-C relatively performed better with higher correlation (R = 0.71), and lower RMSE
(163.85 mm/month) than MERRA-NC; although the estimated precipitation amount by MERRA-NC
was more consistent (lower MB) with observed datasets. Besides, NSE also shows the MERRA-C
outperformed MERRA-NC during the study period. As similar to Section 3.1, MERRA-C overestimated
the observed precipitation, especially in wettest months (>500 mm/month) when precipitation amount
is generally higher (Figure 11a). Meanwhile, MERRA-NC overestimated the lower precipitation value
(Figure 11b). Overall, MERRA-C were more consistent with reproducing the spatial pattern of observed
datasets, while MERRA-NC datasets were more reliable to estimate the observed precipitation amount.
The results are in line with the inclusion of the weather stations into the reanalysis gridded datasets
that significantly increased the correlation between observed and the gridded products [68]. It is
important to mention while interpreting the results, the CPC was derived from point ground-based
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measurements, and some of these DHM gauges might be the reason for the better overall performance
of MERRA-C.

Figure 11. Scatterplot between observed, (a) MERRA-C, and (b) MERRA-NC generated by monthly
datasets at all stations between 2000 and 2018 across the study area. The unit of the figure metrics is in
mm/month.

Moreover, MERRA-C and MERRA-NC showed similar tendencies (large error during the monsoon
season) with different magnitude of errors (Figures 6–9 and Table 2). Our results provide evidence that
interpolation techniques and the sparseness of the gauge measurements can create uncertainties on
the performance of gauge calibrated MERRA-2 product. On the other hand, difficulty in resolving
the orography effect by the reanalysis model also influenced the overall accuracy of MERRA-2
product [67,68]. Further, the inclusion of a diverse set of station data may increase the accuracy of the
reanalysis of data [5]. In conclusion, this study provides shreds of evidence that interpolation techniques
and limited or sparseness of the gauge measurements create uncertainties on the performance of
reanalysis products, especially in the complex terrain like Nepal. Thus, there is a necessity of adequate
gauge stations in the high elevation areas, which not only reduces the uncertainty in the production and
validation of gridded datasets but will also be useful for climate and environmental change studies.

5. Conclusions

In this study, we evaluated the performance of MERRA-2 (MERRA-C and MERRA-NC) datasets
based on rain-gauge observation over Nepal between 2000 and 2018. The study region features complex
terrain and has a significant impact on the distribution of precipitation. Based on the above results, the
following conclusions were drawn:

The average seasonal cycle of precipitation during the study period shows the peak precipitation
from June to September. MERRA-C and MERRA-NC underestimated and overestimated the observed
seasonal cycle of precipitation, respectively. However, MERRA-C and MERRA-NC can reproduce the
overall precipitation pattern, but the accuracy is poor in the wettest months for both MERRA-2 datasets.

Gauge calibrated MERRA-C depicted broadly similar spatial distributions of annual precipitation,
i.e., precipitation decreased from east to west, with maximum and minimum precipitation in
mid-elevation areas of the central region and high-elevation areas of the central and western region,
respectively. Both MERRA-2 datasets performed better in winter, post-monsoon, and pre-monsoon
than in summer monsoon. For the spatial performance, MERRA-C achieved a higher correlation
than MERRA-NC, while both datasets showed a similar magnitude of RMSE. Furthermore, a high
correlation in MERRA-C and lower MB in MERRA-NC indicates the better spatial distribution and
reliable estimation of precipitation, respectively. MERRA-NC and MERRA-C datasets overestimated
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the very wet events (R95p) and very dry events (R5p) during the monsoon season, respectively.
Whereas, both datasets underestimated the R95p and R5p events for other three seasons at most of the
station across the country.

The variability of mean annual precipitation is observed with a 500 m elevation range over the
study area. The pattern shows precipitation initially increases up to 2000 m elevation and decreases
with increasing elevation. Nevertheless, MERRA-C was able to reproduce the observed elevation
dependency pattern, and MERRA-NC fails to capture the observed elevation dependency pattern.
The result suggests that MERRA-C datasets have useful implications in Nepal. However, further,
improvement is still needed in the MERRA-2 reanalysis product, particularly in the case of mountainous
areas such as Nepal.

Evaluation of MERRA-2 precipitation datasets is especially important for understanding the
spatio-temporal distribution of precipitation in Nepal. This will eventually benefit from understanding
the hydrological processes and water resource management, as it affects the output accuracy of the
hydrological model. However, to enhance the precipitation measurement accuracy, the allocation of
new measuring stations is still needed to further evaluate the different gridded precipitation products
in Nepal.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5338/7/3/40/s1,
Figure S1: The number of rain gauge with complete data series in each year during the study period (2000–2018).

Author Contributions: Conceptualization, S.S., D.S.; methodology, S.S.; formal analysis, K.H., S.S., N.K.;
investigation, S.S., K.H.; funding, B.D., T.X.; data curation, S.S.; writing—original draft preparation, K.H., S.S.;
N.K.; writing—review and editing, B.B., M.A., M.S.S., T.X., D.S., B.D.; supervision, D.S., B.D. All authors have read
and agreed to the published version of the manuscript.

Funding: The APC was funded by Kathmandu Center for Research and Education, Chinese Academy of
Sciences-Tribhuvan University.

Acknowledgments: K. Hamal is supported by Belt and Road Scholarship, and N. Khadka is supported by
CAS-TWAS President’s fellowship. Authors would like to acknowledge the DHM for observed precipitation
datasets and NASA for providing freely available MERRA-2 product. We also express our thankfulness to the
Department of Environmental Science, Patan Multiple Campus, Tribhuvan University, Nepal. The authors would
like to thank three anonymous reviewers for their insightful comments and suggestion, which helped to improve
the manuscript.

Conflicts of Interest: Authors declare that they have no conflict of interest.

Appendix A

Figure A1. Inter-annual variation of precipitation (mm/year) in observation and both MERRA-2
datasets average over the study area through the study period (2000–2018).
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Abstract: Rainfall–runoff phenomena are among the main processes within the hydrological cycle.
In urban zones, the increases in imperviousness cause increased runoff, originating floods. It is
fundamental to know the sensitivity of parameters in the modeling of an urban basin, which makes
the calibration process more efficient by allowing one to focus only on the parameters for which the
modeling results are sensitive. This research presents a formal sensitivity analysis of hydrological
and hydraulic parameters—absolute–relative, relative–absolute, relative–relative sensitivity and
R2—applied to an urban basin. The urban basin of Tuxtla Gutiérrez, Chiapas, in Mexico is an area
prone to flooding caused by extreme precipitation events. The basin has little information in which
the records (with the same time resolution) of precipitation and hydrometry match. The basin model
representing an area of 355.07 km2 was characterized in the Stormwater Management Model (SWMM).
The sensitivity analysis was performed for eight hydrological parameters and one hydraulic for
two precipitation events and their impact on the depths of the Sabinal River. Based on the analysis,
the parameters derived from the analysis that stand out as sensitive are the Manning coefficient
of impervious surface and the minimum infiltration speed with R2 > 0.60. The results obtained
demonstrate the importance of knowing the sensitivity of the parameters and their selection to
perform an adequate calibration.

Keywords: sensitivity analysis; rainfall–runoffmodel; parameters model

1. Introduction

Rainfall–runoff phenomena are one of the main processes within the hydrological cycle. In urban
zones, the increases in imperviousness cause increased runoff, originating floods. Therefore, to protect
the population and movable and immovable property, hydraulic structures that make up urban
drainage (storm hydrants, collectors, emitters, and retention works, among others) are analyzed and
designed. According to Jha et al. [1], the number of reported flood events affected people and associated
economic damage has been significantly increasing over the past two decades. One tool in the analysis
and design of these structures is the use of the urban drainage models, which have been developed for
the last 30 years to contribute to the management and planning of stormwater [2,3]. The SWMM (Storm
Water Management Model) was developed by the Environmental Protection Agency [4] to simulate
the rainfall–runoff process in urban watersheds and is widely used for urban planning, analysis and
design related to drainage systems [5–7]. Numerous studies have investigated the use of this model
to describe different phenomena related to runoff in urban basins; for example, Randall et al. [8]
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implemented SWMM to assess the behavior of runoff under Low Impact Development (LID) scenarios.
Chang et al. [9] evaluated the DENFIS (Dynamic Evolving Neural Fuzzy Inference System) model
performance compared with the physically based model SWMM. Agarwal and Kumar [10] implemented
a runoffmodel to determine flood impact using the Green-Ampt Infiltration model in SWMM.

Technological advances in hydrological modeling have incorporated the use of data with greater
detail in terms of spatial and temporal resolution. On the other hand, remote measurement techniques
allow information to be obtained quickly in large areas through sensors operating in different spectral
bands, which opens the door to the use of large amounts of data applied to hydrological models,
which thereby become robust [11]. The ability to incorporate spatially distributed digital information is
then hampered by a lack of data on the same time scale (precipitation measurement and runoff) [12,13].
However, modeling hydrological processes can be challenging, particularly in highly heterogeneous
urbanized areas (land-use variation, slope, coverage) that produce multiple interactions between urban
drainage structures and system (for wastewater and stormwater) at different temporal and spatial
scales, which increases data requirements and complexity [14]. These complexities, in addition to the
data shortage at the required level, make it difficult to define a universal methodology for reproducing
urban flows at the catchment scale.

Hydrological models are approximations of natural systems, which create a substantial discrepancy
between the results of the model and reality [15]. The results of the models need to be adjusted
by means of parameter calibration, which helps to match the predictions with the corresponding
observations [16–18]. The increase in the number of parameters that are adjusted in a model leads to
a greater workload in the calibration process [19,20]. Therefore, to increase the speed of the process,
it is important to perform a sensitivity analysis to learn the set of parameters to which the models are
sensitive, to understand their behavior against their values’ variation and to use this information to
limit the number of parameters in the calibration [21,22]. It is therefore recommended to perform a
sensitivity analysis before starting with hydrological modeling [23,24]. This analysis has been applied
in different levels of watersheds. Shin and Choi [25] found that the size of the catchment makes a
difference in the parameter sensitivity between rainfall events.

Some researchers, such as Mannina and Viviani [26], considered sensitivity analysis, identifying
the model’s most sensitive parameters. They applied the analysis to 17 parameters that influence the
results of the discharges and concentrations of urban drainage, managing to reduce the number of
parameters to 12, which were subsequently used for the calibration of the model. Kleidorfer et al. [27]
analyzed the impact of uncertainty on modeling input data considering the parameters with greater
sensitivity, using the Metropolis–Hastings algorithm for the assessment of sensitivity in the calibration
parameters. Bárdossy [28] mentions that hydrological parameters cannot be identified as a single set of
values, and changes to a parameter can be absorbed by the remaining parameters of the model. Other
researchers, such as Thorndahl et al. [29], performed a sensitivity analysis of a set of parameters, by
comparing the conditions of the conceptual model and the general model, finding that the parameter
of greater sensitivity is the hydrological reduction factor. Bajracharya et al. [30] performed a global
sensitivity analysis (using the Variogram Analysis of Response Surfaces technique) of the parameters
that govern the behavior of runoffs of the Nelson Churchill River basin, represented in the Hydrological
Predictions for the Environment model (HYPE). Other studies that perform sensitivity analysis applied
to the SWMM model reveal the behavior of the parameters according to the study area and its
characterization [31–34].

Due to data being scarce in most of the world (especially in developing countries), research should
focus on the reliability of hydrological models. This can be achieved by comparing different sensitivity
analysis approaches in data-scarce regions.

This research presents a methodology that uses four common expressions to assess the sensitivity of
hydrological model parameters in an urban basin in Mexico. The expressions used are absolute–relative
sensitivity, relative–absolute sensitivity, relative–relative sensitivity, and correlation coefficient R2.
This use of expressions aims to show their performance together to determine the sensitivity of
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parameters in a well-known open-source model (SWMM). This application will show the benefits of
implementing such an analysis in applications with limited data. This work builds on our previous
study [35], in which a storm with a single peak was evaluated as input data and a sensitivity index
was calculated. In this work, a more robust sensitivity analysis is performed, as parameter influence is
evaluated with more than one equation. In addition, two different storms were evaluated, allowing us
to observe the difference in behavior of the riverbed depths due to the parameters under these differing
conditions. The study comprises the analysis of nine parameters that are used for modeling and are
difficult to estimate because of their complexity and variability in surface coverage in an urban context.

The document is organized as follows: Section 2 illustrates the materials and methods used in
sensitivity analysis; Section 3 presents the results of the analysis; Section 4 presents the discussion on
the results. Finally, Section 5 presents the main conclusions arising from this work.

2. Materials and Methods

2.1. Study Area

The Sabinal River basin has 355.07 km2 of surface, is located between the coordinates 16◦42′ and
16◦54′ north and between the latitude 93◦20′ and 9◦02′ west, with an elevation in the range of 384 to
1064 m above sea level and an average elevation of 724 m above sea level. This basin is characterized
by 42.31% permeable soil and 57.69% waterproof soil, the latter representing urban areas. In general,
the basin has an average slope of 6.89% and a concentration time of 328.80 min. The city of Tuxtla
Gutiérrez, Chiapas in México is located within the Sabinal River basin and is crossed from west to east
by the main riverbed, 21 km long. It has flooding problems caused by extreme precipitation events,
which can occur mainly from May to October. Therefore, sensitivity analysis was carried out using the
extreme precipitation events of 07/10/2011 (Event 1) and 07/27/2011 (Event 2), recorded every 10 min by
seven automatic stations. Figure 1 shows the automatic stations (yellow circles), as well as the urban
basin of the Sabinal River, which was divided into 96 sub-basins for modeling. Tables 1 and 2 show the
properties of the precipitation events mentioned above, in view of Figure 2a,b.

 

Figure 1. Urban basin of Tuxtla Gutiérrez, Chiapas, México.
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Table 1. Precipitation characteristics, Event 1.

Station Duration (min) Δt (min)
Maximum

Intensity, (mm/h)
Accumulated

Precipitation (mm)

Berriozábal 490.00 10.00 100.50 45.50
Caridad 490.00 10.00 117.00 53.75
Mirador 490.00 10.00 81.00 27.00

Observatorio 490.00 10.00 115.50 23.75
San Antonio

Bombanó 490.00 10.00 78.00 32.25

Vista Hermosa 490.00 10.00 36.00 33.25
Viva Cárdenas 490.00 10.00 79.50 35.75

Table 2. Precipitation characteristics, Event 2.

Station Duration (min) Δt, (min)
Maximum

Intensity, (mm/h)
Accumulated

Precipitation (mm)

Berriozábal 1820.00 10.00 57.00 22.50
Caridad 1820.00 10.00 70.50 43.75
Mirador 1820.00 10.00 84.00 44.25

Observatorio 1820.00 10.00 81.00 58.75
San Antonio

Bombanó 1820.00 10.00 19.50 16.50

Vista Hermosa 1820.00 10.00 51.00 32.00
Viva Cárdenas 1820.00 10.00 40.50 22.25

 
(a) (b) 

Figure 2. (a) Precipitation Event 1 and (b) Precipitation Event 2.

Like precipitation data, data from the Parque del Oriente hydrometric station are available at the
exit of the basin, which has depth information for the month of July with registration every 10 min in
the river section. Figure 1 shows the location of the hydrometric station with the number 5 and with the
triangle symbol in red. Figure 3a,b show the depths recorded by that station caused by precipitation
events 1 and 2.
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(a) (b) 

Figure 3. Sabinal river hydrometry in Parque del Oriente station; (a) Event 1 and (b) Event 2.

2.2. Hydrological Model

The integrated Stormwater Management Model (SWMM) was generated by the Environmental
Protection Agency in the United States [5]. SWMM is a dynamic hydrology–hydraulic water quality
simulation model that can be used for single-event or long-term (continuous) simulation of runoff
quantity and quality from primarily urban areas [4,5,8]. The runoff component operates on a collection
of sub-catchment areas that receive precipitation and generate runoff. Each one of the sub-basins
is considered as a nonlinear reservoir, where the contribution of flow to the deposits comes from
precipitation, snow or releases from upstream stores. SWMM also simulates route flows from the
system, infiltration, evaporation and surface runoff. The surface runoff of a given area is determined
when the water depth within a catchment exceeds the maximum storage value, and the outflow is
determined by Manning (1), which integrates the continuity Equation (2), considering friction through
the incorporation of the Manning coefficient (n). The major loss considered in the rainfall and runoff
modeling is infiltration loss. In this study, infiltration loss is calculated with the Horton Equation (3) [36].
The infiltration losses are considered only from the pervious areas of a sub-catchment [5].

QM =
1
n

L (y− y′)5/3s1/2 (1)

Here, QM is the flow by Manning, n is the Manning coefficient, L is the width sub-basin, y is the water
depth, y′ is the lowering of height storage and s is the slope.

A
∂y
∂t

= Ai−Q (2)

Here, Q is the flow, A is the area of the basin, i is the intensity of the rain, y is the depth of storage in
depressions and t is the time.

fp = f0 − ( f0 − f∞)e−∝d(t−tw) (3)

Here, fp is the soil infiltration capacity, f∞ is the minimum or end value of fp (in t = ∞), f0 is the
maximum or initial value of fp (in t = 0), tw is the start time of the storm and ∝d is the decay coefficient.

SWMM requires the input of parameters related to catchment characteristics, sewer network
and soil type. The values range of the parameters was derived from the following (Table 3, [37,38]):
Manning’s roughness for overland surfaces and conduits, soil infiltration parameters and surface
depression storage. Manning’s roughness is the measure of resistance to the runoff flow. The value of
the roughness coefficient depends on the type of soil, surface cover and vegetation in pervious areas,
and in impervious areas it depends on the type of the material used in the construction of streets and
building roofs. Other parameters depend on the soil type and the slope; for example, the impervious
area depression storage, which is defined as water stored in depressions on impervious areas (depleted

29



Hydrology 2020, 7, 73

only by evaporation), and pervious area depression storage is defined as water stored in depressions on
pervious areas (subject to infiltration and evaporation). Likewise, the measure of urbanization is given
as the percentage of imperviousness for each sub-catchment or area depression storage, where the
urban catchments are composed of pervious and impervious areas (which increases when the urban
area develops). For Horton’s infiltration equation, the values of minimum or maximum infiltration
rate and decay coefficient depend on the soil, vegetation and initial moisture content; these parameters
should be estimated using results from the field or from specialized literature. Finally, Manning’s
roughness coefficient for conduits is one of the parameters used to calculate flow in a pipe or open
channel and depends on the material type.

Table 3. SWWM model parameters.

Parameter Abbreviation Maximum Value Minimum Value

Manning’s duct coefficient ManN 0.010 0.030
Manning’s N for impervious area Nimperv 0.001 0.200

Manning’s N for pervious area Nperv 0.010 0.200
Depth of depression storage on

impervious area, mm Simperv 0.000 10.000

Depth of depression storage on
pervious area, mm Sperv 0.000 20.000

Percentage of impervious area
with no depression storage, % PctZero 0.000 100.000

Maximum infiltration rate, mm/hr MaxRate_fa 1.000 200.000
Minimum infiltration rate, mm/hr MinRate_fe 1.000 25.000

Decay coefficient, 1/hr Decay_k 1.000 30.000

2.3. Sensitivity Analysis

Parameter sensitivity analysis is a necessary background for any deeper analysis and helps
to improve the understanding of the model’s behavior. Its goal is to explore the change in model
output resulting from a change in model parameters or model inputs and to separate influential from
non-influential parameters. Sensitivity analysis investigates the sensitivity of a parameter with respect
to the simulation results at a certain parameter value. The following expressions calculate different
sensitivity indexes for each of the possible model parameters [39,40]:

si, j(ΘM) = ΘM, j
∂ f
(
ΘM, j

)
∂ΘM, j

(4)

si, j(ΘM) =
1

f
(
ΘM, j

) ∂ f
(
ΘM, j

)
∂ΘM, j

(5)

si, j(ΘM) =
ΘM, j

f
(
ΘM, j

) ∂ f
(
ΘM, j

)
∂ΘM, j

(6)

where f
(
ΘM, j

)
represents the n output variables of the model, and ΘM, j represents the jth independent

parameters of the model.
Expression (4) represents the absolute–relative sensitivity, which describes the absolute change

in the results for a relative change in parameters. Expression (5) is the relative–absolute sensitivity,
which describes the relative change in the results for an absolute change of the parameter. Finally,
expression (6) is the relative–relative sensitivity, which describes the relative change in results for a
relative change in parameters [39,40].
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The gradient term ∂ f
(
ΘM, j

)
/∂ΘM, j is solved numerically by using runs of the model with slightly

different values of ΘM. Then the gradient term can be approximated by expression (7):

∂ f
(
ΘM, j

)
∂ΘM, j

=
f
(
ΘM, j + ΔΘM, j

)
− f
(
ΘM, j − ΔΘM, j

)
2ΔΘM, j

(7)

where ΔΘM, j is a small increment in the parameter value.
In addition to the three equations above, the coefficient of determination R2 calculation is used.

This is defined as the squared value of the coefficient of correlation [41].

R2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑n

i=1

(
Oi −O

)(
Pi − P

)
√∑n

i=1

(
Oi −O

)2√∑n
i=1

(
Pi − P

)2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(8)

Here, O are the observed values and P are the modeling values.
The range of R2 lies between 0 and 1 and describes how much of the observed dispersion is

explained by the prediction. A value of 0 means no correlation, whereas a value of 1 means that the
dispersion of the prediction is equal to that of the observation [41].

2.4. Methodology

The general methodology set out in this work for sensitivity analysis is shown in Figure 4.
The methodology indicates that the sensitivity analysis process begins with the characterization of
the urban basin in which the runoffs (depths in the riverbed) promoted by the precipitation event are
evaluated. Topographic, hydrographic and land-use characteristics were configured.

 

Figure 4. Sensitivity analysis methodology.

The hydrological model SWMM is then selected to perform runoff modeling. The input data
required for modeling are then entered—in this case, precipitation events and parameters.

The next step is the individual sensitivity analysis of the input, hydrological and hydraulic
parameters. The analysis is performed by evaluating the runoff outputs of the model, generated by
1000 individual values of one of the modeling parameters (randomly generated with the Monte Carlo
Simple method), and keeping the values of the other parameters fixed. The process is repeated for
each of the parameters. In the next step, the sensitivity associated with the modeling results generated
by the variation of individual parameters is calculated with Equations (4)–(6).

Obtaining sensitivity of the parameters includes doing the following:
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• Obtaining box plot from the results of accumulated depths and calculation of mean, standard
deviation and coefficient of variation in order to evaluate the dispersion of the data.

• Obtaining box plot of parameters and calculation of mean, standard deviation and variance in
order to evaluate data dispersion.

Once the sensitivity is calculated, R2 is obtained in order to evaluate the performance of the results
due to the parameters (Equation (8)).

Finally, validation of sensitivity analysis results is carried out using event 2 and repeating the
steps of this methodology.

3. Results

3.1. Sensitivity Analysis Event 1

This section shows the results of the sensitivity analysis carried out in the urban basin of the
Sabinal River using the Equations (4)–(6) and (8) described above. The model’s simulations were
carried out using input data (hydrological and hydraulic parameters and precipitation Event 1) in
SWMM 5.0. In addition, hydrometric station 5 is represented in the model, from which the results of
the cumulative depth series corresponding to the variation of the parameters (1000 embodiments per
parameter) were taken.

Figure 5 shows the variation of the accumulated depths with respect to the parameters.
The accumulated output depth values for MinRate_fe are in a range of 167.03 to 218.56 m, and Nimperv
from 169.94 to 243.66 m, approximately. The accumulated depth values, generated by the MinRate_fe
parameter, within quartile two (179.03) are the closest to the accumulated depth (183.33 m) of the
hydrometric series observed in the Sabinal. The Nimperv parameters that generate depth values closer
to those observed (Figure 5) are observed between the lower limit and quartile one (169.94 to 210.25).
On the other hand, the parameters Decay_k, MaxRate_fa, PctZero, Sperv, Simperv and Nperv generate
output results with less variation between them. As for the variation of the ManN parameter, it does
not generate a change in the modeling results.

Figure 5. Variation of the accumulated depth on the Sabinal River with respect to the parameters.

A key feature of Figure 5 is that MinRate_fe has a positive bias of the accumulated depths, since
the case’s whisker is longer towards the high values (there is greater dispersion of quartile three at the
upper limit of the data), while Nimperv has a negative bias. This is because the box whiskers are long
towards the low values (greater dispersion of the lower limit to the quartile one data).

In Table 4, it can be noted that the results obtained from accumulated depths have greater variation
with respect to the MinRate_fe and Nimperv parameters since the standard deviation and coefficient of
variation are 20.09 m and 10.73%, respectively, for MinRate_fe, and for Nimperv, the standard deviation
is 19.85 m and coefficient of variation is 8.97%.
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Table 4. Mean μ, standard deviation σ, and coefficient of variation Cv of the depth values with respect
to the parameters, Event 1.

Parameter μ (m) σ (m) Cv (%)

Nimperv 221.30 19.85 8.97
Nperv 178.05 2.15 1.21

Simperv 178.31 1.96 1.10
Sperv 175.10 3.89 2.22

PctZero 177.75 3.23 1.82
MaxRate_fa 170.61 3.34 1.96
MinRate_fe 187.25 20.09 10.73

Decay_k 178.57 1.85 1.04
ManN 176.08 0.00 0.00

Once the analysis of the accumulated depths had been done, sensitivity analysis was carried out
for each of the expressions presented. Figure 6 shows that the rate of change of the random parameters
used in this analysis generated different values of absolute–relative sensitivity indexes, except ManN,
the value of which was zero because it had no variation in accumulated depth. As a result, in quartile
three at the upper limit, the parameters MinRate_fe and Nimperv have greater dispersion of the
high values (positive bias) and of absolute-relative sensitivity values: 0.0810 to 0.1890 and 0.0761 to
0.1767, respectively.

Figure 6. Comparison of parameters with respect to the absolute–relative sensitivity index, Event 1.

On the other hand, Figure 7 shows the results of the relative–absolute sensitivity. The Nimperv
and Nperv parameters have high dispersion values: Nimperv from 1.1232 to 2.1777 (quartile three at
upper limit) and Nperv from 0.2231 to 0.4943 (quartile three to upper limit), both parameters with
positive bias. All other parameters have low sensitivity values with less dispersion.

Figure 7. Comparison of parameters with respect to the relative–absolute sensitivity index, Event 1.
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Finally, Figure 8 shows the sensitivity values of the parameters obtained from the relative–relative
relationship: the Nimperv and MinRate_fe parameters are those with high sensitivity values and with
the highest dispersion ranging from quartile two to the upper limit. The sensitivity values for Nimperv
range from 0.0482 to 0.1635 and for MinRate_fe from 0.0554 to 0.2180. As in calculations with previous
sensitivity calculation expressions, the other parameters have less bias in the obtained values.

 
Figure 8. Comparison of parameters with respect to the relative–relative sensitivity index, Event 1.

Table 5 shows the statistical characteristics of each of the above figures, which correspond to the
different methods to obtain the sensitivity of the model results according to the parameters. For example,
the absolute–relative sensitivity values of the Nimperv parameter are 0.1047 and 0.0110 of standard
deviation and variance, respectively; 0.5723 for standard deviation and 0.3276 for variance in the case
of relative–absolute sensitivity; and for relative–relative sensitivity, 0.04870 for standard deviation and
0.00237 for variance. In the case of MinRate_fe for the relative–absolute sensitivity, the values are 0.2223
and 0.00494 for standard deviation and variance, respectively, and for the relative–relative sensitivity
they are 0.08626 for standard deviation and 0.00744 for variance. In the case of relative–absolute
sensitivity, instead of MinRate_fe, it was the Nperv parameter with values of 0.3961 for standard
deviation and 0.1569 for variance.

Table 5. Mean μ, standard deviation σ and variance, σ2 of sensitivity values, Event 1.

Parameter
Absolute–Relative Relative–Absolute Relative–Relative

μ σ σ2 μ σ σ2 μ σ σ2

Nimperv 0.0670 0.1047 0.0110 0.7875 0.5723 0.3276 0.05945 0.04870 0.00237
Nperv 0.0139 0.0491 0.0024 0.2332 0.3961 0.1569 0.02644 0.06645 0.00442

Simperv 0.0116 0.0241 0.0006 0.0061 0.0262 0.0007 0.02112 0.05493 0.00302
Sperv 0.0184 0.0424 0.0018 0.0041 0.0192 0.0004 0.02677 0.05586 0.00312

Pctzero 0.0187 0.0419 0.0018 0.0009 0.0066 0.0000 0.02659 0.07668 0.00588
Maxrate_fa 0.0207 0.0695 0.0048 0.0007 0.0042 0.0000 0.03378 0.06498 0.00422
Minrate_fe 0.0970 0.2223 0.0494 0.0202 0.0660 0.0044 0.08293 0.08626 0.00744
Decay_k 0.0109 0.0240 0.0006 0.0026 0.0106 0.0001 0.02447 0.07148 0.00511
ManN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000

Based on the above analysis, Figure 9a (medium sensitivity) and Figure 9b (maximum sensitivity,
according to the upper limit of the whisker box) show the most sensitive parameters in the hydrological
simulation model.
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(a) (b) 

Figure 9. (a) Average sensitivity of modeling parameters and (b) maximum sensitivity of modeling
parameters, Event 1.

R2 was calculated according to the methodology. In Figure 10, R2 efficiency results are shown:
it can be seen that the R2 values for Nimperv are in the range of 0.31 to 0.82, having greater amplitude
in the whiskers box. The next parameter with greater amplitude in the whiskers box is MinRate_fe,
with a range of R2 from 0.62 to 0.79. The other parameters have less bias in the obtained values.

Figure 10. Comparison of parameters with respect to R2, Event 1.

Based on the sensitivity and R2 calculation, Figure 11a,b show the behavior of the depths generated
by Event 1. This shows the change of the depth hydrogram according to the maximum, minimum and
mean value and the parameter value with greater R2, for parameters with higher Nimperv sensitivity
and MinRate_fe.

 
(a) (b) 

Figure 11. Depth levels of Sabinal river using (a) Nimperv parameter and (b) MinRate_fe parameter.
The blue line is a minimum value, the magenta line is an average value, the green line is a maximum
value, the red line is a parameter with a maximum value of R2 and the black line is depth levels in
hydrometric station.
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In contrast to Figure 12a,b, the change in the depth hydrogram is observed according to the
maximum, minimum, mean value and the parameter value with the highest R2 for two of the parameters
with lower Simperv sensitivity and Decay_k.

 
(a) (b) 

Figure 12. Depth levels of Sabinal river using (a) Simperv parameter and (b) Decay_k parameter.
The blue line is a minimum value, the magenta line is an average value, the green line is a maximum
value, the red line is a parameter with maximum value of R2 and the black line is depth levels in
hydrometric station.

3.2. Validation of Results, Event 2

This section shows the results of the sensitivity analysis carried out in the urban basin of the
Sabinal River according to the methodology proposed (expressions (4), (5), (6) and (8)). The modeling
was carried out with the input data (hydrological and hydraulic parameters and precipitation Event 2).
In this case, the accumulated depth of the observed hydrometry was 201.25 m.

Figure 13 shows the variation of the accumulated depths with respect to the parameters, and it can
be observed that the parameter that generates the greatest variation in the accumulated output depth
values is Nimperv, which is in a range of 371.58 to 496.41 m. The accumulated depth values, generated
by the Nimperv parameter, within the lower bound and quartile two (371.58 to 437.20), are the most
dispersed and close to the observed accumulated depth. The MinRate_fe parameter generated depth
values close to observed and less dispersion than the previous parameter (Figure 13) are observed
between the lower bound and the upper bound (367.84 to 384.52). On the other hand, the parameters
MaxRate_fa, PctZero, Decay_k, Sperv, Simperv and Nperv generate output results with less variation
between them (compact boxes). As for the variation of the ManN parameter, these do not result in a
change in modeling results.

Figure 13. Variation of the accumulated depth on the Sabinal River with respect to the parameters.
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One key feature in Figure 13 is that for Nimperv, it has a negative bias of the accumulated depths,
since the whisker of the box is longer towards the low values (there is greater dispersion of the lower
limit to quartile one of the data). With respect to the above, in Table 6, it can be noted that the results
obtained from accumulated depths have greater variation with respect to the Nimperv parameter, since
the standard deviation and coefficient of variation are 32.47 m and 7.12%. For MinRate_fe, the standard
deviation is 4.89 m and the coefficient of variation is 1.30%.

Table 6. Mean μ, standard deviation σ, and coefficient of variation Cv of the depth values with respect
to the parameters, Event 2.

Parameter μ (m) σ (m) Cv (%)

Nimperv 455.74 32.47 7.12
Nperv 379.46 4.38 1.15

Simperv 383.17 2.60 0.68
Sperv 380.89 3.85 1.01

PctZero 383.11 2.66 0.69
MaxRate_fa 376.21 3.44 0.91
MinRate_fe 376.43 4.89 1.30

Decay_k 383.45 2.38 0.62
ManN 387.46 0.00 0.00

On the other hand, the sensitivity results indicate that parameter Nimperv has greater dispersion
(positive bias) in quartile three and the upper limit (Figure 14), where the values of absolute–relative
sensitivity range from 0.0654 to 0.1514, respectively. In contrast, the parameters MinRate_fe, Decay_k,
MaxRate_fa, PctZero, Sperv, Simperv and Nperv have sensitivity values with less dispersion.

Figure 14. Comparison of parameters with respect to the absolute–relative sensitivity index, Event 2.

Figure 15 shows the results of the relative–absolute sensitivity: the Nimperv and Nperv parameters
are the ones with the highest sensitivity values with respect to the model outputs; in this case, Nimperv
from 0.7863 to 1.4513 (quartile three at upper limit) and Nperv from 0.2231 to 0.4943 (quartile three to
upper limit), both parameters with positive bias. All other parameters have low sensitivity values with
less dispersion.
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Figure 15. Comparison of parameters with respect to the relative–absolute sensitivity index, Event 2.

Finally, Figure 16 shows the sensitivity values of the parameters obtained from the relative–relative
relationship: the Nimperv parameter is the one with high sensitivity values with the highest dispersion
ranging from quartile three to the upper limit. In this case, the sensitivity values for Nimperv range
from 0.0679 to 0.1326. As in calculations with previous sensitivity calculation expressions, the other
parameters have less dispersion in the obtained values.

Figure 16. Comparison of parameters with respect to the relative–relative sensitivity index, Event 2.

Table 7 shows the statistical characteristics of each of the above figures, which correspond to
the different methods of obtaining the sensitivity of the model results according to the parameters.
For example, the Nimperv parameter for relative–absolute sensitivity has values of 0.1031 and 0.0106
of standard deviation and variance, respectively. On the other hand, these values are 0.6241 for the
standard deviation and 0.3895 of variance with the relative–absolute sensitivity. Finally, for relative–
relative sensitivity, these values are 0.05722 for standard deviation and 0.00327 for variance. In this
case, the Nperv and Simperv parameters are not considered, because having a large amount of outlier
data causes the standard deviation and sensitivity variance values to increase.

Based on the above analysis, Figure 17a,b show the medium sensitivity and maximum sensitivity
(according to the upper limit of the whisker box) of parameters that generate the sensitivity in the
hydrological simulation model.
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Table 7. Mean, μ, standard deviation, σ, and variance, σ2, of sensitivity values, Event 2.

Parameter
Absolute–Relative Relative–Absolute Relative–Relative

μ σ σ2 μ σ σ2 μ σ σ2

Nimperv 0.0596 0.1031 0.0106 0.6875 0.6241 0.3895 0.05345 0.05722 0.00327
Nperv 0.0107 0.0221 0.0005 0.2182 0.6057 0.3668 0.02482 0.10692 0.01143

Simperv 0.0090 0.0445 0.0020 0.0059 0.0323 0.0010 0.03140 0.20057 0.04023
Sperv 0.0107 0.0294 0.0009 0.0023 0.0090 0.0001 0.02197 0.10039 0.01008

Pctzero 0.0090 0.0415 0.0017 0.0005 0.0028 0.0000 0.02181 0.07978 0.00637
Maxrate_fa 0.0108 0.0321 0.0010 0.0002 0.0008 0.0000 0.02257 0.10334 0.01068
Minrate_fe 0.0490 0.3743 0.1401 0.0057 0.0305 0.0009 0.03501 0.23318 0.05437
Decay_k 0.0086 0.0340 0.0012 0.0017 0.0108 0.0001 0.02140 0.10890 0.01190
ManN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000

 
(a) (b) 

Figure 17. (a) Average sensitivity of modeling parameters and (b) maximum sensitivity of modeling
parameters, Event 2.

R2 was calculated according to the methodology. In Figure 18, R2 efficiency results are shown,
where the R2 values for Nimperv are in the range of 0.35 to 0.74, having greater amplitude in the
whiskers box. The other parameters have less bias in the obtained values.

Figure 18. Comparison of parameters with respect to R2, Event 2.

Based on the sensitivity and R2 calculation, Figure 19a,b show the behavior of the depths generated
by Event 1. This shows the change of the depth hydrogram according to the maximum, minimum,
and mean values and the parameter value with greater R2. These four parameters have higher Nimperv
sensitivity and one of the lowest sensitivity parameters, MinRate_fe.
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(a) (b) 

Figure 19. Depth levels of Sabinal river using (a) Nimperv parameter and (b) MinRate_fe parameter.
The blue line is a minimum value, the magenta line is an average value, the green line is a maximum
value, the red line is a parameter with maximum value of R2 and the black line are depth levels in
hydrometric station.

4. Discussion

Some authors, such as Baek et al. and Sharifan et al. [42,43], suggest Nimperv and ManN as
influential parameters in modeling with SWMM. Other researchers like Randall et al. [8] identified
Horton’s infiltration speeds as relatively sensitive parameters. Temprano et al. [44] also found the
parameter with the highest sensitivity is the percentage of impervious surface. Guan et al. [45–47] report
that the sensitive parameters in modeling in SWMM are those related to waterproofness, specifically in
areas with depressions, Manning n of surfaces, and ducts.

This work implements the use of scarce data. Two different precipitation events and nine different
input parameters were used. Each event was evaluated to show the robustness of the sensitivity
analysis methodology in the hydrological modeling of urban basins, due to each individually analyzed
parameter. The results show differences in the sensitivity of the model to the calculated parameters,
where there is the accumulated depth as the comparison target.

For Event 1, it was found that the parameters with the highest sensitivity are Nimper and
MinRate_fe. For Nimperv, cumulative depth values decrease while Nimperv values decrease and
increase their values in the same way the parameter values grow. In the case of MinRate_fe, as the
value of the parameter is lowered, the accumulated depth increases, and as the value of the parameter
increases, the accumulated depth decreases. The above has a direct impact on the peak flow and runoff
volume of the output hydrogram. For example, a high Nimperv value produces a dimmed output
hydrogram with a higher runoff volume. A small Nimperv value produces a hydrogram with higher
peak flow and lower runoff volume. In the case of MinRate_fe, a low parameter value produces an
output hydrogram with high peak flow and higher runoff volume, and a high parameter value results
in a hydrogram with a lower runoff volume and high peak flow.

In the case of validation with Event 2, the highest sensitivity parameter is Nimperv. The behavior
of the parameter values and the values of the output hydrograms behave in the same way as in the
previous case: its impact is on the volume of runoff and peak flow. MinRate_fe is less sensitive because
the precipitation event is made up of two storms, and as a result, there is greater saturation in the
ground at the end of the first peak of the storm. The remaining parameters for both Event 1 and Event
2 have a lower sensitivity relative to the result spectrum of the accumulated depths and have less
influence on runoff volume and peak flow. In addition to the configuration of the basin and the location
of the analysis point, the ManN parameter does not generate sensitivity in the model outputs. This may
be due to the amount of base flow, the runoff generated by the nearby sub-basins, and the velocity.

According to the results, these parameters can be applied to carry out the calibration process.
In turn, these parameters can be used individually or together. For example, in this case, R2 efficiencies
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greater than 0.60 were found, indicating that there is more than one possible Nimperv parameter value
that calibrates the model with a reliable fit, that is, forming sets of two or more parameters and thus
having a better fit to the observed hydrogram [48]. The results show that with the methodology used,
it is possible to have reliable calibration with scarce data. According to this study, having more than
one hydrometric station would be calibrated according to the area of influence of the station, applying
the methodology used in this research.

For expressions for calculating the sensitivity of modeling results with respect to the reason for
changing the parameters, it was found that they correctly identify the parameters that cause the most
variation in the results. SWMM correctly represents the rainfall–runoff phenomenon, and the sensitivity
of the input parameters depends on the characterization of the basin under study, precipitation and
antecedent moisture, so the order of sensitive parameters is different for each area under study.

5. Conclusions

This study reflects the importance of sensitivity analysis of hydrological and hydraulic parameters
interacting in a hydrological model of an urban basin, mainly because these parameters allow one to
perform an adequate calibration of a model in which the runoff time series best fit the observed data
obtained from hydrometry.

Therefore, an effort should be made to perform this type of analysis and give certainty to the results
in modeling. Thus, it is also important to perform sensitivity analysis with different methodologies
that fit the needs of the modeler, since each case study is different.

For the case study, it can be concluded that satisfactory results were obtained, achieving the
objective of characterizing the sensitivity of the modeling parameters under a framework of hydrometric
data shortages and obtaining the result that the most important parameters of this basin are Nimperv
and MinRate. In addition, the analysis was not only performed using the Equations (4)–(6) but
complemented by the calculation of the standard deviation, variance and R2 of the result. Implemented
R2 shows that there are several parameters that provide a good representation of the system. The results
show that the sensitivity of the parameters depends on the basin under study and the effects of secondary
interactions between the model parameters. It is also shown that the most sensitive parameters in a
simulation vary according to the storm and the accumulated precipitation. As Knighton [21] suggested,
SWMM is well parameterized for the calculation of the rainfall–runoff ratio, so care must be taken
when identifying sensitive parameters and the order in which they are applied.

In cases where data scarcity is high, the implementation of methods that enable the quantification
of sensitivity in model predictions permit more reliable results.

Finally, subjectivity in rainfall–runoffmodeling should be considered, since it depends mainly
on the expertise decision-making of the modeler; in future studies, the uncertainty analysis of such
models should be considered as well.
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Abstract: Intensity–Duration–Frequency (IDF) curves describe the relationship between rainfall
intensity, rainfall duration, and return period. They are commonly used in the design, planning and
operation of hydrologic, hydraulic, and water resource systems. Considering the intense rainfall
presence with flooding occurrences, limited data used to develop IDF curves, and importance
to improve the IDF design for the Ensenada City in Baja California, this research study aims to
investigate the use and combinations of pluviograph and daily records, to assess rain behavior
around the city, and select a suitable method that provides the best results of IDF relationship,
consequently updating the IDF relationship for the city for return periods of 10, 25, 50, and 100 years.
The IDF relationship is determined through frequency analysis of rainfall observations. Also, annual
maximum rainfall intensity for several duration and return periods has been analyzed according to
the statistical distribution of Gumbel Extreme Value (GEV). Thus, Chen’s method was evaluated
based on the depth-duration ratio (R) from the zone, and the development of the IDF relationship
for the rain gauges stations was focused on estimating the most suitable (R) ratio; chosen from
testing several methods and analyzing the rain in the region from California and Baja California. The
determined values of the rain for one hour and return period of 2 years (P2

1) obtained were compared
to the values of some cities in California and Baja California, with a range between 10 and 16.61 mm,
and the values of the (R) ratio are in a range between 0.35 and 0.44; this range is close to the (R) ratio
of 0.44 for one station in Tijuana, a city 100 km far from Ensenada. The values found here correspond
to the rainfall characteristics of the zone; therefore, the method used in this study can be replicated to
other semi-arid zones with the same rain characteristics. Finally, it is suggested that these results
of the IDF relationship should be incorporated on the Norm of the State of Baja California as the
recurrence update requires it upon recommendation. This study is the starting point to other studies
that imply the calculation of a peak flow and evaluation of hydraulic structures as an input to help
improve flood resilience in the city of Ensenada.

Hydrology 2020, 7, 78; doi:10.3390/hydrology7040078 www.mdpi.com/journal/hydrology
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1. Introduction

Intensity–Duration–Frequency (IDF) relationship, or IDF curves, is a representation of intense
rainfall events that allows for calculation of a peak flow needed to design hydraulic structures
(e.g., storm sewers, culverts, drainage systems), to assess and predict flood hazard, and design flood
protection structures [1–3]. Most of these structures were designed in many developing countries a long
time ago without an updated IDF—remarkable, since rain is a variable that changes with space and
time. Consequently, any update from the IDF relationship in urban catchments will necessarily imply
revision and modification of the local standard structural designs [4]. The updated IDF design would
also help to predict flood risk occurrences and map flood hazards of the expected peak flow. This is
especially relevant in arid and semiarid zones where rain characteristics indicate that yearly variation
in storms is very large, and the intensity of rare storms is always very high for a brief period, and so
therefore the flooding is of sudden occurrence and rapid rise [5]. Northwest Mexico is a semi-arid
region with low annual average rainfall; however, with the presence of rainfall intensities associated
with climate variability, that has caused flooding [6–8].

The Intensity-Duration-Frequency relationship design is based on the measurement of peak
rainfall events, regarding duration and developed for a certain recurrence interval or return period [9],
where accuracy depends on the rainfall characteristics, such as magnitude, frequency, and duration [10,11].
The analyzed data is the precipitation time series, modeled for future projections at a regional scale.
These projections indicate that the precipitation return period tends to increase if the climate conditions
do not change [12,13]. However, due to Climate Change, there are uncertainties of intense rainfall
occurrence affecting the return period of the IDF design, which in turn tends to decrease in some global
regions [14]. This issue makes it necessary for trend analysis of the extreme rainfall events to design or
update the IDF relationship.

The best estimation of the precipitation intensity (unit/time) is directly obtained from the automatic
(pluviograph) weather station that measures the sub-hourly rain, and for which the records are
automatically transmitted every five or ten minutes [15,16]. There is a low density of this kind of
weather station in the Mexican territory, though. The separation between stations should be between 5
and 30 km [17,18] according to the Manual on the Global Observing System proposed by the World
Meteorological Organization. However, distance between the stations in Mexico is 70 km on average;
thus, there is a lack of information between stations along space and time. In the country, and only
since 1999, the available sub-hourly rain records have been registered through automatic weather
stations (EMAs), by the National Meteorological Service (SMN).

The Ensenada’s city has two IDF designs: one published as an Official Norm by the State of
Baja California, with daily rainfall records from 1948 to 2008, just for one station [19]; and the other,
by the Federal Communication and Transportation Ministry (SCT) published in 2000, and whose
analyzed time series are unknown [20]. These are the only IDF studies found in the literature for
the study area, and both serve as official Mexican documents [21,22]. Due to a lack of automatic
stations, none of these studies used the pluviograph records from the last two decades (2000–2020),
to assess extreme rainfall events necessary to develop the IDF curves. This problem of a lack of data
and weather stations is evident in several cities in Mexico; however, to minimize the inconvenience of
the periodicity of measurements and the distance between weather stations, most studies in Mexico
have used different empirical methods to estimate the IDF relationship based on daily rainfall from
standard rain gauges (pluviometric), suggesting that the Chen method [23] is the most appropriate for
the IDF estimation [24,25].

Considering flood occurrence caused by intense rains, the insufficient studies on the IDF
relationship, lack of pluviographic information, and other important aspects for planning hydraulic
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structures in Ensenada city and its surroundings, it is necessary to carry out a detailed analysis of
the Intensity–Duration–Frequency relationship for the area. Therefore, the purpose of this study is to
analyze, estimate, and propose the Depth–Duration–Ratio (R), appropriate for the characteristics of
the rains that occur in the study area, to obtain representative IDF curves. For this, it is necessary to
estimate the rainfall of one hour, and the return period (P2

1) of two years. (P2
1) is traditionally derived

from the proposals made by Hershfield [26], Reich [27], and Bell [28] in areas where only pluviometric
information is available. However, based on pluviographic information obtained in automatic stations,
it was possible to adjust the expression of Bell [28] that represents the characteristics of the rainfall
occurring in the study area. Based on this, the Chen method [23] is used to obtain the IDF curves
and consequently their updating for the return periods of 10, 25, 50, and 100 years. Additionally,
the spatial distribution of the rainfall-duration ratio (R) was obtained, which facilitates obtaining the
IDF relationship with the Chen method [23] in places where there are no pluviographic and standard
rain gauge stations.

Finally, the adequate estimation of IDF curves will allow and guarantee the planning and optimal
design of hydraulic structures. Future flood hazard studies and consequently disaster risk management
will also benefit directly from this work.

2. Materials and Methods

The urban zone of Ensenada and its surroundings has been selected as the study area, located on
the Pacific coast of Baja California (31◦30’–31◦60’N; 116◦50’–116◦10’W. See Figure 1). This zone, in the
northwest of Mexico, has a semiarid climate, with convective type rains characterized for being intense
and of short term. The average annual rainfall is 273 mm, where the rainy season usually occurs
between November and April. Topographic landscape is variable, with steep slopes, alluvial valleys,
and an alluvial coastal plain [29]. This area is divided into four urban and seven rural subbasins that
drain toward the Pacific coast. There are 11 weather stations inside the basins located at different
elevations, that contain the main data to achieve the purpose of the study (Figure 1).

Figure 1. Study area location showing sub-basins and distribution of weather stations.

The required data to develop the IDF relationship in the study zone were the maximum
rainfall events, annually recorded at different durations; obtained from four automatic stations
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(pluviograph records). On the other hand, historical rainfall data of ten standard rain gauges (daily
rainfall records) were collected and included in the calculations (Table 1).

Table 1. Rain gauge network from the study zone.

Station
Name

Station ID
Elevation
above Sea
Level (M)

Type of
Records

Lat Long
Record
Length

Source of Data

Emilio
Lopez

Zamora
2072 43 10 min

24 h 31.89 −116.60 1999–2019
1940–2019

CONAGUA
CONAGUA/CICESE

CICESE CIC 60 5 min 31.86 −16.66 2007–2019 CICESE

Guadalupe 2036 361 5 min
24 h 32.02 −116.61 2009–2019

1954–2019
CICESE

CONAGUA
Ojos

Negros 2035 680 5 min
24 h 31.91 −116.23 2009–2019

1948–2019
CICESE

CONAGUA
Agua

Caliente 2001 400 24 h 32.10 −116.45 1969–2011 CONAGUA

Boquilla
de Santa

Rosa
2005 250 24 h 32.02 −116.77 1969–2011 CONAGUA

San Carlos 2045 164 24 h 31.78 −116.46 1969–2011 CONAGUA
Santo
Tomas 2065 180 24 h 31.79 −116.40 1969–2011 CONAGUA

El Alamar 2079 710 24 h 31.83 −116.20 1969–2011 CONAGUA
Maneadero 2106 50 24 h 31.69 −116.57 1969–2011 CONAGUA

Punta
Banda 2108 15 24 h 31.71 −116.66 1969–2010 CONAGUA

5-min: automatic stations, 24 h (daily): rain gauge stations. Lat: latitude, Long: longitude.

Based on the characteristics of the study area and available precipitation data, the methodology
was defined with the steps shown in Figure 2.

Figure 2. General diagram of the methodology.
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Table 1 introduces four automatic stations. The Emilio Lopez Zamora station is the automatic
station with more recorded data. It has 20 years of records, with measures from every ten minutes.
This station is managed by a governmental agency called Comisión Nacional del Agua (CONAGUA).
The other three automatic stations scarcely have 10 years of records, with measures for every five minutes.
They are CICESE (CIC), Guadalupe (2036), and Ojos Negros (2035); all three were administered by
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). From these data,
the maximum rainfall events of each year were identified and classified by their magnitude and
duration in order to estimate the IDF curves.

Identification of each event was based on the continuous pluviograph records, from the rain start,
until it stopped for more than one hour; e.g., if the rain ended at any time, but it suddenly started
before an hour passed, this record was considered to be part of the previous event. Nonetheless,
it was also considered a separate event during the day if, after one event had occurred, there were
two hours without rain, and it started to rain again. Once all events were identified, they were
classified by duration and magnitude to select the most intense of every year. Intensity is defined
by the rain magnitude in mm, registered for a determined time; e.g., there are events with the same
magnitude and different durations in hours, where the most intense is always the one with the shortest
duration. Measures of the events recorded by the four automatic stations had different durations.
In some automatic stations, the longest event recorded (not the most intense), was one of 180 min.
Other intense events had a duration of only 10 minutes. However, most of the intense events had a
duration of 120 min; therefore, this duration was selected to identify the intense events of each year.
López–Lambraño developed this method to identify and classify the intense events [30], and it has
been satisfactorily applied by Maldonado et al. [31].

Regarding rainfall information, there are 10 stations around the city of Ensenada (Table 1),
which have records of maximum rainfall in 24 h, from 1940 to 2011. In the same location of these
stations there are three automatic stations (2072, 2036 and 2035), which have data from 1999 to
2019. Thus, the time series of the pluviometric data of these three stations were completed from the
pluviograph records (automatic stations); e.g., for station 2072 a time series of 79 years was obtained.
This was achieved through the daily accumulation of rainfall recorded every 10 min in that station
until 2019. This same procedure was performed for stations 2036 and 2035.

A trend analysis was carried out on the pluviographic and pluviometric data, to determine the
trend lines and verify if the registered rainfall tends to increase or decrease in the area. The stationarity
in all the stations was also verified through the Augmented Dickey–Fuller test, which is a unit root test
that allows accepting or rejecting the stationarity hypothesis in a time series [32]. Subsequently, the Chi
square goodness and fit test was performed for the precipitation data analyzed with the probability
distribution functions of Gumbel type I, Log-normal, Frechet and double Frechet to verify which of
them presented the best fit.

The development of the IDF relationship is a procedure that starts with data availability, type of
records, years of records, quality, and coverage, to choose an efficient method and claim the best results.
Two methods, for different conditions, were applied in this case to estimate the IDF relationship for
the return periods of 10, 25, 50, and 100 years. These periods, proposed by the National Agency for
Prevention of Disasters, are suitable for the design of minor urban hydraulic structures and flood
hazard assessments [21]. The first method to estimate the IDF relationship is applied to pluviograph
data (from automatic stations). These data provide the real intensity that occurred for each rain
event through the years and can be extrapolated applying a probability distribution. The Generalized
Extreme Value Distribution (GEV) is usually applied to estimate IDF curves, like the extrapolation of
the available data to estimate the peak value of the sample. The Gumbel’s method, based on the theory
of extreme values, is the first method applied here, where the probability of an event of a determined
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magnitude not being equaled or exceeded, can safely be adopted and have been widely used [30,33].
This is expressed by the Equation (1).

F(X) = e[−e(−
X−μ
α )] (−∞ < X ≤ ∞) (1)

where 0 < α < ∞ is the scale parameter, −∞ < μ < ∞ is the location parameter or central value, e is the
base of the Naperian logarithms, α, X, and μ; corresponding to the parameters of the statistic moments
of the distribution. The distribution derivative provides the probability density function where the
values of X, for different return periods (T), are estimated by means of:

XT = μ+ αYT (2)

YT = − ln
[
ln
( T

T − 1

)]
(3)

Confidence intervals are important to estimate the return period and data accuracy. Generally,
the data to calculate the IDF curves have a standard error of 10% for short return periods and 20%
for periods of 50 and 100 years [28]. By Gumbel’s method, applied to the automatic data, the IDF
curves can be estimated with a confidence value for a return period of 20 years, considering the 10 and
20 years of records from the three automatic stations. The IDF curves for a return period of 20 years are
very useful for minor urban structures design. However, to develop the IDF curves for large return
periods, such as 50 or 100 years, there would be uncertainty when applying the Gumbel method.
Therefore, the requirement to apply Gumbel’s method with a good confidence value, would be to have
a long series of precipitation data.

Pluviograph records were useful to have real data of the events to estimate IDF for short return
periods but were not enough for extrapolating rainfall intensities for the larger return periods. Therefore,
the use of daily rainfall depth, from the standard rain gauges, was necessary to make the calculation of
the rainfall intensity for all the return periods proposed. This allows us to counteract the calculations
with the automatic data and disseminate better results.

Consequently, a second method to develop the IDF curves recommended for urban hydrological
design in the Mexican Republic [24] is applied to daily rainfall records (from the 10 standard rain
gauges). This method was developed by Chen as an alternative of the absent pluviograph records [23],
by the following equation:

PTr
t =

aP10
1 log

(
102−XTrX−1

)
t

60(t + b)c (4)

where, PTr
t is the intensity of precipitation in mm/h, P10

1 = R(P10
24), P10

1 is the rain in mm, generated in

one hour for a return period of 10 years, (X) is the ratio of the rain-return period X =
P100

t
P10

t
, P100

t and P10
t

is the rain of 24 h and return period of 100 and 10 years respectively. (Tr) is the return period in years,
(t) is the duration in minutes, (a), (b), and (c) are parameters of regional characterization of the rain
defined by the (R) ratio.

The depth-duration ratio (R) is the most important parameter to estimate the IDF relationship,
from daily records, by using the Chen equation for a specific geographic location, because this ratio is
related to rain characteristics of the zone [34]. As shown before, Equation (4) is based on (R) ratio to
determine the rain of one hour and a return period of ten years P10

1 , and therefore, the rain for a given
return period. The (R) ratio for any average condition of rainfall over any geographical areas, also,
has been proposed by Chen [23], through the following equation:

R =
P2

1

P2
24

(5)
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where, (P2
1) is the rain in mm, generated in one hour for a return period of 2 years. (P2

24) is the rain
in mm, generated in 24 h for a return period of 2 years. This value is easily estimated by applying
Gumbel distribution for each standard rain gauge. (P2

1) can be estimated from pluviograph records
applying the Gumbel distribution for each station. However, the issue to apply formula 5 is finding the
value of the rain of one hour and a return period of two years (P2

1), when there are only daily records,
not pluviograph records. Therefore, to validate Chen’s method in this region, it was considered to
make a good estimation of (R) ratio through the value of (P2

1).
Several alternatives to apply Equation (5) for any geographic area, based only on daily records,

have been given by Hershfield and Wilson through a diagram that relates the mean of maximum
annual observations of precipitation days with the mean annual number of thunderstorm days; Reich,
through a proposed world isopluvial map of 2-year/1-h maximum precipitation; and Bell, based on
Hershfield method through the following equation:

P2
1 = 0.17MN

0.33
(6)

Equation (6) could be applied if 0 <M ≤ 2.0, 1 < N ≤ 80, in which (P2
1) = 2-yr, 1-h rainfall in inches:

M = mean of maximum annual observational—precipitation day in inches: and N = mean annual
number of thunderstorm days.

The purpose was to find the R-value to 10 rain gauge stations applying Equation (5), where (P2
24)

was easily estimated using daily records, by applying Gumbel distribution (Equations (2) and (3)).
In the case of (P2

1) there are three stations with pluviograph records and seven stations with daily
records, the issue was to find (P2

1) for the seven stations with daily records. Consequently, it was
decided to evaluate the methods available for estimating the value of (P2

1) and choosing the best way
of finding the accurate (P2

1) to calculate the (R) ratio.
The process started by knowing the approximated value of the (P2

1) along the regional area
to compare them with the estimated values through the mentioned methods, started the process.
Approximated values of (P2

1) in the regional area were examined through a literature review of regional
studies. This review, with the same rainfall characteristics, includes California in the US (CA), near to
the international border, and Baja California in Mexico, as shown in Figure 1.

The first method evaluated to calculate (P2
1) was the Gumbel distribution using pluviograph

records from stations: CIC, 2072, 2036, and 2035. Then, a weighted average of (P2
1) was estimated from

the four automatic stations, through the Thiessen polygon. The averaged value was assigned to the
seven rain gauges stations, to replace it in Equation (5) and have the first (R) value in the zone, as (R1).

The next step was to calculate (P2
1) for the 10 rain gauges stations through the methods previously

described methods; Hershfield, Bell, and Reich [26–28]. Each value was replaced in Equation (5) to
have different values of (R) like (R2) and (R3). Three different (R) values were estimated. Nevertheless,
from the different values of (P2

1), it was considered to search for a relationship to provide values
of (P2

1) for the rain gauges stations close to the values of (P2
1) estimated from pluviograph records.

The Hershfield and Bell methods provide the same results. This way, a new method to find (P2
1)

was derived from Bell´s formula (Equation (6)). After several tests of parameters variation, the new
relationship resulted from modifying Equation (6) in the following equation:

P2
1 = 0.12MN0.33 (7)

The (P2
1) values estimated from Equation (7) were replaced in Equation (5) to have new values

of (R), such as (R4). Therefore, the evaluated methods provided four different results of (R1 . . . 4).
The challenge was to choose the best method of finding (R); thus, to address this challenge, an average
of all calculated (R) was made, and this average was proposed as the best option to determine the (R)
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ratio for the city of Ensenada (Equation (8)). A summary of the process to find (R) ratio for each station
in the zone is represented in Figure 3.

R =

n∑
i=1

R

n
(8)
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Figure 3. Procedure to determine the (R) ratio proposed. R is the average ratio and n is the number of
(R1 . . . 4) calculated for each (P2

1).

Once the (R) ratio was determined for each rain gauge station, the spatial distribution of the (R)
ratio was drawn on a map by interpolation, using the Inverse Distance Weighting (IDW) method.
The error analysis of this spatial interpolation was carried out between actual and interpolated values
using three statistical parameters: Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
coefficient of determination (r2). Consequently, the distribution of (R) ratio for the study area can be
successfully used to calculate the IDF curves in the zone.

The procedure to develop the IDF relationship for the proposed return periods includes the
combination of pluviograph and daily rainfall records, through the methods described above, testing
different values of estimated (R), and comparing their results, to choose the most suitable, according to
rain characteristics.

The first step was the calculations of the IDF relationship in three automatic stations (2072,
2036, and 2035), using the maximum rainfall events for each year, and applying the Gumbel method
(Equation (1)).

The second step was the estimation of the IDF relationship for the 10 rain gauges stations, with daily
records for more than 40 years, applying the Chen method (Equation (4)). There are three pluviographic
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stations (2072, 2036, and 2035) on the same location from the previous stations. The calculations using
Chen equation included the use of the (R) ratios found with the different methods already mentioned,
for all stations, followed by the comparison of the different results of IDF developments with the IDF
values by the (SCT), and the comparison with the IDF relationship developed in 2011 by the by Norm
of the State of Baja California, that only has results for station 2072.

Therefore, for each rain gauge station, with daily records for more than 40 years, there are several
IDF calculations to enhance the comparison between each other, and have more options to choose the
best results, developed through the following methods:

A. IDF calculated from pluviograph records using Gumbel distribution (Equation (1)); this included
only three stations (2072, 2036, and 2035).

B. IDF calculated from daily records of ten stations (standard rain gauge), using the Chen equation,
where (R) was calculated through the weighted average of the (P2

1) from automatic stations,
applying Gumbel distribution, implementing (R1).

C. IDF obtained by the isohyetal map of the (SCT) only for stations 2072, 2036, 2035, 2001, 2005,
and 2045.

D. IDF calculated from daily records of ten stations (standard rain gauge), using the Chen
equation, where (R) was calculated through the (P2

1) by the modification of Bell equation [28],
implementing (R4).

E. IDF calculated from daily records of ten stations (standard rain gauge), using the Chen
equation, where (R) was calculated through the (P2

1) by the world isopluvial map of Reich [27],
implementing (R3).

F. IDF calculated from daily records of ten stations (standard rain gauge), using the Chen equation,
where (R) was calculated through the (P2

1) by Hershfield and Bell [26,28], implementing (R2),
both methods provide the same results of (P2

1).

G. IDF obtained by the Norm of the State of Baja California only for station 2072.
H. IDF calculated by the average of IDF developed through options A, B, C, D, E, F, and G.
I. IDF calculated from daily records of ten stations (standard rain gauge), using Chen equation,

where (R) is the ratio proposed calculated by Equation (8).

Once the IDF relationships were estimated from the previously established methods,
two comparisons were made. The first comparison was made from the use of methods A, B, C,
D, E, F, and G. The second comparison was made from the use of methods A, C, H, and I. From the
first comparison method A and C were chosen again, considering that method A is very important
because it was developed with pluviograph information (2072, 2036, and 2035 stations), representing
the continuous measure of rainfall intensity. However, the rainfall time series data at stations do not
exceed 20 years of record (Table 1). Thus, the method C was chosen because it corresponds to the
official IDF relationship from the country. The chosen method and the corresponding results of the IDF
curve for the city of Ensenada and its surroundings are shown in the results and discussion section.

3. Results and Discussion

Peak rainfall events of each year were identified from the records of the four automatic stations,
following the previously described method. Table 2 provides the events extracted from the Emilio
Lopez Zamora station (2072). Since this station has the most extensive time series of rainfall data
(20 years), it will be taken to illustrate the maximum precipitation events.
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Table 2. Peak rainfall events for ELZ station (2072).

Peak Rainfall Events (Mm) at Different Durations (ELZ -2072 )
Years 10 min 20 min 30 min 60 min 120 min 180 min

1999 3.30 5.08 5.58 5.58 7.35 9.12
2000 6.35 8.13 8.12 10.40 14.23 20.60
2001 5.59 6.85 8.12 9.14 10.90 13.40
2002 3.05 4.32 4.57 7.11 10.16 11.70
2003 2.54 3.55 5.09 6.60 11.18 12.40
2004 4.83 7.11 9.14 10.90 18.79 24.60
2005 3.56 5.34 6.61 11.70 13.72 13.70
2006 4.32 7.37 9.14 12.40 18.29 18.30
2007 4.32 8.13 12.19 18.03 24.37 35.30
2008 3.56 6.35 6.60 11.40 18.27 21.60
2009 4.83 6.86 9.14 11.40 17.00 18.80
2010 6.86 8.89 9.65 12.20 19.56 23.40
2011 3.56 5.33 7.11 11.40 16.00 20.10
2012 4.83 5.34 6.86 9.15 16.52 16.50
2013 3.05 6.10 6.61 7.61 12.95 19.60
2014 6.60 10.92 12.19 12.70 13.19 13.40
2015 6.80 9.91 12.45 13.20 21.34 22.90
2016 4.32 7.62 8.38 9.90 14.21 17.80
2017 5.84 8.89 9.14 13.00 20.07 22.40
2018 3.00 4.57 6.00 7.40 9.89 13.20
2019 4.40 5.60 7.40 14.60 17.40 27.60

It is clearly seen that the highest precipitation depth of each event occurs during the first 10 and
20 min. These observations confirm the short periods of rainfall events, as a local rain characteristic.
Moreover, to analyze the increase or decrease of extreme events throughout the years, a rainfall
trend has been drawn. The line trend of time series was analyzed from data of the station that have
pluviograph and daily rainfall record. Figure 4 shows the line trend for data of station (2072). Figure 4a
shows the trend of the high daily rainfall depth of every year, and Figure 4b presents the trend of the
extreme rainfall events of the years at different durations, not necessarily the most intense (pluviograph
records). The series presents a positive trend. In both cases, the trend indicates that maximum daily
rainfall depth and peak rainfall events have been increasing with the years and will continue occurring
in the future. In the trend analysis shown in Figure 4a, the slope establishes that the average increase in
the maximum daily rainfall is 18%, i.e., if the current conditions that govern the occurrence of rainfall
in the study area were to be maintained over time, then precipitation would increase at a rate of 1.8 mm
per decade. For the case of Figure 4b there would be an increase of approximately 1.2 mm. The above
magnitudes are considered significant if we consider that precipitation falls over a given coverage area,
which translates into the generation of more direct runoff volume over the city of Ensenada.

Figure 4. Trend analysis for station 2072 using automatic and daily records. (a) Annual maximum daily
rainfall depth. (b) Annual Peak rainfall events.
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These results can also be complemented by a detailed analysis of the rainfall time series for the
State of Baja California [35].

The traditional methods used in hydrology to estimate rainfall and extreme flows for different
return periods are based on the stationarity hypothesis in the probability distribution function of the
series. According to Poveda et al. [36], this hypothesis could not be valid given the effects of climate
change, climate variability, changes in land use, and the records of hydrological variables. Therefore,
the Augmented Dickey–Fuller test was performed to evaluate the rainfall time series in the city of
Ensenada fulfilling the hypothesis of stationarity or non-stationarity (Table 3).

Table 3. Augmented Dickey–Fuller hypothesis test for precipitation data from stations used in the
study area.

Data
Alternative
Hypothesis

(Significance 0.05)
Result p-Value

2072 (Rainfall Data)

10 min Stationary Stationary 0.0382
20 min Stationary Non stationary 0.2505
30 min Stationary Non stationary 0.5175
60 min Stationary Non stationary 0.5984

120 min Stationary Non stationary 0.7600
180 min Stationary Non stationary 0.6485

2001 Stationary Non stationary 0.2235
2005 Stationary Non stationary 0.2138
2035 Stationary Non stationary 0.5035
2036 Stationary Non stationary 0.1968
2045 Stationary Non stationary 0.0870
2065 Stationary Non stationary 0.4364
2072 Stationary Non stationary 0.3331
2079 Stationary Stationary 0.0380
2106 Stationary Non stationary 0.0603
2108 Stationary Non stationary 0.0535

Table 3 shows the results of the Augmented Dickey–Fuller test. The analysis was carried out for a
5% significance level, finding that none of the time series corresponding to weather stations comply
with the stationarity assumption because the p-value is greater than 0.05 [32]. Given the previous
analysis, the Chi-square goodness and fit test was used for the precipitation data analyzed with the
Gumbel type I, Log-normal, Frechet and double Frechet probability distribution functions to verify
which of them had the best fit. In the case of the rain gauge stations, eight were better adjusted to the
Gumbel type I distribution function, and two stations to the double Frechet. The previous analysis was
carried out with a 0.05 confidence level. In the case of the automatic station 2072, both the Gumbel type
I distribution function and the double Frechet distribution function presented equivalent results. Given
the above, it was decided to use the Gumbel distribution function for the analysis of the relationship
Intensity-Duration-Frequency of rainfall in the study area. In addition, it has been found that the
chosen distribution fits well for precipitation in semi-arid areas [11].

The (R) ratio was estimated based on the (P2
1) following the process shown in Figure 3. The result

of the regional review of (P2
1) is shown in Table 4. The regional review reveals that values of (P2

1) from
Southern California to Northern Baja California are in the range between 10 and 16.61 mm, indicating
that values of (P2

1) for the study area should be estimated in this range. For this reason, the evaluation
of the different methods to calculate (P2

1) and estimate (R) followed by the comparison of their results
was carefully analyzed to determine the accurate (R) ratio. The results of (P2

1) are in the range of the
regional review, when (P2

1)1 is calculated by the average of pluviograph and daily records applying
Gumbel, (P2

1)2 is calculated by Hershfield [26], (P2
1)3 is calculated by Reich [27], and (P2

1)4 is calculated
by the adjusting and modification of Bell [28]. The results of (R1...4) ratios estimated for each station
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through the different methods of (P2
1) were averaged to define and support the proposed (R) for each

station. These values are shown in Table 5.

Table 4. Literature review of (P2
1) for California and Baja California.

Location of Weather Stations Rain (P2
1) (mm) Reference

Southern California 12.7 Frevert et al., 1963 [37]
Southern California 12.7 Reich, 1963 [27]

Ensenada B.C 14 Reich, 1963 [27]
San Diego 14.22 Dedrick et al., 1976 [27]

Coronado San Diego, CA 13.13
Ranges (11.48–16.61)

Hodges et al, 1961 [26]
NOAA, 2020 [38]

Chula Vista San Diego, CA 11.63 NOAA, 2020 [38]
Imperial Beach, CA 10.84 NOAA, 2020 [38]

San Ysidro, CA Ranges (9.39–13.63) NOAA, 2020 [38]
Northern of Baja California 10 CENAPRED, 2016 [22]

Table 5. Depth-duration ratio (R) estimated through the average ratios R1 . . . 4 estimated from
(P2

1) and (P2
24). Where (P2

1)1 was averaged of pluviograph and daily records applying Gumbel,
(P2

1)2 calculated by Hershfield [26] and Bell [28], (P2
1)3 calculated by Reich [27], and (P2

1)4 calculated
by the adjusting and modification of Bell [28] (Equation (7)).

Station
(P2

1)1
(mm)

(P2
1)2

(mm)
(P2

1)3
(mm)

(P2
1)4

(mm)
(P2

24)
(mm)

R1 R2 R3 R4 R

2072 10.56 17.35 14.20 12.29 32.90 0.32 0.53 0.43 0.37 0.41
2036 11.00 21.13 13.80 14.92 38.40 0.29 0.55 0.36 0.39 0.40
2035 10.96 17.13 14.50 12.09 31.20 0.35 0.55 0.47 0.39 0.44
2001 10.20 19.40 13.90 11.62 34.70 0.29 0.56 0.40 0.33 0.40
2005 10.20 23.33 13.70 12.86 41.00 0.25 0.57 0.33 0.31 0.37
2045 10.20 22.38 14.50 13.02 39.90 0.26 0.56 0.36 0.33 0.38
2065 10.20 21.87 14.50 11.05 40.70 0.25 0.54 0.36 0.27 0.35
2079 10.20 20.33 14.70 12.96 35.10 0.29 0.58 0.42 0.37 0.41
2106 10.20 18.34 14.50 10.80 34.00 0.30 0.54 0.43 0.32 0.40
2108 10.20 21.22 14.5 10.16 39.70 0.26 0.53 0.36 0.26 0.35

The (R) ratio calculated for each station varied from 0.35 to 0.44; this range is close to the (R) ratio of
0.44 for one station in Tijuana reported by Campos–Aranda [24], which indicates that both cities share
the same rain characteristics. Thus, once the (R) ratio was estimated, the spatial distribution of this ratio
was projected in a map for the study area (Figure 5). The error analysis was carried out between actual
and interpolated values using three statistical parameters: Mean Absolute Error (MAE = 2.341 × 10−14),
Root Mean Square Error (RMSE = 1.53011 × 10−7), and coefficient of determination (R2=1). There is a
significant positive correlation between actual and interpolated values estimated for the depth-duration
ratio. Values for MAE and RMSE indicate that the IDW method created a good interpolated surface for
the whole area of interest based on the observed data. It can be established that in Ensenada City the
average value of R is about 0.39 and this value is proposed as (R) ratio for the area.

It is highly important to highlight that in the absence of pluviograph data, the (R) ratio calculated
becomes the key to develop a satisfactory IDF curves for the standard rain gauge stations, by applying
Chen equation.

IDF curves are commonly developed using historical annual maximum precipitation, this involves
utilization of long-term historical rainfall observations. When sub-daily rainfall records are not
available, the characteristics of extreme rainfall intensities, and subsequently, their distribution
functions corresponding to the short durations might not be captured [39–43]. This problem is clearly
addressed by applying Equation (7) to rain duration ratio (R4) estimated (Table 5), likewise distribution
of the depth-duration ratio (Figure 5). In this way, empirical formulas (e.g., Chen) can be used in areas
where there are no pluviographs (high temporal resolution), rain gauges, and/or information available.
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Figure 5. Distribution of the Depth-Duration Ratio (R) for the city of Ensenada.

The IDF relationship were calculated with pluviograph records, by applying Gumbel
distribution and, calculated with daily records by applying Chen methods through different options of
(R) ratio. The different results allowed us to make comparisons to choose the most suitable method for
calculations of the IDF relationship.

The comparisons of results were focused on the three stations that have pluviograph and daily
records (2072, 2036, and 2035). However, station 2072 has been chosen to define the methods of
comparisons, because it has the widest time series of pluviograph and daily records.

Table 6 presents the results of the first comparison that tested methods A, B, C, D, E, F, and G
previously described, and its average likelihood method (H), to assess the IDF relationship. In this
table the values of the IDF relationship obtained by the different methods vary considerably, and for
this reason it was decided to carry out an average of these methods. However, it is important to
highlight that method G presents the highest magnitudes and correspond to the IDF reported in the
Baja California State Standards. It should be noted that these magnitudes are far from the average.
With these results, it was identified that these IDFs are over-estimated, which implies a greater
over determination of dimensions in the designs of hydraulic structures, and so therefore higher
construction costs.

From this comparison, another comparison was selected to assess and estimate the IDF relationship
for the rest of the rain gauge stations. The comparison defines the selection of the best method of IDF
estimation, that includes the IDF estimated using pluviograph data (method A), the IDF reported by
the SCT (method C), the IDF estimated with the R ratio proposed in this zone (method I), and the IDF
from method H. This comparison is shown in Figures 6–8 for the stations 2072, 2036, and 2035.
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Table 6. First comparison of IDF relationship, estimated through different methods for station 2072 for
different return periods.

Return Period
IDF (mm/hr) Station 2072

Method 10 (min) 20 (min) 30 (min) 60 (min) 120 (min)

10 years

(A) 38.3 28.1 22.3 14.6 10.5
(B) 45.2 32.2 25.8 17.2 11.2
(C) 48.0 38.0 26.0 16.0 13.0
(D) 52.8 37.8 30.1 19.7 12.5
(E) 59.6 42.7 33.9 21.8 13.5
(F) 70.6 50.8 40.1 25.1 14.9
(G) 99.2 59.0 43.5 25.9 15.4

Average 59.1 41.2 31.7 20.0 13.0

25 years

(A) 44.3 32.4 25.6 16.7 12.0
(B) 53.3 38.0 30.5 20.3 13.2
(C) 57.0 40.0 31.0 20.0 15.0
(D) 62.4 44.6 35.5 23.2 14.7
(E) 70.3 50.4 40.1 25.7 15.9
(F) 83.4 60.0 47.3 29.7 17.6
(G) 119.0 70.0 52.0 31.0 18.0

Average 70.0 47.9 37.4 23.8 15.2

50 years

(A) 48.7 35.5 28.0 18.2 13.1
(B) 59.5 42.5 34.0 22.6 14.7
(C) 64.0 45.0 35.0 22.0 18.0
(D) 69.6 49.7 39.6 25.9 16.4
(E) 78.5 56.3 44.7 28.7 17.7
(F) 93.0 66.9 52.8 33.1 19.7
(G) 134.7 80.1 59.1 35.1 20.9

Average 78.3 53.7 41.9 25.8 17.0

100 years

(A) 53.1 38.7 30.4 19.7 14.2
(B) 65.7 46.9 37.5 25.0 16.3
(C) 71.0 50.0 38.0 24.0 20.0
(D) 76.8 54.9 43.8 28.6 18.1
(E) 86.6 62.1 49.3 31.7 19.6
(F) 102.7 73.9 58.3 36.6 21.7
(G) 150.0 89.2 65.8 39.1 23.3

Average 86.6 59.4 46.2 29.2 19.0

(A) Estimated from pluviograph records using Gumbel (Equation (1)). (B) Estimated from the Chen equation
using R1 from Table 5. (C) Obtained from the isohyetal map of the SCT. (D) Estimated from the Chen equation
using R4 from Table 5 (Equation (7)). (E) Estimated from the Chen equation using R3 from Table 5 (Reich, 1963).
(F) Estimated from the Chen equation using R2 from Table 5 (Equation (6)). (G) Obtained from the of Norm by the
State of Baja California.

The comparisons of IDF relationship for the 2072 station showed similar values calculated with
methods (I) and (H). The method (I) is calculated by using Chen with the proposed (R) ratio, and the
method (H) is calculated from the average of IDF developed by methods A, B, C, D, E, F, and G
described before. On the other hand, the intensities obtained with method C are lower than those
obtained with method I. This may be because the IDFs obtained with method C have not been updated
since 2000, therefore, they do not involve the analyzes performed in Figure 4a,b.

Figures 6–8 show that the results of the method (I) are closer to methods (C) and (H) than
method (A). Therefore, considering the position of the results of (I) on the range of values of all
methods, it could be suggested as the most suitable to calculate the IDF curves. The values to estimate
Figures 6–8 can be seen in Tables S1–S3 in Supplementary Materials. Method (I) was chosen to calculate
IDF for the 10 rain gauge stations like the best option of the methods tested. Table 7 shows the IDF
relationship for the 10 stations calculated by the Chen method through the proposed (R) ratio.
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Figure 6. Established comparison of the IDF relationship estimated through different methods for
station 2072 for different return periods. (a) shows the IDF curves from method (A), estimated from
pluviograph records using Gumbel (Equation (1)). (b) shows the IDF curves from method (C) estimated
from isohyetal map of the SCT. (c) shows the IDF curves from method (H) estimated from the average
of IDF developed by methods A, B, C, D, E, F, and G, and (d) shows the IDF curves from method
(I) estimated from Chen equation using the (R) ratio proposed (Equation (8)).

Figure 7. Established comparison of the IDF relationship estimated through different methods for
station 2036 for different return periods. (a) shows the IDF curves from method (A), estimated from
pluviograph records using Gumbel (Equation (1)). (b) shows the IDF curves from method (C) estimated
from isohyetal map of the SCT. (c) shows the IDF curves from method (H) estimated from the average
of IDF developed by methods A, B, C, D, E, and F, and (d) shows the IDF curves from method (I)
estimated from Chen equation using the (R) ratio proposed (Equation (8)).
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Figure 8. Established comparison of the IDF relationship estimated through different methods for
station 2035 for different return periods. (a) shows the IDF curves from method (A), estimated from
pluviograph records using Gumbel (Equation (1)). (b) shows the IDF curves from method (C) estimated
from isohyetal map of the SCT. (c) shows the IDF curves from method (H) estimated from the average
of IDF developed by methods A, B, C, D, E, and F, and (d) shows the IDF curves from method (I)
estimated from Chen equation using the (R) ratio proposed (Equation (8)).

For the stations 2036 and 2035, the results of the IDF relationship were similar by methods (C)
and (I). However, when graphing the IDF curves with the C method, it is noted that they do not show
the typical fit of said curves. This may be because there are errors in the process of estimating them.
A comparison has also been made for the stations 2001, 2005, and 2045, that provided equivalent
results by applying methods (C) and (I). From the analysis of the comparison of results, method I is
recommended as the most suitable for the IDF design in the evaluated stations.

For the IDF relationship calculation from daily records to be used in Mexico, the Chen’s method
has been mostly recommended by other authors [24,44]. However, considering that rain changes in
space and time, the use of this method has been validated through the accurate calculation of (R) ratio,
where it depended on the (P2

1). The results of (P2
1) obtained by pluviograph data, Reich and the

adjusting from Bell equation, are similar; however, the method widely used is Hershfield that provides
the highest values. Therefore, it was considered to calculate (R) with each value of (P2

1) of each method
to make an average of all estimated (R). This average was proposed as the (R) ratio of the zone that can
be safe to calculate the IDF curves in other area stations.

The differences between the various methods in this study can be attributed to the length of the
time series used. Finally, it has been verified that the quality and length of the pluviographic and
rainfall precipitation records are important aspects in the study of the intensity-duration-frequency
relationship in an area.
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Table 7. IDF relationship selected for the rain gauge stations estimated through the Chen Method with
the (R) ratio proposed in this study.

Return Period Stations
Intensity Duration Frequency (mm/h) for Different Durations

10 (min) 20 (min) 30 (min) 60 (min) 120 (min)

10 years

2072 57.71 41.35 32.86 21.22 13.21
2036 76.70 54.92 43.68 28.30 17.69
2035 63.58 45.63 36.19 23.17 14.22
2001 68.68 49.18 39.11 25.34 15.84
2005 76.61 54.76 43.66 28.55 18.12
2045 66.59 47.62 37.93 24.73 15.61
2065 68.58 48.97 39.11 25.76 16.51
2079 71.32 51.10 40.61 26.23 16.32
2106 61.60 44.11 35.08 22.73 14.21
2108 74.84 53.44 42.68 28.11 18.02

25 years

2072 68.15 48.83 38.80 25.06 15.59
2036 93.96 67.28 53.51 34.66 21.67
2035 76.82 55.14 43.73 28.00 17.18
2001 83.95 60.12 47.81 30.97 19.36
2005 94.00 67.19 53.56 35.03 22.23
2045 79.00 56.51 45.01 29.34 18.53
2065 83.28 59.47 47.50 31.28 20.05
2079 87.28 62.54 49.70 32.10 19.97
2106 73.74 52.81 41.99 27.21 17.01
2108 93.09 66.48 53.09 34.97 22.42

50 years

2072 76.04 54.48 43.30 27.96 17.40
2036 107.01 76.63 60.94 39.48 24.68
2035 86.85 62.33 49.43 31.65 19.43
2001 95.50 68.39 54.38 35.23 22.03
2005 107.15 76.59 61.06 39.94 25.34
2045 88.39 63.22 50.36 32.83 20.73
2065 94.41 67.41 53.84 35.46 22.73
2079 99.36 71.19 56.57 36.54 22.74
2106 82.92 59.38 47.22 30.59 19.13
2108 106.90 76.34 60.97 40.15 25.74

100 years

2072 83.93 60.14 47.79 30.87 19.21
2036 120.07 85.98 68.38 44.30 27.70
2035 96.87 69.52 55.13 35.30 21.67
2001 107.05 76.66 60.96 39.49 24.69
2005 120.30 85.99 68.55 44.84 28.45
2045 97.79 69.94 55.71 36.32 22.93
2065 105.53 75.35 60.18 39.63 25.41
2079 111.43 79.84 63.45 40.98 25.50
2106 92.11 65.96 52.45 33.98 21.25
2108 120.71 86.20 68.84 45.34 29.07

4. Conclusions

The procedure and methods for developing IDF relationship in Ensenada were carefully tested
making effective use of the available rainfall data, including pluviograph and daily records that allowed
to achieve the research objectives.

Despite the absence of enough pluviograph data in this study, the IDF relationship was carried
out successfully using the combination of Chen’s methods, through the average (R) calculated from
the average value of the one-hour rainfall and the two-year return period. The values of (P2

1) obtained
were compared to the values of some cities in California and Baja California, with a range between 10
and 16.61 mm, and the values of the (R) ratio in a range between 0.35 and 0.44; this range is close to the
(R) ratio of 0.44 for one station in Tijuana, a city 100 km farther North from Ensenada. The values found
here correspond to the rainfall characteristics of the zone; therefore, the method used in this study can
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be replicated to another semi–arid zones with the same rain characteristics. The parameterization of
the IDF relation for different durations, allows better understanding and realization of spatio-temporal
analysis of the characteristics of rainfall in an area.

Chen’s method is applicable to any zone if the (R) ratio is well defined. This value was carefully
reviewed in the region and carefully tested with updated pluviograph and daily data. Therefore,
the (R) ratio estimated is proposed to develop IDF curves in the absence of pluviograph data.

After analyzing the results of the IDF relationship for the station 2072, it was observed that the
IDF relationship published by the Norm of the State of Baja California presents the highest values of all
methods. Although they are also safe for designing, they imply the highest cost of construction—greater
sizing—that could be minimized considering the new results. The document review indicates that the
IDF relationships were developed with data available up to the year 2011. Therefore, it is suggested that
these results from the IDF relationship should be included in the Norm of the State of Baja California,
as it requires the recurrence update upon its recommendation.

This study guarantees the following aspects: input to rain–runoff models to improve the
information available for an adequate design, planning, estimation of dimensions of civil works,
and the integral management of water resources in this semi-arid region. Also, the proposed
intensity–duration–frequency relationship will facilitate the evaluation of the flood hazard. The city of
Ensenada periodically suffers the effects of floods, is out of electricity service, it is not possible to travel,
there are drainage problems, health hazards, and work activities are often stopped. Therefore, proper
risk management is important to protect not only the lives of citizens, but also the public and private
assets, as well as the progress made in the development process. These results constitute a starting
point for risk management and flood resilience.
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Table S1: Established comparison of the IDF relationship estimated through different methods for station 2072
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Abstract: The identification and recognition of temporal rainfall patterns is important and useful
not only for climatological studies, but mainly for supporting rainfall–runoff modeling and water
resources management. Clustering techniques applied to rainfall data provide meaningful ways
for producing concise and inclusive pattern classifications. In this paper, a timeseries of rainfall
data coming from the Greek National Bank of Hydrological and Meteorological Information are
delineated to independent rainstorms and subjected to cluster analysis, in order to identify and
extract representative patterns. The computational process is a custom-developed, domain-specific
algorithm that produces temporal rainfall patterns using common characteristics from the data
via fuzzy clustering in which (a) every storm may belong to more than one cluster, allowing for
some equivocation in the data, (b) the number of the clusters is not assumed known a priori but
is determined solely from the data and, finally, (c) intra-storm and seasonal temporal distribution
patterns are produced. Traditional classification methods include prior empirical knowledge, while
the proposed method is fully unsupervised, not presupposing any external elements and giving
results superior to the former.

Keywords: rainfall; rainstorm events; inter-event time; intra-storm patterns; fuzzy clustering;
clustering analysis; clustering tendency; Greece

1. Introduction

Knowledge of the temporal and spatial distribution of rainfall is essential both for
climatological studies, especially regarding climate change, and for purposes of flood
studies and water resources planning. Effective and illuminating studies of rainfall data are
achieved through the detection of patterns or groupings. Stochastic precipitation models
utilize Markov chains to simulate the occurrence of wet or dry days and consequently the
daily precipitation depth [1–3]. Numerous models, extensively developed, are based on
the concept of rectangular pulses point process (RPPP), which can be categorized into two
types, the Bartlett–Lewis [4] and the Neyman–Scott [5,6] precipitation models. Both of
them use the assumption that storms arrive according to a Poisson process, the most basic
example of continued-time Markov chains, of which a concise description can be found
in Onof et al. [7]. The application of RPPP methods concerns the fitting of a small set of
parameters that define the distributions that follow different rainfall quantities, such as
the rainstorm and rain-cell origins, durations and intensities, a multi-objective problem
without analytical solution and, sometimes, erratic results [5,7–9].

A different family of models are the profile-based ones [10,11] that utilize the inter-
nal structure of rainstorms in their entirety and not as derived parameters of statistical
distributions. These rainfall models employ the construction of Huff or mass curves [12],
a probabilistic method for sub-daily precipitation records, in which rainstorm data are
represented in the form of normalized time, versus normalized cumulative precipitation
depth and classified by the quartile where the maximum intensity occurs. The use of
mass curves offers several advantages: (a) adequate stability regarding the sample size
of rainstorms [13]; (b) coarser hourly data giving nearly identical results to data with
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finer time-step in the order of minutes [13]; (c) similarity in very long distances [12–14];
(d) the fact that they are not affected by elevation, type of storm, storm duration or storm
precipitation depth [15].

Given that precipitation records contain both wet and dry periods, an important issue
is the delineation or the extraction of individual rainstorm events from the contiguous
recorded precipitation data. A systematic review [16] of different methods that are based
on various rainstorm events characteristics (depth, intensity, generated runoff) reveals
the necessity of selecting a criterion that defines objectively the rainless intervals, or
minimum inter-event time, and not the arbitrary selection of constant time length. The
latter is a common practice: Huff used 6 h to separate storms [12], Yu et al. used 2 h [17]
and the calculation of rainfall erosivity in the universal soil loss equation (USLE) and its
revisions [18] uses, also, 6 h. A different approach was proposed by Restrepo-Posada and
Eagleson [19], commonly used today by many authors [13,20], in which “an empirical and
inexact”, but easily applied, method was developed for the separation of precipitation
timeseries, into statistically independent rainstorms.

Unsupervised learning methods, clustering in particular, are now employed for pat-
tern recognition in hydrological data [21]. In general, clustering analysis is a popular
exploratory task aimed at partitioning the content of databases into smaller groups on the
basis of inherent similarity criteria [22]. Clustering yields meaningful patterns to be further
utilized for understanding of processes or for simulations. Clustering methods are applied
in many fields, motivated by the large amounts of accumulated data and the developed
needs for better data management through grouping and detection of patterns. The un-
supervised nature of clustering analysis is a definite advantage, but it raises additional
difficulties regarding suitable choice of methods and metrics. The challenge of clustering
also lies in adapting the method and its parameters to the nature of the specific application.

A variety of such unsupervised learning methods are reviewed by
Sheikholeslami et al. [23], including descriptions of clustering approaches. Among these,
the well-known k-means and k-medoids methods divide the data into distinct clusters,
such that each element belongs to exactly one cluster. This type of clustering may be charac-
terized as hard, crisp or non-fuzzy. On the contrary, in fuzzy clustering, each point-element
is allowed to belong to more than one cluster, albeit with a varying degree of membership.
The membership degree of an element is a number in the interval [0,1]. Points closer to the
center of a cluster are assigned a higher membership degree than points further away. One
of the most widely used fuzzy clustering algorithms is fuzzy c-means clustering. It is used
frequently in pattern recognition, and a related review can be found in Nayak et al. [24]. A
major problem in clustering is the determination of the optimal number of clusters, which,
in real-world applications, is generally not known in advance. As a result, a number of
methods have been developed for the determination of the optimal number of clusters.
Many of them use the concept of relative cluster validity [25], where results from different
clustering methods are compared using a predefined metric. A number of these methods
can be found in Milligan et al. [26] and Charrad et al. [27].

In hydrology, machine learning and clustering methods are being applied with in-
creasing frequency, but, apparently, not to their full potential yet. More specifically, cluster
analysis has been applied for the identification of hydrologically homogeneous regions,
as noted in several literature publications: (a) hierarchical clustering on monthly rainfall
erosivity density [21]; (b) fuzzy c-means clustering on annual precipitation [28] and an-
nual maximum intensities [29]; self-organizing maps on monthly precipitation [30], while
less work has appeared in terms of temporal pattern investigations applying: (a) the AL
algorithm on rainstorms mass curves [31]; (b) self-organizing maps on design hyetographs;
(c) k-means, also, on rainstorms mass curves [32]. On the other hand, rainfall mass
curves have been utilized, as previously reported, in the stochastic generation of rainfall
events [10,11,33,34], also as design storms [14,35–37], for the simulation of floods [38,39]
and in changes in storm properties due to climate change [40].
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In view of the above considerations, this paper aims to investigate the presence of
intra-storm temporal patterns using timeseries of rainfall data coming from the Greek Na-
tional Bank of Hydrological and Meteorological Information. Prior to clustering analysis, a
more precise statistical analysis is applied in order to define a seasonal model to aid in the
extraction of statistically independent rainstorm events, which has never been presented
for Greece. The computational process that follows is a custom-developed, domain-specific
algorithm that produces temporal rainfall patterns using common characteristics from
the data via fuzzy clustering in which (a) every storm may belong to more than one
cluster, allowing for some equivocation in the data, (b) the number of the clusters is not
assumed known a priori, but is determined solely from the data and, finally, (c) intra-storm
and seasonal temporal distribution patterns are produced. The optimal temporal rainfall
distribution curves presented recently by the authors employed hierarchical clustering
on principal components and utilized data from a specific water region of Greece [41].
Additionally, a preliminary research that utilizes self-organizing maps and crisp clustering
has been presented by the authors in a recent European Geosciences Union General As-
sembly [42]. The present paper (a) adopts the more general approach of fuzzy clustering,
which, to our knowledge, has not been applied so far to rainstorm timeseries; (b) the
data utilized extend country wide; (c) the advantages of mass curves mentioned in the
literature for different parts of the word are materialized for the case of Greece, regarding
regionalization and the effect of elevation. Moreover, the overall result of clustering is
verified and compared with the established Huff’s classification, which has also never
been presented for the country, via visualization effected through non-linear projection and
topographic maps that are created using emergent self-organizing maps, a method that can
reveal patterns in high-dimensional datasets.

2. Materials and Methods

The methodology that was applied in the study is presented in Figure 1 in the form
of a flowchart. Precipitation data with a time step of 30 min were imported; rainstorms
were extracted from the dataset and preprocessed in order to have an appropriate form as
input to clustering analysis. A cluster tendency assessment was applied, so as to examine if
clustering is meaningful, and the optimal number of clusters were determined by a custom
method that utilizes fuzzy c-means. Additionally, the Huff’s curves were compiled for
the same dataset. The resulted patterns were visualized using a nonlinear projection of
the data in two dimensions, and finally, their characteristics were examined in terms of
internal and seasonal structure.

Figure 1. Flowchart of the applied methodology.

2.1. Data Acquisition and Processing

The data used in the analysis were taken from the Greek National Bank of Hydro-
logical and Meteorological Information [43] for 108 meteorological stations across Greece
(Figure 2). The timeseries comprised a total of 2926 years of 30 min records for the time
period from 1953 to 1997, with a mean length of 26.6 years per station. The timeseries were
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checked for consistency and errors as follows: (a) in records of repetitive values near zero
(i.e., ≤0.01 mm), these values were set to zero and (b) records of aggregated values, where
the time step was larger than the reported, were removed. The pluviograph data coverage
was 43.2% on average. The missing values in the timeseries are not random points but
contiguous data related to entire months or years.

Figure 2. Station locations in Greece used in the analysis obtained from the Greek National Bank of
Hydrological and Meteorological Information.

Greece, given its geographic characteristics, the distribution of sea and land and the
complex and rich relief, has a mosaic of different micro-climates and regional variations, all
in the Mediterranean context. Precipitation varies from its maximum values during winter
to a minimum during summer. The highest values are observed westwards and on the
mountain range of Pindos and its expansion on Peloponnesus (two to three times higher).
This fact reveals the importance of relief on the distribution of rainfall over the country.
Furthermore, higher precipitation depth is connected to the movement of Mediterranean
depressions that follow a characteristic path from west to east. Northerly, at the valleys of
central Macedonia, smaller amounts of precipitation are recorded, due to prevailing dry
winds. At the northeastern part, at Thrace, higher values are observed also due to relief.
Finally, eastern parts of Greece are drier. During summer months when convective activity
prevails and over northern Greece, it produces higher precipitation amounts than in the
drier southern parts.

2.2. Extraction of Rainstorms

A Poisson process hypothesis is assumed for the separation of the precipitation
timeseries to statistically independent rainstorm events, where:

• The time intervals of rainstorms that come from the same month are
distributed exponentially.

• The rainstorms are separated by a minimum critical time duration of no precipitation
(CD) or inter-event time [19].

• There is a seasonal pattern for CD that is assumed to have constant monthly values.
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• The probability density function is:

f (ta) = ω · e−ω·tα , ta ≥ 0 (1)

where ω is the average storm arrival rate and

ta = tr + tb (2)

where ta is the storm interarrival time, tr is the storm duration, and tb is the dry time
between storms.

The estimation of CD that separates rainstorms is based on an iterative procedure of
statistical tests (Algorithm 1). Inter-month data per station are used to ensure homogeneity
and: (a) a test value of cd is used, coming from a predefined vector of values CD, (b) a
vector T a of ta values is computed for each cd, (c) ω values for T a are estimated by means
of the maximum likelihood estimation method, (d) the goodness-of-fit between T a and
the exponential distribution is estimated via parametric bootstrapping of s samples that
utilizes the Kolmogorov–Smirnov test [44], and (e) the cd value with the maximum p-value
from the empirical non-parametric distribution is selected. In Algorithm 1, a threshold of
50 ta values was imposed empirically prior to statistical testing.

Algorithm 1: Temporal model of CD

A first version of the above process was presented in previous publications of the
authors [41,45]. The basic hypothesis concerns the application of the probability density
function (1). A recent related publication [20] adopted the same exponential distribution to
estimate inter-event times in a region of China, but using the “inexact” Restrepo-Posada
and Eagleson approach.

2.3. Preprocessing

Prior to clustering analysis, preprocessing of data is necessary, in order to transform
them into standardized uniform representations that will facilitate the recognition of the
common features. More specifically, each one of the storms is a vector of different length,
so that a method must be applied to transform the dataset to one with a fixed number of
features that represent time. Thus, the storms were scaled and interpolated to unitless
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form in which (a) the time expresses the ratio of the rainstorm duration and (b) the rainfall
expresses, also, the ratio of total rainstorm depth:

p′ i =
pi

∑n
i=1 pi

(3)

t′ i =
ti

∑n
i=1 ti

(4)

where pi and ti are the precipitation depth and time for the timestep i, respectively, and p′ i
and t′ i their scaled values.

In the sequel, since the scaled rainstorm vectors have variable length, linear interpo-
lation was applied to compute the unitless rainfall for every 1% of unitless time values.
Finally, a matrix of unitless rainstorms U was produced with the values of unitless rainfall,
in which every row represents a storm and each column the unitless time values. In the clus-
tering analysis, use was made only of the rainstorms with cumulative rainfall greater than
12.7 mm (i.e., with the exception of light rain) that were no single points, due to the timestep
of 30 min, and also erosive by definition [18], as in other similar publications [12–14].

2.4. Clustering Tendency

Before the application of a clustering algorithm, it is advisable to have a preliminary
look into the dataset in order to detect any existing clustering tendency. This was done in the
following ways: (a) a visual assessment of cluster tendency (VAT [46]) and (b) application
of the Hopkins index, H [47].

The VAT method creates an image matrix that can be used to visually assess the
cluster tendency. In the method, as it was applied, the pairwise dissimilarity values of the
rainstorms were computed, and these values were reordered in the form of a matrix and
displayed as an intensity image. In this image, the clusters are indicated as dark blocks
of pixels along the diagonal [46]. As a dissimilarity measure, the Euclidean distance d
was used

d(u, v) =

√√√√100

∑
i=1

(ui − vi)
2 (5)

where u and v are two row vectors from the unitless rainstorms U matrix. The re-ordering
was achieved applying agglomerative hierarchical clustering using the Ward’s minimum
variance criterion, an algorithm that minimizes the total within-cluster variance [48]. At
the beginning of the algorithm, the number of the clusters is equal to the number of data
points (all clusters contain a single point). At every step, the algorithm finds the pair
of clusters that result after merging to the minimum increase in the total within-cluster
variance, which is expressed as the sum of squared differences between the clusters’ centers.
Finally, all clusters are combined to one cluster that contains all the data using a hierarchical
method [21].

The Hopkins index, H, can be used to test the null hypothesis of randomly and
uniformly distributed data, generated by a Poisson point process and is calculated with

H =
∑m

j=1 ud
j

∑m
j=1 wd

j + ∑m
j=1 ud

j
(6)

where X is a collection of n data points that have d dimensions. A random sample from X
without replacement with members xi(i = 1 to m, m � n) is formed. Y is a set of uniformly
random data points, also with d dimensions and members yj(j = 1 to m), uj in turn is
the Euclidean distance from yj to its nearest neighbor in X, and wj is also the Euclidean
distance from xi to its nearest neighbor in X. A value of H close to one indicates that
the data are highly clustered, 0.5 indicates randomly distributed data, and zero indicates
regularly spaced data [21,25].
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2.5. Fuzzy Clustering

The unitless rainstorm data were clustered by the fuzzy c-means (FCM) algorithm,
which was developed by J. Dunn [49] and improved by J. Bezdek [50]. FCM aims to
minimize the objective function

argmin
C

n

∑
i=1

c

∑
j=1

wm
ij ‖xi − cj‖ 2 (7)

where wijε[0, 1] is the degree or membership of item xi from a set of n elements X = x1, . . . , xn
that belong to cluster cj, C is the set of c cluster centers C = c1, . . . , cc, and ‖ . . . ‖ denotes
any norm that expresses similarity, such as the Euclidean distance.

From an iterative optimization procedure on (7), each element wij of the partition
matrix W is equal to

wij =
1

∑c
k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

(8)

where m is the “fuzzifier” that determines the level fuzziness with m ε R and m ≥ 1,
commonly set to two [51]. The larger the m value is, the fuzzier the membership values of
the clustered data points are. The centers cj of the clusters are the mean of all the elements
weighted by their degrees:

cj =
∑n

i=1 wm
ij xi

∑n
i=1 wm

ij
(9)

FCM stops when the maximum number of iterations given a priori is reached, or
when the algorithm is unable to reduce the current value of the objective function further
to a predefined, usually very small, value.

2.6. Optimal Number of Clusters

The most common and fundamental problem in clustering analysis is the determi-
nation of the number of clusters in an unlabeled dataset, as the one used in the analysis.
As previously reported and due to the fact that most clustering algorithms, including
FCM, require the number c of clusters to be known a priori, the next step, after answering
the question of clustering tendency, has to do with the determination of c. The proposed
method uses statistical testing (Algorithm 2). Variations of it have been presented by the au-
thors in the context of different clustering algorithms, namely, (a) self-organizing maps [42]
and (b) a dendrogram produced by hierarchical clustering on principal components [41].

A different approach has been presented [52], using k-means (crisp) clustering, which
involves two different parameters: (a) an initial threshold that indicates similarity, through
a Pearson correlation coefficient, between all pairs of the unitless cumulative rainstorms and
(b) an additional one, based on the distances matrix of all pairs of the unitless cumulative
rainstorms, which creates the initial seeds used in the k-means clustering algorithm. In
other studies, the number of clusters was set without any estimation [32] or through
a visual, ambiguous method involving the density maps derived from self-organizing
maps [53]. Comparing the reported methodologies to the proposed one, Algorithm 2
presents the following advantages: (a) It is easier to implement, and it can be combined
with any clustering algorithm that uses as a parameter the number of clusters directly or
indirectly, as is for example the eps parameter in the DBSCAN algorithm [54]. (b) It utilizes
hypothesis testing about the centers of the clusters, and (c) it has only one parameter to
choose, the significance level of well-known statistical tests.

In Algorithm 2, firstly, the cumulative values of the unitless rainstorms matrix are
computed, as that kind of transformation was found to help the computational procedures
of clustering algorithms. At each step of the iteration, FCM is applied using a trial number
of clusters, greater than two and smaller than a predefined maximum value nmax. After-
wards, the cluster centers that resulted are represented as cumulative rainfall distributions.
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These centers, and for all possible pairs, are tested to find out whether they are drawn
from the same distribution using the two-sample Kolmogorov–Smirnov test [55]. The
test quantifies the distance between the two samples’ empirical distribution functions and
has been used in similar comparisons [56,57]. Due to the multiple statistical testing that
arise, the resulted p-values are adjusted using the Benjamini and Hochberg method [58],
which controls the false discovery rate. The algorithm stops when any p-value is greater
than a predefined significance level α, and in that case, the clusters from the previous step
are returned.

Algorithm 2: Optimal number of clusters using FCM

2.7. Projecting Data Using Non-Linear Mapping

The non-linear method that was used to visualize the rainstorm data in a two-
dimension scatterplot was the generalized U-Matrix [59]. This method uses the results
from a dimensional reduction method, such as principal components analysis, or a non-
linear method, such as t stochastic neighbor embedding (t-SNE, [60]), in conjunction with
emergent self-organizing maps (ESOM [61]). This step is a necessity due to the Johnson–
Lindenstrauss lemma [62] stating that the “low-dimensional similarities do not represent
high-dimensional distances coercively” [63]. In other words, specific measures are taken
to avoid the common mistake of assuming that, when the projected points are similar to
each other after dimensional reduction, such is the case in the actual high-dimensional
space. The generalized U-Matrix after its calculation by ESOM is visualized by a three-
dimensional space called “topographic map with hypsometric tints” or colors on surface
that represent elevation ranges [64]. The topographic map has no actual real borders and
is toroidal, which means that the left border is connected to the right one and the top to
the bottom.

3. Results and Discussion

3.1. Rainstorms Extraction

Empirically, a minimum set of 50 values per month and station were used in Algorithm
1 and some basic statistics; results about CD are presented in Table 1. Due to the dry summer
period in Greece, these monthly CD values could be computed only in a small set of stations.
A seasonal sinusoidal model (Figure 3) was developed to use in Greece:

f (CD) = θ1 sin
(

2π

12
m
)

+ θ2 sin
(

4π

12
m
)

+ θ3 cos
(

2π

12
m
)

+ θ4 cos
(

4π

12
m
)

(10)

where m is the month, and θ1, . . . , θ4 parameters that were estimated using linear regression.
Using the CD sinusoidal model, a set of 174,883 rainstorms were extracted from the

dataset. With the exception of summer months and September, the model gives values
around 6 h, close to the value selected empirically by Huff [12] and in rainfall erosivity
calculations [65]. A subset of 26,678 rainstorms that met the criterion of minimum depth
were preprocessed and used to compile the U matrix.
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Table 1. Average statistical properties of monthly CD values for the stations. SD is an abbreviation
for standard deviation and CV for coefficient of variation (the ratio of the standard deviation to the
mean) and h for hours.

CD (h) Min Mean Median Max SD Skew Kurtosis CV

January 2 5.4 5 13 1.6 1.40 4.77 0.19
February 2 5.0 5 10 1.4 0.90 1.39 0.16

March 2 5.9 5 12 1.8 0.95 0.82 0.20
April 4 6.3 6 10 1.4 0.62 −0.20 0.16
May 4 6.8 6 12 1.9 0.91 0.49 0.24
June 4 8.2 8 13 2.1 0.15 −0.50 0.34
July 5 9.3 9 13 2.0 −0.17 −0.01 0.58

August 5 7.8 8 11 2.1 0.12 −1.73 0.70
September 6 9.1 9.5 11 1.6 −0.52 −1.03 0.45

October 2 7.4 7 13 1.9 0.36 0.78 0.25
November 2 6.7 6 11 1.6 0.25 0.17 0.19
December 2 5.2 5 11 1.4 0.85 2.00 0.16

Figure 3. Red represents the monthly sinusoidal model of CD (Equation (11)). The grey area corresponds to the standard
error of the model using linear regression. The grey dots represent the monthly CD values per station, as computed from
Algorithm 1.

3.2. Clustering Tedency

Due to computation issues, a random sample of 10% was used to compute the value
of the Hopkins index with H = 0.886, so the null hypothesis of random data could safely be
rejected. This result indicated that there was a physical meaning in the categorization of the
rainstorms based on their internal structure. The VAT method (Figure 4) created an image
matrix, where the clusters are indicated as at least four darker blocks along the diagonal.
Given the results from these two methods, there is strong evidence that the dataset contains
meaningful clusters and the next step can follow, to apply the proposed method and select
the optimal number of clusters.
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Figure 4. Image matrix created by the VAT method, in order to visually inspect the clustering
tendency of data. Distances (dissimilarities) among unitless rainstorms are unitless. The rainstorms
that belong to the same cluster are displayed in successive order.

3.3. Clustering Results and Visualization

After the application of Algorithm 2, the optimal number of clusters are proposed to
be four, a suitable number comparing it with VAT results. In Figure 5, the matrix of unitless
rainstorms U is depicted, with its rows, the rainstorms, reordered by the cluster they belong
to. This representation shows that the rainstorms belonging to clusters number one and
four are more similar. The latter statement is strengthened by Figure 6 that illustrates the
distribution of the membership of every unitless rainstorm that belongs to a cluster (that
value must be >0.25 to be classified to a cluster). In the same figure, the mean values of the
memberships for each one of the clusters are {0.67, 0.60, 0.59, 0.67}. The latter values are not
normally distributed, and cluster one and four are left-skewed meaning less equivocality,
in contrast to clusters two and three that are right-skewed.

Figure 5. Unitless rainstorms values re-order by clustering results. The names of the clusters were
used in order to match with Huff’s classification. White symbolizes zero precipitation depth, and
different blues depict the presence of unitless precipitation.
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Figure 6. Distribution of the membership values from fuzzy c-means (FCM) of every unitless
rainstorm that belongs to a cluster.

From Figure 5, initially, it seems that the selection of Huff about the grouping in four
clusters has physical meaning, in contrast to criticism about being artificial [66].

The average values related to precipitation depth, duration and intensity per cluster
are presented in Table 2. Cluster one has on average shorter duration rainstorms, with
lower precipitation depth, but higher mean intensity. Clusters two and three have both
rainstorms with similar statistics, with larger duration and precipitation depth than one
and four. Cluster four has analogous statistics to one with the exception of intensity, which
is lower.

Table 2. Average values of occurrence of clusters, duration and precipitation depth intensity of
clusters’ rainstorms.

Cluster
1 2 3 4

Cluster
Ratio (%) 19.5 30.86 30.84 18.79

Duration (h) 12.5 16 16.5 14.5
Precipitation depth (mm) 20.7 23.2 23.7 21.9

Intensity (mm/h) 1.82 1.66 1.66 1.71

Cluster number one has notably higher variance and maximum occurrence during
spring and summer months that match convective activity over Greece (Figure 7). Clusters
two and three have distributions similar to each other and inverse to the first one, related
to the prevailing winter weather systems, having their minima during summer. Cluster
four has a more uniform distribution with the exception of winter months, when it has its
maximum. The latter cluster, with its relatively higher intensity values and, also, higher
ratio of occurrence during the wetter winter months in Greece, can be utilized in hydrologic
design in the construction of design storms.
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Figure 7. Seasonal variability of clusters’ monthly occurrence.

In order to examine if elevation affects the distribution of rainstorms in the clusters,
density plots were compiled (Figure 8) for each cluster. The distribution of the elevations
of the stations related to rainstorms appears to be almost identical, despite the fact that
altimetry is closely connected to the precipitation regime in Greece. This result about
elevation is in accordance with the reported one for Huff’s curves by Loukas et al. in
Canada [15].

Figure 8. Distribution of elevation values from FCM of every unitless rainstorm given its cluster.
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In order to examine the temporal patterns in every station using the results from FCM,
correlation matrices were computed using Pearson’s r coefficient [67]:

r =
1

n − 1

n

∑
i=1

(
xi − x

sx

)(
yi − y

sy

)
(11)

where xi is the average values of unitless rainstorms coming from a station x and cluster c,
yi, similarly, is the average values of unitless rainstorms coming from a station y and the
same cluster c, n = 100 (the ordinates of unitless rainstorms), sx and sy are the standard
deviations of xi and yi and, finally, x and y the mean values, respectively. The patterns
per station and given cluster showed very high similarity with r ≥ 0.974 and on average
for all values r = 0.999. These results indicate that despite the rich topography and the
variability of micro-climates in Greece, the clusters have regional stability in long distances.

In the sequel (Figure 9), the cumulative values of the centers of the four clusters are
compared to the ones calculated using Huff’s method of classification that is based on the
quartile with the highest intensity. The two methods produce different results, while fuzzy
clustering creates unitless cumulative curves that do not overlap. The four Huff curves
were also tested, for all possible pairs, whether or not are drawn from the same distribution
using the Kolmogorov–Smirnov test and three pairs failed to reject that hypothesis for both
significance levels a = 5% and a = 10%.

Figure 9. (a) Unitless cumulative values using FCM. (b) Unitless cumulative curves using Huff’s classification.

Finally, the topographic maps utilizing the generalized U-matrix using ESOM, as
described in Section 2.7, using both FCM and Huff’s classification results were produced
(Figure 10). In both maps, the unitless rainstorms with membership >80% are used to
remove equivocation from the data. The visualization indicates the presence of four clusters
and that Huff’s method misclassifies the data. The topographic map produced valleys
with blue and green color (indicating smaller distances of the points) that are separated by
ridges of brown and white color (representing larger distances).
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Figure 10. Topographic maps with hypsometric tints using t stochastic neighbor embedding (t-SNE)
and the generalized U-matrix. The topology of the map is toroidal (the top and bottom and as well the
right and left are joined). Each colored sphere represents a rainstorm with its different classification,
as it has already computed. (a) Results using FCM: the rainstorms that belong to the same cluster are
separated by mountain ranges. (b) Results using Huff’s classification: the rainstorms of different
classification are mixed, despite the visual separation of mountain ridges in the map.

4. Conclusions

In this paper, the timeseries of rainfall data were processed in order to detect patterns.
The data, coming from the Greek National Bank of Hydrological and Meteorological
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Information, cover the totality of the country’s regions. In the various stages of the project,
novel methods were presented and implemented. First, extraction of rainstorms was
executed via a stochastic method. Then, the timeseries were properly transformed to
unitless form. The data were tested for clustering tendency prior to the application of
clustering algorithms. An iterative form of fuzzy clustering was presented that does not
assume a priori knowledge of the number of clusters. It consists of a repeated execution of
fuzzy c-means clustering in combination with statistical testing for the choice of the relevant
number of clusters. Finally, a verification of the clustering results and a comparison to the
widely used Huff’s method was attained through topographic maps. The overall approach
extends previous rainfall pattern recognition efforts of the authors and of the literature in
the sense of the unsupervised learning and in the direction of fuzzy analysis in rainfall and
in any follow-up study of floods or water management problems.
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Abstract: It has become necessary to estimate the quantities of runoff by knowing the amount
of rainfall to calculate the required quantities of water storage in reservoirs and to determine the
likelihood of flooding. The present study deals with the development of a hydrological model
named Hydrologic Engineering Center (HEC-HMS), which uses Digital Elevation Models (DEM).
This hydrological model was used by means of the Geospatial Hydrologic Modeling Extension
(HEC-GeoHMS) and Geographical Information Systems (GIS) to identify the discharge of the Al-
Adhaim River catchment and embankment dam in Iraq by simulated rainfall-runoff processes. The
meteorological models were developed within the HEC-HMS from the recorded daily rainfall data
for the hydrological years 2015 to 2018. The control specifications were defined for the specified
period and one day time step. The Soil Conservation Service-Curve number (SCS-CN), SCS Unit
Hydrograph and Muskingum methods were used for loss, transformation and routing calculations,
respectively. The model was simulated for two years for calibration and one year for verification of
the daily rainfall values. The results showed that both observed and simulated hydrographs were
highly correlated. The model’s performance was evaluated by using a coefficient of determination of
90% for calibration and verification. The dam’s discharge for the considered period was successfully
simulated but slightly overestimated. The results indicated that the model is suitable for hydrological
simulations in the Al-Adhaim river catchment.

Keywords: hydrologic model; remote sensing; HEC-HMS; Al-Adhaim River; rainfall/runoff

1. Introduction

Surface water from the Tigris, Euphrates and Shatt Al-Arab rivers is the main water
resource in Iraq. The water flow of these rivers varied from year to year depending on the
incoming water flows coming from outside of Iraq and the annual rainfall intensity during
the studied period [1].

The main factors affecting water shortage challenges in Iraq are the dams located
outside of Iraq, in the Tigris and the Euphrates Rivers and their tributaries, climate change,
and the mismanagement of Iraq’s water resources [2]. It has been reported that the growing
water consumption in Turkey and Syria could lead to the complete drying-up of the Tigris
and Euphrates rivers by the year 2040 [1].

The rivers of Iraq are also affected by the annual and seasonal precipitations. A year
with heavy precipitations may lead to major floods and disasters, while a year with low
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precipitation amounts can lead to droughts damaging soil and endangering crops [3]. Ex-
cessive precipitations may also lead to runoffs, which occur when water that is discharged
exceeds river, lake or artificial reservoir capacity. Often rainfall-runoff models are used
for modeling or predicting possible floods as well as rivers and lakes’ water levels during
different boundary conditions [4].

Hydrologic Engineering Center (HEC-HMS) is a hydrologic modeling software devel-
oped by the US Army Corps of Engineers of the Hydrologic Engineering Center (HEC),
which contains an integrated tool for modeling hydrologic processes of dendritic water-
shed systems. This model consists of several components for processing rainfall loss,
direct runoffs and routing. The HEC-HMS model has been widely used, for example, in
many hydrological studies because of its simplicity and capability to be used in common
methods [5].

The Geospatial Hydrologic Modeling Extension (HEC-GeoHMS) is a public-domain
software package for use with Geographical Information Systems (GIS), GeoHMS ArcView
and Spatial Analysis to develop several hydrological modeling inputs. After analyzing
the information of the Digital Elevation Model (DEM), HEC-GeoHMS transforms the
drainage paths and watershed boundaries into a hydrologic data structure that represents
the watershed response to rainfall [6]. An important feature of the HEC-GeoHMS model is
the assignment of the curve numbers (CN), which are related to the land use/land cover
and soil type of the Al-Adhaim catchment.

Several researchers have used the HEC-HMS hydrological model to represent flow
by simulated rainfall-runoff processes. In this regard, a study conducted by Oleyiblo
et al. [7] on the Misai and Wan’an catchments in China used the HEC-HMS model for flood
forecasting. The results were calibrated and verified using historical observed precipita-
tion data, which showed satisfactory results. Saeedrashed et al. [8] used computational
hydrological and hydraulic modeling systems designed by using the interface method,
which links GIS with the modeling systems (HEC-HMS and HEC-RAS). They conducted
a floodplain analysis of the Greater Zab River. Their model calibration and verification
processes showed satisfactory results. Martin et al. [9] used HEC-GeoHMS in the Arc-Map
environment to predict floods by hydraulic modeling. They obtained flood hazard maps
by exporting the HEC-RAS model output results to Arc- Map, where they were processed
to identify the flood-expanded areas. The results from the flood hazard maps showed that
the areas more prone to floods were located in the river middle reach.

HEC-HMS has also been used by Tassew et al. [10] to conduct a rainfall-runoff simu-
lation of the Lake Tana Basin of the Gilgel Abay catchment in the upper Blue Nile basin
in Ethiopia by using six extreme daily time-series events. The Nash Sutcliffe Efficiency
(NSE) accounts for the comparison between the simulated and observed hydrographs.
The coefficient of determination R2 was 0.93 indicating that the model was appropriate
for hydrological simulations. HEC-HMS and GIS were successfully used to simulate the
rainfall-runoff process in the Karun river basin in Iran [11], as well as the inflow designed
floods and dam breach hydraulic analyses of four reservoirs in the Black Hills, South
Dakota [6]. Other examples include the modeling of the watershed in Ahvaz, Iran [12,13],
the simulation of the runoff process for the adjoining areas of the Lagos Island and Eti-Osa
Local Government Areas and the assessment of the influence of different levels of water-
shed spatial discretization on the HEC-HMS model’s performance for the Uberaba River
Basin region [14].

Generally, it is important to mention that in Iraq, and especially in the area under
assessment, very few studies have used such a modeling approach. Large input data have
been prepared for the model, including maps of DEM, land use/land cover, soil type and
curve number, in addition to the rainfall data and observed discharge values. Furthermore,
the Al-Adhaim catchment characteristics have been created and prepared using HEC-Geo
HMS, which were subsequently exported to HEC-HMS. This study will provide good
support for other researchers to continue with such studies for adjacent catchments as well
as other catchments, providing water resources management control in Iraq.
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The main objective of this study is to develop the HEC-HMS hydrological model using
remotely sensed data such as DEM. The hydrological model was used in combination with
HEC-GeoHMS and GIS to identify the flow by simulating the rainfall-runoff processes for
the Al-Adhaim catchment. Model input parameters were calculated for the HEC-HMS
model. The rapid increase of water demand in Iraq, as well as the predicted water storage
problems due to various factors (mainly climate change), can be assessed by hydrological
modeling, which can help decision-makers to take preemptive actions such as storing
water in the dams, depending on rainfall-runoff predictions. Furthermore, the calibrated
parameters of this model can be used for future hydrological studies in this and adjacent
catchments.

2. Methodology

The Al Adhaim hydrologic model was created by means of HEC-GeoHMS and par-
ticularly by using DEM of the studied areas, obtained from the United States Geological
Survey (USGS) website. HEC-GeoHMS creates an HMS input file, such as the catchment of
the area under study, a stream network, sub-basin boundaries, and different hydrological
parameters in an Arc map environment via a series of steps. An HEC-HMS model for
the Al-Adhaim catchment was developed, and simulations were run with daily rainfall
recorded data.

2.1. Description of Study Area

The studied area (Al-Adhaim catchment) is located in the northeast of Iraq and
comprises a dam with a reservoir downstream of the river (Figure 1). There is also a
discharge gauge downstream of the dam. The Al-Adhaim river is the main source of
freshwater for the Kirkuk Province. The length of the river is close to 330 km. The river
joins the Tigris River at about 15 km to the south of the Balad district. The river drains
an area of 13,000 km2 and then runs almost dry from June to October. Floods take place
from November to May each year, as they are mainly fed by rainfall. The total summation
of the rainfall for the Al-Adhaim catchment for the recent years equals to 489, 915, 415
and 623 mm for the hydrological years 2014 to 2018 in that order. Note that it was not
raining during the months of June, July, August and September [15], while the temperature
ranged from 2 ◦C to 48 ◦C. Al-Adhaim can be classified as an arid catchment with 71% of
its surface being covered by forests and 29% by agricultural lands [2].

 

Figure 1. Layout of Al-Adhaim Dam (Arc-GIS by authors).
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Al-Adhaim dam is located downstream of the river, within the administrative bor-
ders of the Diyala Province (34◦32′ N and 44◦30′ E, about 135 km northeast of the capital
Baghdad, 65 km southeast of Kirkuk Province, and 70 km upstream from Al-Adhaim’s con-
fluence with the Tigris River). The main purposes of this dam are flood control, irrigation
and obtaining hydropower energy (Figure 1).

The Al-Adhaim dam is a 3.8 km long and 150 m high earth-filled embankment dam.
Its width is about 10 m at its highest point. It was built in 1999, and consists of a spillway
intake, a bottom outlet gate shaft, and a power intake (Figure 1). Its storage capacity,
live storage and spillway discharge are about 1.5 × 109 m3, 1 × 109 m3 and 1150 m3,
respectively. The crest of the dam, which is 15 m long, follows an ogee spillway shape
profile according to the United States Bureau of Reclamation standard. It has an elevation
of 131.54 m and is designed to pass a probable maximum flood discharge of 1150 m3/s [15].

The bottom outlet gate shaft is used for water release for irrigation purposes. The
structure consists of an intake structure, which was used for releasing water through a
closed conduit, which gradually transitions from a squared to a circular section. The
intake is divided into two openings with the transition from a square section of 6 × 6 m2

to a 6 m diameter circular one, which starts the circular tunnel section. The gate shaft
accommodates two gates: the upstream one (the guard gate) and the downstream one (the
regulating gate).

The power intake was used for releasing water for irrigation and power generation
purposes. This outlet includes a 50-m high reinforced concrete shaft at the beginning of
the tunnel, which includes two emergency gates. The inlet is a 6.5 × 16 m2 streamlined
rectangular opening with a shape gradually changing from a 4.5 × 4.5 m2 square section to
4.5 m diameter circular section.

The reservoir’s water surface area is 270 km2 at an elevation of 143 m, which is
the maximum water elevation, and 122 km2 at an elevation of 130 m. The reservoir
volume is 3750 million cubic meters (MCM). The highest operating elevation is 135 m,
corresponding to an area of 170 km2 and a volume of 2150 MCM (Table 1), and the lowest
operating elevation is 118 m, corresponding to 52 km2 and a capacity of 450 MCM. The
water elevation and corresponding area and volume of the reservoir at the beginning of
the hydrological year are shown in Table 2 [15,16]. The gates’ opening coefficients were
used for calibration, because the discharge gate was downstream of the dam. The initial
elevation of the water in the reservoir at the beginning of the hydrological year was also
provided by the Central Statistical Organization of Iraq [17].

Table 1. Water elevation and corresponding area and volume of the reservoir [15,16].

Elevation 1 (m) Area (km2) Volume (MCM 2)

100 3 70
115 41 310
118 52 450
120 60 520
125 85 980
130 122 1400
135 170 2150
140 233 3130
143 270 3750

1 Elevation: meters above sea level; 2 MCM: million cubic meters.

86



Hydrology 2021, 8, 58

Table 2. Elevations and the corresponding water volumes at the start of the hydrological year [17].

Date Elevation 1 (m) Capacity (BCM 2)

1/10/2015 120.71 0.60
1/10/2016 115.22 0.31
1/10/2017 113.94 0.27
1/10/2018 117.20 0.42

1 Elevation: meters above sea level; 2 BCM: Billion Cubic Meters.

2.2. Daily Rainfall Data

The rainfall season begins in October and ends in April for the majority of the Iraqi
territory. The average rainfall increases from southwest to northeast due to topographical
effects. The recorded daily rainfall data were downloaded from the Power Data Access
Viewer website. Figure 2 shows the maximum rainfall amount for the last ten years for the
studied area that occurred exactly on 17 November 2015, which approached 39 mm [18].

 

Figure 2. Distribution of the maximum rainfall in the study area, which occurred on 17 November
2015 (Power Data Access Viewer website; https://power.larc.nasa.gov/data-access-viewer, (accessed
on 26 March 2021)).

2.3. HEC-GeoHMS

HEC-GeoHMS is working under the GIS environment, which is a geospatial hydrol-
ogy tool allowing users to determine sub-basin streams as an input for the HEC-HMS
hydrological model [17]. In this study, Arc Map 10.5 and HEC-GeoHMS were used.

2.4. HEC-HMS Project Set-Up

The HEC-HMS software was applied to convert the rainfall data into direct flow taking
into account the topography and the surface characteristics of the modelled location (e.g.,
length of the reach). The software also considers routing, loss, and flow transformation in
the runoff computation. The data were checked, and the HEC-HMS model was developed,
with the creation of several HEC-HMS parameters and the basin and meteorological
model files.

Model Input Parameters

The parameters required for running the HEC-HMS model are listed in Table 3.
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Table 3. The hydrological model named Hydrologic Engineering Center (HEC-HMS) catchment
model parameters for Al-Adhaim.

No. Model Method Parameters Required (Unit)

1 Loss Rate Parameter SCS Curve Number
Initial abstraction (mm),

Curve Number and
Impervious area (%)

2 Runoff Transform SCS Unit Hydrograph Lag time (min)

3 Routing Method Constants Muskingum Travel time (K) and
dimensionless weight (X)

3. Results and Discussion

The temporal variation of the flow at the outlet of the catchment has been assessed by
considering the model’s response for three years of separate precipitation. The basin was
divided into nine sub-basins based on the river network. Runoff from the sub-basins was
estimated by using the SCS-CN, SCS Unit Hydrograph and Muskingum methods for loss,
transformation, and routing calculations, respectively. Some hydrological parameters were
obtained by the calibration process that performed by comparing the simulated flow with
the observed flow data measured by using a discharge gauge, which is located near to the
outlet of the catchment.

3.1. Digital Elevation Model (DEM)

The DEM is an essential input to define the topography of the catchment on the basis
of semi-DEM shown in Figure 3. Data were downloaded from the United States Geological
Survey (USGS) website [19] and modified for the study area using Arc-map by the authors.

 

Figure 3. Digital elevation model for Al-Adhaim (downloaded from United States Geological Survey
(USGS) [19] and modified by the authors).

3.2. HEC-GeoHMS Development

Terrain pre-processing and model development using HEC-GeoHMS is shown in
Figure 4. In terrain pre-processing, the DEM sinks were filled, flow direction and flow
accumulation were estimated, and catchments were separated. The catchment boundaries
were drawn and stored as different shapefiles. Then, a suitable outlet point was selected
at the outlet point located at 44◦17′33.937” E and 34◦0′14.846” N. After those basins were
merged, the longest flow path and basin centroid were determined. After processing, the
developed model became ready to export to HEC-HMS software. Extra processing was
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with HEC-GeoHMS and includes the estimation of hydrologic parameters, such as the
curve numbers.

Figure 4. Pre-processing and model development: (a) raw digital elevation model; (b) fill sinks;
(c) low directions; (d) catchment polygon; (e) basin raster; (f) flow accumulation; (g) generated
project; (h) basin merge; (i) longest flow path; (j) Hydrologic Engineering Center (HEC-HMS) legend;
(k) HEC-HMS schematic; and (l) basin centroid.

3.2.1. Soil Map and Land Use/Cover Shape Files

Procedures to get the soil types for the Al-Adhaim catchment include downloading of
the raster file of the global soil type from the website http://www.fao.org/soils-portal/
data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, (accessed
on 26 March 2021). Data were then exported to Arc map to clip the study area from the
global map of soil types and convert it from the raster file to the shape file. A symbology
has been performed afterwards. Finally, the created shape file has been merged with the
land use/land cover type file to calculate the curve number.

The soil upper layer in most of the areas of the Al-Adhaim catchment is considered as
homogeneous, except in the middle region of the country, which is covered by mounds.
The soil consists of mosaic clay or loam within a surface layer consisting mainly of silt, clay
and silt loam. The sub-surface layer is mainly made of clay loam or clay (Figure 5). Land
use (or land cover) is used as an input for a catchment model as it can affect surface erosion
and water runoff [20].
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Figure 5. Soil map of the Al-Adhaim catchment (adapted and modified by the authors).

Procedures to get the land use/cover for the Al-Adhaim catchment include down-
loading of the raster file of the global soil type from the website http://due.esrin.esa.int/
page_globcover.php, (accessed on 26 March 2021). Data were then exported to Arc map to
clip the study area from the global map of soil types and convert it from the raster file to
the shape file. A symbology has been performed afterwards. Finally, a shape file has been
created by converting the raster to polygons to get a file that can be merged with the soil
type file to calculate the curve number. The land use in the Al-Adhaim catchment is either
Ever Green Forest, Dwarf Scrup or Open Sea (Figure 6).

Figure 6. Land use classification of the Al-Adhaim catchment (adapted and modified by the authors).

3.2.2. Curve Number

Soil map and land use datasets were used to generate the Curve Number (CN) grid
file, which is required to build the HEC-HMS model. CN values were used to determine
the stream/sub-basin characteristics and to estimate the hydrological parameters used in
the model [10]; Figure 7. CN values range from 30 corresponding to permeable soils with
high infiltration rates to approximately 100 corresponding to water bodies.
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Figure 7. Curve Number calculations for the Al-Adhaim catchment (adapted and modified by
authors).

3.3. Parameters Estimation
3.3.1. Loss Model—Soil Conservation Service Curve Number

The loss models in HEC-HMS were calculated by subtracting the volume of water
that was intercepted, infiltrated, stored, evaporated or transpired to the rainfall water
volume [10]. We used the Soil Conservation Service Curve Number loss (SCS curve
number) method to calculate the direct runoff from a design rainfall.

For the loss model, the SCS-CN has two parameters: the curve number (CN) and the
initial abstraction (Ia). The default initial abstraction ratio was equal to 0.2 but then varied
after the model calibration. The CN is a function of land use and soil type estimated by
using the HEC-GeoHMS toolkit of Arc Map 10.5. The percentage of imperviousness for
each sub-basin was assumed to be 0% (the entire catchment was assumed to be completely
pervious). The CN values for each sub-basin were calculated by using formula (1) [21,22].

CN =
∑ AiCNi

∑ Ai
(1)

where Ai is the area (km2) of the sub-basin and CNi is the corresponding curve number. Ia
(mm) is obtained by multiplying the loss coefficient by the potential abstraction S (mm).
The potential abstraction is a function of CN and calculated by using the formula (2) [22].

S =
25, 400

CN
− 254 (2)

3.3.2. Transform Model—Soil Conservation Service Unit Hydrograph Method

The transform prediction models in HEC-HMS simulate the process of excess rainfall
direct runoff in the catchment and transform the rainfall excess in point runoff [10]. During
the analysis of the study data, the SCS Unit Hydrograph model was used to transform the
excess rainfall into runoff.

The basin lag time parameter values have been calculated during data processing by
means of the HEC GeoHMS application and stored in the attributes’ table of the sub-basin
data layer. Basin lag times were initially calculated in hours for the sub-basins by using
Equation (3) and were then converted to minutes when used with HEC-HMS.

Lag =
(S + 1)0.7L0.8

1900 ∗ Y0.5 (3)
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where S = maximum retention (mm) as defined by Equation (2), lag = basin lag time (hour),
L= hydraulic length of the catchment (longest flow path) (feet) and Y = basin slope (%).
Table 4 shows the Loss and Transform Model parameter value estimations.

Table 4. The estimation of Loss and Transform Model parameter values.

Sub-Basin
Basin Area

(km2)
Basin Slope

(%)
Curve Number

(CN)
Potential

Abstraction (mm)
Ia (mm)

Basin Lag
(Hours)

W880 193.5333 37.00 87 1.49 7.59 5.3959
W890 708.2559 29.87 80 2.50 12.70 6.1618
W710 1635.3000 14.20 78 2.82 14.33 9.0085
W860 8.15850 35.00 95 0.53 2.67 5.4074
W620 2490.1000 18.24 75 3.33 16.93 8.0493
W980 81.4450 47.00 100 0.00 0.00 4.5998

W1000 24.7302 49.00 100 0.00 0.00 4.50491
W700 4485.1000 21.04 79 2.66 13.50 7.37090
W850 2718.1000 38.06 70 4.29 21.77 5.70099

3.3.3. Routing—Muskingum Method

As the flood runoff moves through the channel reach, it weakens because of the
channel storage effects. The routing model available in the HEC-HMS software for this
scenario was the Muskingum method [23].

The Muskingum method is a common lumped flow routing technique. In this model,
a calibration for two parameters, X and K, was required. X is a dimensionless weight, which
is a constant coefficient that varies between 0 and 0.5, where X is a factor representing the
relative influence of flow on storage levels. It can be assumed that the value equals 0.1 as
an initial value of the calibration parameters, which was corrected during the calibration
process. K is the parameter having a unit of time and value ranging from 1 to 5 h. It is
related to the delay between discharge peaks [24]. K is estimated using Equation (4).

K =
L

Vw
(4)

where Vw is the flood wave velocity, which can be taken as 1.5 times the average velocity,
and L is the reach length. The average velocity was obtained from the stream gauging
sites. The value of K was used also in the calibration process within short limits based on
Equation (4) until the simulated hydrographs approached the observed ones.

The rainfall runoff processes of the dendritic catchment systems were simulated by
using the hydrological modeling system of the HEC-HMS software. After considering the
pre-processing in the HEC-GeoHMS, the model was imported to the HEC-HMS software
as a basin file. Figure 8 shows the basin model file. HEC-HMS input data are important to
run the rainfall-runoff modeling.

The calculated parameters, such as loss parameters (curve number, initial abstrac-
tion and percentage of imperviousness), transform parameters (lag time) and routing
parameters (k and x), were added to the sub-basins and the reaches either manually or
automatically from the GIS attribute tables. The precipitation, temperature, evaporation
and discharge gauge data were added as time series using the time series data manager,
while the elevation-area table was added as paired data.

Three files were created for rainfall data input in the meteorological folder, correspond-
ing to the hydrological year intervals 2015–2016, 2016–2017 and 2017–2018. For the control
run, daily rainfall was started on 1 October at 00:00 and ended on 30 September at 00:00.
The selected time interval for the hydrograph was of one day for the three corresponding
hydrological years.
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Figure 8. Hydrologic modeling system of the Al-Adhaim catchment by HEC-HMS.

3.4. Model Calibration

The model is calibrated by using the daily rainfall data from the hydrological year
intervals 2016–2017 and 2015–2016. Manual calibration was applied to estimate the values
of the different parameters. The optimal values of the Muskingum Model parameters (K,
X) were obtained by comparing the observed and simulated flows, while the parameters of
the Loss Model and the Transform Model were calculated as explained in Sections 3.3.1
and 3.3.2. The dam data and the data needed for running the HEC-HMS models such as
the spillway level, the gates opening area and the center elevation were obtained from the
Central Statistical Organization of Iraq [17].

3.5. Comparison of the Simulated and Observed Hydrograph and Validation of Model

The simulated and observed hydrographs for the calibration period intervals 2015–
2016 and 2016–2017 are shown in Figure 9a,b and Figure 10a,b for both the simulated and
observed hydrographs exhibiting nearly similar trends and shapes. However, the peak
discharge of the simulated hydrographs is greater than the observed ones. The results
of the model in this study showed an acceptable fit between the simulated values and
observations. The trend and shape of the hydrograph seems compatible. The R2 values for
the calibration periods 2015–2016 and 2016–2017 were 0.90 for the outlet section.
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Figure 9. Observed and simulated discharge values for the dam outlet (a) calibration of 2015–2016; (b) calibration of
2016–2017; and (c) validation of 2017–2018.

Figure 10. Regression scatter plot for the (a) calibration period for the dam outlet for the years 2015–2016; (b) calibration
period for the dam outlet for the years 2016–2017; and (c) validation period for the dam outlet for the years 2017–2018.

The model was run for one year of daily rainfall data for validation purposes. The
runoff was simulated by using the hydrological year interval 2017–2018 in the validation
model. The model calibration parameters were applied to the validation model. The
simulated and observed hydrograph and regression scatter plot for the outlet section for
the validation period of the years 2017 and 2018 is presented in Figures 9c and 10c. As
observed in the calibration plots, the observed and simulated hydrographs are almost
identical except for the peak discharge, which is higher for the simulated graph. The R2 for
the validation period of 2017–2018 is 0.906 for the outlet section.

94



Hydrology 2021, 8, 58

A similar result for R2 of 0.9 was obtained by Oleyiblo et al. [7] on Misai and Wan’an
catchments in China using HEC-HMS. Tassew et al. [10] did a comparison of the observed
and simulated hydrographs and the performance of the model was as follows: NSE = 0.884
and the R2 = 0.925. It follows that the model is suitable for hydrological simulations in
the Gilgel Abay Catchment. Barbosa [14] used seven different methods to investigate the
performance of the HEC-HMS model: MAE, RMSE, RSR, NSE, PBIAS, R2, and KGE. The
researcher concluded that the HEC-HMS model represents the hydrological processes
of the basin under investigation efficiently. The results suggest that the subdivision of
a catchment does not result in the improvement of the HEC-HMS model’s performance
without significant differences in physiographic characteristics; for example, the values of
R2 ranged between 0.72 for two sub-basins to 0.73 for 32 sub-basins. From the above, it can
be concluded that the model performs considerable well, and the simulation can be judged
to be satisfactory.

During modeling using HEC-HMS, it was noticed that the main parameters which
affect runoff quantities were the curve number and then initial abstraction. However, lag
time and percentage of impervious area were less affected by the runoff results.

3.6. Reservoir Modelling

According to the Department of Environment Statistics [17], the observed annual
volumes discharged from the dam concerning its outlet were 1.15, 0.81 and 0.81 billion
cubic meters (BCM), while the simulated volumes were 1.22, 0.93 and 0.909 BCM for the
hydrological year intervals 2015–2016, 2016–2017 and 2017–2018, respectively (Figure 11a).
Additionally, the simulated values for the average annual discharge flow were 51.6, 29.9 and
29.3 m3/s, while the observed values [17] for the outlet were 36.42, 25.83 and 25.58 m3/s
for the hydrological year intervals 2015–2016, 2016–2017 and 2017–2018, respectively, as
shown in Figure 11b. The figures indicate a slightly overestimated discharge flow.

Figure 11. Observed and simulated hydrographs corresponding to (a) the annual water volume discharged; and (b) the
annual discharge flow.

Table 5 shows the results of the simulation run for the dam storage area. The results
indicate that the storage and the pool elevation at the beginning of the hydrological years
were compatible with Table 2 for all years assessed in this study. The results showed that
the years 2015–2016 can be considered as wet ones, with peak storage of 0.86 BCM and
an elevation of 124.6 m. However, for this period the storage capacity was just under the
maximum limits, accounting for approximately 1.5 BCM at the elevation of 131.54 m, which
is when the spillway comes into operation.
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Table 5. Results of a simulation run for the dam storage area.

Year
Storage (BCM)/Elevation

(m) at the Start of the
Hydrological Year

Peak Inflow
(m3/s)/Date

Peak Discharge
(m3/s)/Date

Inflow Volume
(BCM)

Peak Storage
(BCM)/Elevation (m)

2015–2016 0.60/120.71 742.4/
12 April 2016

133.3/
16 April 2016 1.320 0.860/124.6

2016–2017 0.31/115.20 396.9/
24 March 2017

142.1/
26 March 2017 0.895 0.438/118.4

2017–2018 0.27/113.94 625.1/
18 February 2018

142.4/
26 February 2018 0.953 0.438/118.4

BCM, billion cubic meters.

Figure 12a–c show the Al-Adhaim reservoir simulations for the year intervals 2015–
2016, 2016–2017 and 2017–2018. These figures show that during the summer season when
there was almost no rain, no flow occurred, and the pool elevation approached its minimum.
This is due to the fact that the main water source for the Al-Adhaim river is rainfall. In
contrast, during the period of precipitation, the storage capacity increased, reaching peak
inflow values of 742.4, 396.9 and 625.1 m3/s corresponding to maximum rainfall values
of 39.91, 29.14 and 33.41 mm for the year intervals 2015–2016, 2016–2017 and 2017–2018,
respectively.

The model used in our research is useful in predicting runoff volumes and flooding
in the area of interest. Figure 12 shows that the peaks of the estimated discharges for
the hydrological years from 2015 to 2018 occurred between March and May, which is
considered to be the time in which severe flooding takes place in the area. Moreover, it can
be noted that during the March to May period, runoff depth and volume increased, and
therefore, special attention should be dedicated to dam outlet management during this
period in the coming years.

 

Figure 12. Cont.
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c

Figure 12. The simulation run for the Al-Adhaim reservoir concerning the intervals (a) 2015–2016; (b) 2016–2017; and (c)
2017–2018.

4. Conclusions and Recommendations

The HEC-HMS hydrologic model was used in combination with the HEC-GeoHMS
and GIS to identify flow by simulated rainfall-runoff processes. The outlet flow discharge
of the Al Adhaim Dam has been simulated and compared with the flow obtained from
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the discharge gauge located downstream of the dam by calibration of the parameters for
two hydrological years and verification for one hydrological year. The results show a good
agreement between observed and simulated flows, and R2 was 0.9 for both calibration and
verification. The correlation between simulation and observation was good, but the total
volume of discharge storage for these years was slightly overestimated. The conclusions
from the analysis are listed below:

1. The HEC-HMS model can be used to obtain satisfactory simulated hydrological
models and is a valuable tool for the management of dam storage by forecasting
rainfall amounts.

2. The simulation results of runoff discharge peaks are slightly different compared with
the observed data.

3. In the summer season with almost no precipitation, there was no flow and the pool
elevation approached minimum limits. On the contrary, during the period of precipi-
tation, the storage capacity approached the peak inflow of 742.4 m3/s for the years
2015–2016, which corresponds to maximum daily rainfall of 39.91 mm.

4. The area of interest does not have an available discharge station other than the one
located near the outlet. Discharge stations could provide real observed discharge
data that can be used to validate the modeling results. Therefore, the provision of an
upstream discharge station is vital.

5. The development of serious water policy and planning strategies in accordance with
the results obtained from this study could reduce the probability of floods and may
help in the management and control of the dam outlet.

6. During modeling using HEC-HMS, it was noticed that the main parameters which
affect runoff quantities were the curve number and then initial abstraction.

7. HEC-HMS model results were good for flood forecasting concerning the Al-Adhaim
catchment. Data can be exported to simulate a 2-dimensional flood inundation map
using a hydraulic model such as HEC-RAS. They can also be used for forecasting the
rainfall using a suitable program to predict flooding for long-time periods.
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Abstract: The MS Excel file with VBA (Visual Basic for Application) macros named STORAGE
(STOchastic RAinfall GEnerator) is introduced herein. STORAGE is a temporal stochastic simulator
aiming at generating long and high-resolution rainfall time series, and it is based on the implemen-
tation of a Neymann–Scott Rectangular Pulse (NSRP) model. STORAGE is characterized by two
innovative aspects. First, its calibration (i.e., the parametric estimation, on the basis of available
sample data, in order to better reproduce some rainfall features of interest) is carried out by using
data series (annual maxima rainfall, annual and monthly cumulative rainfall, annual number of wet
days) which are usually longer than observed high-resolution series (that are mainly adopted in
literature for the calibration of other stochastic simulators but are usually very short or absent for
many rain gauges). Second, the seasonality is modelled using series of goniometric functions. This
approach makes STORAGE strongly parsimonious with respect to the use of monthly or seasonal
sets for parameters. Applications for the rain gauge network in the Calabria region (southern Italy)
are presented and discussed herein. The results show a good reproduction of the rainfall features
which are mainly considered for usual hydrological purposes.

Keywords: rainfall generator; stochastic processes; STORAGE; VBA macros in Excel

Software Information

• Name of software: STORAGE.xlsm
• Developers and contact information: Davide Luciano De Luca (davide.deluca@unical.it);

Andrea Petroselli (petro@unitus.it)
• Year first available: 2021
• Software required: Windows 8 or later versions as Operating System (OS); Microsoft

Excel 2013 or later versions
• OS settings: dot as decimal separator is mandatory. The folder “C:\NSRP\”, where

the output generated rainfall will be printed, must be created.
• Availability: https://sites.google.com/unical.it/storage
• Cost: free
• Program language: Visual Basic for Application (VBA) macros in MS Excel
• Program size: 6.5 MB

1. Introduction

Many hydrological applications, mainly related to small and ungauged catchments
that are characterized by a short response time of runoff to rainfall, require the use of
continuous rainfall time series at high resolutions [1]. However, these data series usually
present a very short sample size or they are absent for many sites of interest, where only
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Annual Maximum Rainfall (AMR) series are available (but they are often not so long at
the finest time scale, e.g., 1 or 5 min, [2]). In this context, the use of Stochastic Rainfall
Generators (SRGs) appears helpful for a more in-depth analysis of rainfall processes [3,4].
SRGs generally present a simple mathematical formulation and low computational costs,
and large ensembles of long rainfall time series can be quickly obtained [5]. Moreover, an
SRG can be easily used for obtaining perturbed time series [6,7] that are representative
of future rainfall on hydrological scales, which are finer than the spatial and time scale
investigated by Regional Climate Models (RCM). In fact, concerning this latter aspect, RCM
outputs are mainly available at daily scale and are averaged over large spatial resolutions,
so they require statistical downscaling or bias correction methods [8,9] for hydrological
analyses. Only very recent RCM applications regarded high resolutions (hourly) and small
spatial scales (e.g., [10,11]).

Specifically, the Poisson cluster models are the SRGs widely used in literature [12–33];
they include the Neyman–Scott and Bartlett–Lewis families, which provide similar perfor-
mances [34]. These models can satisfactorily recreate the observed summary statistics (used
for calibration) within the generated rainfall series at several fine time scales, but they usu-
ally underestimate extreme value distributions on hourly and sub-hourly scales (e.g., [35]).
Thus, many variants were proposed, aimed at overcoming this problem. Unfortunately,
they implied:

(i) an increasing parameterization [36–43], induced by a change of model structure
and/or by estimating parameters for each month or season; this is clearly unsuitable
for case studies characterized by very short samples of continuous rainfall data series
at a high resolution;

(ii) the impossibility of reproduction of the proportion of dry/wet periods [44], which
can be of interest for some applications.

Moreover, other kinds of SRGs, based on different stochastic engines than Poisson
cluster models, were also proposed in literature [45,46].

Recent works [6,7,47] investigated the possibility to calibrate an SRG (i.e., to carry out
the parametric estimation, on the basis of available sample data, in order to better reproduce
some features of interest) by using only sample series at coarser time scales, which are
usually longer than continuous data with a high resolution. In this framework, a modified
version of the Neymann–Scott Rectangular Pulse (NSRP) model was implemented with
Visual Basic for Application (VBA) macros in MS Excel, and the realized software, named
STORAGE, is discussed in the present work. STORAGE is the acronym of STOchastic
RAinfall GEnerator and its innovative aspects, with respect to other SRGs proposed in
literature, can be summarized as follows:

1. the model calibration is carried out by using summary statistics from annual maxima
rainfall (AMR), annual / monthly cumulative rainfall, and annual number of wet days,
which are usually longer than continuous observed high-resolution series (mainly
adopted for SRG calibration but typically very short or absent in many locations). In
this way, the SRG generates 1 min or 5 min continuous rainfall series which present,
at coarser resolutions, summary statistics which are comparable with those of the
above-mentioned sample data;

2. the seasonality is modelled by using series of goniometric functions. This approach
makes STORAGE more parsimonious with respect to the use of monthly or seasonal
sets for parameters.

Concerning the latter aspect, the proposed approach is very flexible, because it is
possible to model seasonality:

• by using goniometric series only for some rainfall descriptors, and by considering the
other ones as invariant during the year;

• by setting the maximum number of harmonics for each selected descriptors, with the
goal of having a parsimonious model.

Obviously, this methodology can be applied for any SRG proposed in literature.
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The present manuscript is organized as described in the following. A brief overview of
the investigated study area, i.e., the rain gauge network of the Calabria region in southern
Italy, is presented in Section 2. The theoretical background of the STORAGE model and
the user-friendly interface are described in Section 3. Applications are then discussed in
Section 4, and the conclusions are drawn in Section 5.

2. Study Area

The investigated study area is the rain gauge network of the Calabria region (southern
Italy). The employed data were downloaded from the website of the Multi Risks Centre of
the Calabria region [48]. In particular, authors selected as reference the rain gauges with at
least 30 years of observed data concerning AMR series with rainfall durations from 1 to
24 h. In total, time series of AMR, annual and monthly cumulative rainfall values, and
annual number of wet days were analyzed for 64 stations (Figure 1). It is noteworthy that
in Italy a day is classified as wet if the daily rainfall is greater than or equal to 1 mm.

Figure 1. Location of the investigated rain gauges (yellow and red dots) in the Calabria region (southern Italy). The stations
characterized by red dots (Montalto Uffugo, Reggio Calabria and Vibo Valentia) are described in detail in the present
manuscript (see Section 4).

The Calabria region is located in the central part of the Mediterranean area and the
total area is about 15,000 km2; the territory is hilly in 49.2% and mountainous in 41.8%
of the total area. From the collected data, the mean annual precipitation (MAP) assumes
an average value of about 1150 mm, with higher values in mountainous areas and lower
values in the coastal areas (particularly on the north-eastern one). As explained in [49],
many rainfall events are induced by cyclones that develop close to the Alps and in the
western part of the Mediterranean, and impact on the Tyrrhenian side, moving from west
to east. Cyclones from North Africa and the Balkans are less frequent and mainly affect the
region eastern side. In general, in the western part of Calabria there are the greatest rainfall
amounts, while in the eastern part the most extreme events occur, as they are exposed to
more intense cyclones [50].
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3. Methods

3.1. Theoretical Overview of the Implemented Model

The basic version of the NSRP model [13,51] is suitable for stationary (i.e., without any
seasonality and trend) continuous rainfall processes. In such model, five quantities, which
are considered as random variables, hence following assigned probability distributions,
play a crucial role. In detail, the five quantities are (see also Figure 2):

Figure 2. Representation of the Neyman–Scott Rectangular Pulses (NSRP) stochastic process for
at-site rainfall modeling. In the upper part of the Figure, 2 storm occurrences (red dots) with an
inter-arrival ts, 2 bursts for the first storm and 1 burst for the second storm, are represented. The
corresponding waiting times, intensities and duration are also indicated. Then, in the lower part of
the Figure, the total precipitation intensity at time t can be calculated as the sum of all the intensities
from the active bursts at time t.

• the inter-arrival time, Ts, between the origins of two consecutive storms, which is as-
sumed to be an exponential random variable. Consequently, the probability P[Ts ≤ ts]
to have a new storm origin after a waiting time Ts ≤ ts from the previous one can be
calculated as:

PTS(tS) = P[Ts ≤ ts] = 1 − e−λ·tS (1)

where 1/λ represents the mean value for the inter-arrival times, i.e., E[Ts] = 1/λ;
• the number M of rain cells (also indicated as bursts or pulses) inside a specific storm,

which is set in this work as a geometric random variable with a mean value E[M] = θ;
• the waiting time W between a specific burst origin and the origin of the associated

storm, which follows an exponential distribution:

PW(w) = P[W ≤ w] = 1 − e−βW ·w (2)

with E[W] = 1/βW ;
• the intensity I and the duration D of a specific burst, having a rectangular shape,

belonging to a storm. Both I and D are assumed as exponentially distributed, with
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parameters β I and βD, respectively, and mean values E[I] = 1/β I , E[D] = 1/βD,
so that:

PI(i) = P[I ≤ i] = 1 − e−β I ·i (3)

PD(d) = P[D ≤ d] = 1 − e−βD ·d (4)

By considering all these five mentioned quantities, the total precipitation intensity Y(t)
at time t is then calculated as the sum of all the intensities from the active bursts at time t
(see also Figure 2), and the rainfall height R(τ)

j , aggregated on the temporal τ resolution
and related to the time interval j with extremes (j − 1)τ and jτ, is:

R(τ)
j =

j·τ∫
(j−1)·τ

Y(t) · dt (5)

An SRG model such as NSRP is usually calibrated by minimizing an Objective Func-
tion (OF), which is defined as the sum of residuals (normalized or not) concerning the
considered (by user) statistical properties of the observed data at chosen time resolutions
and their theoretical expressions. The statistical properties are typically referred to high-
resolution continuous time series (e.g., 1 or 5-min rainfall time series): mean, variance, and
k-lag autocorrelation for R(τ)

j , at several values of τ can be mentioned as examples.
A first crucial aspect of the NSRP model is represented by the seasonality modelling of

the rainfall process, for which monthly or seasonal parameter sets are usually considered,
i.e., by carrying out a specific calibration for each considered month or season. This
procedure clearly implies an increase in the number of the parameters to be estimated, and
then a reduced ratio data/parameters.

In this context, another important aspect emerges, i.e., continuous high-resolution
data sets are typically very short (in general no more than 15–20 years) or absent in many
locations, and then a calibration with these data sets could not be suitable for a robust
estimation of parameters.

To overcome these critical issues, a modified version of NSRP was implemented in
STORAGE software, which is discussed in this work. STORAGE represents the implementa-
tion of the framework presented in [6,7], and its innovation regards the following features:

• In order to reproduce the seasonality of the rainfall process, goniometric series are
adopted (Section 3.1.1). In doing so, the model is more parsimonious, with respect to
the use of monthly or seasonal sets for parameters. Moreover, this approach is very
flexible, because it is possible to model seasonality:

◦ by using goniometric series only for some rainfall descriptors, and by consider-
ing the other ones as invariant during the year;

◦ by setting the maximum number of harmonics for each selected descriptors,
with the goal of having a parsimonious model.

• Moreover, model calibration is carried out by using data series, such as AMR, annual
and monthly rainfall, and annual number of wet days series (Section 3.1.2), which are
usually longer than continuous observed high-resolution series.

Obviously, like for other SRGs proposed in literature, a transient version can be
implemented [6,7] in order to obtain perturbed synthetic series, which are representative
of future hypothesized rainfall scenarios on spatial and temporal hydrological scales.
However, in this work we describe only the implementation in STORAGE software of the
cycle-stationary process (i.e., without temporal trends).

3.1.1. Seasonality Modelling with Goniometric Series

Focusing on the five NSRP summary statistics:

1. 1/λ: mean value for the inter-arrival times between two consecutive storms;
2. θ: mean value for the number of rain cells (or bursts) for each storm;
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3. 1/βW : mean value for the waiting time between a specific rain cell and the associated
storm;

4. 1/β I : mean value for intensity of the cells with a rectangular shape;
5. 1/βD: mean value for duration of the cells with a rectangular shape.

The adoption of different sets for each month would imply the estimation of 60 parameters.
Alternatively, it is possible to use goniometric series for the seasonal variation of an

investigated quantity p:

p(t) = p0 +
K

∑
n=1

An · cos
(

2π · n
Ty

· t + φn

)
(6)

where p(t) is the summary statistic along the time t (expressed in min); p0 is the mean
value of p(t) in the whole year; K is the maximum number of goniometric functions (also
named as harmonics) to be considered; n is the n-th harmonic function; Ty is total number
of minutes in the whole year (here considered with 365 days); An corresponds to the
amplitude for the n-th harmonic function; φn corresponds to the phase shift for the n-th
harmonic function.

Adoption of Equation (6) implies the estimation of 1 + 2K parameters for each sum-
mary statistic, i.e., the annual mean value and the K couples regarding amplitude and
phase shift for the harmonics.

Under the assumption that the seasonal variation regards all the five summary statis-
tics, the proposed SRG is characterized by: 15 parameters if K = 1 for all, 25 parameters
if K = 2 for all, 35 parameters if K = 3 for all and so on. Obviously, K can be also different
from a summary statistic to the other.

For the selected case study (described in Section 2), STORAGE software was organized
with the following assumptions:

(a) The quantities 1/λ,θ, 1/β I and 1/βD present a seasonal variation. Specifically, K = 2
is used for 1/λ (according to [52]):

1
λ(t)

=
1

λ0
+ A1,λ · cos

(
2π

Ty
· t + φ1,λ

)
+ A2,λ · cos

(
4π

Ty
· t + φ2,λ

)
(7)

where 1
λ0

represents the mean annual value without any seasonal variation;

A1,λ = 1
λ0

−
(

1
λ

)
min

, and
(

1
λ

)
min

is equal to the smallest value for mean inter-arrival
times between two consecutive storms; A2,λ = ξ · A1,λ; φ1,λ and φ2,λ are the phase
shifts for the two adopted harmonics.

(b) As regards θ, 1/β I and 1/βD, we adopted K = 1:

θ(t) = θ0 + A1,θ · cos
(

2π

Ty
· t + φ1,θ

)
(8)

1
β I(t)

=
1

β I ,0
+ A1,β I · cos

(
2π

Ty
· t + φ1,β I

)
(9)

1
βD(t)

=
1

βD,0
+ A1,βD · cos

(
2π

Ty
· t + φ1,βD

)
(10)

where

• θ0, 1
β I ,0

and 1
βD ,0

are the mean annual values without any seasonal variation;

• A1,θ = θ0 − θmin, and θmin is the smallest value for the mean number of cells for
each storm;

• A1,β I =
1

β I ,0
−

(
1
β I

)
min

, and
(

1
β I

)
min

is the smallest value for the mean intensity

of a rain cell. We considered
(

1
β I

)
min

= χ · 1
β I ,0

with 0.5 ≤ χ < 1.
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• A1,βD = 1
βD ,0

−
(

1
βD

)
min

, and
(

1
βD

)
min

is the smallest value for the mean dura-

tion of a rain cell. We considered
(

1
βD

)
min

= η · 1
βD ,0

with 0.5 ≤ η < 1.

(c) φ1,θ = 0, φ1,βD = 0 and φ1,β I = π, in order to obtain θ(t) = θmin and 1
βD(t) =

(
1

βD

)
min

in summer months and 1
β I(t)

=
(

1
β I

)
min

during the winter.

These assumptions are compatible with the climatology of the Calabria region. In
this part of Italy, the summer period is characterized by a lower average number of rain
events with respect to the winter season. Moreover, the summer season usually presents
rain events with higher intensities and shorter durations, compared with winter months,
due to convective phenomena [53]. No seasonal variation (i.e., K = 0) is assumed for 1/βW .

Overall, calibration requires the estimation of twelve parameters: 1/λ0, (1/λ)min, ξ,
φ1,λ, φ2,λ, θ0, θmin, 1/βW , 1/β I,0, 1/βD,0, χ e η.

Obviously, as also reported in Section 4, future developments of STORAGE will
allow to consider a more comprehensive ensemble of combinations of K for the involved
parameters, together with more flexibility about the phase shifts here fixed, in order to
adequately model rainfall series in other climatic areas around the world.

3.1.2. Calibration

An a priori ensemble of simulations, described below, was carried out and the results
were filed into an “information reservoir” in STORAGE software, ready to be queried
for a specific site of interest. In detail, all the previously mentioned twelve parameters
were considered uniform random variables with assigned ranges of variation, reported in
Table 1 [7,54]. Then, 50,000 parametric sets were generated with the Monte Carlo technique
and, for each one, a simulation of a 200-year rainfall series with resolution of 1 min was
carried out by using the same macros which were afterwards implemented in STORAGE.
At the end, we filed in STORAGE software only the parametric sets for which the 200-year
synthetic series presented summary statistics according to the variation ranges of those from
the observed data of a wide area of interest (i.e., all the rain gauges of the Calabria region
for the presented application). Specifically, we focused on the following summary statistics:

• Mean Annual Precipitation (MAP), and
• mean annual number of wet days (i.e., mean annual number of days for which the

daily rainfall is greater than or equal to 1 mm), and
• parameters of Amount-Duration-Frequency (ADF) curves, related to rainfall durations

from 1 to 24 h, and
• mean values for seasonal rainfall in DJF (December–January–February), MAM (March–

April–May), JJA (June–July–August), and SON (September–October–November).

The results of this composite filter, constituted by a subset of 50,000 parametric sets,
are illustrated in Section 4 for the Calabria region. The storage of this information further
justifies the choice of the acronym STORAGE. In fact, the software allows to use, for the
synthetic generation related to a single rain gauge of interest, parametric sets belonging to
this pre-existing “information reservoir” (regarding a wide previously investigated area),
for which the corresponding series of AMR, annual rainfall, seasonal rainfall and number
of wet days are comparable with those related to the sample historical data. Obviously, this
aspect considerably reduces the calculation times for the model calibration on a specific
site of interest, with respect to a usual calibration procedure that is carried out without
any a priori indication about possible model outcomes. It is clear that this “information
reservoir” can be continuously updated when other areas are investigated as case studies.
Moreover, refinement algorithms will be implemented in future versions of STORAGE, in
order to enhance the performance of calibration for a specific rain gauge.
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Table 1. Ranges of variation for parameters in STORAGE, according to [7,54].

Parameter Min Max

1/λ0 (days) 5 30
θ0 (-) 2 20

1/βW (h) 5 24
1/β I,0 (mm/h) 5 20

1/βD,0 (h) 0.1 0.6
(1/λ)min (days) 0.5 5

θmin (-) 1 2
φ1,λ (rad) 0 π/2

χ (-) 0.5 1
η (-) 0.5 1
ξ (-) 0 1

φ2,λ (rad) 0 2π

3.2. The User-Friendly Interface of STORAGE

When a user executes STORAGE, after having enabled the VBA macros, the Main

worksheet will appear as in Figure 3. Two different procedures are allowed for the generation
of a synthetic rainfall time series, and each one is associated with a specific command button:

• RUN with parameter values chosen by the user;

• PARAMETER ESTIMATION AND RUN.

Moreover, in the Main worksheet, the user can manually stop the elaborations in
progress with the related command button (manual STOP to elaborations).

Figure 3. Interface of the Main worksheet of STORAGE after enabling the VBA macros’ content.

In addition to the Main worksheet, STORAGE contains the following worksheets:

1. Annual and Monthly Rainfall, in which the generated rainfall values, aggregated
at monthly and annual timescale, as well as the annual number of wet days, will be
printed (for each generated year);

2. Annual Maxima, where the values for AMR series will be printed for rainfall dura-
tions equal to 5, 15, 30, 60 min, 3, 6, 12, 24 h, and 1 day;

3. Statistics, in which the mean and standard deviation values will be calculated and
printed for all the quantities reported in the previous points 1 and 2;

4. EV1 Plots, in which the frequency distributions of all the previously listed AMR
series will be represented on EV1 (Extreme Values type 1) probabilistic plots;
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5. Average Monthly Rainfall Plot, which contains the histogram of the average monthly
rainfall values related to the generated rainfall series;

6. Annual Rainfall Plot, where the annual cumulative rainfall series is represented.

Concerning the Annual Maxima worksheet, the series from 60 min to 24 h are esti-
mated by considering the continuous series with a time step of 1 h. This choice is justified by
the fact that many observed AMR series around the world were extracted, until 20–30 years
ago, by using 1-h continuous data, while data with resolutions lower than 1 h are available
only from 1990 or later [55]. Consequently, the comparison among synthetic and observed
AMR series should be preferred by using this setting.

3.2.1. Data Input

For both previously mentioned procedures of time series generation, it is necessary to
insert the following input information before starting the elaborations:

• the number of years to be generated (Cell D3). The maximum allowed is 500 years;
• the time resolution, expressed in minutes (Cell D4). The software allows for resolutions

of 1, 5, 10, 15, 20, 30 and 60 min.

If the option RUN with parameter values chosen by the user is selected, then the
user has to fill all the cells from C10 to C22 (Figure 3).

On the contrary, if PARAMETER ESTIMATION AND RUN is chosen, then the user
has to insert the following input data, which are sample estimates from the observed series
of the investigated case study:

• The values of parameters for Amount–Duration–Frequency (ADF) curves, expressed
as a power function:

hT(d) = aTdnT (11)

where d is the rainfall duration (hours) ranging from 1 to 24 h, T is the return period
(years), hT(d) is the d-AMR associated with T, and aT and nT are ADF parameters. In
detail, the values for aT and nT , associated with specific T values, are requested:

◦ concerning aT , the cells to be filled are F5 (T = 2 years), H5 (T = 5 years), J5
(T = 10 years), F8 (T = 50 years), H8 (T = 100 years) and J8 (T = 200 years);

◦ concerning nT , the cells to be filled are G5 (T = 2 years), I5 (T = 5 years), K5
(T = 10 years), G8 (T = 50 years), I8 (T = 100 years) and K8 (T = 200 years). If
the size of the sample AMR series for the investigated case study is limited
(less than 20 years), then it is advisable to use only sample estimates from low
T values (2, 5 and 10 years). For higher sample sizes, information deriving
from higher return periods can also be entered.

• The values for Mean Annual Precipitation (MAP) into the cell L5, for the mean
annual number of wet days into the cell M5, and for the mean cumulative seasonal
precipitation, associated with December–January–February (DJF), March–April–May
(MAM), June–July–August (JJA) and September–October–November (SON), into the
cells L8, M8, N8 and O8, respectively. Moreover, also in this case, it not necessary
to fill all the listed cells. The VBA macro will run the model calibration on the basis
of the available information. Concerning the cell M5, strictly related to the wet day
proportion, it should be remarked that the trivial rainfall (of which amount is less than
the capacity of the tipping bucket of the rain gauges) could highly distort the result of
the calibration in some cases, and so not filling this cell could avoid this possibility.

An example of Data Input is shown in Figure 4, if the option PARAMETER ESTIMA-

TION AND RUN is selected by the user.

3.2.2. Synthetic Generation of Rainfall Time Series at a High Resolution

After completing the Data Input step, it is possible to run one of the two generation
procedures. In the following pages, attention is focused on the PARAMETRIC ESTI-

MATION AND RUN button (Figure 4), which further allows for different generation
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alternatives. The table and graphic outputs, associated to RUN with parameter values

chosen by the user button (Section 3.3), are similar.

Figure 4. Example of Data Input step in the Main worksheet.

It must be highlighted that, in a worksheet hidden for the user, the results deriving
from the use of about 3500 parametric sets, in terms of aT and nT for the ADF, MAP and
the mean annual number of wet days, and mean cumulative seasonal rainfalls (DJF, MAM,
JJA, SON), are stored. In detail (see also Sections 3.1.2 and 4), for each single parametric set,
200 years of precipitation were synthetically generated.

By clicking on the PARAMETRIC ESTIMATION AND RUN button, the userform
shown in Figure 5 is displayed; from the combobox at the top (Figure 6) it is possible to
select the statistical descriptors to be reproduced, i.e.,:

1. only the parameters aT and nT of the ADF curves;
2. only MAP and the mean value for annual number of wet days (NumWetDays);
3. aT , nT , MAP and NumWetDays;
4. aT , nT , MAP, NumWetDays and the mean cumulative seasonal rainfalls (DJF, MAM,

JJA, SON).

After the choice of the descriptors to be reproduced (for example, aT , nT , MAP,
NumWetDays, DJF, MAM, JJA, and SON, as in Figure 6), it is possible to click on the
PARAMETRIC ESTIMATION button. The software will display by default, in the cell
range C10:C22, the parametric set (indicated with ID SET 1) which is characterized, among
the 3500 used offline, by the best value (i.e., the lowest value) of the evaluated Objective
Function (OF) (Figure 7), in percentage terms, as:

OF =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

OF a_n Option 1
OF MAP_NumWetDays Option 2
OF a_n + OF MAP_NumWetDays Option 3
OF a_n + OF MAP_NumWetDays + OF Seasons Option 4

(12)

in which:

• OF a_n =
Ka

∑
i=1

∣∣ai − a∗i
∣∣

ai
+

Kn

∑
j=1

∣∣∣nj − n∗
j

∣∣∣
nj

(13)
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where:

◦ ai is the i-th value (i = 1, . . . Ka) of parameter a for an ADF curve of an assigned T,
inserted by the user into an input cell, while a∗i is the correspondent NSRP value. Ka
is the number of return periods T which are considered by the user for parameter a.

◦ nj is the j-th value (j = 1, . . . Kn) of parameter n for an ADF curve of an assigned T,
inserted by the user into an input cell, while n∗

j is the correspondent NSRP value. Kn

is the number of return periods T which are considered by the user for parameter n.

• OF MAP_NumWetDays =
= |MAP−MAP∗|

MAP + |NumWetDays−NumWetDays∗|
NumWetDays

(14)

where MAP and NumWetDays are the sample values which are inserted by the user, while
MAP∗ e NumWetDays∗ are the correspondent NSRP values.

• OF Seasons =
|DJF−DJF∗|

DJF + |MAM−MAM∗|
MAM + |J JA−J JA∗|

J JA + |SON−SON∗|
SON

(15)

where DJF, MAM, J JA and SON are the sample values which are inserted by the user,
while DJF∗, MAM∗, J JA∗ and SON∗ are the correspondent NSRP values.

Whatever option is selected in the combobox, STORAGE will provide the correspon-
dent values for all the OFs (Equations (13)–(15)) for a specific parameter set.

Moreover, by using the spin button (Figure 8), it is possible to adopt other parameter
sets for simulation, which are sorted (by STORAGE in the hidden worksheet) on the basis
of the values related to the selected OF.

After the choice for parametric set, the user can click on the RUN button for carrying
out the generation of a synthetic rainfall series.

During the run, the user can control the progress of generation by analyzing the
several worksheets in STORAGE.xlsm. As examples, the cell D5 in Main (Figure 9) and the
histogram for Annual Rainfall (Figure 10) can be checked.

A message box will appear when simulation is completed. Then, the final results
can be analyzed in the several tables and plots of STORAGE (Figure 11), while the whole
synthetic rainfall series at the selected high resolution (cell D4 in Main), will be printed in
“C:\NSRP\RainSim.txt”.

As explained in the following sections, STORAGE also allows for rainfall generation
with multisets approaches, as an alternative way to the run with a single parametric set.

Figure 5. Userform where a user can carry out calibration and select several run options.
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Figure 6. Example of procedure for calibration, by using the combobox at the top of the userform.

Figure 7. Example of calibration results in the Main worksheet.
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Figure 8. Example of calibration by using the spin button, which allows for using other parameter
sets for simulation.

Figure 9. During the run, the user can control the progress of generation by checking the number of simulated years in the
cell D5 in the Main worksheet.

113



Hydrology 2021, 8, 76

Figure 10. During the run, the user can control the progress of generation by analyzing the histogram for Annual Rainfall.

Figure 11. Examples of visualization in the different worksheets when the simulations are completed.
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3.2.3. Multisets Approaches

Focusing on Option 4 of Equation (12), different parametric sets can be characterized
by very similar OF values among them, but some sets could better reconstruct ADF curves,
while other ones could best fit MAP and NumWetDays, and so on.

In this context, if the fourth option of Equation (12) (i.e., aT , nT , MAP, NumWetDays,
DJF, MAM, JJA, SON) is chosen as an ensemble of statistical descriptors to be reproduced,
the user can take advantages from several parametric sets by selecting one of these two
options concerning multisets approaches (Figure 12):

• Ranking from total OF;

• Merging different OFs, which is further subdivided in 3 OFs and 4 OFs.

The proposed multisets approaches are based on the concept of equifinality [56], which
means that “different parametric sets within a chosen model structure may be behavioural
or acceptable in reproducing the observed behaviour of that system”.

Ranking from Total OF

It is possible to select S parametric sets (sorted with increasing values of Option 4 in
Equation (12)) by using the spin button of Figure 12.

Figure 12. Example of multisets approach regarding the option “Ranking from total OF”.

Automatically, STORAGE will assign (to a specific set) a frequency of use which is
inversely proportional to its overall OF value (Option 4 in Equation (12)). In detail, let fi
be the frequency of use for the i-th parametric set (i = 1, . . . , S) and OFi its corresponding
value of OF; fi is computed as:

fi =
1

OFi
S
∑

i=1

1
OFi

(16)

with, obviously,
S
∑

i=1
fi = 1.

Then, considering the total number N of years to simulate (input data in cell D3 in
the Main worksheet, Figure 4), the number fi · N of years will be generated with the i-th
parametric set.

It should be highlighted that:

• if a multisets approach is selected, a user should consider at most S = 4 and a large
value for N (we suggest N = 500 years), in order to have a significant number of years
for each set (with N = 500 years and S = 4, there are on average 125 years which are
simulated with each set);
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• in a context, such as in this case, of stationary/cycle-stationary process (i.e., without
any climatic trend), it is not necessary to generate a large number L of N-year synthetic
series (in which each i-th set should regard fi · L series), but it is sufficient to consider
the generation of only one year, which is repeated L = N times. This is allowed by
the ergodicity property of a stationary process [57], which means that the statistics
from a long temporal N-year series are equal to the statistics from one year (generated
N times).

After clicking on the RUN command button (Figure 12), the user is able to check the
progress of the rainfall generation, similarly to the procedure with only one parameter set
(Figures 9–11). It is clear that this approach can be well used for a more comprehensive
sensitivity analysis (i.e., not only related for the first ranked parametric sets) in further
upgraded versions of STORAGE software.

Merging Different OFs

This approach can be carried out in two options:

• 3 OFs;
• 4 OFs.

In the first case, from the worksheet (hidden for the user) where the information of
the offline generations with about 3500 parametric sets is stored, the VBA code selects the
three parametric sets with the lowest values for, respectively, Equations (13)–(15). Then,
STORAGE will assign to each selected set a frequency fi, evaluated by considering Option
4 of Equation (12) as OFi in Equation (16).

In the second case (4 OFs), the parametric set with the lowest value of the overall OF
(option 4 of Equation (12)) is also considered, together with the three above mentioned sets.

It must be highlighted that these two options are allowed by STORAGE only if all the
3 OFs of the first option are inside the first 10 positions of the ranking for OF calculated
with Option 4 of Equation (12).

Also in this case, after clicking on the 3 OFs or 4 OFs buttons (Figure 13), the user is
able to check the progress of the rainfall generation, similarly to the procedures with only
one parameter set (Figures 9–11).

Figure 13. Use of multisets approach regarding the option “Merging different OFs”.

3.3. RUN with Parameter Values Chosen by the User

This option allows for manually setting the values for the parameters in the interval
C10:C21 of cells in the Main worksheet (Figure 4). Also in this case, after clicking on the
corresponding command button for the run, the user is able to check the progress of the
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rainfall generation, similar to the previous described procedures. The ranges of variation
for parameters are reported in Table 1, according to [7,54].

4. Application for Rain Gauge Network of the Calabria Region and Discussion

As regards the application for the Calabria region, we saved in STORAGE about
3500 parametric sets, for which the 200-year synthetic series presented summary statistics
ranging inside specific intervals (according to the observed data in the whole region).
In detail:

• concerning MAP, a value between 450 and 2500 mm;
• concerning the mean annual number of wet days, a value between 50 and 120;
• concerning the ADF curves (Equation (11)), values of a and n for T = 5 years between

20 and 65 mm/h and between 0.12 and 0.65, respectively;
• concerning the SON cumulative rainfall, a mean value inside a variation of ±50 mm

with respect to the linear regression curve between observed MAP and SON of the
investigated data series.

By applying this composite filter, graphical comparisons among synthetic and observed
summary statistics are shown in Figures 14 and 15. From analysis of these dispersion plots,
the STORAGE good reconstruction for the investigated rainfall descriptors can be assessed.

Figure 14. Comparison among synthetic and observed summary statistics.
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Figure 15. Comparison among synthetic and observed summary statistics.

For the sake of brevity, focusing on specific rain gauge data series, examples of
STORAGE application are below described for Montalto Uffugo, Reggio Calabria and Vibo
Valentia stations. Their associated sample values for the statistical descriptors are reported
in Tables 2 and 3.

Table 2. Montalto Uffugo, Reggio Calabria and Vibo Valentia rain gauges: values of parameters
concerning ADF curves.

Rain Gauge
Sample Size
AMR Series

(years)

a2

(mm/h)
n2

(-)
a5

(mm/h)
n5

(-)
a10

(mm/h)
n10

(-)

Montalto Uffugo 53 23.5 0.43 31.4 0.42 36.6 0.41
Reggio Calabria 57 25.7 0.24 35.9 0.23 42.7 0.23

Vibo Valentia 67 24.4 0.31 36.1 0.29 45.0 0.28

Rain Gauge
a50

(mm/h)
n50

(-)
a100

(mm/h)
n100

(-)
a200

(mm/h)
n200

(-)
Montalto Uffugo 48.0 0.41 52.8 0.41 57.7 0.40
Reggio Calabria 57.6 0.23 63.9 0.22 70.1 0.22

Vibo Valentia 68.2 0.27 79.0 0.27 90.1 0.26
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Table 3. Montalto Uffugo, Reggio Calabria and Vibo Valentia rain gauges: sample values of mean annual and seasonal
precipitation, and mean annual number of wet days.

Rain Gauge
Sample Size

Daily Series (years)
MAP
(mm)

Mean Annual Number
of Wet Days (-)

DJF
(mm)

MAM
(mm)

JJA
(mm)

SON
(mm)

Montalto Uffugo 71 1397.1 95 608.0 311.5 77.0 400.6
Reggio Calabria 101 597.2 73 229.9 119.4 34.2 213.7

Vibo Valentia 99 949.7 93 362.2 217 77.9 292.6

For all the three stations, 500-year synthetic rainfall time series with a resolution of
5 min were generated, and we carried out model validation by analyzing the reproduction
of frequency distributions for sample data of AMR, annual and seasonal rainfall, and
annual number of wet days. The best STORAGE performances were obtained:

• by using the parametric set with the lowest value for the total OF (Option 4 in
Equation (12)), concerning Montalto Uffugo;

• by considering the multisets approach Ranking from total OF for Reggio Calabria
and Vibo Valentia, with S equal to 3 and 4, respectively.

For Montanto Uffugo rain gauge, STORAGE provided a 500-year synthetic rainfall
time series which satisfactorily reproduces the frequency distributions of AMR sample
data (see the EV1 probabilistic plots in Figure 16), with an over-estimation only for 24-h
AMR series. The reproduction of the frequency distributions concerning sample series for
annual rainfall, annual number of wet days, and seasonal precipitation in DJF, MAM and
SON is analyzed on Gaussian plots (Figure 17): a slight underestimation is obtained only
for JJA rainfall. As regards Reggio Calabria and Vibo Valentia rain gauges, the obtained
results (Figures 18–21) highlighted some crucial aspects to be investigated further when
future developments in STORAGE software will be carried out. In detail:

• when AMR sample data present outliers from an EV1 behaviour (Figures 18 and 20),
or if extremes are underestimated, it could be useful to consider other probability
distributions for cell intensity I (e.g., Weibull, Gamma or a mixture of exponential
functions, [20,25,58]), and/or to use other shapes for rain cells (such as the sinusoidal
one, [59]), in order to better reproduce quantiles at high values of return period T;

• though frequency distributions of annual rainfall are properly reproduced, an increase
in the maximum number of harmonics for 1/λ(i.e., the mean inter-arrival time between
two consecutive storms) and/or modelling seasonality also for 1/βW (i.e., the mean
waiting time between a specific burst origin and the origin of the associated storm)
could improve the reconstruction of both the annual number of wet days and seasonal
rainfall in some specific cases.

Starting from this latter aspect, a more in-depth investigation of the maximum number
of harmonics for some quantities, and of their phase shifts, could justify the STORAGE
application also in regions far from the investigated area, i.e., characterized by drier or
wetter climates. This obviously means to increase the number of parametric sets to be
stored in the software.

Further analyses of STORAGE performances were carried out focusing on Montalto
Uffugo rain gauge, characterized by 30-year continuous time series at resolutions of 20
min. Such analyses aim to evaluate the model capacity for reproducing summary statistics
of high-resolution continuous series (not used for STORAGE calibration) and to compare
the STORAGE results with those from a standard NSRP (i.e., calibrated by only using
continuous high-resolution data). In details:

• we calibrated a basic version of NSRP with the 1-h continuous data series (aggregated
from the available 20-min one), by estimating parameters for each month (according
to [14]) in order to avoid possible underestimation of extremes (as mentioned in the
introduction). This version of NSRP is indicated as NSRP_v0 in the following;
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• we compared STORAGE and NSRP_v0 performances, graphically and in terms of
Root Mean Square Error (RMSE), as regards the modelling of:

◦ mean, standard deviation and percentage of dry intervals from the continuous
series at 20-min and 1-h resolutions;

◦ mean values of monthly rainfall heights;
◦ rainfall heights of ADF curves for return periods T = 5, 50 and 200 years.

Concerning the summary statistics of the continuous series, it is clear that NSRP_v0
provides the best performances for 1-h resolution, because this time step was used for
NSRP calibration in this case. However, the obtained STORAGE results for 1-h data series
can be considered acceptable for the mean and percentage of dry intervals (Table 4 and
Figure 22). For a 20-min resolution, STORAGE and NSRP_v0 performances are comparable
(Table 4 and Figure 23).

Table 4. Montalto Uffugo rain gauge: evaluation of STORAGE and NSRP_v0 performances. RMSE values related to the
mean, standard deviation and percentage of dry intervals for the continuous 20-min and 1-h series.

RMSE
1-h Mean

(mm)
1-h St.Dev.

(mm)
Ratio of 1-h

Dry Intervals (-)
20-min Mean

(mm)
20-min St.Dev.

(mm)
Ratio of 20-min
Dry Intervals (-)

STORAGE 0.06 0.30 0.07 0.02 0.13 0.03
NSRP_v0 0.02 0.04 0.03 0.01 0.13 0.02

Moreover, monthly rainfall heights are very well reproduced by STORAGE, as seasonal
rainfalls are used for its calibration (Sections 3.2.1 and 3.2.2), but NSRP_v0 results can be
also considered good: RMSE values are 7.5 and 14.4 mm for STORAGE and NSRP_v0,
respectively (see Table 5 and Figure 24).

Table 5. Montalto Uffugo rain gauge: evaluation of STORAGE and NSRP_v0 performances. RMSE
values related to the mean of monthly rainfall heights and ADF curves.

RMSE
Mean of Monthly

Rainfall
(mm)

5-year ADF
(mm)

50-year ADF
(mm)

200-year ADF
(mm)

STORAGE 7.5 6.0 5.5 5.6
NSRP_v0 14.4 27.6 35.5 40.1

The clear benefit of using STORAGE is highlighted by focusing on ADF curves (Table 5
and Figure 25). As expected, STORAGE provides a very good reconstruction (RMSE values
are comprised between 5.5 and 6 mm) because it is calibrated with aT and nT of the sample
ADF curves (Sections 3.2.1 and 3.2.2). On the contrary, NSRP_v0 significantly overestimates
rainfall extremes in this specific case; as its parametric estimation is only based on summary
statistics from high-resolution continuous series, an acceptable reproduction of ADF curves
could not be guaranteed in general (such as for Montalto Uffugo rain gauge), also by using
monthly or seasonal parameter sets.

This last comparison allows us to remark the most important aspect of the usefulness
of STORAGE, i.e., the possibility of calibrating an SRG by only using information at coarser
resolutions (AMR, MAP, and so on) and then generating continuous series which preserves
sample features (often un-known for lack of data) in an acceptable way at high resolutions.
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Figure 16. Montalto Uffugo rain gauge: EV1 probabilistic plots, showing the comparison among synthetic and observed
AMR series.
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Figure 17. Montalto Uffugo rain gauge: Gaussian probabilistic plots, showing the comparison among synthetic and
observed series, regarding annual and seasonal rainfall, and annual number of wet days.
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Figure 18. Reggio Calabria rain gauge: EV1 probabilistic plots, showing the comparison among synthetic and observed
AMR series.
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Figure 19. Reggio Calabria rain gauge: Gaussian probabilistic plots, showing the comparison among synthetic and observed
series, regarding annual and seasonal rainfall, and annual number of wet days.
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Figure 20. Vibo Valentia rain gauge: EV1 probabilistic plots, showing the comparison among synthetic and observed
AMR series.
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Figure 21. Vibo Valentia rain gauge: Gaussian probabilistic plots, showing the comparison among synthetic and observed
series, regarding annual and seasonal rainfall, and annual number of wet days.
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Figure 22. Montalto Uffugo rain gauge: comparison between STORAGE and NSRP_v0 performances,
focusing on the mean, standard deviation and percentage of dry intervals for the continuous 1-h series.
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Figure 23. Montalto Uffugo rain gauge: comparison between STORAGE and NSRP_v0 perfor-
mances, focusing on the mean, standard deviation and percentage of dry intervals for the continuous
20-min series.
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Figure 24. Montalto Uffugo rain gauge: comparison between STORAGE and NSRP_v0 performances,
focusing on mean values of monthly rainfall heights.

Figure 25. Montalto Uffugo rain gauge: comparison between STORAGE and NSRP_v0 performances,
focusing on ADF curves.

5. Conclusions

The developed STORAGE software constitutes a very useful user-friendly tool for
generating long rainfall time series at high resolutions, which could be applied as input
data in many hydrological analyses, such as in the continuous rainfall-runoff modeling.

The innovative aspects of the software regard: (i) the possibility of using information,
for model calibration, from observed time series which are longer than continuous data
sample at high resolutions; (ii) the modelling of seasonality by adopting goniometric series,
which allows for a more parsimonious approach with respect to considering monthly
parametric sets (as is usually done).

The presented version of STORAGE software, available at https://sites.google.com/
unical.it/storage, is currently suitable for the reproduction of rainfall series which ex-
hibit a clear EV1 behaviour in terms of AMR and present values of annual and seasonal
precipitation that are typical of the Mediterranean area.

Future developments will concern: (i) the extension of the ensemble of the parametric
sets and the possibility to use other probability distributions for some rainfall features and
other shapes besides the rectangular one for rain cells, in order to apply the model in other
regions with different climates with respect to the investigated area; (ii) the implementation
of a module for obtaining perturbed synthetic series, which can be representative of future
hypothesized rainfall scenarios on spatial and temporal hydrological scales.
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Moreover, the authors consider as very important the possibility of implementing
in STORAGE specific modules related to soft computing methods (widely used in recent
literature [60–62]), in order to provide different approaches for a specific case study. This
aspect will allow to immediately compare the performances of an SRG (having a mathe-
matical structure which is “physically-based”, as it models some aspects of rainfall genesis,
see Figure 2) with those from approaches such as Artificial Neural Networks (ANNs),
Support Vector Regression (SVR) and Fuzzy Logic (FL), which are characterized by high
nonlinearity, flexibility and data-driven learning.
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Abstract: The lack of strategic planning in stormwater management has made rapidly urbanizing
cities more vulnerable to urban water issues than in the past. Low infiltration rates, increase in
peak river discharge, and recurrence of urban floods and waterlogging are clear signs of unplanned
rapid urbanization. As with many other low to middle-income countries, India depends on its
conventional and centralized stormwater drains for managing stormwater runoff. However, in the
absence of a robust stormwater management policy governed by the state, its impact trickles down to
a municipal level and the negative outcome can be clearly observed through a failure of the drainage
systems. This study examines the role of onsite and decentralized stormwater infiltration facilities,
as successfully adopted by some higher income countries, under physical and social variability
in the context of the metropolitan city of Lucknow, India. Considering the 2030 Master Plan of
Lucknow city, this study investigated the physical viability of the infiltration facilities. Gridded
ModClark rainfall-runoff modeling was carried out in Kukrail river basin, an important drainage
basin of Lucknow city. The HEC-HMS model, inside the watershed modeling system (WMS), was
used to simulate stormwater runoff for multiple scenarios of land use and rainfall intensities. With
onsite infiltration facilities as part of land use measures, the peak discharge reduced in the range of
48% to 59%. Correlation analysis and multiple regression were applied to understand the rainfall-
runoff relationship. Furthermore, the stormwater runoff drastically reduced with decentralized
infiltration systems.

Keywords: stormwater runoff; decentralized and onsite infiltration facilities; climate change; dis-
tributed hydrological model

1. Introduction

Stormwater runoff is defined as the amount of rainfall that is unable to infiltrate the
ground and instead flows over the land into streams, rivers, or lakes as surface runoff.
While flowing over the land surface, it picks up materials such as leaves, stones, and
sediments, but also non-biodegradable plastics, trash, and other pollutants [1]. There are
two key drivers which result in stormwater runoff: (i) rapid and unplanned urbanization,
and (ii) climate change. The relation between urbanization and economic growth is a
complex one, yet the former has been strongly associated with bringing progress to a
nation [2].

Urbanization alters the nature of surface perviousness by reducing the ability of water
to infiltrate soil and, thus, the majority of water runs as overland water. Stormwater runoff
in urbanizing areas ranges from 10% in areas with natural land cover to 55% in areas
with 75% to 100% surface imperviousness [3]. While the percent increase is relational, it
is region specific and will depend upon the stormwater infiltration facilities as well as
on the level of imperviousness. The higher the surface imperviousness, the more surface
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runoff. Unplanned urbanization, instead of enhancing natural pathways for the flow of
water, replaces the surface by installing artificial drainage systems [4]. The second key
driver for runoff is climate change, the manifestation of anthropogenic activities, which is
characterized by extreme rainfall events. Stormwater runoff further intensifies in urban
areas where natural drainages meant to carry excess stormwater are replaced by unplanned
built up areas with inefficient artificial drainage systems [5].

The severity of adverse runoff impacts can vary across the physical components in an
urban watershed. Urbanization and climate change result in an increased runoff rate, less
groundwater recharge, a greater magnitude of river flow, and the recurrence of small to
major urban floods [4,6–9].

To study the effect of stormwater runoff on downstream water quality, Mohit and
Sellu [10] conducted a comparative impact study of an urban, a suburban, and a rural
stream, collecting dry and wet samples from 12 sites. They found that the urban stream
had the highest levels of biochemical oxygen demand (BOD), orthophosphate, total sus-
pended sediment (TSS), and surfactant concentrations. The study highlights a strong
correlation between the level of development in the watershed and impervious surface
coverage with BOD. Similar results were observed in an urban catchment of the rapidly
urbanizing Bhatinda city in India [11]. While the primary effects are mostly observed in
the hydrological systems and urban flooding, secondary effects include vulnerability to
health risks in humans as well as animals and marine or aquatic life [9,12].

Various comparative and standalone studies carried out through hydrological model-
ing, such as the soil and water assessment test (SWAT), and field observations emphasize
that infiltration facilities have a higher efficiency than storage facilities in reducing runoff
volumes [13,14]. These structures primarily mimic natural processes as they behave as a
source control and decentralized stormwater absorption system to facilitate the reduction
in surface runoff, minimize environmental degradation, and enhance infiltration. These
are developed via a combination of sound site planning, and structural and nonstructural
techniques. Some sustainable stormwater management practices include rain gardens,
biofiltration swales, bioretention pits, pervious pavements, and green roofs [6,15].

Using the SWMM model, Zahmatkesh et al. [16] investigated the impact of low impact
development practices, such as rainwater harvesting, porous pavement, and bioretention,
in mitigating the effects of climate change on stormwater runoff in a watershed of New
York City. With the implementation of low impact development practices for 2- and 50-year
return period extreme precipitation events, both runoff volume and peak discharge reduced
significantly. Hunt et al. [17], through field observations and hydrological modeling,
reported that bioretention pits can reduce 0% to 99% of sediment and nutrient losses
due to the protective vegetation layer as it acts as a natural filter. Similarly, in Monash
University, Melbourne, Hatt et al. [18] observed peak flow reductions between 49% and
80% for different rain gardens. Additionally, the vegetation of rain gardens effectively
removed the suspended solids and heavy metals by 90%.

Various assessment tools for evaluating the sustainability of stormwater practices have
been studied. A study conducted by Zhou et al. [19] in Denmark on urban flood modeling
used a hedonic valuation model for cost-benefit analysis and revealed that a conventional
drainage system, with traditional storage or source control facilities, has greater efficiency
in controlling and reducing the impacts of stormwater runoff. Furthermore, Zhou et al. [19]
analyzed the performance of open urban drainage systems using the cost-benefit approach
(CBA) and discussed the socio-economic benefits of the sustainable urban drainage system,
such as mitigating flood risks and enhancing the recreational value of local neighborhoods.
To validate this research finding, Zhou [5] further reviewed various assessment tools and
highlighted the use of cost-benefit analysis, life cycle assessment tools, and multi-criteria
analysis as measures to study economic benefits of rooftop gardens in addressing urban
water management issues.

India is on the brink of an urban revolution, with an expected 600 million predicted to
reside in cities by 2031 [20]. India is prone to major river flood risk and has been experienc-
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ing urban floods in recent years. Unplanned rapid urbanization is attributed as one of the
main reasons behind the increase in flood risks. Indian cities need to adopt unprecedented
solutions to tackle urban stormwater runoff to mitigate the unforeseeable occurrence of
hydro-meteorological hazards. Studies on decentralized stormwater infiltration practices
are largely lacking, especially in developing countries. Gogate et al. [15] assessed various
decentralized facilities, focusing on their advantages and disadvantages in the context of
India, and found varying impacts of infiltration measures with region, type of develop-
ment, soil, and drainage. Andimuthu et al. [21] tested the performance of urban storm
drainage networks and infiltration control measures for urban flood mitigation under a
climate change scenario in Chennai city, India. Aside from the use of urban stormwater
drainage networks, stormwater best management practices, such as permeable pavements,
rain gardens, green roofs, street planters, rain barrels, infiltration trenches and vegetative
swales, in hydrologic modeling were suggested to provide more accurate and effective
flood management systems.

These drawbacks form the main rationale of this study, which is to assess the de-
centralized stormwater infiltration practices under different physical variability in the
context of an urban area in a developing economy such as India. This study focuses on
the cumulative impact of stormwater runoff at a catchment scale, when the infiltration
facilities are implemented at a local scale, as it can help in reducing the numerous effects
of urban floods and waterlogging in unfavorable conditions. Lucknow city is facing an
unprecedented decline in groundwater level with each passing year. Most of the rain
received during the monsoon season, instead of being stored and infiltrated, is subjected to
flow as stormwater runoff. Hence, the objective of urban stormwater runoff modeling in
this study is to see: (i) how present and future land use and rainfall will have an impact
on surface runoff, and (ii) how decentralized or decentralized infiltration practices at the
household level can reduce the impact.

2. Materials and Methods

2.1. Study Area

This study was conducted in Lucknow, the capital city of India’s most populous
state, Uttar Pradesh. It receives an average rainfall of 890 mm, mostly from the southwest
monsoons between June and September. The city derives multiple benefits from the
monsoon- and groundwater-fed Gomti River, which passes through center of city dividing
it into Trans and Cis Gomti. As per a report by Sharma and Shukla [22], the drainage
system in the city was established five decades ago and the coverage of stormwater drains
is limited to one-third of the city. In the absence of proper stormwater drains, the rainwater
forces itself through sewerage lines, resulting in the choking of sewer lines which are not
maintained regularly, and leads to overflowing of drain water causing waterlogging and
flooding in low lying areas. While Gomti is a major water supply source in the city, it
receives its water from 26 drains at the study site, Kukrail Nala catchment (Figure 1).

Kukrail Nala, a fourth order tributary, is critical as it brings large volumes of water
into Gomti River while passing through central Lucknow city. Kukrail Nala basin, with a
river length of 26 km and an origin inside Kukrail reserve forest, falls in the Trans-Gomti
area. The Kukrail Nala basin is expected to contribute large volumes of flood water in
the downstream area due to basin characteristics and a slope of 6%. In recent years,
Kukrail Nala basin, which falls in Trans-Gomati area, has seen rapid urbanization and
concretization resulting in more flood water. In the past decade or so, Lucknow city, with its
increased impervious surface due to unplanned urbanization and the alteration in rainfall
pattern due to climate change, faces regular waterlogging in the downstream areas and
groundwater depletion.
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Figure 1. Location of Kukrail river basin inside Lucknow city, India.

2.2. Data Preparation

Land use land cover data is one of the key inputs for hydrological modeling. In this
study, the watershed modeling system (WMS), which is a popular tool for automated
watershed delineation, hydrologic and hydraulic modeling, floodplain mapping, and
storm drain modeling, was used for testing impacts of various stormwater infiltration
measures. The Water and Urban Initiative project of the United Nations University availed
land use land cover data for the 2007 (past), 2016 (present), and 2030 (projected) periods.
ASTER 30 m digital elevation model data was used for delineating the river basin and the
estimation of several other hydrologic parameters.

Annual daily maximum rainfall of 50- and 100-year return periods for present and
future climate conditions were applied for assessing the effects of increased extreme rain-
fall events. The estimation of extreme rainfall for the present climate was based on the
Lucknow weather station. On the other hand, multiple GCMs (Global Climate Models)
precipitation outputs were used for estimating extreme rainfalls for future conditions. Daily
precipitation output of two GCMs: MIROC-5 and MRI-GCM3 with spatial resolution of
140 km and 110 km, respectively, were employed for deriving future rainfall data. The use
of multiple emission scenarios and a general circulation model output are recommended
due to uncertainty with climate projections and, hence, GCMs under different representa-
tive concentration pathways (RCPs) were used for the study [23]. For this study RCP 4.5, a
representation of a stabilization scenario and mitigation policies, and RCP 8.5, a representa-
tion of an extreme, unstabilized, and destructive scenario, were used. The soil data was
retrieved from Natural Resources Conservation Service (NRCS), United States Department
of Agriculture, and the National Bureau of Soil Survey and Land Use Planning, India.

2.3. Stormwater Runoff Modeling

In this study, HEC-HMS, built into the WMS tool, was used for the stormwater runoff
modeling (Figure 2). Based on the different land use and climate conditions for present
and future periods, 10 different scenarios were established. The first six scenarios did not
include any infiltration measures. The ModClark model inside the HEC-HMS, which is
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a distributed parameter model, was selected for simulating flood values. A distributed
parameter model is one in which spatial variability of characteristics and processes are
considered explicitly. The list of parameters, methods, and their name or values used for
setting the ModClark stormwater runoff model in this study are shown in Table 1. The
Kukrail Nala basin modeling was carried out at a 30 m grid cell scale. The grid size is
user-specified and depends on the planning purpose. Travel time was calculated for each
grid cell and scaled to the overall watershed time of concentration. The lagged runoff
from each grid cell was routed through the linear reservoir. The outputs from each linear
reservoir were combined to form an outflow hydrograph.

 

Figure 2. HEC-HMS gridded ModClark modeling in WMS platform.

Table 1. Hydro-meteorological modeling methods, parameters, and their values for stormwater
runoff calculation.

Parameter/Method Description/Value

Loss rate method Gridded Soil Conservation Services (SCS)
Curve Number

Initial abstraction 0.2

Potential retention scale factor 1

Transformation method ModClark

Baseflow method Linear reservoir

GW1 fraction (Faster responding interflow) 0.5

GW2 fraction (Slower responding baseflow) 0.2

Storm type SCS type II 24 h distribution

2.3.1. Calibration of the Model

Calibration of the model was done to adjust certain parameter values of the model
until the results matched acceptably with the observed data. In the precipitation-runoff
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model, it can be measured through the degree of variation between computed and observed
hydrographs [24]. In this study, the model was calibrated by comparing the hydrograph
of the simulated and observed data. The observed data was obtained from Lucknow
Development Authority [25]. The maximum discharge that was observed in the Kukrail
was 425 m3/s. The model was calibrated by using parameters such as curve number, lag
time, and Muskingum parameters on hydrograph shape.

2.3.2. Scenario Development

Based on the calibrated model, the simulation was done for 10 scenarios with different
land use and rainfall values (Table 2). The land use was categorized as present (developing
conditions) and denser urban core area (projected). The model was run for scenario 1
through 6 with no infiltration measures for the original curve number, as mentioned in [26].
For scenarios 7 to 10, certain grids with higher curve numbers in high density built-up
areas were modified based on the soil type and infiltration facilities. Lower curve numbers
were assigned to see the difference in runoff discharge.

Table 2. Description for various land use and climate change scenarios.

Scenario
Land Use Scenarios

(Year)
Rainfall (mm)

Climate
Scenarios

Return Period
(Year)

1 2016 199 Present climate 50

2 2030 256.54 Average of RCP
4.5 and 8.5 50

3 2030 299.72 Extreme among
RCPs 4.5 and 8.5 50

4 2016 226.06 Present climate 100

5 2030 290.06 Average of RCP
4.5 and 8.5 100

6 2030 337.8 Extreme among
RCPs 4.5 and 8.5 100

7 2030 + infiltration
measures 256.54 Average of RCP

4.5 and 8.5 50

8 2030 + infiltration
measures 299.72 Extreme among

RCPs 4.5 and 8.5 50

9 2030 + infiltration
measures 290.06 Average of RCP

4.5 and 8.5 100

10 2030 + infiltration
measures 337.8 Extreme among

RCPs 4.5 and 8.5 100

3. Results

The following results were obtained for ten different scenarios (Figure 3, Table 2):
Scenario 1: the hydrograph with a daily maximum rainfall of 199 mm resulted in a

peak discharge of 182 m3/s. The peak discharge at 17:00 h depicted a lag period of 5 h.
Scenario 2: the daily maximum rainfall of 256.64 mm generated a peak discharge of

259 m3/s. The excess rainfall of 104 mm at 12:00 h and a peak discharge at 17:00 h depicted
the same lag time as in scenario 1.

Scenario 3: the daily maximum rainfall of 299.72 mm led to an excess rainfall of
123.4 mm and a peak discharge of 315 m3/s. Analysis of the rainfall hyetograph and flood
hydrograph pointed to a time lag of 4 h with extreme rainfall at 12:00 h and peak discharge
at 16:00 h.
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Figure 3. Hydrographs for ten different land use and climate change scenarios.
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Scenario 4: the daily maximum rainfall of 226.06 mm generated a peak discharge of
324 m3/s and a steep rising climb. The hydrograph suggested that the lag period was
reduced to 2 h, with excess rainfall of 54 mm at 13:00 h and a peak discharge at 15:00 h.

Scenario 5: the daily maximum rainfall of 290.06 mm generated a peak discharge of
426 m3/s. A steep rise in flow hydrograph, starting at 06:00 h, and a peak rise at 13:00 h
depicted that the time of concentration reduced with a lag period of 3 h.

Scenario 6: the daily maximum rainfall of 337.8 mm, which is an excess of 81 mm,
generated a high peak discharge of 509 m3/s at 15:00 h. The flow hydrograph depicted
that the lag period reduced to just 2 h with high runoff volumes.

Scenario 7: the daily maximum rainfall of 256.54 mm generated a discharge of 40 m3/s
at 02:00 h. The highest rainfall was recorded at 10:00 h. A peak discharge of 174 m3/s was
observed at 18:00 h with a lag time of 8 h.

Scenario 8: the daily maximum rainfall of 299.72 mm resulted in a discharge of 67 m3/s
at 02:00 h for alternative land use land cover condition. Extreme rainfall was recorded at
11:00 h. The peak discharge, 204 m3/s, was observed at 17:00 h with a lag time of 7 h.

Scenario 9: the daily maximum rainfall of 290.06 mm resulted in a flow discharge
of 56 m3/s at 02:00 h. Extreme rainfall was recorded at 10:00 h and a peak discharge of
174 m3/s was observed at 18:00 h with lag time of 8 h.

Scenario 10: the daily maximum rainfall of 337.8 mm resulted in a flow discharge of
72 m3/s at 03:00 h. Extreme rainfall was recorded at 10:00 h. A peak discharge of 232 m3/s
was observed at 17:00 h with lag time of 7 h.

A Pearson product-moment correlation coefficient was computed to assess the rela-
tionship between the peak rainfall values of 50- and 100-year return periods for the years
2016 and 2030 with consideration of the infiltration facilities and runoff volume at the
outlet of the Kukrail Nala basin (Figure 4a,b). For scenarios without infiltration facilities, a
strong and positive correlation was found between the two variables’ peak rainfall and
runoff volumes. There was a positive correlation between the two variables with r = 0.98,
n = 5, and p = 0.055. Despite of strong positive correlation between peak rainfall and runoff
volumes, the relation was not significant as p > 0.05. On the other hand, for the scenarios
with infiltration facilities, a scatterplot between peak rainfall and runoff volumes revealed
a strong and positive correlation. The relation was quite significant as p = 0.003. Runoff
volume for each scenario is shown is Table 3.

Table 3. Rainfall values, resulting runoff volumes, and lag time for different scenarios.

Scenario Rainfall Lag Time (Hours) Runoff Volume

S1 199 5 154
S2 256.54 4.5 218.7
S3 299.72 4 249.1
S4 226.06 2 193.8
S5 290.06 3 255.7
S6 337.8 2 290.5
S7 256.54 8 207.5
S8 299.72 7 224.6
S9 290.06 8 244.8

S10 337.8 7 253.2
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(a)

(b)

Y = 0.9443x – 26.293
R2 = 0.9799

R = 0.98

Figure 4. Rainfall runoff correlations (a) without infiltration facilities, and (b) with infiltration facilities.

4. Discussion

Each scenario has a different characteristic for its hydrograph. Six scenarios (1–6) did
not consist of any infiltration facilities. Later, alternative stormwater capture measures
(scenarios 7–10) were applied to test their impacts on the flow hydrograph for effectively
reducing the runoff volume.
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4.1. Without Infiltration Systems in Practice

With a 50-year return period and a peak discharge of 182 m3/s for current conditions
(scenario 1), the study revealed that peak discharge will increase by 42% and 73% for
the increase in rainfall, corresponding to scenarios 2 and 3, respectively. This is in line
with the already established correlation between increased imperviousness and surface
runoff. An average increase of 2.5 times was reported in peak stormflow with the absence
of stormwater drains as impervious coverage increases from 0% to 100% [27]. This would
result in an increase in runoff volume by 34% in scenario 2 and 61% in scenario 3. However,
the percent increase in runoff volumes from scenario 2 to 3 was 20% and depended largely
on the calibrated climate models used. Meanwhile, for a 100-year return period, the peak
discharge of 324.4 m3/s under scenario 4 was projected to increase by 31.4% and 57% in
scenario 5 and 6, respectively. This would result in an increase in runoff volumes by 31%
and 49.9% in scenarios 5 and 6, respectively, from a business as usual scenario. However, the
percent increase in runoff volumes from scenario 5 to scenario 6 was projected to be around
only 13%. The slope, as observed in scenario 1 through 6, have similar observations as the
steeper the slope, the less lag time and the higher the peak discharge and runoff volume.
Sharma and Shukla [22] found similar observations in their studies. The percentage increase
in the runoff volume will also depend on manmade stormwater drainage, which were not
present in the land use land cover data. The increase in sudden peak and smaller lag times
also represents the smaller time of concentration as scenario changes from stabilized to
unstabilized ones.

4.2. With Infiltration Systems in Practice

A significant reduction in peak discharge and runoff volumes was observed by atten-
uating the excess precipitation through source control infiltration measures. It resulted in
an overall decrease for the 50-year return period in both scenarios 7 and 8, and a similar
observation was made under scenario 9 and scenario 10 for the 100-year return period.
A decrease in peak discharge and runoff volumes by 48% and 51%, respectively, was
observed for scenario 7 with infiltration facilitates, in comparison to scenario 2 with no
infiltration measures. Similarly, under scenario 8 with infiltration measures, the peak
discharge and runoff volumes were reduced by 54% and 10%, respectively, in comparison
to scenario 3 with no infiltration measures. For the 100-year return period, a decrease
in peak discharge and runoff volumes by 59.5% and 4%, respectively, was observed for
scenario 9, in comparison to scenario 5 with no infiltration measures. Similarly, under
scenario 10 with infiltration measures, the peak discharge and runoff volumes reduced
by 54.4% and 12%, respectively, in comparison to scenario 6 with no infiltration measures.
The decentralized stormwater facilities in the 50-year return period had extreme values
that were more effective in reducing the runoff volumes as compared to the extreme values
for the 100-year return period. The amount of infiltration will depend not just on type of
decentralized measure, but also how well it is maintained, and the results of discharge
will vary from a connected green roof system (more than 50% absorption on the roof) to
pervious pavement (material of manufacturing). Additionally, maintenance and clearance
of associated drainage will also impact the runoff discharge.

However, for managing flood water and stormwater reduction, we need to look
for the best management practices, which are practically feasible, low cost, and easy to
maintain, especially in resource-limited countries like India. The most important task is
to estimate the carrying capacity and stability of the existing stormwater management
system. Different possible management options are considered via demand supply gap
analysis and cost-benefit analysis. Some of the most common solutions are gutter filters,
infiltration trenches, permeable pavements, decentralized retention ponds, street sweeping
on a regular basis to prevent the choking of sewerage pipes, and surface sand filters,
etc. Another crucial component for the success of stormwater management practices is
community awareness, as the community is largely unaware about the advantages of this
management system and are not willing to participate in maintenance works.
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4.3. Correlation Analysis

Although there is a positive relation between rainfall and runoff, this relationship was
not significant for several scenarios without infiltration facilities. This result resonated with
the findings of Miguez and Magalhaes [3], which mentioned that rainfall may not be the
only criteria for high runoff volumes and other factors like geography, and geomorphology,
etc., might also impact runoff volume. However, runoff volumes can be significantly
reduced with infiltration facilities at times of peak rainfall events. It can be also said that
infiltration measures are more suitable for an average climate with extreme rainfall of a
50-years return period. The infiltration rate may not be effective if rainfall under extreme
climate with a 100-years return period occurs.

Thus, it can be said that the capacity of decentralized infiltration facilities to reduce the
runoff volume and peak discharge depend not only on land use and rainfall, but also on the
soil condition and topography of the watershed (slope and time of concentration). While
there is a correlation between land use and rainfall with runoff volume, it might be strong
or weak depending upon the condition of the area. The closer the distance between the
facilities in a gradient, the more the infiltration. It should also be noted that the infiltration
facilities are more effective for short-term planning.

4.4. BMP Implementation Challenges

Lucknow city has witnessed a major decline in water bodies which were once the
natural sponge for water storage and infiltration. Low- to medium-cost housing with
infiltration facilities could lead to incurring a higher per unit cost value, which might make
it unaffordable for many low to middle-income families. The regular operational and
maintenance cost of the facilities might influence the willingness of people to adopt it at a
household level and hence was considered a threat. The current developmental activities
in the peripheral area, resulting in higher abstraction of groundwater and lower infiltration,
was also seen as a threat. Lastly, as a part of a developing nation, water management is
not considered a priority when providing necessities for human survival, namely food,
shelter, and water, are more pressing. In the absence of strong groundwater management
policies, urbanizing areas are witnessing faster depletion of groundwater. While surface
imperviousness plays a role in increased runoff, it is also believed that having a small
built-up area of less than 200 square feet leaves one with no other option but to construct
homes without any gardens. Most people are unaware of decentralized infiltration facilities
as a result of loopholes in the regulatory body, due to a communication gap between
various departments, and the inconsistency in the field data collection as well as a lack of
data. The lack of communication in higher authorities trickles down to the public, where
awareness regarding the source of stormwater control is low. The present conditions of
the city, which have made it difficult to practice decentralized stormwater management,
include a lack of technical expertise, soil conditions, and maintenance cost. Maintaining
these facilities is a continuous challenge. Moreover, the government does not provide any
subsidies for maintenance and there are no provisions (tax rebate, grants, etc.) for green
infrastructure. If the available facilities are not properly maintained, causing runoff and
urban flooding, it is less likely that the decentralized management system will work. There
are no frameworks or committees to investigate policies specifically looking into subsidies
for infiltration facilities. This could directly affect any implementation practices and, from
an economic viewpoint, it is difficult to say if it will succeed in the future.

The monsoon is witnessing a shift in its pattern. While there is not much change in the
annual rainfall received, the intensity and frequency has altered. At present, the drainage
system and other traditional systems fail due to the heavy rainfall, which might cause the
decentralized stormwater infiltration facilities to fail too.

The following 5 strategies were suggested as the best to promote the idea of stormwater
infiltration practices:

WT1:a stakeholders workshop on integrated water resource management with the involve-
ment of citizens;
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WT2:preparation of strategic plans to promote decentralized stormwater infiltration prac-
tices and segregated and designated pipelines through the Master Plan, with a focus
on climate change;

WT3:the involvement of real estate for developing solar plus water secured societies;
WT4:focusing on research and development by investing in it and expanding the base of

technical experts among the growing population;
WT5:making the procedure of policymaking more transparent through coherent govern-

ment policies and with a focus on climate change.

5. Conclusions

Replenishment of surface and ground waterbodies through rainfall is a natural phe-
nomenon necessary to maintain the geo-hydrological balance of nature. Urbanization
and climate change pose a severe threat to the quality and quantity of waterbodies. It is
essential to recognize the associated risks of excess runoff from urban areas to enhance not
just the quality of the environment, but an overall quality of life. Conventional centralized
flood management systems are reported to have several limitations. There is much to
be learned from non-conventional, decentralized stormwater management systems that
municipalities have adopted to cope with urban floods and waterlogging in several parts
of developed countries. However, these facilities need to be mainstreamed into the com-
munities of vulnerable areas in the rapidly urbanizing cities of developing nations, where
the cities are overburdened with more complex stormwater. To achieve that, research
based on local conditions, practices, and management strategies should be understood in
detail and incorporated with more advanced scientific knowledge to tackle the problems
of conventional stormwater management systems.

This study delved into the hydrological assessment of decentralized stormwater
management practices in an urban watershed of Lucknow city in Northern India. The
study explored multiple scenarios based on current and future projections of land use and
climate change to understand impacts of urbanization and precipitation on stormwater
runoff. The results showed an increased runoff volume with the rapid urbanization and
climate change. Implementation of infiltration facilities using the local landscape can have
different impacts on the volume of runoff. The stormwater modeling study results showed
that conversion of impervious surfaces to pervious ones by installing a decentralized facility
can help infiltrate the water and immediately curb the peak runoff discharge. Decentralized
stormwater runoff infiltration systems are a relatively new concept in most developing
countries, and Lucknow city is no different. However, keeping in mind the growing scarcity
of water resources and climate change, more studies around best strategies to conserve
water quality and quantity should be encouraged at a policy level.
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Abstract: One of the main signatures of short duration storms is given by Depth–Duration–Frequency
(DDF) curves. In order to provide reliable estimates for small river basins or urban catchments,
generally characterized by short concentration times, in this study the performances of different
DDF curves proposed in literature are described and compared, in order to provide insights on the
selection of the best approach in design practice, with particular reference to short durations. With
this aim, 28 monitoring stations with time series of annual maximum rainfall depth characterized by
sample size greater than 20 were selected in the Northern part of the Puglia region (South-Eastern
Italy). In order to test the effect of the investigated DDF curves in reproducing the design peak
discharge corresponding to an observed expected rainfall event, the Soil Conservation (SCS) curve
number (CN) approach is exploited, generating peak discharges according to different selected
combinations of the main parameters that control the critical rainfall duration. Results confirm the
good reliability of the DDF curves with three parameters to adapt on short events both in terms
of rainfall depth and in terms of peak discharge and, in particular, for durations up to 30 min, the
three-parameter DDF curves always perform better than the two-parameter DDF.

Keywords: rainfall time series; DDF curves; SCS-CN method; peak discharge

1. Introduction

The investigations about the increasing of extreme events at a global level carried out
in last decades generated a debate on the need of revisiting the risk management approach,
in particular with regard to rainstorms and floods. Concerns and possible consequences
deriving from changes in an extreme rainfall regime led scientists and practitioners to
investigate the influence of these events on the current design practice. One of the most
used tools in water management are the Depth–Duration–Frequency (DDF) and Intensity–
Duration–Frequency (IDF) curves, which have the valuable quality of being analytical
relationships able to provide a design rainfall depth (or intensity) for an assigned duration
and return period [1,2]. The underlying theoretical framework of these curves has been
widely discussed and assessed in hydrological literature (e.g., [2–6]). However, concerns
about past changes and possible evolutions of climate on the phenomenology of rainfall
raised questioning about the opportunity of retaining the still valid adoption of stationary
hypothesis during the IDF/DDF deriving procedure [7–10]. Implications arising from the
adoption of nonstationary probability distributions for modelling changes in extremes and
applications of related statistical tests for trend detection were discussed in several studies
(e.g., [11–18]).

Starting from the middle of the 20th century, the first relationships between depth (or
intensity) and duration of rainfall were studied above all in developed countries such as
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the USA, the UK and Ireland [19]. The results of these analyses can be applied in water
resources engineering for the mitigation of hydraulic risk and are particularly needed
for urban areas with poorly permeable surfaces and small catchment and, consequently,
very short run-off times. Typically, two- or three-parameter DDF/IDF formulations are
considered in design practice [5], in a balance between an enhanced model structure and
parameter uncertainty [2]. Obtaining analytical results that are compatible for reliable
design purposes, requires the availability of recorded time series for durations critical
of the same order of magnitude of physical processes having place in the environment.
As in the case of urban basins and small catchments, often mass transfer phenomena
require durations less than 1 h, making essential the availability of rainfall series which
span this time domain [3]. These data were very difficult to retrieve in the past, but
refinements in recording technology together with new technologies (such as satellite
and radar observations) are providing scientists and practitioners with new updated and
consistent datasets of data. However, it should be noted that databases of rainfall time
series in short durations (5, 15 and 30 min) are generally less extensive than hourly data.
In this sense, short-duration rainfall data constitute a precious source of information for
investigating if remodulation in the extreme rainfall regime is happening, and their use in
the context of a test for trend detection (and the consequent adoption of a nonstationary
probabilistic model) may deserve particular attention, because the low magnitude of the
trend and the reduced sample size of recorded data may lead to low power statistical
tests [14,15].

Disregarding the stationary/nonstationary problem (whose discussion is outside the
aim of this paper), as remarked before, the increased availability of short-duration series
constitutes an important support for building DDF/IDF curves that are more consistent
with observed data and for improving design operations, often based on the classical two-
parameter ‘Montana curve’. With respect to Italian case studies, we mention the work of
Di Baldassarre et al. [2] (Emilia Romagna and Marche regions) and of Rossi and Villani [20]
(Campania region), where DDF curves with more than two parameters were applied.

The study of short storm durations that extend from a few minutes to an hour is
interesting for several design purposes. They may trigger flash floods characterized by
short durations and occurring on small catchments such as a part of cities such as residential
areas or infrastructures. Design practice often leads to the need to define drainage and
disposal systems for rainwater for small drainage surfaces intended for urban, commercial
or industrial use. Therefore, the small size of the drainage area in addition to the low
permeability of the soil, may produce hydrological responses characterized by short lag
times, with a preponderant runoff with respect to the infiltration component. Furthermore,
often rainfall and discharge observations are not available, addressing the practitioner to
apply empirical approaches [21].

With the aim of providing a quantitative discussion on the influence of different DDF
formulations on the evaluation of peak discharges, an extended analysis is conducted
exploiting the widely used SCS-CN method (e.g., [22,23]), in order to test the ability of
different DDF/IDF curves in reproducing the peak discharge corresponding to an observed
rainfall event. In the SCS-CN method, the critical rainfall duration depends on three
parameters: the catchment area, basin slope and CN. The application to urban basins is
carried out through the choice of a parameters range, i.e., high values of the CN from 50
to 100, small areas from 0.1 to 10 km2 and an average slope of the basin from 3% to 18%.
For each combination of these parameter values, the corresponding concentration time
is calculated using the SCS-CN method. After obtaining the concentration time values,
the peak discharge is calculated with the observed rainfall depth compared with those
obtained from different DDF formulations.

Furthermore, peak flow curves based on a sensitivity analysis were created to compare
results obtained from the two-parameter and three-parameter DDF curves. The study also
provides an evaluation of the relative error of DDF on peak discharge, highlighting the
benefits of the use of three-parameter DDF curves in practical applications.
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The paper is structured as follows: In Section 2 the case study of Northern Puglia
(South-Eastern Italy) and dataset consistence are illustrated, while in Section 3, DDF and
IDF curves used for the analysis are described, including steps for the evaluation of peak
discharge obtained from the corresponding DDF curves and estimated by means of the
SCS-CN method. In Section 4, results of illustrated applications are critically discussed and
in Section 5 conclusions are reported.

2. Study Area and Dataset

Puglia is the region of peninsular Italy with the greatest coastal development and its
territory is covered by 1.5% of mountains, 45.2% by hills and 53.3% by plains. The study
area is located in the northern part of the Puglia region (Southern Italy) and, moving from
South-West to North-East, is constituted by the Daunian Apennine, the Tavoliere plain and
the Gargano promontory (Figure 1). The highest peak of the Daunian Mountains is Monte
Cornacchia (1151 m a.s.l.) and is located on the border with the Campania region, followed
by the 1055 m high Monte Calvo in the Gargano promontory.

 
Figure 1. Study area.

The most important rivers inside and surrounding the study area are Fortore, Cande-
laro, Carapelle, Cervaro and Ofanto, whose main streams cross or delimit the Tavoliere
plain. Due to the steep change in slope, from mountains to the plain, the regime of rivers in
the area is torrential, and urban areas are prone to flash floods that may be triggered by
frontal events, convective storms or Mediterranean cyclones [24,25]. Moreover, low-lying
coastal areas are often affected by inundation phenomena due to the combined effect of
heavy rainfalls and severe storm surges [26].

The analyses were carried out exploiting rainfall data recorded by a gauges network
managed by the Civil Protection of Puglia Region. For this study, annual maximum series
with a duration of 5, 15 and 30 min and 1, 3, 6, 12 and 24 h were employed, with a
recording period comprised between 1921 and 2019. Data are freely available and can be
downloaded by accessing the website of the Civil Protection of Puglia Region [27]. In order
to provide more reliable evaluations, only stations with time series greater than 20 data for
all durations were selected. In Figure 1, positions of selected stations in the study area are
illustrated, while in Table 1 their main characteristics are reported.
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Table 1. Rainfall monitoring stations.

Rainfall Monitoring
Stations

Altitude
(m a.s.l.)

River Basin/Area Installation Year

Alberona 663 Candelaro 1917
Biccari 484 Candelaro 1922

Borgo Liberta’ 235 Ofanto 1924
Bovino 623 Carapelle 1917

Cagnano Varano 165 Gargano 1921
Castelluccio dei Sauri 190 Carapelle 1922

Cerignola 118 Tavoliere 1921
Foggia Osservatorio 99 Candelaro 1873

Foggia Istituto Agrario 85 Candelaro 1949
Fonte Rosa 25 Tavoliere 1925

Lesina 6 Gargano 1928
Lucera 246 Candelaro 1917

Manfredonia 68 Tavoliere 1900
Monte Sant’Angelo 799 Gargano 1920

Monteleone di Puglia 828 Cervaro 1920
Orsara di Puglia 689 Cervaro 1921

Ortanova 53 Carapelle-Tavoliere 1921
Pietramontecorvino 441 Candelaro 1928

Rocchetta Sant’Antonio 724 Carapelle 1922
Sant’Agata di Puglia 703 Carapelle 1917

San Giovanni Rotondo 619 Candelaro-Gargano 1923
San Marco in Lamis 566 Candelaro-Gargano 1917

San Severo 114 Candelaro-Tavoliere 1928
Torremaggiore 195 Candelaro-Tavoliere 1917

Troia 469 Candelaro 1907
Vico Del Gargano 459 Gargano 1921

Vieste 96 Gargano 1921
Volturino 615 Candelaro 1964

3. Methodology

3.1. Formulations of DDF/IDF Curves

As recalled in the Introduction, several formulations have been used for characterizing
DDF/IDF relationships. Following Di Baldassarre et al. [2], we limited our analysis to the
DDF with two and three parameters, considering the consistency of the available dataset
inadequate for other formulations.

Among two-parameter DDF curves, we focused our attention on the following:

h = adb (1)

Known also as ‘Montana curve’, Equation (1) expresses the rainfall depth h (mm)
by means of a power law of storm duration d (h), using parameters a and b. Despite its
simplicity, it can be considered the standard relationship implemented when approaching
the problem of DDF estimation. However, several criticisms have been moved to this
formulation. Turning to the intensity i, defined as the ratio between the rainfall depth h
and its duration, this value goes to infinity when the duration d of the event approaches to
zero [2]. In the context of the two-parameter formulation, starting from Equation (1), two
specific case studies were identified for the purposes of this work: in the first, we indicated
with D2P-1 Equation (1) when parameters a and b were estimated considering both the
hourly and sub-hourly data, while in the second case, we indicated with D2P-2 Equation (1)
when parameters a and b were estimated considering only the hourly data. This choice was
motivated by the need of providing a comparison with the practice of using hourly data,
widely diffused in the real world due to the limited amount of short-duration rainfall data
diffused in the past decades.
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In the realm of three-parameter formulations, the following DDF equations were
analyzed starting from the available datasets, respectively, called D3P-1, D3P-2 and D3P-3:

h =
ad

(d + c)b (2)

h =
ad(

db + c
) (3)

h =

(
c +

a
d + b

)
d (4)

with a, b and c parameters to be estimated. All parameters of DDFs were estimated by
using the least squares technique. Equations (2)–(4) are the same formulations of DDF with
three parameters investigated in Di Baldassarre et al. [2]; our choice was also motivated by
the opportunity of having a similar investigation of a geographically similar area, which
ranges from the Apennine chain to the Adriatic Sea.

3.2. Error Measures

Stands that h = h(d), a quantitative evaluation of the goodness of estimate of rainfall
depth hj obtained using each of the selected DDF curves in comparison with the observed
average rainfall depth hj was carried out for all the j = 1, 2, . . . , N monitoring stations and
for all i = 1, 2, . . . , M durations of recorded event. Analysis is performed by applying:
(i) the relative error ε j(di) for each monitoring rainfall station and duration; (ii) the mean
absolute percentage error E% calculated for each duration and averaged over all the
monitoring rainfall stations and (iii) the Root Mean Square Error (RMSE), integrated over
all the durations and monitoring station. In particular, the observed rainfall depth hj was
evaluated considering the average value on the time series for each duration and for each
monitoring station. The evaluation of these error indicators represents a reliability test as
also analyzed in Di Baldassarre et al. [2], but, in this case, was considered independent
from the return period. The relationships was hereafter reported:

εj(di) =
hj(di)− hj(di)

hj(di)
(5)

E (di)% =
100
N

·
N

∑
j=1

∣∣∣hj(di)− hj(di)
∣∣∣

h(di)
(6)

RMSE =
1
M

·
M

∑
i=1

√√√√√ N

∑
j=1

[
hj(di)− hj(di)

]2

N
(7)

3.3. SCS-CN Method

In order to test the effect of the investigated DDF/IDF curves in reproducing the
design peak discharge corresponding to an observed rainfall event, the Soil Conservation
(SCS) curve number (CN) method was applied. The SCS-CN is a conceptual method,
widely used in many hydrologic applications for predicting runoff from watersheds. The
first publication of SCS-CN method dates back to 1956 and was proposed by the U.S.
Department of Agriculture in the National Engineering Handbook of Soil Conservation
Service [23]. This method was originally elaborated to predict runoff volumes for a given
rainfall event and for the evaluation of storm runoff in small agricultural watersheds [28].
Rallison [22] describes the origin and development of SCS method, based on infiltrometer
tests and measures of rainfall and runoff. The SCS-CN method was developed well beyond
its original scope and was adopted for different land uses and climate conditions [29–36].
This approach has been taken as procedure by many users (professionals or public admin-
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istrations) in numerous hydrological applications for design flood estimation and/or for
runoff evaluation for a particular storm event (e.g., [37]). More details about the theoretical
background are given in Pilgrim et al. [38].

The peak discharge was computed using a triangular hydrograph method developed
by Mockus [39] and reported in Pilgrim et al. [38], with rainfall characterized by duration
equal to D. Considering the definition of lag time, tl (distance between the centroid of
excess precipitation and the peak of the hydrograph) provided by the Natural Resource
Conservation Service (NRCS, [40]), the peak discharge, qp, was reached in a duration TP
(i.e., time of rise).

Application of SCS-CN Method

In order to test the performances of the three-parameter DDF curves, in this work, the
SCS-CN method was used for calculating the runoff volume and the triangular hydrograph
method for evaluating the expected value of peak discharge, using both the three three-
parameter and the two classic two-parameter expected DDF curves described in Section 3.1.
In this way, according to Equation (8), the evaluation of peak discharge depended on the
rainfall volume, V, drainage basin area, A, and lag-time, tl ; according to Equation (10),
lag time tl depends on the mainstream length, L, the river basin’s slope, s, and the Curve
Number, CN.

The peak discharge qp (m3/s) is given by:

qp =
0.208AV
0.5D + tl

(8)

A (km2) is the area of the drainage basin and V (mm) is the depth of runoff.
Assuming D equal to a concentration time and considering the empirical relationship

between the concentration time and lag-time proposed by Ward and Elliot [41]:

D = tc = tl/0.6 (9)

tl = 0.342
L0.8

s0.5

(
1000
CN

− 9
)0.7

(10)

L is connected to basin area through an empirical equation introduced by Hack [42]
and hereafter reported:

L = 1.4 A0.6 (11)

This relation was also discussed in recent scientific literature such as Maritan [43] and
Rinaldo [44].

Different combinations of parameter values A, s and CN were selected (considering
usually observed ranges in small river basin) leading to the definition of different lag
time values, according to Equation (10) and, consequently, rainfall durations (D), assumed
equal to the concentration time tc. Thus, for each selected duration, in according to
Equation (9), the expected rainfall depth, evaluated through the D2P-1, D2P-2, D3P-1, D3P-
2 and D3P-3 curves, was used for calculating the runoff and, consequently, the expected
peak discharge, qp, according to Equation (8).

The different combinations of these parameters simulated the conditions of urban
basin characterized by small area and high impermeability. For this reason, a basin area
with range from 0.1 to 10 km2, CN values from 50 to 100 and slope from 3% to 18%
were chosen.

4. Results and Discussion

For each of the 28 investigated rainfall monitoring stations, all DDF/IDF formulations
described in Section 3.1 were fitted. Results are shown in graphical form in Figure 2. only
for six rainfall monitoring stations selected, each falling within a basin or zone of the study
area. The curves D2P-1, D2P-2, D3P-1, D3P-2 and D3P-3 were plotted on the left side of
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each subplot, in addition to the observed (mean) values of rainfall depth for all durations;
in the right part of the subplots, the relative IDF curves (I2P-1, I2P-2, I3P-1, I3P-2 and I3P-3)
are shown on the basis of the estimated parameters of the corresponding DDF curves.

Figure 2. Fitted DDF and IDF curves.

Focusing on the short durations from 5 min to 1 h, the intensity evaluated using
three-parameter DDF curves was lower and more reasonable than that obtained with
two-parameter DDF curves, as shown in Figure 3. Additionally, in this case, shown only
are the results of the same rainfall monitoring stations selected for the Figure 2.
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Figure 3. IDF curves for short durations.

4.1. Results of DDFs Error Measures

In Figure 4, the box plots of the relative errors (with reference to all the investigated
monitoring stations) for the considered DDF equations are reported. Focusing on the
boxplot of D2P-1 and D2P-2, it was interesting to observe the poorer performance of
the two-parameter curves for short durations; the worst, between them, was the D2P-2
equation, which presented a greater variability of the relative error, for short durations
(5, 15 and 30 min). For durations equal to or greater than one hour, the D2P-2 showed
less uncertainty than D2P-1. The comparison between D2P-1 and D2-P-2 was further
explored through Figure 5. The three-parameter DDF curves seemed to have a far better
performance than the two-parameter DDF curves especially for durations of 5 and 15 min.
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Figure 4. Boxplots of the relative errors evaluated for sub hourly and hourly rainfall durations, with
reference to all considered DDFs.

Figure 5. Boxplot with comparison of D2P-1 and D2P-2 estimated parameters.

Figure 5 shows the boxplot for the D2P-1 and D2P-2 parameters (a and b). The subplot
on the left compares the parameter aestimated considering in the first case sub-hourly and
hourly data and in the second case only hourly data; on the right the same comparison
is shown for the parameterb. It is interesting to note that the estimated parameter, a,
which represented the expected rainfall depth of duration equal to one hour, presented a
higher uncertainty when estimated from a greater range of durations (i.e., including short
durations). The parameter b had, in both cases, an extremely low variability.

The Mean Absolute Percentage Error (E%) and the Root Mean Square error (RMSE)
averaged over all the durations and the monitoring stations are, respectively, reported in
Tables 2 and 3.
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Table 2. Mean Absolute Percentage Error.

D2P-1 D2P-2 D3P-1 D3P-2 D3P-3

E (d5)% 44.58 55.26 11.82 15.36 11.63
E (d15)% 4.40 9.54 3.11 3.21 3.99
E (d30)% 9.26 7.47 7.34 8.00 2.82
E (d60)% 4.76 3.03 2.26 2.43 7.17
E (d180)% 2.40 1.19 2.73 2.80 3.12
E (d360)% 2.15 1.87 2.57 2.67 2.38
E (d720)% 1.54 1.45 1.48 1.48 3.48
E (d1440)% 1.41 0.96 1.55 1.64 1.54

Table 3. Root Mean Square Error.

D2P-1 D2P-2 D3P-1 D3P-2 D3P-3

RMSE 1.64 1.68 1.14 1.21 1.33

It is possible to note from Table 2, that the worst performance for durations of 5 and
15 min in terms of the mean absolute percentage error were given by D2P-2, followed by
D2P-1, both characterized by two parameters. On the other hand, for rainfall events with
durations greater than or equal to one hour, the performance of both D2Ps improved, while
the D2P-2 remained the best performing DDF, among all. The better performance of DDF
with three parameters which is visible in Table 3 in terms of RMSE, was mainly attributed
to their better fit of short rainfall events.

4.2. Results of Applications of SCS-CN Method

As previously explained, the application of the SCS-CN method was conducted for
understanding the effect of DDF curves with three parameters on the expected peak
discharge for short-duration rainfall events. All the monitoring stations were examined,
but for the sake of brevity, only one example case was reported. In particular the results for
the Alberona monitoring station are shown and the graphs were obtained as explained in
Section 3.3. Figures 6–10 report the peak discharge values, obtained using rainfall input
from the DDF equations and different combinations of quantities A, s and CN on which
the rainfall duration was set. As remarked before, the rainfall duration D was assumed
equal to the concentration time tc. Each figure, corresponding to a selected DDF curve was
composed of six sub-plots which referred to different selected values of slope s. Each curve
in the graph was obtained for a fixed drainage area, A, varying the CN value; in particular,
according to Equations (9) and (10) the concentration time decreased with an increasing CN.
The different curves reported in each subplot, were generated changing the catchment area;
therefore, a curve beam was obtained where each color corresponded to a value visible in
the legend of the plot. Red points, called QoR “Q-Peak evaluated with observed Rainfall”,
represented the peak discharge values obtained, for each observed duration, by applying
the same SCS-CN method for each combination of the three quantities (CN, A and s) and
considering the gauged input rainfall volume. It was also necessary to observe that, for a
chosen value of basin area and basin slope, a minimum concentration time was obtained
corresponding to CN = 100.

156



Hydrology 2021, 8, 150

Figure 6. Peak curves obtained with D2P-1 vs. Q-Peak (red dots) evaluated with observed Rainfall.

Figure 7. Peak curves obtained with D2P-2 vs. Q-Peak (red dots) evaluated with observed Rainfall.

Figure 8. Peak curves obtained with D3P-1 vs. Q-Peak (red dots) evaluated with observed Rainfall.
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Figure 9. Peak curves obtained with D3P-2 vs. Q-Peak (red dots) evaluated with observed Rainfall.

Figure 10. Peak curves obtained with D3P-3 vs. Q-Peak (red dots) evaluated with observed Rainfall.

Figures 6–10 illustrate the results on peak discharge, for the case study of Alberona
monitoring station, applying the SCS-CN method with different DDF curves highlighting
the capability to adapt to the observed peak discharge, in particular for durations lower
than one hour. The Figures highlight that, for short durations, a comparison was possible
only for the basins with a high value of CN, and performances may depend significantly
from the basin size and average slope. In general, these results confirmed the good
reliability of the DDF curves with three parameters to adapt on short events, both in terms
of rainfall depth and in terms of peak discharge.

To evaluate, in terms of error, the fit of the known curves to the QoR, the mean absolute
percentage error was calculated on all the stations for the different slopes examined,
focusing on the short durations (5, 15, 30 and 60 min). These results are shown in graphical
form in Figure 11. The best fit corresponded to the least error and showed that, for
durations up to 30 min, the three-parameter DDF curves always performed better than the
two-parameter DDF curves. Among the three-parameter DDFs, the worst performance
was given by D3P-2 with E% between 20% and 30%, while the best one was provided by
the D3P-3 with errors always below 10%. Figure 11 also shows that there was a significant
dependence on the slope of the basin in the calculation of the peak flow related to the
lag time and, hence, on the propagation of the error from the rainfall input to the peak
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flow output. For durations equal to or greater than an hour, the best DDF curve may have
changed with duration, looking both to the rainfall depth (as in Figure 4) and to the peak
discharge. Nevertheless, in design practice, for concentration times equal to or greater than
one hour, the traditional two-parameter curve 2DP-2 remained a robust choice.

Figure 11. E% on Peak discharge for short durations.

Figure 12 shows the boxplot on relative errors on peak discharge calculated for differ-
ent DDFs and all durations in the range 5 min to 24 h, related to the Alberona monitoring
station. All of them presented a positive bias with respect to values obtained with the ob-
served expected rainfall depth. It can be noted that for the gradually increasing slopes, the
D3P-3 presented a reduced variability of the relative error, in the range 0–0.1, with respect
to the other mentioned DDF curves. Table 4 also shows the mean absolute percentage error
for each slope considered, confirming what was stated for Figure 12, but, quantitatively,
we found the close dependence between the mean absolute percentage error and the basin
slope which generally tended to increase as the slope increased.

Figure 12. Boxplot on peak discharge.
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Table 4. Mean Absolute Percentage Error on peak discharge.

D2P-1 D2P-2 D3P-1 D3P-2 D3P-3

E (s = 3%)% 8.90 8.93 7.53 10.24 6.75
E (s = 6%)% 12.91 12.94 9.36 13.95 7.48
E (s = 9%)% 13.31 13.31 8.90 14.11 5.99
E (s = 12%)% 16.46 16.49 11.45 17.37 7.89
E (s = 15%)% 15.94 15.94 11.07 16.76 7.07
E (s = 18%)% 15.47 15.52 10.71 16.35 6.78

5. Conclusions

In small river basins (or urban catchments), characterized by short concentration times,
the traditional approach based on the use of two-parameter Depth–Duration–Frequency
curves for the evaluation of the rainfall design fails for durations close to zero, as the
rainfall intensity diverges and tends to have unreliably high values. In this context, recent
literature [2,5] proposes the use of three-parameter DDFs, being more reliable in the design
practice for durations closing to zero.

In this study, the aforementioned approaches for the rainfall design evaluation were
described and compared, in order to provide users with general information useful for the
selection of the best approach in design practice. With this aim, a number of rainfall moni-
toring stations, with time series characterized by sample size greater than 20, were selected
in the study area located in the Northern part of the Puglia region (South-Eastern Italy).

Among the analyzed three-parameter DDF curves, the one that gave the best perfor-
mance by evaluating the cumulative relative errors over short durations for all monitoring
station was D3P-3, as seen in the previous Section. By the evaluation of the peak discharge
using the SCS-CN method, it was possible to obtain a series of peak discharges according
to the different selected combinations of the three parameters CN, A and s, using the
investigated DDF curves (D2P-1, D2P-2, D3P-1, D3P-2 and D3P-3). The range of values
adopted for each of these three parameters was obtained considering wide ranges covering
those usually observed in urban catchments, characterized by small dimensions. The best
results evaluated in terms of relative errors were obtained with D3P-3 curves for durations
below one hour. On the other hand, the use of an enlarged dataset and of equations with
three parameters, in most cases, did not produce a reduction in the output uncertainty,
when the critical rainfall duration was equal to or greater than one hour. Then, in such a
case, the classical two-parameter power law estimated on rainfall data in the range 1–24 h
remained a reliable choice. This investigation may be useful for practitioners and designers
for selecting the best approach for the definition of the rainfall design depending on the
duration of the critical precipitation for the investigated river basin.

Several insights can arise from this study. Among these, there is the opportunity of
revisiting DDF/IDF relations in the light of changes in the rainfall extremes phenomenol-
ogy, with the consequence of the possibility of implementing a nonstationary parametric
procedure. A wide number of procedures is currently available for this type of modelling.
At the same time, a growing number of papers criticized the traditional tools for assessing
nonstationarity, both with parametric and non-parametric tests [14–17], in particular with
respect to their statistical power. This is not a trivial issue because of, as recognized by
Vogel et al. [18], when moving in the field of infrastructure decision committing a type II
error means incurring in under-preparedness.

Possible developments in this field of research can also be carried out by using, in
addition to the monitoring stations that provide ground data, radar systems which allow
to obtain data on a large spatial scale, calibrating the maps with the precise data of the rain
gauges on the ground. This procedure is well defined in [45], where the radar maps were
obtained by combining empirical and physical adjustments and comparing the IDF curves
obtained by fitting the GEV on the series of annual maximums lasting twenty minutes, one
hour and four hours. In [46], from the estimation of the radar quantities of precipitation
on case studies in Germany, the IDF curve was studied with a time scale of five minutes
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and a spatial scale of 1 km. Instead, in [47], the comparison between the traditional two-
parameter IDF curve and the satellite maps was studied for the first time, the power law
that links the rainfall depth to the duration of the event, therefore, showing similarities.
This may represent an interesting direction addressing the comparison of investigated
models based on ground data with grid models that exploit radar or satellite data.
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Abstract: This study presents three global precipitation products and their downscaled versions
(CHIRPSv2, TAMSATv3, PERSIANN_CDR, CHIRPS_D, PERSIANNN_CDR_D, and TAMSAT_D)
estimated with observed values from 1983 to 2014. Performance evaluation of global precipitation
products and their downscaled versions is important for accurate use of those measured values in
water resource management, climate, and hydrological applications, particularly in the data-sparse
Wabi Shebelle River Basin, Ethiopia. Categorical and quantitative evaluation index techniques
were applied. The spatial downscaled global precipitation products outperformed raw spatial
resolution estimates in all statistical indicators. TAMSAT-D had acceptable performance ratings
in terms of RMSE, CC, and scatter plots (R2). CHIRPSv2 showed the least performance at a daily
timestep. Performance of global precipitation products and their downscaled versions increased when
daily data were aggregated to the monthly data. CHIRPS-D performed better than other products
with a minimum error value (RMSE) and higher CC at a monthly timestep. On the other hand,
PERSIANN_CDR_D showed a relatively good performance with a lower, positive Pbias and higher
POD values compared to other products for daily and monthly timescales. For spatial mismatch
analysis, the bias and RMSE from reference data (individual rain gauge station vs. the average of
all available eight stations) against satellite rainfall estimates (PERSIANN_CDR) had a significantly
different weight, which could be related to the position of the gauge station to provide the “true”
spatial rainfall amount. Overall, TAMSATv3 and CHIRPSv2 and their downscaled version satellite
estimates showed good performance at daily and monthly timesteps, respectively. PERSIANN_CDR
performed best with low Pbias and the highest POD values. Thus, this study decided that the
downscaled version of CHIRPSv2 and PERSIANN_CDR-D satellite estimates could be applicable
as an alternative to gauge data on a monthly timestep for hydrological and drought-monitoring
applications, respectively.

Keywords: satellite; product; precipitation; rain gauge; evaluation; downscaling

1. Introduction

Ranfall is an essential and fundamental primary input for the hydrologic cycle, as
well as for hydro-meteorological modeling [1–4]. On the other hand, rainfall data are
constrained by poor networks and uneven distribution because of the insufficient budget
for operation and installation of rain gauge networks for most parts of the developing
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world [5]. The current meteorological network are inadequate and have poor mainte-
nance for water resource assessment and climate studies in most tropical regions including
Ethiopia [6]. The Wabi Shebelle River Basin (hereinafter WSRB) suffers from the scarce and
uneven distribution of the gauge network, inadequate and low-accuracy precipitation, and
incoherence of rainfall records [7]. The study area also experienced sociopolitical instability
during the civil war in the region, resulting in precipitation measurements not being taken
continuously. The gauge network spatial distribution is below the World Meteorological
Organization (WMO) recommendations as a guideline for checking the adequacy of a me-
teorological network for the different physiographic units (one station per 575 km2 interior
plains and 250 km2 for the mountainous regions) [8]. Therefore, satellite precipitation
products are considered a significant alternative source for obtaining precipitation datasets
for the nonexistence of observed data in filling spatiotemporal gaps [9,10]. Several higher
global precipitation products exist at the regional and global level, including Tropical
Applications of Meteorology using SATellite version three (hereinafter TAMSATv3) [11],
Climate Hazards Group Infrared Precipitation with station data version two (hereinafter
CHIRPSv2) [12], and Multisource and Precipitation Estimation from Remotely Sensed
Information using Artificial Neutral Network Climate Data Record (PERSIANN-CDR) [13].
However, the products from these algorithms and assimilation models need to be evaluated
as their precision is impacted by gauge density, orography, rainfall regime, temporal and
spatial resolution, and algorithms used [14]. Global precipitation products (hereinafter
GPPs) are impacted by exposure to important errors [15]. Such errors can be due to
upscaling/downscaling the raw spatial resolution of global precipitation products with
complicated terrain [16–21] and temporal sampling constraints [22]. Before being used
as input for the hydro-meteorological modeling, global precipitation products and their
downscaled versions need to be evaluated against ground measurements. For investiga-
tions of climate extremes, climate change, and water potential assessment for local-scale
applications, global precipitation data with fine spatial and temporal resolution going back
in time (30+ years) are required for data-scarce local basins. The Wabi Shebelle river basin is
Ethiopian’s largest river basin in terms of its catchment area, but the surface water potential
resource was reported as the minimum of all river basins in the master plan study [23].
The issue with this basin is that no compressive research has been conducted to determine
water potential using accurate spatial and temporal rainfall datasets.

Several studies have been undertaken to evaluate the performance of global precipita-
tion estimates, which were concentrated in the Blue Nile Basin (for instance, [6,10,24–33])
and central parts of the country [22,34–38], with a coarser resolution and limited time
period. The performance of the global precipitation product is highly affected by spatial
resolution, which is largely uncertain because of the scale discrepancy with point mea-
surements. The authors of [39] validated 10 satellite precipitation estimates across 120
relatively dense gauge network highlands of Ethiopia. TAMSAT, CMORPH, and TRMM-3B
42 from the first (high-resolution) group had a strong performance. The authors of [40]
evaluated CHIRPSv2, TRMM 3B43v7, CMORPH, ARC2, and TAMSAT across various
rainfall regimes (eastern, central, western, and southern) of Ethiopia. The CHIRPSv2
precipitation products at a monthly timescale performed comparatively better across all
rainfall regimes. In addition, eight satellite-based rainfall estimates were assessed over
the Tekeze-Atbara Transboundary River Basin. TRMM, RFEv2, and CHIRPS precipitation
products had superior performance to other products at all spatial resolutions (basin, sub-
basin, and point) [14]. Similar research focused mainly on a grid-to-point technique in
data-sparse regions [22,25,34,41,42]. Furthermore, this method can induce uncertainty in
the performance of global precipitation products due to the comparison of two datasets on
different spatial scales regardless of the location of gauges in the pixel. Uncertainty due
to the mismatch of satellite-based spatial resolution scale with point measurements may
affect the application of GPPs for climate study and hydrological modeling [43]. Although
global precipitation products exist at a coarser resolution (larger pixel size) than required by
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climate studies and hydrological applications, they have to be downscaled to fine resolution
for matching the sampling of GPPs with gauge data [44].

A comprehensive evaluation of global precipitation products and their downscaled
versions, particularly with a spatial mismatch at different timescales, is needed for a better
understanding of watershed hydrology; however, this has not been performed for the Wabi
Shebelle River Basin to the best of our knowledge. Uncertainty related to the grid-to-point
method can be addressed by avoiding the spatial mismatch between the global precipitation
product and corresponding station measurement by downscaling the coarse resolution to a
fine resolution.

Therefore, this study attempted (i) a comprehensive evaluation of native and down-
scaled global precipitation products against ground reference rainfall data, and (ii) a
quantification of the uncertainty associated with a grid-to-point approach for the spatial
scale of global precipitation products at a selected pixel scale.

2. Study Area Description and Dataset

2.1. Study Area Description

The Wabi Shebelle River Basin (WSRB) is one of the largest basins in Ethiopia, located
in the southeastern part of the country. It originates from the Arsi and Bale Mountain
ranges 4000 m above sea level and drains to the Indian Ocean after crossing Somalia. The
basin’s absolute location is within the latitudes 4◦45′–9◦45′ N and longitudes 38◦45′–45◦30′
E. The WSRB is characterized by bimodal rainfall seasons due to the southern and northern
movement of the intertropical convergence zone (ITCZ) from March to May and from July
to September. According to the master plan hydrology report, the highest mean annual
rainfall recorded is 1467 mm in Seru Wereda of the Arsi Zone. The lowest mean annual
rainfall recorded is 220 mm in the Kelafo Area of the Somali Region [23]. In general, the
spatial and temporal distribution of rainfall is not evenly distributed; it is clustered in
the upper and urban areas of the basin, and tends to decrease with decreasing altitude as
shown in Figure 1.

Figure 1. Study area description with rain gauge station distribution and topography elevation of
Wabi Shebelle River Basin, Ethiopia.
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2.2. Datasets
2.2.1. Rain Gauge Data

There are about 74 meteorological stations within and around the basin which are not
evenly distributed spatially, clustered in upper and urban areas. The rainfall dataset for
WSRB was taken from the National Mereological Agency (NMA), covering the period 1983
to 2014. Long-term meteorological data for the WSRB are more complete in upstream parts
of the basin, and these stations were taken to analyze precipitation in the area as shown
(Figure 2) below.

Figure 2. Annual rainfall in Wabi Shebelle River Basin.

Rain gauge stations for this study were carefully chosen on the basis of their quality
control process for climate data (verification of in situ station’s geographical coordinates,
checking for false zeros, checking for the presence of outliers, and homogeneity testing)
using the Climate Data Tool (CDT) https://github.com/rijaf-iri/CDT (accessed on 27 June
2020). Twenty-seven out of 74 gauging stations with a percentage of available (non-missing)
and continuous data greater than 80% were selected for the comparison of different GPPs
in the study area.

2.2.2. Global Precipitation Products

Global precipitation data with fine spatial and temporal resolution provide optional
homogeneous timeseries information for data-scarce areas, going back in time (30+ years)
as far as possible for hydrological applications and climate studies [45]. Global precipitation
data are a combined product of reanalysis, rain gauge data, and remote sensing estimates.

For this desired specific objective, three global precipitation products and their down-
scaled versions, with different temporal and spatial scales, were taken as inputs (Table 1).
The selection of the GPPs was based on public availability, ease of estimation, global
coverage, multiyear period, and previous record of estimate performance.
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Table 1. Global precipitation products used for Wabi Shebelle River Bain.

Category Input Data
Spatial Res.

(Degree)
Temporal Res. Start Date Designation

Raw GPPs
CHIRPSv3 0.05 1 day 1981 CHIRPSv3

PERSIANN_CDR 0.25 3 h 1983 PERSIANN_CDR
TAMSATv3 0.04 1 day 1983 TAMSATv3

Downscaled GPPs
CHIRPSv3-Downscale 0.01 * 1 day 1981 CHIRPS_D

PERSIANN_CDR_Downscale 0.01 * 3 h 1983 PERSIANN_CDR_D
TAMSATv3-Downscale 0.01 * 1 day 1983 TAMSAT_D

* The raw spatial resolution of the selected GPPs was downscaled to 1 km.

The Climate Hazards Group Infrared Precipitation with station data version two
(hereinafter CHIRPSv2) was developed by the United States Geological Survey (USGS) and
University of California, Santa Barbara (USCB); it merges estimates using blending satellite,
global climatology, and gauge observation data from the Global Telecommunication System
(GTS). The CHIRPSv2 dataset incorporates 0.05◦ spatial resolution with ground reference
measurements to generate a daily sequence of data points for an area coverage of 50◦ S–50◦
N since 1981 [12].

The Tropical Applications of Meteorology using SATellite version three (hereinafter
TAMSATv3) estimate, developed by Reading University in the UK, features Meteosat
thermal infrared (TIR) fine-resolution observations on a daily timescale employing attuned
cold cloud duration (CCD) data measurements for Africa by downscaling pentadal total
measurements. The TAMSATv3 estimate incorporates 0.0375◦ spatial resolution through
ground rainfall measurements to generate timeseries for all of Africa from January 1983 to
date [11].

The Precipitation Estimation from Remotely Sensed Information using Artificial Neu-
tral Network Climate Data Record (PERSIANN-CDR) system was developed by the Center
for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine
(UCI); it uses a neutral function classification procedure to determine the product of pre-
cipitation amount for each 0.25◦ × 0.25◦ grid in an IR temperature spectrum offered by
a geostationary satellite. The rainfall product features an area coverage of 60◦ S–60◦ N
globally from 1983 to 2015 [13].

3. Methodology

This study evaluated the performance of three global precipitation product and their
downscaled versions (CHIRPSv2, TAMSATv3, PERSIANN_CDR, CHIRPS_D, TAMSAT_D,
and PERSIANN_CDR_D) at different spatial and temporal scales against 27 ground gauge
stations from 1983 to 2014. Categorical and quantitative evaluation index techniques were
applied to WSRB, Ethiopia.

3.1. Grid-to-Point Approach

There are two typical approaches for evaluating global precipitation products, i.e.,
the grid-to-grid and point-to-grid methods. The first method requires the interpolation
of gauge data to grid data, whereby gauge-gridded data are compared with grid data
from global precipitation estimates; however, converting points to gridded interpolated
data induces an error resulting from the interpolation of an uneven geospatial distribu-
tion [46–50]. The second approach involves an immediate comparison of station rainfall
data to the respective pixel in which the gauges are located [23,34,41,42]. In an area such as
the Wabi Shebelle River Basin, with a scarcely and unevenly distributed gauge network, a
pixel-to-point approach is the first choice to assess the GPPs independently, considering the
gauge network as representative measurements irrespective of grids from nominated GPP,
without considering the location of the station in the grid. Although global precipitation
products exist at coarser resolution (larger pixel size) than required by climate studies and
hydrological applications, they have to be downscaled to 1 km fine spatial resolution for
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evaluation with point gauge rainfall in the desired application. The spatial downscaling
method and satellite rainfall estimate are the two most critical aspects in determining the
accuracy of downscaled findings. In the Upper Tekezie River Basin, bilinear downscal-
ing performed marginally better than the nearest-neighbor method to integrate satellite
products with observed rainfall [51]. Other studies also preferred the bilinear downscal-
ing method for smooth interpolated satellite-derived rainfall [52,53]. Therefore, bilinear
downscaling was the approach chosen to downscale the spatial resolution of pixels for this
study area.

The downscaled global precipitation product is more accurate than the original coarser
resolution [54,55]. Therefore, the pixel value of raw spatial resolution GPPs in their down-
scaled version (0.01◦ × 0.01◦) was compared to gauge measurements.

The grid-to-point method can induce uncertainty in the performance of global satellite
precipitation products due to the comparison of two datasets on different spatial scales
regardless of the location of gauges in the pixel. The PERSIANN_CDR (0.25◦ × 0.25◦)
pixel contains multiple rain gauge stations (greater than 3), which allows investigating the
spatial mismatch global precipitation products against station observations for the eastern
upper course (blue-colored grid box in study area map.

3.2. Evaluation Performance Indices

The quantitative and categorical evaluation indicator methods were carefully selected
according to robustness, common usage, and recommendation in previous studies [39]. These
performance indicators are described at https://www.cawcr.gov.au/projects/verification/
(accessed on 12 May 2017), implemented within the Climate Data Tool (CDT). Performance
was assessed through quantitative evaluation indicators such as the coefficient of determina-
tion (R2) (Equation (1)), percentage bias (Pbias) (Equation (3)), bias (Equation (4)), Pearson’s
correlation coefficient (CC) (Equation (2)), and root-mean-square error (RMSE) (Equation
(5)). CC justifies the relationship between the exact values of two variables (independent
and dependent). Values range between zero (no correlation) and one (perfect correlation).
R2 measures how well the independent variables explain the dependent variable in a
regression. Values range between zero (no correlation) and one (perfect correlation). Bias
describes the extent to which the observed value is underestimated or overestimated. The
RMSE represents how closely the satellite observation predicts the measured value.

R2= 1− ∑n
i=1 (S i−Gi)

2

∑n
i=1 (S i − S

)2 , (1)

CC =
∑n

i=1(S i − S
)
(G i − G

)
√

∑n
i=1 (S i − S

)2. (G i − S
)2

, (2)

Pbias =
∑n

i=1(S i−Gi)

∑n
i=1 Gi

× 100%, (3)

Bias =
∑n

i=1(S i−Gi)

∑n
i=1 Gi

, (4)

RMSE =

√
∑n

i=1 (S i−Gi)
2

n
, (5)

where Gi and Si represent the gauge and global precipitation data on the i-th day, i is the
index, and S & G are the average values of Si and Gi, respectively.

The ability of global precipitation estimates to determine the existence of precipitation
rates was tested using the probability of detection (POD) (Equation (6)). POD was employed
to evaluate the likelihood of the observed precipitation event being correctly detected by
the satellite estimate. A dichotomous estimate that says “yes, an event will happen” or “no,
an event will not happen” was used to quantify the metrics, as shown in Table 2. For this
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application, a rainfall threshold value of 1 mm was applied to decide the occurrence of a
rainy or non-rainy day [25,33].

POD =
hits

hits + misses
, (6)

where the absolute score of POD varies from 0–1.

Table 2. Contingency table of ainy and non-rainy event prediction by global precipitation products.

GPPs

Station
measurement

Yes No Total
No Misses Correct negative Observed no
Yes Hit False alarm Observed yes

Total Estimate yes Estimate no Total

4. Result and Discussion

4.1. Comparison of Global Precipitation Products at Temporal Scale

This section presents a comparison of three global precipitation products and their
downscaled versions vs. station data measurements according to the essential subject
of gauge representativeness to identify the most reliable products for water resource
assessment, climate studies, and hydrological applications across the data-scarce WSRB at
different temporal scales for the period from 1983 to 2014.

4.1.1. Daily Comparison

The raw and downscaled global precipitation data were evaluated with observed
rainfall at a daily timescale. Global precipitation products and their downscaled versions
presented weak performance according to the majority of statistical indicator indices. The
downscaled GPPs outperformed the original coarser resolutions as can be seen in Table 3.
This result is similar to previous findings [54,55]. This might be due to the accuracy of
the original precipitation product and the spatial downscaling method [39]. The RMSE in
global precipitation products and their downscaled versions was highest in the southern
and northeastern parts of the basin, with values ranging from 4 to 13 mm, as can be seen
in Figure 3b. TAMSAT-D performed better than other products with a minimum RMSE
for a value of 6.926 mm. The value of Pearson’s correlation coefficient (CC) showed a poor
relationship for all global precipitation products, but the CC value was relatively higher
in the southern and northern parts of the basin, with values between 0.05 and 0.5, as can
be seen from Figure 3a. TAMSAT-D showed the best agreement with a higher CC (0.332).
The highest coefficient (R2 = 0.039) was obtained by TAMSTAv3 and TAMSAT_D, as can
be seen Figure 5a. The high performance of daily rainfall estimates from TAMSTAv3 and
its downscaled version could be due to the loss of localized convective precipitation with
the specified threshold value of the study area. This discovery is in line with the findings
of previous investigations. CHIRPSv2 and its downscaled version showed the worst
performance, as can be seen in Table 3. This could be attributed to the areal discrepancy
of gauge observations and satellite estimates, as well as of the retrieval algorithms in
disaggregating pentadal data to daily values [56]. On the other hand, PERSIANN_CDR_D
showed a relatively good performance with a lower, positive Pbias compared to other
products (underestimate), with a value of 3.09%, as presented in Table 3. The spatial
distribution of Pbias for PERSIANN_CDR_D (Figure 3c) showed better performance than
most stations.
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Table 3. Daily statistical indicators of validation.

Product CHIRPSv2
PERSIANN-

CDR
TAMSATv3 CHIRPS_D TAMSAT_D

PERSIANN-
CDR_CDR

Correlation 0.245 0.298 0.33 0.25 0.331 0.307
Pbias −6.739 3.3 −4.974 −7.064 −4.92 3.09
RMSE 8.297 7.183 6.948 8.141 6.926 7.027
POD 0.334 0.684 0.569 0.363 0.575 0.691

The ability of GPPs to detect the occurrence of precipitation events was also evaluated.
In general, the downscaled products had better rainfall capability detection than the raw
spatial resolution products in terms of the POD categorical statistical indicator. In this
context, PERSIANN_CDR-D revealed a higher POD (0.691) than the PERSIANN_CDR
precipitation product, as presented in Table 3. Both the raw and the downscaled precip-
itation products provided reasonably good PODs, varying between 0.25 and 0.893, as
shown in Figure 4a. The highest POD and low Pbias indicate that PERSIANN_CDR-D is
suitable for capturing the behavior of extreme precipitation events in the Wabi Shebelle
River Basin, Ethiopia. The same result was also confirmed by [57]. This could be due to
the adjustment of PERSIANN_CDR using GPCP monthly 2.50 precipitation products [13].
CHIRPSv3 showed extremely poor performance according to the categorical statistical
indicator values.

(a) 

Figure 3. Cont.
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(b) 

 
(c) 

Figure 3. The statistical parameter correlation coefficient (a), root-mean-square error (b), and percent-
age bias (c) for each station at a daily timescale.
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Figure 4. The probability of detection for each station at a daily timescale.

It can be observed that, in general, the downscaled and raw products presented poor
agreement with the ground reference data (r < 0.5). The scatter plots and cumulative
distribution functions using the average daily timeseries gauge rainfall data against the
GPPs were examined (Figure 5a,b). A relatively high coefficient (R2 = 0.039) was ob-
tained by TAMSTAv3 and TAMSAT_D, and whereas CHIRPSv2 scored the lowest value.
PERSIANN_CDR (downscaled and raw) showed reasonable agreement with the ground
reference (R2 = 0.03). Furthermore, all products were comparatively symmetric to a 45◦
inclination. According to the CDFs (Figure 5b), all products were not comparatively denser
for a 45◦ inclination. Furthermore, TAMSAT_D and PERSIANN_CDR_D revealed the worst
correspondence with the station CDFs. This shows that these products underestimated the
distribution for rainfall ≤ 10 mm/day, whereas CHIRPSv2 and CHIRPS_D overestimated
the distribution for rainfall ≤ 10 mm/day.

4.1.2. Monthly Comparison

The accuracy of the global precipitation products in replicating precipitation was
further investigated at a monthly timescale, as shown in Figure 6 and Table 4. The results
indicate that the performance of GPPs and their downscaled versions increased when daily
data were aggregated to monthly data. These findings were also confirmed by [10,58],
which evaluated the performance accuracy of aggregated global precipitation products
toward a coarser temporal resolution. For example, one study [36] investigated several
global precipitation products over Burkina Faso with different temporal resolutions. The
results indicated that the categorical and volumetric indicators significantly increased upon
aggregating the timescale. Similarly, the authors of [59] evaluated the CHIRPS satellite
precipitation estimates over eastern parts of the continent. In the comparison of CHIRPS
estimates with ARC2 and TAMSTA, the findings exhibited reasonably better reference
estimates at decadal and monthly timescales, with a better skill of detection and lower bias,
while TAMSAT performed better at a daily timescale.
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(a) 

 
(b) 

Figure 5. (a) Scatter plot of cumulative distribution function; (b) plots of observed rainfall against the
global precipitation products.
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Figure 6. Scatter charts of observed precipitation versus global precipitation products at
monthly timescale.

Table 4. Monthly statistical indicators of GPPs evaluated.

Product CHIRPSv2 PERSIANN-CDR TAMSATv3 CHIRPS_D TAMSAT_D PERSIANN-CDR_D

Correlation 0.745 0.659 0.699 0.748 0.709 0.664
PBIAS −6.729 2.388 −6.066 −7.055 −3179 1.999
RMSE 53.958 63.739 58.894 53.734 57.884 62.0345
POD 0.984 0.986 0.897 0.986 0.897 0.993

The downscaled GPPs outperformed their original coarser-resolution counterparts ac-
cording to all statistical indicators of accuracy. CHIRPS-D performed better than other prod-
ucts with a minimum error value (RMSE = 53.734 mm) and higher correlation (CC = 0.748).
The value of Pearson’s correlation coefficient (CC) showed a good relationship for raw and
downscaled global precipitation products. Scatter plots using average monthly timeseries
gauge rainfall data against the three GPPs and their downscaled versions were generated.
The highest coefficient (R2 = 0.418) was obtained by CHIRPS_D. As the time resolution
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increased from days to months, the rainfall amount estimated by CHIRPSv2 became in-
creasingly accurate. The best performance of CHIRPSv2 and its downscaled version could
be due to the elimination of error as the data were aggregated to a coarser timescale. These
findings are consistent with earlier investigations of CHIRPSv2 rainfall data at a monthly
timescale [59,60].

PERSIANN-CDR showed the lowest values for RMSE, CC, and R2, as can be seen
from Table 4 and Figure 6, on the daily timescale. PERSIANN_CDR_D showed relatively
good performance with a lower, positive Pbias compared to other products (overesti-
mate), with a value of 1.999%. PERSIANN_CDR_D resulted in the highest POD value of
0.993. CHIRPS_D and PERSIANN_CDR had the second better probability of detection
(POD), whereas the TAMSAT group had the lowest value (Table 4). This implies that the
performance of satellite estimates was influenced by the algorism and data source used.

4.2. Uncertainty Associated with a Pixel-To-To Point Method

In addition to the spatiotemporal investigation, the significant effect of the position of
the stations in a pixel on the evaluation of the global precipitation product was analyzed, as
shown in Figure 1 (blue-colored grid box). Furthermore, attempts were made to compare a
pixel of selected GPPs (PERSIANN_CDR) against reference data, using the spatial average
of all existing station data versus individual gauge stations within a pixel. Findings show
that the minimum RMSE was obtained for PERSIANN_CDR when comparing the spatial
average over each gauge station in the blue-colored box, with an average value of 4.667, as
presented in Table 5.

Table 5. Statistical indicators of global precipitation products and station measurements within
the grid.

STATION

PERSIANN_CDR

LON STATS/LAT BIAS RMSE

Average over the
pixel 1.126 4.667

Girawa 41.83 9.13 0.938 7.86
Gursum 42.38 9.35 1.223 7.962

Fedis 42.08 9.13 1.317 6.897
Kulubi 41.68 9.42 1.026 7.519

Alemaya 42.03 9.4 1.314 6.557
Bisidimo 42.2 9.2 1.404 6.924

Deder 41.43 9.32 0.991 7.676
Bedeno 41.63 9.12 0.967 7.223

PERSIANN_CDR achieved a reasonable maximum bias (overestimated by 12.6%) for
the spatial average in the comparison of two datasets at the pixel level. On the other hand,
the maximum bias ranged from, 40% and 31% using individual gauge stations Bisidimo
and Fedis, respectively. In the comparison between the spatial average and the individual
stations, Deder exhibited the smallest bias, while other stations changed the direction of
the bias, with the exception of the Grawa and Bedeno gauge stations.

Generally, in terms of bias and RMSE, spatial averages estimated using rainfall data
(eight stations) exhibited considerably different values to the referenced individual rain
gauges in terms of magnitude. This magnitude difference may be related to the positions
of the gauge stations and the uncertainty due to the representativeness of an individual
rain gauge in providing the “true” spatial rainfall amount. Furthermore, the authors
of [17,20,22,61] examined the variability and gauge representativeness of rainfall retrieved
from the global precipitation product and showed the effect of network density on per-
formance assessment. Therefore, it is essential to apply appropriate representative gauge
data for the evaluation of products. Uncertainty related to the grid-to-point method can be
addressed by avoiding the spatial mismatch between global precipitation products and
the corresponding station measurements by downscaling the coarse resolution to a fine
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resolution [44]. In addition, installing additional rain gauges is strongly recommended
within the grid [25].

5. Conclusions

In the current study, a total of six GPPs, three from raw global precipitation prod-
ucts (CHIRPSv2, TAMSATv3, and PERSIANN_CDR) and three from downscaled global
precipitation products (CHIRPS_D, TAMSAT_D, and PERSIANN_CDR_D), were used. A
bilinear method was applied to downscale the coarse spatial resolution of GPPs to 1 km
resolution pixels. Categorical and quantitative evaluation index techniques were applied to
WSRB, Ethiopia. The primary objective of the study was to assess the performance of the
global precipitation products and their downscaled versions at different temporal scales
compared to ground gauge stations.

The results indicated that the performance of global precipitation products is affected
by factors such as the gauge density, spatiotemporal scale, and type of satellite algorithm.
The daily evaluations were executed poorly in the majority of gauge stations. According
to the evaluation parameters at the daily timescale, the downscaled GPPs performed
best in terms of all statistical indicators. The evaluation assessment clearly indicated that
TAMSAT_D was the best performer in terms of RMSE, CC, and scatter plots (R2). On
the other hand, PERSIANN_CDR_D showed a relatively good performance with a lower,
positive Pbias and higher POD values compared to other products. CHIRPSv2 showed
the worst performance at a daily timescale. The results indicated that the performance of
the GPPs and their downscaled versions increased when daily data were aggregated to
monthly data. Therefore, CHIRPS-D performed better than other products with a minimum
error value (RMSE) and higher CC and R2. However, PERSIANN_CDR_D presented a low
Pbias and the highest POD values on daily and monthly timescales. In spatial mismatch
analysis, the bias and RMSE estimated using rainfall data from individual rain gauges
exhibited different magnitudes over the spatial average for PERSIANN_CDR, indicating
that individual gauge data could not accurately estimate the product.

Overall, the performance of downscaled global precipitation products was better than
that of the coarser-resolution products according to all statistical parameters. TAMSAT-D
and CHIRPS-D products were the best-performing GPPs in reproducing the daily and
monthly rainfall data, respectively. PERSIANN_CDR also accurately captured the extreme
rainfall over the study area. This study provides a relatively long consistent and homoge-
neous timeseries rainfall dataset for climatology analysis and hydrological applications
with a 1 km resolution for the study area. Although satellite precipitation products provide
information at a high spatial resolution, they are lower in precision. On the other hand,
gauges provide accurate point measurements but have limited spatial representativity.
Therefore, for future studies, we recommend merging the downscaled product to improve
the data availability in terms of accuracy, spatial distribution, and accumulated rainfall
volume over the data-scarce Wabi Shebelle River Basin, Ethiopia, with a complex terrain,
as well as other regions with a similar climate and topographical location.
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Abstract: Rainfall-runoff simulation is vital for planning and controlling flood control events. Hydrol-
ogy modeling using Hydrological Engineering Center—Hydrologic Modeling System (HEC-HMS)
is accepted globally for event-based or continuous simulation of the rainfall-runoff operation. Sim-
ilarly, machine learning is a fast-growing discipline that offers numerous alternatives suitable for
hydrology research’s high demands and limitations. Conventional and process-based models such as
HEC-HMS are typically created at specific spatiotemporal scales and do not easily fit the diversified
and complex input parameters. Therefore, in this research, the effectiveness of Random Forest, a
machine learning model, was compared with HEC-HMS for the rainfall-runoff process. Furthermore,
we also performed a hydraulic simulation in Hydrological Engineering Center—Geospatial River
Analysis System (HEC-RAS) using the input discharge obtained from the Random Forest model.
The reliability of the Random Forest model and the HEC-HMS model was evaluated using different
statistical indexes. The coefficient of determination (R2), standard deviation ratio (RSR), and normal-
ized root mean square error (NRMSE) were 0.94, 0.23, and 0.17 for the training data and 0.72, 0.56,
and 0.26 for the testing data, respectively, for the Random Forest model. Similarly, the R2, RSR, and
NRMSE were 0.99, 0.16, and 0.06 for the calibration period and 0.96, 0.35, and 0.10 for the validation
period, respectively, for the HEC-HMS model. The Random Forest model slightly underestimated
peak discharge values, whereas the HEC-HMS model slightly overestimated the peak discharge
value. Statistical index values illustrated the good performance of the Random Forest and HEC-HMS
models, which revealed the suitability of both models for hydrology analysis. In addition, the flood
depth generated by HEC-RAS using the Random Forest predicted discharge underestimated the flood
depth during the peak flooding event. This result proves that HEC-HMS could compensate Random
Forest for the peak discharge and flood depth during extreme events. In conclusion, the integrated
machine learning and physical-based model can provide more confidence in rainfall-runoff and flood
depth prediction.

Keywords: rainfall-runoff; HEC-HMS; HEC-RAS; random forest; flood; forecast

1. Introduction

Floods are some of the most common and costly natural catastrophes in the world [1–3].
The magnitude and frequency of extreme flooding events have increased considerably
worldwide over the previous few decades [4]. Climate change, urbanization, and other
anthropogenic activities are causing a flood risk globally [5–7]. Water-related natural
hazards, such as floods, droughts, and landslides, have become the new normal due
to the uncertainty in rainfall patterns and magnitudes caused by climate change and
urbanization [8]. Flooding is projected to become more common in the coming years as the
frequency of extreme precipitation events increases [9–11].

Flood severity has increased, resulting in a large number of flood fatalities, massive
economic losses, and social consequences [12]. Given the negative consequences of flooding,
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developing floodplain management plans to avoid and mitigate flood damage is critical [13].
The estimation of Intensity–Duration–Frequency (IDF) curves and the monitoring of rainfall
intensity are also critical factors in precisely calculating the flood hydrograph and the peak
discharges [14,15]. The flood risk assessment depends on a precise estimation of peak
runoff, calculated by rainfall-runoff simulation [16]. Accurate rainfall-runoff simulation is a
prominent topic in hydrology research [17]. Precise rainfall-runoff modeling is essential for
planning and applying flood control strategies in vulnerable areas to reduce the dangers
to human life and infrastructure during high-precipitation events. Different hydrology
models have been used in the past to perform a rainfall-runoff simulation in a watershed.
The Hydrologic Modeling System (HMS), designed by the Hydrologic Engineering Center
(HEC) of the United States Army Corps of Engineers, is a popular rainfall-runoff analysis
tool worldwide [18].

Process-based physical models are typically employed to calculate runoff in a particu-
lar catchment area. By integrating regional variability in the watershed, a physical-based
model such as HEC-HMS can compute an actual hydrology system [19]. Hydrology model-
ing using the HEC-HMS model can be used to investigate urban floods, flood frequency,
flood warning systems, and the effectiveness of spillways and detention ponds over a
watershed [20]. The HEC-HMS model is made up of four essential components. An an-
alytical method is first applied to compute direct discharge and reach routing. Secondly,
a basin model with interactive components is employed for depicting hydrology aspects
within a catchment. Third, data are entered, edited, managed, and stored via a system.
Fourth, the simulation results are reported and illustrated using a functional system [21].
Finally, the calibration procedure, which compares simulated results to observed data, can
help to enhance the model’s precision and predictability. With the regional and temporal
variety of catchment features, rainfall patterns, and the number of variables applied in
modeling physical processes, the connection between precipitation and discharge using
HEC-HMS is challenging [22]. A physical-based model such as HEC-HMS necessitates a
large amount of data, such as land use and land cover data, soil group data, and infiltration
data, and a significant amount of time to calibrate to ensure the correctness of the model [23].
Furthermore, there are drawbacks to using a physical-based hydrology model, owing to
the difficulties in completely understanding the complicated, nonlinear, and inter-related
hydrology [24,25]. A hydrology model that uses HEC-HMS may be unsuitable for a larger
watershed with scarce data. Therefore, as a complement to the physical model, recently, the
application of machine learning and data-driven models has been used across hydrology
domains [26,27].

Machine learning (ML) is a kind of artificial intelligence that can make an accurate
prediction by training and testing datasets. ML provides a solution to a real-world prob-
lem by studying previously observed data and has been effective in generating accurate
results [28]. ML provides adequate computation power [29,30] and is used in a wide
variety of research and applications in hydrology. Some examples of ML applications in the
hydrology domain are rainfall-runoff prediction [31–33], flood forecasting [34–36], sedimen-
tation studies [37–39], water quality prediction [40–43], groundwater prediction [44,45],
river temperature prediction [46–49], and rainfall estimation [50,51]. In recent years, ML
algorithms have significantly improved and are also widely used for rainfall-runoff simu-
lation [52,53] thanks to the rapid advancement of computer technology. Recently, many
researchers have performed rainfall-runoff predictions using different machine learning and
data-driven models. Some examples of these models are long short-term memory [54,55],
artificial neural networks [56,57], support vector machines [58,59], and the Random For-
est model [16,60]. Random Forest is a popular machine learning tool, and Breiman first
developed it in 2001 [61]. Random Forest has recently acquired popularity as a powerful
predictive modeling tool, and many researchers are using it in their fields as a potential
method [62]. It is a classification and regression tree-based ensemble learning algorithm [61].
A bootstrap sample is used to train each tree, and optimal variables at each split are chosen
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from a random subset of all variables. Random Forest offers the highest accuracy of any
contemporary method and works quickly on large datasets [63].

Previous studies showed that Random Forest’s performance surpassed other machine
learning and data-driven tools such as artificial neural networks, regression models, and
support vector machines in multiple comparative studies in hydrology [63–67]. However,
Random Forest is the least used for hydrology analysis among the data-driven and machine
learning models [68]. Among the few applications of Random Forest, most of these studies
focused on flood risk hazards [16,69] and mapping [70]. Therefore, this study evaluated
the effectiveness of the Random Forest model for rainfall-runoff simulation. In addition,
the main objective of this research is to determine the suitability of the Random Forest
model for rainfall-runoff simulation in a scarce-data region. Therefore, this research also
used a satellite precipitation product as an input variable for rainfall-runoff simulation and
determined its appropriateness in hydrology research. Furthermore, this study assessed
the appropriateness of using Random Forest generated discharge for hydraulic modeling
using the Hydrologic Analysis Center’s River Analysis Model (HEC-RAS).

HEC-RAS is the most widely accepted model [71] for analyzing channel flow and
floodplain characterization [72]. Users can compute one-dimensional steady and unsteady
flow, two-dimensional unsteady flow, sediment transport, and water quality models by
using HEC-RAS [72]. Regularizing geometric data and identifying and analyzing hydraulic
structures, such as weirs, culverts, reservoirs, pump stations, bridges, levees, and gates,
blockage and ineffective regions, land use, the Manning roughness coefficient, streambed
slopes, and ice cover are achievable with HEC-RAS [73]. The model employs geometric
data and geometric and hydraulic computer algorithms to model natural and artificial
streams. HEC-RAS requires fundamental inputs such as river discharge, channel geometry,
bank lines, flow paths, and channel resistance. The discharge generated by Random Forest
was employed as an input parameter in this study. While the HEC-RAS model has a wide
variety of capabilities, the current research considered its capability to execute 1D river
flow and calculate the flood depth at the most downstream section of the study reach.

The integration of different models in the sectors of hydrology and hydraulic domains
is gaining global attention and is crucial for flood risk management techniques [74]. The
novelty of this research is to assess the effectiveness of the Random Forest model for
rainfall-runoff simulation using satellite precipitation products in a data-scarce region. This
research work also evaluated the integration of machine learning and a HEC-RAS model
for calculating water depth at the proposed study location during the study period. The
following is an outline of this paper. Section 2 describes the study area, data preparation,
and a physical-based and Random Forest model. Section 3 presents the results of this
research, Section 4 provides a discussion of the results, and Section 5 provides the major
conclusions from the current analysis.

2. Data and Methods

This section describes the methodology used for hydrology and hydraulic analysis in
this research. Random Forest, HEC-HMS, and HEC-RAS are the three models used in this
study. HEC-HMS and the Random Forest model were applied for hydrology analysis, and
HEC-RAS was used for the hydraulic analysis. The complete workflow of the methodology
used in this research work is shown in Figure 1. First, this study started with extracting
and preprocessing the data on basin characteristics, such as digital elevation model (DEM),
land use and land cover (LULC), and soil group data, and meteorological data, such as
daily precipitation and discharge data. The integrated use of Arc-Hydro, HEC-GeoHMS,
and HEC-HMS was employed for hydrology analysis in the upstream catchment area.
Similarly, Random Forest, a machine learning algorithm, was used to predict the runoff for
the training and testing period. After the preparation of the hydrology model, a comparison
was performed between the machine learning model (Random Forest Regression) and
the physical model (HEC-HMS) using the different statistical indexes. Finally, the runoff
obtained from the machine learning model was used as an input variable in the HEC-RAS

183



Hydrology 2022, 9, 117

model to calculate the water depth at the downstream location. In conclusion, the modeling
approach determined the effectiveness of Random Forest Regression for hydrology and the
integrated Random Forest and HEC-RAS model for hydraulic analysis.

 

Figure 1. Figure portraying the flowchart of hydrology analysis using Random Forest and HEC-HMS
and hydraulic analysis using HEC-RAS.

2.1. Study Area

This research used the East Branch DuPage watershed as a study area. Over the last
twenty years, the study area has observed significant urbanization [75]. The study area has
a history of high-flooding events (1996, 2008, 2013, and, most recently, 2020). In the year
2020, there was significant flooding due to the 178 mm of total precipitation over a period
of five days. The study watershed has an area of 62.2 km2 at the USGS gauging station,
which is around Downers Grove, Illinois. The study area has an elevation ranging from
204 m to 250 m above mean sea level. Geographically, northern latitudes from 41◦50′ to
41◦57′ and western longitudes from 87◦59′ to 88◦6′ bound the study catchment area, as
shown in Figure 2. The study area is highly residential, with an average imperviousness
percentage of about 40%. The range of imperviousness percentages in the watershed is
shown in Figure 3. The average soil permeability over the watershed is 62 mm/h [76]. The
catchment consists of USGS gauge station 05540160 at the watershed outlet. The river reach
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for the hydraulic station lies between the gauging stations 05540160 and 05540228. The
study reach is around 5221 m between two gauging stations. The proposed study area does
not have any existing precipitation gauging station. The history of flooding events and the
unavailability of observed precipitation data in this watershed are the two main reasons
for proposing this watershed as a study area.

 

Figure 2. The East Branch DuPage Catchment around Downers Grove, Illinois, with the river system.

2.2. Data

Watershed characteristics datasets, such as land use and land cover, soil group, and
DEM datasets, and meteorological model data, such as rainfall and discharge data, are all
important data required for hydrology and hydraulic simulation. These datasets were used
to estimate hydrology parameters and sub-basin characteristics and to prepare geometric
data for hydrology and hydraulic analysis. The data types used in this research and their
sources are detailed in Table 1.

2.3. Preprocessing Data

This section describes the extraction of basin characteristics and the meteorological
data that were used for the hydrology analysis.

2.3.1. Digital Elevation Model (DEM)

DEM data are spatial data that provide the characteristics of the watershed. A 10 m
DEM was retrieved from a United States Department of Agriculture (USDA) website and
was clipped for the study catchment using Arc-Map in Arc-GIS.
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Figure 3. Map depicting characteristics of the study area.

Table 1. Data used for this research with their sources.

Data Source

Precipitation
Precipitation Estimation from Remotely Sensed

Information Using Artificial Neural Networks–Cloud
Classification System (PERSIANN-CCS).

Soil United States Department of Agriculture (USDA)
Land Use Land Cover United States Geological Survey (USGS)

Runoff Data United States Geological Survey (USGS) water data

2.3.2. Basin Characteristics

LULC data and soil map data were extracted from a USGS and USDA website, re-
spectively. Both datasets were imported into ArcMap to clip for a study boundary and
converted to the Shapefile from the raster. Composite curve number values were generated
considering pervious and impervious areas. The average curve number of the watershed
was 83.4, and the curve number values ranged from 54 to 100, corresponding to high
infiltration to water bodies, respectively. The basin characteristics of the study area are
shown in Figure 3.
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2.3.3. Precipitation Data

Rainfall data are essential meteorological data for hydrology simulations. The study
area does not consist of any observed precipitation station; therefore, in this study, pre-
cipitation data were obtained from a grid from the Precipitation Estimation from Re-
motely Sensed Information Using Artificial Neural Networks–Cloud Classification System
(PERSIANN-CCS). The Center for Hydrometeorology and Remote Sensing (CHRS) devel-
ops it at the University of California, Irvine, and it is a real-time global high-resolution
(0.04◦ × 0.04◦ pixel) satellite precipitation product [77]. The daily time series precipitation
data were extracted from a grid using a python environment from 2006 to 2021.

2.4. Hydrologic Modeling Using Arc-GIS and HEC-HMS

HEC-GeoHMS is an extension of Arc-GIS that helps users to extract the essential
data to develop the HEC-HMS project. The user must pick an outlet position on the river
to begin the extraction procedure. HEC-GeoHMS utilizes terrain preprocessing tools for
flow analysis. HEC-GeoHMS can enhance the sub-basin and stream delineations, collect
physical attributes of sub-basins and rivers, predict model attributes, and create input files
for HEC-HMS. Terrain preprocessing and model development were carried out as shown
in Figure 4.

 

Figure 4. Preprocessing and model development: (a) DEM file; (b) Fill Sinks; (c) Flow Accumulation;
(d) Flow Direction; (e) Stream Definition and Catchment Polygon; (f) Drainage Point and Line
Processing; (g) Slope; (h) Basin and River Merge; (i) Lonest Flow Path; (j) CN Lag; (k) Sub-basin
Nodes and River Links; (l) HEC-HMS input file.

2.4.1. Loss Method: SCS-CN for Rainfall-Runoff

The Soil Conservation Service curve number (SCS-CN) is a loss model that can com-
pute the volume of the river flows [78]. Surface runoff excess depends on the precipitation,
soil, and LULC of a particular watershed. Equation (1) is a mathematical expression used
to determine the surface runoff.

Q =
(P − Ia)

2

(P − Ia) + S)
(1)
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where

Q = Runoff (inches);
P = Rainfall depth (inches);
Ia = Initial abstraction, and Ia = 0.2 S;
S = Potential maximum retention.

The potential maximum retention in inches, S, is calculated using Equation (2):

S =
1000
CN

− 10 (2)

2.4.2. Transform Method: SCS Unit Hydrograph

The SCS Unit Hydrograph transforms excess precipitation into a runoff. The SCS
proposed the Unit Hydrograph, which is used in the HEC-HMS model. It is a parametric
model based on the average Unit Hydrograph, which is created from gauged precipitation
and discharge data of various agricultural watersheds collected across the United States. It
assumes that a Unit Hydrograph depicts the constant properties of a watershed. The lag
time is the sole input variable for this method. It is the time distance between the center of
excess rainfall and the hydrograph peak, and HEC-HMS computes it for each sub-basin
using Equation (3).

Tlag =
(S + 1)0.7L0.8

1900 ∗ Y0.5 (3)

where

Tlag = lag time (h);
L = hydraulic length of the watershed (ft);
Y = slope of the watershed (%);
S = maximum retention in the watershed (inches).

2.4.3. Routing Method: Muskingum Routing

Discharges from sub-basins were routed through the reaches to the outlet of the
watershed using the Muskingum routing method. X and K are the two main parameters
used in this method. Theoretically, the K parameter is the wave’s travel time through
the reach. These parameters can be approximated using observed inflow and outflow
hydrographs. The X parameter is a weight coefficient of discharge, whose value fluctuates
between 0 and 0.5. The interval between the inflow and outflow hydrographs of an
identical station can be used to determine the parameter K. In this model, routing methods
parameters were used to calibrate the model.

2.5. Hydrologic Modeling Using Random Forest

This study investigated the capacity of a Random Forest algorithm for predicting the
daily discharge using the meteorological and hydrology features. Nonlinear interactions
between a dependent variable and several independent variables can be represented using
regression tree ensembles such as the Random Forest technique. Despite the popularity of
the Random Forest algorithm in a myriad of environmental science fields, its application in
the water sector needs to be further explored [79]. Random Forest is the type of supervised
machine learning algorithm that can be used for classification and prediction. Random
Forest uses the different tree predictors, and the random vector determines their values [61].
Random Forest is a collection of decision trees, where each tree is slightly different from the
others. Ensemble learning combines all the decision trees and the average values predicted
by each decision tree, solving the regression problem. This algorithm addresses the problem
of training data overfitting in decision trees [80]. Random Forest has good performance in
large datasets, and its features do not need to be scaled [81]. It is advantageous for features
with different scales. Random Forests are appealing for both classification and regression
tasks, are computationally fast, are efficient for unstable prediction, and perform well with
high-dimensional features [82,83]. This algorithm’s key idea is that each tree might make
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a fair prediction on its part; however, overfitting seems to occur on some of the data. If
numerous trees are built, they will work and overfit in various ways. The average of these
results will assist in the reduction of overfitting while holding onto the predictive power of
decision trees.

Model Development

Many decision trees with bootstrap aggregation are used to minimize the overfitting
issue [84]. A Random Forest Regressor consisting of 100 decision trees, as n-estimators,
were applied to this dataset. The max depth parameter defines the maximum depth of
the tree. The max depth of the model was fixed to be 100. The max depth by default was
‘None’, which signifies that the nodes were enlarged until all the leaves had fewer than
min_samples_split samples. Min_samples_split means the total number of samples needed
to break the internal node. Since we were trying to maintain the number of decision trees
at only 100, max features was set to ‘auto’, which means that max features was equal to n
features (the number of features seen during the model fitting). The parameter max-leaf
nodes = None refers to an unlimited number of leaf nodes, leaving the decision trees to
grow to best fit the model. All of the daily hydrology and meteorological feature samples
from 2006 to 2021 were used for training and testing the algorithm. A total of 80% of the
dataset was used for the training, and 20% of the dataset was used for the testing of the
Random Forest model.

A box plot of daily discharge was created to visualize the patterns of daily discharge
as shown in Figure 5c. Daily runoff was checked by plotting the autocorrelation and
partial autocorrelation factors. Figure 5a,b show the autocorrelation plot and the partial
autocorrelation plot of historical daily runoff observations, respectively. These plots helped
us identify a suitable lag period for flow prediction in a watershed [84]. Five sets of
discharge values at a lag time of 1 to 5 days were selected to predict the discharge. Similarly,
six sets of precipitation at 1 to 5 days of lag time were selected. Table 2 represents the
combination of input features used to train the Random Forest Regression. In addition,
the cumulative precipitation for 5 days and the day on which the rainfall was greater than
12.7 mm were considered as additional features for predicting the runoff at the outlet of the
watershed. NumPy, Pandas, Matplotlib, stats model, Sklearn, and seaborn are the python
libraries that were used during data processing, training, and visualization.

Figure 5. (a) Autocorrelation plot of the historical runoff observations of the DuPage River; (b) Partial
autocorrelation plot of the historical runoff observations of the DuPage River; (c) box plot showing
the flood events of the DuPage River.
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Table 2. The combination of inputs for runoff prediction using Random Forest Regression.

Lag (Days) The Structure of the Input Output

5

Discharge of 1 day to the 5-day lag period,
Precipitation of 1 day to the 5-day lag period,

Sum of 5 days of precipitation (P5 days),
Days since last precipitation greater than

0.5 mm. (p > 0.5)

One day ahead discharge

The autocorrelation function and the 95% confidence interval are shown in Figure 5a. A
strong correlation was found up to 20 lags. The decay of autocorrelation shows the strength
of the autoregressive process [29]. Similarly, the partial autocorrelation and 95% confidence
interval were calculated. The partial autocorrelation depicted a strong correlation up to a
5-day lag period. Therefore, a lag period of 5 days was selected for the input [29].

2.6. Hydraulic Modeling Using HEC-RAS

Hydraulic modeling using HEC-RAS uses adequate geometry and flow data inputs
for an excellent hydraulic model. The 1D HEC-RAS model is commonly employed to
analyze flow in mainstream channels and predict the flood extent. Although the 1D model
has limited applications, it is cost-effective, durable, and favored when determining flow
pathways [85]. When speed is required and flood plain geometry data are scarce, 1D
modeling is chosen [86]. HEC-RAS calculates the energy expression using Equation (4),
which is based on Saint Venant’s equation.

Z2 + Y2 +
α2V2

2
2g

= Z1 + Y1 +
α1V2

1
2g

+ he (4)

where

Y1 and Y2 = water heights at cross-sections,
Z1 and Z2 = elevations of the stream reach,
α1 and α2 = velocity weighting coefficients,
V1 and V2 = average velocities,
g = acceleration due to gravity, and
he = energy head loss.

River Geometry Generation

Hydraulic analysis with HEC-RAS starts with extracting the river section geometry
data using the RASMAP, which is available in the HEC-RAS model. The process involved
in the hydraulic analysis using HEC-RAS is illustrated in the flowchart in Figure 1. The
Lidar 1 m DEM for the hydraulic model was obtained from the USGS website. The DEM
data were imported into the RAS Mapper tool in the HEC-RAS model and converted into
a Digital Terrain Model. In addition, the georeferenced projection file was assigned in
RASMAP for the consistent coordinate system. In the RASMAP, the river centerline, bank
lines, flow path lines, and cross-section lines were digitized. The Manning’s n value was
assigned to each cross-section in the entire reach. After the creation of the river geometry
and applying the Manning’s n value, the steady discharge was used as input data for the
steady flow simulation. The water depth achieved from the simulation was then compared
to the water depth at gauging stations downstream of the study reach. The Manning’s n
values at the main channel and over banks were adjusted for the calibration of a model.

2.7. Statistcal Performance Indicators

The performance of each model should be examined to determine the best models
among different model alternatives. The five evaluation metrics (RMSE, RSR, NSE, PBIAS,
and R2) recommended by [87] and the NRMSE were used in this research to assess the
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performance of the hydrology model. The criteria used to evaluate the proposed model’s
performance are listed in Table 3.

Table 3. List of statistical indexes used to determine the performance of models.

Indices Mathematical Expression Satisfactory Range

Root Mean Square Error (RMSE) RMSE =

√
∑N

i=1(Qs,i−Qo,i)
2

N

Nash–Sutcliffe efficiency
coefficient (NSE) NSE = 1 −

[
∑N

i=1(Qo,i−Qs,i)
2

∑N
i=1(Qo,i−Qo)

2

]
0.5 < NSE ≤ 1

Coefficient of
Determination (R2) R2 =

(∑N
i=1(Qo,i−Q0,i)∗(Qs,i−Q0,i))2

∑N
i=1(Qo,i−Q0,i)

2∗∑N
i=1(Qs,i−Q0,i)

2 >0.5

Standard Deviation Ratio (RSR) RSR = RMSE
standard Deviation 0 < RSR < 0.7

Percentage bias (PBIAS) PBIAS = ∑N
i=1(Qo,i−Qs,i)∗100

∑N
i=1 Qo,i

−25% < PBIAS < +25%

Normalized Root Mean Squared
Error (NRMSE) NRMSE =

1
N ∑N

i=1(Qs,i−Qo,i)
2

Mean ≤30%

where Qo,i represents the observed data, Qs,i represents the simulated data from the model, Qo,i, represents the
mean value of the total number of observed data samples, and n represents the total number of data samples.

3. Results and Discussion

This section describes the results of the study, and it covers four main topics. In
this section, the results of the precipitation product, hydrology, and hydraulic analyses
are presented.

3.1. Precipitation

The rainfall data applied in this research were extracted from satellite-based rainfall
products for a time period of 16 years (2006–2021). The daily rainfall data obtained for
the studied time period are shown in Figure 6a. The daily precipitation data pattern was
consistent with the daily observed discharge data. The result shows that the time of peak
rainfall data matched the time of peak discharge data. For example, in this watershed outlet,
the highest peak discharge of 33.7 m3/s was observed on 14 September 2008 and, similarly,
the extracted precipitation product produced the highest precipitation of 61 mm on the
same day. In addition, the validation of the extracted precipitation data was supported by
the results of the hydrology analysis, which are presented in the following section.

3.2. HEC-HMS Models

Integration of the Arc-Hydro tool and HEC-GeoHMS successfully generated all the
sub-basin parameters needed for the hydrology analysis. HEC-GeoHMS is a sophisti-
cated tool that can be used to delineate natural watersheds and perform automatic basin
parameter extraction for the HECHMS model construction. Table 4 lists the basin param-
eters obtained from HEC-GeoHMS, including sub-basin area, slope, curve number, and
basin lag.

191



Hydrology 2022, 9, 117

Figure 6. (a) Representation of the generated precipitation product; (b) training and testing of the
HEC-HMS model; (c) observed discharge and predicted discharge for Random Forest Regression;
(d) observed historical and predicted runoff data; (e) observed gauge height and simulated gauge
height from HEC-RAS.
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Table 4. Geographic characteristics of the study watershed.

Sub-Basin Basin Area (km2) Basin Slope (%) Curve Number (CN) Basin Lag (min)

W220 4.3 2.6 85.8 150
W210 7.0 2.8 84.7 135
W200 3.6 3.1 83.6 133
W190 6.2 1.9 83.9 84
W180 5.9 3.5 83.2 90
W170 0.3 4.5 86.7 84
W160 3.7 2.6 82.3 81
W150 5.5 3.5 83.7 98
W140 7.4 4.5 83.0 86
W130 5.3 2.2 84.2 20
W120 13.0 3.4 84.0 76

The calibration and validation of the HEC-HMS model in this research were performed
by adjusting the Muskingum parameters. The measured discharge from the gauging station
was compared to the yearly peak discharge produced from an HEC-HMS simulation. Event
1 January 2006 to 31 December 2018 was considered for the model calibration, and Event
1 January 2019 to 31 December 2019 was used for the model validation. The accuracy of the
hydrology model using HEC-HMS was determined using a statistical index. The discharge
generated using HEC-HMS for the study period is presented in Figure 6b. The root mean
square error is one of the most-used methods for evaluating the validity of predictions. The
RMSE value during calibration and validation was 1.45 m3/s and 2.45 m3/s, respectively,
which is considered a good result. The RSR is calculated by dividing the RMSE by the
standard deviation of the measured data, and a value less than 0.7 is considered a good
result [88]. The RSR values for the HEC-HMS model were 0.16 and 0.35. The NSE is
extensively used in measuring the model performance in hydrology. It ranges from −1 to
1, with 0.5 to 1 being the best values. The NSE method is used to calculate the residual
variance in relation to the variance in the measured data. The NSE values were 0.97 and
0.87, respectively, which are close to 1.

The PBIAS shows the average inclination of the calculated data. For a good model,
PBIAS values must approach zero or should be between ±25% [89]. Positive numbers
suggest that the model is underestimated, whereas negative values indicate that the model
is overestimated [90]. The HEC-HMS model overestimated the peak discharge by 5.3% and
9.8% during calibration and validation, respectively. The R2 is used to determine the
correlation between calculated and measured flow rates. An R2 greater than 0.5 indicates
satisfactory performance. For the calibration and validation, the R2 values were 0.99 and
0.96, respectively. The R2 values close to 1 for the HEC-HMS model validated the accuracy
of the model.

3.3. Random Forest Regression Model

Random Forest Regression provided good insights into the prediction of daily dis-
charge data. Figure 6c illustrates the observed discharge data and the Random Forest
predicted data during the study period. The scatter plot in Figure 6d demonstrates that
the Random Forest prediction data were clustered near the regression line under low- and
normal-flow conditions. However, Random Forest Regression slightly underestimated
the high discharge value, which can also be termed an extreme event. Table 5 shows the
evaluation matrix for Random Forest Regression. The RMSE, RSR, NSE, PBIAS, R2, and
NRMSE values were 0.29 m3/s, 0.23, 0.94, −0.75%, 0.94, and 0.17 for the training period
and 0.47 m3/s, 0.56, 0.69, +1.76%, 0.72, and 0.260 for testing period, respectively, as shown
in Table 5. The statistical index revealed that the Random Forest model’s performance
was superior during data training. The values of the statistical index dropped sharply
during the testing period. The PBIAS values during training and testing were close to
0%, representing the average inclination of the predicted discharge towards the observed
discharge. The values of R2 dropped sharply from 0.94 during training to 0.72 during test-
ing. However, the values of the statistical index were within acceptable ranges during the
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testing period. Scatter plots were used to analyze the prediction performance of Random
Forest Regression with the observed data. In the scatter plot between the observed and
predicted values, the more significant deviation was observed for the higher discharge
value, which also demonstrates the lower effectiveness of the Random Forest model for
peak discharge estimation. The non-peak discharge was more accurately predicted by the
machine learning model.

Table 5. Calibration and validation statistics of the HEC-HMS and Random Forest models.

Statistical Index
HEC-HMS Model Random Forest

Calibration Validation Training Testing

RMSE (m3/s) 1.45 2.45 0.29 0.47
RSR 0.16 0.35 0.23 0.56
NSE 0.97 0.87 0.94 0.69

PBIAS −5.30% −9.80% −0.75% +1.76%
R2 0.99 0.96 0.94 0.72

NRMSE 0.06 0.10 0.17 0.26

Random Forest Regression was used for the prediction of discharge for the given input
precipitation. The feature selection based on the lag period of precipitation and discharge
was used. The validated results of HEC-HMS and Random Forest were compared to
determine their ability to predict the discharge for the study period. After the comparison,
we observed that the conventional HEC-HMS model needed more parameter optimization
than Random Forest Regression. Similarly, the aim of study was also to prove the suitability
of the discharge data predicted by Random Forest for hydraulic analysis. The scatter plot
shown in Figure 6e shows the observed gauge height in the gauging station versus the
simulated gauge height from the HEC-RAS model. During high-flooding events, the water
depth predicted by the hydraulic model using the Random Forest generated discharge
was slightly underestimated compared with the observed water depth. As the model
showed good performance in generating the water depth under non-flooding conditions,
the integration of Random Forest and HEC-RAS could be used to derive useful information
while planning the water resource infrastructure and flood control measures in the selected
study area. As the performance of a watershed model relies on the precision, robustness,
and application of the model under other site conditions, the proposed approach could be
tested and analyzed for multiple catchment locations, so that the parameters could be fixed
to increase the reliability of the result.

3.4. HEC-RAS Model

The hydraulic analysis was carried out for the East DuPage watershed’s downstream
reach. For calibration purposes, historical discharge data from flood events in 2020 and
2021 were used, and the results are displayed in Table 6. The study reach consists of only one
USGS gauging station at the most downstream location of the study reach with gauge height
data beginning from 2020. The hydraulic model was calibrated using water depth data from
various flooding events in 2021 and 2022. Figure 6e shows the comparison of simulated
and observed data at most downstream stations of the study reach. The Manning’s n
value was adjusted to calibrate the hydraulic model. The water depth produced from the
simulation was similar to the observed water depth at the gauging station, as shown in
Figure 6e; this result demonstrates the model’s consistency and allows it to be used for
further investigation. At the upstream cross-section of the reach, daily discharge data from
Random Forest were used to calculate the water depth at the downstream reach. The scatter
plot in Figure 6e shows that the discharge calculated using Random Forest Regression can
be utilized to calculate the flood depth in a river stream. Compared with the observed
water depth at the gauging station, the model underestimates the simulated water depth
generated from the study.
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Table 6. The difference between the observed and simulated water depth.

Event
Discharge

(m3/s)
Observed Water

Depth (m)
Simulated Water

Depth (m)
Difference

(m)

11 January 2020 8.78 2.79 2.68 0.11
30 March 2020 3.11 2.09 1.98 0.11
29 March 2020 5.07 2.33 2.58 −0.25
30 April 2020 16.03 3.40 3.02 0.38
18 May 2020 26.42 4.41 3.85 0.56

23 October 2020 6.57 2.45 2.91 −0.46
12 December 2020 8.04 2.52 2.61 −0.09

19 March 2021 2.83 1.96 2.03 −0.07
26 June 2021 10.96 2.90 3.27 −0.37

27 August 2021 2.21 1.81 1.89 −0.08
26 October 2021 8.38 2.50 2.48 0.02

4. Discussion

The results of the hydrology simulation provide strong support for the effectiveness of
the satellite precipitation product for the hydrology simulation in an ungauged catchment.
Both the HEC-HMS and Random Forest models accurately recreated the discharge charac-
teristics, such as the flood peak and timing, during the study period. These findings are
consistent with those of previous studies that showed that PERSIANN-CCS precipitation
products could effectively simulate the hydrology in ungauged watersheds [91,92]. The
statistical index in Table 5 from the model calibration and validation suggests that Random
Forest can be effectively applied for estimating the daily discharge at watershed outlets.
The good performance of Random Forest for the hydrology analysis proved its appropri-
ateness for rainfall-runoff simulation in data-scarce regions. The results of Random Forest
are in agreement with a previous study’s finding of good performance as an alternative
prediction method in the hydrology domain [93]. The statistical index in Table 5 proved
the suitability of both Random Forest and HEC-HMS for rainfall-runoff simulation. The
results illustrate that Random Forest slightly underestimated the peak discharge during the
high-flooding events; however, during the non-flooding period, the discharge predicted
by Random Forest was better than that predicted by the HEC-HMS model. Figure 6e
provided good support for the effectiveness of the Random-Forest-generated discharge for
hydraulic simulation. The result indicates that the water depth simulated by HEC-RAS
at the most downstream cross-section was slightly underestimated compared with the
observed water depth at the gauging station. This result may be due to the use of the
slightly underestimated peak discharge obtained from the Random Forest model. The
overall result of this research work supports the integration of machine learning and a
physical-based model for rainfall-runoff and flood depth prediction in data-scarce regions.

5. Conclusions

This study evaluated the feasibility of HEC-HMS and Random Forest for rainfall-
runoff simulation and an integrated approach of machine learning and HEC-RAS for
hydraulic analysis. HEC-HMS requires a large number of input variables, which may not
always be available in a data-scarce region. In this scenario, the Random Forest model
can be used for the prediction of discharge in the watershed. In addition, the Random
Forest model is simple to build and takes less time. In this study, a PERSIANN-CCS
NetCDF file was used to generate time-series precipitation data. The result supports the
usage of PERSIANN-CCS daily precipitation data for rainfall-runoff simulation. Based on
the models’ reasonably strong performance, the obtained precipitation, LULC, DEM, and
SSURGO soil input data are sufficiently dependable for discharge simulation. Because the
data sources employed in this study yield reasonably reliable results, they are recommended
for hydrology investigations. The continuous simulation of rainfall-runoff processes in the
basin using physical and machine learning models yielded good results. Peak flows were
underestimated in the Random Forest model and slightly overestimated in the HEC-HMS
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model. An integrated HEC-RAS and Random Forest Regression model yielded good results
in predicting the runoff flood depth downstream of a watershed. Given these findings, it is
possible to say that the Random Forest model could aid in rainfall-runoff simulation as a
complement to the physical model. This discharge could be used in hydraulic modeling
for flood depth and flood extent analysis, which could be helpful to researchers in further
research. The model’s accuracy in predicting the flow can be increased by removing the
outliers; high flood values are considered here in order to compensate for the prediction
of the high flood values from Random Forest Regression. In the future, researchers could
work in the following areas:

1. In this study, we used the PERSIANN precipitation product, and future work may
be more accurate if there is a precipitation gauging station. Furthermore, researchers
could also use other precipitation products, such as Next-Generation Weather Data
(NEXRAD) and Climate Hazards Group Infrared Precipitation (CHIRPS);

2. In this study, precipitation was only used as an input variable for the Random Forest
model; other variables, such as temperature, infiltration, evaporation, and radiation,
could be used in future work. In addition, feature selection of input variables could
be performed for the most accurate selection;

3. Other machine learning and data-driven models, such as support vector regres-
sion (SVR), long short-term memory (LSTM), and artificial neural networks (ANNs),
could be used as prediction models. Future research directions could be guided by
the selection of the best machine learning model in terms of accuracy, robustness,
and reliability;

4. Although the study area is a small watershed in DuPage County, future research
could focus on a more dynamic, heterogeneous, and meteorologically unique basin.
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Dumitrescu, A.; et al. A Compilation of Data on European Flash Floods. J. Hydrol. 2009, 367, 70–78. [CrossRef]

4. Ghazali, D.; Guericolas, M.; Thys, F.; Sarasin, F.; Arcos González, P.; Casalino, E. Climate Change Impacts on Disaster and
Emergency Medicine Focusing on Mitigation Disruptive Effects: An International Perspective. Int. J. Environ. Res. Public Health
2018, 15, 1379. [CrossRef] [PubMed]

5. Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, A.; Turconi, L.; de Jong, C. Role of Rainfall Intensity and Urban Sprawl in the 2014 Flash
Flood in Genoa City, Bisagno Catchment (Liguria, Italy). Appl. Geogr. 2018, 98, 224–241. [CrossRef]

196



Hydrology 2022, 9, 117

6. Sapountzis, M.; Kastridis, A.; Kazamias, A.-P.; Karagiannidis, A.; Nikopoulos, P.; Lagouvardos, K. Utilization and Uncertainties
of Satellite Precipitation Data in Flash Flood Hydrological Analysis in Ungauged Watersheds. Glob. NEST J. 2021, 23, 388–399.
[CrossRef]

7. Pathak, P.; Kalra, A.; Ahmad, S. Temperature and Precipitation Changes in the Midwestern United States: Implications for Water
Management. Int. J. Water Resour. Dev. 2017, 33, 1003–1019. [CrossRef]

8. Jenkins, K.; Surminski, S.; Hall, J.; Crick, F. Assessing Surface Water Flood Risk and Management Strategies under Future Climate
Change: Insights from an Agent-Based Model. Sci. Total Environ. 2017, 595, 159–168. [CrossRef]

9. Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.;
Mach, K.; et al. Flood Risk and Climate Change: Global and Regional Perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [CrossRef]

10. Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future Heat-Waves, Droughts and Floods in 571 European Cities.
Environ. Res. Lett. 2018, 13, 034009. [CrossRef]

11. Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human Contribution to More-Intense Precipitation Extremes. Nature 2011, 470,
378–381. [CrossRef] [PubMed]

12. Vörösmarty, C.J.; de Guenni, L.B.; Wollheim, W.M.; Pellerin, B.; Bjerklie, D.; Cardoso, M.; D’Almeida, C.; Green, P.; Colon, L.
Extreme Rainfall, Vulnerability and Risk: A Continental-Scale Assessment for South America. Philos. Trans. R. Soc. A 2013,
371, 20120408. [CrossRef] [PubMed]

13. Woznicki, S.A.; Baynes, J.; Panlasigui, S.; Mehaffey, M.; Neale, A. Development of a Spatially Complete Floodplain Map of the
Conterminous United States Using Random Forest. Sci. Total Environ. 2019, 647, 942–953. [CrossRef] [PubMed]

14. Archer, D.R.; Fowler, H.J. Characterising Flash Flood Response to Intense Rainfall and Impacts Using Historical Information and
Gauged Data in Britain: Flash Flood Response to Intense Rainfall in Britain. J. Flood Risk Manag. 2018, 11, S121–S133. [CrossRef]

15. Kastridis, A.; Stathis, D. The Effect of Rainfall Intensity on the Flood Generation of Mountainous Watersheds (Chalkidiki
Prefecture, North Greece). In Perspectives on Atmospheric Sciences; Karacostas, T., Bais, A., Nastos, P.T., Eds.; Springer Atmospheric
Sciences; Springer International Publishing: Cham, Switzerland, 2017; pp. 341–347. ISBN 978-3-319-35094-3.

16. Schoppa, L.; Disse, M.; Bachmair, S. Evaluating the Performance of Random Forest for Large-Scale Flood Discharge Simulation.
J. Hydrol. 2020, 590, 125531. [CrossRef]

17. Talei, A.; Chua, L.H.C.; Quek, C. A Novel Application of a Neuro-Fuzzy Computational Technique in Event-Based Rainfall–Runoff
Modeling. Expert Syst. Appl. 2010, 37, 7456–7468. [CrossRef]

18. Singh, V.P.; Frevert, D.K. Watershed Models; Taylor and Francis: Abingdon, UK, 2005.
19. Halwatura, D.; Najim, M.M.M. Application of the HEC-HMS Model for Runoff Simulation in a Tropical Catchment. Environ.

Model. Softw. 2013, 46, 155–162. [CrossRef]
20. US Army Corps of Engineers. Hydrologic Modeling System (HEC-HMS) Application Guide Version 3.1.0; Institute for Water Resources:

Davis, CA, USA, 2008.
21. Bajwa, H.S.; Tim, U.S. Toward Immersive Virtual Environments for GIS-Based Floodplain Modeling and Visualization; ESRI: Redlands,

CA, USA, 2002.
22. Senthil Kumar, A.; Sudheer, K.; Jain, S.; Agarwal, P. Rainfall-runoff modelling using artificial neural networks: Comparison of

network types. Hydrol. Process. 2005, 19, 1277–1291. [CrossRef]
23. Rezaeianzadeh, M.; Stein, A.; Tabari, H.; Abghari, H.; Jalalkamali, N.; Hosseinipour, E.Z.; Singh, V.P. Assessment of a Conceptual

Hydrological Model and Artificial Neural Networks for Daily Outflows Forecasting. Int. J. Environ. Sci. Technol. 2013, 10,
1181–1192. [CrossRef]

24. Kim, B.; Sanders, B.F.; Famiglietti, J.S.; Guinot, V. Urban Flood Modeling with Porous Shallow-Water Equations: A Case Study of
Model Errors in the Presence of Anisotropic Porosity. J. Hydrol. 2015, 523, 680–692. [CrossRef]

25. Sahoo, S.; Russo, T.A.; Elliott, J.; Foster, I. Machine Learning Algorithms for Modeling Groundwater Level Changes in Agricultural
Regions of the U.S. Water Resour. Res. 2017, 53, 3878–3895. [CrossRef]

26. Rajaee, T.; Khani, S.; Ravansalar, M. Artificial Intelligence-Based Single and Hybrid Models for Prediction of Water Quality in
Rivers: A Review. Chemom. Intell. Lab. Syst. 2020, 200, 103978. [CrossRef]

27. Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; Hinkelmann, R. Ensemble Machine Learning Paradigms in Hydrology:
A Review. J. Hydrol. 2021, 598, 126266. [CrossRef]

28. Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [CrossRef]
[PubMed]

29. Ghimire, S.; Yaseen, Z.M.; Farooque, A.A.; Deo, R.C.; Zhang, J.; Tao, X. OPEN Streamflow Prediction Using. Sci. Rep. 2021,
11, 17497. [CrossRef]

30. Mewes, B.; Oppel, H.; Marx, V.; Hartmann, A. Information-Based Machine Learning for Tracer Signature Prediction in Karstic
Environments. Water Resour. Res. 2020, 56, e2018WR024558. [CrossRef]

31. Parisouj, P.; Mohebzadeh, H.; Lee, T. Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of
Four River Basins with Different Climatic Zones in the United States. Water Resour. Manag. 2020, 34, 4113–4131. [CrossRef]

32. Adnan, R.M.; Petroselli, A.; Heddam, S.; Santos, C.A.G.; Kisi, O. Short Term Rainfall-Runoff Modelling Using Several Machine
Learning Methods and a Conceptual Event-Based Model. Stoch. Environ. Res. Risk Assess. 2021, 35, 597–616. [CrossRef]

197



Hydrology 2022, 9, 117

33. Shamshirband, S.; Hashemi, S.; Salimi, H.; Samadianfard, S.; Asadi, E.; Shadkani, S.; Kargar, K.; Mosavi, A.; Nabipour, N.;
Chau, K.-W. Predicting Standardized Streamflow Index for Hydrological Drought Using Machine Learning Models. Eng. Appl.
Comput. Fluid Mech. 2020, 14, 339–350. [CrossRef]

34. Nguyen, D.T.; Chen, S.-T. Real-Time Probabilistic Flood Forecasting Using Multiple Machine Learning Methods. Water 2020, 12,
787. [CrossRef]

35. Zhou, Y.; Cui, Z.; Lin, K.; Sheng, S.; Chen, H.; Guo, S.; Xu, C.-Y. Short-Term Flood Probability Density Forecasting Using a
Conceptual Hydrological Model with Machine Learning Techniques. J. Hydrol. 2022, 604, 127255. [CrossRef]

36. Kalra, A.; Ahmad, S.; Nayak, A. Increasing Streamflow Forecast Lead Time for Snowmelt-Driven Catchment Based on Large-Scale
Climate Patterns. Adv. Water Resour. 2013, 53, 150–162. [CrossRef]

37. Rezaei, K.; Pradhan, B.; Vadiati, M.; Nadiri, A.A. Suspended Sediment Load Prediction Using Artificial Intelligence Techniques:
Comparison between Four State-of-the-Art Artificial Neural Network Techniques. Arab. J. Geosci. 2021, 14, 215. [CrossRef]

38. Choubin, B.; Darabi, H.; Rahmati, O.; Sajedi-Hosseini, F.; Kløve, B. River Suspended Sediment Modelling Using the CART Model:
A Comparative Study of Machine Learning Techniques. Sci. Total Environ. 2018, 615, 272–281. [CrossRef] [PubMed]

39. Rezaei, K.; Vadiati, M. A Comparative Study of Artificial Intelligence Models for Predicting Monthly River Suspended Sediment
Load. J. Water Land Dev. 2020, 45, 107–118. [CrossRef]

40. Wang, S.; Peng, H.; Liang, S. Prediction of Estuarine Water Quality Using Interpretable Machine Learning Approach. J. Hydrol.
2022, 605, 127320. [CrossRef]

41. Deng, T.; Chau, K.-W.; Duan, H.-F. Machine Learning Based Marine Water Quality Prediction for Coastal Hydro-Environment
Management. J. Environ. Manag. 2021, 284, 112051. [CrossRef]

42. Melesse, A.M.; Khosravi, K.; Tiefenbacher, J.P.; Heddam, S.; Kim, S.; Mosavi, A.; Pham, B.T. River Water Salinity Prediction Using
Hybrid Machine Learning Models. Water 2020, 12, 2951. [CrossRef]

43. Asadollah, S.B.H.S.; Sharafati, A.; Motta, D.; Yaseen, Z.M. River Water Quality Index Prediction and Uncertainty Analysis:
A Comparative Study of Machine Learning Models. J. Environ. Chem. Eng. 2021, 9, 104599. [CrossRef]

44. Hussein, E.A.; Thron, C.; Ghaziasgar, M.; Bagula, A.; Vaccari, M. Groundwater Prediction Using Machine-Learning Tools.
Algorithms 2020, 13, 300. [CrossRef]

45. Khedri, A.; Kalantari, N.; Vadiati, M. Comparison Study of Artificial Intelligence Method for Short Term Groundwater Level
Prediction in the Northeast Gachsaran Unconfined Aquifer. Water Supply 2020, 20, 909–921. [CrossRef]

46. Zhu, S.; Piotrowski, A.P. River/Stream Water Temperature Forecasting Using Artificial Intelligence Models: A Systematic Review.
Acta Geophys. 2020, 68, 1433–1442. [CrossRef]

47. Chang, H.; Psaris, M. Local Landscape Predictors of Maximum Stream Temperature and Thermal Sensitivity in the Columbia
River Basin, USA. Sci. Total Environ. 2013, 461–462, 587–600. [CrossRef] [PubMed]

48. Weierbach, H.; Lima, A.R.; Willard, J.D.; Hendrix, V.C.; Christianson, D.S.; Lubich, M.; Varadharajan, C. Stream Temperature
Predictions for River Basin Management in the Pacific Northwest and Mid-Atlantic Regions Using Machine Learning. Water 2022,
14, 1032. [CrossRef]

49. Feigl, M.; Lebiedzinski, K.; Herrnegger, M.; Schulz, K. Machine-learning methods for stream water temperature prediction.
Hydrol. Earth Syst. Sci. 2021, 25, 2951–2977. [CrossRef]

50. Zhang, J.; Xu, J.; Dai, X.; Ruan, H.; Liu, X.; Jing, W. Multi-Source Precipitation Data Merging for Heavy Rainfall Events Based on
Cokriging and Machine Learning Methods. Remote Sens. 2022, 14, 1750. [CrossRef]

51. Radhakrishnan, C.; Chandrasekar, V.; Reising, S.C.; Berg, W. Rainfall Estimation from TEMPEST-D CubeSat Observations:
A Machine-Learning Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3626–3636. [CrossRef]

52. Guo, W.-D.; Chen, W.-B.; Yeh, S.-H.; Chang, C.-H.; Chen, H. Prediction of River Stage Using Multistep-Ahead Machine Learning
Techniques for a Tidal River of Taiwan. Water 2021, 13, 920. [CrossRef]

53. Chiang, S.; Chang, C.-H.; Chen, W.-B. Comparison of Rainfall-Runoff Simulation between Support Vector Regression and
HEC-HMS for a Rural Watershed in Taiwan. Water 2022, 14, 191. [CrossRef]

54. Ni, L.; Wang, D.; Singh, V.P.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J. Streamflow and Rainfall Forecasting by Two Long Short-Term
Memory-Based Models. J. Hydrol. 2020, 583, 124296. [CrossRef]

55. Yin, H.; Wang, F.; Zhang, X.; Zhang, Y.; Chen, J.; Xia, R.; Jin, J. Rainfall-Runoff Modeling Using Long Short-Term Memory Based
Step-Sequence Framework. J. Hydrol. 2022, 610, 127901. [CrossRef]

56. Tikhamarine, Y.; Souag-Gamane, D.; Ahmed, A.N.; Sammen, S.S.; Kisi, O.; Huang, Y.F.; El-Shafie, A. Rainfall-Runoff Modelling
Using Improved Machine Learning Methods: Harris Hawks Optimizer vs. Particle Swarm Optimization. J. Hydrol. 2020,
589, 125133. [CrossRef]

57. Tamiru, H.; Dinka, M.O. Application of ANN and HEC-RAS Model for Flood Inundation Mapping in Lower Baro Akobo River
Basin, Ethiopia. J. Hydrol. Reg. Stud. 2021, 36, 100855. [CrossRef]

58. Samantaray, S.; Das, S.S.; Sahoo, A.; Satapathy, D.P. Monthly Runoff Prediction at Baitarani River Basin by Support Vector
Machine Based on Salp Swarm Algorithm. Ain Shams Eng. J. 2022, 13, 101732. [CrossRef]

59. Adnan, R.M.; Liang, Z.; Heddam, S.; Zounemat-Kermani, M.; Kisi, O.; Li, B. Least Square Support Vector Machine and
Multivariate Adaptive Regression Splines for Streamflow Prediction in Mountainous Basin Using Hydro-Meteorological Data as
Inputs. J. Hydrol. 2020, 586, 124371. [CrossRef]

198



Hydrology 2022, 9, 117

60. Worland, S.C.; Farmer, W.H.; Kiang, J.E. Improving Predictions of Hydrological Low-Flow Indices in Ungaged Basins Using
Machine Learning. Environ. Model. Softw. 2018, 101, 169–182. [CrossRef]

61. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
62. Zhou, P.; Li, Z.; Snowling, S.; Baetz, B.W.; Na, D.; Boyd, G. A Random Forest Model for Inflow Prediction at Wastewater Treatment

Plants. Stoch. Environ. Res. Risk Assess. 2019, 33, 1781–1792. [CrossRef]
63. Meng, Y.; Yang, M.; Liu, S.; Mou, Y.; Peng, C.; Zhou, X. Quantitative Assessment of the Importance of Bio-Physical Drivers of

Land Cover Change Based on a Random Forest Method. Ecol. Inform. 2021, 61, 101204. [CrossRef]
64. Li, B.; Yang, G.; Wan, R.; Dai, X.; Zhang, Y. Comparison of Random Forests and Other Statistical Methods for the Prediction of

Lake Water Level: A Case Study of the Poyang Lake in China. Hydrol. Res. 2016, 47, 69–83. [CrossRef]
65. Bachmair, S.; Svensson, C.; Prosdocimi, I.; Hannaford, J.; Stahl, K. Developing Drought Impact Functions for Drought Risk

Management. Nat. Hazards Earth Syst. Sci. 2017, 17, 1947–1960. [CrossRef]
66. Erdal, H.I.; Karakurt, O. Advancing Monthly Streamflow Prediction Accuracy of CART Models Using Ensemble Learning

Paradigms. J. Hydrol. 2013, 477, 119–128. [CrossRef]
67. Muñoz, P.; Orellana-Alvear, J.; Willems, P.; Célleri, R. Flash-Flood Forecasting in an Andean Mountain Catchment—Development

of a Step-Wise Methodology Based on the Random Forest Algorithm. Water 2018, 10, 1519. [CrossRef]
68. Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and

Their Recent History in Water Resources. Water 2019, 11, 910. [CrossRef]
69. Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood Hazard Risk Assessment Model Based on Random Forest. J. Hydrol.

2015, 527, 1130–1141. [CrossRef]
70. Feng, Q.; Liu, J.; Gong, J. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest

Classifier—A Case of Yuyao, China. Water 2015, 7, 1437–1455. [CrossRef]
71. Quirogaa, V.M.; Kurea, S.; Udoa, K.; Manoa, A. Application of 2D Numerical Simulation for the Analysis of the February

2014 Bolivian Amazonia Flood: Application of the New HEC-RAS Version 5. Ribagua 2016, 3, 25–33. [CrossRef]
72. Brunner, G. HEC-RAS, River Analysis System Hydraulic Reference Manual; U.S. Army Corps of Engineers: Davis, CA, USA, 2016.
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Abstract: In tropical regions, deep convective systems are associated with extreme rainfall storms that
usually detonate flash floods and landslides in the Andean Colombian region. Several studies have
used satellite data to address the structure and formation of tropical convective storms. However,
there is a local gap in the characterization, which is essential for a better understanding of flash
floods and preparedness, filling a gap in a region with scarce information regarding extreme events.
In this work, we assess the deep convective storms in a mountainous region of Colombia using
meteorological radar observations between 2014 and 2017. We start by identifying convective and
stratiform formations. We refine the convective identification by classifying convective systems into
enveloped (contained in a stratiform system) and unenveloped (not contained). Then, we analyze
the systems’ temporal and spatial distributions and contrast them with the watersheds’ features.
According to our results, unenveloped convective systems have higher reflectivity and hence higher
rainfall intensities. Moreover, they also have a well-defined spatial and temporal distribution and are
likely to occur in watersheds with elevation gradients of around 2000 m and an aspect contrary to the
wind direction. Our assessment of the convective storms is of significant value for the hydrologic
community working on flash floods. Moreover, the spatiotemporal description is highly relevant for
stakeholders and future local analysis.

Keywords: deep convective systems; extreme rainfall; flash floods

1. Introduction

Convective systems usually turn into intense storms that could develop flooding
events. Moreover, in regions with a steep terrain, convective storms are linked to the
occurrence of flash floods [1–4], which are likely to produce human and infrastructure
losses [5,6]. At the mesoscale, convective systems cover areas of around 600 km2 [7], but
it can be smaller at a local scale. Moreover, convective-detonated flash floods are usually
limited to small catchments (less than 1000 km2) [8–10] and their effects have been described
in different world regions [9,11,12]. Nevertheless, there is a lack of analysis in the tropical
Andean region, where topography-driven convective storms detonate shallow landslides
and flash floods [13,14].

Several authors have described how the topography is intertwined with the occurrence
of convective storms [15–18], with evidence of a strong connection [19–22]. Additionally,
the described topographical influence increases with the elevation [23,24] and the aspect
of the hillslopes relative to the preferential wind direction [24–27]. However, most of
the work has been conducted in the Himalayas [7,23,28–30], the US [31,32], and in the
southern Andean region [21,33,34]. Therefore, additional work is needed to understand
the connection of the topography-convective system in the tropical Andes, specifically in
the Colombian Andean region.

The Colombian Andean is made up of three mountainous rages, with its weather
being dominated by the Intertropical Convergence Zone (ITCZ), the El Niño Southern
Oscillation (ENSO), and the Pacific and Atlantic oceans’ oscillations [35–37]. The ITCZ
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develops two wet periods with higher rainfall accumulation (March to May and September
to November) [38]. In addition, the La Niña phase of the ENSO usually increases the occur-
rence of convective storms [35] with significant socioeconomic impacts [39]. Nevertheless,
there is a gap in the literature exploring convective systems and their connections with
the topography. Most of the work conducted around the topic has been performed at a
mesoscale using TRMM data [40,41], which has a coarse resolution in contrast with the
local processes. However, local radar data improve the analysis resolution [31,42,43]. In the
case of the Colombian Andean region, meteorological radar information became available
in 2012 in the surroundings of the city of Medellin (see Figure 1). However, the continuity
and quality of the data improved near the end of 2013.

Figure 1. Region of analysis, radar localization is presented at the center of the image, and gray
circles correspond to radar radii of 30 and 90 km, respectively. Yellow to dark blue colors represents
the stream network Horton orders from 3 to 6.

This work uses local meteorological radar data to assess convective systems in the
central Colombian Andean region between 2014 and 2017. Some of these convective
systems detonated flash floods and landslides during this period [13,14]. First, we identify
the stratiform and convective systems observed. Then, we classify the convective systems
into enveloped and unenveloped, allowing us to describe the most intense ones better. We
analyze the convective systems’ size, reflectivity, and spatial and temporal occurrences
using radar data acquired by the Sistema de Alertas Tempranas Ambientales (SIATA).
Additionally, we compare the localization of the identified convective systems with 18
watersheds. In the comparison, we explore how the aspect and elevation gradient of the
watersheds are intertwined with the convective systems’ formation. Our main goal is
to develop a comprehensive regional analysis of the storms linked to the occurrence of
rainfall-related catastrophes in the Colombian Andean region. Additionally, we seek to fill
a knowledge gap in a relevant topic that could worsen in the coming years due to climate
change and population growth.

We begin this paper by describing the radar and topographic data in Section 2. Then,
in the methodology Section 3, we describe the algorithms to identify convective systems,
extract their features, and the methodology followed to contrast them against the selected
watersheds. In Section 4, we present the results of the convective systems’ identification
and the comparison with the watersheds. Finally, Section 5 offers our conclusions and
remarks for future work.
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2. Data and Information

We used radar reflectivity, digital elevation data, and wind data. Using radar reflec-
tivity, we identified and analyzed the convective systems. Moreover, we delineated the
watersheds and extracted their properties using a digital elevation model. Subsequently,
we describe in detail the data used.

2.1. Radar Data

The polarimetric 350 Kw Doppler C-band radar manufactured by Enterprise Elec-
tronics Corporation is in the occidental central hill of the Aburra Valley watershed (Rio
Medellin in Figure 1). The radar operation includes four plan position indicator sweeps
(PPIs) at 0.5, 1.0, 2.0, and 4.0◦. We used radar reflectivity every 5 min at the PPI of 1.0◦ with
a Cartesian projected resolution of 128 m. The radar beam has a beam width of 1◦ , and,
depending on the PPI, it reaches a distance between 50 and 200 km. It has a wavelength of
5.3 cm and an antenna gain of 45 dBZ. However, to avoid issues due to the bright band
interception, we limited the information to a radius of 90 km (second gray ring in Figure 1).

Radar data have been available since 2012. However, it has continuous quality data
since 2014. The radar image quality control uses the co-polar correlation coefficient (CC).
CC tends towards one when water particles have a uniform distribution. On the other
hand, CC decreases when there is a heterogeneous distribution of the particles’ shape and
orientation. Moreover, CC values above one represents errors due to noise. Between 2014
and 2017, around 93% of the radar data has a good quality.

2.2. Topography and Wind Data

We used an ALOS-PALSAR digital elevation model (DEM) to describe the region’s
topography with a resolution of 12.7 m. Considering the area of the study domain, we
resampled the DEM to a resolution of 40 m (background in Figure 1). We applied the AT

algorithm [44] over the resampled DEM to estimate the direction map (DIR). Using the
DEM and DIR maps, we extracted the watersheds shown in Figure 1 and their respective
boundary sub-watersheds of orders 3, 4, and 5. Additionally, for each watershed, we
estimated the total area, the elevation difference, and the predominant aspect. We used the
watershed modeling framework (WMF) (https://github.com/nicolas998/WMF accessed
on 12 May 2022) to perform the watershed delineation and analysis.

Additionally, we used ERA-5 observations at 750 hPa to determine the preferential
wind direction. The selected pressure level was around 2500 m above sea level, a value
close to the mean elevation of the region.

3. Methodology

The region’s mountainous terrain induced extra challenges in our convective system
assessment. Hillslopes with high elevation gradients promoted the formation of deep
convective systems and, at the time, added noise to the radar images [45,46], increasing
the uncertainty in the classification. Therefore, we divided the convective systems into
two categories: enveloped and unenveloped. Enveloped systems are embedded into a
stratiform formation, while unenveloped ones are not. With the convective discretization,
we performed a more comprehensive assessment.

Additionally, we explored the relationship between convective systems’ spatial distri-
bution and the topography. To this end, we delineated 18 watersheds (see Figure 1) and
their boundary sub-watersheds with Horton orders 3, 4, and 5. Boundary sub-watersheds
share a boundary with their containing watersheds. We measured the overlap between
the convective systems and the watersheds and contrasted it with their area, aspect, and
elevation difference. In this analysis, we also included the preferential direction of the wind
near an elevation of 2500 m.

Subsequently, we describe in detail each one of the methodology steps.
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3.1. Systems’ Classification and Analysis

We first identified the convective systems present in each radar image between 2014
and 2017. To perform the identification, we implemented in Fortran90 and Python the
algorithm proposed by [47], and then modified by [48]. We also included functions
to measure the features of the convective systems and classified them into enveloped
and unenveloped. The code used can be found at the following GitHub repository:
https://github.com/nicolas998/Radar (accessed on 12 May 2022).

3.1.1. Convective and Stratiform Systems’ Classifications

Convective storms exhibit high reflectivity and are prone to develop extreme rainfall
events. On the other hand, stratiform formations have lower reflectivity and are associated
with low-intensity rainfall. Considering the described differences, we started by separating
convective and stratiform systems using the algorithm proposed by [47], and then modified
by [48]. In our implementation, we used a background radius of 11 km and a threshold
for peaks of 40 dBZ. We validated the algorithm’s accuracy by comparing the classified
systems with vertical profiles obtained by the radar [13]. Nevertheless, we identified noise
due to convective systems embedded in stratiform formations. Therefore, we created the
enveloped and unenveloped convective categories.

3.1.2. Enveloped and Unenveloped Convective Systems

Depending on the meteorological conditions and the temporal evolution of the storm,
convective systems may occur as individual systems or as part of a cluster [49]. Sin-
gle storms usually cover more area and have higher reflectivity than clustered systems.
Moreover, during the storm, clustered systems are generally enveloped by a stratiform
formation [50,51]. Therefore, we categorized convective systems into enveloped and unen-
veloped. Enveloped systems are embedded into stratiform formations, while unenveloped
ones are not. We implemented the following procedures to identify both:

1. First, we separated convective and stratiform objects into two binary images (Binc
and Bins, respectively). Bins is equal to one where there are stratiform formations
and zero elsewhere. Binc is equal to two in regions with convective systems and zero
elsewhere. Figure 2a presents a schematic of Bins (left) and Binc (right).

2. Then, we eroded Bins using a 3 × 3 kernel. In the erosion, each Bins element with a
value of one and at least one neighbor equal to zero in the kernel became zero. From
the erosion, we obtained BinEs (light blue image in the left panel in Figure 2b).

3. After the erosion, we filled the holes left in BinEs. From this procedure, we obtained
the eroded and then filled stratiform binary BinEFs (Figure 2b, right).

4. Then, we computed the superposition between Binc and BinEFs as SupBin = Binc +
BinEFs (Figure 2c). In SupBin, values equal to 1 correspond to stratiform formations,
2 to unenveloped convective systems, and 3 to enveloped convective systems.

5. Finally, we classified each convective system as enveloped or unenveloped using
their corresponding modal values in SupBin. For example, if 90 pixels of a convective
storm were 2 and 10 pixels were 3, the system was considered unenveloped (or 2).

The described methodology was applied to each radar image. In Figure 3, we present
an example showing the results obtained. The process starts with the reflectivity informa-
tion (Figure 3a), from where we performed the convective and stratiform classifications
(Figure 3b). Then, we identified each convective object (Figure 3c). An object is formed
by all the adjacent pixels previously identified as convective. Finally, we obtained the
enveloped and unenveloped convective systems’ identification (Figure 3d).
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Figure 2. A schematic representation of the proposed methodology to separate enveloped and
unenveloped systems. (a) Binaries of convective (Binc ) and stratiform (Bins) systems are separated,
Binc takes values of 0 and 2, Bins takes values of 0 and 1. (b) Bins is eroded and BinEs is obtained,
then BinEFs is obtained by filling holes in the binary. (c) SubBin is computed as the sum of Binc

and BinEFs. SubBin values equal to 2 correspond to unenveloped convective systems, and values of
3 correspond to enveloped systems.

Figure 3. Example of a classified radar image. (a) Original reflectivity image in dBZ, (b) identification
of convective (yellow) and stratiform systems (purple), (c) ID assignation to each convective system,
and (d) identification of enveloped (orange) and unenveloped (green) systems.

3.1.3. Reflectivity Statistics and Morphometrics

Using the described methodology, we processed the radar images between 2014 and
2017, obtaining a classified image every 5 min. We obtained a collection of convective
objects (systems) from the classification. Then, we extracted the reflectivity statistics and
morphometric features of each object. We used the equivalent reflectivity factor Z to
compute the mean, μre f , and deviation, σre f , of each system, and transformed them to

reflectivity by using their logarithm. Additionally, we computed the area, A
[
km2

]
, the
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centroid coordinates, C [lat, lng], and the time of occurrence of each convective system. The
area corresponded to the pixel count in a system multiplied by 16,684 m2 (the square of
128 [m], the radar resolution), and the centroid was the system center of mass in X and Y.
Moreover, we marked each object as enveloped (3) or unenveloped (2).

The described information allowed us to obtain an extensive collection of data and
perform a comprehensive assessment of the convective systems in the region.

3.2. Watersheds Analysis

According to several studies, convective system formation is intertwined with topog-
raphy [20,32]. The connection has also been reported in tropical regions [17,22] with links
between rainfall rates and elevation [18,40]. However, most of the work used mesoscale
information and did not consider the characteristics of the watersheds. Therefore, we
compared the convective system localization with features of the watersheds in the region.

We analyzed the 18 watersheds delimited by the black divisor lines in Figure 1, cover-
ing most of the domain. The areas of the watersheds oscillated between 230 and 2000 km2,
and the Horton stream orders at their outlets oscillated between 5 and 7. Additionally,
we included the boundary sub-watersheds of the 18 watersheds with orders 3, 4, and 5
(see Figure 4a–c). A boundary sub-watershed has no upstream tributaries; in most cases,
it shares its divisor line with its containing watershed. Then, we computed the following
features of the watersheds: boundary elevation, maximum elevation gradient, predominant
aspect (direction), and the upstream area [km2].

We also measured the intersection between the convective systems and the watersheds
using the overlap index, Oi, as follows:

Oi =
Ao

As
(1)

where Ao

[
km2

]
is the intersected area between the convective system and the watershed

and As

[
km2

]
is the system area. Figure 4d presents three different cases of overlap: There

is no overlap when the convective system falls outside of a watershed and Ao becomes
equal to zero. There is a weak overlap when Ao is less than 15% of the total area, and it is
strong when Ao is greater than 15%. Nevertheless, the described categories are subjective
and will change depending on the watershed area and the resolution of the images used.
Therefore, the given values are a reference that allows us to contrast the overlap between
the convective systems and the watersheds.

Finally, we compared Oi with the described features of the watersheds and the direc-
tion of the wind at 750 hPa (ERA-5 data). Using the described procedure, we explored how
the topographical features of the watersheds were intertwined with the occurrence of deep
convective systems at different scales.
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Figure 4. Example of boundary sub-watersheds definitions (a–c) and overlap index estimations (d).
The three top panels describe the boundary sub-watersheds of orders 3, 4, and 5 for the
Samana watershed.

4. Results and Discussion

The main goal of our work was to present a characterization of the tropical convective
systems observed by a meteorological radar. We also contrasted the convective systems
with the region’s orientation, elevation, and aspects of several watersheds. We presented
and discussed the obtained results after applying the methods described in Section 3.

4.1. Convective Systems Analyses

We started by identifying the observed convective and stratiform systems following
the method proposed by Steiner (1995). Figure 5 presents the area, A

[
km2

]
(X axis), mean

reflectivity, μre f [dBZ] (Y axis), and reflectivity deviation, σre f [dBZ] (colors), of both kind of
systems for a sample of 10,000 elements. According to it, the mean reflectivity distribution
was different for the convective and stratiform systems. Convective μre f distribution (green
line in the vertical pdf panel) was less skewed and centered around 27 dBZ. On the other
hand, the stratiform μre f pdf (purple line) was skewed and centered around 12 dBZ. We
also observed some differences in the distributions of their areas (top pdf panel). While
stratiform areas oscillated around 0.01 and 13,000 km2 with 80% below 40 km2, convective
systems oscillated between 0.01 and 80 km2 with 80% below 9 km2.
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Figure 5. Reflectivity and area for 10,000 randomly selected systems. Circles correspond to convective
systems, triangles to stratiform systems, and the color is associated with the variability of the
reflectivity inside the system. Vertical histograms present the PDF for the mean reflectivity for both
types of systems, and the horizontal histograms correspond to the PDF of the area.

Convective and stratiform systems’ reflectivity statistics changed with the area of
the system. For large areas, convective μre f tended towards 30 dBZ while the stratiform
μre f towards 25 dBZ. Additionally, for areas around 20 km2, the convective μre f and σre f
reached their maximum values of 48 dBZ and 50 dBZ, respectively. Moreover, the stratiform
μre f maximized for areas around 50 km2. In both cases, the mean reflectivity decreased
for systems with areas below or above the ones mentioned. The described result may be
related to the size of the watersheds where flash floods usually occur (areas below 100 km2).
According to the convective μre f vs. area scatter in Figure 5, extensive convective system
usually had a lower μre f .

By comparing the area and μre f distributions, we observed many relatively small
convective systems with reduced reflectivity. The described pattern is also similar in the
case of the stratiform systems. Both cases are likely attributed to misclassification caused
by noise in the radar images. Therefore, we improved our classification by dividing the
convective systems into two categories.

Using the methodology described in sub-Section 3.1.2, we classified 80% of the sys-
tems as unenveloped and 20% as enveloped. Figure 6 compares the area and μre f of the
enveloped (triangles) and unenveloped (circles) systems. Compared with Figure 5, the
enveloped and unenveloped systems’ area and reflectivity are more similar. The mean
reflectivity distributions of the enveloped and unenveloped categories were 28 and 32 dBZ,
and the areas had mean values of 15 and 30 km2, respectively. Moreover, the unenveloped
convective system’s σre f was higher and peaked along with μre f for systems with areas
between 20 and 40 km2. Furthermore, the expected σre f value of the unenveloped was
considerably higher than the enveloped system (see Figure 6).
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Figure 6. Reflectivity and area comparison for enveloped (triangles) and unenveloped (circles)
connective systems. Colors represent the standard deviation. Vertical and horizontal histograms
present the PDFs for the reflectivity and areas, respectively.

Table 1 summarizes the statistics of the stratiform, convective, enveloped, and unen-
veloped systems. According to the results, stratiform systems have an area with greater
mean and deviation values. However, they have a lower mean reflectivity. On the other
hand, convective systems have an area that oscillates around 24 km2. Enveloped systems
are smaller and have a reflectivity lower than unenveloped systems. The described results
mark the differences between both types of convective systems, highlighting unenveloped
ones as good descriptors of deep convective systems. Moreover, our results also match the
given description of convective clusters enveloped in stratiform formations [52].

Table 1. Summary values of the systems identified.

Feature Stratiform Convective Unenveloped Enveloped

Maximum area
[
km2 ] 43,000 14,000 14,000 13,200

Mean area
[
km2 ] 47 24 30 15

Area deviation
[
km2 ] 445 160 180 131

Area 10th percentile
[
km2 ] 1.50 1.43 1.52 1.34

Area 90th percentile
[
km2 ] 60 33 43 16

Maximum μre f [dBZ ] 40 60 60 46

Minimum μre f [dBZ ] 0.26 22 22 22

Expected μre f [dBZ ] 16 30 32 28

Expected σre f [dBZ ] 6.6 3.7 4.1 1.6

μre f 10th percentile [dBZ ] 10 27 27 27

μre f 90th percentile [dBZ ] 27 36 38 30

The defined convective categories help us explore the region’s storm systems. More-
over, the studied features of both classes have relevant differences. Considering the de-
scribed differences between the enveloped and unenveloped systems, we also explored
their spatial and temporal differences.
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4.2. Spatiotemporal Behavior

We first analyzed the convective systems’ diurnal and spatial distributions. We
counted the hour of the day and the spatial localization of the convective, enveloped,
and unenveloped systems. Then, we divided each count by the total of observed systems
obtaining their probability of occurrence. Figure 7 presents the daily distribution observed
in the region, starting at midnight and ending at 23:00. According to the figure, convective
and undeveloped systems develop around noon, reaching the peak probability between
15:00 and midnight. On the other hand, enveloped systems are more likely to occur late
at night and early morning. We attributed the observed temporal oscillations to surface
heating and the eventual deep convection. Moreover, the increase in enveloped systems
during the morning might be explained by the late stage of the deep convective systems.

Figure 7. Hourly distributions of the occurrence of total convective (dashed blue), unenveloped
(purple), and enveloped (yellow) systems.

In Figure 7, we closely observe the described temporal evolution of the convective
system. In it, we colored the spatial domain using the total count of systems falling in
pixels of 1 km2. Considering the significant count differences, we used different ranges to
color each column of the figure. Moreover, we divided the results using a time step of six
hours starting at 1:00 A.M. Since the total count of cases for the columns was significantly
different, we kept independent color bars for each.

Column a in Figure 7 presents the spatiotemporal results of all the convective systems
and expands the description presented in Figure 6. According to Figure 7, the morning
hours have some convective activity (1st row). This activity reaches its minimum values
between 7 A.M. and noon (2nd row). Then, during the afternoon, convective systems occur
over the West and center regions of the domain (3rd row). Finally, during the night, the
storms occur over the East (4th row).

Columns b and c in Figure describe the results for the unenveloped and enveloped
system cases. Unenveloped systems (column b) exhibit a predominant formation over
the eastern region between the afternoon and midnight (third and fourth rows). More-
over, they decrease during the morning (first row) and mostly disappear during the day
(second row). Enveloped systems dominate the East, with some occurrences over the West.

Moreover, the lag described in Figure 6 between the enveloped and unenveloped
systems is also present. During the afternoon, unenveloped systems intensify while some
envelopes occur (third row). During the night (fourth row), both categories increase. Then,
in the morning, enveloped systems become dominant. According to our results, enveloped
and unenveloped systems categories’ temporal distributions coincide with the described
evolution of the convective system [40]. Moreover, their occurrence coincides with the
region’s descriptions of orographic rainfall formation [53,54].

According to Figure 7, the convective systems have well-defined spatiotemporal
distributions. Most convective systems occurred in the East between noon and midnight.
Their occurrence coincided with reported flash floods and shallow landslide events [13,14].
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They also coincided with descriptions of the Colombian Andean climatology [54,55]. The
results presented here are likely intertwined with several climatological variables. However,
exploring that connection is out of our scope. Future work may explore that link and how
to use the results presented in the vulnerability analysis and risk assessment.

Figure 8 summarizes the spatial distribution regardless of the daytime. According
to Figure 8a, most convective systems occur in the East, specifically in Rio Playas, Rio
Calderas, and Rio Verde (see Figure 1). There are also minor convective accumulations
in the West near Rio Penderisco and Rio San Juan watersheds, and in the north near the
outlet of Rio Grande. Unenveloped systems follow a similar localization (Figure 8b), with a
significant occurrence increase near the boundaries of the watersheds. On the other hand,
enveloped systems are more sparse over the region, being dominant in the West and in the
East in the watersheds of Rio Verde and Samana.

Figure 8. Two-dimensional histogram of convective centroid localization inside the radar region.
Column (a) corresponds to total convective localization, (b) unenveloped systems, and (c) enveloped
ones. The colors represent the count of elements. Color bars correspond to each of the columns.

The localization of the convective systems coincides with the region’s topography.
Unenveloped systems mainly occur over the watersheds’ boundary lines, usually the
steepest areas. Moreover, they occur more often in watersheds with a significant elevation
difference, in this case, the Rio Caldera, Rio Verde, and Samana watersheds with elevation
gradients of around 2000 m. On the other hand, enveloped systems behave like a remanent
of unenveloped ones being distributed downstream of the described regions.
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The given description is of significant value, and the localization of the unenveloped
systems can help determine vulnerable regions.

4.3. Connections with the Topography

According to our results, several convective systems tend to occur near the divisor lines
of watersheds with high elevation gradients (see Figure 9a,b). However, some watersheds
had a high elevation gradient, but the count of convective systems was low. In this section,
we explored further the connection between the convective systems’ occurrence and the
characteristics of the watersheds. Here, we compared the localization of the convective
systems with the area, aspect, and elevation gradient of the region’s watersheds.

Figure 9. Two-dimensional histogram of convective centroid localization inside the radar region.
(a) Total convective systems. Figures (b,c) correspond to unenveloped and enveloped systems,
respectively. The black lines are topographical contour lines representing increments of 1000 m.

Figure 10 presents the 18 watersheds, their aspects, the topography, and the prevailing
direction of the wind at 750 hPa (around 2500 m above sea level). Moreover, in the figure, we
colored the aspects of the watersheds with the overlapping index, Oi. The index measures
the area shared between a convective system and a watershed. In our case, Oi oscillated
between 0.12 and 0.22.

According to Figure 10, the Samana, Rio Verde, Guadalupe (East), and Rio San Juan
(West) watersheds have the highest Oi values. In the four cases, the aspect is opposite to the
wind, and the elevation difference is above 2000 m, except for Guadalupe where it is 1843 m.
Nevertheless, this analysis has been conducted using the preferential wind direction, and,
in many cases, the results presented here (3) may not be fulfilled. Moreover, it seems
that additional features are involved, since some watersheds exhibit similar topographical
features, but lower Oi values.

Additionally, we compared Oi with the upstream area, aspect, and elevation gradient
of the watersheds (Figure 11). In the figure, the position of the arrow coincides with the
area and the overlap index, Oi, computed for each watershed. The direction represents the
aspect, and the color the elevation gradient. Moreover, the circles represent the index for
the enveloped (green) and unenveloped (purple) systems.

According to Figure 11, the unenveloped and enveloped Oi values change among
watersheds. In thirteen out of the eighteen watersheds, unenveloped Oi is dominant.
Moreover, enveloped Oi is foremost in watersheds with upstream areas of around 1000 km2

or less. The difference between the enveloped and unenveloped Oi decreases towards
0.16 for watersheds with areas around 500 km2. On the other hand, with some exceptions,
watersheds with high elevation differences tend to exhibit high Oi values, a condition also
influenced by their aspect. Watersheds, such as Samana, Rio Verde, and Rio San Juan,
have a high Oi, areas greater than 500 km2, and elevation differences above 2,000. The
given description presents more information regarding the required local conditions for the
occurrence of convective systems. However, the analyzed watersheds are large compared
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to the mean area of the convective systems (24 km2, see Table 1). Therefore, we expanded
our analysis using the boundary sub-watersheds of orders 3, 4, and 5.

Figure 10. Spatial distribution of the overlap index. The bold arrows represent the aspect of the
watersheds, while their color corresponds to the overlap index. Black arrows represent the ERA-5
wind speed and direction. The red and black lines are the watershed boundaries and topography
(500 m). The numbers represent the elevation gradient.

Figure 11. Overlap index in function of the area, aspect, and elevation gradient of the watersheds.
The arrows correspond to the analyzed watershed denoting its main aspect. The arrows represent the
watershed aspect, and the color corresponds to the elevation gradient (Hmax–Hmin ). The purple and
green circles represent the overlap index, Ioc, for the enveloped and unenveloped systems.

The boundary sub-watersheds had no upstream tributaries and, in most cases, shared
the divisor line with its containing watershed. We used boundary sub-watersheds of orders
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3, 4, and 5. In the case of order 5, we obtained between two and three sub-watersheds per
watershed (blue borders in Figure 12a). Moreover, each sub-watershed had its preferential
aspect. According to Figure 12a, watersheds with an aspect opposite to the wind direction
tended to have a larger Oi. In addition, the relationship between the upstream area,
elevation difference, and Oi became more evident (Figure 12b). Larger areas usually had
increased elevation gradients and Oi values.

Figure 12. Spatial distribution of the overlap index for the boundary sub-watersheds or orders 5. In
panel (a), the blue lines represent the sub-watersheds, the colored arrows the aspect (direction) and
the overlap index (color), and the black arrows represent the ERA-5 wind at 750 hPa. In panel (b), the
arrows represent the aspect, and their color is the elevation difference.

Boundary sub-watersheds of orders 3 and 4 (Figure 13a,b) had a pattern where the
overlap index increased with the area and the elevation difference. However, this trend
had noise. In order 3 sub-watersheds (Figure 13a), areas between 10 and 40 km2 had
similar maximum Oi values. Nevertheless, most of the cases with a high index were sub-
watersheds facing East with elevation differences above 1500 m. In the case of order 4
sub-watersheds (Figure 13b), there was an increase in the Oi values and the trend with
the area was evident. Moreover, the aspect and the elevation difference keep playing a
significant role.

Figure 13. Overlap index for boundary sub-watersheds of orders 3 (a) and 4 (b). The arrows represent
the aspect and colors the elevation difference.

The occurrence of convective systems was linked to the elevation difference and
aspect of the watersheds at several scales. We analyzed this relationship by defining an
overlap index between watersheds and the identified convective systems. According to
our results, watersheds with a high elevation gradient and an aspect opposite to the mean
wind direction are more likely to develop deep convective systems. Nevertheless, further
work is required to establish a link with the topography.
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5. Conclusions

This work assessed the convective systems observed in the Colombian Andean region
using local meteorological radar data between 2014 and 2017. Furthermore, we expanded
our identification by defining two categories: enveloped and unenveloped convective
systems. In addition, we compared the area, reflectivity, and localization of the systems.
Finally, we proposed a novel method to explore possible interactions between the region’s
topography and the occurrence of convective systems. In the topography interaction
analysis, we used 18 watersheds and their boundary sub-watersheds of orders 3, 4, and 5.
We identified some features of the convective storms of the region along with the areas and
times where they usually occurred.

The characteristics of the deep convective systems depended on the stage of their
evolution and the mechanisms behind them. A convective storm usually starts as an
individual or as a collection of small systems that form a deep system and finally evolves
into a stratiform formation with small convective systems [56]. The proper identification
of the described evolution requires a tracking algorithm, such as TITAN [57]. Moreover,
additional identification algorithms may present more insights into their properties [58].
However, implementing such algorithms in the region is beyond the work presented here.
Instead, we introduced a classification of enveloped and unenveloped convective systems.

We described the differences between the region’s deep convective (unenveloped) and
clustered (enveloped) systems. Unenveloped systems exhibited higher reflectivity, larger
areas, and a higher connection with the topography. On the other hand, enveloped systems
behave similar to a late stage of deep convection. This conclusion is also supported by the
occurrence time of both types of systems. While unenveloped ones developed between the
afternoon and midnight, enveloped systems occurred during the night and morning. The
described oscillations may be linked to the energy and humidity availability during the
day and the eventual cooling during the night. Nevertheless, more work is required in this
direction to develop a more robust conclusion. Furthermore, our approach is a step forward
in understanding the mechanisms behind the occurrence of intense storms in the region.

Our analysis also found that deep convective storms occur more often over topogra-
phies with specific characteristics. The elevation gradient of the terrain and its aspect
relative to the local wind direction were two critical features. We explored the relationship
with the topography by analyzing the overlap between the convective systems, the ERA-5
wind at 750 hPa, and hundreds of watersheds. According to our results, convective systems
occur more often in areas with high topographical gradients, where the aspect is opposite
to the wind direction. This result coincides with other studies performed in the region
around rainfall and topography [55,59]. Moreover, similar results linking topography and
convective rainfall have been reported in other regions [60–64]. However, our analysis
does not fully describe the convective storms’ spatial distributions. Future work may
include additional meteorological variables and use different ways to assess the connection
with topography.

Our results are significant for the hydrologic community and the region’s stakeholders.
The characterization presented here identified the areas prone to deep convective storms.
Furthermore, joint with landscape information, it could help identify areas in which flash
floods and landslides may occur. Moreover, the analysis presented here could be easily
replicated and improved, helping to identify vulnerable areas in other regions.
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