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Preface to ”ALOS-2/PALSAR-2 Calibration,
Validation, Science and Applications”

Dear Readers,

The Advanced Land Observing Satellite-2 (ALOS-2, nicknamed “DAICHI-2”) was launched on

May 24th, 2014, which is a follow-on mission of L-band Synthetic Aperture Radars (SARs) by the

ALOS “DAICHI” from 2006 to 2011, and the Japanese Earth Resources Satellite-1 (JERS-1, “FUYO-1”)

from 1992 to 1998. Thus, global coverage and almost three decades of L-band SAR data are currently

available. In addition, ALOS-4 is under development and will be launched in the Japanese Fiscal Year

2023 as a successor to Japanese L-band SAR missions.

The mission objectives of ALOS-2 that were defined to fulfill social needs include the following:

1) disaster monitoring of damaged areas, both in considerable detail and when these areas may be

large, 2) continuous updating of data archives related to national land and infrastructure information,

3) effective monitoring of cultivated areas, and 4) global monitoring of tropical rain forests to identify

carbon sinks. The Phased Array-type L-band SAR-2 (PALSAR-2) mounted on ALOS-2 has capabilities

of high-resolution, wide-swath width, and both right- and left-looking observations, and is now

operating globally to achieve these objectives. The Japan Aerospace Exploration Agency (JAXA)

is continuously conducting research announcement (RA) programs that provide opportunities to

use PALSAR-2 and other satellite data to engage and enhance science and application activities

worldwide.

This Special Issue has collected original manuscripts on calibration, validation, science, and

applications based on PALSAR-2 data. We hope that it will serve as one of the guidelines for future

satellite-borne SAR missions, as well as the utilization of L-band SAR data.

Takeo Tadono and Masato Ohki

Editors
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Calibration and Validation of Polarimetric ALOS2-PALSAR2
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Abstract: PALSAR2 polarimetric distortion matrix is measured using corner reflectors deployed in the
Amazonian forest. The Amazonian forest near the geomagnetic equator provides ideal sites for the
assessment of L-band PALSAR2 antenna parameters, at free Faraday rotation. Corner reflectors (CRs)
deployed at free Faraday rotation provide accurate estimation of antenna cross-talks in contrast to
the biased measurements obtained with CRs deployed at significant Faraday rotation. The extended
Freeman–Van Zyl calibration method introduced and validated for ALOS-PALSAR calibration is used
for the assessment of PALSAR-2 calibration parameters. Six datasets collected over the Amazonian
rainforests (with CRs) are used to assess PALSAR-2 distortion matrix for five beams (FP6-3 to FP6-7)
with incidence angle varying from 25◦ to 40◦. It is shown that the PALSAR2 antenna is highly isolated
with very low cross-talks (lower than −40 dB). Finally, the impact of a significant Faraday rotation on
antenna cross-talk measurements using CR is discussed.

Keywords: radar polarimetry; synthetic aperture radar; calibration; Faraday rotation

1. Introduction

ALOS2, which was launched on the 24th of May 2014, is equipped with a fully
polarimetric L-band SAR, PALSAR2 [1–3]. Unlike ALOS-PALSAR, which used to collect
polarimetric data at only one off-nadir angle (21.5◦) [4], PALSAR-2 offers the possibility of
providing polarimetric measurements at various beams (seven beams, with incidence angle
varying from 25◦ to 40◦) [1,2]. The active antenna uses 180 transmit-receive (T/R) modules;
each T/R excites a single subarray [1]. The requirement on the overall antenna array cross-
talk is low (better than −30 dB [1,2]), and this should permit the measurement of pure HV
(at low Faraday conditions) [5,6]. However, different distortion matrices might be required
for the extraction of pure HH, HV, VH, and VV from the PALSAR2 PLR measurements
at the various beams. Calibration residual errors should be minimized since PALSAR-2
is expected to have a signal-to-noise ratio (S/N) 3-dB better than PALSAR. The latter was
already operating at low noise floor (NESZ better than −34 dB [5]).

Like L-band JERS-1 SAR and ALOS PALSAR, PALSAR-2 measurements might be
affected by Faraday rotation. In the past, the use of corner reflector (CR) measurements in
the presence of Faraday rotation led to mixed conclusions regarding the actual isolation
of the ALOS-PALSAR antenna [7–9]. PALSAR antenna measurements using CR deployed
in Germany and Australia led to the conclusion that the PALSAR antenna is not highly
isolated (−23 dB isolation) [7,8]. However, the use of the CR measurements collected in
the Amazonian rainforests, at low Faraday rotation conditions, led to the conclusion that
PALSAR antenna is highly isolated, with a cross-talk lower than −37 dB [3,5,6,9,10].

In Section 2, the lessons learned from PALSAR calibration are first presented. The
sites of calibration in the Amazonian rainforests and the polarimetric PALSAR2 images
used for the assessment of PALSAR2 calibration, are described in Section 3. The extended
Freeman–VanZyl calibration method [6] is briefly presented in Section 4 and used for the
assessment of polarimetric PALSAR2 transmit-receive distortion matrices. In Section 5, an
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estimation of PALSAR-2 distortion matrix is provided for five beams (FP6-3 to FP6-7) with
incidence angle varying between 25◦ and 40◦. Measurement of the Faraday rotation during
PALSAR2 acquisition is conducted to confirm the legitimacy of the estimation of antenna
cross-talks under negligible Faraday rotation. Finally, the impact of a significant Faraday
rotation on CR-based measurements of antenna cross-talks is discussed using PALSAR2
images collected over the CCRS calibration site in Ottawa (Canada).

2. Lessons Learned from ALOS-PALSAR Calibration

ALOS-PALSAR, launched in 2006, was the first polarimetric L-band SAR satellite
mission. The use of various calibration sites led to confusion that arose at the 2006 ALOS
Calibration/Validation meeting regarding the actual PALSAR antenna isolation. The
presence of Faraday rotation in addition to the uncertainty regarding the actual isolation of
the PALSAR antenna, led to mixed conclusions regarding the actual isolation of the H-V
PALSAR antenna [8,9,11].

The use of the CR measurements obtained at the DLR calibration site led to the
following misleading conclusion regarding PALSAR antenna isolation; PALSAR antenna
is not well isolated with significant antenna cross-talks varying between −18 dB and
−23 dB [7,11]. Such significant cross-talk would have made the use of PALSAR HV in
dual-pol (HH-HV) useless since the contamination of HV by the like polarization (HH
and VV) cannot be corrected for, as discussed in [12]. In fact, PALSAR antenna is higly
isolated and this permits an excellent exploitation of PALSAR dual-pol (HH-HV) systematic
coverage for global forest mapping and monitoring [3,13,14].

Using CR deployed in the Amazonian rainforests, Touzi and Shimada [6] showed that
the PALSAR antenna is highly isolated (−37 dB isolation) [9,10]. The thorough investigation
they conducted in [6] using PALSAR data collected over various calibration sites (with CRs),
in Japan (JAXA, Sweden (Chalmers University), Germany (DLR), and Canada (CCRS),
in addition to the ones collected over the Amazonian rainforests, led to the following
conclusions:

• PALSAR2 CR measurements in the Amazonian rainforests, collected at free Faraday
rotations [15], revealed insignificant return at HV and VH CR measurements. These
CR measurements integrated in two different calibration methods led to the conclusion
that ALOS-PALSAR is highly isolated with a cross-talk lower than −37 dB [5,6];

• The presence of small but still significant Faraday rotation (2–3◦), at the JAXA (Japan),
CCRS, DLR and, Chalmers U. calibration sites, induces a significant CR return at the
cross-polarization (cross-pol) HV and VH. The integration of these contaminated CR
response in the conventional polarimetric calibration methods [16–18] led to erroneous
(i.e., biased) estimates of the antenna cross-talks.

These lessons learned with the calibration of ALOS-PALSAR has encouraged JAXA to
deploy CRs in the Amazonian rainforests. The latter should permit accurate assessment of
ALOS2-PALSAR2 calibration parameters, as discussed in Section 3.

However, the impact of a significant Faraday rotation on CR response in addition
to the antenna cross-talks related contamination was not thoroughly investigated in [6].
This is conducted in the following Section 4. The analytical response of CR is derived as a
function of the Faraday rotation and antenna cross-talks, and the cross-pol (HV and VH)
contamination with the like-pol (HH and VV) due to the Faraday rotation is demonstrated
using PALSAR2 data collected over the CCRS calibration site in Ottawa.

3. The Extended Freeman-Van Zyl Calibration Method for Accurate Assessment of
Antenna Cross-Talks

The van Zyl calibration, which offers a more convenient solution than the conventional
method that requires the deployment of many reference point targets across the swath, has
become the standard method for estimation and calibration of antenna distortion matrix
variations with incidence angle [17–19]. However, the van Zyl algorithm is limited to sym-
metric SAR systems. This problem has been circumvented by Freeman [17] who introduced

2
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a symmetrization method to adapt the van Zyl calibration to non-symmetric SAR systems.
The Freeman–van Zyl calibration technique [17], which symmetrizes the system prior to
the estimation of the distortion matrix elements, uses the van Zyl iterative method [16] for
antenna cross-talk estimation. Recently, the accuracy of the van Zyl method [16] has been
questioned [6,18] for azimuthally symmetric targets of low HV return in comparison with
HH, VV, and the HH-VV cross-correlation. The van Zyl algorithm [16] was reconsidered [6]
and an extension of van Zyl algorithm was introduced to solve this problem. An entity RR
was introduced to quantify the importance of the HV return in comparison with HH, VV,
and the HH-VV cross-correlation. The van Zyl equations of [16] were expressed in terms
of RR, and this led to the development of an iterative method for accurate estimation of
antenna X-talk, at low and significant RR conditions, using azimuthally symmetric targets.
The method was validated using PALSAR data collected over the Amazonian forest [6].
Errors higher than 10 dB can occur when RR is ignored. The iterative method corrects for
these errors, and permits the demonstration of ALOS-PALSAR high isolation (better than
−37 dB) [6].

The extended Freeman–van Zyl calibration method [6] includes two steps:

1. Data symmetrization using the Freeman symmetrization method [17];
2. Generation of the required calibration parameters and calibration using an extended

version of van Zyl calibration method that leads to unbiased estimation of antenna
X-talk for all azimuthally symmetric targets, including the ones with low HV return
in comparison with HH, VV, and the HH-VV cross-correlation.

3.1. The FREEMAN Symmetrization Method

The “Uncalibrated” PALSAR2 data provided by JAXA were in fact calibrated for the
transmit-receive antenna gain variations with incidence angle, as well as for slant range
variations [2,20]. At free Faraday rotations, the following model can be used to express the
voltage measurements, as a function of the illuminated target scattering matrix [S] [17,21]:

[V] =

[
1 δ1
δ2 F1

]T

[S]
[

1 δ3
δ4 F2

]
(1)

where the measured voltage matrix [V] is given by:

[V] =

[
Vhh Vhv
Vvh Vvv

]
(2)

and the actual target scattering matrix [S] is given by:

[S] =
[

Shh Shv
Svh Svv

]
(3)

In Equation (1), [.]T denotes the matrix transpose; F1 and F2 are the channel imbalances
between the H and V channels on receive and transmit, respectively. δ3 and δ1 are the
cross-talks when a vertically polarized wave is transmitted and received, respectively. δ4
and δ2 are the cross-talks when a horizontally polarized wave is transmitted and received,
respectively. The van Zyl calibration method assumes that the SAR system is symmetric;
the transmitting and receiving distortion matrices are identical with F1 = F2, δ1 = δ3, and
δ2 = δ4. Such assumptions may not be satisfied in general, and as result, the van Zyl
calibration method might be of limited use in certain applications. Freeman introduced
the symmetrization method to extend the use of the van Zyl algorithm to non-symmetric
systems. After application of the Freeman symmetrization [17], the symmetrized measured

3
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voltage matrix [V]sym is related to the actual scattering matrix [S] by the following equation
(with Shv = Svh under target reciprocity assumption):

[V]sym =

[
1 ∆1

∆2 F

]T

[S]
[

1 ∆1
∆2 F

]
(4)

where F = |F2|; and ∆1 and ∆2 are expressed in [17] as functions of δi (i = 1, 4) and Fj
(j = 1, 2) [6]. The van Zyl algorithm can then be applied to the symmetrized system of
Equation (4), as follows [16]:

1. Apply the van Zyl iterative process to derive ∆1 and ∆′2 = ∆2/F using an azimuthally
symmetric target;

2. Deduce F, F1, and F2 using the additional information provided by a trihedral.

3.2. Reconsideration of Van Zyl Algorithm

The accuracy of van Zyl‘s algorithm [16] has been questioned for azimuthally sym-
metric reference targets of low HV return in comparison with HH, VV, and their cross-
correlation [6,18]. This issue was taken into account during the development of the calibra-
tion method specific for the Convair-580 SAR [19]. The Convair-580 SAR system, which
uses different receiving configurations depending on the transmitted (horizontal or vertical)
polarization, required a more complex calibration method than the ones developed for
systems with one receiving configuration (such as the JPL AIRSAR system, for example). To
quantify the residual relative error that would result if the entities < |HH|2 >, < |VV|2 >,
and < HHVV∗ > were ignored during the cross-talk estimation process, the following
entity RR (of Equation (23) in [19]) was introduced [6,19]:

RR = |∆1|2 · <|Vhh |2>
<|V′hv |2>

+ |∆′2|
2 · <|Vvv |2>

<|V′hv |2>
+ (5)

2Real(∆1∆′2
∗ · <Vhh ·V∗vv>

<|V′hv |2>
)

where V′hv = Vhv + C ·Vvh and C is a calibration constant [19]. The actual cross-polarized
intensity mean < |Shv|2 > is expressed as a function of the measured voltage and RR as:

< |Shv|2 > ' (1/F2)· < |V′hv|2 > ·(1− RR) (6)

For an azimuthally symmetric target of < |Shv|2 > that is significant in comparison
with < |Shh|2 >, < |Svv|2 >, | < ShhS∗hv > |, and | < SvvS∗hv > |, RR is close to zero, and the
measured and actual cross-polarized intensity means are identical (modulo a multiplicative
coefficient). Since the calibration of the Convair-580 X-band polarimetric SAR becomes
too complex if RR is not negligible [19], only azimuthally symmetric targets with RR close
to zero are used [19]. PALSAR2, like PALSAR and most of the conventional polarimetric
SARs, requires the use of a calibration model much simpler than the Convair-580 SAR
(whose receiver is adapted to the transmitted polarization [19]). The van Zyl model can
then be retained for PALSAR2 calibration, and the van Zyl equations [16] are expressed as
a function of RR, which takes into account all the required terms for unbiased estimation
of antenna X-talks [6].

3.3. Assessment of Antenna Cross-Talks Using an Iterative Method
Van Zyl’s Equations in Terms of RR for Azimuthally Symmetric Target

Under the assumption of an azimuthally symmetric target, the following equations
are derived from [16] as a function of RR and the cross-talk estimate ∆1 and ∆′2 [6]:

< V′hvV∗hh >' ∆1 < |Vhh|2 > +∆′2· < VvvV∗hh > + (7)

2∆′2
∗· < |V′hv|2 > ·(1− RR)

4
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< V′hvV∗vv >' ∆1· < VhhV∗vv > +∆′2 (8)

< |Vvv|2 > +2∆∗1 · < |V′hv|2 > ·(1− RR)

The two unknowns ∆1 and ∆′2 can be determined by solving the two equations above
as a function of the voltages Vhh, V′hv, Vvv, and their cross-correlations measured over the
azimuthally symmetrical reference target [6]. The two unknowns are determined using an
analytical equation or an iterative method depending on the RR values:

1. Case 1: RR close to zero. The solutions are obtained by solving an analytical equation
of 1st order. This analytical method is named Method 1;

2. Case 2: RR of significant value (not negligible): In this case, an additional equation
is needed to solve for the two unknowns. An iterative method similar to the one
suggested by van Zyl can be applied to solve the problem.

The iterative method is applied as follows:

1. Derive ∆1 and ∆′2 using Method 1, under the approximation that RR = 0;
2. Compute the corresponding RR by inserting the two solutions ∆1 and ∆′2 in Equation (5);
3. Insert RR in Equations (7) and (8) and compute the residual errors Test1 and Test2 as

the difference between the left and right terms of the two equations above (7) and ( 8);
4. If RR is close to zero or if RR is larger than the one computed in the previous iteration,

or Test1 and Test2 are too low, stop the iterative process, and retain the solutions for
∆1 and ∆′2;

5. If not, update Equation (6) of Shv with the actual RR value and apply Method 1 again
with the new Shv estimate;

6. Repeat 1–3 until condition 4 is satisfied.

After the estimation of ∆1 and ∆′2, all the required calibration parameters ∆1, ∆2, F1,
and F2 can be deduced using the additional equations provided by the corner reflector, as
shown in [16].

In the following, the iterative method described above is adopted for the assessment
of PALSAR2 system parameters using datasets collected over the Amazonian rainforest
sites (with CRs), at free Faraday rotation conditions.

4. Assessment of PALSAR2 System Parameters at Low Faraday Rotation Conditions
Using Amazonian Rainforests
4.1. Calibration Sites

The Amazonian rainforest near the geomagnetic equator, at free Faraday rotation [15],
has been used as the ideal site for the assessment and calibration of L-band ALOS-PALSAR
and PALSAR2 [3,5,6,22]. CRs deployed at free Faraday rotation provide accurate estimation
of antenna cross-talks in contrast to the biased measurements obtained with CRs deployed
at significant Faraday rotation, as shown in [6]. In 2014, five CRs were deployed by JAXA in
the Amazonian rainforests [23], and used in support of polarimetric PALSAR2 calibration.
Six polarimetric images collected over the Amazonian rainforests (near Rio Branco, Brazil)
at various incidence angles are used in the following to assess PALSAR-2 distortion matrix
for five beams (FP6-3 to FP6-7) with incidence angle varying from 25◦ to 40◦. The CR
measurements are also used to confirm the very low Faraday rotation conditions during
PALSAR2 data acquisition.

4.2. Assessment of Polarimetric PALSAR2 Distortion Matrix

Figures 1–4 present the response (in range) of a CR covered with the FP6-3 polarimetric
mode on the 8th of August, 2014. According to Figures 3 and 4, there is no CR (HV and VH)
return at the HH and VV peak location. This shows that the PALSAR2 cross-talk is very
low, and the ALOS2 acquisition took place at very low Faraday rotation conditions. The
various PALSAR2 modes considered herein, the dates of the acquisition, and the incidence
angle (in degree) at the CR location are indicated in Table 1. Channel imbalance (F1 and F2)
(magnitude and phase) are also given in Table 1. The following observations can be noted:

5
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• F1 and F2 vary (slightly) with incidence angle, as might be expected. The magnitude
of the ratio F1/F2 varies between 1.021 and 1.044; which corresponds to a variation in
intensity ratio within 0.2 dB;

• Channel imbalance are very stable (in time) for the same mode, as can be noted for the
2 acquisitions in FP6-7 (last rows of Table 1);

• Channel imbalance phase varies with incidence angle, as might be expected. However,
it remains stable (in time) for the same mode at different acquisitions, as can be noted
for the two acquisitions in FP6-7.

The extended Freeman–van Zyl iterative method is applied for the generation of
PALSAR2 antenna cross-talks. ∆1 and ∆2 are given (in dB) in Table 2. The residual error
RR is computed using Equation (5). The final error RR f computed at the last iteration
corresponds to the residual error. All the cross-talks given in the table were obtained with a
very low residual error (RR f lower than −43 dB).

Table 1. PALSAR2 channel imbalance (magnitude and phase (in degree)).

Mode Date CR Inc | f1| φ f 1 | f2| φ f 2

FP6-3 8−08 28 1.06 −1.1 1.26 −28.0

FP6-4 8−22 31 1.06 −22.1 1.01 −25.6

FP6-5 9−05 35 1.03 −5.4 1.01 −28.2

FP6-6 9−19 37 1.06 −23.6 1.04 −27.4

FP6-7 8−13 39 1.05 −3.3 1.02 −25.7

FP6-7 8−27 39 1.04 −3.7 1.01 −25.7

Table 2. PALSAR2 Antenna Cross-Talks (in dB) and Faraday Rotation (in degree).

Mode Date ∆1 ∆2 Ω

FP6-3 8−08 −40 −45 −0.12

FP6-4 8−22 −44 −41 −0.19

FP6-5 9−05 −41 −41 −0.24

FP6-6 9−19 −45 −42 −0.15

FP6-7 8−13 −40 −40 −0.17

FP6-7 8−27 −40 −44 −0.16

Figure 1. Corner reflector reflector HH response (in range expressed in pixel numbers).
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Figure 2. Corner reflector VV response (in range).

Figure 3. Corner reflector HV response (in range).

Figure 4. Corner reflector VH response (in range).

As can be noted in Table 2, the PALSAR2 antenna is highly isolated with cross-talk
lower than −40 dB. The CR-measurements permit demonstrating the very high isolation of
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the PALSAR2 antenna: cross-talks lower than −40 dB [24]. Similar results were obtained
in [3,22,25] using different calibration approaches.

4.3. Measurement of the Actual Faraday Rotation during PALSAR2 Acquisition

Many studies have shown that Faraday rotation is low near the equator [15,26]. These
results are confirmed in the following for the five PALSAR2 images collected over the JAXA
sites of calibration in the Amazonian rainforests. Several methods can be used to measure
the Faraday rotation [26–28]. We have adopted herein the Bickel and Bates method [29]
which calculates the Faraday rotation at the circular basis as follows:

[
Z11 Z12
Z21 Z22

]T

=

[
1 j
j 1

]T

[S]Ω

[
1 j
j 1

]
(9)

where [S]Ω is given as a function of the Faraday rotation angle Ω and the scattering matrix
[S] of Equation (3) by:

[S]Ω =

[
cos Ω − sin Ω
sin Ω cos Ω

]
[S]
[

cos Ω − sin Ω
sin Ω cos Ω

]
(10)

Ω is given by [27,29]:

Ω =<
1
4
· arg(Z12Z∗21) > (11)

where arg(Z) is the argument of the complex Z, and <> denotes spatial averaging.

Equation (11) is used to measure the Faraday rotation for the five PALSAR images.
The measurements obtained at the CRs are given in Table 2. As expected, the Faraday
rotation angle is very low (lower than 0.24◦) during the 5 PALSAR2 acquisitions. This
confirms the accuracy of the PALSAR2 antenna distortion matrix measurements obtained
above, under the assumption of negligible Faraday rotation.

5. Impact of Significant Faraday Rotation on PALSAR2 Polarimetric Distortion Matrix
Measurement

The model of Equation (1) can be extended to take into account the Faraday rotation.
Channel imbalances can also be separated from the polarimetric distortion matrices as done
in [21]. This leads to the following equation [21,30]:

[V] =

[
1 0
0 F1

][
1 δ2
δ′1 1

]
[S]Ω

[
1 δ′3
δ4 1

][
1 0
0 F2

]
(12)

with δ′1 = δ1/F1, δ′3 = δ3/F2, and [S]Ω is given by Equation (10) as a function of the
scattering matrix [S] and the Faraday rotation angle Ω. It is worth noting that Equation (12),
which is an extension of the van Zyl calibration model that takes into account the Faraday
rotation, is expressed as a function of the conventional scattering matrix [S] in contrast to
the Freeman model [30] expressed as a function of the transposes of [S] and [V] matrices.

The CR response combined with the channel imbalance phase difference, which can be
derived using the Zebker method [31], permits the measurement of the channel imbalance
F1 and F2 ([6,17,31]). After the channel imbalance correction, the measured voltages can be
expressed (using Equation (12)) as a function of the antenna cross-talks and [S]Ω matrix
elements in the following equation:




Vhh
Vhv
Vvh
Vvv


 =




SΩ
hh + δ4SΩ

hv + δ2SΩ
vh

δ′3SΩ
hh + SΩ

hv + δ2SΩ
vv

δ′1SΩ
hh + SΩ

hv + δ4SΩ
vv

δ′1SΩ
hv + δ′3SΩ

vh + SΩ
vv


 (13)
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where



SΩ
hh

SΩ
hv

SΩ
vh

SΩ
vv


 =




cos2 Ω · Shh − sin2 Ω · Svv
Shv − sin Ω cos Ω · (Shh + Svv)
Shv + sin Ω cos Ω · (Shh + Svv)
− sin2 Ω · Shh + cos2 Ω · Svv


 (14)

For a CR, Shh = Svv = K and Shv = Svh = 0, and Equation (13) can be used to derive
the CR-measured voltage vector as a function of the Faraday rotation angle Ω and the
antenna cross-talks (δ′1, δ2, δ′3, δ4):




VCR
hh

VCR
hv

VCR
vh

VCR
vv


 = K




cos 2Ω + sin 2Ω(δ2 − δ4)
cos 2Ω(δ2 + δ′3)− sin 2Ω
cos 2Ω(δ′1 + δ4) + sin 2Ω
cos 2Ω− sin 2Ω(δ′1 − δ′3)


 (15)

In 2014, several PALSAR2 images were collected over the CCRS calibration site in
Ottawa. The PALSAR2 image collected on the 9th of September is used herein. Figures 5–8
present the polarimetric response of the CCRS (2.5 m CR) at HH, VV, HV, and VH. In con-
trast to the low return at cross-pol of the JAXA CR deployed in the Amazonian rainforests
(Figures 3 and 4), the Ottawa CR presents a significant return at HV and VH polarization
as seen in Figures 7 and 8.

Figure 5. Corner reflector HH response (in range expressed in pixel numbers).

Figure 6. Corner reflector VV response (Ottawa).
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Figure 7. Corner reflector HV response (Ottawa).

Figure 8. Corner reflector VH response (Ottawa).

The results obtained in the previous section show that the PALSAR2 antenna is highly
isolated with cross-talks lower than −40 dB. The analysis of the CR voltage Equation (15)
with negligible cross-talks (cross-talks lower than−40 dB) leads to the following conclusions:

1. The ratios of the cross-like polarization voltage, VCR
hv /VCR

hh = −20.03 dB and
VCR

vh /VCR
vv =−19.95 dB do not correspond to the actual antenna cross-talk contamina-

tion of the cross-pol (HV and VH) by the like polarization (HH and VV), as could be
misinterpreted if the Faraday rotation contamination is ignored ([7]). In fact, these
cross-like polarization voltage ratios lead to an estimation of the Faraday rotation
angle Ω for a highly isolated antenna, as can be shown using Equation (15):




VCR
hv

VCR
hh

VCR
vh

VCR
vv


 = K ·

[ − tan 2Ω
tan 2Ω

]
(16)

Equation (16) is used to estimate the Faraday rotation during PALSAR2 acquisitions.
The results obtained are similar (within 0.2) with the ones obtained with the Bickel
and Bates method (Equation (11)); Ω = 2.8◦ with VCR

hv /VCR
hh , Ω = 2.9◦ with VCR

vh /VCR
vv

in comparison with Ω = 3.1◦ obtained over a forested area using Equation (11).

2. The sum of the CR cross-pol voltages cancels the Faraday rotation contamination.

10



Remote Sens. 2022, 14, 2452

This can be shown using the following equation derived from (15):

(VCR
hv + VCR

vh )/K = (δ′1 + δ2 + δ′3 + δ4) cos 2Ω (17)

Since the cross-talks are negligible, (VCR
hv + VCR

vh ) should be close to zero. Figure 9
presents the CR response of the averaged PALSAR2 image (hv+ vh)/2. The significant
peaks that occur at HV and VH images of Figures 6 and 7 vanish in Figure 9. At the
HH and VV peak location, the intensity of the averaged cross-pol return vanishes in
the CR surrounding clutter of radar backscattering (−18.23 dB) which is much lower
than HH and VV retro-diffusion (about 15 dB).

In summary, the analytical presentation of the CR voltage as a function of the antenna
cross-talks and Faraday rotation leads to the conclusion that the HV and VH contaminations,
which can be measured from SAR images collected with a highly isolated antenna, are
mainly due to the actual Faraday rotation. In the case that the antenna is not highly
isolated, Equation (13) obtained after the channel imbalance correction (using the CR)
shows that additional reference point targets (of scattering response different from the CR)
should be used for the measurement of the 5 unknowns; the 4 antenna cross-talks and the
Faraday rotation.

Figure 9. Corner reflector (HV + VH)/2 response (Ottawa).

6. Conclusions

In summary, the PALSAR antenna is highly isolated. Both the antenna subarray and
T/R are highly isolated, and as a result, the global antenna is highly isolated for all the
modes considered. The excellent performances of the polarimetric PALSAR2 in terms of
NESZ (better than −37 dB ([1,3]) combined with the high antenna isolation permit the
demonstration of the unique L-band long-penetration SAR capabilities at low incidence
angles (25◦) for subsurface peatland hydrology monitoring and discontinuous permafrost
mapping [32,33]. The high isolation of the polarimetric ALOS2-PALSAR2 permits a simpli-
fication of the assessment and calibration of the ALOS2-Compact experimental mode, as
discussed in [34].
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Abstract: This study addresses one of the most commonly-asked questions in synthetic aperture
radar (SAR)-based landslide detection: How the choice of datatypes affects the detection performance.
In two examples, the 2018 Hokkaido landslides in Japan and the 2017 Putanpunas landslide in
Taiwan, we utilize the Growing Split-Based Approach to obtain Bayesian probability maps for
such a performance evaluation. Our result shows that the high-resolution, full-polarimetric data
offers superior detection capability for landslides in forest areas, followed by single-polarimetric
datasets of high spatial resolutions at various radar wavelengths. The medium-resolution single-
polarimetric data have comparable performance if the landslide occupies a large area and occurs on
bare surfaces, but the detection capability decays significantly for small landslides in forest areas.
Our result also indicates that large local incidence angles may not necessarily hinder landslide
detection, while areas of small local incidence angles may coincide with layover zones, making the
data unusable for detection. The best area under curve value among all datatypes is 0.77, suggesting
that the performance of SAR-based landslide detection is limited. The limitation may result from
radar wave’s sensitivity to multiple physical factors, including changes in land cover types, local
topography, surface roughness and soil moistures.

Keywords: SAR-based landslide detection; Growing Split-Based Approach (GSBA); Hokkaido landslide;
Putanpunas landslide; SAR polarimetry; model-free 3-component decomposition for full polarimetric
data (MF3CF)

1. Introduction

According to the Global Fatal Landslide Database, Asia suffers the greatest impact of
fatal landslides among all continents [1,2]. This fact has to do with the physiographical en-
vironment of this region, including active tectonics, frequent typhoons/tropical cyclones, as
well as socioeconomic factors, such as rapid economic growth, human population increase,
habitat expansion and even loose regulations [1,3]. Among all questions associated with
landslides, where and when they occur and how big they are remain the first information
people demand to know. From a rapid response perspective, landslide sizes and locations
are the key information needed by the ground crews to ensure the safety of human lives
and the transportation of aids and supplies. From a policy-making perspective, long-term
spatiotemporal evolution of landslide hotspots impacts the formulation of management
strategies and mitigation plans [4]. From a scientific perspective, landslide volumes and
frequencies may provide information about rock strength and denudation rates [5,6], the
influence of climate changes [2], and the interaction among the lithosphere, hydrosphere
and biosphere [7,8].

Given the large-area imaging capability from the sky, remote sensing has been the most
widely-used tool in landslide detection during the past decades. For example, based on
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Formosat-2 satellite images, Lin et al. (2017) found that about 70% of the mountainous area
in Taiwan has experienced at least 1 landslide within the decade between 2003 and 2012 [4].
In Japan, the National Research Institute for Earth Science and Disaster Prevention (NIED)
also conducts regular landslide mappings based on aerial photos (https://www.bosai.go.
jp/e/research/database/earth-and-sand.html, accessed on 10 March 2022; a study using
the national landslide database can be found in [8]). The optical image-based landslide
mapping has high quality and accuracy, although the availability usually depends on the
weather condition and the source of sun lights after a landslide occurs. In some cases,
the latency between the event and the first usable image can be weeks. This is where
the synthetic aperture radar (SAR)-based mapping may serve as an alternative solution
particularly during the early phase of the hazards. Some recent examples include the
earthquake-triggered landslides after the 1999 Chi-Chi earthquake in Taiwan [9], the 2015
Gorkha earthquake in Nepal [10,11], the 2015 Mt. Kinabalu earthquake in Malaysia [12],
the 2018 Lombok earthquakes in Indonesia [10], and the 2018 Hokkaido Eastern Iburi
earthquake in Japan [10,13–17]. Examples of rainfall-triggered landslides include the 2009
Typhoon Morakot in Taiwan [18], the 2011 Typhoon Talas in Honshu, Japan [19], the 2015
heavy rain in Chin State, Myanmar [20], and the 2017 heavy rain in Kyushu, Japan [16].

In general, SAR-based change detection can be classified into two categories–the
coherent change detection (CCD) and incoherent change detection (ICD)–depending on
whether interferometric phase is used [15]. Speaking of change detection for landslides,
CCD includes the pre-failure landslide monitoring by using interferometric phase time-
series, as well as the post-failure landslide detection by comparing the change of the
interferometric phase qualities (interferometric coherence). In the post-failure landslide
detection, a landslide patch is usually depicted by low coherence due to the changes in
surface geometry, roughness and dielectric properties. It works particularly well in regions
with intermediate-to-high pre-event coherence [10,12,15]. However, in places where phase
decorrelation occurs constantly, CCD may fail to provide accurate landslide information.
One such a place is the forest, where volumetric decorrelation and temporal decorrelation
prevail due to frequent changes in vegetation structures and dielectric properties, as well
as the disturbance by winds, rains, water vapors and other atmospheric conditions [21]. It
has been shown that coherence-based landslide detection methods may yield unreliable
results in the forest areas where the pre-event coherence is too low [10,15].

On the other hand, ICD compares SAR backscattering amplitudes or intensities before
and after the landslide event. Similar to interferometric coherence, changes in intensity are
also associated with variations in surface geometry, roughness and dielectric properties.
Backscattering intensities are, however, less sensitive to atmospheric conditions, and they
also appear in a wider range of values that allow a better separation of major changes
(such as from vegetation to bare surface) from minor variations (such as tree growth).
In addition, most ICD methods are relatively easy to implement as they only involve
image-wise calculations (except for the intensity correlation method in [15,19,20]). ICD has
therefore been adopted more widely for landslide detection than CCD, especially for forest
areas [13,15,17,19,22].

Single-polarimetric (single-pol) SAR data is by far the most commonly-used datatype
in ICD. Having said that, multi-polarimetric (multi-pol) datasets and their decomposition
parameters can also be used in ICD. SAR polarimetry, or PolSAR, takes into account of both
the intensities and phases from the same image epoch acquired at different transmitting-
receiving polarizations (HH, HV, VV and VH). Polarimetric decomposition then recombines
the complex scattering coefficients to extract parameters that can directly infer physical
properties of the scatterers. These decomposition parameters, even from a single image
epoch, have been proved to be efficient in differentiating land cover types including land-
slides [9,16,23,24]. Some studies also use PolSAR datasets and decomposition parameters
in the dual-temporal (1 pre-event and 1 post-event image) change detection to improve the
result accuracy and to gain physical insights [16,18,25]. In comparison, PolSAR’s detection
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capability in a multi-temporal context (≥2 pre-event images and 1 post-event image) has
not received much attention yet and deserves more exploration.

This study attempts to incorporate the multi-temporal PolSAR decomposition parame-
ters into SAR-based landslide detection in forest areas, and compares the performance with
those from single-pol datasets. This comparison is out of a practical consideration: Given
more and more public and private players in SAR space missions, we expect the list of
SAR sensors to increase and the overpass latency to shorten substantially in the near future.
Soon SAR-based landslide detection may be not so much limited by data availability, and
hence our knowledge about how different data properties affect the detection performance
will be pivotal. Such knowledge will help researchers and government agencies make
decisions before choosing the best dataset for landslide mapping. It will also provide
information about the uncertainties and limitations especially for a rapid-response product.

The goal of this study is therefore to evaluate the influence of different SAR data
properties on landslide detection, including radar wavelengths, spatial resolutions, polar-
izations and viewing geometry. Different datatypes, or combinations of the properties listed
above, are produced from some of the most commonly-used sensors (the L-band ALOS-2,
C-band Sentinel-1 and X-band COSMO-SkyMed) to facilitate this performance study. To
unify the comparison basis, we carry out change detection using a newly-designed algo-
rithm Growing Split-Based Approach (GSBA). GSBA takes in a SAR-derived value, either
a backscattering intensity or decomposition parameter, normalized over its time-series
variations and computes the Bayesian probability of landslides given that value. We com-
pare the detection performance in two landslide cases, the earthquake-triggered landslides
due to the 2018 Hokkaido Eastern Iburi Earthquake in Japan, and the rainfall-triggered
landslide caused by the 2017 heavy rain in the catchment of Putanpunas River, southern
Taiwan. With results from these two cases, we discuss how different data properties affect
the landslide detection, and what may limit the detection efficacy.

2. SAR Data Processing

To achieve our objectives, we need to produce multiple datatypes from the same SAR
data (see Table 1 for the list of SAR data used in this study). Next we describe the processing
flows for two major datatype categories and the generation of Z-score maps, which are the
input to the GSBA algorithm.

Table 1. List of SAR data used in this study.

Sensor & Track *1 Pre-Event
Epochs

Post-Event
Epoch

Average
Look Angle (θ)

Mode and
Resolution *2 Wavelength Polarization *3

Hokkaido Landslides (Japan), 2018-09-06, earthquake-triggered

ALOS-2 A122
2018-08-25
2017-08-26
2016-08-27

2018-09-08 30◦ High-Sensitive
6 m (HR)

L-band
22.9 cm

Full-pol
HH, HV, VV, VH

S-1 A68
2018-09-01
2018-08-20
2018-08-08

2018-09-13 39◦
Interferometric

Wide
15 m (MR)

C-band
5.6 cm

Dual-pol
VV, VH

CSK A 2018-06-04
2017-07-16 2018-09-08 37◦ StripMap

3 m (UHR)
X-band
3.1 cm

Single-pol
HH

Putanpunas Landslide (southern Taiwan), 2017-06-07, rainfall-triggered

ALOS-2 A137

2016-12-22
2016-08-18
2016-06-09
2016-04-14
2016-03-03

2017-08-03 33◦ ScanSAR
60 m (LR)

L-band
22.9 cm

Dual-pol
HH, HV

(HV-mode is
missing on the

post-event epoch)

ALOS-2 D27

2017-05-21
2017-04-23
2017-01-01
2016-12-04
2016-10-09

2017-07-02 44◦ ScanSAR
60 m (LR)

L-band
22.9 cm

Dual-pol
HH, HV
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Table 1. Cont.

Sensor & Track *1 Pre-Event
Epochs

Post-Event
Epoch

Average
Look Angle (θ)

Mode and
Resolution *2 Wavelength Polarization *3

S-1 A69

2017-05-27
2017-05-15
2017-05-03
2017-04-21
2017-04-09

2017-06-08 35◦
Interferometric

Wide
15 m (MR)

C-band
5.6 cm

Dual-pol
VV, VH

S-1 D105

2017-05-29
2017-05-17
2017-05-05
2017-04-23
2017-04-11

2017-06-10 38◦
Interferometric

Wide
15 m (MR)

C-band
5.6 cm

Dual-pol
VV,VH

CSK D

2017-06-01
2017-05-24
2017-05-08
2017-04-22
2017-04-14

2017-06-09 27◦ StripMap
3 m (UHR)

X-band
3.1 cm

Single-pol
HH

*1 S-1 = Sentinel-1; CSK = COSMO-SkyMed; A = ascending; D = descending. *2 UHR = ultra-high resolu-
tion; HR = high resolution; MR = medium resolution; LR = low resolution. *3 Full-pol = full-polarimetric;
Dual-pol = dual-polarimetric; Single-pol = single-polarimetric. H = horizontally polarized; V = vertically polar-
ized. The first letter in the combination stands for the polarization of the transmitted wave, and the second is for
the received wave.

2.1. Single-Polarization: Backscattering Coefficient (σ0)

Backscattering coefficient σ0 is the normalized measure of the radar signal’s strength
reflected by a distributed target. From the single-look complex (SLC) stack, the general
processing steps to obtain σ0 include radiometric calibration [26], speckle noise attenu-
ation [27,28], multilooking and geocoding (Figure 1). For Sentinel-1 (S-1) data, thermal
noise removal is carried out concurrently with radiometric calibration before converting
the digital numbers to σ0 [29]. We only process the co-polarized σ0 stacks (HH or VV) for
their higher sensitivity to surface-related scattering [30]. All data processing is carried out
using the graph processing tool (gpt) in SeNtinel Application Platform (SNAP) and the
InSAR Scientific Computing Environment (ISCE, for ALOS-2 ScanSAR data only) built in a
high-performance computing cluster. Two auxiliary datasets, local incidence angle (LIA)
and layover-shadow mask, are also generated during data processing [31]. LIA is the angle
between the radar incidence direction and the slope normal vector. Small LIAs indicate
slopes facing the satellite, while large LIAs indicate either slopes facing the satellite but
significantly deviating from the line-of-sight (LOS) direction, or slopes facing away from
the satellite.

Figure 1. Processing flows for different SAR datatypes used in this study.
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2.2. Multi-Polarization: Degree of Polarization (mDP) and Scattering Powers

For a dual-polarimetric SAR data, we follow the same steps as those in the σ0 process-
ing flow to generate geocoded complex scattering coefficients Sij (i, j = H or V) (Figure 1).
We then construct the 2× 2 covariance matrix C2 [32],

C2 = 〈k·k∗T〉 =
[

C11 C12
C21 C22

]
=



〈
|Sii|2

〉 〈
SiiS∗ij

〉

〈
SijS∗ii

〉 〈∣∣Sij
∣∣2
〉

 (1)

where 〈·〉 indicates spatial ensemble averaging (using a 5 × 5 window in our case) and k is
the target vector,

k =

[
Sii
Sij

]
(2)

From C2 we can derive the 2D Barakat degree of polarization mDP, which is defined
as the ratio between the intensity of the polarized portion to that of the total intensity [33],

mDP =

√
1− 4× det(C2)

(Tr(C2))
2 (3)

mDP represents the anisotropy from polarization structures, whereas the scattering ran-
domness, 1−mDPβ (β is a measure of the relative dominance of polarized scattering), is
considered as the dual-pol radar vegetation index [34].

For the full-pol SAR data (ALOS-2 A122 in Table 1), we form the 3× 3 coherency
matrix T3 [30]:

T3 = 〈k
_
·k

_
∗T〉 =




T11 T12 T13
T21 T22 T23
T31 T32 T33




= 1
2




〈|SHH + SVV |2〉
〈
(SHH + SVV)(SHH − SVV)

∗〉 2
〈
(SHH + SVV)S∗HV

〉
〈
(SHH − SVV)(SHH + SVV)

∗〉 〈|SHH − SVV |2〉 2
〈
(SHH − SVV)S∗HV

〉

2
〈
SHV(SHH + SVV)

∗〉 2
〈
SHV(SHH − SVV)

∗〉 4〈|SHV |2〉




(4)

where the target vector k is defined as [30]

k =
1√
2




SHH + SVV
SHH − SVV

2SHV


 (5)

From T3, we carry out a Model-Free 3-Component decomposition for Full-pol data
(MF3CF) which jointly considers the Barakat degree of polarization and the received
wave information to allow the estimation of scattering powers without any assumption of
scattering models [35]. The odd-bounce surface scattering power Ps, even-bounce scattering
power Pd and the diffused (volumetric) scattering power Pv can be estimated as [35]:





Ps =
mFPSpan

2 (1 + sin 2θFP)

Pd =
mFPSpan

2 (1− sin 2θFP)
Pv = Span(1−mFP)

(6)

where mFP is the 3D Barakat degree of polarization,

mFP =

√
1− 27× det(T3)

(Tr(T3))
3 (7)
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Span = T11 + T22 + T33 , and the scattering type parameter θFP is defined as,

tan θFP =
mFPSpan(T11 − T22 − T33)

T11(T22 + T33) + m2
FPSpan2 (8)

The calculation of 2D degree of polarization and scattering powers is carried out in
PolSAR-tools available at https://github.com/Narayana-Rao/PolSAR-tools (accessed on
10 March 2022).

2.3. Generating Z-Score Maps

To standardize the change detection flow for various data values (σ0, mFP and scatter-
ing powers), we adopt a dimensionless Z-score (Z) of the post-event value normalized by
the statistical information obtained from its pre-event time-series. It is calculated as [36],

Z =
ypost − ypre

σpre
(9)

where ypost is the data value on the post-event epoch, and [ypre, σpre] are the mean and
standard deviation calculated from the pre-event time-series. The Z-score value represents
the difference between a pixel’s change value and its background mean value in the unit
of background standard deviations. The background mean and standard deviation are
derived from multiple pre-event epochs, and therefore may avoid the issues associated
with a single biased pre-event image, a consideration commonly seen in a dual-temporal
change detection scheme [37]. It also allows a more robust detection of minor changes if
the pre-event time-series contains relatively stable values [36].

Among different datatypes, however, we caution that the Z-score map for CSK data
in the Hokkaido case (Table 1) may not be as accurate due to the insufficient number
of pre-event images–no acquisition exists before 16 July 2017. The temporal standard
deviations thus derived tend to be too large and yield Z-score values smaller than those
generated from other datasets. To work around this problem, we estimate the spatial
standard variation within a 21 × 21 window centered at each pixel, and use it as σpre in
Equation (9) when the value is smaller than the temporal standard deviation. The Z-score
values thus generated are visually more comparable to other Z-score maps. The detection
results, however, may still be less accurate because of incomplete pre-event information.

In addition to Z-score maps generated from the aforementioned datasets, we further
generate a Z-score map that combines the positive Z-score values in Ps (ZPs ) and negative
values in Pv (ZPv ),

ZPc =

{
ZPv if ZPv < 0 and |ZPv | > |ZPs |

ZPs otherwise
(10)

where ZPc stands for the combined Z-score map. The necessity and performance of such a
combined Z-score map will be further demonstrated in Section 4. Next, we describe how
these Z-score maps are used in the GSBA change-detection algorithm.

3. Change Detection Method

The method proposed in this study is a variation of the split-based approach (SBA),
which was first proposed for SAR-based flood mapping [38]. SBA is designed for the
generalization of a mapping algorithm regardless of the image’s spatial resolution, swath
size and the target’s geospatial distribution. The basic idea is to separate the image into
multiple, non-overlapping tiles (also called splits). The tiles are then checked one by one to
identify the existence of a certain proxies that signify the changes. Some suggested proxies
include standard deviation [38], coefficient of variation [39,40], and the ratio between the
tile mean and the global mean [40]. Tiles with proxies above a given threshold are selected
to jointly determine the global threshold either via a non-parametric approach such as the
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Otsu method [41] or the KI algorithm [42], or through a parameterized fitting to the data
histogram in order to determine the best cutoff point [43,44].

One variation of SBA is the hierarchical split-based approach (HSBA) [45]. Different
from the conventional SBA which adopts a uniform tile size [38,40,46,47], HSBA adaptively
and hierarchically splits the image to variable sizes until a bimodal histogram (representing
the change and non-change classes) can be identified in the tile or when a minimal tile size
is reached. This way it avoids the need of a pre-defined tile size, which in some cases may
compromise the detection if the change area within a tile is extremely large or small. The
issue with HSBA is that the splitting process is nonlinear-every split depends on the result
of the previous split, and hence the computation time can be long when the image is large.

Instead of the top-down splitting strategy of HSBA, here we propose a bottom-up
approach called Growing Split-Based Approach (GSBA) (Figure 2). We initialize the image
splitting as in the conventional SBA. Once the tiles with changes are identified, we “grow”
a patch within each tile cluster until the maximum patch area with a consistent bimodal
histogram is reached. This growing step produces patches of different areas that mimic
the variable tile size obtained by HSBA. The second variation in GSBA is that rather than
obtaining a global threshold from the patches to generate a binary map, we calculate the
Bayesian probability of changes instead [48]. Given the probability map, we can obtain a
binary change map at a given cutoff probability (by default 0.5).

Figure 2. Growing Split-Based Approach (GSBA) workflow.

The last variation in GSBA is that instead of using a single tile size, the flow described
above is repeated at different tile sizes. This practice is to acknowledge the observation
that depending on the size and spatial distribution of changes, a single arbitrary tile size
may in some cases produce results that fall into a local minimum or maximum of change
area. With multiple binary maps generated at different tile sizes, we can select the one with
intermediate spatial clustering (using Ripley’s K, see step (g) in Appendix A) as the final
output. In other cases where different tile sizes produce similar binary maps, this practice
also offers reassurance regarding the robustness of the detection output. The processing
flow in GSBA is linear and can be fully parallelized, so the increase in computation time
can be minor in a multi-processor computing system.

To avoid distraction from the main focus of this paper, details of the GSBA algorithm
are given in the Appendix A. The output Bayesian probability map is used in the following
Receiver Operating Characteristics (ROC) curve analysis. To generate the ROC curves, we
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calculate the true positive rate (TPR, or recall) and false positive rate (FPR) at different
cutoff probabilities. They are defined as follows:

{
TPR = TP/(TP + FN)
FPR = FP/(FP + TN)

(11)

where [T, F] stand for true and false, [P, N] stand for positive and negative, and any two-
letter combination means the number of such pixels identified through validation. We
further analyze the area under curve (AUC) to evaluate the overall detection performance.
This continuous tracking of trade-off effects between TPR and FPR allows users to have a
complete and visual overview of the detection performance [15]. To compare with other
studies using the same landslide cases, we also report the overall accuracy (OA) by using
the final binary maps from GSBA. The overall accuracy is defined as:

OA = (TP + TN)/(TP + TN + FP + FN) (12)

Note that these metrics are calculated at each datatype’s spatial resolutions, which
means, the validation dataset is resampled to match the resolution of the SAR images.

4. Results
4.1. Case Study 1: Earthquake-Triggered Hokkaido Landslides in Japan

Widely-distributed landslides occurred due to seismic shaking during the 6 Septem-
ber 2018 Mw 6.6 Hokkaido Eastern Iburi Earthquake (Figure 3). After the earthquake,
the Geospatial Information Authority of Japan (GSI) acquired aerial photos on 6 and 11
September over the landslide areas and identified more than 3300 landslide patches manu-
ally (https://www.gsi.go.jp/BOUSAI/H30-hokkaidoiburi-east-earthquake-index.html#1,
accessed on 10 March 2022). Visual comparison between the aerial photos taken on 6 and
11 September shows that only minor changes occurred between these two dates, and hence
the majority of the landslides have existed since the earthquake.

Figure 3. Distribution of earthquake-triggered landslides in Hokkaido, after the 6 September 2018
Mw. 6.6 Hokkaido Easter Iburi Earthquake. Red star in (a) represents the epicenter; black box
represents the full extent of AOI in (b). Background images are aerial photos taken on 6 and 11
September by GSI. Orange polygons are the manually identified landslide patches based on these
aerial photos (source: https://www.gsi.go.jp/common/000204728.zip, accessed on 10 March 2022).
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We define a large area of interest (AOI) of 480 km2 that covers most of the landslide
patches (Figure 3). Within the large AOI we further define four test areas, three of which are
the same as those chosen by Jung and Yun (2020) [15]. This choice allows us to compare the
effect of different spatial resolutions-they adopt the ALOS-2 PALSAR-2 Ultra-Fine HH-pol
SAR data of 3-m resolution, while the data used in this study is the 6-m High-Sensitive
full-pol SAR. In addition, we define a fourth test area around the Atsuma Reservoir in
order to examine the effect of water bodies during landslide detection.

4.1.1. Qualitative Comparison

From the three sensors used in this case study (Table 1), we produce the following seven
SAR datatypes and one combined Z-score map to carry out the performance comparison:

(1) High-res L-band HH-pol σ0

(2) High-res L-band VV-pol σ0

(3) Medium-res C-band VV-pol σ0

(4) Ultra-high-res X-band HH-pol σ0

(5) High-res L-band dual-pol (VV + VH) mDP
(6) Medium-res C-band dual-pol (VV + VH) mDP
(7) High-res L-band full-pol Ps
(8) High-res L-band full-pol ZPc (denoted as Pc datatype hereafter)

In Figure 4 we choose Test Area 2 to demonstrate the differences among some of the
selected datatypes. Both the high-res L-band HH-pol σ0 and the ultra-high-res X-band
HH-pol σ0 provide sharp outlines for landslides compared to the multi-pol datatypes (mDP
and Ps). This difference is caused by the spatial ensemble averaging carried out on the
polarimetric datasets. The C-band VV-pol σ0, acquired at a lower spatial resolution, does
not capture the landslide boundaries as clearly. In addition, many pixels in the landslide
patches contain low Z-score values, suggesting that these pixels are indistinguishable from
non-landslides. The same phenomenon is also observed more in the X-band σ0 than in
the L-band σ0, implying that shorter radar wavelengths may not perform as efficient in
landslide detection within forest areas, possibly due to their higher sensitivity to small-scale
changes in vegetation during the pre-event periods.

Next, we examine the effect of viewing geometry on different polarimetric combi-
nations in the L-band datatypes. The Ps datatype shows strong positive Z-scores for the
landslides on the slopes with small LIAs. On the slopes with large LIAs, the landslide
patches contain low to nearly zero Ps Z-scores (pointed by yellow arrows in Figure 4). The
same is also seen on the mDP Z-score map. In comparison, the L-band σ0 may still show
clear and predominantly negative Z-score values on the slopes with large LIAs. We inves-
tigate the Z-score maps from other scattering powers and find that, instead of a positive
increase in Ps Z-score, landslide patches with larger LIAs tend to show a stronger decrease
in Pv Z-score (yellow arrows in Figure 5). This different dependency on LIA between
Ps and Pv is also observed in other landslide cases [23]. Numerical simulation in [49]
offers some possible explanation to this phenomenon, in which backscattering energy due
to direct-ground reflection and crown-ground interaction decreases with LIA, while the
energy due to direct-crown backscattering increases. In other words, landslides on the
slopes with larger LIAs are sensed as “loses in tree crowns” instead of “increases in bare
surfaces”. That means Ps or Pv each only carries half of the information about landslides. It
is therefore necessary to consider both values when carrying out landslide detection, such
as by combining them into a joint Z-score map ZPc (Equation (10) and Figure 5).
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Figure 4. A qualitative comparison among different datatypes for Hokkaido Test Area 2 (see Table 1
for data sources). The value 3 m, 6 m and 15 m are the spatial resolutions, with the asterisk (*)
indicating images processed by taking spatial ensemble averaging. DEM: digital elevation model.
LIA: local incidence angle. The LIA maps for the multi-pol datatypes are the same as those in the
single-pol. Θ: satellite look angle. Yellow arrows on Z-score maps indicate one particular landslide
that is well captured by σ0 but not by mDP and Ps.
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Figure 5. Comparison of Z-score maps generated from the odd-bounce surface scattering power
(Ps) and the diffused (volumetric) scattering power (Pv), and the combined Z-score map (Pc Z-
score). Yellow arrows indicate places with low Z-score amplitudes in Ps but high amplitude in Pv,
a phenomenon associated with the local incidence angles (LIAs). Yellow arrows indicate landslide
patches better depicted by combining the Z-score values from Ps and Pv.

The aforementioned complementary effect between Ps or Pv is not seen between the
dual-pol mDP and the dual-pol radar vegetation index [34]. In fact, when comparing the
Z-score maps generated from these dual-pol parameters, one appears as a sign-flipped
image of the other–pixels in the landslide patches display similar amplitudes but opposite
signs on the two Z-score maps. This is probably due to the incomplete information of
scattering properties in dual polarization. We therefore do not attempt to combine these
two parameters and remain with the mDP-only Z-score map. Next we will look into the
quantitative comparison of detection performance among the eight listed datatypes.

4.1.2. Quantitative Comparison

Figure 6 shows the Bayesian probability maps calculated from different datatypes.
Overall, the full-pol Pc depicts the most complete shape of the landslide bodies, followed
by the single-pol σ0 at different radar wavelengths. The dual-pol datatypes detect only
few landslides. The X-band σ0 captures an additional high-probability patch in Test Area 1
with sharp outlines. This patch is possibly related to crops, and the false detection is likely
associated with the lower number of pre-event images. In areas where water bodies exist
(Test Area 4), the single-pol σ0 may detect changes associated with both the landslides and
the water bodies, while the multi-pol datatypes are relatively free of such confusions.
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Figure 6. Bayesian probability maps obtained from different datatypes in the Hokkaido landslide
case. The asterisk (*) indicates the image is processed by taking spatial ensemble averaging using a
5 × 5 window.

The performance of each datatype is shown in the ROC curves (Figure 7). In Test
Area 1, the ROC curves for the L-band σ0 and Pc show a steep increase of TPR at low FPR,
yielding AUC values as high as 0.83 to 0.86 (Figure 7f). These values are comparable to
the detection results based on the ALOS-2 Ultra-Fine HH-pol multi-temporal intensities of
3-m spatial resolution (AUC = 0.79) [15]. The AUC for X-band σ0 and L-band Ps rank the
second and third at 0.77 and 0.73. The L-band mDP, C-band mDP and C-band σ0 perform
poorly, yielding AUC values lower than 0.7.
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Figure 7. Receiver operating characteristics (ROC) curves and area under curve (AUC) for (a–d) the
four test areas and (e) the full area of the Hokkaido AOI (Figure 3). The numbers shown in (f) the
AUC plot are the values from the full-pol Pc. Squares of different colors indicate the positions of the
GSBA binary maps generated at a cutoff probability of 0.5.

The landslide patches in Test Area 2, 3 and 4 result in slow-rising ROC curves and low
AUC values in almost all datatypes (Figure 7b–d,f). Among them, the full-pol Pc still gives
the highest and more stable AUC values, above 0.7 for all three test areas. All the other
datatypes yield AUC values lower than 0.7. The C-band σ0 yields the lowest AUC in Test
Area 2 and 3–lower than 0.6. In Test Area 4, the L-band σ0 gives the lowest AUC values as
a result of false detection over the reservoir lake (Figures 3 and 6).

For the full area, the L-band full-pol Pc has superior performance in landslide detection
with AUC = 0.77 (Figure 7f). The comparison between Pc and Ps-only AUC values again
confirms that the combination of Ps and Pv is necessary for landslide detection. The full-
area AUC value for the high-res L-band σ0 and ultra-high-res X-band σ0 ranks the second
and third, higher than the medium-res C-band σ0. We can therefore confirm that spatial
resolutions plays a role as important as radar wavelengths in SAR-based landslide detection.
The performance of the dual-pol mDP is least favored because of its lower full-area AUC
and its tendency to detect fewer landslides.

In Figure 7a–e, we also mark the positions of the binary change maps determined by
GSBA on each ROC curve. These solutions are located close to the turning points of the
curves, but slightly leaning towards the lower-FPR end. These positions suggest that the
default cutoff probability of 0.5 tends to create conservative change maps with a higher
positive likelihood ratio (TPR-to-FPR ratio).

4.2. Case Study 2: Rainfall-Triggered Putanpunas Landslide in Southern Taiwan

In the second case, we look into a different scenario–a rainfall-triggered landslide.
During the first 4 days in June 2017, a total of nearly 900 mm of precipitation occurred
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in the upstream of the Laonong River (according to the records from weather station
C0V210, available at https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, accessed
on 10 March 2022) (Figure 8). Three days later on 7 June 2017, a landslide-associated
earthquake (landquake) was detected through the Real-time Landquake Monitoring Sys-
tem (RLAMS, http://collab.cv.nctu.edu.tw/older/catalog_20171231.html, accessed on
10 March 2022) [50]. Given the order of occurrence between the torrential rain and the
landquake, we attribute this event to a rainfall-triggered landslide.

Figure 8. Basemap of the Putanpunas River catchment and the landslide on 7 June 2017. Blue
rectangle represents the AOI. Orange polygon: the landslide patch from manual mapping. C0V210 is
the weather station. Source of image: SPOT-6/7 acquired on 5 July 2017 overlaid on Google Earth Pro
Image © 2022 CNES/Airbus.

To determine the landslide area associated with the 7 June 2017 landquake, we use
SPOT-6/7 images acquired on 18 April 2017 and 5 July 2017 to carry out manual detection.
Within a 15-km radius (approximately the estimation error of landquake relocation) of the
epicenter, we locate a new sliding patch in the existing landslide area of the Putanpunas
River catchment. Actually, there have been repeating landslides in this catchment since
typhoon Morakot in the year of 2009 [18,51], making this catchment one of the most
actively evolving landslide area in southern Taiwan. Different from the multiple small-scale
landslides triggered by the Hokkaido Eastern Iburi Earthquake, this rainfall-triggered
Putanpunas landslide contains a single patch of a relatively large area, up to 400,000 m2

(Figure 8). We caution that the actual landslide patch may differ from what we map here
due to the longer latency between the event date and the post-event optical image.

4.2.1. Qualitative Comparison

In this case study, we produce the following five datatypes for comparison (note that
different viewing geometry is involved):

(1) Low-res L-band HH-pol σ0, ascending
(2) Low-res L-band HH-pol σ0, descending
(3) Medium-res C-band VV-pol σ0, ascending
(4 Medium-res C-band VV-pol σ0, descending
(5) Ultra-high-res X-band, HH-pol σ0, descending

Some datasets allow dual-pol polarimetric combinations, such as HH-HV for ALOS-2
track D27 and VV-VH for both Sentinel-1 tracks (Table 1). However, in the Hokkaido
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case we have demonstrated that the use of dual-pol mDP datatype tends to capture fewer
landslides, so we decide not to adopt the dual-pol datatype in this case study. Here we wish
to focus on the detection performance among the σ0 datatypes of different wavelengths,
spatial resolutions and viewing geometry.

Figure 9 shows how different σ0 datatypes compare visually. The ascending tracks
show more prominent landslide signatures on the Z-score maps compared to those from
the descending tracks, regardless of the wavelengths and spatial resolutions. The intriguing
point is that the viewing geometry from ascending tracks yield larger LIAs compared
to those from descending tracks. In addition, we find that the viewing geometry from
descending tracks produces large layover zones that tend to overlap with the slopes of
small LIAs. Among all sensors, the X-band CSK descending track produces the largest
layover area, which also corresponds to the smallest look angle (27◦) among all three
sensors. Within the layover zones, landslide-related changes may still be recorded but are
mixed with energies from multiple ground targets of the same range distance, leading to
brighter pixels and stretched patterns after geocoding (Figure 10). We also notice that the
current layover-shadow mask does not necessarily mask out all layover areas (Figure 10),
which is possibly caused by errors in DEM or limitations in the SAR geometric distortion
simulation [52].

Figure 9. A qualitative comparison among different datatypes for the rainfall-triggered Putanpunas
landslide on 7 June 2017 in southern Taiwan. White and black pixels on the LIA maps are layover
and shadow zones, respectively. Refer to Figure 4 captions for more information.
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Figure 10. (Left) Slopes within the layover zones appear as brighter and stretched pixels in the post-
event X-band CSK σ0 image. In comparison, slopes in non-layover areas show typical speckle textures.
Yellow polygon is the 7 June 2017 landslide patch. (Right) After applying the layover-shadow mask
(white and red pixels), some severely stretched patterns remain unmasked (blue arrows) possibly
due to errors in DEM or incorrect prediction in the SAR geometric distortion simulation.

We have to emphasize that the same layover-shadow masks are also calculated and
applied on the SAR images in the previous Hokkaido landslide case. However, given the
smaller slope angles (Figure 4), the layover and shadow effects are nearly negligible. In
comparison, the Putanpunas River catchment has a large topographic relief and hence
greater slope angles (Figure 9), resulting in a larger portion of unusable data within the
layover zone.

4.2.2. Quantitative Comparison

Figure 11 shows the Bayesian probability, ROC curves and AUC values for different
datatypes. The ascending tracks show better performance than descending tracks, with
the highest AUC of 0.78 from the medium-res C-band VV σ0. The ascending L-band HH
σ0, albeit its low spatial resolution (60 m), still yields an AUC value of 0.71. On the other
hand, the descending tracks do not detect as many changes, with an AUC value of 0.65 for
the medium-res C-band VV σ0 and 0.64 for the ultra-high-res X-band HH σ0. No change is
detected from the descending L-band HH σ0. We should point out that despite the similar
AUC values from the descending C-band VV σ0 and the X-band HH σ0, their effective area
(unmasked area) is different–more than 50% of the catchment is under the layover-shadow
mask of the X-band data.
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Figure 11. (a) Bayesian probability maps obtained from different σ0 datatypes for the Putanpunas
landslide on 7 June 2017. (b) ROC curves and (c) AUC values for different datatypes. Blue numbers
in parentheses are the percentage of effective area within the AOI.

5. Discussion
5.1. How Data Properties Affect Detection Performance

In Table 2 we summarize the performance of different datatypes, including the full-
area AUC and OA. Note that AUC does not represent the performance of any particular
detection outcome but a full spectrum of outcomes, whereas OA is calculated at a specific
selection (e.g., at the cutoff probability of 0.5) to mimic the operator’s choice. The OA values
among different datatypes in the Hokkaido case, however, are all very similar and cannot
reflect their actual relative performance. This similarity results from the large number of
non-landslide pixels (TN in Equation (12)) when computing the OA values. To allow a
better judgement of the relative performance at a specific landslide mapping outcome, we
compute the full-area TPR at a fixed FPR of 0.1 (TPRFPR = 0.1). This value indicates the ratio
of detectable landslides at the cost of 10% false positive detection. In the Hokkaido case,
we further normalize the TPRFPR = 0.1 values by using the best TPRFPR = 0.1 from Pc (Table 2).
With the AUC and TPRFPR = 0.1 values, we discuss how the following data properties affect
the performance of SAR-based landslide detection.
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Table 2. Summary of full-area AUC, OA, TPR at PRF = 0.1 and the ratio of effective area (Ae) for the
two case studies.

Event and
AOI Area

Sensor-
Track Datatype *1 AUC OA TPRFPR = 0.1 *2 Ae *3 Ratio

Hokkaido
480 km2

ALOS-2
A122

Single-pol
HR L-band HH σ0 0.67 0.89 0.37 (0.66) 0.99

Single-pol
HR L-band VV σ0 0.68 0.89 0.39 (0.70) 0.99

Dual-pol
HR L-band

VV + VH
mDP

0.65 0.89 0.42 (0.75) 0.99

Full-pol
HR L-band Ps 0.66 0.90 0.40 (0.71) 0.99

Full-pol
HR L-band Pc Z-score 0.77 0.90 0.56 (1.00) 0.99

S-1
A68

Single-pol
MR C-band VV σ0 0.63 0.87 0.27 (0.48) 0.99

Dual-pol
MR C-band

VV + VH
mDP

0.62 0.87 0.27 (0.48) 0.99

CSK-A
Single-pol

UHR
X-band

HH σ0 0.67 0.88 0.34 (0.61) 0.99

Putanpunas
20 km2

ALOS-2
A137

Single-pol
LR L-band HH σ0 0.71 0.98 0.50 0.97

ALOS-2
D27

Single-pol
LR L-band HH σ0 - - - 0.97

S-1 A69 Single-pol
MR C-band VV σ0 0.78 0.92 0.61 0.87

S-1 D105 Single-pol
MR C-band VV σ0 0.65 0.90 0.41 0.81

CSK-D
Single-pol

UHR
X-band

HH σ0 0.64 0.98 0.37 0.54

*1 UHR: ultra-high resolution; HR: high resolution; MR: medium resolution; LR: low resolution. *2 The TPR value
at FPR = 0.1. Values in parentheses represent the normalized value by the best performance. *3 The ratio between
the effective area (area outside the layover-shadow mask) and the full AOI.

Radar wavelengths and spatial resolutions. In the Hokkaido case, the L-band datatypes
have better AUC and TPRFPR = 0.1 values than the other two radar wavelengths. This result
seems to suggest that longer wavelengths work better in landslide detection. However,
spatial resolutions can be an equally important factor. This inference is made from the
poor performance of the medium-res C-band single-pol datatype–its result is worse than
that from the X-band single-pol data at a higher spatial resolution. At the same time, the
medium-res C-band single-pol data seems to perform relatively well in the Putanpunas case.
This better performance is probably associated with the geometry of the landslide patches
(small and distributed landslides in Hokkaido vs. one single large patch in Putanpunas),
and the fact that the Putanpunas landslide is a repeated landslide on a bare surface instead
of on a forested land (Figure 8).

Polarizations. In the Hokkaido case, the high-res L-band full-pol data can offer the
best landslide detection capability in forest areas. It can even avoid false detection over
water bodies. Even though the landslide boundaries become slightly blurry compared to
those detected by using single-pol datatypes, the amount of information contained in a
full-pol dataset and the detection performance thereof is indeed unparalleled. The L-band
dual-pol datatype, despite a slightly better TPRFPR = 0.1, gives an AUC value lower than
those from many single-pol datatypes. It also tends to detect fewer landslide patches. As
dual polarization will be a major observation mode for some upcoming missions such as
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NISAR, more efforts are needed to explore a better utilization strategy for dual-pol data in
landslide mapping.

Viewing Geometry. In the Hokkaido case, we do not see a notable difference in LIA
between the detected and the missed pixels (Figure 12a). This similarity in LIA distributions
suggests that large LIAs do not necessarily hinder landslide detection. In the Putanpunas
case, landslides are even better detected on datatypes with larger LIAs (Figure 9). On the
other hand, slopes with small LIAs may coincide with overlay zones, which are also seen
in the Putanpunas case. The smaller (steeper) the satellite look angle (θ), the larger the
overlay zone and the smaller the effective area. The percentage of effective area drops from
97% at θ = 44◦ (ALOS-2 D27) to 54% at θ = 27◦ (CSK-D) (Figure 9 and Table 2). As the
area of layover and shadow depends on the specific topography of a region, a DEM-based
SAR geometric distortion simulation should be executed before planning for a mission or
submitting a tasking request in order to determine the best viewing geometry [52].

Figure 12. Normalized histogram for (a) the LIA and the post-to-pre-event difference in scattering
powers (∆Power) for the (b) detected and (c) missed pixels in the L-band quad-pol datatype (detected
and missed pixels are based on the GSBA binary map generated with the Pc Z-score map). The
histograms are computed over the entire Hokkaido AOI.

5.2. Limitations in SAR-Based Landslide Detection

In the Hokkaido case, the best full-area AUC is 0.77 and the best OA is 0.90 (Table 2).
These values are close to the results produced by using the ultra-high-res L-band HH-pol
multi-temporal intensity with different detection algorithms [15]. The similarity in limited
performance from different studies suggests that there may exist some factors that prevent
the SAR-based landslide mapping from achieving the high accuracy attained in optical
image-based mapping [53]. We plot the histogram of the post-to-pre-event difference in
scattering powers (∆Power) for the detected and the missed pixels, respectively, within
the Hokkaido AOI (Figure 12b,c). While the histograms for the detected pixels are clearly
skewed, the histograms for the missed pixels are centered and symmetric around zero,
indicating no significant difference in any of the scattering powers before and after the
landslide. This phenomenon is bewildering and needs some explanation.

The first possibility is the change of local topography. From a broader scale, there does
not seem to be a systematic difference in LIA between the detected and the missed pixels
(Figure 12a). However, the LIA is calculated using the pre-event global 30-m DEM [54].
The topography must have changed locally after the landslide. In fact, according to the
post-event DEM obtained by airborne laser survey, the surface morphology within the
landslide patches has changed substantially [55]. Features such as scarps and crown cracks
can reach meters tall with very steep (nearly vertical) facets [55]. Field photos also reveal
that large boulders, huge piles of dead trees and meter-scale surface undulations exist
on the ground [55,56]. The chaotic distribution of these features may result in scattering
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properties considerably deviating from what is expected from a pure land cover-type
change (forest to bare surface).

Another equally important factor to consider is the spatial variation of water contents.
Several studies show that the water contents can vary remarkably in the Hokkaido area,
from 30% to 280% among different geological materials sampled at the same site [57,58]. As
these materials are spread out during the landslide, the randomness in surface soil moisture
within the landslide patches increases. To sum up, soil moistures, local topography, surface
roughness and land cover changes together form a complicated backscattering field in the
landslide patches, leading to clear changes of scattering powers in some places and no
clear changes in other places. We may even hypothesize that it is radar wave’s sensitivity
to multiple physical properties that limits its performance in landslide detection. This
hypothesis needs further validations though, such as through numerical simulation of 3D
backscattering fields.

The increased randomness in backscattering fields within a landslide patch may
explain why intensity correlation method can yield better detection results than those
from pixel-by-pixel detection methods [15,19]. Intensity correlation is calculated based
on a number of pixels within a moving window, which offers contextual information
about the objects and their changes. Most important of all, it can potentially average out
the randomness in the complicated scattering field within a landslide patch, leading to a
smoother and less noisy detection result.

6. Conclusions

By applying a newly-designed change detection algorithm Growing Split-Based Ap-
proach (GSBA) on two different landslide cases, this study examines how different SAR
data properties affect the performance of landslide detection. Our result shows that the
high-resolution, full-polarimetric SAR datatype has unparalleled performance in landslide
detection over forest areas. Single polarimetric datasets of high or ultra-high spatial reso-
lution rank the next, regardless of their radar wavelengths. This result suggests that high
spatial resolution is critical especially for detecting small and distributed landslides in
forest areas. Datatypes of medium or low spatial resolution work better in detecting large
landslide patches over bare surfaces; their detection performance decays significantly over
small landslides in forest areas. Dual polarimetric datatypes have the worst performance
among all; a better utilization strategy may be needed for their use in landslide detection.
Different viewing geometry mainly impacts the effective detection area by creating layover
and shadow zones. This problem is more severe in areas of large slopes (≥40–50◦), in which
a steep viewing angle (<30◦) may render half of the image unusable for landslide detection.
SAR geometric distortion simulation is recommended before planning for a mission or sub-
mitting a tasking request for landslide mapping purposes. Given the limited performance
of SAR-based landslide detection (both in this study and in previous studies) as compared
to that from optical image-based landslide detection, we propose that other confounding
factors, including but not limited to local topography, surface roughness and soil moistures,
are all contributing to the randomness in the backscattering field and hinder the detection
of land cover changes. Such limitations need to be properly acknowledged when adopting
SAR-based landslide mapping for emergency responses or post-hazard assessments.
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Appendix A. GSBA Algorithm

The following description corresponds to the steps illustrated in Figure 2.

(a) Initialize splitting and histogram fitting

We first split the image into multiple tiles. After splitting, we fit the data histogram h(z)
within each tile with a model histogram g(z) of tri-modal Gaussian distribution (modified
after the bimodal Gaussian distribution in [48]):

g(z) =
3

∑
i=1

Gi =
3

∑
i=1

Ai exp

[
−1

2
(z−mi)

2

s2
i

]
(A1)

where g(z) is the modeled histogram discretized at z bin centers, [Ai, mi, si] is the ampli-
tude, mean and standard deviation for each of the i-th Gaussian modes. Mode 1 (G1) and
mode 3 (G3) imply negative and positive changes in Z-score values, respectively. Mode
2 (G2) has a mean value close to zero for the unchanged class (Figure A1). In the rest
of this paper, we use Gaussian parameters to refer to [Ai, mi, si] for the three modes.
The curve-fitting optimization is carried out by using the fast nonlinear solver of the
Levenberg-Marquardt algorithm [59].

Figure A1. Tri-model Gaussian distribution. Mode 1 (G1) and Mode 3 (G3) are for the changes with
decreased and increased Z-score values, whereas Mode 2 (G2) is for the unchanged class. SA is
surface area under the colored curve. NA is the non-overlapping area, marked by slash stripes.

(b) Select tiles using thresholds

The tiles are selected based on the following proxies:

i. Ashman D coefficient (AD). It represents the separation between two modes. The
value is defined as [60]:

ADi =
√

2
|mi −m2|√(

s2
i + s2

2
) (A2)
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ii. Bhattacharyya coefficient (BC). It represents the goodness of fit in terms of probability.
It is defined as [61]:

BC = ∑
k

√
h(zk)

∑k h(z)

√
g(zk)

∑k g(zk)
(A3)

where k stands for the k-th histogram bin.
iii. Surface ratio (SR). It represents the significance of the changes in terms of probability

compared to the unchanged class. It is defined as [45]:

SRi =
min(SAi, SA2)

max(SAi, SA2)
(A4)

where SA stands for the surface area for each mode (Figure A1).
iv. Non-overlapping Ratio (NR). It represents the significance of the changes in terms of

the cumulative probability that is not overlapped with the unchanged class (G2). It is
defined as:

NRi =
NAi
SAi

(A5)

The first three proxies are also used by HSBA [45], while the last one (NR) is an
additional proxy implemented in GSBA. The main purpose of NR is to weed out the tiles
where the G2 mode has a wide distribution that overlap significantly with the other two
modes. Except for BC, the other three proxies are calculated for G1 (i = 1) and G3 (i = 3)
mode separately. Table A1 shows the empirical tile selection thresholds used for landslide
selection in this study.

Table A1. Tile selection thresholds for landslide detection.

Ashman D Coeff. (AD) >1.9
Bhattacharyya Coeff. (BC) >0.98

Surface Ratio (SR) >0.05
Non-overlapping Ratio (NR) >0.4

(c) Grow patches for consistent statistical distribution

Next we try to merge the tiles in order to obtain more robust Gaussian parameters from
clustered changes. Within each tile cluster, GSBA first chooses a random seed tile and iden-
tifies the neighboring tiles around it. The first round of histogram fitting (Equation (A1)) is
carried out on the joint histogram between the seed and each of the neighboring tiles. The
neighboring tiles with proxies above the thresholds shown in Table A1 are selected as the
next round of seeds, and new neighboring tiles are identified around them. This process
is repeated until all the tiles in the cluster are touched, or until the growing can no longer
propagates onwards.

To avoid the situation where the first seed tile is significantly different from the rest
of the tiles in the cluster, this growing process will be repeated a few times from a few
randomly-selected seed tiles. The resultant patch with the largest number of merged tiles
will be adopted. Through this growing process, the merged tiles (or a patch) contain
consistent statistical distribution.

(d) Fill Gaussian parameters

After tile growing, we could have moved on to estimate the Bayesian probabilities
by using the Gaussian parameters averaged over all patches. However, we found that in
the case of landslide detection, where changes can be affected by spatially-varying factors
such as local incidence angles [23], a global set of Gaussian parameters may not be the best
solution. So instead, we keep the Gaussian parameters unchanged in the patches, and fill
only the area outside the patches with the global average.

(e) Calculate Bayesian probability
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The Bayesian probability is defined as [48]:

p(X|Z) = p(Z|X)p(X)

p(Z
∣∣X)p(X) + p(Z

∣∣X)p
(
X
) (A6)

where X, X stands for changes and non-changes, and p(X|Z) is the Bayesian probability
of changes given the Z-score value of the pixel. The prior probabilities p(X) and p

(
X
)

are
both set to 0.5 following the suggestions in [48]. We assume that the conditional probability
for the changes p(Z|X) has a Gaussian probability density function (PDF) with parameters
of [Ã1, m1, s1] for negative Z-scores or [Ã3, m3, s3] for positive Z-scores:

p(Z|X) =





Ã1√
2π s1
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− 1

2
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2
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]
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]
, Ã3 = A3

A3+A2
i f Z > 0

(A7)

and the conditional probability for the non-changes p(Z
∣∣X) also has a Gaussian PDF with

parameters of
[

Ã2, m2, s2

]
:

p
(
Z
∣∣X
)
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2

]
, Ã2 =

{
A2

A1+A2
i f Z < 0

A2
A3+A2

i f Z > 0
(A8)

(f) Derive binary change maps

This step is relatively straightforward. By default, we adopt a cutoff probability of 0.5
on the Bayesian probability map in order to obtain the binary map.

(g) Choose the final change map

Step (a) to (f) will be repeated at multiple tile sizes. The list of tile sizes are determined
based on the image dimensions and the preferred number of test sets. Currently we limit
the tile size to be between 10 and 500 pixels, and the default number of test sets is between
4 and 8. After step (f), a binary change map will be generated at each tile size. To determine
which one is the final output, GSBA calculates Ripley’s K (Kr) for each map to estimate the
spatial randomness of the change points [62,63]:

Kr =
A
n2 ∑n

i ∑n
j 6=i Ir

( ∣∣xi − xj
∣∣ ≤ r

)

Ir =

{
1 i f

∣∣xi − xj
∣∣ ≤ r

0 i f
∣∣xi − xj

∣∣ > r
(A9)

where r is a pre-defined distance of interest, xi and xj are the positions of any two change
pixels, n is the total number of change pixels, and A is the image area. Ripley’s K is a
geospatial index to tell if points are dispersive or clustered in space. When the point
distribution is close to complete spatial randomness, Kr will be close to πr2. The higher the
value, the more clustered the points. For a more efficient calculation of Kr, we down-sample
the change map to 100 m × 100 m resolution, and set r = 100 m. After computing the
Kr value for all binary maps, we choose the one with intermediate Kr value as our final
change map.
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Abstract: Many SAR satellites such as the ALOS-2 satellite and Sentinel-1A satellite can be used
in Interferometric Synthetic Aperture Radar (InSAR) to identify landslides. As their wavelengths
are different, they can perform differently in the same area. In this study, we selected the alpine
canyon heavy forest area of the Baishugong–Shangjiangxiang section of the Jinsha River with a
strong uplift of faults and folds as the study area. The Small Baseline Subset (SBAS)–InSAR was
used for landslide identification to compare the reliability and applicability of L-band ALOS-2 data
and C-band Sentinel-1A data. In total, 13 potential landslides were identified, of which 12 potential
landslides were identified by ALOS-2 data, two landslides were identified by Sentinel-1A data, and
the Kongzhigong (KZG) landslide was identified by both datasets. Then, the field investigation was
used to verify the identification results and analyze the genetic mechanism of four typical landslides.
Both the Duila (DL) and KZG landslides are bedding slip, while the Jirenhe (JRH) and Maopo (MP)
landslides are creep–pull failure. Then, the difference between ALOS-2 and Sentinel-1A data on KZG
landslide was compared. A total of 35,961 deformation points on the KZG landslide were obtained
using ALOS-2 data, which are relatively dense. Meanwhile, a total of 7715 deformation points were
obtained by Sentinel-1A data, which are relatively scattered and seriously lacking, especially in areas
with dense vegetation coverage. Comparing the advantages of ALOS-2 and Sentinel-1A data and the
identification results of potential landslides, the reliability and applicability of ALOS-2 data in the
identification of potential landslides in areas with dense vegetation cover and complex geological
conditions were confirmed from the aspects of vegetation cover, topography, field investigation, and
comparative analysis of typical landslides.

Keywords: ALOS-2; Sentinel-1A; SBAS-InSAR; heavy forest area; potential landslide identification

1. Introduction

Landslides are common geological disasters in mountainous areas, causing serious
casualties and economic losses [1,2]. The Jinsha River Basin has dense vegetation coverage,
complex geological conditions, and many deep faults. Strong tectonic activities have led to
the rapid uplift of the reach, with a rate of up to 5 mm/y [3,4], resulting in frequent disasters
such as landslides and debris flows [5,6]. These disasters are likely to cause blocked rivers,
resulting in landslide-dammed-lake outburst floods, which seriously threaten the safety of
downstream residents [7,8]. For example, the Baige landslide and river blocking occurred
twice in the upper reaches of the Jinsha River, destroying hundreds of houses and causing
direct economy losses of about USD 963.5 million [7]. In addition, there are many paleo-
landslide deposits along the Jinsha River [9,10], which are potential hazards for residents
and buildings in the downstream. Therefore, it is of great significance to identify potential
landslides along the Jinsha River.
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Accurate identification of potential landslides is the key to effective disaster prevention
and reduction [11]. Therefore, identification and verification methods are particularly
important, as they can effectively reduce the uncertainty of results. The traditional landslide
identification methods are mainly field investigation and monitoring, including the macro
characteristics of landslide deformation, global navigation satellite systems (GNSS), leveling
measurements, and so on, and the accuracy can reach the centimeter-to-millimeter level [12].
However, these monitoring methods are point-measurement-based [13]. When the scope of
the study area is large and the geological conditions are complex, there are some problems,
such as being difficult for geologists and instruments to reach, the omission of geological
disasters, and being relatively time consuming. Landslide susceptibility mapping is an
effective method to predict landslides, and the use of a combined model can reduce the
uncertainty of results [14–16]. The prediction result of this method is usually larger than
the range of a landslide, and there will also be problems regarding the time-consuming
and laborious nature of field investigation. With the development of remote sensing
technology, optical remote sensing interpretation and InSAR technology have effectively
solved these problems. However, there are various problems in a wide range of optical
remote sensing images, such as untimely updating and it being difficult to determine the
macro quantitative changes. InSAR technology has the advantages of all-weather and all-
day, meaning that it is widely used. It was used to obtain deformation information as early
as 1969. Then, with the continuous maturation and improvement in technology, time series
InSAR technology has been proposed and applied in many fields and all over the world,
such as landslide monitoring and identification [17,18], surface deformation monitoring
in mined-out areas [13], land subsidence [19], earthquakes [20], glacier movement [21],
and so on. When combined with optical images and field investigation, it can effectively
determine and verify the accuracy of the results [12,22].

InSAR technology is the product of the combination of microwave imaging and
electromagnetic wave interferometry, which uses the principle of interferometry at the
macroscopic level and can monitor the surface deformation through SAR satellite im-
ages [23]. However, satellites in different bands and parameters have different penetration
capabilities, resulting in different information quality. Radar satellites still in service are
mainly divided into the X-, C-, and L-bands [24]. X-band SAR data have the characteristics
of high resolution and short wavelength, with a wavelength of about 3.1 cm [25]. Repre-
sentative satellites are COSMO-SkyMed and TerraSAR launched in June 2007. Affected by
short wavelength, the influence of atmospheric phase screens (APS) on these satellites is
more serious [26]. The wavelength of C-band is about 5.6 cm, between X-band and L-band,
and the representative satellites are Sentinel-1 and Radarsat-2 [27]. The Sentinel-1 satellite
data have the characteristics of high spatial resolution and being free, which means that
they are widely used in deformation monitoring of geological hazards [12,28]. The L-band
satellite has a wavelength of about 23.5 cm, with strong penetration capability, meaning
that SAR images have a high coherence in the vegetation-covered areas. The representative
satellites are ALOS and ALOS-2, which were launched by the Japan Aerospace Exploration
Agency (JAXA) in 2006 and 2014, respectively [29]. In most studies, both ALOS-2 and
Sentinel-1 data were used to obtain the land subsidence [30] and soil moisture [31,32], mon-
itor landslides [33,34], and so on. The applicability of the two datasets was compared and
analyzed, and better results were achieved [33,35]. In this study, ALOS-2 and Sentinel-1A
data were used to obtain surface deformation and identify landslides.

In the alpine and canyon areas with high vegetation coverage, the long-term phase
change map obtained by the ALOS-2 data is clearer, while the phase change map of the
Sentinel-1A data is better in the exposed rock and soil area. A large number of vegetation
and other factors will reduce the data coherence, and then produce noise points that can
easily be mistaken for the deformation area, which makes the latter landslide field survey
more ineffective [36]. The L-band ALOS-2 data provides better spatial coverage of landslide
movements than the C-band Sentinel-1 data, especially in rural areas along lake shores [32].
Compared to the displacement signal amplitudes measured by Sentinel-1, the ALOS-2 data
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have higher values due to the high surface penetration of the L-band. Sentinel-1 showed
better results on bare soil surfaces, while ALOS-2 was more sensitive on vegetation-covered
surfaces [24,31,37]. Therefore, the accuracy of identification results can be improved by
using InSAR technology to process multi-sensor satellite data [33].

The study aimed to identify potential landslides in the Baishugong–Shangjiangxiang
section of the Jinsha River using ALOS-2 and Sentinel-1A data and analyze the applicability
of the data. The study was conducted in three stages: (a) we used SBAS-InSAR technology
to obtain the phase change and surface deformation rate of long-term series, and combined
it with multi-phase Google Earth images to identify potential landslides to reduce the
uncertainty of results; (b) the identification results were verified and the genetic mecha-
nism of typical landslides was analyzed through field investigation; (c) the deformation
characteristics of the KZG landslide were analyzed based on the results of ALOS-2 and
Sentinel-1A data. Finally, the reliability and applicability of ALOS-2 and Sentinel-1A data
were comprehensively analyzed and discussed.

2. Materials and Methods
2.1. Study Area

The study area is located in the Baishugong–Shangjiangxiang section of the upper
reaches of the Jinsha River, Diqing Tibetan Autonomous Prefecture, Yunnan Province,
China, on the southeast edge of the Qinghai Tibet Plateau (Figure 1a). The study area
covers an area of about 1171 km2, with developed vegetation, which is a heavy forest area.
Under the strong uplifting action, the river is deeply incised to form a V-shaped deep and
steep valley [3], and the erosion, denudation, and glacial erosion make it an alpine and
canyon landform. The elevation of the study area is 1862~4502 m, and the height difference
is 2640 m.

Affected by multi-stage movement, the geological structure is complex, and deep
and large faults (Jinsha River East branch fault zone, Zhongdian-Longpan-Qiaohou fault
zone, Daju-Lijiang fault zone, Xiaojinhe-Lijiang fault zone, Jinsha River fault zone, Heqing-
Eryuan fault zone, Weixi-Qiaohou fault zone) and folds (Songpan-Ganzi geosyncline fold
system of class I tectonic unit) have developed in a large area. Plate movement caused the
fault zone to move and slip, forming large-scale thrust nappe and translational shear or
strike slip in the region, resulting in discontinuity or loss of structural units. The exposed
strata in the area from Cenozoic to Paleozoic are Quaternary (Q), Tertiary (E), Triassic (T),
Permian (P), Carboniferous (C), Devonian (D), and Cambrian (∈). The quaternary stratum
is dominated by sediments, and the Tertiary, Triassic, and Permian lithology is mainly
sedimentary rocks, such as conglomerate, sandstone and limestone; the lithology of the
Carboniferous system is mainly limestone; the lithology of the Devonian and Cambrian is
mainly metamorphic rocks, such as schist and phyllite.

The study area is mainly characterized by a monsoon climate. Affected by the south-
west monsoon and southeast monsoon, the rainfall is concentrated, and the rainy season is
from May to October. The annual average rainfall is 954 mm and the average evaporation
is 2179 mm. The annual average runoff is 1360 m3/s and the annual average temperature
is 12.6 ◦C. Small earthquakes are frequent in the region, with peak seismic acceleration of
0.20 g, characteristic period of seismic response spectrum of 0.40 s, and seismic intensity of
VIII. Strong tectonic activity, continuous river undercutting erosion, long-term weathering,
a complex high ground stress field, free surface unloading, and other factors in the study
area are the fundamental factors leading to the instability of slopes on both banks of the
river, resulting in frequent landslides and other disasters [6].
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Figure 1. (a) The geographical location of the study area; (b) the coverage of the ALOS-2 and
Sentinel-1A data; (c) the geological map of the study area.

2.2. Data Acquisition

The ascending data of ALOS-2 and Sentinel-1A satellites and digital elevation model
(DEM) data were used for SBAS-InSAR technology processing. The ALOS-2 satellite
images were provided by the Japan Aerospace Exploration Agency (JAXA) and launched
in May 2014. Sentinel-1A satellite images were provided by the European Space Agency. It
was launched in October 2014. The DEM used in the research was obtained by the Shuttle
Radar Topography Mission (SRTM) sensor, with a spatial resolution of 30 m.

ALOS-2 is the only L-band SAR satellite in operation, with a wavelength of about
23.5 cm and a frequency of 1.2 GHz. The ALOS-2 satellite can obtain observation data
without the influence of climate conditions and time. The L-band can penetrate vegetation,
and it can be better used to monitor surface deformation in heavy forest areas. The coverage
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of the data is shown in Figure 1b, and the type is L1.1. The time span is from 6 October 2014
to 25 May 2020, with a total of 15 images. The resolution is 10 m and the incident angle is
36.28◦. Affected by satellite shooting, the data time interval is not periodic.

Sentinel-1A is a C-band radar satellite with a wavelength of about 5.6 cm, which has
certain limitations in densely vegetated areas. It can penetrate clouds and is not affected
by weather and climate. It can be used to study the change in flood areas, landslides, and
forest fire monitoring, and so on. The coverage of the image is shown in Figure 1b, and the
data type is L1.1, slant-distance single look complex (SLC) mode. The time span is from
18 March 2017 to 21 November 2020, with a total of 29 images and a time interval of 48
days. The imaging mode is interferometric wide (IW) swath, the polarization mode is VV,
the average incident angle is 33.91◦, and the ground resolution is 5 × 20 m. The specific
information relating to satellite data is shown in Table 1.

Table 1. Basic information of the ALOS-2 and Sentinel-1A images.

Satellite ALOS-2 Sentinel-1A

Orbital direction Ascending Ascending
Temporal coverage 6 October 2014–25 May 2020 18 March 2017–21 November 2020

Level L1.1 L1.1
Band L-band C-band

Wavelength 23.5 cm 5.6 cm
Resolution 10 m 5 × 20 m

Average angle of incidence 36.28◦ 33.91◦

Polarization HH VV

2.3. SBAS-InSAR Technology

SBAS-InSAR technology was proposed in 2002, overcoming the limitations of spatio-
temporal incoherence of SAR data and vulnerability to atmospheric effects, and generates
more continuous ground phase change and deformation data in time and space [38,39], with
monitoring accuracy up to the millimeter level. The GAMMA software was used to process
ALOS-2 and Sentinel-1A data by SBAS-InSAR technology to obtain the surface deformation
phase change and deformation rate of the Baishugong–Shangjiangxiang section. The main
steps included: geocoding, image registration, generating connection diagrams, differential
interference processing, removing the atmospheric error and elevation residual, estimating
the deformation rate by means of the singular value decomposition (SVD) method, and
reverse geocoding. The flow chart is shown in Figure 2c.

Geocoding and image registration constituted the preprocessing process of SAR data.
The purpose was to match the data of the same satellite to the same common reference
system. Then, according to the interval of SAR data, in order to ensure the coherence
of the data, the time and spatial baseline of ALOS-2 data were set to 900 d and 420 m,
respectively, and 60 interferometric pairs were obtained. The time and spatial baseline of
Sentinel-1A data were set to 150 d and 240 m, respectively, and 81 interferometric pairs
were obtained. The baseline connection diagrams are shown in Figure 2a,b, respectively.
According to the engineering geological conditions of the study area, the adaptive filtering
method was selected, and the unwrapping coefficient was set to 0.2 for processing, which
was used to remove the interference of factors such as atmosphere, terrain, vegetation, and
diffuse reflection of ground objects, improve the accuracy of phase map and velocity, and
then ensure the accuracy of landslide identification results. The processing of removing
atmospheric error and elevation residual sought to analyze the time series of the interference
processed data and estimate the deformation rate and the phase change map of the study
area combined with the SVD method. The color change in the phase diagram represents the
change in phase, and the color difference represents the phase difference. When the phase
difference is large, it represents that there is the deformation of this place that experiences a
large change, which can be identified as a potential landslide area. Finally, through reverse
geocoding, the results are encoded into the cartographic coordinate system, and then the
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deformation results with geographical coordinates are obtained, which are projected onto
the map to further study the landslide.
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Figure 2. (a) Time−baseline of interferometric pairs of Sentinel-1A images; (b) time−baseline of
interferometric pairs of ALOS-2 images; (c) SBAS-InSAR processing flow chart.

2.4. Normalized Difference Vegetation Index (NDVI)

The upper reaches of Jinsha River are heavily forested with dense vegetation. Due
to the long river reach in the study area, there are differences in vegetation coverage at
different locations, and the microwave signal strength and penetration ability of satellite
data at different wavelengths are different. In this study, we used the normalized difference
vegetation index (NDVI) to obtain the overall vegetation coverage of the study area, and
then compare and analyze the applicability of ALOS-2 and Sentinel-1A data in the study
area. NDVI was obtained by processing Landsat 8 satellite data with ArcGIS software. The
data were accessed from http://www.gscloud.cn for free, (accessed on 9 April 2020). The
calculation formula is as follows:

NDVI = (IR − R)/(IR + R) (1)
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where, R and IR are the energy reflected in the red and infrared portion of the electromag-
netic spectrum, respectively [40].

3. Results
3.1. Identification of Potential Landslides

The surface phase change and deformation information of the section from Baishugong
to Shangjiangxiang along the Jinsha River was obtained using SBAS-InSAR technology.
The phase change of surface displacement can be represented by a continuous color band.
When the color band changes rapidly, it indicates that the displacement changes greatly,
and it is regarded as a potential landslide area. Therefore, the surface phase map of the
study area is interpreted to obtain the potential landslide area. Then, combined with the
landform, deformation rate, and Google Earth images of the study area, the basic elements
of the landslide are identified, and the landslide boundary is preliminarily delineated and
confirmed as the identification of a potential landslide.

By interpreting the phase change information of surface displacement obtained from
ALOS-2 and Sentinel-1A data, a total of 13 potential landslides and two deformation areas
were identified, and their distribution is shown in Figure 3. There are more landslides
distributed on the right bank, and potential landslides are named from north to south
according to the location. We can find that 12 of them were identified by ALOS-2 data
and 2 potential landslides were identified by Sentinel-1A data. The KZG landslide was
identified in both datasets. The NDVI of the study area obtained by using ArcGIS software
(Figure 4) shows that the NDVI value in the north is small, which indicates that the
vegetation is sparse and the coverage is low. The vegetation in the south is dense and
the coverage is high. The NDVI value is large, which can be up to 0.609. Therefore, the
number of landslides in the north is higher than that in the south. The NDVI and slope
values of potential landslides are shown in Table 2. The slope of the landslide is obtained
through the slope extraction function of DEM by ArcGIS software. We can find that the
slope of landslides is between 20◦ and 40◦, with a maximum slope of 39.4◦ (Xiaohekou
landslide), and a minimum slope of 20.7◦ (Wulucun landslide). The vegetation coverage of
the southern landslides is obviously higher than that of the northern landslides, and the
vegetation coverage of the Tacheng landslide is the most intensive. The KZG landslide is
easily monitored by the two datasets due to low vegetation coverage and slope.
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Table 2. Vegetation coverage and slope of potential landslides.

Landslide NDVI Slope (◦) Landslide NDVI Slope (◦)

Duila 0.058 31 Jueyuge 0.090 24.5
Kongzhigong 0.060 28.8 Xiaohekou 0.252 39.4

Meiding 0.099 37.4 Tacheng 0.413 37.9
Dingzhui 0.068 31.4 Xiapa 0.223 31.9

Jirenhe 0.074 26.9 Maopo 0.214 23.8
Zitongnong 0.083 36 Wulucun 0.304 20.7

Azanlaka 0.089 27.9 / / /

Field investigation is the most effective way of verifying the accuracy of potential
landslide identification results. Therefore, we went to the study area on 25 April 2021 to
carry out a field geological survey for the identified landslide for 17 days. Through the field
investigation, we found that the identified macro damage characteristics such as cracks at
the trailing edge of the landslide, landslide accumulation, and gullies are obvious, and the
failure position is roughly the same as that with a large deformation rate. According to the
investigation results, we finally delineated the landslide boundary. These landslides are
deformed and have the possibility of occurrence, and some of them are the deformation of
old landslide deposits, which proves that the identification results are more accurate. Then,
typical landslides were selected for detailed analysis.

3.2. On-Site Investigation and Mechanism Analysis of Typical Landslides

Six typical landslides including Duila (DL), Kongzhigong (KZG), Jirenhe (JRH), Maopo
(MP), Zitongnong (ZTN), and Xiaohekou (XHK) were selected for detailed analysis. Ac-
cording to the interpretation of remote sensing images and SBAS-InSAR deformation rate,
DL, KZG, JRH, and MP landsides are local deformation (Figure 5). Combined with the
field investigation, the deformation mechanism was further analyzed. The ZTN and XHK
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landslides are deforming landslides. Due to the influence of dense vegetation, it is diffi-
cult to conduct detailed geological investigation. Therefore, the deformation mechanism
was preliminarily analyzed based only on the two aspects of remote sensing images and
deformation rate.
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3.2.1. Old Landslide Deformation Features

The DL and KZG landslides are distributed on the right bank of the Jinsha River under
study, and the front edge of the landslide extends to the Jinsha River terrace. The front
edge of the landslide has typical river terrace landform characteristics. The JRH and MP
landslides are distributed on the left side of the Jinsha River, and the front edge of the JRH
landslide extends to the bottom of the valley, while the front edge of the MP landslide is
a gentle and open accumulation fan. Four landslides are located near the junction of the
Zhongdian-Dagu strike–slip fault, the Tuoding-Kaiwen fault, and the Jinsha River-Honghe
thrust fault zone. The KZG, JRH, and MP landslides are crossed by the faults, so the
underlying bedrock in this area has poor integrity and is prone to landslides. The main
strata in the study area are gray-green micromorphites, sericite micromorphites intercalated
with phyllite in the Lower Cambrian System; dolomite, marble intercalated with marl in
the Middle and Upper Silurian System; Lower and Middle phyllites, slates, etc.; gray-green
phyllites intercalated with micromorphites and dacites in the Upper Permian; and purplish-
red conglomerates intercalated with mudstones and limestones in the Upper Triassic. The
field investigation found that there was almost no exposed bedrock, and the main material
composition was gravel soil. Among them, the overlying strata under DL, JRH, and MP
were thin-layered phyllite with low strength, showing moderate to strong weathering,
with pores. The medium-thin layer of slate or dolomite in the overlying strata under the
KZG landslide is moderately weathered, while the weathered phyllite and dolomite have
a higher degree of weathering and lower strength. The slope direction of KZG landslide
is 78◦, the slope is about 28◦, and the rock formation is 102◦–135◦∠39◦–60◦. It was found
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through on-site investigation that in the middle of the intersection of dip angles on the slope
outside the steep slope, all rock layers are present. It can be inferred that the deformation
mechanism of the DL and KZG landslides is bedding slip with traction failure caused
by bedding phyllite slip and bending. The bedrock layer in the upper part of the JRH
landslide is 130◦∠20◦, and the bedrock layer is almost orthogonal to the bank slope. The
large angle intersects, and the deformation of the rock stratum caused by thin phyllite is
mainly interlayer slip and bending. The long axis direction of the MP landslide is 317◦,
and the occurrence of the phyllite bedrock layer beneath the landslide body is 195◦∠65◦,
the bedrock layer intersects with the landslide surface at a large angle and slightly inclines
to the inside of the slope. Based on this, it is speculated that in the early stage of the JRH
landslide and the MP landslide, the fragmentation slopes were cut by multiple groups of
structural planes, meaning that the deformation of the accumulation was mainly through
the deformation of the structure. The phyllite rock mass was fully disintegrated during the
sliding deformation process of the landslide, which eventually leads to instability failure,
and the failure mode of it was the creep–pull failure.

The middle and lower reaches of the study area are densely covered with vegetation.
Figure 5 shows the landslide deformation rate obtained from ALOS-2 data. ALOS-2 data
has better penetrability through vegetation and can monitor the surface deformation in the
densely vegetated areas. As can be seen from Figure 5, the local deformation of the four
landslides is large and obvious. According to the field investigation results, the boundary
of the landslide was finally determined, as shown in the white curve in Figure 5. There
are gullies developed on the surface of the DL and KZG landslides, and the deformation
is distributed near the gullies. Figure 5a shows that the deformation is distributed in the
middle and lower parts of DL. According to the field investigation of the DL landslide
(Figure 6a), in the houses seriously damaged by the internal and external sliding of the
accumulation near the gully, there are four cracks on the side wall of the house, all of which
penetrate through the wall, and they have obvious characteristics of a wide bottom and
narrow top. Gullies also appear in the upper part of the JRH landslide. The deformation
rate of the JRH landslide is between−12.63 and 14.14 mm/y, and the deformation is mostly
located in the middle of the slope (Figure 5a). The upper part of the gullies is 3–6 m wide,
2 m deep, and has a slope of 20◦; the lower part is 2–4 m wide and 2 m deep and has a slope
of 25.5◦ (Figure 6e). The material in the gully section is mainly silty sand, and the rest is
phyllite crushed stone, with a crushed stone content of about 40%. After on-site verification,
part of the surface deformation was found to be caused by the local sliding of the surface
rock and soil mass. The sliding mostly formed surface features such as tension cracks, small
accumulations, or small steps, as shown in Figure 6c for the KZG landslide. Regarding the
small landslide in the direction of the highway, the width of the road is 4.5 m, and the width
of the arc-shaped tensile crack at the trailing edge of the landslide is 4 cm. This belongs to
the landslide formed by the local instability of the superficial soil mass, which was induced
by human engineering activities. Figure 6f is the tension crack of the MP landslide, which is
the trailing crack in Figure 6g, with a dislocation height difference of 30–45 cm, a length of
about 40 m, a strike of roughly 335◦, and an irregular arc shape. Figure 6b shows the deposit
of the DL landslide. The exposed material of the deposit here is gravel soil, with crushed
stone accounting for about 60%. Poor, angular–sub-angular, and low shrubs can be seen on
the surface of the accumulation. Figure 6d shows an artificial excavation slope profile of
the KZG landslide. The outcrop height of it is 6 m, and the material composition mainly
consists of blocks of stone soil, of which the content of boulders is about 35%. The lithology
of the block rock is mainly slate and limestone, the size is mixed, there is no sorting, the
particle size is generally 2–10 cm, the larger ones can reach 45 cm, the rounding is poor,
they are angular or sub-angular, and the vegetation on the accumulation is flourishing.
Figure 6g shows a small soil landslide on MP; according to the field investigation, it is an
active landslide, which slides every rainy season and forms a multi-level ledge. The height
difference between the trailing edge of the landslide and the point is 12 m, the horizontal
distance is 30 m, and the slope is 21.5◦. There are six (I–VI) platforms from the upper part
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to the lower part. The staggered height difference of the I platform is 40 cm, the width of
the platform between the I–II sills is 4.3 m, and the length is 9 m. The height difference of
the grade III platform sill is 55cm, the width of the platform between grades III and IV is
4.9 m, and the length is 10.7 m. The platform between them is 0.75 m wide and 10.5 m long;
the height difference between the V platform sills is 47 cm and the platform between the
V–VI platform sills is 8.4 m wide and 25 m long; and the VI platform sills are staggered and
the height difference is 2.3 m.
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Figure 6. Field investigation of old landslide deposits. (a) Cracks on the surface of the house; (b) the
downstream boundary of the deposit; (c) a small landslide in the free direction of the highway; (d) a
typical section at the top of the downstream side of the KZG Village; (e) the gully between platform
IV and platform V; (f) a tension crack in MP landslide; (g) a small soil landslide in MP landslide.
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3.2.2. Integral Deforming Landslides

ZTN and XHK landslides (Figure 7) are distributed on the right bank of the Jinsha River.
Combining NDVI and Google Earth images, it can be found that the surface vegetation
of ZTN and XHK landslides is dense, and the landform of the front edge of landslides is
river terrace landform. Due to the influence of vegetation, a detailed field investigation on
landslides was not carried out, so the landslide boundary was comprehensively determined
by Google image, landform, and SBAS-InSAR (white line in Figure 7). Because ALOS-2
data has strong penetrability through vegetation, the two landslides were identified after
data processing by SBAS-InSAR technology. According to the interpretation results, it was
found that both the ZTN and XHK landslides had large deformation as a whole and the
deformation rate of the two landslides can reach −13 mm/y. The larger deformation area
is mainly distributed in the upper and lower parts. According to the distribution of the
deformation area, it is inferred that the deformation of the ZTN is caused by the lower rock
and soil mass loosening and sliding downward due to the influence of precipitation or
human activities, so the landslide is a retrogressive landslide; the deformation of XHK may
be due to the fact that the slope is steep and the slope is affected by precipitation, causing
the surface rock and soil to loosen and slide downward.
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3.3. Deformation Results of KZG Landslide Based on SAR Data

The surface deformation rate of the KZG landslide was obtained by processing
Sentinel-1A and ALOS-2 satellite data as shown in Figure 8. From the deformation rate
map, it can be seen that the surface deformation rate obtained by Sentinel-1A data is
between −27.99 and 14.28 mm/y, and the rate obtained by the ALOS-2 data is between
−22.62 and 14.45 mm/y, indicating that the results obtained from the two data are roughly
the same in value. In terms of the density of deformation points, the deformation points
obtained by Sentinel-1A are relatively scattered and seriously lacking, especially in areas
with dense vegetation coverage, with a total of 7715 deformation points, while the results
of ALOS-2 data are relatively dense, with a total of 35,961 deformation points. The density
of points is significantly greater than that of the Sentinel-1A data, at 4.5 times that of the
Sentinel-1A data. The deformation points are counted and divided into five intervals. The
statistical results are shown in Figure 8c. Except for the interval with the rate of <−5 mm/y,
the number of deformation points obtained by ALOS-2 data is greater than Sentinel-1A.
The deformation rate obtained by Sentinel-1A is mainly concentrated at −15–−5 mm/y,
with 5546 deformation points, accounting for 71.8% of the total. The deformation rate
obtained by ALOS-2 data is mainly concentrated at –5–5mm/y, with 30,278 deformation
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points, accounting for 84.1% of the total. The number of points is much larger than that
of Sentinel-1A in this range. From the distribution of landslide deformation, the result of
the ALOS-2 data shows that the deformation is mainly concentrated in four regions of the
slope, numbered I to IV (in Figure 8). The deformation results obtained by Sentinel-1A data
show that the landslide deformation is mainly concentrated in the middle and lower parts
of the slope, and the deformation range is large, making it difficult to obtain the specific
deformation area. Comparing Figure 8a,b, except for the III region, there are obvious
differences in the deformation of the areas of I, II, and IV.
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Figure 8. Deformation details and features of the KZG landslide with different data: (a) Sentinel-1A
data, (b) ALOS-2 data, and (c) statistical diagram of deformation points.

4. Discussion

InSAR technology is one of the most effective methods for the early identification of
potential landslides. In most studies, both Sentinel-1 and ALOS-2 satellite data are used to
obtain surface deformation information. In this study, we also selected these two satellite
datasets to identify potential landslides in the study area.

In terms of the number of the potential landslides, more landslides can be identified
in the study area using ALOS-2 data, while Sentinel-1A data were relatively less applicable,
with fewer identifiable landslides. Both Sentinel-1 and ALOS-2 satellites have the advan-
tages of penetrating clouds and all-weather observations. However, there are some different
drawbacks and advantages in the identification of potential landslides in large areas. The
Sentinel-1 satellite in the C-band has a wavelength of 5.6 cm, with a width of 250 km and
a large coverage area. The satellite revisit time is 12 days for a single satellite [12], which
ensures the coherence of the data. ALOS-2 is the only operational L-band satellite that can
provide high-resolution SAR images, with a width of 70 km and a wavelength of 23.5 cm.
The microwave signals of the satellite will be interfered by vegetation, resulting in the
decoherence of data and the loss of deformation data [28]. Compared with other SAR
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sensors, the penetration ability of L-band to vegetation cover is more effective than C and
X bands, and it can more accurately detect the change in the ground information [32,41].
Therefore, for the watershed with relatively sparse vegetation, it is more appropriate to use
Sentinel-1A data for geological hazard identification with relatively low cost and less data.
However, for the upper reaches of Jinsha River with dense vegetation (such as the section
from Baishugong to Shangjiangxiang, Figure 4), the ALOS-2 data is more suitable, and the
results of the deformation monitoring are more accurate. Additionally, the HH polarization
used in ALOS-2 data is more sensitive to surface deformation than the VV polarization
used in Sentinel-1A data [42].

Through early identification and field investigation, it was found that the ALOS-2
data, which has a strong penetrating ability through vegetation, has a strong advantage in
identifying landslides in alpine and canyon areas covered with dense vegetation.

After on-site investigation and verification and deformation mechanism analysis of
the landslides identified in the study area, the deformation mechanisms of the landslides
identified in the upstream of the study area are all bedding sliding, and most of the
landslides identified in the middle and lower reaches are slip–bending–creep–crack-type
landslides, which can be seen in the downstream. Additionally, traction landslides can be
found in the lower reach. It is easy to explain this in combination with the distribution of
strata and lithology: most of the landslides identified in the upper reaches of the study
area are distributed on the right bank of the Jinsha River. On the lateral slope outside
the slope, the bedding plane directly affects the stability of the rock slope, and a shear
slip plane is easily formed along the bedding plane [43]. The bedding slope is affected
by factors such as precipitation and human activities. It is very easy to slip in the lower
reaches of the study area; the landslides in the middle and lower reaches of the study area
are mainly distributed on the left bank of the Jinsha River, and the landslide rock layers on
the left bank tend to be inward, which is conducive to the stability of the slope, but because
the underlying bedrock is broken, and the rocks are mostly thin layers with low-strength
phyllite, soft rock (phyllite) interlayers may eventually lead to the formation of landslides,
and precipitation concentration in the study area plays a key role in the formation of
landslides [44], easily expanding and contracting under the action of precipitation. The
existence of the phyllite interlayer leads to the reduction in its mechanical strength [45–47]
and coupled with the steepness of the slope and the influence of human activities, it is
very easy to make the surface rock mass of the slope slip. Slip bending occurs, and then
develops into a creep–crack-type landslide.

The field investigation found that the areas with large deformation identified by InSAR
were mostly tensile cracks, gullies, and accumulations. The small retaining wall in the MP
landslide is used to surround a small landslide behind. According to the cracks distributed
on the surface of the retaining wall and anti-slide pile, it can be seen that the retaining
wall and anti-slide pile play a certain protective role. At the same time, the small landslide
is also observed in the continuous deformation; in the large deformation area of KZG,
a house with deformation damage was also found. There are four cracks on the side of
the house, which are wide at the bottom and narrow at the top. The cracks are obviously
caused by the deformation of the ground caused by the deformation of the lower rock and
soil. A large deformation occurred in this area, which verifies the reliability of the InSAR
identification results.

For the ZTN and XHK landslides, the integral deformation occurs. Due to the dense
vegetation on the surface of the landslide, it is impossible to conduct on-site field inves-
tigations, and it is impossible to align the deformation mechanism for accurate analysis.
According to the distribution of deformation areas obtained by InSAR, it can be seen that
most areas with large deformation are concentrated in the slope body. In the lower part,
combined with the steep gradient and lithological distribution, it is inferred that most of
the landslides in this area are traction landslides. According to historical case studies, some
large-scale landslides are the result of the evolution of degenerative landslides. Combined
with remote sensing images and field surveys, it is found that the identified landslides
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(such as the KZG and JRH landslides, etc.) are populated by residents, and most of the
identified landslide fronts are built across with carrying traffic. Since the landslides in the
study area have already undergone great deformation, they will continue to deform under
the influence of rainfall and human activities in the future. Therefore, local government
departments need to do a good job in disaster prevention and mitigation work to avoid
unnecessary losses.

Twelve deformation points were selected in the areas of I, II, III, and IV to plot the
time series curves using Sentinel-1A and ALOS-2 deformation data. As shown in Figure 9b,
it can be seen that the deformation of regions I and II is small and mostly maintains a
stable state. The deformation occurs mostly in regions III and IV, showing a downward
trend, and the deformation variable can reach −95 mm. The deformation was in a state of
continuous deformation during the study period and intensified during the rainy season,
which can be divided into three stages: accelerated deformation, slow deformation, and
accelerated deformation again. The time series deformation curve obtained by ALOS-2
data in October 2014 to May 2020 is shown in Figure 9c; the deformation shows a certain
periodicity—that is, from October 2014 to February 2015, the landslide was in a stable state.
Then, affected by the rainy season, the rainfall gradually increased, and the landslide was
affected by erosion, which made the slope of the curve become larger, and then it was in
a state of accelerated deformation. When the rainy season ends, the landslide gradually
returns to a stable state, which makes the landslide change periodically during the study
period—that is, a stable state, accelerated deformation, and a stable state again. Based on
the above analysis, it can be seen that the deformation of the landslide is greatly affected
by the erosion of rainwater. Under the action of rainfall, the loose material source on the
landslide surface slides down, which causes the slope body to show a downward trend.
The results obtained by ALOS-2 data have obvious regularity, showing that the slope
deformation is greatly affected by rainfall, and the greater the rainfall is, the more obvious
the landslide deformation is. The results of Sentinel-1A data also show the characteristics
of rainfall, but the regularity is not obvious. Therefore, ALOS-2 data can better highlight
the deformation characteristics of landslides.
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As observed during the field investigation, area I is located at the top of the KZG
landslide. It can be found that it was a small landslide, which occurred about 5 or 6 years
ago. It has an elliptical area, and many fragments are visible, with the length between 3 and
10 cm. A chair-shaped groove can be seen in the lower part of the landslide. It is speculated
that this may be the tensile crack at the trailing edge of the landslide (Figure 10a), which is
tens of meters long and about 20 cm wide. Affected by surface sedimentation, the crack
is basically closed and difficult to identify. With the results of a rainstorm, the crack may
develop again and evolve into a new trailing edge tensile fracture. When it is connected
to the potential sliding surface inside the accumulation, the landslide may occur. Area
II is located on the right edge of the landslide. The deformation of the area is affected
by human engineering activities. There is an artificial excavation section with a height of
about 8 m. There is a gray-white collapse deposit in the upper part, mostly composed of
rock and soil. The bottom is slate bedrock with an occurrence of 110◦∠53◦ and a spacing
of 15cm. The bedrock is visible at about 80 m downstream of the slope, and the surface
rock mass is seriously broken. Area III is a small accumulation in the middle of the front
edge of the landslide. The artificial excavation section is visible inside, with a height of
about 10 m. The exposed material is gray-white soil, and occasionally blocks of stones with
a particle size of 10–20 cm. In addition, multiple yellow bands can be seen in the profile,
which is a staggered zone. Area IV is located in the leading edge of the KZG landslide,
where the bedrock lithology is medium-thick dolomitic limestone. The occurrence of the
bedding plane is 47◦∠58◦ near the upstream, and 50◦∠38◦, 70◦∠38◦, 53◦∠60◦ near the
downstream. The spacing of the bedding plane is about 30 cm. The bedding plane is rough,
and its integrity is good as a whole. The local fragmentation structure is moderate-weak
weathering, and the bank slope structure is a consequent slope outside the steep slope.
In addition, two groups of structural planes were developed. One group was outside the
steep slope, and the other group was a near-vertical structural plane in the inclined slope,
both of which played a cutting role. The upper part of the bedrock is the accumulation
body, and its thickness can reach 1.5 m. According to the field investigation results, the
deformation in regions I to IV is serious. Therefore, from the deformation rate of slope in
Figure 9, it can be seen that the landslide deformation results obtained from ALOS-2 data
are more in line with the actual change in slope, and the results are more reliable.
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Figure 10. Field photos of areas I to IV. (a) The tensile crack at the trailing edge of the small landslide
in area I; (b) the artificial excavation section in area II; (c) the artificial excavation section in area III;
(d) bedrock outcrop at the bottom of the KZG landslide.
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Therefore, although Sentinel-1A data has many advantages, ALOS-2 data is more
suitable for identifying potential landslides in the lower reaches of the Jinsha River with
dense vegetation and complex geological conditions.

5. Conclusions

In this paper, the typical reach of the Jinsha River from Baishugong to Shangjiangxiang
was selected as the study area. Landslides occurred frequently in the region, which can
easily lead to river blockages. Therefore, it is necessary to identify potential landslides in
the study area.

The SBAS-InSAR technology was used to obtain the surface deformation information
of the study area. Then, potential landslides were identified, and the identification results
were verified by field investigation. Thirteen potential landslides were identified using
C-band Sentinel-1A data and L-band ALOS-2 satellite data. Most of them were distributed
on the right bank of the Jinsha River, and the slope was between 20◦ and 40◦. Twelve
potential landslides were identified by ALOS-2 data, two landslides were identified by
Sentinel-1A data, and KZG landslide was identified by both data. The vegetation in the
north of the study area is sparse and the vegetation in the south is dense, so there are more
landslides in the north, and the landslides identified by Sentinel-1A data are all in the north.
Therefore, in terms of quantity and vegetation penetration ability, ALOS-2 data can identify
more landslides, having good applicability.

The field investigation showed that the potential landslides were deformed, which
confirmed the reliability of the results. Combined with remote sensing data and field
investigation, the deformation mechanisms of the DL landslide and KZG landslide are
bedding slip, and those of the JRH landslide and MP landslide are creep–pull failure.
Through the analysis of the deformation results of the two datasets for the KZG landslide, it
was found that the ALOS-2 data results are relatively dense, and there are four deformation
zones in the landslide, while the Sentienl-1A data results are relatively dispersed, and
the deformation zone is different from the ALOS-2 results, where only region III has
deformation. Therefore, the field investigation and time series analysis of these areas
showed that the deformation of KZG landslide is serious and still in a state of deformation,
and its deformation is affected by rainfall and human activities. Areas I to IV are deformed
and seriously damaged, indicating that ALOS-2 data are more reliable and more suitable for
identifying potential landslides in areas with complex terrain and dense vegetation cover.

Comparing the advantages of ALOS-2 and Sentinel-1A data and the identification
results of potential landslides, ALOS-2 data have higher reliability, applicability, and
advantages in the identification of potential landslides in areas with dense vegetation and
complex geological conditions similar to the study area. The research can provide a basis
for the use and selection of satellite data for potential landslide identification in alpine and
canyon areas, so as to carry out effective disaster prevention and reduction, which has
important practical significance.
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Abstract: With global warming, permafrost is undergoing degradation, which may cause thawing
subsidence, collapse, and emission of greenhouse gases preserved in previously frozen permafrost,
change the local hydrology and ecology system, and threaten infrastructure and indigenous commu-
nities. The Qinghai-Tibet Plateau (QTP) is the world’s largest permafrost region in the middle and
low latitudes. Permafrost status monitoring in the QTP is of great significance to global change and
local economic development. In this study, we used 66 scenes of ALOS data (2007–2009), 73 scenes
of ALOS-2 data (2015–2020) and 284 scenes of Sentinel-1 data (2017–2021) to evaluate the spatial
and temporal permafrost deformation over the 83,000 km2 in the northern QTP, passing through the
Tuotuohe, Beiluhe, Wudaoliang and Xidatan regions. We use the SBAS-InSAR method and present a
coherence weighted least squares estimator without any hypothetical model to calculate long-term
deformation velocity (LTDV) and maximum seasonal deformation (MSD) without any prior knowl-
edge. Analysis of the ALOS results shows that the LTDV ranged from −20 to +20 mm/year during
2007–2009. For the ALOS-2 and Sentinel-1 results, the LTDV ranged from −30 to 30 mm/year during
2015–2021. Further study shows that the expansion areas of permafrost subsidence are concentrated
on braided stream plains and thermokarst lakes. In these areas, due to glacial erosion, surface runoff
and river alluvium, the contents of water and ground ice are sufficient, which could accelerate
permafrost subsidence. In addition, by analyzing LTDV and MSD for the different periods, we found
that the L-band ALOS-2 is more sensitive to the thermal collapse of permafrost than the C-band sensor
and the detected collapse areas (LTDV < −10 mm/year) are consistent with the GF-1/2 thermal
collapse dataset. This research indicates that the InSAR technique could be crucial for monitoring the
evolution of permafrost and freeze-thaw disasters.

Keywords: permafrost; InSAR; Qinghai-Tibet Plateau; ALOS; ALOS-2; Sentinel-1; thermal melting
collapse

1. Introduction

The Qinghai-Tibet Plateau (QTP) is known as the Asian water tower, with an average
altitude of more than 4000 m [1]. It is bounded by the Pamir Plateau in the west, Hengduan
Mountain in the east, the southern end of the Himalayas in the south and Kunlun Altun
Mountain, Qilian Mountain in the north [2]. The QTP is a high terrain and thus receives
more solar radiation energy than lower elevation areas [3]. The Chinese mainland climate
is affected by the South Asian and East Asian monsoons, resulting in a diversity of climates
in different regions, such as the rainy climate in China’s southern part of the Yangtze
River and drought in Northwest China [4]. In addition, the QTP has many glaciers, lakes,
groundwater and surface rivers, making the QTP a super water tower in the plateau area,
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which affects the water system layout of all of Asia [5]. The QTP is a region with a large
amount of permafrost at high latitudes [6]. As a key component of the Earth’s cryosphere,
permafrost plays an important role in the surface energy balance, carbon and water cycles,
terrestrial ecosystem, and hydrological system [7]. In recent years, with global warming,
permafrost degradation has accelerated [8], and degradation has had an impact on the
environment and the energy and material balance. Therefore, it is very important to monitor
the permafrost status on a large scale for a long time series [7].

Traditional measurement methods of permafrost deformation include GPS [9], leveling
surveys [10], and drilling [11]. However, due to the harsh environment of the QTP, these
methods cannot monitor permafrost on a large scale [8]. The multitemporal interferometric
synthetic aperture radar (MT-InSAR) technique is a useful tool to map ground deforma-
tion [12]. MT-InSAR has been used to monitor the freeze-thaw cycle of permafrost [13–30],
and to retrieve the thickness of the active layer [31–36] and permafrost degradation [37–40].
In these studies, some researchers have been committed to monitoring permafrost for a long
time. Zhang [8] used Sentinel-1, ENVISAT and ERS-1 data to evaluate the ground deforma-
tion of permafrost and the risk along the Qinghai-Tibet Railway (QTR) from 1997 to 2018.
The results show that the estimated deformation rate ranged from −20 to +10 mm/year
and most of the QTR appeared to be stable. Daout [41] used ENVISAT and Sentinel-1
data to construct the spatial and temporal dynamics of permafrost deformation in the
northeastern QTP from 2003 to 2019. The results show the pervasive subsidence of the
permafrost of up to ~2 cm/year, increasing by a factor of 2 to 5 from 2003 to 2019. How-
ever, because the C-Band SAR data are easily affected by the region’s vegetation and the
atmosphere, the results may be affected by spatial and temporal decorrelation. The ALOS
Phased Array type L-band Synthetic Aperture Rada (PALSAR) is preferred for ground
subsidence monitoring in areas covered by vegetation and where there is a high rate of
ground deformation [42]. Therefore, in order to improve the coherence of targets, we used
L-band datasets to monitor the ground deformation of permafrost from 2007 to 2021.

The ground deformation process of permafrost is complex. With tectonic activity,
erosion, and sedimentation all interacting in the QTP [43], it is difficult to accurately
describe the freezing and thawing cycle of permafrost. Therefore, research has attempted to
understand the deformation characteristics of permafrost. The sinusoidal model [44,45] and
degree-day model [8,46] were used to describe the seasonal variation in the ground surface
due to up-down deformation cycles of permafrost. However, it remains controversial
which type of model is better at describing seasonal deformation [47]. To extract the
temporal characteristics of permafrost directly from the SAR data, Wang [47] directly
converted the network of interferograms into a deformation time series without a preset
deformation model. Then, the long-term deformation velocity and seasonal deformation
were extracted. However, for seasonal deformation, Wang assumed that the highest terrain
elevation occurred from January to February, and the lowest elevation occurred from
August to October. Wang also averaged the intra-annual deformation value. The average
intra-annual deformation may smooth the features of the permafrost deformation. In
addition, using prior knowledge may not be suitable for application to the QTP with
spatial heterogeneity. In this study, we proposed a long-term deformation velocity and
maximum seasonal deformation model without any prior knowledge to directly extract the
deformation features of permafrost.

To reveal the status of the permafrost, we extracted time series deformation directly.
First, we used 66 scenes of ALOS data (2007–2009), 73 scenes of ALOS-2 data (2015–2020)
and 284 scenes of Sentinel-1 data (2017–2021) to reveal the spatial and temporal permafrost
deformation in the northern QTP. Second, thermal collapse of permafrost was detected.
Finally, we revealed the relationship between the maximum seasonal deformation and the
long-term deformation velocity.
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2. Study Area and Dataset
2.1. Study Area

The study area is located in the Hoh Xil region of the QTP. Hoh Xil is located in Qinghai
Province, China, between Kunlun Mountain and Hoh Xil Mountain [48]. The Hoh Xil area,
located at a high altitude, covers an area of approximately 2.35×105 square kilometers,
with an average altitude of 5000 m [49]. The cold climate conditions make Hoh Xil a natural
permafrost field. More than 90% of the land is covered by permafrost, with a thickness
of 80~120 m [50]. There are a large number of glaciers and lakes. Glaciers have created
a large-scale glacial erosion of mountains and produced a large number of deposits [51].
These deposits freeze and thaw repeatedly in the extremely cold environment, and are de-
composed into sand of different particle sizes, to form different landscapes [52]. In addition,
the ice and snow on the high mountains continue to flow into the Hoh Xil basin and finally
converge in the lake [53]. Eventually, the Hoh Xil region evolved many types of landforms.
The study area (Figure 1) is located in the northern part of the QTP, passing through the
Tuouohe, Beiluhe, Wudaoliang and Xidatan (90.713~95.828◦E, 33.981~36.197◦N). The mean
annual ground temperature of the study area is close to 0 ◦C, with elevations from 2600
to 7000 m. The annual precipitation is between 50 mm and 400 mm [54]. The typical
geomorphic types include glaciers, lakes, hot melt lakes, alpine meadows, and alpine
grasslands. There is a large amount permafrost and seasonally frozen soil which provides
abundant opportunities for us to study the permafrost deformation.

Figure 1. The study area with topography and surface traces of four overlapping ALOS ascending
tracks, three ALOS-2 ascending tracks and two Sentinel-1 descending tracks in the northern QTP.

2.2. ALOS and ALOS-2 Data

The first SAR dataset was acquired by the Japanese Advanced Land Observing Satellite
(L-band Synthetic Aperture Radar ALOS PALSAR). The wavelength of ALOS PALSAR
is 23.62 cm with a pixel resolution of 12.5 m and a swath of 70 km. The incidence angles
range between 36◦ and 38◦. The images correspond to the ascending orbit that is northeast-
looking [55]. In this study, a total of 66 scenes of ascending stripmap mode ALOS PALSAR
data along four adjacent tracks covering seven frames from 2007 to 2009, were collected in
the northern QTP. The acquired ALOS data are shown in Table 1. The second SAR dataset
was acquired by the Advanced Land Observing Satellite-2 (L-band ALOS-2 PALSAR-2)

63



Remote Sens. 2022, 14, 1870

launched in May 2014 by the Japan Aerospace Exploration Agency (JAXA). The revisit cycle
of the ALOS-2 PALSAR-2 is 14 days [56]. In this study, a total of 73 scenes of ascending
ALOS-2 PALSAR-2 data along three tracks covering four frames from 2015 to 2020 were
collected in the northern QTP. The acquired ALOS-2 data are shown in Table 2.

Table 1. ALOS/PALSAR Data.

ALOS/PALSAR
Path-Frame Number of SAR Images Acquisition Time Resolution (Azimuth) Ground Coverage

491-690 10 16 June 2007~
12 December 2009 10 m 70 km × 100 km

491-700 10 16 June 2007~
12 December 2009 10 m 70 km × 100 km

492-690 17 15 February 2007~
23 February 2010 10 m 70 km × 100 km

493-680 12 17 January 2007~
09 March 2009 10 m 70 km × 100 km

493-690 12 17 January 2007~
09 March 2009 10 m 70 km × 100 km

494-680 11 21 June 2007~
08 February 2009 10 m 70 km × 100 km

494-690 11 21 June 2007~
08 February 2009 10 m 70 km × 100 km

Table 2. ALOS-2/PALSAR-2 Data.

ALOS-2/PALSAR-2
Path-Row-Id Number of SAR Images Acquisition Time Resolution (Azimuth) Ground Coverage

152-680-1 20 24 February 2015~
09 November 2021 10 m 70 km × 70 km

152-690-1 15 15 December 2015~
03 September 2019 10 m 70 km × 70 km

152-690-2 17 30 June 2015~
21 December 2021 10 m 70 km × 70 km

151-700-1 20 23 July 2015~
16 January 2020 10 m 70 km × 70 km

2.3. Sentinel-1 Data

Sentinel-1 is a two satellites constellation that carries C-band SAR sensors (~5.6 cm
wavelength) under the Copernicus Programme coordinated and managed by the European
Space Agency (ESA). Sentinel-1 data are provided to users free of charge. The revisit cycle
of Sentinel-1 single satellite A or B is 12 days in all weather conditions, day and night [57].
In this study, a total of 284 scenes of descending Sentinel-1 TOPS data along two tracks
covering two frames from 2017 to 2021, were collected in the northern QTP. The Sentinel-1
datasets were acquired in interferometric wide swath (IW) mode. The acquired Sentinel-1
data are shown in Table 3.

Table 3. Sentinel-1 Data.

Sentinel-1 Path-Frame Number of SAR Images Acquisition Time Resolution (Azimuth) Ground Coverage

77-475 161 16 March 2017~
12 December 2021 20 m 250 km × 167 km

150-475 123 11 October 2017~
01 December 2021 20 m 250 km × 167 km

3. Methodology

A coherence weighted least square estimator without any hypothetical model was
used to calculate the long-term deformation velocity (LTDV) and maximum seasonal defor-
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mation (MSD) without any prior knowledge. The main steps are shown in Figure 2. The
main steps are: (1) importing ALOS, ALOS-2 and Sentinel-1 images and images coregistra-
tion; (2) Optimal interference pair selection and interferogram generation; (3) Multilook
filtering, phase unwrapping and coherent target selection; (4) Least squares inversion;
(5) Atmospheric phase correction and topographic residual correction; (6) Geocoding the
average deformation map and extracting the time series deformation; (7) Extracting the
long-term deformation velocity and maximum seasonal deformation; and (8) Analyzing
the deformation of permafrost with auxiliary data.

Figure 2. Flowchart of the processing approach.

3.1. Interferogram and Phase Unwrapping

First, we converted raw SAR data (ALOS, ALOS-2, Sentinel-1) to SLC format and used
DEM data to register the slave image with the master image. Then we selected the optimal
interferometric pair by calculating the temporal and spatial baselines of the primary and
secondary images. After optimal interference pair selection, the next step is to generate
interferograms. In the interferogram, each point has a phase value, which contains much
important information. Let us assume point P in the master and slave image. Each SAR
image contains phase and amplitude information. For point P, the phase can be modeled as:

φ(P) = ϕ +
4π
λ

r + α+ n (1)

where ϕ is the original phase controlled by target scatter attributes, such as roughness and
moisture, λ is the wavelength of the SAR sensor, r is the distance between the sensor and the

65



Remote Sens. 2022, 14, 1870

target, α is the atmospheric phase, and n represents the noise phase. In the interferogram,
for point P, the phase can be modeled as:

∆φ(P) = ∆ϕ +
4π
λ

∆r + ∆α+ ∆ν (2)

where ∆ϕ is the phase difference generated by the change in the target’s properties, 4π
λ ∆r

is the distance difference between the two observations to point P, ∆α is the different
atmospheric phase, and ∆ν is the noise phase.

Through Equation (2), the interferogram can be generated from two registered SAR
images. The range of the interferogram is −π to π. After generating the interferogram,
the next step is phase unwrapping. Phase unwrapping is the process of estimating the
whole phase difference between a reference pixel and other pixels. The phase unwrapping
algorithm calculates the phase difference between adjacent pixels and then integrates these
phase differences, which is equivalent to calculating the number of color fringes starting
from the reference pixel. For most unwrapping algorithms, minimizing the residual
weighting function between the estimated unwrapping phase difference and the original
phase difference is used. In this study, we used a minimum cost flow (MCF) unwrapping
algorithm. The phase unwrapping algorithm target is to minimize Equation (3):

∑
i,j

w(x)
i,j

∣∣∣∆φ(x)
i,j − ∆ψ(x)

i,j

∣∣∣+ ∑
i,j

w(y)
i,j

∣∣∣∆φ(y)
i,j − ∆ψ(y)

i,j

∣∣∣ (3)

∆ψ(y) is the unwrapping phase difference in the y direction and ∆ψ(x) is the wrapping
phase difference in the x direction.

We used ISCE software (https://github.com/isce-framework/isce2, accessed on
20 March 2022) for this p;rocessing. To increase the signal-to-noise ratio, during processing,
we set 14:4, 16:8 and 3:9 multilook in the azimuth and range direction for ALOS, ALOS-2
and Sentinel-1 interferograms, respectively. After the multilook processing, the spatial reso-
lution (azimuth pixel resolution × range pixel resolution) of ALOS, ALOS-2 and Sentinel-1
was 50 m × 10 m, 5 m × 35 m and 23 m × 3 m, respectively. To accelerate the processing
rate, we set 15 threads based on an Intel(R) Xeon(R) Gold 6129 CPU with 16 CPU cores for
parallel processing.

3.2. Time Series Deformation Processing

After the phase unwrapping, we selected highly coherent targets (coherence > 0.7) to
extract the time series deformation. Let us assume that there are N + 1 scene SAR images
coregistered to the master image, and the time order is (t0 . . . tN) which can generate M
interferograms. The original phase of each SAR image is φ =

[
0,φ1 . . .φN

]
, where we

assume φ0 = 0. φ contains the ground deformation phase, atmospheric phase, topographic
phase and noise phase. For each pixel, the model is described as:

∆φ = Aφ (4)

where ∆φ represents the interferometric phase and A is the M × N − 1 coefficient matrix.
In matrix A, 1 represents the master image, and −1 represents the slave image. Then, the
coherence weighted least square method is used to obtain raw phase φ [58,59]:

φ̂ = argmin
∣∣∣
∣∣∣W 1

2 (∆φ− Aφ)
∣∣∣
∣∣∣
2
=
(

ATWA
)−1

ATW∆φ (5)

The estimated original phase φ̂ includes the following items:

φ̂ = φ̂dis + φ̂tropo + φ̂geom + φ̂resid (6)
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where φ̂dis represents the ground deformation phase, φ̂tropo represents the atmospheric
phase, φ̂geom represents the topographic phase, and φ̂resid represents the residual phase. W
is a M ×M diagonal weight matrix:

W = diag

{
2Lγ12

1− γ12 , . . . ,
2LγM2

1− γM2

}
(7)

γj2 =
1

σ2
∆φj

(8)

where σ2
∆φj is the phase variance of the jth interferogram calculated through the integration of

the phase probability distribution function and L is the number of looks. After the raw phase
is calculated by the least squares method, the displacement time series can be obtained:

φ̂dis = φ̂− φ̂tropo − φ̂geom − φ̂resid (9)

For atmospheric phase removal, global atmospheric models (GAMs), particularly
ERA5, have great potential in atmospheric phase screen (APS) correction for InSAR applica-
tions on the Tibetan plateau [60]. The ERA5 model has been successfully applied in the APS
correction in the QTP [41,47,54]. Therefore, in this study, we used ERA-5 reanalysis data
to estimate the tropospheric delay [61]. For the topographic residual correction, the topo-
graphic phase residual caused by a DEM error was estimated based on the proportionality
with the perpendicular baseline time series [62]:

φ̂i − φ̂i
tropo =

−4π

λ

(
Bi
⊥

rsin(θ)
zε +

2

∑
k=0

ck(ti − t1)
k

k!
+ ∑

lεIs

sl H(ti − t1)

)
+ φi

resid (10)

where Bi
⊥ is the perpendicular baseline, θ is the incidence angle, H(ti − t1) is a Heaviside

step function and zε, ck and sl are the unknown parameters, which can be estimated by
minimizing the L2-norm of the residual phase. The time series deformation processing
was implemented by MintPy (https://github.com/insarlab/MintPy, accessed on 20 March
2022) [63].

3.3. Long-Term Deformation Velocity and Maximum Seasonal Deformation

We can extract two import indices from the time series deformation: long-term defor-
mation trend and maximum seasonal deformation. The long-term deformation may be
used to describe the water storage in the active layer. The maximum seasonal deformation
describes the active layer thickness. These two indices were obtained by direct calculation
without any assumed model. Wang [47] used the intra-annual highest-lowest terrain ele-
vation difference to represent the intra-annual seasonal deformation after extracting and
separating the linear trend from the deformation time series. Wang used prior knowledge
and assumed that the highest terrain elevation occurred from January–February, and the
lowest elevation occurred from August to October. In addition, the averaged value was
used for the final intra-annual deformation value. The average intra-annual deformation
may smooth the features of the permafrost deformation. In addition, using prior knowledge
may not be suitable for application to the QTP with spatial heterogeneity. The long-term
linear trend velocity can be modeled as:

D′(t) = D(t)− v·t (11)

where D(t) is the time series deformation, t is the temporal span of image acquisition dates
away from the first acquisition date, v is the long-term linear trend velocity, and D′(t)
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is the deformation time series minus the long-term linear trend. The maximum seasonal
deformation can be modeled as:

msd = maxiεT
(

D′max − D′min
)

(12)

where D′max is the highest terrain elevation in year i and D′min is the lowest terrain elevation
in year i. T is the number of years spanned by the observation period.

4. Results and Analysis
4.1. Long-Term Deformation and Time Series Deformation in the Northern QTP

The coherence weighted least squares method with 66 scenes of ALOS data (2007–
2009), 73 scenes of ALOS-2 data (2015–2020) and 284 scenes of Sentinel-1 data (2017–2021)
was used to retrieve the permafrost deformation in the northern QTP. The results illuminate
on a large scale the permafrost deformation in the northern QTP from 2007 to 2021. The
ground deformation results are shown in Figure 3.

Figure 3. Long-term deformation results of the study area. Background is the DEM. (a) ALOS result
(2007–2009). (b) ALOS-2 result (2015–2020). (c) Sentinel-1 result (2017–2021).

In Figure 3, the red color indicates the subsidence in the LOS direction, and the blue
color is the uplift toward the satellite. There are a large number of lakes (deep blue color) in
the western part of the study area. From the three different deformation maps obtained by
using three different SAR sensors, we find that the long-term deformation velocity in the
northern QTP ranges from −20 to +20 mm/year (ALOS, 2007–2009), −30 to 15 mm/year
(ALOS-2, 2015–2020), and−25 to 30 mm/year (Sentinel-1, 2017–2021). Further study shows
that the expansion areas of permafrost subsidence are concentrated on braided stream
plains and thermokarst lakes. In these areas, due to glacial erosion, surface runoff and
river alluvium, the contents of water and ground ice are sufficient, which could accelerate
permafrost subsidence.

In Figure 4a, we selected two typical areas, Salt Lake and a braided stream plain. Salt
Lake (35.532◦N, 93.409◦E) is located in the northeastern section of Hoh Xil (Kekexili) in the
QTP. The water of Salt Lake mainly comes from seasonal rivers. On 14 September 2011,
Zonag Lake burst its banks, which caused the area of Salt Lake to expand significantly.
The outburst of Zonag Lake could affect the freeze-thaw behavior of the surrounding
permafrost. We used Google Earth images to show the historical expansion of Salt Lake
(Figure 4b,d). From the different period images, we find that the Salt Lake experienced sig-
nificant expansion and that the distance from Salt Lake to the QTR is decreasing. Figure 4c
shows the result processed from stacks of ascending ALOS datasets from 2007 to 2009. The
red color indicates ground deformation away from the satellite. We find that the degra-
dation of the permafrost mainly occurred in the northeast direction. This may be due to
the existence of glaciers and braided stream plains in northeast of Salt Lake. Glaciers have
created a large-scale glacial erosion of mountains, resulting in a large number of deposits.
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In addition, with sufficient moisture, the effect of thawing processes is stronger than that of
freezing processes. This could increase the thickness of the active layer. Figure 4d shows the
result processed from stacks of descending Sentinel-1 datasets from 2017 to 2021. Similarly,
the red color represents the subsidence along the LOS direction. Compared with the 2007–
2009 result and 2017–2021 result, the area of permafrost degradation is expanding. We used
ArcMap software to analyze the temporal and spatial changes in the permafrost within a
30-km rectangle around Salt Lake. The calculation result shows an increase of 51.7 km2

areas (deformation rate > 10 mm/year) within the analysis rectangle after the outburst of
Zonag Lake in 2011. The second landscape example is a braided stream plain (34.8791◦N,
93.1845◦E). We used Google Earth image to show the spatial properties of the braided
stream plain (Figure 4f). This braided stream plain is surrounded by glaciers in the north,
south and east. The terrain in the west is relatively low. There are many lake tributaries in
this area. The surrounding glaciers provide many water resources for the braided stream
plain. With sufficient moisture, the permafrost may undergo degradation. To illuminate
the freeze-thaw cycle of permafrost, we used the ALOS, ALOS-2 and Sentinel-1 datasets to
map the ground deformation of permafrost around the braided stream plain from 2007 to
2021. The results are shown in Figure 4g–i.

Figure 4. Permafrost evolution in two typical areas, Salt Lake and braided stream plain. (a) Average
deformation rate during 2017–2021. (b) Salt Lake in December 2008 from Google Earth. (c) Average
deformation rate during 2007–2009. (d) Salt Lake in December 2018 from Google Earth. (e) Average
deformation rate during 2017–2021. (f) Braided stream plain from Google Earth image. (g) Average
deformation rate during 2007–2009. (h) Average deformation rate during 2015–2020. (i) Average
deformation rate during 2017–2021.

To further study the time series deformation of permafrost around Salt Lake, we
selected four points (Figure 4c). The details for these points are provided in Table 4. A
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25 km profile (Figure 4g) was selected to reveal the relationship between the permafrost
deformation and the elevation.

Table 4. The details of the four selection points around Salt Lake.

Point Position Long-Term Deformation
Velocity during 2007–2009

Long-Term Deformation
Velocity during 2017–2021

Point A 93.467◦E,
35.547◦N −12.5 mm/year -

Point B 93.473◦E,
35.485◦N −4.3 mm/year -

Point C 93.363◦E,
35.476◦N 8.7 mm/year −15.6 mm/year

Point D 93.312◦E,
35.532◦N −2.3 mm/year −20.3 mm/year

Figure 5a,b shows the long-term deformation trend deformation of selected points
around Salt Lake. From March 2007 to April 2008, the four points could balance the freeze-
thaw process. However, from July 2009 to March 2010, point A breaks the cycle, and the
ability to thaw is stronger than the ability to freeze, which may increase the thickness of the
active layer. From Figure 5b and Table 3, at point C, the average uplift deformation from
2007 to 2008 changed into the average subsidence deformation from 2017 to 2021. At point
D, the results reveal that the subsidence of the ground increased 10 times from 2007 to 2021.
From Figure 5c, we find that there is a negative correlation between the subsidence and
the elevation. This may be due to the melting of glaciers around the braided stream plain,
resulting in a large amount of water, accumulating on the slope. Finally, the thickness of
the permafrost active layer is increased, which causes permafrost degradation.

Figure 5. The time series deformation of the study points and the deformation of the selected profile.
(a) Time series deformation of study points during 2007–2009. (b) Time series deformation of study
points during 2017 to 2021. (c) The deformation of selected profile.

In the freezing and thawing process of permafrost, the moisture in permafrost can
move and change, which may cause rock damage, ground deformation and thawing
disasters. The sudden thawing of permafrost may lead to environmental disasters, such
as ground collapse and rapid erosion. The thawing mud flow of the permafrost occurs
on the slope of the permafrost. In summer, the thawing of the active layer could not flow
downslope due to the existence of permafrost, resulting in abundant water in the active
layer. Under the condition of excessive moisture, the permafrost creeps downward along
the slope, resulting in the thermal melting collapse. We combined optical data (GF-1,
GF-2) [64] to reveal the thermal melting collapse of permafrost.

In Figure 6a, the red color indicates the positions of thermal melting collapse, which
were generated from 2019–2020 GF-1/2 data. In Figure 6bc, the red color indicates the
subsidence in the LOS direction. In Figure 6b, we used the ALOS-2 dataset to reveal the
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thermal melting collapses of permafrost from 2015 to 2020. The result shows that L-band
ALOS-2 can effectively detect the location of thermal melting collapses. The result shows
spatial consistency with the GF-1/2 datasets. Compared with the ALOS-2 results, C-band
Sentinel-1 rarely detected the location of thermal melting collapses. The results show
that the ALOS-2 data can detect displacement that cannot be detected by C-band sensors.
To reveal the relationship between the time series deformation and the thermal melting
collapses. We selected four points and plotted the time series deformation. The details of
the four points are provided in Table 5.

Figure 6. The thermal melting collapse, average deformation and time series deformation of the
study points. (a) Thermal melting collapse from GF-1/2 during 2019–2020. (b) Average deformation
rate during 2015–2020. (c) Average deformation rate during 2017–2021. (d) Time series deformation
of points during 2015–2020. (e) Time series deformation of points during 2017–2021.

Table 5. The details of the four selection points.

Point Position Long-Term Deformation
Velocity during 2015–2020

Long-Term Deformation
Velocity during 2017–2021

Point A 92.771◦ E, 35.059◦ N −24.9 mm/year 3.4mm/year
Point B 92.790◦ E, 35.051◦ N −8.1 mm/year 9.1 mm/year
Point C 92.803◦ E, 35.044◦ N 7.1 mm/year 13.0 mm/year
Point D 92.823◦ E, 35.032◦ N −11.1 mm/year 14.1 mm/year

From Table 5, from 2015 to 2020, the L-band ALOS-2 result is different from the C-
band Sentinel-1 result. For the ALOS-2 result, the permafrost under points A, B and C is
undergoing subsidence. The Sentinel-1 result shows that the permafrost is still stable. Due
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to the different observation periods of the two sensors, ALOS-2 has a longer observation
period. In addition, results are also affected by the internal characteristics of the sensor,
such as wavelength and incident angle.

4.2. Long-Term Deformation Velocity and Maximum Seasonal Deformation in the Northern QTP

After determining the time series deformation derived from the raw phase, the long-
term deformation trend and maximum seasonal deformation magnitude can be calculated.
The spatial distributions of the maximum seasonal deformation magnitude are shown in
Figure 7.

Figure 7. The long-term deformation velocity and maximum seasonal deformation. (a) Long-
term deformation velocity during 2015–2020 from ALOS-2. (b) Long-term deformation velocity
during 2017–2021 from Sentinel-1. (c) ALOS-2 maximum seasonal deformation. (d) Sentinel-1
maximum seasonal deformation. (e) Maximum seasonal deformation during 2015–2020 from ALOS-2.
(f) Maximum seasonal deformation during 2017–2021 from Sentinel-1. (g) ALOS-2 LTD and MSD.
(h) Sentinel-1 LTD and MSD.

Due to the limitation of the revisit period of ALOS data, we calculated the long-term
deformation velocity (Figure 7a,b) and the maximum seasonal deformation (Figure 7e,f) of
ALOS-2 and Sentinel-1 data. The experimental results show that the average maximum
seasonal deformation of the two sensors is 66 mm. As shown in Figure 7a,b,e,f, the area with
large maximum seasonal deformation may tend to undergo strong subsidence and uplift.
From the ALOS-2 result, the average maximum seasonal deformation during 2015–2020
is 68.74 mm. According to the Sentinel-1 result, the average MSD during 2017–2021 is
64.85 mm. The areas with high MSD are mainly concentrated in glacier outwash plains
and braided stream plains. We selected two typical areas, A and B. The upper left of study
area A is located in Duoergai Co Lake, surrounded by glaciers to the north. The MSD is
large, which may be due to glacial erosion. A large amount of ice deposits is brought to
low-lying areas, affecting the water storage capacity and ice melting capacity of permafrost.
In addition, a large MSD occurred in thermal karst landforms, such as area B, which is
characterized by the formation of hot melt lakes and proglacial lakes. Due to the thermal
influence of underground ice in the permafrost, the land shrinks and settles, and finally
melted water flows along the groove of the slope. In addition, we reveal the relationship
between the maximum seasonal deformation and the long-term deformation velocity.
From Figure 7g,h, there is a weak correlation between MSD and LTD, with coefficients of
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determination (R2) [65] of 0.208 for ALOS-2 and 0.301 for Sentinel-1. This shows that the
relation between MSD and LTD is not simply linear and is related to geomorphic types,
moisture, ice and other factors.

5. Discussion

To evaluate the permafrost deformation in the northern QTP, we compared other
studies that are shown in Table 6.

Table 6. Previous studies on permafrost deformation in the QTP.

Study Area InSAR Method SAR Dataset Observation Time Average Ground
Deformation Rate Authors

Beiluhe PSI Envisat 2003–2007 −20~3 mm/year Xie et al. (2010)
Beiluhe IPTA and SBAS ALOS and Envisat 2004–2010 −20~20 mm/year Chen et al. (2012)
Beiluhe SBAS ALOS 2007–2010 −25~10 mm/year Chen et al. (2013)

Naqu-Lhasa SBAS Envisat and
TerraSAR-X 2003–2012 −20~20 mm/year Zhang et al. (2018)

Yangbaijin MTInSAR TerraSAR-X 2014–2015 −30–10 mm/year Li et al. (2017)
Wudaoliang-

Tuotuohe MT-InSAR Sentinel-1, Envisat
and ERS-1 1997~2018 −20~10 mm/year Zhang et al. (2019)

Wudaoliang StaMPS-InSAR Sentinel-1 and
TerraSAR-X 2017–2018 −12~7 mm/year Han et al. (2020)

Golmud-Lhasa NSBAS Sentinel-1 2017~2020 −20~20 mm/year Wang et al. (2021)

Xie et al. [66] used the PSI technique with Envisat datasets to reveal the ground
deformation in Beiluhe. The result shows that the average deformation from 2003 to 2007
was −20~3 mm/year. Chen [67] used multisource datasets (ALOS and Envisat) based on
the IPTA and SABS techniques to illuminate the displacement of permafrost in Beiluhe.
The result shows that the average displacement is −20~20 mm/year. Chen et al. [28] found
that the average deformation of permafrost in Beiluhe is −25~10 mm/year by using the
SBAS method with ALOS data. From 2014 to 2020, Li et al. and Wang et al. [68] used the
MT-InSAR method to research the deformation of permafrost in the QTP. Li et al. [69] found
that the average deformation in Yangbaijin ranged from −30 to 10 mm/year from 2014 to
2015. Wang et al. [54] used Sentinel-1 data based on NSBAS to reveal the deformation of
the whole QTP. The result shows that the average deformation rate is −20~20 mm/year.
Zhang et al. [8] used three different sensor datasets (ERS-1, Envisat and Sentinel-1) to reveal
the freeze-thaw cycle of permafrost in Wudaoliang and Tuouohe from 1997 to 2008. The
result shows that the average deformation rate ranges from −20 to 10 mm/year. From the
above related research, our results are consistent with the previous results.

In addition, to evaluate the accuracy of the SBAS-InSAR results in this paper, we used
leveling data from other researchers in the QTR [70]. The locations of the three leveling
points are shown in Figure 8. The elevations of the three leveling points were collected
on 9 January 2018, and 11 February 2018. The deformation results of 3 January 2018 and
8 February 2018, were extracted from 150-475 (Path-Frame) Sentinel-1 InSAR results. In
order to ensure the accuracy, we convert the leveling results to the displacement of the
LOS direction based on the radar incident angle. The comparison between the InSAR
experiment results and the leveling results of A, B and C is shown in Table 7. Table 7 shows
that the absolute errors of the leveling data and InSAR measurements at points A, B and C
were 3.1, 5.7 and 6.8 mm, respectively, which were relatively small.

Through a comparison with previous studies and leveling data, this paper provides a
theoretical basis and data support for the study of permafrost evolution. However, there
are some limitations in our study. First, there are some errors in the InSAR processing,
such as orbit errors, unwrapping phase errors, residual topographic errors, and ERA5 APS
correction errors. These errors may lead to incorrect permafrost deformation. Second, from
2010 to 2015, due to the lack of data, we have no ability to monitor the deformation of
permafrost in the QTP during this period. In the future, we will combine more SAR data
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and auxiliary data to help us better understand the freeze-thaw cycle and degradation of
permafrost in the QTP.

Figure 8. Geographic location map of leveling points along the QTR.

Table 7. The absolute error between the measured values of leveling points A, B, and C and the
InSAR observed values.

Benchmark A B C

Leveling (unit: mm) −2.2 8.8 16.6
InSAR results (unit: mm) −5.3 14.5 9.8
Absolute error (unit: mm) 3.1 5.7 6.8

6. Conclusions

In this study, we used 66 scenes of ALOS data (2007–2009), 73 scenes of ALOS-2 data
(2015–2020) and 284 scenes of Sentinel-1 data (2017–2021) based on SBAS-InSAR to reveal
the spatial and temporal deformation of permafrost in the northern QTP, passing through
the Tuotuohe, Beiluhe, Wudaoliang and Xidatan regions between 2007 and 2021. In addition,
a coherence weighted least squares estimator without any hypothetical model was used to
calculate the long-term deformation velocity (LTDV) and maximum seasonal deformation
(MSD) without any prior knowledge. The conclusions are summarized as follows:

1. Analysis of the ALOS results shows that the LTDV ranged from −20 to +20 mm/year
during 2007–2009. For the ALOS-2 and Sentinel-1 results, the LTDV ranged from
−30 to 30 mm/year during 2015–2021. Over a 15-year observation period, permafrost
degradation is accelerating. The expansion areas of permafrost degradation are
concentrated on braided stream plains, thermokarst lakes and glacier outwash plains.
In addition, the high MSDs are mainly concentrated in glacier outwash plains and
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braided stream plains, which may be due to glacial erosion and a large amount of
ice deposits brought to low-lying areas, affecting the water storage capacity and ice
melting capacity of permafrost.

2. For the geological disaster of thermal melting collapses, we compared the permafrost
monitored by the L-band and the C-band sensors. The results show that the L-band
ALOS-2 is more sensitive to the thermal collapses of permafrost than C-band sensor,
and the detected collapse areas (LTDV <−10 mm/year) are consistent with the GF-1/2
thermal collapses dataset.

3. We extracted the time series deformation directly from the interferograms without a
preset deformation model. The long-term deformation velocity (LTDV) and maximum
seasonal deformation (MSD) were calculated from time series deformation without
any prior knowledge, demonstrating that our methods can be effectively used to
extract the deformation features of permafrost.

In the future, more SAR datasets and auxiliary datasets will be used to illuminate the
freeze-thaw cycle and retrieve the active layer thickness on the QTP on a large scale.
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Abstract: Forest biomass is a crucial component of the global carbon budget in climate change studies.
Therefore, it is essential to develop a credible way to estimate forest biomass as carbon stock. Our
study used PALSAR-2 (ALOS-2) and Sentinel-2 images to drive the Random Forest regression model,
which we trained with airborne lidar data. We used the model to estimate forest aboveground
biomass (AGB) of two significant coniferous trees, Japanese cedar and Japanese cypress, in Ibaraki
Prefecture, Japan. We used 48 variables derived from the two remote sensing datasets to predict
forest AGB under the Random Forest algorithm, and found that the model that combined the two
datasets performed better than models based on only one dataset, with R2 = 0.31, root-mean-square
error (RMSE) = 54.38 Mg ha−1, mean absolute error (MAE) = 40.98 Mg ha−1, and relative RMSE
(rRMSE) of 0.35 for Japanese cedar, and R2 = 0.37, RMSE = 98.63 Mg ha−1, MAE = 76.97 Mg ha−1,
and rRMSE of 0.33 for Japanese cypress, over the whole AGB range. In the satellite AGB map, the
total AGB of Japanese cedar in 17 targeted cities in Ibaraki Prefecture was 5.27 Pg, with a mean of
146.50 Mg ha−1 and a standard deviation of 44.37 Mg ha−1. The total AGB of Japanese cypress was
3.56 Pg, with a mean of 293.12 Mg ha−1 and a standard deviation of 78.48 Mg ha−1. We also found a
strong linear relationship with between the model estimates and Japanese government data, with
R2 = 0.99 for both species and found the government information underestimates the AGB for cypress
but overestimates it for cedar. Our results reveal that combining information from multiple sensors
can predict forest AGB with increased accuracy and robustness.

Keywords: ecosystem carbon cycle; L-band SAR; vegetation index; random forest regression; planta-
tion

1. Introduction

Forests play a significant role in the global carbon budget, as they store a large share
of terrestrial carbon in their biomass [1]. About 90% of the total carbon in the world’s
vegetation stock comprises forests, which cover 65% of the land area [2]. The forest
aboveground biomass (AGB) is therefore considered one of the most important factors in
evaluating forest carbon pools [3]. To better understand the amount of stored carbon in
forest, spatially explicit and temporally consistent estimates of AGB are urgently needed [4].
Field biometric studies to quantify AGB, usually using the diameter at breast height (DBH)
and tree height as inputs for allometries based on destructive sampling, have provided
simple and useful models, but constructing reliable allometric relationships over large
areas is difficult, time-consuming, and expensive [5].

79



Remote Sens. 2022, 14, 468

Remote sensing techniques can be scaled up to cover large areas, thereby allowing
efficient collection of forest biophysical information and repeated analysis to reveal changes
over time [6]. Among the available techniques, lidar (light detection and ranging) is one of
the most accurate remote-sensing technologies for assessing forest canopy characteristics [7].
Lidar data are particularly useful for mapping vertical structural attributes of ecosystems
such as carbon storage, biomass, and stand volume [8]. These advantages let lidar-based
approaches provide high-quality assessment of AGB, even in forests with high biomass per
unit area, and can retrieve numerous forest parameters in a single survey [9–11].

Despite the ability of airborne lidar to provide highly accurate assessments of parame-
ters such as tree density at an urban scale, the high cost of airborne lidar data can prevent
its use in larger areas [12]. In addition, the sparse coverage of land areas by space-borne
lidar (e.g., ICESat2, GEDI) reduces the availability of these data for large-area estimation of
forest AGB. This suggests the need to develop a robust and consistent large-area model
for AGB estimation that takes advantage of airborne lidar datasets, but combines them
with other data sources to perform estimation over long time periods and large areas [13].
Studies often use two main sources of AGB training data based on ground-truthing (e.g.,
forest inventory data) and airborne lidar [14].

Synthetic aperture radar (SAR) provides information on the dielectric (essentially,
moisture content) and structural properties of the targeted objects, which include soil
surfaces and plants in wetlands, agricultural land, and forests [15–17]. However, when
estimating forest AGB, this kind of dataset depends on the degree of saturation, which refers
to the AGB level at which the signal’s sensitivity (e.g., backscatter, reflectance) becomes too
small to be measurable or where the signal fails to penetrate the forest canopy [18]. These
phenomena lead to drastic deterioration of accuracy at high levels of AGB. Thus, saturation
levels limit the role that SAR sensors can play in direct measurement of forest biomass for
global inventories [19].

One strategy that can be used to overcome this problem is to combine SAR images
with optical images [20]. Multispectral optical imagery contains information on the photo-
synthetic parts of the vegetation, which are rich in chlorophyll, and optical satellite images
have a long history of being used for estimation of forest parameters and assessment of
different wood quality results. Unfortunately, optical satellite signals are strongly affected
by weather and other atmospheric conditions; under unsuitable conditions, optical images
are prone to significant errors [21]. Another drawback is that optical satellite signals can-
not measure vegetation structure directly and suffer from spectral saturation in densely
vegetated environments, which limits their ability to map AGB in some cases, as is the
case for SAR data [22]. However, because the two kinds of satellite data have different
limitations, it may be possible to combine them to estimate forest AGB, with the advantages
of one method offsetting the disadvantages of the other. Selection of appropriate regression
models for modeling AGB is crucial because optical remote sensing data and SAR data have
different relationships with AGB. For example, some studies have shown a strong linear
relationship between SAR and AGB [23,24]. Other studies found that non-linear regression
models provided a better fit for this relationship [25,26]. Because of these contradictory
results, it is worth considering alternatives to simple regression.

Here, we selected the Random Forest regression model because it has worked well
with both SAR data [27] and optical satellite data [28]. Random Forest is an efficient
machine learning method proposed by Breiman [29]. It is a type of ensemble machine
learning algorithm based on bootstrap aggregation also called bagging [29]. The model
lets researchers combine different sources of satellite images in a single model [30]. It is
well suited to analyzing complex non-linear and possibly hierarchical interactions in large
datasets [31]. Moreover, it can determine the importance of the variables to provide a
plausible strategy for combining variables from different datasets. This approach has been
used successfully in many cases with different combinations of satellite datasets [32–34].
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Although Random Forest estimates AGB well, it tends to overestimate AGB at low
values of AGB and underestimate it at high values [35]. Despite these limitations, many
researchers have estimated forest AGB in different countries by using SAR and optical
satellite datasets, including Mexico, China, Russia, the USA, and Cameroon [11,36–39].
However, few areas have been studied using Random Forest in Japan [40]. To provide
more data on this approach, we selected two species of forest tree as our targets. Japanese
cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) play important
roles in Japanese forest ecosystems, and cover 28% of the forested area in Japan, which is
equivalent to 19% of Japan’s land surface [41].

Our objectives here were to:

(1) assess the potential of combining two types of satellite data (SAR and optical sensors)
to improve AGB estimation performance;

(2) estimate the spatial extent of forest AGB for two major forest types in northern Ibaraki
Prefecture, Japan; and

(3) benchmark the AGB estimates using forest register data collected by the Ibaraki
Prefecture government.

2. Materials and Methods
2.1. Study Area

We focused on plantations of two forest tree species, both in the cypress family
(Cupressaceae), growing in Japan’s Ibaraki Prefecture, central Japan. The prefecture has an
active forest industry, supported by C. japonica and C. obtusa. These are major plantation
species throughout Japan, occupying 4.44 × 106 and 2.60 × 106 ha of forest (equivalent
to 18% and 10% of the forest area in Japan), respectively [41]. Both are important timber
resources, and are also associated with public functions such as conservation of natural
land, prevention of global warming, and recharge of water sources.

Our study area was located in northern Ibaraki Prefecture, which is the prefecture’s
main forest area. The southern part of the prefecture is dominated by agricultural land with
almost no forests (Figure 1). The regional average elevation is 22 m above sea level and the
highest point is 1021 m, with rugged terrain; the target forests are distributed mainly in
mountainous topography.
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2.2. Data Analysis Process

Figure 2 illustrates the work flow we used for the AGB estimation, which comprises:
(1) satellite data collection and preprocessing (resampling, application of a unified coor-
dinate system, filtering, and image clipping); (2) extraction of landscape textures from
PALSAR-2 data; (3) computation of indices derived from the satellite images (e.g., the HV
and HH polarization ratios; vegetation indices such as NDVI, EVI); (4) model development
(selection of the optimal variables, tuning of the hyperparameters); and (5) mapping and
estimation of the AGB of the two species in the targeted cities in Ibaraki Prefecture.
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2.3. Forest AGB Observed by Airborne Lidar

Airborne lidar data obtained from the Ibaraki Prefecture government was utilized
for training the Random Forest model. Ibaraki Prefectural Government preprocessed the
airborne lidar product and generated the stem volume through the following procedures:

(1) collecting and using 40 human measured points (20 for each forest species), each point
covering 0.04 ha, for ground-based calibration to evaluate the accuracy of the airborne
lidar data related to stem volume calculation,

(2) collecting airborne lidar data in northern Ibaraki Prefecture on 31 July 2020,
(3) determining the values of parameters related to the stem biomass calculation cali-

brated by ground measured plots (i.e., tree species, tree height, and diameter at breast
height [DBH]; Table 1 and

(4) calculating the stem volume from the tree height and DBH using the conventional
allometric equations for these species in Japan [42].
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Table 1. Descriptive statistics of the forest parameters derived from airborne lidar data of Ibaraki
Government.

Species Stand Variable Mean Standard Deviation Min. Max. Sample Size

Japanese cedar

Tree height (m) 24.1 5.2 2.1 46.7 201,854
Diameter at breast height (cm) 24.1 5.3 9.9 78.0

Stem volume (m3 ha−1) 403.6 170.7 0.3 1516.3
Biomass (Mg ha−1) 155.9 65.9 0.1 585.6

Japanese
cypress

Tree height (m) 19.2 4.3 2.3 39.6 69,374
Diameter at breast height (cm) 27.0 5.8 10.1 72.0

Stem volume (m3 ha−1) 585.9 246.2 0.3 1800.0
Biomass (Mg ha−1) 295.7 124.3 0.1 908.4

The accuracy of the forest parameters used in stem volume calculation are evaluated
by the root mean square error (RMSE) with the 40 fields measured data mentioned above;
the accuracy of the parameters is shown in Table 2.

RMSE =

√
1
N
(
Yi − Y′i

)2 (1)

where N is the number of validation plots collected in the field. Yi refers to the field
measured parameters. Y′i refers to lidar-based predicted parameters in the corresponding
position i. The maps of volume for each of the two forest species were generated in the lidar
covered area and then converted into AGB values at a 20-m mesh size using a biomass–
volume equation with a biomass expansion factor and the tree volume and density by
Equation (2) [43]. AGB values are presented as Mg ha−1. It is important to note that only
cedar and cypress were considered in the AGB calculation; this is acceptable because we
focused on plantations, which are essentially single-species forests. We obtained 201,854
airborne lidar AGB samples for cedar and 69,374 for cypress and used these data as the
modeling samples in our subsequent analysis.

AGB = V ×WD × BEF (2)

where V is the volume, WD is wood density and BEF is biomass expansion factor [43].

Table 2. Accuracy of the forest parameters derived from airborne lidar data of Ibaraki Government.

Stem Variables RMSE Sample Size

Japanese cedar Tree height (m) 1.1
20Diameter at breast height (cm) 3.7

Japanese cypress Tree height (m) 1.1
20Diameter at breast height (cm) 2.8

2.4. Remote Sensing Dacta
2.4.1. Processing of PALSAR-2 Data

The Advanced Land Observing Satellite-2 (ALOS-2) is a follow-on mission from
ALOS. ALOS-2 has the Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2), a
microwave sensor that can observe, day and night, under any weather conditions. Here,
we obtained the 25-m PALSAR2 L-band global mosaic data from May 2019 from the Japan
Aerospace Exploration Agency (JAXA; https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/
data/index.html, accessed on 11 June 2021). JAXA preprocessed the PALSAR-2 data,
including geometrical calibration against the AW3D30 digital elevation model after 2019.
The original SAR data for Japan used the highly sensitive Beam Quad mode, which provides

83



Remote Sens. 2022, 14, 468

full polarizations, including HH, HV, VV, and VH. The PALSAR-2 signal can be converted
into gamma naught backscattering coefficients by using the following equation:

γ0 = 10 log10(DN2)− CF (3)

where γ0 is the backscattering coefficient (gamma naught), DN is the digital number value
of each pixel, and CF is the calibration factor, −83 [44]. Moreover, we applied a LEE speckle
filter with a kernel window size of 3 × 3 to smooth the images [45]. Before LEE filtering,
the radar images were also averaged using a 3 × 3 pixel mean filter to reduce the effect
of speckle and spatial heterogeneity of the forest stands and to alleviate the problem of
noise from dark spots [24]. Because the plot boundaries of airborne lidar samples may
overlie several pixels, using a 3 × 3 window improved performance compared with the
single-pixel extraction method [46].

In addition to correcting for backscatter, we calculated the radar vegetation indices
for different polarizations and calculated the texture information for HV and VH using
a gray-level co-occurrence matrix (GLCM) with a 3 × 3 window size and with a relative
displacement vector (d = 1, θ = 45◦). The displacement vector explains the spatial dis-
tribution of the level pairs separated by d with direction θ [47]. In AGB estimation, the
GLCM-derived texture is considered as a kind of predictor that can improve the accuracy of
estimation [48]. The texture information can also enlarge the saturation range between AGB
and satellite images [49]. We adopted eight popular texture parameters for the VH and HV
polarization: mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment,
and correlation. Table 3 summarizes the SAR-derived variables used for modeling.

Table 3. List of variables from the PALSAR-2 data. In the texture calculations, h represents high of
row number, k represents column number of image window and mhk refers the value in the cell h, k
of the image window.

Variables (Abbreviation) Definition

Polarization

HV Horizontal transmit-vertical channel
HH Horizontal transmit-horizontal channel
VV Vertical transmit-vertical channel
VH Vertical transmit-horizontal channel

Radar Indices

I1 [50] HH − HV
I2 [51] HV + HH
I3 [52] (HH − HV)/(HV + HH)
I4 [53] HV/HH
I5 [50] VH − VV
I6 [51] VH + VV
I7 [52] (VH − VV)/(VH + VV)
I8 [53] VH/VV
I9 [54] 8 × HV/(HH + VV + 2 × HV)

Texture (HV, VH)

Mean (ME) ∑
h

∑
k

h ∗mhk

Variance (VA) ∑
h

∑
k

h ∗mhk ∗ (h−Mean)2

Homogeneity (HO) ∑
h

∑
k

mhk

1+(h−k)2

Contrast (CON) ∑
h

∑
k
(h− k)2mhk

Dissimilarity (DIS) ∑
h

∑
k
|h− k|mhk

Entropy (ENT) −∑
h

∑
k

mhk lg(mhk)

Second Moment (SM) ∑
h

∑
k
(mhk)

2

Correlation (COR)
∑
h

∑
k

h∗k∗mhk−µX µy

σX σy
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2.4.2. Processing of Sentinel2-MSI Data

Sentinel2-MSI data collected from the European Space Agency (ESA: https://scihub.
copernicus.eu/dhus/, accessed on 11 June 2021) were used as optical satellite variables
to drive the Random Forest model. Because the optical satellite sensor is easily affected
by clouds owing to the wavelengths it uses, we selected data from days with low cloud
cover and as close as possible to the time of the AGB data sample collection. From the
remaining data, we acquired L2-A level data that had been preprocessed by the ESA,
including atmospheric correction and scene classification to L1-B data. The image was
acquired on 8 May 2019. The Sentinel-2 MSI sensor provides multispectral data with a
spatial resolution ranging from 10 to 60 m. We excluded the 60-m data in this study. We
also averaged the Sentinel2 images using a 3 × 3 pixel mean filter to extract the values. We
then computed the vegetation indices from the Sentinel-2 data (Table 4) and used those
data for modeling.

Table 4. List of variables from the Sentinel2-MSI data. Vegetation indices: DVI, difference vegetation
index; EVI, enhanced vegetation index; GARI, green atmospherically resistant vegetation index;
GDVI, generalized difference vegetation index; GNDVI, green normalized-difference vegetation
index; GRVI, green/red vegetation index; NDVI, normalized-difference vegetation index; SAVI,
soil-adjusted vegetation index; SR, simple ratio vegetation index.

Variables
Bands, Indices (Abbreviation) Definition (Central Wavelength)

Multispectral Bands

Band2 (B2) Blue, 490 nm
Band3 (B3) Green, 560 nm
Band4 (B4) Red, 665 nm
Band5 (B5) Red edge, 705 nm
Band6 (B6) Red edge, 749 nm
Band7 (B7) Red edge, 783 nm
Band8 (B8) Near Infrared (NIR), 842 nm

Band8A (B8a) Near Infrared (NIR), 865 nm
Band11 (B11) SWIR-1, 1610 nm
Band12 (B12) SWIR-2, 2190 nm

Vegetation Indices

NDVI [55] (NIR−Red)
(NIR+Red)

EVI [56] 2.5∗(NIR−Red)
(NIR+6∗Red−7.5∗Blue+1)

DVI [57] NIR− Red
GARI [58] NIR−[Green−1.7∗(Blue−Red)]

NIR+[Green−1.7∗(Blue−Red)]
SAVI [59] 1.5∗(NIR−Red)

(NIR+Red+0.5)
GNDVI [60] (NIR−Green)

(NIR+Green)
GDVI [61] NIR− Green

SR [62] NIR
Red

GRVI [63] NIR
Green

2.4.3. Extraction of Satellite Images Values from Forest AGB Plots

The AGB plots and satellite images were first unified into the Universal Transverse
Mercator (UTM) coordinate system (zone 54 N), with datum of WGS84. Then all of the
satellite images were resampled in 20 m resolution using bilinear convolution to meet
the resolution of airborne Lidar metric. The geometric center of every airborne Lidar
plot was represented as the position of the AGB and extracted the corresponding values
of all predictors from the satellite images. Finally, a total of 48 predictors were utilized
in a regression model for our analysis: 10 Sentinel-2 MSI spectral bands, 9 Sentinel-2
MSI–derived vegetation indices, 4 ALOS-PALSAR-2 radar backscatter coefficient bands,
16 texture information variables (8 textures each for VH and HV respectively), and 9 radar
backscatter coefficient-derived indices.
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2.5. Random Forest Regression

Modeling datasets were randomly split into 80%, 10%, and 10% bins for training,
validation, and testing samples, respectively, using the train_test_split function in the
sklearn package for the Python language.

Random Forest predicts AGB from the remote-sensing predictors by growing many
decision trees and averaging every result for each tree. We not only performed inversion
modeling for each type of remote sensing data, but also identified (through filtering) the
best performing variables for each tree species in this model according to the impurity-
based feature importance of the variables, and then we combined the selected variables and
used them to process the Random Forest model again. This filtering is necessary because
the presence of many redundant variables contributes little to the model, it results in the
inclusion of repetitive information, and increases the complexity of the model. For each
experiment, we assessed the accuracy of the predictions using the testing data, and then
tuned the hyperparameters using the validation data.

Four error statistics were selected to evaluate the model’s performance: the root-mean-
square error (RMSE) in Equation (2), the coefficient of determination (R2) in Equation (3),
the mean absolute error (MAE) in Equation (4), and the relative RMSE (rRMSE) in Equation
(5) as RMSE divided by the mean of the observed AGB values. In the comparison between
RMSE and MAE, RMSE is harder to interpret and is more sensitive to outliers than MAE.
However, a detailed interpretation is not critical, because variations of the same model will
have similar error distributions. Therefore, RMSE is more appropriate as a loss function to
tune the hyperparameters for the model as in our case [64]. However, it is still necessary to
use MAE together with RMSE to evaluate the variation of model errors [65]. Overall, lower
values of RMSE, rRMSE, and MAE and higher R2 indicate better performance of a model.
In addition, the smaller the difference between RMSE and MAE, the smaller the variance
between errors will be.

RMSE =

√
1
N
(
Yi −Y′i

)2 (4)

R2 = 1− ∑N
i = 1

(
Yi −Y′i

)2

∑N
i = 1

(
Yi −Y

)2 (5)

MAE =
1
N

N

∑
i = 1

√∣∣Yi −Y′i
∣∣ (6)

rRMSE =
RMSE

Y
(7)

where N is the number of observed values, Yi is the observed AGB value for observation i,
Y′i is the predicted AGB value, and Y is the mean of the observed AGB values. Even though
many variables have potential value for estimating AGB, not all are available to be used in
the modeling owing to high inter-variable correlation or weak relationships with AGB [66].
Including such variables provides little improvement of accuracy, although it may increase
model flexibility. To eliminate the least useful variables, we used the impurity-based feature
importance for each variable: the higher the impurity, the more critical the feature. We
computed the importance of a feature as the (normalized) total reduction of the criterion;
here, we used the mean squared error (MSE) as the criterion brought by that feature, which
is also known as the Gini importance.

2.6. Determination of the Saturation Level

The saturation level for an individual tree species is crucial for evaluating the esti-
mation result. We defined the AGB saturation level as occurring where a clear pattern of
AGB leveling was found in the logarithmic regression slope in a plot of the HV backscat-
ter coefficient against AGB since longer wavelength L-bands with HV backscatter are
identified as the most sensitive polarizations to AGB [67]. This approach has been used
in previous studies to reveal the relationship between AGB and satellite images and the
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model’s performance [68–70]. Since we used a large sample size in our study, it is difficult
to accurately determine the location of the saturation point. Therefore, we adopted an
interval sampling method in which we counted the average value of the data points in
bins equal to 5 Mg ha−1 in size as the AGB, and removed points with a value greater than
250 Mg ha−1 from the calculation range. Such a kind of approach was accessed in previous
research with a huge number of AGB samples [49,71]. Finally, we estimated the saturation
levels for each species by examining the slope within every interval (in units of 5 Mg ha−1)
with the HV backscatter coefficient. Saturation points in the scatterplot were defined as the
points where the slope of each AGB interval was less than 0.1 or where it starts to change
in a very disorderly way.

2.7. Evaluation of Forest Resources

After running the models, the best performance model with the highest accuracy
was utilized to map the AGB of Japanese cedar and cypress in several target cities with a
large area of plantations of the two forest species. The identification of forest area is very
crucial for AGB mapping, because mismatched forest distribution maps will cause large
estimation errors derived from mismatched estimation models and wrong corresponding
forest area. The forest distribution map from the Ibaraki Prefecture government was
selected to classify the tree species distribution in our study so that an accurate AGB map
could be generated that followed the same standard as the Ibaraki Prefecture AGB map [72].
Finally, we compared the satellite-based AGB map with the forest registered map from
Ibaraki Prefecture to evaluate the AGB in the targeted cities.

3. Results
3.1. Determination of the AGB Saturation Level

Figure 3 shows the relationship between the HV backscattering coefficient and AGB.
AGB leveled off at a slope of 0.01 dB for the cedar, which represented an AGB of 105 Mg ha−1.
However, it was difficult to determine the saturation point for cypress by this method since
the slope showed high variation. We defined the saturation point at 175 Mg ha−1, since
the HV values leveled off at this point. Nevertheless, when the AGB reached 235 Mg ha−1,
the slope continued to increase. The cause of this pattern is unclear; it may have resulted
from a relatively small number of samples at high AGB, and the uncertainty of the AGB
accuracy rise.
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3.2. Development of the Random Forest Model

In the Random Forest model, the importance measures for the variables are affected by
the number of variable categories and the measurement scale of the predictor variables [73].
Determining the optimal feature space is an important step for model development. In-
creasing the number of variables might lead to a high time requirement for the calculations
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despite a low increase of accuracy [74]. Consequently, we divided the variables into two
parts (the PALSAR-2 group and the SENTINEL2-MSI group) and selected the optimal vari-
ables on the basis of their importance values. We selected the variables whose importance
was greater than 0.05 to interact together and assessed the model again. Figure 4 shows the
importance results. The most important variables for cypress (i.e., the variables with a Gini
importance greater than 0.05) were VH mean, VH variance, HV variance, VH correlation,
and HV correlation (Figure 4a), and Band 5, Band 9, Band 8a, Band 11, SR, NDVI, and Band
12 (Figure 4b). The most important variables for cedar were VH mean, VH variance, HV
mean, and HV variance (Figure 4c) and Band 12, Band 4, Band 9, Band 11, Band 5, Band 8a,
and Band 6 (Figure 4d).
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Random Forest algorithm was run repeatedly to obtain the optimal hyperparameters
in each PALSAR-2-based model, each Sentinel2-MSI-based model, and the model that
combined the two datasets. We chose four input hyperparameters to determine their
optimal values in each model: the number of trees in the forest (EST), the maximum depth
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of the decision tree (MD), the minimum number of samples (MS) required to split in every
internal node, and the minimum number of samples required to be at every leaf node (ML).
We reserved 10% of the samples for use as the validation samples to determine their values
from the RMSE score. Owing to the size of our dataset, we didn’t perform cross-validation
using the validation datasets. We set the number of variables fed to each predictor tree
(named max_features in the sklearn package) to the square root of the number of input
variables in every model [74], and when we optimized one hyperparameter, we set the
others to their default value as MD = 10, ML = 1, MS = 2, and EST = 200. We optimized EST
with the determined values of the other three hyperparameters in the last step. The lowest
RMSE for the EST tuning indicated the best scores with the optimized hyperparameters.
Figure 5 shows the results of the hyperparameter tuning. In every case, the combined
model had the best performance. Therefore, we used it to estimate AGB in our subsequent
analyses.
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3.3. Model Accuracy Assessment

Testing data assessed the model’s accuracy using our selected error statistical indica-
tors. These testing data represented 10% of the overall sample, and excluded data used
in model development to keep robustness. For cedar, the Random Forest algorithm was
able to predict the AGB with R2 = 0.31, RMSE = 54.38 Mg ha−1, MAE = 40.98 Mg ha−1, and
rRMSE = 0.35 from the 20,186 test samples (Figure 6). For cypress, it was able to predict the
AGB with R2 = 0.37, RMSE = 98.63 Mg ha−1, MAE = 76.97 Mg ha−1, and rRMSE = 0.33 from
the 6938 test samples. For the two tree species, different variables from different remote
sensing sensors were important in determining the model’s performance.

Thus, it is necessary to retrieve the relationship between AGB and satellite images by
separating for each tree species in the forest.
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Figure 6. Observed and predicted aboveground biomass (AGB) of the test samples. The color bar on
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3.4. Mapping AGB

We generated AGB maps for Japanese cedar and Japanese cypress at 20 m resolution
using the Random Forest algorithm for the targeted cities in Ibaraki Prefecture. Appendix A
compares the data from the Japanese forestry register record for these cities with the
predictions of our model. The AGB ranged from 7.49 to 277.02 Mg ha−1, for Japanese cedar
and 85.35 to 492.28 Mg ha−1 for Japanese cypress in the targeted cities (Figure 7).
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Figure 7. Spatial distribution of aboveground biomass (AGB) of (a) Japanese cedar and (b) Japanese
cypress in the targeted cities in Ibaraki Prefecture.

Japanese cedar and cypress are the main tree species in Japan. Both are evergreen
coniferous trees native to Japan. In the overall statistics we analyzed, cypress had a higher
AGB than cedar. In terms of the point where AGB saturation occurred according to the
HV backscatter coefficient, cypress had a wider range of AGB values than cedar. We think
this may be caused by differences in the physical structure of the two species: cypress
has a higher biomass range and a larger DBH, which may have led to greater volume
scattering, resulting in fluctuations in the relationship between the backscatter coefficient
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and AGB. Cypress had a much higher mean average AGB (293.12 Mg ha−1) than cedar
(146.50 Mg ha−1). However, cedar had a lower standard deviation (44.37 Mg ha−1), with
its AGB distributed mainly between 100 and 200 Mg ha−1, whereas Japanese cypress
had an AGB distribution with two peaks between 200 and 400 Mg ha−1, with a higher
standard deviation (78.48 Mg ha−1). In some previous research, AGB estimation based
on the stratification of vegetation types greatly improved the performance [75,76]. We
assessed the AGB estimation for two tree species, and found a significant difference in
the AGB value distribution (Figure 8). However, the development of an AGB estimation
model based on stratification of multiple tree species is more difficult because it requires
additional data: (1) vegetation distribution maps for the targeted species, (2) ground-based
AGB values classified by species, and (3) a sufficiently large sample size to build a robust
model while still leaving data for testing and validation.
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standard deviations (σ).

4. Discussion
4.1. Role and Limitation of Satellite-Derived Variables in Accurate Estimation of Japanese Cedar
and Japanese Cypress AGB

SAR and optical remote sensing have different drawbacks and advantages for AGB
estimation. Either dataset by itself is not enough to accurately estimate forest AGB [77].
SAR is relatively unaffected by weather, since it can penetrate clouds and work all day and
night. It can also penetrate through the canopy, soil, and dry snow. However, even L-band
SAR becomes saturated at an AGB of 100 Mg ha−1 in complex heterogeneous tropical forest
structures. In forests with a simple structure and few dominant species, the saturation
level could increase to about 250 Mg ha−1 [78]. We found that the optical data were more
resistant than the SAR data to AGB saturation for Japanese cedar and cypress at high AGB
values (Figure 9).

To identify the saturation level for the two tree species, we used the HV backscatter
from the SAR data. Cedar became saturated at 105 Mg ha−1 and cypress at 175 Mg ha−1.
Even though these species are similar in their structure and living conditions, they showed
a clear difference in the saturation level with SAR at relatively low values. In contrast, the
optical sensors are strongly affected by weather conditions, but also show AGB saturation.
Because these different sensor data have different advantages and drawbacks, integration
of radar data with optical-sensor data has the potential to improve AGB estimation because
it may reduce the number of mixed pixels and data saturation problems [66].
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Figure 9. Relationships between aboveground biomass (AGB) and satellite image data of Japanese
cedar and Japanese cypress using averages of bins with a width of 5 Mg ha−1. Sensor variables are
defined in Tables 3 and 4.

Our aim was to develop models of cedar and cypress for estimating AGB from two
types of satellite data: L-band microwave radar data from PALSAR-2 and multispectral
optical remote sensing data from Sentinel2-MSI. For our study species, microwave remote
sensing was more sensitive to saturation than optical remote sensing. Therefore, the
estimation results of the PALSAR-2 model performed worse in both species (Figure 10).
In contrast, the model that combined the two datasets performed best in every case. This
demonstrates that combining different types of remote sensing data can improve the
estimation accuracy and AGB range.

However, underestimation at high AGB values remains large, since satellite informa-
tion (especially microwave and optical remote sensing data) inevitably became saturated.
Although this problem can be alleviated by adding texture information [49] or by combining
multi-source remote sensing data, as we did in this study, it is still fundamentally difficult
to solve the saturation problem. The airborne lidar data have a high range for estimation of
AGB (i.e., high resistance to saturation) owing to their wavelength characteristics, but such
data are expensive, which makes it impossible to cover large areas such as a whole country
or continent, unlike the space satellite data that are used for large-area studies. Hence,
airborne lidar data have mainly been used in small areas [79]. Establishing a model that
would extend AGB estimation to large areas by combining data from field plots, airborne
lidar, and space satellite data thus has considerable potential to enlarge the area that could
be surveyed with airborne lidar data [80]. In such a method, lidar data and satellite remote
sensing data could be combined to support large-area AGB predictions, but more tests
are still needed, and the analytical framework must be improved to support this use of
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multisource data. This is because the use of different buffer sizes to combine data from
different sources can decrease the accuracy of AGB estimation [80].
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Figure 10. Comparison of the accuracy of the different models (separate models for PALSAR-2 and
Sentinel2 and a model that combines both datasets): (a) coefficient of determination (R2), (b) root-
mean-square error (RMSE), (c) relative RMSE (rRMSE), and (d) mean absolute error (MAE).

The Random Forest model has an excellent predictive ability but has the characteristics
of tree-regression. The algorithm operates by constructing many decision trees during
training and outputs the predicted mean or mode of the individual decision trees. The
AGB prediction averages all variables extracted from the satellite images. However, the
algorithm cannot predict the value from the training samples. Using only the satellite-based
data, the problem becomes more severe, since saturation occurred in all of the satellite
data. Because our approach overlays the underestimation of high AGB values with AGB
saturation in the satellite images, it is hard to obtain good performance in forests with high
AGB.

4.2. Benchmark AGB Estimated in the Japanese Forest Inventory

The satellite-derived AGB map was compared with government statistics for the total
AGB in every targeted city (Figure 11). The forestry statistics in Japan are based on the
forest register, which is used for forest management. Japanese forests are managed as
land units called sub-compartments. The forest register records forest conditions for every
sub-compartment, such as its area, tree species, mean age, and stand volume. Japanese
law requires that the forest register be updated every 5 years. The satellite-derived AGB
was more significant than the value in the register in Ibaraki, and some previous studies
also concluded that the forest register underestimated the forest volume [81]. Japan’s
Forestry and Forest Products Research Institute compared the register’s data with a field
measurement at 10,189 sub-compartments throughout Japan, and found that the field-
measured forest volume was 1.88 times the value in the forest register for Japan as a
whole [82]. These results agree with the present results for cypress, since the estimated
AGB was larger than the value in the register. A previous study analyzed airborne lidar
data for all of Ehime Prefecture (a prefecture located in southwestern Japan), and found
that the total forest volume in Ehime was 2.01 times the value in the register [83]. The
authors mentioned that errors in both the lidar estimates and the register contributed to this
difference, but suggested that the errors in the register were much larger. These previous
studies suggest that our results are reasonable, and the satellite estimates are closer than the
register to the actual values. The forest register may underestimate the forest volume for at
least two reasons: (1) it records only an estimated value based on the tree species and forest
age, not a field-measured value, and (2) the empirical yield tables (used for the estimation
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that produces the register values) were developed in the 1950s and 1960s and have not been
updated since then, so their gap relative to the actual values may have increased [82,84].
One reason for this gap is that there were insufficient measurement data for old-growth
forests to support empirical development of yield tables, so the tables underestimate the
volume of old-growth forests. Accurate forest resource information is fundamental for
forest management, and the forest register, which does not have a monitoring function
for actual forests, cannot provide the necessary support. Our approach may solve this
problem.
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Figure 11. Comparison of total aboveground biomass (AGB) between statistical data in the Japanese
forest register and the remote-sensing data. Note that the scales differ greatly between the two species.
Each data point represents the cumulative AGB at each of 17 targeted places (villages, towns, and
cities) in Ibaraki Prefecture.

4.3. Uncertainty in AGB Estimation

The geographic location between the airborne lidar sample points and satellite pixels
will bring significant uncertainty. We use the geometric center of an airborne Lidar sample
point with a resolution of 20 m (0.04 hectares) to extract satellite pixel values. Nevertheless,
an area of 0.04 hectares cannot cover a plurality of pixels well, leading to missing and biased
parts of the data. Although we have alleviated the uncertainty mentioned above through
the mean filter, using the mean filter will cause some irrelevant pixels to be calculated into
the target pixels, especially when some different tree species are inlaid with each other or in
the boundary of the forest area [85]. One method is to select only a cluster of airborne radar
sample points gathered by a single tree species as the ground data points and calculate
the average value of the pixel points covered by the sample points as the satellite data
value corresponding to the airborne lidar plot, but this would significantly increase the
complexity of the calculation.

The temporal difference between airborne Lidar and satellite images can also be
uncertain. As cloud cover often occurs in the northern part of our research area, in order
to avoid the impact of this situation on detection, it is challenging to select satellite data
that is the same as or very close to the ground sample point collection time and dozens of
days may lead to a difference of forest growth which may lead to temporal variability in
satellite images [86]. The change of the period has led to errors in the agreement between
the biomass and satellite data. One of the methods focuses on the growth period, ignoring
the influence of the year, and selecting ground sample points in other years to collect the
satellite data of the corresponding month, but this may lead to forest changes caused by
excessive time. Therefore, it is essential to check the forest to see massive changes due to
people’s affection or natural hazards.
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Finally, there is the error caused by the biomass equation because we used the airborne
lidar data as the “real” sample data and satellite data for correction. This method provides
more sample data than traditional human measurement sample points. A more extensive
sample set will avoid the curse of dimensionality caused by too many satellite variables
and has better robustness compared to small data set. However, the method of calculating
the stock volume by obtaining the parameter values of the trees and converting it through
the volume-biomass transferring equation will also have a significant deviation compared
with the actual biomass calculation equation of a single tree called recording and grouping
errors [79]. However, AGB estimations using only field data over large areas suffer an
enormous error rate. Therefore, choosing a large amount of data or a small amount of data
with higher accuracy needs to be traded off carefully.

5. Conclusions

We developed robust and effective models to estimate the AGB of Japanese cedar
and cypress by a machine learning approach. As far as we know, no other studies have
used remote sensing data to retrieve the AGB of those two types of forest at prefecture
level. We hope to create a new approach to remedying the lack of forest biomass in Japan.
By combining PALSAR-2 and Sentinel2-MSI data and using a large number of validation
samples from lidar-based AGB plots, we increased the accuracy of AGB prediction for both
species compared with using only one data source. The hyperparameter tuning in Random
Forest also improved estimation accuracy, especially for the depth of the tree structure.
Because the choice of modeling variables strongly affects the accuracy and simplicity of
the models, our approach also helps to select the optimal variables for inclusion in the
final model. The texture information for the PALSAR-2 images played an important role in
estimating AGB, and this confirms the value of retaining SAR texture information.

Although our method provided a scientific basis for more accurately estimating AGB
of the two tree species in our study, more work will be necessary to adapt the method to
multi-species forests. The methodology could then be adopted for mapping and estimating
forest biomass in Japan and updating the forest register. This use of remote sensing will
provide a cost-efficient way to estimate forest conditions and their spatial and temporal
variation.
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Appendix A

Figure A1 compares the data in the Japanese forestry register with predictions from
the remote-sensing model for the targeted cities in Ibaraki Prefecture.
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Abstract: Synthetic-aperture radar’s (SAR’s) capacity to resolve the cloud cover concerns encountered
while gathering optical data has tremendous potential for soil moisture data retrieval using SAR
data. It is possible to use SAR data to recover soil moisture because the backscatter coefficient
is sensitive to both soil and vegetation by penetrating through the vegetation layer. This study
investigated the feasibility of employing a SAR-derived radar vegetation index (RVI), the ratios of
the backscatter coefficients using polarizations of HH/HV (RHH/HV) and HV/HH (RHH/HV) to an oil
palm crops as vegetation indicators in the water cloud model (WCM) using phased-array L-band
SAR-2 (PALSAR-2). These data were compared to the manual leaf area index (LAI) and a physical
soil sampling method for computing soil moisture. The field data included the LAI input parameters
and, more importantly, physical soil samples from which to calculate the soil moisture. The fieldwork
was carried out in Chuping District, Perlis State, Malaysia. Corresponding PALSAR-2 data were
collected on three observation dates in 2019: 17 January, 16 April, and 9 July. The results showed that
the WCM modeled using the LAI under HV polarization demonstrated promising accuracy, with the
root mean square error recorded as 0.033 m3/m3. This was comparable to the RVI and RHH/HV under
HV polarization, which had accuracies of 0.031 and 0.049 m3/m3, respectively. The findings of this
study suggest that SAR-based indicators, RHH/HV and RVI using PALSAR-2, can be used to reduce
field-related input in the retrieval of soil moisture data using the WCM for oil palm crop.

Keywords: leaf area index; leave-one-out cross-validation; oil palm; radar vegetation index; synthetic
aperture radar; soil moisture; vegetation descriptors; water cloud model

1. Introduction

Oil palm has long been recognized as a vital crop in tropical agricultural regions with
a consistently increasing output rate, especially in Indonesia and Malaysia, which export
significant amounts of crude palm oil to other countries [1]. In Malaysia, oil palm crop
production occupies 71% of the agricultural land [2]. Oil palm crop is the second most
important source of edible oil, behind soybean, in terms of production [3]. Beyond its
core role as an edible oil, palm oil has spawned other palm-based sectors, such as special-
ized fats, cocoa-butter alternatives, oleochemicals, soaps, domestic detergents, nutritional
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supplements and, most recently, bioenergy [4]. Tropical regions like Malaysia that have
sufficient rainfall and sunshine and appropriate soil conditions are ideal for oil palm culti-
vation [5]. Because of the increasing demand for palm oil, a major concern is maintaining
crop yields at optimum levels and minimizing labor and fertilizer usage [6]. Due to the
fact that the crops in oil palm plantations are linked directly with the ground, soil quality
is an important factor when it comes to crop uptake and health [7]. Soil characteristics and
climatic conditions are known to vary on a minute scale and are particularly site specific [8].

It has been well established that soil moisture and precipitation have the highest corre-
lations in arid and dry regions and weaker correlations in wet regions, indicating that soil
moisture and precipitation are more complex than what is viewed on the surface [9]. The
intricate interaction between soil moisture and precipitation has been noted as important
in the land-surface context. Correlations between precipitation and soil moisture are the
strongest in areas with sparse vegetation, whereas forests and heavily vegetated areas
have weaker correlations [10]. Understanding this enables study to focus on numerous
specific scientific challenges such as subsurface recharge assessment and the identification
of drought–flood cycles. Such studies are important for tropical countries—particularly
agricultural nations where widespread applications are possible for scheduled irrigations
and soil moisture modeling [11]. However, a lack of information on such topics makes it
difficult for the farmers in those countries to take appropriate precautions to ensure the
productivity of their crops. Furthermore, hydrological models are often developed for
use under static conditions [12]. Additionally, in areas where oil palms are cultivated, soil
moisture is equally important for supporting palm tree growth. Therefore, in order to
estimate soil moisture by conventional means, highly reliable gravimetric measurements
are taken, although this is regarded as time and resource intensive [13]. In response to
this, time–domain reflectometry sensors are widely preferred [14], which can provide
continuous measurements [15].

Soil moisture mapping is accomplished mostly through extensive point measure-
ments, which can be expensive [16]. Numerous interpolation techniques have been used
to produce gridded soil moisture data from field observations, including deterministic
approaches such as inverse distance weighting (IDW), local polynomial interpolation (LPI)
and radial basis function (RBF) as well as geostatistical methods such as ordinary kriging
(OK) [17]. Deterministic methods can be examined using measured points evaluated based
on their extent of similarity. It has been noted that model IDW, using soil moisture, is
capable of investigating the distribution of drought conditions [18]. When precipitation
is encountered on a catchment scale, it has been found that IDW, with the inverse dis-
tance to a power number, has a greater impact on simulated outcomes than the scale of
grid sampling [19]. In a separate case, the evaluation of soil moisture using deterministic
methods, such as IDW and RBF, using global polynomial interpolation, LPI and OK, have
been examined, with OK being found to be more effective due to the fact of its use of
geostatistical interpolation techniques that utilize the statistical properties of the measured
points [20]. As it reduces the variance of estimate error, OK is the most used geostatistical
interpolation approach and the best linear unbiased estimator [21]. In complicated terrains,
OK is highly dependent on the homogeneity and density of the soil samples [22]. Recently,
the topic of soil moisture has concentrated on the spatial and temporal variability of the
moisture content in hillslopes and catchments. Fluctuations in soil moisture on slopes are
more complicated because of the synergy and superposition effects of land use types, slope
gradient, slope aspect, slope position, and elevation [23]. Hilly areas often face the problem
of sparse rain gauge networks, which limits the accessibility of the data and affects the
interpolation accuracy [24]. Therefore, using remote sensing as a tool, satellite imagery can
provide useful information about the Earth’s surface, with images being one of the most
popular data sources for remote sensing.

Remote sensing is used in the oil palm industry in tree detection [25], monitoring for
pests and disease mapping [26], and in nutrient detection [27]. Optical imaging gathers
energy emitted from the surface of the Earth in the visible and near-infrared range [28],
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resulting in indices that represent the vegetation cover. The normalized difference vegeta-
tion index (NDVI), which is a normalized ratio of near-infrared to visible red, is the most
commonly used metric [29]. It is a flexible and an effective indicator for distinguishing
vegetation from non-vegetation and includes the ability to interpret the health of oil palm
trees [30].

On the other hand, microwave remote sensing, or active remote sensing, can produce
images regardless of weather or lighting conditions by using its own radiation for illumina-
tion, which can penetrate clouds and reach the Earth’s surface. Microwave remote sensing
has addressed the issue of cloud cover through optical sensors in remote sensing [31],
clouds being a major impediment, particularly in tropical areas where oil palms are com-
monly cultivated [32]. Microwave remote sensing using PALSAR-2 generates data based
on backscattered radiation from the ground, with a lengthier wavelength providing better
penetrative capability [33]. As the radar has better penetrative capacity, it can be used to
distinguish a smooth surface from a rough surface [34]. L-band SAR imagery provides the
optimum diagnostic of oil palm canopies for growth monitoring [35]. As a result, the L
band at a wavelength of 15–30 cm can penetrate tree canopies and offer information on
sub-canopy structures [36]; hence, because of this capability, SAR can be employed in the
categorization of oil palms.

Various types of information about the surface can be obtained from the vegetation
cover by studying the polarization of the emitted and received radar signal. In HH, the
signal is horizontally emitted and horizontally received; in HV, it is horizontally emitted
and vertically received; in VH, it is vertically emitted and horizontally received; in VV,
it is vertically emitted and vertically received [37]. Polarimetric SAR is a technique used
to extract information from vegetation, with important information for oil palm crop
categorization being carried by HH and HV signals [38]. In order to distinguish oil palm
cover from natural forest and acacia plantations, both the C band and L band can be
used to enhance the classification accuracy [39]. Moreover, using an optical sensor, object-
based classification was used to improve classification accuracy in oil palm and acacia
plantations [40]. Recently, SAR images have been shown to be capable of penetrating
oil palm trunks, where basal root disease can be distinguished using a machine-learning
model [41].

In the last decade, a better understanding of SAR has allowed the retrieval of soil
moisture data from woody plants [42] and agricultural crops [43,44] using vegetation and
soil parameters and the water cloud model (WCM). The WCM was proposed as a collec-
tion of similar spherical particles that are consistently distributed across the volumetric
vegetation layer [45]. Originally, the WCM established an equation for the total backscatter
coefficient as a function of soil volumetric moisture content, vegetation moisture content,
and plant height [45]. Field-based vegetation parameters, such as the LAI [46–49] and
vegetation water content [50,51], have been widely used in WCMs. The WCM has the
advantage of being able to explain complicated scatter patterns in a vegetated area using
simple bulk vegetation descriptors [52]. However, there is a lack of understanding or
agreement on the best collection of vegetation descriptors. Recent studies have shown that
using the NDVI [53], based on optical images and the radar vegetation index (RVI) [54,55],
and the ratio of backscatter coefficient polarization (e.g., HH/VV [56] or VH/VV [56,57])
as descriptors provides successful soil moisture data retrieval in both the C and L bands.
However, HV/HH has been used to understand the dynamics of soil moisture based on
radar data, which lessens the effect of soil surface roughness [58]. The HV backscatter
coefficient has been found to be sensitive, in the P and L bands, to plant biomass and plant
water content [59].

In this study, the main goal was to extract soil moisture data from the oil palm
cultivated site using the WCM and SAR-based vegetation descriptors, such as RVI and
the ratio of the backscatter coefficients HH/HV (RHH/HV) and HV/HH (RHV/HH), and
compare this with data from the LAI field-based vegetation descriptor.
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2. Study Area and Materials
2.1. Study Area

Chuping, in Perlis State, is a flat-terrain oil palm growing location. For this study, the
area of the oil palm crop was approximately 28 ha. As of the data collection date, it covered
4-year-old palm stands that had just begun to bear fresh oil palm fruits. The study area’s
central coordinates were 6◦31′07.2′′ N, 100◦19′07.7′′ E, located in the subdistrict called
Kilang Gula Chuping. The area has a relatively flat terrain with a slope angle of 4–12%
and an elevation of 21.6 m. The soil type was identified as Chuping and Dampar—sandy
clay loam and clay loam. The study was conducted over three periods during weather
conditions similar to those in which the SAR images were acquired (see Section 2.2.2). Early
in the year, precipitation rates were quite low. This was particularly true in January–March,
which are considered to be the driest months of the year, according to meteorological data
from a previous study conducted in the same area [60]. The latter months of the year
experienced sufficient precipitation, with the average precipitation being 1362.38 mm per
year [61].

2.2. Data Collection
2.2.1. Field Data

In order to determine the soil moisture content at a depth of 0–5 cm, a soil gravimetric
technique was used in a grid point shown in Figure 1. For this, fresh weights of soil were
taken in the field, with their dry weights being calculated in the laboratory, following oven
drying. The soil samples were obtained from 32 locations in the study area, resulting in
96 soil samples taken on three different dates. In addition, oil palm fronds were collected
for estimation of the LAI. For oil palm crop, the standard approach of destructive sampling
was used to determine the LAI. In addition to being an excellent predictor of a palm’s
nutritional condition, fronds are easy to identify and sample. In oil palm crop, using the
17th frond is widely accepted to estimate LAI [62]. According to the conventional method
for evaluating LAI, which was developed specifically for oil palm crop, it was determined
using the variables A f as leaf area per frond in m2 of the 17th frond from the palm crown,
Fn as the total number of fronds per sampled tree, and PDEN as the number of palm trees
per hectare, using the following equation [63]:

LAI
(

m2/m2
)
= A f × Fn ×

PDEN
10000

(1)

The leaflet area was measured using an LI-3100C area meter (LI-COR Inc., Lincoln,
NE, USA). The total leaflet area of each frond was calculated by multiplying one side of the
leaflet area by two.

2.2.2. Remote Sensing Data

The backscatter coefficient of the oil palms was extracted using PALSAR-2 data. High-
resolution PALSAR-2 images were collected through our participation with the Japanese
Aerospace Exploration Agency (JAXA) using the Earth Observation Research Announce-
ment 2 platform. Three 2019 PALSAR-2 images, from the HH and HV polarization on 17
January, 19 April, and 9 July, were used. The specifics of these SAR data are shown in
Table 1, with all three images having been acquired in Strip Map 3 mode, in ascending order
at 6.25 × 6.25 m resolution. All the PALSAR-2 images used in this study were constructed
using a 16 bit data type with each pixel containing a digital number (DN). These DNs did
not correspond to the radar signal of the ground features or objects. As a result, the DNs
had to be converted into backscatter coefficients and expressed in decibels, as described in
Equation (2). For the PALSAR-2 data provided by JAXA, the calibration factor (CF) was
−83.0 dB [64]:

σ0 = 10× log10

(
DN2

)
+ CF (2)
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Once the σ0
HH and σ0

HV for each field point were available, the images were radio-
metrically calibrated using the Shuttle Radar Topography Mission’s digital elevation model
(3 arc-second). Following that, the images were orthorectified with respect to geographic
locations in order to eliminate speckles and noise from the PALSAR-2 images; a Lee filter
was used with a 5 × 5 window size. It has been previously noted that the Lee filter works
very well in terms of maintaining an image’s spectral characteristics while decreasing
speckling [65]. The open-source Sentinel Application Platform version 6.0.0 was used to
commence all the SAR-related preprocessing presented in Table 1.

Table 1. PALSAR-2 satellite image acquisition and incident angle.

Date of Acquisition Polarization Incident Angle

17 January 2019 HH + HV 30.4–42.4◦

19 April 2019 HH + HV 41.2–53.3◦

9 July 2019 HH + HV 30.4–42.4◦
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In addition to the PALSAR-2 images, a DJI Phantom 4 Unmanned Aerial Vehicle
(UAV), equipped with a Micasense® RedEdge camera (Micasense Inc., Seattle, WA, USA)
multispectral sensor was employed to survey the study area on 17 January 2019. The
Micasense® camera gathers information in five spectral bands, spanning the visible through
red-edge and infrared spectrums. Specifically, red, green, blue, near-infrared, and red-
edge images were captured at central wavelengths of 668, 560, 475, 840, and 717 nm,
respectively. The sensor was calibrated on-site, prior to flight, using the reference panel for
accurate ground reflectance calibration. The imagery from the UAV platform enabled us to
compute the NDVI [66], as shown in Equation (3), in order to identify bare soil with NDVI
values of less than 0.2. To confirm the classification was indeed bare soil, ground-truthing
was performed.

NDVI =
ρ840 − ρ668
ρ840 + ρ668

(3)

3. Methodology

The WCM was first developed by Attema and Ulaby [45] for alfalfa, corn, and wheat
crops. It is a broadly applied model for vegetation-covered areas, because it is composed
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of two components: the direct contribution of vegetation and the attenuation compo-
nent. Many studies have successfully applied the WCM to various crops, such as winter
wheat [55], wheat and corn [50], multi-crop agriculture [54], and forests [67]. The WCM
was established on the assumption that the canopy’s “cloud” was composed of similar
water droplets, scattered randomly throughout the canopy [68]. In this study, the WCM
was used to retrieve soil moisture data from oil palm crop using PALSAR-2 data. Based on
the assumption that the influence of soil surface roughness on observed backscatter is con-
sistent over a short timespan at a given site, the temporal variation in SAR backscattering
will be solely a reflection of changes in vegetation and soil moisture [54]. Consequently,
in this study, a multi-temporal SAR data set was used in the WCM. With the input of
SAR-derived indices and field-gathered vegetation descriptors (from the LAI), it was possi-
ble to compare both the vegetation descriptors to evaluate the WCM and retrieve the soil
moisture parameter.

The WCM considered both soil moisture and vegetation characteristics, with Equation (4)
showing the four empirical coefficients: A and B are vegetative characteristics and C and D
are soil parameters [69]. In Equations (5) and (6), parameter A corresponds to the albedo of
the vegetation, with B being an attenuation factor. Parameter D indicates the sensitivity
of the radar signal to soil moisture, while C can be a calibration constant in Equation (7).
Equation (5) shows the backscatter coefficient from the direct contribution of vegetation,
whereas Equation (6) gives the attenuation component for the vegetation-covered surface.
Hence, the equation is modified to:

σ0
tot = σ0

veg + τ2σ0
soil (4)

where
σ0

veg = A ×V1 × cos θ
(

1− τ2
)

(5)

τ2 = Exp (−2× B ×V2 × sec θ) (6)

σ0
soil = CMv + D (7)

The moisture content held in the canopy and its geometry have an impact on the
backscatter coefficient in terms of both V1 and V2. The soil moisture (Mv) is described in
m3/m3 and θ represents the incidence angle of the SAR images. After solving for parame-
ters C and D using a linear model fitting procedure, the values of C and D are replaced in
Equations (5) and (6), allowing for the solution of parameters A and B using the nonlinear
least squares method (NLSM) [51,53]. It has been reported that A and B can be estimated
using Levenberg–Marquardt optimization in the NLSM [47]. However, descriptors relat-
ing to vegetation have varied implications for the WCM. Several experiments have been
conducted, employing plant height, the LAI, the leaf–water area index (LWAI), and the
normalized plant-water content (NPWC) as variables, to measure V1 and V2 [29,70,71].
In this study, the vegetation descriptors V1 = 1 and V2 = LAI were chosen because they
have contributed to the best model performance using other field-based descriptors such
as LWAI and NPWC [61]. This is referred to as Model 1 (see Table 2). The SAR-derived
indices were used for modeling the oil palm WCM and are referred to as Models 2, 3, and
4. The RVI, being derived from dual polarization [72], was used as shown in Equation (8).
The RVI equation was initially introduced by proposing the use of the four polarizations
(i.e., HH, HV, VH, and VV) [73]. However, it has been found that the RVI provides a good
approximation of surface scattering when only two polarizations are used [74].

RVI =
4σ0

HV

σ0HH + σ0HV
(8)

It has been noted that RVI values range from 0 to 1, with 0 being associated with bare
soil and 1 with higher vegetation [75]. In this study, along with the RVI, other vegetation
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descriptors, such as the calculated ratios RHH/HV = σ0
HH

σ0 HV
and HV/HH as RHV/HH = σ0

HV
σ0 HH

,
were used to evaluate the soil moisture (Table 2).

Table 2. Simplified WCM using modeled vegetation descriptors.

Model Vegetation Descriptors, V1 and V2

1 V1 = 1, V2 = LAI

2 V1 = V2 = RVI

3 V1 = V2 = RHH/HV

4 V1 = V2 = RHV/HH

To evaluate the WCM for soil moisture data retrieval using the models listed in Table 2,
the leave-one-out cross-validation (LOOCV) method was used—a deterministic validation
procedure that enables accurate replication using the same data set [76]. Each time the
model was evaluated, one of the data samples was omitted, with the remaining n − 1 data
sample being used to train the model. The LOOCV method has been demonstrated as
being superior to split-sample validation, especially when sample sizes are limited [77].
Model evaluation can be expressed in performance metrics, such as the coefficient of
determination (R2) and the root mean square error (RMSE) [78,79], calculated as shown in
Equations (9) and (10), respectively. For each parameter combination, a pair of predicted
and observed values were obtained.

R2 =


 ∑n

i=1
(
Xobs − Xobs

) (
Xsim − Xsim

)
√

∑n
i=1
(
Xobs − Xobs

)2
∑n

i=1
(
Xsim − Xsim

)2


 2 (9)

RMSE =

√
∑n

i=1(Xsim − Xobs)
2

n
(10)

The RMSE was estimated using Equation (9), where Xsim is the simulated σ0
tot and

Xobs is the observed σ0
tot. The RMSE is widely accepted for assessing the gap between

model predictions and actual observations from the environment in soil moisture-related
studies [80,81]. Most scholars accept the RMSE for soil moisture data retrieval by referring
to the Global Monitoring for Environment and Security (GMES) requirement from the
European Space Agency for accuracy, with soil moisture values below 0.05 m3/m3 being
considered as favoring the guidelines [82,83].

4. Results
4.1. WCM Parameterization

In the WCM approach, vegetation parameters describe the scattering from the vege-
tation cover on the ground. Estimation of the WCM parameters first requires calibration
of the values for bare soil in order to obtain the soil-related parameters C and D from
Equation (7), then correcting for the effects of vegetation on the backscattering coefficients.
For parameters C and D, the input of field or SAR-based indicators, along with the incident
angle and soil moisture, are required in order for the total backscatter to be calibrated.
The WCM was calibrated differently for each model, for both σ0

HH and σ0
HV , in order to

localize the vegetation parameters as shown in Table 3 using the LOOCV approach for
cross-validation. The WCM parameterization is important for obtaining a good fit with
the field measurements, as described in Equations (4)–(7), enabling the retrieval of the soil
moisture values. Using the LOOCV method to estimate the actual error in the developed
model, all the steps in the algorithm, including parameter tuning, have to be repeated in
each cross-validation loop [83]. For the SAR-based vegetation descriptors, the RVI was
derived from the PALSAR-2 images, where it has been shown to describe the structural
vegetation characteristics, and the RVI correlates with the vegetation water content and
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LAI indicators [84]. The RHH/HV and RHV/HH were employed to evaluate the potential
use of these simple ratios as vegetation descriptors because the latter has been reported as
being able to distinguish fluctuations in soil moisture using SAR data, and also to identify
areas where the influence of soil surface roughness can be mitigated [58]. To evaluate the
model further, a comparison of the WCM-modeled backscatter coefficients was checked
against the observed backscatter coefficients using the respective polarization, as indicated
in Section 4.2.

Table 3. Fitting of the WCM using HH and HV polarization.

Vegetation Descriptor by Model
Model Coefficients

HH HV

V1 V2 A B C D n A B C D n

1 LAI 0.012 0.001 −26.015 −2.864 96 0.317 0.013 22.207 −23.866 96

RVI RVI 0.319 0.017 −13.648 −5.784 96 0.613 0.008 24.556 −23.894 96

RHH/HV RHH/HV 0.181 0.016 −11.663 −6.462 96 0.450 0.133 21.874 −22.487 96

RHV/HH RHV/HH 0.758 0.007 −15.200 −5.900 96 0.826 0.010 20.320 −23.500 96

4.2. Sensitivity Backscatter Coefficient vs. Vegetation Descriptors

To understand the suitability of vegetation descriptors in the retrieval of soil moisture
data over oil palm crops, four WCMs were used to evaluate the potential use of SAR-
based parameters. SAR backscatter coefficients are connected to vegetation features on the
ground, such as crop form, height, size, geometric arrangement, and density, all of which
vary per crop [85,86]. In this study, a simplified WCM was evaluated in terms of both
σ0

HH and σ0
HV to understand its polarization sensitivity to the oil palm crop. The results

were determined using the model metrics of R2 and the RMSE between the observed and
WCM-simulated backscatter coefficients as shown in Table 4. Overall, using the LOOCV
method, R2 ranged from 0.930 to 0.983 for the HH polarization and from 0.948 to 0.991
for the HV, with the RMSE being 0.425–2.257 dB and 0.635–1.282 dB, respectively. Using
the LAI field vegetation descriptor for the palms produced, a low RMSE value of 0.635 dB
under HV polarization with R2 = 0.983 (Table 4, Figure 2). For the RVI, the SAR-derived
descriptor RHH/HV and RHV/HH were evaluated for the same day as the LAI indicator
using Equation (1). Under the same polarization, when the RVI was used in the WCM,
the model showed a higher RMSE of 0.702 dB with an R2 of 0.975 recorded. The modeled
backscatter coefficient for the vegetation descriptor RHH/HV (Model 3, Table 4) had an R2

of 0.982 and an RMSE of 0.828 dB. For RHV/HH , the RMSE was higher than for RHH/HV , at
1.282 dB for σ0

HV , with an R2 = 0.930.

Table 4. RSME values for the WCM-simulated and observed backscatter using PALSAR-2 with
different vegetation descriptors.

Polarization
RMSE (dB)

Model 1 Model 2 Model 3 Model 4

HH 2.257 0.425 0.472 1.883

HV 0.635 0.702 0.828 1.282

Polarization
R2

Model 1 Model 2 Model 3 Model 4

HH 0.948 0.990 0.991 0.964

HV 0.983 0.975 0.982 0.930
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On the other hand, the HH polarization with the LAI vegetation descriptor had an R2

of 0.948, with a higher RMSE, at 2.257 dB, than the HV polarization in the Model 1 (Table 4,
Figure 2a). The Model 1 in HH polarization produced the highest RMSE values compared
to the other models. In Model 3, the RHH/HV , vegetation indicator was comparable with
the RVI model with both being comparable to the LAI model under HH polarization.
Both SAR-based model indicators showed a similar accuracy with RMSEs of 0.425 dB and
0.472 dB, respectively, as indicated in Table 4, and with an R2 of 0.990 and 0.991. In the
model using RHV/HH , an R2 value of 0.964 was observed with a higher RMSE of 1.883 dB.

4.3. Soil Moisture Data Retrieval

The purpose of this study was to retrieve soil moisture data from oil palm crops
where soil moisture is an important indicator of the water requirements of the crop, being
an important factor in crop development and yield [64,87]. Furthermore, the retrieval of
soil moisture data is useful in seasonal or agricultural drought monitoring in terms of
understanding the significant areas affected [28]. In this study, statistical metrics were
employed in order to understand soil moisture data retrieval from the WCM used. Table 5
and Figure 3 show the data retrieval using Models 1–4 under HH and HV polarization. It
was noted that, under both polarizations, the vegetation descriptors attempted to represent
the vegetation layer as carefully as possible. Numerous studies have demonstrated that the
type of vegetation, the geometric structure of its cover (including height, branch and leaf
forms, and density distribution) and its water content have an effect on radar backscattering
and radar wave transmittance in the plant canopy [88–90]. In order to minimize errors in
the soil moisture content data, multiple angles, and multitemporal SAR data inversion were
used to help to eradicate the consequences of the plant layer on the radar backscatter [90].
When the field-based LAI was used to retrieve the soil moisture data, the HV polarization
showed a high R2 of 0.949, with a low RMSE of 0.033 m3/m3. Under HH polarization,
however, the LAI indicator showed a higher RMSE of 0.087 m3/m3.
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Table 5. R2 and the RMSEs for the soil moisture data retrieved and observed from an oil palm crops
(in m3/m3) using PALSAR-2, given according to the proposed models.

Vegetation Descriptor
by Model

Statistics Metrics

HH HV

R2 RMSE
(m3/m3) R2 RMSE

(m3/m3)

Model 1 0.901 0.087 0.949 0.033

Model 2 0.973 0.036 0.960 0.031

Model 3 0.946 0.049 0.974 0.049

Model 4 0.898 0.128 0.898 0.066

The main reason for evaluating the SAR-derived indicators was to avoid the cloud-
cover concerns that arise from optical data, which mainly affects tropical regions [91]. From
the SAR-derived Models 2–4 (Table 5), it was found that the HV polarization showed
RMSEs ranging from 0.031 to 0.066 m3/m3. This suggested that the HV polarization was
consistent in retrieving the soil moisture data. This is similar to the mentioned descrip-
tors, which showed a lower RMSE from the backscatter model fit (Table 4). This finding
correlated with the field evaluation of the WCM, with the HV polarization providing a
more accurate estimation of soil moisture [92]. The RVI produced the lowest RMSE among
the other SAR-derived models at 0.031 m3/m3. For the HH polarization, SAR-derived
Models 2 and 3 had lower RMSE values of 0.036 and 0.049 m3/m3, and with comparable
R2 values (Table 5). The SAR-derived indicators performed better than the field-based
vegetation descriptor, according to Model 1, under HH polarization. However, the RHV/HH
showed low accuracy in the RMSE comparison for both the polarizations, being 0.128 and
0.066 m3/m3, respectively.

Our findings are in agreement with those of previous studies, in which it has been
reported that RVI indicators in the WCM have been successfully evaluated to replace
field indicators in order to overcome optical data concerns [41,62]. It was noted that
the RVI model has been posited as a new descriptor that can be used to distinguish the
backscattering from the crop canopy and the underlying soil surface in cases where the crop
parameter cannot be obtained from the field, with the RVI being directly calculated from
the SAR [55]. Overall, the soil moisture data retrieval in this study was successful, based
on the parameterization of the WCM for the oil palm crop, with the use of the RVI and
RHH/HV as vegetation descriptors proving as dependable as the LAI descriptors. However,
the SAR-derived indicators were noted as producing lower RMSEs under HV polarization,
similarly to the LAI descriptor under HV polarization. The scatterplots of the observed
and retrieved soil moisture data, based on the polarization of each model, are shown in
Figure 3.
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5. Discussion

The WCM is a semi-empirical model, founded on theoretical ideas and relationships,
but which employs a simplified method based on field- and SA-based parameters. In
order to build the WCM, a calibration process was performed using variables, including
LAI from the oil palm crop, soil moisture data from the field data collection as well as
the backscattering coefficients, the RVI, RHH/HV and RHV/HH , and the incidence angle
from PALSAR-2. Using these variables, the parameters A, B, C, and D were considered
in fine-tuning the WCM—important steps specific to each crop and location [49]. Adding
on, to improve the fine-tuning estimation of the parameters mentioned, LOOCV was
implemented using the concept of iteration. This fine-tuning of the parameters (Table 3)
is dependent on the sensor configuration, vegetation cover and soil characteristics. In
this instance, the terrain was relatively flat and, therefore, the oil palm backscattering
contributed to the radar signal as shown in Figure 2. It is important to note that the
vegetation parameters V1 = 1 and V2 = LAI were used for comparison to the ground
vegetation cover in this study, as these have previously been found to be the best soil
moisture indicators, among other vegetation parameters, such as the LWAI and NPWC, for
oil palm crop [61]. The results were in agreement with those of previous studies on other
crops, with the LAI variable being superior in sugarcane, cherry, rice [46], and wheat [93].
The accuracy obtained in the retrieval of soil moisture data using the LAI (Table 5) showed
that the HV polarization RMSE of 0.033 m3/m3 using the L band fulfilled the GMES
requirement of RMSE < 0.05 m3/m3. By contrast, the HH polarization produced a higher
RMSE in this study than in another study that used PALSAR-2, where the soil moisture
was variable, giving a retrieval accuracy of approximately 6.0% [94]. In relation to this, the
HV polarization in the L band is more sensitive to the vegetation structure and biomass
of oil palm when compared to HH polarization in peninsular Malaysia [95]. However,
comparable results were found under VV polarization using the LAI in wheat, with an
RMSE of 4.19% using the advanced SAR (ASAR) C-band sensor. For oil palm crop, using
LAI in the field is a destructive, manual method [96], but it is widely regarded as the most
accurate method for estimating the true LAI [97]. However, estimating LAI using this
direct method is time-consuming, tedious, and labor-intensive [63].

L-band backscatter interacts at the top of the canopy as well at the soil. Using this
capability, the L-band SAR-derived descriptors were considered worthy of evaluation in
order to obtain an understanding of the possibility of reducing this field-based variable
into the WCM to allow for simplified model fine-tuning and soil moisture data retrieval.
Positive correlations were found between all SAR-based descriptors and soil moisture
in oil palm under HH polarization using the RVI and RHH/HV ranging from 0.036 to
0.049 m3/m3 RMSE, followed by RHV/HH with a RMSE accuracy of 0.128 m3/m3. For the
RVI, RHH/HV and RHV/HH were employed where greater accuracy was found under the
HV polarization than the HH polarization. Under HV polarization, the RVI vegetation
descriptors used in multiple crops have demonstrated an accuracy of 0.085 m3/m3 [54],
which was improved in this study at 0.031 m3/m3.

Similarly, using RHH/VV , RVH/VV , RVI, and the generalized volume scattering model
based radar vegetation index, employed in a recent study, showed similar accuracies to
the findings of this study [56]. In addition, WCM studies using optical-based descriptors
(commonly the NDVI) have also been found to be accurate to within the GMES standards.
In comparing the NDVI with RVH/VV , crop phenology and crop growth changes have been
demonstrated and found to have an of accuracy of 0.12 cm3/cm3 in corn at the growth
level [57]. It was noted that the accuracy of soil moisture data retrieval can be affected
by the preprocessing and filtering process; hence, some consideration must be given to
evaluating the filtering window size, incident angle, and the SAR imaging resolution.
Soil moisture data retrieved from multi-polarized and multi-angled RADARSAT-2 images
have produced WCMs with accuracies of RMSE = 5.9% and 6.6%, respectively [98]. Using
the WCM, Zribi et al. [99] obtained comparable results for a semi-arid environment, at
RMSE = 0.06 m3/m3, using ASAR data. However, because crop structures vary in time and
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space, and radar interactions between the soil and vegetation are complex, the proposed
approach’s spatial and temporal transferability requires more measurements of soil and
vegetation properties, and corresponding radar observations, to provide more robust
results. On the other hand, cross-validation in this study was achieved using the LOOCV
method to enable fine-tuning of the parameters and error reduction in the evaluated
data set.

Based on the outcome of this study, we envisage that the WCM approach can be
embedded into crop automated irrigation systems, particularly in oil palm, where ap-
propriate soil moisture must be accessible, since insufficient or excessive moisture will
have a detrimental effect on nutrient uptake and yields. On the other hand, soil moisture
retrieval from PALSAR-2 can reduce laborious soil sampling work and result in time and
cost savings. Using the findings from this study, we were able to successfully reduce
field-based parameters, allowing the WCM approach to be evaluated further to develop an
efficient soil moisture model for the oil palm industry, particularly in rural plantation areas
with limited physical access for conventional soil sampling.

6. Conclusions

In this study, the WCM model was calibrated using L band SAR data, with the field-
based LAI indicator and SAR-derived RVI, RHH/HV , and RHV/HH as input vegetation
descriptors for an oil palm crop with in-field soil moisture. The aim was to evaluate
the SAR-derived indicators from PALSAR-2 for their suitability in reducing the need for
field-based parameter data collection. Our findings allow a simplification of the WCM that
enables SAR benefits to be adapted for soil moisture data retrieval in oil palm. The model
fit showed that with HV polarization, the RVI and RHH/HV produced a good replication
backscatter coefficient compared to using the LAI as the vegetation parameter. The WCM
modeled using the RVI and RHH/HV had accuracies of 0.425 and 0.472 dB RMSE. With HV
polarization, the field-based LAI indicator showed the model fit with an R2 of 0.983 and
RMSE of 0.635 dB, using PALSAR-2 data. Our results showed that the soil moisture data
retrieval was successful with an RMSE ranging as low as 0.033 m3/m3 using the field-based
LAI indicator under HV polarization. The SAR-based RVI indicator, however, gave better
accuracy with HV polarization at 0.031 m3/m3. The RHH/HV polarization demonstrated
an equally good capability of soil moisture data retrieval, at an RMSE of 0.049 m3/m3 with
the same polarization.

Based on these results, it was demonstrated that the WCM is applicable to oil palm
crop, with the performance of the model being evaluated using different vegetation de-
scriptors, providing an understanding of the potential use of SAR-derived vegetation
descriptors using PALSAR-2. It is suggested that full polarization of the L band to be used
for exploiting the SAR-based indicators in oil palm WCMs, and also to examine the impact
of the VH and VV polarization effects. For future work, C band backscattering from the oil
palm trees crown canopies can be more thoroughly evaluated to be implemented in the
WCM for biophysical estimation of vegetation cover. Investigation of the C band, using
field-based vegetation water content measurements in the oil palm canopy can be explored
using Equation (6) to study the accuracy of retrieving vegetation variable, e.g., LAI.
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Abstract: This research aims at modeling the microwave backscatter of corn fields by coupling an
incoherent, interaction-based scattering model with a semi-empirical bulk vegetation dielectric model.
The scattering model is fitted to co-polarized phase difference measurements over several corn fields
imaged with fully polarimetric synthetic aperture radar (SAR) images with incidence angles ranging
from 20° to 60°. The dataset comprised two field campaigns, one over Canada with the Uninhabited
Aerial Vehicle Synthetic Aperture Radar (UAVSAR, 1.258 GHz) and the other one over Argentina
with Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band Synthetic Aperture
Radar (PALSAR-2) (ALOS-2/PALSAR-2, 1.236 GHz), totaling 60 data measurements over 28 grown
corn fields at peak biomass with stalk gravimetric moisture larger than 0.8 g/g. Co-polarized phase
differences were computed using a maximum likelihood estimation technique from each field’s
measured speckled sample histograms. After minimizing the difference between the model and data
measurements for varying incidence angles by a nonlinear least-squares fitting, well agreement was
found with a root mean squared error of 24.3° for co-polarized phase difference measurements in the
range of −170.3° to −19.13°. Model parameterization by stalk gravimetric moisture instead of its
complex dielectric constant is also addressed. Further validation was undertaken for the UAVSAR
dataset on earlier corn stages, where overall sensitivity to stalk height, stalk gravimetric moisture,
and stalk area density agreed with ground data, with the sensitivity to stalk diameter being the
weakest. This study provides a new perspective on the use of co-polarized phase differences in
retrieving corn stalk features through inverse modeling techniques from space.

Keywords: synthetic aperture radar; polarimetric radar; co-polarized phase difference; radar scatter-
ing; vegetation; radar applications; agriculture

1. Introduction

The potential of active microwaves to monitor agricultural areas is recognized as
a key feature for supporting application-oriented approaches such as crop classification
schemes (e.g., [1–3]), crop height estimation (e.g., [4–6]), soil moisture estimation (e.g., [7,8]),
among others, and to aid decision-makers in managing and assessing agricultural re-
sources. Towards this goal, the NASA/JPL’s UAVSAR airborne L-band mission was de-
ployed to support several soil moisture and vegetation features inversion strategies [9–11].
In this respect, the systematic use of polarimetric SAR data from orbiting sensors at L-
band over croplands was almost limited to JAXA’s Advanced Land Observing Satellite
2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar (PALSAR-2) mission
(global.jaxa.jp/projects/sat/alos2) over the years. However, this situation has recently
improved with the successful launch of the Argentinean L-band SAR constellation mission
SAOCOM-1A and 1B (saocom.invap.com.ar) on 7 October 2018, and 30 August 2020, re-
spectively. Both sensors have a lifespan of 5.5 years and were designed with interferometric
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and polarimetric capabilities. Within its goals, the SAOCOM constellation will provide
fully polarimetric acquisitions dedicated to monitoring large cropland areas in Argentina,
representing an important contribution to agriculture and hydrology worldwide.

The NASA-ISRO Synthetic Aperture Radar (NISAR) mission, which is planned to be
launched in 2023, will provide L- and S-band full-polarized data over vegetated terrain,
adding up its polarimetric capabilities to existing imagery [12]. In addition, the European
Space Agency has recently signed the contract to develop the new high-priority Copernicus
Radar Observation System for Europe in L-band (ROSE-L) as part of Europe’s Copernicus
program. With a launch planned in 2028, this system will present polarimetric capabilities
and its main product types and formats will be aligned as much as possible with the ones
of Sentinel-1, for enhanced continuity [13].

Among major crops, corn is the most cultivated cereal worldwide according to the
latest Food and Agriculture Organization (FAO) data [14], with a total production of
1149 Mt in 2019, followed by wheat (765.8 Mt), paddy rice (755.5 Mt), soybeans (333.7 Mt),
and barley (159.0 Mt) in the same year. Following the significant SAR missions mentioned,
amplitude and phase measurements will be systematically delivered to cover most of these
major crops, among which corn fields have unique features: corn plants have the largest
dimensions with stalk heights up to 3 m, stalk diameters up to 2.5 cm and large moisture
contents up to 0.90 g/g [11,15,16]. Furthermore, corn seeds are usually planted in a regular
pattern of 7 to 9 plants per square meter onto rows separated 75 cm apart [11,16,17]. This
pattern and the unique plant features, often in the resonant regime for wavelengths at
the L-band, make the interaction of electromagnetic waves with corn fields very complex
to model.

Efforts in this direction were made on computing the scattering of a collection of
randomly distributed vertical cylinders, thus modeling the plant stalks over a dielectric
half-space. Smaller plant elements such as leaves and cobs were usually disregarded. High
order solutions involving multiple interactions among the cylinders and the underlying
dielectric half-space were obtained by Monte Carlo simulation or by radiative transfer
theory ([18,19]). However, for an application-oriented approach, a Monte Carlo simulation
is of limited practical use because of the ensemble-based statistical nature of its solution. In
the radiative transfer approach, solutions for modeling large dielectric structures such as
corn stalks should deal with an overestimation of phase and extinction matrices [18].

A more straightforward approach that incorporates much of the interaction complexity
with few input parameters is the model developed by Ulaby et al. [17]. This model relied
on previous experimental measurements to treat a corn canopy as a low-loss medium, thus
allowing for a description in terms of an equivalent dielectric medium characterized by a
complex index of refraction. With the noticeably uneven distribution of volumetric moisture
content between leaves and stalks during much of the growth stages, the contribution of
the plant leaves to total scattering can be disregarded for longer wavelengths, such as in
L-band.

Ulaby’s model was experimentally validated in [17] using an image-based relative
phase calibration, where near-range azimuth rows were assumed to have a co-polarized
phase difference near zero, and thus converting relative values to absolute values in the
remaining image. An ad hoc 180° phase shift added to the model ([17], Equation (5)) should
be disregarded on properly absolute calibrated images such as that of the aforementioned
SAR missions. The dataset used in Ulaby’s research for validation involved relatively
mature, dried vegetation with low stalk volumetric moisture [17]. No validation is reported
for other conditions, nor was further research in this respect found elsewhere. Moreover,
research on L-band co-polarized phase differences on crops is scarce (e.g., [20]). Most of the
research using polarimetric SAR data relied on higher frequencies (C- and X-band) [21–23]
or multi-polarization intensity-only studies [24]. These shortcomings will be addressed in
this manuscript, which turns out to be a novel contribution of this work.

When corn plants reach their peak biomass, vegetation water content is near maximum,
and canopy attenuation and stalk’s coherent effects are significant. The empirical fitting
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used in [17] to compute the dielectric constants of stalks from their gravimetric water
content was limited by its upper bound ([25], Chapter 4–9.2). For larger water contents, the
model developed by Mätzler in [26] will be considered.

In this research, a validation of Ulaby’s incoherent multi-parameter model with
experimental data on grown corn fields is shown. Mätzler’s model for a bulk dielectric
constant is coupled with Ulaby’s model to account for the large water content found in
the stalks of grown corn plants and to avoid time-consuming, laboratory-based dielectric
constant measurements. Two datasets were used, (1) fields in Canada imaged by the
airborne sensor UAVSAR and (2) fields in Argentina imaged by the satellite-borne ALOS-
2/PALSAR-2 sensor. Good agreement is made, which enables us to consider this model for
retrieving purposes through inverse modeling techniques.

The outline of this paper is given as follows: Section 2 states a brief review of Ulaby’s
fitting model, a sensitivity assessment of its model parameters with stalk features, and
a description of Mätzler’s model to estimate stalk dielectric constant from gravimetric
measurements. Then, details of data used in this paper are introduced, including SAR
data quality and the method for estimating co-polarized phase differences. The SAR data
statistics and the fitting of the Ulaby–Mätzler’s model to remotely-sensed co-polarized
phase differences are analyzed in Section 3. This coupled model and its implications for
corn parameter retrieval are discussed in Section 4. Concluding remarks are stated in
Section 5.

2. Materials and Methods
2.1. Incoherent Multi-Parameter Fitting Model

The co-polarized phase difference φ is defined as the difference in the absolute phase
between the linearly polarized HH and VV complex scattering amplitudes

φ = φHH − φVV . (1)

In lossy media, φ accounts for many scattering mechanisms and contributions. On a
grown corn canopy, φ is modeled as a result of the sum of three single contributions

φ = φp + φst + φs, (2)

where φp accounts for the phase term due to wave propagation through the canopy, φst for
the forward scattering by the soil surface followed by bistatic scattering by the stalks, or the
reverse process, and φs for the specular reflection on the soil. Each one of these scattering
mechanisms was evaluated following Ulaby’s model [17] and compared to SAR data.

Ulaby’s model [17] to be fitted accounts for the scattering interaction between the
plant stalk and an underlying rough, moistened surface to compute (2). Corn plants were
modeled as vertical dielectric cylinders, long enough relative to the wavelength to rely on
the infinity cylinder scattering solution, which is given in the form of a series [27]

TH,V(θi, θs; k, a0, εst) =
+∞

∑
n=−∞

(−1)neinθs CH,V
n (θi; k, a0, εst), (3)

where TH,V is the normalized far-field scattering amplitude, the subscript states the po-
larization of the impinging wave onto a linear basis (H or V), θi is the incidence angle
relative to the plane containing the cylinder’s axis, and θs is the azimuth scattered angle.
The dependence of the functions CH,V

n on the wavenumber k of the impinging wave, the
radius a0 and the complex dielectric constant εst of the cylinder is cumbersome and the
reader is referred to [27] for their analytical expressions.

The solution given by (3) is applied two-fold. Firstly, Ulaby et al. [17] have shown
that propagation in a layer comprising identical vertical cylinders randomly positioned
on the ground may be modeled in terms of an equivalent dielectric medium characterized
by a polarization-dependent complex index of refraction. The model assumed stalks are
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arranged with N cylinder per unit area and are far away enough such that multiple scatter-
ing is negligible. Hence, the phase constant of the index of refraction is used to compute
the co-polarized phase difference for two-way propagation (θs = π in (3)). Secondly, the
scattering solution in (3) is used to compute the phase difference between waves bistatically
reflected by the stalks by considering specular scattering only (θs = 0 in (3)).

The first term on the right side in (2) computes the phase term due to the two-way,
slanted propagation through the canopy,

φp =
4Nh

k
tan θ[Im{TH(θi, π)} − Im{TV(θi, π)}], (4)

where h is stalk height. In (4), the scattering features of the stalks are accounted for in the
TH,V amplitudes, where canopy bulk features are accounted for in the stalk density N and
in h. The scattered angle is evaluated at the forward direction (θs = π) [27].

The second term in (2) accounts for the phase term resulting from forward scattering
by the soil surface followed by bistatic scattering by the stalks, or the reverse process,

φst = tan−1
(

Im{TH(θi, 0)/TV(θi, 0)}
Re{TH(θi, 0)/TV(θi, 0)}

)
, (5)

where the solution should be sought in the domain (−π, π]. Here, θs = 0 accounted for the
specular direction.

The third term in (2) is the contribution from specular reflection on the soil through
Fresnel reflection coefficients RH and RV [25]

φs = tan−1
(

Im{RH(θi, εs)/RV(θi, εs)}
Re{RH(θi, εs)/RV(θi, εs)}

)
, (6)

where εs is the complex dielectric constant of the soil surface underlying the canopy. The
contribution of this term is about −180° due to the small imaginary part of εs in typical
soils and the difference in sign between RH and RV . Because of this term, total co-polarized
phase difference φ, over grown corn canopies yields negative values on absolute calibrated
polarimetric images.

2.2. Sensitivity Analysis of the Model Parameters

The three phase terms defined from (4) to (6) account respectively for the phase
difference by propagation through the stalks, by the bistatic reflection, and by the soil. Each
of these terms has different contributions to the total co-polarized phase difference in (2).
In what follows, a sensitivity analysis will be carried out, where frequency will be fixed at
an intermediate 1.25 GHz, that is, between those of UAVSAR and ALOS-2/PALSAR-2.

Among the three terms, the soil term φs has a simple dependency on the soil’s com-
plex dielectric constant εs = ε′s + iε′′s . A typical imaginary-to-real ratio of εs is 0.10, and
commonly used empirical models predict this ratio to be as large as 0.25 [28–30]. Then, it
follows from Figure 1 that the φs dynamic range is less than 16° for an imaginary-to-real
ratio of 0.10 (black lines) and 0.25 (blue lines). Three incidence angles 20°, 40°, and 60° are
evaluated. Then, for a typical observation geometry at 40° incidence angle, the sensitivity
to the dielectric constant shown by φs is of little relevance to the total phase difference.

The propagation term in (4) has a linear dependence with the stalk density N and
with the stalk height h. Moreover, since they are of the same order of magnitude, the effect
of varying N or h on φp will be equivalent. Conversely, the a0 and εst are nonlinear model
parameters through TH,V and the following sensitivity analysis will be focused on them.
First, contour levels depicting the dependence of φp on a0 and h at θi = 40◦ are shown in
Figure 2a. The contours are variations of φp computed as

∆φp =
∂φp

∂a0
∆a0 +

∂φp

∂h
∆h, (7)
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where it is understood that the other three terms involving derivatives (on ε′st, ε′′st, and N)
were computed and evaluated from the mean values collected on the ground, and these
are indicated in the inset in Figure 2a.
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Figure 1. Sensitivity of soil term on the real part of the dielectric constant. The imaginary part is
assumed to be 0.10 (black lines) and 0.25 (blue lines) of the real part.

A significant gradient indicated a high sensitivity to stalk height. This related to the
linear term h in (4). Conversely, a small sensitivity on a0 is related to a cancellation effect
due to the difference operator in (4), since both TH and TV depend on a0. The model exhibits
∆φp ∼ 20◦ when evaluated at the ground measurements (white ‘+’-mark in Figure 2a).
For a better comparison to ground measurements, stalk diameter d = 2a0 instead of stalk
radius a0 is shown. Since N and h are of the same order, contours for φp varying N instead
of h will result in sensitivities similar, slightly smaller though, to the ones depicted in
Figure 2a.

The sensitivity analysis on φp for the real ε′st and imaginary ε′′st parts of εst is shown in
Figure 2b, where the inset indicates the parameters the model is evaluated at. Here, the
contours range from around 0° to 20°, accounting for a larger sensitivity on εst in relation
to that on h. However, ∆φp ∼ 18◦ when evaluated at the ground measurements, similar to
the sensitivity found in Figure 2a.
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Figure 2. Sensitivity analysis of model parameters. (a) Sensitivity of the propagation term on stalk
height and diameter 2a0. The ‘+’-mark indicates the average values for the dataset. (b) Sensitivity of
propagation term on real ε′st and imaginary ε′′st parts of εst.

The bistatic term φst does not depend on h nor N. Moreover, overall the variation of
φst on a0 ranges from −7° to −2° with about −5° of variation with the model evaluated at
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the ground measurements. Hence, the contribution of the bistatic term to the overall model
sensitivity is negligible. Similar results are reached for the sensitivity of φst on ε′st and ε′′st.

The aforementioned analysis for ∆φp and ∆φst considered a fixed incidence angle
θi = 40◦. Computing the contour levels at different angles showed that:

1. At θi = 20◦, the φp variations evaluated at the ground measurements are ∆φp = 0◦

on the 2a0, h-space and ∆φp = 2◦ on ε′st, ε′′st-space;
2. Similarly, at θi = 60◦ resulted in ∆φp = 26◦ and ∆φp = 28◦;
3. At both θi = 20◦ and θi = 60◦, ∆φst is bounded between −6° and −3° .

From these remarks, it turns out that sensitivity improved with increasing incidence
angles for φp, whereas the contribution to the overall sensitivity of the φst term is negligible.

2.3. Microwave Dielectric Constant of Stalk from Gravimetric Measurements

The propagation and bistatic terms in (4) and (5) depend on stalk diameter and dielec-
tric constant through the far-field solution in (3). Whereas the collection of a0 is straightfor-
ward from the ground, εst requires tuned laboratory measurement techniques [31]. From
a large set of dedicated measurements, semi-empirical models relating bulk vegetation
dielectric properties with vegetation moisture were developed by Ulaby and El Rayes [32],
and Mätzer [26]. These are shown in Figure 3 for the vegetation moisture within the
stalks. Concerning the range of validity, a slight drawback in Ulaby and El Rayes’ model
is the upper bound of vegetation moisture used to fit the data. In effect, the model was
fitted for gravimetric moisture mg in the range 0.0–0.7 g/g ([25], Chapter 4-9.2). On the
other hand, Mätzer’s model [26] comprised measurements with larger moisture contents,
which allowed setting an empirical fitting with mg in the range 0.5–0.9 g/g. Since typical
gravimetric moisture for growth corn stalks is larger than 0.6 g/g, Mätzler’s model is better
suited and will be used here to estimate the dielectric constant of vegetation material within
corn stalks. Its input parameters are gravimetric moisture of plant stalks and frequency of
the impinging wave. In Figure 3, note the trend in Ulaby and El Rayes’ model of larger
dielectric values with respect to those in Mätzer’s model.
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Figure 3. Microwave dielectric model for bulk vegetation from Ulaby and El Rayes [25,32] and from
Mätzler [26].

2.4. Study Area and Ground Data Collection

The dataset to fit the Ulaby’s incoherent multi-parameter model was taken from
the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEx12) over south-
west of Winnipeg, Manitoba, Canada, centered on the town of Elm Creek (98◦0′23′′ W,
49◦40′48′′ N) [11,33] and from intensive campaigns led by the SAOCOM mission’s science
team near the town Monte Buey (32◦55′11′′ W, 62◦27′22′′ S), located in central Argentina
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over Pampas Plain. With these datasets, co-polarized phase measurements on grown corn
fields covered incidence angles roughly from 20° to 60°.

In Canada, eight corn fields were imaged by UAVSAR at peak biomass on 17 July 2012.
Each acquisition of the UAVSAR comprised four main flight lines with different incidence
angles totaling 32 data points. Vegetation was characterized within a one-day window
from the flight day: stalk height and diameter were measured. The former was measured
with a meter tape and the latter with a caliper over 10 plants within the field selected at
random positions. Then, the 10-plant average is computed. Stalk gravimetric moisture
was also measured on a less frequent basis, though, due to time-consuming laboratory
procedures. Five plants along two rows (ten in total) were collected, bagged appropriately,
and then weighted before and after the samples were placed in drying facilities to quantify
their water content [11]. A summary of the stalk features for the eight fields in Canada is
shown in Table 1.

In Argentina, CONAE has the largest instrumented site over croplands dedicated
to calibrating the soil moisture retrieval algorithm for the SAOCOM 1A and 1B mission.
In March, April, and June 2017, intensive campaigns over a 140 × 100 km region were
conducted and basic ground information over 20 corn fields among other crop types was
gathered. Ground information included 0–5-cm soil moisture, stalk height, and till status.
Stalk height measurements were taken at convenient positions while the plant was standing
in the field. Measurements involving the removal of the plant were disregarded due to
time-constraints. The stalk height is summarized in Table 1. These fields were imaged by
ALOS-2/PALSAR-2 on several dates totaling 30 data points.

Table 1. Corn stalk features from the ground data collection for two field campaigns in Canada
and Argentina.

Feature Canada Argentina
(SMAPVex12) (CONAE)

# Fields [-] 8 20
# Data points [-] 32 30

Stalk height h range [m] 1.93–2.53 1.80–3.00
Stalk diameter d range [cm] 1.85–2.35 -

Stalk moisture mg range [g/g] 0.811–0.834 -
Stalk density N [1/m2] 7.0–8.2 -

2.5. SAR Data and Its Quality and Processing Chain

Airborne UAVSAR provided full-polarimetric imagery over Canada with local in-
cidence angles ranging from 20° to 60°. It measured complex scattering coefficients at a
frequency of 1.258 GHz. Co-polarized phase measurements are given with a root mean
squared phase error ∼5.3◦ and always smaller than 10◦ [34]. The pixel size on the ground
projected image is 5.0 × 7.2 m onto a swath of 20 km.

As read from its metadata, UAVSAR imagery has the coherence matrix as a native
image format where SHHS∗VV is readily extracted from. Multi-looked (12 pixels in azimuth
by 3 pixels in range) and ground range projected data were used. The ground projection
method was nearest neighbor. With the SHHS∗VV-images, local incidence angle bands were
also provided.

Concurrent with the ground measurements over Argentina, fully polarimetric images
were acquired by satellite-borne ALOS-2/PALSAR-2 sensor at 1.236 GHz in High-sensitive
Full Polarimetry mode with a 50-km swath width at two incidence angle ranges: 25–30°
and 30–35°. This sensor delivered co-polarized phase difference measurements with an
imbalance better than 0.618◦ ([35], Table 3).

For ALOS-2/PALSAR-2, the processing chain started with radiometric calibration
from Single Look Complex (SLC) scenes. Subsequently, multilooking was applied (4 pixels
in azimuth by 2 pixels in range) to obtain an approximate square pixel and improve the
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images’ radiometric quality. Coherence matrices were computed and then geocoded to a
12 × 12 m ground pixel size using bilinear resampling. As the final product, output bands
for complex scattering product SHHS∗VV and for local incidence angle were generated.

2.6. Polarimetric Observable φ

With the above-mentioned phase-calibrated images, the derivation of the absolute
co-polarized phase difference defined in (1) is given by

φ = arg(SHHS∗VV), (8)

where SHH and SVV are the co-polarized complex scattering amplitudes, and ∗ denotes a
complex conjugate. In (8), φ is defined in the range−π < φ ≤ π. The statistical distribution
of φ for a speckled image is known, and its closed-form expression is [36]

P(n)
φ (φ; ρ0, φ0) =

Γ(n + 1/2)(1− ρ2
0)

nβ

2
√

πΓ(n)(1− β2)
+

+
(1− ρ2

0)
n

2π
2F1

(
n, 1; 1/2; β2

) (9)

with β = ρ0 cos(φ− φ0) where 2F1
(
n, 1; 1/2; β2) is a Gauss hypergeometric function. In

(9), ρ0 is the correlation between SHH and S∗VV , also known as coherence, φ0 is the phase
difference of the sample, Γ(·) is the gamma function, and n is the equivalent number of
looks, which is estimated by means of a matrix-variate estimator based on the trace of
the product of the covariance matrix C with itself (tr(CC)), thus using all polarimetric
information [37].

3. Results
3.1. Co-Polarized Phase Difference φ0 Estimation

The parameters φ0 and ρ0 in (9) were estimated using a Maximum Likelihood Esti-
mation (MLE) [38], where (9) is the likelihood function to be maximized constrained to
the observed SAR data. The MLE technique applied to multilooked histograms led to the
fittings shown in Figure 4. Here, Figure 4a,b display the histogram for a 2.27 m-height corn
field imaged with UAVSAR, and a 2.00 m-height corn field imaged with ALOS-2/PALSAR-
2, respectively. The number of looks n estimated from the above matrix-variate estimator
is also shown. Thus, the co-polarized phase difference estimator φ0 is computed for each
sampling site on each acquisition day. Furthermore, uncertainties in the estimates are
computed with a 95% confidence level.

(a) (b)

Figure 4. MLE fitting for speckled co-polarized phase difference histograms. (a) A 2.27-m-height
corn field imaged by UAVSAR at incidence angle 49.98°. (b) A 2.00-m-eight corn field imaged by
ALOS-2/PALSAR-2 at incidence angle 26.67°.
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3.2. Ulaby’s Model Fitting to SAR Data

With the model described in Section 2.1 and the HH-VV phase estimation methodology
explained in Section 3.1, a nonlinear least-squares fitting of the measurements against the
model is performed, as shown in Figure 5. The upper panel shows the estimated coherence
ρ0 and its uncertainties as bars resulting from the MLE technique. The middle panel shows
the fitting itself with the thick black as the best-fitted total co-polarized phase difference
φ0. The dotted bands represent the interval defined by the root mean squared error (rmse).
Fitted model parameters are also shown. Each term φp, φst, and φs is depicted separately
in Figure 5c.
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Figure 5. Model fitting by nonlinear least-squares and estimated parameters. (a) Coherence ρ0.
(b) Co-polarized phase difference φ0 and model fitting. The fitted parameters are indicated. (c) Each
contribution to the total phase difference is shown separately.

Overall, a good agreement is shown in the view of the dispersion found in the ground
measurements, most remarkably in stalk height (see Table 1). A slight overestimation
is expected since the corn plant developed above the stalk, resulting in an overall plant
structure taller than the stalk itself. Furthermore, the vegetation material within the stalks
occupied a smaller volume within the stalk rind, thus leading to an underestimation in
the fitted diameter since the outer layer comprising the rind is almost dry. By means of
Mätzler’s vegetation model, shown in Figure 3, the fitted real part ε′st = 29.9 corresponds
to a mg = 0.78 g/g, close to the laboratory-measured mg = (0.82± 0.01) g/g. Moreover,
the φ0 estimates with lower ρ0 (corresponding to 50° and 65° in Figure 5b) fitted well,
indicating that using an MLE technique over the whole histogram resulted in sound,
reliable estimates.
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With regards to the dependency on the incidence angle shown in Figure 5c, the
propagation term becomes relevant for large θi due to increasing interaction with dielectric
stalks for slanted propagation paths through the corn plants. The soil term sets a reference
level almost insensitive to incidence angle variations.

The Canada campaign collected corn parameters regularly, covering most of the
development of the corn plants. For further assessment, the same procedure described
above was applied to the corresponding UAVSAR dataset on dates before peak biomass on
17 July 2012. Table 2 summarizes the fitted model parameters and the root mean squared
error on 5, 8, 14, and 17 July 2012. The corresponding ground measurements are grouped
by dates to compensate for missing data, thus covering all eight sites.

While the trend in stalk height seemed to correspond to the plant’s growth, the
fitted φ0 is somewhat insensitive to stalk diameter, likely due to the sensitivity of the
underlying model to these parameters and the dispersion in model parameters. Again, an
underestimation of the diameter is expected due to the smaller volume of the vegetation
material within the stalks.

On the other hand, the stalk dielectric constant showed a significant sensitivity. With
the measured stalk gravimetric moisture shown in Table 2, a straightforward comparison
of fitted εst with mg is made with the aid of Mätzler’s model shown in Figure 3. In effect,
as followed from Figure 3, the range 0.834–0.847 g/g corresponded to the ε′st range 32–34,
which is in reasonable agreement with the corresponding fitted parameter. Similarly, the
range 0.811–0.834 g/g corresponded to ε′st in the range 31–32. The complex dielectric part
is governed by the salinity of the vegetation bulk material. Hence, it can be regarded
as a second-order effect in relation to the real part dielectric constant and, therefore, its
low sensitivity.

Table 2. Stalk features as compared to the fitting and to the ground data from dates prior to peak biomass. Field campaign
in Canada with UAVSAR. The dielectric constant on ground data is estimated from stalk moisture by means of Mätzler’s
model shown in Figure 3.

Date
5 July 2012 8 July 2012 14 July 2012 17 July 2012

Fitted pars.
Height h [m] 1.42 1.83 2.56 2.60

Diameter d [cm] 1.80 1.80 1.80 1.80
Dielectric constant εst [-] 30.6 + 6.0i 31.4 + 6.0i 32.0 + 6.0i 24.9 + 6.0i

Density N [1/m2] 7.15 7.39 8.16 8.20
Root mean sq. error [°] 16.3 20.8 21.8 22.3

Ground data
Height h range [m] 1.19–1.77 1.93–2.53

Diameter d range [cm] 2.00–2.29 1.85–2.35
Moisture mg range [g/g] 0.834–0.847 0.811–0.834

Dielectric constant (real part) ε′st [-] 32–34 31–32

Finally, as mentioned in the introduction, some techniques make the estimation of
crop height available. Hence, stalk height might be regarded as a known parameter in
specific applications. On the other hand, stalk diameter and gravimetric moisture are
plant features that involve time-consuming gathering procedures. If copolarized phase
measurements are available over a known corn field at some late stage, Figure 6 can aid
in parameter retrieval provided some guess in stalk gravimetric moisture or diameter is
at hand. Usually, relationships between diameter and height are available for corn and
maize elsewhere (e.g., [39]). The contour levels in Figure 6 were evaluated for several stalk
heights by parameterizing the stalk dielectric constant εst with gravimetric moisture mg
using Mätzler’s model.
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Figure 6. φ-contours resulting from the evaluation of (2) when coupling Mätzler’s model with
Ulaby’s. Frequency is fixed at 1.25 GHz and incidence angle is 40°. Model parameters now include
mg instead of εst. Stalk height h is indicated. (a) h = 1.80 m. (b) h = 2.00 m. (c) h = 2.40 m.
(d) h = 2.80 m. Contours are in degrees.

4. Discussion

Availability of a fully polarimetric dataset involving airborne and satellite-borne
images and stalk dielectric, structural, and spatial parameters enabled a multi-parameter
modeling over corn fields. The model considered here for the co-polarized phase difference
comprised three incoherent contributions with different sensitivities. Whereas the soil
term set an almost constant reference level of around -180°, propagation and bistatic terms
had a marked dependency with height, diameter, and moisture of the stalks. By adding
them up, the incoherent, interaction-based model fitting showed good agreement with
UAVSAR and ALOS-2/PALSAR-2 acquisitions, provided the dispersion in the ground
measurements be accounted for. By separating each of the contributions, a more accurate
understanding of crop interaction is made, advancing previous research where a full
explanation of observation data could not be given since considerable modeling efforts
were required [20,24]. Moreover, a number of dedicated radar experiments [15,16,40] with
detailed field measurements collected on corn fields can benefit from incorporating a co-
polarized phase model to extend their findings to phase-related observables, since modeling
efforts associated with these experiments were limited to intensity-related observables only.

More accurate crop scattering models will likely include detailed canopy physical
attributes, other than only stalk height and width, such as leaf area index, leaf orienta-
tion distribution, and leaf size [41], among others. As a result, a direct relationship of
the scattering with plant biophysical parameters might not be easy to develop. On the
other hand, scattering models with interaction at higher orders for randomly distributed
vertical cylinders rely on Monte Carlo simulations or iterative methods [18]. Thus, the
few parameters implied in the Ulaby’s model and its straightforward analytical expression
highlight its usefulness.

From the sensitivity analysis on Ulaby’s model described in Section 2.2, the stalk
height resulted in the highest sensitivity on the propagation term φp for all the incidence
angles. This goes in line with the application mentioned at the end of Section 3, where the
contours shown in Figure 6 leverage the stalk height retrieval from other remotely-sensed
techniques (i.e., [21]) through the improved sensitivity of the term φp in the total φ0. In
this regard, corn height estimates with a root mean square error around 40–50 cm over a
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growing season were demonstrated with machine learning techniques over a dataset of
polarimetric SAR observables at the C-band [21]. This study also highlighted the relevance
of polarimetric features related to double-bounce scattering (i.e., φst) [21]. Moreover, model
parameterization by stalk gravimetric moisture content instead of its complex dielectric
constant using Mätzler’s model demonstrated a potential resource for dimensionality
reduction, thus helping future application-oriented developments.

Several techniques are usually validated with data from airborne campaigns and then
expected to be readily applied with similar levels of accuracy to imagery acquired by orbit-
ing sensors. In the case analyzed in this research, field-based estimates from satellite-borne
acquisitions such as those of ALOS-2/PALSAR-2 were clearly constrained by histograms
with fewer data points since the larger pixel sizes involved were compared to airborne
acquisitions. With the sound histogram-based, matrix-variate Maximum Likelihood Esti-
mation technique described in Section 3.1, the estimates from ALOS-2/PALSAR-2 resulted
in slightly larger, otherwise reasonably bounded, uncertainties than UAVSAR ones.

With the increasing availability of L-band space-borne SAR missions adding to ex-
isting C-band SAR resources (e.g., European Space Agency’s Sentinel-1), multi-frequency
methodologies may become fully operational in the near future. The multi-frequency
approach exploits different penetration capabilities into the vegetation canopy. For in-
stance, these enhanced capabilities can potentially circumvent typical issues regarding
the classification of crops with similar architectures such as corn and sorghum, the latter
widely spread in America and Africa. To a greater extent, if multi-frequency polarimetric
SAR data become available, polarimetric modeling such as the Ulaby–Mätzler model can
enhance further corn plant parameter retrieval.

5. Conclusions

Research on crop scattering processes can primarily benefit from fully polarimetric
data. In addition to usual power scattering coefficients, a promising polarimetric observable
for crop monitoring is the phase difference between the co-polarized complex scattering
amplitudes. By leveraging the penetration capabilities at the L-band, fully polarimetric
SAR missions become worthwhile over croplands. This study presents a scattering model
coupled with a semi-empirical dielectric model for co-polarized phase differences resulting
from the interaction of microwaves with grown corn canopies. The dataset included
airborne and space-borne fully polarimetric SAR data with incidence angles ranging from
20° to 60°. A set of 60 data points was analyzed and used to perform an experimental
data fitting with a nonlinear least-squares technique. The results showed a satisfactory
agreement for corn co-polarized phase differences at the field scale, with an RMSE of
around 24.3° considering airborne and space-borne acquisitions. Compared with available
studies on corn phase differences with SAR data, this research provides a new perspective
on using phase-related observables on fully polarimetric SAR data over corn fields.
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Abstract: Space-based synthetic aperture radar (SAR) is a powerful tool for monitoring flood condi-
tions over large areas without the influence of clouds and daylight. Permanent water surfaces can be
excluded by comparing SAR images with pre-flood images, but fluctuating water surfaces, such as
those found in flat wetlands, introduce uncertainty into flood mapping results. In order to reduce this
uncertainty, a simple method called Normalized Backscatter Amplitude Difference Index (NoBADI)
is proposed in this study. The NoBADI is calculated from a post-flood SAR image of backscatter
amplitude and multiple images on non-flooding conditions. Preliminary analysis conducted in the
US state of Florida, which was affected by Hurricane Irma in September 2017, shows that surfaces
frequently covered by water (more than 20% of available data) have been successfully excluded by
means of C-/L-band SAR (HH, HV, VV, and VH polarizations). Although a simple comparison of
pre-flood and post-flood images is greatly affected by the spatial distribution of the water surface
in the pre-flood image, the NoBADI method reduces the uncertainty of the reference water surface.
This advantage will contribute in making quicker decisions during crisis management.

Keywords: SAR; ALOS-2; PALSAR-2; Sentinel-1; flood; NoBADI; Florida; Hurricane Irma

1. Introduction

Serious flooding events are caused by extreme weather conditions and seasonal tropi-
cal cyclones, and it is important for affected societies to respond quickly to disasters based
on spatial awareness of the observed flood extent. Space-borne Synthetic Aperture Radar
(SAR), a remote sensing technology from space, is an advanced solution for monitoring
large-scale flood disasters extensively and quickly that is not hampered by cloud cover. The
easiest method for identifying a flood surface is to extract low backscatter pixels, which in
this case includes the permanent water surface. To exclude the permanent water surfaces
such as rivers and lakes, significant backscatter reduction from a pre-flood SAR image
would be extracted as flood-derived water surfaces [1–4]. Advanced methods analyze
phase information based on the interferometric SAR (InSAR) technology. By means of
L-band, C-band, and X-band SAR, not only basic experiments but also operational uses for
actual crisis responses have been carried out [5,6].

When the spatial distribution of the water surface is not stable, the difference between
the pre-flood and post-flood images becomes uncertain. In particular, low-elevation and
flat terrains in the tropics tend to form numerous ponds and lakes with fluctuating water
bodies due to intensive monsoon precipitation and other seasonal features. In such a case,
different results of flood extraction would be obtained according to the acquisition dates of
pre-flood images. This uncertainty might cause difficulties in rapid image analysis during
an actual operation of crisis response.
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One idea for reducing the uncertainty is to quantify the frequency of water extent
in each pixel by considering the average and variability during non-flooding periods.
Calculations of these statistical values are common in SAR-related studies, and examples
include detecting anomaly pixels of the forest [7]. In this study, therefore, we focus on
a simple method calculated from the mean and standard deviation values of multiple
non-flooding conditions in addition to a post-flood image, which we call the Normalized
Backscatter Amplitude Difference Index (NoBADI) in this study. The objective of this study
is to evaluate the benefits of NoBADI applied to hurricane-derived flood areas formed
around fluctuating water distributions. The obtained results are assessed by optically
derived reference maps of water bodies and other SAR-based results, then possibilities and
challenges of NoBADI are discussed.

2. Study Site

In this study, we chose the Florida peninsula in the United States as our research
site. The study site is rectangular in shape (8.219–8.227◦ W; 27.281–27.346◦ N) located
30 km east of Sarasota, upstream of the Myakka River State Park. The site contains the
Lettuce Lake (Figure 1). Another rectangle is defined as a validation site in order to assess
classification accuracy.
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Figure 1. Location of the study site with a validation site shown as pink rectangles. Basemap is
derived from OpenStreetMap.

This peninsula is located between the Gulf of Mexico and the Atlantic Ocean. The
general climate of the region is characterized by a humid subtropical climate, with rainy
seasons from May to October and a dry season from October to the end of April. Aver-
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age annual precipitation reaches 1137 mm, of which 193 mm is the maximum monthly
precipitation in August. Surface temperatures range from 11 to 32 degrees Celsius in
Tampa [8].

The topography is dominated by flat terrain and is characterized by the longest
coastline in the states of the U.S. (2170 km), where more than half of that is classified as
sand beach. Most surfaces in the Florida peninsula have elevations below 5 m. The highest
place is the Sugarloaf Mountain (95 m) in the Lake Wales Ridge, located in the center of
the peninsula.

The state of Florida, with a population of 19.6 million, was severely damaged by
Hurricane Irma. The hurricane formed on the West coast of Africa on 27 August 2017 [9]. It
landed in Florida as a Category 4 hurricane on September 10 [10]. Power outages due to
the hurricane affected 6.7 million people [11,12], which is equivalent to 36 % of the total
population in Florida [12]. Six point five million people were ordered to evacuate and
there was a serious problem of traffic congestion [13]. Social disruption caused by the
hurricane caused the direct death of 11 people, whereas 115 deaths were indirectly caused
by deterioration of the medical environment [14]. The hurricane disappeared and became
a tropical storm on 11 September west of Gainesville, Florida [9].

3. Data
3.1. Reference Optical Imagery

Optical satellite imagery collected by WorldView-2 (WV2) derives spatial distribution
of post-flood water bodies. The satellite is equipped with a high-resolution optical sensor
called the WorldView-110 camera. Satellite operation started in 2009 by DigitalGlobe and
is still continued by MAXAR for mostly commercial use and those related to activities for
national security. The optical sensor contains eight multispectral bands (coastal, blue, green,
yellow, red, red edge, and near-infrared (2)) and one visible panchromatic instrument, with
the spatial resolution of 1.85 m and 0.46 m at the nadir angle, respectively [15].

A post-flood WV2 imagery after Hurricane Irma passed was purchased from a Japanese
sales agent, Japan Space Imaging. Imagery collection was carried out at 15:59 (UTC),
12 September 2017 under 3% cloud cover condition. The given data consist of a part of
multi-spectral bands (blue: 450–510 nm; green 510–580 nm; red 630–690 nm; near-infrared
770–895 nm). Those of product level 2A (standard) after radiometric correction were
resampled to 2 m pixel spacing (nearest neighbor) for a WGS84/UTM projection as a 16 bit
digital number.

The possible range of water distribution which was not influenced by flood hazards
is determined by another optical satellite imagery collected by Sentinel-2 (S2). Identical
satellites of Sentinel-2A and Sentinel-2B are operated by the European Space Agency in
the Copernicus program to distribute collected data free of charge. The main sensor is a
Multi Spectral Instrument (MSI), which contains 12 multispectral bands from coastal to
short-wave infrared with the spatial resolutions of 10, 20, and 60 m [16]. Single satellite
operations began on 23 June 2015, and dual operations began on 7 March 2017. The revisit
period for a single satellite is 10 days. The approximate observation time is 10:30 a.m.
local time.

We collected and processed all available S2 data since 27 October 2015 (~325 scenes)
in a cloud platform for remote sensing using Google Earth Engine (GEE) (Table S1). These
data were observed along the relative orbit number of 97, which was adequate for the
study site. Those in product level 2A, surface reflectance at the bottom of atmosphere (after
atmospheric correction), were resampled in 10 m (equivalent pixel sizes in a geographic
coordination system).

3.2. SAR Data

First, L-band SAR data were collected by the Phased Array type L-band Synthetic
Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite-2 (ALOS-2).
ALOS-2 was launched on 24 May 2014 and is operated by the Japan Aerospace Explo-

135



Remote Sens. 2021, 13, 4136

ration Agency (JAXA) for distributing SAR imagery for commercial use or free of charge.
Four scenes before the flood (20 January 2015, 1 September 2015, 19 January 2016, and
30 August 2016) and one scene after the flood (12 September 2017) were observed at 5:32
(UTC) from Path 47 (Frame 0530) with an off-nadir angle of 36.6 degrees. Stripmap (fine
beam) mode at 5.3/9.1 m spatial resolutions in azimuth/range directions with HH-HV
dual polarization (SM3) was selected for these observations.

For the same five scenes, data in two product levels are separately and independently
selected for different processes. One is backscatter amplitude image which is ortho-rectified
and geocoded by means of SRTM-90 m (v4.1) (i.e., JAXA’s standard product, level 2.1)
and resampled (bi-linear) to a pixel spacing of 6.25 m at an adequate WGS84/UTM (zone
17N) projection. Another includes Single Look Complex (SLC) data (i.e., JAXA’s standard
product, level 1.1) in which phase information is included for an interferogram. We
obtained amplitude (L2.1) data as a 16-bit digital number using the Geotiff format and SLC
(L1.1) data in CEOS format.

Second, C-band SAR data were collected by Sentinel-1A/B satellites (S1). These are
identical two satellites launched on 3 April 2014 (A) and 25 April 2016 (B) for constellational
operation by ESA in the Copernicus program. We collected and processed all available data
(~143 scenes) in GEE free of charge (Table S2), which contains data observed on the closest
day (15 September 2017) to the flood event (10 September 2017). These data were observed
along the relative orbit of 121 (ascending direction) adequate for the study site. ScanSAR
(IWS: Interferometric Wide Swath) mode at 20/22m spatial resolutions in azimuth/range
directions with VV-VH dual polarization was selected for these S1 observations. The
acquired amplitude data were ortho-rectified and resampled to pixel spacing of 10 m
(equivalent pixel sizes in a geographic coordination system) as Level-1 Ground Range
Detected (GRD) products before our process.

4. Methodology
4.1. Water Surface during the Flood

The post-flood water bodies as references are extracted from the WV2 image (Figure 2).
Surface reflectance is calculated from the digital number using conversion parameters
explained in [17]. The Normalized Difference Water Index (NDWI) for open water surface
proposed by [18] is calculated as follows:

NDWI =
G−N
G + N

, (1)

where G and N are the surface reflectance in the green and near-infrared bands. NDWI is
then binarized with a threshold of 0.0, where higher values correspond to the water surface.

4.2. Water Surface Not/Highly Related to the Flood

We generated a water extent map with non-flood status. In the study site, a part of
numerous potential water bodies may change their extent due to low-and-flat topography
and tropical precipitation. Therefore, only the fixed map of water extent was difficult to
determine. Instead, the spatial distribution of the frequency of water cover is quantified in
this study. A large number of NDWI images were stacked to quantify water-inundated
opportunity at 0 to 100%.

Cloud-covered pixels are excluded with an attached quality band “QA60”. NDWI is
then calculated from the green (Band 3) and the near-infrared (Band 8) bands. Binarization
of NDWI values with the threshold of 0.0 reclassifies water pixels from other land covers.
In each location of the pixels, the number of water pixels divided by total available scene
number denotes water frequency (WF). Pixels with permanent water will have a value of
1.0, and pixels with permanent land will have a value of 0.0. WF ranges from 0.0 to 1.0,
with larger values for pixels that are covered by water more frequently.

The unique water extent caused by the hurricane Irma (HWE: Hurricane-induced
Water Extent) is defined as the difference of WV2-derived water extent and S2-derived

136



Remote Sens. 2021, 13, 4136

frequent water extent with a certain WF value. In the results, HWE is generated based on
pre-flood water surface of WF > 0.2.
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4.3. L-Band SAR Processing

We calculate NoBADI and other outputs from PALSAR-2 data for flood mapping. As
initial processing, backscatter amplitude (i.e., sigma naught) was calculated from the given
digital number (DN) in L2.1 data as follows.

σ = 10 log10 DN2 − 83. (2)

Low-pass filter (mean of 3 × 3 pixels) for speckle noise reduction is conducted, then
the pixels are resampled (Nearest Neighbor) relative to the projection of WGS84/UTM
(Zone 17N).

This study proposes NoBADI, which expresses how rare the water cover is in each
pixel. This value should be intensive/weakened when water covers hardly/frequently
inundated places. Non-flood mean value and standard deviation value are calculated from
four pre-flood images, which are all of available Stripmap-mode scenes with an equal
off-nadir angle in this location. They are combined with post-flood pixel value in order to
calculate NoBADI with the following equation:

NoBADI =
σpost − σmean

σstd
, (3)

where σpost is the post-flood backscatter amplitude (i.e., sigma naught), σmean is the mean
of the non-flood backscatter amplitudes, and σstd is the standard deviation of the non-flood
backscatter amplitudes (Figure 2).

The standard deviation shows smaller values for stable land surfaces and larger values
for frequently fluctuating surfaces. This method moderates the usual water extent and
enhances irregular water extent, even if these have similar values in terms of amplitude
decrease over the hurricane-induced flood.

137



Remote Sens. 2021, 13, 4136

In order to evaluate NoBADI results, general methods of water body extraction are
also performed. The simple difference of backscatter amplitude is calculated as follows:

σdiff = σpost − σpre, (4)

where σpre is one of four scenes. Four results based on different pre-flood dates are
calculated and compared.

In addition, coherence and coherence decreases are calculated by means of SLC (L1.1)
data. Interferometric coherence, γ, can be calculated as follows:

γ =
|〈s1s∗2〉|√〈
s1s∗1

〉〈
s2s∗2

〉 , (5)

where s1 and s2 are a pair of single look complex (SLC) SAR data, s* represents the complex
conjugate of s, and the bracket 〈 〉 indicates averaging in a local window (4 × 4 pixels in
this study). Coherence represents the similarity between two SAR images, and it decreases
as the state of the ground surface changes.

To cancel non-hazardous changes from the coherence output, two coherence images
including a pre-flood pair (19 January and 30 August 2016), coherence γpre, and a pre-flood
and post-flood pair (12 September 2017 and 30 August 2016), coherence γco, were used.
The coherence decrease, γdecr, is calculated as follows.

γdecr = γco − γpre. (6)

4.4. C-Band SAR Processing

Furthermore, we calculated NoBADI from S1 data for flood mapping. Backscatter
amplitude (i.e., sigma naught) was ready in GEE. NoBADI is calculated as proposed
above, where all available scenes in GEE are stacked in order to calculate the mean and the
standard deviation. After the processing, pixels are resampled (Nearest Neighbor) relative
to the projection of WGS84/UTM (Zone 17N).

5. Results
5.1. Optical Water Mapping for Reference

Most parts of the post-flood water bodies in the study site are correctly extracted
from the WV2-derived NDWI image and can be observed in visual comparison with
the WV2 true color image (Figure 3a). More than six relatively large water bodies (ID
numbers attached) and many smaller areas have been extracted. Some rather smaller
portions (~10 m) of the water bodies are excluded, probably due to the mixed-pixel effect.
Subsequent S2 and SAR data have larger pixel sizes than compared to these small water
bodies; therefore, this exclusion does not affect the research objectives.

Potential water bodies, which are not related to hazardous conditions, are obtained
by stacking the S2-NDWI images and quantifying the frequency of the presence of water
bodies per pixel (0–100%) (Figure 3b). There are several locations with high WF values
above 0.2 (indicated by the black outlines in Figure 3b), and slightly lower values are
distributed around them. These locations are also covered by water during floods and
correspond to the water areas of ID:1–6 (Figure 3a). Therefore, these locations are likely
to be potential water bodies (lakes and/or ponds) with some area fluctuation. Scattered
portions showing 0–0.01% values of WF (in darker gray) are distributed homogeneously in
the study site. These do not correspond to post-flood water-body distribution and potential
land cover.

5.2. Single Post-Flood SAR Imagery

Simple visual interpretation of a post-flood SAR image suggests spatial distribution
of post-flood water bodies, including potential water extent. Color composite images of
PALSAR-2(Figure 4a) and S1 (Figure 4b) dual polarizations denote multiple domains in
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blue, which is emphasized by their flat surface with smaller volumetric scatter as same as
smaller backscatter. Some of these extents correspond to WV2-derived post-flood water
distributions (blue outlines as same as Figure 3). The PALSAR-2 image has higher contrast
and has easy to visually identify flat surfaces (in blue) than compared to the S1 image. On
the other hand, the S1 image emphasizes water bodies that have been identified by WV2
data (blue outlines).
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5.3. NoBADI

Spatial distributions of NoBADI in the study site were calculated from PALSAR-2 HH
(Figure 5a) and HV (Figure 5b) polarizations as well as from S1 VV (Figure 5c) and VH
(Figure 5d) polarizations, respectively. All images show higher values (zero or greater) that
are mostly outside the WV2-derived flood portions (in blue/white outlines), whereas the
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majority of negative values are distributed inside the flood portions. These trends are not
influenced by the difference of SAR wavelength (C-/L-bands), polarization (HH, HV, VV,
and VH), and stacked number (4 or 143 scenes) of pre-flood images.

In the close-up panels (Figure 5e–h) centered on the representative major flood por-
tions, it can be observed that high values close to zero are distributed in the frequent water
areas (>20%) (in black outlines), while lower negative values (<−1) are distributed in the
peripheral areas (green/blue) within the post-flood water bodies. These results indicate
that NoBADI values generally have lower negative values only in HWE, avoiding potential
water extents.

Several parts located at the central north edge of the study site denoted significantly
lower values (in light blue) in terms of PALSAR-2 results (Figure 5a,b), which are not
shown in S1 results (Figure 5c,d). These locations are not optically referenced in the WV2
true-color image (Figure 3a) because they correspond to cloud shadows. The presence of
the water bodies was expected in the PALSAR-2 image (Figure 4a) but not in the S1 image
(Figure 3b). Based on this limited information, it is possible that the water body here has
decreased between the two observation dates, which may be the reason for the difference
in NoBADI results.

5.4. Pre–Post Difference

In order to evaluate the NoBADI results, simple before/after differences in the ampli-
tude of SAR backscatter were calculated for each polarization of PALSAR-2 HH (Figure 6a),
HV (Figure 6b), S1 VV (Figure 6c), and VH (Figure 6d). Backscatter amplitude is small
in flat surfaces such as water and paved roads. Darker pixels would indicate a severe
decrease in backscatter (e.g., flood inundation), while brighter pixels would indicate a
severe increase in backscatter (e.g., loss of water extent).

Dark regions should, therefore, correspond to flood-derived water extents. However,
their distribution does not correspond to potential water extents (outline in yellow). Fun-
damentally, their spatial distribution is not homogeneous in the pre-flood water extent
(blue/white outlines) among the four images that are visually identifiable in the closed-up
panels (Figure 6e–h). Inside a representative water body of ID-3, for example, flood-derived
water extent was suggested in the largest area based on the conditions of 19 January 2016
(Figure 6g) and 30 August 2016 (Figure 6h), whereas it was slightly suggested based on
the condition of 20 January 2015 (Figure 6e). Based on the condition on 1 September 2015
(Figure 6f), relatively moderate and partial flooding is expected.
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The comparison of the most recent month does not ideally match the distribution of
the reference water extent. Irregular changes in potential water bodies and not seasonal
differences are dominant in the study area. This result suggests that selecting the most
recent month’s data as a reference does not always result in accurate water extraction from
simple before/after differences.

5.5. Coherence

Multiple previous studies focused on coherence and other InSAR-derived results
for flood mapping. The spatial distributions of PALSAR-2 coherence between post-flood
(12 September 2017) and pre-flood (30 August 2016) scenes (Figure 7a) and coherence
decrease versus two pre-flood scenes (30 August 2016 and 19 January 2016) (Figure 7b)
were calculated. The two results do not show any visually identifiable features, and even
pre-flood water bodies are difficult to extract. These results suggest that background
coherence is generally low in this study area. This may be due to the relatively active
growth of vegetation in the tropics and the disturbance of the physical properties of the
ground by frequent rainfall over one year.
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6. Discussion
6.1. Overview of NoBADI

In this study, a simple function of combining multiple SAR backscatter amplitude data,
named NoBADI, was applied to hurricane-induced flood conditions in the study site where
the water bodies potentially fluctuate. Single use of pre-flood data would derive different
results according to the pre-flood conditions, whereas NoBADI has higher potential to
exclude potential water bodies through the statistical algorithm. No significant difference
was found between L-band and C-band observations. Indeed, hundreds of pre-flood data,
as demonstrated with S1 data, support higher reliability of output information than small
samples. According to the result of NoBADI calculated from PALSAR-2 data, however,
four pre-flood data, at least, enable the correct output of NoBADI.

Detailed interpretation suggests slightly different characteristics of L-bands/C-bands
in terms of volumetric scatter. As described in the Results section, the PALSAR-2 post-
flood single image had higher contrast and flat surfaces that were easier to identify than
the S1 image. On the other hand, the S1 image emphasizes water bodies, which have
been identified by WV2 data. A major reason for the lower contrast for non-water flat
domains in S1 data is possibly the difference of L-bands/C-bands. By comparing the
two wavelengths, C-band is largely influenced by short grass and coarse vegetation (i.e.,
volumetric scattering).

6.2. SAR Backscatter Amplitude and Water Extent

To understand the sensitivity of backscatter amplitude relative to temporal changes of
a water-covered area, we compared the relationship between the S1-derived backscatter
amplitude (VV) and the S2-derived NDWI in temporal profiles (Figure 8). Each panel
corresponds to the domains of representative post-flood water body from ID-1 to ID-6.
The backscatter amplitude is negatively correlated with the water extent represented by
the average NDWI value for the six domains. This means that backscatter amplitude is a
highly sensitive proxy for water existence.

A detailed comparison shows that when the backscatter amplitude is below -16 dB, the
NDWI is positive (most of the area is covered by water). The ID-2 domain has a significant
drop of backscatter amplitude on September 2016. This means that the land surface turns
into a water surface, possibly artificially. The ID-5 domain has mostly positive NDWIs,
suggesting land cover in the long term. This domain was temporarily covered by water in
response to Hurricane Irma during mid-September 2017, but it is not reflected in the profile
possibly due to rapid recovery.

For all profiles, there is no uniform seasonal variation. It was not seasonal changes but
transient and irregular events that were dominant for water extent changes. NDWI values
have frequent and wide-range fluctuations compared to backscatter amplitude. This is
because cloud mask is not applied on this analysis due to statistical limitations. However,
we observe that the general trend is the same as in backscatter amplitude.

6.3. Optimization of Threshold Value for NoBADI Water Extraction

In the NoBADI analysis, one threshold value is set for binarization, then pixels with
lower values are considered flood-derived water extent. Classification accuracy is evaluated
by matching NoBADI-derived water pixels versus S2-derived water pixels above the WF of
0.2. In this accuracy validation, the Kappa coefficient is calculated by setting the NoBADI
threshold (th.) to multiple values from −4 to 0.

Variations of the Kappa coefficient corresponding to multiple NoBADI threshold
are obtained from PALSAR-2 HH, HV, S1 VV, and VH datasets (Figure 9). The highest
coefficient value is 0.43 (th. = −1.6) on S1/VV scenes, followed by 0.39 (th. = −1.4) on
S1/VH scenes. PALSAR-2 results derive lower maximum coefficients of 0.32 (th. =−0.9) on
HH scenes and 0.27 (th. = −1.0) on HV scenes. Selecting these thresholds enables the most
optimized extraction of flood-derived water extent. S1 will derive more than PALSAR-2,
but PALSAR-2 has more flexible observation criteria for emergency observation under
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international partnerships. The choice of which one to use will be determined by the timing
of observations after the disaster occurs.
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To assess sensitivity of the Kappa coefficient, the same calculation was performed for
the validation site (see Figure 1). The highest coefficient value is 0.45 (th. = −1.3) on S1/VV
scenes, followed by 0.44 (th. = −1.2) on S1/VH scenes. PALSAR-2 results derive lower
maximum coefficients of 0.33 (th. = −1.4) on HH scenes and 0.28 (th. = −1.3) on HV scenes.
The study site and the validation site, thus, have different values for optimized threshold,
which have smaller differences in S1 than PALSAR-2. The S1/VH scenes have values of the
Kappa coefficient above/below 0.4, but the VV scenes have similar values both above 0.4
between the two sites. The sensitivity of Kappa coefficient demonstrated in the two sites
suggests that S1/VV scenes derive relatively robust outputs that are slightly influenced by
selecting the area for analysis.
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6.4. Advantages of NoBADI

Fundamentally, the NoBADI method, as we demonstrated in Florida by means of
C-band and L-band SAR, is not affected by cloud cover and that supports urgent and
promising observation just after or even during the effects of the hurricane. Figure 5
shows the comprehensively similar features of NoBADI’s spatial distribution, although
detailed differences are caused among C-bands/L-bands and HH/HV/VV/VH polariza-
tions. Other SAR sensors such as Radarsat-2, NISAR, ALOS-4, and upcoming ones onboard
commercial small satellites can potentially apply this method. Note that the X-band has
not been verified at this time, so it is expected to be evaluated in the future.

Figure 6 shows that spatial distributions of backscatter amplitude decreasing over the
flood event are different depending on the scene that is used as the pre-flood condition.
These differences that happen to occur are especially significant within the post-flood water
extents, except stable water extents (WF > 0.2) (i.e., HWE). Furthermore, Figure 8 shows
that SAR backscatter amplitude and NDWI are irregularly fluctuated and not related to the
seasonal cycle. It is possible that the dominant factor here is not the overall seasonality but
the uneven cycle of precipitation and evaporation. This suggests that selecting a pre-flood
scene in the same season as a post-flood scene does not necessarily improve the uncertainty.

The NoBADI value is not a physical value directly corresponding to backscatter
amplitude (dB) but an index that expresses how rare the water extent is. Water extents in a
location sometimes covered by water would denote moderate values near zero because
standard deviation is relatively large due to frequent changes of land cover. On the other
hand, water extents caused in surfaces with small opportunities of water cover would have
significantly lower values, which is highlighted in the NoBADI map. For these reasons,
spatial distributions of NoBADI (Figure 5) do not denote homogeneous values in the
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entire surfaces of the HWE. Instead, we can selectively recognize rare water extents as
significantly lower NoBADI values.

6.5. Toward Operational Use of Crisis Response

Recent studies of SAR-based flood monitoring analyzed multi-temporal scenes ac-
quired in their study sites [19,20]. Complicated and highly technical methods, however,
need to be evaluated in terms of their applicability for each flood case in different topogra-
phies and the limitation of available SAR data archives. Our study proposes a simple
function of NoBADI aiming to be a standard method for low and flat topography. We
conclude that different wavelengths, different polarizations, and the number of pre-flood
scenes have certain effects on the output results. These characteristics should be considered
for practical applications in crisis response.

NoBADI results do not show neighboring and homogeneous distribution of pixel
values for the HWE, but denser and lower pixel values with some deviations around
expected places of the HWE (Figure 5). It is possibly the reason why values of the Kappa
coefficient are relatively small values that are not larger than 0.5. This may have some diffi-
culties for simple conversion to vector-format polygons. Therefore, further geoinformatics
consideration would be needed, such as filter processing and segmentation. Thus, in the
present status, NoBADI should be used for the purpose of narrowing down the target area
in the first stage of operational use during crisis response. It would be followed by further
rigorous analysis in order to collect more accurate information.

7. Conclusions

This study assessed Hurricane-induced Water Extent (HWE) by using SAR-based
method of NoBADI and considering the potential fluctuation of water extent in Florida.
Both of L-band and C-band SAR data extracted flood-derived water while excluding
potential water distribution. These wavelengths can be used to obtain initial information
about the flood distribution, and the classification accuracy is higher in the C-band. Future
studies will be expected for the validation of NoBADI analysis in other locations that have
different temporal patterns of water surface fluctuation.
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Abstract: In oil palm crop, soil fertility is less important than the physical soil characteristics. It is
important to have a balance and sufficient soil moisture to sustain high yields in oil palm plantations.
However, conventional methods of soil moisture determination are laborious and time-consuming
with limited coverage and accuracy. In this research, we evaluated synthetic aperture radar (SAR) and
in-situ observations at an oil palm plantation to determine SAR signal sensitivity to oil palm crop by
means of water cloud model (WCM) inversion for retrieving soil moisture from L-band HH and HV
polarized data. The effects of vegetation on backscattering coefficients were evaluated by comparing
Leaf Area Index (LAI), Leaf Water Area Index (LWAI) and Normalized Plant Water Content (NPWC).
The results showed that HV polarization effectively simulated backscatter coefficient as compared to
HH polarization where the best fit was obtained by taking the LAI as a vegetation descriptor. The
HV polarization with the LAI indicator was able to retrieve soil moisture content with an accuracy of
at least 80%.

Keywords: SAR; backscattering; soil moisture content; LAI; HH and HV polarization

1. Introduction

Soil moisture content is a critical input variable in a wide variety of scientific studies
in the field of agriculture. Soil moisture is an environmental element that connects the
Earth’s surface and the atmosphere. When soil moisture levels are balanced, agricultural
yields improve, yield losses due to drought are reduced, and groundwater levels are
recharged, ensuring the continuity of rivers and stream flows [1]. Oil palm trees require a
reasonably steady high temperature, and continuous precipitation all year. Furthermore,
prolonged dry periods of more than 2–3 months do not directly harm vegetative growth
but have a significant impact on the yield and quality of fruit bunches [2]. The yield of oil
palm is highly dependent on the availability of water during the sex differentiation of its
inflorescences, which occurs approximately 28 months before bunch harvest. Soil moisture
is therefore critical for optimal production in the oil palm crop [3]. Plants may be stressed
if there is a water shortage. When water is not a constraint, potential evapotranspiration is
the quantity of water that might be evaporated or transpired at a given temperature and
humidity [4]. Water is a key component of plant tissue and is used to transport metabolites
and minerals inside the plant. Water is also required for cell expansion, whereby it increases
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the turgor pressure [5]. Many of the physiological processes related to growth are harmed
by water deficiency in the soil, and severe deficiency may even result in the death of the
plant. The effect of water deficiency, on the other hand, varies depending on the degree and
length of water stress as well as the oil palm’s development stage [6]. Nitrogen, Potassium,
Magnesium, Boron, Copper, and Zinc are said to be essential nutrient components in oil
palm crop soil for maximum growth [7]. The soil system and its activities are governed by
nutrient availability, which leads to greater drought, insect, pest, and disease resistance [8].
Moreover, oil palm fronds have a delicate water transport system, which may expose
them to increasing drought stress when the environment heats and dries [9]. Soil fertility
refers to the soil’s ability to deliver nutrients to the palm, including water availability
for nutrient absorption and yield where soil–water conservation is carried out commonly
to prevent soil erosion beneath mature palms, build terracing and silt pits in steep areas,
mulch with empty fruit bunches and trunk chips, and cultivate leguminous cover crops [10].
Therefore, effective water management is the key to achieving high oil palm yield. As a
result, sufficient soil moisture in the root zones is required, as too little or too much of
it would reduce oil palm yields [11]. Recently, it was found that oil palm crop demands
range from 0.893 to 1.6 million cubic meters; where ultimately, the actual requirement is
site-specific and varies based on the soil moisture deficit, root zone water availability, and
rooting depth [12].

Soil moisture has traditionally been measured directly at sampling places using
gravimetry, which is a highly reliable and therefore often preferred method [13]. The
results from gravimetric methods, however, only reflect a very limited region that changes
instantly as the sampled field changes around the sampling site [14]. Remote sensing,
both active and passive, enables unique studies of soil moisture at multiple spatial scales;
therefore addressing agricultural scientific and application demands [15–17]. In passive
remote sensing, Google Earth-based imageries and Normalised Difference Vegetation
Index (NDVI) were used to determine the effect of land use and change of water storage
in an oil palm plantation by measuring variations in soil water content over time [18].
Plus, the use of the NDVI and the Soil Adjusted Vegetation Index (SAVI) in oil palm
crop to determine plant health by adopting a regression model technique revealed a
highly correlated relationship between plant health based on NDVI analysis and nitrogen
content to SAVI [19]. Additionally, to overcome the lack of soil information for farmers,
a real-time palm oil soil monitoring system was built for Palm Oil Soil Monitoring in a
Smart Agriculture where it can process, transmit, display, and conclude the soil’s state via
smartphone [20].

On the other hand, active remote sensing or SAR sensors are mostly used to assess
soil moisture and crop water usage over broad regions [21]. SAR sensors are capable of
identifying the spatial pattern of volumetric soil moisture due to their ability to penetrate
to a depth of approximately 5 cm below the surface [22]. The depth to which microwaves
penetrate, on the other hand, is mostly controlled by the density of vegetation, the stage of
crop development, and sensor-related factors such as incidence angle, polarization, and
frequency [23]. Recently, SAR sensor usage has increased over time, especially when the
soil dielectric constant shows a linear relationship to the backscatter coefficient in the unit
of decibels [24]. The microwave signals from the HH polarization often penetrate efficiently
in the vegetation while reducing the interactions resulting from trunk or branches when
compared to VV polarization [25]. When the sensor incidence angle was studied, the higher
incident angles provided a better penetration as well as higher accuracy for soil moisture
retrieval for both HH and VV [26]. Additionally, longer wavelengths or L-bands provide an
adequate level of soil moisture sensitivity beneath the majority of plant cover [27,28]. In oil
palm crop, AIRSAR backscattering coefficients were found to initially increase with age and
the oil palm biomass is mentioned to be highly correlated at r = 0.85; where a Gamma filter
of 11 × 11 window discriminates oil palm age classes effectively [29]. Following that, using
the backscatter coefficient of fully polarized ALOS PALSAR data, biomass estimations were
generated for an oil palm plantation in Malaysia and higher correlations were achieved
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from VH polarization data [30]. Similarly, the biomass estimation of oil palm plantations
using a regression analysis of HV polarized PALSAR was carried out [31].

A few SAR backscatter modelling techniques have been carried out to explore the
influence of surface-related variables on the backscatter coefficient, such as topography
and vegetation. These models are generally divided into theoretical, semi-empirical and
empirical methods. Theoretical techniques such as the Integral Equation Model (IEM) and
advanced IEM are complex, where the main challenge in assembling model parameters
that accurately characterize the canopy is tough [32] as it requires a large number of param-
eters [33,34]. In addition to that, the empirical methods, for example the Dubois model [35],
are simpler than the IEM models. However, the Dubois model has been reported to be
dependent on experimental site and data conditions [36], where the saturation points were
reported at lower NDVI values [37].

When the semi-empirical method was used, effects of vegetation cover using the
WCM [38] were initially developed and later on were modified [39–41]. WCM is preferred
for its simplicity [42] where it defines the overall backscatter coefficient obtained by the
sensor over vegetated surfaces as the incoherent sum of the effects of vegetation and
soil [43]. In this model, the canopy is often represented as a set of exact variables such as
plant density per area, leaf size and orientation, which complicates and makes the model
hard to interpret [44]. Many factors influence the backscatter coefficients from vegetation
canopies, e.g., size of disperses in a canopy; the shape of scatters in a canopy; the orientation
in a canopy; and the geometry of the canopy cover on ground [32]. To begin with, the WCM
was modelled using plant height and water content of the vegetation layer to allow for the
retrieval of soil moisture [38], and Leaf Area Index (LAI) was subsequently evaluated [45].
Other vegetation descriptors in the WCM were used from various combinations such as
leaf water area index (LWAI), Normalized Plant Water Content (NPWC), vegetation water
mass, and biomass [43,46–48].

The goal of this research is to optimize soil moisture retrieval using the WCM, thereby
reducing the effect of vegetation on the crop-covered soil moisture backscatter coefficient.
The WCM attempts to express vegetation cover scattering and attenuation terms in the
concept through plain vegetation descriptors. Furthermore, a comparison analysis is
performed on the use of the three primary vegetation descriptors, LAI, NPWC, and LWAI,
singly or in combination, in the retrieval of soil moisture from PALSAR-2 data from
Malaysian oil palm trees.

2. Materials and Methods

To recover soil moisture, a basic WCM was used in this investigation. Assuming that
the effect of soil surface roughness on observed backscatter is consistent over a short time
period for a given site, the temporal change in SAR backscattering only reflects changes in
vegetation and soil moisture [49]. As a result, for this investigation, multi-temporal SAR
data were used in the WCM. The vegetation descriptors and actual soil moisture were
determined using field collected data. The Root Mean Square Error (RMSE) and mean
absolute error coefficient were utilized to analyze the soil moisture retrieval accuracy. The
next sections describe WCM, vegetation descriptors used in the model and evaluation of
data processing methods.

2.1. Water Cloud Model (WCM)

WCM was developed assuming that the canopy “cloud” contains identical water
droplets randomly distributed within the canopy [38]. In a water cloud model, the ex-
pression developed incorporated the soil moisture and the vegetation parameters in the
equation. WCM for a given polarization (pp) is given as

σ◦tot,pp = σ◦veg,pp + σ◦soil+veg, pp + τ2
ppσ◦soil,pp (1)

where σ◦tot,pp is the total backscatter coefficient, σ◦veg,pp is the backscatter contribution of
the vegetation cover, σ◦soil+veg, pp is the multiple scattering involving vegetation elements
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and the soil surface, σ◦soil,pp is the backscatter contribution of the soil surface and τ2
pp

is the two-way vegetation attenuation. The second component in Equation (1) reflects
the interaction of incident radiation with the underlying soil. Because the interaction is
not a dominant factor in co-polarized radiation, it may be ignored [43,50]. Subsequent
to the model development, there were studies that modified the mentioned model [45].
WCM, Equation (2) [43], with four empirical coefficients, App, Bpp, Cpp, and Dpp where
App and Bpp are vegetative characteristics and Cpp and Dpp are soil parameters, was
presented for the given polarization where pp is either HH or HV polarization. The
parameter App corresponds to the albedo of the vegetation, and Bpp is an attenuation factor
seen in (3) and (4). The parameter Dpp indicates the sensitivity of the radar signal to soil
moisture, and Cpp can be considered as a calibration constant in (5). Hence, the equation
written for the given polarization where pp is HH and HV is modified to

σ◦tot,pp = σ◦veg,pp + τ2
ppσ◦soil,pp (2)

where
σ◦veg,pp = App ×V1 × cos θ

(
1− τ2

pp

)
(3)

τ2
pp =

(
Exp

(
−2× Bpp ×V2 × sec θ

))
(4)

V1 and V2 describe the effect of canopy water content and its geometry on backscatter
coefficients. Vegetation descriptors have different effects on the WCM model. Therefore,
several experimental studies on different combination of vegetation variables to quantify
V1 and V2 in WCM were conducted by using plant height, LAI, LWAI and NPWC [51].
In Equations (3) and (4), θ is the incident angle of the image used, App and Bpp are the
vegetation parameter. Mv is the volumetric soil moisture and Cpp and Dpp are the soil
parameter in Equation (5).

σ◦soil,pp = Dpp Mv + Cpp (5)

In this study, the LAI of palm fronds is defined by the amount of leaflet surface area
per unit ground area [3]. LWAI is a product of LAI of palm fronds multiplied by the amount
of water (W), expressed as the ratio of the difference between wet and dry mass to wet
mass as in Equations (6) and (7).

LWAI = (LAI ×W) (6)

W =

(
mw −md

mw

)
(7)

where mw and md are field records for freshly plucked and oven-dried mass of vegetation
samples, respectively. Normalised plant water content, NPWC, also plays a dominant
part in attenuating backscatter [38]. NPWC is like Equation (8) but divided with dry mass
instead of wet mass.

NPWC =

(
mw −md

md

)
(8)

In this study, 5 combinations were used to understand the vegetation effects of WCM
by using

Case 1 where V1 = 1 and V2 = LAI
Case 2 where V1 = LAI and V2 = 1
Case 3 where V1 = LAI and V2 = LAI
Case 4 where V1 = LWAI and V2 = LWAI
Case 5 where V1 = NPWC and V2 = NPWC

2.2. Estimating Parameters of A, B, C and D in the WCM

The estimation of parameters Cpp and Dpp are solved using a linear model fitting,
following which, the values of Cpp and Dpp are substituted into Equation (2), which
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allows for parameter App and Bpp to be solved using the Nonlinear Least Squares Method
(NLSM) [51–54]. It was noted that using Levenberg–Marquardt (LM) optimization in
NLSM, an estimation of App and Bpp can be made [55]. According to the optimization, LM
is a common approach for addressing nonlinear least square issues that emerge from fitting
a parameterized function to a collection of observed data points by minimizing the sum of
the squares of the errors between the observed data points and the function output [56].
The LM algorithm is an iterative process which combines the Gauss–Newton method and
the gradient descent method [57].

2.3. Evaluating WCM

To validate the WCM prior to inversing the model for accuracy and estimation perfor-
mance metrics which include the coefficient of determination (R2), the RMSE and the mean
absolute error (MAE) were examined. The RMSE derived using Equation (9) was tested in
most studies [49,55,57,58]. RMSE is a frequently used measure of the difference between
values predicted by a model and the values observed from the environment that is being
modelled. RMSE evaluation is given in Equation (9); Xsim is the simulated σ◦tot,pp, Xobs
is the observed σ◦tot,pp and n is the sample count. These individual differences are also
called residuals, and the RMSE serves to aggregate them into a single measure of predictive
power [59].

RMSE=



√

∑n
i=1(Xsim − Xobs)

2

n


 (9)

Together with R2 and RMSE, the MAE was explored to further evaluate the model [60].
MAE is the average magnitude of the errors in a set of predictions, without considering
their direction [61]. It is the average over the test sample of the absolute differences between
prediction and actual observation where all individual differences have equal weight, as
seen in (10)

MAE =
1
n ∑n

i=1|Xsim − Xobs| (10)

3. Study Area and Datasets
3.1. Study Area

The study area of this research was in Chuping district, Perlis state, which comprises
a region of flat-terrain oil palm cultivation. The area mentioned is about 28 ha. It covers
4 years of old palm stands which have just started fruiting. The center point coordinates
of the study area are 6◦31′07.2′ ′ N 100◦19′07.7′ ′ E. In Chuping district, there are seven
sub-districts namely Panggas, Sungai Buloh, Kubang Perun, Guar Nangka, Felda Chuping,
Sungai Buloh, and Kilang Gula Chuping. This research took place at the Kilang Gula
Chuping subdistrict as shown in Figure 1. The field data collected in this research were soil
moisture, leaf moisture content, and leaf area index from frond 17 of the palms. Field data
collection was planned to match the acquisition date of PALSAR-2 as shown in Section 3.2.

In the research site, the soil type was identified as Chuping and Dampar soil series,
where the Chuping soil type is categorized as sandy clay loam with a hue of 7.5–10 YR
(Yellow to Red) following the Munsell color chart standards, and the latter soil type was
identified as clay loam with a hue of 7.5 YR [62]. The site was considered flat topography
with an elevation of 21.6 m while the slope class was identified as 4–12% [63]. As per
the study site, the months of February to March of the calendar year are regarded as the
driest season of the year; with a maximum of 28 days of dry spell every year and an
average of 1362.38 mm of precipitation per year in the years of 2015–2017 [64]. In the
PALSAR-2 image acquisition months, Table 1 shows the monthly meteorological data
obtained from Malaysian Meteorological Department. The observation dates in Table 1
represent the annual weather of the study area where the month of January was observed
to be drier than April and July; however, the Mean Evaporation and Mean Radiation were
similarly recorded.
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Table 1. Meteorological information of study area.

Month Daily Meana
Temperature (◦C)

Total Precipitation for
the Month (mm)

Daily Mean
Radiation (MJm−2)

Daily Mean
Evaporation (mm)

January 27.6 32.4 18.3 5.0

April 29.0 89.4 20.8 5.0

July 27.7 61.2 18.6 4.6

3.2. Data and Processing

PALSAR-2 signals were used for extracting the backscatter coefficient from the oil palm
trees. High resolution scenes of PALSAR-2 were obtained under our collaboration with
the Earth Observation Research Announcement 2 (EO-RA-2) of the Japanese Aerospace
Exploration Agency (JAXA). We used a total of 3 PALSAR-2 scenes in this research, details
of which are given in Table 2.

The acquired PALSAR-2 data were first converted from their Digital Number (DN) to
backscatter coefficients in decibels, dB for both polarizations. Once the σ◦HH and σ◦HV for
each of the field points was available, georeferencing of both images using SRTM (3 Sec)
was done. The Lee filter was applied with a 5 × 5 window size to remove speckle and
noise from the image. All the rectification process was completed in the SNAP open-
source software. Additionally, Unmanned Aerial Vehicle (UAV) imagery was acquired on
17 January 2019 with the spatial resolution of 8 by 8 cm consisting of the red, blue, green,
red edge and near infrared bands. The imagery from the UAV platform allowed us to
compute the NDVI to identify bare soil areas in the field for the calibration process, with
an NDVI value less than 0.2 taken to be bare soil. Ground truthing was done to validate
the bare soil areas.
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Table 2. Details of PALSAR-2 images.

Date of Acquisition Flight Direction Mode Resolution Polarization Incident Angle

17 January 2019 Ascending Strip Map 3 6.25 m × 6.25 m HH + HV 30.4–42.4◦

19 April 2019 Ascending Strip Map 3 6.25 m × 6.25 m HH + HV 41.2–53.3◦

9 July 2019 Ascending Strip Map 3 6.25 m × 6.25 m HH + HV 30.4–42.4◦

3.3. In-Situ Data Collection

The determination of soil moisture content at soil depth 0–5 cm was done using the soil
gravimetric method. Fresh weight of soil moisture collected in field was recorded whereas
the dry weight was determined after oven drying of the soil samples in the laboratory. A
total of 32 points of soil sample were taken at each observation dated 17 January, 19 April
and 9 July 2019, totalling to 96 soil samples altogether.

For the LAI for oil palm trees, a conventional method of destructive sampling was
carried out using Equation (11). The frond to be chosen must not only be a good indicator
of the nutrient status of the palm, but must also be one which is easy to identify and is
consistent. By convention, frond 17 is used commonly in the oil palm fields. It is reported
that frond 17 provides satisfactory results from its use as an input in the LAI formula [65].
According to the localised LAI formula, LAI was determined by the following equation:

LAI =
(

A f × Fn ×
PDEN
10,000

)
m2/m2 (11)

where A f is the leaf area per frond (m2), Fn is the number of fronds per palm; PDEN is the
planting density where the number of palms per hectare is identified. Leaflets from the
one-sided leaflet area were multiplied by two to obtain the total leaflet area of the frond
in this research [66]. All leaflets were brought to the laboratory to determine the leaflet
area using the LI-3100C, LI-COR Inc., which is USA-made equipment. Samples from the
leaflets were taken and oven dried at 70 ◦C for 72 h until constant weight was achieved. An
electronic balance was used to weigh the oven dried leaflets upon the completion of drying
step. Similarly, the LWAI and NPWC were used from the same samples and methods as
seen in Equations (6)–(8).

4. Results and Discussion
4.1. In-Situ Results

Field data collection for the three observation periods was based on the availability of
PALSAR-2 orbit path data acquisition. In situ information was simultaneously collected for
the soil moisture. LAI, LWAI and NPWC were calculated to understand the range values
and average of each component in field. In Table 3, it can be noted that during the January
and April data collection, the soil moisture average was 0.240 m3/m3 whereas the July
data acquisition showed an increase in soil moisture recording at 0.273 m3/m3. Overall,
for the palm trees cultivated areas, the soil moisture at the depths of 0–5 cm was averaged
at 0.251 m3/m3. LAI for the palm fronds was averaged at 1.845 m2/m2 where it was seen
to increase at every observation date, being 1.748, 1.784 and 2.005 m2/m2, respectively,
during the January, April, and July observations dates. For the water content based on LAI
in the palm fronds, an increase on each observation date was observed as well; the January
observation date was at 0.205, 0.353 for the April observation date and 0.396 in the July
observation date. This gave an average of 0.368 for all three observation dates. It can be
noted that the study area faced drought stress in the earlier months of the calendar year
where January to March recorded a lower rainfall [64]. Normalized plant water content
was similar in all the observations at an average of 0.199%.
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Table 3. Summary of in-situ data collection of Soil Moisture, LAI, LWAI and NPWC.

Observation
Date

Soil Moisture (m3/m3) LAI (m2/m2) LWAI (% W in m2/m2) NPWC (%)

Range Mean Range Mean Range Mean Range Mean

17 January 2019 0.075–0.419 0.240 0.680–3.251 1.748 0.123–0.532 0.205 0.169–0.228 0.205

19 April 2019 0.170–0.316 0.240 0.662–3.174 1.784 0.125–0. 668 0.353 0.185–0.233 0.198

9 July 2019 0.119–0.454 0.273 1.214–3.078 2.005 0.076–0.661 0.396 0.052–0.221 0.195

Overall 0.075–0.454 0.251 0.661–3.251 1.845 0.076–0.668 0.368 0.052–0.233 0.199

4.2. Water Cloud Model Parameterization

The WCM model parameterization values were calibrated using bare soils and veg-
etation points from the NDVI values, derived from the RGB-NIR data obtained from
UAV data acquisition, to fit the WCM model with the ground range values. Table 4
shows the vegetation parameters, App and Bpp and the soil parameters Cpp and Dpp for
the given polarization together with the combination indicator that represents the simu-
lated scenarios of Cases 1–5. Using these vegetation and soil parameters together with
LAI, LWAI, and NPWC as the input values, the WCM model was able to replicate the
backscatter coefficients.

Table 4. WCM PALSAR-2 polarization calibration parameters for oil palm trees and combination
vegetation descriptors used in this study.

Image
Polarization

Combination
Indicator

Vegetation Parameters Soil Parameters

App Bpp Cpp Dpp

HH

Case 1 0.0118 0.0006 −26.0150 −2.8638

Case 2 0.2188 0.0027 −26.0150 −2.8638

Case 3 0.8467 0.0134 −26.0150 −2.8638

Case 4 0.7122 0.0063 −26.0150 −2.8638

Case 5 0.7457 0.0089 −26.0150 −2.8638

HV

Case 1 0.0850 0.0011 22.2070 −23.8660

Case 2 0.1634 0.0047 22.2070 −23.8660

Case 3 0.2530 0.0019 22.2070 −23.8660

Case 4 0.4193 0.0321 22.2070 −23.8660

Case 5 0.0182 0.0751 22.2070 −23.8660

4.3. Backscatter Simulation Based on the Proposed Vegetation Descriptors

Backscatter coefficients at frequency range of C and X bands are dominated by scatter-
ing activities in the crown layer of branches and foliage in the canopies, whereas scattering
processes involving substantial trunks and branches would be dominated at lower frequen-
cies like P and L bands [67]. In this study, the L band from PALSAR-2 was considered to
give a better penetration in oil palm tree structure where backscatter coefficient charac-
terizes the nature of oil palm structure. It was reported that oil palm trees using L band
were capable to penetrate to the basal trunk in the oil palm plantation using both HH and
HV polarizations [68]. Using the WCM model, the backscatter coefficients were simulated
using a combination of vegetation descriptors. These simulated backscatter coefficients
were then compared with the image-derived backscatter where the observed backscatter
values were extracted from PALSAR-2. Table 5 shows the comparison of the backscatter
coefficients observed and simulated for the study site. Both HH and HV polarizations
showed a positive indication of a fitted WCM model using the respective vegetation de-
scriptors where R2 values ranged from 0.823 to 0.998, indicating the regression model fits
the observed data well. In most HV polarization, the regression was found to be higher
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than HH polarization using the WCM model. On the evaluation of the RMSE and MAE, it
was found that the errors were minimized in the HV polarization.

Table 5. Metrics comparison between observed and simulated backscatter coefficients from WCM
for HH and HV polarization with respect to the vegetation descriptors.

Description (n = 96)
Case 1 Case 2 Case 3 Case 4 Case 5

HH HV HH HV HH HV HH HV HH HV

R2 0.962 0.997 0.956 0.965 0.823 0.998 0.919 0.995 0.969 0.951

RMSE (dB) 2.259 0.222 2.266 0.782 2.384 0.158 2.222 0.387 2.256 0.351

MAE 1.821 0.212 1.814 0.212 1.872 0.150 1.789 0.366 1.811 0.280

Using the LAI vegetation descriptor, the Case 3 where LAI was used in both V1 and
V2, HV showed the highest R2 value of 0.998 with a lowest RMSE of 0.158 dB, indicating
an efficient estimation of simulated backscatter coefficient. In comparison, HH showed
a lower R2 value of 0.823. Based on the RMSE and MAE evaluation, HV recorded more
accurate values of 0.158 dB and 0.150 for RMSE and MAE, respectively, when compared to
HH polarization which had values of 2.384 dB and 1.872 for RMSE and MAE, respectively.
In the Case 1 where V1 = 1 and V2 = LAI, the HV polarization was more efficient to the
simulate the backscatter coefficient with RMSE 0.222 dB and R2 = 0.997. However, the HH
polarization, even though it shows good R2 of 0.962, had higher RMSE with 2.259 dB. Using
the LAI indicator as V1 and V2 as 1, both HH and HV polarizations showed a good R2 with
0.956 and 0.965, respectively, but the RMSE was lower by 1.584 dB in the HV polarization.
The MAE gave lower values for the HV polarization with 0.212. In Case 4 using LWAI,
the model accurately predicted the simulated backscatter with R2 = 0.995 in the HV with
0.387 dB RMSE and MAE of 0.366. When the NPWC vegetation descriptors was evaluated
for HH polarization, its R2 value of 0.969 was higher than the HV polarization R2 of 0.951,
but the MAE in HV polarization was computed to be lower than HH polarization by 1.531
and RMSE by 1.905 dB, which means the latter polarization is more accurately simulated.
It is important to note that in the LAI combinations of the vegetation descriptors, dual use
of LAI was found to be the most accurate parameter to simulate backscatter coefficient
values. Furthermore, it is critical to produce an accurate simulation of the backscatter
coefficient since it can convey the actual field range values obtained during the in-situ
collection utilizing the model. This understanding is important to allow future work to be
carried out with minimal calibration values and adopted into large areas of plantations
where it is remotely challenging to access the collected field data and senses.

4.4. Vegetation Effects on Soil Moisture Retrieval Based on Polarization

Vegetation descriptors play an equally important role in the estimation of the backscat-
ter coefficient as well as providing reliable information to showcase the ground parameters
in the WCM model. The backscattering coefficient mechanism interaction with soil mois-
ture is complex [69]. Recently, in an attempt to reduce complexity in the modified IEM, the
soil parameters were being simplified from three to two soil parameters [70]. Earlier studies
have demonstrated the necessity to eliminate the effects of vegetation on soil moisture
retrieval [71]. It was discovered that soil moisture retrieval is much more accurate when
vegetation cover is considered [72]. To further explore the backscatter coefficients derived
in Section 4.3 with different vegetation descriptors, the soil moisture was retrieved from
the backscatter to allow comparison of observed soil moisture in the oil palm study area.
It was seen that the simulated backscatter coefficient was predicted from the ground soil
moisture values accurately given the observation period variability of lesser rainfall in the
January observation when compared to the other observations. By making comparisons
with the soil moisture retrieved from PALSAR-2 images, the model can be cross-evaluated
to see the model fitting using the WCM. The vegetation descriptors evaluated as men-
tioned by Cases 1–5 can be seen in Table 6. In this comparison between the retrieved and
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observed soil moisture values, we have the best case with the highest R2 value of 0.805 and
the lowest RMSE of 0.046 m3/m3. When looking at Case 1 for HV polarization, the soil
moisture retrieved was plotted against simulated backscatter coefficient where the R2 was
demonstrated at 0.916, as seen in Figure 2. Similar accuracy was achieved using Radarsat-2
utilizing the LAI descriptor, whereby RMSE of 0.069 m3/m3 was reported [73]. The initial
combination introduced in the WCM [38], with V1 as 1 and V2 as LAI providing the most
promising soil moisture retrieval in the oil palm trees in this study, as seen in Figure 2.
LAI parameter was evaluated as one of the best parameters when VV polarization was
compared to LWAI and NPWC, with 4.19–4.43% of the RMSE [51]. Signal backscattering is
influenced by canopy structure where it is very sensitive to plant water content, a variable
highly correlated with LAI during the vegetative phase [74].

Table 6. Comparison between statistical parameters of retrieved and observed soil moisture for HH
and HV polarization in relation to the vegetation descriptors.

Image Polarization Description (n = 96) Case 1 Case 2 Case 3 Case 4 Case 5

HH R2 0.598 0.512 0.490 0.727 0.558
RMSE (m3/m3) 0.088 0.091 0.101 0.085 0.089

MAE 0.070 0.072 0.080 0.069 0.071

HV R2 0.805 0.609 0.675 0.459 0.301
RMSE (m3/m3) 0.046 0.057 0.051 0.066 0.075

MAE 0.043 0.047 0.044 0.050 0.058
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It can be observed that the Case 4 using LWAI as vegetation descriptors, using HH
polarization gave an R2 value of 0.727 where the RMSE was found to be 0.085 m3/m3, the
HV polarization recorded a lower error with an RMSE value of 0.066 m3/m3 with R2 value
of 0.727. In contrast, the lowest R2 value of 0.301 was from the NPWC case where RMSE was
observed at 0.075 m3/m3. Figure 3 shows the observed soil moisture based on polarization
of PALSAR images. It can be noted that the HV polarization gives better lower RMSE
values as compared to HH polarization, considering all the vegetation descriptors [75]. It
was reported that HH polarization could provide a low RMSE value of 0.049 m3/m3 [71]
using remote sensing-based vegetation descriptors, in this case Normalized Difference
Infrared Index (NDII). Similarly, when canopy water content based on LAI was applied
as a vegetation descriptor, an RMSE of 0.039 was recorded [53]. Overall, when RMSE and

158



Remote Sens. 2021, 13, 4023

MAE are carefully evaluated, the cross-polarized HV backscatter coefficient is revealed to
be more vulnerable than the co-polarized backscatter HH in terms of polarization response
in all Cases 1–5 observed.
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Our research results need to be interpreted with respect to the age of the oil palm
stands which were 4 years old and our terrain type, whereby the terrain in our study
was considered flat and the backscatter intensity represented in the acquired images was
a composition of interactions with the crown, the trunk, and the ground surface of the
current palm stands. However, it is known that oil palm crop growth or biomass increases
over years, hence it is recommended that larger data sets need to be collected from the
field to represent greater diversity of palm ages, possibly using fully polarimetric SAR
data. Specifically, an understanding of the effects of backscattering on undulating grounds
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and peatlands in oil palm growing areas will be helpful in future. This could help in
understanding the influence of SAR on other variables of importance to the oil palm
industry, such as estimation of vegetation water content of oil palm canopy and yield.
Benefits of this research can be useful for the plantation industry especially with the
increase in available high-resolution multi-polarization satellite SAR sensors. This allows
for the possibilities in exploiting the use of oil palm crop-related parameters supported
with satellite data input to a decision-making platform for oil palm plantations.

5. Conclusions

In this study, L band from PALSAR-2 observations and in-situ data collected were
used to evaluate a WCM model for soil moisture retrieval in oil palm cultivated regions.
The WCM was calibrated using NDVI values, then fitted to a WCM model by different
instances of vegetation descriptors to evaluate the best fit for the model. Using the WCM
model and LAI specifically as V1 and V2, it was found to provide the best simulated
backscatter coefficient in the HV polarization, secondly followed by V1 which is set as
constant with a value of 1 and V2 as LAI. For HV polarization, LAI specifically as V1 and
V2 showed an R2 of 0.998 in simulating the backscatter coefficient accurately with RMSE
of 0.158 dB, whereas HH polarization showed a lower R2 of 0.823 with a higher RMSE of
2.384 dB. However, when LWAI and NPWC were considered, the model fitted better with
co-polarized backscatter, where HH backscatter coefficient records R2 of 0.727 and 0.558,
respectively. It can be said that the co-polarized backscatters have shown lower RMSE
values in the model fit for all cases where it can be predicted to be more useful in retrieving
soil moisture in oil palm cultivated areas. In this respect, this research makes a useful
and novel contribution on soil moisture for the benefit of the oil palm cultivation, and we
found the PALSAR-2 sensor data beneficial for this purpose. The findings of this research
will eventually help the oil palm growers to have systems in place to address the abrupt
droughts brought about by climate change. Future work of this research can be explored
with SAR-based vegetation descriptors, e.g., Radar Vegetation Index and optical derived
indices such as NDVI, Normalised Difference Water Index and NDII.
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Abstract: Soil moisture (SM) plays a significant part in regional hydrological and meteorological
systems throughout Earth. It is considered an indispensable state variable in earth science. The
high sensitivity of microwave remote sensing to soil moisture, and its ability to function under all
weather conditions at all hours of the day, has led to its wide application in SM retrieval. The aim
of this study is to evaluate the ability of ALOS-2 data to estimate SM in areas with high vegetation
coverage. Through the water cloud model (WCM), the article simulates the scene coupling between
active microwave images and optical data. Subsequently, we use a genetic algorithm to optimize
back propagation (GA-BP) neural network technology to retrieve SM. The vegetation descriptors of
the WCM, derived from optical images, were the normalized difference vegetation index (NDVI), the
normalized difference water index (NDWI), and the normalized multi-band drought index (NMDI).
In the vegetation-covered area, 240 field soil samples were collected simultaneously with the ALOS-2
SAR overpass. Soil samples at two depths (0–10 cm, 20–30 cm) were collected at each sampling site.
The backscattering of the ALOS-2 with the copolarization was found to be more sensitive to SM
than the crosspolarization. In addition, the sensitivity of the soil backscattering coefficient to SM at a
depth of 0–10 cm was higher than at a depth of 20–30 cm. At a 0–10 cm depth, the best results were
the mean square error (MAE) of 2.248 vol%, the root mean square error (RMSE) of 3.146 vol%, and
the mean absolute percentage error (MAPE) of 0.056 vol%, when the vegetation is described as by
the NDVI. At a 20–30 cm depth, the best results were an MAE of 2.333 vol%, an RMSE of 2.882 vol%,
a MAPE of 0.067 vol%, with the NMDI as the vegetation description. The use of the GA-BP NNs
method for SM inversion presented in this paper is novel. Moreover, the results revealed that ALOS-2
data is a valuable source for SM estimation, and ALOS-2 L-band data was sensitive to SM even under
vegetation cover.

Keywords: soil moisture; ALOS-2; GA-BP; water cloud model; L-band

1. Introduction

Soil moisture (SM) is an important state variable that significantly affects the water
cycle, ecosystem, and energy exchange between the land and the atmosphere. SM in-
formation is important in different fields, such as agriculture, meteorology, hydrology,
weather, and evapotranspiration forecasting [1–7]. In recent decades, in the large-scale
domain, the development of remote sensing technology has provided more opportuni-
ties. Specifically, surface SM inversion based on remote sensing technology has become a
hotspot of research [8–11]. Optical remote sensing cannot penetrate clouds and rain and is
easily restricted by weather and solar illumination conditions. Therefore, it is impossible to
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perform an all-weather observation of the Earth in the optical and thermal spectral regions.
However, microwave remote sensing is not subject to weather and light conditions and can
monitor surface SM under all weather conditions at all hours of the day [12]. Moreover, it
has a certain penetrating ability for vegetation and, therefore, it has the potential for the
continuous monitoring of surface SM over a large area [13–20].

In the past few decades, synthetic aperture radar (SAR) has been the primary active
microwave remote sensing means of monitoring SM [6,21]. However, in vegetation-covered
areas, the signal includes direct scattering from plant cover and attenuated backscatter
from the ground. As a result, the observed backscattering signal includes the vegetation,
the surface, and the interaction between vegetation and the surface simultaneously [22],
making it extremely difficult to retrieve SM under the vegetation coverage. Therefore,
the main challenge to estimating SM vegetation coverage is the elimination of the impact
of surface roughness and vegetation [1,23–25]. Many scholars have proposed different
solutions to the impact of vegetation on radar backscattering in vegetation-covered areas.
In many studies, the WCM is applied in an inversion method to estimate SM in vegetation-
covered areas. In the WCM, the total reflected radar signal is modeled as a function of soil
and vegetation contributions. The direct contribution of the vegetation’s scattering and
attenuation is mainly calculated by using biophysical parameters representing vegetation.
Optical data can be used to estimate biophysical parameters [12,26]. Therefore, combining
optical and SAR data is beneficial for SM retrieval in vegetation-covered areas [27–38].

However, due to the topography, the actual measurement (SM, soil roughness, etc.),
and other factors, the lack of soil roughness and other relevant information will affect
the inversion accuracy. In order to solve this problem, the purpose of this study is to
evaluate the potential of combining L-band SAR data and optical data to estimate SM
under vegetation. Research on the basics of the inversion of the WCM using GA-BP neural
networks was developed to solve the problem of the lack of soil roughness and other factors.
This study consists of four main parts: (1) the parameterization of WCM; (2) a learning
simulation of synthetic SAR data; (3) training of a GA-BP neural network; (4) applied
training and the verification of the results of the inversion method on real datasets. Section 2
of the paper describes the study area and in situ measurements. Section 3 investigates the
methods. Section 4 features the results. Section 5 presents the discussion. Finally, Section 6
outlines the main conclusions.

2. Study Area
2.1. Study Area

The area of interest, situated in the Liuzhi Special District of Guizhou province (cen-
tered at 105.159◦E, 26.541◦N), was selected for SM estimation research (Figure 1). The
Liuzhi Special Zone is marked by a warm and humid subtropical monsoon climate with
abundant rainfall. It is located between mountains with steep terrain and a high altitude. In
addition, it is characterized by high vegetation cover, with a forest coverage rate of 51.05%,
rich crop species, and a wide grassland range. Because of the influence of topography and
vegetation, natural disasters, such as landslides and debris flow, are prone to occur in this
area. Therefore, the motivation to estimate SM in this region is very high since disasters are
driven by soil water content changes that significantly affect the economy, the environment,
and people’s lives.
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2.2. Radar Data

In this research, the ALOS-2 SAR data was utilized for SM inversion research. The
ALOS-2 is the only L-band SAR satellite currently in orbit. Its frequency is 1.2 GHz. This
study uses fine dual-polarization modes (HH and HV) with a nominal spatial coverage
resolution of 3 m. Using an algorithm to calibrate SAR images by the Japan Aerospace
Exploration Agency (JAXA), the digital number (DNi) of each pixel was converted to the
radar backscatter coefficient (σ0

pq) by radiation calibration. The calculation formula for
radiation calibration of the ALOS-2 data is:

σ0
pq = K·DN2

i (1)

The absolute calibration constant is represented by K. Following radiometric calibra-
tion, the backscattering coefficient had linear units, which was then converted to dB units
for convenience [35] using Equation (2):

σ0
dB = 10· log10

(
σ0

pq

)
(2)

SARscape, an advanced radar image processing software developed by SARmap
(Purasca, Switzerland), was used to process the ALOS-2 data by performing multilooking,
filtering, geocoding, and radiometric calibration.

2.3. Optical Data

The operational land imager (OLI) sensor, and the thermal infrared sensor (TIRS),
are two instruments on NASA’s Landsat-8 satellite [39]. Landsat-8 and Landsat 4–7 prod-
ucts have similar spatial resolution and spectroscopic characteristics. There is a total of
11 bands in Landsat-8 imagery. The spatial resolution of bands 1–7 and 9–11 is 30 m. The
spatial resolution of band 8 is 15 m. The satellite achieves global coverage every 16 days
(https://earthexplorer.usgs.gov/, accessed on 19 August 2021).

The NDVI is a significant measure reflecting crop growth and nutrition informa-
tion [40]. The NDWI is an important index for evaluating vegetation water status [41]. The
NMDI was calculated based on a near-infrared and two short wave infrareds [42,43].
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2.4. In Situ Measurements

While acquiring ALOS-2 SAR data, the field measurements were performed in the
study area from 26 September 2020 to 27 September 2020. During this period, there was no
precipitation or significant temperature changes in the experimental area. In the research
field, the appropriate sampling points were selected to collect soil samples. The terrain of
the Liuzhi Special Zone in Guizhou Province is complex and there are many mountains,
which increases the difficulty of sampling. Therefore, the areas we sampled were all flat
areas, such as farmland and grassland. At the same time, in order to make the samples
diverse, we tried to distribute them as widely as possible. A handheld GPS was used to
record the longitude and latitude of each sample point, take photos of the sampling point
(one photo), and take pictures of the surrounding environment (four photos from the front,
back, left, and right). We finally selected 120 sampling points. 119 samples were taken at
depths of 0–10 cm, and 120 samples were taken at depths of 20–30 cm. Figure 2 shows the
distribution of sampling points.
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The determination of the soil moisture content was obtained by the laboratory weigh-
ing and drying of soil samples. Water content can be expressed as gravimetric water
content and volumetric water content. The ratio of the quantity of water in the soil and the
dry soil is gravimetric water content (Mg). It is represented by Formula (3).

Mg =
Mw

Ms
(3)

where Mw represents the quality of water in the soil, and Ms represents the mass of dry soil.
The volumetric water content (of Mv) is the ratio of the volume of the soil water in soil.

Mv =
Vw

V
(4)

where Vw is the volume occupied by water in the soil, and V is the total volume of the soil.
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The relationship between soil volumetric water content and mass water content can
be expressed as:

Mv = Mgρ (5)

where ρ represents the bulk density.
119 samples from a 0–10 cm depth were collected, and 120 samples were collected at a

depth of 20–30 cm. The values of soil volumetric water content less than 20% and greater
than 62% were removed. A total of 116 sample points remained. Following outlier removal,
the measured range of SM at a 0–10 cm depth was between 22.90 and 60.82 vol%, and the
average SM was 39.49 vol%. The measured range of SM at a 20–30 cm depth was between
21.17 and 61.92 vol%, and the average SM was 37.28 vol%.

3. Methods

The research is divided into two parts, the WCM and GA-BP, which are used for
SM estimation. The GA-BP algorithm is used to analyze the empirical model, 3.1. radar
signal modeling.

In 1978, Attema and Ulaby took crops as the research object and proposed a semi-
empirical vegetation backscattering model ground on the first-order solution of the radi-
ation transfer equation, namely, the WCM [44]. The intensity of radar backscattering is
easily affected by the surface roughness and vegetation [22]. This is accounted for in the
WCM, due to the joint scattering contribution of the vegetation and the underlying surface
scattering to determine the total backward canopy scattering coefficient. The vegetation
layer reduces the contribution of the underlying surface scattering to a certain extent. When
the influence of the radar shadow and terrain undulation is neglected, the WCM can be
expressed as Equation (6):

σ0 = σ0
veg + τ2σsoil (6)

The total backscattering coefficient is represented by σ0 in the vegetation coverage
area; σ0

soil represents the backscattering coefficient for the soil surface; σ0
veg shows the

backscattering coefficient produced by the surface plants; τ2 is the two-way attenuation
coefficient; σ0

veg and τ2 are expressed in Equations (7) and (8):

σ0
veg = AV1 cos θ

(
1 − τ2

)
(7)

τ2 = exp(−2BV2/ cos θ) (8)

σ0
soil =

σ0 − AV1 ∗ cos θ[1 − exp(−2 ∗ B ∗ V2 ∗ sec θ)]

exp(−2 ∗ B ∗ V2 ∗ sec θ)
(9)

where θ is the angle of radar incidence; V1 represents the direct scattering of vegetation; and
V2 represents the attenuation of vegetation. The common feature is that optical vegetation
parameters are needed to parameterize the scattering component of the vegetation. In this
study, V1 and V2 were replaced by the NDWI, the NDVI, and the NMDI, calculated from
Landsat-8 imagery; A and B are empirical constants. The values of A and B are obtained by
nonlinear least-square fitting.

3.1. GA-BP Neural Network
3.1.1. Genetic Algorithm (GA)

GA is a computational model simulating the natural selection and genetic mechanisms
of Darwinian biological evolution. This is a method used to find the optimal solution
according to the natural evolutionary process. The core content of the genetic algorithm is
divided into five steps: parameter coding, initial population setting, fitness function design,
genetic operation design, and control parameter setting.

The basic operation of the genetic algorithm is split into three steps: selection,
crossover, and mutation operation [45–47]. Selection is the operation of selecting su-
perior individuals from the group and eliminating inferior individuals. Crossover refers
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to replacing and recombining the partial structures of two parent individuals to generate
new individuals. The basic content of the mutation operator is to change the gene value on
some loci of the individual string in the population.

3.1.2. Back Propagation (BP) Neural Network

The BP neural network is divided into an input layer, a hidden layer, and an output
layer. It is a multilayer feedforward neural network.

The learning process of the algorithm was divided into two stages: the first stage
was the forward propagation process, in which the actual output values of nodes in each
layer were calculated layer by layer from the input layer through the hidden layer. The
nodes in each layer only accepted the input from the nodes in the previous layer and
influenced only the state of nodes in the next layer. The second stage was the process of
back propagation. If the output layer failed to get the expected output value, the error
between the actual output and the expected output was calculated recursively layer by
layer. The weight of the previous layer was corrected according to the error to minimize
the error signal. In the direction of the decline of the error function slope, the network
weight and threshold changes were constantly adjusted to gradually approach the objective
function. Each time, the weight and error changes were proportional to the influence of the
network error [48,49].

3.2. Soil Moisture Retrieval

SM was estimated using a GA-BP algorithm. In order to study the performance of the
inversion method, the BP neural network was trained and verified on the synthetic dataset.
The specific steps were as follows:

(1) The BP neural network consists of three layers. The layers are completely intercon-
nected, with each layer having layers of simple processing units (neurons). The
input data information is assigned to the input layer, multiplied, and forwarded
through a weighting factor, and a deviation is added to the hidden layer. The output
layer neurons obtained by the control are considered the input values of the output
layer [27]. In this study, based on the data, we will set two inputs and one output. The
soil backscattering coefficient under different polarizations (HH, HV), excluding the
influence of vegetation, was used as input. These synthetic SAR backscatter datasets
are obtained from the WCM. The parameterization uses soil volumetric moisture,
vegetation descriptors, and incident angle values as input variables to simulate the
backscatter coefficient of HH and HV polarization. Only parameters that can be easily
estimated from optical images, such as the NDVI, the NDWI, and the NMDI, were
considered in the generation of the synthetic dataset. When the WCM was coupled
with the surface scattering model used to retrieve SM under vegetation cover, the
separation of the vegetation-scattering contribution was mainly through synchronous
optical data or auxiliary data measured on the ground. However, there is no unified
standard for vegetation parameterization at present, and there is no theoretical basis
to support which vegetation parameter can effectively and accurately represent vege-
tation scattering. Therefore, different vegetation parameters are used to characterize
the contribution of vegetation scattering. This paper aims at the estimation of SM
under vegetation cover. Therefore, before the active microwave method is used to
retrieve SM, the data should be firstly downscaled. According to the resampling
method, the radar backscattering coefficient, with a resolution of 3 m, is downscaled
to the backscattering coefficient with a resolution of 30 m, and the total backscattering
coefficient δtot of the vegetation-covered surfaces under HH and HV polarization is
obtained, respectively. The WCM model is parameterized. Firstly, the least-square
method was used to estimate parameters A and B by fitting the model based on the
ground-truthed measurements (Equations (7)–(9)). Among them, the parameters of
V1 and V2 were described by the NDVI, the NDWI, and the NMDI, and the incident
angle was obtained from the radar image. With parameters A and B, it becomes possi-
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ble to predict the WCM components (δ0
veg, τ2, and δ0

soil) and, consequently, the total
backscattering coefficient (δtot) using one vegetation descriptor and the SM values as
inputs in the WCM.

(2) GA was used to optimize the weight and threshold of the BP neural network. Each
individual in the population contained a network ownership value and threshold.
The individual calculated the individual fitness value through a fitness function, and
the genetic algorithm found the corresponding individual with the optimal fitness
value through selection, crossover, and mutation operations.

(3) The set-up BP neural network topology: the BP neural network was optimized using
a genetic algorithm to get the optimal individual to assign the initial weight and
threshold of the network. The prediction function was output after the network was
trained. The GA model was used to optimize the BP neural network and improve
inversion accuracy. In the GA module, iterations, population, crossover probability,
mutation probability, and BP network evolution are important input parameters. The
nonlinear function to be fitted in this paper has two input parameters and one output
parameter, so the BP neural network structure set was 2-5-1, that is, the input layer
had two nodes, the hidden layer had five nodes, and the output layer had one node,
with a total of 15 weights and six thresholds. Hence, the individual code length of
the genetic algorithm was 21. The two polarized backscattering coefficients of HH
and HV were taken as the input, and the measured SM corresponding to longitude
and latitude was the output. The parameters of the genetic algorithm were set as
follows: population size = 70; evolution times = 300; crossover probability = 0.6; and
mutation probability = 0.2. Figure 3 presents the flow chart of SM inversion based on
the GA-BP neural network.
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4. Results
4.1. Sensitivity Analysis of the Radar Signal
4.1.1. Water Cloud Model Parameterization

The WCM parameterization results were calculated and analyzed according to Section 3.2.
Table 1 details the WCM input parameters.
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Table 1. The input parameters of the WCM.

Parameter Min Value Max Value Mean Unit

NDVI 0 0.76 0.08 -
NDWI 0.3 0.94 0.72 -
NMDI 0.58 0.97 0.85 -

Incidence Angle - - 39.663 ◦

The backscatter coefficient of soil without vegetation influence was calculated from
the WCM. The HH polarization and HV polarization backscatter values were lower than
the total backscatter.

By comparison, because of the higher sensitivity of the HH polarization to the dihedral
angular reflection effect, the backscattering coefficient was higher than that of the HV
polarization. This is because the branches and shapes of the surface vegetation have more
influence on crosspolarization than on copolarization. The inclination angle of branches and
leaves affected the degree of response of different polarizations. Thus, the HH polarization
and HV polarization of the radar scattering were affected differently.

4.1.2. The Sensitivity of ALOS-2 Data to SM under Vegetation Cover

The relationship with the soil backscattering coefficient and SM, presented in Table 2,
was obtained by replacing the vegetation water content with different vegetation indices.
At depths of 0–10 cm, the quality of the fit was approximately the same for all the vegetation
descriptors used, with an MAE of the predicted backscattering coefficients between 2.792
and 3.142 dB in HH, and between 3.083 and 3.469 dB in HV polarization. The RMSE
of the predicted backscattering coefficients was between 3.606 and 4.053 dB in HH, and
between 3.755 and 4.226 dB in HV polarization. The MAPE of the predicted backscattering
coefficients was −0.25 dB in HH, and −0.16 dB in HV polarization. At depths of 20–30 cm,
the quality of the fit was approximately the same for all the used vegetation descriptors,
with an MAE of the predicted backscattering coefficients between 2.843 and 3.199 dB in
HH, and between 3.085 and 3.472 dB in HV polarization. The RMSE on the predicted
backscattering coefficients was between 3.67 and 4.13 dB in HH, and between 3.743 and
4.13 dB in HV polarization. The MAPE of the predicted backscattering coefficients was
−0.25 dB in HH, and −0.16 dB in HV polarization. Therefore, the copolarizations of the
ALOS-2 were found to be more sensitive to SM than the crosspolarizations. In addition,
the sensitivity to SM at a depth of 0–10 cm was higher than at a depth of 20–30 cm.

Table 2. The results of the relationship between the backscattering coefficient and SM.

(dB) 0–10 cm (vol%) 20–30 cm (vol%)

MAE RMSE MAPE MAE RMSE MAPE

WCM (V1 = V2 = NDVI) HH 2.792 3.606 −0.25 2.843 3.67 −0.26
HV 3.083 3.755 −0.16 3.085 3.743 −0.16

WCM (V1 = V2 = NDWI) HH 3.006 3.882 −0.25 3.06 3.951 −0.26
HV 3.319 4.043 −0.16 3.321 4.03 −0.16

WCM (V1 = V2 = NMDI) HH 3.142 4.058 −0.25 3.199 4.13 −0.26
HV 3.469 4.226 −0.16 3.472 4.212 −0.16

4.2. Modeling Results
4.2.1. GA-BP Results Analysis

In order to improve the sensitivity of the radar signal, HH and HV were used as inputs
in the BP neural network model. The GA-BP parameter settings are displayed in Table 3.
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Table 3. GA-BP preferences.

GA Preferences Value

Iterations 300
Population 70

Crossover probability 0.6
Mutation probability 0.2

BP Preferences Value

Maximum number of training 100
The training accuracy 0.00001

Learning rate 0.1

Figure 4 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NDVI in Equation (9)) at a depth
of 0–10 cm. The GA-BP network became stable, as seen in the fitness curve region, after
160 generations, and the GA algorithm can search the appropriate weight and threshold
at this time (Figure 4A). The error percentage of the BP neural network ranges from −0.4
to 0.6. (Figure 4B). The prediction of BP is between −0.25 and 0.2 (Figure 4C). The BEST
dotted line indicates that the BP training result is ideal when the BP network is trained to
the sixth generation (Figure 4D).
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depth is 0–10 cm. (A) shows the fitness curve, (B) shows error percentage of BP neural network, (C) is prediction error of BP
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Figure 5 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NDVI in Equation (9)) at a depth
of 20–30 cm. The GA-BP network is stable in the fitness curve region after 60 generations,
and the GA can search the appropriate weight and threshold at this time (Figure 5A).
The error percentage of the BP neural network ranges from −0.4 to 0.5 (Figure 5B). The
prediction of BP is −0.15 to 0.2 (Figure 5C). The BEST dotted line indicates that the BP
training result is ideal when the BP network is trained to the second generation (Figure 5D).
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Figure 5. GA-BP training results of the vegetation description in the WCM (V1 = V2 = NDVI in Equation (9)), sampling
depth is 20–30 cm. (A) shows the fitness curve, (B) shows error percentage of BP neural network, (C) is prediction error
of BP network, and (D) is BP training process. The three solid colored lines in the figure: the blue line represents the
performance of the MSE index in the BP training process in each generation; the green line shows the performance of the
MSE index in the BP crossvalidation process in each generation; and the red line represents the performance of the MSE
index in the BP testing process in each generation. The red line represents the test condition, which is the result of BP
calculation and training (D).

Figure 6 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NDWI in Equation (9)) at a depth
of 0–10 cm. The GA-BP network was stable in the fitness curve region after 105 generations,
and the GA can search for the appropriate weight and threshold at this time (Figure 6A).
The error percentage of the BP neural network ranged from −0.5 to 0.5 (Figure 6B). The
prediction of BP was −0.25 to 0.25 (Figure 6C). The BEST line indicates that an ideal BP
training result was reached at the 11th generation (Figure 6D).
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Figure 6. GA-BP training results of the vegetation description in the WCM (V1 = V2 = NDWI in Equation (9)), sampling
depth is 0–10 cm. (A) shows the fitness curve, (B) shows error percentage of BP neural network, (C) is prediction error of BP
network, and (D) is BP training process.The three solid colored lines in the figure: the blue line represents the performance of
the MSE index in the BP training process in each generation; the green line shows the performance of the MSE index in the
BP crossvalidation process in each generation; and the red line represents the performance of the MSE index in the BP testing
process in each generation. The red line represents the test condition, which is the result of BP calculation and training (D).

Figure 7 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NDWI in Equation (9)) at a depth
of 20–30 cm. The GA-BP network was stable in the fitness curve region after 75 generations,
and the GA can search for the appropriate weight and threshold at this time (Figure 7A).
The error percentage of the BP neural network ranges from −0.5 to 0.5 (Figure 7B). The
prediction of BP was −0.2 to 0.2 (Figure 7C). The BEST dotted line indicates that the BP
training result was ideal in first generation (Figure 7D).

Figure 8 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NMDI in Equation (9)) at a depth
of 0–10 cm. The GA-BP network was stable in the fitness curve region after 120 generations,
and the GA can search for the appropriate weight and threshold at this time (Figure 8A).
The error percentage of the BP neural network ranges from −0.5 to 0.5 (Figure 8B). The
prediction of BP was −0.2 to 0.2 (Figure 8C). The BEST dotted line indicates that the BP
training result was ideal in the third generation (Figure 8D).
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Figure 9 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NMDI in Equation (9)) at a depth
of 20–30 cm. The GA-BP network was stable in the fitness curve region after 75 generations,
and the GA can search for the appropriate weight and threshold at this time (Figure 9A).
The error percentage of the BP neural network ranges from −0.4 to 0.6 (Figure 9B). The
prediction of BP was −0.2 to 0.15 (Figure 9C). The BEST dotted line indicates that the BP
training result was ideal at the third generation (Figure 9D).

4.2.2. Soil Moisture Retrieval

As stated in Section 3.2, different datasets were used to retrieve SM using the GA-
BP neural network: (1) using the radar signal in both HH and HV (V1 = V2 = NDVI in
Equation (9)); (2) using the radar signal in both HH and HV, which come from the WCM
(V1 = V2 = NDWI in Equation (9)); (3) the radar signal in both HH and HV (V1 = V2 = NMDI
in Equation (9)). Estimates of SM and SM reference scores were compared to assess the
accuracy of the SM inversion.
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Figure 9. GA-BP training results of the vegetation description in the WCM (V1 = V2 = NMDI in Equation (9)), sampling
depth is 20–30 cm. (A) shows the fitness curve, (B) shows error percentage of BP neural network, (C) is prediction error
of BP network, and (D) is BP training process. The three solid colored lines in the figure: the blue line represents the
performance of the MSE index in the BP training process in each generation; the green line shows the performance of the
MSE index in the BP crossvalidation process in each generation; and the red line represents the performance of the MSE
index in the BP testing process in each generation. The red line represents the test condition, which is the result of BP
calculation and training (D).

To calculate the SM, use two-thirds of the data as the training set, and the rest as the
validation set.

Figures 10–12 show the results of the GA-BP method.
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These two backscattering coefficients (HH and HV) were used in GA-BP (WCM,
V1 = V2 = NDVI in Equation (9)) analysis of the ALOS-2. According to the GA-BP re-
sults, the MAE, RMSE, and MAPE values were calculated as 2.248 vol%, 3.146 vol%,
and 0.056 vol% at the depth of 0–10 cm, respectively (Figure 10A). At a 20–30 cm depth, the
MAE, RMSE and MAPE values were 2.481 vol%, 3.196 vol%, and 0.065 vol%, respectively
(Figure 10B).

The results of the backscattering coefficients were used in GA-BP (WCM, V1 = V2 = NDWI
in Equation (9)). Correspondingly, at the depth of 0–10 cm, based on the GA-BP results, the
MAE, RMSE and MAPE values were calculated as 2.883 vol%, 3.495 vol%, and 0.069 vol%,
respectively (Figure 11A). At a 20–30 cm depth, the MAE, RMSE and MAPE values were
calculated as 2.389 vol%, 2.834 vol%, and 0.06 vol%, respectively (Figure 11B).

It follows that two backscattering coefficients were used in GA-BP (WCM, V1 = V2 = NMDI
in Equation (9)). Underlying the GA-BP results, the MAE, RMSE, and MAPE values were
calculated as 2.417 vol%, 3.096 vol%, and 0.062 vol%, respectively, at the depth of 0–10 cm
(Figure 12A). At a 20–30 cm depth, the MAE, RMSE, and MAPE values’ calculated results were
2.333 vol%, 2.882 vol%, and 0.067 vol%, respectively (Figure 12B).

Combined with the data analysis, the experiments show that, at a depth of 0–10 cm,
the accuracy of the results obtained by the NDVI as a description of vegetation is higher
than that obtained by other parameters.. The findings were better when vegetation was
described as the NDWI at depths of 20–30 cm. Table 4 presents the MAE, RMSE, and MAPE
analyses between the GA-BP-based Mv and the in situ Mv for ALOS-2 data in detail.

Table 4. The results of the MAE, RMSE, and MAPE between the GA-BP-based Mv and in situ Mv for ALOS-2 data.

0–10 cm (vol%) 20–30 cm (vol%)

MAE RMSE MAPE MAE RMSE MAPE

V1 = V2 = NDVI 2.248 3.146 0.056 2.481 3.195 0.065
V1 = V2 = NDWI 2.883 3.495 0.069 2.389 2.834 0.06
V1 = V2 = NMDI 2.417 3.096 0.062 2.333 2.883 0.067

Figures 10–12 show the scatter plots between the measured and inverted soil moisture.
It can be seen from the scatter plots that the retrieved soil moisture was underestimated in
relatively humid regions because of the sensitivity of radar signals to soil moisture. In drier
areas, the retrieved soil moisture was overestimated because the soil moisture content in the
surface layer was lower than that in the deep layer. At the same time, the consistency of the
soil moisture gradient also led to an overestimation of moisture. Because the soil moisture
range in this study area was too extensive, the estimated value was underestimated or
overestimated to a certain extent because of the actual local conditions. A large number of
experimental analyses have verified this result.
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Considering the GA-BP inversion analysis of the ALOS-2, the MAE, RMSE, and
MAPE values were computed with different inputs (WCM, Equation (9)): Figures 10–12,
respectively. The results show that the WCM (V1 = V2 = NDVI, NDWI, NMDI) can
effectively eliminate the backscattering effect of vegetation, and the results of the GA-BP
inversion using ALOS-2 data to estimate SM are satisfactory.

5. Discussion

This novel study shows the sensitivity of ALOS-2 radar data to SM. Only a few studies
have performed SM inversion using ALOS-2 data [7,35,50,51]. Sekertekin et al. compared
the potentials of ALOS-2 L-band and Sentinel-1 C-band data for SM estimation in bare and
vegetation-covered agricultural fields using the WCM. The NDVI and plant coverage (PC)
were considered the vegetation description, and the NDVI performed better than PC. The
results show that the WCM can effectively eliminate the backscattering effect of vegetation,
and the inversion of WCM presented satisfactory results in estimating SM with the ALOS-2
and Sentinel-1 data. Table 5 is a summary of the above methods. These findings show
that the WCM method could effectively remove the influence of vegetation backscattering,
which is consistent with our conclusion.

Table 5. The methods summary.

Author Data Method

Skkertekin et al. ALOS-2 Sentinel-1 WCM Dubois MLR

El Hajj et al.
TerraSAR-X
COSMO-SkyMed
SPOT4/5 Landdat 7/8

WCM Multi-layer perceptron neural
networks (NNs)

Zribi et al. ALOS-2 WCM Dubois Baghdadi et al.

The potential of the C-band and L-band in SM retrieval is compared by El Hajj et al.
However, for both frequencies, they only examine the potential of a copolarized HH HV
C-band and L-band to estimate the SM because they believe that previous studies show
that the use of crosspolarized (HV or VH) and copolarized SM data does not improve
the estimation accuracy. Nevertheless, they did not consider crosspolarization [52,53].
This study, however, used ALOS-2 dual-polarization radar data and considered both
polarization modes (HH and HV) while overcoming the lack of soil roughness.

The method used by Zribi et al. for estimating SM using ALOS-2 L-band radar data
was compared for different types of crops (turmeric, marigold, and sorghum). In areas
covered by vegetation, soil roughness measurements are rare. Accordingly, only the WCM
has been considered to simulate the relationship between SM and the radar backscattering
coefficient to retrieve the SM. Zribi et al. obtained moderately accurate estimates of SM
for turmeric and marigold fields, with errors equal to 6.7 vol% and 7.9 vol% for HH
and HV polarization, respectively, for turmeric, and 8.7 vol% and 11 vol%, in the HH
and HV polarizations, respectively, for marigold. This result can be explained by the
fact that the multiscattering effect is not considered in the simplified first-order radiation
transfer equation of the WCM. The method presented in this paper also encountered
challenges, such as the lack of measured soil roughness data. Therefore, we propose a
GA-BP neural network algorithm, which overcomes the above problems to a certain extent
while considering all polarization (HH and HV) modes. Even if there is a lack of measured
data, such as soil roughness, an error analysis is carried out each time according to the
results obtained from the training, and the expected results according to the nature of the
BP neural network. Then, the weights and thresholds are modified step by step to get the
model that can output the same as the expected result.

However, in this study, with the WCM model, different vegetation descriptions were
established. When the vegetation index was the NDVI, the accuracy analysis results of the
SM estimated by the GA-BP method, and the SM measured, were the best. The MAE, RESE,
and MAPE results were 2.248 vol%, 3.146 vol%, 0.056 vol%, respectively, at a 0–10 cm depth.
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When the vegetation index was the NDWI, the accuracy analysis results of SM estimated
by the GA-BP method, and the SM measured, were the best at a 20–30 cm depth. The MAE,
RESE, and MAPE results were 2.389 vol%, 2.834 vol%, and 0.06 vol%, respectively. We can
also see from the results that when the SM is less than about 30 vol%, the inversion results
are slightly higher than the measured values. When the SM was higher than approximately
45 vol%, the inversion result was slightly lower than the measured value. The reason is that
the sensitivity of the backscatter coefficient to the SM increases in relatively low and dry
areas. The sensitivity of the backscattering coefficient to the SM decreases in the relatively
humid area. In the following research, the method will be analyzed and verified according
to different humidity gradients to discuss the applicability of the method.

By using the three vegetation indices as the vegetation input in the algorithm, we
can observe the following conclusions. When the soil moisture is less than about 34%,
we find that the slope of the scatter plot of the measured and inverted soil moisture is
higher. At this time, it was in a relatively dry area, and the retrieved soil moisture was
overestimated because the soil moisture at this time was lower than the deeper part. When
the soil moisture is greater than 44%, the slope of the scatter plot of the measured and
inverted soil moisture is low. At this time, it is in a relatively humid area. This is because
the sensitivity of the radar signal to soil moisture is reduced in the humid area. A large
number of experimental analyses have verified this result.

This study has some limitations. Because the sampling area has many hillsides,
sampling is more difficult. Because of the influence of the topography of the sampling
points, the distribution of the sampling points should choose flat areas as much as possible.
However, the distribution should be as uniform as possible throughout the study area.
At the same time, only soil samples were collected. Soil roughness, soil type, etc., can be
considered in future research. In addition to these limitations, further research is needed to
obtain better results for SM estimation using SAR data. We believe that the results of this
study provide a new idea for future research.

Future studies should look at the following:

1. The addition of different radar backscatter models to find out which model can
improve the estimation accuracy of SM.

2. In the WCM model, more vegetation descriptions can be added.
3. More intelligent optimization algorithms and machine-learning algorithms can be

applied to radar SM inversion.
4. More soil parameters can be added to increase the accuracy of SM inversion.
5. In the follow-up research, the different ranges of soil moisture will be studied and

discussed separately.

6. Conclusions

According to this study, the potential of ALOS-2 L-band radar data for SM calculation
was investigated over vegetation-covered fields.

(1) The results revealed that ALOS-2 L-band data was sensitive to SM in vegetation-
covered surfaces.

(2) The backscattering of ALOS-2 with the copolarization was more sensitive to SM than
the crosspolarization. In addition, at a depth of 0–10 cm, the sensitivity was higher
than at a depth of 20–30 cm. It can be shown that radar penetration decreases with
increasing depth.

(3) The NDVI was more sensitive than the NDWI and the NMDI as a vegetation descrip-
tion in the WCM model for estimating SM based on the ALOS-2 radar backscatter.

(4) The WCM can effectively eliminate the vegetation’s backscattering effect, and the
WCM shows satisfactory results in SM estimation using ALOS-2 data.

(5) Combining the two polarization modes of ALOS-2 using the novel GA-BP neural
network method improved the estimation of SM in the absence of soil roughness
and soil type. This might be the key component in future attempts to overcome SM
retrieval by microwave remote sensing.
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Abstract: Local climate zone (LCZ) maps have been used widely to study urban structures and
urban heat islands. Because remote sensing data enable automated LCZ mapping on a large scale,
there is a need to evaluate how well remote sensing resources can produce fine LCZ maps to assess
urban thermal environments. In this study, we combined Sentinel-2 multispectral imagery and dual-
polarized (HH + HV) PALSAR-2 data to generate LCZ maps of Nanchang, China using a random
forest classifier and a grid-cell-based method. We then used the classifier to evaluate the importance
scores of different input features (Sentinel-2 bands, PALSAR-2 channels, and textural features) for the
classification model and their contribution to each LCZ class. Finally, we investigated the relationship
between LCZs and land surface temperatures (LSTs) derived from summer nighttime ASTER thermal
imagery by spatial statistical analysis. The highest classification accuracy was 89.96% when all
features were used, which highlighted the potential of Sentinel-2 and dual-polarized PALSAR-2
data. The most important input feature was the short-wave infrared-2 band of Sentinel-2. The
spectral reflectance was more important than polarimetric and textural features in LCZ classification.
PALSAR-2 data were beneficial for several land cover LCZ types when Sentinel-2 and PALSAR-
2 were combined. Summer nighttime LSTs in most LCZs differed significantly from each other.
Results also demonstrated that grid-cell processing provided more homogeneous LCZ maps than
the usual resampling methods. This study provided a promising reference to further improve LCZ
classification and quantitative analysis of local climate.

Keywords: local climate zone; random forest; feature importance; land surface temperature; grid
cells; Sentinel-2; PALSAR-2; ASTER

1. Introduction

With continuous urbanization and the increasing settlement in global cities, natural
landscapes are constantly converted to impervious surfaces in urban areas, altering the
natural surface energy and water balances, which often results in altered climatic conditions
in urban areas and the formation of the urban heat island (UHI) phenomenon [1–3]. As
a key topic in urban climate studies, the concept of a “local climate zone” (LCZ) was
introduced in 2012 by Stewart and Oke [4] to quantify the relationship between urban
morphology and the UHI phenomenon. LCZs provide a standardized framework to link
land cover types and urban morphology with corresponding thermal properties, so LCZs
have been the systematic criteria for UHI comparisons [5]. Notably, the World Urban
Database and Access Portal Tools (WUDAPT) project was developed as a new global
initiative to produce standardized LCZ maps [6–8]. Because remote sensing data are
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widely available, they have been routinely used for LCZ mapping and have shown great
potential for that purpose [9–12]. It is necessary to explore the combination of multi-source
remote sensing data to generate LCZ mapping.

Because of the heterogeneity and complexity of the composition and configuration of
urban pixels in remote sensing images, urban land cover maps based on remote sensing
data are characterized by inherent uncertainties [13]. Unlike optical sensors that capture
the spectral characteristics of objects on the ground, synthetic aperture radar (SAR) sensors
can record the characteristics of light scattered by objects on the ground. Previous studies
have demonstrated that the synergistic use of optical imagery and SAR data can facilitate
urban land cover classification [14–16]. The cost-free, high-spatial-resolution imagery from
the Sentinel-2 multispectral instrument (MSI) has been found to be suitable for large-scale
LCZ mapping [17–20]. In addition, high-spatial-resolution phased array L-band SAR-2
(PALSAR-2) data have been used for large-scale land use and land cover mapping [21]. The
use of a combination of Sentinel-2 imagery and PALSAR-2 data, therefore, has the potential
to produce large-scale LCZ classification maps.

Random forest (RF) models [22] have become popular in the classification of land
cover using remote sensing data because their classifications are highly accurate, their com-
putational costs are low, and they can handle high-dimensional datasets [23,24]. Various
studies have examined the importance of input features for the classifier [15,25–29] and
for each class [30–33] in the context of RF classification. However, the contributions of
the different bands and features of remote sensing data to the classification model and
its classes have not been systematically studied in the case of LCZ classification. Only a
few studies have examined the importance of features for LCZ mapping [12,17,34,35]. The
feature contribution method based on decision paths [36,37] must be further investigated
to take advantage of the RF model in LCZ land cover classification.

The land surface temperature (LST) observed by satellites is widely used for urban cli-
mate research, where pixel values are time-synchronized and spatially continuous [38–40].
Medium-resolution thermal satellite imagery is readily available and can provide a better
alternative for urban land surface thermal analysis (e.g., surface UHI) than in situ thermal
data [41]. Many studies have recently applied the LCZ classification scheme to understand
the thermal characteristics of cities based on LSTs retrieved from thermal remote-sensing
data [38,42–45]. Previous studies have indicated that nighttime LST could observe climatic
conditions more accurately than daytime LST [46,47]. Given that summer nighttime is a
crucial temporal period for surface UHI [48], it is important to explore the relationship
between summer nighttime LST and LCZs.

Typically, the scales of LCZs vary from about a hundred meters to several kilometers
that represent relatively homogeneous urban surfaces that share a similar energy bud-
get [4,49]. To achieve a suitable resolution for LCZ classification, the common approach
to generate LCZ maps is to preprocess the remote sensing images by resampling or to
post-process the classified LCZ maps by resampling. Considering the different spatial
resolutions of LCZ maps and LST data, as an alternative, the grid-cell-based method has
been found to be a powerful tool for linking data at different spatial resolutions; it enables
the user to fine-tune an analysis of data from multiple sources and to strike a compromise
between the need for details and the feasibility of computations [50,51].

In this study, we combined the Sentinel-2 MSI imagery and PALSAR-2 data to gen-
erate LCZ maps of Nanchang City, Jiangxi Province, China, based on the RF classifier.
The main objectives of this study were (i) to classify different combinations of spectral,
backscattering, and textural features in Sentinel-2 and PALSAR-2, (ii) to assess the impor-
tance and contribution of the input features from Sentinel-2 MSI imagery and PALSAR-2
data to LCZ classification, and (iii) to compare the advantages and disadvantages of the
resampling method and the grid-cell-based method in the process of LCZ mapping, and
then to perform spatial statistical analysis of the best LCZs map and LST derived from
summer nighttime Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) thermal imagery.
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2. Materials
2.1. Study Area

Nanchang City, which is located between 115◦27′–116◦35′ E and 28◦09′–29◦11′ N
(Figure 1), was selected as our study area to fill the research gap for LCZ maps in this
region. Nanchang is the capital city of Jiangxi Province in southeastern China. It is one of
the central cities in the middle reaches of the Yangtze River and covers about 7402 km2.
Since the 1980s, Nanchang has experienced rapid economic development, industrialization,
and urbanization [52]. The Gan River runs through Nanchang from south to north and
divides it into two parts. The eastern bank of the Gan River is the old urban district, while
the western bank of the Gan River is the emerging urban district. As of the end of 2019,
the permanent population of Nanchang was 5.6 million. The area on the eastern bank of
the Gan River in Nanchang has a higher population density than other areas. In addition,
Nanchang is one of the hottest cities in China, with a strong urban heat island effect [53].

Figure 1. Left: Location of the study area (Nanchang City, China). Right: Sentinel-2 MSI image of the
study area (R/G/B = bands 4/3/2). The square labeled “A” indicates a subregion shown in Figure 7.

Nanchang is located on the southwest shore of Poyang Lake, China’s largest freshwater
lake and the link between the Gan River and the Yangtze River. Nanchang lies within the
Poyang Plain, which is rich in vegetation, rivers, and lakes. The city has rolling hills to the
northwest and relatively flat terrain to the southeast. Nanchang has a subtropical, humid
monsoon climate, with annual precipitation of 1613.3 mm, an average annual temperature
of 19.1 ◦C, the highest temperature of 37.5 ◦C, and the lowest temperature of 0 ◦C, based
on the meteorological statistics of 2019 [54]. Nanchang has a large diversity of land use
and land cover types, which mainly includes urban and industrial land, rural settlements,
paved land, rivers and bottomlands, ponds and reservoirs, cultivated land, forests, bush,
grassland, and bare land [52]. The main types of buildings in Nanchang are residential
buildings (e.g., elevator buildings, walk-up buildings, townhouses, bungalows, and villas),
public buildings, industrial buildings, and agricultural buildings.

2.2. Remote Sensing Data

We chose Sentinel-2 MSI imagery and PALSAR-2 data to generate LCZ maps in the
study area. To minimize classification errors due to different acquisition dates, we chose
PALSAR-2 data with the acquisition date closest to that of Sentinel-2. The coverage of the
PALSAR-2 scene is not the same as that of Sentinel-2. Therefore, we selected PALSAR-2
acquired in summer and late spring, which are closest to the acquisition date of Sentinel-2,
to cover the whole study area. ASTER land surface temperature products (AST_08) were
selected to investigate the relationship between the LCZs and the LST. Table 1 provides the
details of the remote sensing images used in this study.
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Table 1. Summary of remote-sensing data used in this study.

Remote Sensing Data Date
Local Time at the

Start of the
Observation

Location in the Study
Area Spatial Resolution (m)

Sentinel-2B MSI L2A
17 September 2019 10:55:49 Northwest

10, 20, 6017 September 2019 10:55:49 Southwest

Sentinel-2A MSI L2A
19 September 2019 10:45:51 Northeast

10, 20, 6019 September 2019 10:45:51 Southeast

PALSAR-2 L3.1

19 May 2019 00:12:54 Southwest

6.25

19 May 2019 00:13:02 West
19 May 2019 00:13:10 Northwest
28 July 2019 00:12:54 Southeast
28 July 2019 00:13:02 East
28 July 2019 00:13:10 Northeast

ASTER L2 AST_08

29 July 2019 22:31:08 Southeast

90

29 July 2019 22:31:17 East
29 July 2019 22:31:26 Northeast

23 August 2019 22:25:01 Southwest
23 August 2019 22:25:10 West
23 August 2019 22:25:18 Northwest

All remote sensing data were acquired in 2019 and were projected to the same co-
ordinate system by transforming projection (universal transverse mercator (UTM) zone
50 north map projection, World Geodetic System 84 (WGS-84) datum). For each source of
remote sensing data, multiple scenes were mosaicked using a histogram-matching method.

2.2.1. Sentinel-2 MSI Imagery

Four Sentinel-2 MSI level-2A images (bottom-of-atmosphere reflectance) acquired
in September 2019 were selected to generate a cloud-free image of the study area (https:
//scihub.copernicus.eu/dhus/#/home, (last accessed on 8 May 2021)). Sentinel-2 data
are acquired in 13 spectral bands ranging from the visible and near-infrared (VNIR) to the
short wave infrared (SWIR) at spatial resolutions of either 10 m, 20 m, or 60 m [55]. Band 10
(SWIR/cirrus) was excluded because it does not contain information about the land surface.
To maintain consistency and facilitate calculations, we resampled bands with 20 m and 60 m
resolutions to 10 m using a bilinear interpolation method based on Sentinel application
platform (SNAP) 7.0 software (https://step.esa.int/main/download/snap-download/,
(last accessed on 8 May 2021)).

2.2.2. PALSAR-2 Data

The L-band PALSAR-2 level 3.1 products were produced by the Japan Aerospace
Exploration Agency (JAXA) (https://auig2.jaxa.jp/ips/homepalsar, (last accessed on
8 May 2021)) [56,57]. The data were acquired in stripmap fine beam dual (FBD) mode
(HH and HV) during an ascending orbit with a right-looking observation direction, a
pixel spacing of 6.25 m, and off-nadir angles of 28.6◦ (for 19 May 2019) and 32.9◦ (for
28 July 2019). To combine the PALSAR-2 data with the Sentinel-2 imagery at the pixel
level, we transformed the PALSAR-2 data into the same coordinate system as the Sentinel-2
imagery and resampled it to a spatial resolution of 10 m using a bilinear interpolation
method. The PALSAR-2 data were coregistered by using dispersed ground control points
selected from Sentinel-2 imagery and applying a quadratic polynomial transformation and
bilinear interpolation. The root-mean-square error of the ground control points was less
than 0.5 pixels.

2.2.3. ASTER Land Surface Temperature Products

ASTER level-2 AST_08 (surface kinetic temperature) products are generated from
ASTER’s five thermal infrared bands at 90 m resolution and produced by the temperature
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and emissivity separation (TES) algorithm [58]. The AST_08 products were downloaded
from the Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/
products/ast_08v003/, (last accessed on 8 May 2021)) and processed by the science scalable
scripts-based science processor for missions (S4PM) algorithm (Version 3.4) [59]. Because a
very small amount of data covering the study area were missing in 2019, we used the values
of their nearest neighbors according to Euclidean distance to substitute for the missing
data based on the nibble tool in ArcGIS 10.8 software.

3. Methods
3.1. Local Climate Zones Scheme

LCZs are climate-related regions that span hundreds of meters to several kilometers
on a horizontal scale and are functions of surface cover, structures, construction material,
and human activity [4]. As depicted in Figure 2a, the standard LCZ scheme comprises
two major types: built types (LCZ classes 1–10) and land cover types (LCZ classes A–G).
The 17 standard classes of LCZs are determined by surface characteristics; each provides
a unique thermal environment that is most apparent in areas of simple relief, over dry
surfaces, and on calm nights [4].

Figure 2. (a) Standard local climate zone (LCZ) scheme modified from Stewart and Oke [4].
(b) Google Earth images of typical samples of the LCZs in Nanchang.

3.2. Training and Test Datasets

To collect field-based land cover observations, we conducted field surveys in Nan-
chang from May to September 2019. To reduce the effects caused by the imbalance of
classes [60], roughly balanced ground reference samples of 13 LCZ classes were randomly
collected throughout the study area based on this field investigation and visual interpreta-
tion of high-spatial-resolution Google Earth imagery from May to September 2019. The
reference samples were then randomly split into two sets of disjoint training and test pixels
to ensure spatial separation of training and test sites [61] (Table 2). Figure 2b shows Google
Earth images of typical samples of the LCZ classes in Nanchang. It should be pointed out
that LCZ 1 (compact high-rise) was not included because there was almost no LCZ 1 in our
study area. Furthermore, we merged LCZ B (scattered trees) and LCZ C (bush, scrub) into
a new class LCZ BC (scattered trees with bush and scrub) because in most cases, shrubs,
short trees, and scattered trees were mixed.

189



Remote Sens. 2021, 13, 1902

Table 2. Description of LCZ classes and the number of training and test pixels in the classification.

Class Description Training Pixels Test Pixels

LCZ 2 Compact mid-rise 4078 1211
LCZ 3 Compact low-rise 4377 1336
LCZ 4 Open high-rise 4500 1297
LCZ 5 Open mid-rise 4843 1343
LCZ 6 Open low-rise 4226 1420
LCZ 8 Large low-rise 4134 1303

LCZ 10 Heavy industry 4046 1310
LCZ A Dense trees 4616 1448

LCZ BC
Scattered trees with

bush and scrub 4063 1214

LCZ D Low plants 4283 1387
LCZ E Bare rock or paved 4723 1430
LCZ F Bare soil or sand 4654 1289
LCZ G Water 4727 1381
Total 57,272 17,369

3.3. Input Features

The 12 spectral bands of Sentinel-2 MSI imagery (bottom-of-atmosphere reflectance),
four backscattering intensity features obtained from dual-polarized PALSAR-2 (HH and
HV backscattering coefficients, and the difference and ratio between the two polarization
bands), and 24 textural features were used for the LCZ classification (Table 3). To explore
the effects of different combinations of input features on classification accuracy, we set up
six datasets designated as D1–D6 using these 40 features (Table 3). The textural features
were extracted by using ENVI 5.5 software as follows: First, we performed a minimum
noise fraction (MNF) transformation [62] on four bands at 10 m (bands 2, 3, 4, and 8) in the
Sentinel-2 image. Second, the gray-level co-occurrence matrix (GLCM) [63] was computed
considering a processing window of 3 × 3, the grayscale quantization level of 64, and the
distance of 1. For the Sentinel-2 based GLCM, we selected the first MNF component (MNF
1) as the input. For the PALSAR-2 based GLCM, we selected the two polarization bands
(HH and HV) as the input, respectively. Third, based on the obtained GLCM, we averaged
eight textural features (contrast, correlation, dissimilarity, entropy, homogeneity, mean,
angular second moment, and variance) in four directions (0◦, 45◦, 90◦, and 135◦) to achieve
rotational invariance.

3.4. Random Forest Classification

The RF [22] is a parallel ensemble based on a classification and regression tree and can
be generated simultaneously without strong dependencies between individual learners [64].
We implemented the RF classifier by using the scikit-learn library [65] and the Geospa-
tial Data Abstraction Library (GDAL, https://gdal.org/, (last accessed on 8 May 2021))
in Python.

We used out-of-bag (OOB) samples for selecting the hyperparameters of the model.
Before launching the RF classifier, two important hyperparameters that determine the
randomness of the RF model had to be set: the number of trees (T) and the number
of features (as listed in Table 3) randomly selected at each node (nr). We kept the other
hyperparameters of the RF classifier as defaults and performed a grid search. The searching
range of T was between 100 and 2000 using intervals of 100, whereas the searching range
of nr was between the total number of features in intervals of 1. Based on the OOB scores
of different RF models using various combinations of hyperparameters, we selected the
optimal combination of hyperparameters (Table 3).
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Table 3. Six datasets of different input features for LCZ classification and hyperparameters used for RF classifiers (T: the
number of trees; nr: the number of features randomly selected at each node).

Dataset Features Number of Features Source Hyperparameters
(T and nr)

D1 Sentinel-2 bands (1–8, 8a, 9,
11–12) 12 Sentinel-2 T = 2000,

nr = 4

D2

Sentinel-2 bands (1–8, 8a, 9,
11–12) + MNF 1_GLCM

(contrast, correlation,
dissimilarity, entropy,

homogeneity, mean, angular
second moment

(ASM), variance)

20 Sentinel-2 T = 2000,
nr = 12

D3 Backscattering intensity (HH,
HV, HH–HV, HH/HV) 4 PALSAR-2 T = 2000,

nr = 2

D4

Backscattering intensity (HH,
HV, HH–HV, HH/HV) +

HH_GLCM (contrast,
correlation, dissimilarity,

entropy, homogeneity, mean,
ASM, variance) + HV_GLCM

(contrast, correlation,
dissimilarity, entropy,

homogeneity, mean, ASM,
Variance)

20 PALSAR-2 T = 2000,
nr = 12

D5

Sentinel-2 bands (1–8, 8a, 9,
11–12) + backscattering

intensity (HH, HV, HH–HV,
HH/HV)

16 Sentinel-2 + PALSAR-2 T = 2000,
nr = 6

D6 D2 + D4 40 Sentinel-2 + PALSAR-2 T = 2000,
nr = 18

3.5. Grid-Cell Processing and Postprocessing

Because LCZs are defined at the local scale (102–104) [4,49], we used a grid-cell
(100 m × 100 m) process for pixel aggregation. First, we used ArcGIS 10.8 software to
create nets of grid cells with sizes of 100 m × 100 m covering the entire study area. The
100 m × 100 m grid cells were intersected with the LST data (90 m spatial resolution), and
the area of each intersected portion was calculated. The LST attribute of a grid cell was then
obtained by the weighted average of the LST values of the intersected portion according
to the area percentage. Next, for each grid cell, the area of each LCZ class within a grid
cell was calculated and stored in the attribute table. To calculate the percentage of each
LCZ class within each grid cell, we divided the area of each LCZ class by the area of the
grid cell. For a single grid cell, we assigned the dominant LCZ class that accounted for the
largest area to the corresponding grid cell. Finally, we used a 3 × 3 majority filter for LCZ
classification maps to include more contextual information.

3.6. Usual Resampling Methods

To explore the differences between the grid-cell-based method and the usual resam-
pling methods, we used the D6 dataset to generate 100 m LCZ maps based on ArcGIS
10.8 software. We performed majority resampling and nearest neighbor resampling on
the classified LCZ map. For the classified LCZ map (categorical data), we did not include
bilinear interpolation or cubic convolution in the comparison because they alter the pixel
values so that the original categories are not maintained. In addition, we applied nearest
neighbor resampling, bilinear interpolation resampling, and cubic convolution resampling
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to the original images before executing the classification. To ensure the consistency of the
comparison, the 100 m LCZ classification results obtained by each resampling method were
subjected to the same 3 × 3 majority filter as those obtained by the grid-cell-based method.
Finally, we used the grid-cell-based method as the baseline to compare the differences
between the other five resampling methods and the grid-cell-based method.

3.7. Feature Importance for the RF Model and Feature Contributions for Each Class

To understand how each feature affected the RF classification model, we used the
mean decrease in Gini/Gini importance and the mean decrease in accuracy/permutation
importance [22] based on the training set. The Gini importance of a feature was obtained
by averaging the decrease of the Gini impurity at all nodes where this feature was used
in all trees. The permutation importance was expressed as the value of the change in the
accuracy of a trained model when the values of a feature in the dataset were randomly
permuted. For the second of these calculations, we performed 100 repeated shuffles for all
features separately and averaged the decrease of accuracy to reduce randomness.

To explore the impact of each feature on each class, we employed a feature contribution
method using the tree-interpreter package. The feature contribution method is based on
decision paths through each tree in a forest and can reveal the relationship between features
and predictions [36,37].

For classification tasks, consider a dataset of m samples D = {(x1, y1), (x2, y2), . . . , (xm, ym)}
consisting of n input features and one label yi, where xi,j (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the
value of the j-th feature at the i-th sample. Denote classes by k (1 ≤ k ≤ K), where K is the
total number of classes. Let t (1 ≤ t ≤ T) be the t-th tree in a forest, where T is the total
number of trees. For a single input xi, there is a decision path from the root node to the leaf
node in each tree. At a node in the decision path, if this node (parent node) is split into
child nodes by feature j, then the contribution of feature j to class k is defined as:

FCj,k =





pchild
j,k − pparent

j,k ,
if the split in a parent node is
performed over the feature j;

0, otherwise,
(1)

where pchild
j,k is the fraction of samples that belong to class k at the child node, corresponding

to the feature j, and pparent
j,k is the fraction of samples that belong to class k at the parent

node, corresponding to the feature j.
The predicted probability Pk that xi belongs to class k can be written as:

Pk =
1
T

T

∑
t=1

p(t,root)
k +

n

∑
j=1

(
1
T

T

∑
t=1

FC(t)
j,k

)
, (2)

where p(t,root)
k is the fraction of samples that belong to class k at the root node in the t-th

tree and FC(t)
j,k is the sum of FCj,k over all nodes on the decision path in the t-th tree.

To obtain the feature contributions of each class, we averaged the results computed
from all training samples belonging to the same class.

3.8. Statistical Analysis for Nighttime LST within LCZs

To examine the spatial autocorrelation of nighttime LST, we used the global Moran’s I
statistic and the Anselin local Moran’s I statistic based on ArcGIS 10.8 software. For grid
cells, we used an inverse distance conceptualization to generate a spatial weight matrix
with a default threshold value of 270 m. Subsequently, the global Moran’s I index for all
grid cells was computed based on the spatial weight matrix. The Anselin local Moran’s
I analysis for all grid cells was also based on the spatial weight matrix. In addition, to
explore the differences in LST among LCZ classes, we carried out statistical analysis using
SPSS Statistics 26 software. First, we examined the normality of the LST in each LCZ class
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by using histogram comparisons, Q–Q plots, and Kolmogorov–Smirnov tests. We then
performed Levene’s test to examine the homogeneity of variances. Based on the results
of these two tests, to estimate the statistical significance of the LST differences between
LCZ classes, we finally chose nonparametric tests, including the Kruskal–Wallis one-way
analysis of variance (ANOVA) test followed by all pairwise multiple comparisons and a
median test followed by all pairwise multiple comparisons.

4. Results
4.1. Accuracy Assessment of LCZ Maps

Figure 3a shows the LCZ maps obtained with different datasets (D1–D6), respectively.
The percentages of the area occupied by each LCZ class in different datasets (D1–D6) are
shown in Figure 3b. The accuracies of the classification were evaluated in terms of user’s
accuracy (UA), producer’s accuracy (PA), and overall accuracy (OA), which were derived
from the confusion matrix based on test pixels [61]. The confusion matrices of LCZ maps
obtained using different datasets (D1–D6) are shown in Figure 4. Figure 5 also shows the
differences in the PAs and UAs of each LCZ class for the different LCZ maps.

Figure 3. (a) LCZ maps obtained with each of the six datasets (D1–D6); (b) percentages of LCZ
classes with each of the six datasets (D1–D6).
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Figure 4. Confusion matrices and overall accuracies (OAs) of LCZ maps obtained by RF classification
using different datasets (D1–D6). The confusion matrices are expressed as percentages to the total
number of test pixels.

Figure 5. Producer’s accuracies (PAs) and user’s accuracies (UAs) of different LCZ maps obtained by
RF classification using different datasets (D1–D6).

Compared to using the D1 dataset, the OAs were improved by 2.24% using D2, 2.32%
using D5, and 4.03% using D6. There was a small improvement in the OA after using
textural features. For example, the D2 dataset improved 2.24% over the D1 dataset, the
D4 dataset improved 7.14% over the D3 dataset, and the D6 dataset improved 1.71% over
the D5 dataset. When using the D5 dataset, the OAs were improved by 51.9% over the
D3 dataset and 44.76% over the D4 dataset. The LCZ map derived using only the dual-
polarized PALSAR-2 data (the D3 dataset) had the lowest OA. Using the D3 or D4 dataset,
either the OAs were relatively low, or the land cover was not satisfactorily categorized. The
highest OA was 89.96%, obtained from the D6 dataset by using all 40 input features.
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For the D6 dataset, land cover LCZ types were generally classified with higher accu-
racy than built LCZ types (except for LCZs E and F). The confusion was manifested mainly
among the built LCZ types. For the land cover LCZ types, LCZs E (bare rock or paved) and
F (bare soil or sand) tended to be confused with built LCZ types. For the D6 dataset, LCZs
A (dense tree), G (water), and D (low plants) had relatively high PA and UA among the land
cover types. Among the built types, LCZs 2 (compact mid-rise) and 4 (open high-rise) had
relatively high PA and UA. For the D6 dataset, open buildings (LCZs 4–6) were generally
more difficult to distinguish than compact buildings (LCZs 2 and 3). This difficulty reflects
that compact buildings are clustered in high-to-medium-spatial-resolution (10-m to 100-m)
satellite imagery, whereas open buildings are scattered and occupy small pixels.

To measure the compliance or divergence of individual LCZ classifications, we com-
puted the number of the same classes for a given location (individual cells of the grid)
(Figure 6). The most obvious differences among the six LCZ maps were located in the
northeastern part (close to Poyang Lake), the eastern part, and the urban district. A total of
86.2% of the grid cells showed good compliance for all datasets (Figure 6b).

Figure 6. Difference (a) and its percentages (b) between six LCZ maps using different datasets
(D1–D6). The difference is presented as the number of the same classes for individual cells of
the grid.

To visualize the discrimination of LCZ classes using the datasets D1–D6, we extracted
a subregion A in the urban district of Nanchang (Figure 7). This subregion is a typical
urban region consisting of different types of buildings and land cover. It could be visually
observed that the classification using PALSAR-2 polarimetric data alone did not yield
a satisfactory result. Using the D3 dataset, most LCZ classes were under-represented.
When using D4 by adding textural features to D3, there was a slight improvement in the
classification of built LCZ types. Nevertheless, worse performance on LCZ classification
was obtained using the D3 or D4 dataset. When using D2 by adding textural features
to D1, the discrimination among built LCZ types was notably improved, especially for
LCZ 4 (open high-rise). Compared to the classification results obtained from datasets D5
and D6, LCZ E (bare rock or paved) was under-represented using the D1 or D2 dataset.
Compared to the D6 dataset, LCZ 4 was under-represented, while LCZ 6 (open low-rise)
was over-represented using the D5 dataset. The most desirable result was produced when
all 40 input features (the D6 dataset) were used because the confusion among LCZ classes
was markedly reduced.
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Figure 7. Sentinel-2 MSI image (RGB = bands 4, 3, 2) and LCZ classification maps using six datasets
(D1–D6) of a subregion A in the urban district of Nanchang.

4.2. Comparison of the Grid-Cell-Based Method and Resampling Methods

As shown in Figure 8, using the nearest neighbor resampling, bilinear interpolation
resampling, and cubic convolution resampling produced salt-and-pepper noise. Visually,
the grid-cell-based method generated a more homogeneous result. The result of the majority
resampling lay between those of the grid-cell-based method and the other resampling
methods. Compared with other resampling methods, the difference between the majority
resampling after classification and the grid-cell-based method was relatively small. As
shown in Figure 8b–e, the basic patterns of these maps were relatively similar.

4.3. Importance and Contributions of Features for LCZ Classification

As mentioned above, the best LCZ classification was obtained using the D6 dataset.
Therefore, we analyzed the feature importance of the RF model trained by all features
(the D6 dataset) (Figure 9). The patterns of these two importance measures differed
slightly from each other. In general, spectral features showed greater importance than
polarimetric features and textural features. For both measures of importance, the most
beneficial feature in the LCZ classification was S2_B12. Polarimetric features were also
helpful for LCZ classification, especially the backscattering intensity at the HV polarization.
In the eight textural features, GLCM_Mean was found to be the most useful feature. In
addition, GLCM_Mean at the HV polarization of PALSAR-2 was more important than
those extracted by Sentinel-2.
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Figure 8. Detail of the comparison between the grid-cell-based method and the resampling methods
using the D6 dataset. (a) Majority resampling after classification; (b) nearest neighbor resampling
after classification; (c) nearest neighbor resampling before classification; (d) bilinear interpolation
resampling before classification; (e) cubic convolution resampling before classification.

Figure 9. (a) Gini importance and (b) permutation importance of 40 input features for the RF model using the training set
(D6). (S2: Sentinel-2. P2: PALSAR-2).
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Figure 10 shows the feature contributions for each LCZ class for the RF model trained
by all features (the D6 dataset). Land cover LCZ types exhibited more variability across
input features than built LCZ types. In general, the same trends appeared in the feature
importance for the RF model (Figure 9) and in the feature contributions for each LCZ
class (Figure 10). For instance, S2_B12 was a beneficial feature for most of the LCZ classes.
However, the contributions of a feature to each LCZ class differed to varying degrees.
For example, compared with built LCZ types, the HV polarization band made a higher
contribution to land cover LCZ types, especially LCZs A (dense trees), G (water), and E
(bare rock or paved). As shown in Figure 10, there was no significant difference between
each feature for LCZs 4 (open high-rise), 5 (open mid-rise), and 6 (open low-rise).

Figure 10. Mean of feature contributions for each LCZ class for the RF model using the training set (D6).

As shown in Figures 9 and 10, the combinations of features with low importance
and contributions for LCZ classification did not have high classification accuracies. For
the D3 and D4 datasets, except for P2_HV_GLCM_Mean and P2_HH_GLCM_Mean, the
importance and contributions of the remaining features were not high, and therefore, their
classification accuracies were not high. The importance and contributions of the 12 features
of Sentinel-2 were relatively high, explaining the good classification accuracy achieved by
using only Sentinel-2 imagery (the D1 dataset).

4.4. Relationships between LCZs and Nighttime LST

As shown in Figure 11a–b, high nighttime LSTs were dominant mainly in urban
areas and water bodies. The fact that the global Moran’s I index for all grid cells was 0.78
(p < 0.001) indicated a strong positive spatial autocorrelation for LST. The LST of both LCZ
A (dense trees) and LCZ D (low plants) was clustered mostly as low-low, whereas the LST
of LCZs G (water), E (bare rock or paved), and built LCZ types (LCZs 2–6, 8, and 10) was
clustered mostly as high-high (Figure 11c).
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Figure 11. (a) Spatial distribution of nighttime LSTs in Nanchang. (b) Cluster and outlier map for
nighttime LST. (c) Number of grid cells for each cluster/outlier type. (d) Nighttime LSTs for each LCZ
class. The violin density plot displays the probability density of the LST data, with a boxplot of the
mean (hollow circle), median (center horizontal line), interquartile range (black rectangle), and upper
and lower whiskers (vertical lines between upper and lower horizontal lines). (e) Pairwise multiple
comparison results of the Kruskal–Wallis one-way ANOVA test and median test, respectively. Blank
cells indicate pairs of LCZs with significantly different LSTs (p < 0.001).

As shown in Figure 11d, different LST variations within a single LCZ class were
observed. In general, there were large differences in nighttime LSTs between LCZ classes,
especially between land cover LCZ types. The nighttime LST was generally higher for the
built LCZ types than for the land cover LCZ types. Residential buildings (LCZs 2–6) had
higher nighttime LSTs than nonresidential buildings (LCZs 8 and 10), except for LCZ 3
(compact low-rise). Both Kruskal–Wallis one-way ANOVA test and median tests showed
statistically significant differences (p < 0.001). Overall, there were statistically significant
LST differences for most LCZ classes (Figure 11e).

5. Discussion
5.1. LCZ Classification Using Sentinel-2 Imagery and PALSAR-2 Data

The fact that the accuracies of the LCZ map obtained by the D6 dataset were acceptable
for further studies (as expected) revealed the potential of combining optical and SAR data
for LCZ classification in urban areas. The LCZ classification using only PALSAR-2 was not
satisfactory, especially for land cover LCZ types, such as those exhibiting many LCZ G
(water) in the D3 dataset and LCZ E-bare rock or paved (stripes) in the D4 dataset. This
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reveals the limitations of using only SAR data for land cover classification in complex
urban and peri-urban environments [10,15,66]. Comparing the LCZ classification maps
obtained from the four datasets (D1, D2, D5, and D6), we found that the basic patterns
of these LCZ maps were generally similar. It can be concluded that optical data are still
dominant in LCZ classification compared to SAR data [10].

Compared to the study of La et al. [16] that combined Sentinel-2 with full-polarized
PALSAR-2, this study introduced textural features derived from Sentinel-2 and dual-
polarized PALSAR-2 but did not consider the contribution of polarimetric parameters.
When fully polarimetric SAR data are available, adding various types of information
obtained by polarimetric target decomposition methods to the classification will help to
improve classification accuracy [16,67]. However, the fully polarimetric data are not always
available due to its limited swath width [21]. As an alternative, our results showed the
attractiveness of dual-polarized SAR data for LCZ classification. In addition, we showed
the advantages of a majority rule-based grid-cells process in generating LCZ maps with
generalized urban patterns.

For the D6 dataset, there are still limitations in the separability between LCZ classes
with similar spectral characteristics, such as LCZs B and C; LCZ E (bare rock or paved) and
built LCZ types; and LCZs 8 (large low-rise) and 10 (heavy industry). These problems can
be solved by adding more discriminatory data in the classification or by improving classifi-
cation algorithms. The information on building height is beneficial for the discrimination
between built LCZ types. Further research on combining height data with other datasets
for LCZ classification will be required in the future. It has been shown that the inclusion
of LiDAR data in the classification can assist in urban land cover classification [68,69].
Moreover, deep learning methods, such as convolutional neural networks, have recently
shown promising performance in LCZ classification [19,70].

Considering that the inherent speckle noise in SAR data makes individual pixels
unreliable, the textural features from SAR data can provide attractive information [15].
However, there is a need to further investigate the effect of textural features from both
optical and SAR data on LCZ classification. It is important to select the optimal combination
of textural features for LCZ classification. Because various combinations of different bands,
window sizes, and texture measures will produce many textural features, using these
massive features may lead to the curse of dimensionality and reduce the accuracy in the
classification using a finite-sized training set [71].

5.2. Implications of the Grid-Cell-Based Method

For the nearest neighbor resampling, the difference between the LCZ maps obtained
before and after classification was small, which illustrates the applicability of resampling
before classification, as implemented by the WUDAPT method [8]. The effect of the
different resampling rules on the LCZ maps is more significant than whether the resampling
is implemented before or after classification. As the postprocessing approach for categorical
data, the LCZ map obtained by the majority resampling was not as homogeneous as those
obtained by the majority rule-based grid-cells method, which may be limited by the built-in
default filter window in ArcGIS software.

5.3. Assessment of Interpretability of Features

The significant importance and contribution of features can be explained by the good
representation of those features in the characteristics of LCZ classes [11,12]. Not all of
the features were equally beneficial to the LCZ classification for the RF models. The fact
that the overall importance of the PALSAR-2 derived features was not as prominent as
the Sentinel-2 derived features was probably due to the inconsistent dates of PALSAR-2
data and Sentinel-2 imagery. The seasonal variation of vegetation may make polarimetric
features contribute little to identifying these changing ground objects. For PALSAR-2 dual-
polarization data, the HV polarization band is more conducive to land cover classification
than the HH polarization band, which may be due to the unique scattering information
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about ground objects provided by cross-polarization [15,25]. Our study also indicated that
the GLCM textural features have limited ability in land cover classification. This limited
ability may reflect the spatial resolution of Sentinel-2 MSI imagery and PALSAR-2 data.
This problem will probably be resolved with the improvement of spatial resolution [72].

The fact that most features performed better in land cover LCZ types than built
LCZ types indicated that there were still limitations in discriminating built LCZ types for
these features. Interestingly, band 1 (coastal aerosol) made a significant contribution to
LCZs 8 (large low-rise) and 10 (heavy industry); and band 9 (water vapor) contributed
significantly to LCZs 2 (compact mid-rise), D (low plants), and 6 (open low-rise). These
results showed that both band 1 (dedicated for aerosol retrieval) and band 9 (dedicated
for water vapor correction) in Sentinel-2 imagery were beneficial for LCZ classification,
despite their relatively low spatial resolution (60 m). In addition, for LCZ 5 (open mid-rise),
S2_GLCM_Mean made the highest contribution. This observation highlights the fact that
features that are generally unimportant for the model may be important for a specific
class [37].

It is worth noting that there were many features that have very low permutation
importance (Figure 9b), probably because of the correlation between features. When fea-
tures are correlated, permutating one feature has little impact on the model’s performance
because it can obtain the same information from the correlated features. In the future, it
will be necessary to evaluate additional features to provide more information on how to
allow LCZ classes to be better differentiated. In addition, it is also important to analyze the
correlation in the features extracted from the remote sensing data.

5.4. LST Differentiation of LCZs

In general terms, the fact that there were statistically significant nighttime LST dif-
ferences between most LCZs indicated that different LCZ classes exhibited thermal en-
vironments associated with their surface characteristics [4,49]. For example, built LCZ
types (LCZs 2–6, 8, and 10) and LCZ E (bare rock or paved) were clustered as high-high on
nighttime LST (Figure 11c), probably because of the thermal properties of impervious sur-
faces [45]. Compared to other land cover LCZ types, LCZs E and G (water) had relatively
high nighttime LSTs, probably because they cool off more slowly during nighttime. The fact
that LCZ A (dense trees) had lower nighttime LSTs than LCZ BC (scattered trees with bush
and scrub) indicates that aggregated vegetation cools better than dispersed vegetation [73].
The fact that the nighttime LSTs of LCZ D (low plants) were lower than that of LCZ A was
probably because dense trees have greater shading coverage that influences the penetration
of solar radiation [74]. For buildings located in urban areas with the same heights, open
buildings had lower nighttime LSTs than compact buildings. The former may benefit from
the surrounding vegetation and good ventilation [75].

However, the fact that the nighttime LSTs of several LCZ classes were not significantly
different statistically from other classes may have been related to the influence of local
or regional climate [43]. In addition, the intra-LCZ variability of nighttime LST revealed
the potential effects of heterogeneous surrounding environments [76]. For example, the
nighttime LSTs of both LCZs 3 (compact low-rise) and BC were generally higher in urban
areas than in rural areas. Similarly, LCZ F (Bare soil or sand) was warmer near water
than near dense trees during nighttime. Buildings surrounded by large areas of vegetation
tended to have lower nighttime LSTs than buildings surrounded by a small amount of
vegetation.

Furthermore, several issues need to be further explored in studies of LSTs or surface
urban heat islands using LCZ maps, including seasonal changes in LCZs, the effects of
multitemporal (day and night), seasonal, and thermal anisotropy on LST variations [42,43].
Considering that it is not the focus of this study, we only used two dates of LST data in
summer to analyze the relationship between LCZ and nighttime LST. Many studies have
shown LST differences within LCZs using many dates of LST data [38,40,42,43]. Therefore,
the applicability of the inclusion of thermal remote sensing images from different sensors
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(e.g., Landsat and ASTER) over multiple periods in LCZ classification can be investigated in
the future. However, this could potentially lead to methodological bias in LST analysis [44].

6. Conclusions

The combination of Sentinel-2 MSI imagery and dual-polarized (HH + HV) PALSAR-2
data was found to be promising and beneficial for LCZ mapping. The quantitative analysis
of input features based on the RF classifier showed that in LCZ classification, band 12-
SWIR 2 is crucial for Sentinel-2 imagery, whereas the HV polarization is important for
dual-polarized PALSAR-2 data. By using the feature contribution approach based on
decision paths, each input feature was found to contribute differently to LCZ classes. These
different contributions may not be detected by a standard feature importance analysis.
Through this class-based analysis of feature contributions, it is possible to reveal the
effective features in distinguishing different LCZ classes. In addition, our comparative
results showed that the grid-cell-based method produced more homogeneous LCZ maps
than the usual resampling methods.

Spatial analysis of LCZs and summer nighttime LST showed that high LSTs were con-
centrated mostly in the built LCZ types, LCZ E, and LCZ G, whereas low LSTs were mostly
concentrated in LCZs A and D. Statistical analysis showed that the summer nighttime LST
differences between most LCZ classes were statistically significant, but this phenomenon
needs to be further investigated using more dates of thermal remote sensing images. Con-
sidering the thermal differentiation within LCZs, the effect of thermal remote sensing data
in LCZ classification can also be further explored.

This study provided insights into the performance of RF classifiers in LCZ mapping
and feature assessment that could contribute to future LCZ mapping. In addition, this
study highlighted the potential of the LCZ map and the grid-cell-based method for urban
climate research that could contribute to a better understanding of the impact of urban
morphology defined by LCZs on local climatic conditions.
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Abstract: Recently, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique
is widely used for quantifying the land surface deformation, which is very important to assess the
potential impact on social and economic activities. Radar satellites operate in different wavelengths
and each provides different levels of vertical displacement accuracy. In this study, the accuracies
of Sentinel-1 (C-band) and ALOS/PALSAR-2 (L-band) were investigated in terms of estimating
the land subsidence rate along the study area of Alexandria City, Egypt. A total of nine Sentinel-1
and 11 ALOS/PALSAR-2 scenes were used for such assessment. The small baseline subset (SBAS)
processing scheme, which detects the land deformation with a high spatial and temporal coverage,
was performed. The results show that the threshold coherence values of the generated interferograms
from ALOS-2 data are highly concentrated between 0.2 and 0.3, while a higher threshold value of 0.4
shows no coherent pixels for about 80% of Alexandria’s urban area. However, the coherence values
of Sentinel-1 interferograms ranged between 0.3 and 1, with most of the urban area in Alexandria
showing coherent pixels at a 0.4 value. In addition, both data types produced different residual
topography values of almost 0 m with a standard deviation of 13.5 m for Sentinel-1 and −20.5 m
with a standard deviation of 33.24 m for ALOS-2 using the same digital elevation model (DEM)
and wavelet number. Consequently, the final deformation was estimated using high coherent pixels
with a threshold of 0.4 for Sentinel-1, which is comparable to a threshold of about 0.8 when using
ALOS-2 data. The cumulative vertical displacement along the study area from 2017 to 2020 reached
−60 mm with an average of −12.5 mm and mean displacement rate of −1.73 mm/year. Accordingly,
the Alexandrian coastal plain and city center are found to be relatively stable, with land subsidence
rates ranging from 0 to −5 mm/year. The maximum subsidence rate reached −20 mm/year and
was found along the boundary of Mariout Lakes and former Abu Qir Lagoon. Finally, the affected
buildings recorded during the field survey were plotted on the final land subsidence maps and show
high consistency with the DInSAR results. For future developmental urban plans in Alexandria
City, it is recommended to expand towards the western desert fringes instead of the south where the
present-day ground lies on top of the former wetland areas.

Keywords: Sentinel-1; ALOS/PALSAR-2; land subsidence; accuracy assessment; Alexandria City; Egypt

1. Introduction

Coastal cities along the Nile Delta encompass most of the social and economic activi-
ties in Egypt. Meanwhile, the combined impact of sea level rise and land subsidence causes
serious risks and problems [1]. Together, subsidence and lack of sediment supply along
the depositional zone of the Nile Basin (downstream Nile Delta) caused by the intensive
construction of dams could potentially cause a relative rise in sea level over time [2]. Addi-
tionally, coastal erosion is predicted to increase hazard risks in coastal cities [3,4]. Therefore,
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there is an urgent need for regular monitoring, with high accuracy, the deformation in
coastal cities in order to mitigate the expected hazards. Traditional survey instruments
are point observations and thus have a spatially limited coverage. Remote sensing tech-
niques are more cost-effective and provide better spatial coverage for coastal and land
observations [5–11].

Numerous studies have been conducted to measure land subsidence in coastal areas
across the Nile Delta of Egypt using SAR remote sensing data [12–25]. Information on the
spatial distribution of natural hazards needs to be generated as quickly as possible in order
to be useful for emergency response efforts [26]. Such information is usually generated from
the analysis of optical satellite imagery [27,28]. However, relying only on optical satellite
imagery for natural hazards assessment is problematic as the mapping processes can be
significantly delayed by cloud cover and bad weather conditions [29]. Synthetic Aperture
Radar (SAR) satellite imagery provides an alternative method to generate information
under all-weather conditions. SAR is most widely used to measure the downslope velocity
of slow-moving landslides and to provide subtle measurements of coastal subsidence at a
significantly improved spatial resolution and over large areas [30–41].

Achache et al. 1996 [42] have demonstrated the ability of InSAR to monitor small
displacements at the required scale for large landslide monitoring and their work shows
similar trends to those acquired from ground-based measurements. Many studies are
adopting InSAR technology for land subsidence tracking, and the derived patterns and re-
sults are comparable to ground-based measurements [43–46]. In this context, high-accuracy
monitoring methods, including persistent scatterer InSAR [47] and small baseline subset
DInSAR (SBAS-InSAR) [48], were proposed and applied to monitor land subsidence with
high accuracy. Indeed, the SBAS approach allows for the detection of land deformation
at high spatial and temporal coverage. This research work aims to improve the SBAS
DInSAR methodology and to determine the best SAR data (L-band or C-band) for esti-
mating the land-subsidence rate with high accuracy in an economically important and
densely populated part of the Nile Delta of Egypt, which has suffered from many subsi-
dence events in recent years [49]. In addition, a systematic comparison of two SAR sensors
(ALOS/PALSAR-2 and Sentinel-1A) is presented to determine which dataset provided the
most suitable and accurate results of land subsidence measure in locations showing high
coherence within the Alexandrian urban area (Figure 1).
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2. Study Area

Alexandria was chosen as a research area due to its complicated pattern of urban
subsidence. The city lies on the Mediterranean Sea at the western edge of the Nile Delta,
about 183 km northwest of Cairo City and encloses an area of approximately 2679 km2. It
is Egypt’s second-largest city and a major economic center. It hosts 40% of the Egyptian
industrial and commercial activities, as well as the largest harbor in the country [50,51].
It is located in a moderately tectonically stable plate in North East Africa. The periodic
instability has been caused by the readjustment to downwrapping (sediment compaction,
faulting, isostatic lowering) of the sedimentary sequences (locally exceeding 4000 m) [52,53].

Generally, the low-lying region of the Nile Delta is subjected to significant differential
subsidence. The reduction in annual Nile water and sediment discharge over the last
two centuries associated with dams constructions along the Nile River has resulted in an
environmental imbalance along the depositional zone of the Nile watershed, and thus, has
increased the impact of sea level rise across the city [54].

Many subsidence events were recorded along Alexandria City in recent years [49].
Land subsidence in Alexandria has not been thoroughly documented in the literature;
however, subsidence was partially studied using traditional geological measurements,
mostly in the eastern and southern parts of the city [55,56]. The DInSAR technique has
been used to study land subsidence in the central part of the city and its relation to sea
level rise [57]. It is worth mentioning that the previous DInSAR studies in Alexandria
mainly focused on the period before 2015, using a variety of radar images with different
wavelengths and producing results with different levels of accuracy.

3. Datasets

In this study, a total of 11 ALOS/PALSAR-2 L-band images acquired from 8 March 2015
to 31 March 2019, as well as 9 Sentinel-1A C-band images acquired from 7 August 2017 to
24 January 2020 were utilized to map the ground deformation over Alexandria City, Egypt.
The ALOS-2 acquisitions were captured in ScanSAR mode, ascending with single-look
complex format (SLC), right-looking and HH polarization. All the Sentinel-1 images were
acquired in the descending path, SLC format and Interferometric Wide (IW) swath mode.
The short sampling rate of the Sentinel-1 images has the potential to maintain the coherence,
even if the wavelength is short (~5.5 cm). The ALOS-2 images with a longer wavelength
(~24 cm) are less affected by temporal decorrelation of the SAR signal. Table 1 lists the
details of the used SAR data.

Table 1. Characteristics of ALOS/PALSAR-2 and Sentinel-1A SAR data used in this study.

Satellite ALOS/PALSAR-2 Sentinel-1A

Band L C
Orbit Ascending Descending

Master image 27 November 2016 27 June 2018
Number of scenes 11 9
Acquisition period 2015–2019 2017–2020

λ (cm) 23.6 5.6
Polarization HH VV
Revisit cycle 14 days 12 days

Mode ScanSAR IW

Sentinel-1 products consist of three main sub-swaths (Figure 2, red labels) for each
polarization channel, with a total of three (single polarizations) or six (dual polarization)
images in an IW product. Each sub-swath image consists of a number of bursts (Figure 2,
white labels), where each burst has been processed as a separate SLC image. The individ-
ually focused complex burst images are combined, in azimuth-time order, into a single
sub-swath image with black-fill demarcation in between. The data used in evaluating the
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land subsidence in Alexandria City lies in the sub-swath IW2 in the western part of Nile
Delta.
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4. SBAS Processing

The Interferometric analysis of ALOS/PALSAR-2 and Sentinel-1A sensors was carried
out through the SBAS method [58]. All acquired steps to calculate the rates of displacement
affecting the study area are shown in Figure 3. Firstly, the specifications of the perpendicular
and temporal baselines thresholds for processing were calculated based on the conditions
of the study area and the used SAR data. If the study area is urban, the time baseline can be
set for a longer period, as several stable points can stay without changing their coherence
over a long time period. An interferogram can still be generated over an urban area, even if
the temporal baseline is up to four years [59]. Based on these considerations, the connection
graphs were produced for each group (Figure 4). A comparison was made between the
spatial and temporal baselines of the radar images. Subsequently, the links between radar
images were built to show which baselines are small enough to be comparable [60].

The result is a network of connections, defined as a connection graph (Figure 4a,b),
where the yellow and green dots in these graphs represent the super master and the slave
of the SAR images, respectively. The red lines represent the interferograms that pass the
SBAS minimal requirements. Figure 4c,d indicate the distance between the various images,
depending on the date of acquisition. These graphs make it possible to conduct a quick
visual evaluation of the relations between the images and the time distribution of the
SAR data being used. Consequently, pairs of images were generated and later used to
create interferograms [61,62]. For the ALOS/PALSAR-2 data (2015–2019) about 39 pairs of
interferograms were generated and 22 pairs for Sentinel-1A data (2017–2020).

Each pair of compatible radar images identified in the previous step is used to generate
an interferogram. In addition to the radar images and the connecting graph, this process
requires the use of an accurate digital terrain model [61]. The digital elevation model SRTM
1-arcsecond provided by NASA with a resolution of 30 m was used in this study. During
the first step of co-registration, all SAR images were geometrically adjusted by resampling
each image with the master, which was chosen during the correlation step to give them
the same geometry [62,63]. During the second stage, a stack of interferograms formed,
followed by a process of flattening.
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November 2016 as the super master image; (c) time–position plot generated by the Sentinel-1A and (d) time–position plot
generated by the ALOS/PALSAR-2.
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In this study, the multi-looking process was performed by setting the number of
looks for both SAR data (ALOS/PALSAR-2 and Sentinel-1A) as 1 in the range direction
and 4 in azimuth direction. Such multi-looking process increases Signal to Noise Ratio
(SNR) of the interferograms and thus improves the quality of coherence estimation [64].
Next, interferograms were generated after meeting the temporal, geometric baseline and
Doppler difference criteria. The formed interferograms are considered as Stripmap like
interferograms, thus phase filtering and unwrapping were implemented. There are several
methods for unwrapping the interferograms; however, in this study, the Minimum Cost
Flow (MCF) method was used for both ALOS/PALSAR-2 and Sentinel-1A data. The other
methods were tested, compared visually, and were found to be less suited for the study
area than the MCF method.

In order to use the possible maximum number of coherent pixels a compromise value
of 0.35 is suggested, when using the minimum cost flow method for the unwrapping stage.
Indeed, all areas with coherence lower than the 0.35 threshold value were eliminated. As
low coherence values can lead to particularly noisy areas in the analysis, it reduces the
reliability of the final results [65]. Besides unwrapping interferograms, coherence maps for
each interferogram were generated. Therefore, the Goldstein filters were applied to the
generated interferograms in order to minimize the amount of noise [66].

In order to re-flatten the interferograms, ground control points (GCPs) are required
as input, which should be positioned on areas that are thought to be stable or with pre-
known deformation values. The height values of these GCPs were estimated from the
input DEM [67]. In this study a total number of 150 points were used and manually
placed only on the persistent scatterers with very high coherence pixels to ensure that
each interferogram has received the necessary amount of control points to correct any
inconsistencies caused by orbital fluctuations and re-flattening the interferograms to make
phase data more accurate [68].

Following the previous processing scheme, the first inversion step was applied to the
generated and re-flattened interferograms in order to measure the residual height and the
velocity of the displacement using the linear model [69]. In the same context, the second
unwrapping process was performed to improve the SAR data for the next step. In addition,
the second inversion step was applied to provide more accurate estimation of the final
velocity displacement. The high and low pass atmospheric filter was applied to remove the
noise through temporal and spatial filtering operations [70,71]. The displacement observed
by DInSAR is one dimensional along the Line of Sight (LOS). In order to convert the LOS
displacement to the vertical direction (subsidence), an additional equation was used [72].
This operation suggests that the displacement is primarily caused by the subsidence
(vertical displacement) and that the horizontal displacement, which is in the same direction
of the LOS is very small compared to the vertical subsidence; thus, it can be ignored.
However, it is very difficult to convert the measured phase change along the LOS into
the perpendicular horizontal displacement. Therefore, the geocoding was applied to the
different outputs from the previous steps to convert the slant range format to the geocoded
images with the required coordinate system. Finally, the data was exported in the Geotiff
format to ArcGIS, where statistics have been calculated.

5. Results

After assessing the accuracy of both ALOS-2 and Sentinel-1 in estimating the vertical
displacement, the final land subsidence rate of Alexandria City and its surroundings was
monitored from August 2017 to September 2020 by using nine Sentinel-1 SAR images with
5 × 20 m spatial resolution and VV polarization. A total of 22 interferometric pairs were
generated using the image of 27 June 2018 as the super master. All slant ranges of the nine
images were co-registered with this super master, which was used as the reference image.

Selecting the proper perpendicular and temporal baselines is considered to be a
very important step to discard the unsuitable SAR images and to examine the validity of
the generated interferograms. For Sentinel-1 interferograms, the mean absolute normal
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baseline was 78 m with minimum and maximum absolute baseline of 13 m and 191 m,
respectively. The mean absolute temporal baseline was 285 days with minimum and
maximum value equal to 12 days and 504 days, respectively. Table 2 illustrates each master
and slave image of Sentinel-1, which was combined to generate 22 interferograms. While,
for ALOS/PALSAR-2 interferograms, the mean absolute normal baseline was 110 m with
minimum and maximum absolute baseline of 18 m and 287 m, respectively. The mean
absolute temporal baseline was 329 days with minimum and maximum values equal to
28 days and 600 days, respectively.

Table 2. Sentinel-1 data pairs for SBAS processing.

Master Slave Normal
Baseline (m)

Temporal
Baseline (Days)

7/8/2017

19/8/2017 −62 12
15/6/2018 −36 312
27/6/2018 −20 324

24/12/2018 34 504

19/8/2017
15/6/2018 28 300
26/6/2018 44 312

24/12/2018 95 492

15/6/2018

27/6/2018 18 12
24/12/2018 69 192
10/6/2019 −121 360
22/6/2019 −68 372

27/6/2018
28/12/2018 53 180
10/6/2019 −138 348
22/6/2019 −84 360

24/12/2018
22/6/2019 −191 168
10/6/2019 −138 180

10/6/2019
22/6/2019 54 12
8/9/2020 126 456

20/9/2020 134 468

22/6/2019
8/9/2020 72 444

20/9/2020 80 456
8/9/2020 20/9/2020 13 12

Table 3 illustrates the temporal and normal baseline for each master and slave
ALOS/PALSAR-2 interferogram pairs, which were combined to generate 33 interferograms.
The mean absolute value of the normal and absolute baseline for ALOS-2 interferograms is
higher than the value of Sentinel-1 interferograms, with approximately 32 m and 44 days,
respectively. The increase in baselines has a negative effect on the reliability and accuracy
of the generated interferograms. The correlation between the pixels of the used SAR pair
in terms of power and phase is recognized as coherence. The zero coherence means there is
no matching between the pixels with high changes on the ground and coherence value of
1 means complete matching with no change. The coherence decreases due to an increase
in the normal and temporal baseline, as well as in situ anthropogenic activities. Figure 5
illustrates the coherence values of the generated interferograms from Sentinel-1 and ALOS-
2 data. The histograms in Figure 5a show the coherence of ALOS-2 interferograms, with
values concentrating mostly in the range between 0.2 and 0.3. Whereas, Figure 5b repre-
sents the coherence value of Sentinel-1 interferograms, with values ranging between 0.3
and 1. Based on these histograms and the distribution of coherence values, the coherence
thresholds were selected as 2 and 4 for ALOS/PALSAR-2 and Sentinel-1A, respectively.
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Table 3. ALOS/PALSAR-2 data pairs for SBAS processing.

Master Slave Normal
Baseline (m)

Temporal
Baseline (Days)

8/3/2015
12/7/2015 84 126
12/6/2016 −56 462
10/7/2016 −34 490

12/7/2015
12/6/2016 −134 336
10/7/2016 −111 364

27/11/2016 −105 504

12/6/2016

10/7/2016 22 28
27/11/2016 37 168

9/7/2017 −242 392
12/11/2017 −35 518
21/1/2018 −36 588

10/7/2016

21/1/2018 −58 560
12/11/2017 −57 490

9/7/2017 −264 384
27/11/2016 27 140

27/11/2016

1/4/2018 −149 490
21/1/2018 −71 420

12/11/2017 −62 350
9/7/2017 −273 224

9/7/2017

6/1/2019 287 546
1/4/2018 128 266

21/1/2018 206 196
12/11/2017 211 126

12/11/2017

31/3/2019 −109 504
6/1/2019 76 420
1/4/2018 −87 140

21/1/2018 −18 70

21/10/2018
31/3/2019 −102 434
6/1/2019 83 390
1/4/2018 134 468

1/4/2018
6/1/2019 −79 70

31/3/2019 −23 364
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The generated interferograms, which show strong residual phase ramps and jumps
originated from the orbital inaccuracies, together with large atmospheric artifacts, were
corrected by removing the residual phase frequency. Since Alexandria City lies in a
coastal area with a dense cloud cover during the winter season, the atmospheric artifact
was expected to cause a negative effect on the interferograms quality. The very large
temporal or normal baseline between the two acquisitions resulted in the generation
of wrapped interferograms with very low coherence; thus, these interferograms were
discarded (Figure 6).
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150 GCPs were selected for both Sentinel-1 and ALOS-2 data, where the unwrapped 
phase value was close to zero and the flat areas were identified. 

Figure 6. (a) Wrapped ALOS-2 low coherent interferogram showing errors during the flattening sub-step; white arrow indicates
systematic residual fringes that could have been caused by strong orbital inaccuracy or issues with some parameter settings, while red
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mean coherent value of 0.15.

However, the highest coherent Sentinel-1 wrapped interferogram (Master 15 December
2018 and Slave 10 June 2019) was considered to be acceptable. The urban areas have shown
high coherent pixels without any phase jump, unlike the agricultural cover, which shows
low coherent pixels (Figure 7). Wrapped interferograms were subsequently filtered and
used together with the coherence data to calculate the phase unwrapping. The unwrapped
interferogram were refined and re-flattened by using the residual phase method to estimate
and remove the remaining phase constants and phase ramps, in order to relate the change
in slant range to the deformation only (due to subsidence). A total of 150 GCPs were
selected for both Sentinel-1 and ALOS-2 data, where the unwrapped phase value was close
to zero and the flat areas were identified.
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interferograms, its sensitivity is large enough to estimate the average residual topogra-
phy to almost 0 m with a standard deviation equal to 13.5 m using 1 as a wavelet number 
(Figure 8c). Moreover, the accuracy of the ALOS-2 interferograms was also checked using 
the same SRTM data and the same wavelet number and showed average residual to-
pography equal to −100 m and high standard deviation equal to 70 m (Figure 8a). 
Meanwhile, by using two wavelet numbers, the ALOS-2 interferograms showed average 
residual topography equal to −20.5 m and standard deviation equal to 33.24 m (Figure 
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Figure 7. Wrapped Sentinel-1 interferogram with low coherence. The cause is the very large temporal
and normal baseline between the two acquisitions used to make the interferogram (a). The histogram
illustrates the coherence value between two interferogram pairs (master 15 December 2018 and Slave
10 June 2019) (b).

The linear model was used to estimate the residual height and the displacement
velocity [73]. An incorrect residual topography calculation will cause horizontal shifts in the
final SBAS geocoding results. The accuracy of the residual topography calculation depends
on the vertical and horizontal accuracy of the used DEM, as well as the pixel spacing of
SAR data [73,74]. In this study, the freely available SRTM data was used for estimating the
residual topography. But due to the high spatial resolution of Sentinel-1 interferograms, its
sensitivity is large enough to estimate the average residual topography to almost 0 m with a
standard deviation equal to 13.5 m using 1 as a wavelet number (Figure 8c). Moreover, the
accuracy of the ALOS-2 interferograms was also checked using the same SRTM data and the
same wavelet number and showed average residual topography equal to −100 m and high
standard deviation equal to 70 m (Figure 8a). Meanwhile, by using two wavelet numbers,
the ALOS-2 interferograms showed average residual topography equal to −20.5 m and
standard deviation equal to 33.24 m (Figure 8b).
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Increasing the value of the wavelet to two means that the information that is coarser 
than 200 m is removed, while the information, which is finer than 200, is preserved. Such 
a result is highly unlikely because the estimation produced is extremely imprecise. It is 
clear that even after using a large wavelet number with the ALOS-2 SAR data, the Sen-
tinel-1 interferograms with a zero wavelet showed an accurate and improved estimation 
of the average residual topography. After removing the residual topography, the phase 
information characterizes the displacement along the line of sight (LOS) direction. The 
sensitivity of displacement rate depends on the system wavelength. Thus, sensors with 
longer wavelength will have a sensitivity smaller than the sensors with a shorter wave-
length. 

Finally, all the obtained results were geocoded to adopt two constraints: the velocity 
and height precisions thresholds. To estimate meaningful thresholds, in terms of cover-

Figure 8. Statistics of estimated residual topography: (a) for ALOS-2 interferograms by using the
SRTM data, which showed average residual topography equal to −100 m and high standard deviation
equal to 70 m; (b) the average residual topography and standard deviation reduced by increasing the
wavelet number; (c) for Sentinel-1 interferogram with average residual topography to almost 0 m
with a standard deviation equal to 13.5 m.

Increasing the value of the wavelet to two means that the information that is coarser
than 200 m is removed, while the information, which is finer than 200, is preserved. Such a
result is highly unlikely because the estimation produced is extremely imprecise. It is clear
that even after using a large wavelet number with the ALOS-2 SAR data, the Sentinel-1
interferograms with a zero wavelet showed an accurate and improved estimation of the av-
erage residual topography. After removing the residual topography, the phase information
characterizes the displacement along the line of sight (LOS) direction. The sensitivity of dis-
placement rate depends on the system wavelength. Thus, sensors with longer wavelength
will have a sensitivity smaller than the sensors with a shorter wavelength.

Finally, all the obtained results were geocoded to adopt two constraints: the velocity
and height precisions thresholds. To estimate meaningful thresholds, in terms of coverage
and precision, the statistic tool of the ArcGIS was used (Figure 9). Consequently, the
velocity precision threshold value of 9 mm/year and the height precision threshold value
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of 35 m were used for Sentinel-1 data, while the velocity precision threshold value used for
ALOS-2 data was 40 mm/year and the height precision threshold of 100 m.
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The deformation component can be isolated from the non-deformation component by
addressing phase noise due to changing the properties of scattering over time. This has
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been achieved by using the phase behavior of radar signals to select pixels with minimal
decorrelation [75]. Thus, the accuracy of the final results depends on the final coherence
and the wavelength of the used data. Accordingly, coherence of 0.2 in C-band comparable
to a coherence of about 0.6 in L-band to obtain the same precision, but with less pixels. The
final coherence result of Sentinel-1 data ranges from 0.2 to 0.75 with an average coherence
value of about 0.4 and standard deviation of 0.11. Coherent pixels represent good coverage
of all urban area of Alexandria City, which has been used in calculating the land subsidence
(Figure 10). However, the final coherence coverage of ALOS-2 data is very poor with an
average coherence value of about 0.6 and standard deviation of 0.04 and about 80% of
Alexandria City showed no coherent data (Figure 11).
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The measured average vertical displacement of Alexandria City during the period
from 2015 to 2019 using a coherence threshold value of 0.2 for ALOS/PALSAR-2 data
is about 5 cm for the maximum uplift rate and about −15 cm for the maximum vertical
subsidence rate (Figure 12). Since ALOS-2 data do not have enough coherent pixels to be
used to estimate the deformation along the urban areas, the final deformation results are
discussed by using Sentinel-1 data with a threshold value of 0.4, which corresponds to a
threshold value of 0.8 using ALOS-2 data.
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Figure 12. Vertical displacement of Alexandria City using coherence threshold value of 0.2 during the period from 2015 to
2019 using ALOS/PALSAR-2 images.

The deformation in the vertical direction along the study area can be clearly observed
in Figure 13 during the period from 2017 to 2020. The color ramp from red to blue indicates
the negative to positive velocities in the vertical direction. The negative values indicate the
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surface is moving away from the satellite (subsidence), while the positive values indicate
the opposite direction of movement (uplift). Vertical deformation from 2017 to 2018 varies
between −30 mm and 20 mm (Figure 13a) with an average of −4 mm. Figure 13c,d presents
the vertical motion from 2017 to 2019, which ranged between −40 mm and 20 mm with an
average about −4.3 mm with a standard deviation of 8 mm. The cumulative displacement
in vertical direction along the study area from 2017 to 2020 reached −60 mm away from
the sensor with an average of −12.5 mm and standard deviation of −10 mm (Figure 13e,f).
These calculated subsidence rates show the subsidence rate is not constant over the years.
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The mean velocity (mm/year) maps of the final geocoded vertical displacements
generated from the Sentinel-1 data are shown in Figure 14. The histograms of the estimated
displacement velocities along the study area are shown in Figure 14b, with an average
displacement rate and a standard deviation of −1.73 and 4 mm/year, respectively.
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Figure 14. (a) The estimated mean displacement velocity of Alexandria and Alagami Cities using
the Sentinel-1 data from August 2017 to September 2020 with coherence threshold of 0.4; (b) the
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6. Discussion

Selecting the proper master and slave SAR images with acceptable perpendicular and
temporal baselines is a very important issue to avoid generating noisy interfeorograms.
Such a selection should also consider the types of the surface features along the study area,
where the urban areas can maintain a large temporal baseline, unlike the vegetation cover.
Moreover, the coherence threshold value should be determined in a professional way so
that a large number of pixels is used in order to achive high coherence with no surface
changes and good matching between the different images.

All phase jumps, phase ramps, orbital inaccuracies, atmospheric artifacts and residual
topography were calibrated and corrected before estimating the final vertical displacement
to improve the accuracy of the results. The longer wavelength of SAR data shows less
sensitivity, as well as less spatial coverage in calculating the land subsidence.
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However, Alexandria is located at the western margin of the Nile Delta on a cemented
Pleistocene sandstone ridge covered by a thin layer of Holocene sediments [76], except in
the paleo island of Pharos and the former southern wetlands. Accordingly, the Alexandrian
coastal plain and city center are considered to be relatively stable, with an estimated
land subsidence of 0 to −5 mm/year. The maximum average subsidence value reached
−20 mm/year, where the high subsidence areas are located mostly in the former Abu Qir
Lagoon, the dry and recently reclaimed region of the former Mariout Lake, and parts of the
northeast Alagami area.

The port of Alexandria plays an important role in Egypt’s economy. Its capacity
represents 75% of Egypt’s total capacity Ports of the Mediterranean. It accounts for 40%
of Egypt’s total population industry and 56% of the petroleum industry. Due to new
urbanized areas and infrastructure constructed for all of these facilities it has negatively
affected the land deformation of Alexandria City. Whereas the city area constructed before
1917 was relatively stable relative to urban expansion. The city has been expanding more
than double, mainly along its built-up areas during the last quarter century.

The type of Alexandria substrate rocks has an effect on the surface deformation. The
soil substrate of Alexandria City represents carbon ridges, gravel, sand, stabilized sand
dunes, oolitic beach and beach ridge, Nile silt and sabkha deposits, as well as refilled
materials of the former lagoons. The maximum thickness of sabkha deposits reaches
about 35 m in the south-western part of Alexandria where it plays an important role in
accelerating the land subsidence compared to other lithological formations. The thickness
of the Nile silt is about 30 m in the eastern and central part of the city. All pixels with
velocity of less than −20 mm/year represent areas with different degrees of subsidence, as
shown in the small-data-frame of Figure 14. Subsided areas were mainly distributed in the
southern newly urbanized areas of the city, built on dried grounds from former lakes and
lagoons (Figure 15).
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Subsidence are found in parts of the northwest (Alagami), newly reclaimed areas in
the northeast of palaeo-island of Farous, the sandy tombolo of the old city, some parts
of stabilized sand dunes in the eastern part of the city, and newly reclaimed areas in the
far eastern side of Abu-Qir area. These subsidence areas are controlled by the subsurface
rock type. There are three refilled and reclaimed areas from former lagoons, including
the former Alharda Lake, a part of the former Abu-Qir Lagoon and a part of the former
Mariout Lake in the south Western section of the study area (Figure 16). The dried and
reclaimed areas from Abu-Qir Lagoon in the southeast of the study area have the highest
average subsidence when compared to other dried and reclaimed former lakes and lagoon
areas, about −20 mm/year. The reclaimed areas of the former Lake Alhadra showed the
lowest annual average subsidence among dried and reclaimed former lakes and lagoon
areas, −8.5 mm/year. Land subsidence was recorded in the refilled areas from a former
lagoon in the southern part of the study area.
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Figure 16. Former lakes and lagoons in Alexandria based on displacement velocity of Alexandria
and Alagami cities using the Sentinel-1 data from August 2017 to September 2020.

Different levels of subsidence at different locations along the study area leave visual
marks on the surface of the city. The field investigation provided supporting evidence of
the results presented in this study. Figure 17 shows the visual cracks on buildings and roads
captured at subsided locations, as defined in our vertical displacement results. Different
degrees of subsidence can be easily inferred from the road cracks shown in the pictures in
Figure 17b–d. The subsidence and field-checked buildings were plotted on the final land
subsidence maps derived from Sentinel-1 data using the SBAS technique. The location of
the affected buildings shows high consistency with the estimated results of the DInSAR.

The frequently occurred land subsidence events along the Alexandria City, especially
along the newly urbanized areas should be carefully considered for future expansion or any
other developmental plans. This is to avoid any related hazards that might cause damages.
The western desert fringes of Alexandria should be considered for future developmental
plans instead of the southern part of the city, which is suffering from the high subsidence
rate due to its fragile substrate soil.
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7. Conclusions

Quantifying the vertical land displacement with high accuracy is a very important
aspect in many applied science fields, especially those focusing on mitigating the resulting
environmental hazards and their impact on various human driven activities and infras-
tructure. Meanwhile, the DInSAR is considered as one of the best tools to provide such
deformation measures with very high accuracy and with good spatial coverage. In this
study, different SAR sensors (Sentinel-1 and ALOS/PALSAR-2) were used to assess their
relative accuracy in estimating the land subsidence along the coastal city of Alexandria in
Egypt, which was selected as a test site. A total of nine Sentinel-1 and 11 ALOS/PALSAR-2
data covering the period of 2017 to 2020 were processed using the SBAS method approach.

The Sentinel-1 C-band data showed higher coherence and less residual topography
than the ALOS/PALSAR-2 L-band. Consequently, there are not enough distributed coher-
ent pixels in the ALOS-2 data to be used to accurately represent the deformation for urban
along the study area, thus the final deformation result was discussed by using Sentinel-1
data only. The cumulative displacement pattern in vertical direction from 2017 to 2020
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recorded −60 mm away from the sensor with an average of −12.5 mm and a standard devi-
ation of −10 mm. These results show that the Alexandria coastal plain and main city center
are considered to be relatively stable, with estimates of 0 to −5 mm/year. However, the
maximum average subsidence value was estimated as −20 mm/year and located mostly
along the dried regions of the former Abu Qir Lagoon and Mariout Lake, as well as parts of
the northeast Alagami area. Finally, the results have been validated using field information,
which show good correlation. In addition, the western desert fringes of Alexandria should
be considered for future developmental plans instead of the southern part, which show a
high subsidence rate due to its fragile substrate soil.
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