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Abstract: The information fusion technique can integrate a large amount of data and knowledge
representing the same real-world object and obtain a consistent, accurate, and useful representation
of that object. The data may be independent or redundant, and can be obtained by different
sensors at the same time or at different times. A suitable combination of investigative methods
can substantially increase the profit of information in comparison with that from a single sensor.
Multi-sensor information fusion has been a key issue in sensor research since the 1970s, and it
has been applied in many fields. For example, manufacturing and process control industries can
generate a lot of data, which have real, actionable business value. The fusion of these data can greatly
improve productivity through digitization. The goal of this special issue is to report innovative
ideas and solutions for multi-sensor information fusion in the emerging applications era, focusing on
development, adoption, and applications.

Information fusion technology has been in existence for several decades. At the beginning, this
technology was mainly applied in military. The main reason is that at that time, the sensor was still a
very expensive instrument. Military might be the only consumer who required superior performance
without considering the cost.

In recent years, the application background of multi-sensor information fusion technology has
undergone great changes. We have found that many civilian systems also have multi-sensor systems,
such as unmanned vehicle and intelligent robot systems. Moreover, we have noticed that these systems
have become a major part where the multi-sensor information fusion technology could be used, and
they usually contain great research value. In these new application systems, multi-sensor information
fusion technology also faces many new research issues. This is what the researchers are interested
in this research field recently. We have discovered that there are many areas in which multi-sensor
information fusion technology is worth investigating further.

Our special issue was consisted of 30 papers, including the latest research results of the multi-
sensor information fusion technology.

Sensors 2018, 18, 1162 1 www.mdpi.com/journal/sensors
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In general, these research papers were mainly divided into two parts: one is theoretical research
results, and the other is the application-oriented issues. The topic discussed in theoretical research
involves in-depth research on methods and theories, and it proposes new methods. The related papers
mainly included three aspects: (1) a new fusion method based on the Kalman filter, including the study
of various nonlinear Kalman filters, such as CKF, UKF, etc.; (2) a method based on DS evidence theory;
(3) new methods for images, including video tracking, expression recognition, etc. On the other hand,
we are also delighted to see that there are many papers involving solutions for various applications,
which also have extremely high reading and reference value.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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Facial Expression Recognition with Fusion Features
Extracted from Salient Facial Areas

Yanpeng Liu, Yibin Li, Xin Ma and Rui Song *

School of Control Science and Engineering, Shandong University, Jinan 250061, China;
liuyanpeng@sucro.org (Y.L.); liyb@sdu.edu.cn (Y.L.); maxin@sdu.edu.cn (X.M.)
* Correspondence: rsong@sdu.edu.cn

Academic Editors: Xue-Bo Jin; Shuli Sun; Hong Wei and Feng-Bao Yang
Received: 23 January 2017; Accepted: 24 March 2017; Published: 29 March 2017

Abstract: In the pattern recognition domain, deep architectures are currently widely used and they
have achieved fine results. However, these deep architectures make particular demands, especially
in terms of their requirement for big datasets and GPU. Aiming to gain better results without
deep networks, we propose a simplified algorithm framework using fusion features extracted from
the salient areas of faces. Furthermore, the proposed algorithm has achieved a better result than
some deep architectures. For extracting more effective features, this paper firstly defines the salient
areas on the faces. This paper normalizes the salient areas of the same location in the faces to the
same size; therefore, it can extracts more similar features from different subjects. LBP and HOG
features are extracted from the salient areas, fusion features’ dimensions are reduced by Principal
Component Analysis (PCA) and we apply several classifiers to classify the six basic expressions at
once. This paper proposes a salient areas definitude method which uses peak expressions frames
compared with neutral faces. This paper also proposes and applies the idea of normalizing the
salient areas to align the specific areas which express the different expressions. As a result, the salient
areas found from different subjects are the same size. In addition, the gamma correction method
is firstly applied on LBP features in our algorithm framework which improves our recognition
rates significantly. By applying this algorithm framework, our research has gained state-of-the-art
performances on CK+ database and JAFFE database.

Keywords: facial expression recognition; fusion features; salient facial areas; hand-crafted features;
feature correction

1. Introduction

Facial expression plays an important role in our daily communication with other people. For the
development of intelligent robots, especially indoor mobile robots, emotional interactions between
robots and humans are the foundational functions of these intelligent robots. With automated facial
expression recognition technology, these home service robots can talk to children and take care of older
generations. Also, this technology can help doctors to monitor patients, which will save hospitals
much time and money. In addition, facial expression technology can be applied in a car to identify
whether the driver has fatigue, and this can save many lives. Facial expression recognition is worth
researching because many situations need this technology. Many research works have been done in the
literature; the universal expressions mentioned in papers are usually: anger, disgust, fear, happiness,
sadness and surprise [1–3] while some researchers add neutral and contempt [4,5]. Different sensors
are used to capture data of these expressions, and researchers recognize these basic expressions from
two-dimensional (2D) and 3D spaces [6,7] faces. While different methods are applied to recognize
the basic expressions in 2D and 3D spaces, landmarks localization processes are used in both 2D and
3D data. Vezzetti et al. [8,9] extracted many landmarks from multiexpression faces relying on facial

Sensors 2017, 17, 712 3 www.mdpi.com/journal/sensors
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geometrical properties, which makes it easy to localize these parts on 3D faces. Many application
scenarios, such as service robots, apply 2D images to detect and recognize faces, so our research focuses
on recognizing expressions from 2D static images.

Different styles of data and various frameworks are applied to 2D space facial expressions
recognition. Like other recognition research, facial expressions recognition uses data from videos,
images sequences [10] and static images [3,11]. All of the movement processes of the expressions are
applied in the research, which use videos and images. Research using static images only uses the
peak frames because they contain sufficient information about the specific expressions, and that is
also the reason why this paper chose to use the peak frames. There are two main kinds of algorithm
frameworks applied in facial expressions recognition work. Algorithms that use mature descriptors
such as Histogram of Oriented Gradient (HOG) [12] and Local Binary Patterns (LBP) [4] extract
features from the images and then send the features to the classifiers. The performances of this kind
of algorithm framework rely on the effectiveness of these descriptors. In order to fuse more effective
descriptors, researchers extract different kinds of features and fuse them together [13]. Although the
fusion features behave better than one kind of feature, these features’ distinguishing features have not
been fully used. Feature correction method is applied to the features in our paper and this significantly
improves the recognition rate. Deep networks is another popular framework in the facial expression
recognition domain. AU-inspired Deep Networks (AUDN) [2], Deep Belief Networks (DBN) [14] and
the Convolutional Neural Network (CNN) [10,15] are used in facial expressions recognition work.
Apart from the higher recognition rate, more computing resources and data are needed in these
algorithms. For these reasons, the former framework is applied in our research.

Face alignment is applied to help researchers to extract more effective features from the static
images [4,16]. Automated facial landmark detection is the first step to complete this work. After finding
these landmarks on the faces, researchers can align the faces and extract features from these faces.
Early days, for the limitation of face alignment technology, researchers use fewer landmarks to align
the faces and separate the faces to several small patches for extracting features [13]. This can roughly
align the faces while more landmarks can improve the alignment precision. There are many methods
to detect landmarks from the faces. Tzimiropoulos et al. [17] proposed a Fast-SIC method for fitting
AAMs to detect marks on the faces. Zhu et al. [18] use a model based on the mixture of trees with
a shared pool which marks 68 landmarks on the face. This method is applied in our algorithm and
68 landmarks are used to align the salient areas. These landmarks mark the shape of the eyebrows,
eyes, nose, mouth and the whole face, which can help researchers to cut the salient patches. Although
alignment faces can help to extract more effective features from the faces, some areas on the faces do
not align well during this process. In this paper, the idea of normalizing the salient areas is firstly
proposed to improve the features’ extracted effectiveness.

In order to reduce the features’ dimensions and extract more effective features, different salient
areas definitude methods are proposed in the literature. Zhong et al. [3] explained the idea that
discovering common patches across all the expressions is actually equivalent to learning the shared
discriminative patches for all the expressions in their paper. They transferred the problem into a
multi-task sparse learning (MTSL) problem and by using this method they obtained a good result.
Happy et al. [13] applied these areas found in their paper and they also gained a decent result.
Liu et al. [2] used Micro-Action-Pattern Representation in the AU-inspired deep networks (AUDN)
and built four criterions to construct the receptive fields. This gained a better result and accomplished
feature extraction at the same time. In order to define the salient areas more accurately, our research
uses neutral faces to compare with the peak frames of these expressions. The Karl Pearson correlation
coefficient [19] is applied to evaluate the correlation between the neutral faces and the faces that
expressed different expressions. For finding the precise locations of the salient areas, the faces are
separated to several small patches. After comparing the small patches to their neutral faces, the patches
which have weaker correlation coefficient are found and these are the areas expressing the specific
expression. By using this method, the salient areas of the six fundamental expressions are found and
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after fusing these areas, the salient areas of the six basic expressions are found too. Landmarks of the
faces are used to locate these salient areas and different sizes of salient areas are normalized in our
research framework.

Different kinds of descriptors are applied in facial expressions recognition research. Regarding
the scale of the features extracted areas, previously, hand-crafted features were extracted from the
whole alignment face [4,16] but nowadays the salient areas are used in hand-crafted extraction [3,13].
Aiming to describe the different expressions more effectively, diverse features extracted methods are
used in facial expression recognition. Typical hand-crafted features include Local Binary Patterns
(LBP) [4], Histogram of Oriented Gradient (HOG) [12], Scale Invariant Feature Transform (SIFT) [20],
and the fusion of these features [11]. According to the literature, the fusion features contain more
information about these expressions and achieve better results. That is the reason why we chose to
extract LBP and HOG from the faces. Although fusion features can improve recognition rate, it is
hard to fuse these features well. Before different features fuse together, normalization methods are
applied to the features. Although utilizing this normalization method can improve the recognition
result, different kinds of features’ identities cannot mix well. Aiming to use more information of the
LBP features and normalize the LBP features, the gamma feature correction method is firstly applied
on LBP features in our algorithm framework.

In this paper, a straightforward but effective algorithm framework has been proposed to recognize
the six basic expressions from static images. The algorithm framework is shown in Figure 1. In order
to define and obtain these salient areas from these faces, the faces and facial landmarks are detected
in the first step. After doing that, these faces are separated into several patches and by comparing
neutral faces to these expressions, the salient areas are defined. Until this step, the salient areas are
separated from the faces according to these landmarks. For extracting more effective features from
these salient areas, the idea of normalizing the salient areas is firstly proposed to overcome salient
areas misalignment. After finishing that, LBP and HOG features are extracted from these salient
areas. The gamma correction method is firstly applied on LBP features and then the classifier can use
more information from these LBP features. The Z-score method is used to normalize the LBP and
HOG features to fusing them. Before applying different classifiers to classify these six expressions,
Principal Component Analysis (PCA) is utilized to reduce the dimensions. Finally, different classifiers
are applied to evaluate the effect of our framework, and our framework has achieved a better grade
than the deep networks [2,14].

Figure 1. Framework of the proposed algorithm.
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2. Methodology

In this section, the proposed algorithm will be explained in detail. This section will introduce the
salient facial areas definitude principle and show the salient areas normalization and features fusion
methods. LBP features correction methods will be introduced and applied in our algorithm. We will
then introduce the following sections of this paper.

2.1. Faces Alignment and Salient Facial Areas Definitude

Automated face and facial landmark detection is the first step in our method. Facial landmark
detection is an important base for facial expression classification. The method that is applied in the
paper [18] is chosen to mark 68 landmarks on faces in our research. These landmarks mark the shape
of the eyebrows, eyes, nose, mouth and the whole face, so these specific areas can be located by these
landmarks. These 68 landmarks on the face and the normalized face have been shown in Figure 1.
According to the average length and width of the faces and the proportion of the length and width, the
faces in CK+ database are normalized to 240 × 200.

As we all know, these six fundamental expressions have different salient areas. In this paper, an
algorithm is proposed to find the salient areas in these expressions. For the purpose of extracting more
effective features from the faces, people have applied different methods to calculate the salient areas
in the faces. Zhong et al. [3] explained the idea that discovering the common patches across all the
expressions is actually equivalent to learning the shared discriminative patches for all the expressions in
the paper. Since multi-task sparse learning (MTSL) can learn common representations among multiple
related tasks [21], they transferred the problem into an MTSL problem. They used this method and
gained a good result. In order to learn expression specific features automatically, Liu et al. [2] proposed
an AU-inspired deep network (AUDN). They used Micro-Action-Pattern Representation in the AUDN
and built four criterions to construct the receptive fields. This gained a better result and accomplished
features extraction at the same time.

These methods all found salient areas from the aligned faces and extracted features from these
salient areas. As for our algorithm, the areas which are more salient to their own neutral faces are
firstly found. In the last paragraph, the 68 landmarks have been found and the faces are normalized
to 240 × 200. The areas in the six basic expressions are compared to their neutral faces at the same
location. If the areas during the expressions have not moved around, the areas must have more
correlation with the areas on the neutral faces. Using this principle, compared to the other correlation
coefficient methods in [19] the Karl Pearson correlation coefficient is applied to evaluate the correlation
between the neutral faces and the faces expressed in different expressions. The Karl Pearson correlation
coefficient is applied to evaluate the correlation between the matrixes. For finding the precise locations
of the salient areas, the faces are separated to 750 (30 × 25) patches and every patch is 8 × 8 pixels.
These 8 × 8 pixels patches are matrixes and by comparing the small patches from neutral faces and
specific expressions, the salient areas can be precisely found. The Karl Pearson correlation coefficient
formulate is shown next.

γk
ij =

∑m(Em − Ē)(Nm − N̄)√
(∑m(Em − Ē)2)(∑m(Nm − N̄)2)

(1)

where γk
ij is the (i, j)th patch’s correlation coefficient of specific expressions, so the scale of i is 1 to 30,

j is 1 to 25. Em is the pixel value of one subject from the specific expression and m ranges from 1 to
64 while N is the pixel value of the neutral face of that subject. Ē is the mean of the small patch from
specific expression, and N̄ is the mean of the neutral face.

Rij = ∑
k

ρk ∗ γk
ij (2)

In order to find the salient areas of all these six basic expressions, a formula is defined to evaluate
the final correlation coefficient. The Rij is the final correlation coefficient of the (i, j)th location on face.
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By changing the ρk, the different proportion of the kth expression can be changed. Besides, the sum of
the ρk must equal 1.

6

∑
k

ρk = 1 (3)

The results of the six expressions are shown in Figure 2. The areas found in this section will
be applied in the next section. From Figure 2, we can find that different expressions have different
salient areas. Equation (1) is used to evaluate the salient areas in the six fundamental expressions.
In Equation (3), ρk expresses the proportion of the specific expression in the final result, the value of ρk
can be changed according to the numbers of these different expressions because there are different
numbers of images in these expressions.

Figure 2. The salient areas of the six expressions. (a) Salient areas of all expressions and neutral;
(b) Salient areas of anger; (c) Salient areas of disgust; (d) Salient areas of fear; (e) Salient areas of happy;
(f) Salient areas of sad; (g) Salient areas of surprise.

2.2. Salient Areas Normalization and Features Extraction

In this section, the idea of normalizing the salient areas rather than the whole faces is proposed
and applied. Furthermore, local binary patterns (LBP) features and the histogram of oriented gradient
(HOG) features all are extracted from the salient areas. Compared to the method extracting features
from the whole faces, features extracted from salient areas can reduce the dimensions, lower noise
impacts and avoid overfitting.

2.2.1. Salient Areas Normalization

In the last section, these salient areas are determined. Our research has a similar result as the
result in [3], but the performance differs in the eye areas. In papers [3,13], the researchers used the
patches of the faces which come from alignment faces. Normalizing the whole faces is a good idea
before more landmarks are marked from the faces. Then, more landmarks can be marked from the
faces, which makes it easier to extract the salient areas from the faces. There are two main reasons for
choosing to normalize the salient areas.

Firstly, aligning the faces may result in salient areas being misaligned. In order to demonstrate
the alignment effects, the faces are aligned and then all the faces in one specific expression are added
to gain the average face. The each pixel Xij is the average of all images of the specific expression.

The salient mouth parts are separated from the faces and the average salient mouth areas are
calculated for comparison. Figure 3 shows the result of the average faces, average salient areas and
the mouth parts of the average faces. The mouth parts of the average faces are used to compare with
the mouth parts using salient areas alignment. From the figure, it is clear that the mouth parts of the
average faces have weaker contrast than the alignment mouth parts. This explains that aligning the
faces leads to salient areas being misaligned. In contrast, by aligning the salient mouth areas, the
mouths have a clear outline. Moreover, the alignment faces have different sized salient areas. Different
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faces have different size, and the different sizes of the salient areas are extracted from these faces when
we just use these landmarks to cut these salient areas. In the end, different dimensions of LBP and
HOG are extracted from these salient areas. Using these features to classify the expressions can lead
to worse recognition result. The reason why different LBP and HOG dimensions are extracted from
these different sizes of salient areas can be explained by the principles of LBP and HOG which will
be introduced in the next part. Aligning the whole faces may obtain different features from the same
expression subjects because they have different sized areas to express the expression. This negatively
influences the feature training in our algorithm framework. These are the reasons why the salient
areas are normalized in our algorithm. Because our salient areas normalization method can overcome
these shortcomings, our algorithm can gain a better result than only using the face alignment methods.
In the experimental section, comparative experiments will be designed to compare the effects of the
salient areas alignment method with the traditional faces alignment methods.

Xij =
1
n ∑ xij (4)

Figure 3. Average faces and the average salient areas. (a) Average faces of the six expressions; (b) Mouth
areas of the average faces; (c) Average salient mouth areas.

2.2.2. Features Extraction

• Local Binary Patterns (LBP)

Texture information is an important descriptor for pattern analysis of images, and local binary
patterns (LBP) were presented to gain texture information from the images. LBP was first described in
1994 [22,23] and from then on LBP has been found to be a powerful feature for texture representation.
As for these facial expressions, actions of the muscles on the faces lead the faces to generate different
textures. LBP features can describe the texture information of the images and this is the reason why
LBP features are extracted from the salient areas. The calculation progress of the original LBP value is
shown in Figure 4a. A useful extension to the original operator is the so-called uniform pattern [24],
which can be used to reduce the length of the feature vector and implement a simple rotation invariant
descriptor. In our research, a uniform pattern LBP descriptor is applied to gain features from the salient
areas, and the salient areas are all separated to small patches. LBP features are gained from these
salient areas respectively and these features are concatenated as the final LBP features. The length
of the feature vector for a single cell can be reduced from 256 to 59 by using uniform patterns. This
is very important, because there are many small patches in our algorithm. For example, the size of
the mouth area is 40 × 60 and the small patches’ size is 10 × 15, so the mouth area is divided into
16(4 × 4) patches. The uniform LBP features are extracted from each small patch and mapped to a
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59-dimensional histogram. The salient areas all are separated into several small patches and the results
are shown in Figure 5. The numbers are shown in Table 1. The dimension of the final LBP features is
found to be 3068 by adding the numbers in Table 1.

Figure 4. (a) Calculation progress of the original Local Binary Patterns (LBP) value; (b) Mouth area
with pixels of 40 × 60; (c) Mouth area with the former pixels of 28 × 42, the real pixels are enlarged
from the former image; (d) Display models of (b,c) mouth.

Figure 5. Small patches of salient areas. (a) Mouth areas, anger, fear, happy; (b) Forehead areas,
anger, fear; (c) Cheek areas, left cheek fear, right cheek fear, left cheek anger, left cheek happy, right
cheek happy.

Table 1. Patches numbers and LBP dimensions of salient areas.

Salient Areas Forehead Mouth Left Cheek Right Cheek

Piexls 20 × 90 40 × 60 60 × 30 60 × 30
Small patches number 12 16 12 12

LBP dimension 708 944 708 708

Total 3068

Becuase different features will be extracted from different sizes of salient areas, these salient areas
should be aligned. In order to demonstrate the difference, different sizes of mouth areas are cut from
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one face and these areas are normalized to the same size. These mouth areas are shown in Figure 4.
LBP features are extracted from these normalized faces and their distributions are shown in Figure 4.
From the figure, we can know that the values in (d) and (e) result in different performance, and a
conclusion can be drawn that different sizes of images have different LBP features. Besides, HOG
features also are extracted from these salient areas, and they have a similar result as for LBP features.

• Histogram of Oriented Gradient (HOG)

Histogram of oriented gradients (HOG) is a feature descriptor which is used in computer vision
and image processing [25]. The technique counts occurrences of gradient orientation in localized
portions of an image. HOG descriptors were first described in 2005 [26], the writers used HOG for
pedestrian detection in static images. During HOG features extraction, the image is divided into
several blocks and the histograms of different edges are concatenated as shape descriptor. HOG is
invariant to geometric and photometric transformations, except for object orientation. Because the
images that in these databases have different light conditions and different expressions have different
orientations in the eyes, nose, lips corners, as a powerful descriptor HOG is selected in our algorithm.
In our paper, for extracting HOG features, every cell is 5 × 5 and 4(2 × 2) cells make up a patch.
The dimension of the mouth area is 60 × 40 and every cell has 9 features, so the dimension of the mouth
area is 2772. The dimensions of the four salient areas are shown in Table 2. The HOG descriptors are
shown in Figure 6 and the figure shows that the mouth areas of different expression have different
HOG descriptors.

Table 2. Patches numbers and Histogram of Oriented Gradient (HOG) dimensions of salient areas.

Salient Areas Forehead Mouth Left Cheek Right Cheek

Piexls 20 × 90 40 × 60 60 × 30 60 × 30
Small patches number 51 77 55 55

HOG dimension 1836 2772 1980 1980

Total 8568

Figure 6. HOG descriptors of the mouths. (a) Happy mouth areas; (b) Fear mouth areas.

2.3. Features Correction and Features Fusion

2.3.1. LBP Correction

LBP feature is a very effective descriptor of the texture information of images. Many researchers [3,13]
applied LBP to describe these different expressions. In our algorithm, LBP features are extracted and
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processed before they are sent into the classifiers. For most papers, researchers extract features from
images and normalize the data to 0–1, e.g., [27] normalizes the data to 0–1. For our algorithm framework,
the image’s data are normalized to 0–1, and by using this method a better recognition rate can be
gained. In order to normalize the LBP features of every subject, the method in Equation (5) is applied
to normalize the LBP features to 0–1.

Lm =
lm

max(lm)
(5)

where m is the dimension number of every salient area and lm is the value of the LBP feature.
Aiming to utilize the specific characteristic of every area, these four salient areas are normalized

respectively. The distribution styles of these LBP features extracted from the four salient areas are
displayed in Figure 7. The figure shows that the distribution model of LBP features is the power law
distribution. In image processing, the gamma correction redistributes native camera tonal levels into
ones which are more perceptually uniform, thereby making the most efficient use of a given bit depth.
In our algorithm, the distribution of the LBP features is the power law distribution, and therefore
more information concentrates on minority LBP features. According to our experiment, although the
distributions of these subjects’ LBP features all follow the power law distribution, the specific values
are slightly different. For example, LBP values from 0 to 0.5 have different numbers when different
subjects’ images are processed. This can be changed by gamma correction method, and by doing
this, more information can concentrate on more LBP features. For using more information from LBP
features and making it easy to fuse LBP and HOG features, gamma correction is used to correct the
LBP feature data.

L̄m = L
1
λ
m (6)

where λ is the correct gamma number. As is well known, most values of the gamma number come from
experimental experience data. The parameter σ is proposed in our algorithm to help to find the proper
λ. In Equation (7) we have defined the mathematical expression of σ. From Equation (7) we know that
σ has a similar meaning to variance and the zero value is separated from these data because it has no
meaning. The gamma correction method is proposed to use more information from the initial LBP
features, and the value of variance shows the fluctuation of the data. For the power law distribution,
fewer data contain more information. As for the LBP features when the gamma correction method is
applied, more LBP features contain more information and therefore the fluctuation of LBP features
becomes bigger. That is the reason why parameter σ is proposed and applied, and the relationship
between σ and the gamma number λ proves the correctness of our method.

Every salient area is processed respectively, so four σ values will be gained. The relationships
between these four salient areas’ σ and the gamma number λ are shown in Figure 8. According to the
experimental data, all the four salient areas have the maximum σ value around λ’s value 2. Therefore,
all the four salient areas’ σ values are added to find the final sum and the related λ.

σ =
1

np ∑
n

∑
p
(Lnp − Un)

2 (7)

Un =
1
p ∑

p
Lnp (8)

where n is the number of the images’ number, and p is the number of nonzero data in LBP features of
the salient areas. Therefore, p is smaller than the dimensions of the salient areas’ LBP features. Ln p is
the value of LBP feature and Un is the mean value of LBP features from the specific subjects. In our
algorithm, the relationship between the σ, gamma number λ and the recognition rate have been found,
and the relationship is shown in Figure 9.
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Figure 7. (a) Display model of the mouth’s LBP features; (b) Display model of the left cheek’s
LBP features; (c) Display model of forehead’s LBP features; (d) Display model of the right cheek’s
LBP features.
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Figure 8. (a) Relationship between the mouth’s λ and σ; (b) Relationship between the left cheek’s λ

and σ; (c) Relationship between the forehead’s λ and σ; (d) Relationship between the right cheek’s λ

and σ.

2.3.2. HOG Processing and Features Fusion

Different features describe different characters of the images; therefore, researchers have merged
some features together to be able to take advantage of the superiority of all the features [13,27]. For our
algorithm, the LBP and HOG descriptors are applied to utilize the texture and orientation information
of these expressions. Proper fusion methods are very important factors for recognition work and
unsuitable methods can make the recognition result worse. The recognition rate of the individual
feature and fusion features will be shown in the experimental section. Zhang et al. [27] applied a
structured regularization(SR) method which is employed to enforce and learn the modality specific
sparsity and density of each modality, respectively. As for our algorithm, the single features are
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firstly processed to their best performance and then they are normalized to the same scale. In the
experimental section, different experiments are proposed to explain the results of single features and
the fusion feature.

The gamma correction method is applied to ensure the LBP achieve their best performance.
Different features must be processed to the same scale when these features are fused together.
The Z-score method is used to process LBP and HOG features, and after applying the method the
average is 0 while the variance is 1.

σ =
J

∑
j
( f j − μ)2 (9)

μ =
∑J

j f j

J
(10)

f̂ j = K
(xj − μ)

σ + C
(11)

where f j is the data of LBP or HOG feature and f̂ j is the feature data after processing. As for the LBP
features, although the display model has changed, the data are changed to the same scale and a better
result can be gained. Because f̂ j is too small, number K is used to multiply f̂ j. In our experiment, the K
equal to 100.

2.4. Principal Component Analysis( PCA) and Classifiers

Principal Component Analysis (PCA) was invented in 1901 by Karl Pearson [28] as an analog of
the principal axis theorem in mechanics, it was later independently developed by Harold Hotelling in
the 1930s [29]. Principal component analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of values of
linearly uncorrelated variables called principal components. PCA is an effective method to reduce the
features dimension. There are many researchers using this method to reduce the features’ dimension.
In our algorithm, the fusion features’ dimension is 11,636, which is really a very large number. In order
to reduce the feature’s dimension, PCA is applied. The relationship between the recognition date
and the number of the dimension under softmax classifier is shown in Figure 10. According to the
experiment, the most appropriate dimension is 80.

There are many kinds of classifiers applied in the facial expression recognition research and the
researchers apply different classifiers to evaluate their algorithms. These classifiers include SVM with
polynomial [4,13], linear [2,4,13] and RBF [4,13] kernel, and softmax [10,15] is also utilized in this work.
In order to evaluate the effectiveness of our proposed algorithm and compare with the same work
in other literature, many classifiers are applied in our experimental part. In our algorithm, different
classifiers are applied to recognize these fusion features the dimensions of which are reduced by PCA.

3. Database Processing

3.1. CK+ Database

The CK+ database [5] is an extended database of the CK [30] database which contains both
male and female subjects. There are 593 sequences from 123 subjects in the CK+ database, but only
327 sequences are assigned to 7 labels. These 7 labels are anger (45), contempt (18), disgust (59),
fear (25), happy (69), sad (28), surprise (83). The sequences show the variation in the images from
neutral to the peak of the expressions. The different expressions have different numbers in the
sequences. In particular, the images extended in 2010 have different pixels and two types of pixels,
which are 640 × 490 and 640 × 480 in the database. In order to compare with other methods [2,3,14,27],
our experiments use these 309 sequences in the 327 sequences without contempt. Similar to the method
used in [2,3], the first image (the neutral) and the last three peak frames are chosen for training and
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testing. The ten-fold-validation method is applied in the experiments while the subjects are separated
into 10 parts according to the ID of every subject. There are 106 subjects in the chosen database, so the
subjects are distributed into 10 parts which have roughly equal image number and subject number.

3.2. JAFFE Database

The JAFFE database [31,32] consists of 213 images from 10 Japanese female subjects. Every subject
has 3 or 4 examples of all the six basic expressions and also has a sample of neutral expression. In our
experiment, 183 images are used to evaluate our algorithm.

4. Experiments

In this section the experimental setting and the details of our paper will be described.
All comparison experiment ideas came from the second section of our paper and these experiments
are applied to evaluate our methods and certify our algorithm’s correctness. Our experiments are
executed on CK+ and JAFFE database and the results are also compared with the recognition rates in
the related literature.

4.1. Salient Areas Definitude Method Validation

Th reasons why the salient areas rather than the whole faces are chosen in our algorithm have
been introduced in Section 2. Experiments are designed to evaluate the performance of our salient
areas’ definitive method. In addition, the LBP features are extracted from all of the aligned faces and
the aligned salient areas to gain the contrast recognition rates. These results are shown in Table 3.
In addition, the salient areas are separated from the raw images rather than the alignment faces
according to specific landmarks among the 68 landmarks on the face. In Table 3, the 10-fold cross
validation method is used to evaluate the performance of our method, and in this case only the LBP
features are used in our recognition experiment.

Table 3. Recognition rate on CK+ under different salient areas definitude methods.

Salient Areas
Definitude Methods

Zhong 2012 [3]
(MTSL)

Liu 2015 [2]
(LBP)

Liu 2015 [2]
(AUDN-GSL)

Proposed Method
(with Gamma)

Proposed Method
(without Gamma)

Classifer SVM SVM SVM SVM SVM
Recognition rate 89.9 92.67 95.78 95.5 96.6

For the purpose of distinguishing that whether using the salient areas can be more effective than
the whole face alignment methods or not, the mouth areas are normalized to 60 × 30, the cheek areas
are normalized to 30 × 60 while the eye areas are normalized to 20 × 90. LBP features are extracted
from the small patches whose sizes are 15 × 10 and then all these features are concatenated together.
LBP features are used to evaluate the performance of our algorithm and compare the result with other
methods. The results are shown in Table 3. Several comparison experiments are designed, SVM and
classifier are applied to evaluate our algorithm. Comparing LBP features extracted from the alignment
areas with the features extracted from salient areas on alignment faces and the whole alignment faces,
better recognition rates can be gained by our algorithm by using the SVM classifier. Polynomial, Linear,
and RBF kernel SVM are used in our experiment and the SVM classifier is designed by Chih-Chung
Chang and Chih-Jen Lin [33]. The gamma correction method is used to process the LBP features in our
experiment. Compared with the experiment designed by Zhong et al. [3] and Liu et al. [2], according
to the results in Table 3, our algorithm has a more precise recognition rate.

4.2. Gamma Correction of LBP Features

In Section 2.3, a method was proposed to process the LBP features and the relationship between
the σ and gamma number λ was found. In order to evaluate the effects of gamma correction and verify
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the relationship between σ and gamma number λ some comparison experiments are designed in our
paper. CK+ and JAFFE datasets are used in our experiments. In our experiments, the number of λ

ranged from 0.1 to 3 and all the results are recorded. In order to show the relationship between σ,
gamma correction number λ and the recognition rate clearly, some figures have been draw to display
the trend of recognition rate and σ. In Figure 9 the σ is the sum of the four salient areas’ σ in CK+
database. In the figure, while λ is equal to 1 there is no gamma correction, and from the figure one
can see that the biggest recognition rate and the biggest σ value all result from the value of λ near to
1.8. The relationship between σ and λ of JAFFE database are shown in Figure 10. These two figures
show that our LBP correction method has good universality power. In addition, because there are
fewer images in the JAFFE database, we can see that the curves in Figure 10 are not smooth enough,
but their overall trends also correspond with the relationship in Figure 10. The performances of these
experiments are shown in Table 4, and different classifiers are used to evaluate the universality of
the gamma correction method. Table 4 shows that gamma correction has significantly improved the
recognition rate and this proves that our method of using σ to find the proper λ can be applied in facial
expression recognition work. In Table 4, 10-fold cross validation is applied on the CK+ database and
the leave-one-person-out validation method is used on the JAFFE database.
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Figure 9. (a) Relationship between λ and σ on CK+ database; (b) Relationship between λ and
recognition rates from different classifiers on CK+ database.
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Figure 10. (a) Relationship between λ and σ on JAFFE database; (b) Relationship between λ and
recognition rates from different classifiers on JAFFE database.

Table 4. Recognition rates on different classifiers with and without gamma correction.

CK+ JAFFE

Gamma-LBP LBP Gamma-LBP LBP

SVM(polynomial) 96.6 95.5 62.8 62.3
SVM(linear) 96.6 95.6 63.4 60.8
SVM(RBF) 96.0 87.1 62.8 61.2
Softmax 97.0 95.6 61.7 59.6

In order to compare our algorithm with other research, we apply the same classifier and validation
method as in the literature. Compared with the literature in Table 5, our experiment on the CK+
database has better results and this shows that our salient areas definitude methods and LBP correction
method have fine performance.

Table 5. Recognition rate on CK+ under LBP feature in different literature.

Methods Zhong 2012 [3] Shan 2009 [4] Proposed Methods

Classifier SVM SVM SVM
Validation Setting 10-Fold 10-Fold 10-Fold

Performance 89.9 95.1 96.6
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4.3. Features Fusion, PCA and Recognition Rate Comparison

In our algorithm, LBP and HOG features are used to train the SVM and softmax classifiers and
these features all are extracted from these salient areas. In order to gain a better result, LBP and HOG
features are fused in our research. Using only the HOG feature, we obtain a 96.7 recognition rate
and, using the fusion method, we obtain a better result, namely 98.3, which was reached on the CK+
database. In addition, a similar result has been obtained on the JAFFE database. Because using fusion
features can lead to a better recognition result, fusion features are used in our algorithm.

The full dimension of fusion features is 11,636, which is a very large number. In addition, huge
feature dimension can pull in some noise and lead to overfitting. As for the PCA method, if the
number of the features’ dimension is bigger than the images’ number the principal component number
is 1. In order to gain the most appropriate number, the number of the dimension is changed from 10
to 1000 and by using this method, the PCA dimension can be chosen according to recognition rate.
Because using the softmax classifier can obtain better recognition rate than the other classifiers, we use
softmax to show the effects of PCA. The relationship between PCA number and recognition rate is
displayed in Figure 11. The most appropriate PCA dimension number is chosen according to the
recognition rate and the dimension number of the features put into softmax is 80 on CK+ database and
a similar curve is obtained by JAFFE.
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Figure 11. Relationship between Principal Component Analysis (PCA) dimension and recognition rate.

Until this step, the best recognition rate of 98.3 is gained under the 10-fold-cross validation method
on the CK+ database. Therefore, to our knowledge, compared with the other methods in the literature,
a state-of-the-art result has been obtained. Our result has been compared with other methods in the
literature and the results are shown in Table 6. These four experiments all used deep networks while
hand-crafted features are used in our algorithm. This explains that our algorithm has fine recognition
ability by extracting features from the salient areas, correcting LBP features and fusing these features.
In order to evaluate the adaptability of our algorithm, our algorithm also is applied on the JAFFE
database. The results from other literature and our algorithm are shown in Table 7. The experiment
shows that our algorithm has quite a good adaptability. Compared with the literature [13], our method
can recognize about 5 more images than their method on average. In addition, compared with the
literature [4], our features’ dimension on CK+ and JAFFE is 11,636 which is much less than 16,640, and
this illustrates that our algorithm needs less time and memory to train and predict.
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Table 6. Recognition rate on CK+.

Literature Liu 2014 [14] Liu 2015 [2] Jung 2015 [10] Khorrami 2015 [15] Proposed Algorithm

Method BDBN AUDN DTAGN
Zero-bias
CNN+AD

LBP+
HOG

Validation Setting 10-Fold 10-Fold 10-Fold 10-Fold 10-Fold
Accuracy 96.7 95.785 96.94 98.3 98.3

Table 7. Recognition rate on JAFFE.

Literature Shan 2009 [4] Happy 2015 [13]
Proposed
Algorithm

Proposed
Algorithm

Proposed
Algorithm

Classifier SVM(RBF) SVM(Linear) SVM(Linear) SVM(Linear) Softmax
Validation Setting 10-Fold 5-Fold 5-Fold 10-Fold 10-Fold

Accuracy 81.0 87.43 87.6 89.6 90.0

5. Discussion

More information about salient areas definitude methods is needed. Zhong et al. [3] designed
a two-stage multi-task sparse learning algorithm to find the common and specific salient areas.
LBP features rather than these pure data are used in this method, i.e., the LBP features are used to
represent the information from the images. Liu et al. [2] built a convolutional layer and a max-pooling
layer to learn the Micro-Action-Pattern representation which can depict local appearance variations
caused by facial expressions. In addition, feature grouping was applied to find the salient areas.
Compared with these two methods, our algorithm only uses the raw image data and there is no
training procedure, but neutral faces are needed in our algorithm. For facial expressions, only partial
areas in the face have changed, so the neutral faces can be used to calculate the correlation between
neutral faces and specific expressions to localize the changed areas. Besides, the localiozation result can
be more accurate when the changes are smaller. Furthermore, LBP features extracted from the small
areas can also be used to compare and find the correlation. That is to say, by using these descriptors’
property, our algorithm can be used to localize the changed areas.

Making the features extracted from different subjects in one class have a similar value is the main
reason why gamma correction can improve our recognition rate. On the surface, gamma correction
has changed the display of LBP features, but in fact it has changed the value of LBP features. Different
subjects have different ways of presenting the same expression so their LBP features have some
difference. According to our experiments, although their LBP features’ values have some difference,
their basic properties are similar. For instance, LBP features from the happy class have different
values but these values are more different from those of the other classes. However, some subjects
from different classes have similar LBP features and this is the reason why these algorithms cannot
recognize the expressions. Our gamma correction method has shortened the distance in one class and
this improves the recognition rate. The application of gamma correction on LBP features has had a
positive effect on the recognition result and therefore some correction methods also can be applied on
other features to shorten the distance in the same class to obtain a better recognition.

Although our algorithm has achieved a state-of-the-art recognition rate, there are some weakness
in our method. Our algorithm selects these salient areas according to the landmarks on the faces, and
if the landmarks are not accurate our recognition result will be influenced. Furthermore, if there is not
enough image data, our gamma correction can not improve the recognition a lot. The performance of
gamma correction on the JAFFE database shows these weaknesses. These are the main weaknesses of
our algorithm.
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6. Conclusions

The main contributions of this paper are summarized as follows: (1) A salient areas definitude
method is proposed and the salient areas compared to neutral faces are found; (2) The idea of
normalizing the salient areas to align the specific areas which express the different expressions is
firstly proposed. This makes the salient areas of different subjects have the same size; (3) The gamma
features correction method is firstly applied on the LBP features and this significantly improves the
recognition result in our algorithm frameworks; (4) Fusion features are used in our framework, and
by normalizing these features to the same scale, this significantly improves our recognition rate.
By applying our algorithm framework, a state-of-the-art performance in the CK+ database under the
10-fold validation method using hand-crafted features has been achieved. In addition, a good result in
the JAFFE database has also been obtained.

In the future, video data processing will be the focus of our research work and we will try to
recognize facial expressions from real-time videos.

Acknowledgments: This work was supported in part by the National High Technology Research and
Development Program 863, China (2015AA042307), Shandong Province Science and Technology Major Projects,
China (2015ZDXX0801A02).

Author Contributions: Rui Song is the corresponding author who designed the algorithm and revised the paper.
Yanpeng Liu conceived of, designed and performed the experiments, analyzed the data and wrote this paper.
Yibin Li provided some comments and suggestions, and also revised the paper. Xin Ma provided some suggestions
and comments for the performance improvement of the recognition algorithm.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Izard, C.E. The Face of Emotion; Appleton-Century-Crofts: New York, NY, USA, 1971.
2. Liu, M.; Li, S.; Shan, S.; Chen, X. Au-inspired deep networks for facial expression feature learning.

Neurocomputing 2015, 159, 126–136.
3. Zhong, L.; Liu, Q.; Yang, P.; Liu, B.; Huang, J.; Metaxas, D.N. Learning active facial patches for expression

analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; pp. 2562–2569.

4. Shan, C.; Gong, S.; McOwan, P.W. Facial expression recognition based on local binary patterns:
A comprehensive study. Image Vis. Comput. 2009, 27, 803–816.

5. Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended cohn-kanade
dataset (ck+): A complete dataset for action unit and emotion-specified expression. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
San Francisco, CA, USA, 13–18 June 2010; pp. 94–101.

6. Wang, J.; Yin, L.; Wei, X.; Sun, Y. 3D facial expression recognition based on primitive surface feature
distribution. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, New York, NY, USA, 17–22 June 2006; Volume 2, pp. 1399–1406.

7. Lei, Y.; Bennamoun, M.; Hayat, M.; Guo, Y. An efficient 3D face recognition approach using local geometrical
signatures. Pattern Recognit. 2014, 47, 509–524.

8. Vezzetti, E.; Marcolin, F.; Fracastoro, G. 3D face recognition: An automatic strategy based on geometrical
descriptors and landmarks. Robot. Auton. Syst. 2014, 62, 1768–1776.

9. Vezzetti, E.; Marcolin, F. 3D Landmarking in multiexpression face analysis: A preliminary study on eyebrows
and mouth. Aesthet. Plast. Surg. 2014, 38, 796–811.

10. Jung, H.; Lee, S.; Park, S.; Lee, I.; Ahn, C.; Kim, J. Deep Temporal Appearance-Geometry Network for Facial
Expression Recognition. arXiv 2015, arXiv:1503.01532.

11. Zavaschi, T.H.; Britto, A.S.; Oliveira, L.E.; Koerich, A.L. Fusion of feature sets and classifiers for facial
expression recognition. Expert Syst. Appl. 2013, 40, 646–655.

12. Hu, Y.; Zeng, Z.; Yin, L.; Wei, X.; Zhou, X.; Huang, T.S. Multi-view facial expression recognition.
In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition,
Amsterdam, The Netherlands, 17–19 September 2008; pp. 1–6.

19



Sensors 2017, 17, 712

13. Happy, S.; Routray, A. Robust facial expression classification using shape and appearance features.
In Proceedings of the Eighth International Conference on Advances in Pattern Recognition (ICAPR), Kolkata,
India, 4–7 January 2015; pp. 1–5.

14. Liu, P.; Han, S.; Meng, Z.; Tong, Y. Facial expression recognition via a boosted deep belief network.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH,
USA, 23–28 June 2014; pp. 1805–1812.

15. Khorrami, P.; Paine, T.; Huang, T. Do Deep Neural Networks Learn Facial Action Units When Doing
Expression Recognition? In Proceedings of the IEEE International Conference on Computer Vision
Workshops, Santiago, Chile, 7–13 December 2015; pp. 19–27.

16. Tian, Y. Evaluation of face resolution for expression analysis. In Proceedings of the Conference on Computer
Vision and Pattern Recognition Workshop, Washington, DC, USA, 27 June–2 July 2004; p. 82.

17. Tzimiropoulos, G.; Pantic, M. Optimization problems for fast aam fitting in-the-wild. In Proceedings of the
IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 593–600.

18. Zhu, X.; Ramanan, D. Face detection, pose estimation, and landmark localization in the wild. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA,
16–21 June 2012; pp. 2879–2886.

19. Lee Rodgers, J.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42,
59–66.

20. Tariq, U.; Lin, K.H.; Li, Z.; Zhou, X.; Wang, Z.; Le, V.; Huang, T.S.; Lv, X.; Han, T.X. Emotion recognition from
an ensemble of features. In Proceedings of the IEEE International Conference on Automatic Face & Gesture
Recognition and Workshops (FG 2011), Santa Barbara, CA, USA, 21–25 March 2011; pp. 872–877.

21. Evgeniou, A.; Pontil, M. Multi-task feature learning. Adv. Neural Inf. Process. Syst. 2007, 19, 41.
22. Ojala, T.; Pietikainen, M.; Harwood, D. Performance evaluation of texture measures with classification based

on Kullback discrimination of distributions. In Proceedings of the 12th IAPR International Conference
Pattern Recognit. Conference A: Computer Vision & Image Processing, Jerusalem, Israel, 9–13 October 1994;
Volume 1, pp. 582–585.

23. Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based
on featured distributions. Pattern Recognit. 1996, 29, 51–59.

24. Heikkila, M.; Pietikainen, M. A texture-based method for modeling the background and detecting moving
objects. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 657–662.

25. Wikipedia. Histogram of Oriented Gradients. Available online: https://en.wikipedia.org/wiki/Histogram_
of_oriented_gradients (accessed on 23 January 2017).

26. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA,
20–25 June 2005; Volume 1, pp. 886–893.

27. Zhang, W.; Zhang, Y.; Ma, L.; Guan, J.; Gong, S. Multimodal learning for facial expression recognition.
Pattern Recognit. 2015, 48, 3191–3202.

28. Person, K. On Lines and Planes of Closest Fit to System of Points in Space. Philiosoph. Mag. 1901, 2, 559–572.
29. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933,

24, 417.
30. Kanade, T.; Cohn, J.F.; Tian, Y. Comprehensive database for facial expression analysis. In Proceedings of

the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France,
26–30 March 2000; pp. 46–53.

31. Lyons, M.; Akamatsu, S.; Kamachi, M.; Gyoba, J. Coding facial expressions with gabor wavelets.
In Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition,
Nara, Japan, 14–16 April 1998; pp. 200–205.

32. Lyons, M.J.; Budynek, J.; Akamatsu, S. Automatic classification of single facial images. IEEE Trans. Pattern
Anal. Mach. Intell. 1999, 21, 1357–1362.

33. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

20



sensors

Article

Object Tracking Using Local Multiple Features and a
Posterior Probability Measure

Wenhua Guo *, Zuren Feng and Xiaodong Ren

Systems Engineering Institute, State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an 710049, China; fzr9910@mail.xjtu.edu.cn (Z.F.); rxd@mail.xjtu.edu.cn (X.R.)
* Correspondence: wh.guo@stu.xjtu.edu.cn; Tel.: +86-29-8266-7771

Academic Editors: Xue-Bo Jin, Shuli Sun, Hong Wei and Feng-Bao Yang
Received: 20 February 2017; Accepted: 28 March 2017; Published: 31 March 2017

Abstract: Object tracking has remained a challenging problem in recent years. Most of the
trackers can not work well, especially when dealing with problems such as similarly colored
backgrounds, object occlusions, low illumination, or sudden illumination changes in real scenes. A
centroid iteration algorithm using multiple features and a posterior probability criterion is presented
to solve these problems. The model representation of the object and the similarity measure are two key
factors that greatly influence the performance of the tracker. Firstly, this paper propose using a local
texture feature which is a generalization of the local binary pattern (LBP) descriptor, which we call
the double center-symmetric local binary pattern (DCS-LBP). This feature shows great discrimination
between similar regions and high robustness to noise. By analyzing DCS-LBP patterns, a simplified
DCS-LBP is used to improve the object texture model called the SDCS-LBP. The SDCS-LBP is able
to describe the primitive structural information of the local image such as edges and corners. Then,
the SDCS-LBP and the color are combined to generate the multiple features as the target model.
Secondly, a posterior probability measure is introduced to reduce the rate of matching mistakes.
Three strategies of target model update are employed. Experimental results show that our proposed
algorithm is effective in improving tracking performance in complicated real scenarios compared
with some state-of-the-art methods.

Keywords: object tracking; multiple features; posterior probability measure; centroid iteration

1. Introduction

Among the numerous subjects in computer vision, object tracking is one of the most important
fields. It has many applications such as human computer interaction, video analysis, and robot
control systems.

Many object tracking algorithms have been brought up in the last decades. Welch [1] proposed
a Kalman filter-based algorithm considering Gaussian and linear problems to track one’s pose
in interactive computer graphics. Later, a particle filter-based approach was introduced with
respect to non-Gaussian and non-linear systems [2,3]. Other common trackers used include optical
flow-based tracking [4], multiple hypothesis tracking [5,6], and kernel-based tracking [7,8]. Recently,
João F. Henriques et al. [9] proposed a new kernel tracking algorithm called high-speed tracking with
kernelized correlation filters that have been widely used. Unlike other kernel algorithms, the method
has the exact same complexity as its linear counterpart.

Though these algorithms have been successful in many real scenes, they are still confronted with
challenging problems, such as illumination changes, object occlusions, image noises, low illumination,
fast motions and similarly colored backgrounds. One of the effective solutions is the mean-shift
algorithm which can handle object partial occlusions and background clutters [10–12]. Mean-shift is a
non-parametric pattern matching tracking algorithm. It uses the color histogram as the target model
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and the Bhattacharyya coefficient as the similarity measure. The location of the target is obtained by
an iterative procedure [10]. The performance of the algorithm is determined by the similarity measure
and the target feature. Because of the background interference, the tracking result may easily get
biased or be completely wrong. The location of the target obtained by the Bhattacharyya coefficient [7]
or other similarity measures, such as normalized cross correlation, histogram intersection distance [13],
and Kullback–Leibler divergence [14] may not be the ground truth. To improve the accuracy of object
matching, a maximum posterior probability measure was proposed [15]. It takes use of the statistical
feature of the searching region and can effectively reduce the influence of background and emphasize
the importance of the target.

In some scenes with dramatic intensity or color changes, the effectiveness of the color decreases.
Thus, it is desirable that some additional features should be used as a complement to color to improve
the performance of the tracking system [16,17]. For example, Collins et al. [18] presented an online
feature selection algorithm based on a basic mean-shift approach. The method can adaptively select the
best features for tracking. They only used the RGB histogram in the algorithm, but it can be extended
to other features. Wang et al. [19] proposed integrating color and shape-texture features for reliable
tracking, and their method was also based on the mean-shift algorithm. Ning et al. [20] presented a
mean-shift algorithm using the joint color-texture histogram, which proved to be more robust and
insensitive than the color. Most of these methods used multiple features to describe the target model
in order to reduce the mistakes of tracking systems. Unfortunately, color, shape-texture silhouettes or
other traditional features can not track the target in some special scenes with variably scaled images
or rotated images. In recent years, some new features have been proposed to solve these problems
including Scale Invariant Feature Transform (SIFT) [21], Principal Components Analysis-Scale Invariant
Feature Transform (PCA-SIFT) [22], Gradient Location and Orientation Histogram (GLOH) [23],
Speed-up Robust Feature(SURF) [24], and Fast Retina Keypoint (FREAK) [25], just to name a few.
Among them, a texture feature named the local binary pattern (LBP) [26] has been widely used in
computer vision [27] due to its advantages of fast computation and rotation invariance. Recently, some
improvements have been made based on the LBP such as the center-symmetric local binary pattern
(CS-LBP) [28] and the local ternary pattern (LTP) [29].

This paper proposes a centroid iteration algorithm with multiple features based on a posterior
probability measure [15] for object tracking. The main goal is to solve the difficulties in real scenes
such as similarly colored backgrounds, object occlusions, low illumination color image and sudden
illumination changes. The proposed algorithm consists of a target model construction step and a
localization step. We improve the LBP descriptor to the DCS-LBP descriptor. For further improvement,
a simplified version of the DCS-LBP is used, which we call the SDCS-LBP. It can describe important
information of the image (the edge, the corner and so on). Then, this new texture feature and the color
are combined to constitute the multiple features used in the target model, which we call the color and
texture (CT) feature in this paper. After obtaining the target, three strategies for updating the target
model are presented to reduce the tracking mistakes.

The rest of the paper is organized as follows: in Section 2, a local color texture feature based on the
DCS-LBP along with its simplified form is introduced. In Section 3, the proposed tracking algorithm is
illustrated in detail. Experimental results are shown in Section 4. Section 5 draws conclusions.

2. Multiple Features

Feature descriptors are very important in matching-based tracking algorithms, especially for
applications in real scenes. In some simple scenes, color can work well because it distinguishes the
targets from the background easily and contains a lot of useful information of the target. However,
in complex scenes containing similarly colored backgrounds, object occlusions, low illumination color
image and sudden illumination changes, the tracker only using the color feature may easily miss the
target. One of the solutions is to integrate multiple features in the target model for reliable tracking.
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2.1. Local Binary Patterns (LBPs)

The LBP is an illumination invariant texture feature. The operator uses the gray levels of the
neighboring pixels to describe the central pixel. The texture model LBPP,R is expressed as follows [26]:

LBPP,R =
P−1

∑
i=0

s(gi − gc)2i,

s(x) =

{
1, x ≥ 0,

0, x < 0,

(1)

where P is the number of the neighbours and R is the radius of the central pixel. gc denotes the
gray value of the central pixel and gi denotes that of the P neighbours with i = 0, ..., P − 1, and s(x)
represents the sign function. Figure 1 gives an example of the LBP code when P = 8 and R = 1.

Figure 1. The original LBP code.

There are two extensions of the LBP [26]. The first one is to make the LBP as a rotation invariant
feature as proposed by Ojala et al. [26]. It is defined as:

LBPri
P,R = min(ROR(LBPP,R, i)|i = 0, 1, · · · , P − 1), (2)

where ROR(x, i) performs a circular bit-wise right shift on the P_bit number x by i times. Equation (2)
selects the minimal number to simply the function. They explained that there were 36 rotation invariant
LBP codes at P = 8, R = 1. The second one is the uniform LBP, which contains at most one 0–1 and
one 1–0 transition when viewed as a circular bit string. The uniform LBP codes contain a lot of useful
structural information. Ojala et al. [26] observed that although only 58 of the 256 8-bit patterns were
uniform, nearly 90% of all observed image neighborhoods were uniform and many of the remaining
ones contained noise. The following operator LBPriu2

8,1 is a uniform and rotation invariant pattern with
Uvalue of at most 2:

LBPriu2
P,R =

{
∑P−1

i=0 s(gi − gc)2i, U(LBPP,R ≤ 2),

P + 1, otherwise,

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1

∑
i=1

|s(gi − gc)− s(gi−1 − gc)|.
(3)

If we set P = 8, R = 1, the nine most frequent patterns with index from 0 to 8 are selected from the 36
different patterns, which are the rotation invariant patterns as shown in Figure 2.
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Figure 2. Nine uniform patterns of LBPriu2
8,1 .

2.2. Center-Symmetric Local Binary Patterns (CS-LBPs) and Local Ternary Patterns (LTPs)

In Section 2.1, it can be seen that LBP codes have a long histogram, which require lots of
calculations. Heikkilä et al. [28] designed a method by comparing the neighboring pixels in order
to reduce computation. They calculated the center-symmetric pairs of the pixels as defined in the
following function:

CS-LBPP,R =

P
2 −1

∑
i=0

s(gi − gi+ P
2
)2i,

s(x) =

{
1, x ≥ T,

0, otherwise.

(4)

This operator halves the calculations of LBP codes at the same neighbors. The LBP threshold
depends on the central pixel, which makes the LBP sensitive to noise especially in flat regions of the
image while the CS-LBP threshold is a constant value T that can be adjusted.

Tan et al. [29] extended the LBP to 3-valued codes, called the local ternary pattern (LTP). They set
the codes around gc in a zone of width ±T to one. The codes above it are set to 2 and the ones below it
are set to 0. It is defined as:

LTPP,R =
P−1

∑
i=0

s(gi − gc)3i,

s(x) =

⎧⎪⎪⎨⎪⎪⎩
2, x ≥ T,

1, −T < x < T,

0, x ≤ −T.

(5)

Here, T is the same threshold as the CS-LBP. Thus, the LTP is more insensitive to noise than the
CS-LBP. However, it is no longer invariant to gray-level transformations.

2.3. Double Center-Symmetric Local Binary Patterns (DCS-LBPs)

In Section 2.2, it is analyzed that the CS-LBP is more efficient than the LBP in calculation, but
they are both sensitive to noise. The LTP is insensitive to noise, but its computation is too complex.
A simple way is to combine the LTP and the CS-LBP, which yields the CS-LTP. It is defined as:

CS-LTPP,R =

P
2 −1

∑
i=0

s(gi − gi+ P
2
)3i,

s(x) =

⎧⎪⎪⎨⎪⎪⎩
2, x ≥ T,

1, −T < x < T,

0, x ≤ −T.

(6)
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By definition, the CS-LTP retains the advantages of the CS-LBP and the LTP, but the ternary values
are hard to calculate in the image.

Thus this motivates us to generate a DCS-LBP operator. The operator is divided into two parts:
DCS-LBP(upper)

P,R , in which the gray levels of the center-symmetric pixels above T are quantized to one

while those below T are quantized to zero, and DCS-LBP(lower)
P,R , in which the center-symmetric pixels

on the other side below −T are quantized to one while those below T are quantized to zero.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
DCS-LBPupper

P,R = ∑
P
2 −1
i=0 s1(gi − gi+ P

2
)2i, s1(x) =

{
1, x ≥ T,

0, otherwise,

DCS-LBPlower
P,R = ∑

P
2 −1
i=0 s2(gi − gi+ P

2
)2i, s2(x) =

{
1, x ≤ −T,

0, otherwise.

(7)

T is the threshold used to eliminate the influence of weak noise. The value of T determines the
anti-noise capability of the operator. The upper-part and the lower-part of the DCS-LBP should be
calculated separately and then be combined together for use. By definition, there are 2 × 2

P
2 different

values, which are much less than the basic LBP (2P) and the LTP (3P), and are close to the CS-LBP (2
P
2 )

and the CS-LTP (3
P
2 ). When P = 8, R = 1, the DCS-LBP has 32 different values. Table 1 shows

examples of all of these five local patterns. The first row are three local parts of an image including
texture flat areas, texture flat areas with noise, and texture change areas. The threshold is set to be 5.
It can be seen that the LBP and the CS-LBP can not exactly distinguish between texture flat and change
areas. The other three patterns are distinguishable and are all insensitive to noise, among which the
computational complexity of the DCS-LBP is lower than the other two.

It should be noted that there is a great amount of redundant information in the DCS-LBP, which
might cause matching errors. Thus, further optimization is necessary. The DCS-LBP patterns also
have the rotation invariant identity as shown in Figure 3. There are nine rotation invariant patterns.
Similarly, both DCS-LBP(upper)

P,R and DCS-LBP(lower)
P,R have the same uniform patterns as the LBP. Pattern

5 to Pattern 8, which cannot describe the primitive structural information corresponding of the local
image, are not uniform patterns. Pattern 0 to Pattern 4 each has its identity. Pattern 0 and Pattern 1
represent noise points, dark points and smooth regions. Pattern 2 represents the terminal. Pattern
3 represents angular points. Pattern 4 represents boundary. Thus, we improve the DCS-LBP to its
simplified version (called SDCS-LBP), which retains only the patterns with index from 0 to 4.

Figure 3. The nine rotation invariant patterns of the DCS-LBP.
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Table 1. Examples of five coding rules (T = 5).

Image local region

Texture flat Texture flat areas Texture change
areas with noise areas

LBP pattern

[11111111]2 [10000111]2 [10000111]2

CS-LBP pattern

[0000]2 [0000]2 [0000]2

LTP pattern

[11111111]3 [11111111]3 [21111122]3

CS-LTP pattern

[1111]3 [1111]3 [0001]3

DCS-LTP pattern

[0000]2[0000]2 [0000]2[0000]2 [1000]2[0011]2

2.4. Local Color Texture Feature (CT Feature)

Feature representation of the target model is very important for mean-shift based tracking
algorithms. The original mean-shift algorithm selects the RGB color space (16 × 16 × 16 = 4096)
as the features. However, in real scenes which contain similarly colored background, object occlusion,
low illumination color image and sudden illumination changes, the original mean-shift algorithm can
not track the target continuously. Inspired by [16], we consider designing a new feature combining the
color and the texture.

This paper chooses to use the HSV color space, which contains Hue, Saturation and Value.
The Value, which is measured with some white points, is often used for description of surface colors
and remains roughly constant even with brightness and color changes under different illuminations.
Hence, we replace the Value with the SDCS-LBP in the HSV space as the target model. The new feature
which combines the color and the texture is called the CT feature in this paper. The CT feature can be
considered as a special texture feature (terminal, angular point, boundary and some special points)
with a certain color. The HSV color space is reduced to the size of 8 × 8 after excluding the part of
the Value. Thus, the dimension of the CT feature is 640 (8 × 8 × 5 × 2 = 640). Figure 4 shows three
target models. For the CT feature, Figure 4b,c is the same and are different from Figure 4a, which can
not be distinguished using the color alone. The CT feature has the rotation invariant identity and can
distinguish between different texture patterns.

26



Sensors 2017, 17, 739

Figure 4. A particular target model.

The calculation process of the CT feature is as follows. Firstly, let Pi be the set of pixels of the
target. Calculate DCS-LBPupper

P,R , DCS-LBPlower
P,R and the HSV color space of each point in Pi in turn.

If the value of DCS-LBPupper
P,R or DCS-LBPlower

P,R does not belong to the SDCS-LBP, the point will be
seen as a meaningless point, which should be eliminated. Secondly, calculate CTupper

Pi
and CTlower

Pi
by

multiplying the SDCS-LBP, the Hue and the Saturation. Third, after all the points of the target have
been calculated, hisupper(H, S, T) and hislower(H, S, T) of the target are worked out by putting the CT
feature into the histograms. The histogram of the target model (his(CT)) is obtained by combining
hisupper(H, S, T) and hislower(H, S, T). Figure 5 shows the representation of a target model by the
proposed method. Figure 5a is the first frame of a sequence. The target is showed in Figure 5b.
The histogram of the CT feature is showed in Figure 5c.

(a) (b)

0 100 200 300 400 500 600
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50
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Figure 5. The representation model of the target by the proposed algorithm. (a) 1st frame;
(b) target model region; (c) the histogram of CT feature.

3. Tracking Algorithm Using the CT Feature

Recently, many similarity measures are used in object tracking algorithms, such as the Euclidean
distance, the Bhattacharyya coefficient, the histogram intersection distance, and so on. However, there
is still lots of mismatching or misidentification in the tracking process. One of the reasons is that the
target model contains some background pixels [15]. This paper proposes using the similarity measure
based on maximum posterior probability to solve the problem.

3.1. Maximum Posterior Probability Measure

By introducing the candidate area, the maximum posterior probability measure (PPM) is able to
decrease the influence of background and increase the importance of the target model in the tracking
process. The PPM is a function to evaluate the similarity of the candidate and the target defined as:

ρ(p, q) =
1
m

mu

∑
u=1

puqu

su
, (8)

where pu and qu are, respectively, the histogram features of the target candidate region and the target
model; su is the feature of the search region of the target candidate; m is the pixel number of the target
model with u = 1, · · · , mu; and mu is the dimension of feature.
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Now, we define a vector ω, which is computed according to Equation (9). u(j) is the feature of the
jth pixel; ωj is the PPM of the jth pixel of the search region; Ai is the set of pixel of the ith target candidate
region in the search region. Thus, the original PPM can be converted into a simple one as [15]:

ρ(pi, q) =
1
m ∑

j∈Ai

ωj,

ωj =

⎧⎨⎩
qu(j)
su(j)

, su(j) > 0,

0, su(j) = 0.

(9)

From the function, it can be found that the PPM and ωj have a liner relationship. Therefore,
we compute the incremental part to obtain the PPM of neighborhood, which makes the recursive
algorithm a suitable one.

According to Equation (9), the PPM value of each pixel will be calculated, respectively. Thus,
the matching process is simplified to find a target candidate region with the biggest sum of PPM value.
The similarity measure of the target candidate and the target model is:

ρyi = ∑
xi∈Ayi

g(xi),

g(xi) =
qu(xi)

su(xi)
,

(10)

where {xi}i−1,··· ,m is the set of pixel’s position with the present frame centered at yi; g(xi) is the PPM
value at xi; and Ayi is the target candidate centered at yi. Supposing the PPM value of each pixel as
density and the similarity of the target candidate region as mass, the center of mass yi+1 is the target:

yi+1 =
∑xi∈Ayi

xig(xi)

∑xi∈Ayi
g(xi)

. (11)

Figure 6 shows the PPM of the target model. The target bounded by the blue box and the target
candidate region bounded by the green box in Figure 6a are resized. The target model and the target
candidate region are showed in Figure 6b. The PPM of the target model, which holds monotonic and
distinct peak shapes, is showed in Figure 6c.
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Figure 6. The maximum posterior probability of the target model. (a) 1st frame; (b) target candidate
region; (c) the PPM of target model.

3.2. Scale Adaptation and Target Model Update

During the tracking process, the target always changes in shape, size, or color. Thus, the target
model must be updated. The update must abide by certain rules to prevent the tracking drift.
Three strategies are proposed for the target model update.
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1. Introduce an adaptive process to fit the target region to a variable target scale for the purpose of
precise target tracking.

2. Compute the similarity measure of the scale adapted target. If it is greater than a parameter,
update the target model.

3. Introduce a parameter into the tracking algorithm to update part of the target model.

Strategy 1 introduces a scale adaptation function given by [15]:

ω(k + 1) =

⎧⎪⎪⎨⎪⎪⎩
ω(k + 2) + 2, if φ̄−1 > 0.8 and φ̄0 > 0.75 and φ̄1 > 0.6,

ω(k − 2)− 2, if φ̄0 < 0.6 and φ̄1 < 0.3,

ω(k), otherwise,

(12)

where ω(k) is the size of the target region at frame k. φ̄i(i = −a, . . . , 0, . . . , a) is the average of the
PPM of each pixel. Furthermore, i < 0 means the ith outer layer. i = 0 represents the target region
border. a is the comparison step of scale adaptation and is set to 1 without losing the generality. In
Equation (12), the expanding condition means the pixels around the border are likely to be a part of
the target. The contracting condition means the target region should be reduced consequently. The
function is an empirical one. The parameters should be trained by a great number of experiments.

Strategy 2 shows that the frame will not be updated until the similarity measure is greater than a
certain parameter. In real scenes, some sudden changes may cause the tracking drift, so the update can
not work every frame. p is the current frame model, while q is the target model. φ(p, q) is the similarity
of the PPM for the current frame and the target model. If Equation (13) is satisfied, we considered p as
the reliable CT feature model, and update the target model with p:

φ̄(p, q) ≥ δ. (13)

Strategy 3 introduces a parameter into the algorithm to prevent the target model from being
updated completely. Because of the limitations of the description to the target model, p can not take
the place of q. The γ parameter is used to partially update the target model:

q′ = γp + (1 − γ)q, (14)

where γ is the update factor; and q′ is the updated CT feature model. In our experiment, γ is set to be
a small value to adapt the changes of the target slowly.

3.3. Tracking Algorithm

Initialization: select the target object and compute the histogram his(C, T) of the target model
as qu. The center of the target yi is the initial position of the tracking object. Let {xi}i−1,··· ,m be the set
of pixel’s position with the present frame centered at yi.

1. Set yi as the initial position. Calculate his(C, T) of the search region as Su.
2. Calculate the PPM values g(xi) of each pixel of the region by Equation (10).
3. Initialize the number of iterations as k = 0.
4. Calculate the target location by Equation (11). k = k + 1.
5. Repeat Step 4 until ‖yi+1 − yi‖ < ε or k ≥ N.
6. Adjust the scale of the target region by Equation (12)
7. Decide whether to update the target by Equation (13). If satisfied, update the target model by

Equation (14).
8. Read the next frame of the sequence and turn to Step 1.

If the distance between two iterations is less than ε or the number of iterations exceeds N,
the algorithm is considered converged.
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4. Experiments

The environments are set in some real scenes with similarly colored backgrounds, object
occlusions, low illumination color image, and sudden illumination changes [12]. Eight public test
sequences are used in experiments which are from the Visual Object Tracking challenge (http://
votchallenge.net/index.html) and the Visual Tracker Benchmark [30] (http://www.visual-tracking.net)
(see Figure 7). As the visual tracking benchmark, the test sequences are tagged with the following four
attributes: low illumination color image (LI), sudden illumination changes (IC), object occlusion (OC),
similarly colored background (SCB) (see Table 2). We designed a tracking system based on Matlab
R2014a (8.3.0.532). All the trackers run on a standard PC (Intel (R) Core (TM) i5 2.6 GHz CPU with
8 GB RAM).

We compared our algorithm with some state-of-the-art methods including classical mean-shift
tracking (KBT) [10], PPM-based color tracking algorithm (PPM) [15], a mean-shift algorithm using the
joint color-texture histogram (LBPT) [20] and high-speed tracking with kernelized correlation filters
(KCF) [9]. In addition, extra experiments are designed to test the function of the two major parts of the
proposed method-the CT feature and the PPM separately. One of the experiments that we use is the CT
feature with the Euclidean distance (CT&ED) instead of the PPM as the similarity measure. The other
one that we use is the LBP feature with the PPM (LBP&PPM) instead of the CT feature. Both of the
two trackers are tested in the experimental framework. All the methods aim at tracking one object in
our experiments. The target will be tracked continuously at the rest of the frames.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Eight test sequences used in current evaluation. (a) basketball; (b) car; (c) coke; (d) doll;
(e) lemming; (f) matrix; (g) trellis; (h) woman.

Table 2. Eight sequences in the experiment.

Sequences Size Frame fps Object Number Attributes

car 320 × 240 368 30 1 IC SCB LI
basketball 576 × 432 725 30 >8 IC OC SCB

coke 640 × 480 291 30 1 IC OC SCB
doll 400 × 300 3872 30 1 IC OC

lemming 640 × 480 1336 30 1 IC OC
matrix 800 × 336 100 30 2 IC OC SCB LI
Trellis 320 × 240 569 30 1 IC SCB LI

woman 352 × 288 597 30 1 IC OC

4.1. Parameter Setting

The size of the search region of our methods is set to 2.5 times the target size. In addition, there are
five parameters in our tracking algorithm. We set δ = 0.85 and γ = 0.1 for the target model update in
Section 3.2. δ is the control parameter used to determine whether update the model or not. N and ε are
the iteration parameters for the tracking algorithm in Section 3.3. N = 20 is the maximum number
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of the iteration, and ε = 0.5 is the minimum threshold of the iteration. The threshold parameter T
is important in our algorithm. In order to test the sensitivity of the parameter, the central location
error (CLE) is used to describe the tracking result. The CLE is defined as the Euclidean distance
between the center of the box predicted by the tracker and that of the box of the ground truth. We set
T = 1, 3, 5, 7, 9 for the calculation of the DCS-LBP. The results of eight test sequences are showed in
Table 3. It can be seen that our algorithm performs well on all the tests when T is a small value
between 1 to 5. In addition, it only missed the target in the basketball test sequence when T gets larger.
Therefore, we set T = 1 in the experiments.

Table 3. The parameter setting (CLE).

SEQUENCE T = 1 T = 3 T = 5 T = 7 T = 9

basketball 7 21 20 278 255
car 25 27 27 27 25

coke 19 18 17 14 16
doll 26 27 23 25 26

lemming 21 20 20 21 22
matrix 23 24 24 24 24
Trellis 13 13 12 12 12

woman 10 7 9 11 8

Average CLE 18 20 19 52 49

4.2. Qualitative Comparison

Some key frames of each sequence are given in Figure 8. The results of different trackers are
shown by the bounding boxes in different colors.

(1) In the basketball sequence, the tracked player moves fast. The environment changes many times.
CT&ED lose the target at frame 80. KBT, PPM, and LBP&PPM fail at frame 473, when the player
goes through his partner. KCF, LBPT and our tracker can successfully locate the object.

(2) In the car sequence, the target is a car, but the road environment is dark. There are bright lights
in the background. All of the trackers can merely track the car in the first 200 frames. However,
at frame 260, the car turns right, and only KCF can track the car accurately.

(3) In the coke sequence, the target is a coke and the light changes three times. The coke moves
fast and is blocked by plants sometimes. When the coke is blocked by the plants the first time,
LBTP misses the target. At frame 221, the occlusion and the illumination happen at the same
time, and KBT and PPM obtain the wrong place. During the tracking, both KCF and our method
perform better than the others.

(4) The doll sequence has 3872 frames, which is a very long sequence. The target is a doll. It is
blocked by the hand, and the scale of it changes sometimes. Because of the similar color with the
background, LBP&PPM, LBPT, and CT&ED fail at frame 2378. KCF gives the best result followed
by PPM and our tracker.

(5) The lemming sequence is a challenging situation with fast motion, significant deformation and
long-term occlusion. KCF missed the target at frame 380 because the target moves fast with the
similar background. Our method is more effective than the others during the tracking.

(6) In the matrix sequence, the target is the head. The sequence contains low illumination color image,
sudden illumination changes, object occlusion, and similarly colored background. Our tracker
gives the best result. At frame 30, all of the methods except ours lose the target. Our tracker
misses the target at frame 90, when the target has dramatic changes in shape.

(7) In the trellis sequence, the target is a boy’s face in an outdoor environment. The situation has
severe illumination and poses changes. All trackers except KCF and our tracker show some
drifting effects at frame 270. The CT&ED loses the target at frame 410. Only KCF and our tracker
show a good performance along the whole sequence.
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(8) In the woman sequence, the track is a walking woman in the street. The difficulty lies in the fact
that the woman is greatly occluded by the parked cars. All the tracks fail at frame 124 except KCF
and our tracker because of the occlusion and the small size of the target.

Basketball#80Basketball#80Basketball#80Basketball#80Basketball#80Basketball#80Basketball#80 Basketball#473Basketball#473Basketball#473Basketball#473Basketball#473Basketball#473Basketball#473 Basketball#632Basketball#632Basketball#632Basketball#632Basketball#632Basketball#632Basketball#632

Car#180 Car#289 Car#392

Coke#76Coke#76Coke#76Coke#76Coke#76Coke#76Coke#76 Coke#221Coke#221Coke#221Coke#221Coke#221Coke#221Coke#221 Coke#276Coke#276Coke#276Coke#276Coke#276Coke#276Coke#276

Doll#2379Doll#2379Doll#2379Doll#2379Doll#2379Doll#2379Doll#2379 Doll#2637Doll#2637Doll#2637Doll#2637Doll#2637Doll#2637Doll#2637 Doll#3821Doll#3821Doll#3821Doll#3821Doll#3821Doll#3821Doll#3821

Lemming#380Lemming#380Lemming#380Lemming#380Lemming#380Lemming#380Lemming#380 Lemming#900Lemming#900Lemming#900Lemming#900Lemming#900Lemming#900Lemming#900 Lemming#1100Lemming#1100Lemming#1100Lemming#1100Lemming#1100Lemming#1100Lemming#1100

Matrix#30Matrix#30Matrix#30Matrix#30Matrix#30Matrix#30Matrix#30 Matrix#50Matrix#50Matrix#50Matrix#50Matrix#50Matrix#50Matrix#50 Matrix#80Matrix#80Matrix#80Matrix#80Matrix#80Matrix#80Matrix#80

Trellis#270Trellis#270Trellis#270Trellis#270Trellis#270Trellis#270Trellis#270 Trellis#410Trellis#410Trellis#410Trellis#410Trellis#410Trellis#410Trellis#410 Trellis#509Trellis#509Trellis#509Trellis#509Trellis#509Trellis#509Trellis#509

Woman#124Woman#124Woman#124Woman#124Woman#124Woman#124Woman#124 Woman#363Woman#363Woman#363Woman#363Woman#363Woman#363Woman#363 Woman#597Woman#597Woman#597Woman#597Woman#597Woman#597Woman#597

Figure 8. Experiment results of our proposed algorithm, KBT [10], PPM [15], LBPT [20], KCF [9],
LBP&PPM and CT&ED on eight challenging sequences (from top to bottom are Basketball, Car, Coke,
Doll, Lemming, Matrix, Trellis, Woman, respectively).
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4.3. Quantitative Comparison

For performance evaluation and comparison, two metrics are considered: the CLE and the success
rate (SR), which have been widely used in object tracking [12,31]. A target is considered as successfully
tracked if the overlap region between the predicted bounding box and the ground truth exceeds 50%
in a frame [32]. The SR is defined as

SR =
area(Mt ∩ Mg)

area(Mt ∪ Mg)
, (15)

where Mt is the bounding box predicted by the tracker. Mg is the ground truth bounding box.
The function area(•) means to calculate the area of a region. The CLE has been described in Section 4.1.
The results of different methods on eight test sequences are showed in Tables 4 and 5. It can be seen
from Tables 4 and 5 that our algorithm achieves an SR of 94% and a CLE of 18 which are better than
the other algorithms. We also report the central-pixel errors frame-by-frame for each video sequence
in Figure 9.

Now, we discuss the influence of the two major parts in our method: the CT feature and the PPM,
separately. First, to test the influence of the similarity measure, we compare the trackers using the CT
feature and different measures: the Euclidean distance (CT&ED) and the PPM (which is the proposed
method—CT&PPM). It can be seen from Tables 4 and 5 that the PPM achieves an SR of 94% and a CLE
of 18, which are better than those achieved by the Euclidean distance (40% and 122%). Second, to test
the influence of the feature, we compare the trackers using the PPM and different features: the color
feature (PPM), the LBP (LBP PPM) and the CT feature (which is the proposed method—CT&PPM).
It can be seen from Tables 4 and 5 that the CT feature outperforms the others with the highest SR
and a lowest CLE. The results demonstrate the effectiveness of both the CT feature and the PPM in
improving the tracking accuracy.

Table 4. Success rates (%) of the proposed method compared with the other trackers.

SEQUENCE KBT [10] PPM [15] LBPT [20] KCF [9] Proposed LBP&PPM CT&ED

basketball 65 68 100 100 100 56 3
car 65 20 63 100 71 76 51

coke 18 37 7 94 94 48 89
doll 88 100 79 100 97 57 56

lemming 99 99 83 68 100 38 24
matrix 41 15 7 31 91 57 49
Trellis 67 90 27 100 100 87 27

woman 93 53 19 94 95 42 18

Average success rate 67 60 48 86 94 58 40

Table 5. Center location errors of the proposed method compared with the other trackers (pixels).

SEQUENCE KBT [10] PPM [15] LBPT [20] KCF [9] Proposed LBP&PPM CT&ED

basketball 113 68 11 8 7 123 288
car 29 77 31 6 25 16 36

coke 119 99 153 19 19 64 31
doll 25 12 42 8 26 51 67

lemming 13 12 61 78 20 149 132
matrix 75 14 249 76 23 61 85
Trellis 54 26 123 8 13 30 142

woman 22 85 145 10 10 46 196

Center location error 56 49 102 27 18 66 122
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Figure 9. Fame-by-frame comparison of center location errors (in pixels) on eight challenging
sequences. Based on the experimental results, our algorithm is able to track targets accurately and
stably. (a) Basketball; (b) Car; (c) Coke; (d) Doll; (e) Lemming; (f) Matrix; (g) Trellis; (h) Woman.
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4.4. Speed Analysis and Discussions

Table 6 lists the needed computation times of the five trackers on our test platform. The trackers
run from 160 fps to 60 fps in the current Matlab implementation. The speed of the trackers depends on
the area of the candidate region for all the test sequences and the number of iterations. Comparing with
KBT, PPM, and KCF, LBPT and the proposed method spend lots of time on texture feature computation.
However, they just calculate parts of useful points. Comparing with KBT, KCF and LBPT, PPM and
our algorithm can calculate the target model and the search region by joint points to decrease the
computational complexity. Because the dimension of the CT feature is 640 compared with KBT, PPM,
LBPT, KCF, our tracker takes more time than the other trackers. However, the computational time can
satisfy real-time applications.

Table 6. Computation speed comparison (fps).

SEQUENCE KBT [10] PPM [15] LBPT [20] KCF [9] Proposed

Average success rate 164 100 88 165 66

5. Conclusions

A new object tracking method has been proposed in this paper. The algorithm can overcome
some difficulties in real scenes such as object occlusion, sudden illumination changes, similarly colored
backgrounds, and low illumination color images. This work integrates the outcomes of the color
texture feature and PPM centroid iteration tracking. A color texture model called the CT feature is
introduced. In addition, we propose using a posterior probability measure with the CT feature for
target location. Three target model update strategies are designed to improve the tracking accuracy.

The tracking algorithm only using color can not track the target at similarly colored regions or
low illumination regions. The combination of the color and the texture feature can overcome these
difficulties, and the SDCS-LBP is a texture feature, which is robust against gray-scale changes. In real
scenes, our algorithm shows a good performance. As our method is based on the histograms of the
regions, it can overcome the problem of object partial occlusion. PPM measure and the target update
strategies can reduce the tracking mistakes. In the experiments, our algorithm performs better than
others for most of the test sequences. Future work will be dedicated to decreasing the complexity of
the algorithm.
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Abstract: Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering
target tracking may decline in accuracy and even diverge when a target makes abrupt state changes.
To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature
Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical
simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm.
Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted
states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that
the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this
way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high
accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the
performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get
better estimation accuracy and greater robustness for maneuvering target tracking.

Keywords: maneuvering target tracking; spherical simplex-radial rule; cubature Kalman filter; fading
factor; strong tracking filter

1. Introduction

Maneuvering target tracking has drawn increasing attention because of its widespread
application in areas such as radar tracking, aircrafts surveillance, and spacecraft orbit control [1,2].
For maneuvering target tracking, many algorithms are developed and grouped into two types.
One type is to improve the accuracy of the motion model, such as multiple-model (MM) methods [3],
optimization of multiple model neural filter [4], current statistical (CS) model [5,6], and so on. The other
type is to detect the target maneuverability and then to cope with it effectively, such as strong tracking
filter (STF) [7], tracking algorithm based on maneuvering detection [8], and so on. In these methods,
the performance of the filter is an important factor affecting the performance of these methods.
Therefore, improving the accuracy of the filter is also a useful method to improve the performance
of maneuvering target tracking. Thus, a large number of nonlinear filters have been developed.
Among these algorithms, the extended Kalman filter (EKF) [9] is one of the earliest and most widely
used nonlinear filters. The EKF uses a linearization technique, based on the first-order Taylor series
expansion, and approximates the nonlinear system. However, EKF has some limitations, such as
complex Jacobian matrix calculations and poor accuracy in estimating the states of the strongly
nonlinear system.

As better alternatives to the EKF, many nonlinear filters based on the idea of Bayesian theory
have been proposed. One popular approach for the nonlinear non-Gaussian filtering problem
is to use sequential Monte Carlo methods. The most famous method is known as particle filter
(PF) [10–13]. The key idea of PF is to represent the posterior distribution by a set of random samples
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and to calculate estimates based on these samples and weights. Although the PF can provide good
performance, the computational cost is very high and suffers from the curse of the dimensionality
problem. These shortcomings restrict their applications in a real-time system. A different approach
for nonlinear filtering is based on the point-based filtering technique that approximates intractable
integrals encountered by a set of deterministically sampled points. Compared with the Monte Carlo
numerical integration that relies on randomly sampled points, the deterministic point-based method
has lower computational complexity with high accuracy. The type of filter includes the unscented
Kalman filter (UKF) [14], Gauss-Hermite filter (GHF) [15], central difference filter (CDF) [16], etc.
Among these methods, the well-known filter is UKF. The UKF uses unscented transform (UT) to capture
the mean and covariance of a Gaussian density. It is shown that the UKF has better performance than
the EKF. Besides its higher approximation accuracy, this UKF can avoid the cumbersome evaluation of
Jacobian and Hessian matrices, making the algorithm easier to implement. Nevertheless, the unscented
transform of the UKF is potentially unstable [17], which restricts its practical applications. Apart from
the aforementioned filters, the cubature Kalman filter (CKF) has been proposed [17,18] by Arasaratnam
and Haykin. Making use of the third-degree spherical-radial cubature rule, the CKF is reported to be
more flexible in implementation form and more stable than UKF. In addition, Jia et al. [19] proposed the
high-degree CKF where the number of sample points increases rapidly with the increase of the degree
or state dimension. To further improve estimation accuracy with low complexity, a new nonlinear
filter named spherical simplex-radial cubature filter (SSRCKF) is developed in [20]. The new class of
CKF is based on the simplex spherical radial (SSR) rule, which improves the accuracy of CKF with
only two more cubature points necessary.

Although the SSRCKF can achieve good accuracy in tracking non-maneuvering or weak
maneuvering targets, it may lose the tracking ability to the abrupt state change when the system
reaches the stable state. This is because the reaction of the gain matrix is delayed to the sudden change
of the prediction error. To tackle the problem mentioned above, a new algorithm called strong tracking
spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The STSSRCKF
is developed based on the combination of strong tracking filter (STF) [7,21,22] and SSRCKF. The new
algorithm using the strong tracking idea and the fading factor based on the residual to modify the prior
covariance matrix quickly. Thus, the gain of the filter can be adjusted in real time to enhance tracking
capacity for the maneuvering target. In addition, the algorithm can also keep a normal tracking
accuracy for weak maneuvering targets. Compared with the STF, strong tracking unscented Kalman
filter (STUKF) [23], strong tracking cubature Kalman filter (STCKF) [24] and SSRCKF, the proposed
algorithm has a good accuracy and robust advantage over a wide range of maneuver. The performance
of the proposed filter is demonstrated by the simulation.

The remainder of this paper is organized as follows. The overview of the background theory
is presented in Section 2. The proposed algorithm is developed in Section 3. Simulation results and
performance comparisons are presented in Section 4. Finally, conclusions are provided in Section 5.

2. A Review of UKF and CKF

The nonlinear discrete-time system is represented by{
xk = f(xk−1) + wk−1

zk = h(xk) + vk

(1)

where k ∈ N denotes discrete time, f(·) represents the nonlinear function, h(·) represents the
measurement function. xk ∈ Rn is the state vector of system, zk ∈ Rm is the measurement,
wk ∈ Rn is the process noise vector, and vk ∈ Rm is the measurement noise vector. The process
wk and measurement noise vk are uncorrelated zero-mean Gaussian white sequences and have zero
cross-correlation with each other, represented as wk ∼ N(0, Qk) and vk ∼ N(0, Rk), respectively.

Under the Gaussian assumption in the Bayesian filtering framework, the key problem of the
nonlinear filtering problem is to calculate the multi-dimensional integrals. However, in most cases,
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the multi-dimensional integrals cannot be solved analytically. As a result, several approximation
methods have been proposed, such as the unscented transformation (UT) and the cubature rule.

The UT with 2n + 1 the sigma points χi and corresponding weights is chosen as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ0 = xk|k

χi = xk|k +
[√

(n + λ)Pk|k
]

i
(i = 1, · · · , n)

χi = xk|k −
[√

(n + λ)Pk|k
]

i
(i = n + 1, · · · , 2n)

ω
(0)
m = λ/(n + λ)

ω
(0)
c = λ/(n + λ) + (1 − α2 + β)

ω
(i)
m = ω

(i)
c = 1/2(n + λ)(i = 1, · · · , 2n)

(2)

where [Pk|k]i is the ith column of the matrix square root of Pk|k, n is the dimension of state.
λ = α2(n + κ)− n is the scaling parameter; α determines the spread of the sigma points around
xk|k. The positive constants β and κ are used as parameters of the method.

The third-degree cubature rule with 2n cubature points and weights is given by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
χi = xk|k +

[√
(n/2)Pk|k

]
i
(i = 1, · · · , n)

χi = xk|k −
[√

(n/2)Pk|k
]

i
(i = n + 1, · · · , 2n)

ω
(i)
m = ω

(i)
c = 1/2n (i = 1, · · · , 2n)

(3)

As indicated above, the main difference between the UT used in UKF and the third-degree
cubature rule used in CKF is that the UT has one more point in the center with a tune parameter κ.
If the parameter κ is set to zero, the sigma points set will evolve into the cubature points set and the
UKF becomes identical to the CKF. For UKF, the scaling parameter κ is always set to n − 3. Based on
this point, for high-dimensional problems (n > 3), it will lead to the negative weight of the center
point. The presence of the negative weight may lead the covariance matrix to become non-positively
defined. Thus, the cubature rule is more stable than the UT. In summary, the CKF is virtually a special
case of UKF and the CKF has better numerical stability than UKF.

3. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter

The heart of the spherical simplex cubature Kalman filter is the spherical-radial cubature rule.
The spherical-radial cubature rule does not approximate the nonlinear function, but it can approximate
the integral of the form (nonlinear function × Gaussian) using weighted quadrature point sets.
The integral with the standard Gaussian distribution N(x; 0, I) can be approximated by the quadrature

∫
Rn

f(x)N(x; 0, I)dx ≈
m

∑
i=1

ωif(γi) (4)

where m is the total number of quadrature points in the state-space Rn, {γi, ωi}m
i is a set of

quadrature points and corresponding weights. The general Gaussian integral
∫
Rn f(x)N(x; x̂, P)dx can

be approximated by the following transformation∫
Rn f(x)N(x; x̂, P)dx =

∫
Rn f(

√
Px + x̂)N(x; 0, I)dx

≈ m
∑

i=1
ωif

(√
Pγi + x̂

) (5)
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The computational complexity of the numerical integration is proportional to the number of
quadrature points, and the accuracy of the numerical integration rule is usually assessed by the
polynomial approximation degrees.

3.1. Review of the Third-Degree Spherical Simplex-Radial Cubature Rule

The SSRCKF algorithm has the same structure as the general Gaussian approximation filters,
such as the CKF, but uses the third-degree spherical simplex-radial cubature rule to calculate the
Gaussian weight integral I(f) =

∫
Rn f(x)N(x; 0, I)dx. By using the spherical simplex-radial cubature

rule, the SSRCKF method can get more accurate estimation than CKF. In the third-degree spherical
simplex-radial cubature rule, the following integral is considered [19]:

I(f) =
∫

Rn
f(x) exp(−xTx)dx (6)

where f(·) is arbitrary nonlinear function, Rn is the integral domain. To calculate the above integral,
let x = rs (sTs = 1, r =

√
xTx). Equation (6) can be transformed into the spherical-radial

coordinate system

I(f) =
∫ ∞

0

∫
Un

f(rs)rn−1 exp(−r2)dσ(s)dr (7)

where s = [s1, s2, · · · , sn]
T, Un = {s ∈ Rn : s2

1 + s2
2 + · · ·+ s2

n = 1
}

is the spherical surface, and σ(·)
is the area element on Un. Then, the Equation (7) can be decomposed into the spherical integral
S(r) =

∫
Un

f(rs)dσ(s) and the radial integral I(f) =
∫ ∞

0 S(r)rn−1 exp(−r2)dr.

3.1.1. Spherical Simplex Rule

As can be seen from the literature [25], the spherical integral
∫

Un
f(rs)dσ(s) can be approximated

by the transformation group of the regular n-simplex with vertices aj. P0 The third-degree spherical
simplex rule with 2n + 2 quadrature points is given by

S(r) =
An

2(n + 1)

n+1
∑

j=1
(f(raj) + f(−raj))

=
Ns
∑

j=1
ωs,jf(ryj)

(8)

where An = 2
√

πn/Γn(1/2), Ns = 2n + 2.

3.1.2. Radial Rule

The radial integral
∫ ∞

0 S(r)rn−1 exp(−r2)dr can be calculated by the following moment
matching equation ∫ ∞

0
S(r)rn−1 exp(−r2)dr =

Nr

∑
i=1

ωr,iS(ri) (9)

where S(r) = rl is a monomial in r, with l an even integer. Using the moment method with the
minimum number of points, the third-degree radial rule (Nr = 1) can be derived. From Equation (9)
we can obtain the moments’ equations as⎧⎪⎪⎨⎪⎪⎩

ωr,1r0
1 =

1
2

Γ(
n
2
)

ωr,1r2
1 =

1
2

Γ(
n + 2

2
) =

n
4

Γ(
n
2
)

(10)
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By solving Equation (10), the points and weights for the third-degree radial rule are given by{
r1 =

√
n/2

ωr,1 = Γ(n/2)/2
(11)

3.1.3. Spherical Simplex-Radial Rule

By using Equations (7), (8) and (11), the third-degree spherical simplex-cubature rule (Nr = 1,
Ns = 2n + 2) is given by ∫

Rn f(x)N(x, 0, I)dx

=
1√
πn

∫
Rn f(

√
2x) exp(−xTx)dx

≈ 1√
πn

Nr
∑

i=1

Ns
∑

j=1
ωr,iωs,jf(

√
2risj)

=
1

2(n + 1)
×
(

n+1
∑

j=1
f(
√

naj) +
2n+2

∑
j=n+2

f(−√
naj))

)

=
m
∑

k=1
ωkf(ξk)

(12)

where m = 2n + 2, ξk =
√

n[a, −a]k and ωk = 1/(2n + 2) are the corresponding weights.
The steps of SSRCKF algorithm for the nonlinear system can be found in the literature [17].

3.2. Strong Tracking Filter

To improve the performance of EKF, a concept of STF was proposed by Zhou and Frank [7].
They proved that a filter can obtain the strong tracking estimation of the state can have the strong
tracking performance only if the filter satisfies the orthogonal principle [7]. In strong tracking,
the time-varying suboptimal fading factor is incorporated, which online adjusts the covariance of
the predicted state. In this way, the algorithm has the ability to track abrupt state change and strong
robustness against mode uncertainties. The algorithm has the following steps [21]:

x̂k|k−1 = fk(x̂k−1|k−1)

Pk|k−1 = λkFk|k−1PkFT
k|k−1 + Qk

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1))

Pk|k = [I − KkHk]Pk|k−1

(13)

where Fk|k−1 and Hk are the process matrix and measure matrix, respectively. The suboptimal
time-varying fading factor λk is given by

λk =

{
ck, ck ≥ 1

1, ck < 1
, ck =

tr[Nk]

tr[Mk]
(14)

Nk = Vk − HkQk−1HT
k − βRk (15)

Mk = HkFkPk−1|k−1FT
k HT

k (16)

42



Sensors 2017, 17, 741

Vk =

⎧⎪⎪⎨⎪⎪⎩
v0vT

0 k = 0

ρVk−1 + vkvT
k

1 + ρ
k ≥ 1

(17)

where tr[·] is the trace operation, vk = zk − ẑk|k−1 denotes the measurement residual vector; β ≥ 1 is
the softening factor, which can improve the smoothness of state estimation; 0 < ρ ≤ 1 is the forgetting
factor. In generally, the parameters β and ρ are chosen as 4.5 and 0.95, respectively [26,27].

3.3. Equivalent Expression of the Fading Factor

As we know, STF need calculate the linearization of the nonlinear measurement matrix (Hessian
matrix). However, SSRCKF is not necessary to compute the Hessian matrix. So we give the equivalent
expression of STF, which need not calculate the Hessian matrix. Suppose Pl

k|k−1 is the state error

covariance matrix before introducing fading factor, Pl
zz,k|k−1 is the measurement covariance matrix and

Pl
xz,k|k−1 is cross-covariance matrix, Equations (15) and (16) have the following equivalent expressions:

Nk = Vk − (Pl
xz,k|k−1)

T
(Pl

k|k−1)
−1

Qk−1(P
l
k|k−1)

−1
(Pl

xz,k|k−1)− βRk (18)

Mk = Pl
zz,k|k−1 − Vk + Nk + (β − 1)Rk (19)

The new fading factor can be obtained through Equations (14) and (17)–(19). It can be verified
from Equations (18) and (19) that the calculation of suboptimal fading factor in the Equation expression
does not need to compute any Jacobian matrix.

3.4. Steps of the STSSRCKF

Based on the previous sections, the strong tracking spherical-simplex cubature Kalman filtering
(STSSRCKF) can adjust the prediction error covariance matrix by introducing a suboptimal factor.
Hence, the robustness and real-time tracking ability are provided in the STSSRCKF algorithm.
The initial state is assumed to be Gaussian distribution with x̂0|0 and P0|0. The computation steps of the
third-degree strong tracking spherical simplex-radial cubature Kalman filter is summarized as follows:

Step 1. Give the state estimate x̂k−1|k−1 and the error covariance matrix Pk−1|k−1;
Step 2. State estimate prediction:
The cubature points are obtained as

χl
j,k|k−1 = x̂k|k−1 + chol

(
Pk|k−1

)T
ξ j (20)

where chol(·)is the Cholesky factorization.
Propagate the cubature points, the predicted state xk|k−1, and the predicted covariance Pl

k|k−1
without the fading factor are given as

χ∗
j,k|k−1 = f (χj,k−1) (21)

x̂k|k−1 =
m

∑
j=1

ωjχ
∗
j,k|k−1 (22)

Pl
k|k−1 =

m

∑
j=1

ωj(χ
∗
j,k|k−1 − x̂k|k−1)(χ

∗
j,k|k−1 − x̂k|k−1)

T + Qk−1 (23)

where Qk−1 is the covariance matrix of process noise.
Step 3. Calculation of the fading factor λk:
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Using the predicted state x̂k|k−1 and the predicted covariance Pl
k|k−1, the innovation covariance

Pl
zz,k|k−1 and the cross covariance Pl

xz,k|k−1 can be calculated as

zl
j,k|k−1 = h(χ∗

j,k|k−1) (24)

ẑl
k|k−1 =

m

∑
j=1

ωjzl
j,k|k−1 (25)

Pl
xz,k|k−1 =

m

∑
j=1

ωj(χ
l
j,k|k−1 − x̂k|k−1)(z

l
j,k|k−1 − ẑl

k|k−1)
T

(26)

Pl
zz,k|k−1 =

m

∑
j=1

ωj(zl
j,k|k−1 − ẑl

k|k−1)(z
l
j,k|k−1 − ẑl

k|k−1)
T
+ Rk (27)

The fading factor λk can be calculated by using Equations (14) and (17)–(19).
Step 4. Measurement updating modified by the fading factor:
The modified prediction covariance P

′
k|k−1 can be updated by

P
′
k|k−1 = λk(P

l
k|k−1 − Qk−1) + Qk−1 (28)

By utilizing the predicted state estimate x̂k|k−1 and the modified predicted covariance P
′
k|k−1 with

the fading factor λk, the modified predicted measurement ẑ
′
k|k−1, the modified cross covariance and

the modified innovation covariance P
′
zz,k|k−1 can be calculated as follows

χ
′
j,k|k−1 = chol(P

′
k|k−1)ξ i + x̂k|k−1 (29)

z
′
j,k|k−1 = h(χ

′
j,k|k−1) (30)

ẑ
′
k|k−1 =

m

∑
j=1

ωjz
′
j,k|k−1 (31)

P
′
xz,k|k−1 =

m

∑
j=1

ωj(χ
′
j,k|k−1 − x̂k|k−1)(z

′
j,k|k−1 − ẑ

′
k|k−1)

T
(32)

P
′
zz,k|k−1 =

m

∑
j=1

ωj(z
′
j,k|k−1 − ẑ

′
k|k−1)(z

′
j,k|k−1 − ẑ

′
k|k−1)

T
+ Rk (33)

Step 5. Estimation results:
The state estimate x̂k and the covariance Pk at time k are calculate as follows

Kk = P
′
xz,k|k−1

(
P

′
zz,k|k−1

)−1
(34)

x̂k|k = x̂k|k−1 + Kk(zk − ẑ
′
k|k−1) (35)

Pk|k = P
′
k|k−1 − KkP

′
zz,k|k−1KT

k (36)

The STSSRCKF combines the advantages of STF and SSRCKF. Then the STSSRCKF has strong
robustness against model uncertainties and good real-time state tracking capability [28]. Moreover,
the STSSRCKF algorithm eliminates the cumbersome evaluation of Jacobian/Hessian matrices,
its numerical stability and estimated accuracy are significantly improved.
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4. Simulation and Results

The effectiveness of the proposed algorithm will be illustrated through two examples of
maneuvering target tracking. Taking the root mean square error (RMSE) and accumulative
RMSE (ARMSE), the study compared the STSSRCKF algorithm with the EKF algorithm and the
SSRCKF algorithm.

4.1. Tracking Model and Measurement Model

The constant acceleration (CA) model is a common tool for tracking target modeling. The state
Equation of CA model in two-dimensional case is described as follow:

Xk = diag[ΦCA, ΦCA]Xk−1 + GCAVk−1 + wk−1 (37)

where Xk−1 = [xk−1,
.
xk−1,

..
xk−1, yk−1,

.
yk−1,

..
yk−1]

T is the target state at time k − 1, (xk−1, yk−1),
(

.
xk−1,

.
yk−1) and (

..
xk−1,

..
yk−1) represent the target position, velocity and acceleration in the x and

y coordinate at time k − 1, respectively; diag[ΦCA, ΦCA] is the state transition matrix, Gk−1 is the state
input matrix, Vk−1 is the process noise, wk−1 is zero-mean white Gaussian noise and its corresponding
covariance matrix is Qca. ΦCA, Gk−1 are described as:

ΦCA =

⎡⎢⎣ 1 T T2/2
0 1 T
0 0 1

⎤⎥⎦ (38)

GCA =

⎡⎢⎣ T2/2
T
1

⎤⎥⎦ (39)

where T is the sampling interval.
In radar tracking system, the target motion is usually modelled in Cartesian coordinates, whereas

the target’s position and azimuth are obtained in polar coordinate. The radar is located at the origin,
and provides range and bearing measurements. The measurement model can be established as

zk =

( √
x2

k + y2
k

atan2(yk, xk)

)
+ vk (40)

where atan2(·) is the four-quadrant inverse tangent function, vk is the white Gaussian measurement
noise with zero mean and covariance Rk = diag([σ2

r , σ2
θ ]). σr and σθ denote the standard deviation of

range measurement noise and bearing angle measurement noise, respectively.

4.2. Simulation of the STSSRCKF

Example 1. In this simulation, the sampling interval is T = 1 s and simulation time is 100s. The Monte Carlo
simulations are carried out 200 times. The RMSE of the target position at time k and the accumulative RMSE
(ARMSE) of estimated position at all times are defined in Equations (41) and (42):

RMSEpos(k) =

√√√√ 1
M

M

∑
m=1

((xk − x̂m,k)
2 + (yk − ŷm,k)

2) (41)

ARMSEpos =

√√√√ 1
N

N

∑
k=1

(RMSE2
pos(k)) (42)
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where M is the number of Monte Carlo runs, (xk, yk) is the actual value of the target position at time k and
(x̂m,k, ŷm,k) is the estimated position at time k in mth Monte-Carlo. The RMSE and the accumulative RMSE in
the velocity and acceleration can be defined in the same way.

This example considers a two-dimensional simulation scenario including one motion mode of
high maneuver. The initial location of the target is (x, y) = (100 m, 400 m), its initial velocity is
(vx, vy) = (15 m/s, 20 m/s), and its initial acceleration is (ax, ay) = (0 m/s2, 0 m/s2). The target
makes a uniform motion during the first 150 s. Then, it takes a high maneuver with the acceleration
(ax, ay) = (15 m/s2, 25 m/s2) up to the end of this simulation at t = 200 s. In this simulation,
the initial value x̂0|0 and the initial covariance matrix P0|0 are set to be [100 m, 15 m/s, 0 m/s2,

400 m, 20 m/s, 0 m/s2]T and diag[ (50 m)2, (20 m/s)2, (1 m/s2)
2, (50 m)2, (10 m/s)2 (1 m/s2)

2
]T ,

respectively. The standard deviation of range measurement noise σr is 30 m and the standard deviation
of bearing angle measurement noise σθ is 10 mrad.

The example is executed to examine the performance among the SSRCFK, STF, STUKF, STCKF
and STSSRCK methods. The RMSEs of the position, velocity and acceleration using the five filters
are shown in Figures 1–3. It can be shown that the STF, STUKF, STCKF and STSSRCK methods can
converge quickly when the target engages in high maneuvering. The SSRCKF algorithm only has a
good performance for uniform motion. However, the performance of SSRCKF decreases seriously
when the target engages in high maneuvering. This is because that the prediction covariance cannot be
adjusted timely when the target state suddenly changes. The STF algorithm has the fourth speed of
convergence, which is due to the fact that the linear approximation in the STF may introduce errors
in the state which may lead the state to diverge. As can be seen from Figures 1–3, when the target is
making uniform motion within the first 100 s, the five methods have a similar performance. When the
maneuver starts at t = 101 s, it obviously shows that STF, STUKF, STCKF and STSSRCKF have the
ability to convergence. The main reason is that the fading factor can adjust the prediction covariance
and the corresponding filter gain in real time, which makes these algorithms converge in a short
time. We can also see that the RMSE of the proposed algorithm is lower than that of STUKF and
STCKF. It means that estimate precision of the proposed algorithm is higher than that of the two
algorithms. It is demonstrated that the proposed algorithm can effectively track the abrupt motion
state of the target.
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Figure 1. Root mean square error (RMSE) of the estimated position.
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Figure 2. RMSE of the estimated velocity.
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Figure 3. RMSE of the estimated acceleration.

To quantitatively describe the tracking performance, the ARMSEs of the five methods in estimating
different target parameters are listed in Table 1. As shown, the STSSRCKF provided the best result in
terms of estimation. The STCKF also performed well, followed by the STUKF and STF. The SSRCKF
provided the worst estimate. We can also draw the conclusion that the STSSRCKF has the highest
tracking accuracy of the position, velocity and acceleration.

Table 1. Tracking performance comparison.

Filters Position ARMSE/m Velocity ARMSE/(m/s) Acceleration ARMSE/(m/s2)

SSRCKF 152.1 31.2 6.9
STF 129.7 28.4 6.2

STUKF 124.5 27.5 5.9
STCKF 123.1 26.7 5.8

STSSRCKF 119.3 25.1 5.6

The program is made on the Intel Core (TM) i5-4430 3.0GHZ CPU with 4.00G RAM. Table 2
shows the computational complexity and the computational time of SSRCFK, STF, STUKF, STCKF and
STSSRCK for each run. Apart from STF, the computational complexity of different filters is mainly
determined by the number of points they use. The computational complexity of STCKF as well
as STUKF differs only by one points. The computational complexity of SSRCKF and STSSRCKF is
O{(2n + 2)3}, where n denotes the dimension of state. In addition, we can see that the computational
complexity of STF is the lowest. Because there is a clear formula in STF to calculate the Jacobian matrix,
the computational complexity of STF is much smaller than other four algorithms. It is also shown
that the computational time of the SSRCKF is 0.07 s for each run. However, the computational time
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of the STSSRCKF is 0.15 s, which is greater than that of the SSRCKF. This is because the STSSRCKF
needs to calculate the suboptimal fading factor at each time step. At present, the time consumption
is acceptable. The STSSRCKF needs more computational time than the SSRCKF, but considering the
significant performance improvement gained from the STSSRCKF, this increased computational time
is not substantial.

From this simulation, we can conclude that the STSSRCKF can perform the best in terms of the
balance between computational complexity and estimation accuracy.

Table 2. Computational complexity and computational time of different filters.

Filters Computational Complexity Computational Time (s)

SSRCKF O{(2n + 2)3} 0.07
STF O{(n)2} 0.02

STUKF O{(2n + 1)3} 0.14
STCKF O{(2n)3} 0.14

STSSRCKF O{(2n + 2)3} 0.15

Example 2. This example evaluates the proposed algorithm in tracking a target with weak maneuver and
medium maneuver. Therefore, two simulations are simulated as follows. Assume that there is a target making
uniform at first. The initial location of the target is (x, y) = (5000 m, 5000 m), its initial velocity is (vx, vy) =

(150 m/s, 80 m/s), and its initial acceleration is (ax, ay) = (0 m/s2, 0 m/s2).

Case 1: Simulation of medium maneuvering target tacking. The target moves with initial acceleration
until t = 150 s. Then, it maneuvers with acceleration of (ax(151), ay(151)) = (5 m/s2, 5 m/s2)

up to end of this simulation at t = 200 s.
Case 2: Simulation of weak maneuvering target tracking. The initial position, velocity and acceleration

of the target are the same as those in Case1. The target also moves with initial acceleration until
t = 150 s. Then, it maneuvers with acceleration of (ax(151), ay(151)) = (0.5 m/s2, 0.5 m/s2)

up to end of this simulation at t = 200 s.

Table 3 lists the accumulative RMSEs of the five methods in estimation the three target parameters.
As can be seen from Table 3, the STSSRCKF algorithm also has a good tracking performance for a weak
or medium maneuvering target.

Table 3. ARMSEs in simulation of medium and weak maneuvering target.

Simulation Filters Position ARMSE/m Velocity ARMSE/(m/s) Acceleration ARMSE/(m/s2)

Case 1

SSRCKF 101.6 21.2 5
STF 95.3 20.2 4.5

STUKF 88.5 16.4 4.1
STCKF 87.4 16.8 4.1

STSSRCKF 81.1 15.9 3.7

Case 2

SSRCKF 50.5 8.2 1.8
STF 65.1 10.8 2.4

STUKF 57.3 8.8 2.2
STCKF 56.3 8.3 2.2

STSSRCKF 53.4 8.4 2.1

5. Conclusions

To implement higher tracking accuracy for a maneuvering target, a new method has been
proposed based on the STF and SSRCKF algorithms. Firstly, the time-varying suboptimal fading
factor is introduced in order to adjust the prediction covariance and the corresponding filter gain in
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real time. Secondly, in the proposed method, the spherical simplex-cubature rule takes the place of
calculating nonlinear function Jacobian matrix. In this way, STSSRCKF can converge rapidly in a
short time. Thus, the proposed method has a high tracking accuracy for maneuvering target tracking.
Simulation results show that the STSSRCKF can achieve higher accuracy and robustness than STF,
STUKF, STCKF and SSRCKF, and indicate that it is suitable for maneuvering target tracking.
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Abstract: While most filtering approaches based on random finite sets have focused on improving
performance, in this paper, we argue that computation times are very important in order to enable
real-time applications such as pedestrian detection. Towards this goal, this paper investigates the
use of OpenCL to accelerate the computation of random finite set-based Bayesian filtering in a
heterogeneous system. In detail, we developed an efficient and fully-functional pedestrian-tracking
system implementation, which can run under real-time constraints, meanwhile offering decent
tracking accuracy. An extensive evaluation analysis was carried out to ensure the fulfillment of
sufficient accuracy requirements. This was followed by extensive profiling analysis to spot the
potential bottlenecks in terms of execution performance, which were then targeted to come up
with an OpenCL accelerated application. Video-throughput improvements from roughly 15 fps to
100 fps (6×) were observed on average while processing typical MOT benchmark videos. Moreover,
the worst-case frame processing yielded an 18× advantage from nearly 2 fps to 36 fps, thereby
comfortably meeting the real-time constraints. Our implementation is released as open-source code.

Keywords: random finite set Bayesian filtering; OpenCL; real-time execution

1. Introduction

Current success in the practical implementations of random finite set (RFS) filters has made it
clear that RFS-based approaches are going to play a key role in the multisensor data fusion. This is
mostly due to the probability hypothesis density (PHD) filters that present a recursive algorithm to
jointly estimate target states in the presence of data association uncertainty, detection uncertainty,
noise and false alarms [1]. Since then, the performance of new extensions has been increasing at a
remarkable pace. The driving force behind the ever-increasing interest in RFS is its high potential in
the applications of aerospace, robotics and intelligent systems, as presented in an excellent survey on
the multisensor data fusion [2].

While the performance of RFS has been greatly improved, when dealing with real-world
applications, running times become important. New computer technologies have already been
proposed to accelerate the computation in many machine learning algorithms, but seldom applied
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to data fusion algorithms. An emerging computing architecture that has been adopted in industry is
the heterogeneous system architecture (HSA). HSA is a hardware platform that integrates central
processing units, graphics processors or other processors (e.g., FPGA, DSP) on the same bus,
with shared memory and tasks. With the support of the Open Computing Language (OpenCL),
the HSA is able to relieve the programmer of the task of planning the moving of data between devices’
disjoint memories, thus reducing the mutual communication latency and speeding up the computation.

In this paper, we investigate the problem of applying RFS filtering approaches to a heterogeneous
platform, aiming to provide some insights on how to improve the RFS filtering running times by the
heterogeneous system. For this purpose, we chose recently-proposed RFS-based filtering techniques
i.e., PHD, labeled multi-Bernoulli (LMB) filters, to tackle the underlying multi-target tracking problem.
PHD and LMB filters have been presented to be effective in tracking applications that require particle
implementation or object individual existence probabilities. However, implementing the tracking
algorithm in the heterogeneous system with OpenCL is a non-trivial problem. On the one hand,
the tracking application by PHD or LMB filters is a complex and convoluted system that is intrinsically
not suitable for parallel execution, as the parallel execution requires the system to be modular, and
the execution within each module is independent. On the other hand, to efficiently use OpenCL to
accelerate the execution, the execution bottlenecks should be spotted, and OpenCL configurations,
such as running batch size or memory usage, should be well tuned. Last, the accuracy should be
guaranteed while deploying OpenCL acceleration.

To this end, the tracking algorithms of this paper were developed in a highly modular system
design approach and practically implemented in tracking pedestrians of a video. Specifically,
we explored the use of the GM-PHD (Gaussian mixture-PHD) and SMC-LMB (sequential Monte
Carlo-LMB) class of filters from this family, to implement the tracking algorithm. Initially, pure
software (relying solely on CPU code in C++) implementations were carried out following a highly
modular overall system-design approach. In order to parallelize the executions as much as possible, we
made two major implementation modifications compared to the the original GM-PHD or SMC-LMB.
First, we did manual vectorization of code, as GM-PHD uses many small dimension matrices, which are
not effective for large-scale parallelization. Second, we consider each Gaussian component independent
of each other and splitting them into individual threads. Later, via extensive evaluation analysis
concerning tracking accuracy, the GM-PHD trackers were found to be inadequate, and hence, the
implementation focus was then shifted solely to SMC-LMB filters. To run the whole tracking application
meeting real-time constraints, we carried out an extensive execution profiling of the algorithm. The
spotted performance bottlenecks were then ported to the GPU accelerator using OpenCL programming
constructs to perform the parallelization potential of the algorithm. We demonstrated the effectiveness
of our developed approach by running the MOT benchmark [3]. In particular, we managed to
improve from 15 fps to 100 fps in processing MOT video frames on average, while for the most
computationally-expensive frame, we achieved 18× speedup improvements from 2 fps to 36 fps.
We should note that our SMC-LBM implementation is based on the approach of [4] that separated
the prediction and updating in the filtering. Now, another effective approach has been proposed to
integrate the prediction and updating together so that the execution would be faster [5]. The discussion
of them is in Section 4.

To the best of our knowledge, this is the first paper that reported the implementation results of
the RFS-based filtering in a heterogeneous system with OpenCL. Moreover, since the implementation
is designed in a highly modular way and the interface of each module is explicit, our developed
software is able to be well integrated with other projects. The related open source code is released here
(https://github.com/nucleusbiao/Pedestrian-Tracking-using-SMC-LMB-with-OpenCL.git).

This paper is structured as follows: Section 2 describes the mathematic model of GM-PHD filter,
as well as the brief introduction of SMC-LMB. Section 3 presents the details of system implementation
design. Section 4 presents the simulation and execution results. The paper is concluded in Section 5.
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2. Preliminary

In the multi-target tracking problem, the number of targets to be tracked is unknown a priori and
stochastically varies with time. At the sensor, a random number of measurements is received due to
detection uncertainty and false alarms. Consequently, standard Bayesian filtering techniques are not
directly applicable, since it is not known which of the received measurements, if any, should be used
to update which target state, if any, at each sensor scan.

Towards this problem, the RFS approach is an emerging and promising alternative to the
traditional association-based methods like joint probabilistic data association [6] and multiple
hypothesis tracking filters [7]. Pioneered by Mahler [8,9], finite-set statistics analysis can be considered
as the first systematic and rigorous approach to Bayesian state-estimation while explicitly avoiding
the need for cumbersome association of measurements with targets or tracks. The RFS-based filtering
enables the use of the optimal Bayesian estimation framework for multi-target tracking scenarios by
introducing the concepts of a multi-target state/measurement expressed via random finite sets. In the
following, we provide the mathematic background for the Gaussian-mixture PHD filter and briefly
introduce the labeled multi-Bernoulli.

2.1. Gaussian Mixture-Probability Hypothesis Density Filter

In a multi-target tracking scenario, suppose that, at time tk−1, there were M(k − 1) targets
having states (x1

k−1, x2
k−1, ..., xM(k−1)

k−1 ) with each xi
k−1 ∈ X . At tk, some of these targets may die;

the surviving targets evolve to their new states; and new targets may appear. This results in M(k)
targets having new states as (x1

k , x2
k , ..., xM(k)

k ). Similarly, at the sensor, suppose that N(k) measurements

(z1
k , z2

k , ..., zN(k)
k ) where each zi

k ∈ Z are received at tk. States and measurements at tk can be aptly
represented as finite sets, as shown below:

Xk = {x1
k , x2

k , ..., xM(k)
k } ∈ F (X ) (1)

Zk = {z1
k , z2

k , ..., zN(k)
k } ∈ F (Z) (2)

where F (X ) and F (Z) denote the sets of all finite subsets of X and Z, respectively.
For a given multi-target state Xk−1 at tk−1, each xk−1 ∈ Xk−1 either continues to exist at tk with

survival probability pS,k(xk−1) or dies with probability (1 − pS,k(xk−1)). Consequently, for a given
state xk−1 at tk−1, its behavior at the next time step tk is modeled as being an RFS Sk|k−1(xk−1) that
can take on either {xk} when the target survives or φ when the target dies. A new target born at tk is
similarly modeled by an RFS Γk. Using these quantities, we can express the multi-target state Xk at tk
to be:

Xk =

( ⋃
ζ∈Xk−1

Sk|k−1(ζ)

)
∪ Γk (3)

A given target xk ∈ Xk at tk is either detected with detection probability pD,k(xk) or missed
with probability (1 − pD,k(xk)). Consequently, at each tk, each state xk generates a measurement RFS
Θk(xk) that can take on either {zk} when the target is detected, or φ when the target is missed by
the sensor. In addition to these target-originated measurements, the sensor also receives a set of
clutter measurements modeled via Kk RFS. Thus, given a multi-target state Xk at tk, the multi-target
measurement Zk can be written as:

Zk =

( ⋃
x∈Xk

Θk(x)

)
∪ Kk (4)

In a similar fashion to STTBayes filtering, the multi-target state-transition densities p(Xk|Xk−1)
and the multi-likelihood function (p(Zk|Xk)) can be derived from the underlying physical models
of targets and sensors using FISSTtechniques. Assuming their availability, the multi-target Bayes
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filter propagates the multi-target posterior state-conditional density p(Xk|Zk) via the familiar
prediction-update mechanism as follows:

p(Xk|Zk−1) =
∫

p(Xk|X)p(Xk−1|Zk−1)δX (5)

p(Xk|Zk) =
p(Zk|Xk)p(Xk|Zk−1)∫
p(Zk|Xk)p(Xk|Zk−1)δX

(6)

where the integrals in the recursion are FISST set integrals as introduced earlier.
To derive the GM-PHD recursion, the multi-target tracking context must also satisfy:

• Each target follows a linear Gaussian dynamical model, and the sensor has a linear Gaussian
measurement model:

p(x|ζ) = N(x; Fkζ, Qk) (7)

p(z|x) = N(z; Hkx, Rk) (8)

• The survival and detection probabilities are state independent:

pS,k(x) = pS,k (9)

pD,k(x) = pD,k (10)

• The PHD or the intensity function of birth RFS γk is a Gaussian mixture (GM) of the form:

γk(x) =
JΓ,k

∑
i=1

wi
Γ,k N(x; mi

Γ,k, Pi
Γ,k) (11)

Under these assumptions, it has been shown in [1] that the predicted posterior PHD, as well the
posterior state PHD at any tk is also a Gaussian mixture. Specifically, at tk, if the prior PHD is expressed
as a GM of the form:

vk−1(x) =
Jk−1

∑
i=1

wi
k−1N(x; mi

k−1, Pi
k−1) (12)

then the GM-PHD recursion can be given by:

• Prediction:

vk|k−1(x) = vS,k|k−1(x) + γk(x) (13)

vS,k|k−1(x) = pS,k

Jk−1

∑
j=1

wj
k−1N(x; mj

S,k|k−1, Pj
S,k|k−1) (14)

mj
S,k|k−1 = Fk−1mj

k−1 (15)

Pj
S,k|k−1 = Qk−1 + Fk−1Pj

k−1FT
k−1 (16)

• Update:

vk(x) = (1 − pD,k(x))vk|k−1(x) + ∑
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qj
k(z) = N(z; Hkmj

k|k, Rk + HkPj
k|k−1HT

K) (20)

mj
k|k(z) = mj

k|k−1 + Kj
k(z − Hkmj

k|k−1) (21)

Pj
k|k = [I − Kj

k Hk]P
j
k|k−1 (22)

Kj
k = Pj

k|k−1HT
k (HkPj

k|k−1HT
k + Rk)

−1 (23)

As shown by these equations, the GM-PHD provides a computationally-efficient mechanism to
propagate the posterior PHDs of multi-target state Xk; though with the passage of time, the GM-PHD
filter suffers from computation problems associated with the increasing number of such Gaussian
components. In practice, this problem is dealt by carrying out special pruning procedures in a part
of each recursion, which removes insignificant or negligible Gaussian components based on some
pre-designed criterion.

2.2. The Labeled Multi-Bernoulli Filter

In addition to the GM-PHD filters, other RFS-based approximations of the multi-target Bayes
filters include multi-Bernoulli filters and their various extensions. The idea of the multi-Bernoulli
filter was first proposed by Mahler [10] proposing a novel multi-target multi-Bernoulli recursion as a
tractable approximation to the recursive Bayes multi-target filter under low-clutter density scenarios,
whereby a multi-Bernoulli RFS distribution propagates directly as an approximation to the posterior
multi-target state Xk recursively instead of posterior PHDs.

However, [11] shows analytically that Mahler’s multi-target multi-Bernoulli filter (MeMBer)
overestimates the cardinality and proposes a new variant called the cardinality balanced multi-target
multi-Bernoulli (CBMeMBer) filter. The CBMeMBer filter extracts the cardinality bias of the MeMBer
filter in the update step and uses this to develop an unbiased update at the end of its recursion. Like the
PHD/CPHD filters, [11] has provided closed-form GM-based solutions in the case of linear/Gaussian
state-space models. For general non-linear/non-Gaussian considerations, SMC-based implementations
have also been provided. Interested readers are encouraged to refer to [11] for a further conceptual
understanding of multi-Bernoulli filters along with the detailed analysis of their prediction and
filtering steps.

While multi-Bernoulli filters are not formulated to output target tracks, their generalization,
referred to as the generalized labeled multi-Bernoulli (GLMB) filters [12], has been proposed to
overcome this limitation. These filters rely on the notion of labeled RFSs for their working principles.
We direct the readers to [12–14] for the large quantity mathematic formation of this approach. This
paper mainly elaborates the implementation design.

3. System Design and Implementation

This section describes the main essence or the methodology in coming up with the overall design
of the pedestrian tracking system. This is followed by a detailed overview of the techniques and
strategies utilized in carrying out the implementation of the overall system.

3.1. System Design Modules

Like any good engineering design, the main focus has been to come up with a modular design
approach to overcome the system complexity efficiently, while aiding in quick development of the
system with each module being designed in an isolated fashion and having a clear notion of its
input/output interfaces. Figure 1 presents a high-level abstracted view of the overall pedestrian
tracking system resulting from this approach. We explain these modules briefly as follows.
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Figure 1. Block diagram of the multi-target tracking system.

3.1.1. Sensor

The sensor module represents an information-capturing device that extracts some useful target
motion attributes (of interest) within the surveillance scene. This could be a stereo camera or a LiDAR
sensor, etc., giving target motion information at regular intervals of time. Specifically for our work,
we have made use of the following concepts as sensors:

• Simulated sensor model: For an extensive evaluation of the implemented pedestrian tracking
system (Section 4), we design a simulation scenario simulating point targets whose motion follows
linear/Gaussian characteristics. The specific simulation scenario can be considered as a form
of sensor.

• Video frames: Likewise, we make use of MOT benchmark for further evaluation of the tracking
system (Section 4). However, in this case, we are provided with camera video footage or
frames comprising different kinds of pedestrian motions. These video frames then act as
sensor observations.

3.1.2. Detector

The detector module is responsible for extracting the target-specific information from the sensor
outputs. Generally, this involves coming up with target approximate kinematic quantities from the
sensor scans to feed into the tracker module. In our work, the detector detects the individual target’s
2D position coordinates within the surveillance region.

• Simulated detector model: For carrying out the simulation scenario, the simulated positions
of the target from the sensor are corrupted with Gaussian noise to yield simulated detections.
Furthermore, these detections are generated as part of the probabilistic process governed by a
certain probability of detection pd, which allows for target misdetections to help come up with
robust tracker algorithms.

• Fast feature pyramid detector: The MOT benchmark provides detection annotations (2D position
coordinates) on each of the training-video (sensor) frames. These detections are extracted by
running the fast feature pyramid object detector algorithm, as proposed by Dollar et al. [15].

• Histogram of oriented gradients detector: The widely popular OpenCV library for developing
computer-vision applications provides a working implementation of the HOG detector [16]
targeting various platforms like C++, Python, CUDA, OpenCL, etc. We run this library function
over MOT frames to come up with the target positions that are then fed into the tracker module
further in the chain.

3.1.3. Tracker

The tracker module is the most crucial/significant processing element of the overall system
as it is responsible for outputting the target/pedestrian tracks utilizing the detections within every
sensor-scan. As will be explained later, we have employed mainly two trackers in our work:

• GM-PHD tracker: This tracker implements the GM-PHD filtering recursions to estimate the 4D
(2D position, 2D velocity) target state. The original GM-PHD filtering algorithm [1] is enhanced
using the techniques presented in [17] in order to be able to extract not just individual target states,
but rather their trajectories or tracks.
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• SMC-LMB tracker: This tracker carries out the implementation of the SMC/particle-filter-based
LMB filter [12,13]. The LMB filtering is based on labeled RFSs, which helps to extract target
tracks from their states automatically. The implementation is carried out in C++, as well as using
OpenCL acceleration.

3.1.4. Analyzer

The analyzer module is the optional module responsible for analyzing the target tracks being
produced from the tracker and compute various evaluation metrics enabling extensive evaluation of
the implemented system (Section 4). Enabling this analysis, the analyzer module helps with coming up
with stable efficient tracking system. Though, using this module could make sense in the development
phase, it should be removed from the final system, as it provides no core functionality regarding
pedestrian tracking.

3.1.5. System Design Interfaces

The main intra-module interfaces carried out in the project as shown in Figure 1 are briefly
described below:

• Sensor input: Generally, sensor input consists of the whole surveillance view/region containing
targets of interest. For our project, this represents either a simulated scenario or an MOT
tracking scenario.

• Sensor-detector i/f: The interface between the sensor and the detector mainly represents the
sensor outputs. Further processing tasks could be carried out as part of this interface for helping
the detector in its algorithm. However, as part of this project, we simply forward the sensor
output frames into the detector. The frames are structured as 2D pixel data embedding the target
motion information.

• Detector-tracker i/f: This interface mainly represents the target detections, which act as input
stimuli to the target algorithm. For our work, these detections are in the form of 2D position
coordinates (i.e., in the form of a 2D floating-point vector).

• Tracker output: This primarily represents the overall output of the whole system. In this work,
output involves individual target 4D states (a 4D floating-point vector) along with a specific label
(a two-integer structure) being output from the tracker module within every sensor scan.

3.1.6. System Upgrades

As stated earlier, the proposed modular design methodology serves well to employ a
plug and play-based design approach whereby one can easily replace an existing module for a better
alternative without having to redesign the whole system from scratch, thus helping with efficient
upgrading of the overall system. Some of the key upgrades in the present pedestrian tracking system
could be:

• Sensor: There is no any specific requirement on the sensor. It can be a camera or a LiDAR.
This would generate real-world sensor data for using the pedestrian tracking system in actual
automotive scenarios to evaluate its effectiveness in carrying out its functionality.

• Detector: coming up with a detector algorithm of our own. This implemented detector would
then help to do detections on the real scenario video footage.

• Tracker: further optimization of the implemented tracking algorithm, improving both the tracker
accuracy, as well as its execution performance.

3.2. System Implementation

This subsection describes the major implementation aspect. As mentioned above, the sensor and
detector are either simulated or are used from the MOT benchmark. The optional analyzer module will
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be discussed at length in Section 4. Therefore, this subsection mainly focuses on the implementation of
the tracker module.

We initially carried out the implementation of the GM-PHD algorithm, which lacked the ability to
output target trajectories. This was overcome by using a tree-based approach to group the GM-terms
of a single target together to provide a notion of its trajectory. After extensive simulation analysis
(Section 4), we found the GM-PHD filter accuracy to be inadequate in dealing with general pedestrian
tracking scenarios where the pedestrians deviated from linear/Gaussian motion characteristics.
This led to the exploration of SMC approaches to offer better accuracy. In light of this, a particle-filter
implementation for the LMB filter was successfully carried out. Later via extensive profiling, the
LMB filter implementation in C++ was accelerated via OpenCL kernels by spotting the performance
bottlenecks and re-implementing them using parallel programming constructs.

3.2.1. GM-PHD Tracker

The GM-PHD filter works by propagating the posterior PHD of the multi-target state in time
during each of its recursions [1,17]. The GM-PHD filter recursion is carried out as shown in Figure 2.
Each of the block represents a C++ class method performing its specific functionality. The arrows
represent the data flow, whereby the GM terms representing the PHDs of multi-target state travel
back and forth between the prediction and the update modules. Each of the Gaussian terms used
throughout the filtering operation are compactly represented as a C++ struct with weight, mean and
covariance as its attributes. To carry out the linear-algebra matrix operations in C++, we make use
of efficient open-source library Armadillo. Therefore, while the weight is represented as a C++ float
variable, the mean and covariance are better represented via armadilloclasses.

Figure 2. Block diagram of GM-probability hypothesis density (PHD) filter recursion.

At the start of each filter iteration/recursion, the new scan detections are used by the birth model,
which compares them to the stored previous-scan detections. Based on likely association or similarities
between a specific pair within these consecutive scans, the birth model forms new targets by assigning
a new set of Gaussian terms, i.e., a Gaussian mixture as part of the predicted GM. These components are
then mixed/added with the predicted GM of the surviving targets (surviving targets are represented
by update GM in past iteration) obtained via (15) and (16).

Similarly in the update block, the current-scan detections are used along with the current
computed prediction GM to extract the update GM using (21) and (22). These Update GM terms
are then passed through the prune/merge block where we use a three-fold strategy to reduce the
computational complexity arising from the increasing GM terms. These are summarized as follows:

• First, all of the close-by Gaussian terms (via their means) are merged together to form a composite
Gaussian term, as they are thought to represent a single target.

• Then, all of the Gaussian terms whose weights are less than the filter-specified threshold are
discarded as insignificant terms and are not processed further. This also allows one to gracefully
terminate target tracks.

• Finally, we keep a cap on the maximum number of Gaussian terms corresponding to the maximum
number of expected pedestrians within the surveillance zone.
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After the pruning, the update GM represents the posterior PHD of the multi-target state with each
Gaussian term representing a possible target state. To avoid tracking clutter terms, a second threshold
is used here to discard the Gaussian terms that are not too significant as of the current iteration, but
could lead to greater weights in coming iterations. Such terms are not output as current target states,
but also not discarded, as they are being kept in the surviving target GM to be considered for the next
iterations. For the significant terms, their means represent the individual target states and are output
as such.

As should be obvious from these outputs, this preliminary filter is only capable of extracting
individual target states, but does not output tracks or trajectories, i.e., there is no association between
currently obtained states and the past ones. To overcome this limitation, the implementation algorithm
is enhanced via tree-based techniques. For the sake of brevity, we ignore here the implementation
details of those techniques, however. Interested readers are referred to [17] for further details in
this regard.

3.2.2. SMC-LMB Tracker

The GM-PHD tracker provides the optimal PHD recursive solution in the case of targets and
sensors following linear/Gaussian state-space characterizations. Therefore, expectedly, its accuracy
performance should be deteriorated to a certain degree when the targets exhibit non-linear and/or
non-Gaussian motion tendencies. We carry out simulation analysis (Section 4) to investigate this and
find that the tracker performance is severely affected up to a point that the error is too much to tolerate.
This led to the exploration of non-linear techniques to overcome this limitation.

SMC-based particle filters have been a popular approach in this context after being introduced
in the 1990s. We looked into the possibility of using the particle filter implementation of the PHD
filter in order to make it suitable for tackling generic pedestrian motions. However, we found that,
recently, a new class of RFS-based filters called the LMB filters has been proposed, which are deemed
to be more accurate than PHD filtering techniques. Furthermore, the SMC implementations of these
filters match with those of PHD filters in terms of computational complexity [14]. Therefore, this work
further focuses on implementing the SMC-LMB tracker as the main tracker module in Figure 1.

Figure 3 presents the overview of the implementation of the SMC-LMB tracker. Structurally, it is
similar to Figure 2, like any Bayesian estimator, but computationally, there are major differences. First,
instead of using GM to represent the posterior states, the SMC-LMB tracker relies on propagating a set
of multi-Bernoulli terms. Similar to the GM-PHD filter implementation, these terms are compactly
represented as a C++ struct using standard floats while the 4D state is conveniently represented via
Armadillo vectors. Moreover, based on labeled RFSs, each instance of this struct has a unique 2D
intlabel vector that acts as a tag for each tracked target. Each of the sub-blocks shown in Figure 3 is
implemented via C++ functions as member functions of the LMB filter class.

• Filter initialization: This function is executed once for each instance of the tracker class at the
time of its construction. Here, all of the tracker parameters are set, like the number of particles to
represent state-pdfs, the maximum number of LMB components allowed to represent the posterior
multi-target state, etc., along with the state-space modeling parameters.

• Birth model: Similar to GM-PHD filter implementation, the birth model in the SMC-LMB tracker
implementation relies on the associations between the measurements obtained in consecutive
scans. However, in the case of the birth of new targets, instead of representing it via a GM, a new
multi-Bernoulli term is generated. In the current implementation, we find speeds in the Cartesian
space between every detection pair using the current and the immediate past detection scan. If the
speeds for a specific pair lie within the tracker-parametrized Vmax value, the pair is deemed to
correspond to a single target, and hence, a new target track is created. This track is initialized via
parametrized existence probability while its state-pdf is supposed to be a Gaussian, and a certain
number of particles are drawn from it stochastically. This number of particles is also parametrized,
and we recommend them to be within powers of two for ease in GPU particle-level processing.
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• Predict LMB: This module carries out the LMB prediction. Specifically, it generates predict-LMB
terms for new-born targets from the birth model, as well as survive-LMB terms for existing targets
via current update-LMB terms. We use two different sets of LMB terms instead of a single one, as
it is much easier to do further conversion into δ-GLMB components separately and then merge
them together.

• Predict-LMB to predict-δ-GLMB: Both of computed birth predict-LMB, as well as surviving
predict-LMB terms are then converted to their δ-GLMB terms. This step is necessary to allow the
δ-GLMB update later in the data flow. Now, even for a moderate number of targets/pedestrians,
these δ-GLMB could become large, and processing them quickly becomes computationally
expensive. Like for the case of the GM-PHD tracker, we introduce pruning schemes to cap the
maximum number of components. However, in contrast to the former approach, the components
have not yet been computed. Therefore, to avoid computation of all such components followed by
the propagation of significant components, we rather formulate this problem as a K-shortest path
problem and use the computationally-efficient Eppstein solution [18] (using the Bellman–Ford
algorithm [19] internally) to directly compute only the significant components without the need
for further pruning. Interested readers are encouraged to read [4] in order to come up with such
a formulation.

After computing the separate δ-GLMB components for the new-born and existing targets, they
are convolved together to give the overall δ-GLMB terms that are used for the update phase in the
next scan/iteration while the LMB terms are simply concatenated together.

• Update LMB intermediate: This is the first step within the update step of the SMC-LMB recursion.
It computes all possible update LMB terms based on every possible association of the current
measurement-set with the previous scan predict LMB terms. These terms would be required later
on in conversion of update δ-GLMB terms to their equivalent LMB terms. Hence, these terms are
considered intermediate within the recursion.

• δ-GLMB update: This step performs the closed-form δ-GLMB update on the predict δ-GLMB [4]
terms as obtained in the previous iteration. Here, again, we are confronted with the similar
problems of rapidly growing terms and have to employ some sort of a cap on the maximum
number of components to deal with computational complexity. However, because of the
measurement involvement, this problem is formulated as the K-best assignment problem as
opposed to the K-shortest path problem. To solve this problem, we rely on using the Murty
algorithm [20] (using the Hungarian method internally) as explained in greater detail in [4].

• Update LMB: As shown in Figure 3, coming up with the update LMB terms within each
tracker iteration involves a two-fold process. First, a conversion from update δ-GLMB terms
to corresponding LMB terms is carried out such that the LMB set matches the PHD terms of
the δ-GLMB set as was explained in [13]. Next, the particles needed to represent each of LMB
term’s state probability density functions pi(.) are replaced with new set in a commonly-used
procedure referred to as particle resampling to deal with the particle impoverishment problem.
The computation of these LMB components completes the SMC-LMB recursion.

• Track management: In contrast to GM-PHD tracker, no special procedures are required to
output target tracks, as the SMC-LMB filter outputs update LMB terms containing unique tags,
i.e., outputting target tracks or trajectories directly. Here, again, the techniques of merging
(to combine tracks formed from single target) and pruning (for tracks that we are not yet confident
of being either a new target or clutter) are used just like for the case of the GM-PHD tracker.

• State estimation: The final step within each tracker iteration is to estimate individual target
states and to associate them to already existing tracks/trajectories. For this, we use Mahler’s
ESFfunction [4] to first estimate stochastically the cardinality of the current multi-target state
based on the pruned update LMB terms. Then, a certain number of most weighted/significant
components corresponding to this cardinality estimate is chosen for state-estimation. Using the
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particle representation of these components, an empirical measure is easily derived for each
chosen component.

Figure 3. Block diagram of sequential Monte Carlo (SMC)-labeled multi-Bernoulli (LMB)
tracker recursion.

3.3. OpenCL Acceleration

Being satisfied with the tracking accuracy of the SMC-LMB tracker (Section 4), an extensive
profiling of the above-mentioned algorithm in C++ was carried out for the purpose of spotting
potential performance bottlenecks. As clear from the detailed analysis presented in Section 4, the
primary source of execution performance bottleneck within the recursion is the computation of
update LMB terms, roughly amounting to 75% of the computations. Therefore, in our strategy to
improve the execution performance of the algorithm, instead of redesigning the whole algorithm from
scratch via programming constructs, we relied rather on a hybrid of C++ and OpenCL computation
code. We transformed the sequential execution of the update LMB function into OpenCL kernels
to significantly improve the timing performance of the whole algorithm. The main implementation
aspects of this strategy are outlined below:

• Generation of uniform random numbers on the GPU itself using the AMD CLRNGcompute library.
• Breaking down the for-loops within the update block down to the level of particle computations.
• Efficient parallel scan (prefix-sum) on the cumulative weight array to carry out the particle

resampling procedure.
• Optimized memory organization for the LMB terms throughout the update part of the recursion

as a high amount of memory transfers between the host CPU and GPU accelerator severely affects
the performance and could possibly outdo the benefits achieved via GPU computations.
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• The number of particles allocated for each of the LMB terms is chosen to be in powers of two,
which makes it easier to use shared-memory optimizations within GPU computations for further
acceleration of the application.

• We use the extensive vector operation module for vectorizing code.
• Each Gaussian component is computed in a separate thread; as the number of targets increases,

the number of components increases very rapidly. This feature exploits all advantages of a
parallel architecture.

4. Experimental Evaluations

This section presents a detailed evaluation and analysis of the pedestrian tracking system as
explained in previous sections. Primarily, the analysis was carried out in two-fold. We discuss the
tracking accuracy performance of the proposed design followed by its execution performance analysis.

4.1. Evaluation Metrics

It is paramount to have a clear notion of evaluation metrics before carrying out the actual
evaluation of the system itself. Given below is a brief overview of these evaluation metrics, which will
be used to evaluate the proposed system.

4.1.1. Tracking Accuracy

As mentioned earlier, the multi-target tracking problem attempts to jointly find the number of
targets, as well as their individual states from the received measurements with the passage of time.
Therefore, to quantify such a tracker’s accuracy, we make use of following metrics:

• Cardinality estimate: this metric extracts the number of targets at the end of each tracker recursion.
This can then be compared with the truth/actual cardinality of the multi-target state to figure out
the tracking errors in this respect.

• Optimal sub-pattern assignment (OSPA): this metric defines a notion of mis-distance and
corresponding error between actual and estimated individual target states as proposed firstly
by [21].

4.1.2. Execution Performance

For profiling the tracker algorithm’s execution performance, we use a simple mechanism involving
the computation of the number of CPU cycles across the algorithm. In the context of video processing,
we can obtain an average measure of frames per second as a computational throughput measure for
the tracker via:

f ps =
Number of frames in video

Total execution time
(24)

4.2. Tracking Accuracy Analysis

This section details this work’s findings regarding the tracking performance of the proposed
LMB tracker. In order to evaluate the tracker for providing this analysis, we make use of a simulation
analysis, as well as using available dataset videos.

4.2.1. GM-PHD and SMC-LMB Comparisons

For carrying out an extensive analysis for evaluating the tracking accuracy of the implemented
LMB tracker, we created a 2D surveillance point-target-based simulation scenario. The target motion
dynamics, as well as the sensor model were made to follow linear/Gaussian characteristics. Apart
from that, the simulation was designed to be highly parameterized in the number of targets; their
birth locations; their birth times and death times; their detection and survival probabilities; the
amount of clutter; process/measurement noise, etc. This helps to generate a diverse range of
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simulation scenarios to adequately understand the tracking accuracy performance under the influence
of different constraints.

For the comparison, we designed two artificial simulation scenarios, whereby we simulated
12 linearly moving targets for a duration of 100 time steps. The first scenario was designed to show
the accuracy performance of the algorithm under highly ideal tracking conditions, while the other
scenario posed slightly more challenging conditions. These were parameterized as:

• Easy tracking scenario: pS,k = 0.98, pD,k = 0.98, σv = 1 m/sec2, σw = 1 m, � = 1 s, λc = 5.

• Hard tracking scenario: pS,k = 0.90, pD,k = 0.90, σv = 5 m/sec2, σw = 10 m, � = 1 s, λc = 60.

where pS,k, pD,k are the survival and detection probabilities. � is the sensor sampling period or the
inter scan-time. σv, σw represent the variances within the Gaussian process and measurement noises,
respectively. The parameter λc denotes the clutter density, which is defined to be the average number
of clutter returns.

As can be seen from Figure 4, the GM-PHD tracker performs apparently perfectly in the easy
scenario for estimating the individual target states as illustrated by the OSPA measure. The cardinality
estimate, however, shows that even in ideal conditions, the tracker does make occasional mistakes. This
is attributed to the adaptive birth distribution model, being embedded inside the tracker algorithm,
which requires some initial scans to confirm successive measurements of the new target in order
to confirm it as a new track. This leads to cardinality errors at target births. Avoiding this can
lead to tracker performance being severely affected, causing it to consider every new detection as a
new target, which could very well be a clutter detection or a false-alarm. Similarly, when the target
dies, the tracker expectedly makes mistakes because the algorithm cannot be sure about the target
disappearance as an actual death or a miss-detection because of sensor imperfection. If one designs
the tracker algorithm to abruptly terminate tracks just because of one misdetection, then tracker
performance could suffer drastically. Consider for example the occurrence of a target misdetection.
When such a target is re-detected, then the tracker would consider it to be a new target/track instead
of continuing the previous known track. This behavior in most tracking scenarios is undesirable.
Furthermore, these plots clearly show the worsening performance of the tracker in dealing with more
severe tracking environments.

To evaluate the SMC-LMB tracker, we used a configuration of 512 particles and cap the update
δ-GLMB hypotheses and the δ-GLMB components to a maximum of 100. Figure 5 presents the
corresponding results under the designed simulation scenarios. It is a clear from these plots that using
a sufficiently high number of particles/samples (like 512 in our case) to approximate the true posterior
density, the LMB tracker shows comparable, if not better, performance than the more suitable GM-PHD
tracker for linear/Gaussian systems. Especially under severe tracking scenarios where the targets
show considerable deviation from the linear/Gaussian as governed by the higher σv value, these
results justify the use of SMC-based trackers for MTT tracking, by showing their robustness in dealing
with process modeling imperfections.
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(a) (b)

(c) (d)

Figure 4. Tracking accuracy of the GM-PHD tracker. (a) Optimal sub-pattern assignment (OSPA)
distance (easy-scenario); (b) OSPA distance (hard-scenario); (c) cardinality estimate (easy-scenario);
(d) cardinality estimate (hard-scenario).

(a) (b)

(c) (d)

Figure 5. Tracking accuracy of the SMC-LMB tracker. (a) OSPA distance (easy-scenario);
(b) OSPA distance (hard-scenario); (c) cardinality estimate (easy-scenario); (d) cardinality estimate
(hard-scenario).
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4.2.2. MOT Dataset Analysis

This subsection presents the tracking accuracy performance of the LMB tracker system on publicly
available dataset videos. The goal of the analysis is to further build on the understanding of the tracking
accuracy analysis developed via comprehensive simulations and to see whether the simulation results
correspond to pedestrian tracking scenarios in actual video footage.

For this purpose, we use an effective benchmark named the Multiple Object Tracking Challenge [3].
This benchmark is designed to provide video footage covering diverse multi-target tracking contexts
where the goal is to track pedestrians accurately. The benchmark is designed as a competition where
the current state-of-the-art approaches are ranked as per their tracking accuracy. The pedestrian
detections are already provided by the benchmark so the accuracy of tracking directly depicts the
efficiency of the tracking algorithm in dealing with various tracking challenges.

For the sake of brevity, in this section, we present an evaluation analysis of the LMB tracker on
two of the MOT videos as summarized in Table 1:

• KITTI-17: static camera; mostly linear target motion
• PETS09-S2L1 static camera; targets move in irregular patterns

Table 1. MOT dataset videos.

Video Resolution Number of Frames Unique Targets Maximum Targets per Frame Target Density

KITTI-17 1224 × 370 145 9 4 4.7
PETS09-S2L1 768 × 576 795 19 8 5.6

Figure 6 shows the corresponding accuracy plots when these videos are fed to the LMB tracker
for pedestrian tracking. For the KITTI-17 video, the tracker takes some initial frames to confirm target
tracks, thereby making cardinality errors in the initial frames, but once the tracks are confirmed, the
tracker performs highly accurately in tracking each of the pedestrian motions. The reason for such
small OSPA distances in the later phase of the video can be attributed to the motion characteristics of
the pedestrians. In the KITTI-17 video, most targets move in a straight line, i.e., in a linear fashion,
hence the tracker performs as expected, as well as per the simulation analysis.

On the other hand, the PETS09-S2L1video presents a much tougher challenge in that the
pedestrians move in irregular patterns like moving abruptly or moving in circles, etc. As mentioned
earlier, due to the use of linear state-space models internally in the current SMC-LMB tracker
implementation, the accuracy performance deteriorates. Specifically, due to model deviation
from actual pedestrian motion, the tracker keeps on making erroneous predictions, and when the
corresponding target’s measurement does not tally with this prediction, the algorithm terminates
the track as evident by regular cardinality errors in the plots. Furthermore, the OSPA distances are
relatively high as compared to the KITTI-17 plots.

4.2.3. Execution Results:

In a heterogeneous platform with an Intel Xeon processor and an AMD GPU W7100, we carried
out the extensive profiling of the implemented SMC-LMB tracker algorithm. First, we extensively
evaluated the execution performance of the C++ code to spot the potential performance bottlenecks.
These were then subjected to OpenCL acceleration to come up with an implementation meeting the
real-time constraints. We made use of the MOT videos (Table 1) to carry out this analysis.

For helping in spotting the potential bottlenecks, we split the main C++ algorithm into six parts,
which are: (a) predict LMB; (b) predict δ-GLMB; (c) update LMB intermediate; (d) update δ-GLMB;
(e) update LMB; (f) track-management and state-estimation.

Using the CPU clock-cycle metric as mentioned at the start of this section, we present our findings
in Figure 7. These plots clearly show that the update LMB computation is the major bottleneck within
the sequential SMC-LMB implementation. For KITTI-17, we get an average fps of 20 fps, while for the
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worst-case (WC) frame, we get up to 5 fps. For a more tough video PETS09-S2L1, we rather get an
average fps of 15 fps over all frames, while the WC frame corresponds to about 2 fps.

(a) (b)

(c) (d)

Figure 6. LMB tracker accuracy: MOT dataset videos. (a) OSPA distance KITTI-17; (b) OSPA distance
PETS09-S2L1; (c) cardinality estimate KITTI-17; (d) cardinality estimate PETS09-S2L1.

As explained in Section 3, we target the update LMB computation using OpenCL compute
kernels. Using this acceleration, we manage to gain substantial improvements in terms of execution
performance, as shown in Figure 8, where for the PETS09-S2L1 video, we now get an average fps
of 100 fps, while the WC frame amounts to 36 fps. Figure 9 further compares the OpenCL timings
directly with the C++ ones to further show the substantial gains in performance for the two algorithmic
functions that have been accelerated up till now.

Figure 7. C++ LMB tracker execution performance.
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Figure 8. OpenCL accelerated LMB tracker execution performance.

(a) (b)

Figure 9. Comparison between C++ and OpenCL LMB implementations. (a) Update LMB computation,
(b) Update LMB intermediate computation.

Finally, we also carried out the profiling of the LMB tracker algorithm under its different
configurations. We studied the impact of changing its number of particles, birth components, survive
components and update components. For this purpose, we used four different configurations
(Table 2) to tackle a variant of the hard-scenario using λc = 5. These results are presented in
Figure 10. As shown in these plots, the OpenCL implementation not only offers advantages in
terms of sheer execution timings, but also provides a much more scalable implementation as compared
to its pure C++ counterpart. The execution times rise nearly exponentially for both MOT videos
in the case of the C++ version, while the rise is much less steep or rather linear for the case of the
OpenCL-based implementation.

(a) (b)

Figure 10. Scalability of C++ and OpenCL LMB implementations. (a) C++ implementation;
(b) OpenCL implementation.

67



Sensors 2017, 17, 843

Table 2. LMB tracker configurations.

# Particles # Births # Survivals # Updates

128 5 20 20
256 10 50 50
512 20 100 100

1024 50 200 200

At last, we have to note that there is still much room to improve the computation time while
maintaining the tracking accuracy. In this paper, the prediction and update have been processed in
two separate steps. This separation decreases the computation efficiency. In a recent paper, Vo et al. [5]
proposed an efficient implementation by combining the prediction and update into a single step, which
has a linear complexity in the number of hypothesized objects. It has been shown in [5] that the joint
computation can speed up the execution time ranging from a dozen times to a thousand times for
the linear Gaussian scenario. In our scenario, the joint computation can improve the performance on
KITTI17 more than on PETS09 because most targets in KITTI17 move linearly. Figure 8 shows that
the computation part of updating and predicting has taken 99% of the computation for KITTI17 and
95% for PETS09. It is therefore estimated that that there will around a 10- to 100-times computation
speedup. The speedup effect on PETS09 will be less than on KITTI17 because targets in PETS09 move
in a nonlinear way.

5. Conclusions

In this paper, we have developed two random finite set-based Bayesian filtering approaches,
Gaussian mixture probability hypothesis density (GM-PHD) and labeled multi-Bernoulli (LMB) filters.
The two approaches were designed in a highly modular way. After conducting their accuracy
evaluations towards the multi-target tracking problem, we found that LMB filters were more
appropriate to track the pedestrians. Then, we implemented in the LMB filter in C++ and carried out
an extensive execution profiling. OpenCL programming was used to relieve the execution burden from
the execution bottlenecks. The experimental results demonstrated a high computation improvement.
In particular, the frame per second was improved from 15 fps to 100 fps on average, and the worst-case
computation was also improved 18× from 2 fps to 36 fps.
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Abstract: Estimating the state of a dynamic system via noisy sensor measurement is a common
problem in sensor methods and applications. Most state estimation methods assume that
measurement noise and state perturbations can be modeled as random variables with known
statistical properties. However in some practical applications, engineers can only get the range
of noises, instead of the precise statistical distributions. Hence, in the framework of Dempster-Shafer
(DS) evidence theory, a novel state estimatation method by fusing dependent evidence generated
from state equation, observation equation and the actual observations of the system states considering
bounded noises is presented. It can be iteratively implemented to provide state estimation values
calculated from fusion results at every time step. Finally, the proposed method is applied to a
low-frequency acoustic resonance level gauge to obtain high-accuracy measurement results.

Keywords: DS evidence theory; state estimation; liquid level measurement; alarm monitoring

1. Introduction

Estimating the state of a dynamic system based on noisy sensor measurements is a common
problem in sensor methods and applications [1,2]. Mainstream estimation methods all assume that
both the system state noise and measurement noise can be modeled as random variables with known
statistical properties. The Kalman filter, which supposes both of noises obey Gaussian distributions, is,
by far, the most popular method [3]. The basic Kalman filter is only applicable to linear systems.
In order to deal with nonlinear cases Bucy and Sunahara proposed the extended Kalman filter
(EKF) [4,5]. The EKF uses the first order Taylor expansion technique to linearize state and observation
equations, and then obtains state estimations by the Kalman filter. On the other hand, approximation to
a state probability distribution of a nonlinear system is, to a great extent, easier and more feasible than
a linear approximation to a nonlinear function [6]. Based on this idea, Gordon and Salmond proposed
the particle filter (PF) [6]. The performance of the PF is commonly superior to the EKF because it can
usually provide more precise information about state posterior probability distribution than does the
EKF, especially when it takes a multimodal shape or noise distributions are non-Gaussian [6,7].

The precondition of the above methods is that the noise statistical properties must be known.
However, in some practical applications, what engineers can obtain are not precise statistical
distributions [8], but ranges of noises. Hence, a group of state estimation methods considering bounded
noises, also known as the bounded-error methods, appeared [9–12]. Assuming that all variables belong
to known compact sets, these methods build simple sets, such as ellipsoids or boxes, guaranteed to
contain all state vectors consistent with given constraints. For linear systems, some scholars began to
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study such state estimation methods in the 1960s [9–11]. For nonlinear systems, the corresponding
studies are relatively rare. Khemane et al. and Jaulin proposed bounded-error state and parameter
estimations for nonlinear systems [13,14]. Gning proposed a relatively simple and fast bounded-error
method based on interval analysis and constraint propagation, which was successfully applied to
dynamic vehicle localization [12], but when the noise bounds cannot be precisely determined, its
robustness will unavoidably decline [7]. That is to say, if the bounds are too tight, then the data may
become inconsistent with the system equations, and in this case, this method fails to provide a solution.
On the contrary, if the bounds are overestimated, then the estimated state becomes very imprecise, and
this method becomes overly pessimistic [7].

In order to deal with this problem, Nassreddine proposed an improved method by integrating
interval analysis with DS evidence theory. Its key idea is to replace the set-based representation of
uncertainty by a more general formalism, namely, mass functions in evidence theory [7]. It introduces
possibility distributions to model bounded noises, and then uses mass functions, i.e., evidence
composed of interval focal elements and their masses to approximate these distributions. Essentially,
such mass functions can be regarded as “generalized boxes” composed of a collection of boxes with
associated weights. These mass functions can be propagated in the system equations using interval
arithmetic and constraint-satisfaction techniques to get the mass function of system state at each time
step. Pignistic expectation of this mass function is calculated as the state estimation value. Therefore,
this approach extends the pure interval approach, making it more robust and accurate.

Nassreddine’s research showed the powerful ability of DS evidence theory to deal with the
uncertainty of dynamic systems. Hence, this paper further presents a new state estimation method,
which uses not only evidential description of uncertainty, but also dependent evidence fusion. Here,
the state equation and the observation equation of a dynamic system and the actual observations of
system states are regarded as three information sources. The random set description of evidence and
extension principle of random set is used to obtain state evidence and observation evidence from
these three information sources and to propagate them in the system equations. There are correlation
among these evidence, so the proposed combination rule of dependent evidence is used to fuse the
propagated evidence and Pignistic expectation of fusion results is calculated as state estimation value
at each time step. Compared with Nassreddine’s method, it is shown that the proposed approach
generates more accurate estimation results by combining dependent evidence. An industrial liquid
level detection apparatus was employed to show the better performance of the approach.

2. Foundations of Dempster-Shafer (DS) Evidence Theory

The DS theory is a mechanism formalized by Shafer for representing and reasoning with uncertain,
imprecise, and incomplete information. It is initially based on Dempster’s original work on the
modeling of uncertainty in terms of upper and lower probabilities induced by a multi-valued mapping
rather than as a single probability value [15]. One of the specificities of this theory is that the objects
of study are no more the universe, i.e., a set, defined as the frame of discernment hereinafter, but the
power set of this universe. In this section we introduce some main concepts of this theory and some
necessary notions that will be used in the proposed approach. A more detailed exposition and some
background information can be found in [16].

2.1. Basic Concepts in DS Evidence Theory

Definition 1 (Frame of discernment). A set is called a frame of discernment if it contains mutually exclusive
and exhaustive possible hypotheses. This set is usually denoted as Θ. The power set of Θ is denoted as 2Θ.

Definition 2 (Mass function). A function m: 2Θ → [0, 1] is called a mass function on Θ if it satisfies the
following two conditions: (1) m(∅) = 0; (2) ∑A∈2Θ m(A) = 1. This function is also named as a basic belief
assignment (BBA). A subset A with a non-null mass is viewed as a focal element. Commonly, if an information
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source can provide a mass function on Θ, then this mass function is called a body of evidence, abbreviated to
evidence (E).

Definition 3 (Dempster’s combination rule). If m1, m2 are two BBAs induced from two statistically
independent information sources, then a combined BBA can be obtained by using Dempster’s combination rule:

m(A) =

⎧⎪⎨⎪⎩
∑

B∩C=A
m1(B)m2(C)

1− ∑
B∩C=∅

m1(B)m2(C)
, A ⊆ Θ and A �= ∅

0, A = ∅

(1)

Note that the Dempster’s combination rule is meaningful only when ∑B∩C=∅ m1(B)m2(C) < 1 , i.e.,
m1 and m2 are not totally conflicting. This rule can be used to synthesize uncertain, imprecise or incomplete
information coming from different sources.

2.2. The Degree of Dependence and the Combination of Dependent Evidence

In DS evidence theory, Dempster’s combination rule is the most important tool for computing a
new BBA from two BBAs based on two pieces of evidence. This rule requires that the two pieces of
evidence must be independent, which is considered to be a very strong constraint and cannot always
be met in practice. Wu, Yang and Liu [17] pointed that if there are two pieces of evidence which are
partially derived from the same information source, then both of them are mutually dependent. This
interpretation concentrates on the connotation of independence conception in evidence combination
operation. In this case, Wu, Yang and Liu [17] proposed the energy of evidence concept, and then,
deduced the degree of dependence and the dependency coefficient between the two from the energy
of the intersection of the two. Based on these notions, the combination of dependent evidence can
be realized.

Definition 4 (The energy of evidence E). The energy of evidence E, En(E) is defined as:

En(E) =
n(E)

∑
i = 1

Ai �= Θ

m(Ai)

|Ai| (2)

where |Ai| is the number of elements in the focal element Ai, n(E) is the number of distinct focal elements in E.
Obviously, En(E) have some valuable characteristics: (1) if every m(Ai) = 0, namely, m(Θ) = 1, then En(E) = 0
and the evidence E represents no useful information; (2) if |Ai| = 1 and m(Θ) = 0, then En(E) = 1 and the E
contains the maximum useful information; (3) En(E) ∈ [0, 1].

Suppose that the BBAs of evidence E1 and E2 are m1 and m2, respectively, and their focal element sequences
are Ai and Bj. It is possible that some focal elements of E1 and E2 are induced by the same information source. In
this case, E1 and E2 will be dependent, then the energy of the intersection of the two pieces of evidence can be
described by:

En(E1, E2) =

|{Dij}|
∑

ij = 1
Dij �= ∅

m(Dij)∣∣Dij
∣∣ (3)

where Dij denotes dependent focal element, |{Dij}| is the number of distinct Dij and the BBA function m is
derived from m1 and m2.

The relationship of En(E1), En(E2) and En(E1, E2) is illustrated in Figure 1; especially, En(E1, E2) = 0
implies the independence between E1 and E2. The value of En(E1, E2) measures the dependency of the
two pieces of evidence.
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Figure 1. The relationships of two pieces of dependent evidence.

Definition 5 (The degree of dependence between two pieces of evidence). En(E1, E2) is defined as the
degree of dependence between E1 and E2. Actually, the partial energies En(E1) − En(E1, E2) in E1 and En(E2)
− En(E1, E2) in E2 are independent of each other. If energy En(E1, E2) is partitioned into two parts, with each
part attached to E1 and E2, respectively, as follows:

D(E1, E2) =
2En(E1, E2)

En(E1) + En(E2)
(4)

then two corresponding independent pieces of evidence can be generated from E1 and E2.
For E1, its final independent energy can be calculated as:

En f (E1) = En(E1)− En(E1, E2) + En(E1, E2)
En(E1)

En(E1)+En(E2)

= En(E1)− En(E1, E2)
En(E2)

En(E1)+En(E2)

= En(E1)
(

1 − En(E1,E2)
En(E1)+En(E2)

∗ En(E2)
En(E1)

)
= En(E1)

(
1 − 1

2 D(E1, E2) ∗ En(E2)
En(E1)

) (5)

Similarly:

En f (E2) = En(E2)

(
1 − 1

2
D(E1, E2) ∗ En(E1)

En(E2)

)
(6)

Definition 6 (The dependency coefficient between two pieces of evidence). The dependency coefficient of
E1 to E2 is defined as:

R12 =
1
2

D(E1, E2)
En(E2)

En(E1)
(7)

and the dependency coefficient of E2 to E1 is defined as:

R21 =
1
2

D(E1, E2)
En(E1)

En(E2)
(8)

E1 and E2 can be modified by R12 and R21, respectively, to obtain their corresponding independent E1
′ and

E2
′, their BBA functions are given by:

m1
′(A) =

⎧⎨⎩ (1 − R12)m1(A), ∀A ⊆ Θ, A �= Θ
1 − ∑

A⊂Θ
m1

′(A) A = Θ (9)

m2
′(B) =

⎧⎨⎩ (1 − R21)m2(B), ∀B ⊆ Θ, B �= Θ
1 − ∑

B⊂Θ
m2

′(B) B = Θ (10)

Consequently, the requirement of Dempster’s rule is met and the combination of E1
′ and E2

′ can be
implemented according to Dempster’s rule in (1). Finally, the combination of E1 and E2 is indirectly realized
by the combination of E1

′ and E2
′. Actually, reference [17] gives the decorrelation method to correct E1 and E2

by dependency coefficients such that the corrected E1
′ and E2

′ can be deemed as the independent evidence and
combined using Dempster’s rule.
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2.3. The Random Set Description of Evidence

2.3.1. Random Set and Random Relation

Definition 7 (Random set [18,19]). A finite support random set on Θ is a pair (F ,m) where F is a finite
family of distinct non-empty subsets of Θ and m is a mapping F → [0, 1] and such that ∑A∈Fm(A) = 1.

F is called the support of the random set and m is called a basic belief assignment. Such a random set
(F ,m) is equivalent to a mass function in the sense of Shafer.

Definition 8 (Random relation [18,19]). Let Θ = Θ1 × Θ2 × . . . × Θn be a multi-dimensional space, where
“×” indicates Cartesian product. A finite support random relation is a random set (F ,m) on Θ.

The projections of a random relation on Cartesian product Θ1 × Θ2 × . . . × Θn are defined by Shafer to
be the marginal random set (F k,mk) (k = 1,2, . . . , n):

∀Ck ⊆ Θk, mk(Ck) = ∑
{

m(A)
∣∣∣Ck = ProjΘk

(A)
}

(11)

ProjΘk
(A) = {uk ∈ Θk|∃u = (u1, · · · , uk, · · · un) ∈ A} (12)

For ∀A ∈ F , A = C1 × C2 × . . . × Cn, if m(A) = m1(C1) × m2(C2) × . . . × mn(Cn), then (F ,m) is
called decomposable Cartesian product random relation, and marginal random sets (F 1,m1 ), (F 2,m2), . . . ,
(Fn,mn) are mutually independent.

2.3.2. Extension Principles

Let ξ = (ξ1, ξ2, . . . , ξn) be a variable on Θ = Θ1 × Θ2 × . . . × Θn, ζ = f (ξ), ζ ∈ Φ, f : Θ→Φ is the
function of ξ. The random set (R,ρ) of ζ, which is the image of random relation (F ,m) of ξ through f, is
given by extension principles [20–22]:

R = {Ri = f (Ai)|Ai ∈ F} (13)

ρ(Rj) = ∑
{

m(Ai)
∣∣Rj = f (Ai)

}
(14)

where:
f (Ai) = { f (u)|u ∈ Ai}, i = 1, 2, · · · , M (15)

M is the number of element of F . The summation in Equation (14) accounts for the fact that more than
one focal element Ai may yield the same image Rj through f.

The key of constructing (R,ρ) is to calculate the image of Ai through f. If ξ is a continuous variable
on Θ, then Θ = Rn, F becomes a finite family of distinct non-empty sub-intervals on Θ. In this case,
the process of constructing (R,ρ) is given as follows:

For each ξk in ξ, let its marginal random set be (F k,mk) and the focal element of (F k,mk) be a
interval [ak

-,ak
+], then the focal element of (F ,m) can be given as:

A = [a−1 , a+1 ]× · · · × [a−n , a+n ] (16)

The image of A can be calculated by using the methods of Interval Analysis [19–21]; if A is a
convex set, then A has 2n vertices, denoted as vj (j = 1,2, . . . , 2n). If function f has certain properties,
the Vertex Method can help reduce the calculation time considerably [22]:

Proposition 1. ∀A ∈ F , if ζ = f(ξ) is continuous in A and also no extreme point exists in this region (including
its boundaries), then the value of interval function can be obtained by:

f (A) = R = [min
j

{ f (vj) : j = 1, 2, · · · , 2n}, max
j

{ f (vj) : j = 1, 2, · · · , 2n}] (17)
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Thus, function f has to be evaluated 2n times for each focal element A. This computational burden can be
further reduced if the hypotheses of the following Proposition 2 hold [21].

Proposition 2. If f is continuous, if its partial derivatives are also continuous and if f is a strictly monotonic
function with respect to each ξk, k = 1, 2, . . . , n, then:

∃ vmin, f (vmin) = min
j

{ f (vj) : j = 1, 2, · · · , 2n} (18)

∃ vmax, f (vmax) = max
j

{ f (vj) : j = 1, 2, · · · , 2n} (19)

There is a case in point. Let ξ = (ξ1,ξ2,ξ3), A = [a1
-,a1

+] × [a2
-,a2

+] × [a3
-,a3

+]. Assume f and
its partial derivatives are all continuous. If f is increasing with respect to ξ1 and ξ2, decreasing with
respect to ξ3 respectively, then f has to be calculated only twice for each focal element A, namely, f(A) =
[f(vmin),f(vmax)], vmin = [a1

-,a2
-,a3

+], vmax = [a1
+,a2

+,a3
-]. Totally, 2M evaluations of f are needed to obtain

complete (R,ρ).
Furthermore, the expectation of (R,ρ) is given by [23]:

E(ρ) =
N

∑
j=1

ρ(Rj) ·
(

r+j + r−j
2

)
(20)

where Rj = [rj
-, rj

+], j = 1,2,· · · , N, N is the number of focal element Rj.

3. State Estimation Based on Dependent Evidence Fusion

3.1. Dynamic System Model under Bounded Noises

The dynamic systems mode constructed by the state and observation equations is as follows:{
xk+1 = f (xk, vk)

zk+1 = g(xk+1, wk+1)
k = 1, 2, 3, · · · (21)

where the relationship between state xk+1 at time k + 1 and state xk at time k is described as function
f. The relationship between observation zk+1 at time k + 1 and state xk+1 at time k + 1 is described
as function g. vk and wk are bounded additive state noise variable and observation noise variable
respectively, which are independent of each other. These two noises can be approximated to triangle
possibility distributions [7], noted as πv and πw, respectively, (the noise distributions are identical at
each time step), as shown in Figure 2.

πv(v) =

⎧⎪⎨⎪⎩
v−va
vc−va

i f va ≤ v ≤ vc
vb−v
vb−vc

i f vc ≤ v ≤ vb

0 otherwise
(22)

where [va,vb] is the support interval of the state noise, vc is the mode of state noise, similarly:

πw(w) =

⎧⎪⎨⎪⎩
w−wa
wc−wa

i f wa ≤ w ≤ wc
wb−w
wb−wc

i f wc ≤ w ≤ wb

0 otherwise
(23)
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(a)                       (b) 

Figure 2. (a) Triangle possibility distributions of state noises, (b) Triangle possibility distributions of
observation noises.

3.2. Recursive Algorithm of State Estimation Based on Extension Principles and Dependent Evidence Fusion

Figure 3 shows the flow of the proposed recursive algorithm. The following steps will be
introduced in detail.

( , )x x
k km

1| 1|( , )x x
k k k k

1| 1|( , )z z
k k k km�

1 1( , )z z
k km

1 1
ˆ ˆ( , )z z
k km

1 1
ˆ ˆ( , )x x

k k

1| 1 1| 1
ˆ ˆ( , )x x
k k k km�

1| 1ˆk kx

Figure 3. Flowchart of state estimation iterative algorithm.

Step 1: Construct noise evidence to approximate πv and πw. Initially, we construct evidence
(F v

k , mv
k) to approximate the possibility distribution πv of state noise variable vk. For any α ∈ (0, 1], α

cut set of πv is [9]:
[πv−

α , πv+
α ] = {v|πv(v) ≥ α} (24)

If there exist α0, α1,· · · , αp−1 which satisfy 0 = α0 < α1 <· · · < αp−1 < 1, then their corresponding
α-cut sets will satisfy [πv−

α0
, πv+

α0
] ⊂ [πv−

a1
, πv+

a1
] ⊂ · · · ⊂ [πv−

αp−1
, πv+

αp−1
] where p is a positive integer.

Take these p α-cut sets as focal elements with nested closed interval forms, then their corresponding
BBAs are:

m([πv−
αi

, πv+
αi

]) =

⎧⎪⎨⎪⎩
αi+1

αi+1 − αi
1 − αi

i f i = 0
i f i = 1, 2, · · · , p − 2

i f i = p − 1
(25)

Figure 4 gives an example that when p = 3, and m can be constructed by uniformly cutting α three
times. Distinctly, m corresponds to a possibility distribution π that approximates πv. Certainly, a better
approximation of the continuous possibility distribution can be obtained by increasing the number p
of cut sets, at the expense of higher computational complexity.
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2 2 2([ , ]) 1v vm
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Figure 4. The possibility distribution of state noise and its evidence construction.

It is worth noticing that m is constructed on the condition that all values outside the support
interval [va,vb] are completely impossible. However, in practice, the bounds va and vb are commonly
given based on available measurement knowledge or real data, so they may not be precise and the
values outside [va,vb] may appear. To account for the imprecision of the support interval [7], constructs
(F v

k , mv
k) by discounting m with a small discount rate εv, in which, mv

k is defined as [9]:

mv
k(A) =

{
(1 − εv)m(A)

(1 − εv)m(Θ) + εv

i f A ∈ Ξ
i f A = Θ

(26)

where Ξ =
{
[πv−

αi
, πv+

αi
]
∣∣∣i = 1, 2, · · · , p − 1

}
, Θ = R, accordingly, F v

k = Ξ ∪ Θ. In the course of

implementing the proposed algorithm, Θ can be replaced by the closed interval [va
′,vb

′], here va
′ >> va

and vb
′ >> vb such that the following interval operations can be done easily.

In the same way, we can construct evidence (Fw
k , mw

k ) using the possibility distribution πw of
observation noise variable wk.

Step 2: Obtain state prediction evidence. Ex
k+1|k = (Rx

k+1|k, ρx
k+1|k) at time k + 1 from state

equation. Suppose the estimation result at time k is x̂k|k. When k = 1, x̂1|1 is initialized as real
observation z1. Considering the influence of noise to the state, we construct the state evidence (F x

k , mx
k )

of x̂k|k by adding noise to x̂k|k:

F x
k =

{
[πv−

α0
+ x̂k|k, πv+

α0
+ x̂k|k], [πv−

a1
+ x̂k|k, πv+

a1
+ x̂k|k], · · · , [πv−

αq−1
+ x̂k|k, πv+

αq−1
+ x̂k|k], Θ

}
; mx

k = mv
k

Thus, taking (F v
k , mv

k) and (F x
k , mx

k ) as the inputs of state equation xk+1 = f (xk, vk), we can get
the state prediction evidence Ex

k+1|k = (Rx
k+1|k, ρx

k+1|k) by mapping from the inputs to the outputs
based on the extension principles in Equations (13) and (14).

Step 3: Obtain observation prediction evidence. Ez
k+1|k = (F z

k+1|k, mz
k+1|k) at time k + 1 from

observation equation.
Taking the state prediction evidence (Rx

k+1|k, ρx
k+1|k) in Step 2 as the input of the

observation equation g(xk+1), we can get Ez
k+1|k = (F z

k+1|k, mz
k+1|k) based on the extension

principles in (13) and (14).
Step 4: Obtain fusion evidence. Êz

k+1 = (F̂ z
k+1, m̂z

k+1|k) at time k + 1 in observation domain.
Firstly, in Step 1, we get evidence (Fw

k , mw
k ) using the possibility distribution πw of wk:

Fw
k =

{
[πw−

α0
, πw+

α0
], [πw−

a1
, πw+

a1
], · · · , [πw−

αp−1
, πw+

αp−1
], Θ

}
mw

k = mv
k

After getting observation zk+1 at time k + 1, considering the influence of noise to the observation,
we construct the evidence (F z

k+1, mz
k+1) of zk+1 through adding noise to zk+1:

F z
k+1 =

{
[πw−

α0
+ zk+1, πw+

α0
+ zk+1], [πw−

a1
+ zk+1, πw+

a1
+ zk+1], · · · , [πw−

αp−1
+ zk+1, πw+

αp−1
+ zk+1], Θ

}
; mz

k = mw
k .

Secondly, using Dempster′s combination rule, we fuse (F z
k+1, mz

k+1) and (F z
k+1|k, mz

k+1|k) to get

the fusion evidence Êz
k+1 = (F̂ z

k+1, m̂z
k+1) in observation domain at time k + 1. As for the relationship

between (F z
k+1|k, mz

k+1|k) and (F z
k+1, mz

k+1). The former is obtained by propagating x̂k|k from state
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equation f (xk, vk) to observation equation g(xk+1); the latter is constructed by adding noise πw(w) to
zk+1. It can be seen that the former completely comes from the state information x̂k|k at past time step
k which does not use the observation noise wk+1(πw(w)), but uses the state noise vk(πv(v)). Because
wk+1(πw(w)) and vk(πv(v)) are independent of each other, so it is believed that the former and the
latter are also independent of each other. Hence both of them can be directly fused using Dempster′s
combination rule.

Step 5: Get new evidence. Êx
k+1 = (R̂x

k+1, ρ̂x
k+1) at time k + 1 in state domain.

Taking F̂ z
k+1, m̂z

k+1 attained in the Step 4 as the input of inverse function g−1(zk+1), we can get
(R̂x

k+1, ρ̂x
k+1) by using the extension principles in Equations (13) and (14).

Step 6: Get state estimation evidence. (F̂ x
k+1|k+1, m̂x

k+1|k+1) and state estimate x̂k+1|k+1 at time
k + 1.

Using Dempster′s combination rule, we can fuse (Rx
k+1, ρx

k+1) attained in Step 5 and
(Rx

k+1|k, ρx
k+1|k) attained in Step 2. That is to say, we utilize the former to revise the latter to get

state estimation evidence (F̂ x
k+1|k+1, m̂x

k+1|k+1). (R̂x
k+1, ρ̂x

k+1) is obtained by inverse mapping of fusion

evidence (F̂ z
k+1, m̂z

k+1) in observation domain. (F̂ z
k+1, m̂z

k+1) is obtained by the fusion of observation
evidence (F z

k+1, mz
k+1) and observation prediction evidence (F z

k+1|k, mz
k+1|k). In Step 3, it is noted

that (F z
k+1|k, mz

k+1|k) is related to (Rx
k+1|k, ρx

k+1|k), so (R̂x
k+1, ρ̂x

k+1) and (Rx
k+1|k, ρx

k+1|k) are certainly
mutually dependent. Therefore, the combination of dependent evidence must be used for fusing both
of them. For the focal elements of (R̂x

k+1, ρ̂x
k+1) and (Rx

k+1|k, ρx
k+1|k) are the closed intervals on real

numbers, here we extend the combination of dependent evidence in the discrete frame of discernment
introduced in Section 2.2 to that in the continuous frame of discernment (see the corresponding
proposition and example in Appendix A). (R̂x

k+1, ρ̂x
k+1) and (Rx

k+1|k, ρx
k+1|k) can be fused using the

extended combination of dependent evidence to get state estimation evidence (F̂ x
k+1|k+1, m̂x

k+1|k+1) at
time k + 1.

Finally, Pignistic expectation of (F̂ x
k+1|k+1, m̂x

k+1|k+1) is calculated as state estimation value
x̂k+1|k+1 by Equation (20). Using state estimation at time k + 1 to do next iteration, we can estimate
state at every time step.

In conclusion, as shown in Figure 3, the whole recursive algorithm is actualized under the
framework of DS evidence theory. The corresponding evidence in state and observation domains are
not only propagated and transformed by the extension principle, but also fused by the Dempster′s
combination rule and the proposed combination rule for dependent evidence. Especially, fusion
procedure can make that the masses focus to those interval focal elements that contain the system state,
so as to get the accurate estimation results, which is the main difference from Nassreddine’s method
under the framework of the interval analysis. In next section, our approach will be applied to liquid
level estimation using an industrial level apparatus to show its better performance than possible with
Nassreddine’s method.

4. Application to Liquid Level Measurement

Level measurement methods based on sound reflection phenomena have been successfully
applied in some areas of process industry (chemical, waste water treatment, petroleum, etc.) because
the level is the main monitored process variable used in industrial alarm systems. Ultrasonic
measurement methods, with good directivity, convenient operation and so on, have become some of
the most commonly used techniques [24]. Their measuring principle is to emit an ultrasound toward
a liquid surface and receive the echos, then to calculate the distance from the surface to the acoustic
receiver device by multiplying the sound velocity by the round-trip time [25]. However, this method
is susceptible to the quality of the instrument itself and environmental noise, which will deteriorate
the measurement accuracy. Besides, if the ultrasound encounters foams, residues, deposits, etc., in the
measurement process, it is also prone to parasitic reflection, thereby the ultrasound propagation path
is changed, which seriously affects the measurement accuracy [26].
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On the contrary, low-frequency sound waves have longer wavelength and it is easy to generate
the diffraction phenomenon which can effectively overcome the problem of parasitic reflection due
to foams, residues, deposits, etc. When a speaker emits sound waves with a uniform change from a
frequency fL to a higher frequency fH toward the surface and a microphone receives the corresponding
echoes, the generated standing wave signals extracted in the oscilloscope can be used to calculate
the height of the liquid level. Kumperščak and Završnik [25,26] used this idea to measure liquid
levels. However, they both directly used observations to calculate the liquid level. In practice, if
the measurements obtained by using a speaker and a microphone are not precise enough and if the
effect of environmental noise is inevitable, then the deviation of the final measurement results will be
unacceptable, which is the most common shortcoming in the present level measurement methods.

In our earlier work [27], we have used the Evidential Reasoning(ER) rule to deal with liquid
level estimation with bounded noises, but the ER-based method only provides an initial idea for state
estimation under the framework of DS evidence theory and only gives precise estimated results when
the level length is less than 1.6 m. In order to improve the evidence fusion-based state estimate method,
this paper introduces a new information source, Dempster combination rule and evidence dependence
conceptions. We construct the state equation and observation equation based on the principle of level
measurement using acoustic standing waves, and then use the proposed algorithm to estimate the
frequencies of the standing waves, which can be translated into the liquid level height (0 m–10 m).
Compared with the direct measurement method and Nassreddine’s method, the estimation results
verify that our algorithm has obvious advantages and improves the level estimation accuracy.

4.1. Acoustic Standing Wave Level Gauge

The structure of an acoustic standing wave level gauge is shown in Figure 5, and mainly consists
of a waveguide (a tube), a speaker, a microphone, a thermometer and a controller. When sound waves
in the frequency range [fL,fH] generated by a signal generator (audio card and speaker) vertically
propagate to a surface and echoes appear, superposition of both waves will generate standing waves.
Here, y1 denotes the sound wave generated by speaker and y2 denotes the echo reflected by the surface:

y1 = A cos 2π(Pt − L
λ
) (27)

y2 = A cos 2π(Pt +
L
λ
) (28)

The synthesis wave of y1 and y2 can be expressed as:

y = 2A cos(π
2L
λ
) cos(2πPt) (29)

where A is the amplitude of sound wave, P is the frequency of sound wave and L is the distance from
the top of the tube to the surface of liquid as shown in Figure 5. From Equation (29), we know that
when L and λ have the following relation, the amplitude of synthesis wave reaches the maximum:

L = nk
λk
2

k = 1, 2, 3, · · · (30)

In this case, this synthesis wave is defined as the standing wave and its wavelength is:

λk =
c
fk

=
331.4 + 0.6T

fk
(31)

where λk is the wavelength of kth standing wave, fk is the frequency of kth standing wave (kth resonance
frequency) in [fL,fH]. c is sound velocity, and T is temperature.
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Figure 5. Structure of a level gauge.

Substituting Equation (30) into Equation (31), we obtain:

L =
nk(331.4 + 0.6T)

2 fk
(32)

where, nk is given as [28]:

nk =
fk

( fk+1 − fk)
(33)

and:
nk+1 = nk + 1 (34)

Theoretically, in Equation (33), fk+1 − fk = fF, fF is the fundamental resonance frequency and
fk = nk fF, nk ∈ N+ (the set of all positive integers) [26,28]. For example, if L = 9.6 m, T = 23.9 ◦C,
and n = 1, then the fundamental resonance frequency can be calculated by (32):

fF =
n(331.4 + 0.6T)

2L
= 18Hz (35)

If the frequency range [fL,fH] is [1000 Hz, 2500 Hz], then there are 82 resonance frequencies in this
range, k = 1, 2,· · · , 82, and nk = 56,57,· · · ,137. Consequentially, f 1 = 56 × 18 Hz, f 2 = 57 × 18 Hz,· · · ,
f 82 = 137 × 18 Hz.

4.2. System Model

Firstly, we consider the resonance frequency as the estimated state and construct the corresponding
state equation. If we can continuously collect the resonance frequency fk+1, then we have the
following equations:

L =
nk+1(331.4 + 0.6T)

2 fk+1
(36)

From Equations (32) and (36), obviously, we can get:

nk+1(331.4 + 0.6T)
2 fk+1

=
nk(331.4 + 0.6T)

2 fk
(37)

fk+1 =
nk + 1

nk
fk (38)

Consequentially, we can establish the recursive linear state equation and observation equation,
respectively:

xk+1 =
nk + 1

nk
xk + vk (39)
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zk+1 = xk+1 + wk+1 (40)

where xk = fk, zk is the observation of fk, wk and vk are independent noise sequences coming from
speaker and microphone, respectively, satisfying the conditions:

vk = [va, vb] (41)

wk = [wa, wb] (42)

The intervals [va,vb] and [wa,wb] denote the boundaries of the state noise and observation noise,
respectively. The state noise vk and observation noise wk can be expressed by possibility distributions
πv and πw with the support intervals [va,vb] and [wa,wb], respectively.

It should be noted that, in theory, nk in (39) should be taken as a positive integer. However, in
practice, it can be only calculated by observations zk and zk+1 according to Equation (33). Because
of observation imprecision, the calculated nk is commonly not a positive integer, so it should be
approximated as:

nk = ‖ zk
(zk+1 − zk)

‖ (43)

where “‖•‖” denotes the operator that “round numbers to the nearest integer”.

4.3. Liquid Level Estimation Tests

In order to construct the level gauge in Figure 5, we use a low-precision microphone and speaker
to emit and receive cosine sound waves, respectively, an electronic thermometer to collect temperature
and a PVC tube with a diameter of d = 75 mm to transmit sounds. The estimated level L is the distance
from the surface to the speaker platform. The controller transmits sine or cosine waves to drive the
speaker to emit the signals vertically to the liquid surface. We use the software AUDIOSCSI (Brothers
Studio, Shenzhen, China) which is based on an audio controller (82801HBM-ICH8M with sampling
rate 44,100 Hz, Intel Corporation, Santa Clara, CA, USA) to generate sound waves. The frequencies
of wave change with uniform speed from fL = 1000 Hz to fH = 2400 Hz in 5 s. Thus, the microphone
receives the synthesis waves and sends them to the controller as shown in Figure 6 (L = 4.6 m). It
can be seen that there are the frequencies of 39 adjacent standing waves collected by microphone in
[1000 Hz, 2500 Hz]. Figure 7 shows the resonance frequency fk (k = 1,2,· · · , 39) extracted from the
spectrum of the synthesis waves by the fast detecting algorithm in [28]. In this experiment, set liquid
level distance L = 4.6 m, the ambient temperature is 26.5 ◦C and sound velocity is 347.3 m/s. The state
equation and observation equation of resonance frequency are shown in Equations (39) and (40).

For the state noise vk, we use a high-precision oscillograph (TPS2024, Tektronix, Shanghai,
China) to receive the cosine sound waves emitted by the audio controller and speaker in range
[1000 Hz, 2500 Hz] and calculate errors about 100 frequency points uniformly selected from 1000 Hz to
2500 Hz. As in [7], the bounds of vk, are taken to be plus or minus three times the standard deviation of
errors. So the possibility distributions πv of vk can be constructed as in Figure 8. Where the expectation
of πv is 0, standard deviation σv is 0.1, then the support intervals [va,vb] = [−0.3, 0.3], mode vc= 0. Set
α0 = 0, α1 = 1/3, α2 = 2/3, we can get three nested closed intervals and their BBAs to approximate πv

as in Figure 8.
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Figure 6. Waveform graph (L = 4.6 m).
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Figure 7. Resonance frequencies and amplitudes (L = 4.6 m).
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Figure 8. Probability distribution πv of state noise v.

Furthermore, in Step 1 of the proposed algorithm in Section 3.2, discounting m at rate εv = 0.05
and approximating as the closed interval [vc − 100σv, vc + 100σv] = [−10, 10], we can construct the
evidence (F v

k , mv
k) of vk according to Equation (26) as shown in Table 1.

Table 1. Evidence of state noise.

F v
k [−0.1, 0.1] [−0.2, 0.2] [−0.3, 0.3] [−10, 10]

mv
k 0.3167 0.3167 0.3167 0.05

The observation noise wk is mainly related to the microphone and the fast detecting algorithm.
Firstly, we extract observation values of resonance frequencies in range [1000 Hz, 2500 Hz] about 30
level values uniformly selected from L = 1.3 m to L = 10.6 m by the fast detecting algorithm. Secondly,
we calculate the errors between the theoretically correct values (true values) and observation values.
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In the same way, the possibility distributions πw of wk and the corresponding closed intervals and
their BBAs can be constructed as in Figure 9, where, σw = 1.23, wc = −6.9, so [wa,wb] = [−10.59,
−3.21]. Furthermore, discounting m at rate εv = 0.05 and approximating as the closed interval
[wc − 100σw,wc + 100σw] = [−129.7, 115.7], we can construct the evidence (Fw

k , mw
k ) of wk shown in

Table 2.

0

([ 8.13, 5.67]) 1 / 3m

([ 9.36, 4.44]) 1/ 3m

([ 10.69, 3.21]) 1/ 3m

Figure 9. Probability distribution πw of observation noise w.

Table 2. Evidence of observation noise.

Fw
k [−8.13, −5.67] [−9.36, −4.44] [−10.59, −3.21] [−129.7, 115.7]

mw
k 0.3167 0.3167 0.3167 0.05

From Figure 7, it can be seen that the first observation value of resonance frequency z1 = 1023.3 Hz.
According to Step 2) in Section 3.2, the first estimation result x̂1|1 is initialized as the real observation
z1. After obtaining (F v

1 , mv
1) and (Fw

1 , mw
1 ), our recursive algorithm presented in Section 3.2 can be

used to estimate resonance frequencies at each step k. Figure 10a gives the estimation results of our
method and Nassreddine’s method, together with the true values and observations (zk). Figure 10b
gives the absolute errors between true values and the estimated values of our method, the estimated
values of Nassreddine’s method, and zk respectively. It can be seen that the estimation accuracy and
convergence of our method are better than those of Nassreddine’s method because of the focusing
function of the proposed fusion procedure for dependent evidence.
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Figure 10. (a) Estimation results of resonance frequencies, (b) Absolute values of frequency
estimation errors.

Finally, we can calculate the estimate level L by Equation (32) according to the estimated resonance
frequencies of our method, Nassreddine’s method, and zk respectively as shown in Figure 11a,b
gives the corresponding absolute values of length estimation errors. Obviously, the more accurate
the estimations of resonance frequencies are, the more accurate the estimations of level L are. As
our method always provides more accurate estimations of resonance frequencies, it is therefore
always superior.
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Figure 11. (a) Estimation results of level L, (b) Absolute values of length estimation errors.

More experiments are performed for different values of L to find the mean of absolute values
of estimation errors and to show the efficacy of the proposed method as shown in Table 3. Here, for
every values of L, from above to below, Table 3 gives in order the experiment results of our method,
Nassreddine’s method, and direct measurement method (namely, substituting zk into (32)).

Table 3. Experimental results for different values of L.

No
True L

(m)
T (◦C)

Runtime
(s)

Mean Error
(m)

No
True L

(m)
T (◦C)

Runtime
(s)

Mean Error
(m)

1 1.3 27
1.81 0.0126

6 5.6 26.5
20.11 0.018

0.88 0.016 4.81 0.0374
- 0.238 - 0.0661

2 2.1 26.5
2.49 0.0254

7 6.6 26.5
23.57 0.0238

1.33 0.0364 5.61 0.0436
- 0.0441 - 0.088

3 2.6 26.5
7.81 0.0144

8 7.6 26.5
27.94 0.0299

2.05 0.0297 6.77 0.0530
- 0.0591 - 0.1060

4 3.6 26.5
9.62 0.0141

9 8.6 23.9
31.23 0.0216

2.34 0.0312 7.41 0.0456
- 0.0468 - 0.1295

5 4.6 26.5
16.07 0.0160

10 9.6 23.9
35.15 0.0435

3.81 0.0337 8.36 0.0732
- 0.0552 - 0.1624

It should be noted that the calculation complexity of our algorithm is relatively high, and
meanwhile, with the increase of the measured length of level, the corresponding synthetic wave
contains more and more resonance frequency points, so the CPU time will increase, so it needs a
longer time (the hardware in this test: CPU E8400, CPU Clock Speed 3.00 GHz, RAM 2 GB). But to
the situation that liquid level change relatively slowly, our method is applicable. Certainly, the rapid
development of data processing capability of computer hardware will make the complexity less of
an issue.

5. Conclusions

The subject of Nassreddine’s method is still interval analysis, it introduces evidence, namely
belief-function to elaborate bounded noises. In detail, it gives the improved form of noise bounds (the
triangular possibility distribution), here the error interval is extended to the evidence construction,
namely many interval focal elements with the corresponding belief assignments. Obviously, the latter
has more information than the former. Then, it still uses interval arithmetic and constraint-satisfaction
techniques to propagate not only interval focal elements, but also its belief assignments, hence its
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performance is slightly better than that of pure interval propagation. However, the subject of our
method is DS evidence theory and random set theory and introduces Dempster combination rule
and evidence dependence conceptions. Although we still use Nassreddine’s evidence construction
technique, the random set description of evidence and extension principle of random set are used to
obtain state evidence and observation evidence from the defined information sources and to propagate
them in the system equations. The main contribution is to realize the fusion of the propagated evidence,
in which the degree of dependence and the combination of dependent evidence are further considered.

As a whole, compared with Nassreddine’s method, our method increases the state estimation
accuracy. The application in liquid level estimation using an industrial level apparatus shows the
efficacy of the proposed method. Certainly, it is worth noting that, in a given application, there are
some constraint conditions such as the continuous, monotonic and invertible properties of state and
observation equations, and state observability. When they cannot be satisfied, the computational
burden will inevitably be increased because of the use of additional complex interval operation
algorithms or matrix operation algorithms (for multidimensional states) in [21,22]. Hence fast operation
algorithms should be studied in the further. On the other hand, although the proposed procedure of
evidence fusion can make the masses focus to those interval focal elements that contain the system
state, so as to get the accurate estimation results, how to further evaluate the convergence of fusion
using available theories is still a problem worthy studying which will promote the usage of evidence
theory in state estimation.
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Appendix A

We first generalize the definition of evidence energy as shown in Proposition A1.

Proposition A1. Suppose E = (F x,m) is a body of evidence whose focal elements are the closed intervals. Energy
of the evidence E can be defined by:

En′(E) =
n(E)

∑
i = 1

[x−
i , x+i ] �= Θ

m([x−
i , x+i ])

d([x−
i , x+i ])/min

i
(d([x−

i , x+i ]))
(A1)

where [xi
+, xi

-] denotes interval focal element, d([xi
-, xi

+]) means interval width and n(E) is the number of
interval focal elements. For example, if E = (F x,m), A1 = [−0.3, 2.6], m(A1) = 0.3; A2 = [0.3,1.9], m(A2) = 0.7,
mind([xi

-, xi
+]) = 1.6, then:

En′(E) =
0.3

2.9/1.6
+

0.7
1.6/1.6

= 0.8655 (A2)

It can be proved that En′(E) meets the three conditions of the evidence energy: (1) if m(Θ) = 1, then En′(E)
= 0 and E represents no useful information; (2) if d([x−

i , x+i ]) = min
i
(d([x−

i , x+i ])) and m(Θ) = 0, then En′(E)

= 1 and E contains the maximum useful information; (3) En′(E) ∈ [0, 1].

Proof. For mass function satisfying ∑[x−
i ,x+i ]⊆Θ m([x−

i , x+i ]) = 1 and d([x−
i , x+i ])/min

i
(d([x−

i , x+i ])) ≥ 1,

there are four cases to discuss:
Case 1: If m(Θ) = 1 and the mass of other focal elements is zero, then En′(E) = 0, namely, the

evidence does not provide any information. So, the Condition (1) holds;
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Case 2: If m(Θ) = 0 and any interval focal element [xi
+,xi

-] meets that
d([x−

i , x+i ])/min
i
(d([x−

i , x+i ])) = 1, then En′(E) = 1, namely, the evidence provides maximum

useful information. The Condition (2) holds;
Case 3: If m(Θ) = 0 and not all of the interval focal elements [xi

+,xi
-] meet that

d([x−
i , x+i ])/min

i
(d([x−

i , x+i ])) = 1, then En′(E)∈(0,1);

Case 4: If 0 < m(Θ) < 1, then En′(E)∈(0,1);
From Case 1 to Case 4, the Conditions (3) can be proved. Let E1 = (F x,mx) and E2 = (F y,my) be

two pieces of evidence with closed interval focal elements. If some focal elements of E1 and E2 be
induced by the same information sources, then the energy of the intersection of the two pieces of
evidence can be described by:

En′(E1, E2) =

|{Dij}|
∑

ij = 1
Dij �= ∅

m(Dij)

d(Dij)/min{min
xi

{d([x−
i , x+i ]}, min

yj
{d([y−

j , y+j ])}}
(A3)

where Dij is the focal elements induced by the same sources, {Dij} is the set of these focal element,
|{Dij}| is the number of them. Consequentially, the degree of dependence between E1 and E2 can be
obtained by Definition 5:

D′(E1, E2) =
2En′(E1, E2)

En′(E1) + En′(E2)
(A4)

and the dependency coefficient between E1 and E2 can be redefined as:

R′
12 =

1
2

D′(E1, E2)
En′(E2)

En′(E1)
(A5)

R′
21 =

1
2

D′(E1, E2)
En′(E1)

En′(E2)
(A6)

E1 and E2 can be modified by R′
12 and R′

21 respectively to obtain the corresponding two pieces of
independent evidence E1

′ and E2
′, their BBA functions are given by:

m′
1([x

−
i , x+i ]) =

⎧⎨⎩ m1([x−
i , x+i ])(1 − R′

12), [x−
i , x+i ] �= Θ

1 − ∑
[x−

i ,x+i ]′⊂Θ
m′

1([x
−
i , x+i ]) [x−

i , x+i ] = Θ (A7)

m′
2([y

−
j , y+j ]) =

⎧⎪⎨⎪⎩
m2([y−

j , y+j ])(1 − R′
21), [y−

j , y+j ] �= Θ
1 − ∑

[y−
j ,y+j ]⊂Θ

m′
2([y

−
j , y+j ]) [y−

j , y+j ] = Θ (A8)

After obtaining BBAs of E1
′ and E2

′, we can use Dempster combination rule to fuse E1
′and E2

′,
namely, to fuse the dependent evidence E1 and E2 indirectly. �

Although Wu, Yang and Liu [17] gave the definition of the energy of the intersection as in
Equation (3), this conception of intersection is obscure, namely, Dij and m(Dij) are rarely clearly
defined. Nevertheless, in our method, the two pieces of dependent evidence are (R̂x

k+1, ρ̂x
k+1) and

(Rx
k+1|k, ρx

k+1|k), according to the interval operations (extension principles and combination rule) used

to generate them,
{

Dij
}
= R̂x

k+1 ∩Rx
k+1|k and m(Dij) = ρ̂x

k+1(Dij) = ρx
k+1|k(Dij).

For example, if the focal elements of the new fusion evidence (R̂x
k+1, ρ̂x

k+1) can be given as: A1 =
[−0.30, 2.60], m(A1) = 0.3; A2 = [0.30, 1.90], m(A2) = 0.6, A3 = [0.32, 1.93], m(A3) = 0.1; the focal elements
of the state estimation evidence (Rx

k+1|k, ρx
k+1|k) can be given as: A1 = [0.21, 3.50], m(A1) = 0.1, A2 =

[0.41, 1.61], m(A2) = 0.3, A3 = [0.30, 1.90], m(A3) = 0.6, then Dij = [0.30, 1.90], m(Dij) = 0.6. From
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Equation (A1), obviously, we can get En′(R̂x
k+1, ρ̂x

k+1) = 0.8655, En′(Rx
k+1|k, ρx

k+1|k) = 0.7865, then the
energy of the intersection of the two pieces of evidence can be calculated by Equation (A3):

En′(R̂x
k+1, ρ̂x

k+1), (Rx
k+1|k, ρx

k+1|k) =
m([0.3, 1.9])

d([0.3, 1.9]/min{1.6, 1.2} =
0.6

1.6/1.2
= 0.45 (A9)

We can calculate the degree of dependence between the new fusion evidence and the state
estimation evidence by Definition 5 and from Equation (A4), we can get:

D′((R̂x
k+1, ρ̂x

k+1), (Rx
k+1|k, ρx

k+1|k)) =
2×En′((R̂x

k+1,ρ̂x
k+1),(Rx

k+1|k ,ρx
k+1|k))

En′(R̂x
k+1,ρ̂x

k+1)+En′(Rx
k+1|k ,ρx

k+1|k)
= 2×0.45

0.8655+0.7865 = 0.5448 (A10)

The new fusion evidence is denoted as E1, and the state estimation evidence is denoted as E2.
From Equations (A5) and (A6), we can get the dependency coefficient between E1 and E2:

R′
12 =

1
2
× 0.5448 × 0.7865

0.8655
= 0.2475, R′

21 =
1
2
× 0.5448 × 0.8655

0.7865
= 0.2997 (A11)

From Equations (A7) and (A8), we can calculate the BBAs of the corresponding E1
′ and E2

′ as
m′

1(A1) = 0.4733, m′
1(A2) = 0.4515, m′

1(A3) = 0.0752 and m′
2(A1) = 0.3697, m′

2(A2) = 0.2101,
m′

2(A3) = 0.4202. Finally, using the Dempster combination rule to fuse E1
′ and E2

′, we obtain state
estimation evidence (F̂ x

k+1|k+1, m̂x
k+1|k+1) as: A1 = [0.21, 2.60], m(A1) = 0.1749, A2 = [0.41,1.61], m(A2)

= 0.0994, A3 = [0.30, 1.90], m(A3) = 0.1988, A4 = [0.30, 1.90], m(A4) = 0.1669, A5 = [0.41, 1.61], m(A5)
= 0.0948, A6 = [0.30, 1.90], m(A6) =0.1890, A7 = [0.32, 1.93], m(A7) = 0.0278, A8 = [0.41, 1.61], m(A8) =
0.0157, A9 = [0.32, 1.90], m(A9) = 0.0315.
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Abstract: Novel auxiliary truncated unscented Kalman filtering (ATUKF) is proposed for
bearings-only maneuvering target tracking in this paper. In the proposed algorithm, to deal with
arbitrary changes in motion models, a modified prior probability density function (PDF) is derived
based on some auxiliary target characteristics and current measurements. Then, the modified prior
PDF is approximated as a Gaussian density by using the statistical linear regression (SLR) to
estimate the mean and covariance. In order to track bearings-only maneuvering target, the posterior
PDF is jointly estimated based on the prior probability density function and the modified prior
probability density function, and a practical algorithm is developed. Finally, compared with other
nonlinear filtering approaches, the experimental results of the proposed algorithm show a significant
improvement for both the univariate nonstationary growth model (UNGM) case and bearings-only
target tracking case.

Keywords: bearings-only target tracking; statistical linear regression; auxiliary truncated unscented
Kalman filtering

1. Introduction

Bearings-only maneuvering target tracking has been widely researched for decades. It is important
for many applications such as maritime surveillance, navigation and aerospace, wireless sensor
networks (WSN), and infrared search and track (IRST) systems [1–6]. However, while implementing
this technology in unlimited situations, there remain some challenging problems, such as multiple
platform tracking, uncertainty of the target model and nonlinear non-Gaussian noise. To deal with
the uncertainty of the motion model, such as abrupt target maneuver, heavy clutter measurements,
highly nonlinearity of dynamic models and nonlinear non-Gaussian noise, etc., the interacting multiple
model (IMM) [7] based on the nonlinear filtering algorithm is a promising approach. However, to
model the uncertainty of the motion model, the performance of the IMM-type algorithm is directly
proportional to the number of the motion models. Generally, the more motion models we produce,
the greater accuracy of the estimated state we obtain. However, the computational complexity of
the algorithm becomes larger with the increase of the numbers of motion models, particularly in
heavily cluttered environments. Moreover, the nonlinear filtering has been studied extensively in
bearings-only maneuvering target tracking.

As is well-known, the most widely used nonlinear filtering for bearing-only tracking is to employ
an extended Kalman filter (EKF) [8,9]. However, when the nonlinearity of dynamic models becomes
more severe, the performance of the EKF degrades sharply. In order to solve this problem, the
unscented Kalman filter (UKF) [10] and the truncated unscented Kalman filtering (TUKF) were
proposed [11,12]. Compared with other conventional Kalman filter-type approaches, the TUKF can
achieve better performance in the conditions of the target tracking system, and can provide very

Sensors 2017, 17, 972 89 www.mdpi.com/journal/sensors
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informative nonlinear measurements compared to the prior. Moreover, to take into account the
available additional information the state given by the constraint, Ondrej et al. [13] proposed a generic
local filter for the inequality constrained estimation problem, and designed an efficient truncation
technique based on the Monte Carlo integration method for the approximation of the state probability
density function. Beatriz et al. [14] proposed a constrained dual state and parameter estimation
algorithm using a dual Kalman filter (DKF) and a probability density function (PDF) truncation
algorithm for analysis of lateral vehicle dynamics.

In recent years, particle filtering has been widely used for bearing-only tracking. In [15], Gordon
proposed the first particle filtering algorithm based on the resampling step. The main idea is that the
posterior distribution can be approximated by series of random samples with associated weights, and
its parameter estimates can be computed by these samples and weights. Therefore, particle filtering
can deal with nonlinear non-Gaussian problems in terms of the dynamics and measurements. Recently,
many particle filtering methods have been proposed [16–18], for example, the extended Kalman particle
filter (EKF-PF), unscented particle filter (UPF), and the multivariable feedback particle filter (GPF) [18].
Moreover, for the maneuvering target tracking problem, many particle filters have been proposed
based on Markovian switching systems [19–22]. Boers et al. [19] proposed a interacting multiple model
particle filter algorithm (IMM-PF) by combining a mixture of the interacting multiple model (IMM)
filter with the particle filter. For the maneuvering target tracking problem in bearings-only wireless
sensor networks (WSNs), Atiyeh et al. [20] proposed a interacting multiple model particle filter to
estimate the state variables of the moving target. Li et al. [21] proposed a Rao–Blackwellized particle
filter based on multiple model algorithm for maneuvering target tracking in a cluttered environment.
Yu et al. [22] proposed a distributed particle filter by incorporating the curvature of the sensing region
in the measurement model for bearings-only tracking of a moving target. In their method, to reduce the
communication load, the transformation of the observations is approximated as Gaussian distribution,
which the variance can be approximated using the average variance over all particles. However, abrupt
target maneuvers, modeling uncertainty and the high nonlinearity of model function remain to be
unsolved issues.

For achieving a successful tracking performance, the aforementioned methods require accurate
motion models and adaptive nonlinear filtering methods. However, particularly in maneuvering target
tracking, accurate motion modeling is almost impossible, and an adaptive nonlinear filtering needs to
be used to handle abrupt maneuver of target. More importantly, these two challenges are not separate
problems and should be considered simultaneously. In previous research [23,24], Ehsan et al. [23]
proposed a new bearing-only bias estimation model based on triangulation using the associated
measurement reports (AMR) or local bearing-only tracks from different sensor pairs for distributed
tracking systems. Li et al. [24] proposed novel truncated quadrature Kalman filtering (TQKF) based on
the Gauss-Hermite quadrature rule for bearings-only maneuvering target tracking. In order to avoid
the requirement of the measurement function being bijective, the modified prior PDF of the TQKF
algorithm can be approximately computed by the least square estimation approach. However, the
most important limitation of the TQKF is the expensive computational burden, and it cannot be used
for real time target tracking.

In this paper, novel auxiliary truncated Kalman filtering (ATUKF) is proposed for bearings-only
maneuvering target tracking. Unlike the TUKF algorithm, to overcome the modeling uncertainty,
a modified prior probability density function (PDF) is defined based on several auxiliary target
characteristics and current measurements, which can effectively minimize the variance of the prior
distribution. Moreover, to achieve the requirement of bijective measurement function, the statistical
linear regression based on the unscented transformation is used to linearize the nonlinear measurement
function, and the modified prior PDF is approximated as Gaussian. Finally, the posterior PDF can be
approximately estimated based on the prior PDF and the modified prior PDF, and a practical algorithm
is developed for bearings-only target tracking systems.
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The rest of the paper is organized as follows. The proposed algorithm is given in Section 2.
In Section 3, we provide the experimental results. Finally, some conclusions are given in Section 4.

2. Proposed Algorithm

In order to track the maneuvering target, accurate motion modeling and nonlinear filtering are
two challenging problems that should not be separated. However, most research on maneuvering
tracking investigates these problems separately. In this section, in the bearings-only maneuvering
target tracking, novel auxiliary truncated unscented Kalman filtering is proposed. In Section 2.1, the
joint prior distribution is approximately constructed. In Section 2.2, in order to track the bearings-only
maneuvering target, the modified prior PDF is approximated based on statistical linear regression by
introducing the target spatio-temporal information. Section 2.3 summarizes the proposed algorithm.

2.1. Joint Prior Distribution

Suppose the target dynamic system can be written as:

xn = f (xn−1) + mn (1)

zn = h(xn) + en (2)

where zn ∈ Rnz denotes the observation vector at time n, xn ∈ Rnx denotes the target state vector
at time n, and f (·) and h(·) denote the nonlinear state transition function and observation function,
respectively.

Suppose that rn denotes the set of target characteristics including c independent components
rn =

{
r1

n, r2
n, . . . , rc

n
}

. In order to derive the proposed algorithm, there are two basic hypotheses,
firstly, that the nonlinear function hn(·) in (2) is a bijective, continuous function; and secondly, that the
probability density function of the measurement noise en has bounded, connected support.

pen(vn) = 0, en /∈ Ien ⊂ �nz (3)

where Ien is an nz-dimensional measurement validation region. Therefore, according to the second
assumption, the measurement likelihood function can be defined as follows:

p( zn|xn, rn) = pen(zn − hn(xn))χIen
(zn − hn(xn)) (4)

p(zn

∣∣∣xn, rn) = pen(zn − hn(xn))χIxn (zn)(xn) (5)

Ixn(zn) =
{

xn|xn = h−1
n (zn − en), en ∈ Ien

}
(6)

where χIen
(·) is the indicator function on the subset Ien . Therefore, the state posterior PDF can be

defined as:

p(x0:n|z1:n, r1:n) = p(zn |x0:n ,z1:n−1,r1:n)p(xn |x1:n−1,z1:n−1,r1:n)p(x1:n−1|z1:n−1,r1:n−1)
p(zn ,rn |z1:n−1,r1:n−1)

=
pek (zn−h(xn))χIx(zn)(xn)p(xn|xn−1,z1:n−1,r1:n)p(x1:n−1|z1:n−1,r1:n−1)

p(zk ,rk |z1:k−1,r1:k−1)

∝ p(zn|xn)p1(xn|zn, xn−1, r1:n)p(x1:n−1|z1:n−1, r1:n−1)

(7)

p1(xn

∣∣∣zn, xn−1, r1:n) = p(xn

∣∣∣xn−1, z1:n−1, r1:n)χIxn (zn)(xn)/ε1 (8)

where ε1 is a constant. From Equation (8), we can see that the modified prior PDF is defined by
incorporating the current measurement information zn. According to the conclusions in [11], if the
measurement noise is informative, the modified prior p1(·) is not only the minimum variance of the
prior p0(·), but also can improve the algorithm’s performance. Further, to deal with the uncertainty
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of motion models, the joint prior distribution p(xn|x0:n−1, z1:n, r1:n) of the proposed algorithm can be
defined as follows:

p(xn|x0:n−1, z1:n, r1:n) = αn p1(xn|zn, xn−1, r1:n) + (1 − αn)p0(xn|xn−1, z1:n−1)

= αn p(xn

∣∣∣xn−1, r1:n)χIxn (zn)(xn) + (1 − αn)p0(xn

∣∣∣xn−1, z1:n−1)
(9)

where αn ∈ [0, 1] is a proper parameter. To approximately calculate the mean and covariance of the
posterior distribution, we apply a UKF update to p0(·) (UKF1), and another UKF update to p1(·)
(UKF2). Finally, the posterior estimates can be approximately calculated through merging both results
obtained by UKF1 and UKF2.

2.2. Approximation of p1(·)
In the subsection, our object is to approximate the modified prior PDF p1(·) as Gaussian. For this

reason, we write the state vector as xn = [an
T , bn

T ]
T

, where an ∈ �na denotes the position components
of xn, bn ∈ �nb denotes the velocity components of xn, and nx = na + nb. The derivation of the mean
x̂p1,n and covariance Pp1,n of p1(·) is the same as in the truncated unscented Kalman filter (TUKF) [11],
which can be shown as follows:

x̂p1,n =

[
μan ,1

μbn ,1

]
, Pp1,n =

[
∑an ,1 ∑anbn ,1

(∑anbn ,1)
T ∑bn ,1

]
(10)

Σan ,1 = H̃−1
n Rn(H̃−1

n )
T

(11)

where μbn ,1, Σbn ,1, Σanbn ,1 can be found in [11]. μan ,1 denotes the estimated mean of state an, Rn

denotes the measurement noise covariance, and H̃−1
n = [∇an hT

n (an)]
T |an=μan ,1 is the Jacobian of hT

n (an)

evaluated at μan ,1.
Now, how to calculate the estimated mean μan ,1 remains a key problem to be solved. For the

passive sensor tracking system, the modeling of target dynamic system is a challenging problem when
the target maneuvers, and some auxiliary target characteristics need to be used to deal with arbitrary
changes in motion models. To achieve a high tracking performance, a statistical linear regression
method (SLR) [25] is proposed to estimate the state mean μan ,1.

Firstly, to evaluate the state mean μan ,1, three approximations are used: (S1) the prior PDF p0(an)

is constant over the connected region Ian(zn); (S2) the nonlinear function h(·) can be locally linearized;
and (S3) the measurement noise satisfies uniform distribution en ∼ UIen

in the connected region Ien .
According to S2, the nonlinear measurement Equation (2) can be approximated as a linear estimator of
zn, ẑn such that:

ẑn = �nan + dn (12)

where �n denotes a linear measurement matrix, and dn denotes a noise vector, which are derived by
minimizing the objective function defined as follows:

{�n, dn} = argminE(τn
Tτn) (13)

where τn is the linearization error, τn = zn − ẑn.
Substituting τn into (13), and setting the partial derivative of the objective function with dn to zero,

(−2)E(zn − �nan − dn) = 0
⇔ dn = zn − �nan

(14)

where an = E(xn) and zn = E(zn). Substituting dn into (13)

τTτ = [(zn − zn)− �n(an − an)]
T [(zn − zn)− �n(xn − xn)]
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Then, setting the gradient with respect to �n to zero,

(−2)E{[(zn − zn)− �n(an − an)][zn − zn])} = 0 (15)

Solving (15) for �n, we obtain:
�n = PT

anzn P−1
anan (16)

where Panan = E[(an − an)(an − an)
T ], Panzn = E[(an − an)(zn − zn)

T ]. According to the measurement
equation (12), the maximum likelihood position ân(zn) of target state an can be estimated as follows:

â(zn) = �n · (zn − dn) (17)

If the maximum likelihood estimate ân(zn) is used to replace the estimated mean μan ,1, the
performance of the proposed algorithm will be improved because the current measurement information
is incorporated. However, it cannot solve the uncertainty in motion models. In particular, when the
target speed or the measurement sampling interval is large, the tracking performance degrades.

More recently, sophisticated techniques have been based on the target motion characteristics [6],
which have been proposed to address the challenges in motion modeling. In their proposed method,
three target characteristics, such as actual target speed v, time interval T of measurement and course
angle θ of the target, are considered to improve the tracking performance. In (18), the relationship
between three target characteristics and the state predicted error is given:

∇σ =
√
(T · v)2 + (T · vn)

2 − 2T2v · vn cos(∇θ)

= T ·
√
(v)2 + (vn)

2 − 2v · vn cos(∇θ)
(18)

where vn denotes the current estimated velocity, ∇θ denotes the estimated error of course angle, and v
denotes the actual target velocity. Supposing ∇v = v − vn, we can obtain

∇σ = T ·
√
(v)2 + (vn)

2 − 2v · vn cos(∇θ)

= T ·√∇vn2 + 2v · (v −∇vn)(1 − cos(∇θ))
(19)

From Equation (19), we can find that the predicted error ∇σ increases monotonically with the
increase of the parameters (vn, T, ∇θ). In fact, when ∇vn > 50 m/s and T > 20 s, the predicted
error ∇σ will larger than 1000 m. It shows that the predicted error becomes a major reason for the
performance degradation. On the other hand, when the actual target speed is relatively small, the
prediction error caused by T or ∇θ is smaller than the measurement error. Therefore, to improve the
performance of mean estimate μan ,1, the maximum likelihood estimate ân(zn) is considered as the
latest observation, and the modified maximum likelihood estimates that can incorporate current target
characteristics is defined as follows:

ϕ̂(zn) = μan ,0 + Kn(â(zn)− �nμan ,0) (20)

Kn =
(

T2 · v2 · σ2
v (n)

)
/
(

λ · σ2
e (k) + T2 · v2 · σ2

v (n)
)

where λ is a constant, σ2
e (n) denotes the variance of measurement noise, and σ2

v (n) denotes the
innovation variance. According to (20) and (16), the mean μan ,1 and the variance Σan ,1 in (10) can be
approximated as:

μan ,1 = ϕ̂(zn), Σan ,1 = Panan (21)

Finally, the modified prior PDF p1(·) can be approximated as a Gaussian probability density
function p1(·) ≈ N(xn, x̂p1,n, Pp1,n).
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2.3. Summary of the Proposed Algorithm

According to the descriptions above, in order to describe clearly the proposed algorithm, the
diagram of the ATUKF is shown in Figure 1. In Figure 1, it is shown that one cycle of the ATUKF
algorithm consists of the following steps: (A) time update (predicted by using Kalman filtering); (B) the
measurement updates based on the prior p0(·) and the modified prior p1(·); and (C) weight calculation
and the joint state update. According to the derived results mentioned above and Figure 1, the detailed
information of the new ATUKF algorithm can be summarized as follows.
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Figure 1. Auxiliary truncated unscented Kalman filtering.

Algorithm: Auxiliary Truncated Unscented Kalman Filtering (ATUKF)

ATUKF—Update based on the prior probability density function (PDF) p0(·)

1. Obtain N = 2nx + 1 sigma points χ1
0, χ2

0..., χN
0 and the corresponding associated weights

w1, w2, ..., wN using unscented transform (UT ) based on the mean x̂n−1|n−1 and covariance
Pn−1|n−1 of the posterior PDF p0(xn|xn−1, z1:n−1, r1;n−1) , where nx denotes the dimension of state
x. The predicted sigma points can be obtained by the nonlinear state function f (·):

χi
0,n|n−1 = f (χi

0), i = 1, 2, . . . , N (22)
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2. Approximate the mean and covariance of the state-predicted prior PDF p0(xn|xn−1, z1:n−1)

x̂p,0,n|n−1 =
N

∑
i=1

wiχ
i
0,n|n−1 (23)

Pp,0,n|n−1 = Qn +
N

∑
i=1

wi(χ
i
0,n|n−1 − x̂p,0,n|n−1)(χ

i
0,n|n−1 − x̂p,0,n|n−1)

T
(24)

3. Compute the predicted measurement ẑ0,n|n−1 based on the nonlinear measurement function h(·):

zi
0,n|n−1 = h(χi

0,n|n−1), i = 1, 2, . . . , N (25)

ẑ0,n|n−1 =
N

∑
i=1

wiz
j
0,n|n−1 (26)

4. The cross-covariance, innovation covariance and error covariance are estimated as follows:

Pxz,0,n|n−1 =
N

∑
i=1

wi(χ
i
0,n|n−1 − x̂p,0,n|n−1)(z

i
0,n|n−1 − ẑ0,n|n−1)

T
, (Cross covariance) (27)

Pzz,0,n|n−1 = Rn +
N

∑
i=1

wi(zi
0,n|n−1 − ẑ0,n|n−1)(z

i
0,n|n−1 − ẑ0,n|n−1)

T
, (Innovation covariance) (28)

Pxx,0,n|n−1 =
N

∑
i=1

wi(χ
i
0,n|n−1 − x̂p,0,n|n−1)(χ

i
0,n|n−1 − x̂p,0,n|n−1)

T
, (Error covariance) (29)

5. Estimate the mean x̂u,0,n|n and covariance Pu,0,n|n using (30) and (31):

x̂u,0,n|n = x̂p,0,n|n−1 + Pxz,0,n|n−1P−1
zz,0,n|n−1(zn − ẑ0,n|n−1) (30)

Pu,0,n|n = Pp,0,n|n−1 − Pxz,0,n|n−1P−1
zz,0,n|−1PT

xz,0,n|n−1 (31)

ATUKF—Update based on the modified prior PDF p1(·)
1. Calculation of the mean x̂p,1,n|n−1 and covariance Pp,1,n|n−1 of the prior p1(·)

According to (14) and (16) in Section 2.2, the linear regression coefficients �n and dn can be
approximately computed by using Equations (27)–(29). The mean x̂p,1,n|n−1 and covariance
Pp,1,n|n−1 of p1(·) can be approximately estimated by (10) and (11), respectively.

2. Draw N new sigma points χ1
1,n|n−1, χ2

1,n|n−1, . . . , χN
1,n|n−1 with the associated weights

w1, w2, . . . . . . wN by using the UT based on the mean x̂p,1,n|n−1 and covariance Pp,1,n|n−1.
The predicted measurements of new sigma points are estimated as follows:

zi
1,n|n−1 = h(χi

1,n|n−1) (32)

3. Calculation of ẑ1,n|n−1, Pzz1,n|n−1 andPxz1,n|n−1

ẑ1,n|n−1 =
N

∑
i=1

wiz
j
1,n|n−1 (33)

Pzz,1,n|n−1 = Rn +
N

∑
i=1

wi(zi
1,n|n−1 − ẑ1,n|n−1)(z

i
1,n|n−1 − ẑ1,n|n−1)

T
, (Innovation covariance) (34)
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Pxz,1,n|n−1 =
N

∑
i=1

wi(χ
i
1,n|n−1 − x̂p,1,n|n−1)(z

i
1,n|n−1 − ẑ1,n|n−1)

T
, (Cross covariance) (35)

4. Estimate the mean x̂u,1,n|n and covariance Pu,1,n|n using (36) and (37):

x̂u,1,n|n = x̂p,1,n|n−1 + Pxz,1,n|n−1P−1
zz,1,n|n−1(zn − ẑ1,n|n−1) (36)

Pu,1,n|n = Pp,1,n|n − Pxz,1,n|n−1P−1
zz,1,n|n−1PT

xz,1,n|n−1 (37)

ATUKF—Jointly update

1. Calculate the parameter αn using (38) and (39)

μ1(x̂u,i,n) = 1/
√

|Pu,i,n| · exp((zn − hn(x̂u,i,n))/2), i = 0, 1 (38)

αn = μ1(x̂u,1,n)/(μ0(x̂u,0,n) + μ1(x̂u,1,n)) (39)

2. Approximate the mean x̂n and covariance Pn of the posterior PDF p(xn|z1:n) using (23) and (24).

x̂n|n = αn · x̂u,1,n|n + (1 − αn) · x̂u,0,n|n (40)

Pn|n = αn ·
[

Pu,1,n|n + (x̂u,1,n|n − x̂n|n
)

(x̂u,1,n|n − x̂n|n
)

T
]
+ (1 − αn) ·

[
Pu,0,n|n + (x̂u,0,n|n − x̂n|n)(x̂u,0,n|n − x̂n|n)

T
]

(41)

3. Simulation Results

In this section, to evaluate the tracking performance of the ATUKF algorithm, two examples
are employed. In Section 3.1, the univariate nonstationary growth model (UNGM) is discussed [11].
In Section 3.2, a bearings-only maneuvering tracking scenario [24], interested in defense applications,
is discussed. In the first case, the EKF, UKF, the quadrature Kalman filtering (QKF) [25], the mixture
truncated unscented Kalman filter (MTUKF, with three mixture components) [12] and particle
filtering(PF) are utilized. In the second case, the TQKF, interacting multiple model extended Kalman
filtering(IIMMEKF) and the interacting multiple model Rao–Blackwellized particle filter (IMMRBPF)
are employed. In all the experiments, each simulation has been repeatedly performed 100 times.

3.1. Univariate Nonstationary Growth Model (UNGM)

In this section, due to the highly nonlinearity and non-stationarity of dynamic system, the
univariate nonstationary growth model is considered. The discrete time system of this model can be
written as:

xn = αxn−1 + β
xn−1

1 + x2
n−1

+ γ cos(1.2(n − 1)) + mn (42)

zn =

{
φ2x2

n + en n ≤ 30
φ1x3

n − 2 + en n > 30
(43)

where the process noise mn is satisfied with Gaussian distribution with zero mean and variance one,
and en is satisfied with Gaussian distribution with zero mean and variance 0.01. α = 0.5, β = 25, γ = 8,
φ1 = 0.2 and φ2 = 0.05 are known constants. In each Monte Carlo simulation, we assume that the
initial distribution of state x0 is uniform distribution in the interval [0 1]. The number of particles
is 1000.

Figure 2 shows the root-mean-square position errors (RMSE) of the EKF, UKF, QKF, PF, MTUKF
and ATUKF. It is obvious from Figure 2 that the performance of the ATUKF is much better than that of
the EKF, UKF and QKF. In this case, the performance of the EKF is the poorest. A reason for the poor
performance of the EKF, UKF and QKF is the increase of the approximate error arising from the high
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nonlinearity and the non-stationarity of the dynamic system. Figure 3 shows the RMS position errors
of all filters with different noise variance σen ∼ [0.1 5]. From Figure 3, it is seen that whenever the
measurement is informative (σen < 1) or the measurement is uninformative (σen > 1), the ATUKF is
robust in all situations, its performance is similar to the MTUKF’s, and it is very close to that of the PF.
Moreover, among the EKF, UKF and QKF, the EKF has the poorest performance. In particular, when
the measurement is very informative (σen < 1), the EKF yields a divergent estimate.
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Figure 2. Root-mean-square (RMS) position errors of the extended Kalman filter (EKF), unscented
Kalman filter (UKF), quadrature Kalman filtering (QKF), PF, mixture truncated unscented Kalman filter
(MTUKF) and auxiliary truncated unscented Kalman filtering (ATUKF).
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Figure 3. RMS position error for different noise variances.

Table 1 shows the computation time statistics for all algorithms. In this case, all the experiments
are performed by using MATLAB programming on Intel-Core(TM)-i2-4030U processor (1.9 GHz)
based on the Windows platform. It can be seen from Table 1 that the computational load of the PF is
the largest than these of other filters, such as the EKF, UKF, QKF, MTUKF and ATUKF. The ATUKF
is very close to the QKF. Furthermore, the computation time for the ATUKF is much lower than the
MTUKF. The main reason is that the MTUKF approximates the posterior PDF as a Gaussian mixture,
and it makes the computational burden increase.
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Table 1. Comparison of the computation times of different filtering algorithms (s). UNGM: univariate
nonstationary growth model.

Case EKF UKF QKF PF MTUKF(3) ATUKF

UNGM 1.102 6.650 15.264 522.519 43.142 16.240

3.2. Bearings-Only Maneuvering Tracking (BOT) Scenario

In this scenario, the target makes two circular turns with rectilinear segments connecting them.
Figure 4 shows the true target trajectory. The speed modulus is kept constant throughout (0.3 km/s).
The initial position is (2 km, 8 km, 1 km), and the initial velocity is (0.15 km/s, 0.26 km/s, 0.0 km/s).
The segments are defined as follows:
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)

 

 
True Trajectory

Figure 4. True Trajectory.

First segment. Rectilinear flight until the plane is at (6.35 km, 15.53 km, 1 km) (from t = 0 s to
t = 30 s).

Second segment. Circular turn with turn rate 6o/s (from t = 31 s to t = 50 s).
Third segment. Rectilinear flight until the plane is at (14.31 km, 10.33 km, 1 km) (from t = 51 s to

t = 70 s).
Fourth segment. Circular turn with turn rate 4. 8o /s (from t = 71 s to t = 95 s).
Fifth segment. Rectilinear flight until the plane is at (21.26 km, 11.63 km, 1 km) (from t = 96s to

t = 100 s).
The motion model of target is defined as follows:

xs
n = Fsxs

n−1 + ms
n (44)

where xs
n = (x, y, z, x′, y′, z′) denotes the target state vector under model x, x, y and z denote the target

position coordinates, x′, y′ and z′are the target speed in x, y and z directions, respectively, Fs denotes
the transition matrix, and s ∈ {1, 2, . . . , M} denotes the target model index. In the maneuvering target
tracking scenario, only a constant velocity model is used for the ATUKF algorithm and TQKF algorithm.
In the IMMEKF and IMMRBPF, there are both clockwise- and counterclockwise-coordinated turn
models that are used to simulate the target maneuvering. The details of three target motion models are
defined as follows:

Model 1: Constant Velocity Motion

The state transition matrix and the process noise covariance matrix are defined by:
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F1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(45)

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
4 T4 0 0 1

2 T3 0 0
0 1

4 T4 0 0 1
2 T3 0

0 0 1
4 T4 0 0 1

2 T3

1
2 T3 0 0 T2 0 0
0 1

2 T3 0 0 T2 0
0 0 1

2 T3 0 0 T2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
· σ2

n (46)

where T denotes the sampling interval, in this paper, T is set to 1.

Model 2: Constant Turn Motion

The state transition matrix is:

F2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 sin(w)
w

cos(w)−1
w 0

0 1 0 1−cos(w)
w

sin(w)
w 0

0 0 1 0 0 1
0 0 0 cos(w) − sin(w) 0
0 0 0 sin(w) cos(w) 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(47)

where w is a constant angular rate. In this paper, w is set to 0.0175. The process noise covariance matrix
Q2 is the same as in Model 1.

Model 3: w > 0 describes a clockwise turn, and Model 3 is its natural counterpart for a
counterclockwise turn w < 0.

Two passive sensors are deployed in (0, −5 km, 0) and (0, 5 km, 0) respectively. Using the
detection fusion architecture [24], the azimuth and elevation angles of aircraft, αi and βi respectively,
measured by sensor i, are transmitted to the fusion node. The measurement function is written as:

h(xn) =

(
αi
βi

)
=

⎛⎜⎜⎝
arctan

( y−si,y
x−si,x

)
arctan

(
z−si,z√

(x−si,x)
2+(y−si,y)

2

) ⎞⎟⎟⎠ (48)

where (si,x, si,y, si,z), i = 1, 2 denote the positions of the stationary sensors. The measurement covariance

can be defined as Rn =

[
1 0
0 1

]
σ2

en .

The real initial position of the target is (2 km, 8 km, 1 km), and the initial velocity
is (0.15 km/s, 0.26 km/s, 0.0 km/s). The prior PDF of state x0 is assumed to be x0 ∼
N
(

x̂0|0, P̂0|0
)

, where x̂0|0 = [2.1 km 00. 12 kms−1 7.95 km 0. 23 kms−1 0. 95 km 0 kms−1]
T

, P̂0|0 =

diag[0.144 km 2 0. 022 km2s−2 0. 144 km2 0. 02.2 km2s−2 0 0]
T

. The standard deviation of the process
and the measurement noise are set to σmn = 0.01 and σen = 0.001, and these noises are zero-mean
Gaussian-distributed and independent. The number of particles is set to 200.

Figure 5 shows the X RMSE, Y RMSE, Z RMSE and position RMSE of the ATUKF compared with
IMMEKF, IMMRBPF and TQKF. From Figure 5, we can see that the RMSE of all algorithms abruptly
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increased from 30 s to 50 s, which is mainly due to the increase of the target predicted errors caused by
the target maneuvering. However, in Figure 5a,c,d, it is shown that the performance of the ATUKF
algorithm has outperformed the IMMEKF, IMMRBPF and TQKF. A key reason is that the proposed
algorithm can incorporate the target characteristic information and current measurement information
into the prior PDF, which can effectively degrade the variance of errors caused due to the maneuvering
of the target. Moreover, because the flight height of target remained unchanged, from Figure 5c, the Z
RMSE of all algorithms is very close.
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Figure 5. Root-mean-square error (RMSE) of the ATUKF, IMMEKF and IMMRBPF. (a) X RMSE; (b) Y
RMSE; (c) Z RMSE; (d) position RMSE.

Finally, the computation time statistics for all algorithms are given in Table 2. In this case, all the
experiments are performed by using MATLAB programming on an Intel-Core(TM)-i2-4030U processor
(1.9 GHz) based on the Windows platform. In Table 2, it is shown that the computational load of
the IMMRBPF is much higher than these of the IMMEKF, TQKF and ATUKF. More importantly, the
ATUKF requires much less of a computation time than the TQKF. However, the computational load of
the ATUKF is nearly two times higher than that of the IMMEKF.

Table 2. Computation times for all algorithms (s). BOT: Bearings-only maneuvering tracking.

Case IMMEKF IMMRBPF TQKF ATUKF

BOT 0.074 14.493 0.553 0.150
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4. Conclusions

In this paper, we presented a bearings-only target tracking algorithm based on an auxiliary
truncated unscented Kalman filtering (ATUKF) algorithm. Unlike the truncated unscented Kalman
filtering, in the proposed algorithm, several target characteristics were introduced to construct the
modified prior PDF, and the statistical linear regression was used to linearize the nonlinear non-bijective
measurement function by using the sigma points. Moreover, we have developed a practical algorithm
for a bearings-only target tracking system. Finally, in the simulation results, compared with the EKF,
UKF, the quadrature Kalman filtering (QKF), the mixture truncated unscented Kalman filter (MTUKF)
and the particle filter (PF), the ATUKF exhibits better performance. For the second case, compared
with the IMMEKF algorithm, the IMMRBPF algorithm and the TQKF algorithm, the ATUKF algorithm
not only improves the performance of the tracker, but significantly reduces the computation time.
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Abstract: Compared with the fixed fusion structure, the flexible fusion structure with mixed fusion
methods has better adjustment performance for the complex air task network systems, and it
can effectively help the system to achieve the goal under the given constraints. Because of the
time-varying situation of the task network system induced by moving nodes and non-cooperative
target, and limitations such as communication bandwidth and measurement distance, it is necessary
to dynamically adjust the system fusion structure including sensors and fusion methods in a given
adjustment period. Aiming at this, this paper studies the design of a flexible fusion algorithm by
using an optimization learning technology. The purpose is to dynamically determine the sensors’
numbers and the associated sensors to take part in the centralized and distributed fusion processes,
respectively, herein termed sensor subsets selection. Firstly, two system performance indexes are
introduced. Especially, the survivability index is presented and defined. Secondly, based on the
two indexes and considering other conditions such as communication bandwidth and measurement
distance, optimization models for both single target tracking and multi-target tracking are established.
Correspondingly, solution steps are given for the two optimization models in detail. Simulation
examples are demonstrated to validate the proposed algorithms.

Keywords: flexible fusion structure; mixed fusion method; combinatorial optimization; sensor
subsets selection; tracking accuracy; system survivability

1. Introduction

The rapid development of some key technologies—for example, communication technology,
sensor technology, data processing, and so on—have promoted the research into applications of
wireless sensor network systems. According to different demands, there are mainly two types including
passive and active networks. Due to their different working principles, the data processing methods
are clearly different. Therefore, we should have different views when designing data fusion algorithms
for sensor networks. Actually, it is necessary that fusion algorithms should have adaptive function
because of the complex application background. Namely, the fusion structure of the task network
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system should be flexible. This means that the task network system can dynamically determine and
choose the sensors taking part in the fusion processes. Namely, the flexible fusion also indicates that
sensor numbers are time-varying for centralized and distributed fusion methods. Then, most of the
traditional fusion methods cannot be directly used to deal with dynamical sensor selection. To some
extent, the sensor selection belongs to the sensor management domain. It is important and significative
to study flexible fusion methods for wireless task network systems.

Multisensor fusion is a fundamental technique for networked information systems (NIS), which
can fuse different kinds of measurement data from multiple sensors. It has the advantage of reducing
the uncertainty of target perception and improving the performance of the NIS [1–6]. For instance,
designing multi-sensor data fusion algorithms in order to improve target tracking learning system
performance has recently been one of the popular topics in the NIS area. The traditional fusion
tecnologies mainly include centralized and distributed fusion methods. The two approaches have
different performance and application background. Accordingly, it is a good way to combine the two
fusion approaches—the mixed fusion structure with the centralized and distributed fusions is more
effective for task network systems. Thereby, the issue of how to ensure that the sensors to respectively
take part in the centralized fusion and distributed fusion is important and challenging. In addition, the
adopted basic nonlinear filter also affects the fusion performance for nonlinear systems. An improved
self-adaptive unscented Kalman algorithm was presented in [7] to ameliorate the stability of target
tracking. A particle filter algorithm is proposed based on optimizing the dynamic neighborhood
self-adaptive particle in order to raise target tracking accuracy in [8]. Compared with the traditional
Kalman filter, a fixed gain Kalman filter which was studied in [9] had better performance from the
perspective of computational cost. Further, based on the self-adaptive neuro-fuzzy inference system,
In [10], Ma et al. presented an improved Kalman filtering algorithm to reduce the tracking error.
Sun et al. [11] presented an improved extended Kalman filter-based target tracking learning algorithm.
However, overall research on the sensor fusion structure is still lacking; until recently, most works were
mainly based on single and fixed fusion methods. They have not considered the case that an initial
sensor fusion structure would not be adaptive to the whole tracking process because of the richness
of the target tracking system, while simultaneously lacking a sensor fusion structure recombination
design. The focus of this paper is mainly to design and solve an optimization model on sensor subsets
selection, so only the traditional unscented Kalman filter (UKF) is used. In fact, the nonlinear filters
mentioned above can be used in our optimization solution to improve associated fusion estimation
and tracking performance.

In this paper, the flexible fusion structure concept is introduced to improve the universality of
the learning system. Based on our early work in [12], we will explain the concept, formation, and
application scenes of the flexible fusion structure in detail, and further analyze the advantages of
flexible fusion structure relative to the fixed fusion structure. Here, a fixed fusion structure means
that once the fusion method (e.g., centralized fusion or distributed fusion) is determined, neither the
fusion method nor the sensors taking part in the fusion process are changed during the whole working
time. Clearly, this approach does not satisfy the practical requirements of engineering applications.
However, because the flexible fusion structure has a dynamical adjustment function, it has better
self-adaptive adjustment ability than the fixed structure. Additionally, it can quickly and flexibly
regulate the system resources allocation to respond to the change of the tracking situation. Aiming
at the above conditions and based on the earlier work [12], we focus on this popular research topic
(i.e., flexible fusion structure for target tracking or state estimation). In order to achieve self-adaptive
adjustment ability, some available models and algorithms are analyzed in this manuscript, and the
main contributions are as follows:

• Two indexes (tracking accuracy and survivability) are introduced to integrally describe system
performance in Section 2.
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The current work gives substantial attention to the tracking accuracy. However, the survivability
index is seldom discussed. In this work, a definition of survivability is presented and a detailed
computation method is also given.

• The optimization models are established for sensor subsets selection for single target and
multi-target tracking in Section 3.1. Based on the two performance indexes, two optimization
models with multiple constraints are creatively designed. Clearly, the optimization model based
on single target tracking is the foundation of multi-target tracking.

• The solutions of the optimization models are also given and the detailed solution steps are clearly
given in Section 3.2.

The rest of the paper is organized as follows. The problem formulation—including the
introduction of the task network system, system description, and fusion methods—is given in
Section 1. Section 2 introduces the two performance indexes: the tracking accuracy and the survivability.
In Section 3, the dynamic sensor subsets optimization selection problem—including optimization
models and solutions—is studied under the flexible fusion structure. Simulation examples are
demonstrated in Section 4. Finally, we conclude the paper in Section 5.

2. Problem Formulation

2.1. Task Network System

A networked information system (NIS) connects all the information units within a given domain
in order to construct a real-time and high-speed information system. Information fusion is one of
the important techniques used to establish this kind of NIS, and the basic networked information
fusion structure is shown in Figure 1. The information fusion center communicates with the local
sensor nodes by data link, and then the system fusion center sends commands to each sensor node and
receives the measurement data or the local fusion estimation data from sensor nodes. Further global
data fusion will be constructed. There are two limitations to this structure:

• Each sensor node can only track a limited number of targets;
• The fusion center can only process a limited amount of sensor measurement data with respect to

the limited communication bandwidth and the computing capacity.

Figure 1. The basic information fusion structure.

The target tracking process is not stable, while the tacking situation is complex, so the system
performance indexes are affected by the internal and external unknown factors. In order to achieve an
optimal or suboptimal affected system state, we need to regulate the configuration of system surplus
resources and change the fusion method of sensor nodes. In the following, we will analyze the target
tracking fusion system in detail and design a new system optimization formulation.

2.2. System Description and Fusion Methods

The target tracking system includes M warplanes (M dynamic sensor nodes), and each warplane is
equipped with L same groups of sensors. B(kbps) denotes the total system communication bandwidth
resource. In order to reduce signal caused risk, the system adopts the passive tracking method, with
the data receiving period being T.
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First, we briefly give the nonlinear target tracking system state model as follows:

xk+1 = f (xk) + wk, (1)

zk,i = hi (xk) + vk,i, i = 1, 2, · · · , ML, (2)

where (1) and (2) are tracking state equation and measurement equation; xk is state vector and zk,i
is measurement vector; f (xk) and hi (xk) are state transition function matrix and state measurement
function matrix, respectively; process noise wk and measurement noise vk,i are zero mean white
Gaussian noise with the covariance Qk and Rk,i, respectively, while the measurement noises between
each sensor are uncorrelated.

In this work, the UKF is taken as the basic data filtering method, and the details refer to [13–15].
Suppose in time period t that there are mc,t and md,t number of centralized fusion nodes and

distributed fusion nodes, respectively, and mc,t + md,t ≤ M (note: subscript notation “c” denotes the
part of centralized fusion and “d” denotes the part of distributed fusion). The active sensor numbers
are nic ,t, (ic = 1, 2, · · · , mc,t) and nid ,t, (id = 1, 2, · · · , md,t), and⎧⎪⎪⎪⎨⎪⎪⎪⎩

nc,t =
mc,t

∑
ic=1

nic ,t

nd,t =
md,t

∑
id=1

nid ,t

, and nc,t + nd,t ≤ M · L. (3)

The adopted dimension expansion fusion method and local estimate weighted fusion method for
system centralized fusion nodes and distributed fusion nodes are as follows [16]:

• Dimension Expansion Fusion Method

Integrate Nc measurement equations into a large measurement equation

Zk = H (xk) + Vk, (4)

and
E {Vk} = 0, E

{
VkVT

k

}
= R∗

k ,

where
Zk =

[
zT

k,1 zT
k,2 · · · zT

k,nc,t

]T
,

Hk =
[

hT
1 (xk) hT

2 (xk) · · · hT
nc,t (xk)

]T
,

Vk =
[

vT
k,1 vT

k,2 · · · vT
k,nc,t

]T
,

R∗
k =

⎡⎢⎢⎢⎢⎣
Rk,1 0 · · · 0

0 Rk,2 · · · 0
...

...
...

0 0 · · · Rk,nc,t

⎤⎥⎥⎥⎥⎦ .

Based on the state equation and the measurement equation, applying the basic UKF algorithm,
the multi-sensor centralized dimension expansion fusion estimator is

{
x̂k|k = x̂k|k−1 + Kk

(
Zk − Ẑk|k−1

)
,

Pk|k = Pk|k−1 − KkPzz,k|k−1KT
k

(5)

106



Sensors 2017, 17, 1045

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pxz,k|k−1 =
2n
∑

j=0
ωcov,j

(
Øk|k−1,j − x̂k|k−1

)
×
(

Yk|k−1,j − Ẑk|k−1

)T
,

Pzz.k|k−1 =
2n
∑

j=0
ωcov,j

(
Yk|k−1,j − Ẑk|k−1

)
×
(

Yk|k−1,j − Ẑk|k−1

)T
+ R∗

k ,

Kk = Pxz,k|k−1P−1
zz,k|k−1.

(6)

• Local Estimate Weighted Fusion Method

The local estimate weighted fusion estimator is⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̂k|k =

md,t

∑
id=1

P−1
k|k,id
P−1

k|k
x̂k|k,id ,

P−1
k|k =

md,t

∑
id=1

P−1
k|k,id

.
(7)

From (3) to (6), we can get the state estimate x̂k|k,c and the estimate error covariance Pk|k,c of
the centralized fusion part; from (7), we can get the state estimate x̂k|k,d and the estimate error
covariance Pk|k,d of the distributed fusion part, so the global fusion results of the system are

x̂k|k,sys =
P−1

k|k,c

P−1
k|k,sys

x̂k|k,c +
P−1

k|k,d

P−1
k|k,sys

x̂k|k,d, (8)

P−1
k|k,sys = P−1

k|k,c + P−1
k|k,d. (9)

As we know, there are several ways to exchange data in task network systems. Because this paper
considers a kind of special air task network system which is strictly limited to communication among
nodes, it only considers a simple approach. Namely, all available sensors send local information to the
fusion center; for example, the nodes under the centralized fusion mode send the measurements, and
the nodes under the distributed fusion mode send the local estimates. There is no commutation among
local available sensors. All fusion operations are done in the fusion center, regardless of the centralized
fusion and the distributed fusion. Thereby, the centralized fusion and the distributed fusion are carried
out in parallel with the data communication; for example, the group method with multiple CPUs
can be used. However, for the fusion process with the centralized and the distributed information in
the fusion center, there are several ways to integrate the information. Strictly speaking, the fusion
process is not in parallel with the fusion center for the centralized fusion and the distributed fusion.
Commonly, the fusion is performed under a given sequential rule, and it is highly effective because
the CPU in the fusion center has strong computation ability.

3. Analysis of System Performance Indexes

The purpose of this paper is to improve the self-adjustment ability of the target tracking system,
and the system optimization goal is to maximize the system performance within certain resources
to solve the optimal configuration problem of system resources. Target tracking accuracy and
system survivability are the two most important performance judgements of the target tacking fusion
system [17]. The system performances have a close relationship with system resources allocation,
and the above two indexes will be analyzed qualitatively and quantitatively in detail as follows.
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3.1. Tracking Accuracy

Accurate target location is the primary task of a target tracking system, which reflects on
the tracking accuracy index that to a certain extent determines the system’s overall performance.
The tracking accuracy is related to sensor performance, measurement data volume and quality, fusion
algorithm and fusion structure, and other external uncontrollable factors. External factors cannot
be artificially controlled, so, in order to guarantee the system performance under changing external
conditions, we should regulate the deployment and allocation of internal system resources and modify
the data fusion method of each sensor node self-adaptively.

Multi-sensor technology improves the system performance to a large degree, but the system
becomes more complex. In target tracking, it is necessary to solve the problem of optimal sensor
subsets selection. More uncertain sensors lead to better results, and the best way is to choose the
optimal combinations of sensors and the optimal combination of fusion methods for each target in
order to obtain optimal tracking performance [18–20]. Therefore, dynamic sensor management is one
of the important links for a sensor network system, while controlling the sensors at optimal working
status can greatly improve the system performance.

Compared with distributed fusion, centralized fusion has better fusion accuracy, and in this
paper we use the hybrid fusion method to process data based on the UKF. The hybrid fusion method
combines the advantages of the centralized and distributed fusion methods, and it is a supplement of
those two fusion methods. The system data fusion method is based on the UKF, so the convergence
expectation of fusion estimate error covariance can be obtained as the measure standard of target
tacking accuracy [21–23]. When M sensors all adopt the centralized fusion method, the system has the
best tracking accuracy; meanwhile, when the system has only one sensor node working, the tacking
accuracy is worst.

Suppose the system fusion estimation error covariance is Pe,t as calculated by (9). The upper and
lower limits of tr(Pe,t) are tra and trb, respectively; i.e.,

tra < tr(Pe,t) < trb,

where {
tra ≥ tr(Pmin),
trb ≤ tr(Pmax),

where tr(P) denotes the trace of matrix P; tr(Pmin) is the convergence expectation of fusion estimation
error covariance, while all the sensor nodes adopt the centralized fusion method; tr(Pmax) is the
convergence expectation of fusion estimation error covariance, while the system has only one sensor
node working.

3.2. System Survivability

The “survivability” index is used to express the possibility that the task system cannot be
discovered by the non-cooperative target. The survivability can be used for the nodes and the system.
In this paper, it is used for the task network system. This is because the whole network system should
be discovered with a large probability once one of the nodes has been found by the non-cooperative
target [24]. The factors influencing survivability index include data communication between the
network nodes/platforms and the fusion center, radar radiation, etc. For simplicity and considering
the passive tracking, we only consider the influence of data communication traffic on the survivability
index. For this, the “survivability” is in relation with fusion architecture design. The communication
between the fusion center and the nodes with only a passive tracking function is a main event leading
to being found for the task network. Thereby, we use the communication time to formulate the
survivability of the air task network. Intuitively, longer communication time between the center and
the nodes or among nodes means worse survivability for the task network system—namely, they have
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an inverse relation. In other words, because there is more communication between the fusion center
and the local nodes, the fusion center can obtain more available information on the non-cooperative
target. Obviously, the fusion accuracy can be improved due to more information. Likewise, more
information communication will lead to a greater probability of being detected by non-cooperative
targets, namely the risk of being discovered by non-cooperative targets should be increased and the
survivability of the tracking system should be reduced. In contrast, less communication means that
the information taken by the fusion center is less and the fusion accuracy should be decreased. At the
same time, the survivability should be increased because of less communication and the probability of
it being detected and discovered should be reduced.

For a given fusion period, the local sensors have several possible samples/measurements. For the
centralized fusion nodes, there are many data transmission operations from local sensors to the fusion
center in a given fusion period. For the distributed fusion nodes, there is only one transmission
operation in a period because many samples can be processed by a local processor to form a unified
local estimate, which can be transmitted to the fusion center. If the centralized fusion node is allocated
too much in the system structure design, it will bring out too much data transmission traffic, which
will have a great influence on system survivability, and our planes will be easily exposed to the
nonoperative targets; therefore, we should reduce the number of centralized fusion nodes. In order to
guarantee the requirement of tracking accuracy, we have to increase the number of centralized fusion
nodes, which leads to a mutual restriction relation between the system survivability index and the
tracking accuracy index. Consequently, we should adjust the allocation of the node fusion method
under the given conditions in the context of the actual conditions.

In this paper, we consider the survivability index to be mainly determined by the data
communication traffic, which can measured by the data communication times ct between local sensor
nodes and the fusion center. Here, we do not consider the fully decentralized fusion structure and
there is no communication among local sensors. Based on the experience, the survivability index
changes little within the limited extent of data transmission times, and with the rapid increase of data
transmission times, the survivability index declines quickly. Due to the inverse relation mentioned
above, we considered several kinds of decreasing functions. Through graphical simulation analysis, the
amplitude–frequency characteristics function of the first order inertia link is comparatively appropriate
if it could be properly improved. Accordingly, in terms of background knowledge and experience,
two modifications have been done to obtain an available survivability index. The first is to modify the
quadratic as a cube, keeping the root sign the same, and the second is to adopt a logarithmic operation
to realize dimensionless and standardization effects. The logarithmic form could be considered to be
derived from the logarithmic amplitude–frequency characteristics function.

Then, according to the explanation mentioned above, we can get the time computation formula of
one communication operation from transmission to reception, which can be expressed by a third-order
inertia logarithmic function

st = lg
10

3
√

1 + λ3c3
t

, 0 < st ≤ 1, (10)

where 0 < λ ≤ 1 is the function attenuation coefficient that determines the function attenuation
trend—it is a positive decimal and the λ value is different in different systems. Certainly, other
methods for the design of the survivability index may exist, and a comparison study is very important
and significant in future work.

In order to realize the sensor management function or flexible fusion structure (namely,
to determine the sensor subsets under the centralized and distributed fusion frames), it is important to
construct an index to describe the communication time of the whole task network system in a fusion
period. This index is taken as the base to optimally solve the sensor subsets. From a normal viewpoint,
greater communication time means a greater probability of being discovered by the noncooperative
target. Actually, there are many possible ways to construct the system commutation time. Here,
we simply take the summation of commination times of all used nodes in a fusion period as the system
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commutation time. In other words, the system commutation time is composed of two parts, which are:
the system centralized fusion part cc,t = nc,t and the system distributed fusion part cd,t = md,t. Then,
the system communication time is expressed by

csys,t = cc,t + cd,t = nc,t + md,t.

According to different values of λ, we plot the change curve of st as Figure 2. As shown in the
figure, the change curve of st basically conforms to the qualitative analysis change requirements of
the survivability index, which indicates that the design function of st is feasible. It should be noted
that although there are many ways to design the system communication time index, it is not naturally
influenced to establish and solve the optimization model.
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Figure 2. The change curve of s.

It is necessary to consider the security risk factor condition for a single tracking plane, which is an
important part of the system survivability index. When the threat of one enemy plane to one of our
planes being greater than the safe threshold value, our tracking plane can adopt the action of switching
to standby work mode to stop all the sensor activities, and use the avoiding protection method to stay
at the tracking formation. Until the enemy threat becomes relatively small, the dormant tracking plane
can restart work on the tracking task.

A single-platform security risk coefficient can be treated as the threat value of enemy planes to
our planes; a greater threat value means greater mission risk. The method of evaluating threat value
was drawn from [25]. Suppose the requirement of system initial risk coefficient safe threshold value is
sr0, and the real-time evaluation of security risk coefficient is sri,t, (i = 1, 2, · · · , M), and

sri,t < sr0, i = 1, 2, · · · , M.

4. Dynamic Sensor Subsets Selection Under Flexible Fusion Structure

4.1. Establishment of Optimization Model for Sensor Subsets Selection

Because of the time-varying situation of the task network system induced by moving nodes and
non-cooperative target, and limitations such as communication bandwidth and measurement distance,
it is necessary to dynamically adjust the system fusion structure, including sensors and fusion methods
taking part in the fusion for a given adjustment period. The target tracking accuracy is measured by
the estimated error covariance, so the tracking accuracy of this paper is a low-quality index, and it
can be standardized by the index quantitative method of cost, defined by the standardized function
Pp (tr(Pe,t)) as the target tracking accuracy performance value function, and

Pp (tr(Pe,t)) =

⎧⎪⎨⎪⎩
1, tr(Pe,t) ≤ tr(Pmin),
tr(Pmax)−tr(Pe,t)

tr(Pmax)−tr(Pmin)
, tr(Pmin) < tr(Pe,t) < tr(Pmax),

0, tr(Pe,t) ≥ tr(Pmax).

(11)
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The above formula is a piecewise function which expresses three cases on Pe,t, Pmin, and Pmax.
A larger value of Pp (tr(Pe,t)) means the system has better tracking accuracy. The goal of the target
tracking system dynamic sensor nodes management is to choose the best combination of the sensor
nodes fusion method within the performance index requirement extent, and it has to meet the necessary
constraints, which brings the maximum performance into the target tacking system. In summary,
we can design a kind of objective optimization model of sensor nodes’ dynamic management:

f (mc,t, md,t) = arg max
f

(
Pp (trPe,t)

)
, (12)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 < mc,t + md,t ≤ M,
tra < trPe,t < trb, smin < st ≤ 1,
sri,t < sr0, ri,t < Di,
rbw,t ≤ 1,

where ri,t < Di is the constraint of sensor measurement distance, Di is the maximum measurement
distance of each sensor node; rbw,t ≤ 1 is the constraint of data communication bandwidth, rbw,t is the
consumption proportion of bandwidth resource,

rbw,t=
nc,t × b + md,t × b

B
,

where b is the occupied communication bandwidth size of one sensor to transmit the measurement
data in one time period. The network adjustment principle is shown by optimization formulation
Equation (12). The solution of optimization Equation (12) is the numbers and the associated sensors
that take part in the centralized and distributed fusion processes.

4.2. Multi-Step Solution of Multi-Constraint Optimization Model

The multi-airborne sensor nodes allocation is a problem of multi-target NP combination
optimization. For the massive case, with the increase of targets and sensor nodes, it is difficult
to solve the model directly, which will cause the problem of “combination explosion”, and it needs a
large amount of computation time and storage space, and, given this, it is even possible that the model
will remain unsolved. So we adopt the step-by-step solution strategy to gradually reduce the solution
space based on the model constraints, and the optimal solution can be obtained.

For the single target system, the solution steps are as follows:

(1) Based on the constraint of sensor node measurement distance, mark off the distant available
sensor node subset S1;

(2) Check whether the subset S1 is consistent with the constraint of single plane security risk to get
the security risk available subset S2;

(3) Solve all the possible groups of mc,t and md,t under the constraints of tr(P), s, and rbw.
If mc,t + md,t > size(S2), there is no optimization solution, and if the situation is allowable, we can
turn back to step (1) or step (2) to widen the constraint extent and proceed to solve the next step;
when the mc,t + md,t ≤ size(S2), the model has solutions, and to get the optimal solution of mc,t

and md,t through the objective function f (mc,t, md,t);
(4) Allocation of mc,t and md,t in subset S2: firstly to allocate the mc,t, the principle of which is to

select the sensor nodes that are closer to the fusion center; if there are two sensor nodes whose
distances are equidistant, choose the node that has the litter security risk coefficient; then, it is
the turn of md,t. Its principle is the same as with mc,t, but the allocation range is the remaining
sensor nodes of subset S2.

For a multi-target system, before the above steps, we need to allocate the optimal sensor node
subsets for every target. The allocated sensor nodes of each target should not be more than the
average of the total number of nodes for all targets, and every node should be allocated to a target.
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The allocation principle is to maximize the threat values of airborne planes relative to targets, and the
objective optimization model is

δ∗ (t) = arg min
δ

N

∑
j=1

M

∑
i=1

δij,trij,t, (13)

s.t.

⎧⎪⎪⎨⎪⎪⎩
δij,t ∈ {0, 1} ,

N
∑

j=1
δij,t = 1,[

M
N

]
≤ M

∑
i=1

δij,t ≤
[

M
N

]
+ 1,

where N is the number of targets and δij,t is the allocation matrix of sensor node i to target j. δij,t = 1
denotes that the sensor node i is tracking to the target j, otherwise the sensor node i is not allocated.
rij,t is the relative distance of the sensor node i to the target j. So, for the multi-target situation, the
objective optimization model of sensor nodes dynamic management is updated as

f ∗
(

mj
c,t, mj

d,t

)
= arg max

f
Pp

⎛⎝tr

(
N

∑
j=1

(
P

j
e,t

)−1
)−1

⎞⎠ , (14)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 < mj

c,t + mj
d,t ≤

[
M
N

]
+ 1,

trj
a < trP

j
e,t < trj

b, smin < st ≤ 1,
srij,t < sr0, rij,t < Di,
rbw,t ≤ 1.

The δij,t in the multi-target model that can be obtained by using the ant colony optimization
algorithm (ACOA) [26,27]. The ACOA is a metaheuristics bionic optimization algorithm that has
strong applicability in terms of solving discrete combinatorial problems. In the solution problem

of δij,t in this paper, the max
δ

N
∑

j=1

M
∑

i=1
δij,trij,t can be treated as the elicitation function φij, based on the

N
∑

j=1
δij,t = 1 to setting the tabu table Tyes,j of ants’ search targets. The ants firstly randomly generate the

target searching sequence, then quickly obtain the sensor node allocation subsets of every target, and
finally determine the optimal search path through multi-iteration, and the near-optimal solution of the
objective function is obtained.

5. Simulation

In order to verify the feasibility of the designed system optimization model, in this section,
we demonstrate the simulation in two different situations: one is the single target tracking situation,
the other is the multi-target tracking situation. It analyzes the simulation calculation results in these
two situations. This paper considers two indexes (tracking accuracy and survivability) to express the
system tracking performance. Commonly, this kind of study only uses the tracking accuracy index.
Thereby, our scene covers most of the current studies. However, it does not compare the case with
only the tracking accuracy index or the case with two indexes in the simulation section.

5.1. Single Target Tracking Situation

In time period t, our command center sends M = 6 reconnaissance planes to track an enemy
plane T1 that is in our airspace. Assuming the non-cooperative plane has an approximately uniform
motion on the X-axis and it has an approximately uniform motion on the Y-axis as well, Figure 3 is the
radar map of the enemy’s and our initial states.
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Figure 3. Radar map of enemy and friend initial states.

The target state is x = [x, y, ẋ, ẏ]T, its initial state is x0 = [50, 000, 2000, 380, 120]T, and
P0 = diag(64, 10, 4, 4); the state transfer matrix is

F =

⎡⎢⎢⎢⎣
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ .

The coordinate data of our planes is shown in Figure 3, and the 2th tracking plane is the fusion
center. Each plane has been allocated L = 3 groups of the same measurement sensors to measure
the distance rk and angle ϕk of the target. In the actual sensor measurement, there will be additive
measurement noise vk, so in the two-dimensional radar model, the target measurement equation is

zk,i = hi(xk) + vk =

[
rk,i + vr,k,i
ϕk,i + vϕ,k,i

]

=

⎡⎢⎣
√
(xk − xs,i)

2 + (yk − ys,i)
2 + vr,k,i

tan−1 |yk−ys,i|
|xk−xs,i| + vϕ,k,i

⎤⎥⎦ , i ∈ M

where (xk, yk) is target coordinate and (xs,i, ys,i) is the i-th plane node coordinate.
Assume the system noise Qk = diag(1, 1, 0.12, 0.12), the measurement noise rk,i = diag(102, 0.12),

and the measurement period T = 0.5. The target data fusion is done with the entirely centralized
method and the single node fusion method, respectively, to get the estimated error covariance trace
curve of the target state, as shown in Figure 4. So, we can estimate that the upper and lower limits of
system fusion tracking accuracy are E [tr(Pmin)] ≈ 2.0211 and E [tr(Pmax)] ≈ 16.2603.
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Figure 4. Trace of fusion error covariance of target T1.
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In time period t, the performance index requirements and constraint conditions of the system
target tracking task are given as follows⎧⎪⎨⎪⎩

2.5000 < trPe,t < 5.000,
0.95 < st ≤ 1,
sri,t < 0.50, ri,t < 42000,

By calculating, we can know that all the airborne sensor nodes satisfy the measurement distance
constraint and the security risk constraint; however, because of a mechanical failure, plane 3th is out of
service. So, S2 = {si} (i �= 3) where si is the i-th sensor node.

Based on solution step (3), to circularly verify all the satisfied combinations of mc,t and md,t,
and according to the f (mc,t, md,t), we can select the optimal result (mc,t = 2, md,t = 3). Based on the
step (4), we can determine that the optimal allocation options are that the first and second airborne
sensor nodes choose the centralized fusion method, and the fourth, fifth, and sixth nodes choose the
distributed fusion method. In this allocation option, the trace of the state estimate error covariance of
target T1 is shown in Figure 5, and we can estimate E [tr(Pe,t)] ≈ 2.6026, the system survivability index
st = 0.9541 (λ = 0.08, ct = 9), and the value of optimization objective function

foptimal max (mc,t = 2, md,t = 3) = 0.9592.
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Figure 5. Optimal allocation trace of fusion error covariance of target T1.

5.2. Multi-Target Tracking Situation

In time period t, our command center sends M = 9 reconnaissance planes to track the two enemy
planes T2 and T3 in our airspace. Figure 6 is the radar map of the enemy’s and our instantaneous
states. Assume that the non-cooperative planes have approximately uniform accelerated motion on
the X-axis and and have approximately uniform accelerated motion on Y-axis as well. The target state
vector is x = [x, y, ẋ, ẏ, ẍ, ÿ]T, and assuming the target states are x2

0 = [79000, 2500, 100, 25, 2, −2]T and
x3

0 = [80000, 2000, 100, 25, 2, −2]T, and P2,3
0 = diag(100, 10, 1, 1, 0.1, 0.1), the state transfer matrix is

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 T 0 T2

2 0
0 1 0 T 0 T2

2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Figure 6. Radar map of enemy and friend instantaneous states.

The coordinate data of our planes is shown in Figure 6, and plane 9 is the fusion center.
Each tracking plane has been allocated L = 3 groups of the same measurement sensors to measure
the distance rj

k and angle ϕ
j
k of targets. In the actual sensor measurement, there will be additive

measurement noise v
j
k; so, in the two-dimensional radar model, the target measurement formula is

z
j
k,i = hi(x

j
k) + vk,i =

[
rj

k,i + vj
r,k,i

ϕ
j
k,i + vj

ϕ,k,i

]

=

⎡⎢⎢⎣
√(

xj
k − xs,i

)2
+
(

yj
k − ys,i

)2
+ vj

r,k,i

tan−1

∣∣∣yj
k−ys,i

∣∣∣∣∣∣xj
k−xs,i

∣∣∣ + vj
ϕ,k,i

⎤⎥⎥⎦
,

i ∈ M,
j ∈ N,

where
(

xj
k, yj

k

)
is jth target coordinate, (xs,i, ys,i) is the ith plane node coordinate. Assume the system

noise Qk = diag(1, 1, 0.12, 0.12, 0.012, 0.012), the measurement noise rk,i = diag(52, 0.12), and the
measurement period T = 0.5. Undertaking the target data fusion with an entirely centralized method
and single node fusion method for target T2 and T3, respectively, we get the estimated error covariance
trace curve of the target state as shown in Figure 7. So, we can estimate that the upper and lower limits
of system fusion tracking accuracy are E [tr(Pmin)] ≈ 2.0207 and E [tr(Pmax)] ≈ 40.0919.
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Figure 7. Trace of fusion error covariance of target T2 and T3.

Based on the above simulation scene, we first allocate δij for T2 and T3 by using ant
colony optimization algorithms, and obtain the optimal security coefficient allocation results
(δ32, δ42, δ62, δ82, δ92) and (δ13, δ23, δ53, δ73). Assume that the performance index requirements and
constraint conditions of system target tracking task in time period t are{

5.0000 < trP2
e,t < 7.0000, 6.0000 < trP3

e,t < 10.0000,
0.85 < st ≤ 1, srij,t < 0.50, rij,t < 43000.
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Based on solution step (1), we can get{
S2

1 = {δ32, δ42, δ62, δ82} ,
S3

1 = {δ13, δ23, δ53, δ73} .

Because sr16,t = 0.546 > 0.50, the sixth node does not satisfy the security risk constraint, so the
available security risk subset is {

S2
2 = {δ32, δ42, δ82} ,

S3
2 = {δ13, δ23, δ53, δ73} .

Based on solution step (3), to circularly verify all the satisfied combinations of mj
c,t and mj

d,t, and

according to the four designed objective optimization function f ∗
(

mj
c,t, mj

d,t

)
, we can determine that

the optimal combinations are
(

m2
c,t = 2, m2

d,t = 1
)

and
(

m3
c,t = 1, m3

d,t = 3
)

.
Lastly, according to the above results and solution step (4), we can obtain the optimal airborne

sensor nodes allocation results{
δ32,c, δ42,d, δ82,c

}
,
{

δ13,d, δ23,d, δ53,c, δ73,d
}

.

The estimated error covariance traces of target T2 and T3 are shown in Figure 8 in the condition
of the above allocation options, the estimated values E

[
trP2

e,t
] ≈ 5.6625 and E

[
trP3

e,t

]
≈ 7.1698,

the system survivability index st = 0.8909 (λ = 0.08, ct = 13), and the value of optimization objective
function f ∗optimal max

(
m2,3

c,t , m2,3
d,t

)
= 0.9769.
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Figure 8. Optimal allocation trace of fusion error covariance of target T2 and T3.

5.3. Analysis of Simulation Results

For the above two different simulation situations, we achieved the optimal allocation of the
multi-sensor target tracking fusion system with the optimization model designed in this paper. In time
period t, based on the real-time system performance requirements, the optimal number of sensor and
optimal fusion method combinations are determined to maximize the system tracking accuracy, and it
satisfies the system survivability constraint and other necessary constraints, which can achieve the
system self-adaptive performance optimization adjustment function and improve the self-adaptive
adjustment ability of the distributed tracking fusion system.

The optimization model in this paper is designed for the problem of system performance instability
caused by the changing situations and emergencies in the tracking process. In simulation 1, the system
encountered the node failure problem, and in simulation 2, the system encountered the problem
of node measurement distance and the security risk of a single airborne plane. From the results
of simulation 1 and simulation 2, we can see that the systems have self-adjusting abilities; when
the system encounters the above problems and other issues, the system can reject the troublesome
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nodes and recombine the remaining system resources to optimally allocate, which leads to the stable
performance and great anti-interference ability of the target tracking fusion system.

6. Conclusions

For the problems of a complex motion model in target tracking process and the changeable
motion situations which lead to the instability of tracking systems, this paper studies the flexible fusion
structure algorithms and designs a kind of flexible fusion optimization model. The multi-step solution
strategy and ant colony optimization algorithm are used to solve the designed model, which can obtain
the optimal sensor subsets selection dynamically. By the simulation verification, the designed system
optimization model was proven to be feasible and effective, and could improve the self-adjustment
ability of a target tracking fusion system and guarantee that the multi-plane cooperative tracking task
is accomplished successfully.
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Abstract: The measurement of ultra-precision freeform surfaces commonly requires several datasets
from different sensors to realize holistic measurements with high efficiency. The effectiveness of the
technology heavily depends on the quality of the data registration and fusion in the measurement
process. This paper presents methods and algorithms to address these issues. An intrinsic feature
pattern is proposed to represent the geometry of the measured datasets so that the registration of the
datasets in 3D space is casted as a feature pattern registration problem in a 2D plane. The accuracy
of the overlapping area is further improved by developing a Gaussian process based data fusion
method with full consideration of the associated uncertainties in the measured datasets. Experimental
studies are undertaken to examine the effectiveness of the proposed method. The study should
contribute to the high precision and efficient measurement of ultra-precision freeform surfaces on
multi-sensor systems.

Keywords: data fusion; data registration; intrinsic surface features; ultra-precision freeform surfaces;
precision metrology

1. Introduction

Ultra-precision freeform surfaces with sub-micrometer-form accuracy and surface finish in the
nanometric range are now widely adopted in opto-mechatronic applications, due to their superior
mechanical and optical properties in improving the performance of the products in both functionality
and size reduction [1]. The trend of miniaturization has further driven the integration of multi-scale
representations of features in single surfaces which exhibit specific functionalities at different
scales [2,3]. However, the geometric complexity also brings about many challenges for the
measurement of these surfaces, especially large-sized and multi-scaled freeform surfaces.

In the past decades, many precision measurement instruments have been developed with respect
to specific and varying metrological needs. Many existing precision measurement instruments only
possess limited measuring range at one single measurement, and are difficult to perform the high
precision measurement of large size with both high resolution and efficiency. This is particularly
true for some freeform surfaces with high slopes or large sizes [4,5]. Multi-sensor instruments have
been considered as a promising solution for measuring these kinds of surfaces [6]. Several different
sensors are integrated into a single instrument to perform cooperative measurements, so as to enhance
measurement range and fidelity, while minimizing measurement cost and time. For example, Werth
VideoCheck UA 400 [7] integrates an imaging sensor, tactile scanning sensor, and white light sensor
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into a single system which is capable of measuring complex 3D geometries with sub-micrometric
accuracy. WITec GmbH [8] integrates confocal Raman microscopy, atomic force microscopy, and
scanning near-field optical microscopy, and can perform relatively fast measurements of large-area
samples. However, these instruments simply integrate several sensors into a common system, and
lack the much-required multi-sensor data fusion functionality and characterization that would achieve
improved measurement results.

Multi-sensor datasets may come from different spaces with different scales, resolutions, and
associated uncertainties. The effectiveness of the multi-sensor metrology heavily depends on the
quality of the data registration and fusion, which are further steps for sensor integration, and are
responsible for combining the measured datasets from different sensors into a common representation,
in order that the measurement can benefit from the technical merits of all the involved sensors.
Data registration and fusion has been an emerging technology since the 1990s, and it has previously
been used for target tracking, automated identification of targets, and limited automated reasoning
applications [9]. The technology is then adopted in reverse engineering and precision metrology [10].
Generally, for surface measurement, the process includes pre-processing, data registration, data
fusion and post processing, among which data registration and fusion are the most critical steps [6].
In registration, all the datasets are transformed to a common coordinate frame based on rigid motion.
Due to geometry complexity and variety, as well as a lack of common features for freeform surfaces,
it is still very difficult to register one freeform surface to another with high precision in the presence
of noise. An open literature review shows that data registration can be realized by feature-based or
surface description-based approaches, and the registration process generally includes coarse and fine
registration [11]. Some research work has been found for data stitching of aspherical surfaces [12,13].
The iterative closest point (ICP) method is often used for correspondence searching [14]. However, this
is susceptible to data noise, and outliers are involved in the measured data, and accumulative errors
would be produced when a large amount of datasets are involved [15]. There is still little research into
data registration and fusion of ultra-precision freeform surfaces with sub-micrometer form accuracy.

Fusion is responsible for processing the redundant data in the overlapping area of the datasets.
Considering that the fused datasets may have different resolutions with different associated
uncertainties, proper fusion process should be carried out to fuse the datasets which may have
different resolutions with different associated uncertainties. Wang et al. [16] reviewed current
data fusion methods in surface metrology, and summarized the data fusion methods into four
categories, including repeated measurements, stitching, range image fusion, and 3D data fusion.
Ramasamy et al. [17] presented several data fusion strategies and weighting methods in the fusion
of multi-scaled range images. Although the validity of the method has been confirmed for the
measurement of micro-structured surfaces, the uncertainty propagation is not clearly demonstrated.
Forbes et al. [18] presented a weighted least square-based data fusion method that relies on linear
approximation of the geometry of the datasets. The method may be problematic when the datasets
have sharp geometrical changes, for instance, a smooth surface embedded with micro-structures.

This paper presents a study of data registration and fusion for measuring ultra-precision freeform
surfaces on multi-sensor instruments. The method performs the data registration by representing
the geometry of each dataset based on intrinsic surface features which are invariant to coordinate
transformation, and free from the implicit parameterization of the surface. Data fusion is then
performed at the overlapping area based on a Gaussian process model, to further reduce the
measurement uncertainty. Experimental studies are presented to demonstrate the validity of the
proposed method.

2. Data Registration and Fusion Methods

Intrinsic surface features (ISFs) refer to those surface features whose values are invariant under
the transformation (rotation/translation) of the embedded coordinate frame, and also free from the
implicit parameterization of the surface. Surface registration can be performed without the need to
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consider the misalignment of the coordinate frames and the parameterization of the surfaces when the
two surfaces are represented by ISFs. Two of the important ISFs are Gaussian and mean curvature.
They uniquely determine the surface shape according to the Gaussian Curvature Uniqueness Theorem
and the Mean Curvature Uniqueness Theorem [19,20].

Figure 1 shows a flow chart of the proposed data registration and fusion method. Different
sets of data were obtained with measurement setup information, and the surface normal/computer
aided design (CAD) model was provided. The data format was unified, and hence the ISFs of the
data sets were calculated, followed by registration to find the correspondence. The overlapping area
among the datasets was then identified, and data fusion was carried out. Figure 2 illustrates the data
registration process with the aid of the nominal surface/CAD model. The normal surface or CAD
model information was provided, and different sets of data were registered to the normal surface or
CAD surface firstly, and hence they were stitched to each other. Figure 2 illustrates data stitching
process with the aid of normal surface/CAD model. If there was no CAD information, different sets of
data were directly registered to each other by maximizing the similarity of their overlapping areas.
Some important algorithms are explained in detail in the coming sections.

Figure 1. Flow chart of data registration and fusion.

Figure 2. Graphical illustration of data registration and fusion.
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2.1. Data Reformat by Re-Sampling

Before registration of the datasets, the format of different datasets was unified by a re-sampling
strategy. This was realized by the process as shown in Figure 3. A grid of points were uniformly
sampled on a dataset and the values of the ISFs of these points were arranged on a two dimensional
(2D) plane to form an intrinsic feature pattern. The pattern was not only invariant to the coordinate
transformation but was also free from the implicit parameterization of the surface. The layout of a 2D
texture onto a general freeform surface inevitably creates distortion in all but developable surfaces, i.e.,
surfaces with zero Gaussian curvature, such as a cylinder [19]. Hence, the problem was concerned
fitting a 2D pattern into a freeform surface such that the texture distortion was minimized. In the
present study, a woven mesh model [21] was employed to address this problem. Woven mesh model
is a kind of woven fabric model, which consists of several types of springs in different directions.
These springs have their own initial length at which the spring has zero energy. When the mesh model
is fitted into a freeform surface, the texture may be distorted and the directions and lengths of the
springs are not preserved as compared with the original 2D pattern. This leads to the strain energy.
The distortion can then be minimized by minimizing the strain energy in the mesh model, through
optimizing the distribution of the points. More details of the woven mesh model can be found in [21].
After that, the format of datasets and normal surface were unified for later registration based on ISF.

Figure 3. Flow chart for data format unification.

2.2. Calculation of Intrinsic Surface Features

In the present research, Gaussian curvature or mean curvature was chosen as the ISF. Direct
calculation of the ISF, such as Gaussian curvature, from the measured datasets is sensitive to the
measurement noise. Hence, in the present study, the B-spline surface was used to fit the discrete
points so that the measurement noise could be rejected during the surface fitting process and the ISF
could be safely calculated [22]. Suppose that S(u, v) is the fitted B-spline surface, where (u, v) are the
parameters of the surface; the first fundamental form of S(u, v) can be expressed as

I = Edu2 + 2Fdudv + Gdv2 (1)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
E = S2

u =
(

∂S(u,v)
∂u

)2

F = SuSv = ∂S(u,v)
∂u

∂S(u,v)
∂v

G = S2
v =

(
∂S(u,v)

∂v

)2
(2)
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The second fundamental form of S(u, v) is given by

I I = Ldu2 + 2Mdudv + Ndv2 (3)

where, ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L = ∂2S(u,v)
∂u2 · Su×Sv

‖Su×Sv‖

M = ∂2S(u,v)
∂u∂v · Su×Sv

‖Su×Sv‖

N = ∂2S(u,v)
∂v2 · Su×Sv

‖Su×Sv‖

(4)

Then, Gaussian curvature K and mean curvature H of the surface S(u, v) are determined by the
coefficients of the first and second fundamental forms as follows, respectively.

K = det

⎛⎝[ E F
F G

]−1
⎞⎠det

([
L M
M N

])
(5)

H =
1
2

tr

⎛⎝[ E F
F G

]−1
⎞⎠det

([
L M
M N

])
(6)

where operator det( ) is the determinant of a matrix; operator tr( ) is the trace of a matrix.

2.3. Registration Process Based on ISF

The surface registration problem was then converted to ISF registration. That is, the corresponding
searching in 3D Cartesian coordinate frame by solving six parameters (three translations plus three
rotations) was now performed in 2D space by finding three parameters (two translations plus one
rotation), as shown in Figure 4. Registration problems involving translation and rotation were
recovered by applying a Fourier-Mellin transform and the phase correlation method [23].

Figure 4. Illustration of data registration based on ISFs.

Suppose f2(x, y) is translated and rotated from f1(x, y), then

f2(x, y) = f1(x cos(α)− y sin(α)− Δx, x sin(α) + y cos(α)− Δy) (7)
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where Δx and Δy are the translation offsets and α is the rotation angle. According to the Fourier
translation property and the Fourier rotation property, the Fourier transformation of f1 and f2 are
related by

F2(ξ, η) = exp(−j2π(ξΔx + ηΔy)) · F1(ξ cos(α)− η sin(α), ξ sin(α) + μ cos(α)) (8)

where F1 and F2 are Fourier transform of f1 and f2, respectively. Therefore, Equation (9) preserves

M2(ξ, η) = M1(ξ cos(α) + η sin(α), −ξ sin(α) + η cos(α)) (9)

where, M1 and M2 are magnitudes of F1 and F2, respectively.
From Equation (9), the translation is recovered, and the rotation causes the spectral magnitude to

be rotated at the same angle, which can be determined in polar coordinates [24].

PM2(ρ, θ) = PM1(ρ, θ − α) (10)

where PM1 and PM2 are the spectral magnitudes of f1 and f2 in polar coordinates, respectively.
The rotating angle can be determined by translation offset in the polar coordinate system by using the
phase correlation as follows:

Corr(u, v) =
FPM1(u, v)
|FPM1(u, v)| ·

FPM2(u, v)
|FPM2(u, v)| = exp(−2π(u + vα)) (11)

where FPM1 and FPM2 are the Fourier transform of PM1 and PM2. The Inverse Fourier Transform of
Equation (11) is a Dirac δ-function yielding a sharp maximum at (0, α). Hence, the f2 is rotated by α,
and the rotated f2 is phase correlated with f1 again to determine the translational offsets Δx and Δy.

Figure 5 summarizes the algorithms to find the translation and rotation offsets between the two
IFPs. It started with inputting two IFPs, i.e., ( f1, f2), and the Fourier transform of the two patterns
(F1, F2) was computed by 2D fast Fourier transform (2D FFT). The spectral magnitudes (M1, M2) of the
two IFPs were then transformed to the polar coordinate system, and the rotation angle was determined
by the phase correlation method. The determined rotation angle α was then used to recover the rotation
of the f2, and the rotated f2, denoted as f2r, was then used to perform phase correlation again with f1,
to recover the translation.

Figure 5. Flowchart of the IFP registration process.
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The established correspondence by ISF registration was then used to evaluate the coordinate
transformation matrix T by minimizing the sum of the squared distance of each correspondence pairs.

F =
n

∑
k=0

|X1k − TX2k|2 (12)

T
(
rx, ry, rz, tx, ty, tz

)
=

⎡⎢⎢⎢⎣
c(rz)c(ry) s(rz)c(ry) + c(rz)s(ry)s(rx) s(rz)s(rx)− c(rz)s(ry)c(rx) tx

−s(rz)c(ry) c(rz)c(rx)− s(rz)s(ry)s(rx) c(rz)s(rx) + s(rz)s(ry)c(rx) ty

s(ry) −c(ry)s(rx) c(ry)c(rx) tz

0 0 0 1

⎤⎥⎥⎥⎦ (13)

where (X1k, X2k) are the correspondence pairs, n is the number of the established correspondence
pairs, tx, ty, tz are the translation components, and rx, ry, rz are the rotation angles; c() and s()
are abbreviations of the cosine and sine functions. The problem can be efficiently solved by the
Levenberg-Marquardt algorithm [25].

2.4. Data Fusion Based on Gaussian Process Model

After data registration, the overlapped area of the two registered datasets were processed to form
one fused dataset. Challenges exist for overlapped data fusion when the data sets are from different
sources (e.g., different sensors), due to the variety of data density and uncertainty involved. In the
current study, the Gaussian process (GP) model [26] was used to perform the data fusion by taking the
uncertainty of the datasets into account. GP is a Bayesian regression model which can be completely
specified by a mean function μ(X) and covariance function K(X, X), as given by Equation (14).

f (X) ∼ N(μ(X), K(X, X)) (14)

In the actual measurement, the zero-offset mean function was used, since no prior knowledge on
the surface geometry is available. A prediction of f ∗ at arbitrary location x∗ can then be given from the
joint distribution of f ∗ with Z as given by Equation (15) as follows:[

Z
f ∗

]
∼ N

(
0,

[
K(X, X) + σ2

ε I K(X, x∗)
K(X, x∗) K(x∗, x∗)

] )
(15)

where I is the identity matrix and σε is a hyperparameter representing the noise variance associated in
Z. A prediction m and its uncertainty cov at an arbitrary location x on the model can then be obtained
from the marginal distribution of f (x) as follows [27]:

m = K(x, X)
(

K(X, X) + σ2
ε I
)−1

Z (16)

cov = K(x, x)− K(x, X)
(

K(X, X) + σ2
ε I
)−1

K(X, x) (17)

In the present study, the squared exponential function was used as the covariance function that
provided correlation among any set of outputs. More details regarding the GP modelling, are contained
in the work by Rasmussen et al. [26].

It was assumed that all the datasets at the overlapping areas possessed the same shape and
hence the same GP covariance except the noise parameters, since different datasets would have
different levels of uncertainties. Then, for the two datasets Z1 and Z2, the fused GP model was
simply established by treating the fusion process as a standard GP regression problem as given by
Equation (18):
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[
Z
f ∗f

]
∼ N

⎛⎝ 0,

⎡⎣ K
(
X, X

)
+ diag(σ2

ε1I, σ2
ε2I) K

(
X, x∗

f

)
K
(

X, x∗
f

)
K
(

x∗
f , x∗

f

) ⎤⎦ ⎞⎠ (18)

where f ∗f and x∗
f are the prediction and its location, Z = [Z1, Z2] are the two measured datasets,

X = [X1, X2] are the location of the measured datasets, and σ2
ε1 and σ2

ε2 are the hyperparameters
representing the noise variance associated in Z1 and Z2. Recalling that Equation (18) is an extension of
Equation (15) that the measured data contains two different levels of noise, hence the mean m∗

f and the

variance cov
(

f ∗f
)

of the f ∗f on the fused GP model can also be obtained in similar way by the marginal
distribution of f ∗f as given by Equation (19).

f ∗f
∣∣∣x∗

f , X, Z ∼ N
(

m∗
f , cov

(
f ∗f
))

(19)

3. Experimental Verification

3.1. Simulation Study

Simulation studies were undertaken to verify the proposed method for data registration and
fusion. A normal surface is defined as{

f (x, y) = sin(x) + cos(y)
x ∈ [−5, 5], y ∈ [−3, 3]

(20)

As shown in Figure 6, two sub-surfaces were sampled from the designed surface with different
spacings (0.4 mm and 0.1 mm)at different locations, and were denoted as Surface 1 and Surface 2.
Surface 1 was extracted at x ∈ [−4.5, 1], y ∈ [−2, 2] and was moved to a position based on
the transformation of T

(
π
20 , − π

15 , π
30 , −1.5, 0.5, 4

)
, based on Equation (13). Surface 2 was extracted

at x ∈ [−1, 4.5], y ∈ [−2, 2] and was moved to a position based on the transformation of
T
(
π
25 , π

10 , π
30 , −1.5, −0.5, 5

)
. Surface 1 and Surface 2 had Gaussian noise added with standard deviations

of 0.2 μm and 0.5 μm respectively, to represent measurement errors. It was noted that Surface 1 and
Surface 2 had different resolutions with different associated uncertainties, and were embedded in
different coordinate frames, which is very common in multi-sensor surface metrology in order to
balance measurement efficiency and accuracy. The proposed method was then used to perform
registration and fusion of the two surfaces.

 

Figure 6. Normal surface and two extracted surfaces with different positions and postures.
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Gaussian curvatures were employed as ISFs, and were calculated as shown in Figure 7. No matter
where and what positions and postures the sub-surfaces are, their Gaussian curvatures remained
the same. This validated that the Gaussian curvature was the ISF of the surface and is free from the
coordinate frame. For the next step, surface registration was undertaken based on such ISFs. Figure 8
shows the results of registration of Gaussian curvatures of two sub-surfaces to the normal surface;
while Figure 9 is the corresponding surface registration results of the two surfaces to the normal
surface data. The registration process was repeated 50 times to evaluate the reliability of the proposed
method. Table 1 summarizes the error of the evaluated six spatial parameters for Surface 1, by the
proposed method, as well as by the classical ICP method [14]. It was interesting to note from the
results that the performance of the proposed method well matched with that of the ICP method, and
possessed slightly lower variance. This was due to the fact that the surface reconstruction process not
only rejected the noise of the registered datasets, but also created a larger number of correspondences
by ISF registration.

(a) (b) 

 

(c) 

Figure 7. Gaussian curvatures of (a) normal surface; (b) extracted Surface 1; and (c) extracted Surface 2.

Table 1. A summary of the error of the evaluated six spatial parameters.

rx (μrad) ry (μrad) rz (μrad) tx (nm) ty (nm) tz (nm)

ISFM 1.7/0.5 * 4.2/1.9 3.9/1.2 9.9/3.2 7.8/1.9 3.5/0.8
ICPM 2.1/0.6 5.5/2.2 3.7/1.6 12.8/6.3 9.8/2.5 3.4/0.8

* a/b: a refers to mean error, b refers to the variance. ISFM: Intrinsic surface features based method. ICPM: Iterative
closest point method.
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Figure 8. Registration of Gaussian curvatures of two sub-surfaces to normal surface.

 

Figure 9. Surface registration results of the two sub-surfaces to normal surface.

After transforming the two surfaces into a common coordinate system, data fusion was then
performed at the overlapping area based on the method presented in Section 2.4. It was emphasized
that, since the proposed method performed the registration based on the ISFs, the overlapping of
the two surfaces could also be easily identified in the ISF registration process. Figure 10 shows the
fused GP model and its estimated uncertainty at the overlapping area. It was seen from the estimated
uncertainty that the contained noise in the data was successfully estimated in the GP modelling and
fusion process. Figure 11 shows the deviation of the established GP model from the designed surface,
and Table 2 summarizes the evaluated peak-to-valley (PV), height error, and the root-mean-square
(RMS) height error. Since no form error was added to the sampled surface, i.e., Surface 1 and Surface 2,
the theoretical form error at the overlapping area should be zero. Hence, the evaluated form error
should be the error resulting from the measurement noise. It was seen from the results that, based on
the proposed method, the error was been reduced to several nanometers via the GP modeling and
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fusion process, when the magnitude of the measurement noise was at sub-micrometer level. It was
clearly seen from the Table 2 that the proposed method had much better accuracy than the existing
method. This means that the proposed method successfully registered the two freeform surfaces under
the existence of the measurement noise, and the accuracy of the overlapping area was further improved,
based on the proposed GP based data fusion method. The proposed method was also compared with
an existing method which was currently widely used in practice. The existing method uses ICP to
register the two surfaces, and the data at the overlapping area is fused based on the weighted mean
(WM) method [16]. It is interesting to note from the comparison, that the proposed method had a
much better performance than the ICP-WM method, in registering and fusing the freeform surfaces
under the existence of the measurement noise.

(a) (b) 

Figure 10. Fusion model of the overlaping area based on the Gaussian process (GP) model. (a) GP
model at overlaping area; (b) Estimated uncertainty of the established GP model.

Figure 11. Deviation of the stitched surfaces from the designed surface.

Table 2. A comparison of the ISF+GP method with existing method.

Fusion by ISF + GP Fusion by ICP + WM

RMS (nm) 2 7
PV (nm) 24 78

RMS: Root mean square. PV: Peak-to-valley. WM: Weighted mean. ISF: Intrinsic surface features. ICP: Iterative
closest point.

3.2. Application in Actual Measurement

An experimental study was conducted to evaluate the performance of the proposed method.
A sinusoidal micro-structured surface defined by Equation (21) was machined by a four-axis
ultra-precision machining system (Moore Nanotech 350). To fully capture the geometric information,
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including the surface form and texture, the workpiece was measured by a 3D optical profiler (Zygo
NexView) with two different objectives i.e., 5.5× and 20× magnifications (zoom was 2.0×). The field
of view of the two objectives were 0.76 × 0.76 mm2 and 0.21 × 0.21 mm2, and the maximum slopes of
the two objectives were 7.27◦and 21.80◦, respectively. The measured data are shown in Figure 12.

z = 0.015 ∗ (sin(15x) + cos(15y)) (21)

Figure 12. Measurement of a machined micro-structured surface.

The two datasets had different resolutions and were embedded in two different coordinate
frames, since they were measured by two different objectives in two steps. As a result, the proposed
method was used to perform data stitching and fusion, so as to obtain a unique representation of the
machined surface. It started by registering the dataset measured by the 5.5× and 20× objectives to
the nominal surface, using the proposed ISF based data stitching method. Filtering was carried out to
remove outliers and noise before the calculation of the intrinsic surface feature. Figure 13a shows the
registration of the ISFs of the two datasets, and Figure 13b shows the registered two datasets. After
data registration, the overlapped area between the two datasets was processed based on the proposed
fusion method. To examine the quality of the result, comparison was made between the evaluated
form error of the overlapped area on the datasets obtained by 5.5× and 20× objectives, and the fused
dataset. Figure 13c shows the form error evaluated by the fused dataset. The RMS errors evaluated by
the three datasets were 0.011 μm, 0.097 μm, and 0.087 μm respectively. It is interesting to note from the
results that the RMS errors obtained by fused dataset matched well with those obtained by the 5.5×
and 20× objectives, which implied that the registration and fusion had been carried out accurately.

Figure 13. Datasets registration and fusion based on the proposed method. (a) ISF registration;
(b) Datasets after registration; (c) Evaluated form error.

To further evaluate the capability of the proposed method, an actual measurement was conducted
on another general freeform surface. Figure 14 shows the machined freeform surface which was
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designed by the peak function and contained several peaks and valleys, and was a representative type
of freeform surface.

 
(a) (b) 

Figure 14. Measurement of a general freeform surface. (a) Designed freeform surface; (b) Machined
surface on a coordinate measuring machine (CMM).

The combined use of large scale fast inspection sensors, e.g., laser scanner and photogrammetry,
with micro scale pointwise measuring sensors, e.g., coordinate measuring machines, are currently the
most common scenarios for multi-sensor surface metrology. Therefore, in the present study, a high
precision coordinate measuring machine (CMM) and a laser scanner were combined to measure the
freeform surface for efficient and reliable measurement. The CMM possessed a length measurement
uncertainty with U = (0.6 + L/500, L in mm) μm, and a probing error with u = 0.9 μm (1σ, normal).
The uncertainty of the laser scanner was identified to be u = 3.4 μm (1σ, normal) by a reference ball. The
measurement was carried out in two steps. Firstly, CMM was used to measure the surface with spacing
1 mm in both X and Y directions. A total of 6456 points were uniformly sampled with 1 mm spacing
over the entire surface. Figure 15 shows the form error evaluation results. The PV and RMS values
of the measured surface were found to be 34.9 μm and 5.5 μm. The values served as a benchmark to
verify the effectiveness of the proposed method.

Figure 15. Form error evaluation results. (a) Evaluated form error; (b) Uncertainty of the fused
GP model.

Secondly, multi-sensor measurement strategy was carried out. CMM was used to measure the
surface with 4 mm spacing in both X and Y directions. Laser scanning was used to perform dense
measurements of the surface. The proposed method was then used to process the measured datasets.
ISF-based data registration method was used to precisely register the measured datasets by the two
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sensors into a common coordinate system. The datasets at the identified overlapping area were
then fused based on the GP model. To verify the effectiveness of the proposed method, only the
overlapping part was used for the form error evaluation of the machined surface. A summary of the
experimental results is shown in Table 3. Both the evaluation parameters and the time consumption
for the measurement are given to analyze both the efficiency and accuracy of the proposed method.

Table 3. A summary of the experimental results.

PV RMS Time (h)

Benchmarking 36.8 5.7 >3
Laser scanner 49.6 8.1 <0.16

CMM 33.2 4.8 ~0.5
Hybrid 35.4 5.5 ~0.5

As a fast measurement sensor, the laser scanner has the highest measurement efficiency, while
its accuracy is relatively low compared with CMM. For CMM measurements with loose sampling,
the measurement time became acceptable, while the inadequate sampling of the surface would
underestimate the form error of the machined surface, especially the PV, which was determined by
extreme points. Hybrid measurement on the other hand, had the best overall performance. It was
shown from results that, by registering and fusing the datasets from the laser scanner and the CMM,
accuracy was dramatically improved, while the measurement efficiency was maintained as well. The
experiment verified the capability of the multi-sensor measurement in freeform surface measurement,
and further confirmed the effectiveness of the proposed method in addressing the key issues in the
measurement process.

4. Conclusions

Freeform data stitching and fusion technology provides a practical solution for multi-sensor
measurement of freeform surfaces, and also for enhancing the measuring ability of some high precision
measurement instruments. This paper presented methods and algorithms for data stitching and fusion
for measuring ultra-precision freeform surfaces based on the registration of ISFs. Some important
algorithms involved in the registration algorithms were explained, including data format unification,
calculation of ISFs such as Gaussian curvatures and mean curvatures, registration of the ISF map,
Gaussian process-based data fusion for the overlapping area, etc. Experimental studies were conducted
and the results were discussed. The proposed method and algorithms of data stitching and fusion
intend to eliminate or alleviate the effect of noise and outliers, and provide a robust registration and
fusion method, which is helpful for multi-scale and multi-sensor measurement of ultra-precision
freeform surfaces.
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Abstract: This paper is concerned with the optimal fusion estimation problem in networked stochastic
systems with bounded random delays and packet dropouts, which unavoidably occur during
the data transmission in the network. The measured outputs from each sensor are perturbed by
random parameter matrices and white additive noises, which are cross-correlated between the
different sensors. Least-squares fusion linear estimators including filter, predictor and fixed-point
smoother, as well as the corresponding estimation error covariance matrices are designed via the
innovation analysis approach. The proposed recursive algorithms depend on the delay probabilities
at each sampling time, but do not to need to know if a particular measurement is delayed or not.
Moreover, the knowledge of the signal evolution model is not required, as the algorithms need only
the first and second order moments of the processes involved. Some of the practical situations covered
by the proposed system model with random parameter matrices are analyzed and the influence of
the delays in the estimation accuracy are examined in a numerical example.

Keywords: recursive fusion estimation; sensor networks; random parameter matrices; random delays;
packet dropouts

1. Introduction

Over the last few decades, research on the estimation problem for networked stochastic systems
has gained considerable attention, due to the undeniable advantages of networked systems, whose
applicability is encouraged, among other causes, by the development and advances in communication
technology and the growing use of wireless networks. As it is well known, the Kalman filter
provides a recursive algorithm for the optimal least-squares estimator in stochastic linear systems,
assuming that the system model is exactly known and all of the measurements are instantly updated.
The development of sensor networks motivates the necessity of designing new estimation algorithms
that integrate the information of all the sensors to achieve a satisfactory performance; thus, using
different fusion techniques, the measurements from multiple sensors are combined to obtain more
accurate estimators than those obtained when a single sensor is used. In this framework, important
extensions of the Kalman filter have been proposed for conventional sensor networks in which the
measured outputs of the sensors always contain the actual signal contaminated by additive noises,
and the transmissions are carried through perfect connections (see, e.g., [1–3] and references therein).

However, in a network environment, usually the standard observation models are not suitable
due to the existence of network-induced uncertainties that can occur in both of the sensor measured
outputs, and during the data transmission through the network. Accordingly, the consideration of
appropriate observation models is vitally important to address the estimation problem in networked
systems. Random failures in the transmission of measured data, together with the inaccuracy of
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the measurement devices, cause often the degradation of the estimator performance in networked
systems. In light of these concerns, the estimation problem with one or even several network-induced
uncertainties is recently attracting considerable attention, and the design of new fusion estimation
algorithms has become an active research topic (see, e.g., [4–13] and references therein). In
addition, some recent advances on the estimation, filtering and fusion for networked systems with
network-induced phenomena can be reviewed in [14,15], where a detailed overview of this field
is presented.

One of the most common network-induced uncertainties in the measured outputs of the different
sensors is the presence of multiplicative noise, due to different reasons, such as interferences or
intermittent sensor failures. Specifically, in situations involving random observation losses (see [5]),
sensor gain degradation (see [6]), missing or fading measurements (see [13,16], respectively), the
sensor observation equations include multiplicative noises. A unified framework to model these
random phenomena is provided by the use of random measurement matrices in the sensor observation
model. For this reason, the estimation problem in networked systems with random measurement
matrices has become a fertile research subject, since this class of systems allow for covering
different networked-induced random uncertainties as those mentioned above (see, e.g., [17–23],
and references therein).

In relation to the network-induced uncertainties during the data transmission, it must be indicated
that sudden changes in the environment and the unreliability of the communication network, together
with the limited bandwidths of communication channels, cause unavoidable random failures during
the transmission process. Generally, random communication delays and/or transmission packet
dropouts are two essential issues that must be taken into account to model the measurements, which,
being available after transmission, will be used for the estimation. Several estimation algorithms
have been proposed in multisensor systems considering either transmission delays or packet losses
(see, e.g., [24,25]) and also taking into account random delays and packet dropouts simultaneously
(see, e.g., [4,23,26]). By using the state augmentation method, systems with random delays and packet
dropouts can be transformed into systems with random parameter matrices (see, e.g., [8–10,20]).
Hence, systems with random parameter measurement matrices also provide an appropriate unified
context for modelling these random phenomena in the transmission.

Nevertheless, it must be indicated that the state augmentation method leads to a rise of the
computational burden, due to the increase of the state dimension. Actually, in models with more than
one or two-step random delays, the computational cost can be excessive and alternative ways to model
and address the estimation problem in this class of systems need to be investigated. Recently, a great
variety of models have been used to describe the phenomena of multi-step random delays and packet
losses during the data transmission in networked systems, and fusion estimation algorithms have been
proposed based on different approaches—for example, the recursive matrix equation method in [6],
the measurement reorganisation approach in [27], the innovation analysis approach in [28] and the
state augmentation approach in [29–31]. It should be noted that, in the presence of multi-step random
delays and packet losses during the data transmission, many difficulties can arise in the design of the
optimal estimators when the state augmentation approach is not used.

In view of the above considerations, this paper is concerned with the optimal fusion estimation
problem, in the least-squares linear sense, for sensor networks featuring stochastic uncertainties in
the sensor measurements, together with multi-step random delays and packet dropouts during the
data transmission. The derivation of the estimation algorithms will be carried out without using
the evolution model generating the signal process. The uncertainties in the measured outputs of the
different sensors are described by random measurement matrices. The multi-step random delays in the
transmissions are modeled by using a collection of Bernoulli sequences with known distributions and
different characteristics at each sensor; the exact value of these Bernoulli variables is not required, and
only the information about the probability distribution is needed. To the best of the authors’ knowledge,
the optimal estimation problem (including prediction, filtering and fixed-point smoothing) has not
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been investigated for systems involving random measurement matrices and transmission multi-step
random delays simultaneously, and, therefore, it constitutes an interesting research challenge. The main
contributions of this research can be highlighted as follows: (a) even though our approach, based on
covariance information, does not require the signal evolution model, the proposed algorithms are
also applicable in situations based on the state-space model (see Remark 1); (b) random measurement
matrices are considered in the measured outputs, thus providing a unified framework to address
different network-induced phenomena (see Remark 2); (c) besides the stochastic uncertainties in the
sensor measurements, simultaneous multi-step random delays and losses with different rates are
considered in the data transmission; (d) unlike most papers about multi-step random delays, in which
only the filtering problem is considered, we propose recursive algorithms for the prediction, filtering
an fixed-point smoothing estimators under the innovation approach, which are computationally
very simple and suitable for online applications; and (e) optimal estimators are obtained without
using the state augmentation approach, thus reducing the computational cost in comparison with the
augmentation method.

The rest of the paper is organized as follows. In Section 2, we present the sensor network and
the assumptions under which the optimal linear estimation problem will be addressed. In Section 3,
the observation model is rewritten in a compact form and the innovation approach to the least-squares
linear estimation problem is formulated. In Section 4, recursive algorithms for the prediction, filtering
and fixed-point smoothing estimators are derived. A simulation example is given in Section 5 to show
the performance of the proposed estimators. Finally, some conclusions are drawn in Section 6.

Notations. The notations used throughout the paper are standard. Rn and Rm×n denote the
n-dimensional Euclidean space and the set of all m × n real matrices, respectively. For a matrix
A, AT and A−1 denote its transpose and inverse, respectively. The shorthand Diag(A1, . . . , Am) stands
for a block-diagonal matrix whose diagonal matrices are A1, . . . , Am. 1n = (1, . . . , 1)T denotes the
all-ones n × 1-vector and In represent the n × n-identity matrix. If the dimensions of matrices are not
explicitly stated, they are assumed to be compatible with algebraic operations. The Kronecker and
Hadamard product of matrices will be denoted by ⊗ and ◦, respectively. δk,s denotes the Kronecker
delta function. For any a, b ∈ R, a ∧ b is used to mean the minimum of a and b.

2. Observation Model and Preliminaries

In this paper, the optimal fusion estimation problem of multidimensional discrete-time
random signals from measurements obtained by a sensor network is addressed. At each sensor,
the measured outputs are perturbed by random parameter matrices and white additive noises that are
cross-correlated at the same sampling time between the different sensors. The estimation is performed
in a processing centre connected to all sensors, where the complete set of sensor data is combined,
but due to eventual communication failures, congestion or other causes, random delays and packet
dropouts are unavoidable during the transmission process. To reduce the effect of such delays and
packet dropouts without overloading the network traffic, each sensor measurement transmits a fixed
number of consecutive sampling times and, when several packets arrive at the same time, the receiver
discards the oldest ones, so that only one measured output is processed for the estimation at each
sampling time.

2.1. Signal Process

The optimal estimators will be obtained using the least-squares (LS) criterion and without
requiring the evolution model generating the signal process. Actually, the proposed estimation
algorithms, based on covariance information, only need the mean vectors and covariance functions of
the processes involved, and the only requirement will be that the signal covariance function must be
factorizable according to the following assumption:
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(A1) The nx-dimensional signal process {xk; k ≥ 1} has zero mean and its autocovariance
function is expressed in a separable form, E[xkxT

s ] = AkBT
s , s ≤ k, where Ak, Bs ∈ Rnx×n

are known matrices.

Remark 1 (on assumption (A1)). The estimation problems based on the state-space model require new
estimation algorithms when the signal evolution model is modified; therefore, the algorithms designed for
stationary signals driven by xk+1 = Φxk + ξk cannot be applied for non-stationary signals generated by
xk+1 = Φkxk + ξk, and these, in turn, cannot be used in uncertain systems where xk+1 = (Φk + εkΦ̂k)xk + ξk.
A great advantage of assumption (A1) is that it covers situations in which the signal evolution model is
known, for both stationary and non-stationary signals (see, e.g., [23]). In addition, in uncertain systems with
state-dependent multiplicative noise, as those considered in [6,32], the signal covariance function is factorizable,
as it is shown in Section 5. Hence, assumption (A1) on the signal autocovariance function provides a unified
context to deal with different situations based on the state-space model, avoiding the derivation of specific
algorithms for each of them.

2.2. Multisensor Observation Model

Assuming that there are m different sensors, the measured outputs before transmission, z(i)k ∈ Rnz ,
are described by the following observation model:

z(i)k = H(i)
k xk + v(i)k , k ≥ 1; i = 1, . . . , m, (1)

where the measurement matrices, H(i)
k , and the noise vectors, v(i)k , satisfy the following assumptions:

(A2)
{

H(i)
k ; k ≥ 1

}
, i = 1, . . . , m, are independent sequences of independent random parameter

matrices, whose entries have known means and second-order moments; we will denote
H(i)

k ≡ E[H(i)
k ], k ≥ 1.

(A3)
{

v(i)k ; k ≥ 1
}

, i = 1, . . . , m, are white noise sequences with zero mean and known second-order

moments, satisfying E
[
v(i)k v(j)T

s
]
= R(ij)

k δk,s, i, j = 1, . . . , m.

Remark 2 (on assumption (A2)). Usually, in network environments, the measurements are subject to
different network-induced random phenomena and new estimation algorithms must be designed to incorporate
the effects of these random uncertainties. For example, in systems with stochastic sensor gain degradation or
missing measurements as those considered in [6,7], respectively, or in networked systems involving stochastic
multiplicative noises in the state and measurement equations (see, e.g., [31,32]), new estimation algorithms are
proposed since the conditions necessary to implement the conventional ones are not met. The aforementioned
systems are particular cases of systems with random measurement matrices, and, hence, assumption (A2) allows
for designing a unique estimation algorithm, which is suitable to address all of these situations involving random
uncertainties. In addition, based on an augmentation approach, random measurement matrices can be used to
model the measured outputs of sensor networks with random delays and packet dropouts (see, e.g., [8–10,20]).
Therefore, assumption (A2) provides a unified framework to deal with a great variety of network-induced random
phenomena as those mentioned above.

2.3. Measurement Model with Transmission Random Delays and Packet Losses

Assuming that the maximum time delay is D, the measured output of the i-th sensor at time r, z(i)r ,
is transmitted during the sampling times r, r + 1, · · · , r + D, but, at each sampling time k > D, only one
of the measurements z(i)k−D, . . . , z(i)k is processed. Consequently, at any time k > D, the measurement
processed can either arrive on time or be delayed by d = 1, . . . , D sampling periods, while at any time
k ≤ D, the measurement processed can be delayed only by d = 1, . . . , k − 1 sampling periods, since
only z(i)1 , . . . , z(i)k are available. Assuming, moreover, that the transmissions are perturbed by additive
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noises, the measurements received at the processing centre, impaired by random delays and packet
losses, can be described by the following model:

y(i)k =
(k−1)∧D

∑
d=0

γ
(i)
d,kz(i)k−d + w(i)

k , k ≥ 1, (2)

where the following assumptions on the random variables modelling the delays, γ
(i)
d,k, and the

transmision noise, w(i)
k , are required:

(A4) For each d = 0, 1, . . . , D,
{

γ
(i)
d,k; k > d

}
, i = 1, . . . , m, are independent sequences of independent

Bernoulli random variables with P[γ(i)
d,k = 1] = γ

(i)
d,k and

(k−1)∧D

∑
d=0

γ
(i)
d,k ≤ 1, k ≥ 1.

(A5)
{

w(i)
k ; k ≥ 1

}
, i = 1, . . . , m, are white noise sequences with zero mean and known second-order

moments, satisfying E
[
w(i)

k w(j)T
s

]
= Q(ij)

k δk,s, i, j = 1, . . . , m.

Remark 3 (on assumption (A4)). For i = 1, . . . , m, when γ
(i)
0,k = 1, the transmission of the i-th sensor is

perfect and neither delay nor loss occurs at time k; that is, with probability γ
(i)
0,k, the k-th measurement of the

i-th sensor is received and processed on time. Since
(k−1)∧D

∑
d=0

γ
(i)
d,k ≤ 1, if γ

(i)
0,k = 0, there then exists at most one

d = 1, . . . , D, such that γ
(i)
d,k = 1. If there exists d such that γ

(i)
d,k = 1 (which occurs with probability γ

(i)
d,k),

then the measurement is delayed by d sampling periods. Otherwise, γ
(i)
d,k = 0 for all d, meaning that the

measurement gets lost during the transmission at time k with probability 1 −
(k−1)∧D

∑
d=0

γ
(i)
d,k.

Finally, the following independence hypothesis is assumed:

(A6) For i = 1, . . . , m and d = 0, 1, . . . , D, the processes {xk; k ≥ 1}, {H(i)
k ; k ≥ 1}, {v(i)k ; k ≥ 1},

{w(i)
k ; k ≥ 1} and

{
γ
(i)
d,k; k > d

}
are mutually independent.

3. Problem Statement

Given the observation Equations (1) and (2) with random measurement matrices and transmission
random delays and packet dropouts, our purpose is to find the LS linear estimator, x̂k/L, of the signal xk

based on the observations from the different sensors {y(i)1 , . . . , y(i)L , i = 1, . . . , m}. Specifically, our aim
is to obtain recursive algorithms for the predictor (L < k), filter (L = k) and fixed-point smoother
(k fixed and L > k).

3.1. Stacked Observation Model

Since the measurements coming from the different sensors are all gathered and jointly processed
at each sampling time k, we will consider the vector constituted by the meaurements from all sensors,
yk =

(
y(1)Tk , . . . , y(m)T

k
)T . More specifically, the observation Equations (1) and (2) of all sensors are

combined, yielding the following stacked observation model:

zk = Hkxk + vk, k ≥ 1,

yk =
(k−1)∧D

∑
d=0

Γd,kzk−d + wk, k ≥ 1,
(3)

where zk =
(
z(1)Tk , . . . , z(m)T

k
)T , Hk =

(
H(1)T

k , . . . , H(m)T
k

)T , vk =
(
v(1)Tk , . . . , v(m)T

k
)T ,

wk =
(
w(1)T

k , . . . , w(m)T
k

)T and Γd,k = Diag
(
γ
(1)
d,k , . . . , γ

(m)
d,k
)⊗ Inz .
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Hence, the problem is to obtain the LS linear estimator of the signal, xk, based on the measurements
{y1, . . . , yL}, given in the observation Equation (3). Next, we present the statistical properties of the
processes involved in Equation (3), from which the LS estimation algorithms of the signal will be
derived; these properties are easily inferred from the assumptions (A1)–(A6).

(P1)
{

Hk; k ≥ 1
}

is a sequence of independent random parameter matrices with known means,

Hk ≡ E[Hk] =
(

H(1)T
k , . . . , H(m)T

k

)T
, and

E[HkxkxT
s HT

s ] = E[Hk AkBT
s HT

s ] =
(

E[H(i)
k AkBT

s H(j)T
s ]

)
i,j=1...,m

, s ≤ k,

where E
[
H(i)

k AkBT
s H(j)T

s
]

= H(i)
k AkBT

s H(j)T
s , for j �= i or s �= k, and the entries of

E
[
H(i)

k AkBT
k H(i)T

k
]

are computed as follows:

(
E
[
H(i)

k AkBT
k H(i)T

k
])

pq
=

nx

∑
a=1

nx

∑
b=1

E[h(i)pa (k)h
(i)
qb (k)](AkBT

k )ab, p, q = 1, . . . , nz,

where h(i)pq (k) denotes the (p, q)−entry of the matrix H(i)
k .

(P2) The noises
{

vk; k ≥ 1
}

and
{

wk; k ≥ 1
}

are zero-mean sequences with known second-order

moments given by the matrices Rk ≡ (
R(ij)

k
)

i,j=1,...,m and Qk ≡ (
Q(ij)

k
)

i,j=1,...,m.

(P3) {Γd,k; k > d}, d = 0, 1, . . . , D, are sequences of independent random matrices with known means,

Γd,k ≡ E[Γd,k] = Diag
(

γ
(1)
d,k , . . . , γ

(m)
d,k

)
⊗ Inz , and if we denote γd,k =

(
γ
(1)
d,k , . . . , γ

(m)
d,k

)T ⊗ 1nz and

γd,k = E[γd,k], the covariance matrices Σγk
d,d′ ≡ E[(γd,k − γd,k)(γd′ ,k − γd′ ,k)

T ], for d, d′ = 0, 1, . . . , D,
are also known matrices. Specifically,

Σγk
d,d′ = Diag

(
Cov

(
γ
(1)
d,k , γ

(1)
d′ ,k

)
, . . . , Cov

(
γ
(m)
d,k , γ

(m)
d′ ,k

))
⊗
(

1nz 1T
nz

)
, (4)

with Cov
(

γ
(i)
d,k, γ

(i)
d′ ,k

)
=

{
γ
(i)
d,k(1 − γ

(i)
d,k), d′ = d,

−γ
(i)
d,kγ

(i)
d′ ,k, d′ �= d.

Moreover, for any deterministic matrix S, the Hadamard product properties guarantee that

E
[(

Γd,k − Γd,k
)

S
(
Γd′,k − Γd′,k

)]
= Σγk

d,d′ ◦ S.

(P4) For d = 0, 1, . . . , D, the signal, {xk; k ≥ 1}, and the processes {Hk; k ≥ 1}, {vk; k ≥ 1},
{wk; k ≥ 1} and {Γd,k; k > d} are mutually independent.

Remark 4 (on the observation covariance matrices). From the previous properties, it is clear that the
observation process {zk; k ≥ 1} is a zero-mean sequence whose covariance function, Σz

k,s ≡ E[zkzT
s ], is obtained

by the following expression:
Σz

k,s = E
[
Hk AkBT

s HT
s
]
+ Rkδk,s, s ≤ k, (5)

where E
[
Hk AkBT

s HT
s
]

and Rk are calculated as it is indicated in properties (P1) and (P2), respectively.

3.2. Innovation Approach to the LS Linear Estimation Problem

The proposed covariance-based recursive algorithms for the LS linear prediction, filtering and
fixed-point smoothing estimators will be derived by an innovation approach. This approach consists of
transforming the observation process {yk; k ≥ 1} into an equivalent one of orthogonal vectors called an
innovation process, which will be denoted {μk; k ≥ 1} and defined by μk = yk − ŷk/k−1, where ŷk/k−1
is the orthogonal projection of yk onto the linear space spanned by {μ1, . . . , μk−1}. Since both
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processes span the same linear subspace, the LS linear estimator of any random vector αk based on the
observations {y1, . . . , yN}, denoted by α̂k/N , is equal to that based on the innovations {μ1, . . . , μN},
and, denoting Πh = E[μhμT

h ], the following general expression for the LS linear estimators of αk
is obtained

α̂k/N =
N

∑
h=1

E
[
αkμT

h
]
Π−1

h μh. (6)

Hence, to obtain the signal estimators, it is necessary to find an explicit formula beforehand for
the innovations and their covariance matrices.

Innovation μL and Covariance Matrix ΠL. Applying orthogonal projections in Equation (3), it is clear
that the innovation μL is given by

μL = yL −
(L−1)∧D

∑
d=0

Γd,LẑL−d/L−1, L ≥ 2; μ1 = y1, (7)

so it is necessary to obtain the one-stage predictor ẑL/L−1 and the estimators ẑL−d/L−1,
for d = 1, . . . , (L − 1) ∧ D, of the observation process.

In order to obtain the covariance matrix ΠL, we use Equation (3) to express the innovations as:

μL =
(L−1)∧D

∑
d=0

(
(Γd,L − Γd,L)zL−d + Γd,L(zL−d − ẑL−d/L−1)

)
+ wL, L ≥ 2 (8)

and, taking into account that

E
[
(Γd,L − Γd,L)zL−d(zL−d′ − ẑL−d′/L−1)

TΓd′ ,L
]
= 0, ∀d, d′,

we have

ΠL =
(L−1)∧D

∑
d,d′=0

(
ΣγL

d,d′ ◦ Σz
L−d,L−d′ + Γd,LPz

L−d,L−d′/L−1Γd′ ,L
)
+ QL, L ≥ 2;

Π1 =
(
Σγ1

0,0 + γ0,1γT
0,1
) ◦ Σz

1,1 + Q1,

(9)

where the matrices ΣγL
d,d′ and Σz

L−d,L−d′ are given in the Equations (4) and (5), respectively, and
Pz

L−d,L−d′/L−1 ≡ E[(zL−d − ẑL−d/L−1)(zL−d′ − ẑL−d′/L−1)
T ].

4. Least-Squares Linear Signal Estimators

In this section, we derive recursive algorithms for the LS linear estimators, x̂k/L, k ≥ 1, of the
signal xk based on the observations {y1, . . . , yL} given in Equation (3); namely, a prediction and filtering
algorithm (L ≤ k) and a fixed-point smoothing algorithm (k fixed and L > k) are designed.

4.1. Signal Predictor and Filter x̂k/L, L ≤ k

From the general expression given in Equation (6), to obtain the LS linear estimators

x̂k/L =
L

∑
h=1

E
[
xkμT

h
]
Π−1

h μh, L ≤ k, it is necessary to calculate the coefficients

Xk,h ≡ E
[
xkμT

h
]
= E

[
xkyT

h
]− E

[
xkŷT

h/h−1
]
, h ≤ k.

• On the one hand, using Equation (3) together with the independence hypotheses and
assumption (A1) on the signal covariance factorization, it is clear that

E
[
xkyT

h
]
=
(h−1)∧D

∑
d=0

E[xk(Hh−dxh−d + vh−d)
T ]Γd,h = Ak

(h−1)∧D

∑
d=0

BT
h−d HT

h−dΓd,h, h ≤ k.
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• On the other hand, since ŷh/h−1 =
(h−1)∧D

∑
d=0

Γd,hẑh−d/h−1, h ≥ 2, and taking into account

that, from Equation (6), ẑh−d/h−1 =
h−1

∑
j=1

Zh−d,jΠ
−1
j μj with Zh−d,j = E[zh−dμT

j ], the following

identity holds

E
[
xkŷT

h/h−1
]
=

(h−1)∧D

∑
d=0

(
h−1

∑
j=1

Xk,jΠ
−1
j ZT

h−d,j

)
Γd,h.

Therefore, it is easy to check that Xk,h = AkEh, 1 ≤ h ≤ k, where Eh is a function satisfying that

Eh =
(h−1)∧D

∑
d=0

BT
h−d HT

h−dΓd,h −
(h−1)∧D

∑
d=0

(
h−1

∑
j=1

EjΠ−1
j ZT

h−d,j

)
Γd,h, h ≥ 2,

E1 = BT
1 HT

1 Γ0,1.

(10)

Hence, it is clear that the signal prediction and filtering estimators can be expressed as

x̂k/L = AkeL, L ≤ k, k ≥ 1, (11)

where the vectors eL are defined by eL =
L

∑
h=1

EhΠ−1
h μh, for L ≥ 1, with e0 = 0, thus obeying the

recursive relation
eL = eL−1 + ELΠ−1

L μL, L ≥ 1; e0 = 0. (12)

Matrices EL. Taking into account the above relation, an expression for EL, L ≥ 1, must be derived.
For this purpose, Equation (10) is rewritten for h = L as

EL =
(L−1)∧D

∑
d=0

BT
L−d HT

L−dΓd,L −
(L−1)∧D

∑
d=0

(
L−1

∑
j=1

EjΠ−1
j ZT

L−d,j

)
Γd,L, L ≥ 2,

and we examine the cases d = 0 and d ≥ 1 separately:

− For d = 0, using Equation (3), it holds that ZL,j = HLXL,j = HL ALEj, for j < L, and, by denoting

Σe
L =

L

∑
h=1

EhΠ−1
h Eh, L ≥ 1, we obtain that

(
L−1

∑
j=1

EjΠ−1
j ZT

L,j

)
Γ0,L =

(
L−1

∑
j=1

EjΠ−1
j ET

j

)
AT

L HT
L Γ0,L = Σe

L−1 AT
L HT

L Γ0,L.

− For d ≥ 1, since ZL−d,j = HL−d AL−dEj, for j < L − d, we can see that(
L−1

∑
j=1

EjΠ−1
j ZT

L−d,j

)
Γd,L = Σe

L−d−1 AT
L−d HT

L−dΓd,L +

(
L−1

∑
j=L−d

EjΠ−1
j ZT

L−d,j

)
Γd,L.

By substituting the above sums in EL, it is deduced that

EL =
(L−1)∧D

∑
d=0

(
BL−d − AL−dΣe

L−d−1
)T HT

L−dΓd,L −
(L−1)∧D

∑
d=1

(
L−1

∑
j=L−d

EjΠ−1
j ZT

L−d,j

)
Γd,L, L ≥ 2;

E1 = BT
1 HT

1 Γ0,1,

(13)
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where the matrices ZL−d,j, j ≥ L − d, will be obtained in the next subsection, as they correspond to the
observation smoothing estimators, and the matrices Σe

L are recursively obtained by

Σe
L = Σe

L−1 + ELΠ−1
L ET

L , L ≥ 1; Σe
0 = 0. (14)

Finally, from assumption (A1) and since the estimation errors are orthogonal to the estimators, we
have that the error covariance matrices, Px

k/L ≡ E[(xk − x̂k/L)(xk − x̂k/L)
T ], are given by

Px
k/L = Ak (Bk − AkΣe

L)
T , L ≤ k, k ≥ 1. (15)

4.2. Estimators of the Observations ẑk/L, k ≥ 1

As it has been already indicated, the Equation (7) require obtaining the observation estimators
(predictor, filter and smoother). From the general expression for the estimators given in Equation (6),

we have that ẑk/L =
L

∑
j=1

Zk,jΠ
−1
j μj, with Zk,j = E[zkμT

j ]. Next, recursive expressions will be derived

separately for L < k (predictors) and L ≥ k (filter and smoothers).

Observation Prediction Estimators. Since Zk,j = Hk AkEj, for j < k, we have that the prediction estimators
of the observations are given by

ẑk/L = Hk ALeL, L < k, k ≥ 1. (16)

Observation Filtering and Fixed-Point Smoothing Estimators. Clearly, the filter and fixed-point smoothers
of the observations are obtained by the following recursive expression:

ẑk/L = ẑk/L−1 +Zk,LΠ−1
L μL, L ≥ k, k ≥ 1, (17)

with initial condition given by the one-stage predictor ẑk/k−1 = Hk Akek−1.

Hence, the matrices Zk,L must be calculated for L ≥ k. Since the innovation is a white process,
E
[
ẑk/L−1μT

L
]
= 0 and hence Zk,L = E[zkμT

L ] = E
[
(zk − ẑk/L−1)μ

T
L
]
. Now using Equation (8) for μL

and, taking into account that E
[
(zk − ẑk/L−1)zT

L−d(Γd,L − Γd,L)
]
= 0, ∀d, we have

Zk,L =
(L−1)∧D

∑
d=0

Pz
k,L−d/L−1Γd,L, L ≥ k, (18)

where Pz
k,L−d/L−1 ≡ E[(zk − ẑk/L−1)(zL−d − ẑL−d/L−1)

T ].

Consequently, the error covariance matrices Pz
k,h/m = E[(zk − ẑk/m)(zh − ẑh/m)

T ] must be derived,
for which the following two cases are analyzed separately:

∗ For m ≥ k ∧ h, using Equation (17) and taking into account that Zk,m = E
[
(zk − ẑk/m−1)μ

T
m
]
, it is

easy to see that
Pz

k,h/m = Pz
k,h/m−1 −Zk,mΠ−1

m ZT
h,m, m ≥ k ∧ h. (19)

∗ For m < h ≤ k, using Equation (16), assumption (A1) and the orthogonality between the
estimation errors and the estimators, we obtain

Pz
k,h/m = AkBT

h − Hk AkΣe
m AT

h HT
h , m < h ≤ k. (20)
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4.3. Signal Fixed-Point Smoother x̂k/L, L > k

Starting with the filter, x̂k/k, and the filtering error covariance matrix, Px
k/k, it is clear that

the signal fixed-point smoother x̂k/L, L > k, and the corresponding error covariance matrix,
Px

k/L ≡ E[(xk − x̂k/L)(xk − x̂k/L)
T ], are obtained by

x̂k/L = x̂k/L−1 +Xk,LΠ−1
L μL, L > k, k ≥ 1,

Px
k/L = Px

k/L−1 −Xk,LΠ−1
L X T

k,L, L > k, k ≥ 1.
(21)

An analogous reasoning to that of Equation (18) leads to the following expression for the
matrices Xk,L:

Xk,L =
(L−1)∧D

∑
d=0

Pxz
k,L−d/L−1Γd,L, L > k, (22)

where Pxz
k,L−d/L−1 ≡ E[(xk − x̂k/L−1)(zL−d − ẑL−d/L−1)

T ].

The derivation of the error cross-covariance matrices Pxz
k,h/m = E[(xk − x̂k/m)(zh − ẑh/m)

T ] is
similar to that of the matrices Pz

k,h/m, and they are given by

Pxz
k,h/m = Pxz

k,h/m−1 −Xk,mΠ−1
m ZT

h,m, m ≥ k ∧ h,
Pxz

k,h/m = Ak(Bh − AhΣe
m)

T HT
h , m < h ≤ k,

Pxz
k,h/m = (Bk − AkΣe

m)AT
h HT

h , m < k ≤ h,
(23)

where Xk,m = AkEm, for m ≤ k, and Zh,m = Hh AmEm, for m < h, and otherwise these matrices are
given by Equations (22) and (18), respectively.

4.4. Recursive Algorithms: Computational Procedure

The computational procedure of the proposed prediction, filtering and fixed-point smoothing
algorithms can be summarized as follows:

(1) Covariance Matrices. The covariance matrices Σγk
d,d′ and Σz

k are obtained by Equations (4) and (5),
respectively; these matrices only depend on the system model information, so they can be
calculated offline before the observed data packets are available.

(2) LS Linear Prediction and Filtering Recursive Algorithm. At the sampling time k, once the (k − 1)-th
iteration is finished and Ek−1, Πk−1, Σe

k−1 μk−1 and ek−1 are known, the proposed prediction and
filtering algorithm operates as follows:

(2a) Compute Zk,k−1 = Hk AkEk−1 and Zk−d,k−1, for d = 1, . . . , (k − 1) ∧ D, by Equation (18).
From these matrices, we obtain the observation estimators ẑk−d/k−1, for d = 0, 1, . . . , (k −
1) ∧ D, by Equation (19) and (20), and the observation error covariance matrices
Pz

k−d,k−d′/k−1, for d, d′ = 0, 1, . . . , (k − 1) ∧ D, by Equation (19) and (20).
(2b) Compute Ek by Equation (13) and use Pz

k−d,k−d′/k−1 to obtain the innovation covariance
matrix Πk by Equation (9). Then, Σe

k is obtained by Equation (14) and, from it, the
prediction and filtering error covariance matrices, Px

k/k−s and Px
k/k, respectively, are

obtained by Equation (15).
(2c) When the new measurement yk is available, the innovation μk is computed by Equation (7)

using ẑk−d/k−1, for d = 0, 1, . . . , (k − 1) ∧ D, and, from the innovation, ek is obtained
by Equation (12). Then, the predictors, x̂k/k−s and the filter, x̂k/k are computed by
Equation (11).

(3) LS linear fixed-point smoothing recursive algorithm. Once the filter, x̂k/k, and the filtering error
covariance matrix, Px

k/k are available, the proposed smoothing estimators and the corresponding
error covariance matrix are obtained as follows:
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For L = k + 1, k + 2, . . . , compute the error cross-covariance matrices Pxz
k,L−d/L−1, for

d = 0, 1, . . . , (k − 1) ∧ D, using Equation (23) and, from these matrices, Xk,L is derived by
Equation (22); then, the smoothers x̂k/L and their error covariance matrices Px

k/L are obtained
from Equation (21).

5. Computer Simulation Results

In this section, a numerical example is presented with the following purposes: (a) to show that,
although the current covariance-based estimation algorithms do not require the evolution model
generating the signal process, they are also applicable to the conventional formulation using the
state-space model, even in the presence of state-dependent multiplicative noise; (b) to illustrate some
kinds of uncertainties which can be covered by the current model with random measurement matrices;
and (c) to analyze how the estimation accuracy of the proposed algorithms is influenced by the sensor
uncertainties and the random delays in the transmissions.

Signal Evolution Model with State-Dependent Multiplicative Noise. Consider a scalar signal {xk; k ≥ 0}
whose evolution is given by the following model with multiplicative and additive noises:

xk = (0.9 + 0.01εk−1)xk−1 + ξk−1, k ≥ 1,

where x0 is a standard Gaussian variable and {εk; k ≥ 0}, {ξk; k ≥ 0} are zero-mean Gaussian white
processes with unit variance. Assuming that x0, {εk; k ≥ 0} and {ξk; k ≥ 0} are mutually independent,
the signal covariance function is given by E[xkxs] = 0.9k−sDs, s ≤ k, where Ds = E[x2

s ] is recursively
obtained by Ds = 0.8101Ds−1 + 1, for s ≥ 1, with D0 = 1; hence, the signal process satisfies assumption
(A1) taking, for example, Ak = 0.9k and Bs = 0.9−sDs.

Sensor Measured Outputs. As in [22], let us consider scalar measurements provided by four sensors with
different types of uncertainty: continuous and discrete gain degradation in sensors 1 and 2, respectively,
missing measurements in sensor 3, and both missing measurements and multiplicative noise in sensor 4.
These uncertainties can be described in a unified way by the current model with random measurement
matrices; specifically, the measured outputs are described according to Equation (1):

z(i)k = H(i)
k xk + v(i)k , k ≥ 1, i = 1, 2, 3, 4,

with the following characteristics:

• For i = 1, 2, 3, H(i)
k = C(i)θ

(i)
k and H(4)

k =
(
C(4) + C(4′)ρk

)
θ
(4)
k , where C(1) = C(3) = 0.8,

C(2) = C(4) = 0.75, C(4′) = 0.95, and {ρk; k ≥ 1} is a zero-mean Gaussian white process with
unit variance. The sequences {ρk; k ≥ 1} and {θ

(i)
k ; k ≥ 1}, i = 1, 2, 3, 4, are mutually

independent, and {θ
(i)
k ; k ≥ 1}, i = 1, 2, 3, 4, are white processes with the following time-invariant

probability distributions:

– θ
(1)
k is uniformly distributed over the interval [0.1, 0.9];

– P[θ(2)k = 0] = 0.3, P[θ(2)k = 0.5] = 0.3 P[θ(2)k = 1] = 0.4;
– For i = 3, 4, θ

(i)
k are Bernoulli random variables with the same time-invariant probabilities in

both sensors P[θ(i)k = 1] = p.

• The additive noises are defined by v(i)k = ciη
v
k , i = 1, 2, 3, 4, where c1 = 0.5, c2 = c3 = 0.75, c4 = 1,

and {ηv
k ; k ≥ 1} is a zero-mean Gaussian white process with unit variance. Clearly, the additive

noises {v(i)k ; k ≥ 1}, i = 1, 2, 3, 4, are correlated at any time, with R(ij)
k = cicj, i, j = 1, 2, 3, 4.

Observations with Bounded Random Delays and Packet Dropouts. Next, according to the theoretical
observation model, let us suppose that bounded random measurement delays and packet dropouts,
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with different delay probabilities, exist in the data transmission. Specifically, assuming that the largest
delay is D = 3, let us consider the observation Equation (2):

y(i)k =
(k−1)∧3

∑
d=0

γ
(i)
d,kz(i)k−d + w(i)

k , k ≥ 1,

where, for i = 1, 2, 3, 4 and d = 0, 1, 2, 3, {γ
(i)
d,k; k > d}, are sequences of independent Bernoulli variables

with the same time-invariant delay probabilities for the four sensors γ
(i)
d,k = γd, where

3

∑
d=0

γd ≤ 1.

Hence, the packet dropout probability is 1 −
3

∑
d=0

γd. The transmission noise is defined by w(i)
k = ciη

w
k ,

i = 1, 2, 3, 4, where {ηw
k ; k ≥ 1} is a zero-mean Gaussian white process with unit variance.

Finally, in order to apply the proposed algorithms, and according to (A5), we will assume that all
of the processes involved in the observation equations are mutually independent.

To illustrate the feasibility and effectiveness of the proposed algorithms, they were implemented
in MATLAB (R2011b 7.13.0.564, The Mathworks, Natick, MA, USA) and one hundred iterations of the
prediction, filtering and fixed-point smoothing algorithms have been performed. In order to analyze
the effect of the network-induced uncertainties on the estimation accuracy, different values of the
probabilities p of the Bernoulli random variables that model the uncertainties of the third and fourth
sensors, and several values of the delay probabilities γd, d = 0, 1, 2, 3, have been considered.

Performance of the Prediction, Filtering and Fixed-Point Smoothing Estimators. Considering the values

p = 0.5, γ0 = 0.6 (packet arrival probability) and γd =
1 − γ0

4
, d = 1, 2, 3 (delay probabilities),

Figure 1 displays a simulated trajectory along with the prediction, filtering and smoothing estimations,
showing a satisfactory and efficient tracking performance of the proposed estimators. Figure 2 shows
the error variances of the predictors ẑk/k−2 and ẑk/k−1, the filter ẑk/k and the smoothers ẑk/k+1 and
ẑk/k+2. Analogously to what happens for non-delayed observations, the performance of the estimators
becomes better as more observations are used; that is, the error variances of the smoothing estimators
are less than the filtering ones which, in turn, are less than those of the predictors. Hence, the estimation
accuracy of the smoothers is superior to that of the filter and predictors and improves as the number of
iterations in the fixed-point smoothing algorithm increases. The performance of the proposed filter has
also been evaluated in comparison with the standard Kalman filter; for this purpose, the filtering mean
square error (MSE) at each sampling time was calculated by considering one thousand independent
simulations and one hundred iterations of each filter. The results of this comparison are displayed in
Figure 3, which shows that the proposed filter performs better than the Kalman filter, a fact that was
expected since the latter does not take into account either the uncertainties in the measured outputs or
the delays and losses during transmission.

Influence of the Missing Measurements. To analyze the sensitivity of the estimation performance on the
effect of the missing measurements phenomenon in the third and fourth sensors, the error variances
are calculated for different values of the probability p. Specifically, considering again γ0 = 0.6 and
γd = 0.1, d = 1, 2, 3, Figure 4 displays the prediction, filtering and fixed-point smoothing error
variances for the values p = 0.5 to p = 0.9. This Figure shows that, as p increases, the estimation error
variances become smaller and, hence, as it was expected, the performance of the estimators improves
as the probability of missing measurements 1 − p decreases.
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Figure 1. Simulated signal and proposed prediction, filtering and smoothing estimates when p = 0.5
and γ0 = 0.6, γd = 0.1, d = 1, 2, 3.
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Figure 2. Prediction, filtering and smoothing error variances when p = 0.5 and γ0 = 0.6, γd = 0.1,
d = 1,2,3.
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Figure 3. MSE of Kalman filter and proposed filter when p = 0.5 and γ0 = 0.6, γd = 0.1, d = 1, 2, 3.
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Figure 4. Prediction, filtering and fixed-point smoothing error variances for different values of the
probability p, when γ0 = 0.6 and γd = 0.1, d = 1, 2, 3.

Influence of the Transmission Random Delays and Packet Dropouts. Considering a fixed value of the
probability p, namely, p = 0.5, in order to show how the estimation accuracy is influenced by
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the transmission random delays and packet dropouts, the prediction, filtering and smoothing
error variances are displayed in Figure 5 when γ0 is varied from 0.1 to 0.9, considering again

γd =
1 − γ0

4
, d = 1, 2, 3. Since the behaviour of the error variances is analogous from a certain

iteration on, only the results at the iteration k = 50 are shown in Figure 5. From this figure, we see
that the performance of the estimators (predictor, filter and smoother) is indeed influenced by the
transmission delay and packet dropout probabilities and, as it was expected, it is confirmed that the
error variances become smaller, and hence the performance of the estimators improves, as the packet
arrival probability γ0 increases. Moreover, for the filter and the smoothers, this improvement is more
significant than for the predictors. In addition, as it was deduced from Figure 2, it is observed that, for
all the values of γ0, the performance of the estimators is better as more observations are used, and this
improvement is more significant as γ0 increases.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

4.5

5

Probability γ0

P x
50/48

P x
50/49

P x
50/50

P x
50/51

P x
50/52

Figure 5. Estimation error variances for different values of the probability γ0, when p = 0.5.

Finally, it must be remarked that analogous conclusions are deduced for other values of
the probabilities p and γd, d = 0, 1, 2, 3, and also when such probabilities are different at the
different sensors.

6. Conclusions

This paper makes valuable contributions to the optimal fusion estimation problem in networked
stochastic systems with random parameter matrices, when multi-step delays or even packet dropouts
occur randomly during the data transmission. By an innovation approach, recursive prediction,
filtering and fixed-point smoothing algorithms have been designed, which are easily implementable
and do not require the signal evolution model, but only the mean and covariance functions of the
system processes.

Unlike other estimation algorithms proposed in the literature, where the estimators are restricted
to obey a particular structure, in this paper, recursive optimal estimation algorithms are designed
without requiring a particular structure on the estimators, but just using the LS optimality criterion.
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Another advantage is that the current approach does not resort to the augmentation technique and,
consequently, the dimension of the designed estimators is the same as that of the original signal,
thus reducing the computational burden in the processing centre.

Acknowledgments: This research is supported by the “Ministerio de Economía y Competitividad” and “Fondo
Europeo de Desarrollo Regional” FEDER (Grant No. MTM2014-52291-P).

Author Contributions: All of the authors contributed equally to this work. Raquel Caballero-Águila,
Aurora Hermoso-Carazo and Josefa Linares-Pérez provided original ideas for the proposed model and collaborated
in the derivation of the estimation algorithms; they participated equally in the design and analysis of the simulation
results; and the paper was also written and reviewed cooperatively.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ran, C.; Deng, Z. Self-tuning weighted measurement fusion Kalman filtering algorithm. Comput. Stat.
Data Anal. 2012, 56, 2112–2128.

2. Feng, J.; Zeng, M. Optimal distributed Kalman filtering fusion for a linear dynamic system with
cross-correlated noises. Int. J. Syst. Sci. 2012, 43, 385–398.

3. Yan, L.; Li, X.; Xia, Y.; Fu, M. Optimal sequential and distributed fusion for state estimation in cross-correlated
noise. Automatica 2013, 49, 3607–3612.

4. Ma, J.; Sun, S. Centralized fusion estimators for multisensor systems with random sensor delays, multiple
packet dropouts and uncertain observations. IEEE Sens. J. 2013, 13, 1228–1235.

5. Gao, S.; Chen, P. Suboptimal filtering of networked discrete-time systems with random observation losses.
Math. Probl. Eng. 2014, 2014, 151836.

6. Liu, Y.; He, X.; Wang, Z.; Zhou, D. Optimal filtering for networked systems with stochastic sensor gain
degradation. Automatica 2014, 50, 1521–1525.

7. Chen, B.; Zhang, W.; Yu, L. Distributed fusion estimation with missing measurements, random transmission
delays and packet dropouts. IEEE Trans. Autom. Control 2014, 59, 1961–1967.

8. Li, N.; Sun, S.; Ma, J. Multi-sensor distributed fusion filtering for networked systems with different delay
and loss rates. Digit. Signal Process. 2014, 34, 29–38.

9. Wang, S.; Fang, H.; Tian, X. Recursive estimation for nonlinear stochastic systems with multi-step
transmission delays, multiple packet dropouts and correlated noises. Signal Process. 2015, 115, 164–175.

10. Chen, D.; Yu, Y.; Xu, L.; Liu, X. Kalman filtering for discrete stochastic systems with multiplicative noises
and random two-step sensor delays. Discret. Dyn. Nat. Soc. 2015, 2015, 809734.

11. García-Ligero, M.J.; Hermoso-Carazo, A.; Linares-Pérez, J. Distributed fusion estimation in networked
systems with uncertain observations and markovian random delays. Signal Process. 2015, 106, 114–122.

12. Gao, S.; Chen, P.; Huang, D.; Niu, Q. Stability analysis of multi-sensor Kalman filtering over lossy networks.
Sensors 2016, 16, 566.

13. Lin, H.; Sun, S. State estimation for a class of non-uniform sampling systems with missing measurements.
Sensors 2016, 16, 1155.

14. Hu, J.; Wang, Z.; Chen, D.; Alsaadi, F.E. Estimation, filtering and fusion for networked systems with
network-induced phenomena: New progress and prospects. Inf. Fusion 2016, 31, 65–75.

15. Sun, S.; Lin, H.; Ma, J.; Li, X. Multi-sensor distributed fusion estimation with applications in networked
systems: A review paper. Inf. Fusion 2017, 38, 122–134.

16. Li, W.; Jia, Y.; Du, J. Distributed filtering for discrete-time linear systems with fading measurements and
time-correlated noise. Digit. Signal Process. 2017, 60, 211–219.

17. Luo, Y.; Zhu, Y.; Luo, D.; Zhou, J.; Song, E.; Wang, D. Globally optimal multisensor distributed random
parameter matrices Kalman filtering fusion with applications. Sensors 2008, 8, 8086–8103.

18. Shen, X.J.; Luo, Y.T.; Zhu, Y.M.; Song, E.B. Globally optimal distributed Kalman filtering fusion. Sci. China
Inf. Sci. 2012, 55, 512–529.

19. Hu, J.; Wang, Z.; Gao, H. Recursive filtering with random parameter matrices, multiple fading measurements
and correlated noises. Automatica 2013, 49, 3440–3448.

149



Sensors 2017, 17, 1151

20. Linares-Pérez, J.; Caballero-Águila, R.; García-Garrido, I. Optimal linear filter design for systems with
correlation in the measurement matrices and noises: Recursive algorithm and applications. Int. J. Syst. Sci.
2014, 45, 1548–1562.

21. Yang, Y.; Liang, Y.; Pan, Q.; Qin, Y.; Yang, F. Distributed fusion estimation with square-root array
implementation for Markovian jump linear systems with random parameter matrices and cross-correlated
noises. Inf. Sci. 2016, 370–371, 446–462.

22. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Networked fusion filtering from outputs with
stochastic uncertainties and correlated random transmission delays. Sensors 2016, 16, 847.

23. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Fusion estimation using measured outputs with
random parameter matrices subject to random delays and packet dropouts. Signal Process. 2016, 127, 12–23.

24. Feng, J.; Zeng, M. Descriptor recursive estimation for multiple sensors with different delay rates. Int. J. Control
2011, 84, 584–596

25. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Least-squares linear-estimators using
measurements transmitted by different sensors with packet dropouts. Digit. Signal Process. 2012,
22, 1118–1125.

26. Ma, J.; Sun, S. Distributed fusion filter for networked stochastic uncertain systems with transmission delays
and packet dropouts. Signal Process. 2017, 130, 268–278.

27. Wang, S.; Fang, H.; Liu, X. Distributed state estimation for stochastic non-linear systems with random delays
and packet dropouts. IET Control Theory Appl. 2015, 9, 2657–2665

28. Sun, S. Linear minimum variance estimators for systems with bounded random measurement delays and
packet dropouts. Signal Process. 2009, 89, 1457–1466.

29. Sun, S. Optimal linear filters for discrete-time systems with randomly delayed and lost measurements
with/without time stamps. IEEE Trans. Autom. Control 2013, 58, 1551–1556.

30. Sun, S.; Ma, J. Linear estimation for networked control systems with random transmission delays and packet
dropouts. Inf. Sci. 2014, 269, 349–365.

31. Wang, S.; Fang, H.; Tian, X. Minimum variance estimation for linear uncertain systems with one-step
correlated noises and incomplete measurements. Digit. Signal Process. 2016, 49, 126–136.

32. Tian, T.; Sun, S.; Li, N. Multi-sensor information fusion estimators for stochastic uncertain systems with
correlated noises. Inf. Fusion 2016, 27, 126–137.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

150



sensors

Article

Multisensor Parallel Largest Ellipsoid Distributed
Data Fusion with Unknown Cross-Covariances

Baoyu Liu 1, Xingqun Zhan 1,* and Zheng H. Zhu 2

1 School of Aeronautics and Astronautics, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang
District, Shanghai 200240, China; abao-liu@163.com

2 Department of Mechanical Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada;
gzhu@yorku.ca

* Correspondence: xqzhan@sjtu.edu.cn; Tel.: +86-21-3420-4306

Received: 26 April 2017; Accepted: 23 June 2017; Published: 29 June 2017

Abstract: As the largest ellipsoid (LE) data fusion algorithm can only be applied to two-sensor
system, in this contribution, parallel fusion structure is proposed to introduce the LE algorithm
into a multisensor system with unknown cross-covariances, and three parallel fusion structures
based on different estimate pairing methods are presented and analyzed. In order to assess the
influence of fusion structure on fusion performance, two fusion performance assessment parameters
are defined as Fusion Distance and Fusion Index. Moreover, the formula for calculating the upper
bounds of actual fused error covariances of the presented multisensor LE fusers is also provided.
Demonstrated with simulation examples, the Fusion Index indicates fuser’s actual fused accuracy and
its sensitivity to the sensor orders, as well as its robustness to the accuracy of newly added sensors.
Compared to the LE fuser with sequential structure, the LE fusers with proposed parallel structures
not only significantly improve their properties in these aspects, but also embrace better performances
in consistency and computation efficiency. The presented multisensor LE fusers generally have
better accuracies than covariance intersection (CI) fusion algorithm and are consistent when the local
estimates are weakly correlated.

Keywords: largest ellipsoid; distributed data fusion; parallel structure; unknown
cross-covariances; multisensor

1. Introduction

Multiple sensors have been widely employed in various systems, such as the integrated navigation
system of driverless cars. Multisensor data fusion aims to achieve an accurate, robust and reliable
representative of the target of interest by combining the information from different used sensors.
The data (estimate) fusion algorithms of multisensor system can be generally classified to centralized
fusion algorithms and distributed fusion algorithms. The centralized fusion algorithms can obtain
the globally optimal estimate by directly combining sensor outputs to an augmented measurement.
However, such fusion architecture leads to a heavy computational burden; furthermore, the fused
estimate will be easily corrupted if any sensor degenerates. The distributed fusion algorithms can
reduce the computational burden and facilitate fault detection or isolation more conveniently through
combining the local estimates from sensors by weighting matrices. In the distributed data fusion of
multisensor system, once the cross-covariances among local estimates are known exactly, globally
optimal or suboptimal estimates can be obtained by using optimal fusion algorithms, such as the
two-sensor Bar-Shalom and Campo (BC) algorithm [1] or its version for multisensor systems [2]
in the sense of maximum likelihood (ML), or the optimal distributed Kalman fuser weighted by
matrices [3] in the sense of linear unbiased minimum variance (LUMV). However, in many applications,
these cross-covariances are difficult to be computed accurately; one critical issue of multisensor data
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fusion in the case is how to merge the local estimates efficiently to achieve a fused estimate that has high
accuracy and simultaneously is consistent. With this aim, various distributed data fusion algorithms for
multisensor systems with unknown cross-covariances are proposed, such as the convex combination
(CC) algorithm [4], ellipsoidal intersection (EI) algorithm [5], largest ellipsoid (LE) algorithm [6],
covariance intersection (CI) algorithm [7] and their variants the internal ellipsoidal approximation
(IEA) algorithm [8], fast covariance intersection (FCI) algorithm [9], etc. The CI algorithm is of special
concern and has been widely applied to many fields, for it yields a common upper bound of actual
fused error covariance regardless of unknown cross-covariances. When all the local estimates are
consistent, the CI algorithm gives a consistent fused estimate with higher accuracy than each local
estimate. However, the CI algorithm is based on the optimization of a multi-dimensional nonlinear
cost function, which results in a large computational burden; in addition, it overestimates the actual
fused error covariance and purses consistency at the expense of accuracy, which leads to a significant
decrease in performance [8,10,11]. Although several improvements [12–17] have been developed
for the CI algorithm since it was proposed, these drawbacks have not yet been essentially resolved.
Compared to the CI algorithm, the CC algorithm and the EI algorithm, the LE algorithm does not need
any optimizations of cost functions, but they may become inconsistent in some cases owing to the
unknown cross-covariances.

The LE algorithm is a two-sensor fusion algorithm that obtains a new estimate from two local
estimates based on a series of matrix transformations. Instead of computing a tightest fused error
covariance ellipsoid which encloses the intersection region of the covariance ellipsoids of local estimates
in the CI algorithm, the LE algorithm computes the largest ellipsoid contained within that intersection
region, which leads to a tighter fused error covariance ellipsoid. Besides not requiring optimization of
a cost function, the LE algorithm has many other advantages. It comparatively has better consistency
performance than the CC algorithm and has better actual fused accuracy than the EI algorithm
and CI algorithm in general. The two shortcomings of the LE algorithm are that the LE algorithm
is limited to two-sensor applications and its consistency can not be unconditionally satisfied for
correlated local estimates. However, although the cross-covariances are hard to be known exactly,
some information about the dependency properties among local estimates might be possible to be
obtained for users, such as the correlation level [11]. When the local estimates are weakly correlated,
the adverse impact of the correlation on fusion consistency performance will be limited. On the other
hand, although the performance of a fuser is basically determined by its fusion algorithm, the fusion
structure also has an important influence on it. A sequential covariance intersection (SCI) Kalman
filter is proposed by applying sequential processing to reduce the complexity and computational
burden of the batch CI algorithm [18]. A two-level fusion structure is presented, which combines the
merits of the measurement fusion algorithm and CI algorithm to reduce calculation burden and get
a more accurate fused estimate [19]. In addition, Kalman-Particle filtering with a cascaded structure is
conducted to reduce the complexity of a high dimensional state space model, which leds to an easier
tuning and more precise debugging, as well as reduced computation time [20]. Therefore, when the
local estimates are not strongly correlated, how to extend the LE algorithm to multisensor cases with
proper fusion structure and simultaneously improve its performances in accuracy and consistency is
worth being addressed.

This paper proposes a largest ellipsoid fusion Kalman filtering with parallel fusion structure
for the data fusion of multisensor system with unknown cross-covariances among local estimates,
which realizes the multisensor fusion as a tree form with each level consisting of one or a series of
parallel LE fusions. With parallel fusion structure, the data processing task of the proposed filtering is
amenable to multiprocessor implementation. Three different estimate pairing methods for constructing
the parallel fusion structure are given, and two fusion performance assessment parameters of Fusion
Distance and Fusion Index for assessing the influence of fusion structure on fusion performance are
defined. The attributes of the presented fusers in Fusion Distance, Fusion Index, and accuracy relation
based on covariance ellipsoid, as well as the formula for calculating the upper bounds of actual fused

152



Sensors 2017, 17, 1526

error covariances of the presented fusers regardless of unknown cross-covariances, are provided.
In order to verify the effectiveness of the proposed filtering, simulation examples are carried out to
compare the performances of CI algorithm, optimal distributed Kalman fuser weighted by matrices,
LE fuser with sequential structure and the LE fusers with the proposed parallel structures.

2. Preliminaries

An estimate of stochastic state x ∈ Rn×1 usually can be characterized with a Gaussian distribution
x̂e ∼ N

(
x̂e, Pe

)
, where x̂e ∈ Rn×1 and Pe ∈ Rn×n, respectively, represent the mean and fused error

covariance. The estimate is said to be consistent (or conservative) only when its actual fused error
covariance Pe = E

[
(x̂e − x)(x̂e − x)T

]
satisfies Pe ≤ Pe [12,13], the superscript T denotes the transpose,

and the notation E(∗) denotes the expectation. The fused error covariance represents the fused accuracy,
and the actual fused error covariance indicates the actual fused accuracy. Given real symmetric
positive definite matrices Pa ∈ Rn×n and Pb ∈ Rn×n, Pa ≥ Pb denotes Pa − Pb as positive semi-definite.
Then, tr(Pa) ≥ tr(Pb), P−1

a ≤ P−1
b and CPaCT ≥ CPbCT hold for any row full rank matrix C [21],

the superscript −1 denotes the inverse, and the notation tr(∗) denotes the trace. The estimate x̂e

with Gaussian distribution also can be illustrated by multi-dimensional covariance ellipsoid whose
contour of one sigma is defined by �(x̂e ,Pe)

≡
{

x
∣∣∣(x − x̂e

)TP−1
e
(

x − x̂e
)
= 1

}
. The center of �(x̂e ,Pe)

is x̂e, and the lengths of the semi-axes of �(x̂e ,Pe)
are given by

√
σi, where σi are the singular values

of the matrix Pe. Hence, larger covariance ellipsoid means worse accuracy. For two estimates x̂a ∼
N
(

x̂a, Pa
)

and x̂b ∼ N
(

x̂b, Pb
)

, the necessary and sufficient condition for Pa ≥ Pb is �(x̂a ,Pa)
⊃ �(x̂b ,Pb)

,
which means that the ellipsoid �(x̂a ,Pa)

encloses the ellipsoid �(x̂b ,Pb)
.

Consider the discrete time-invariant linear stochastic system with multiple sensors

x(t + 1) = Φx(t) + Γw(t)
yi(t) = Hix(t) + vi(t), i = 1, 2, . . . , L

, (1)

where t is the discrete time, L is the number of sensors, x(t) ∈ Rn×1 is the state, yi(t) ∈ Rm×1 is the
measurement, w(t) and vi(t) ∈ Rm×1 are the uncorrelated white noises with zero mean and covariance
matrices Q and Ri, respectively; Φ, Γ, Hi are constant matrices with compatible dimensions, and (Φ, Γ)
is a completely controllable pair, (Φ, Hi) is a completely observable pair. The subsystem based on the
ith sensor of multisensor system (1) has local steady-state Kalman filter as [22]

x̂i(t|t) = (In − Ki Hi)Φx̂i(t − 1|t − 1) + Kiyi(t), (2)

with Ki = Σi HT
i
(

HiΣi HT
i + Ri

)−1, where In denotes the n × n unit matrix, Σi satisfies the
Riccati equation

Σi = Φ
[

Σi − Σi HT
i

(
HiΣi HT

i + Ri

)−1
HiΣi

]
ΦT + ΓQΓT. (3)

The local filtering error covariance is given by

Pi = Pii = (In − Ki Hi)Σi, (4)

and the local filtering error cross-covariance between the subsystems of the ith and jth sensor satisfies
the Lyapunov equation

Pij = (In − Ki Hi)ΦPij
[(

In − Kj Hj
)
Φ
]T

+ (In − Ki Hi)ΓQΓT(In − KjHj
)T, (5)

Then, the overall error covariance of the multisensor system is Σ =
(

Pij
) ∈ RLn×Ln, i, j =

1, 2, . . . , L.

153



Sensors 2017, 17, 1526

3. Distributed Fusion Algorithms

For unbiased state estimation, both the state and its error covariance should be estimated.

3.1. Optimal Distributed Kalman Fuser Weighted by Matrices

Once all of the local filtering error covariances and cross-covariances are obtained, the optimal
distributed Kalman fuser weighted by matrices under LUMV for multisensor system (1) is given by [3]

x̂O
(L) =

L

∑
i=1

AO
i x̂i(t|t), (6)

where AO
i is the optimal state estimation weighting matrix corresponding to the ith local estimate and

computed by [
AO

1 , AO
2 , . . . , AO

L

]
=
(

eTΣ−1e
)−1

eTΣ−1, (7)

where e = [In, In, . . . , In]
T is a Ln × n matrix. The error covariance of x̂O

(L) is given as

PO
(L) =

[
AO

1 , AO
2 , . . . , AO

L

]
Σ
[

AO
1 , AO

2 , . . . , AO
L

]T
=
(

eTΣ−1e
)−1

, (8)

with the accuracy relation PO
(L) ≤ Pi, i = 1, 2, . . . , L. As shown from (6)–(8), it is necessary that all

the covariances Pij, i, j = 1, 2, . . . , L should be exactly known in the calculation of x̂O
(L) and PO

(L);

however, such a condition can not be satisfied in many applications. Moreover, Σ−1 is also required to
be computed, which will result in heavy computational burden when the number of sensors is large.

3.2. Largest Ellipsoid Fusion Algorithm

The LE algorithm obtains a new estimate from two local estimates based on a series of matrix
transformations. Given two local estimates x̂1 ∼ N

(
x̂1, P1

)
and x̂2 ∼ N

(
x̂2, P2

)
. Firstly, we diagonalize

P1 as
UTP1U = W = diag(λ1, λ2, . . . , λn), (9)

where the notation diag(∗) denotes forming a diagonal matrix sequentially using the elements in
parentheses, and U is an orthogonal matrix. Then, we execute the following transformations:

W− 1
2 UTP1UW− 1

2 = P′
1 = In

W− 1
2 UTP2UW− 1

2 = P′
2

, (10)

where W− 1
2 =

[
diag

(√
λ1,

√
λ2, . . . ,

√
λn
)]−1. Applying a second diagonalization, we have

VTP′
1V = P∗

1 = In

VTP′
2V = P∗

2 = diag
(
λ∗

1, λ∗
2, . . . , λ∗

n
) , (11)

where V is an orthogonal matrix. Then, we define

x̂∗
1 = VTW− 1

2 UT x̂1

x̂∗
2 = VTW− 1

2 UT x̂2
. (12)

After these transformations, we obtain two new estimates in the new Euclidean space R∗ as x̂∗
1

and x̂∗
2 with error covariances P∗

1 and P∗
2 , respectively. From (11), we know that both P∗

1 and P∗
2 are

diagonal matrices. The fused estimate of LE algorithm in Euclidean space R∗ is given by

x̂∗
LE =

[
(P∗

1 )
−1 + (P∗

2 )
−1
]−1[

(P∗
1 )

−1 x̂∗
1 + (P∗

2 )
−1 x̂∗

2

]
, (13)
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with fused error covariance
P∗

LE = SP∗
1 + (In − S)P∗

2 , (14)

where S = diag(s1, s2, . . . , sn) with

si =

{
1, λ∗

i ≥ 1
0, else

. (15)

The fused estimate of LE algorithm in the original Euclidean space R is obtained by

x̂E
L = UW

1
2 Vx̂∗

LE = ALE
1 x̂1 + ALE

2 x̂2, (16)

with fused error covariance

PLE = UW
1
2 VP∗

LEVTW
1
2 UT = BLE

1 P1 + BLE
2 P2, (17)

where the weighting matrices are calculated as follows:

ALE
1 = UW

1
2 V
[(

P∗
1
)−1

+ (P∗
2 )

−1
]−1(

P∗
1
)−1VTW− 1

2 UT

ALE
2 = UW

1
2 V
[(

P∗
1
)−1

+ (P∗
2 )

−1
]−1

(P∗
2 )

−1VTW− 1
2 UT

, (18)

BLE
1 = UW

1
2 VSVTW− 1

2 UT

BLE
2 = UW

1
2 V(In − S)VTW− 1

2 UT
. (19)

From (16)–(19), we know that both the fused state and fused error covariance of LE algorithm are
the linear estimates. The covariance ellipsoid of PLE is the largest one contained within the intersection
region �(x̂1,P1)

∩ �(x̂2,P2)
, and it is obvious that PLE ≤ P1, PLE ≤ P2. For any two unbiased local

estimates of state x with Gaussian distributions, because both the optimal distributed Kalman fuser
estimate x̂O

(2) and the LE algorithm estimate x̂E
L are linear unbiased estimates of x, and x̂O

(2) is the

LUMV estimate, we have PO
(2) ≤ PLE, where PLE

= E
[(

x̂LE − x
)(

x̂LE − x
)T
]

is the actual fused error

covariance of the LE algorithm. Furthermore, it can be easily proven that PLE
< PLE when P1 and P2

are independent.
There are mainly two drawbacks for the LE algorithm. The first one is that the LE algorithm

can only handle two sensors at a time. The second one is that the LE algorithm can’t guarantee its
consistency, which implies that PLE ≤ PLE will be unsatisfied in some cases. In the two-sensor case,
according to [23], for any point x ∈ �(x̂1,P1)

∩ �(x̂2,P2)
, there is a feasible cross-covariance P12 that lets

x ∈ PO
(2). As mentioned above, the covariance ellipsoid of PLE is the largest one contained within

the intersection region �(x̂1,P1)
∩ �(x̂2,P2)

, but it generally doesn’t cover the whole intersection region.
Combining the accuracy relation between the optimal distributed Kalman fuser and LE algorithm,
if the P12 lets PO

(2) � PLE, PLE ≤ PLE will be unsatisfied. A two-dimensional example of a situation
like that is shown in Figure 1. In Figure 1, the x-axis and the y-axis represent the first and second
dimension of the state, respectively; the covariance ellipse of PLE is the largest ellipse contained
within the intersection region �(x̂1,P1)

∩ �(x̂2,P2)
, but PLE � PLE, which implies that the fused result

is inconsistent.
However, the covariance ellipsoid corresponding to the actual fused error covariance accounting

for the dependence of local estimates will become smaller as the dependence becomes weaker [1],
which means that the LE algorithm is likely to be consistent when the local estimates are weakly
correlated. On the other hand, by comparing (16)–(19) to (6) and (8), we find that, unlike the optimal
distributed Kalman fuser, which computes its state and error covariance using the same weighting
matrices, the error covariance estimation of LE algorithm is independent of its state estimation. If the
LE algorithm can be extended to the multisensor system, it is possible to raise its actual fused accuracy
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and subsequently improve its consistency performance by taking full advantage of the information of
each sensor.

 

Figure 1. An accuracy relation example of the (largest ellipsoid) LE algorithm.

4. Multisensor Largest Ellipsoid Fusers

4.1. Multisensor Largest Ellipsoid Fuser with Sequential Structure

One way to extend the application of LE algorithm from a two-sensor case to a multisensor case
is applying the sequential processing method as the SCI algorithm proposed in [18]; here, we label
such multisensor LE fuser as a Sequential Largest Ellipsoid (SLE) fuser. By doing so, the multisensor
LE fusion for multisensor system (1) consists of L − 1 sequential LE fusions. The structure of SLE fuser
is shown schematically in Figure 2. In Figure 2, ‘KF’ represents the local steady-state Kalman filter
of each subsystem, ‘LE’ represents a LE algorithm operation, and the green dashed lines or curves
indicate the routes via which the local estimates are fused into the final fused result.

SLE SLE
L Lx P

Figure 2. The structure of the SLE fuser.

The SLE fuser has a recursive sequential form as

x̂SLE
i+1 = ALE

1/i x̂
SLE
i + ALE

2/i x̂i+1

PSLE
i+1 = BLE

1/iP
SLE
i + BLE

2/iPi+1
, i = 1, 2, . . . , L − 1. (20)
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with initial values PSLE
1 = P1, xSLE

1 = x̂1; ALE
1/i and ALE

2/i are the weighting matrices for state estimation
corresponding to the LE fusion in the ith fusion level; BLE

1/i and BLE
2/i are the weighting matrices for error

covariance estimation corresponding to the LE fusion in the ith fusion level. In addition, the fused
estimate of SLE fuser is defined as

x̂SLE
(L) = x̂SLE

L

PSLE
(L) = PSLE

L
. (21)

Combining (20) with (21) to expand the recursive sequential form of the SLE fuser yields linear
expressions as follows:

x̂SLE
(L) =

L
∑

i=1
ASLE

i x̂i

PSLE
(L) =

L
∑

i=1
BSLE

i Pi

, (22)

where the weighting matrices are computed by

ASLE
i = ALE

2/i−1

L−1
∏
j=i

ALE
1/j

BSLE
i = BLE

2/i−1

L−1
∏
j=i

BLE
1/j

, (23)

with ALE
2/0 = BLE

2/0 = In. From (23), we know that both ASLE
i and BSLE

i are the multiplication results of
all the LE fusion weighting matrices that the ith local estimate encounters in its fusion route.

4.2. Multisensor Largest Ellipsoid Fusers with Parallel Structures

As we can see from Figure 2, the sensors must be fused sequentially in the SLE fuser, which
makes the SLE fuser inefficient in multiprocessor operations; in addition, the studies in the following
part of this paper will show that the performance of SLE fuser is relatively poor. To handle such
disadvantages, a largest ellipsoid fusion Kalman filtering with parallel structure for the data fusion
of multisensor system, called a Parallel Largest Ellipsoid (PLE) fuser, is also proposed in this work.
It realizes the date fusion of multisensor system (1) with a multilevel fusion and each fusion level
consists of one or a series of parallel LE fusions. The structure of PLE fuser is shown schematically
in Figure 3.

PLE PLE
L Lx P

E E ME

E E ME

NE NE

E E

MEE

Figure 3. The structure of the PLE fuser.
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The PLE fuser contains N fusion levels with N satisfying the inequation 2N−1 < L ≤ 2N .
In addition, the ith fusion level includes

⌊
L/2i⌋ LE fusions and generates

⌈
L/2i⌉ new fused estimates,

where notations �∗� and �∗ denote rounding down and rounding up, respectively. The PLE fuser is
realized by the following steps:

• Step 1: In the first fusion level, all of the local estimates received from local steady-state Kalman
filters are fused in pairs using the LE algorithm. When the number of local estimates is even,
we can get L

2 new fused estimates; and we can obtain L−1
2 + 1 new fused estimates including

an unsettled local estimate when the number of local estimates is odd. Then, the new fused
estimates are passed to the next fusion level.

• Step 2: As Step 1, all the estimates received from the upper fusion level are fused in pairs using
the LE algorithm, and the obtained new fused estimates are passed to the next fusion level.

...

• Step N: There are only two estimates received from the upper fusion level in the fusion level
N and the fusion result of them through the LE algorithm is defined as the PLE fuser estimate
N
(

x̂PLE
(L) , PPLE

(L)

)
.

As shown in Figure 3, we denote the received estimates in the ith fusion level of PLE fuser,
respectively, as Ei

1, Ei
2, . . . , Ei

Mi from the left side to the right side, where Mi represents the number
of the received estimates in the ith fusion level. Notice that the received estimates in the fusion
levels of PLE fuser can be paired by different methods that will lead to different types of PLE fusers
with heterogeneous parallel fusion structures. In this paper, we give three estimate pairing methods
as follows.

Method 1: In the ith fusion level, the received estimates are paired from Ei
1 to Ei

Mi. If there is
an unsettled received estimate in the ith fusion level, it must be Ei

Mi.
Method 2: The fusion levels of this type of PLE fuser alternately pair their received estimates from

Ei
1 to Ei

Mi or from Ei
Mi to Ei

1. For instance, the local estimates are paired from E1
1 to E1

M1 in
the fusion level 1, the received estimates in the fusion level 2 are paired from E2

M2 to E2
1,

and the received estimates in the fusion level 3 are paired from E3
1 to E3

M3, etc. If there is
an unsettled received estimate in the ith fusion level, it must be Ei

1 or Ei
Mi.

Method 3: In the ith fusion level, the received estimates Ei
Mi and Ei

1 are grouped into a pair with
their fused estimate treated as Ei+1

1 in the next fusion level, and the remaining received
estimates are paired from Ei

2 to Ei
Mi−1. If there is an unsettled received estimate in the ith

fusion level, it must be Ei
Mi−1.

In the following part of this paper, the notations PLE1, PLE2 and PLE3 denote the PLE fusers,
respectively, with estimate pairing Method 1, Method 2 and Method 3. For the multisensor system (1)
consisting of five sensors, the fusion schemes of PLE1, PLE2 and PLE3 fusers are shown schematically
in Figure 4. In Figure 4, the empty circle at a certain fusion level represents an estimate received from
its upper fusion level, and it is the unsettled received estimate, which is directly passed to its next
fusion level without fusing with other received estimates.
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PLE PLEx P
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E E

E E

E E

E

E

E

E

PLE PLEx P

E E
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Figure 4. The fusion schemes of PLE1, PLE2 and PLE3 fusers with five sensors.

Similarly to the SLE fuser, the PLE fuser can also be formulated in linear expressions as follows:

x̂PLE
(L) =

L
∑

i=1
APLE

i x̂i

PPLE
(L) =

L
∑

i=1
BPLE

i Pi

, (24)

with weighting matrices computed by

APLE
i = ALE

i(N) . . . ALE
i(2)ALE

i(1)
BPLE

i = BLE
i(N) . . . BLE

i(2)B
LE
i(1)

, (25)

where ALE
i(j), BLE

i(j) indicate the LE fusion weighting matrices corresponding to the LE fusion that the ith

local estimate encounters in the jth fusion level in its fusion route; both ALE
i(j) and BLE

i(j) will be equal to
In if the estimate in the jth fusion level is unsettled in the fusion route.

4.3. Properties of Multisensor Largest Ellipsoid Fusers

Comparing (18) to (7), we can find that the state estimation weighting matrices of the LE algorithm
will deviate from the optimal weighting matrices, which are the weighting matrices of the optimal
distributed Kalman fuser having the same sensors as the LE algorithm, on account of the inaccurate
error covariances of local estimates and the presence of unknown cross-covariances. Taking this point
into account, the state estimation weighting matrices of SLE fuser and PLE fuser, respectively expressed
in (23) and (25) can be rewritten into

ASLE
i =

(
AO

2/i−1 + ΔA2/i−1

)L−1
∏
j=i

(
AO

1/j + ΔA1/j

)
APLE

i =
(

AO
i(N)

+ ΔAi(N)

)
. . .
(

AO
i(2) + ΔAi(2)

)(
AO

i(1) + ΔAi(1)

) , i = 1, 2, . . . , L, (26)

with AO
2/0 + ΔA2/0 = In. AO

1/i, AO
2/i, i = 1, 2, . . . , L − 1 being the optimal weighting matrices

corresponding to the LE fusion in the ith fusion level in the SLE fuser, and AO
i(j) being the optimal

weighting matrix corresponding to the LE fusion that the ith local estimate encounters in the jth
fusion level in its fusion route in the PLE fuser; ΔA1/i, ΔA2/i, i = 1, 2, . . . , L − 1 and ΔAi(j) are the
weighting matrix errors that the state estimation weighting matrices of these LE fusions deviate from
their corresponding optimal weighting matrices. Hence, given a multisensor system, the number of
the LE fusions that each local estimate encounters in its fusion route and how these numbers differ
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from each other will affect the weight assignments for the local estimates in the fuser, which implies
that the fuser structure has a significant influence on the characteristic and performance of the fuser.
From Figures 2 and 3, we see that the number of the LE fusions that each local estimate encounters in
its fusion route can be different in the SLE fuser and the PLE fusers based on different estimate pairing
methods. In order to give a further analysis of the features of SLE fuser and PLE fuser for multisensor
system (1), here we define two fusion performance assessment parameters as Fusion Distance and
Fusion Index.

Definition 1. The Fusion Distance D(j)
(i) indicates the number of the LE fusions that the ith local estimate

encounters in its fusion route in fuser j (SLE, PLE1, PLE2 or PLE3).

Remark 1. When L ≥ 2, we have max(D(SLE)
(i) ) = L − 1 and minx(D(SLE)

(i) ) = 1. For any certain N ≥ 1,

we have max(D(PLE1)
(i) ) = max(D(PLE2)

(i) ) = max(D(PLE3)
(i) ) = N, min(D(PLE1)

(i) ) = 1, min(D(PLE2)
(i) ) =

N −
⌈

N−1
2

⌉
, and min(D(PLE3)

(i) ) = max(N − 1, 1).

Definition 2. The Fusion Index F(j) shows to what extent the Fusion Distances of all the local estimates differ
from each other in fuser j (SLE, PLE1, PLE2 or PLE3). It is defined as

F(j) = max

⎛⎝ D(j)
(i)

i=1,2,...,L

⎞⎠− min

⎛⎝ D(j)
(i)

i=1,2,...,L

⎞⎠. (27)

Remark 2. When L ≥ 2, we have F(SLE) = L − 2. For any certain N ≥ 1, we have max
(

F(PLE1)
)
= N − 1,

max
(

F(PLE2)
)
=
⌈

N−1
2

⌉
, max

(
F(PLE3)

)
= min(N − 1, 1).

Because the fused error covariance ellipsoid of LE algorithm is contained within the intersection
region of the covariance ellipsoids of local estimates, we can easily come to the conclusion that
PSLE
(L) ≤ Pi, PPLE

(L) ≤ Pi, i = 1, 2, . . . , L. However, as we can see from (23) and (25), the error covariance
estimation weighting matrices of SLE fuser and different PLE fusers are varied with the structure,
hence the fused error covariances of these fusers are generally different from each other. For multisensor
system (1), when adding a new sensor to the system, we apparently have PSLE

(L+1) ≤ PSLE
(L) . However,

the situation of the PLE fuser is more complicated, but it is obvious that if the existing fusion structure
of a PLE fuser is not affected by the new sensor, then the one PLE fuser will embrace PPLE

(L+1) ≤ PPLE
(L) ,

such as the PLE1 fuser. The fused accuracies of SLE fuser and PLE fuser with such property will become
higher and higher as the number of fused sensors increases. In the sense that both x̂O

(L), x̂SLE
(L) and x̂PLE

(L)

are the linear unbiased estimates of state x and x̂O
(L) is the LUMV estimate, we have PO

(L) ≤ PSLE
(L) and

PO
(L) ≤ PPLE

(L) , where PSLE
(L) = E

[(
x̂SLE
(L) − x

)(
x̂SLE
(L) − x

)T
]

and PPLE
(L) = E

[(
x̂PLE
(L) − x

)(
x̂PLE
(L) − x

)T
]

are

the actual fused error covariances of the SLE fuser and PLE fuser, respectively. In addition, we can
achieve the upper bounds for the actual fused error covariances of the SLE fuser and PLE fuser
irrespective of the cross-covariances. For multisensor system (1), according to [24], for any factors
∞ ≥ ρi ≥ 1, i = 1, 2, . . . , L, when

L

∑
i=1

1
ρi

= 1, (28)

we have

Σ ≤

⎡⎢⎣ ρ1P1 0 0

0
. . . 0

0 0 ρLPL

⎤⎥⎦, (29)
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For the SLE fuser and PLE fuser, we obtain

Pk
(L) =

[
Ak

1, . . . , Ak
L

]
Σ
[

Ak
1, . . . , Ak

L

]T

≤
[

Ak
1, . . . , Ak

L

]⎡⎢⎣ ρ1P1 0 0

0
. . . 0

0 0 ρLPL

⎤⎥⎦[Ak
1, . . . , Ak

L

]T

=
L
∑

i=1
ρi Ak

i Pi

(
Ak

i

)T
, k ∈ (SLE, PLE)

, (30)

By taking the minimization of error covariance trace as the optimization target, we get the
optimization model as

min
{

L
∑

i=1
ρitr

[
Ak

i Pi

(
Ak

i

)T
]}

s.t.
L
∑

i=1

1
ρi
= 1

. (31)

Applying the Lagrange multiplier method, we introduce the Lagrange function defined by

f (ρ1, . . . , ρL, λ) =
L

∑
i=1

ρitr
[

Ak
i Pi

(
Ak

i

)T
]
+ λ

(
L

∑
i=1

1
ρi

− 1

)
, (32)

where λ is the Lagrange multiplier. Then, we can achieve

ρi =

L
∑

j=1

√
tr
[

Ak
j Pj

(
Ak

j

)T
]

√
tr
[

Ak
i Pi
(

Ak
i
)T
] . (33)

Replacing (33) into (30), we obtain

Pk
(L) ≤

L

∑
i=1

L
∑

j=1

√
tr
[

Ak
j Pj

(
Ak

j

)T
]

√
tr
[

Ak
i Pi
(

Ak
i
)T
] Ak

i Pi

(
Ak

i

)T
, k ∈ (SLE, PLE). (34)

5. Simulations and Analysis

5.1. Simulations

Consider a dynamic example of the multisensor system (1) with five sensors as

x(t + 1) =

[
1 T
0 1

]
x(t) +

[
0.5T2

T

]
w(t)

yi(t) = Hix(t) + vi(t), i = 1, 2, . . . , 5
, (35)

where T = 0.5 is the sample period, t = 1, 2, . . . , 300 is the discrete time (step), x0 = [10, 2]T is the
initial state, Q = 2, and

H1 = I2, R1 = diag(7.0, 0.22)
H2 = I2, R2 = diag(2.85, 0.3)
H3 = I2, R3 = diag(1.3, 1.5)
H4 = I2, R4 = diag(0.55, 3.1)

H5 = [1, 0], R5 = 0.6

. (36)
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The local steady-state Kalman estimates, local filtering error covariances and cross-covariances can
be obtained according to (2)–(5), and then the fused estimates of the optimal distributed Kalman fuser
weighted by matrices, the CI algorithm, the SLE fuser and PLE fusers can be computed. The fusion
schemes of PLE1, PLE2 and PLE3 fusers are shown in Figure 4. The traces of the theoretical error
covariance matrices of local and fused estimates are listed in Table 1, and their corresponding
covariance ellipses are illustrated in Figure 5. In Figure 5, the center of each covariance ellipse
is x(t), and the x-axis and the y-axis indicate how far the covariance ellipses extend in the directions of
the first and second dimension of the state from the center, respectively.

Table 1. The traces of theoretical error covariance matrices.

tr(P1) tr(P2) tr(P3) tr(P4) tr(P5) tr
(

PO
(5)

)
tr
(

PCI
(5)

)
tr
(

PCI
(5)

)
0.7433 0.6155 1.0032 0.8962 1.1932 0.1812 0.3233 0.5863

tr
(

PSLE
(5)

)
tr
(

PSLE
(5)

)
tr
(

PPLE1
(5)

)
tr
(

PPLE1
(5)

)
tr
(

PPLE2
(5)

)
tr
(

PPLE2
(5)

)
tr
(

PPLE3
(5)

)
tr
(

PPLE3
(5)

)
0.2976 0.3861 0.2550 0.3860 0.2244 0.3861 0.2217 0.3876

 

Figure 5. The error covariance ellipses of local and fused estimates.

From Table 1, we see that both tr
(

PSLE
(5)

)
and tr

(
PPLEi
(5)

)
, i = 1, 2, 3 are greater than but close to

tr
(

PO
(5)

)
, which imply that the actual fused accuracies of SLE fuser and PLE fusers are close to that

of the optimal fuser. The tr
(

PSLE
(5)

)
and tr

(
PPLEi
(5)

)
, i = 1, 2, 3 are almost the same and obviously less

than tr
(

PCI
(5)

)
and tr(Pi), i = 1, 2, . . . , 5, which mean that the fused accuracies of SLE fuser and PLE

fusers are approximately equal and higher than those of the CI algorithm and each local estimate.
Note that, although the tr

(
PSLE
(5)

)
and tr

(
PPLEi
(5)

)
, i = 1, 2, 3 are, respectively, less than tr

(
PSLE
(5)

)
and tr

(
PPLEi
(5)

)
, i = 1, 2, 3, it can not be concluded that the SLE fuser and PLE fusers are consistent

due to fact that the LE algorithm can not guarantee its consistency. Correspondingly, in Figure 5,
the covariance ellipse of PO

(5) is enclosed in the covariance ellipses of PSLE
(5) and PPLEi

(5) , i = 1, 2, 3,

which indicates PO
(5) ≤ PSLE

(5) and PO
(5) ≤ PPLEi

(5) , i = 1, 2, 3. The covariance ellipses of PSLE
(5) and

PPLEi
(5) , i = 1, 2, 3 are enclosed in the covariance ellipses of PCI

(5) and Pi, i = 1, 2, . . . , 5, which indicate

PSLE
(5) ≤ Pi, i = 1, 2, . . . , 5, PSLE

(5) ≤ PCI
(5), PPLEj

(5) ≤ Pi, i = 1, 2, . . . , 5; j = 1, 2, 3 and PPLEj
(5) ≤ PCI

(5), j = 1, 2, 3.
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The covariance ellipses of PSLE
(5) and PPLEi

(5) , i = 1, 2, 3 are almost overlapping, which implies that the
SLE fuser and PLE fusers each obtain a similar fused error covariance. However, the covariance ellipse
of PSLE

(5) is not enclosed in the covariance ellipses of PSLE
(5) and P1, which means that PSLE

(5) � PSLE
(5) and

PSLE
(5) � P1; and the covariance ellipse of PPLE1

(5) is not enclosed in the covariance ellipses of PPLE1
(5) and

P1, which means PPLE1
(5) � PPLE1

(5) and PPLE1
(5) � P1; thus, the SLE fuser and PLE1 fuser are inconsistent

in this example. While the covariance ellipses of PPLE2
(5) and PPLE3

(5) are, respectively, enclosed in the

covariance ellipses of PPLE2
(5) and PPLE3

(5) , which mean PPLE2
(5) ≤ PPLE2

(5) and PPLE3
(5) ≤ PPLE3

(5) , the PLE2 and
PLE3 fusers are consistent here.

In order to verify the above theoretical results on the accuracy relation, the Monte Carlo method
is applied to compute mean square error (MSE). The MSE value at time t for local or fused estimate x̂i

with error covariance Pi is defined as

MSEi
Nrun

(t) =
1

Nrun

Nrun

∑
j=1

[
x̂i

j(t|t)− xj(t)
]T[

x̂i
j(t|t)− xj(t)

]
, (37)

where Nrun is the number of Monte Carlo runs, x̂i
j(t|t) and xj(t) denote the jth realization of x̂i(t|t)

and x(t), respectively. Because

tr
(

Pi
)
= tr

{
E
[(

x̂i − x
)(

x̂i − x
)T
]}

= E
[(

x̂i − x
)T(

x̂i − x
)]

, (38)

according to the ergodicity [25], we have

MSEi
Nrun

(t) = tr
(

Pi
)

, t → ∞, Nrun → ∞. (39)

For the dynamic example (35)–(36), 1000 Monte Carlo runs are performed, and the statistical
results of local estimates and the fused estimates of optimal fuser, SLE fuser and PLE fusers in the
Monte Carlo simulation are shown in Figure 6.

Figure 6. The tr
(

Pi
)

and MSEi of local and fused estimates.

In Figure 6, the straight lines and dashed lines denote tr
(

Pi), and the solid curves denote

MSEi
Nrun

; Pi represents Pi, i = 1, 2, . . . , 5, PO
(5), PSLE

(5) and PSLE
(5) , i = 1, 2, 3 , while MSEi

Nrun
, denotes
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their corresponding MSE values. From Figure 6, we know that the MSEi
Nrun

fluctuates around tr
(

Pi),
which is consistent with (39); and the statistical accuracy relations of local and fused estimates indicated
by MSEi

Nrun
are coincident with the theoretical results shown in Table 1.

As shown in Figures 2 and 3, both the SLE fuser and PLE fuser schemes will vary as long as the
sensor order varies. To explore how the accuracies of SLE fuser and the PLE fusers based on different
estimate pairing methods are related to the sensor orders, all the sensor permutations are considered
and simulated. The accuracies of SLE fuser and PLE fusers with respect to different sensor orders are
given in Figure 7. In Figure 7, the x-axis represents all of the permutations of five used sensors, 120 in
total; the y-axis represents the traces of PO

(5), PSLE
(5) , PPLEi

(5) , i = 1, 2, 3 and PSLE
(5) , PPLEi

(5) , i = 1, 2, 3.

 

Figure 7. The fuser accuracies with respect to different orders of five sensors.

Figure 7 shows that, for all possible sensor orders, the fused accuracies of SLE fuser and PLE
fusers are almost the same, while their actual fused accuracies are more different, which mean that the
fused accuracies of SLE fuser and PLE fusers are less affected by the sensor orders, but their actual
fused accuracies are greatly influenced. In order to strengthen the information shown in Figure 7,
another four sensors are added to systems (35) and (36), and they are given as

H6 = I2, R6 = diag(2.1, 2.06)
H7 = I2, R7 = diag(1.1, 7.56)
H8 = I2, R8 = diag(16.6, 0.15)
H9 = I2, R9 = diag(0.9, 23.0)

. (40)

In addition, the traces of the theoretical error covariance matrices of their local steady-state Kalman
estimates are shown in Table 2.

Table 2. The traces of the theoretical error covariance matrices of added local estimates.

tr(P6) tr(P7) tr(P8) tr(P9)

1.3512 1.3910 0.8807 1.3865

The accuracies of SLE fuser and PLE fusers with respect to different sensor orders for the expanded
multisensor system with nine sensors are shown in Figure 8. In Figure 8, the x-axis represents all of the
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permutations of nine used sensors, 362,880 in total; and the legends of this figure are the same as those
in Figure 7.

 

Figure 8. The fuser accuracies with respect to different orders of nine sensors.

From Figures 7 and 8, it can be seen that with a certain number of sensors, no matter how the
sensors are ordered, the tr

(
PSLE) and tr

(
PPLEi), i = 1, 2, 3 are almost equal, which mean that the fused

accuracies of SLE fuser and PLE fusers are almost equivalent and are insensitive to the sensor orders.
When the multisensor system only has a few sensors, the actual fused accuracies of SLE fuser and PLE
fusers perform approximately and have similar sensitivity to sensor orders. However, as the number
of sensors increases, the differences among them are becoming increasingly significant. From Figure 8,
we see that the tr

(
PSLE

)
fluctuates most drastically and is generally greater than tr

(
PPLEi

)
, i = 1, 2, 3,

which means that the actual fused accuracy of SLE fuser is poorer and more sensitive to the sensor
orders than these of PLE fusers. Whether in actual fused accuracy or in sensitivity to the sensor orders,
the PLE2 and PLE3 fusers perform better than the PLE1 fuser, and the PLE3 fuser generally has the
best performance.

In practice, the number of used sensors may vary in different periods. For the subsystems
individually with sensors 1 ∼ i, i = 1, 2, . . . , 9, the accuracies of the SLE fuser and PLE fusers with
sensors fused in normal order are presented in Figure 9. In Figure 9, the number i on the x-axis
not only represents the ith subsystem using the sensors 1 ∼ i, but also represents the ith sensor.
From Figure 9, we know that the actual fused accuracy of SLE fuser is less robust to the accuracy of
the newly added sensor than these of PLE fusers; and, compared to the PLE1 fuser, the actual fused
accuracies of PLE2 and PLE3 fusers perform more robustly and they tend to become higher as the
number of sensors increases. Furthermore, the accuracies of PLE fusers are significantly better than
that of the CI algorithm.

In the simulation cases above, we have specified the characteristics of the sensors. Without such
specifications, we give a further study on the performances of the SLE fuser and PLE fusers in the
multisensor systems with arbitrary overall error covariances. Because the overall error covariance Σ of
the multisensor system (1) is a real symmetric positive definite matrix, it has diagonal decomposition
as Σ = ΘΞΘT, where Θ is an orthogonal matrix, Ξ is a diagonal matrix. Θ and Ξ can be randomly
created using Matlab (R2015b, MathWorks, Natick, MA, US) functions, such as ‘orth’, ‘diag’ and
‘randn’, etc. For the multisensor system consisting of nine two-dimensional sensors, 30 random overall
error covariance matrices are simulated with each element of their Ξ selected from the positive samples
of a random variable, which is of standard normal distribution, and the fused results of SLE fuser
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and PLE fusers are shown in Figure 10. In Figure 10, the x-axis represents the 30 simulated random
overall error covariances, and the legends of this figure are the same as these in Figure 9. As shown in
Figure 10, for most of the simulated overall error covariance matrices, the multisensor LE fusers sorted
in descending order of actual fused accuracy are PLE3, PLE2, PLE1 and the SLE fuser, and they all
have higher accuracies than the CI algorithm.

Figure 9. The fuser accuracies with respect to different numbers of used sensors.

 

Figure 10. The fuser accuracies with respect to different random overall error covariance matrices.

For any two local estimates x̂i and x̂j in the multisensor system, the correlation property of them
can be measured by the following correlation model [11]:

Pij = γJi JT
j , (41)

where γ ∈ [0, 1) is the correlation coefficient between x̂i and x̂j; Jk, k = i, j is the Cholesky
decomposition of Pk satisfying Jk JT

k = Pk. As described above, the inconsistency of the LE algorithm is
resulted from the unknown cross-covariances among local estimates. In order to investigate how the
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consistencies of SLE fuser and PLE fusers are related to the unknown cross-covariances, the multisensor
systems consisting of nine two-dimensional sensors under different correlation coefficients are studied.
Meanwhile, in order to cover the main range of the correlation coefficient, in this case, each studied
correlation coefficient is given by γi = 0.01ni, where the integer ni ∈ [0, 99] is the serial number
of the correlation coefficients. For each performed correlation coefficient γi, 200 random overall
error covariance matrices of the multisensor system are firstly created, and then in each overall error
covariance matrix, the cross-covariance between any two local estimates is replaced by the new
cross-covariance obtained using (41). The consistency ratios of the number of consistent fused results
to the total number of fused results for SLE fuser and PLE fusers with respect to different correlation
coefficients are shown in Figure 11.

 

Figure 11. The consistency ratios with respect to different correlation coefficients.

From Figure 11, we know that the presented multisensor LE fusers are inconsistent when the local
estimates are strongly correlated but are consistent when the local estimates are weakly correlated.
Under a moderate correlation level, the multisensor LE fusers sorted in a descending order of the
consistency ratio are PLE3, PLE2, PLE1 and SLE fusers. For certain moderate γi, compared to the SLE
fuser, the PLE fusers significantly improve the consistency performance.

In summary, according to above simulation results, whether in the actual fused accuracy as well
as its sensitivity to the sensor orders and its robustness to the accuracy of a newly added sensor, or in
consistency and in computation efficiency, the PLE fusers have better performances than SLE fuser,
and PLE3 fuser outperforms PLE2 fuser, which performs better than the PLE1 fuser.

5.2. Analysis

In order to obtain a fused estimate with high actual fused accuracy in a multisensor LE fuser,
the weights of the state estimation weighting matrices should be assigned in accordance with the
accuracies of sensors. As shown in (23) and (25), both ASLE

i in SLE fuser and APLE
i in PLE fuser are

the multiplication results of all of the LE fusion state estimation weighting matrices that the ith local
estimate encounters in its fusion route. From (18), we have ALE

1 < In and ALE
2 < In, the multiplication

effect of multiple ALE
1 and (or) ALE

2 implies that the more LE fusions one local estimate encounters in
its fusion route in the SLE fuser or PLE fuser, the less weight its weighting matrix ASLE

i or APLE
i will

tend to be. Since the number of the LE fusions that each local estimate encounters in its fusion route is
affected by the fuser structure, the weights of the weighting matrices not only depend on the accuracies
of sensors, but also are influenced by fuser structure. In addition, according to (26), the number of
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LE fusions that each local estimate encounters in its fusion route also affects the weighting matrix
deviations from the optimal weighting matrices.

Therefore, longer Fusion Distance means less weight and greater deviation; the Fusion Distance
differences in the fuser affect the balances of weight assignment and deviation among local estimates
and thus have a significant influence on the fuser’s actual fused accuracy performance. Owing to
the sequential structure, the Fusion Distances of each local estimate in the SLE fuser are remarkably
different from each other, which leads to the fuser structure severely degrading the dependency of the
actual fused accuracy on the accuracies of sensors. Comparatively, the differences of the local estimate
Fusion Distances in PLE fuser are significantly reduced, which means that the actual fused accuracy of
PLE fuser is more dependent on the accuracies of sensors and hence is better than that of the SLE fuser.
The Fusion Index of the multisensor LE fuser not only represents the fuser’s actual fused accuracy,
but also indicates the sensitivity of the actual fused accuracy to the sensor orders and the robustness of
the actual fused accuracy to the accuracy of the newly added sensor. A smaller Fusion Index means that
the fuser has better performances in these aspects. In the simulation examples, when the multisensor
system has five sensors, we have F(SLE) = 3, F(PLE1) = 2, F(PLE2) = F(PLE3) = 1, the PLE3, PLE2 fusers
have the same level of performance in actual fused accuracy, sensitivity and robustness, and perform
better than the SLE fuser and PLE1 fuser. When the multisensor system has nine sensors, we have
F(SLE) = 7, F(PLE1) = 3, F(PLE2) = 2, F(PLE3) = 1, and the performance differences among SLE, PLE1,
PLE2, PLE3 fusers become more significant. As the fused error covariances of the SLE fuser and PLE
fuser are almost the same, then, for the same multisensor system, the fuser that has higher actual fused
accuracy will have less possibility to become inconsistent. Accordingly, compared to the SLE fuser,
the PLE fuser has better consistency performance, and the PLE2 fuser has worse performance than the
PLE3 fuser but has better performance than the PLE2 fuser.

Apparently, compared to the SLE fuser, another one of the advantages of the PLE fuser is that
the PLE fuser can make full use of the multiprocessor to fuse multiple sensors in parallel and more
efficiently. Because each LE fusion can reduce the estimates to be fused by one in the SLE fuser
and PLE fuser, it can be concluded that both the SLE fuser and the PLE fuser for the multisensor
system (1) contain L − 1 LE fusions, and thus they have the same computation complexity. However,
if multiprocessor parallel operation is used in data processing, their time complexity is proportional
to their number of fusion levels. Therefore, the PLE fuser mostly outperforms the SLE fuser in
computation efficiency. When the sensors are in a clustering distribution, parallel structure can also
cut down the communication requirements of sensor networks.

6. Conclusions

For the multisensor system with unknown cross-covariances, this paper proposes a largest
ellipsoid fusion Kalman filtering with parallel structure and gives three different estimate pairing
methods to construct the parallel fusion structure. Two fusion performance assessment parameters
of Fusion Distance and Fusion Index are defined, and the attributes of the SLE fuser and PLE fusers
in Fusion Distance, Fusion Index and accuracy relation are given. Verified with examples, if a local
estimate has a longer Fusion Distance, its weighting matrix will tend to be lighter in weight and of
greater deviation. The Fusion Index reflects the influence of fusion structure on fusion performance
and indicates a fuser’s actual fused accuracy performance. A smaller Fusion Index implies that the
actual fused accuracy of the fuser is generally higher, and is less sensitive to the sensor orders and
more robust to the accuracy of newly added sensors. The presented multisensor LE fusers can achieve
consistent fused results when the local estimates are weakly correlated but become inconsistent when
the local estimates are strongly correlated; under such strong correlations, the upper bounds of actual
fused error covariances of the presented multisensor LE fusers can be obtained by the provided
formula to limit the uncertainties of the fused results. Compared to SLE fusers, the proposed PLE
fusers not only can operate in parallel and more efficiently, but also get better performances in regards
to accuracy and consistency.
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Abstract: Multi-sensor data fusion technology based on Dempster–Shafer evidence theory is widely
applied in many fields. However, how to determine basic belief assignment (BBA) is still an open
issue. The existing BBA methods pay more attention to the uncertainty of information, but do not
simultaneously consider the reliability of information sources. Real-world information is not only
uncertain, but also partially reliable. Thus, uncertainty and partial reliability are strongly associated
with each other. To take into account this fact, a new method to represent BBAs along with their
associated reliabilities is proposed in this paper, which is named reliability-based BBA. Several
examples are carried out to show the validity of the proposed method.

Keywords: sensor data fusion; Dempster–Shafer evidence theory; Gaussian distribution;
reliability-based BBA

1. Introduction

In practical applications, there are various interferences in the working environment. Sensor data
fusion technology can combine the related information from multiple sensors to enhance the robustness
and safety of a system [1,2]. Hence, this technique has received significant attention in many fields,
such as target tracking and recognition [3,4], complex network [5–7] and image processing [8–10].
Besides, information gathered from sensors is usually uncertain due to the change of the environment.
It can degrade the performance of the information fusion system. Thus, how to handle uncertain
information is a vital issue in the sensor fusion system. To solve this problem, many theories are
presented by domestic and foreign scholars. Fuzzy sets theory was first introduced by Zadeh [11]
in 1965 as an extension of the classical notion of set. It can be used in a wide range of domains in
which information is incomplete or imprecise [12–14]. Dempster–Shafer evidence theory (evidence
theory) acts as the pioneer in data fusion algorithms, which was proposed by Dempster [15] and
extended by Shafer [16] subsequently. It is capable of managing epistemic and aleatoric uncertainty
due to its framework. Possibility theory was introduced in 1978 by Zadeh [17]. It describes reasonably
the meaning of information, especially the meaning of incomplete information within a possibilistic
framework [18–21], which could be seen as the theory interconnecting fuzzy sets and evidence theory.

Within these theories, evidence theory has a good performance to process the uncertain
information without the prior probability, which contributes to its wide application [22,23]. However,
counter-intuitive results may be obtained when dealing with highly conflicting evidence. A famous
example was illustrated by Zadeh [24]. Since then, many methods have been proposed to address
this issue [25–27]. Martin et al. [28] proposed a conflict measures of a group of experts based on
the distance of basic belief assignments. Smarandache et al. [29] presented a new normalization
of a measure called contradiction to characterize the degree of discord or conflict inside a body of
evidence. Martin [30] defined a conflict measure to quantify how the focal elements of two mass
functions are included together. Deng et al. [31] considered a biological and evolutionary perspective
to study the combination of evidences. Another open issue in evidence theory is how to determine
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the basic belief assignment (BBA). So far, many methods to generate BBA have been put forward.
Denoeux [32] determined BBA by minimizing the mean squared differences between the classifier
outputs and target values. Xu et al. [33] calculated an interval BBA from this matching degree by
the modified Latin hypercube sampling Monte Carlo technique. Tabassian et al. [34] determined BBA
in which the class memberships of training data are subject to ambiguity. A BBA method based on
probability families encoded by possibility distributions and belief functions is presented by Baudrit
and Dubois [35]. Mönks et al. [36,37] defined a fuzzy basic belief assignment (μBBA) based on α-cut of
fuzzy membership.

Comparing with the μBBA, the idea of the proposed BBA determination method is similar to
the μBBA method to some extent. We both use the fuzzy membership function to obtain the degree
of membership to the respective propositions, and the degree of membership is applied as BBA.
However, the proposed method is still very different from the μBBA method in some aspects. First,
the BBA of the μBBA method is defined in the real line. Namely, the determination of BBA is
the determination of the possibility of sensor signal belonging to each interval proposition, which is
the determination of value ranges. The BBA of the proposed method is defined in categorical
data. Namely, the determination of the sensor signal is the determination of the category. Besides,
in the proposed method, the fuzzy membership function is used to model the feature of each
category proposition. However, in the μBBA method, the fuzzy membership function is used to
represent the knowledge of possibility, and the proposition is modeled by an interval. Hence,
the proposed method and the μBBA method are different. They are applicable to the different
application backgrounds.

In reality, information is often not just uncertain, but also partially reliable. If we only consider
one of them, then the whole complexity of real-world information cannot completely be covered,
which may cause the incorrect fusion results. Hence, reliability evaluation is indispensable in practical
applications [38,39]. Guo et al. [40] presented a new framework for sensor reliability evaluation
in classification problems based on evidence theory. Yuan et al. [41] took the static reliability and
dynamic reliability into consideration to handle the conflicting evidence. However, the reliability of
these methods is measured from the support degree (consistency) among BBA. Namely, the reliability
is obtained based on the given BBA, rather than from the information sources, which may lose part of
the source information. Glock et al. [42] used the concepts of majority observation and consistency to
monitor the sensor reliability based on the possibilistic framework. Ehlenbröker et al. [43] proposed a
method to generate a consistency-based reliability assessment for sensors, which is utilized to detect
sensor defects based on groups of sensors instead combining all sensors at once. In the two reliability
methods, the whole measure of reliability is time dependent. Besides, the static reliability is a prior
reliability based on expert knowledge, and the dynamic reliability considers its former reliability and
the consistency of observations. Comparing with that, the measure of reliability is not time dependent
in this paper. The reliability is obtained based on the measure of sensor capability to distinguish
the different targets. The capability to discriminate the difference classes is large under a certain
attribute, and the reliability of the generated BBA is larger under this attribute.

The existing BBA methods pay more attention to the uncertainty of information, but do not
simultaneously consider the reliability of information sources. In fuzzy sets theory, Zadeh [44]
proposed the concept of the Z-number in 2011, which is an ordered pair of fuzzy numbers denoted by
Z = (A, B). The first component A is a fuzzy measurement of the uncertainty. The second component
B is a measurement of the reliability of A. The Z-number can simultaneously describe the reliability
of information sources. Originating from the idea of the Z-number, a new method to represent BBAs
along with their associated reliability is proposed in this paper, which is named reliability-based BBA.
Reliability-based BBA (BBA, R) is an ordered pair; its first component BBA is a mass function, and
the second component R is a measurement of the reliability of the first component BBA.
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The rest of this paper is organized as follows. The relevant concepts of evidence theory and
pignistic probability are briefly recalled in Section 2. In Section 3, a reliability-based BBA is proposed.
In Section 4, this method is compared with other methods by several examples. The conclusion is
presented in Section 5.

2. Preliminaries

In this section, the relevant concepts of evidence theory and pignistic probability are briefly recalled.

2.1. Dempster–Shafer Evidence Theory

Evidence theory was introduced by Dempster [15] and then developed by Shafer [16]. It includes
the following concepts: frame of discernment, mass function and Dempster’s combination rule, etc.
These concepts contribute to its good performance in handling the uncertainty information [45–47].

2.1.1. Frame of Discernment

Let Θ be a set of N mutually-exclusive and collectively-exhaustive hypotheses, defined as:

Θ = {θ1, θ2, · · · , θi, · · · , θN} (1)

where Θ is called a frame of discernment. The power set of Θ is composed with 2Θ, namely:

2Θ = {∅, {θ1}, · · · {θN}, {θ1, θ2}, · · · , {θ1, θ2, · · · θi}, · · · , Θ} (2)

where ∅ is denoted as the empty set. The N subsets containing only one element each are called
the singleton subset proposition; the subsets containing more than one element each are called the
compound subset proposition.

2.1.2. Mass Function

A mass function m is a mapping from 2Θ to [0, 1], formally defined as:

m : 2Θ → [0, 1], (3)

which satisfies the following conditions [16]:⎧⎪⎨⎪⎩
∑

A⊂2Θ

m(A) = 1

m(∅) = 0.
(4)

The mass function m is also called the BBA function. Any subset A of 2Θ, such that m(A) > 0,
is called a focal element.

2.1.3. Dempster’s Combination Rule

Suppose m1 and m2 are two mass functions in the same frame of discernment. Dempster’s
combination rule, which is denoted as m = m1 ⊕ m2, is defined as follows [15]:

m(A) =

⎧⎪⎪⎨⎪⎪⎩
∑

B∩C=A
m1(B)m2(C)

1 − k
, A �= ∅

0, A = ∅

(5)

where:
k = ∑

B∩C=∅
m1(B)m2(C). (6)
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Here, k is regarded as a measure of conflict between m1 and m2. The value of k is larger, and the
conflict between the evidence is larger.

2.1.4. Discounting

Assuming that a BBA has a support degree of α, where 0 ≤ α ≤ 1, then this BBA is discounted by
the following discounting rule [16]:{

mα(A) = α × m(A) ∀A ⊂ 2Θ

mα(Θ) = α × m(Θ) + (1 − α)
(7)

where A is any subset of the power set of the frame of discernment Θ.

2.2. Pignistic Probability

The pignistic probability function is introduced by Smets and Kennes [48] for decision making.
Its procedure corresponds to the insufficient reason principle: if you need to build a probability
distribution on n elements, given a lack of information, give a probability 1/n to each element. This
procedure is repeated for each mass m. Let BetP be the pignistic probability distribution so derived.
For all propositions A ∈ Θ,

BetP(A) = ∑
A⊆B⊆2Θ

1
|B| ·

m(B)
1 − m(∅)

(8)

where ∅ is denoted as the empty set. B is the proposition in mass function m, and |B| is the cardinality
of B.

3. The Proposed Method

In this section, the method of generating reliability-based BBA is given in detail. As shown in
Figure 1, the method is expounded from five parts. In the first part, the models of training samples are
built using the Gaussian membership functions. In the second part, according to the matching degree
between the test sample and the attribute model, the first component BBA is generated, which is based
on a previous work in the literature [49]. In the third part, the second component R (reliability of
BBA) is measured, where both the similarity among classes under a certain attribute (static state) and
the distance between the test sample and the models (dynamic state) are taken into account. The main
contribution of this paper focuses on this part. Then, a reliability-based BBA (BBA, R) is obtained.
Each (BBA, R) is discounted by the obtained reliability. Finally, these reliability-based BBAs are fused
based on Dempster’s combination rule. At the stage of modeling of sensor information, the uncertainty
and the reliability of the information source are simultaneously considered in the proposed method,
which can obtain a more adequate construction for the description of real-world information.
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Figure 1. Flowchart of the proposed method.

3.1. The Modeling of Each Attribute

Due to the change of environment, the sensor data have usually a certain degree of fuzziness.
In this case, the membership function can be used to represent the sample feature. Besides,
there are some interruptions in the working process of the sensor, such as the mechanical noise
and electromagnetic waves. In this case, the probability density function of the measured value of
the same physical quantity is generally regarded as a form of Gaussian distribution. The Gaussian
distribution possesses the following advantages [50]: first, if the error can be seen as the superposition
of many independent random variables, then the error is supposed to have the form of the Gaussian
distribution based on the central limit theorem. Second, many of the probability distributions of
random variables in production and scientific experiments can be approximately described by the
Gaussian distribution. Hence, the modeling of the training samples is built based on the Gaussian
membership function in this paper.

Assuming that X is a sample space of the training set, then the Gaussian membership function of
each attribute is defined as follows:

μ(x) : X → [0, 1], x ∈ X.

μ(x) can be gained by the following steps:

1. Suppose that there are n classes, namely the frame of discernment Θ = {θ1, θ2, · · · , θn}. Each class
θi (i = 1, 2, · · · , n) has k attributes.

2. For the training samples of class θi in the j-th attribute, the mean value Xij and the standard
deviation σij are calculated respectively as follows:

Xij =
1
N

N

∑
l=1

xijl ,

σij =

√√√√ 1
N − 1

N

∑
l=1

(xijl − Xij)2,

(9)

where i = 1, 2, · · · , n and j = 1, 2, · · · , k. N is the training sample size of class θi. xijl is the attribute
value of the j-th attribute from the l-th training sample in class θi.
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3. The Gaussian membership function of the j-th attribute of class θi is generated as follows:

μ
j
i(x) = exp[− (x − Xij)

2

2σ2
ij

] (10)

where −3σij ≤ x ≤ 3σij, i = 1, 2, · · · , n and j = 1, 2, · · · , k.

3.2. Reliability-Based BBA Generation Method

In this section, a reliability-based BBA is introduced from two parts: one is the determination of
BBA; another is the reliability measurement of BBA.

3.2.1. The Determination of BBA

In this section, a nested structure BBA function is introduced. As described in Figure 2, a singleton
subset proposition is modeled by a Gaussian membership function. For example, the singleton subset
proposition {A} is produced by the membership function μA(x). The proposition with two elements
is represented by the intersection of two singleton subset propositions. For instance, the compound
subset proposition with two elements {AB} can be constructed as follows:

μAB(x) = min(μA(x), μB(x)). (11)

Namely, {AB} is defined by the intersection μAB(x) of {A} with {B}. Further, a compound
subset proposition with three elements can be constructed by the intersection among three singleton
subset propositions. For example, {ABC} can be constructed as follows:

μABC(x) = min(μA(x), μB(x), μC(x)). (12)

Figure 2. The modeling of the singleton subset and compound subset.

Suppose that G(G ⊂ 2Θ) is a proposition and t is the feature information of a test sample under
a certain attribute. The matching degree between t and G implies the plausibility of this test sample
belonging to this proposition, which is defined as follows:

Pl(G|t) = μG(x) |x=t (13)

where G can be a singleton subset proposition or a compound subset proposition. Equation (13)
indicates that the plausibility is determined by the intersection between functions μG(x) and x = t.
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That is, the plausibility of a test sample belonging to these propositions {A}, {AB} and {ABC} is
denoted respectively as follows:

Pl(A|t) = μA(x) |x=t,

Pl(AB|t) = μAB(x) |x=t,

Pl(ABC|t) = μABC(x) |x=t.

(14)

Then, the plausibility function, which measures the matching degree between the test sample
and class proposition, is used to determinate BBA in this paper. Note that when the plausibility
of a singleton subset proposition is equal to the plausibility of a compound subset proposition,
this plausibility is only assigned to the compound subset proposition as its BBA. For example, as shown
in Figure 3, for the test sample x, the plausibility of this test sample belonging to each proposition can
be given as:

Pl(B|t) = μB(x) |x=7 = p2,

Pl(C|t) = μC(x) |x=7 = p1,

Pl(BC|t) = μBC(x) |x=7 = p2,

Pl(A|t) = Pl(AB|t) = Pl(AC|t) = Pl(ABC|t) = 0

Then, the BBA of each proposition is obtained as follows:

m(C) = Pl(C|t) = p1,

m(BC) = Pl(BC|t) = p2,

m(A) = m(B) = m(AB) = m(AC) = m(ABC) = 0

where since Pl(B|t) = Pl(BC|t) = p2, the plausibility p2 is assigned to the compound subset
proposition BC, namely m(BC) = p2, but m(B) = 0.

Figure 3. The determination of BBA.

Considering that the cumulative sum of the above gained BBAs may not be equal to one,
the following rules are given to normalize BBAs: if the total sum is greater than one, these BBAs are
normalized; if the total sum is less than one, the redundancy belief value 1 − ∑ BBA is assigned to the
universal set Θ, namely that is assigned to the unknown.
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3.2.2. The Measurement of the Reliability of BBA

As shown in Figure 4, there exist two kinds of potential possibility of false classification: one is
that class A is incorrectly recognized as class B, which is defined as P(B | A); the other is that class B
is incorrectly recognized as class A, which is defined as P(A | B). The potential possibility leads to the
generated BBA being not wholly reliable. This issue is not considered in the existing BBA methods.
To address this issue, a method of measuring the BBA reliability is proposed in this paper.

Figure 4. The overlapping area of the static attribute model.

1. The static reliability index based on the attribute model:

Assume there are two kinds of class A and B; from Figure 4, we can know that if a test sample
comes from class A and its value locates in the range from c to d, the possibility of the false BBA
P(B | A) =

∫ d
c μA(x)dx/

∫ d
a μA(x)dx. If a test sample comes from class B and its value locates in

the range from b to c, the possibility of the false BBA P(A | B) =
∫ c

b μB(x)dx/
∫ e

b μB(x)dx. Hence,

the total error rate of BBA is P = P(B | A) + P(A | B). Namely, under a certain model (
∫ d

a μA(x)dx and∫ e
b μB(x)dx are invariable), if the overlapping area

∫ d
c μA(x)dx or

∫ c
b μB(x)dx is larger, the similarity

among classes is larger, then the possibility of generating the false BBA is larger, and vice versa.
As analyzed above, a method of measuring the reliability of BBA is proposed based on the similarity
among the attribute model, which is detailed as follows.

In the attribute j(j = 1, 2, · · · , k), the similarity between Classes 1 and 2 is defined as:

simj
12 = sim(μ

j
1(x), μ

j
2(x)) =

∫
μ

j
12(x)dx∫

μ
j
1(x)dx +

∫
μ

j
2(x)dx − ∫

μ
j
12(x)dx

(15)

where μ
j
1(x) and μ

j
2(x) are the membership functions of the j-th attribute of Class 1 and Class 2,

respectively. μ
j
12(x) is the j-th attribute’s membership function of the overlapping area between Class

1 and Class 2, namely the membership function of the compound subset {12}.
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Then, a similarity matrix of the j-th attribute, SMj, is obtained as follows:

SMj =

μ
j
1 (x) μ

j
2 (x) · · · μ

j
n (x)

μ
j
1 (x)

μ
j
2 (x)

...

μ
j
n (x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 simj
12 · · · simj

1n

simj
21 1 · · · simj

2n

...
...

. . .
...

simj
n1 simj

n2 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

where simj
il(i, l = 1, 2, · · · , n) is the similarity between class i and class l in the j-th attribute.

Finally, based on the static model of the j-th attribute, the reliability of BBA generated from the
j-th attribute is denoted as follows:

Rs
j = ∑

i<l
(1 − simj

il) (17)

where j = 1, 2, · · · , k and simj
il(i, l = 1, 2, · · · , n) is the similarity between class i and class l in the j-th

attribute. Obviously, Rs
j implies that the larger the similarity, the lower the reliability of BBA generated

from this attribute model.

2. The dynamic reliability index based on the test samples:

The static reliability index shows that the overlapping area among classes is larger, the similarity
is larger, the possibility of generating the false BBA is larger, then the reliability of the generated BBA
is smaller. This index can reflect that the reliability of BBA is affected by some static factors, such as
the similarity among classes. However, the reliability of BBA is also affected by the test samples.
For example, as shown in Figure 5a, although classes B and C have a large overlapping area, it is
almost impossible that the test sample x1 from class A is incorrectly classified as class B or C. In this
case, the overlap degree between class B and C has little negative influence on the reliability of the
generated BBA; whereas, in Figure 5b, the test sample x2 from class C is easily incorrectly classified as
class B. In this case, the overlap degree between classes B and C has a large negative influence on the
reliability of the generated BBA. As analyzed above, the reliability of BBA is related to the test samples.
To reflect this influence, a risk distance d is introduced in this section. It is denoted as the distance
between the test sample and the overlapping area among attribute models. If the distance is larger, the
influence of the overlapping area is smaller, the risk of the incorrect classification is smaller, then the
reliability of the generated BBA is larger, and vice versa. The risk distance is produced as follows.

In the attribute j(j = 1, 2, · · · , k), pj
12 is the maximum of the intersection between Class 1 and

Class 2, namely the vertex of the overlapping area between Class 1 and Class 2. In this section, pj
12

is taken as the reference point of this overlapping area. Hence, the distance between the test sample
xj and the reference point pj

12 can be calculated to represent the risk distance. This reference point is
defined as:

pj
12 = sup min(μ1(x)j, μ2(x)j). (18)

where μ1(x)j and μ2(x)j are the Gaussian membership functions of Class 1 and Class 2 in the j-th
attribute, respectively. Then, a vector Pj containing all reference points of the overlapping area among
class i(i = 1, 2, · · · , n) in the j-th attribute is obtained as follows:

Pj =
[

pj
12 · · · pj

1n pj
23 · · · pj

2n · · · pj
(n−1)n

]
(19)

179



Sensors 2017, 17, 1575

In the j-th attribute, the risk distance between the test sample xj and the reference points pj
(n−1)n

of the overlapping area between the classes μ
j
n−1(x) and μ

j
n(x) is formulated as:

dj
(n−1)n = d(xj, pj

(n−1)n) =
|xj − pj

(n−1)n|
Dj (20)

where Dj represents the maximal interval comprised by all classes. Then, distance vector D∗
j of the j-th

attribute is given as follows:

D∗
j =

[
dj

12 · · · dj
1n dj

23 · · · dj
2n · · · dj

(n−1)n

]
(21)

Finally, the dynamic reliability index based on the test samples of the j-th attribute is denoted
as follows:

Rd
j = e

n
∑

l=2
dj
(l−1)l (22)

where dj
(l−1)l is the distance between the test sample xj and the reference points pj

(l−1)l of

the overlapping area between class μ
j
l−1(x) and μ

j
l(x) in the j-th attribute. Obviously, Rd

j implies
that the larger the risk distance, the larger the reliability of BBA generated from this attribute.

Figure 5. Reliability measure based on the dynamic test samples.

3. Comprehensive reliability measure:

Based on the above analysis, a method of measuring the BBA reliability is proposed. This method,
which considers the comprehensive reliability based on the attribute model and the test samples,
is more reasonable and effective. It is denoted as follows:

Rj = Rs
j × Rd

j (23)

where Rs
j and Rd

j are separately the static reliability index and the dynamic reliability index in the j-th
attribute, which can be gained using Equations (17) and (22), respectively.

Suppose that there are K attributes of each class, the reliability of the generated BBA in the j-th
attribute are normalized as:

R∗
j =

Rj

max(Rk)
(24)

where k = 1, 2, · · · , K.
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According to Section 3.2.1 and Section 3.2.2, both the first component BBA and the second
component R of reliability-based BBA can be acquired. Finally, the proposed reliability-based BBA
(BBA, R) is obtained.

3.3. Sensor Data Fusion

In this paper, the reliability-based BBA is first translated into the classical BBA based on
the discounting method [16]. After that, Dempster’s combination rule can be used to fuse these BBAs.

Assuming that in the frame of discernment Θ = {θ1, θ2, · · · , θn}, there are k reliability-based
BBAs (BBAj, Rj), (j = 1, 2, · · · , k). Based on the discounting method, the BBAs generated from sensors
are discounted as follows: {

mR
j (A) = Rj × mj(A) ∀A ⊂ 2Θ

mR
j (Θ) = Rj × mj(Θ) + (1 − Rj)

(25)

where Rj is the reliability of BBAj of the j-th attribute.
Eventually, these reliability-based BBAs are fused using Dempster’s combination rule.

The maximum pignistic probability is taken as the decision-making criterion in this paper. Hence,
the final mass function is transformed to pignistic probability, and the final decision-making can
be done.

4. Numerical Example

To evaluate the validity of the reliability-based BBA, several experiments of two datasets and
a fault diagnosis are performed in this section.

4.1. Experiments on Two Datasets: Five-Fold Cross-Validation

In this section, two kinds of datasets, including Iris and Wine, are selected from the UCI databases
(UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets.html.) to evaluate
the proposed method. Within these, the Iris dataset contains three classes of 50 samples each, and
each class has four attributes, which is the well-known database in pattern recognition. The Wine
dataset contains three classes, and each class has 13 attributes. First of all, the proposed method is
compared with the method, which uses the same BBA method, but does not consider the reliability of
BBA. The comparison results of five-fold cross-validation are shown in Figure 6.

Figure 6. The comparison of considering the reliability or not.

181



Sensors 2017, 17, 1575

The above results show that after considering the reliability of BBA, the recognition rates of two
datasets are all increased to some extent. Namely, the proposed method that measures the reliability of
BBA is valid and reasonable.

To further evaluate this method, a comparison experiment between our method and other
classifiers is carried out. Here, we consider the following three kinds of classifiers: support vector
machine with radial basis function (SVM-RBF), decision tree (REPTree) and naive Bayesian (NB).
Within these, SVM and NB are both the top ten data-mining algorithms [51]. REPTree is also a
well-known machine-learning algorithm. The comparison results of five-fold cross-validation are
shown in Figure 7.

Figure 7. The comparing results between our method and other classifiers.

From the above experimental results, it can be found that: in the Iris dataset, the recognition rates
of the proposed method and the classical classifiers are greater than 90%, namely they are all effective in
this dataset. In the Wine dataset, the recognition rate of our method is 95.66%; NB is 85.27%; REPTree is
90.36%; and SVM-RBF is 37.18%. This shows that the proposed method has competitive performances
contrasting with these selected classifiers. What is more, the reliability of BBA is measured at the stage
of BBA generation, which is more reasonable.

4.2. An Application Example of Fault Diagnosis

To evaluate the validity of this method in engineering applications, a case study of the fault
diagnosis of motor rotor is executed. There are three kinds of fault: F1 = {Rotorunbalance},
F2 = {Rotormisalignment} and F3 = {Pedestallooseness}. Three vibration acceleration sensors and
a vibration displacement sensor are placed in different installation positions to collect the vibration
signal. Vibration displacement and acceleration vibration frequency amplitudes at the frequencies
of 1×, 2× and 3× are taken as the fault feature variables. The relevant data are acquired from the
literature [52], which is cited in the Appendix. The method is compared with the method that does not
consider the reliability of BBA and other classifiers, respectively. The comparison results of five-fold
cross-validation are shown in Table 1.
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Table 1. The comparing the results of fault diagnosis.

Methods
Classes

Overall Average
F1 F2 F3

Not considering reliability 99.00% 95.50% 100% 98.17%

Support vector machine 94.15% 92.86% 100% 95.67%
Decision tree 99.05% 98.68% 99.78% 99.17%

Naive Bayesian 98.05% 96.94% 100% 98.33%

The proposed method 100% 100% 100% 100%

The above experiments can evaluate the rationality and the effectiveness of the presented method
well. The advantages of our method are concluded as follows:

• Based on the idea of the Z-number, an ordered pair (BBA, R) is proposed to represent BBA along
with its associated reliability. The first component BBA is a mass function; the second component
R is a measurement of the reliability of the first component. According to this ordered pair,
the reliability of BBA can be measured well at the stage of BBA generation.

• In the process of measuring the reliability of BBA, the information about two things is taken
into account. One is the similarity among classes (static information). Another is the risk
distance between the test samples and the overlapping area among classes (dynamic information).
This makes the results truer and more credible.

• The proposed method is based on a feasible method of measuring the reliability of BBA, which
can be replaced with other measure methods for different applications. Namely, this method is
flexible and easy to extend in many applications.

5. Conclusions

In the multi-sensors data fusion based on evidence theory, how to determine BBA is an open
issue. In this paper, a novel method named the reliability-based BBA is proposed. Within this method,
first, the models of training samples are built using the Gaussian membership functions. Second, the
BBA of every test sample is generated based on the matching degree between the test sample and
the attribute model. Then, the reliability of BBA is measured according to both the similarity among
classes and the risk distance between the test samples and the overlapping area among classes. Finally,
a reliability-based BBA can be generated. Several performed experiments verify that the proposed
method is effective. In the future, we will try to apply the proposed method to more practical
applications and research a new combination rule for reliability-based BBA.
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Appendix A. Experimental Data of Fault Diagnosis

There are three kinds of faults in a motor rotor: F = {X, Y, Z} =

{Rotorunbalance, Rotormisalignment, Pedestallooseness}, which has four fault feature variables.
At the same time interval, each fault feature of each fault is continuously observed 40 times, which
is taken as a group of observations. A total of five groups is measured in each fault feature of each
fault. Hence, i = 1, 2, 3, 4 respectively represent four fault feature variables: displacement, acceleration
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frequency of 1×, 2× and 3×. j = 1, 2, 3, 4, 5 respectively represent the group numbers of the measured
data. Five groups of observations of each feature variables of each fault are shown in Table A1.

Table A1. Experimental data of fault diagnosis [52].

Groups Observations

X11

0.1663 0.1590 0.1568 0.1485 0.1723 0.2006 0.1903 0.1908 0.1986 0.1843
0.1785 0.1610 0.1579 0.1511 0.1532 0.1647 0.1628 0.1646 0.1634 0.1642
0.1648 0.1640 0.1674 0.0661 0.1659 0.1650 0.1633 0.1632 0.1604 0.1542
0.1555 0.1562 0.1540 0.1564 0.1557 0.1542 0.1546 0.1571 0.1537 0.1536

X12

0.154 0.1518 0.1537 0.1548 0.1542 0.1538 0.1545 0.1537 0.1571 0.1560
0.1584 0.1552 0.1586 0.1574 0.1569 0.1565 0.1551 0.1585 0.1585 0.1593
0.1548 0.1558 0.1547 0.1593 0.1532 0.1632 0.1575 0.159 0.1594 0.1541
0.165 0.1674 0.1651 0.1604 0.1787 0.1818 0.1820 0.1656 0.1658 0.1644

X13

0.1647 0.1647 0.1654 0.1651 0.1656 0.1653 0.1652 0.1652 0.1648 0.1649
0.1653 0.1650 0.1650 0.1652 0.1653 0.1652 0.1648 0.1647 0.1646 0.1645
0.1651 0.1652 0.1652 0.1649 0.1650 0.1643 0.1640 0.1639 0.1641 0.1633
0.1632 0.1629 0.1630 0.1630 0.1634 0.1631 0.1634 0.1629 0.1632 0.1629

X14

0.1630 0.1629 0.1627 0.1626 0.1622 0.1624 0.1627 0.1618 0.1614 0.1617
0.1621 0.1615 0.1618 0.1611 0.1614 0.1610 0.1612 0.1611 0.1616 0.1612
0.1612 0.1613 0.1623 0.1616 0.1621 0.1613 0.1611 0.1610 0.1610 0.1613
0.1615 0.1616 0.1618 0.1616 0.1614 0.1612 0.1606 0.1614 0.1619 0.1614

X15

0.1609 0.1610 0.1612 0.1615 0.1609 0.1606 0.1604 0.1606 0.1605 0.1601
0.1604 0.1608 0.1610 0.1603 0.1599 0.1601 0.1602 0.1599 0.1598 0.1598
0.1598 0.1596 0.1595 0.1593 0.1594 0.1598 0.1596 0.1597 0.1595 0.1593
0.1598 0.1596 0.1597 0.1595 0.1593 0.1577 0.1580 0.1576 0.1577 0.1579

X21

0.1612 0.1620 0.1612 0.1610 0.1385 0.1222 0.1475 0.1306 0.1210 0.1501
0.1548 0.1577 0.1622 0.1618 0.1621 0.1665 0.1639 0.1652 0.1625 0.1637
0.1645 0.1645 0.1650 0.1649 0.1650 0.1630 0.1493 0.1533 0.1474 0.1460
0.1489 0.1499 0.1495 0.1491 0.1489 0.1503 0.1507 0.1505 0.1477 0.1496

X22

0.1517 0.1496 0.1504 0.1498 0.1528 0.1519 0.1534 0.1516 0.1555 0.1520
0.1512 0.1546 0.1538 0.1551 0.1563 0.1536 0.1543 0.1519 0.1514 0.1520
0.1501 0.1514 0.1483 0.1499 0.1502 0.1550 0.1537 0.1507 0.1557 0.1537
0.1556 0.1545 0.1529 0.1500 0.1380 0.1343 0.1346 0.1544 0.1458 0.1424

X23

0.1464 0.1460 0.1446 0.1448 0.1476 0.1464 0.1434 0.1432 0.1450 0.1420
0.1448 0.1452 0.1456 0.1462 0.1464 0.1464 0.1444 0.1440 0.1422 0.1442
0.1470 0.1478 0.1468 0.1482 0.1472 0.1462 0.1478 0.1494 0.1488 0.1496
0.1480 0.1476 0.1502 0.1496 0.1488 0.1488 0.1484 0.1534 0.1490 0.1486

X24

0.1466 0.1460 0.1438 0.1458 0.1488 0.1466 0.1494 0.1502 0.1486 0.1488
0.1512 0.1490 0.1470 0.1478 0.1484 0.1490 0.1474 0.1456 0.1464 0.1446
0.3468 0.1484 0.1478 0.1486 0.1470 0.1448 0.1460 0.1458 0.1458 0.1456
0.1452 0.1470 0.1470 0.1458 0.1450 0.1456 0.1462 0.1442 0.1464 0.1468

X25

0.1484 0.1474 0.1488 0.1460 0.1462 0.1464 0.1452 0.1450 0.1438 0.1434
0.1438 0.1438 0.1436 0.1436 0.1432 0.1412 0.1428 0.1418 0.1422 0.1422
0.1432 0.1406 0.1420 0.1402 0.1410 0.1418 0.1432 0.1450 0.1418 0.1424
0.1412 0.1408 0.1412 0.1390 0.1412 0.1398 0.1406 0.1394 0.1392 0.1382

X31

0.1221 0.1219 0.1207 0.1215 0.1222 0.1296 0.1235 0.1295 0.1280 0.1233
0.1218 0.1159 0.1163 0.1195 0.1190 0.1271 0.1247 0.1232 0.1233 0.1237
0.1210 0.1227 0.1233 0.1222 0.1252 0.1230 0.1049 0.1033 0.0899 0.1003
0.1044 0.1060 0.1064 0.1042 0.1072 0.1071 0.1070 0.1070 0.1041 0.1049

X32

0.1068 0.1063 0.1069 0.1057 0.1091 0.1061 0.1094 0.1067 0.1109 0.1111
0.1112 0.1096 0.1074 0.1085 0.1109 0.1116 0.1110 0.1113 0.1106 0.1110
0.1091 0.1080 0.1044 0.1098 0.1084 0.1102 0.1078 0.1087 0.1111 0.1116
0.1124 0.1128 0.1110 0.1078 0.1101 0.1115 0.1131 0.1108 0.1111 0.1079
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Table A1. Cont.

Groups Observations

X33

0.1105 0.1092 0.1074 0.1096 0.1055 0.1076 0.1003 0.1031 0.1040 0.1046
0.1041 0.1021 0.1041 0.1053 0.1057 0.1038 0.1029 0.1037 0.1012 0.0997
0.1020 0.1020 0.0990 0.1049 0.1066 0.1065 0.1098 0.1102 0.1076 0.1116
0.1097 0.1150 0.1120 0.1078 0.1106 0.1075 0.1061 0.1090 0.1098 0.1105

X34

0.1105 0.1081 0.1075 0.1059 0.1097 0.1105 0.1086 0.1085 0.1095 0.1084
0.1093 0.1113 0.1122 0.1139 0.1140 0.1129 0.1119 0.1107 0.1119 0.1137
0.1128 0.1122 0.1104 0.1129 0.1130 0.1143 0.1132 0.1132 0.1115 0.1111
0.1123 0.1124 0.1117 0.1120 0.1130 0.1127 0.1158 0.1145 0.1138 0.1144

X35

0.1160 0.1137 0.1159 0.1164 0.1158 0.1165 0.1167 0.1160 0.1155 0.1175
0.1170 0.1175 0.1168 0.1191 0.1190 0.1191 0.1190 0.1211 0.1196 0.1187
0.1191 0.1202 0.1200 0.1205 0.1194 0.1193 0.1195 0.1180 0.1190 0.1194
0.1197 0.1194 0.1173 0.1187 0.1169 0.1179 0.1184 0.1197 0.1194 0.1196

X41

4.4090 4.3780 4.3430 4.2950 4.2890 4.2890 4.2740 4.1840 4.1820 4.2020
4.2130 4.2240 4.2220 4.2250 4.2160 4.2220 4.2210 4.2410 4.2200 4.2180
4.2260 4.2430 4.2390 4.2370 4.2270 4.2300 4.2210 4.2200 4.2430 4.6660
4.4540 4.4370 4.4380 4.4410 4.4400 4.4350 4.4330 4.4430 4.4460 4.4420

X42

4.4480 4.4380 4.4420 4.4320 4.4270 4.4320 4.4220 4.4320 4.4240 4.4270
4.4590 4.4240 4.4650 4.4180 4.4200 4.4180 4.4190 4.4230 4.4200 4.4460
4.4210 4.4040 4.4120 4.4000 4.4100 4.4150 4.4070 4.4120 4.3920 4.4020
4.3930 4.3920 4.3860 4.3890 4.3820 4.3790 4.4120 4.3750 4.3740 4.3790

X43

4.3680 4.3840 4.3800 4.3690 4.3840 4.3830 4.3830 4.3820 4.3830 4.3850
4.3800 4.3800 4.3710 4.3720 4.3740 4.3890 4.3720 4.3670 4.3750 4.3650
4.3600 4.3570 4.3640 4.3570 4.3550 0.3570 4.3480 4.3470 4.3470 4.3400
4.3460 4.3360 4.3190 4.3300 4.3480 4.3500 4.3500 4.3460 4.3500 4.3500

X44

4.4000 4.3440 4.3410 4.3420 4.3510 4.3450 4.3370 4.3370 4.3340 4.3330
4.3330 4.3210 4.3250 4.3180 4.3300 4.3100 4.3190 4.3160 4.3160 4.3150
4.3090 4.3040 4.3060 4.3050 4.3010 4.3000 4.2960 4.2940 4.2860 4.2860
4.2890 4.2940 4.2900 4.3070 4.2890 4.2800 4.2820 4.2880 4.2810 4.2980

X45

4.3000 4.2930 4.2980 4.3303 4.2990 4.2870 4.3030 4.2910 4.2950 4.3050
4.3020 4.3120 4.3250 4.3090 4.3240 4.3210 4.3240 4.3230 4.3270 4.3290
4.3230 4.3290 4.3290 4.3350 4.3210 4.3240 4.3270 4.4620 4.4120 4.3740
4.3960 4.3730 4.3550 4.3540 4.3500 4.3430 4.3470 4.3550 4.3380 4.3310

Y11

0.1666 0.1666 0.1670 0.1696 0.1665 0.1671 0.1652 0.1663 0.1656 0.1656
0.1659 0.1655 0.1640 0.1634 0.1631 0.1618 0.1617 0.1615 0.1597 0.1592
0.1584 0.1585 0.1575 0.1578 0.1573 0.1567 0.1834 0.1825 0.1827 0.1822
0.1828 0.1817 0.1820 0.1823 0.1808 0.1818 0.1814 0.1816 0.1808 0.1807

Y12

0.1809 0.1794 0.1799 0.1799 0.1788 0.1795 0.1785 0.1785 0.1780 0.1777
0.1778 0.1777 0.1766 0.1767 0.1761 0.1770 0.1757 0.1765 0.1755 0.1755
0.1746 0.1757 0.1741 0.1743 0.1741 0.1732 0.1736 0.1723 0.1730 0.1708
0.1708 0.1702 0.1691 0.1686 0.1683 0.1676 0.1668 0.1670 0.1649 0.1644

Y13

0.1637 0.1639 0.1655 0.1641 0.1643 0.1641 0.1625 0.2038 0.2037 0.2033
0.2014 0.2028 0.2022 0.2026 0.2014 0.2013 0.2007 0.2012 0.1999 0.2012
0.1998 0.1999 0.1988 0.1992 0.1988 0.1985 0.1977 0.1976 0.1979 0.1981
0.1966 0.1973 0.1979 0.1984 0.1973 0.1969 0.1963 0.1960 0.1953 0.1941

Y14

0.1958 0.1952 0.1954 0.1938 0.1940 0.1956 0.1945 0.1937 0.1954 0.1947
0.1950 0.1955 0.1947 0.1956 0.1945 0.1932 0.1942 0.1925 0.1924 0.1934
0.1904 0.1905 0.1909 0.1906 0.1989 0.1898 0.1891 0.1892 0.1886 0.1880
0.1884 0.1890 0.1874 0.1872 0.1880 0.1855 0.1862 0.1866 0.1849 0.1841

Y15

0.1857 0.1844 0.1837 0.1831 0.1835 0.1826 0.1828 0.1834 0.1833 0.1837
0.1822 0.1829 0.1823 0.1807 0.1833 0.1835 0.1832 0.1828 0.1816 0.1820
0.1805 0.1808 0.1803 0.1795 0.1785 0.1794 0.1795 0.1788 0.1786 0.1781
0.1771 0.1775 0.1774 0.1769 0.1780 0.1778 0.1758 0.1740 0.1736 0.1738
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Y21

0.3111 0.3124 0.3205 0.3268 0.3225 0.3268 0.3305 0.3245 0.3247 0.3245
0.3300 0.3279 0.3265 0.3221 0.3209 0.3227 0.3196 0.3150 0.3193 0.3182
0.3148 0.3122 0.3133 0.3107 0.3131 0.3071 0.3412 0.3401 0.3357 0.3466
0.3422 0.3390 0.3372 0.3364 0.3398 0.3392 0.3384 0.3383 0.3344 0.3394

Y22

0.3386 0.3342 0.3364 0.3338 0.3381 0.3388 0.3347 0.3348 0.3321 0.3367
0.3367 0.3322 0.3300 0.3309 0.3346 0.3341 0.3335 0.3303 0.3320 0.3317
0.3295 0.3265 0.3299 0.3267 0.3271 0.3253 0.3297 0.3247 0.3243 0.3269
0.3229 0.3211 0.3171 0.3202 0.3170 0.3125 0.3144 0.3165 0.3079 0.3087

Y23

0.3117 0.3095 0.3152 0.3222 0.3171 0.3169 0.3157 0.3480 0.3498 0.3469
0.3447 0.3476 0.3507 0.3470 0.3403 0.3359 0.3412 0.3399 0.3459 0.3449
0.3479 0.3422 0.3446 0.3471 0.3467 0.3461 0.3421 0.3413 0.3416 0.3457
0.3423 0.3439 0.3423 0.3465 0.3405 0.3399 0.3372 0.3387 0.3333 0.3349

Y24

0.3419 0.3436 0.3510 0.3392 0.3354 0.3350 0.3500 0.3354 0.3358 0.3349
0.3385 0.3414 0.3351 0.3394 0.3371 0.3374 0.3370 0.3365 0.3342 0.3389
0.3386 0.3394 0.3374 0.3355 0.3357 0.3312 0.3274 0.3353 0.3351 0.3325
0.3305 0.3314 0.3304 0.3238 0.3315 0.3259 0.3253 0.3308 0.3215 0.3233

Y25

0.3282 0.3208 0.3211 0.3138 0.3144 0.3199 0.3182 0.3196 0.3205 0.3180
0.3166 0.3170 0.3181 0.3139 0.3212 0.3254 0.3238 0.3193 0.3204 0.3168
0.3148 0.3204 0.3146 0.3132 0.3191 0.3164 0.3141 0.3165 0.3137 0.3160
0.3135 0.3137 0.3188 0.3177 0.3193 0.3239 0.3158 0.3236 0.3291 0.3262

Y31

0.2517 0.2634 0.2590 0.2808 0.2869 0.2827 0.2913 0.2909 0.2893 0.2903
0.2999 0.2961 0.2930 0.3040 0.2971 0.3125 0.2968 0.2979 0.2998 0.3003
0.3023 0.2986 0.3008 0.3022 0.3017 0.3218 0.2338 0.2414 0.2510 0.2498
0.2424 0.2451 0.2477 0.2473 0.2494 0.2523 0.2523 0.2496 0.2557 0.2591

Y32

0.2485 0.2534 0.2636 0.2670 0.2661 0.2641 0.2581 0.2637 0.2733 0.2735
0.2644 0.2622 0.2669 0.2713 0.2663 0.2720 0.2753 0.2758 0.2722 0.2755
0.2710 0.2870 0.2820 0.2770 0.2727 0.2761 0.2812 0.2777 0.2880 0.2919
0.2882 0.2784 0.2788 0.2792 0.2799 0.2731 0.2717 0.2851 0.2606 0.2696

Y33

0.2786 0.2774 0.2921 0.2991 0.2982 0.2974 0.2980 0.2015 0.1872 0.1865
0.2016 0.1980 0.1982 0.2022 0.2071 0.2020 0.1882 0.1877 0.2065 0.2057
0.2052 0.2143 0.2135 0.2261 0.2110 0.2077 0.2089 0.2134 0.2161 0.2119
0.2109 0.2130 0.2180 0.2096 0.2102 0.2152 0.2137 0.2110 0.2113 0.2126

Y34

0.2170 0.2130 0.2190 0.2192 0.2112 0.2214 0.2166 0.2137 0.2109 0.2024
0.2117 0.2102 0.2087 0.2050 0.2149 0.2134 0.2067 0.2140 0.2239 0.2153
0.2144 0.2103 0.2145 0.2190 0.2250 0.2137 0.2060 0.2153 0.2132 0.2160
0.2079 0.2047 0.2130 0.2058 0.2174 0.2138 0.2142 0.2138 0.2022 0.2169

Y35

0.2206 0.2133 0.2141 0.2031 0.2073 0.2099 0.2066 0.2052 0.2172 0.2131
0.2140 0.2184 0.2152 0.2099 0.2258 0.2264 0.2273 0.2322 0.2204 0.2248
0.2242 0.2251 0.2222 0.2317 0.2193 0.2262 0.2255 0.2332 0.2299 0.2289
0.2305 0.2398 0.2401 0.2306 0.2365 0.2398 0.2439 0.2595 0.2529 0.2557

Y41

5.3920 5.3260 5.3080 5.2620 5.2800 5.2460 5.1950 5.2280 5.1840 5.1820
5.1590 5.1310 5.0980 4.9840 5.0190 4.9340 4.9260 4.9500 4.9690 4.8960
4.7990 4.8330 4.8220 4.7450 4.7840 4.8260 4.8960 4.8920 4.9120 4.8390
4.8230 4.7960 4.8000 4.8180 4.8240 4.8310 4.8370 4.8720 4.8410 4.8410

Y42

4.8610 4.8220 4.6890 4.7250 4.7070 4.7300 4.6980 4.6810 4.6620 4.7610
4.7460 4.6870 4.7120 4.7080 4.6910 4.5130 4.4670 4.5120 4.5410 4.3910
4.4220 4.5130 4.5950 4.5810 4.5420 4.5400 4.5160 4.5220 4.5180 4.5660
4.5380 4.5450 4.4510 4.4570 4.4810 4.4860 4.4940 4.4690 4.4180 4.4170

Y43

4.3700 4.4000 4.3950 4.3840 4.3740 4.3800 4.3310 4.3230 4.3140 4.2870
4.2300 4.2440 4.2500 4.2200 4.2150 4.2540 4.2100 4.1980 4.2550 4.2210
4.2110 4.2000 4.1810 4.1790 4.1840 4.1570 4.1440 4.1600 4.1150 4.0940
4.1230 4.1280 5.2340 5.2320 5.2110 5.2210 5.2280 5.2060 5.1800 5.1890
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Y44

5.1510 5.1240 5.1230 5.1220 5.0830 5.0600 5.0930 5.0750 5.0490 5.0520
5.0150 5.0250 5.0750 5.0150 4.9010 4.9300 4.9080 4.8860 4.8780 4.9040
4.8980 4.8830 4.8510 4.8510 4.8370 4.9340 8.8960 4.8160 4.7640 4.7940
4.8010 4.7670 4.7450 4.7540 4.7710 4.7560 4.7540 4.7360 4.6780 4.6650

Y45

4.6770 4.6610 4.6500 4.6280 4.6440 4.6320 4.6120 4.4620 4.6770 4.6580
4.6290 4.6220 4.6300 4.6140 4.6260 4.6130 4.5850 4.5690 4.5820 4.5500
4.5330 4.5520 4.5040 4.4760 4.5660 4.5280 4.5550 4.5230 4.5190 4.5390
4.5220 4.5210 4.5090 4.4870 4.5270 4.4730 4.4710 4.4900 4.4570 4.4510

Z11

0.3207 0.3213 0.3213 0.3235 0.3322 0.3419 0.3434 0.3440 0.3454 0.3461
0.3474 0.3476 0.3432 0.3468 0.3439 0.3423 0.3440 0.3430 0.3436 0.3420
0.3416 0.3402 0.3373 0.3403 0.3414 0.3423 0.3420 0.3423 0.3425 0.3379
0.3379 0.3391 0.3386 0.3355 0.3352 0.3361 0.3333 0.3333 0.3315 0.3347

Z12

0.3347 0.3320 0.3323 0.3327 0.3329 0.3287 0.3304 0.3312 0.3285 0.3287
0.3309 0.3270 0.3274 0.3285 0.3283 0.3305 0.3274 0.3261 0.3264 0.3251
0.3271 0.3252 0.3275 0.3275 0.3287 0.3270 0.3269 0.3297 0.3266 0.3308
0.3293 0.3304 0.3323 0.3305 0.3305 0.3330 0.3339 0.3342 0.3312 0.3315

Z13

0.3312 0.3301 0.3315 0.3307 0.3315 0.3320 0.3311 0.3327 0.3292 0.3301
0.3315 0.3289 0.3246 0.3267 0.3295 0.3270 0.3238 0.3264 0.3251 0.3264
0.3260 0.3247 0.3224 0.3235 0.3249 0.3230 0.3232 0.3273 0.3249 0.3270
0.3218 0.3244 0.3006 0.3030 0.3041 0.3174 0.3220 0.3196 0.3241 0.3251

Z14

0.3263 0.3266 0.3282 0.3270 0.3290 0.3198 0.3237 0.3229 0.3261 0.3238
0.3259 0.3221 0.3309 0.3271 0.3242 0.3235 0.3240 0.3261 0.3294 0.3287
0.3267 0.3277 0.3263 0.3262 0.3278 0.3276 0.3271 0.3267 0.3289 0.3270
0.3266 0.3299 0.3068 0.3148 0.3322 0.3323 0.3320 0.3336 0.3326 0.3322

Z15

0.3326 0.3317 0.3301 0.3316 0.3336 0.3280 0.3292 0.3297 0.3283 0.3283
0.3264 0.3279 0.3275 0.3294 0.3245 0.3268 0.3261 0.3262 0.3253 0.3272
0.3270 0.3252 0.3284 0.3253 0.3265 0.3277 0.3291 0.3287 0.3256 0.3239
0.3248 0.3261 0.3252 0.3249 0.3254 0.3290 0.3275 0.3274 0.3274 0.3251

Z21

0.2893 0.2863 0.2801 0.2847 0.3271 0.3448 0.3409 0.3346 0.3249 0.3425
0.3360 0.3368 0.3361 0.3411 0.3434 0.3459 0.3460 0.3481 0.3518 0.3495
0.3478 0.3477 0.3506 0.3470 0.3470 0.3501 0.3477 0.3561 0.3489 0.3529
0.3539 0.3544 0.3525 0.3515 0.3560 0.3596 0.3567 0.3616 0.3602 0.3589

Z22

0.3541 0.3561 0.3607 0.3636 0.3614 0.3595 0.3586 0.3575 0.3574 0.3563
0.3601 0.3619 0.3647 0.3599 0.3621 0.3647 0.3557 0.3457 0.3558 0.3509
0.3525 0.3527 0.3484 0.3452 0.3474 0.3438 0.3500 0.3447 0.3429 0.3508
0.3397 0.3375 0.3503 0.3421 0.3421 0.3362 0.3328 0.3409 0.3391 0.3364

Z23

0.3287 0.3323 0.3313 0.3416 0.3315 0.3352 0.3396 0.3349 0.3402 0.3406
0.3472 0.3526 0.3439 0.3462 0.3427 0.3492 0.3507 0.3550 0.3456 0.3522
0.3480 0.3397 0.3474 0.3499 0.3503 0.3365 0.3450 0.3516 0.3506 0.3528
0.3493 0.3546 0.2995 0.3094 0.2950 0.3479 0.3361 0.3394 0.3484 0.3441

Z24

0.3469 0.3380 0.3356 0.3378 0.3385 0.3338 0.3396 0.3345 0.3363 0.3426
0.3333 0.3298 0.3335 0.3339 0.3397 0.3349 0.3357 0.3361 0.3401 0.3382
0.3379 0.3356 0.3309 0.3333 0.3328 0.3330 0.3412 0.3334 0.3264 0.3297
0.3302 0.3318 0.2961 0.3143 0.3616 0.3506 0.3463 0.3446 0.3412 0.3393

Z25

0.3454 0.3396 0.3453 0.3455 0.3517 0.3426 0.3590 0.3516 0.3481 0.3502
0.3440 0.3428 0.3455 0.3404 0.3518 0.3517 0.3389 0.3481 0.3382 0.3530
0.3471 0.3566 0.3554 0.3539 0.3576 0.3536 0.3480 0.3568 0.3567 0.3524
0.3587 0.3578 0.3535 0.3602 0.3565 0.3490 0.3532 0.3541 0.3507 0.3467

Z31

0.1810 0.1864 0.1803 0.1829 0.1605 0.1441 0.1436 0.1412 0.1414 0.1476
0.1502 0.1477 0.1507 0.1469 0.1490 0.1512 0.1461 0.1497 0.1511 0.1488
0.1486 0.1480 0.1493 0.1451 0.1520 0.1537 0.1498 0.1478 0.1471 0.1496
0.1467 0.1443 0.1446 0.1420 0.1454 0.1365 0.1347 0.1373 0.1380 0.1446
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Z32

0.1434 0.1380 0.1413 0.1412 0.1452 0.1444 0.1396 0.1364 0.1400 0.1424
0.1408 0.1419 0.1415 0.1393 0.1472 0.1452 0.1387 0.1383 0.1267 0.1326
0.1326 0.1398 0.1283 0.1291 0.1296 0.1282 0.1314 0.1235 0.1283 0.1179
0.1206 0.1285 0.1365 0.1290 0.1290 0.1345 0.1191 0.1275 0.1290 0.1187

Z33

0.1252 0.1210 0.1268 0.1339 0.1333 0.1359 0.1309 0.1362 0.1315 0.1399
0.1387 0.1369 0.1326 0.1381 0.1308 0.1301 0.1322 0.1302 0.1260 0.1241
0.1266 0.1210 0.1298 0.1264 0.1232 0.1250 0.1313 0.1284 0.1257 0.1281
0.1321 0.1350 0.1665 0.1695 0.1692 0.1386 0.1352 0.1422 0.1409 0.1332

Z34

0.1387 0.1343 0.1349 0.1335 0.1289 0.1300 0.1282 0.1263 0.1258 0.1331
0.1268 0.1291 0.1353 0.1295 0.1304 0.1279 0.1345 0.1329 0.1329 0.1294
0.1398 0.1386 0.1318 0.1278 0.1371 0.1317 0.1357 0.1361 0.1370 0.1416
0.1291 0.1350 0.1368 0.1535 0.1340 0.1304 0.1312 0.1331 0.1276 0.1302

Z35

0.1232 0.1340 0.1316 0.1299 0.1375 0.1238 0.1344 0.1229 0.1331 0.1324
0.1297 0.1297 0.1233 0.1286 0.1314 0.1334 0.1259 0.1362 0.1151 0.1279
0.1256 0.1287 0.1323 0.1216 0.1263 0.1296 0.1241 0.1274 0.1252 0.1310
0.1276 0.1314 0.1328 0.1284 0.1284 0.1339 0.1346 0.1360 0.1356 0.1359

Z41

9.7920 9.8090 9.8090 9.8130 9.8190 9.8730 9.7850 9.8220 9.7880 9.7530
9.8170 9.7530 9.7060 9.7480 9.7840 9.7210 9.7330 9.7910 9.9090 9.9510
9.9670 9.9340 9.8760 9.9070 9.9470 9.8780 9.9150 9.9200 9.9090 9.9220
9.8440 9.8740 9.8000 9.8700 9.8970 9.8670 9.8760 9.8830 9.9370 9.9330

Z42

9.9070 9.8530 9.8510 9.8690 9.8250 9.8630 9.8610 9.8440 9.8500 9.7980
9.8300 9.8250 9.8370 9.8890 9.8350 9.8030 9.7550 9.7960 9.7760 9.7730
9.7270 9.6260 9.6430 9.6620 9.6920 9.6800 9.6990 9.3850 9.7020 9.7160
9.7420 9.6530 9.7390 9.7830 9.7030 9.7460 9.7360 9.8000 9.7490 9.7840

Z43

9.7060 9.7540 9.7830 9.7500 9.7290 9.7900 9.7790 9.7370 9.7640 9.6970
9.6850 9.7260 9.6830 9.6880 9.7230 9.7360 9.6930 9.7560 9.7500 9.7880
9.7050 9.7660 9.7710 9.8240 9.8610 9.8290 9.8020 9.8550 9.7600 9.8230
9.8610 9.8200 9.8420 9.8370 9.8340 9.8750 9.9040 9.8570 9.8000 9.8650

Z44

9.8190 9.8400 9.8350 9.7756 9.8520 9.8900 9.9230 9.8810 9.9580 9.9290
9.9320 9.6500 9.9680 9.9220 9.8580 9.9460 9.8760 9.9400 9.8370 9.7400
9.8990 9.9440 9.9570 10.0360 9.8960 9.9550 10.0230 10.0170 9.9950 9.7420
9.6220 9.7320 9.7280 9.9780 10.1120 10.0350 9.9930 9.6710 9.5720 9.6780

Z45

9.7530 9.7570 9.7510 9.8330 9.7730 9.7980 9.8460 9.8440 9.8750 9.8690
9.8300 9.6950 9.6930 9.6990 9.6540 9.6880 9.5790 9.6610 9.9250 9.8580
9.6240 9.6830 9.8540 9.6300 9.5890 9.6450 9.7990 9.8260 9.9420 9.9150
9.9150 9.7980 9.9240 9.8970 9.8820 9.8090 9.7990 9.8150 9.8580 9.8380
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Abstract: Online denoising is motivated by real-time applications in the industrial process, where the
data must be utilizable soon after it is collected. Since the noise in practical process is usually colored,
it is quite a challenge for denoising techniques. In this paper, a novel online denoising method was
proposed to achieve the processing of the practical measurement data with colored noise, and the
characteristics of the colored noise were considered in the dynamic model via an adaptive parameter.
The proposed method consists of two parts within a closed loop: the first one is to estimate the system
state based on the second-order adaptive statistics model and the other is to update the adaptive
parameter in the model using the Yule–Walker algorithm. Specifically, the state estimation process
was implemented via the Kalman filter in a recursive way, and the online purpose was therefore
attained. Experimental data in a reinforced concrete structure test was used to verify the effectiveness
of the proposed method. Results show the proposed method not only dealt with the signals with
colored noise, but also achieved a tradeoff between efficiency and accuracy.

Keywords: online denoising; the second-order adaptive statistics model; Kalman filter; Yule–Walker
algorithm; real-time data processing

1. Introduction

With recent improvements in sensor technologies, information networks, and telemetry, an
enormous amount of data is collected every day. At the same time, with the help of data
processing techniques, policy-makers and scientists are now able to deploy these sampled data
in significant applications such as target location [1], disease case count prediction [2], structural health
monitoring [3], and financial forecasting [4]. However, signals may be subject to random noise in
practical processes, due to such reasons as incorrect measurements, faulty sensors, or imperfect data
collection. Any noise and instability can be considered as the source of error, which would result in
signal distortion.

How to eliminate the influence of the noise in measured data and extract the useful information
has been a focus of information science research. Currently, existing algorithms primarily focus on
the offline denoising problem, which requires a full set of data to accomplish the denoising process.
Common solutions can be divided into two categories, i.e., offline denoising in the time domain [5–7]
and in the frequency domain [8]. Specifically, in the time domain, Weissman et al. [5] proposed the
discrete universal denoiser (DUDE) algorithm for offline denoising. DUDE assumes the statistical
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knowledge of the noise mechanism, but makes no assumptions on the distribution of the underlying
data. Furthermore, Motta et al. [6] presented an extension of the DUDE specialized for the denoising
of grayscale images. Moon et al. [7] introduced S-DUDE, a new algorithm for denoising discrete
memoryless channel(DMC)-corrupted data. Aside from DUDE, the wavelet transform method is
another classical offline method. Various offline denoising techniques based on the modified wavelet
transform method can be found in different denoising-related applications [9–11]. The methods above
possess strong capabilities for removing noise and preserving data details. However, the commonality
is that they require all the data as a necessary condition.

In the frequency domain, Bhati et al. [12] designed a time–frequency localized three-band
biorthogonal linear phase wavelet filter bank for epileptic seizure electroencephalograph (EEG)
signal classification. For nonlinear and nonstationary signals, Gao et al. [13] proposed a novel
framework of amalgamating empirical mode decomposition (EMD) with variable regularized
two-dimensional sparse non-negative matrix factorization (v−SNMF2D) for single-channel source
separation. The method can avoid certain strong constraints in separating blind source signals,
and provide a robust sparse decomposition. However, it also needs all the data for the denoising
process, and is not suitable for online purposes. Yin et al. [8] presented a novel approach for mechanical
vibration signal denoising filter using partial differential equation(PDE) and its numerical solution.
This method is not only easy to achieve but also can obtain smooth filtering results. However, this
method has some limitations. First, the cut-off frequency in practical systems is difficult to determine.
Second, as the amount of data increases, the arithmetic speed is slower, and the inverse matrix will be
out of memory.

In real-world applications, such as condition monitoring [14], critical event forecasting [2] or
health monitoring [3], data is susceptible to the noise and instability of the measurement process.
Existence of serious noise in real-time data may cause not only the inaccurate outcomes but also the
failure of the entire system. Meanwhile, in many physical systems, we need to collect and process data
in real time. Therefore, online denoising is very necessary in data processing.

On one hand, smoothing and trend filtering methods are typically used in data processing to
remove useless information. The moving average method is a well-known and popular technique due
to its simplicity for online denoising [15] and long-term forecasting applications [16,17]. However,
when there is too much random impulse disturbance in the experiment process, the measured data
will show a strong maneuvering feature, and the smoothing filtering is not applicable to deal with
it. In recent years, further study has improved these canonical methods. Exponential smoothing was
used in prediction applications such as tourism demand [18], composite index data [19] or inflation
rate [20]. Jere et al. [20] described the Holt’s exponential smoothing algorithm based on the assumption
of a model consisting of a trend. Recent observations are expected to have significant influence on
the future values in a series. Therefore, the prediction of the future value could be implemented
through some previous points. Online denoising could also be achieved in a similar way. For instance,
Goh et al. [21] proposed a sequential myriad smoothing approach for tracking a time-varying location
parameter corrupted by impulsive symmetric α stable noise.

On the other hand, the Kalman filter, as a popular estimation method, has been widely used in
various online applications, like navigation [22], target tracking [23], and signal processing [24], etc.
The most important advantage is that it can not only retain the useful information but also obtain
the most optimal estimate online. For example, the Kalman filter is used to minimize the error in
stereo vision-based distance measurement data (3D position of pedestrians) in [25]. Huang et al. [26]
developed the noise reduction method by a hybrid Kalman filter with an autoregressive moving
average (ARMA) model. The coefficients of the AR model for the Kalman filter are calculated by
solving for the minimum square error solutions. Rosa et al. [27] presented a Kalman filter-based
approach for track reconstruction in a neutrino telescope, which can effectively remove the errors
caused by noise and improve the accuracy of the data.
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It needs to be pointed out that, when using the Kalman filter, an accurate system dynamic model
would offer great help to achieve the optimal estimation. Miao et al. [28] used the Kalman filter with
several different kinds of system models to remove the noise of the storage volume data of the internet
center. Due to the difficulty in obtaining the density characteristic of the practical data, the adaptive
model was proposed to capture the characteristics of the moving targets in [29], and estimate the
acceleration based on the adaptive parameter.

In this paper, a denoising method for real-time data with unstable fluctuation and colored noise
was investigated. For the sake of the data features and the online requirement, the Kalman filtering
method based on a second-order adaptive statistics model was proposed here, and its performance was
verified by some real test data. Moreover, the test data was processed via another two representative
methods: first-order exponential smoothing [18] and Holt’s exponential smoothing [20], and the results
demonstrated that the proposed method could give a better effect.

Compared to previous works, the contribution of this work is that we used a second-order
adaptive model for online denoising, which can obtain a better denoising performance for the
measurements in the reinforced concrete structure test experiment. The comparison between our
model and the third-order model [29] is given in Section 3, and the results show that the developed
second-order adaptive model here can obtain a smaller error and consume less time.

The structure of this paper is as follows. Section 2 presents the specific method of the second-order
adaptive statistics model. The overview of the experiment is provided in Section 3. Section 4 discusses
the robustness and the real-time performance. Some conclusions are given in Section 5.

2. Online Denoising Algorithm Based on Kalman Filtering and the Adaptive Statistics Model

For the purpose of removing the unexpected noise in an online mode, Kalman filtering was
actually a competitive solution, where only the estimation derived in the previous step and the
measurements in the current step were required to compute the new estimated values. However, this is
not enough to obtain the desired results. A reasonable model that could describe the dynamic features
of the data is another impact factor in the denoising process. Therefore, a second-order adaptive
statistics model is presented later in this section, and the method to compute the adaptive parameter is
explained in detail as well.

2.1. Online Denoising Algorithm Based on Kalman Filtering

Kalman filtering is one of the most classical recursive algorithms that gives the optimal estimation
of the state vector. The Kalman filter estimates a process by using a form of feedback control:
the filter estimates the process state at some time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter fall into two groups: state update equation
and measurement update equation, which can be expressed as:

x(k + 1) = Φ(k + 1|k)x(k) + U(k)u(k) + w(k)
z(k + 1) = H(k + 1)x(k + 1) + v(k + 1)

(1)

where x is the state vector of the system to be estimated, whose initial value and covariance are
known as x0 and P0. Φ(k + 1|k) is the state-transition matrix. u(k) is the system input and U(k) is the
corresponding matrix. w(k) and v(k) are the process noise and measurement noise respectively, and
the variance of v(k) is known (as R). Note that both w(k) and v(k) are white noise with zero mean and
independent of the initial state x0. z(k) is the measurement vector and H(k) is the observation matrix.

The Kalman filtering considers the correlation between errors in the prediction and the
measurements. The algorithm is in a predict-correct form, which is convenient for implementation
as follows:

(1) Initialization:
x̂(0|0) = x0 P(0|0) = P0 (2)
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(2) Prediction:
x̂(k + 1|k) = Φ(k + 1|k)x̂(k|k) + U(k)u(k) (3)

P(k + 1|k) = Φ(k + 1|k)P(k|k)ΦT(k + 1, k) + Q(k) (4)

(3) Correction:

K(k + 1) = P(k + 1|k)HT(k + 1)[H(k + 1)P(k + 1|k)HT(k + 1) + R]T (5)

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)[y(k + 1)− H(k + 1)x̂(k + 1|k)] (6)

P(k + 1|k + 1) = [I − K(k + 1)H(k + 1)]P(k + 1|k) (7)

According to the equations above. The algorithm works in a two-step process. In the prediction
step, the Kalman filter produces estimates of the current state variables along with their uncertainties.
Once the outcome of the next measurement (necessarily corrupted with some amount of error,
including random noise) is observed, these estimates are updated using a weighted average, with more
weight being given to estimates with higher certainty. Since the algorithm can run recursively, we can
implement it step by step, that is, the denoised data can be obtained in real time.

2.2. Adaptive Statistics Model for Online Denoising

Considering the unstable fluctuation of the data and the existence of colored noise, the linear
time-invariant model with noise as used in Section 2.1 may not be suitable for describing this kind of
data. Therefore, we proposed a second-order adaptive statistics model to deal with these challenges.
Let x, ẋ be the data itself and the gradient, respectively. The state vector is expressed as x = [x, ẋ]T

throughout this paper unless stated otherwise explicitly.
Referring to the colored noise, it mainly lies in the changing process of the data gradient. When the

data is varying with time, its gradient will follow certain rule: value of the gradient at the next time
tick is always within the neighborhood of the current predicted gradient value. Therefore, the gradient
can be computed as:

ẋ(t) = ḡ(t) + Δ(t) (8)

where ḡ(t) is the predicted value of ẋ(t) in current interval. In particular, Δ(t) stands for the
maneuvering change with colored noise. Considering that Kalman filter has specific requirements for the
type of the noise, colored noise in Δ(t) needs to be processed. Therefore, the Wiener–Khinchin theorem
was introduced here, which assumes it corresponds to the first-order stationary Markov process:

Δ̇(t) = −αΔ(t) + w(t) (9)

where α is the parameter of maneuvering frequency [29], and w(t) is a Gussian white noise with zero
mean and a variance of σ2

Δ. With the two equations above, the change of the gradient can be written as:

ẍ(t) = −αẋ(t) + αḡ(t) + w(t) (10)

since ẍ(t)=Δ̇(t) over any sampling interval.
Therefore, the state-space representation of the continuous-time adaptive model is:

ẋ(t) =

[
0 1
0 −α

]
x(t) +

[
0
α

]
ḡ(t) +

[
0
1

]
w(t) (11)
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Let A =

[
0 1
0 −α

]
, B =

[
0
−α

]
, C =

[
0
1

]
. The solution of equations is:

x(t) = eAtx(t0) +
∫ t

0
eA(t−λ)Bḡ(λ)dλ +

∫ t

0
eA(t−λ)Cw(λ)dλ (12)

We assume t = t0 + T and t0 = kT. Then we can get the discrete-time equivalent as the following:

x(k + 1) = Φ(k + 1|k)x(k) + U(k)ḡ(k) + w(k) (13)

With Laplace transforms, matrix Φ(k + 1|k) can be expressed as:

Φ(k + 1|k) = eAT =

[
1 (1−e−αT)

α

0 e−αT

]
(14)

Matrix U(k) can be described as:

U(k) =
∫ T

0
eA(T−λ)Bdλ =

[
T
1

]
−
[

(1−e−αT)
α

e−αT

]
=

[
T − 1−e−αT

α

1 − e−αT

]
. (15)

The variance of the w(k) can be computed in the following way:

Q(k) = E[w(k)wT(k)] =
∫ T

0
eA(T−λ)Cσ2

ΔCeA(T−λ)dλ = 2ασ2
Δ

[
q11 q12

q12 q22

]
(16)

where
q11 = 1

2α3

(
4e−αT − 3 − e−2αT + 2αT

)
q12 = 1

2α2

(
e−2αT + 1 − 2αT

)
q22 = 1

2α

(
1 − e−2αT) (17)

2.3. Adaptive Parameter Adjustment via the Yule-Walker Algorithm

In the previous subsection, a statistics model was presented to capture the fluctuation features in
the measured data. It needs to be pointed out that in the proposed model, the adaptive parameter α is
not only unknown, but also self-adaptive.

We adopted the following method to update parameter α and σ2
Δ based on the Yule–Walker

estimated algorithm [29]. First of all, we need to discretize the Equation (9). Through substituting A to
−α and C to 1 in Equations (14) and (16), we can obtain its discrete-time equivalent:

Δ(k) = βΔ(k − 1) + w(k − 1) (18)

where w(k − 1) is a discrete-time zero-mean white noise sequence with variance σ2
Δω = σ2

Δ(1 − β2)

and β = e−αT . Then, the method of parametric update is as follows:

(1) Initialization:
α(0) = α0 σ2

Δ(0) = σ2
Δ0 r0(0) = ẋ0 · ẋ0 r0(1) = ẋ0 (19)

(2) Set the estimation of gradient and ḡ(k) as:

ˆ̇x(k) = ẋ(k|k) (20)

ḡ(k) =
1
k

k

∑
k=0

ˆ̇x(k|k) (21)
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The parameter of σ(k) is satisfied with the first-order stationary Markov process:

β(k) =
rk(1)
rk(0)

σ2
Δω(k)=rk(0)−α(k)rk(1) (22)

(3) Parameter update:
rk(1) = rk−1(1) + 1

k
[

ˆ̇x(k) ˆ̇x(k−1)− rk−1(1)
]

rk(0) = rk−1(0) + 1
k
[

ˆ̇x(k) ˆ̇x(k)− rk−1(0)
] (23)

and
α(k) = − ln rk(1)−ln rk(0)

T
σ2

Δ(k) =
rk(0)−α(k)rk(1)

1−
( rk(1)

rk(0)

)2
(24)

Then, we can use the Equation (24) to get α and σ2
Δ so that we can achieve the purpose of updating

the system parameters.
Using the method described in this section, online denoising of data with unstable fluctuation and

colored noise was then accomplished. The flow chart of the proposed method was given in Figure 1.
It can be seen that the method consists of two parts within a closed loop. The first one is to estimate
the system state with the Kalman filter based on the second-order adaptive statistics model, and the
other is to update the adaptive parameter in the model by the Yule–Walker algorithm. In the next
section, the effectiveness of this method will be evaluated via the experiment data from a reinforced
concrete structure test, and the results will also be compared to some other representative online
denoising methods.

Figure 1. The flow chart of the proposed online denoising method.

3. Experiments

In order to verify the effectiveness of the proposed algorithm, experimental data from the test
of a reinforced concrete structure was adopted. The configuration of the experiment is shown in
Figure 2. It was a quasi-static test for the column made by Chinese Grade 345 steel and C30 Grade
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concrete [30]. During the experiment, the column was tested under constant axial load and cyclic
bending. Through this experiment, deformation displacement at different time samples were obtained,
which correspond to the measurements in the proposed algorithm. Although the entire data was ready
before denoising as well, the process was implemented in an ‘online’ mode, i.e., only the measurement
of the ‘current’ sampling time and previous result would be used in computation. The necessity of the
online mode for this background is because the actual value of the measured state has great effect on
the identification of the structure security, and it needs to be known during the monitoring process.
In this experiment, the sampling time was set as 0.001 s.

Figure 2. The configuration of the experiment.

Figure 3 gives the measurement and the real data, which is used to test the performance of the
developed method. The measurement data came from the experiment and the real data came from
the offline filter with high degree of accuracy. As can be clearly seen from Figure 3, the measured data
possessed a unstable fluctuation as well as the existence of the colored noise.

Figure 3. The real data and measurement data.

In this paper, we compared a second-order adaptive statistics model with various other methods
such as first-order exponential filtering, Holt’s exponential filtering or a third-order adaptive statistics
model to deal with the denoising problem for the real-time deformation displacement data. In order
to evaluate these methods, mean and covariance of the error were compared. In addition, the
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root-mean-square error (RMSE) was used. The RMSE is very commonly used and makes for an
excellent general purpose error metric for numerical predictions. Specifically, ‘mean’ here represents
averaged absolute value of difference between the real data and the denoised data, i.e.,

mean =

n
∑

i=1
|ri − di|

n
(25)

where n is the number of the measurements, ri is the ith real data and di is the corresponding
denoised data.

Then, the covariance is defined as the following:

cov =

n
∑

i=1
(mean − |ri − di|)2

n
(26)

Finally, the RMSE can be expressed as the following:

RMSE =

√√√√√ n
∑

i=1
(di − ri)

2

n
(27)

In the following context, three cases are implemented. In the first two cases the comparison
between different denoising methods is depicted, while a third case is given to discuss the effect of the
initial value on the denoising performance. In Section 3.1, the adaptive statistics models, including
the second-order model and the third-order model, were used to deal with the data; in Section 3.2,
we compared the developed method with the first-order exponential filtering and Holt’s exponential
filtering, respectively; in Section 3.3, through eliminating data within the adjustment process and
retaining the posterior convergent data, the denoising effect was obviously improved.

3.1. The Denoising Effect of the Adaptive Statistics Model

The performances of the second-order and the third-order adaptive methods for online denoising
were compared in this part. The denoised results are shown in Figure 4. Since the difference was too
small, we provide a detailed part of the curves in the small picture, and 500 points from 6.3 s to 6.8 s
are shown there. The results demonstrated that this algorithm is feasible and reliable with reasonable
precision. Furthermore, through comparing the real data and the denoised data, the satisfactory
denoising effect of the second-order adaptive statistics model was illustrated.

Comparing the second-order and third-order adaptive statistics models, we can find a satisfactory
denoising effect in Figure 4a,b. However, from the result before 3 s, we might notice the third-order
adaptive statistics model performs with poorer precision. Thus, the second-order adaptive statistics
model can have advantages with respect to accuracy. Meanwhile, in order to better describe the error
and compare the denoising precision, Figure 5 gives the error of the both models.

The results in Figure 5 show that the second-order adaptive statistics model has the smaller error.
In order to better prove this conclusion, more groups of data were adopted to test the method, and
each group contained 10,000 points. The symbol meanm here represents the mean of the whole data set.
The results of the tests are shown in Table 1. Obviously, for each group, results from the second-order
model all showed better performance both in mean, covariance and RMSE. As a whole, variance and
RMSE of the second-order model was only about 0.0223 and 0.1461, respectively, better than that of the
third-order model (0.1407 and 0.3129). On the other hand, Kalman filtering is an estimation algorithm
which shows resemblance and proximity with the one-step prediction. We can estimate next step
value by merely using the last measurement. Therefore, it is an online algorithm, that is, there is the
negligible delay with the denoising process. In addition, the calculated amount of the second-order
model is lower than for the third-order model. This is due to the more computational expense caused
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by the larger matrices in the higher-order model. Therefore, results showed the second-order adaptive
statistics model could not only deal with the signals with colored noise in real time, but also achieve a
tradeoff between efficiency and accuracy.

(a) The denoised result of the second-order adaptive statistics model.

(b) The denoised result of the third-order adaptive statistics model.

Figure 4. The denoised result of the adaptive statistics models.

(a) Error for the second-order adaptive statistics model. (b) Error for the third-order adaptive statistics model.

Figure 5. The error comparison of the adaptive statistics models for online denoising.
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Table 1. Performance comparison between different adaptive statistics models.

Second-Order Adaptive Statistics Model Third-Order Adaptive Statistics Model

Mean/mm Covariance RMSE Mean/mm Covariance RMSE

First group 0.1301 0.0269 0.1640 0.1762 0.0675 0.2598
Second group 0.1130 0.0241 0.1552 0.4852 0.5179 0.7197
Third group 0.1375 0.0355 0.1884 0.1757 0.0607 0.2463

Fourth group 0.0930 0.0153 0.1237 0.1107 0.0287 0.1694
Fi f th group 0.0721 0.0098 0.0990 0.1179 0.0286 0.1691

Meanm 0.1091 0.0223 0.1461 0.2131 0.1407 0.3129

Based on the results in the Table 1, it can be clearly seen that the second-order adaptive statistics
model is better than the third-order one, because it provided better precision and faster speed in online
denoising. Meanwhile, as we can see in Figure 6, more stable denoising effect and smaller RMSE can
be offered by the second-order statistics model, in which the ‘orange column’ is the RMSE and the
‘blue column’ is the covariance for each group.

Figure 6. Covariance and RMSE of the adaptive statistics models.

3.2. Comparison of the Denoising Effect between the Proposed Method and the Exponential Smoothing

Formerly, the exponential smoothing was typically for forecasting. Simultaneously, it could also
be applied in online denoising [21]. When using the exponential smoothing, parameter selection is
very important, as it can adjust the development tendency of the data trend. However, it is usually very
subjective. Nowadays, the primary methods for parameters selection can be divided into two ways:
one is the empirical method, the other is trial method. In this paper, we adopted the empirical method.
Finally, we decided to utilize first-order exponential smoothing and Holt’s exponential smoothing for
comparison with the result in Section 3.1.

3.2.1. The Denoising Effect of the First-Order Exponential Smoothing

We utilized priori knowledge to select the parameters of 0.2, 0.5 and 0.8. A first-order exponential
smoothing with different parameters was used to denoise the same five groups of data as those
in Section 3.1, and the results are given in Table 2. According to those test results, we can draw a
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conclusion that first-order exponential smoothing [18] with a parameter of 0.2 possessed the best
denoising effect.

Table 2. Mean, covariance and RMSE of first-order exponential smoothing with different parameters.

Various Models
The Parameter of 0.2 The Parameter of 0.5 The Parameter of 0.8

Mean Covariance RMSE Mean Covariance RMSE Mean Covariance RMSE

First group 0.5864 0.4352 0.6597 0.9282 1.0813 1.0399 1.0112 1.2645 1.1245
Second group 0.5867 0.4351 0.6596 0.9284 1.0814 1.0340 1.0113 1.2642 1.1244
Third group 0.5870 0.4353 0.6598 0.9287 1.0813 1.0399 1.0118 1.2637 1.1241

Fourth group 0.5861 0.4340 0.6588 0.9279 1.0794 1.0389 1.0108 1.2617 1.1233
Fi f th group 0.5864 0.4340 0.6588 0.9282 1.0802 1.0393 1.0112 1.2625 1.1236

Meanm 0.5865 0.4347 0.6593 0.9283 1.0807 1.0384 1.0113 1.2633 1.1240

3.2.2. The Denoising Effect of the Holt’s Exponential Smoothing

Within Holt’s exponential smoothing [20], two kinds of states were usually used: one was the
signal of the backward-smoothing, and the other was the tendency of the backward-smoothing. As a
result, we introduced two parameters a and b. b was set to be 0.8 as empirical value, meanwhile,
the parameter a was selected the same as the first-order exponential smoothing method, which was
0.2, 0.5 and 0.8. The same data was used as before, and the results are shown in Table 3.

Table 3. Mean, covariance and RMSE the of Holt’s exponential smoothing with different parameter a.

Various Models
The Parameter a of 0.2 The Parameter a of 0.5 The Parameter a of 0.8

Mean Covariance RMSE Mean Covariance RMSE Mean Covariance RMSE

First group 0.3832 0.1891 0.4349 0.5978 0.4679 0.6840 0.9326 1.0542 1.0267
Second group 0.3824 0.1870 0.4324 0.5973 0.4669 0.6833 0.9329 1.0532 1.0262
Third group 0.3824 0.1870 0.4324 0.5975 0.4667 0.6832 0.9326 1.0532 1.0262

Fourth group 0.3816 0.1861 0.4314 0.5965 0.4655 0.6823 0.9321 1.0505 1.0249
Fi f th group 0.3818 0.1857 0.4309 0.5968 0.4657 0.6824 0.9324 1.0512 1.0253

Meanm 03823 0.1870 0.4324 0.5972 0.4665 0.6830 0.9325 1.0525 1.0259

It can be clearly seen in Table 3 that the best denoising effect can be acquired with the parameter
a of 0.2 and b of 0.8, but the value of different indicators was still obviously larger than those
of the proposed adaptive method. Table 4 gives a summary of performance comparison among
different methods.

Table 4. The results by several kinds of online denoising methods.

Various models Various orders/parameters Meanm of mean/mm Meanm of covariance Meanm of RMSE

Adaptive
statistics model

Second-order 0.1091 0.0223 0.1461
Third-order 0.2131 0.1407 0.3129

First-order
exponential
smoothing

Parameter of 0.2 0.5865 0.4347 0.6593
Parameter of 0.5 0.9283 1.0807 1.0384
Parameter of 0.8 1.0113 1.2633 1.1240

Holt’s
exponential
smoothing

Parameter a of 0.2 0.3823 0.1870 0.4324
Parameter a of 0.5 0.5972 0.4665 0.6830
Parameter a of 0.8 0.9325 1.0525 1.0259

In these three categories of online denoising methods, the mean, covariance and RMSE of the
adaptive statistics model are obviously the smallest. The results indicated that online denoising could
be better achieved via the adaptive statistics model, because the system parameter could be adjusted
dynamically as the denoising process was implemented. Furthermore, by contrasting the second-order
adaptive model and the third-order adaptive model, we have come to the tentative conclusion that
the effect of the second-order adaptive model is more outstanding. To sum up, between the two
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exponential smoothing methods, the Holt’s exponential smoothing with the parameter a of 0.2 and b
of 0.8 has better denoising effect. However, among all the different methods conducted in this paper,
the second-order adaptive statistics model presented the best performance. It not only showed good
denoising accuracy, but also gave a faster processing speed.

3.3. The Effect of Initial Value on the Denoising Performance

In this case, we would analyze the figure of the error data, as shown in Figure 7.

Figure 7. The real data and measurement data.

From the figure above it can be clearly seen that online denoising based on the adaptive statistics
model had a regulatory process at the beginning. This is because the initial value of x0 was zero and
P0 was very big. It thus appears that we could obtain the more precise filtering results through the
index for selection. Actually, it needs to be emphasized that the convergence procedure existed in the
adaptive model, that is, the denoising effect is be better as time goes on. Finally, we selected the last
5000 points to calculate the covariance and the mean.

As can be clearly seen from the Table 5 and Figure 8, mean, covariance and RMSE decreased
significantly compared with those in Table 1 and Figure 6. By assessing the data, the covariance of
the second-order model is only 0.0171 and RMSE is only 0.1200, while for the third-order model these
values are 0.0345 and 0.1760, respectively. Recall that the best filter effect of exponential smoothing
is about 0.2 and 0.43. This leads one to believe that the adaptive statistics model was superior to the
exponential smoothing. When comparing two approaches using the adaptive statistics models, we can
find the denoising effect of the second-order adaptive statistics model is better than the third-order
adaptive statistics model. This is because the general trend of data seems more consistent with the
second order.

In fact, except for precision, the second-order model has another preponderance. It possesses a
smaller computation burden. We computed the runtime for each denoising process, and found the
second-order adaptive model is faster than the smoothing filter and the third-order model. If we
started to denoise the data with 52,741 counts, the elapsed time of the second-order model is 9.142300 s.
On the contrary, we need 13.124500 s for the third-order model. Considering the statements above, we
can come to the conclusion that the second-order adaptive statistics model is kind of more accurate
and efficient method to proceed online denoising.
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Table 5. Mean, covariance and RMSE of the last 5000 points derived by the adaptive statistics model.

Various Model
Second-Order Adaptive Statistics Model Third-Order Adaptive Statistics Model

Mean Covariance RMSE Mean Covariance RMSE

First group 0.1106 0.0178 0.1334 0.1333 0.0235 0.1533
Second group 0.0888 0.0120 0.1095 0.2301 0.0808 0.2842
Third group 0.1528 0.0454 0.2131 0.1343 0.0304 0.1743

Fourth group 0.0682 0.0064 0.0800 0.1260 0.0269 0.1640
Fi f th group 0.0536 0.0041 0.0640 0.0842 0.0109 0.1044

Meanm 0.0948 0.0171 0.1200 0.1416 0.0345 0.1760

Figure 8. Covariance and RMSE of the adaptive statistics models of the last 5000 points.

4. Discussion

In the previous section, through the experiment data and the comparison with other classical
denoising methods, the effectiveness and superiority of the proposed method have been verified.
In this part, we will focus on some other features of our denoising method, that is, the robustness and
the real-time performance.

Firstly, as a good denoising method, it should be able to deal with various kinds of data. In order to
prove this, two groups of superposed sinusoidal signals with colored noise were adopted. The sampling
time for both groups was 0.001 s. The main difference between the two reference curves was that one
had more sharp points while the other changed more gently, and the curves were shown respectively
in Figures 9 and 10 for comparison purpose.

The first group of data with noise is given in Figure 11, where the reference curve was totally
drowned. With the proposed online denoising method, the estimated curve in Figure 9 could be
derived. According to the comparison with the reference curve, the original noised signal was
successfully processed.

For the second group of data with noise, as was shown in Figure 12, the denoising method
was applied again. The difference between the denoised result and reference values was given in
Figure 10. It can be seen in the figure that the overall trend of the curve was in good accordance with
the reference values, and the oscillation was because some features of the noise was reserved due to
a high-dimension process model.

Secondly, we would like to discuss the real-time performance of the proposed method. In order
to achieve online denoising, the algorithm should have a fast processing speed. If not, latency would
exist and might affect the result. As was stated before, the method proposed in this paper was based
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on Kalman filtering, which was a recursive algorithm. As long as the filtering process could finish
before the new measurement was collected, the method was able to be implemented in real time.
In the two simulations above, the time needed for one iteration was on average of 0.0003 s, which
was far smaller than the sampling time of 0.001 s. It needs to be pointed out the difference like the
subfigure shown in Figure 9 was not caused by the latency; it was mainly because of the sharp point A.
The estimated points were changed with inertia, and they were then corrected to the measurement
values by the recursive process. Therefore, this difference actually resulted from an estimation error
other than the latency of the algorithm. In fact, the algorithm indeed performed in a real-time way as
described above.

Figure 9. The denoised result and the reference value.

Figure 10. The reference value and the denoised result.

Figure 11. The signal with noise and the reference value.
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Figure 12. The reference value and the signal with noise.

5. Conclusions

A huge amount of the real-time data is collected every second around the world. However, due to
the imperfect measurement and data collection mechanisms, real-time data is distorted by various
types of noise and instability. Therefore, working with noisy time series is an inevitable part of any
real-time data processing task and must be addressed precisely. In the past decades, the demand for
real-time data analysis techniques such as the first-order exponential smoothing and Holt’s exponential
smoothing has grown dramatically. In this paper, we proposed an online denoising method for the
real-time data with unstable fluctuation and colored noise.

This method consists of two parts within a closed loop. The first one is to estimate state based on
the second-order adaptive statistics model. The other is to update the adaptive parameter in the model
by the Yule–Walker algorithm. The effectiveness of method was demonstrated via an experiment,
which not only processed the signals with colored noise, but also achieved a tradeoff between efficiency
and accuracy. In addition, the performance of the proposed method was compared with some existing
methods. Results showed that a more accurate and efficient denoising effect could be performed by
employing the second-order adaptive statistics model with the Kalman filter for online denoising.
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Abstract: Specific emitter identification plays an important role in contemporary military affairs.
However, most of the existing specific emitter identification methods haven’t taken into account
the processing of uncertain information. Therefore, this paper proposes a time–space domain
information fusion method based on Dempster–Shafer evidence theory, which has the ability to deal
with uncertain information in the process of specific emitter identification. In this paper, radars will
generate a group of evidence respectively based on the information they obtained, and our main
task is to fuse the multiple groups of evidence to get a reasonable result. Within the framework
of recursive centralized fusion model, the proposed method incorporates a correlation coefficient,
which measures the relevance between evidence and a quantum mechanical approach, which is
based on the parameters of radar itself. The simulation results of an illustrative example demonstrate
that the proposed method can effectively deal with uncertain information and get a reasonable
recognition result.

Keywords: Dempster–Shafer evidence theory; specific emitter identification; time–space domain
information fusion; quantum mechanical approach; correlation coefficient; recursive centralized model

1. Introduction

Information fusion, also known as multi-sensor data fusion , is a process of synthesizing data or
information obtained from multiple sources to achieve a certain purpose, which has been widely used
in many fields, such as detection [1–3], recognition [4,5], tracking [6–9], image processing [10–12],
fault diagnosis [13–17], and gender profiling [18]. In recent years, the rapid development of sensor
technology and computer technology has greatly promoted the research of information fusion
technology [19–22]. As an uncertain information processing method that satisfies the weaker conditions
than traditional Bayesian probability theory, Dempster–Shafer evidence theory [23,24] is widely
adopted by scholars in information fusion [25–29].

Information fusion incorporates space-domain fusion and time-domain fusion. In space domain,
it is a process of fusing multiple sets of evidence generated by multiple sensors in space. Since the
credibility of a body of evidence generated by a single sensor can not be determined, the integration
of multi-sensor information in space-domain is beneficial to people in order to make more accurate
judgements than a single sensor. However, it doesn’t take into account the changes in evidence over
time. While in practical applications, the information obtained by different measurement periods may
change due to the interference of other factors, and at this time, the time-domain fusion, which is a
fusion process of evidence generated at different moments with the properties of dynamic, sequential
and real-time, is very important. In general, the time-domain and the space-domain are both
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indispensable in the process of the information fusion. At present, there are a variety of space-domain
information fusion results [30–36], and the time domain information fusion has also been gradually
adopted by scholars [37–39]. Hong and Lynch [40] proposed the space-time information fusion models
based on evidence theory, including recursive centralized fusion model, recursive distribution without
feedback fusion model and recursive distribution with feedback fusion model. In addition, Hong [41]
made profound analysis and comparison of these three models. However, they didn’t give these three
models specific application background. In this paper, the recursive centralized model is applied to
specific emitter identification.

Radar plays an important role in contemporary military affairs. However, the modern
electromagnetic environment is complex since there are signals from a number of different emitters
present, and signals from the same emitter are noisy or their parameters (features) are not measured
with a great accuracy [42]. Therefore, how to distinguish the correct information from the acquired
signal and obtain a reasonable result is a difficult problem. This field is called radar target recognition
(RTR), which is widely used in command automation, identification friend or foe and intelligence
acquisition and meets the needs of modern high-tech warfare and helps to realize the intelligence and
informatization of radar. In RTR, there is a process of source (target) recognition and classification and
identification. Recognition concerns type classification, while identification focuses recognition on
particular copies of the same radar (target) type [43]. The identification process is more specialized as it
requires methods based on the analysis of distinctive features. These features are then identified based
on the information obtained. This is called specific emitter identification (SEI). The main task of SEI is
to identify radar emission sources. Although there is much research about SEI [43–45], most of them
do not consider the processing of uncertain information, which means that the identification method
in the references [43–45] start from the point of view of signal processing. However, Dempster–Shafer
evidence theory holds that we can only say radar is more likely to belong to which type, not to say
which radar definitely belongs to which type. Therefore, in this paper, we assume that radar will give
a set of evidence about the specific identity of the unknown target after signal analysis. Our main task
is to fuse multiple sets of evidence to identify the identity of an unknown target.

He and Jiang [46] proposed a quantum mechanical approach based on Dempster–Shafer evidence
theory, which considered work performance of radars themselves to model reliability of sensor reports,
while most of the previous methods only considered the interrelationships between evidence generated
by sensors. However, the quantum mechanical approach [46] failed to deal with the impact of time
factors on the fusion results effectively. Therefore, in this paper, a time–space domain information
fusion method for SEI based on Dempster–Shafer evidence theory is proposed. At first, as the distance
between the radar and the target will change over time, the fusion of time-domain evidence is joined.
Then, the proposed method adopts correlation coefficient [47] and quantum mechanical approach
to generate weighting factors (weights). At last, within the framework of recursive centralized
model, the evidence is combined based on Dempster’s combination rule. The space-time domain
information fusion method of SEI proposed in this paper takes full account of the influence of time
factors on the fusion results so that it has a strong dynamic nature. In addition, it incorporates the
interrelationship between evidence that is measured by correlation coefficient and the impact of the
radar’s own performance, which considered by a quantum mechanical approach at the same time,
so its management of conflict information is more comprehensive.

The structure of this paper is as follows: in Section 2, the relevant background knowledge
is introduced, including Dempster–Shafer evidence theory, correlation coefficient and recursive
centralized fusion model. Section 3 describes the quantum mechanical approach and discuss it.
Section 4 introduces the specific steps of the proposed method. In addition, the proposed method is
simulated in Section 5. Section 6 presents the conclusions.
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2. Preliminaries

2.1. Dempster–Shafer Evidence Theory

Dempster–Shafer evidence theory (D–S evidence theory) [23,24] is more extensive than traditional
Bayesian probability with it satisfying the weaker prior conditions, and this concept contributes to its
good performance in handling the uncertainty information [48–50]. It is briefly introduced as follows.

Definition 1. Suppose Θ is a nonempty finite set composed of n exhaustive and exclusive elements,
and it satisfies:

Θ = {θ1, θ2, · · · θi, · · · , θN}, (1)

where set Θ is called a frame of discernment. The power set of Θ , 2Θ, is indicated as:

2Θ = {∅, {θ1}, · · · {θN}, {θ1, θ2}, · · · , {θ1, θ2, · · · θi}, · · · , Θ}. (2)

Definition 2. A mass function is a mapping m from 2Θ to [0, 1], formally defined as:

m : 2Θ → [0, 1], (3)

and it satisfies:
m(∅) = 0, (4)

∑
A∈2Θ

m(A) = 1. (5)

The function m is called Basic Probability Assignment (BPA), and m(A) indicates the degree of
trust in proposition A. If m(A) > 0, A is called a focal element of Θ. If m(A) = 0, it means that the
proposition is totally lacks belief. In addition, a value between [0, 1] indicates partial belief.

Definition 3. In D–S theory, the combination is denoted as
⊕

. Supposing that there are two BPAs denoted by
m1 and m2, the two BPAs’ combination with the Dempster’s combination rule is then formulated as follows:

m⊕(A) =

∑
B∩C=A

m1(B)m2(C)

1 − k
, A �= ∅, (6)

m⊕(∅) = 0, (7)

where
k = m(∅) = ∑

B∩C=∅
m1(B)m2(C). (8)

Essentially, k reflects the degree of conflict among evidence. In D–S theory, if k = 0, we say that
the two evidence is fully compatible with each other. On the contrary, if k = 1, we say that the two
pieces of evidence are in total conflict with each other. In addition, the Dempster’s combination rule is
commutative and associative, which ensures that the fusion result has nothing to do with the order
of the fusion process, and it essentially assigns the mass of empty set to each set by the use of the
normalization. It has two characteristics:

• Pieces of mutual support evidence are reinforced.
• Pieces of conflict evidence weaken each other.

However, the direct use of the Dempster’s combination rule to integrate the evidence generated
by information sources may produce counterintuitive results [51].
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2.2. Correlation Coefficient of Belief Function

How to measure conflict between evidence is still an open issue. In classical D–S evidence theory,
the mass of empty set k is used to reflect the degree of conflict among evidence. Actually, k defines the
compatibility between the evidence. Jousselme [52] proposed evidence distance to measure conflict
from the perspective of the similarity between evidence. Liu [53] proposed a two-dimensional measure
that contains k and evidence distance and considers the compatibility and similarity at the same time.
In addition, many other scholars studied the problem [54–57]. In this section, we will introduce a new
correlation coefficient [47], which measures the relevance between evidence and contains compatibility
and similarity based on our previous work.

Definition 4. A discernment frame is assumed with n elements, and two pieces of evidence are denoted by m1

and m2. The correlation coefficient is defined as Equation (9):

rBPA(m1, m2) =
c(m1, m2)√

c(m1, m1) · c(m2, m2)
, (9)

where

c(m1, m2) =
2n

∑
i=1

2n

∑
j=1

m1 (Ai)m2(Aj)
|Ai ∩ Aj|
|Ai ∪ Aj| , (10)

where i, j = 1, 2, · · · , 2n; Ai and Aj are the elements of BPAs m1 and m2; In addition, | · | is the cardinality of a
subset. Actually, c(m1, m2) shows the degree of correlation.

The correlation coefficient rBPA measures the relevance between evidence m1 and m2. The larger
the rBPA , the greater the relevance between the evidence, and the lower the degree of conflict.
In extreme cases, we can say that evidence is in total conflict if rBPA = 0 and in the total absence of
conflict if rBPA = 1.

2.3. Recursive Centralized Model

Hong and Lynch [40] studied time–space information fusion model based on D–S evidence
theory. Until now, there are three basic models: recursive centralized fusion model, recursive
distribution without feedback fusion model and recursive distribution with feedback fusion model [40].
The recursive centralized fusion model that is used in our method can realize real-time fusion and
high precision of data processing.

The recursive centralized fusion process is shown in Figure 1. At moment t, it first fuses N
evidence generated by N sensors, and then fuses it with cumulative information denoted as m(t − 1).
The fused result could include total target identification information at the moment t.

Figure 1. Recursive centralized model.
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2.4. Radar Working Principle

Radar is a device that detects and measures information of targets by transmitting electromagnetic
waves and receiving echoes. The specific use and structure of the various radars are different, but the
basic form is consistent, including: transmitter, transmitting antenna, receiver, receiving antenna,
processing part and display. In addition, there is also power equipment, data entry equipment,
anti-jamming equipment and other auxiliary equipment. Generally speaking, radars are divided
into active radars and passive radars. Their main difference is that the active radar transmits and
receives signals, while the passive radar only receives signals. In this paper, we adopt passive radar.
The process of radar information processing is shown in Figure 2. In this paper, radar generates a piece
of evidence based on the information obtained that include: relative position, speed, heading, closest
point of approach (CPA) and distance to CPA.

Figure 2. Working process of radar.

In general, parameters related to the performance of the radar are shown in Definitions 5 and
Equation (12).

Definition 5. Since the passive radar only receives the signal, the signal is one-way. The one-way signal
strength received by radar is defined as follows:

Pr =
PtGtGrσλ2

(4πx)2 , (11)

where Pt defines the transmission ability of radar, with Gt the gain of target antenna, Gr the gain of radar
antenna, σ the radar cross section (including the geometric cross-sectional area, reflection coefficient and direction
coefficient) factor, r the wavelength, and x the distance between the target object and the radar.

Definition 6. The maximal reconnaissance distance is defined as follows:

xr =

[
PtGtGrσλ2

(4π)2Pr min

] 1
2

, (12)

where Pr min is the minimum signal strength radar can receive.

If the distance between radar and target beyond xr, the signal strength received by radar is too
small for radar to detect it properly.

3. Existing Quantum Mechanical Approach

He and Jiang [46] proposed a quantum mechanical method that considers the performance of
the radar sensor itself to assign weights among evidence based on the link of uncertainty between
quantum mechanics and D–S evidence theory. In this section, we will introduce this method and
discuss it.

In classical mechanics, it is generally believed that state of a particle is determined at some points
in time where the state of the particle is usually expressed by the coordinates and momentum of the
particle. However, the position and momentum of the particle can not be determined at the same time
according to the Heisenberg uncertainty principle in quantum mechanics, and they can only be in
the form of probability. Therefore, we can only say that particles are more likely to be in which state,
but can not be sure the particles is in one state as Figure 3 shows.
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Figure 3. Particle state and probability.

In classical mechanics, if the state of the particle is known at a given moment, the state of the
particle can be obtained at any time after the particle is determined according to its equation of
motion. Similarly, in quantum mechanics, when the state of the microscopic particles is known at
some point, the state of motion of the particles can also be determined by an equation, which is called
Schrodinger equation.

Definition 7. One state becomes stationary when the energy of a system in which the particle located is a
certain value.The equation of the Schrodinger equation is as follows:

− h̄2

2m
∇2Ψ + U(−→r )Ψ = EΨ, (13)

where E is total energy (also called the overall state) of the system, Ψ represents wave function, − h̄2

2m is kinetic

energy, U(−→r ) is Potential energy and ∇ is Laplacian operator. − h̄2

2m∇2 +U(−→r ) is called Hamiltonian operator.

The wave function depicts the quantum state of the system, which is proportional to the
probability that the intensity of a point in the space (the square of the absolute value of the amplitude)
and the probability of finding the particle at that point. According to this interpretation, the wave
describing the particle is a probability wave. Actually, it is essentially a probability distribution curve
that represents the probability that the particle is in the corresponding state. According to this property,
Bolotin [58] solved the Schrodinger equation with a membership curve of the problem solution, and
then the optimal solution of the problem is obtained. In Bolotin’s approach, the most important
step is to set up quasi-potential function and then put it into the Schrodinger equation and solve
it. Similarly, since the performance of the radar is related to signal-to-noise ratio (SNR), and SNR is
related to the received signal strength, we regard the signal strength as quasi-potential function, shown
in Equation (14):

U(x) = {
γ
x2 0 < x < xr

∞ x ≤ 0,x > xr,
(14)

where

γ =
PtGtGrσλ2

(4π)2 . (15)

γ corresponds to the parameters of Equation (11). In addition, it is impossible for a particle to
penetrate the well wall if it is within a infinite well potential, so Ψ(x) = 0 when the distance beyond
the maximal reconnaissance distance.

In addition, then, we put U(x) into the Schrodinger equation and solve it, we can get the wave
function. In addition, with it, the probability distribution curve P(x) can be obtained in Equation (16):
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P(x) = |Ψ(x)|2 ∝ x

[
Jα(

√
L

c
) + Yα(

√
L

c
)

]2

, (16)

where Jα and Yα are Bessel functions of the first kind and the second kind, respectively [59],

and α = 1
2

√
c2−4γ

c2 , which denotes their order.
Normalizing probability distribution, we can obtain the relationship curve between radar working

distance and membership, shown in Figure 4. The higher the membership degree is when the radar is
at a certain working distance, the better performance of the radar, and the more reliable the evidence
generated by the radar is. Deng [30] proposed a method of the distribution of weights based on
evidence distance that measures the similarity between evidence. Similarly, weights among evidence
can be assigned based on the memberships we obtained that show the performance of multiple radars
themselves. The process of the quantum mechanical approach is shown in Figure 5.

Figure 4. Radar’s working distance and membership degree.

Figure 5. The process of the existing quantum mechanical approach.
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4. Proposed Method to Realize SEI

He and Jiang [46] opened the way to consider the performance of radar work, but their method
failed to effectively deal with the impact of time on the entire process. In this section, a time–space
domain information fusion method for SEI will be proposed, which considers both the relationship
between evidence and performance of radars themselves based on evidence theory and the existing
quantum mechanical approach.

Most of the current methods of information fusion are carried out in space-domain that is based on
multi-sensor fusion. However, in real applications, the information obtained by a single measurement
cycle has a certain contingency as it may be interfered with by electromagnetic waves, weather and
other factors. In addition, this kind of contingency can be prevented by time-domain information
fusion. In addition, the system of time-domain fusion has properties of real-time, sequence and
dynamic, which can achieve inheritance and update of the integration. In this paper, the evidence
and distance between radars and target will change over time. In addition, the confidence of evidence
generated by radar sensors may then be different at different moments if we select multiple sets of
evidence at multiple moments.

Now, supposing that there are n radars and t measurement cycles, the specific steps of the method
are shown as follows:

Step 1 Calculate the correlation coefficient, and then get the weighting factors based on evidence.
rkj is the correlation coefficient between evidence k and j, and then we can get a matrix:

R =

⎡⎢⎢⎢⎢⎣
1 r12 · · · r1n

r21 1 · · · r2n
...

...
...

...
rn1 rn2 · · · 1

⎤⎥⎥⎥⎥⎦ . (17)

The degree of trust of a piece of evidence can be defined as:

λj =
n

∑
k=1,k �=j

rkj. (18)

However, since we are in the system of time-domain fusion where evidence is different at
different moments, λj is different at different moments. Therefore, it needs to be defined as
λij, which represents the support degree of radar j at moment i.

Step 2 Calculate membership degree curve of each radar by quantum mechanical approach based
on the performance parameters of given radars, and then get the membership degree ωij of
the corresponding working distance at each moment.

Step 3 Calculate the final weights μij, which is the final weight of a piece of evidence generated by
radar j at moment i by summing and normalizing:

μij =
ωij · λij

n
∑

j=1
(ωij · λij)

. (19)

Step 4 The credibility of each evidence μij is regarded as a weighting factor to weight the evidence
at moment i, and then we get a new piece of modified average evidence (MAE):

MAE =
n

∑
j=1

(μij · mi). (20)
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Step 5 Get the fusion results of the current moment by fusing the new piece of evidence n − 1
times, and then fuse the fusion results of the current moment and the previous moment by
Dempster’s combination rule. This is based on the recursive centralized model.

The process of the proposed method is shown in Figure 6. In this method, the parameter λij
represents the weight that comes from the perspective of relationships between evidence. While ωij is
the weight on the radar itself’s perspective. We find a balance denoted by μij between these two kinds
of weights when we multiply the two parameters. Therefore, the proposed method not only considers
the data’s relationship, but also the performance of the sensor itself, while most of the existing methods
only consider one issue. In the next section, the proposed method will be simulated and compared
with other existing methods.

Figure 6. The process of the proposed method.

5. Case Study

In this section, we simulate the data fusion process of radar practically by fusing the assumed
BPAs, and several simulation results are presented here to test the performance of the proposed method
of SEI. Our analysis process is carried out from three aspects:

• Comparing the proposed method with Dempster, Deng et al. [30] and He and Jiang [46] when the
target moves in a straight line.

• Comparing the proposed method with the other three methods when the target moves along
a curve.
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• Using self performance comparison when the number of radars changes and when we only
sample one moment, the target moves in a straight line at five moments.

Assume frame of discernment is: Θ = {A, B, C}, which means that the identity of the unknown
target is one of the three elements. In this section, we assume that ”A” is the correct identification
result. There are five radars distributed in space and they are likely to be disturbed in the region to be
monitored because of weather, noise or some other factors. Their relative positions with the target are
shown in Figure 7, and the target travels along a straight line to radar 3. Now, we select five moments
denoted by t1,t2,t3,t4 and t5, and the BPAs generated at different moments by the five radars based on
information received are shown in Table 1.

Figure 7. Relative position of five radars with the target when the target moves along a straight line.

Table 1. Basic Probability Assignments generated at different moments by the five radars.

m1 m2 m3 m4 m5

t1

{A} 0.55 0.5 0.65 0.5 0.5
{B} 0.25 0.35 0.2 0.2 0.15
{C} 0.1 0.05 0.1 0.2 0.1
{A, B, C} 0.1 0.1 0.05 0.1 0.25

t2

{A} 0.6 0 0.5 0.5 0.55
{B} 0.15 0.95 0.3 0.1 0.25
{C} 0.2 0.05 0.1 0.15 0.1
{A, B, C} 0.05 0 0.1 0.25 0.1

t3

{A} 0.6 0.6 0 0.1 0.55
{B} 0.1 0.2 0.6 0.7 0.35
{C} 0.1 0.1 0.15 0.1 0.05
{A, B, C} 0.2 0.1 0.25 0.1 0.05

t4

{A} 0.55 0.4 0.55 0.5 0
{B} 0.2 0.3 0.2 0.1 0.5
{C} 0.1 0.2 0.2 0.2 0.5
{A, B, C} 0.15 0.1 0.05 0.2 0

t5

{A} 0.5 0.5 0.6 0.55 0.4
{B} 0.2 0.2 0.2 0.35 0.4
{C} 0.1 0.2 0.1 0.1 0.1
{A, B, C} 0.2 0.1 0.1 0 0.1
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The maximum reconnaissance distances for five radars are 9.1, 11.0, 12.3, 14.0 and 15.1,
and performance parameters c, L and γ are shown in Table 2, where c is used to control the
width of the curve, L is the inherent state of the whole system, and it is proportional to Pr min. γ is
shown in Equation (15), representing the radar’s own parameters. Five curves can be obtained that
describe the relationship between distance and membership degree (shown in Figure 8). The distance
between radar and target has been changing over time, so the radar’s membership degree at different
moments are different. Distances between five radars and target at five moments are shown in Table 3.
According to the distances between the radar and the target, we can get the membership degree (that
is, the performance of the five radars). In addition, the final results can then be calculated, which are
shown in Table 4. The trend of the results at five moments is shown in Figure 9.

Table 2. The value of performance parameters.

c L γ

radar a 16 0.64 47.25
radar b 16 0.41 48.13
radar c 16 0.31 49.75
radar d 16 0.17 53.01
radar e 16 0.20 50.49

Figure 8. The relationship between distance and membership degree.

In the process of simulation above, the SEI method proposed in this paper was compared
with three existing methods, including Dempster’s combination rule, Deng’s combination rule [30],
and He and Jiang’s method [46]. Firstly, at moment t1, all of the radars are working properly.
In this case, all four of the methods yield reasonable results. Secondly, the classical Dempster’s
combination rule has a characteristic named “one-vote veto”, which means that if one piece out
of all of the evidence gives the proposition “A” complete negation, the final fusion result will
completely negate “A” (like the time t2, and t4). We can see that the proposed method of this
paper solved this problem. Thirdly, He and Jiang’s quantum mechanical approach [46] opened up
the precedence of the distribution of weights based on the radar’s own performance. However, they
didn’t take the impact of previous results on the current moment and relationship among evidence
into account. In this case, it is likely to produce unreasonable results if a disturbed radar at one
moment happens to work at the degree of membership of 1, but other radars’ memberships are
small, such as the evidence generated at t2. In addition, at this moment, interrelationship between
evidence (correlation coefficient [47] applied in this paper) needs to be reconciled, and our method
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solves this problem. Finally, Deng [30]’s rule only considered the interrelationship among evidence
and its strategy’s ability of anti-interference is poor. As in the case of t3, when there are two radars
that are interfered with and produce the wrong BPAs, Deng’s result will have a higher degree of
uncertainty or even a false result. In this paper, we introduce time-domain fusion that takes the
effect of the previous result at the current moment into account. In this case, even if the trust in “A”
(the correct result) is not very high due to the interference in the current time, “A” will be still have a
high degree of trust after recursive centralized fusion if the previous result supports “A”. This reflects
the ability of anti-interference and the integration of the results of the succession and update.

Table 3. Distances between five radars and target at five moments when the target moves along a
straight line.

Radar 1 Radar 2 Radar 3 Radar 4 Radar 5

t1 4.7127 0.08 8.3 10.4667 6.0274
t2 3.31 1.58 6.8 9.92 5.01
t3 2.0447 3.08 5.3 9.5737 4.2837
t4 1.4 4.58 3.8 9.45 4.01
t5 2.0447 6.08 1.3 9.5737 4.2837

Table 4. Simulation results of four methods when the target moves along a straight line.

t1 t2 t3 t4 t5

Dempster′s rule
{A} 0.9595 0 0.4022 0 0.9317
{B} 0.0368 0.9790 0.5863 0.5863 0.0613
{C} 0.0036 0.0210 0.0109 0.4167 0.0068

Deng′s rule
{A} 0.9555 0.8849 0.5142 0.8316 0.9209
{B} 0.0395 0.1055 0.4764 0.0972 0.0735
{C} 0.0048 0.0093 0.0088 0.0710 0.0055

He and Jiang′s method
{A} 0.9249 0.2538 0.8132 0.6749 0.9203
{B} 0.0712 0.7435 0.1791 0.2087 0.0733
{C} 0.0035 0.0026 0.0071 0.1163 0.0061

Proposed method
{A} 0.9243 0.9703 0.9944 0.9989 0.9995
{B} 0.0718 0.0294 0.0055 0.0009 0.0002
{C} 0.0036 0.0002 0.0001 0.0001 0.0002

Figure 9. The trend of the results at five moments when the target moves along a straight line.
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Now, we change the movement trajectory of the target, and then the relative position of five
radars with the target changes with it. However, the performance parameters of the five radars and
BPAs in five moments do not change. Therefore, we compare the proposed method with the other
three methods. The simulation process is shown below. We assume that the target moves along a
circular path with a radius of 1 as shown by the dotted line in Figure 10 and the spatial location of five
radars is the same as with Figure 7. Starting from the moment t1, the unknown target moves a quarter
of the circle at every moment, and back to the origin at moment t5. Distances between five radars
and the unknown target at five moments are shown in Table 5. According to the distances between
the radars and the target, we can get the membership degree with the basis of Figure 8. In addition,
the final results of proposed method and the other three methods can then be calculated, which is
shown in Table 6. The trend of the results at five moments is shown in Figure 11.

Figure 10. Relative position of five radars with the target when the target moves along curves.

Table 5. Distance between five radars and the target at five moments when the target moves
along curves.

Radar 1 Radar 2 Radar 3 Radar 4 Radar 5

t1 1.72 3.58 4.8 9.5 4.13
t2 0.4 4.69 3.93 10.45 5.01
t3 1.72 5.58 2.8 9.5 4.13
t4 2.4 4.68 3.93 8.45 3.01
t5 1.72 3.58 4.8 9.5 4.13

Since Dempster and Deng [30]’s combination results are only relevant to the data given to the
evidence, but not to the relative position of the radar with the target, their combination results at five
moments are the same as Table 4 if we change the movement trajectory of the target. When we change
the movement trajectory of the target, the fusion results also change since the performance of He and
Jiang’s method [46] has a great relationship with distance between target and radar. The proposed
method is in the same situation. From Figure 11, we can see that the uncertainty of the fusion results of
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the proposed method is always low but fluctuates with He and Jiang’s method [46] in five moments.
Why does this happen? As we discussed before, the three fusion methods that we adopted to compare
with our method only consider the BPAs of the current moment. However, in practical applications,
it is difficult for us to decide which moment to determine. The proposed method takes the effect of the
previous fusion result into account. Therefore, in general, the robustness of the proposed method is
better than the other three methods.

Table 6. Simulation results when the target moves along curves.

t1 t2 t3 t4 t5

Dempster′s rule
{A} 0.9595 0 0.4022 0 0.9317
{B} 0.0368 0.9790 0.5863 0.5863 0.0613
{C} 0.0036 0.0210 0.0109 0.4167 0.0068

Deng′s rule
{A} 0.9555 0.8849 0.5142 0.8316 0.9209
{B} 0.0395 0.1055 0.4764 0.0972 0.0735
{C} 0.0048 0.0093 0.0088 0.0710 0.0055

He and Jiang′s method
{A} 0.9516 0.8808 0.5571 8429 0.9112
{B} 0.0446 0.1099 0.4732 0.0914 0.0799
{C} 0.0036 0.0091 0.0085 0.0654 0.0086

Proposed method
{A} 0.9518 0.9942 0.9972 09995 0.9999
{B} 0.0444 0.0055 0.0026 0.0004 0.00005
{C} 0.0033 0.0003 0.0002 0.0001 0.00005

Figure 11. The trend of the results at five moments when the target moves along curves.

Now, we analyze the effect of variations in radar number on fusion results. BPAs of five radars at
five moments do not change. From the value of BPAs, we can see that five radars are working properly
since they all support the proposition ”A” at t1, while there are some radars not working properly
at t2, t3, t4 and t5. Since the effect of variations in radar number on the performance of the proposed
method in this simulation needed to be determined, we only use self performance comparison of the
proposed method at five moments. In addition, the relative positions of the five radars with targets is
the same as Figure 7. When a different number of radar sensors are used in our identification system,
the fusion results are shown in Table 7. In Table 7, we assume that only the BPAs of the current time
are considered in order to show the importance of sampling at multiple moments. The trend of fusion
results from different numbers of radars are shown in Figure 12.
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Table 7. Simulation results of the proposed method when the number of radars changes.

Number of Radars 1 2 3 4 5

t1

{A} 0.55 0.6849 0.8457 0.9136 0.9243
{B} 0.25 0.2586 0.1388 0.0807 0.0718
{C} 0.1 0.0387 0.0135 0.0054 0.0036

t2

{A} 0.6 0.3442 0.6311 0.7803 0.8871
{B} 0.1 0.5897 0.3354 0.2024 0.1073
{C} 0.1 0.0641 0.0324 0.0171 0.0055

t3

{A} 0.55 0.8079 0.6494 0.4675 0.6653
{B} 0.2 0.0883 0.2668 0.4789 0.3235
{C} 0.1 0.0629 0.0632 0.0457 0.0103

t4

{A} 0.5 0.6554 0.8140 0.8988 0.7822
{B} 0.2 0.2144 0.1215 0.0652 0.1384
{C} 0.1 0.1001 0.0607 0.0350 0.0792

t5

{A} 0.55 0.6785 0.8371 0.9129 0.9125
{B} 0.25 0.1711 0.1048 0.0648 0.0786
{C} 0.1 0.1097 0.0501 0.0209 0.0086

Figure 12. The trend of fusion results from different numbers of radars.

From Figure 12, we can say that the more radars that are in the identification system, the lower
the uncertainty of the results are if all radars are working properly (as shown by the results of the
moment t1). Why does this happen? As mentioned in Section 2, Dempster’s combination rule, which is
a part of our method, has a characteristic: mutual support evidence is reinforced. Therefore, the greater
the number of radars support “A”, the greater the trust given to “A” in the fusion results. However,
what will happen if some radars are not working properly? Dempster’s combination rule has another
characteristic: pieces of conflict evidence weaken each other. Therefore, the uncertainty of the fusion
results will rise if some radars are not working properly. For example, radar supports proposition “B”,
so we get unreasonable results if we just use the first two radars. At moment t3, radar 3 and radar 4
are not working properly, while moment t4 is radar 5 and moment t4 is also radar 5. From Figure 12,
when we join the radars that are not working properly, trust given to “A” declines. Logically speaking,
we can get more information if there are more radars in the identification system, and then fusion
results obtained are more reliable. If the number of radars is too small, it is likely that the number of
radars that are not working properly is almost the same as those working properly, even if the number
of radars not working properly is higher. In addition, in this situation, there will be a high degree of
uncertainty or even fusion results that are completely wrong.
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This is also the case for the number of sampled moments. The more points that are sampled in the
time domain, the more information is obtained. Looking at the data from the last column of Table 7,
if we only sample at one moment, the fusion results are likely to have higher uncertainty. Therefore,
in general, whether all the radars are working properly or some radars are not working properly, we
should try to use a larger number of radars and more moments to get more information. It is obvious
that the greater amount of information, the more favorable it is for us to get reasonable results.

6. Conclusions

Specific Emitter Identification technology is one of the key technologies of the modern electronic
warfare system and electromagnetic environment monitor. Most of the previous methods have been
proposed from the point of view of feature signal processing. In addition, they did not consider dealing
with uncertain information. Therefore, in this paper, we started from the point of view of information
fusion and proposed a new identification method based on D–S evidence theory, as it is a powerful
tool to deal with uncertain information. At first,we simulated the actual radar data with assumed
BPAs. Secondly, we changed the number of radars and movement trajectory, respectively, to simulate
the effect of the number and relative position on the final results. From the simulation results, final
results of the proposed method have low uncertainty and good robustness. In addition, the greater
the number of radars and sampling points is, the more information we obtained, making the fusion
results more reliable. Thirdly, from the calculation principle of this proposed method, it considers not
only the relationship between the BPAs (evidence), but also the performance of radars themselves to
generate weights. This is more comprehensive than the previous methods, as most of the previous
methods only considered one of the two influencing factors. Fourthly, since the distance between
radar and target will change over time, we join time-domain evidence fusion. Time-domain fusion can
prevent unreasonable results that generate occasionally at a single moment, which misleads the final
decision-making.

In summary, vertical strategy is applied firstly, that is, the fusion results are generated by assigning
weights at a single moment and fusing the modified average evidence. We then use the horizontal
strategy (time-domain recursive fusion) to demonstrate the inheritance and updating of the fusion
results. Finally, the computational burden of the proposed method mainly exists in Dempster’s
combination rule. In addition, the computational complexity of Dempster’s combination rule increases
exponentially with the cardinality of the discernment frame. In this paper, computational burden is
small as we only use BPAs of five radars at five moments to simulate the practical situation in MatLab
(MATLAB R2016b, MathWorks, Natick, MA, USA). In real conditions, hardware acceleration can be
used to reduce the computational burden. This is the next step we want to study. In addition, the
spatial positions of the five radars in the simulation of this paper are man-made. In future work, we
can consider designing a new algorithm from the perspective of signal processing to realize the optimal
configuration of multiple radars, so as to generate reasonable BPAs and then make the identification
results more reliable.
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Abstract: Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate
potential failures or errors so as to improve the reliability of systems, designs, and products.
Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes.
There are some shortcomings in the traditional risk priority number (RPN) approach for risk
evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that
attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from
a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the
evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used
to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion
method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative
example is provided and examined using the proposed model and other existing method to show the
effectiveness of the proposed model.

Keywords: fuzzy risk evaluation; failure mode and effects analysis; multi-sensor information fusion;
D numbers; dempster-shafer evidence theory; fuzzy uncertainty

1. Introduction

Failure mode and effects analysis (FMEA) is a widely used technology in many fields to identify
potential failures or errors and further improve the reliability of systems by avoiding the occurrence
of these failures or errors [1–3]. Risk evaluation is a crucial step in FMEA, which aims to identify
failure modes with high risk so as to perfect system design to eliminating the risk [4,5]. In FMEA, risk
priority number (RPN) approach is a classical method for the risk evaluation [6,7]. Since having clear
physical meaning and easy to implement, the RPN approach has been received extensively concern
and application. However, there still are some shortcomings in the RPN approach [8,9], for example
the possible missing of risk factors, without considering the relative importance of risk factors, and so
on. Among these drawbacks, failing to address the uncertainty in risk evaluation is one of the most
concerned, and has attracted increasing attention [10–13].

In the risk evaluation of FMEA, domain experts’ knowledge and evaluations play a very
importance role. Because there are human being’s judgments, it inevitably involves various types of
uncertainties such as ignorance and fuzziness. Fuzzy set theory [14] provides a useful framework to
describe the uncertain information. Therefore, risk evaluation under fuzzy environment, also known
as fuzzy risk evaluation, has become an important research direction in FMEA. Many technologies
have been developed to solve the problem of fuzzy risk evaluation in FMEA. Chin et al. [15] presented
a data envelopment analysis (DEA) based FMEA to determine the risk priorities of failure modes.
Jee et al. [16] proposed a fuzzy inference system (FIS)-based RPN model for the prioritization of failures.

Sensors 2017, 17, 2086 227 www.mdpi.com/journal/sensors



Sensors 2017, 17, 2086

In [17], the authors have given applied a model of evolving tree to allow the failure modes in FMEA to
be clustered and visualized. Reference [18] gives a detained literature review to the risk evaluation
approaches in FMEA. By summarizing the existing approaches [10,18], one of the main branches is to
regard the fuzzy risk evaluation in FMEA as a multiple criteria decision making (MCDM) problem
under fuzzy environment. Many MCDM or multi-sensor information fusion technologies [19–26] have
been used in FMEA, such as TOPSIS [27], VIKOR [28], evidential reasoning [29], and so on.

In this paper, we address the fuzzy risk evaluation in FMEA from a perspective of multi-sensor
information fusion. Each risk factor in FMEA is regarded as a sensor or information source that yields
an evaluation regarding the risk of each failure mode. Then, the risk evaluation of every failure mode
therefore becomes the process of fusing these evaluations generated from the information sources
that correspond to risk factors. Different from existing multi-sensor information fusion method used
in FMEA, in this paper the non-exclusiveness between the evaluations of fuzzy linguistic variables
to failure modes is taken into consideration. A novel model called D numbers [30–33] which is
an extension of Dempster-Shafer evidence theory [34,35] is used to model the non-exclusive fuzzy
evaluations. At first, a new D numbers based multi-sensor information fusion method is proposed.
Then, the proposed multi-sensor information fusion method is applied to FMEA, which results in
a novel model for fuzzy risk evaluation. At last, an illustrative example is given to demonstrate the
effectiveness of the proposed model.

The rest of the paper is organized as follows. Section 2 gives a brief introduction about fuzzy
set theory, RPN approach, as well as Dempster-Shafer evidence theory and D numbers. In Section 3,
a novel multi-sensor information fusion method is proposed based on D numbers. Then, the new
model for fuzzy risk evaluation in FMEA is presented in Section 4. Section 5 gives an illustrative
example of the proposed model to show its effectiveness. Lastly, Section 6 concludes this paper.
In addition, the notations of this paper are briefly introduced here: Ã represents a fuzzy set or fuzzy
number, and μÃ is its corresponding membership function, and AreaÃ represents the area of Ã in
the graph; Ω and Θ stand for the frame of discernment in Dempster-Shafer theory and D numbers
respectively, m represents a mass function and D is a D number; u¬E(Ã, B̃) is the non-exclusive degree
between Ã and B̃; BetP represents a distribution of pignistic probabilities; CF̃ is the defuzzified value
of fuzzy number F̃.

2. Preliminaries

2.1. Fuzzy Set Theory

Fuzzy set theory was first introduced by Zadeh [14] in 1965 to deal with the uncertainty
information. In some real application environments, the states are subjective concepts which are
too complex or too ill-defined to be reasonably described in conventional quantitative expressions.
In those situation, fuzzy set theory provides an efficiently simple way to express the vagueness or
imprecise information [36,37].

Definition 1. Let X be the universe of discourse, a fuzzy set Ã is characterized by a membership function
μÃ satisfying

μÃ : X → [0, 1] (1)

where μÃ(x) is called the membership degree of x ∈ X belonging to fuzzy set Ã.

For a finite set A = { x1, . . . , xi, . . . , xn} , the fuzzy set (Ã, μÃ) is often denoted by{
μÃ(x1)

/
x1

, . . . , μÃ(xi)
/
xi

, . . . , μÃ(xn)
/
xn

}
. It is easily found that a fuzzy set is described entirely

by its membership function. When μÃ takes value from {0, 1} , fuzzy set Ã degenerates into a classical
set. A fuzzy number Ã is a fuzzy subset of the real number R, and its membership function is

μÃ(x) : R → [0, 1] (2)
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where x is a real number and there definitely exists an element x0 such that μÃ(x0) = 1. Triangular and
trapezoidal fuzzy numbers are the most widely used fuzzy numbers, and the former can be regarded
as the special case of the latter. A trapezoidal fuzzy number is usually denoted as Ã = (a1, a2, a3, a4),
as graphically shown in Figure 1, which has the following membership function

μÃ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x ≤ a1;
x−a1
a2−a1

a1, ≤ x ≤ a2;
1, a2 ≤ x ≤ a3;

a4−x
a4−a3

, a3 ≤ x ≤ a4;
0, a4 ≤ x.

(3)

Figure 1. Graphically presentation of the trapezoidal fuzzy number.

In theory and practice, fuzzy numbers are usually associated with linguistic variables to express
the fuzzy evaluation to objects. A linguistic variable is a variable whose values are represented by
words or sentences in a natural or artificial language, for example “Very Low”, “Low”, “Medium”,
“High”, “Very High”, where there values are usually expressed by fuzzy numbers.

2.2. Risk Priority Number Approach in FEMA

Risk priority number (RPN) approach is a traditional risk evaluation method in FEMA. In this
approach, the risk priority of each failure mode is expressed by a RPN which is defined by the
following formula

RPN = O × S × D (4)

where O is the probability of occurrence of a failure mode, S is the severity of the failure effect, and D is
the probability of a failure mode not being detected before it occurs. In the RPN approach, each factor
among O, S, and D is evaluated by 10 rankings, as shown in Tables 1–3. The larger the RPN value,
the higher the risk priority of a failure mode.

Table 1. Assessment rankings for occurrence in FMEA [38,39].

Ranking Probability of Occurrence Possible Failure Rate

10 Extremely high: failure almost inevitable ≥1/2
9 Very high 1/3
8 Repeated failures 1/8
7 High 1/20
6 Moderately high 1/80
5 Moderate 1/400
4 Relatively low 1/2000
3 Low 1/15,000
2 Remote 1/150,000
1 Nearly impossible ≤1/1,500,000
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Table 2. Assessment rankings for severity in FMEA [38,39].

Ranking Effect Severity of Effect

10 Hazardous without warning
Very high severity ranking when a potential failure mode
affects safe vehicle operation and/or involves noncompliance
with government regulations without warning

9 Hazardous with warning
Very high severity ranking when a potential failure mode
affects safe vehicle operation and/or involves noncompliance
with government regulations with warning

8 Very high Vehicle/item inoperable, with loss of primary function

7 High Vehicle/item operable, but at reduced level of performance.
Customer dissatisfied

6 Moderate Vehicle/item operable, but comfort/convenience item(s)
inoperable. Customer experiences discomfort

5 Low
Vehicle/item operable, but comfort/convenience item(s)
operable at reduced level of performance. Customer
experiences some dissatisfaction.

4 Very low
Cosmetic defect in finish, fit and finish/squeak or rattle item
that does not conform to specifications. Defect noticed by
most customers

3 Minor
Cosmetic defect in finish, fit and finish/squeak or rattle item
that does not conform to specifications. Defect noticed by
average customer

2 Very minor
Cosmetic defect in finish, fit and finish/squeak or rattle item
that does not conform to specifications. Defect noticed by
discriminating customers

1 None No effect

Table 3. Assessment rankings for detection in FMEA [38,39].

Ranking Detection Criteria

10 Absolutely impossible
Design control will not and/or cannot detect a potential
cause/mechanism and subsequent failure mode; or there is
no design control

9 Very remote Very remote chance the design control will detect a potential
cause/mechanism and subsequent failure mode

8 Remote Remote chance the design control will detect a potential
cause/mechanism and subsequent failure mode

7 Very low Very low chance the design control will detect a potential
cause/mechanism and subsequent failure mode

6 Low Low chance the design control will detect a potential
cause/mechanism and subsequent failure mode

5 Moderate Moderate chance the design control will detect a potential
cause/mechanism and subsequent failure mode

4 Moderately high Moderately high chance the design control will detect a
potential cause/mechanism and subsequent failure mode

3 High High chance the design control will detect a potential
cause/mechanism and subsequent failure mode

2 Very high Very high chance the design control will detect a potential
cause/mechanism and subsequent failure mode

1 Almost certain Design control will almost certainly detect a potential
cause/mechanism and subsequent failure mode

Although the RPN approach is easy to use, but it still has some shortcomings that are criticized
in many studies [8,9]. For example, three risk factors O, S, D are considered with equal importance;
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Traditional RPN approach only considers three factors but ignores other possible influential factors
to different application environment; Various sets of O, S and D may produce an identical RPN
value, but their hidden risk implications may be different. Please refer to [8,9] for more details on the
drawbacks of RPN approach.

2.3. Dempster-Shafer Evidence Theory and D Numbers

Dempster-Shafer evidence theory [34,35], also called Dempster-Shafer (D-S) theory or evidence
theory, is a popular theory to deal with uncertain information [40–45]. Compared with traditional
probability theory, this theory has an advantage of directly expressing the “uncertainty” by assigning
the probability to the set composed of multiple objects, it therefore has attracted increasing interest in
uncertainty reasoning and modelling [46–52] and been further extended such as generalized evidence
theory (GET) in open world [53–55].

Let Ω be a set of mutually exclusive and collectively exhaustive events, indicated by
Ω = {E1, E2, . . . , Ei, . . . , EN}, where set Ω is called a frame of discernment (FOD). The power set of
Ω is indicated by 2Ω, namely 2Ω = {∅, {E1}, . . . , {EN}, {E1, E2}, . . . , {E1, E2, . . . , Ei}, . . . , Ω}. In D-S
theory, the uncertain information is modelled by mass functions.

Definition 2. Given a FOD Ω, a mass function is a mapping m : 2Ω → [0, 1], such that

m(∅) = 0 and ∑
A∈2Ω

m(A) = 1 (5)

where set A with m(A) > 0 is called a focal element, and the assigned m(A) measures the belief exactly assigned
to A and represents how strongly the evidence supports A. A mass function is also called a basic probability
assignment (BPA).

Considering two pieces of evidence indicated by m1 and m2, Dempster’s rule of combination
can be used to combine them. This rule assumes that these mass functions are mutually independent.
The Dempster’s rule of combination, denoted by m = m1 ⊕ m2, is defined as follows:

m(A) =

{ 1
1−K ∑

B∩C=A
m1(B)m2(C) , A �= ∅

0 , A = ∅
(6)

with
K = ∑

B∩C=∅
m1(B)m2(C). (7)

In order to make decision in terms of a mass function [56], an approach, called pignistic probability
transformation (PPT), is proposed by Smets and Kennes [57] to derive a probability distribution from
a mass function. Let m be a mass function or BPA on FOD Ω, a PPT function BetPm : Ω → [0, 1]
associated to m is defined by

BetPm(x) = ∑
x∈A,A⊆Ω

1
|A|

m(A)

1 − m(∅)
, (8)

where m(∅) �= 1 and |A| is the cardinality of proposition A.
Although D-S theory provides a good framework for uncertainty reasoning, this theory is

also constrained by many strong hypotheses and hard constraints which limit its development and
application to a large extend. For one hand, the elements in the FOD are required to be mutually
exclusive. It is called exclusiveness hypothesis. For another, the sum of basic probabilities of a mass
function must be equal to 1, which is called completeness constraint. To overcome these existing
shortcomings in D-S theory and enhance its capability in expressing uncertain information, a novel

231



Sensors 2017, 17, 2086

model, named as D numbers, has been proposed recently [30–33,58]. D numbers relax mass function’s
exclusiveness hypothesis and BPA’s completeness constraint.

Definition 3. Let Θ = {F1, F2, . . . , FN} be a nonempty set satisfying Fi �= Fj if i �= j, ∀i, j = {1, . . . , N} ,
a D number is a mapping formulated by

D : 2Θ → [0, 1] (9)

with

∑
B⊆Θ

D(B) ≤ 1 and D(∅) = 0 (10)

where ∅ is the empty set and B is a subset of Θ.

If ∑
B⊆Θ

D(B) = 1, the information is said to be complete; if ∑
B⊆Θ

D(B) < 1, the information is said

to be incomplete. If a D number is of complete information, it means that the D number is generated
from an environment with the close-world assumption. By contrast, a D number with incomplete
information is corresponding to the open-world assumption. With respect to the open-orld assumption,
Smets [57] proposed a transferable belief model (TBM) which allows m(∅) > 0. Compared with the
TBM, in D numbers the open-world environment is implemented by letting ∑

B⊆Θ
D(B) < 1. What’s

more important, in the TBM each mass function is defined on a FOD which requires the internal
elements are mutually exclusive. However, in D numbers the exclusiveness hypothesis is removed,
i.e., the elements in Θ do not require mutual exclusiveness for D numbers.

3. Proposed Multi-Sensor Information Fusion Method Based on D Numbers

Let us consider a multiple criteria decision making (MCDM) problem, where each criterion can
be regarded as an independent sensor or information source. Therefore, the process of resolving
the MCDM problem can be treated as a process of multi-sensor information fusion. Assume there
are p alternatives, indicated by Ai, i = 1, . . . , p, and q criteria, denoted as Cj, j = 1, . . . , q, and the
weight of each criterion is wj, j = 1, . . . , q. Due to the uncertainty of decision-making environment,
the evaluation to alternative Ai on criterion Cj is expressed as a D number indicated by Dij, thus the
decision matrix is represented as

M =

C1 · · · Cq

A1
...

Ap

⎛⎜⎝ D11 · · · D1q
· · · · · · · · ·
Dp1 · · · Dpq

⎞⎟⎠ . (11)

In this paper, we assume that each evaluation Dij in the decision matrix M is information-complete,
i.e., ∑

k
Dij(Bk) = 1 for any i = 1, . . . , p and j = 1, . . . , q. Now the overall objective is to find the best

alternative according to the decision matrix M and criteria’s weights mentioned above. In this study,
we develop a new multi-sensor information fusion method based on D numbers to solve that problem.
The key points of the proposed approach are presented as follows.

3.1. Non-Exclusiveness in D Numbers

Since the evaluations are in the form of D numbers and the theory of D numbers is found on
the basis of non-exclusiveness assumption, the first step is to calculate the non-exclusive degrees in
D numbers. The non-exclusiveness is the opposite of exclusiveness, representing a potential connection
between elements in D numbers framework. By contrast, the exclusiveness refers to the characteristic
that one object excludes the others, which is an either-or related thing but not the similarity.
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Definition 4. Let Bi and Bj be two non-empty elements belonging to 2Θ, the non-exclusive degree between Bi
and Bj is characterized by a fuzzy membership function u¬E:

u¬E : 2Θ × 2Θ → [0, 1] (12)

with

u¬E(Bi, Bj) =

{
1, Bi ∩ Bj �= ∅
p, p ∈ [0, 1], Bi ∩ Bj = ∅

(13)

and
u¬E(Bi, Bj) = u¬E(Bj, Bi). (14)

If letting the exclusive degree between Bi and Bj be denoted as uE, then uE = 1 − u¬E.

In our previous study [59], a simple approach was proposed to determine the non-exclusive
degrees in D numbers. In that approach it assumes that all non-exclusive degrees among elements in
FOD Θ have already been determined, then each exclusive degree in the power set space 2Θ can be
calculated by the following formula:

u¬E(Bi, Bj) = max
x∈Bi ,y∈Bj

{u¬E(x, y)}, Bi, Bj ∈ 2Θ. (15)

An illustrative example regarding the calculation of non-exclusive degrees is given as follows.

Example 1. Supposing each evaluation in decision matrix M shown in Equation (11) is defined on a set of
linguistic variables Θ = {VL, L, ML, M, MH, H, VH} in which every linguistic variable is represented by a
trapezoidal fuzzy number given in Table 4 and graphically presented as Figure 2.

Table 4. Linguistic variables for the evaluation.

Linguistic Variables Fuzzy Numbers

Very Low (VL) (0, 0, 1,2)
Low (L) (1, 2, 2, 3)
Medium Low (ML) (2, 3, 4, 5)
Medium (M) (4, 5, 5, 6)
Medium High (MH) (5, 6, 7, 8)
High (H) (7, 8, 8, 9)
Very High (VH) (8, 9,10,10)

Figure 2. Graphically presentation of fuzzy linguistic variables in Table 4.
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The set Θ is seen as the FOD. At first, let us calculate the non-exclusive degrees between elements in FOD
Θ. In this paper, an approach based on fuzzy numbers’ areas is utilized. Assume the areas of fuzzy numbers Ã
and B̃ are respectively denoted as AreaÃ and AreaB̃, and the area of the overlap of Ã and B̃ is AreaÃ∩B̃, then
the non-exclusive degree between Ã and B̃ is defined as

u¬E(Ã, B̃) =
AreaÃ∩B̃

AreaÃ + AreaB̃ − AreaÃ∩B̃
. (16)

According to Equation (16), each non-exclusive degree between elements in FOD Θ therefore can be
obtained as shown in the following matrix

VL L ML M MH H VH
VL
L

ML
M

MH
H

VH

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.1111 0 0 0 0 0
0.1111 1 0.0909 0 0 0 0

0 0.0909 1 0.0909 0 0 0
0 0 0.0909 1 0.0909 0 0
0 0 0 0.0909 1 0.0909 0
0 0 0 0 0.0909 1 0.1111
0 0 0 0 0 0.1111 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Having the above non-exclusive degree matrix of between elements in Θ , according to Equation (15),

we can easily calculate the non-exclusive degree of any pair of elements in 2Θ. For example, as for {L} and
{ML, M}, we have

u¬E({L}, {ML, M}) = max {u¬E({L}, {ML}), u¬E({L}, {M})}
= max {0.0909, 0}
= 0.0909.

3.2. Fusing the Evaluations to the Same Alternative on Different Criteria

In order to implement the overall assessment to each alternative, all evaluations belonging to the
same alternative on different criteria should be combined according to the perspective of multi-sensor
information fusion. In this paper since the evaluations are given in the form of D numbers, it becomes
the fusion of D numbers. In our recent study [59], a D numbers combination rule (DNCR) has been
proposed from a perspective of conflict redistribution. The proposed DNCR is shown as follows.

Definition 5. Let D1 and D2 be two D numbers defined on Θ with ∑
B⊆Θ

D1(B) = 1 and ∑
C⊆Θ

D2(C) = 1,

the combination of D1 and D2, indicated by D = D1 " D2, is defined by

D(A) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, A = ∅
1

1−KD

(
∑

B∩C=A
u¬E(B, C)D1(B)D2(C)+

∑
B∪C=A
B∩C=∅

u¬E(B, C)D1(B)D2(C)

⎞⎠ , A �= ∅

(17)

with
KD = ∑

B∩C=∅
(1 − u¬E(B, C)) D1(B)D2(C). (18)

The above rule for D numbers is a generalization of Dempster’s rule for the model of D numbers,
because it can totally reduce to the classical Dempster’s rule when u¬E(B, C) = 0 for any B ∩ C = ∅.
Different from the D-S theory, in this rule the impact of of non-exclusiveness in D numbers is taken
into consideration.
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Although the rule defined in Definition 5 provides a solution for the combination of D numbers,
it must point out that such rule does not preserve the associative property, i.e., (D1 " D2)" D3 �=
D1 " (D2 " D3) �= (D1 " D3)" D2, and it is only suitable for the combination of two D numbers.
In order to implement the effective combination of multiple D numbers, a novel combination rule
for multiple D numbers is developed in this paper by utilizing the idea of induced ordered weighted
averaging (IOWA) operator [60] which imports an order variable compared with other aggregation
operators [61,62].

Definition 6. Let D1, D2, . . . , Dn be n D numbers, and vj be an order variable for each Dj, j = 1, . . . , n,
therefore each piece of information is indicated by tuple < vj, Dvj >. The combination operation of these
information represented by D numbers is defined as a mapping AggD, such that

AggD(D1, D2, · · · , Dn) = [· · · [Dλ1 " Dλ2 ]" · · · " Dλn ] (19)

where Dλi is the corresponding Dvj in tuple < vj, Dvj > having the i-th largest order variable vj.

In this paper, for the MCDM problem the weight of each criterion is regarded as the order variable
of corresponding D numbers so as to fuse the evaluations to each alternative on multiple criteria.
For each alternative Ai, i = 1, . . . , p, the obtained aggregated evaluation is denoted as Di which is
defined over the FOD Θ consisting of fuzzy linguistic variables.

3.3. Decision-Making Based on the Aggregated Evaluations under Fuzzy Environment

In this paper, each aggregated evaluation is also a D number, indicated by Di, i = 1, . . . , p,
which is defined on FOD Θ composed by fuzzy linguistic variables. Assume Θ = {θt, t = 1, . . . , l},
and each element θt is represented by a trapezoidal fuzzy number θt = (at1, at2, at3, at4). Each Di is
firstly transformed to a distribution of pignistic probabilities, denoted as BetPi, by means of the PPT
as follows

BetPi(θt) = ∑
θt∈B,B⊆Θ

Di(B)
|B| , t = 1, . . . , l. (20)

Once the BetPi is obtained, it then be transformed to a fuzzy aggregated evaluation F̃i to express
the overall assessment to alternative i, represented as

F̃i = ( fi1, fi2, fi3, fi4), i = 1, . . . , q (21)

in which

fik =
l

∑
t=1

BetPi(θt)× atk, k = 1, 2, 3, 4. (22)

At last, these fuzzy aggregated evaluation F̃i, i = 1, . . . , p, are converted to crisp values through
a defuzzification process in order to rank all alternatives. Among existing defuzzification techniques,
the centroid defuzzification approach is a common used one. Given a fuzzy number F̃ with membership
function μF̃(x), in terms of the centroid defuzzification approach we can have

CF̃ =

∫
xμF̃(x)dx∫
μF̃(x)dx

, (23)

where CF̃ is the defuzzified value of F̃. In terms of the study in [63], while F̃ is a trapezoidal fuzzy
number indicated by ( f1, f2, f3, f4) the centroid-based defuzzified value turns out to be

CF̃ =
1
3

(
f1 + f2 + f3 + f4 − f3 f4 − f1 f2

( f3 + f4)− ( f1 + f2)

)
. (24)
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Via the defuzzification process, for each fuzzy aggregated evaluation F̃i, a defuzzified value
CF̃i

can be derived. The best alternative is finally determined by finding the one with the largest
defuzzified value.

4. The Proposed Model for Fuzzy Risk Evaluation in FMEA

In terms of the multi-sensor information fusion method based on D numbers as presented above,
a novel model for fuzzy risk evaluation in FMEA is proposed in this section. The flowchart of the
proposed model is shown in Figure 3, which briefly contains four phases, namely identification,
evaluation, preprocessing and ranking. The final output is the risk ranking of potential failure modes.

Figure 3. Flowchart of the proposed model for fuzzy risk evaluation in FMEA.

• Step 1: Identify all potential failure modes according to the practical FMEA environment.
• Step 2: Identify all possible risk factors for the risk evaluation task. In the RPN approach, the risk

factors are probability of occurrence (O), severity of failure effect (S), and probability of a failure
mode not being detected (D).

• Step 3: Determine fuzzy linguistic variables for the evaluation including evaluating failure modes
and evaluating the weights of risk factors.

• Step 4: Evaluate failure modes and the weights of risk factors using fuzzy linguistic variables
determined in the above step. These are usually given by domain experts of FMEA risk evaluation.

• Step 5: Calculate the weight of each risk factor and transform the fuzzy evaluations of failure
modes on different risk factors to D numbers. This is a process of data preprocessing.

• Step 6: Rank the failure modes using the proposed multi-sensor information fusion method in
above section so as to generate the risk ranking of all failure modes.
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5. Illustrative Example

In the section, an illustrative example is given to show the effectiveness of the proposed model
for fuzzy risk evaluation in FMEA. This example is original from literature [28]. In [28], the authors
developed an extended VIKOR method for risk evaluation in FMEA under fuzzy environment. In this
paper, we will solve the problem by using our proposed model and compare the obtained result with
that of literature [28].

Step 1: Identify all potential failure modes. By following literature [28], a hospital wants to rank
the most serious failure modes during general anesthesia process, and six potential failure modes are
identified which are denoted as FM 1, FM 2, FM 3, FM 4, FM 5, FM 6.

Step 2: Identify all possible risk factors. In this application, the risk factors are consistent with the
RPN approach, therefore there are three risk factors, namely O, S, D.

Step 3: Determine fuzzy linguistic variables for the evaluation. As for the evaluation of failure
modes, a set of linguistic variables including Very Low (VL), Low (L), Medium Low (ML), Medium
(M), Medium High (MH), Very High (VH) is used as shown in Table 4. In addition, for the evaluation
of risk factors’ weights, the fuzzy linguistic variables are given in Table 5.

Table 5. Linguistic variables for evaluating the weights of risk factors.

Linguistic Variables Fuzzy Numbers

Very Low (VL) (0, 0, 0.1, 0.2)
Low (L) (0.1, 0.2, 0.2, 0.3)
Medium Low (ML) (0.2, 0.3, 0.4, 0.5)
Medium (M) (0.4, 0.5, 0.5, 0.6)
Medium High (MH) (0.5, 0.6, 0.7, 0.8)
High (H) (0.7, 0.8, 0.8, 0.9)
Very High (VH) (0.8, 0.9, 1,1)

Step 4: Evaluate failure modes and the weights of risk factors using fuzzy linguistic variables.
As given in literature [28], a FMEA team of five decision makers, DM 1, DM 2, DM 3, DM 4,
DM 5, is employed to evaluate failure modes and the weights of risk factors. With respect to risk
factors’ weights, all five decision makers’ evaluations are given in Table 6. For the six failure modes,
the evaluations from the FMEA team are given in Table 7.

Table 6. The evaluations to the weights of risk factors from the FMEA team.

Risk Factor
FMEA Team Member

DM 1 DM 2 DM 3 DM 4 DM 5

O H H VH H MH
S VH VH H VH VH
D MH MH M H MH

Table 7. The evaluations to failure modes from the FMEA team.

FM 1 FM 2 FM 3 FM 4 FM 5 FM 6

O

DM 1 M H VH M M MH
DM 2 M MH MH M ML H
DM 3 M H VH L M M
DM 4 MH MH VH M M MH
DM 5 M MH VH M M M
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Table 7. Cont.

FM 1 FM 2 FM 3 FM 4 FM 5 FM 6

S

DM 1 ML H MH M M H
DM 2 ML MH MH M MH H
DM 3 ML H MH ML MH H
DM 4 M H MH M M H
DM 5 M H MH M M H

D

DM 1 M M MH VL L L
DM 2 ML M M ML ML M
DM 3 ML ML MH VL L L
DM 4 ML M MH ML L L
DM 5 ML M M VL L VL

Step 5: At this step, the weight of each risk factor is calculated at first. Since the calculation of risk
factors’ weights is not the core concern of this paper, we simply continue to use the weights obtained in
literature [28]. The importance of O is 0.768, and S 0.878, and D 0.650, therefore the weights of these risk
factors are wO = 0.768/(0.768 + 0.878 + 0.650) = 0.3345, wS = 0.878/(0.768 + 0.878 + 0.650) = 0.3824,
wD = 0.650/(0.768 + 0.878 + 0.650) = 0.2831. Secondly, let us transform the fuzzy evaluations of
failure modes on risk factors to D numbers. In this example since multiple decision makers are
included so as to form a group decision making environment, we use the proportion of each evaluation
to construct the D numbers. For example, for FM 1 on risk factor O, five decision makers respectively
give evaluations M, M, M, MH, M, hence we can construct a D number D(M) = 0.8, D(MH) = 0.2.
In terms of this means, the evaluations to failure modes are transformed to the form of D numbers,
as shown in Table 8.

Table 8. The evaluations to failure modes in the form of D numbers.

Failure Mode O S D

FM 1
D({M}) = 0.8,
D({MH}) = 0.2

D({ML}) = 0.6,
D({M}) = 0.4

D({M}) = 0.2,
D({ML}) = 0.8

FM 2
D({H}) = 0.4,
D({MH}) = 0.6

D({H}) = 0.8,
D({MH}) = 0.2

D({M}) = 0.8,
D({ML}) = 0.2

FM 3
D({VH}) = 0.8,
D({MH}) = 0.2 D({MH}) = 1 D({MH}) = 0.6,

D({M}) = 0.4

FM 4
D({M}) = 0.8,
D({L}) = 0.2

D({M}) = 0.8,
D({ML}) = 0.2

D({VL}) = 0.6,
D({ML}) = 0.4

FM 5
D({M}) = 0.8,
D({ML}) = 0.2

D({M}) = 0.6,
D({MH}) = 0.4

D({L}) = 0.8,
D({ML}) = 0.2

FM 6
D({M}) = 0.4,
D({MH}) = 0.4,
D({H}) = 0.2,

D({H}) = 1
D({L}) = 0.6,
D({M}) = 0.2,
D({VL}) = 0.2

Step 6: Rank the failure modes using the proposed multi-sensor information fusion method.
At first, the fuzzy linguistic variables in Table 4 form a FOD Θ = {VL, L, ML, M, MH, H, VH}.
Each exclusive degree between elements in Θ has been obtained in Example 1. According to
Equation (15), the non-exclusive degree of any pair of elements in 2Θ can be easily obtained. Secondly,
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for every failure mode the evaluations on O, S, and D can be fused based on the proposed combination
operation in Definition 6. For FM 1, the aggregated evaluation is

D1({M}) = 0.558,
D1({ML}) = 0.263,
D1({ML, M}) = 0.175,
D1({ML, M, MH}) = 0.004.

For FM 2,
D2({M, MH}) = 0.702,
D2({M, MH, H}) = 0.298.

For FM 3,
D3({MH}) = 0.943,
D3({M, MH}) = 0.057.

For FM 4,
D4({ML}) = 0.236,
D4({ML, M}) = 0.756,
D4({VL, L, ML}) = 0.008.

For FM 5,
D5({ML}) = 0.178,
D5({ML, M}) = 0.714,
D5({ML, M, MH}) = 0.043,
D5({L, ML, M}) = 0.065.

For FM 6,
D6({M, MH, H}) = 1.000.

Thirdly, by using the PPT, we have: BetP1({ML}) = 0.3516, BetP1({M}) = 0.6471,
BetP1({MH}) = 0.0013 for FM 1; BetP2({M}) = 0.4504, BetP2({MH}) = 0.4504, BetP2({H}) =

0.0993 for FM 2; BetP3({M}) = 0.0286, BetP3({MH}) = 0.9714 for FM 3; BetP4({VL}) = 0.0026,
BetP4({L}) = 0.0026, BetP4({ML}) = 0.6168, BetP4({M}) = 0.3780 for FM 4; BetP5({L}) = 0.0216,
BetP5({ML}) = 0.5712, BetP5({M}) = 0.3928, BetP5({MH}) = 0.0144 for FM 5; and BetP6({M}) =
0.3333, BetP6({MH}) = 0.3333, BetP6({H}) = 0.3333 for FM 6. Fourthly, these pignistic probabilities
are then transformed to fuzzy aggregated evaluations according to Equations (21) and (22) which are

F̃1 = (3.2982, 4.2982, 4.6511, 5.6511),

F̃2 = (4.7482, 5.7482, 6.1986, 7.1986),

F̃3 = (4.9714, 5.9714, 6.9429, 7.9429),

F̃4 = (2.7480, 3.7454, 4.3648, 5.3648),

F̃5 = (2.8072, 3.8072, 4.3928, 5.3928),

F̃6 = (5.3333, 6.3333, 6.6667, 7.6667).

These fuzzy aggregated evaluations are graphically shown in Figure 4. At last, in terms of the
centroid defuzzification approach we can have CF̃1

= 4.4746, CF̃2
= 5.9734, CF̃3

= 6.4571, CF̃4
= 4.0559,

CF̃5
= 4.1000, CF̃6

= 6.5000. Therefore, the risk ranking of all failure modes from high to low is
FM 6 # FM 3 # FM 2 # FM 1 # FM 5 # FM 4. From the result, it is found that the failure mode
with the highest risk is FM 6 and that having the lowest risk is FM 4.
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Figure 4. Graphically presentation of fuzzy aggregated evaluations.

The above steps have clearly shown the process of using the proposed model to do the risk
evaluation in FMEA under fuzzy environment. Now we compare the result obtained by the proposed
model with that from other method. In literature [28], Liu et al. dealt with the risk evaluation in
FMEA with an extended VIKOR method. The results of the risk ranking are given in Table 9. In [28],
the failure modes are ranked in terms of three indicators S, R, Q. By S, the failure modes with the
highest and lowest risk are FM 3 and FM 4; By R, the failure modes having the highest and lowest risk
are respectively FM 6 and FM 4; By Q, the failure modes with the highest and lowest risk are FM 3
and FM 4, respectively. Comparing the proposed model and the extended VIKOR method in [28],
the ranking obtained by the proposed model is basically same with that of R. In addition, both the
two methods have identified FM 4 is the failure mode of lowest risk. In addition, as a whole the
failure modes can be classified into two groups by S, R, Q, and the first group which has higher risk
is composed by FM 3, FM 6, FM 2, the second group having lower risk includes FM 1, FM 5, FM 4.
By using the proposed model, we also obtain the same classification that FM 6, FM 3, FM 2 are in the
group with higher risk and FM 1, FM 5, FM 4 constitute the group with lower risk. Through the above
analysis and comparison, therefore it shows that the proposed model is effective for risk evaluation
in FMEA.

Table 9. Risk ranking of failure modes by using the extended VIKOR method in [28].

Failure Mode

FM 1 FM 2 FM 3 FM 4 FM 5 FM 6

By S 4 2 1 6 5 3
By R 5 3 2 6 4 1
By Q 5 3 1 6 4 2

6. Conclusions

In this paper, the risk evaluation of failure modes in FMEA has been studied in an environment
involving fuzzy uncertainty. A novel model is proposed for the fuzzy risk evaluation in FMEA.
Within the proposed model, a D numbers based multi-sensor information fusion method has been
presented to evaluate potential failure modes and rank the risk levels of failure modes. Since the use of
D numbers which is a new model of extending classical D-S theory, the non-exclusiveness between the
evaluations of fuzzy linguistic variables has been taken into consideration in the proposed method.
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Compared with some existing risk evaluation methods in FMEA, the proposed method overcomes the
shortcomings of traditional RPN approach to some degrees and obtains comparable performances
relative to other MCDM technologies used in FMEA. This study provides a new solution for the risk
evaluation in FMEA under fuzzy environment and it is especially suitable for the case that contains
non-exclusive fuzzy evaluations. In the future research, on one hand we hope to seek more practical
applications with read data to analyze the proposed D numbers based multi-sensor information fusion
method, on the other hand we will explore other technologies such as Physarum-inspired model [64]
to improve the risk evaluation in FMEA.
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Abstract: Predicting system lifetime is important to ensure safe and reliable operation of products,
which requires integrated modeling based on multi-level, multi-sensor information. However,
lifetime characteristics of equipment in a system are different and failure mechanisms are
inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime
measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that
combine multi-level sensor information is proposed. The method considers the correlation between
accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime
prediction under complex logic correlations. This method is applied in the lifetime prediction of a
multi-level solar-powered unmanned system, and the predicted results can provide guidance for the
improvement of system reliability and for the maintenance and protection of the system.

Keywords: multi-level system; lifetime prediction; Bayesian Networks; multi-sensor information
integration; complex logical correlation

1. Introduction

Life expectancy is of great significance to ensure safe and reliable operation of products,
and demands for superior product performance are increasing. Devices and components with multiple
lifetime characteristics are associated by complex logic to form a multi-level, complex system whose
state features are difficult to quantify and predict directly. Therefore, the integration of multi-sensor
information is a necessary path to achieving lifetime prediction for such systems. In fact, research
on the integration of multi-sensor information is one of the trends in comprehensive utilization of
data and monitoring technology innovation in the international research community. Through signal
processing from multiple sensors, combined with optimization theory [1], pattern recognition [2],
filtering technique [3,4], neural networks [5], artificial intelligence [6], etc., the goal is to achieve the
correlation and combination of information, and provide more accurate monitoring and evaluation
of products.

In order to effectively integrate equipment information provided by sensors in a complex,
multi-level system to achieve evaluation and prediction of the lifetime of a system, the following
requirements must be met: first, sensor data are required to carry out evaluation at the equipment level
for designing prediction models. Second, the prediction framework that can integrate these low-level
prediction models must be provided. A variety of prediction methods have been developed at the
equipment level, including statistical methods that are based on Wiener diffusion [7], the gamma
process [8], and the Markov process [9], as well as artificial intelligence methods such as data-driven
neural networks [10,11] and filtering techniques [12,13], and other methods based on physical
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failure [14]. For instance, Nguyen considered the predictive reliability, dependencies of components
and the hierarchy configuration to study the multi-level system [15]. Zheng combined unscented
Kalman Filter and Relevance Vector Regression to predict the remaining useful life of lithium-ion
batteries [16]. Hamed compared the stochastic simulation and the inverse First Order Reliability
Method in remaining useful life prediction under different forms of uncertainty [17]. Actually,
owing to evolving sensor technology, studies on prediction models for lower level objects and
simple products are prevalent, and data-based lifetime prediction technology is relatively mature.
However, the construction of the system prediction framework should take into account the uniform
quantification of lifetime indicators and the expression of complex logic. Coolen extended the sensor
status information obtained by a sensor to the probability level, and carried out the uncertainty
prediction research for many types of components [18]. Jackson and Mosleh also studied the predictive
modeling of uncertainty for multilayer overlapping data in complex systems [19]. The above studies
affirm the advantage of a probabilistic description of complex system states and logical association
uncertainties. On the other hand, George [20] and Meineri [21] adopted directed graphs in their
research on complex system topology modeling and multi-factor complex correlation, which inspired
the idea of modeling logical relationships of multi-level system interactions.

The Bayesian network (BN), proposed by Pearl [22], is a reasoning model based on Bayesian
theory and graph theory that integrates probability and graphitization. It can be applied to make up
the deficiency of traditional reliability analysis method. For an example, with the Fault Tree Analysis
(FTA) method it is difficult to model systems with polymorphism problems, random uncertainties and
dependent events, and some calculations are impossible to achieve due to the computation complexity
under the disjointed algorithm scenario, while BN is able to describe the multi-state, uncertainties and
correlations to conduct two-way inference due to probability basis, conditional independent principle
and information integration skills, as well as generate results conveniently according to the available
FT and simplify modeling problems. Therefore BN has a great advantage in complex system modeling
applications such as disease diagnosis, financial risk analysis, and wireless sensor network and system
reliability analysis, and provides the application basis for integration of multi-level information [23],
which can be used to carry out the construction of lifetime prediction models based on state probability.
A BN qualitative network topology and quantitative conditional probability description are endowed
with strong ability to express large complex systems that have a large number of subsystems [24],
which is applicable for the modeling of complex relationships such as system reliability diagrams and
fault trees that are difficult to describe using traditional models [25,26]. At present, BN is widely used
in the field of reliability, for system fault diagnosis [27,28], safety analysis [29], and optimization of
maintenance strategy [30]. For instance, Cai et al. proposed a BN-based data-driven fault detection
and diagnosis methodology which is equipped with a good toleration for sensor noise and bias of
PMSM drive system [31]. Petek conducted an evaluation of failure conditional probability with a
multi-level system by BN method [32]. Hu et al. developed an integrated safety prognosis model with
BN to study the propagation mechanisms of faults in complex system [33]. However, there are few
reports on the prediction method for a complex, multi-level system [34]. Kabir et al. investigated the
failure prediction method of water mains with BN by considering the uncertainties from multi-source
data and human interpretations with different credibility [35]. Therefore, system lifetime prediction
based on BN to achieve the integration of equipment information from multiple sensors has substantial
research value and exploration significance.

In order to solve the problem of lifetime prediction of multi-level systems under complex logic
relationships and guide the design, improvement, and maintenance of systems, this paper studies the
BN lifetime prediction method based on the integration of multi-level information. The system life
expectancy is estimated by considering different failure mechanisms and the logical association of its
mutual coupling, and the integration of equipment information with different lifetime characteristics.
This paper is organized as follows: in Section 2, we present an overview of the basic concept,
construction, and estimation algorithm of the BN model. In Section 3, we describe the modeling
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process of BN lifetime prediction and its solution method based on the prediction model at equipment
level. In Section 4, we present the verification of the prediction model and in Section 5 a case study of
a solar unmanned system. Finally, a summary and outlook are given in Section 6.

2. Overview of BN Model

A BN is a graphical network model based on the probabilistic reasoning of Bayesian theory.
It consists of a Directed Acyclic Graph (DAG) and a Conditional Probability Table (CPT). The former is
a graphical structure composed of directed edges that connect the node variable X = {X1, X2, · · · , Xn}
based on causality. The latter is the quantitative expression of the logical relationship of variables.
The directed edge in a DAG always has the parent node pointing to the child node, while the variable
with no parent node is the root node and the variable with no child node is the leaf node, and the rest
are the intermediate nodes.

The probability calculation of a BN is based on the conditional independence assumption, i.e.,
that the probability of the child node depends only on the parent node and is independent from
the other child nodes of the parent node, as shown in Equation (1). Therefore, when solving the
probability of a multi-node joint, a BN only needs to consider the correlation of variables, thus reduces
the solving complexity:

P
(
Xi|Xpi, Xpai

)
= P

(
Xi|Xpi

)
(1)

where Xpi is the parent node of node Xi and Xpai the child node of Xpi other than Xi. Applying
conditional independence to chain rules enables computation of the joint probability, as follows:

P(X1, X2, · · · , Xn) =
n

∏
i=1

P
(
Xi|Xpi

)
(2)

The following three elements must be completed for a BN construction:

1. Determine node variables and their interpretation.
2. Create a DAG with a directed edge connecting node variables.
3. Create a CPT for non-root nodes.

The CPT of node G is established for the seven-node DAG of Figure 1 according to the series logic,
as shown in Table 1.

Figure 1. Seven-node DAG of system G.

Table 1. CPT of node G.

C F G

F T F T F T
1 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 0 1
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In the precision reasoning and approximate reasoning algorithm, the joint tree (JT) algorithm
based on clique tree propagation is widely used because of its unique advantages of high search
efficiency, capability of returning logarithmic results, and dual-channel transmission. The solution
is shown in Figure 2. The JT is obtained by the steps of the transformation and triangulation of
the DAG. After initialization, the nodes can absorb the information and update the distribution
function φC of the partition nodes to achieve information transmission. When the single-transfer
process of the JT information satisfies the globally consistent steady state, the distribution of V can be
obtained according to P(V) = ∑C{V} φC for any desired variable V. When new evidence e is added,
the conditional probability distribution of the variable V is solved as follows:

P(V|e) = P(V, e)
P(e)

=
P(V, e)

∑
V

P(V, e)
. (3)

Figure 2. Algorithm and build thought of JT.

3. Lifetime Prediction Method of Multi-level System Based on BN

3.1. Prediction Model at Equipment Level

From the prediction tools and means, the prediction model at the equipment and component
levels can be divided into three categories: stochastic process based, data based, and physical failure
based. The optimal prediction method is chosen to establish the lifetime prediction model for root
nodes of the BN, and the lifetime prediction of intermediate nodes and leaf nodes can then be deduced.
Therefore, the soundness and accuracy of the model and parameters of the equipment can affect the
prediction of higher-level nodes.

The system of a complex product often involves performance degradation and accidental failure.
Here, the equipment whose performance degradation obeys the Wiener process is taken as an example
to devise a prediction model. Assuming that the performance parameter W is a key indicator of
product lifetime and is sensitive to stress S, the parameter then follows the Wiener degradation process
as follows:

W(t) = μ(s) · t + σ · B(t) + W0 (4)

where W(t) is the product performance at time t, and μ(s) is the drifting coefficient reflecting the
performance degradation rate, which is a function of stress and time. In an accelerated model,
μ(s) = exp[β0 + βϕ(s)]. Constant σ is the diffusion coefficient that is irrelevant with respect to
environment and time. B(t) ∼ N(0, t) is the standard Brownian motion and W0 is the initial value of
the parameter.
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The degradation amount within the time Δt from the properties of the Wiener process is
ΔW ∼ N

(
μ(s)Δt, σ2Δt

)
. L is defined as the failure threshold of performance W, and then the time t′

that the performance parameter value first passed through L satisfies the inverse Gaussian distribution.
The distribution function is the unreliability function of the product, and the corresponding probability
density function is given by:

f (t; W0, L) =
L − W0√
2πσ2t3

exp

{
− [(L − W0)− μ(s)t]2

2σ2t

}
(5)

The corresponding reliability function is the prediction model of equipment lifetime, as follows:

R(t) = Φ
(L − W0)− μ(s)t

σ
√

t
− exp

{
2μ(s)L

2σ2

}
Φ
(L − W0) + μ(s)t

σ
√

t
, (6)

where Φ (∗) is the cumulative distribution function of the standard normal distribution.
Other prediction methods and models based on the data and physical failure can also

provide the corresponding prediction information of product lifetime under the timescale satisfying
prediction accuracy.

3.2. BN Prediction Modeling and Inference at System Level

Differences exist in the lifetime characteristics of different products. Therefore, the state probability
of the unified lifetime based on quantitative indicators is used in this paper. For example, for the
case of accidental hardware failure, reliability and cumulative probability of failure can describe the
probability in the “normal” and “fault” states. However, for a degradation mechanism in which the
lifetime characteristics cannot be directly described by the reliability, the complete state set must be
customized before modeling to describe the “intact degree” and “failure degree” as two opposing
events, to ensure that the sum of the state probability is 1. For ease of expression, in this work we use
R to characterize the “intact” state of all nodes, with corresponding probability R, and represent the
corresponding “failure” state with F , with a probability of F.

The lifetime prediction sequence of state probability reflecting lifetime information given by each
equipment prediction model is taken as the prior probability of the corresponding root node in the
system BN, and the probability of unknown nodes is deduced to achieve the integration and prediction
of the lifetime information from the multi-sensor (process shown in Figure 3). The specific model
construction proceeds via the following steps:

1. Obtain expert knowledge and structure and function information of similar products. Analyze
the failure mode and mechanism through the system function-level method. Fault tree analysis is
used for key faults to determine the equipment and mechanisms that affect system lifetime.

2. Deploy sensors for key performance parameters of each device. Collect and process data.
3. Based on the analysis of sensor data, the prediction model is established for each piece of

equipment, and the prediction value of lifetime-related state probability is given.
4. Combined with the system failure mechanism, the prediction value of state probability for the

equipment involved is used as the prior probability for the root node.
5. Combine system logic to form a DAG, and establish a non-root node CPT.
6. The JT estimation algorithm is used to solve the joint probability of relevant nodes, to update the

conditional probability values of each node, and to achieve the deduction of state probability of
system nodes to complete the system prediction.

7. The BN prediction model is still applicable, along with the updating of sensor data and correction
of prediction model at equipment level. If the failure mechanism changes, the DAG and CPT
should be corrected for the updated logical relationship; proceed to Step 3.
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Figure 3. Modeling process of BN prediction at system level based on integrated multi-sensor information.

In the above BN model that interprets node variable with state probability, Sai
Xi
(t), S

bj
Yj
(t), and Sk

L(t)
are used to represent the ai, bj, k th state of root node Xi (i = 1, 2, · · · , p), the intermediate node
Yj (j = 1, 2, · · · , q), and the leaf node L at time t respectively, i.e., ai = bj = k = 1, 2.

For a number of p root nodes, the probability of the state R is solved by the prediction model for
each respective piece of equipment and discretized according to the unsupervised equal-width interval
method with a time sequence to achieve the state prediction in the future T time; that is, the p×n-order
state probability prediction matrix:

Rp×n =

⎛⎜⎝ R1,1 · · · R1,n
...

. . .
...

Rp,1 · · · Rp,n

⎞⎟⎠,

with a certain time sequence T = (t + ζ, t + 2ζ, · · · , t + nζ). The elements Ri,τ =

R(Xi(τ)) (i = 1, 2, · · · , p; τ = 1, 2, · · · , n) represent the probability of the device Xi to be in the state
R. If ζ is taken as the unit time, the probability set R(t) =

(
R1,t, R2,t, · · · , Rp,t

)T corresponds to the
probability of p nodes to be in set X at state R. Correspondingly, the probability of occurrence of state
F is given by F(t) = 1 − R(t).

When the abovementioned multi-sensor information is used to deduce the lifetime prediction
based on the BN, the probability of the root node is firstly assigned according to the probability
prediction matrix. The probability of the root node Xi at time t is P

(
SXi (t)

)
= R(Xi(t)), i = 1, 2, · · · , p.

For the solution of the state probability of intermediate nodes, it is assumed that the parent-node set
X = {X1, X2, · · · , Xi} exists for the node Yj. According to the assumption of independent conditions,
the probability prediction of the intermediate nodes at time t can be solved based on:

P
(
Yj(t)

)
= ∑

X
P
(

SYj(t), SX(t)
)

= ∑
X

P
(

S2
Yj
(t)|SX(t)

)
P
(
SX1(t)

) · · · P
(
SX1(t)

)
,

(7)

The complexity of logical associations of the BN will increase with the number of nodes contained.
Based on the advantages of conditional independence, the complex topological equivalence can be
divided into simple structures, and the construction and inference of three kinds of basic structural
prediction models are taken as examples as follows:
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(1) The parent node set X = {X1, X2, X3} of node Yj contains only the root node (Figure 4).

Figure 4. Logical structure in which the parent node is the root node.

Each state of the parent node is independent of each other at any time, and then the predicted
probability of Yj in state R at time t is as follows:

R
(
Yj(t)

)
= ∑

X1,X2,X3

P
(

SYj(t), SX1(t), SX2(t), SX3(t)
)

= ∑
X1,X2,X3

P
(

S2
Yj
(t)|SX(t)

)
P
(
SX1(t)

)
P
(
SX2(t)

)
P
(
SX3(t)

)
= P

(
S2

Yj
(t)|S2

X1
(t), S2

X2
(t), S2

X3
(t)
)

P
(

S2
X1
(t)
)

P
(

S2
X2
(t)
)

P
(

S2
X3
(t)
)

.

(8)

(2) The parent node set X = {Xa, Y1} of node Yj contains both the root node and the intermediate
node (Figure 5).

Figure 5. Logical structure in which the parent node contains both the intermediate and root nodes.

The predicted probability of node Yj at time t can be solved according to:

R
(
Yj(t)

)
= ∑

Y1,Xa

P
(

S2
Yj
(t)|S2

Y1
(t), S2

Xa
(t)
)

P
(

S2
Xa
(t)
)

∑
X1,X2

P
(

S2
Y1
(t)|SX1(t), SX2(t)

)
· P
(
SX1(t)

)
P
(
SX2(t)

)
= P

(
S2
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(9)

(3) There is a case in which the same parent node points to multiple child nodes (see Figure 6).

Figure 6. Logical structure in which the same parent node points to multiple subnodes.
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The system model that has interconnected logical correlation mostly has network structure.
The same parent node pointing to multiple sub-nodes is the basis for the composition of the network
structure. This situation can be predicted according to:
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(10)

Based on the probability of the root node and intermediate node, the predicted probability of the
leaf node in state R can be further solved according to:

RL(t) = ∑ P
(

SX1(t), SX2(t), · · · , SXp(t), SY1(t), SY2(t), · · · , SYq(t), S2
L(t)

)
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Pa(L)
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(

S2
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(t)
)
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)
· · · P

(
SX1(t)

) · · · P
(

SXp(t)
)

,

(11)

where Pa(∗) is the parent node of the node “(∗)”.
According to the above formula, the JT estimation algorithm traverses the DAG, and the state

and lifetime of the system node L can be predicted. By the probability prediction matrix Rp×n =

(R(t), R(t + ζ), R(t + 2ζ), · · · , R(t + 2ζ)) of the root node, the corresponding prediction sequence of
probability at system level will be obtained to achieve continuous prediction of the lifetime.

4. Modeling, Simulation, and Verification of System-Level BN Prediction

The seven-node DAG shown in Figure 1 contains the three basic structures described above,
and the BN prediction method is simulated and verified as an example. The three-tier system G
consists of parallel subsystems C and F, comprising four devices A, B, D, and E. In the subsystem
C(F), A (D) and B (E) conduct different functions, respectively, which are in series logic. In addition,
according to the early collection of product information, the logic that “if the state of subsystem C
is abnormal, there is a 60% probability of failure for subsystem F” exists between the subsystems.
The key performance parameters of each piece of equipment were determined, monitoring devices
were arranged, and the sensor signals were extracted, processed, and analyzed. The lifetime prediction
model of each piece of equipment was then obtained.

(1) The lifetime characteristics of equipment A and B meet the accidental failure, while D and E meet
the degradation failure, and the corresponding prediction models are shown in Table 2.

Table 2. Prediction model (1) of four pieces of equipment.

Node Description of Prediction Model Lifetime Prediction Model

A Exponential distribution RA(t) = exp(−t/3000)

B Weibull distribution RB(t) = exp[−(t/2300)]1.5

D
Wiener degradation process;

Drift parameters are selected as
the Arrhenius model

RD(t) = − exp
[

2d(s)(L−Y0)
σ2

]
Φ
(
− L−Y0+d(s)t

σ
√

t

)
+ Φ

(
L−Y0−d(s)t

σ
√

t

)
(
EaD = 0.473, AD = 4.7 × 105; Y0−D = 5, LD = 10, σD = 0.01

)
E Degradation under cyclic stress RE(t) = Φ

((
−0.0001(t/10)3 + 200 − 80

)
/
√

5
)
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Based on the prediction model above, the BN model with both accidental failure and degeneration
failure is established to predict the system lifetime of the next 2000 h. The state probability of system G
can be solved by:

RG(t) = ∑ P
(
SA(t), SB(t), SC(t), SD(t), SE(t), SF(t), S2

G(t)
)

= ∑
C,F

P
(
S2

G(t)|SC(t), SF(t)
) · ∑

A,B
P(SC(t)|SA(t), SB(t))

∑
C,D,E

P(SF(t)|SD(t), SE(t), SC(t))P(SA(t))P(SB(t))P(SD(t))P(SE(t)).
(12)

Due to the efficient two-way accurate-inference ability, “engine = jtree _ inf _ engine (bnet)” of
the Bayes Net Toolbox (BNT) for MATLAB developed by Murphy [36] is used to conduct inference,
and the probability of each group of parent and child nodes in state R is shown in Figure 7.

Figure 7. Probability distribution (1) of parent and child nodes at state R for G system group.

The results show that in the first 1000 h the subsystem F shows better performance than C,
and the state probability of system G is the same as that of the former. After 1030 h, however, with the
performance degradation, the failure probability of F suddenly increases, and the probability of
system G being in state R decreases. After 1090 h, subsystem F completely failed, and the system state
was completely determined by subsystem C. Therefore, the prediction curve trends of C and G after
this point are basically the same. The lifetime prediction of the system is estimated and evaluated:
the median life of the system t0.5 = 1098 h; if the system in good condition has a probability threshold
of 0.45, the remaining life is approximately 1226 h.

In addition, the performance degradation simulation curve of E (as shown in Figure 8) shows that
from 1010 to 1090 h the performance parameters of all 15 samples degenerated below the threshold
of 80, and that the 15 samples of device D did not exceed the performance parameter threshold
in the first 1200 h (a simulated degradation curve is shown in Figure 9). Through the analysis of
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the subsystem F, we can see that the main reason for the sudden deterioration of the system is the
performance degradation of device E under cyclic stress, which caused it to exceed the performance
threshold with considerable probability.

Figure 8. Simulation curve of performance degradation of device E.

Figure 9. Simulation curve of performance degradation of device D.

The dotted lines parallel to the horizontal axis of Figures 8 and 9 represent the device
performance threshold.

(2) For all equipment that is in degradation failure mode, the corresponding prediction model and
parameters are shown in Table 3.

Table 3. Prediction model (2) of four pieces of equipment 1.

Node
Description of

Prediction Model
Lifetime Prediction Model

A′
Gamma process;

Scale parameters are selected
as the Arrhenius model

RA′ (t) = Γ(v(s)t, L/u)/Γ(v(s)t)(
EaA′ = 0.453, AA′ = 3.9 × 105; Y0−A′ = 0, LA′ = 12, uA′ = 2.3

)
B′ Wiener process

(
EaB′ = 0.473, AB′ = 6.7 × 105; Y0−B′ = 6, LB′ = 12, σB′ = 0.032

)
1 Prediction models of D and E are the same as in Table 3.
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The state probability prediction curve of each (sub-) system is obtained and shown in Figure 10.

Figure 10. Probability distribution (2) of parent and child nodes at state R for G system group.

Compared to the predicted result above, a system whose devices are all in degradation failure
mode has a low probability of staying intact at 1030 h, specifically, only 0.622. However, the state
probability predicted above at 1030 h is 0.712, and the working state was maintained with a probability
of 0.46 until 1200 h. With a probability threshold of 0.45, the remaining life of the system will be less
than 1064 h. The main reason for the change of system state is subsystem C, in which the performance
parameter of device A follows the Gamma degradation process (Figure 11). The probability of device A
to be at state 2 is reduced to 0.5224 at 1000 h, making the system state significantly degraded; after this
prediction point, the performance degradation of device E in subsystem F is deteriorated, and the
system fails at a faster rate. On one hand, subsystem C has direct effect on the state of system G. On the
other hand, the state of G is indirectly affected through the correlation with subsystem F. Therefore,
the degradation rate of a system state after integration is faster.

It can be verified through the above simulation that a BN can achieve the integration of lifetime
information from multiple sensors in a multi-level system when the equipment grade product
experiences accidental failure or (and) degradation failure, which reasonably predicts system lifetime
from the perspective of state probability, and shows good compatibility and integration for a variety of
low-level prediction models.
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Figure 11. Simulation curve of performance degradation of equipment A′.

5. Application Case

5.1. BN Lifetime Prediction of an Unmanned Solar-Powered System

An unmanned system is a typical multi-level system with complex structure and function logic.
With the air-ground collaborative work requirements, the system achieves its functional requirements
and sharing of information resources layer by layer. At the same time, under environmental influences
such as temperature, humidity, vibration, and interference the unit with the degradation property
and that with the accidental failure together affect the system state and lifetime. In this paper,
a solar-powered unmanned aerial vehicle (UAV) system was chosen as an example to carry out lifetime
prediction based on a BN.

After the system is simplified, the hardware is mainly composed of an airborne system, a data link,
and a ground system. The energy system inside the airborne system must provide power support for
the normal operation of the navigation system, flight control system, power system, communication
system, etc., and it is subject to the state of the battery management system and the solar panel.
Any abnormality can cause the energy system to degrade or even fail to function properly.

The navigation system contains the master and lead. A flight control computer subsystem for
integrated task management, a flight control computer subsystem, and a servo action system are
necessary. In addition to the airborne terminal, the airborne communication system must go through
the data link to achieve the transmission and exchange of information with ground communication
equipment. In the ground subsystem, the power supply system is the energy supply system for
flight operation, the console, communication equipment, and other equipment. For the console,
the requirement is to simultaneously display and control functions. This BN model fully accounts for
the relevance of intermediate nodes. In these subsystems, degradation failure exists in the solar cell
and UAV body material, which is modeled with Wiener process and Gamma process, respectively,
to establish the performance degradation for lifetime prediction. Specifically, the system DAG is shown
in Figure 12, and the 61 nodes contain 37 device-level nodes.
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Figure 12. DAG of a solar-powered unmanned system.

At the same time, considering the characteristics of photovoltaic energy, a special flight profile
is used: To ensure the full storage of the solar panels, before every sunrise the aircraft must climb
from an altitude of approximately 1000 m to a cruising altitude to 8500 m. In order to reduce energy
consumption, a fully charged UAV descends to a low-altitude region in the evening to take advantage
of lower air resistance and will continue to fly. The ideal charge-discharge process under the flight
height profile is shown in Figure 13.

Figure 13. Correspondence between flight height profile of UAV and charge-discharge cycle.

During the process, the ambient temperature will change cyclically with flight height, and the
structure with the temperature degradation characteristic will experience significant state change.
A simplified temperature stress profile is given in Figure 14.
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Figure 14. Simplified temperature profile of solar-powered UAV flight.

The lifetime prediction model considering the temperature stress is established by combining the
sensor information of the 37 devices, and the state of the cruise mission in the next 35 d is predicted
according to the above temperature profile. Figure 15 shows the state probability distribution of the
solar-powered unmanned system and its data link, ground subsystem, and airborne subsystem.

Figure 15. Probability prediction curve of unmanned system state.

The continual decreasing trend reflects the degradation of operation state of the (sub-) system
with time and environmental conditions; the UAV system and airborne subsystem show cyclically
violent state changes after flying 100 h approximately. This is because the temperature degradation
characteristics of the airborne equipment are subject to periodic ambient temperature stress.

5.2. Analysis Based on the Prediction Results

(1) Task risk analysis

In order to make full use of the predicted information to identify the health of the UAV
system, a task risk analysis was carried out on the system based on health status. Based on fuzzy
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theory, the probabilistic predictive values for each time are divided into four healthy states, such as
“healthy”, “minor fault”, “catastrophic fault”, and “close to failure” with the trapezoidal fuzzy number.
The probability distribution curves of four states are shown as dotted lines in Figure 16. The risk of
each state can be weighted to achieve the risk assessment of system at all times (as shown in Figure 16).

Figure 16. Probability distribution and risk prediction of each state of unmanned system.

It can be seen from Figure 16 that the UAV system can work normally in the first 438 h, but frequent
abnormal jumps between “healthy” and “close to failure” occurred between 439 and 496h, and the
worst health state was maintained after 497 h, which leads to a continuous increase in systemic risk,
especially after 512 h when the task risk has exceeded 0.5. Continuing to perform the task poses a
considerable probability of failure and safety risks for personnel and equipment. Additionally, at the
time of 439 h when state mutation firstly occurs, the reliability of each device is predicted and shown
in Figure 17.

Figure 17. Reliability prediction of each piece of equipment at 439 h.
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It can be seen from the figure that the probability that the lithium battery and the data link
(nodes 16, 20, 24, 28, and 37) can work normally is relatively low when the system state begins to
appear abnormally, which may be the fundamental factor causing the deterioration of the system state.

(2) Sensitivity analysis of nodes

Sensitivity can be used to reflect the sensitivity of system output to the amount of input change so
that the weak parts of the system can be identified. Due to the conditional independence assumption
in BN, nodes at the same level are independent of each other, and thus the sensitivity of each node to
the system is defined as:

Θi,S =
∂Rs

∂RXi

=
ΔRs

ΔRXi

(13)

In the BN model of the UAV system, the sensitivity of each subsystem is shown in Figure 18.

Figure 18. System sensitivity to three subsystems.

According to the figure, the system is more sensitive to the state change of node 60 (airborne
subsystem). Further analysis of the airborne subsystem shows that the sensitivity of nodes 16, 20, 24,
and 28 can reach 14 orders of magnitude at a certain local time (the figures of which are not shown in
this paper). In addition, node 37 (data link) is both a subsystem and root node whose sensitivity is at a
high level. As a result, the airborne subsystem and data link subsystem will have a significant impact
on the system state.

(3) Recommendations for reliability design and maintenance

In reliability design, sensitivity analysis can be used to improve the inherent reliability of critical
equipment by design improvement. Meanwhile, close attention should be paid to redundancy design
within the allowable range of aircraft load. This will create significant improvements in the reliability,
availability, and longevity of UAV systems. From the point of view of maintenance and repair,
the maintenance strategy T(C, A∗, Prisk|t) related to maintenance cost C(t), instantaneous availability
A∗(s) and work risk Prisk(t) can be formulated according to the given lifetime index. Combined
with system mission risk and the average cost of preventive and post-maintenance, a maintenance
cost-time model can be established. Maintenance or replacement activities are carried out at higher
cost-efficiency-ratio point in accordance with the priority of the equipment status and sensitivity.
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6. Conclusions

In this paper we propose a modeling method for lifetime prediction of systems from integrated
multi-sensor information at device level based on a BN in order to conduct system-level lifetime
prediction for complex, multi-sensor systems. The simulation results show that the method can
effectively solve the complex logical association of data and the quantitative description of the
uncertainty in the multi-level system, and that it has good integration ability and compatibility
with various prediction models of devices. At the same time, the application research of a multi-level
solar-powered UAV system with multi-device information is carried out, and the task risk and node
sensitivity analysis are conducted according to the prediction results of system lifetime based on
the temperature profile. The research shows that the system prediction method from the integrated
multi-sensor lifetime based on a BN has the following advantages:

(1) By making full use of multi-sensor information, data association, and quantitative expression,
integration and lifetime prediction can be achieved on multi-level, complex, dynamic, multi-source
logic data.

(2) The diversified life expectancy information of the model output is based on different aspects and
complement each other, which provides comprehensive data support and theoretical guidance for
design improvements and maintenance from system view and in the entire lifecycle process that
considers a trade-off of economics, technology, risk, and effectiveness.

However, simulation and application studies show that the proposed method has a high
dependence on the prediction model at the device level. The more accurate lifetime prediction for a
complex multi-level system is based on accurate device-level prediction information, which imposes
higher requirements on information acquisition, processing, and analysis from multiple sensors.
Therefore, there might be limitations in practice by only considering data from sensors. Future work on
lifetime prediction methods based on a BN should focus on the study and understanding of prediction
accuracy, and appropriately take into account other sources and levels data like experimental data
and reasonable expert knowledge and so on to conduct integration. In addition, the prediction
dimension can be extended from two states to multiple states, and the intermediate process of various
mechanisms can be studied in depth by considering the intermediate state to obtain more abundant
lifetime prediction information.
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Abstract: Precise and robust localization in a large-scale outdoor environment is essential
for an autonomous vehicle. In order to improve the performance of the fusion of GNSS
(Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring
Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations
in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point
cloud-based lateral localization method proposed in this paper. Experiment results have verified the
algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable
of providing precise and robust vehicle localization.

Keywords: sensor fusion; Unscented Kalman Filter (UKF); vehicle localization

1. Introduction

Automated driving techniques are widely admitted as a promising and challenging way to avoid
road crashes and improve traffic conditions [1]. To make an autonomous vehicle drive safely in urban
environments, the vehicle needs to know its exact position and orientation. Thus, localization plays a
key role in autonomous vehicle applications. Using the popular GNSS (Global Navigation Satellite
System) for localization requires a GNSS receiver with an unobstructed line of sight to four or more
GNSS satellites. However, even with a high-end GNSS-based system, a vehicle’s location may jump up
to a few meters as different satellites go in and out of view or obstructions in the environments create
multi-path interferences. INS (Inertial Navigation System) is complementary to GNSS as it does not
rely on external information sources, which can be blocked or disturbed. INS can provide complete
navigation information such as position, velocity and attitude by integrating the accelerometer and
gyroscope readings over time. However, as the inertial sensors of an INS are subject to drifts, navigation
systems based on stand-alone INS suffer a rapid degradation of position over time. This is particularly
true when a low-cost IMU (Inertial Measurement Unit) is employed. In the dead-reckoning integration
scheme, wheel encoders are always introduced to slow the rate of growth of IMU integration errors,
but are subject to errors due to wheel slip. However, a robust localization solution can be achieved by
blending GNSS, INS and DMI (Distance Measuring Instruments) techniques in a way that utilizes the
strengths of each individual system and mitigates their weaknesses.

To fuse GNSS, INS and DMI, Extended Kalman Filtering (EKF) is a popular sensor fusion
method [2,3], where nonlinear systems are linearized and approximated around current state estimates.
However, in the EKF, high-order terms are neglected, which are necessary for some situations.
The Particle Filter (PF) [4,5] is another useful method, but the main drawback of this filter is its
computational requirement, which makes it not very suitable for real-time applications. In [6],
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an INS/GPS sensor fusion scheme based on the State-Dependent Riccati Equation (SDRE) nonlinear
filtering method is proposed for Unmanned Aerial Vehicles (UAV), which is widely used in the
optimal nonlinear control and filtering literature. Although this method provides an alternative
INS/GPS filtering scheme, the real-time performance and application to autonomous vehicles in
urban environments are still uncertain. In [7,8], low cost sensors such as cameras are fused with
GNSS/INS to improve the localization accuracy of GNSS in dense urban areas where obstacles block
satellite signals; however, the improvement of accuracy is limited due to the difficulties in some feature
recognition tasks and the calculating of depth information using cameras. Recently, the Unscented
Kalman Filter (UKF) has been used for localization based on GPS/INS sensor fusion [9–11] due to the
ability to remove the messy Jacobian matrix computation and keep at least a second-order nonlinear
function approximation. Although UKF has been proven to be a promising method for GPS/INS
fusion, the accuracy and reliability performance still need to be improved for autonomous vehicles
under urban environments.

On the other hand, the localization approach based solely on GNSS/IMU/DMI cannot always
guarantee a precise location solution due to the existence of the blocking of satellite signals by
obstacles (buildings and trees, etc.) and the cumulative errors of IMU and DMI sensors. In order to
provide precise localization for positioning an autonomous vehicle reliably, we need to explore other
useful information to position an autonomous vehicle. In the urban environment, curbs and lane
markings comprise two kinds of useful information for improving the results of GPS/INS/DMI fusion.
For example, in [12–15], cameras are fused with other sensors such as GPS and IMU to improve the
lateral accuracy by detecting lane markings. However, the detection of lane marking needs to face the
challenges of different lighting, poor lane markings, etc. On the other hand, 3D point clouds generated
by a 3D LiDAR scanner provide more reliable performance for curb detection, which can also be used
to improve the lateral localization accuracy [16–20]. Furthermore, in [21], an eigenvector technique
was used to find a line segment corresponding to edges of roads. In [22], a Hough transform was used
to find the best fit line to the surface on the road, and points corresponding to the best fit line were
used as curb points of the road. In [23], curbs are extracted by using a 1D laser scanner.

In this paper, to further improve the accuracy and reliability of localization for autonomous
vehicles in urban environments, we firstly propose a fault-detection-based loosely-coupled
GNSS/IMU/DMI localization solution, which can improve the performance of the traditional
UKF-based method; then, we correct the lateral localization errors based on curb detection results
using a multi-layer LiDAR. The flowchart of overall localization method is summarized in Figure 1.

Figure 1. The flowchart of the proposed method. DMI, Distance-Measuring Instrument; RNDF, Route
Network Definition File.

The main contribution of this paper is summarized as follows. Firstly, through combining the
fault-detection method with the UKF-based GNSS/IMU/DMI fusion algorithm, the localization
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accuracy of autonomous vehicles is improved greatly; Secondly, a point cloud-based curb detection
and fitting method is proposed to improve the lateral accuracy of the autonomous vehicle further,
where the RANSAC algorithm is utilized. The rest of the paper is organized as follows: Section 2
presents the proposed UKF-based localization approach: firstly, the modeling including the process
model and the measurement model is introduced, followed by the implementation of the UKF. Details
about curb-based lateral localization are provided in Section 3. Section 4 presents the experimental
results. Finally, we conclude the paper in Section 5.

2. UKF-Based Localization Approach

For a vehicle localization system, four coordinate systems are defined:

• Earth-Centered-Earth-Fixed (ECEF) coordinate system (E): It has an origin at the center of the
Earth. The positive Z-axis goes out the Earth’s north pole; the X-axis is along the prime meridian;
and the Y-axis completes the right-handed system;

• Global coordinate system (G): The North-East-Down (NED) coordinate system is defined as G
with the X-axis pointing north, the Y-axis pointing east and the Z-axis pointing down to construct
a right-handed coordinate system;

• Body coordinate system (B): The coordinate system of the vehicle with the X-axis pointing
forwards, the Y-axis pointing left and the Z-axis pointing up;

• Sensor coordinate system (S): the three orthogonal axes of the mounted sensors. We assume that S
coincides with B after sensor to body alignment calibration [24].

One should note that each sensor defines its own coordinate system. We need to note the difference
between the origins for accurate localizations.

We describe the states of the filtering system with the following vector:

x = [p, v, q, b, d]T16×1 (1)

where p and v are the position and velocity of the vehicle within the global frame G, respectively. q is
a unit quaternion that represents the rotation from the body frame B to the global frame G. A unit
quaternion consists of a vector part e = (q1, q2, q3)

T ∈ R3 and a scalar part q4 ∈ R [25]:

q =
[
eT , q4

]T
= [q1, q2, q3, q4]

T

and its norm equals one, that is:
‖q‖ = 1.

As accelerometers and gyroscopes have biases, which can be modeled as random walk processes,
we have two additional vectors b and d in the state vector to represent their biases, respectively.
Both variables are given within body frame B.

2.1. Process Model

The process model governs the dynamic relationship between the states of two successive time
steps, which can be described by:

xt = f (xt−1, ut−1) + wt−1 (2)
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where xt is the predicted state after time period δ based on the last known state vector xt−1, ut−1 is
the input to the state space models and wt−1 is the process noise. In this study, we use the following
process model:

xt = f (xt−1, ut−1) + wt−1

=

⎡⎢⎢⎢⎢⎢⎢⎣
pt−1 + vt−1δ

vt−1+C(qt−1)(ya,t−1−bt−1)δ−gδ

exp
(

1
2 Ω [yω,t−1 − dt−1] δ

)
qt−1

(1 − 1/τa)bt−1

(1 − 1/τω)dt−1

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

wp,t−1

wv,t−1

wq,t−1

wb,t−1
wd,t−1

⎤⎥⎥⎥⎥⎥⎦
(3)

where ut−1 = [ya,t−1, yω,t−1] is the measurement vector from the accelerometer and gyroscope at time
step t−1, C(qt−1) is the corresponding rotation matrix of the quaternion qt−1 [26]:

C(qt−1) =
(

q2
4,t−1−eT

t−1et−1

)
I3 + 2et−1eT

t−1 − 2q4,t−1[et−1]×

representing the transformation from the body frame B to the global frame G, g is the gravitational
acceleration vector and Ω [ω] is a 4 × 4 skew symmetric matrix, as in:

Ω [ω] =

[
− [ω]× ω

−ωT 0

]

where [ω]× is defined by

[ω]× =

⎡⎢⎣ 0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0

⎤⎥⎦
where

[
ωX, ωY, ωZ] are the three elements of angular rates on the X-, Y- and Z-axis,

respectively, and τa and τω are time constants. Process noise is added by the noise vector

wt−1 =
[
wp,t−1, wv,t−1, wq,t−1, wb,t−1, wd,t−1

]T
. Each noise item is modeled as a zero mean Gaussian

noise with covariance matrix Qp, Qv, Qq, Qb, Qd, respectively. The noise items are assumed to be
uncorrelated with each other; thus, the process noise covariance matrix has the following expressions:

Q = diag
[
Qp, Qv, Qq, Qb, Qd

]
. (4)

2.2. Measurement Model

The measurement model governs the relationship between the state vector and sensor
measurements, which is:

yt = g (xt) + nt (5)

In this paper, measurements from the GNSS receiver and encoder are introduced to bound the
errors in estimates of the vehicle position/velocity and attitude. Asynchronous updates are performed
within the UKF as measurements become available from the wheel encoder and GNSS receiver.
For wheel encoder measurements, a filter update is calculated from the measured speed of the vehicle.
For GNSS measurements, a filter update is calculated from the location of the Trimble.

2.2.1. Measurement Model of GNSS

The GNSS receiver could be a differential GNSS receiver or RTK receiver, which measures data at
a relatively low frequency (the measurement update rate is up to 20 Hz). When a measurement from
the GNSS receiver is available, the GNSS measurement model is given by:

yp = p + np (6)
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where np is the GNSS measurement noise modeled as a Gaussian noise, N(0,ΣGNNS),
yp = CG

E [p
X, pY, pZ], and [pX, pY, pZ] is the position on the X-, Y- and Z-axis in the ECEF frame,

calculated by the following equations, respectively:

pX = (N + h) cos λ cos φ

pY = (N + h) cos λ sin φ

pZ =
[

N
(

1 − e2
)
+ h

]
sin λ

where [λ, φ, h] are the latitude, longitude and altitude provided by GNSS fixes. The parameters used
above are defined as follows: N = a/

√
1−e2 sin λ2 is the length from the center of the Earth to the

surface; e =
√

1−b2/a2 is the Earth eccentricity; and a = 6,378,137 (m), b = 6,356,752.3142 (m) are the
Earth ellipsoid semi-major and semi-minor axes, respectively. The transition matrix from the ECEF
frame to the global frame G, is denoted by CG

E as

CG
E =

⎡⎢⎣ − sin λ cos φ − sin λ sin φ cos λ

− sin φ − cos φ 0
− cos λ cos φ − cos λ sin φ − sin λ

⎤⎥⎦ .

The covariance matrix of the GNSS measurement noise is R = ΣGNNS.

2.2.2. Measurement Model of DMI

The measurement model for the encoder is modeled as:

yv = q−1 ⊗ v ⊗ q + nv (7)

where yv = [v, 0, 0] is the velocity of the vehicle in the body frame, v is the wheel speed measurement
from the encoder and ⊗ represents the quaternion multiplication [25]. nv is the encoder measurement
noise modeled as a Gaussian noise, N(0,ΣEncoder), and the covariance matrix of the encoder
measurement noise is R = Σencoder.

2.3. Implementation of UKF

In process Model (3), due to the nonlinearity in the quaternion and velocity state functions,
unscented transform-based approximation to the optimal filtering solution can be derived by executing
two steps of time update and measurement update in turn. In the execution of the two steps, unscented
transform is always carried out first to form the sigma points of the state vector.

2.3.1. Time Update

At time step t, sigma points need to be calculated first and followed by performing the time
update using time update equations.

• Calculate the sigma points:

χ̄t−1 =
[

xt−1 xt−1 ±√
(n + κ) Pt−1

]
(8)

where χ̄t−1 are the sigma points of state vector x at previous time step t − 1, n is the dimension
of the state vector x, κ = α2 (n + γ)− n. α determines the spread of the sigma points and γ is a
secondary scaling parameter, which is usually set to one. One should note that the initial condition
x0 ∼N (x0, P0) should be known.
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• Time update process:
χ̄t|t−1 = f

(
χt−1, ut−1

)
(9)

x−
t =

2n

∑
i=0

Wm
i χ̄i,t|t−1 (10)

P−
t =

2n

∑
i=0

Wc
i

(
χ̄i,t|t−1−x−

t

)(
χ̄i,t|t−1−x−

t

)T
+Q (11)

where x−
t and P−

t are the predicted mean and covariance, respectively, and Wm
i and Wc

i are the
weights of mean and covariance, which are associated with the i-th point, given by [27]:

Wm
0 =

κ

n + κ

Wc
0 =

κ

n + κ
+ (1 − α2 + β)

Wm
i = Wc

i =
1

2(n + κ)
, i = 1, 2, ..., 2n

where β is a parameter used to incorporate any prior knowledge about the distribution of state x

(for Gaussian distributions, β = 2 is optimal).

2.3.2. Measurement Update of GNSS

When fix measurement y = yp is available, we can update the nearest state prediction x−
t and

covariance matrix P−
t using the following equations. At first, sigma points need to be calculated and

then, measurement update is performed using measurement update equations.

• Calculate the sigma points:

χ̄t =
[

x−
t x−

t ±
√
(n + κ) P−

t

]
(12)

where x−
t and P−

t are the predicted mean and covariance from time update at time t, respectively.
• Perform measurement update:

Ȳt = g (χ̄t) (13)

ȳt =
2n

∑
i=0

Wm
i Ȳi,t (14)

Pyt =
2n

∑
i=0

Wc
i (Ȳi,t − ȳt) (Ȳi,t − ȳt)

T
+ R (15)

Pxtyt =
2n

∑
i=0

Wc
i
(
χ̄i,t − x−

t
)
(Ȳi,t − ȳt)

T (16)

Kt = Pxtyt

(
Pyt

)−1 (17)

νt = yp,t − ȳt (18)

xt = x−
t + Ktνt (19)

Pt = P−
t − KtPyt K

T
t (20)

where Ȳt are the projected sigma points through the measurement function h, ȳt is the predicted
measurement produced by the weighted sigma points, Pyt and Pxtyt are the predicted measurement
covariance and the state-measurement cross-covariance matrix, respectively, Kt is the Kalman
gain, νt is the innovation and xt and Pt are the updated state and covariance at time t, respectively.
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2.3.3. Measurement Update of DMI

When wheel speed measurement y = yv is available, we can update the nearest state prediction
x−

t and covariance matrix P−
t using the similar equations with fix measurement update. Similarly,

sigma points need to be calculated, and then, measurement update is performed using measurement
update equations.

2.4. Automatic Detection the Degradation of GNSS Performance

GNSS suffers multi-path errors if the satellite signals are reflected off one or more surfaces before
reaching the receiver antenna. A different set of satellites is utilized for fix determination, which can
also alter the GNSS fix. Big gaps occur when GNSS signals become available again after short-term
GNSS dropouts due to the presence of trees and buildings. Different checks are adopted to make our
pose estimator robust to the aforementioned jumps, which are explained as follows:

Zero-Velocity update: As GNSS receivers due to pseudo-random error cannot output fixed
position information when the vehicle stays in a stationary position, if the vehicle is not in motion,
which can be well detected from the encoder readings, measurements from the receiver are not used
for updates. This will restrict the vehicle to a fixed location.

Number of satellites: If the number of satellites visible to the receiver is four or more, the
measurements from the receiver pass the check.

Dilution Of Precision (DOP): If Horizontal DOP (HDOP) or Vertical DOP (VDOP) is larger than a
threshold, the measurements will be discarded.

Statistical test: During the GNSS measurements update, if an abrupt jump in the GNSS fix occurs,
the correction made by the GNSS measurement update will cause the IMU solutions to incorrectly
follow these jumps. The chi-squared test is applied once the innovation ν and the innovation covariance
matrix Σν are obtained in the measurement update [28], as in:

νTΣ−1
ν ν ≤ ς (21)

where the value ς is usually set to reject the innovations exceeding the 95% threshold. During the
GNSS measurement update stage, if (21) holds, then the GNSS fix is accepted, and the measurement
update proceeds.

Assessing the new horizontal position reading and subtracting it from the current estimate of
position: If the difference is much higher than what it should be when compared to the vehicle speed
obtained from the encoder, which is assumed to be an accurate quantity, then the measurements
are discarded.

Check the altitude component: If the measurements are much higher than the innovation,
the updates will be aborted.

Validity of position change: After the GNSS measurement update, the change in position Δp can
be calculated by:

Δp = pt − pt−1 (22)

The change in position is invalid if it satisfies:

|Δp|>v (1 + η)Δt + ε ∨
(
|Δp|>ε ∧ Δp

|Δp| ·
[

cos ψ

sin ψ

]
>τ

)
(23)

where ψ represents the travel heading, calculated from quaternion q [25]. η, ε and τ are three constants
representing the anticipated percentage velocity error, allowed position jitter and allowable travel
direction error, respectively. When Δp is rejected, a predicted position is calculated based on heading
and wheel speed.
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The accuracy of the estimated location of the vehicle is about 1–3 cm or 1 m depending on RTK
or if the differential mode is operating.The resulting lateral offset will not guarantee safe driving for
autonomous vehicles. In the following section, we are going to introduce the lateral localization based
on LiDAR measurements to improve the accuracy of the localization results.

3. Correction of Lateral Localization Errors

After we get the localization result from the fusion of GNSS/IMU/encoder, the lateral localization
error can be calculated as follows. The detection of curbs using LiDAR (Light Detection And Ranging)
provides an accurate lateral distance between the vehicle and curb (denote it by d1); at the same time,
the same distance can also be calculated using the localization result from GNSS/encoder and RNDF
(Route Network Definition File) information (denote it by d2). The difference of d1 and d2, i.e., d1 − d2,
is the lateral localization error, which can readily be corrected.

Assume that the RNDF (Route Network Definition File) information is accurate enough: given the
vehicle position provided by the GNSS/IMU/DMI fusion system, a lateral distance from the vehicle to
the curb can always be obtained through a simple geometry calculation; see the yellow line segment in
Figure 2.

However, as known to all, the result of the GNSS/IMU/DMI fusion system is always affected by
drifts due to the signal failure of GNSS caused by the complexity of the urban environment. This drift
may cause the vehicle to hit the curb or rush to the next lane, which may cause a serious accident.
In Figure 3, the pink line is the curb line that is fitted by the point cloud collected by a 3D LiDAR,
whose accuracy is less than 10 cm, and the orange line is the curb line of the RNDF; obviously, there is
a large difference between the vehicle to these two lines, which is caused by the drift of the localization
result. Thus, a lateral correction is very necessary for the localization of the autonomous vehicle.
To accomplish the goal of LiDAR-based lateral error correction, we first detect longitudinal curbs and
use them as measurements to estimate the autonomous vehicle’s lateral distance, then compare it with
the distance calculated from RNDF, e.g., the yellow line as shown in Figure 2. The difference of these
two distances is then used to correct the lateral error of the autonomous vehicle.

Figure 2. Lateral distance from the vehicle to the curb.
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Figure 3. Curb estimated by fitting.

3.1. Curb Detection

3.1.1. Curb Detection Principle

The first step for lateral correction is the curb detection. Figure 4 shows the curb detection
principle. Assume that A, B, C, D, E are part of the adjacent points collected by one beam of a 3D
LiDAR; the vectors

−→
AB,

−→
BC,

−→
CD,

−→
DE can be calculated, and B, C can be selected as the curb point since

the angle between
−→
BC and the ground is very large, the same for vector

−→
CD.

Figure 4. Points selected on the curb. A, B, C, D are 3D points obtained by LiDAR. B and C are selected
as points on the curb since the vectors �BC and �CD are more “upcast”.

3.1.2. Algorithm for Curb Detection

This subsection provides Algorithm 1 which is used for curb detection.
The following Figure 5 presents an example of the curb detection result where curb points are

marked as white points.
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Algorithm 1 Framework of curb detection.

Require:
Point clouds collected by a 3D LiDAR;

Ensure:
Step 1: Given input point cloud, select the area of interest;

Step 2: Calculate the vector difference of adjacent points in each beam;

Step 3: Select curb-like points and filter out noises;

Step 4: Separate higher obstacles by comparing the height with a threshold;

return Curb points.

Figure 5. Output to the curb detection module.

3.2. Curb Line Fitting Using RANSAC

After detecting the curb, the next step is to fit the curb line using the RANSAC algorithm, which
is an iterative method to estimate the parameters of a curve from detected curb points. The details are
presented in the following Algorithm 2.

Denote S as a set of curb points that are separated from higher obstacles, then we have

Algorithm 2 Framework of curb fitting.

Require:
Detected curb points;

Ensure:
Step 1: Randomly select a sample of s curb points from S, and instantiate the model from this subset;

Step 2: Determine the set of curb points Si that are within a distance threshold t of the model. The set
Si is the consensus set of samples and defines the inliers of S;

Step 3: If the subset of Si is greater than some threshold T, re-estimate the model using all of the
points in Si and terminate;

Step 4: If the size of Si is less than T, select a new subset and repeat the above;

Step 5: After N trials, the largest consensus set Si is selected, and the model is re-estimated using all
of the points in the subset Si.

return Curb model.
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In Algorithm 2, the calculation of the distance is a key point, since there are two curb cases:
straight line and curve; the distance calculation is different for these two cases. Fortunately, given the
curb map obtained offline and the vehicle position, the shape of the curb can be known beforehand
since the curb shape does not change much within a certain area. The following are the individual
methods to calculate the distance.

A. Straight line curb case: In Figure 6, the positive direction of the X coordinate denotes the
heading direction of the vehicle; the positive direction of the Y coordinate denotes the left side of the
vehicle; the straight line denotes the curve, and its algebraic expression is:

ax + by + c = 0 (24)

assume the coordinate of one curb point is (xi, yi) and the distance di is defined as the minimum
distance from (xi, yi) to the straight line, which can be calculated as:

di =
|axi + byi + c|√

a2 + b2
(25)

Figure 6. Straight line curb.

B. Curve line curb case: Similar to Figure 6, in Figure 7, the positive direction of the X coordinate
denotes the heading direction of the vehicle; the positive direction of the Y coordinate denotes the left
side of the vehicle. The curve line denotes the curb, and its algebraic expression is:

y = ax2 + bx + c (26)

In addition, each dashed line denotes the tangent line of the curve, which is perpendicular to
the line joining the point of tangency and the curb point (xi, yi). Assume that the coordinate of one
curb point is (xi, yi); the distance di is also defined as the minimum distance from (xi, yi) to the curve,
which can be calculated as follows:

Firstly, we need to find one point on the curve that is perpendicular to the line joining the point of
tangency and the curb point (xi, yi). Denote this point as (x, ax2 + bx + c); the slope of the tangent line
across this point can be calculated as:

k1 = 2a + b

and the slope joining this point and the curb point (xi, yi) is:

k2 =
yi − (ax2 + bx + c)

xi − x
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From k1k2 = −1, we have:

Aix3 + Bix2 + Cix + Di = 0 (27)

where:

Ai = 2a2,

Bi = 3ab

Ci = 2ac + b2 + 1 − 2ayi,

Di = bc − byi − xi

The real root of (27) is:

x∗ = − 1
3Ai

(Bi + Ci +
δ0

δ2
) (28)

where:

δ0 = B2
i − 3AiCi

δ1 = 2B3
i − 9AiBiCi + 27A2

i Di

δ2 = (0.5(δ1 +
√

δ2
1 − 4δ3

0))
1
3

Then, we have:

y∗ = ax∗2 + bx∗ + c (29)

The minimum distance from curb point (xi, yi) to the curve is:

di =
√
(xi − x∗)2 + (yi − y∗)2 (30)

Figure 7. Curve line curb.

The following Algorithm 3 presents the pseudo-code of curb fitting.
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Algorithm 3 Pseudo-code of curb fitting.

Require:
M 3D points (only the X and Y coordinates are used);

Ensure:
Step 1: Initialize parameters of the algorithm. Let N = 1000; T = 0.6 × M;

Step 2: Repeat for N iterations:

a. Select two points randomly from the M points;

b. Compute the parameters (a, b, c) that define the line passing through those two points;

c. Count the number of inliers for the current line;

d. If the number of inliers is greater than or equal to T, terminate;

e. Keep the line having a maximum number of inliers;

Step 3: Draw the line having the maximum number of inliers.

return Line/curve parameters of curbs.

3.3. Lateral Correction Based on the Kalman Filter

3.3.1. Lateral Error Estimation

After fitting the curb into straight lines or curves (roundabout area) by using the candidate points
selected from the point cloud of a 3D LiDAR, the next step is to calculate the lateral distance from
the vehicle to the curb. Assume the curb is straight. The curve case is similar, as shown in Figure 8.
The solid line denotes the RNDF curb. The dash-dotted line denotes the curb estimated. The origin
denotes the position of the vehicle. In the lateral direction, i.e., the positive direction of the Y coordinate,
there is a gap e, which is the lateral error caused by the localization error. Obviously, in order to
correct this error, we need to adjust the vehicle position from the origin to the position of the rectangle
on the dashed line, which means move the vehicle a distance e along the positive direction of the
Y coordinate.

Figure 8. Lateral distances.

In order to filter the noise caused by sensor and measurement noise, etc., and smooth the lateral
adjustment, a one-dimensional Kalman filter [29] is used to estimate the difference of lateral distances
from the vehicle to the estimated curb and RNDF curb. Define the measurement vector yt as the
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difference e and the state vector xt as the systematic part of this difference. Assume the change of x in
time to be random. Set the system transition matrix as the identity matrix. We have that the system of
equation takes the form:

xt = xt−1 + wt (31)

the observation equation is given by:

yt = xt + vt (32)

where wt, vt are scalar variables of zero mean. The initial value x0 is assumed to be zero. Then,
our Kalman filter algorithm has the following form:

• State space: The space of real number R

• State Vector: xt

• System equation: xt = xt−1 + wt

• Observation: yt = xt + vt

• Prediction equation: xt/t−1 = xt, Pt/t−1 = Pt−1 + Wt

• Updating equations: xt = xt/t−1 + Kt(yt − xt/t−1),

Kt =
Pt/t−1

Pt/t−1+Vt

Pt = (1 − Kt)Pt/t−1

3.3.2. Lateral Adjustment

After we obtain the lateral difference e, which is the output of the one-dimensional Kalman filter
as stated in the last subsection, next, we need to calculate the adjustment of the vehicle position in the
global frame. Here we denote the adjustment as (Δx, Δy).

Assume the global pose of the vehicle is (xv, yv, φv), and the intersection point coordinate of the
estimated curb line and Y coordinate in the local coordinate frame of the vehicle is (xl , yl), while the
global coordinate of this intersection point is denoted as (xg, yg), then we have:

Δx =
e

dRNDF
(xg − xv)

Δy =
e

dRNDF
(yg − yv)

where e is the lateral distance error, dRNDF is the lateral distance from vehicle to the RNDF curb
line and:

xg = xv + xl cos(φv)− yl sin(φv)

yg = yv + xl sin(φv) + yl cos(φv)

Then, (Δx, Δy) are added to the vehicle global position to correct the lateral error, i.e.,

x′
v = xv + Δx

y′
v = yv + Δy

where (x′
v, y′

v) is the vehicle coordinate after adjustment, which corresponds to the [pX, pY] of the
vehicle position p in (1).
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4. Experimental Results

Result of GNSS/INS/DMI-Based Localization

In this subsection, we evaluate the performance of GNSS/IMU/DMI-based localization
quantitatively using the publicly available dataset proposed in [30], where the ground truths of
poses are provided to be 1.0 cm and 0.5◦. Since the dataset does not include encoder data, artificial
encoder data are generated from the RTK GNSS speed measurements, which are used as the ground
truth. They are upsampled to get the output rate of 100 Hz. The proposed approach is tested on the
experimental Campus-0L (5.563 min) in which the trajectory totally covers about 1143 m in distance
with two sharp turns. In this paper, we compare the pose estimates from two UKF-based methods
with the reference: one is the UKF method with the jump detection strategies, represented by ‘UKF’;
the other one is the UKF method without jump detection involved, represented by ‘UKF w/o’. In what
follows, we use ‘REF’ to represent the reference trajectory.

Figure 9 illustrates the estimated vehicle trajectories in the horizontal plane provided by the two
methods against the reference. In the plot, the solid black line represents the reference trajectory; the
dots indicate the GNSS measurements; the red dashed line shows the estimated trajectory by ‘UKF’;
and the blue dash-dotted line demonstrates the trajectories estimated by ‘UKF w/o’. As we can see
from the figure, the estimated trajectories from both methods follow the reference well, as there is no
obvious jumps in this dataset.

Figure 9. The estimated trajectories by the UKF-based methods with or without (w/o) the jump
detection strategies against the reference.

During this experiment, no jump exists in the DGNSSmeasurements. To verify the efficiency of
jump detection, some random noises were intentionally induced, which can be seen from the GNSS
measurements represented by dots in Figure 10. Figure 10 illustrates the estimated trajectories in
the horizontal plane against the reference with simulated GNSS jumps. The results are provided by
the ‘UKF w/o’ and ‘UKF’ methods. As we can see from the figure, even with the GNSS jumps, the
trajectory estimated by the ‘UKF’ method still follows the reference very well; however, the trajectory
from the ‘UKF w/o’ method deviates from the reference when GNSS jumps are introduced.
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Figure 10. The estimated trajectories by the UKF-based methods with or without the jump detection
strategies with random noises in the GNSS measurements against the reference.

From Figures 9 and 10, it can be seen that though the accuracy of position using UKF has been
improved, lateral localization errors still exist, which may need to be corrected. To verify the lateral
error correction method proposed in this paper, we apply it to the autonomous vehicle of the Institute
for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, which is
equipped with GPS/IMU/DMI/LiDAR [31]; see Figure 11.

Figure 11. Autonomous vehicle equipped with GPS/IMU/DMI/LiDAR.

Point clouds of curb-like obstacles around the vehicle are detected by the 3D LiDAR mounted on
the vehicle. After separating curbs from other obstacles and fitting them into straight lines and curve
lines, lateral distances from vehicle to the curbs are calculated, then we apply the lateral correction
method proposed in Section 3 to correct the lateral error of the GPS/IMU/DMI localization results.
Figures 12 and 13 show the localization results of the autonomous vehicle without and with lateral
error correction, respectively, where pink lines denote the curb detected using the method proposed
in this paper, and the long yellow line segment in each figure is the curb line obtained from RNDF,
while the short yellow line segment denotes the lateral distance between the vehicle to RNDF curbs.
Figure 14 shows the lateral errors before and after lateral correction during a period of time. From
Figures 12–14, it can seen that lateral localization errors have been improved greatly.
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Figure 12. Localization result without lateral correction.

Figure 13. Localization result with lateral correction.
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Figure 14. Lateral errors before and after lateral correction.
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5. Conclusions

In this paper, to further improve the localization accuracy of an autonomous vehicle using the
UKF-based GNSS/IMU/DMI fusion method, a multi-constraint fault-detection approach is proposed
to handle the GNSS jumps. In addition, point cloud-based lateral correction is also proposed, where
curbs are estimated in real time using a 3D LiDAR. A one-dimensional Kalman filter is adopted to
estimate the lateral errors, which are used to improve lateral localization. Our method suppresses
falsely-detected curb points by using the RANSAC algorithm. In future work, after the selection
of point clouds for curbs, machine learning and deep learning algorithms may be used to further
process the point clouds, such that curbs can be separated from other obstacles, such as vehicles
and pedestrians.
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Abstract: As an important tool of information fusion, Dempster–Shafer evidence theory is widely
applied in handling the uncertain information in fault diagnosis. However, an incorrect result may
be obtained if the combined evidence is highly conflicting, which may leads to failure in locating
the fault. To deal with the problem, an improved evidential-Induced Ordered Weighted Averaging
(IOWA) sensor data fusion approach is proposed in the frame of Dempster–Shafer evidence theory.
In the new method, the IOWA operator is used to determine the weight of different sensor data
source, while determining the parameter of the IOWA, both the distance of evidence and the belief
entropy are taken into consideration. First, based on the global distance of evidence and the global
belief entropy, the α value of IOWA is obtained. Simultaneously, a weight vector is given based on
the maximum entropy method model. Then, according to IOWA operator, the evidence are modified
before applying the Dempster’s combination rule. The proposed method has a better performance in
conflict management and fault diagnosis due to the fact that the information volume of each evidence
is taken into consideration. A numerical example and a case study in fault diagnosis are presented to
show the rationality and efficiency of the proposed method.

Keywords: Dempster–Shafer evidence theory; belief entropy; distance of evidence; IOWA operator;
fault diagnosis; sensor data fusion

1. Introduction

The structure of the modern engineering system is more and more complex [1,2], and how to
maintain the safety of these systems is a critical problem. Various types of faults may occur because
of long-time continuous operation and the changing environmental factors, which may bring great
threats to human life [3–6]. Therefore, fault diagnosis plays an important role in real applications
in daily life [7–10]. In practical applications, a multi-sensor system is widely used in fault diagnosis
to make a comprehensive judgment [11–13]. For example, fault detection and isolation have been
successfully used on the well known Airbus aircraft [14,15], which plays a key role in ensuring the
safety of the aircraft [16,17]. However, the information, which may be obtained from a multi-sensor
system, is heterogeneous and imprecision [18]. Therefore, it is essential that the uncertain information
is pre-processed before data fusion and decision-making [19,20].

Information fusion is a key technology of combining multi-source information [21,22]. To address
the uncertain information, some mathematical tools focused on data fusion have been introduced, such
as fuzzy sets theory [23,24], Dempster–Shafer evidence theory [25–27], comprehensive optimization
algorithm [28,29] and so on [30–32]. As an important tool in information fusion, Dempster–Shafer
evidence theory is widely applied in fault diagnosis [33], pattern recognition [34–37], multi-criteria
decision-making [38–40], risk analysis [41–44], controller design [45,46] and so on [47–49]. However,
an incorrect result may be obtained if the combined evidence is highly conflicting. To handle this
problem, many methods have been presented [50–52].

Sensors 2017, 17, 2143 282 www.mdpi.com/journal/sensors
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In the frame of Dempster–Shafer evidence theory, while dealing with the conflicting data fusion,
one kind of method is to modify the conventional combination rule. Yager modifies Dempster’s
combination rule through redistributing the conflicting evidence [53]. However, this method
may destroy the good properties of Dempster’s combination rule, such as the commutativity and
associativity. In addition, it is unreasonable to blame the combination rule if the incorrect results
are caused by sensor failure. Another typical method is to modify the evidence before applying
Dempster’s combination rule. Murphy’s method averages the evidence, which does not consider the
difference among the evidence [54]. The distance of evidence is used to obtain the weight in Deng et
al.’s method [55], which does remedy the disadvantage of Murphy’s method to a certain extent.

In this paper, an improved evidential-Induced Ordered Weighted Averaging (IOWA) sensor data
fusion method is proposed in dealing with multi-sensor data fusion in fault diagnosis. Firstly, according
to the global distance of evidence dg and the global belief entropy Eg

d , α value of the maximum entropy
method (MEM) is established. Namely, the α value is jointly determined by dg and Eg

d . Secondly, a
weight vector W = (w1, w2, · · · , wn)T is generated based on the MEM model. After that, the evidence
are modified by the new IOWA-based weight factor. Finally, the obtained evidence is combined (n − 1)
times with Dempster’s combination rule. A numerical example and a case study on fault diagnosis
verify the validity and reasonability of the proposed method.

This rest of this paper is organized as follows. The preliminaries are introduced in Section 2.
In Section 3, a new evidential-IOWA sensor data fusion method is proposed. The application of the
new method is presented in Section 4. Conclusions are given in Section 5.

2. Preliminaries

2.1. Dempster–Shafer Evidence Theory

Dempster–Shafer evidence theory was introduced by Dempster and then developed by Shafer,
which is usually applied to manage the conflicting evidence [56,57].

Let Θ be the frame of discernment, and be defined as Θ = {θ1, θ2, · · · , θn}. A basic probability
assignment (BPA) m : 2Θ → [0, 1], is defined as follows [25,26]:⎧⎨⎩

m(∅) = 0,

∑
A⊆Θ

m(A) = 1. (1)

when m(A) > 0, A is called a focal element.
Suppose m1 and m2 are two BPAs on the frame of discernment Θ, Dempster’s combination rule is

defined as follows [25]:

m(A) =

⎧⎪⎪⎨⎪⎪⎩
∑

B∩C=A
m1(B)m2(C)

1 − k
, A �= ∅,

0, A = ∅,

(2)

where k = ∑
B∩C=

m1(B)m2(C), is regarded as a measure of conflict between m1 and m2. The larger the k,

the larger the degree of conflict.

2.2. Jousselme Distance

Jousselme distance is presented to measure of the difference—or the lack of similarity—between
any two BPAs, which is introduced as follows.

Let m1 and m2 be two BPAs on the frame of discernment Θ, then the distance between m1 and m2

is [58]:

d(m1, m2) =

√
1
2
( �m1 − �m2)T D( �m1 − �m2), (3)

283



Sensors 2017, 17, 2143

where D is an 2|Θ| × 2|Θ| matrix whose elements are

D(A, B) =
|A ∩ B|
|A ∪ B| A, B ∈ 2Θ. (4)

2.3. Belief Entropy

Deng entropy is the generalization of Shannon entropy [59], which is defined as follows [60]:

Ed = −∑
i

m(Bi)log2
m(Bi)

2|Bi | − 1
, (5)

where Bi is a proposition in the BPAs, and |Bi| is the cardinality of Bi.
The entropy can definitely degenerate to the Shannon entropy especially when the belief is only

assigned to single element. Namely,

Ed = −∑
i

m(Ci)log2
m(Ci)

2|Ci | − 1
= −∑

i
m(Ci)log2m(Ci), (6)

and, for m1(A) = 2|A|−1
∑

B⊆X
2|B|−1

, A, B ⊆ X, m1 is the mass function having the maximum Deng entropy for

the frame of discernment X = {a, b, c}, and its uncertainty can also be calculated by ∑
B⊆X

log2(2
|B| − 1).

2.4. IOWA Operator

The Induced Ordered Weighted Averaging (IOWA) operator [61], which is introduced by Yager
and Filev, is a more general type of the Ordered Weighted Averaging (OWA) operator. An important
feature of this operator is that the ordering of the arguments is induced by another variable called the
order inducing variable.

Assume there are n two-tuple OWA pair 〈ui, ai〉, i = 1, · · · , n that has an associated weight vector
W = (w1, w2, · · · , wn)T of dimension n having the following properties:

0 ≤ wj ≤ 1,
n

∑
j=1

wj = 1.
(7)

Then, the IOWA operator is defined as follows [61]:

Fw(〈u1, a1〉, · · · , 〈ui, ai〉) =
n

∑
j=1

wjbj, (8)

where bj is the ai of the OWA pair having the jth largest ui. ui is referred as the order inducing variable
and ai is referred as the argument variable.

orness, which is associated with the weight vector W = (w1, w2, · · · , wn)T , is defined as follows:

α = orness(W) =
1

n − 1

n

∑
j=1

wj(n − j), (9)

where 0 ≤ orness ≤ 1.
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2.5. Maximum Entropy Method

To apply the IOWA operator in fault diagnosis, a very crucial issue is to determine its weight.
The weight problem is denoted as a constrained nonlinear optimization model in the MEM model,
which is presented by O’Hagan. The weight is gained by the following optimization model [62]:

Maximize : Disp(W) = −
n

∑
j=1

wjln(wj),

S.t orness(W) = α =
1

n − 1

n

∑
j=1

wj(n − j),

n

∑
j=1

wj = 1,

0 ≤ wj ≤ 1 f or j = 1, . . . , n.

(10)

Suppose n = 5 and the weights satisfy different degrees of orness : α = 0, 0.1, . . . , 1, then the
weight vector is determined by MEM model, which is shown in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

w
i

 

 

w
1

w
2

w
3

w
4

w
5

Figure 1. Variation of the weight with orness degree.

From Figure 1, we can conclude that: the value of the weight vector is closer to the average value
W = (1/n, 1/n, · · · , 1/n)T ; the value of α is closer to α = 0.5; the value of the weight vector is closer
to W = (1, 0, · · · , 0)T ; the value of α is closer to α = 1. Namely, the smaller the credibility gap among
BPAs, the more average for weight distribution.

3. The Evidential IOWA-Based Fault Diagnosis Method

As shown in Figure 2, in the fault diagnosis technique, typically, the first step should be
information collecting from actuators. Secondly, all hypotheses are modelled (by BPAs in the frame of
Dempster–Shafer evidence theory). Thirdly, the evidence is modified according to the IOWA operator.
Finally, data fusion is applied for fault diagnosis and decision-making. Here, how to get an appropriate
weight to modify the evidence is very important for locating the possible fault accurately. In the
proposed method, the MEM model based on the distance of evidence and the belief entropy are used
to generate the appropriate weight of evidence.
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Figure 2. Overall structure of fault diagnosis based on sensor data fusion.

3.1. The Evidential-IOWA Parameter

Recently, the IOWA operator has aroused the attention of scholars and is widely used in real
applications [63–65]. However, there are some problems while using the IOWA operator. For example,
the α value of a constraint condition usually depends on the experience of the experts, which does not
lead to an objective result. In this paper, based on the the distance of evidence and the belief entropy,
the α value is induced as an objective weight.

3.1.1. Definition of α in IOWA

The distance of evidence and the belief entropy are jointly considered to determine the α value.
The value of α is defined as follows:

α =
1
2
(α1 + α2) =

1
2
(edg ·ln 0.5 + 0.5Eg

d ), (11)

where dg is the global distance of evidence, Eg
d is the global belief entropy, and 0 ≤ dg ≤ 1,

0 ≤ Eg
d ≤ 1, 0.5 ≤ α ≤ 1. α1 is a data-driven value based on the distance of evidence, and α2

is another data-driven value based on belief entropy.
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3.1.2. Definition of α1 Based on the Distance of Evidence

Assume that there are many pieces of evidence for fault diagnosis. The Jousselme distances
dij, i, j = 1, 2, · · ·, n between two evidence mi and mj can be calculated according to Equation (3), and
the distance matrix (DM) is defined as follows:

DM = [dij] =

⎡⎢⎢⎢⎢⎣
d11 d12 · · · d1n
d21 d22 · · · d2n

...
...

...
...

dn1 dn2 · · · dnn

⎤⎥⎥⎥⎥⎦ . (12)

The average distance of evidence of mi, i = 1, 2, · · · , n, with respect to the other evidence, denoted
as di, is defined as follows:

di =

n
∑

i=1,i �=j
dij

n − 1
, i = 1, 2, · · · , n, (13)

then, the global distance of evidence among all the evidence dg is defined as follows:

dg =

n
∑

i=1
di

n
, i = 1, 2, · · · , n. (14)

If the global distance of evidence dg has a big value, the smaller the global similarity degree among
the diagnosed results, the smaller the credibility degree of each sensor. In other words, the smaller the
weight gap among the BPAs, the more average the weight distribution is, which means that the value
of α is closer to α = 0.5. If dg = 1, which means that the diagnosed fault type of multi-sensor is entirely
different; in this case, the credibility degree of each evidence is the same with each other. Thus, the
evidence should be assigned the same weight, namely, the weight vector is W = (1/n, 1/n, · · · , 1/n)T

and α = 0.5.
Conversely, the smaller the value of dg, the greater the global similarity degree of the diagnosed

results, so the BPAs can be represented approximately by less or even one BPA with a high credibility
degree. That is to say, the BPA with high credibility degree is given a greater weight and the BPA with
a low credibility degree is given a small weight. Thus, the smaller the value of dg, the more inequality
of the weight distribution, which means the value of α is closer to α = 1. If dg = 0, which means
that the diagnosed results are similar, so the BPA can be represented by any BPAs. Considering the
consistency of the algorithm, the initial weight is assigned as W = (1, 0, · · · , 0)T and α = 1.

Based on the above analysis, a relational formula of the degree of orness α1 is defined as follows:

α1 = edg ·ln 0.5, (15)

where dg is the global distance of evidence, and 0 ≤ dg ≤ 1, 0.5 ≤ α1 ≤ 1.

3.1.3. Definition of α2 Based on the Belief Entropy

Deng entropy is an efficient tool to measure uncertainty, not only under the situation where
the uncertainty is represented by a probability distribution, but also under the situation where the
uncertainty is represented by the BPAs. Thus, this entropy is used to determine the α value.

The global belief entropy Eg
d is defined as follows:

Eg
d =

n
∑

i=1
Edi

n · (Ed)max
, (16)
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where Edi is the belief entropy of the evidence mi. (Ed)max is the maximum belief entropy on the frame
of discernment X, which is defined as:

(Ed)max = log ∑
B⊆X

(2|B| − 1). (17)

The greater the global belief entropy Eg
d , the greater the global uncertainty of the diagnosed

faults. Therefore, the weight distribution should be more average, and the α value is more close to 0.5.
If Eg

d = 1, it shows that the diagnosed faults is entirely uncertainty, so they should be assigned to the
same weight, that is, α = 0.5.

The smaller the global belief entropy Eg
d , the smaller the global uncertainty of the diagnosed

faults. Then, the BPA can be represented approximately by a few or even one BPA of relatively small
uncertainty. Therefore, the smaller the Eg

d , the more inequality the weight distribution, the closer α = 1.
If Eg

d = 0, the BPA can be represented by any BPAs, that is to say, the weight vector is W = (1, 0, · · · , 0)T

and α = 1.
Based on the above analysis, a relational formula of the degree of orness α2 is defined as follows:

α2 = 0.5Eg
d , (18)

where Eg
d is the global belief entropy, and 0 ≤ Eg

d ≤ 1, 0.5 ≤ α2 ≤ 1.

3.1.4. The Weight Vector of IOWA

After obtaining the parameters α, the weight vector W = (w1, w2, · · · , wn)T can be obtained
according to the MEM model. Assume that there are n BPAs mi, i = 1, 2, · · ·, n, the weight vector
W = (w1, w2, · · · , wn)T can be calculated according to the following steps:

Step 1 According to Equations (14) and (15), the global distance of evidence dg and the α1 value can
be calculated, respectively.

Step 2 The global belief entropy Eg
d and the α2 value are obtained by Equations (16) and (18), respectively.

Step 3 The α value and the weight vector W are calculated based on Equations (11) and (10), respectively.

3.2. Multi-Evidential Fusion Model

After getting an appropriate weight vector, the evidence can be modified before using Dempster’s
combination rule. The evidence are reordered according to the IOWA operator. Assume there are n
BPAs, denoted as mi, i = 1, 2, · · ·, n, the steps of ordering and evidence fusion are defined as follows:

Step 1 Construct the inducing variable Si:

Si = 1 − di, i = 1, 2, · · · , n, (19)

where di is the average distance of evidence obtained by Equation (13).
Step 2 Obtain the OWA pairs 〈Si, Mi〉, i = 1, 2, · · · , n, where Mi is the argument variable, namely,

it is the BPAs of the evidence mi.
Step 3 According to Equation (8), the weighted average evidence can be calculated.
Step 4 Combine the new evidence with Dempster’s combination rule by (n − 1) times.

With the fusion results, decision-making can be made based on the maximum principle of BPAs.
An illustrative explanation of the new method is presented in Figure 3. Firstly, the degree of orness α

should be computed based on distance of evidence and belief entropy. Secondly, the weight vector
W = (w1, w2, · · · , wn)T can be obtained based on the MEM model. Thirdly, a corresponding inducing
variable can be constructed. Fourthly, evidence modification and fusion can be achieved. Finally,
decision-making in fault diagnosis is based on the fused results.
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Figure 3. The evidential Induced Ordered Weighted Averaging (IOWA)-based fault diagnosis method.

4. Application

4.1. Experiment with Artificial Data

This numerical example is used to illustrate how to apply the proposed method in fault diagnosis.
Assume that, in the case of motor rotor fault diagnosis, vibration signal is collected by five sensors.
There are three faults, denoted as A, B and C, in motor rotor, which represents the unbalance,
misalignment and pedestal looseness fault types, respectively. The BPAs based on these sensors
are assumed to be independent and there are abnormal sensor reports, as is shown in Table 1.
Intuitively, m2 comes from abnormal sensor report. Since evidence modelling is another open issue
in Dempster–Shafer evidence theory, we do not discuss how to model data with BPAs in this paper.
For more detail on how to generate BPAs, please refer to some related work such as [45,46,49].
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Table 1. The basic probability assignment (BPA) as an example.

mi {A} {B} {C} {AC}
m1 0.41 0.29 0.30 0.00
m2 0.00 0.90 0.10 0.00
m3 0.58 0.07 0.00 0.35
m4 0.55 0.10 0.00 0.35
m5 0.6 0.10 0.00 0.30

According to the new method shown in Figure 3, firstly, with Equations (13) and (14), the average
distance of evidence di, i = 1, 2, · · ·, 5 and the global distance of evidence dg can be calculated,
respectively, and the results are: d1 = 0.3456, d2 = 0.6647, d3 = 0.2661, d4 = 0.2564, d5 = 0.2641
and dg = 0.3594. With Equations (5) and (16), the belief entropy Edi, i = 1, 2, · · ·, 5 and
the global belief entropy Eg

d can be calculated, respectively, and the results are: Ed1 = 1.5664,
Ed2 = 0.4690, Ed3 = 1.8092, Ed4 = 1.8914, Ed5 = 1.7710 and Eg

d = 0.3534.
Secondly, the degree of orness α can be calculated by Equation (11):

a =
1
2
(e0.3594·ln 0.5 + 0.50.3534) = 0.7811. (20)

The weight vector W = (w1, w2, w3, w4, w5)
T is calculated according to Equation (10), and the

result is:
W = (0.5026, 0.2592, 0.1337, 0.0689, 0.0356)T . (21)

In addition, the inducing variable Si, i = 1, 2, · · ·, 5 are calculated according to Equation (19):

S1 = 1 − 0.3456 = 0.6544,

S2 = 1 − 0.6647 = 0.3353,

S3 = 1 − 0.2661 = 0.7339,

S4 = 1 − 0.2564 = 0.7436,

S5 = 1 − 0.2641 = 0.7359.

(22)

Thirdly, according to the ordering variable di, the OWA pair < Si, Mi >, i = 1, 2, · · · , 5 are
ordered as follows:

〈0.7436, M4〉,
〈0.7359, M5〉,
〈0.7339, M3〉,
〈0.6544, M1〉,
〈0.3353, M2〉.

(23)

Then, the BPAs on each fault are modified according to Equation(8), and the weighted average
evidence is:

m(A) = 0.5411, m(B) = 0.1325, m(C) = 0.0217, m(AC) = 0.3047. (24)

Finally, combining the weighted average evidence with Dempster’s combination rule by four
times, the final results are shown as follows:

m(A) = 0.9914, m(B) = 0.0001, m(C) = 0.0025, m(AC) = 0.0061. (25)

290



Sensors 2017, 17, 2143

In Table 2, we compare the results among several existing methods. It also shows the process of
locating the fault type. With the new method, the belief in the fault diagnosis results that A is the fault
type is 99.14%, which is not lower than the other methods.

Table 2. Comparison of several existing methods.

BPAs Methods m(A) m(B) m(C) m(AC) Faults

m1, m2

Dempster’s method [25] 0 0.8969 0.1031 0 B
Murphy’s method [54] 0.0964 0.8119 0.0917 0 B

Deng et al.’s method [55] 0.0964 0.8119 0.0917 0 B
The proposed method 0.0964 0.8119 0.0917 0 B

m1, m2, m3

Dempster’s method [25] 0 0.6350 0.3650 0 B
Murphy’s method [54] 0.4939 0.4180 0.0792 0.0090 A

Deng et al.’s method [55] 0.4974 0.4054 0.0888 0.0084 A
The proposed method 0.6960 0.1744 0.1253 0.0056 A

m1, m2, m3, m4

Dempster’s method [25] 0 0.3321 0.6679 0 C
Murphy’s method [54] 0.8362 0.1147 0.0410 0.0081 A

Deng et al.’s method [55] 0.9089 0.0444 0.0379 0.0089 A
The proposed method 0.9683 0.0020 0.0133 0.0163 A

m1, m2, m3, m4, m5

Dempster’s method [25] 0 0.1422 0.8578 0 C
Murphy’s method [54] 0.9620 0.0210 0.0138 0.0032 A

Deng et al.’s method [55] 0.9820 0.0039 0.0107 0.0034 A
The proposed method 0.9914 0.0001 0.0025 0.0061 A

In addition, if Dempster’s combination rule is used directly, due to the conflicting evidence m2,
incorrect results are obtained. The same diagnosis results can be obtained according to the Murphy’s
method [54], Deng et al.’s method [55] and the proposed method. However, Murphy’s method is only
a simple arithmetic mean which does not consider the difference among the evidence, while Deng
et al.’s method ignores the influence of evidence itself in generating the weight factor. The proposed
method takes into consideration more available information before making data fusion and fault
diagnosis, e.g., the distance of evidence and the belief entropy.

4.2. A Case Study

In order to verify the effectiveness and success of the proposed evidential-IOWA sensor data
fusion approach, the new method is applied to a case study adopted from [66].

Recall the fault diagnosis problem in [66]. Three potential fault types are denoted as F1, F2

and F3; thus, the fault hypothesis set is Θ= {F1, F2, F3}. Three sensors report the diagnosis results
independently, the diagnosis results are modelled as three bodies of evidence, denoted as E1, E2 and
E3, and the BPAs of the diagnosis results are shown in Table 3. Intuitively, F1 is the fault type because
both E1 and E3 have a belief of more than 60% on the fault type F1, while the E2 may come from an
abnormal sensor in comparison with the other two bodies of evidence. This is a challenge for data
fusion, especially for some conventional combination rules, such as Dempster’s rule of combination.
The proposed method is applied to solve this problem.

Table 3. BPAs for fault diagnosis of the case study [66].

Sensor Report {F1} {F2} {F2, F3} Θ

E1 : m1 (·) 0.60 0.10 0.10 0.20
E2 : m2 (·) 0.05 0.80 0.05 0.10
E3 : m3 (·) 0.70 0.10 0.10 0.10
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According to the proposed method shown in Figure 3, the first step is to calculate the average
distance and global distance of the evidence E1, E2 and E3. Based on Equations (13) and (14), the
calculation results of the average distance of each piece of evidence, denoted as di (Ei), i = 1, 2, 3, and
the global distance, denoted as dg (Ei), i = 1, 2, 3, are shown in Table 4.

Table 4. The average distance and global distance of Ei (i = 1, 2, 3).

Evidence Distance-Based Parameter d1 (E1) d2 (E2) d3 (E3) dg (Ei)

Calculation Result 0.1916 0.3477 0.2033 0.3712

Then, based on Equations (5) and (16), the corresponding belief entropy, denoted as Edi (Ei),
i = 1, 2, 3, and the global belief entropy, denoted as Eg

d (Ei), i = 1, 2, 3, are calculated in Table 5.

Table 5. The belief entropy and global belief entropy of Ei (i = 1, 2, 3).

Belief Entropy-Based Parameter Ed1 (E1) Ed2 (E2) Ed3 (E3) Eg
d (Ei)

Calculation Result 2.2909 1.3819 1.7960 0.5884

With Equation (11), the degree of orness α of the case study, denoted as α (Ei) , is calculated
as follows:

α (Ei) =
1
2
(e0.3712·ln 0.5 + 0.50.5884) = 0.7189. (26)

According to the Maximum Entropy Method defined in Equation (10), the weight vector of the
evidence, denoted as W (Ei) = (w1, w2, w3)

T , can be calculated, and the result is

W (Ei) = (0.5771, 0.2836, 0.1393)T . (27)

The inducing variable, denoted as Si (Ei) (i = 1, 2, 3), can be calculated based on Equation (19)
and the parameters in Table 4, and the results are shown as follows:

S1 (E1) = 1 − 0.1916 = 0.8084,

S2 (E2) = 1 − 0.3477 = 0.6523,

S3 (E3) = 1 − 0.2033 = 0.7967.

(28)

Combining the inducing variables with the parameters in Table 5, the OWA pairs < Si (Ei) , Ei >,
i = 1, 2, 3, are ordered as follows:

〈0.8084, E1〉,
〈0.7967, E3〉,
〈0.6523, E2〉.

(29)

Now, the BPAs in Table 3 can be modified according to Equation (8), and the weighted average
evidence are as follows:

m (F1) = 0.5517, m (F2) = 0.1975, m (F2, F3) = 0.0930, m (Θ) = 0.1577. (30)

Finally, combining the weighted average evidence with Dempster’s combination rule by four
times, the fusion results are as follows:

m (F1) = 0.9123, m (F2) = 0.0810, m (F2, F3) = 0.0027, m (Θ) = 0.0039. (31)
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The fused results with the proposed method are compared with the method in [66] where this
case study comes from, and the comparison result is shown in Table 6.

Table 6. Fusion results with different methods.

Fault Types {F1} {F2} {F2, F3} Θ

Only Dempster’s Rule of Combination 0.4519 0.5048 0.0336 0.0096
Fan et al’s Method [66] 0.8119 0.1096 0.0526 0.0259
The Proposed Method 0.9123 0.0810 0.0027 0.0039

It can be concluded from Table 6 that the proposed method has the most distinguishable fusion
results on sensor reports, which means a clear indicator on the most possible fault type. The highest
belief degree on fault type F1 is 91.23%, which is higher than the method with Fan et al’s method with
more than 10%. This is helpful for decision-making in real applications. While the fusion results of fault
type F1 and F2 with the conventional Dempster’s rule of combination are close to each other, it is hard
to judge which fault has occurred. The case study verifies the effectiveness of the proposed method.
In addition, the case study indicates a better performance of the proposed method in comparison with
some of the existing methods.

4.3. Discussion

The effectiveness of the proposed method is verified according to the applications based on both
artificial data and the experiment adopted from the literature.

A few reasons contribute to the success of the new method. Firstly, not only the distance of
evidence, but also the belief entropy and the IOWA operator are taken into consideration, which means
more available information are used while doing information processing. Thus, information loss is
decreased. Secondly, the way of getting the degree of orness a of IOWA (based on belief entropy and
evidence distance) is data-driven, which is more reliable compared with some subjective methods.
Finally, the final fused rule is based on Dempster’s rule of combination. The merits of Dempster’s rule
of combination, such as satisfying the commutativity and associativity, contribute to the effectiveness
of the proposed method.

In the fault diagnosis (FD) research area, an FD technique is good if a new method can guarantee
that there is no false alarm, no missed detection and a full detection for all considered faulty
scenarios [67,68]. The ongoing work of the proposed method should try to focus on this case. In future
work, the following situations should be well addressed:

• FD without fault to be sure that the proposed solution doesn’t give false alarm,
• FD with a misalignment fault to highlight that we detect this fault well,
• FD with pedestal fault.

5. Conclusions

In this paper, in the frame of Dempster–Shafer evidence theory, an improved evidential-IOWA
sensor data fusion approach is proposed in dealing with a multi-source data-based fault diagnosis
problem. Before applying sensor data fusion for final decision-making, the sensor data comes from
different independent sources modelled, as BPA is pre-processed to avoid unreasonable fusion results
that may be caused by conflicting evidence. In the new method, the IOWA operator is used to
determine the weight of different sensor data sources, and the parameter of the IOWA is based on
the distance of evidence and the belief entropy. The proposed method has a better performance in
conflict management and fault diagnosis due to the fact that the information volume of each piece of
evidence is taken into consideration. The proposed method outperforms the other methods according
to the applications.
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The ongoing work of the proposed method will be focused on some basic rules of fault diagnosis
in industrial environmental scenarios, e.g., no missed detection and a full detection for all considered
faulty scenarios should be strictly obeyed while applying the fault diagnosis technique.
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Abstract: In this paper, a complete and rigorous mathematical model for secondary surveillance
radar systematic errors (biases) is developed. The model takes into account the physical effects
systematically affecting the measurement processes. The azimuth biases are calculated from the
physical error of the antenna calibration and the errors of the angle determination dispositive.
Distance bias is calculated from the delay of the signal produced by the refractivity index of the
atmosphere, and from clock errors, while the altitude bias is calculated taking into account the
atmosphere conditions (pressure and temperature). It will be shown, using simulated and real data,
that adapting a classical bias estimation process to use the complete parametrized model results in
improved accuracy in the bias estimation.

Keywords: bias estimation; radar modeling; measurement error; air traffic control; sensor fusion

1. Introduction

Nowadays radars are the basic element in Air Traffic Control (ATC) networks. Modern sensors as
Wide Area Multilateration (WAM) [1] and Automatic Dependent Surveillance-Broadcast (ADS-B) [2]
have higher performance than radars with lower cost, so in the future it’s expected they will partially
take the place of radars. In any case, radars will still be used as a backup network for many years.
The type of radar most used in ATC sensor network is the Secondary Surveillance Radar (SSR),
being Mode S radar an enhanced version of this system [3]. SSR is a rotating 2D radar sending an
interrogation though an antenna with high directivity in azimuth and low directivity in elevation
(2D antenna). Afterwards the aircraft transponder replies with an answer codifying barometric altitude
(Mode C) and identification (Mode S and/or Mode A) data. SSR radars estimate the position of the
aircraft in polar coordinates, using the distance, the azimuth (both measured by the radar) and the
altitude (measured by an airborne barometric altimeter).

To enable surveillance of wide areas radars with overlapped coverages are deployed. Therefore,
aircraft measures (plots) from different sensors are sent to a control center where the data from all
sensors is fused in order to get a unique trajectory estimation (track) for each aircraft. All the measures
are transformed from radar polar local coordinates to a common coordinated system, usually Cartesian
coordinates projected over the stereographic plane [4]. To make this data fusion process stable and
accurate, the systematic errors affecting the measures from each radar must be corrected before the
change of coordinates. If this correction isn’t applied the measures of the same aircraft from different
sensors are misaligned and the track could be either very unstable (apparent zig-zag maneuvers
induced by measurements misalignment), or in extreme cases it could even be split into several tracks
(i.e., one per sensor).

Radar data fusion systems usually have an algorithm that estimates the misalignment error using
the measures from the current aircraft in the airspace (opportunity traffic). These algorithms are usually
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based in the least squares (LS) method (or similar approaches, such as WLS, or MSE estimators [5])
and have the need of a parametrized mathematical model that links the systematic errors in azimuth,
distance and altitude with the sensor physical non-idealities.

In the abundant literature about biases estimation methods in ATC networks such as [6–8],
the mathematical bias models used are simple (modeling just a range and azimuth offset and a range
bias term proportional to range) because the objective of the papers was showing the estimation
methods. Recently in [9] a novel registration algorithm has been presented where the track state
and sensor biases are estimated simultaneously modeling the sensors with range and azimuth offset.
Other related examples can be found in [10,11]. In real applications, these models are too simple,
resulting in reduced performance when used with real data. At the same time, the development
of mathematical models for biases is a classic topic for radio electric signals. For instance, in [12]
a model is developed for measurement errors in azimuth for antennas in Deep Space Networks.
Meanwhile, [13–17] it’s developed an azimuth bias model for 3D antennas. Due to the dispersion of
the literature about the systematic error modelling, it is apparent quite often both in the literature
and in real systems there is much effort on improving estimation processes but little effort is given to
rigorous modelling of the error sources.

The objective of this paper is to derive a complete systematic error model for ATC radars
enabling an important improvement of the bias estimation processes. In Section 2 we will introduce a
measurement model for azimuth, distance and altitude measurements. Then, in Sections 3–5, we will
derive the relation between the measurement error and the measurement biases terms. Section 6
describes a simple bias estimation process (based on opportunity traffic) to be used to show the
improvement in estimation due to improved error modelling. Then, Section 7 includes simulation and
real data results showing the aforementioned improvement. In the results it is shown the improvement
of the alignment that can be obtained using a complete model in comparison with a simple model.
Finally, Section 8 concludes the paper and gives some clues about future research.

2. Measurement Model

Radars used in ATC typically use a two dimensional rotating antenna and have only the capability
to measure aircraft range and azimuth. The azimuth of the target is the angle of the antenna boresight
while the target altitude is measured by the aircraft navigation system and can be communicated to
radar through a data link. Primary Surveillance Radars (PSR) only can determine the range and the
azimuth of the target due to the lack of data link capability. Nowadays in ATC systems primary radars
are used as backup system to secondary radar network. SSR is based in the same concept that PSR
but in this case, the SSR has data link capability. SSR sends an interrogation message and the aircraft
responds with its Mode A/Mode S (identifying code) or mode C (barometric altitude).

The azimuth and the range of the target are determined respectively with antenna boresight
(usually corrected using monopulse [3]) and the time lapse between the radar interrogation and
its response. Range and azimuth are typically referenced to a local Cartesian coordinated system:
y-axis pointing to north, x-axis pointing to East and z-axis pointing to up (ENU system). Azimuth
reference has its origin in the y-axis and it grows in clockwise. Barometric altitude is measured by an
airborne barometric altimeter with reference at mean sea level. The relation between radar coordinates
(ρm, θm, hm) and local Cartesian coordinates (xm, ym) is:

xm = ρm sin(θm) cos(ϕm)

ym = ρm cos(θm) cos(ϕm)
(1)

where ρm, θm, hm are the range, azimuth and altitude of the measurement and ϕm is the target elevation
with respect to i-th sensor horizontal plane, which can be calculated as:

ϕm = arcsin

(
2R(hm − hi) + h2

m − h2
i − ρ2

m
2ρm(R + hi)

)
(2)
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being hi the geometric altitude of the i-th sensor with reference at mean sea level. R is the local
Earth radius at the radar position, calculated as described in [18]. Local Cartesian coordinates will be
used as middle step in the conversion between radar measures and common tracking coordinates for
all sensors.

The radar measurement model can be summarized as:

ρm = ρ + nρ + Δρ

θm = θ + nθ + Δθ

hm = h + nh + Δh

(3)

where nρ, nθ and nh are the noise measurement errors for range, azimuth and altitude respectively,
Δρ, Δθ and Δh are systematic error terms due to bad system calibration, and ρ, θ and h are the ideal
range, azimuth and altitude of the target. Noise terms are modelled typically as uncorrelated additive
white noises (usually considered Gaussian distributed), while systematic error terms can be considered
constants or slow time variant (bias terms). Bias terms of range, azimuth and altitude depend on
target position and will be deduced in Sections 3–5 for SSR sensors. They are composed by several
environmental and equipment perturbations that are common to all the measurements of each sensor.
The parameters of the mathematical model may change with time, due to variable weather conditions
and hardware aging.

In surveillance data fusion systems the measures obtained from different kind of sensor are fused
in order to improve the information update ratio and the accuracy of the aircraft trajectory estimation.
At the moment of the data fusion all measurement must be expressed in a common coordinated
reference system. There are several coordinated systems that can be used in ATC. For small scenarios,
flat Earth model can be assumed, therefore Cartesian coordinates are precise enough to track the
trajectories with several sensors. When the scenario is larger and sensors are widely separated,
the Earth curvature must be considered and a different coordinate system must be used. A typical
solution is to use stereographic projection to project all measures expressed in local Cartesian reference
systems to the same plane [4]. Afterwards, the multisensor tracking process will be performed in the
stereographic reference system for horizontal track. Aircraft barometric altitude is usually tracked
separately in ATC applications.

3. Azimuth Bias

Azimuth bias can be modelled as the superposition of several terms that can be separated in
three different groups. The first one is the erroneous orientation of the antenna boresight due to
misalignments between the antenna and the rotation axis. The second one is the non-orthogonality
between the rotation axis and the Earth surface. And the last one is the calibration error of the
dispositive of angle determination (azimuth encoder). Some of these terms will have the same effect in
the measures and they cannot be distinguished in the estimation process using measures from radar.
For example, the azimuth offset of the antenna, the azimuth offset of the rotation axis and the azimuth
offset of the encoder will have equivalent effects and only one of them will be considered. In this case,
the model adds all the effects in a single parameter.

In other cases, the superposition of these terms will depend on aircraft position. Antenna skew
and rotation axis skew will be distinguishable if the aircraft are distributed in azimuth. For these two
bias terms both the elevation and azimuth diversity of the aircraft are needed in order to estimate them.
Generally, the aircraft will be distributed in the airspace (position and altitude) but sometimes there
will be cases where all the aircraft will be concentrated in a small rank of azimuth, altitude or range.
In these cases, the bias estimation algorithms will not have the capability to separate the different
azimuth and bias components (there would be an observability problem [15]).
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3.1. Antenna Deviation

The first factor that affects the azimuth bias is the deviation between the vertical axis of the
antenna reference and the reference of the rotation axis. This deviation will be defined with three
parameters describing the rotation in the three axes of the Cartesian coordinate system. In order to
determine the antenna deviation, the coordinated system is defined as: y-axis, parallel to the ideal
antenna boresight; z-axis, orthogonal to the y-axis, resulting that both axes compose the ideal plane of
the 2D antenna pattern (z-axis is the ideal antenna rotation axis); the x-axis, orthogonal to the y-axis
and z-axis positive to the right.

In order to derive the model, the biased antenna coordinated system (x′, y′, z′) is calculated.
The axes of the coordinated system (x, y, z) are rotated to get the new system (x′, y′, z′) and the
measured azimuth (θm) is calculated in the new system. Under the assumption that the deviation
angles of the antenna axes are small (below 1◦), the order of the rotation around each axis has a
negligible influence in the model. The three rotation angles (Figure 1) correspond to the following bias
parameters components:

• Azimuth offset (θ0): it is generated with the rotation of the antenna in the horizontal plane.
This offset is constant for all the targets of the sensor. This rotation is defined positive in
counter-clockwise direction.

• Antenna squint (sant): it is the bias produced due to the rotation in the orthogonal plane to
the antenna boresight. This component produces an azimuth bias dependent on the target
elevation (angle of line of sight respect to horizontal plane). This rotation is defined positive in
counter-clockwise direction.

• Antenna tilt (tant): produced due to the rotation of the plane of the 2D antenna pattern around
the x-axis. As radars used in ATC applications do not measure the elevation, this bias has not
consequences in the first order terms of the azimuth bias. This rotation is defined positive in
clockwise direction.

 
(a) (b) (c) 

Figure 1. Representation of: (a) antenna azimuth offset, (b) antenna squint (c) and antenna tilt.

The rotation matrix for each one of the axes are:

Rz(θ0) =

⎛⎜⎝ cos(θ0) sin(θ0) 0
− sin(θ0) cos(θ0) 0

0 0 1

⎞⎟⎠ (4)

Rx(tant) =

⎛⎜⎝ 1 0 0
0 cos(tant) − sin(tant)

0 sin(tant) cos(tant)

⎞⎟⎠ (5)
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Ry(sant) =

⎛⎜⎝ cos(sant) 0 − sin(sant)

0 1 0
sin(sant) 0 cos(sant)

⎞⎟⎠ (6)

Applying these rotations, the resultant coordinate system is:⎛⎜⎝ x′

y′

z′

⎞⎟⎠ = Rz(θ0) · Rx(tant) · Ry(sant) ·

⎛⎜⎝ x
y
z

⎞⎟⎠ (7)

Due to the convention in geographical systems of the azimuth with the origin in the y-axis,
positive in clockwise, the measured azimuth (θm,ant) is:

θm,ant = arctan
(

x′

y′

)
(8)

These calculations are made under two assumptions: the error is only caused by the deviations
of the antenna and this antenna can only acquire the targets that are in the 2D antenna main lobe.
A multidimensional Taylor series on the bias variables θ0, sant and tant is made to derive the following
linearized approximation:

θm,ant ≈ θ + θ0 − sant tan(ϕ) cos(θ) + tant tan(ϕ) sin(θ)

+

(
1
2

sin(θ) cos(θ)− sin(θ) cos(θ)
cos2(ϕ)

)
s2

ant −
(

1
2

sin(θ) cos(θ)− sin(θ) cos(θ)
cos2(ϕ)

)
t2
ant

+

(
cos2(θ)− 2 cos2(θ)

cos2(ϕ)
+

1
cos2(ϕ)

)
tantsant + · · ·

(9)

where ϕ is the ideal elevation of the aircraft. The variable θ may be particularized to zero in this case
as the antenna only measures the aircraft that are into the antenna main lobe (θ ≈ 0). Assuming
that θ0, sant and tant are small values then the higher order terms may be assumed to be negligible,
resulting in:

θm,ant ≈ θ0 − sant tan(ϕ) (10)

The previous measure just contains the projection of the antenna deviation parameters in the
azimuth component (θ ≈ 0; noise and other bias terms are neglected for this calculation), resulting in
the following additive azimuth bias term:

Δθant = θ0 − sant tan(ϕ) (11)

3.2. Axis Skew

The axis skew is the inclination of the rotation axis. It causes an effect similar to the antenna
deviation but in this case the bias also depends on the azimuth. For this model we use the local
Cartesian coordinated system in the radar position: the y-axis pointing to the north and the x-axis
pointing to the east both in the Earth horizontal plane. As in the previous subsection the biases of the
azimuth can be calculated with rotations of the system axis as is represented in Figure 2.

In order to be coherent with the names of the rotations, the rotation in y-axis will be named axis
squint and the rotation in x-axis will be named axis tilt. In this case, the tilt gives errors on the measures
because it is the rotation in the x-axis and not in the orthogonal plane to the antenna boresight.

In this case the rotation matrix are:

Rx(taxis) =

⎛⎜⎝ 1 0 0
0 cos(taxis) − sin(taxis)

0 sin(taxis) cos(taxis)

⎞⎟⎠ (12)
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Ry(saxis) =

⎛⎜⎝ cos(saxis) 0 − sin(saxis)

0 1 0
sin(saxis) 0 cos(saxis)

⎞⎟⎠ (13)

 

Figure 2. Skew of the rotation axis of the radar.

The new coordinates system (x′, y′, z′) is:⎛⎜⎝ x′

y′

z′

⎞⎟⎠ = Rx(taxis) · Ry(saxis) ·

⎛⎜⎝ x
y
z

⎞⎟⎠ (14)

The measured azimuth is calculated again (θm,axis = arctan
(

x′
y′
)
) and the result is approximated

linearizing with a multidimensional Taylor series on the bias variables sant and tant. In this case the
azimuth is not particularized to zero (θ ≈ 0) because the reference axes are fixed to north and the ideal
measurement can have any value of azimuth. The linear approximation, rejecting higher order terms
in Taylor series is:

θm,axis ≈ θ + taxis tan(ϕ) sin(θ)− saxis tan(ϕ) cos(θ) (15)

Therefore, the azimuth bias due to the axis skew is:

Δθaxis = θm,axis − θ ≈ taxis tan(ϕ) sin(θ)− saxis tan(ϕ) cos(θ) (16)

An alternative equivalent model to the one in (16) can be derived as follows. Under the assumption
that the inclination of the axis is small, the spherical triangles with components taxis and saxis can
be approximated by the right triangle of Figure 3, expressed in terms of βaxis and αaxis where βaxis
represents the total skew and αaxis the direction where the axis is skewed. The new relation is:

saxis = βaxis sin(αaxis)

taxis = βaxis cos(αaxis)
(17)

Substituting (17) in (16) the final model could be written, after some minor algebra, as:

Δθaxis = βaxis sin(θ − αaxis) tan(ϕ) (18)
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The azimuth offset due to this effect at the direction of the skew is zero, and it follows a sinusoidal
law with azimuth. The model with saxis and taxis parameters in (16) is equivalent to the model with
βaxis and αaxis parameters in (18). The former model (16) results generally in better stability when used
for the development for bias estimation algorithms.

(a) (b)

Figure 3. (a) Right triangle of the axis skew and (b) relation between the rotation of the axis and the
skew of the rotation axis and its direction.

3.3. Optical Encoder

In modern radars the azimuth of the antenna boresight is determined with an optical encoder that
is allocated in the rotating radar shaft. In the installation of this encoder, small calibration errors can be
made and these are transformed in azimuth biases. One of the errors is the misalignment between
azimuth reference of the encoder and the axis, this is an azimuth offset. This error is the same kind that
the azimuth offset of the antenna and the azimuth offset of the rotating axis, described in Section 3.1.

Other error to be considered is the eccentricity bias. Usually this is the encoder error with the
biggest impact in the measures [19]. In the installation, the rotation axis (O) is not exactly placed in the
geometric center (O’) of the encoder.

The resultant geometry is shown in the Figure 4, supposing that the difference of the centers is in
the azimuth θ = 0. Resolving the triangle shown in Figure 5 and making a deduction similar to [20,21]
we have the following relation:

A = ΔR sin(θ)
A = R sin(α)

}
=> sin(α) =

ΔR
R

sin(θ) (19)

where, ΔR is the eccentricity offset, R is radius of the encoder and θ and α are angles of the triangle
shown in Figure 5.

Using the relation between sine and cosine for α (cos(α) =
√

1 − sin2(α)) we also have the
following relation:

cos(α) =

√
1 −

(
ΔR
R

)2
sin2(θ) =

1
R

√
1 − ΔR2 sin2(θ) (20)
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Figure 4. Optical encoder with eccentricity bias.

 
Figure 5. Resolution of the resultant triangle for eccentricity bias.

On the other hand, from Figure 5 we can also see:

r = R cos(α)− ΔR cos(θ)r = −ΔR cos θ +
√

R2 − ΔR2 sin2(θ) (21)

Finally:
h = R sin(θm)

h = r sin(θ)

}
=> θm = arcsin

( r
R

sin(θ)
)

(22)

The measured azimuth is also linearized with a Taylor series on the bias variable ΔR in order to

get an approximation to model. Assuming that ΔR
R ' 1 the approximation of

(
ΔR
R

)2
= 0 can be made.

With these simplifications, the azimuth measurement can be approximated as:

θm ≈ θ − ΔR
R

sin(θ) (23)

The second error produced by the optical encoder is due to the swash between the encoder and
the horizontal plane. A small swash of the encoder produces that the projection of the circumference is
an ellipse and the determination of the azimuth has errors when this azimuth does not point to the
ellipse axis.

In Figure 6a a schematic model of the optical encoder is represented. The circle line on the
x-y’ plane represents the mechanical encoder and the dotted line on the x-y plane represents the
projection of the rotated mechanical encoder circumference on the horizontal plane. The ideal azimuth
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is represented on the horizontal plane but the measured azimuth is obtained by the rotated encoder.
In Figure 6b both mechanical encoder circumference and its projection on the horizontal plane are
represented in the same plane in order to represent the 3D projection in a 2D figure to see the difference
between the real azimuth and the measured azimuth. Following the methods used in [18] to convert
geocentric latitude in reduced latitude we can obtain the relation between θm and θ. Using the
next variables:

x = r sin(θm)

ym = r cos(θm)

y = ym cos(senc)

(24)

and solving the triangle for θ:

θ = atan
(

x
y

)
= atan

(
tan(θm)

cos(senc)

)
(25)

and then θm can be calculated as:

θm = atan(cos(senc) tan(θ)) = atan
(

cos(senc)
x
y

)
(26)

 
(a) (b)

Figure 6. Swash of the optical encoder. (a) Schematic model of the optical encoder; (b) Mechanical
encoder circumference and its projection on the horizontal plane.

A Taylor series of order 2 on the bias variable senc is made to get an approximation of the measure:

θm ≈ θ − 1
2

cos(θ) sin(θ)s2
enc = θ − s2

enc
4

sin(2θ) (27)

In this Taylor series, the first order term is zero and the second order term is considered. As this
term is raised to second power, with small values of senc the value of the bias will be negligible. In both
terms related with the encoder the error has been calculated supposing that the difference of the centers
and the swash are in the azimuth θ = 0. Supposing that in reality the azimuth of the difference of
centers is αecc and the azimuth of the swash is αenc the resultant encoder bias, comprising both the
effects described in (23) and (27), is:

Δθenc = − s2
enc
4

sin(2θ − 2αenc)− ΔR
R

sin(θ − αecc) (28)
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An equivalent model can be derived by using trigonometric relations, in order to express all the
biases with a linear structure similar to the one in Equation (16):

Δθenc = senc,s sin(2θ) + senc,c cos(2θ) + ΔRy sin(θ)− ΔRx cos(θ) (29)

where:

senc,s =
s2

enc sin2(αenc)− s2
enc cos2(αenc)

4
senc,c = s2

enc cos(αenc) sin(αenc)

(30)

and ΔRy and ΔRx are the terms of the center deviation in the y-axis and in the x-axis.

3.4. Azimuth Bias Composition

The global azimuth bias model is a composition of the three bias elements previously discussed.
Neglecting noise effects, in a radar, the measured azimuth of the antenna is the azimuth where the
rotation axis is pointing plus the antenna bias. The azimuth of the rotation axis is the azimuth indicated
by the encoder plus the axis bias. Finally, the azimuth indicated by the encoder is the ideal azimuth
plus the encoder bias. With this:

θenc = θ + Δθenc

θaxis = θenc + Δθaxis

θm = θant = θaxis + Δθant

(31)

and then:
θm = θ + Δθ = θ + Δθant + Δθaxis + Δθenc (32)

With this, the complete model for azimuth bias is:

Δθ = Δθant + Δθaxis + Δθenc

= θ0 − sant tan(ϕ) + βaxis sin(θ − αaxis) tan(ϕ)− 1
4

sin(2θ − 2αenc)s2
enc −

ΔR
R

sin(θ − αexc)
(33)

This model should not be used in general in the bias estimation algorithms due to instability
problems due to lack of linearity of some of part of the model, although its physical meaning is clear.
The alternative equivalent model (preferred for bias estimation due to its linearity with respect to bias
parameters) should be obtained composing (11), (16), (29) and (32), resulting:

Δθ = θ0 − sant tan(ϕ) + [taxis sin(θ)− saxis cos(θ)] tan(ϕ) + senc,s sin(2θ)

+senc,c cos(2θ) + ΔRy sin(θ)− ΔRx cos(θ)
(34)

4. Range Bias

Range biases are again due to several factors. The main factors that compose the biases are:

• Transponder delay: every aircraft has a different transponder delay (typically between −75 m
and 75 m, usually assumed to be uniformly distributed). This aircraft dependent bias must be
estimated for each aircraft in the tracking phase. The range model developed in this paper is
for biases due to sensor and environment. As the estimation will be made with many targets,
the mean of the delays of all the aircraft tends to be near zero. For more details on this bias term
and methods to estimate it, see [8].

• Temporal reference error: radars measure the difference of time between the interrogation and
the arrival of the response. Usually there is a small constant error in the reference time and it
produces a constant error (ρ0) in the range estimation.
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• Clock error: A small error in the clock calibration may produce a linear term in the range
estimation [22]. In modern radar this term can be considered negligible due to the precision of
the clocks.

• Propagation error: The conversion between time and distance is made using the speed of light
in the ISA (International Standard Atmosphere) at mean sea level. However, the speed of light
changes along the propagation path due to the change in the refraction index with altitude and
weather conditions. Any change in the real speed of light will produce a range bias term (Δρprop).

Considering the range biases terms previously explained, the range bias (Δρ, as defined (3)) results:

Δρ = ρ0 + Δρprop (35)

In cases when the clock has a bad calibration, the bias has additionally a linear term dependent
on the clock error, and parameterized through a range gain factor (αclk), being the complete model:

Δρ = ρ0 + αclk ρ + Δρprop (36)

Next, we will focus on the propagation term.

4.1. Propagation Error

The index of refraction of the atmosphere changes with the altitude and this affects to the local
speed of light. As the conversion between time and range is made with a constant speed of light,
the determination of the position of the aircraft from the radar generally has biases (due to change of
speed of light with altitude and weather conditions).

As the bias is produced by accumulated error in the speed of light along the propagation path,
the range bias will be a function of the target range. In order to model the relation between the ideal
range and the bias we will use a spherically stratified atmosphere. The exponential model of the
refractivity [23] is used because it models the typical atmosphere variations in the rank of altitude
used in ATC applications:

N(h) = Nsexp
(
− h

H

)
(37)

where N(h) is the refractivity at a given altitude (h) over mean sea level, H is a reference altitude
(equal to 6950 m), and N(0) = Ns (with typical values between 300 and 350). The relation between the
refractivity and the index of refraction (n(h)) is:

n(h) = 1 + N(h)× 10−6 (38)

The model in Equation (37) can be used also redefining altitude (h) to be referred to radar altitude,
which just results in a change of the Ns constant, to be now the refractivity at the radar altitude over
mean sea level. This will be the altitude reference and refractivity model to be used for the rest of
this section.

The height gradient of the index of refraction bends the ray, resulting in a slightly increased
distance from that of the straight line used to model propagation on free space. Specifically, as it is
deduced in [24] using a ray tracing procedure with the Snell’s law for spherically stratified media [25],
the geometrical distance of the bent ray path may be calculated as:

s(ht, ϕ0t) =
∫ ht

0

dh√
1 −

{
n0 cos(ϕ0t)

[
n(h)

1+ h
Re

]} (39)

where ϕ0t is the elevation ray angle observed by the radar, ht is the target altitude relative to the radar,
n0 is the index of refraction at radar altitude, and Re is the Earth radius plus radar height.
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Additionally, the speed of light varies as it traverses different heights with different associated
index of refraction. The effective distance (measured distance assuming constant speed of light,
is affected by the propagation error), and can be calculated as proposed in [24]:

r(ht, ϕ0t) =
∫ ht

0

n(h)dh√
1 −

{
n0 cos(ϕ0t)

[
n(h)

1+ h
Re

]} (40)

In the following we will work with the approximation that the geometrical distance between the
target and radar is almost equal to a straight-line (free-space) path length [24] (ρ ≈ s(ht, ϕ0t)). Then,
the range bias due to propagation can be calculated as:

Δρ(ht, ϕ0t) = r(ht, ϕ0t)− s(ht, ϕ0t) (41)

Both distances (geometrical distance and effective distances), and their difference, can be
numerically estimated for different values of ht and ϕ0t. With these pairs we can get a table of range
biases (Δρ) and geometrical distances (s). In these estimations we work with the approximation that
the geometrical distance between the target and radar is equal to the ray path length [24]. Without this
approximation the estimations are similar, but at distances lower than 20 Km the results of the biases
are different. But in these places the total bias is very low (between 2 m and 6 m, depending on the
altitude) and the approximation does not introduce significant error. The resultant range error is
represented in the Figure 7, where each line represents the range error for a different altitude (ht) as
a function of slant range.

 

Figure 7. Range bias for aircraft at different altitudes.

As it is seen [26] two relevant characteristics can be observed. The first one is that the range error
depends on the altitude of the aircraft. The second one is that a second-grade polynomial seems to be
good enough to approximate the range error dependency with the slant range for every altitude [27].
Considering only this polynomial, the range error can be expressed as:

Δρ(ρ, h) = β1(h)ρ + β2(h)ρ2 (42)

where β1(h) and β2(h) are polynomial coefficients, different for each altitude.
This model does not allow to make a good estimation of the parameters with opportunity traffic,

because the number of aircraft in each altitude layer is reduced. We must find a model which allows
the simultaneous use of aircraft measures at all altitudes in the estimation process.
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A key idea in the derivation of such model is to search for decoupled range and altitude
dependencies in Δρ(ρ, h):

Δρ(ρ, h) = f (ρ) · g(h) (43)

To do so, the quotient between a parabola in an altitude and the parabola at an arbitrary reference
altitude (hr = 14,000 m in the following) for the same slant range is made:

g(ρ, h) =
Δρ(ρ, h)
Δρ(ρ, hr)

(44)

This quotient is shown as a function of the slant range in Figure 8 and can be observed that for
each altitude it is almost constant. The right end of the horizontal lines in this figure corresponds to
the radio-wave propagation horizon. This result demonstrates that the range bias at a specific altitude
is the range bias at the reference altitude multiplied by a constant, supporting Equation (43), as the
dependency of g(ρ, h) with the slant-range is negligible (i.e., it could be substituted by g(h)), and f (ρ)·
would be directly Δρ(ρ, hr), a function not depending of h. From those ideas, we have that:

f (ρ) = β1(hr)ρ + β2(hr)ρ
2 = α1ρ + α2ρ2 (45)

 

Figure 8. Quotient between range bias at an altitude and bias at 14,000 m for the same slant range.

 

Figure 9. Ratio between range bias at an altitude and bias at reference altitude (14,000 m) for the same
slant range as a function of altitude.

In order to derive g(h) we have represented in the Figure 9 the quotient between the range bias at
an altitude and the bias at a reference altitude as a function of altitude. In this figure, it can be seen
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that a linear model is a good approximation. A second order polynomial would be an almost exact
approximation but it implies the addition of another parameter that would make the convergence of
the bias estimation processes slower with reduced accuracy gains.

Then g(h) can be modelled with a linear function normalized to reference altitude (hr):

g(h) =
Δρ(ρ, h)
Δρ(ρ, hr)

≈ 1 + α3

(
1 − h

hr

)
(46)

Finally, the contribution of the tropospheric propagation to the range bias can be modelled,
combining Equations (43), (45) and (46):

Δρprop =
(

α1ρ + α2ρ2
)[

1 + α3

(
1 − h

hr

)]
(47)

4.2. Range Error Composition

The final range bias is the addition on the one hand of the propagation bias due to the atmosphere
and on the other hand to the constant bias produced by the transponder delay and the error of
reference time:

Δρ = Δρ0 +
(

α1ρ + α2ρ2
)[

1 + α3

(
1 − ht

hr

)]
(48)

5. Altitude Bias

Civil surveillance radars used in ATC do not measure elevation of the targets. The reply of
the aircraft transponder to the SSR interrogation codifies the altitude of the aircraft in the message
(Mode C), completing the 3D position determination by the radar sensor. Aircraft altitudes may be of
two different types:

• Geometric altitude: it is the Euclidean distance between the mean sea level (MSL) and the position
of the aircraft.

• Barometric altitude: this altitude is calculated from the air pressure of the atmosphere at aircraft
location. The conversion between pressure and altitude is made assuming International Standard
Atmosphere (ISA) model (temperature 288.15 K and pressure 101,325 Pa, at MSL) [28]. Barometric
altitude is the same that geometric altitude only when the atmospheric conditions are the
ISA conditions.

Barometric altitude is used in ATC systems, because all aircraft must always measure the pressure
to fly and its flight performance depends critically on this pressure, barometers are easy to be calibrated
and vertical separation can be done easily using this magnitude. On board certified sensors for
geometric altitude usable in all phases of flight (such as GPS) have only recently become widely
available, and this information is not always available in the ground. All the surveillance systems
send barometric altitude but only some of them can send the geometric altitude. Using the barometric
altitude usually implies systematic errors in altitude determination that are almost equal for every
aircraft and those depends on the pressure and temperature.

This altitude bias term, when the polar measure is transformed to the horizontal plane, introduces
a systematic error in the 2D position. The projection of this bias will be negligible when the elevation
of the aircraft is close to zero, but it will be an important factor when the aircraft is near to the sensor
and the elevation is big. This situation is typical in some air traffic control systems, as that of a radar
close to an airport with several others far away of that airport. Then the horizontal projection of the
measures from the near radar are heavily distorted due to the systematic altitude errors.

The projection in the horizontal plane is implemented using the target elevation, as calculated
in Equation (2). This equation is equivalent to search the cross point between the circle defined with
radius ρ and the line defining the constant measured altitude. This is shown the Figure 10, where ρ is
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the measured range, h and hm are the ideal and measured altitude respectively. ρp is the projected range
calculated with the ideal altitude and ρmp is the projected range calculated with the measured altitude.

Figure 10. Difference between the projection in the slant range for the same range measure and
different altitude.

In [28] a model of the atmosphere for its use in Air Traffic Management (ATM) trajectory prediction,
based on ISA model, is defined. The ranges of altitudes of civil aircraft cover the troposphere and
the lower stratosphere. The tropopause is the boundary between both layers. Hence there are two
different models for different altitudes. In this model, the tropopause is allocated where the barometric
altitude is 11,000 m. Below the tropopause the atmospheric model of barometric altitude is a non-linear
function that depends on the temperature and the pressure at MSL. Above the tropopause, the model
is a linear function because the gradient of temperature is zero.

In the model, the barometric altitude (hp) is the measured altitude and the geometric altitude (hg)
will be the ideal altitude. The difference between both altitudes will be considered the altitude bias.
The model proposed in [28] is:

Below tropopause:

hg = hp − ΔHP +
ΔT
βt

ln
(

T0 + βthp

T0 + βtΔHp

)
(49)

Above tropopause:

hg = hg,trop +
T0 + ΔT + βthp,trop

T0 + βthp,trop

(
hp − hp,trop

)
(50)

where ΔHP is the barometric altitude offset with respect to ISA (which depends on the difference
between current pressure and standard pressure at mean sea level), ΔT is the difference between
current temperature and standard temperature at mean sea level, T0 is the temperature of the standard
atmosphere at mean sea level, βt is the temperature gradient and hg,trop is the geometric altitude
where the barometric altitude is hp,trop = 11,000 m (which should be calculated with Equation (49) to
guarantee geometric height continuity).

To reduce the impact of altitude biases in measurement projection in the horizontal plane ΔT and
ΔHp must be estimated and corrected. Next we will derive a parametric model for these terms. Note
the altitude bias effect is important when the elevation of the aircraft is big (high altitude and short
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range). We will next fit and show the consistency of a linear model between the geometric altitude and
the barometric altitude based on the previously presented model, resulting in:

Below tropopause: we may approximate linearly ln(1 + x) ≈ x when x ≈ 0. Using this
approximation in ln

(
1 + T0+βthp

T0+βtΔHp
− 1

)
from (49) we can derive:

hg = hp − ΔHP +
ΔT
βt

(
T0 + βthp − T0 + βtΔHp

T0 + βtΔHp

)
(51)

After some algebra we have:

hg =
(
hp − ΔHP

)(
1 +

ΔT
T0 + βtΔHp

)
(52)

and then we can solve for hp, resulting:

hp =
hg

1 + ΔT
T0+βtΔHp

+ ΔHP (53)

Above tropopause: Regrouping the terms in Equation (50), and approximating hg,trop using (52),
the following relation is obtained:

hg = hg,trop +

(
1 +

ΔT
T0 + βthp,trop

)(
hp − hp,trop

)
(54)

where:

hg,trop =
(
hp,trop − ΔHp

)(
1 +

ΔT
T0 + βtΔHp

)
(55)

Then, we can solve again for hp, resulting:

hp =
hg − hg,trop

1 + ΔT
T0+βthp,trop

+ hp,trop (56)

In this section hg is always the ideal geometric altitude (called h in Equation (3)) and hp is the
barometric altitude (measured by the barometer, called hm in Equation (3), assuming negligible altitude
noise). Changing the notation to that of Equation (3) the resultant model is:

Below tropopause:

hm =
h

1 + ΔT
T0+βtΔHp

+ ΔHp (57)

Above tropopause:

hm =
h − hg,trop

1 + ΔT
T0+βthp,trop

+ hp,trop (58)

In both cases, the model has an offset height and a height gain. In Figure 11 the bias associated
to the more exact EUROCONTROL model [28] in Equations (49) and (50), and the linearized model
are represented (in Equations (57) and (58)) vs. the geometric altitude (h). Those two models use
the same values for the parameters ΔHp = 300 m and ΔT = 15◦, and the linearization has very
low error at low altitudes but at high altitudes the errors between both models can be around
100 m. Meanwhile, the black line (labelled expected estimation) represents a least squares regression
of the EUROCONTROL model using the model in Equations (57) and (58) with parameters ΔHp

and ΔT. The optimal values of the estimated values, assuming uniform distribution of heights,
are ΔHp= 298.72 m and ΔT = 17.06 ◦C. Although those are not the actual values used for the
EUROCONTROL model, the simplified model is able to adjust quite finely to it, and therefore seems a
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promising model for altitude bias error estimation. If should be noted the purpose of this model is not
obtaining a very accurate estimate of ΔHp and ΔT, but to be able to approximate correctly the altitude
bias relation with geometric height.

Figure 11. Representation of altitude bias for EUROCONTROL model, linearized model and expected
estimation for ΔHp= 300 m and ΔT = 15◦.

6. Bias Estimation with Opportunity Traffic

As the bias error varies slowly with time, the error model parameters must be estimated
dynamically. In a radar network the main real time information source are the measures taken
from the opportunity traffic and they are used for bias estimation. With the measures of a single radar
the biases cannot be determined because there is not a reference in order to get the projection of the
biases over the horizontal measurement plane. The projection of the biases depends on the position of
the aircraft and the radar.

In this section, we will describe a method for the estimation of the bias parameters of a pair
of radars with overlapped coverage. The purpose of the described method is not to describe an
optimal/scalable process implementable in a real sensor network with more than two radars, but to
analyze in the results section the adequacy of the proposed bias models and their effectiveness to
remove systematic errors. More advanced methods may be found in the literature [6–9,13–17], and the
application/extension of some of them will be part of our future research.

From the previous sections, bias model parameters of the i-th radar can be arranged in
a 12D vector:

bi = [Δθ0 sant taxis saxis ΔRx ΔRy senc,s senc,c Δρ0 α1 α2 α3]
′ (59)

On the other side, altitude bias terms due to the atmosphere conditions are common to every
radar and they are included in other bias vector:

batm =
[
ΔHp ΔT

]′ (60)

In our simple example method biases will be estimated with the difference of measurements
(pseudomeasurements) of the same aircraft taken by different sensors at the same time.
This pseudomeasurements will be obtained in the common plane subtracting the horizontal projection
of the same aircraft measures. As in real scenarios the measurements of the radars are not synchronized
the measurements of one of the sensors need to be interpolated to the time of the other radar, following
a process as proposed in [7]. This interpolation is made between two measures from the same
radar to the measure time from the other radar (between the times from the other two measures).
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Assuming that biases are small the projection of the bias terms may be approximated with a linearized
function. With this linearization the measurement model for each of the plots projected in stereographic
coordinates can be expressed as:

Xm,i =

(
xm,i
ym,i

)
=

(
x
y

)
+ Hbibi + Hb,atmbatm (61)

where (x,y) is the ideal horizontal position of the aircraft and (xm,i, ym,i) is the measured positon of the
aircraft by the i-th radar while Hbi and Hb,atm are the bias projection matrices.

The projection matrices (Hbi and Hb,atm) are a composition of the linearized change of coordinates
from Equation (1), the linearization of the projection to the stereographic plane, and the linearization
of the bias models for each of the bias components, so Hbi and Hbi,atm may be expressed as:

Hbi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx
dΔθ0

dy
dΔθ0

dx
dsant

dy
dsant

dx
dtaxis

dy
dtaxis

dx
dsaxis

dy
dsaxis

dx
dΔRx

dy
dΔRx

dx
dΔRy

dy
dΔRy

dx
dsenc,s

dy
dsenc,s

dx
dsenc,c

dy
dsenc,c

dx
dΔρ0

dy
dΔρ0

dx
dα1

dy
dΔα1

dx
dα2

dy
dΔα2

dx
dα3

dy
dΔα3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hbi,atm =

[
dx

dΔHP

dy
dΔHP

dx
dΔT

dy
dΔT

]
(62)

6.1. Biases Values Initialization

The initial values of the biases will be estimated using a LSE method using a small number of
measurement (for example the measurements received in an antenna scan period). As it is proposed
in [6] a pseudomeasurement (Xb) of the bias vector will be constructed and the (64) will be solved
with the LSE method.

Xb = Xm,1 − X̂m,2 (63)

Xb = Hb b + w (64)

where Xm,1 is a measure from the radar 1, X̂m,2 is the interpolation from two measures from the radar
2 to the same time of Xm,1, w is the measurement white Gaussian noise projected to stereographic
plane and:

Hb,i = [Hb1, −Hb2, Hb1,atm − Hb2,atm] (65)

b =

⎡⎢⎣ b1

b2

batm

⎤⎥⎦ (66)

where Hb,i is the projection matrix of the i-th measurement. The biases are estimated using the
pseudoinverse matrix [5]:

b0 =
[

H′R−1H
]−1

H′R−1Xb (67)
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where:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hb,1
...

Hb,i
...

Hb,n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
R = diag(R1 . . . Rn) (68)

Ri is the noise covariance matrix of each pseudomeasurement (it is the addition of the
noise covariance matrix from Xm,1 and X̂m,2 of the i-th measurement) and n is the number of
pseudomeasurements used in the initialization. The initial covariance matrix (P0) used in the next
section is calculated with the projection of the noise over the biases [5].

P0 = (H′R−1H)
−1

(69)

6.2. Recursive Bias Estimation

After initialization, the values of the biases are estimated recursively with an Extended Kalman
Filter. Biases are considered constant, so the prediction matrix (Φ) is the identity matrix. Sub-index k
indicates the temporal index of the state and the diacritic circumflex indicates that it is a predicted
state. The predicted state and its covariance matrix at the time of the current pseudomeasurement are:

b̂k = Φbk−1

P̂k = Pk−1ΦP′
k−1 + Qk−1

(70)

In simulated data where the biases are constant, the noise plant covariance matrix can be set to
zero, but in real scenarios the biases will be quasi-constant and the Q matrix must be set with small
values of covariance. After that the residual and its covariance matrix must be estimated:

Xb,k = Xm,1 − Xm,2

rk = Xb,k − Hb,kb̂k

Sk = HbP̂k H′
b + Rk

(71)

With these previous values, the filter gain is calculated and son the updated state so the updated
covariance of the filter are calculated:

Kk = P̂k H′
b,kS−1

k

bk = b̂k + Kkrk

Pk = (I − Kk Hb,k) P̂k

(72)

6.3. Bias Observability Discussion

Ideally the observability of the bias parameters in the scenario can be tested with the matrix[
H′R−1H

]
where H and R is composed by all the Hb,k and Rk as in Equation (68). The bias parameters

will be observable if this matrix is a positive definite matrix [15]. In the initialization phase this matrix
is composed in order to calculate Equation (67). In the recursive bias estimation phase this matrix is
never calculated but the observability can be tested composing this matrix with all the measurements.
The dimensions of the resultant matrix becomes in an unaffordable computational load. The objective
of this discussion is show the geometrical requirements (presented in the next paragraphs) that a radar
scenario should have for the stability of the estimation algorithms. For a more rigorous mathematical
analysis of the observability in radar registration the modified Fischer Information Matrix can be
studied [29].
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In the best case the targets have diversity in range, azimuth and altitude and the biases are
perfectly determined. In many real cases the opportunity traffic is not uniformly distributed in the
airspace as most of the aircraft are in the upper flight levels. LSE method tries to minimize the global
errors for all the tracks. If most of the tracks are concentrated in the same zone, the method will
estimate the bias model parameters to get the better approximation of the corrections for these tracks,
but the estimated parameters could lead to a bad bias correction for the aircraft in areas with lower
density traffic.

Another issue about the bias observability is the variability of the measurement values. If the
sensors are widely separated in space, tracks with common coverage are concentrated in a small range
of azimuth values. For example, in the azimuth bias model presented in Section 3, we may observe
that the effect of the antenna squint and the axis squint are similar. The single difference between
them is that axis squint depends on the azimuth of the target. If every target has similar azimuth,
the effects of both bias terms are difficult to separate and their estimation is highly correlated. In this
case, the position measures biases are well corrected for the tracks used in the estimation (inside
common sensor coverage). But for other tracks with azimuth far from common coverage, there could
be position errors because the azimuth bias dependence is not well estimated.

7. Results

In this section we will include results to show the performance improvement due to the use of our
improved bias models both using simulated data (in Section 7.1) and real data (in Section 7.2). Also,
the consistency of the estimator using this model will be assessed.

The evaluation of the results will be made evaluating the Root Mean Square (RMS) value of the
difference between the positions of the measurements from different radars at the same time for the
same target:

errorRMS =

√√√√ 1
N

N

∑
i=1

(
(xi,1 − xi,2)

2 + (yi,1 − yi,2)
2
)

(73)

where (xi,1, yi,1) and (xi,2, yi,2) are the i-th measures from first and second radar for the same target
at the same time. This method is used because the evaluation of this model done principally with
real data.

Another way to test the results for real data is to have access to ADS-B o WAM data that can
be supposed unbiased compared with radar measurements. As the only available information is
the measurements of the aircraft, only the errors of the corrected plots can be evaluated, but it is
almost impossible know the real value of the biases. In route tracking in ATC it is more important the
alignment between plot than the accuracy in position of the measurement.

For simulated data the value of the biases is known and the results are presented in convergence
graphics (as a function of the number of samples used in the simulation).

7.1. Simulated Scenario Results

In order to test the observability of the different biases modelled in previous sections,
the estimation method will be tested with a simulated scenario. In this scenario there are two radars in
position (0, 0) and (50, 0) (in NM). The scenario has 1000 point uniformly distributed in a square area
with a side of 400 NM centered at (0, 0). The maximum altitude of these points is 15,000 m.

In this case the simulated measurements are synchronized and the noise of the measurements are
white Gaussian noise with zero mean with standard deviation of 75 m in range and 0.05◦ in azimuth.
This test is made using Cartesian coordinates with the flat Earth model.

The measures obtained by the radars are biased using the previously developed models with
all the parameters. The evaluation of the results is made using the RMS error in position of all the
corrected measurement in Equation (73). As the ideal position of the points is known, the error will be
calculated between the corrected measurement and the ideal position.
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In this simulated scenario, the RMS error of the measured plots is 434.72 m and the RMS error of
the corrected plots is 126.13 m. As in the simulated data the ideal position of the aircraft is known,
we can measure the errors produced only by the noise. In this case, the RMS error produced just by
the noise is 120.08 m. As the RMS error of the corrected plots is almost the RMS error produced by
the noise of the measurements, it is proved the observability of the model when the plots are well
distributed. With a bigger number of samples, the RMS error of the estimation is nearer to the RMS
error produced by the noise.

In the previous simulated scenario the bias parameter used in the generation of the simulated
position are shown in Table 1. The next paragraphs will show the estimation of some parameters using
different models but always generating the simulated plots with the complete model.

Table 1. Values of the biases used in the simulation for the radar 1.

Parameters RMS Error

Δρ0 100 m
α1 10−3 m/m
α2 10−9 m/m2

α3 1.15
θ0 0.04◦

sant 0.5◦
βaxis 0.4◦
αaxis 45◦
βenc 0.5◦
αenc 90◦

ΔR/R 5 × 10−4

αexc 45◦
ΔHp −500 m
ΔT 15 ◦C

(a) (b) 

(c) (d) 

Figure 12. Estimated bias values for Radar 1 using only the basic model (Δρ0, α1 and θ0). (a) Range
offset; (b) Azimuth offset; (c) Range gain; (d) Temperature bias.
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(a) (b) 

(c) (d) 

Figure 13. Estimated bias values for Radar 1 using only the model with the parameters Δρ0, α1, θ0,sant,
βaxis and αaxis. (a) Range offset; (b) Azimuth offset; (c) Range gain; (d) Temperature bias.

In the evaluation of the simulated data, the complete model with the values indicated in Table 1
has been used in the generation of the plots, but different bias models with more or less parameters
have been used in the estimation. The next figures shows the mean estimated value of the biases with
a blue line and the mean plus/minus the standard deviation of the estimation with a dotted red line.

The basic model used classically in the bias estimation literature uses only Δρ0, α1 and θ0.
The obtained results are shown in Figure 12. The temperature bias isn´t estimated with this model
and in the figure corresponding to this bias the value and the deviation is zero. With a more complex
model where the parameters used in the estimation are Δρ0, α1, θ0, sant, βaxis and αaxis the estimated
values are shown in Figure 13.

Estimating different parameters than in the previous simulation (Δρ0, α1, θ0, βenc, αenc ΔR/R and
αexc) the results are slightly different as it can be seen in Figure 14. In these three simulations it can be
seen that the range and azimuth estimations are different from the real values. This is due to the fact
that there are parameters that affect range and azimuth that aren´t included in the estimation model
and the included parameters values compensate the effect of the not included parameters.

Finally Figure 15 shows the estimated values for the complete model used in the generation.
In this case all the parameters are estimated and the result are near to the real values (shown with
a black dotted line).
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(a) (b) 

(c) (d) 

Figure 14. Estimated bias values for Radar 1 using only the model with the parameters Δρ0, α1, θ0,
βenc, αenc ΔR/R and αexc. (a) Range offset; (b) Azimuth offset; (c) Range gain; (d) Temperature bias.

(a) (b) 

(c) (d)

Figure 15. Estimated bias values for Radar 1 using the complete model. (a) Range offset; (b) Azimuth
offset; (c) Range gain; (d) Temperature bias.
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7.2. Real Data Results

The models have been tested with data from two real radars. The maximum range of both radars
is bigger than 150 NM and the separation between both radars is 52 NM. This configuration gives
enough common coverage and avoids observability problems due to the sensor separation. Radar
measurements have been transformed to local Cartesian coordinates and projected to a common
stereographic plane. The center of the stereographic projection (point (0, 0) in Figure 12) is far away
from the radars in order to evaluate if the models work with the rotation, translation and scaling
produced by the stereographic projection.

The real scenario has 227 aircraft distributed in the airspace in different flight phases. As it can be
seen in Figure 16 tracks are not uniformly distributed in the airspace. The major part of the measures
is concentrated in the bottom-left corner of the common radar coverage. As the algorithm minimizes
the mean square error the measurement of this corner will be better aligned than the measurements
from other parts of the scenario, as described in Section 6.3.

 

Figure 16. Real scenario with 227 tracks measured by two radars.

As the biases values are not known, the performance of the model will be evaluated estimating
the RMS value of the deviation in measured position of the same track at the same time from two
different radars (73). The evaluation will compare the deviation of the positions for all the measures
in the common coverage. The RMS error of the measurement noise of the radar is 160.95 m for the
first radar and 88.92 m for the second radar. The RMS value of the difference of uncorrected measured
positions is 532.45 m.

7.3. Basic Model

In [6,7] a simplified bias model is used for range and azimuth without bias in altitude. The biases
used in this estimation are the range offset (Δρ0), the range gain (α1) and the azimuth offset (Δθ0).
With these three parameters the majority of the error produced by the biases is corrected. With these
models, the deviation of the bias errors σb is reduced up to 286.60 m obtained with Equation (73).
In Figure 17a,b two illustrative trajectories are represented. The asterisks mark the measured position

320



Sensors 2017, 17, 2171

and the circles mark the corrected position. Both trajectories are allocated in the bottom left corner
of the scenario and the raw plots of radar 2 are displaced in azimuth in counter-clockwise direction.
The algorithm corrects the plots and displaces the plots towards the correct azimuth. In Figure 17c
several trajectories placed in top-right corner (low density traffic area) are represented. Raw plots
are aligned and the corrected plots are displaced clockwise. In this scenario is easy to see that the
simple model is not good enough to estimate and align the plots of the radars for the whole radar
coverage. In this scenario, the trajectories of the Figure 17a,b are separated almost 180◦ in azimuth
from trajectories of the Figure 17c. The azimuth dependence of the biases is clearly shown in these
figures. This dependence is included in the complete azimuth bias model of Equation (34).

(a) (b)

(c)

Figure 17. (a) Straight trajectory; (b) Take off trajectory corrected with basic model; (c) Several
trajectories allocated at the upper-right corner of the scenario corrected with the basic model.

7.4. Complete Model

Next, we will show the results with variations of the complete model developed in this paper.
Several configurations of the model have been used with the objective to test the final correction
contribution of each parameter of the model. In Table 2 the error deviation due to the biases is
expressed for different configurations of the models (in the first column the bias parameters used in
each configuration are indicated). The first row is the basic model from the previous section. Second
row estimates the biases due to the deviation of the antenna and the rotation axis. Third row estimates
the biases produced by the encoder. Finally the fourth row estimates all the biases presented in
the model.
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Table 2. Bias error deviation for different configuration of the model parameters.

Parameters RMS Error

Without correction 532.45 m
[Δρ, α1, Δθ] (basic model) 286.60 m
[Δρ, α1, Δθ, sant, βaxis, αaxis] 260.65 m

[Δρ, α1, Δθ, senc, αenc, ΔR/R, αecc] 248.22 m
[Δρ, α1, α2, α3, sant, saxis, taxis, Δθ, senc, αenc, ΔR/R, αecc, ΔHP, ΔT] 242.19 m

The encoder eccentricity seems to be a very important parameter in the bias estimation.
For example if the encoder has a diameter of 25 cm and an error in the rotation center of 0.25 mm
produces a maximum bias of 200 m at a range of 200 km. As could be expected, the estimation with
all the parameters is the best one and in the Figure 18 (equivalent to Figure 17) the corrected tracks
are shown. In this case, as the complete model has azimuth dependent biases, every track in every
azimuth is better corrected in comparison with the simple model. But even reduced parameters bias
models result in relevant accuracy gains with respect to the usual basic model.

(a) (b)

(c)

Figure 18. (a) Straight trajectory (b) Take off trajectory corrected with basic model (c) Several trajectories
allocated at the upper-right corner of the scenario corrected with the complete model.

The algorithm determines bias parameters for both radars to minimize the mean squared error
between the ideal position and the corrected position. As consequence of results we should conclude
that (locally in the in the shown areas) the radar 1 is better aligned to ideal position than radar 2,
although measures from both radars are corrected.

8. Conclusions

A complete model for radar biases in ATC has been developed in the paper considering both
mechanical errors in the radar installation and errors in the physical propagation and atmospheric
parameters. Typically only a basic bias model is considered in bias estimation and correction. As has
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been demonstrated with our results, with these simplified model parameters the major part of the
errors can be corrected. In real scenarios the errors of the measures cannot be approximated only
with the basic bias model. In online applications where the execution time is an important feature,
the simple model reduces the major part of the errors. In offline applications (such as [30]) where
the accuracy of the estimations is more relevant than the execution time, the number of estimated
parameters can be increased reducing the final bias error. As the number of parameters is increased,
the degrees of freedom to interpolate generic bias patterns is increased too.

The bias estimation methods in general minimize the MSE and are better adjusted where the
traffic density is bigger. With the basic model the biases are only adjusted to these higher density
areas, leaving lower traffic density with badly corrected measures. With the complete biases model
there are more degrees of freedom and the estimations will be better adjusted for areas where there is
lower density.

Analyzing the results using different bias configurations (estimation with different bias
parameters) it can be observed that the basic biases will correct the major part of the systematic
errors. The encoder eccentricity has a significant effect on the azimuth that does not depend on the
target elevation and the use of this parameter will align the plots better than with the simple model.
Also, trajectories near to one of the radars are highly affected by altitude errors.

For future work two topics derived from this paper can be studied. On the one hand the
distribution of the plots seems to be an important topic. An estimation method will be studied in order
to try to make the density of the plots in a given area not so critical for the precision of the estimations.
On the other hand, the parametrized model developed in this paper assumes that the atmospheric
conditions are constant in all the airspace but the temperature and pressure at MSL change slowly
with position. In the future we will also study the extension of the model with slow changing curves
for pressure and temperature, and the potential associated improvements. Also, the estimation of
transponder error, maybe exploiting ideas similar to the ones in [8] will be addressed.
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Abstract: The key to successful maneuvering complex extended object tracking (MCEOT) using range
extent measurements provided by high resolution sensors lies in accurate and effective modeling of
both the extension dynamics and the centroid kinematics. During object maneuvers, the extension
dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However,
this difficult but important problem is rarely considered and solved explicitly. In view of this, this
paper proposes a general approach to modeling a maneuvering complex extended object based on
Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be
described accurately. The new model has a concise and unified form, in which the complex extension
dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics
based on Minkowski sum. The proposed maneuvering model fits range extent measurements
very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with
motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with
known/unknown turn rates are specifically considered. The proposed algorithm which jointly
estimates the kinematic state and the object extension can also be easily implemented. Simulation
results demonstrate the effectiveness of the proposed modeling and tracking approaches.

Keywords: maneuvering complex extended object; coupled motion kinematics and extension
dynamics; Minkowski sum; range extent measurements

1. Introduction

In traditional radar- and sonar-based tracking applications, most target tracking approaches
usually made the assumption that the received measurement originated from a point source at
each time, i.e., a target is often regarded as a point source. Maneuvering target tracking has been
extensively studied and well developed in many articles due to its military and civil applications,
which has attracted wide attention [1]. However, with the increased resolution capability of modern
sensors, an object should be regarded as extended if one target occupies more than one resolution
cell or its extent is not negligible compared with the sensor resolution [2,3]. Specifically, some high
resolution radars can resolve individual features on an extended object and provide its kinematic
measurements. In addition, target detection, classification and tracking require more and more
knowledge of the object extension information in practical applications. Thus, treating it as a point
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mass is no longer reasonable, which results in a significant loss of information. Traditional point
tracking algorithms are not suitable for many current practical tracking scenarios. In this context,
estimating the kinematic state (i.e., position, velocity, acceleration, etc.) and extension (i.e., size, shape
and orientation) of an extended object jointly is referred to as extended object tracking [4]. It has drawn
wide attention over the past decades and has been widely applied into the tracking of ground vehicles,
close airplanes and ships. Specifically for extended object tracking using (partially) unresolvable
measurements of the object’s scattering centers, many models and approaches have been proposed,
including the multiple hypothesis tracking (MHT) [5], the spatial probability distribution model [6],
and the probability hypothesis density (PHD) filters [7–10]. A new approach of a random matrix was
presented in [11] and improved in [12]. The random-matrix-based approach was also developed to
sufficiently characterize time variation and observation distortion [13,14]. In addition, a so-called
random hypersurface modeling approach was proposed in [15] to represent the object extensions, as
ellipses and star-convex shapes.

Recently, modern and more accurate sensors can also provide the target’s range extent
(e.g., down-range and cross-range extent) measurements on a single extended object [16]. Using
range extent measurements benefits track retention in practical applications [17]. In [18], recognition
of convoys is accomplished by estimating the cross-range extension of the object using target range
measurements (high range resolution profiling). For extended object tracking using these types of
measurements, several modeling and estimation approaches have also been proposed [19–21]. In [22],
a new approach based on support functions was proposed to model extended objects. It subsumes the
above approaches using range extent measurements and needs no assumption that the orientation
of the object is parallel to its velocity vector. However, the support-function-based approach of [22],
its variant in [23,24] and other existing approaches have no explicit consideration of extended object’s
maneuverability (e.g., turn motions).

This paper aims at solving the maneuvering complex extended object tracking (MCEOT) problem
using range extent measurements. Compared with traditional maneuvering target tracking, MCEOT
emerges as an important and more difficult problem, i.e., it faces two interrelated challenges in practice:
kinematic state and object extension uncertainties. However, the extension dynamics (change in size,
shape, orientation, e.g., rotation) of an complex object is not necessarily feasible or convenient to be
described and modeled, not to mention it is tightly coupled with the centroid kinematics. In view of
the above, how to deal with the MCEOT of both centroid kinematics and the extension dynamics using
a target’s range extent is rarely accounted for in existing literature. Actually, different maneuvers of
extended objects are always reflected simultaneously in both centroid kinematics and the extension
dynamics, e.g., when an extended object maneuvers (e.g., it starts or ends a maneuver), the object
motion and extension will undergo an abrupt change.

To sum up, there is a pressing need for solving the MCEOT problem using range extent
measurements. Thus, this paper first proposes a motion and extension dynamic model describing
constant-turn maneuvers based on Minkowski sum. It can not only describe the complex extension
dynamics of an maneuvering complex extended object (MCEO) accurately and effectively, but also
fully considers the close coupling between the centroid kinematics and the extension dynamics.
Furthermore, this largely facilitates the derivation and design of an MCEOT algorithm for estimating
the centroid kinematic state and object extension jointly. Specifically, the proposed algorithm can be
easily implemented to deal with different cases of the turn maneuvers with known/unknown turn
rates for MCEOT. Compared with existing approaches, our modeling and tracking approach has the
following innovative aspects:

(a) MCEOT using measurements of target’s range extent is first considered explicitly, our approach
characterizes not only the evolution of the kinematic state over time, but also the object extension
dynamics. More importantly, the coupling between the centroid kinematics and extension
evolution (e.g., the close relationship between the turn maneuver of the centroid and the abrupt
change of extension) is also explicitly involved.
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(b) The new model has a concise and unified form and it can accurately describe an MCEO with
a turn maneuver in both the extension dynamics and the centroid kinematics, i.e., the maneuver
model of a complex extended object can be obtained and directly represented by that of
several simple sub-objects (decomposed using the Minkowski sum) jointly. In particular,
the elliptical maneuvering object model is obtained in this paper, which is a by-product of
the proposed approach.

(c) Based on the Minkowski sum, different parameterizations can be adopted in our unified
modeling framework if they are efficient to describe sub-objects’ extension dynamics. This does
not affect the generality of the proposed approaches for solving MCEOT.

(d) Due to the concise linear form, the proposed modeling is easily incorporated into a general
tracking architecture, in which the exchange of information between centroid kinematics and
extension dynamics are sufficiently utilized. This largely facilitates the derivation and design of
an MCEOT algorithm for achieving much better estimation performance.

This paper is organized as follows. Section 1 briefly reviews and analyzes the problem existing in
the extended object modeling and estimation approach. Section 2 formulates the problem of MCEOT
using range extent measurements provided by high resolution sensors. Section 3 proposes a general
approach to modeling an MCEO based on Minkowski sum. Different turn maneuvers of a complex
extended object (with different turn rates) can be described sufficiently, which has a unified form and
is simple to implement. In addition, we propose an MCEO algorithm using the Minkowski-sum-based
model for estimating both the kinematic state and extension of an maneuvering extended object,
in which different cases of turn maneuvers with known/unknown turn rates for MCEOT are involved
and solved explicitly. In Section 4, simulation results are presented to demonstrate the effectiveness of
what we propose. The last section concludes the paper.

2. Problem Formulation

For a MCEO, different maneuvers are reflected in both centroid kinematics and extension
dynamics jointly. However, the complex extension dynamics are usually difficult, infeasible or
inconvenient to describe, not to mention it is tightly coupled with the centroid kinematics when
the object maneuvers. Thus, this is rarely considered in the existing literature for object tracking using
range extent measurements. In this paper, the aim is to estimate the joint state xk = [(xm

k )
T , (xe

k)
T ]T of

an MCEO using range extent measurements. xk comprises the centroid state xm
k (xm

k = [xk, ẋk, yk, ẏk]
T ,

where (x, y) and (ẋ, ẏ) are the position and velocity in the two-dimensional (2D) Cartesian coordinate
system, respectively) and the vector xe

k describing the complex object extension. Consider the following
system model:

xk = Fxk−1 + Gwk−1,
zk = h(xk, vk) ,

(1)

where wk−1 and vk denote the process noise and measurement noise, respectively. The MCEO
dynamics of Equation (1) describes the centroid state transition and the change of object extension
jointly over time, where k is time index. The joint state transition matrix F is composed of both the
centroid kinematic state transition matrix Fm and object extension transition matrix Fe. The uncertainty
of the MCEO state xk is embodied in the process noise wk−1 = [(wm

k−1)
T , (we

k−1)
T ]T . Thus, the dynamic

equation of Equation (1) has actual the following form:[
xm

k
xe

k

]
=

[
Fm 0
0 Fe

] [
xm

k−1
xe

k−1

]
+

[
Gm 0
0 Ge

]
wk−1. (2)

This paper focuses on the case that an MCEO of interest, assumed to be a rigid body, moves with
turn maneuvers in 2D Cartesian coordinate system. As a typical target maneuver, the coordinated
turn (CT) motion is also referred to the constant turn (CT), which usually has an approximate constant
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speed with a constant turn rate [25]. The MCEO dynamics in Equation (2) describes the turn maneuver.
Note that different turn maneuvers correspond to different turn rates. In addition, Equation (2)
explicitly relates the object extension orientation change to the centroid turn maneuver, which are
tightly coupled. The joint transition matrix of the centroid kinematic state and the object extension
state is F = diag(Fm, Fe), where

Fm =

⎡⎢⎢⎢⎣
1 sin(ωT)

ω 0 − 1−cos(ωT)
ω

0 cos(ωT) 0 − sin(ωT)
0 1−cos(ωT)

ω 1 sin(ωT)
ω

0 sin(ωT) 0 cos(ωT)

⎤⎥⎥⎥⎦ , (3)

and ω is the turn rate of the centroid. Fm of Equation (3) is a centroid kinematic state transition matrix
for modeling of a maneuvering point target with CT motions, which has been extensively researched
and applied. According to Equation (3), the centroid state transition of xm

k = [xk, ẋk, yk, ẏk]
T is

xm
k = Fmxm

k−1 + Gmwm
k−1, (4)

where Gm = diag([ T2

2 , T]T ,[ T2

2 , T]T), and T is the sampling time. Unlike traditional point target
tracking, the key to successful MCEOT using range extent measurements lies in the accurate and
effective modeling of the object extension dynamics as well as the centroid kinematics.

Specifically for tracking of an extended object using range extent measurements, the support
function fits well with the description of extended object extension [22]. Since the support function
has natural and intuitive connections to the range extent of an object, the down-range D(θk) and
cross-range extent C(θk) at viewing angle θk can be directly expressed by support functions:

D(θk) = H(θk) + H(θk + π), (5)

C(θk) = H(θk +
π

2
) + H(θk − π

2
). (6)

However, the extension of a somewhat complex extended object (as an example of Figure 1) in
some cases is not feasible or convenient to be described by support functions directly using range
extent measurements. This certainly brings barriers to the modeling and estimation of the MCEO
extension dynamics and there is no explicit consideration in the literature. The major difficulties are
summarized as follows:

(a) how to accurately describe the extension dynamics (change in size, shape, orientation,
e.g., rotation) of an MCEO over time,

(b) how to deal with the close coupling between the centroid kinematics and extension evolution,
and how to embody it in the MCEO modeling.

Remark 1. Compared with traditional maneuvering target tracking, the maneuvering extended object modeling
is more difficult and complicated because the extension rotation occurs along with the turn maneuver of the
centroid. The close coupling between the centroid maneuver and the change of extension should be considered.
Thus, our research on this problem is meaningful and will benefit MCEOT using measurements of range extent,
although it is difficult to handle.
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Figure 1. Down-range and cross-range extent.

3. MCEO Modeling Using Range Extent Measurements

3.1. The Unified Complex Extension Dynamics Based on Minkowski Sum

In this section, we first consider decomposing an complex extended object as multiple simple
sub-objects by Minkowski sum (also known as Minkowski dilation). In this case, the support function
representation of the complex object extension can be easily obtained by merging support function
representations of these simple sub-object extensions. This is because the sum of support functions
is also a support function by using Minkowski sum [23]. Our study finds that the rotation of the
complex object extension occurs along with the simultaneous rotation of multiple simple sub-object
extensions, i.e., all their rotation motions have exactly the same rotational model with the same turn
rate. As examples of an MCEO in Figure 2, its complex extension dynamics in rotation motion at
counterclockwise order can be characterized by modeling extension dynamics of sub-objects jointly.
In practical applications, the rotation rate of the object extension and the turn rate of the centroid are
exactly the same because the extended object is usually treated as a rigid body. Based on the above
analysis, the turn maneuver of a complex extended object can be directly modeled by that of several
simple sub-objects via Minkowski sum. That is, the MCEO extension dynamics are characterized by
multiple simple sub-objects’ extension dynamics jointly, which has a general form as follows:⎡⎢⎢⎢⎢⎣

xm
k

xe,1
k
...

xe,n
k

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Fm 0 0 0
0 Fe,1 0 0

0 0
. . . 0

0 0 0 Fe,n

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

xm
k−1

xe,1
k−1
...

xe,n
k−1

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
Gm 0 0 0
0 Ge,1 0 0

0 0
. . . 0

0 0 0 Ge,n

⎤⎥⎥⎥⎥⎦wk−1, (7)

where xe,1
k−1, ...xe,n

k−1 are used to represent each sub-object’s extension, and Fe,1...Fe,n denote their
respective extension transition matrix. In this way, the MCEO extension dynamics modeling is largely
simplified because many simple sub-objects’ extension dynamics (e.g., circles, ellipse, rectangles, etc.)
are usually available.
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(a) (b)

(c) (d)

Figure 2. The complex object extension dynamics based on Minkowski sum, (a) illustrative example;
(b) extension dynamics of complex object; (c) extension dynamics of sub-object 1; (d) extension
dynamics of sub-object 2.

In view of the above, the key to the MCEO modeling based on Minkowski sum for tracking is
how to obtain effective and concise forms of the sub-objects’ extension dynamics. As an example of
Figure 2, these elliptical sub-objects (decomposed by Minkowski sum) are conveniently described by
two 2 × 2 symmetric positive definite matrices. Thus, we have

E1
k =

[
E(1)

k E(2)
k

E(2)
k E(3)

k

]
, E2

k =

[
E(4)

k E(5)
k

E(5)
k E(6)

k

]
. (8)

For one elliptical sub-object, its support functions representation H1(θk) at viewing angle θk
are [22]

H1(θk) =

(
vT

k

[
E(1)

k E(2)
k

E(2)
k E(3)

k

]
vk

)1/2

, (9)

where vk = [cos θk, sin θk]
T is the unit vector. The Matrix entries of E1

k can be included as a parameter

vector xe,1
k = [E(1)

k , E(2)
k , E(3)

k ]T for describing the elliptical extension because they carry useful
information about this sub-object’s extension (i.e., its geometric properties are fully reflected by
them). Thus, this sub-object’s extension state transition is

xe,1
k = xe,1

k−1 + we,1
k−1

=⇒

⎡⎢⎣ E(1)
k

E(2)
k

E(3)
k

⎤⎥⎦ =

⎡⎢⎢⎣
E(1)

k−1

E(2)
k−1

E(3)
k−1

⎤⎥⎥⎦+

⎡⎢⎢⎣
we,(1)

k−1

we,(2)
k−1

we,(3)
k−1

⎤⎥⎥⎦ ,
(10)
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where the uncertainty of this object extension is embodied by the process noise
we,1

k−1 = [we,(1)
k−1 , we,(2)

k−1 , we,(3)
k−1 ]

T . Equation (10) describes the object extension dynamics over time.
Actually, this ellipse can be rotated to a different orientation by using Ak, i.e.,[

E(1)
k E(2)

k
E(2)

k E(3)
k

]
= Ak

[
E(1)

k−1 + we,(1)
k−1 E(2)

k−1 + we,(2)
k−1

E(2)
k−1 + we,(2)

k−1 E(3)
k−1 + we,(3)

k−1

]
AT

k , (11)

which describes the change of extension orientation over time. In a 2D space, every rotation matrix is

Ak =

[
cos φ − sin φ

sin φ cos φ

]
. (12)

Substituting Equation (12) into Equation (11) yields⎡⎢⎣ E(1)
k

E(2)
k

E(3)
k

⎤⎥⎦ =

⎡⎢⎣ cos2 φ − sin 2φ sin2 φ
1
2 sin 2φ cos 2φ − 1

2 sin 2φ

sin2 φ sin 2φ cos2 φ

⎤⎥⎦
⎡⎢⎢⎣

E(1)
k−1

E(2)
k−1

E(3)
k−1

⎤⎥⎥⎦

+

⎡⎢⎣ cos2 φ − sin 2φ sin2 φ
1
2 sin 2φ cos 2φ − 1

2 sin 2φ

sin2 φ sin 2φ cos2 φ

⎤⎥⎦
⎡⎢⎢⎣

we,(1)
k−1

we,(2)
k−1

we,(3)
k−1

⎤⎥⎥⎦
=⇒ xe,1

k = Fe,1xe,1
k−1 + Ge,1we,1

k−1, (13)

where φ = ωT is the rotation angle in counterclockwise order, and

Fe,1 = Ge,1 =

⎡⎢⎣ cos2 ωT − sin 2ωT sin2 ωT
1
2 sin 2ωT cos 2ωT − 1

2 sin 2ωT
sin2 ωT sin 2ωT cos2 ωT

⎤⎥⎦ . (14)

For the other elliptical object in Figure 2, its support functions representation H2(θk) at viewing
angle θk is

H2(θk) =

(
vT

k

[
E(4)

k E(5)
k

E(5)
k E(6)

k

]
vk

)1/2

. (15)

These matrix entries E(4)
k , E(5)

k , E(6)
k can be taken as its extension parameters

xe,2
k = [E(4)

k , E(5)
k , E(6)

k ]T . Since the rotation motion of two sub-objects have exactly the same
rotation mode with the same turn rate, the sub-object extension transition of xe,2

k is

xe,2
k = Fe,1xe,2

k−1 + Ge,1we,2
k−1, (16)

where we,2
k−1 = [we,(4)

k−1 , we,(5)
k−1 , we,(6)

k−1 ]
T . As mentioned before, the extension dynamics of this complex

extended object in rotation motion can be characterized by modeling extension dynamics of sub-objects
jointly from Equations (13) and (16), i.e.,[

xe,1
k

xe,2
k

]
=

[
Fe,1 0
0 Fe,1

] [
xe,1

k−1
xe,2

k−1

]
+

[
Ge,1 0

0 Ge,1

] [
we,1

k−1
we,2

k−1

]
,

xe
k = Fexe

k−1 + Gewe
k−1, (17)
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where Fe = Ge =diag(Fe,1, Fe,1) =diag(Ge,1, Ge,1). These elliptical sub-object have the same extension
evolution over time for describing the turn maneuver, which facilitates modeling of the complex object
extension dynamics for tracking.

Note that other complex object extensions can also be described as the Minkowski sums of
other simple sub-objects with different extensions (besides ellipses) represented by support functions.
The elliptical maneuvering object model is a by-product and actually considered as a special case of
the proposed approach based on Minkowski sum.

Remark 2. Fe = Ge = diag(1, 1, 1, 1, 1, 1) in Equation (17) when the turn rate ω = 0. Correspondingly,
the centroid kinematic state transition matrix of the CT motion in Equation (3) is also changed to

Fm = diag(FCV , FCV), where FCV =

[
1 T
0 1

]
. The centroid state transition in Equation (4) is rewritten by

xm
k = diag(FCV , FCV)xm

k−1 + Gmwm
k−1. (18)

In this case, the proposed maneuvering extended object model for MCEOT (e.g., describing constant turn
motion) reduces to the non-maneuvering object model (e.g., describing constant velocity motion) when the turn
rate ω = 0. Given more information, we can design more specifically for different MCEOT scenarios because
different Fm and Fe result in different centroid state and object extension transition, respectively.

As mentioned above, there is a close coupling between the centroid maneuver and the change
of extension, i.e., the extension rotation occurs along with the turn maneuver of the centroid.
Thus, the rotation rate of extension ω = φ

T in Ak (see Eqaution (12)) and the turn rate ω of the
centroid (see Eqaution (3)) are exactly the same when an extended object maneuvers (e.g., performing
a turn motion). The transition of xe

k in Equation (17) is actually the object extension dynamic model,
which describes the change of the extension orientation over time. Equation (7) also explicitly describes
the relation between the object extension orientation change and the centroid turn maneuver. The
extension state xe

k = [(xe,1
k )T , (xe,2

k )T ]T is included in xk = [xk, ẋk, yk, ẏk, E(1)
k , E(2)

k , E(3)
k , E(4)

k , E(5)
k , E(6)

k ]T

as the joint state vector. Note that different Fm and Fe describe different transition of centroid kinematic
state and the change of object extension orientation, respectively.

Remark 3. The MCEO modeling approach based on Minkowski sum using range extent measurements has
several following advantages: (1) It has a concise mathematical form to describe an MCEO with different
turn motions accurately; (2) the close relationship between the maneuver of the centroid and the change of
object extension orientation is considered and solved explicitly; (3) the proposed modeling approach is easy to
implement and facilitates the derivation and design of MCEOT algorithms; and (4) the matrix parameterization
is not the only option for our approach to solve the MCEOT using target’s range extent measurements.
Other parameterizations can also be adopted in the unified model framework based on Minkowski sum if
they are efficient to describe other convex objects. This does not affect the generality of the proposed approaches.

For tracking of an MCEO (e.g., a maneuvering civil or military aircraft) that performs CT motions
with known/unknown turn rates, we propose two different Minkowski-sum-based MCEOT algorithms
for estimating the joint target state xk (i.e., both the centroid kinematic state xm

k and the extension
state xe

k) in this section.

3.2. The Minkowski-Sum-Based Modeling and Estimation for CT Maneuvers with Known Turn Rates

In the first case of constant turn maneuvers with known turn rates, we introduce a hybrid system
framework for describing practical motions and extension dynamics of an extended object accurately.
It is beneficial to use more than one MCEO motion model with known turn rates in a tracking algorithm
when the true object motion is complicated, e.g., the whole process of turn motions is assumed to
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be described by a model set (e.g., including a non-maneuvering model and several turn maneuver
models). Thus, we consider the following hybrid system:

xk = F(i)xk−1 + w(i)
k−1, w(i)

k−1 ∼ N (0, Q(i)
k )

zk = h(xk, vk), vk ∼ N (0, Rk),
(19)

where superscript i denotes quantities pertinent to model m(i) in the set M = {m(1), m(2), ..., m(M)}.
The modal state mk sequence is a first-order Markov chain that has transition probabilities
πi,j = P{m(j)

k |m(i)
k−1}, ∀m(i), m(j), k. m(i)

k means that model m(i) matching the system motion mode
(e.g., turn motions with different turn rates) is in effect at time k.

Similar to [17,20], we also assume that a high resolution radar provides target range extent
measurements (i.e., D(θk) and C(θk)) as well as the range rk and bearing βk measurements of the object
centroid. Thus, the measurement equation is written as

zk = [rk, βk, Dk, Ck]
T + vk, (20)

where rk =
√
(xk − X0)2 + (yk − Y0)2, βk = arctan (yk−Y0)

(xk−X0)
and vk is measurement noise. (X0, Y0) is the

location of the sensor. The measurements in zk = [rk, βk, Dk, Ck]
T are usually provided from different

physical channels, and the noise vk is generally assumed to be a zero-mean Gaussian process with
cov[vk] = Rk =diag[Rr

k, Rβ
k , RD

k , RC
k ]. As an example of a complex object in Figure 1, this object can be

described as a Minkowski sum of two elliptical sub-objects, and its support function representation
has the following form: H(θk) = H1(θk) + H2(θk). Thus, Equations (5) and (6) are rewritten as

D(θk) = H(θk) + H(θk + π) = H1(θk) + H2(θk) + H1(θk + π) + H2(θk + π), (21)

C(θk) = H(θk +
π

2
) + H(θk − π

2
) = H1(θk +

π

2
) + H2(θk +

π

2
) + H1(θk − π

2
) + H2(θk − π

2
). (22)

Since the elliptical sub-objects are centrosymmetric, i.e.,

H(θk) = H(θk + π), H(θk +
π

2
) = H(θk − π

2
), (23)

we have
D(θk) = 2H(θk) = 2(H1(θk) + H2(θk)), (24)

C(θk) = 2H(θk +
π

2
) = 2(H1(θk +

π

2
) + H2(θk +

π

2
)). (25)

For this case of turn maneuvers with known turn rates, we propose an MCEOT algorithm within
the multiple model framework [26] by comprehensively considering the uncertainties of motion
and extension dynamics. It runs a set of filters based on models describing several possible turn
maneuvers as well as the non-maneuver target motion. Suppose that the required state estimate
x̂(i)k−1|k−1 = [x̂m,(i)

k−1|k−1, x̂e,(i)
k−1|k−1]

T , its error covariance P̄(i)
k−1|k−1 and model probability μ

(i)
k−1 at time k − 1

are available for m(i), i = 1, ..., N. x̂k|k and Pk|k can be obtained recursively (k − 1 → k) in prediction
and updated as follows.

Step 1. Evaluate the mixing probabilities μ
j|i
k−1 = πj,iμ

(j)
k−1/μ

(i)
k|k−1 with μ

(i)
k|k−1 = ∑M

j=1 πj,iμ
(j)
k−1,

and mixing estimates x̄(i)k−1|k−1 = ∑M
j=1 x̂(j)

k−1|k−1μ
j|i
k−1 and covariance P̄(i)

k−1|k−1 = ∑M
j=1[P

(j)
k−1|k−1 +

(x̄(i)k−1|k−1 − x̂(i)k−1|k−1)(x̄(i)k−1|k−1 − x̂(i)k−1|k−1)
T ]μ

j|i
k−1.

Step 2. Run a nonlinear filter (e.g., unscented filter, extended Kalman filter, quadrature Kalman
filter, etc.) for each model with initial condition (x̂(i)k−1|k−1 = [x̂m,(i)

k−1|k−1, ê(i)k−1|k−1]
T , P(i)

k−1|k−1 and μ
(i)
k−1).
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Step 3. Model probability update is derived by Bayes’ formula, i.e., μ
(i)
k =

Λ(i)
k μ

(i)
k|k−1

∑N
j=1 Λ(j)

k μ
(i)
k|k−1

, where

Λ(i)
k = p[zk|zk−1, m(i)

k ] is the likelihood of model m(i)
k . It is usually approximated as a Gaussian

distribution by moment matching, i.e Λ(i)
k = N (zk − ẑ(i)k|k−1; 0, S(i)

k ).
Step 4. The fused kinematic state and extension state estimate is calculated as the sum of

x̂(i)k|k = [x̂m,(i)
k|k , ê(i)k|k]

T weighted by its corresponding model probabilities μ
(i)
k : x̂k|k = ∑N

i=1 x̂(i)k|kμ
(i)
k and

Pk|k = ∑N
i=1[P

(i)
k|k + (x̂k|k − x̂(i)k|k)(x̂k|k − x̂(i)k|k)

T ]μ
(i)
k .

Remark 4. Thanks to the concise linear form of the Minkowski-sum-based dynamic model given the known
turn rate, the uncertainty in turn rate can be alleviated by the proposed algorithm. However, turn maneuvers are
not necessarily totally covered by several CT models with known turn rates—not to say the true turn rate is
usually unknown for the tracker in practical applications. This case can be handled by another modeling and
estimation algorithm proposed next.

3.3. The Minkowski-Sum-Based Modeling and Estimation for CT Maneuvers with Unknown Turn Rates

For tracking of an MCEO that performs CT motions with unknown turn rates, we propose
another Minkowski-sum-based MCEO modeling and estimation algorithm. In many CT maneuver
cases, the turn rate is usually unknown or not be known a priori for the tracker. Thus, different from
the case of constant turn maneuvers with known turn rates, it can be described by the Wiener process:

ωk = ωk−1 + wω
k−1. (26)

where wω
k−1 is zero-mean Gaussian noise. In this case, the unknown turn rate is included as a state

component into the joint state vector, to be estimated recursively. That is, we augment the object state
vector xk = [(xm

k )
T , (xe

k)
T ]T to include it:

xA
k � [(xk)

T , ωk]
T . (27)

The MEO dynamic model of this case is reformulated by Equations (2) and (26) jointly, i.e.,

xA
k = FA

k−1xA
k−1 + GA

k−1wA
k−1⎡⎢⎣ xm

k
xe

k
ωk

⎤⎥⎦ =

⎡⎢⎣ Fm
k−1 0 0
0 Fe

k−1 0
0 0 1

⎤⎥⎦
⎡⎢⎣ xm

k−1
xe

k−1
ωk−1

⎤⎥⎦+

⎡⎢⎣ Gm
k−1 0 0
0 Ge

k−1 0
0 0 1

⎤⎥⎦
⎡⎢⎣ wm

k−1
we

k−1
wω

k−1

⎤⎥⎦ ,
(28)

where

Fm
k−1 =

⎡⎢⎢⎢⎢⎣
1 sin(ωk−1T)

ωk−1
0 − 1−cos(ωk−1T)

ωk−1

0 cos(ωk−1T) 0 − sin(ωk−1T)
0 1−cos(ωk−1T)

ωk−1
1 sin(ωk−1T)

ωk−1

0 sin(ωk−1T) 0 cos(ωk−1T)

⎤⎥⎥⎥⎥⎦ , (29)

and Fe
k−1 = Ge

k−1 =diag(Fe,1
k−1, Fe,1

k−1),

Fe,1
k−1 =

⎡⎢⎣ cos2 ωk−1T − sin 2ωk−1T sin2 ωk−1T
1
2 sin 2ωk−1T cos 2ωk−1T − 1

2 sin 2ωk−1T
sin2 ωk−1T sin 2ωk−1T cos2 ωk−1T

⎤⎥⎦ . (30)

Thus, the following dynamic and measurement equations of the system are considered:

xA
k = FA

k−1xA
k−1 + GA

k−1wA
k−1, wA

k−1 ∼ N (0, QA
k )

zk = h(xk, vk), vk ∼ N (0, Rk) .
(31)
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Note that FA
k−1 =diag(Fm

k−1, Fe
k−1, 1) in Equation (31) is totally different from F =diag(Fm, Fe)

in Equation (19) because here the turn rate ωk−1 is considered as an unknown state component.
In this case, the dynamic model of Equation (28) is really no longer linear, and a nonlinear tracking
algorithm needs to be designed with a joint state vector xA

k (including the unknown turn rate).
The measurement equation of Equation (31) is still the same as those of Equation (19). Suppose that
augmented state estimate x̂A

k−1|k−1 = [(x̂A
k−1|k−1)

T , ωk]
T and its error covariance PA

k−1|k−1 at time k − 1
are available, we adopt the unscented transformation (UT) [27] to solve the severely nonlinear dynamic
and measurement equations, i.e.,

(x̂A
k|k−1, PA

k|k−1) = UT[FA
k−1xA

k−1, (x̂A
k−1|k−1)

T , PA
k−1|k−1],

(ẑk|k−1, Sk) = UT[h(xA
k ), (x̂A

k|k−1)
T , PA

k|k−1].
(32)

The UT is an effective approach to approximating first and second moments (e.g., mean and
covariance) as a nonlinear function of random state vectors xA

k and zk by deterministic sample
points with weights {αi, i = 0, 1, ..., N}. Note that the UT is not the only option; other moment
approximating methods (e.g., the uncorrelated conversion [28,29], the Gauss–Hermite quadrature
rules [30], the Cubature rules [31], etc.) may also be used here. Excluding Equation (32), the remaining
estimate process of Equation (31) can be implemented in the framework of Kalman filter directly due
to the proposed concise model describing CT maneuvers with unknown turn rates.

3.4. Complexity Analysis

In our modeling and tracking framework, a complex object is decomposed as multiple
simple sub-objects (i.e., K1, K2, ...KNs ) by using the Minkowski sum. If they are represented by
support functions (i.e., HK1(θ), HK2(θ), ..., HKNs

(θ)) for the viewing angle θ, the Minkowski sum
K1 ⊕ K2⊕, ..., ⊕KNs is unique with

HK1⊕K2⊕,...,⊕KNs
(θ) = HK1(θ) + HK2(θ) + ...,+HKNs

(θ), (33)

where HK1(θ) + HK2(θ) + ...,+HKNs
(θ) is also a support function. As an example of Figure 2,

the Minkowski sum of a complex object (i.e., K1 ⊕ K2) becomes HK1⊕K2(θ) = HK1(θ) + HK2(θ).

Correspondingly, its extension state xe
k = [E(1)

k , E(2)
k , E(3)

k , E(4)
k , E(5)

k , E(6)
k ]T) consists of the subjects’

extension state xe,1
k = [E(1)

k , E(2)
k , E(3)

k ]T and xe,2
k = [E(4)

k , E(5)
k , E(6)

k ]T .
As mentioned in Sections 3.2 and 3.3, the extension state is estimated by calculating the needed

moments of xe
k and Pe

k based on UT sampling, and implemented in the framework of Kalman filter (KF).
The general KF has O(N3) complexity in the number N of state and requires O(N3) floating-point
computations [32]. Thus, the computational complexity of our approach has the same order of
magnitude as that of KF and mainly depends on the dimension of the selected extension state for
tracking. As an example of an elliptical object, its computational complexity is O(N3). Since one
elliptical object’s extension state is xe,1

k = [E(1)
k , E(2)

k , E(3)
k ]T with the dimension of 3, the computational

complexity of a complex object is O(N3 + [3(Ns − 1)]3), where Ns is the number of the decomposed
elliptical sub-objects. Actually, O(N3 + [3(Ns − 1)]3) is equivalent to O(N3) +O([3(Ns − 1)]3) by
neglecting the inconsequential high order items in practical applications. In other words, compared
with the computational complexity of a single sub-object’s extension state estimation, the complex
object’s computational complexity is added by O([3(Ns − 1)]3). The above will be analyzed and
verified by the following experimental simulations in Section 4.3.

4. Simulation Results and Performance Evaluation

In this section, we focus on the case of a stationary sensor platform and moving extended object.
Here, the proposed Minkowski-sum-based maneuvering modeling is applied to the MCEOT using
range extent measurements, and the following three simulation scenarios of MCEOT are considered.
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In the first two scenarios, the proposed MCEO model is a constant turn maneuver model with known
turn rates and its dynamic equation is linear. In the third scenario, it is a constant turn model with
unknown turn rates and its dynamic equation is nonlinear.

To evaluate the tracking performance of the proposed approach, the following two approaches
are compared by simulation to illustrate its effectiveness in these scenarios. To be fair for extension
estimation, the compared approaches are initialized with the same extension (e.g., a circle) without
further information:

(a) MCEOT-1: The proposed approach based on Minkowski sum considering the highly coupled
dynamics of both the state and the extension.

(b) MCEOT-2: The approach considering only the centroid state dynamics.

MCEOT-2 is compared because there is rarely accounted for in existing literature to deal with
the MCEOT of both centroid kinematics and the extension dynamics using target’s range extent.
Thus, other techniques are not compared with the proposed approach (i.e., MCEOT-1) in simulations.
However, to verify its effectiveness and benefit of considering the highly coupled dynamics of both
the state and the extension for modeling and tracking, we compare MCEOT-1 with MCEOT-2 in
the simulations.

The performance comparison results demonstrate that MCEOT-1 outperforms MCEOT-2, in which
exchange of information between centroid kinematics and extension dynamics are sufficiently utilized
to improve performance. The detailed discussions and analysis are as follows.

4.1. Tracking Performance Using Minkowski-Sum-Based CT Model with Known Rates

Consider the following two different scenarios in which an object with complex extension
(as an example of Figure 1) performs a nearly constant velocity (CV) motion and two
CT maneuvers in the 2D Cartesian coordinate system with the initial kinematic state
xm

0 = [1000 m, 100 m/s, 2000 m, 60 m/s]T . This object is composed and modeled by two elliptical
sub-objects with different orientation angles using Minkowski sum, both of which have the same
object extension (i.e., the lengths of minor and major axes are 10 m and 50 m, respectively). The sensor,
fixed at the origin (0, 0), provides measurements of range, bearing, down- and cross-range extent
along line of sight every T = 1 s. Each measurement is corrupted by zero-mean white Gaussian noise
with standard deviations σr = 5 m, σβ = 0.01 rad, σD = 5 m, and σC = 5 m. These two scenarios are
simulated to illustrate the effectiveness of our approach.

In the scenario A, the true trajectory is illustrated in Figure 3, i.e., this object undergoes two
different turn maneuvers. The modal state of this scenario contains M = 3 elements for the CV
model and two CT models with turn rates ω

(1)
A = 5π/180 rad/s and ω

(2)
A = 10π/180 rad/s (it has a

stronger maneuverability).
In scenario B, the true trajectory (illustrated in Figure 4) is more sophisticated, in which this

object performs different turn motions in clockwise and anticlockwise order. The modal state of
scenario B also contains M = 3 elements for the CV model and two CT models with turn rates
ω
(1)
B = −5π/180 rad/s and ω

(2)
B = 10π/180 rad/s.

Simulation results for the above scenarios are shown in Figures 3–6. The true and estimated object
trajectories of different scenarios are shown in Figures 3 and 4. In this simulation, the comparison
results of kinematic state estimation are the root-mean-square error (RMSE) [33], i.e., it is chosen as
the measure to evaluate performance of position and velocity estimation over 100 Monte Carlo runs
(M = 100). The RMSE of kinematics estimation has the following forms:

RMSE(x̂m
k ) = (

1
M

M

∑
i=1

∥∥x̃m
k,i
∥∥2
)1/2, (34)

where x̃m
k,i = xm

k,i − x̂m
k,i is the estimation error on the ith of the M Monte Carlo runs. The comparison

results are shown in Figures 5a,b and 6a,b. These figures show that MCEOT-1 has better performance
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than MCEOT-2 in estimation of kinematic state because MCEOT-2 considering only the state dynamics.
It can be concluded that sufficiently utilizing extension dynamics information of the maneuvering
extended object can effectively improve the accuracy of the kinematic state estimation. Actually,
with the help of kinematic state estimation, the extension estimation can also be improved.

Figure 3. Trajectory of the complex extended object in scenario A (the blue solid line is for the true
object, the red solid line and black dash line are for MCEOT-1 and MCEOT-2, respectively).

Figure 4. Trajectory of the complex extended object in scenario B (the blue solid line is for the true
object, the red solid line and black dash line are for MCEOT-1 and MCEOT-2, respectively).
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(a) (b)

(c) (d)

Figure 5. Performance comparison for scenario A. (a) position RMSE; (b) velocity RMSE; (c) Hausdorff
distance; (d) average probability of MCEOT-1.

(a) (b)

(c) (d)

Figure 6. Performance comparison for scenario B. (a) position RMSE; (b) velocity RMSE; (c) Hausdorff
distance; (d) average probability of MCEOT-1.
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The object extension evaluation of an maneuvering extended object can be regarded as a problem
of object extension matching; thus, the Hausdorff distance [34] is adopted to objectively measure the
quality of extension estimation, which reflects the degree of similarity between the estimated extension
and the true one. However, it is difficult to be used for performance evaluation of the extension
estimation directly because the range of θ is a continuous set (i.e., θ ∈ [0, 2π)). Thus, the Hausdorff
distance is modified by

dH(K, K̂) =
1
M

M

∑
i=1

sup |HK,i(θ)− HK̂,i(θ)|
θ∈{j· 2π

Ns ,j=1,...Ns}

, (35)

where dH(K, K̂) is the modified Hausdorff distance between the estimated object extension K̂ and
the true one K on the ith of the M Monte Carlo runs, and θ ∈ [0, 2π) is replaced by the discrete set
θ ∈ {j · 2π

Ns
, i = 1, ...Ns} via uniform angle sampling. In our simulation, Ns as the number of sampling

points is set to be 1000.
From Figures 3–6, we can see that MCEOT-1 has almost the same performance as MCEOT-2

in the centroid kinematics and extension estimation when the extended object performs CV
motion. However, MCEOT-1 outperforms MCEOT-2 (i.e., MCEOT-1 has smaller position and
velocity RMSE, and the short Hausdorff distance) when this object maneuvers. In other words,
MCEOT-1 estimates the kinematic state and object extension accurately while MCEOT-2 cannot
(see Figures 5a–c and 6a–c) because MCEOT-2 only focuses on centroid kinematics without considering
of the object extension dynamics. Compared with MCOET-2, MCEOT-1 can produce simultaneously
stable tracking and extension estimates converging to the true extended object.

As illustrated in Figures 5d and 6d, MCEOT-1 distinguishes the true mode successfully and
identifies the tracking model correctly matches the real situation, especially when the extended object
starts or ends a maneuver.

4.2. Tracking Performance Using Minkowski-Sum-Based CT Model with Unknown Rates

In the scenario C, the true trajectory is illustrated in Figure 7a: the extended object performs CT
motion with turn rate ωC = π/180 from 1 s to 60 s. Unlike in Section 4.1, the turn rate ωC of CT
motion is totally unknown for the tracker in this scenario. Note that the other simulation parameters
are the same as that of the extended objects in the Section 4.1. In addition, the compared approaches
(i.e., MCEOT-1 and MCEOT-2) are also initialized with the same circle without further extension
information for the fair evaluation.

From Figure 7b–d, we can see that simulation results and performance comparisons in this case
are similar to that of Section 4.1, i.e., MCEOT-1 has better performance than MCEOT-2 in the centroid
kinematics and extension estimation. Note that MCEOT-2 outperforms MCEOT-1 in the initial tracking
process (roughly from 1 s to 20 s) because MCEOT-2 considers only the centroid state dynamics without
extension dynamics, i.e., its dynamic model is:

xA
k = FA

k−1xA
k−1 + GA

k−1wA
k−1⎡⎢⎣ xm

k
ek
ωk

⎤⎥⎦ =

⎡⎢⎣ Fm
k−1 0 0
0 I6 0
0 0 1

⎤⎥⎦
⎡⎢⎣ xm

k−1
ek−1
ωk−1

⎤⎥⎦+

⎡⎢⎣ Gm 0 0
0 I6 0
0 0 1

⎤⎥⎦
⎡⎢⎣ wm

k−1
we

k−1
wω

k−1

⎤⎥⎦ ,
(36)

where I6 = diag(1, 1, 1, 1, 1, 1). This dynamic model is really nonlinear because this unknown turn rate
is considered as a unknown state component and augmented by the joint state. However, compared
with the dynamic model of Equation (28), its nonlinearity is weaker for tracking. Thus, MCEOT-2
achieves better performance than MCEOT-1 in the initial period. As time goes on, however, MCEOT-1
beats MCEOT-2 in the final steady state (see Figure 7). This main reason is that MCEOT-1 considers
the highly coupled dynamics of both the state and the extension. The estimation of the kinematic state
and extension are inter-dependent and they affect each other. In this case, more and more two-way
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exchange of information between centroid kinematics and extension dynamics is sufficiently utilized
by MCEOT-1 to achieve much better estimation performance than MCEOT-2.

The above simulation results demonstrate that good solutions to the MCEOT problem need to
fully consider the highly coupled dynamics of both the state and the extension. It can be concluded that
the validity of the proposed approach (MCEOT-1) is verified by simulation results and performance
comparison in different scenarios.

(a) (b)

(c) (d)

Figure 7. Simulation results in scenario C. (a) the object trajectory; (b) position RMSE; (c) velocity
RMSE; (d) Hausdorff distance.

4.3. Performance Comparison and Complexity Analysis

To verify the complexity analysis of Section 3.4 in the experimental aspect, the following approach
is compared with MCEOT-1 in scenario A.

MEOT-1: The elliptical maneuvering extended object modeling and tracking approach.
Note that the simulation parameters are the same as that of the Section 4.1, and the compared

approaches are still initialized with the same extension (e.g., a circle) without further information.
The computational complexities of the MCEOT-1 and the MEOT-1 are analyzed and compared as
follows. Specifically for MCEOT-1 and MEOT-1, their computational complexities are reflected by the
time consumption in simulations. The most time-consuming parts of the above approaches lie in the
estimation of the object extension state. MCOET-1 has more complexity mainly because it requires
more computational time than MEOT-1 for estimating the extension state with higher dimension.
Table 1 shows the one-run computational time of the compared approaches for scenarios A and B
averaged over the 100 Monte Carlo runs. In the simulation experiments, the above two approaches are
implemented in the Matlab (R2011b) environment on a computer with a 4.00 GHz CPU (Intel Core i7
4790k), only a single thread is used). Clearly from this table, MCOET-1 requires more computational
time for tracking (aiming at estimating xe

k = [(xe,A
k )T , (xe,B

k )T ]T = [E(1)
k , E(2)

k , E(3)
k , E(4)

k , E(5)
k , E(6)

k ]T) than
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MEOT-1 (aiming at estimating xe,A
k = [E(1)

k , E(2)
k , E(3)

k ]T). The results of Table 1 are consistent with the
complexity analysis in Section 3.4.

Table 1. Averaged computation time (seconds) for one run (90 steps) of two approaches in scenario A.

MCOET-1 MEOT-1

0.2971 0.1103

As shown in Figure 8, MCEOT-1 outperforms MEOT-1 in estimation of extension state for
scenario A. The main reason is that using the simple elliptical extension dynamics model for tracking
of a complex object ignores more detailed shape information. This does not facilitate the improvement
of estimation performance. Specially during the extended object maneuvers, MCEOT-1 can estimate
the object extension accurately while MEOT-1 cannot because the MEOT-1 does not consider the actual
extension maneuvers and uses an inappropriate model. As time goes by, more and more tracking
errors are cumulated, which go against the accurate estimation of a maneuvering complex extended
object. Correspondingly, it achieves much weaker performance than MCEOT-1 in the final steady state
(see Figure 8), though it takes less time.

(a) (b)

Figure 8. Simulation results in scenario A. (a) the object trajectory; (b) Hausdorff distance.

In summary, for both MCEOT-1 and MEOT-1, their computational complexities mainly differ
in the estimation of the object extension state, which are reflected by the time-consumption of
tracking. Compared with MEOT-1, MCEOT-1 gets much better results and its time complexity is of
the same order. Due to the concise linear form, the proposed approach can achieve excellent tracking
performance with the rise of low complexity.

5. Conclusions

To deal with MCEOT using range extent measurements, this paper proposed a general approach
based on Minkowski sum. It not only accurately describes different turn maneuvers in both the
extension dynamics and the centroid kinematics, but also fully considers the close coupling between
the centroid maneuver and the abrupt change of extension. Thank to its concise and unified form,
the complex extension dynamics can be easily described by several sub-objects’ extension dynamics in
a joint way. This largely simplifies the whole modeling process of an MCEO. Furthermore, the proposed
Minkowski-sum-based modeling is simple and effective, and it can be easily implemented to deal with
different cases of the turn maneuvers with known/unknown turn rates for MCEOT. The effectiveness of
what we proposed is demonstrated through simulation results, which achieves excellent performance
in the estimation of the centroid kinematic state and the object extension jointly with low complexity.
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Furthermore, the practical benefits of our approach are summarized as follows: (1) due to its
concise mathematical forms and favorable properties, the maneuvering complex extended object
modeling is largely simplified and more detailed shape information is described; (2) a larger range of
maneuvering complex extended object tracking can be handled by using Minkowski sum. In summary,
our approach may pave the way for solving different MCEOT using range extent measurements.
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Abstract: Closeness measures are crucial to clustering methods. In most traditional clustering
methods, the closeness between data points or clusters is measured by the geometric distance alone.
These metrics quantify the closeness only based on the concerned data points’ positions in the feature
space, and they might cause problems when dealing with clustering tasks having arbitrary clusters
shapes and different clusters densities. In this paper, we first propose a novel Closeness Measure
between data points based on the Neighborhood Chain (CMNC). Instead of using geometric distances
alone, CMNC measures the closeness between data points by quantifying the difficulty for one data
point to reach another through a chain of neighbors. Furthermore, based on CMNC, we also propose
a clustering ensemble framework that combines CMNC and geometric-distance-based closeness
measures together in order to utilize both of their advantages. In this framework, the “bad data points”
that are hard to cluster correctly are identified; then different closeness measures are applied to
different types of data points to get the unified clustering results. With the fusion of different
closeness measures, the framework can get not only better clustering results in complicated clustering
tasks, but also higher efficiency.

Keywords: clustering; clustering ensemble; closeness measure; geometric distance; neighborhood chain

1. Introduction

Clustering is an important topic in machine learning, which aims to discover similar data
and group them into clusters. Various clustering algorithms have been proposed and widely
used in different areas such as sensor networks [1–4], image processing [5–7], data mining [8–10],
text information processing [11,12], etc.

In classical clustering algorithms, the centroid-based methods, density-based methods and
connectivity-based methods are the most commonly used in practice (such a categorization is according
to the different cluster models employed). The most well-known clustering methods include the
k-means [13], DBSCAN [14], CURE (Clustering Using REpresentatives) [15], etc. They respectively
belong to the three aforementioned categories. There are also many recent works focused on improving
the performance of the classic clustering schemes [16–19], or exploiting novel clustering methods using
different closeness measures [20–23].

The effectiveness of clustering methods, to a great extent, is determined by the closeness measure
between data points or clusters. In most classical methods, only the geometric distance is used to
measure the closeness between data points, and the closeness between clusters is based on the closeness
between their representative data points.

Sensors 2017, 17, 2226 344 www.mdpi.com/journal/sensors
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However, the distance-based metrics only focus on the geometric closeness. Although these
metrics are appropriate for clustering tasks where the data points’ distribution conforms to
some strong assumptions, e.g., regular shapes and uniform density, they perform not so well in
complicated situations. For example, in k-means and its related methods, partitions are formed based
on the distance between each data point and each centroid. Such partitioning rule will bring incorrect
results when data points belonging to a given cluster are closer to the centroids of other clusters than
to the centroid of the given correct cluster [24]. In DBSCAN, the clustering performance depends on
the two parameters defining the neighborhood size and density threshold, which are based on some
geometric distances [25]. Since the threshold is predefined and fixed, DBSCAN will generate incorrect
results, if the densities of the data points in different clusters are varying. In existing agglomerative
hierarchical clustering methods [26], sub-clusters are merged according to the closeness measures such
as the single linkage and the complete linkage [27], where the closeness is determined by the pairwise
geometric distances between inter-cluster representative data points. Due to the similar reasons that
cause problems in the aforementioned methods, these agglomerative hierarchical algorithms usually
work well only for the spherical-shaped or uniformly-distributed clusters [24].

The limitations of the traditional closeness measures in clustering have attracted much attention,
and thus, many approaches using different closeness definitions have been proposed to address
the aforementioned problems. One branch of methods uses the clusters’ probability distribution
information and its closeness definition. For example, Lin and Chen [28] proposed the cohesion-based
self-merging algorithm, which measures the closeness between two sub-clusters by computing and
accumulating the “joinability” value of each data point in the two clusters. Dhillon et al. [29]
used a KL divergence-based [30] clustering scheme to cluster words in the document categorization.
KL-divergence is a measure of “distance” between two probability distributions (it is not a true distance
metric because it is not symmetric, and it violates the triangle inequality). In the scheme, a word is
assigned to a cluster if the distribution of this word has the smallest “distance” (measured by KL
divergence) to the weighted sum of the distributions of the words in that cluster. Similar ideas can be
seen in [31,32]. Heller et al. [33] and Teh et al. [34] used Bayes rule in a hierarchical clustering scheme to
guide the merging process, where each pair of the clusters is assigned a posterior probability based on
the Bayesian hypothesis test and the two clusters with the highest posterior probability are merged. By
incorporating the distribution information, these methods are more robust to outliers and can deal with
data with arbitrary shapes. However, users must know the clusters’ probability density functions (pdf)
before running the algorithms. Another branch of refined clustering methods are based on the graph
theory. Karypis et al. [24] proposed the algorithm of chameleon, where a graph based on k-nearest
neighbors is constructed and then cut into sub-clusters. The relative inter-connectivity and the relative
closeness are used to determine the closeness between sub-clusters, and the algorithm achieves good
results in finding clusters with arbitrary shapes. Similarly, we can see in [35,36], and more recently
in [37], that Zhang et al. proposed an agglomerative clustering method where a structural descriptor
of clusters on the graph is defined and used as clusters’ closeness measure. The properties of graph
theory make it very appropriate to describe clustering problems, and the methods based on graph
theory perform well in dealing with clusters with arbitrary shapes. However, we find that these
methods often fail to adapt to clustering tasks with very different clusters’ densities, although they
use new closeness measures. In the two branches of refined clustering methods above, different
kinds of closeness measures have been proposed to address the problems caused by the geometric
distance-based closeness measures. These new measures do not focus on the geometric closeness alone,
and they achieve success in many clustering tasks. However, they still have their own limitations.
In particular, as mentioned above, these closeness measures either ignore the density information or
need strong a priori information.

Therefore, in this paper, we first focus on designing a more comprehensive closeness measure
between data points to substitute the traditional geometric distance-based closeness measures in
clustering algorithms. The new measure is called the Closeness Measure based on the Neighborhood
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Chain (CMNC), where the neighborhood chain is a relationship established between two data points
through a chain of neighbors. By substituting their original closeness measures with CMNC, many
simple clustering methods can deal with the complicated clustering tasks with arbitrary clusters shapes
and different clusters densities.

Prior to ours, there were some recent works in the literature that also utilized the k-nearest
neighbors relationship in clustering problems. For example, Liu et al. [38] proposed a clustering
algorithm named ADPC-KNN (Adaptive Density Peak Clustering kNN), where they modified the
density peaks’ clustering [39] by using the distribution information of k-nearest neighbors of a data
point to calculate its local density. Sur et al. [40] proposed a clustering method that forms a cluster by
iteratively adding the cluster’s nearest neighbor into that cluster (a threshold is defined determining
whether this nearest neighbor can be added into the cluster). In a series of work proposed in [41–44],
Qiu et al. used an algorithm called nearest neighbor descent and its several modifications to organize
the data points into a fully-connected graph “in-tree”, and the clustering results can be obtained after
removing a small number of redundant edges in the graph. In the nearest neighbor descent algorithm,
each data point “descends” to (links to) its nearest neighbor in the descending direction of density.
Other similar works utilizing the k-nearest neighbors in clustering can be seen in [45,46].

In the above cited works, the neighborhood relationship is used in many ways and resolves
different problems in clustering. However, our work presented in this paper is different from the
existing methods. In our work, the neighborhood relationship is used to construct a pair-wise closeness
measure between two data points, which incorporates not only the connectivity, but also the density
information of data points.

The work in this paper is an extension of our previous preliminary work in [47], where the basic
concepts of CMNC were preliminarily proposed. In this paper, we provide more detailed definition
and analysis about CMNC. Furthermore, based on CMNC, we also propose a clustering ensemble
framework that combines different closeness measures. Due to the involvement of neighborhood
relationships, the computational cost of CMNC is relatively high. In the proposed framework, we use
different closeness measures (CMNC and Euclidean distance) for different data points and get the
unified clustering results. In this way, we are able to limit the use of CMNC to the “least required”
number of data points to get the correct clustering results. Therefore, based on the proposed framework,
we can get better clustering results and, at the same time, higher efficiency.

The rest of the paper is organized as follows. Section 2 introduces the basics of the traditional
clustering methods and their limitations. In Section 3, the neighborhood chain is introduced, and
CMNC is proposed. The performance of several clustering methods whose closeness measures are
substituted with CMNC is provided. The clustering ensemble framework based on different closeness
measures is proposed and tested in Section 4. Section 5 concludes this paper.

2. Traditional Clustering Methods and Their Limitations

In this section, we briefly recall some representative clustering methods. We focus on their
closeness measures and discuss why these measures might cause problems.

2.1. Centroid-Based Clustering Methods

In the centroid-based clustering methods, e.g., the k-means [13] and the k-medoids [48],
the closeness between a data point and the existing clusters’ centroid (or medoid) determines to
which cluster the data point will be assigned. The clusters’ centroids are iteratively updated by
minimizing the mean square distance of the data points to their assigned cluster’s centroids. In such a
procedure, the closeness between a data point and a cluster’s centroid is measured by the geometric
distance alone, which might cause problems.

For example, in Figure 1, two clusters are represented by the hollow and the solid dots. The hollow
star and the solid star are the centroids of the two clusters, respectively. In this case, the data points
marked with arrows are geometrically closer to the centroid of the other cluster than to the centroid
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of their own cluster. Therefore, using such closeness measure, the clustering algorithm will bring
incorrect clustering.

Figure 1. Illustration of problem in the centroid-based clustering method.

2.2. Density-Based Clustering Methods

DBSCAN is a representative density-based clustering method. It needs two predefined parameters
eps and minpts, which respectively determine the closeness threshold and the minimum number
of the data points to form a cluster. In DBSCAN, clusters are formed by the data points in the
geometrically-dense regions [25]. The data points that are density-connected or density-reachable
to each other will be assigned to the same cluster [14]. The parameters eps and minpts are used to
determine whether a group of data is “dense” enough, or can be density-connected to each other.
DBSCAN can achieve good performance when dealing with clusters with arbitrary shapes. However,
the performance of DBSCAN is very sensitive to the parameters’ selection. Moreover, it may fail when
the densities of the clusters are not concordant, even if the parameters are finely selected.

For example, in Figure 2, the hollow, the black solid and the gray solid dots are three
different clusters. The densities of the clusters are different: data points in the black cluster are
densely distributed, while those in the other two clusters are more sparsely distributed. In such a case,
DBSCAN will fail to find all three clusters no matter how the closeness threshold is set. The reason for
this problem lies in that the closeness threshold based on the geometric distance is predefined and is
not adaptable to the change of clusters’ densities.

Figure 2. Illustration of the problem in DBSCAN method.

2.3. Connectivity-Based Clustering Methods

Traditional agglomerative hierarchical clustering methods build cluster models based on distance
connectivity. In these methods, all the data points are regarded as different clusters in the initial step.
They are then iteratively merged according to the closeness measures between clusters. Although there
are various methods to quantify the closeness between two clusters [26], these quantifications are
mainly based on the geometric distance between two representative data points in the two clusters,
and these methods mainly differ in how to choose the representative data points. For example, in the
single-link method [49], the closeness between two clusters is represented by the distance between
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the geometrically closest pair of data points that respectively belong to the two clusters. CURE [15] is
another famous hierarchical algorithm, where the clusters are not represented by a single data point, but
a group of well-scattered representative data points. However, its closeness between two clusters is still
measured by the geometric distance between the two clusters’ representative data points sets, which is
essentially the same as other hierarchical methods. Therefore, generally speaking, these agglomerative
hierarchical methods all suffer from the problems caused by their geometric distance-based closeness
measures. For example, in Figure 3, the true cluster number is two. Assume that in the last iteration
of the merging procedure, there are in total three clusters left. Using the aforementioned closeness
measures for clusters, the red solid cluster will be merged with the black solid cluster because these
two clusters are the closest according to the geometric distance metrics. However, the red cluster is
apparently more likely to belong to the same cluster with the hollow cluster from the intuitive point
of view.

Figure 3. Illustration of the problem in the traditional agglomerative hierarchical methods.

In summary, quantifying the closeness is the key step in clustering algorithms, which determines
the assignment of data points and the merging of clusters. The limitations of different categories
of clustering methods discussed above are mainly caused by their closeness measures that only
emphasize the geometric distances. Therefore, in order to resolve such problems, we propose a more
comprehensive measure to quantify the closeness between data points.

3. Measuring Closeness between Data Points Based on the Neighborhood Chain

As discussed in Section 2, using the geometric distance alone to measure the closeness might
cause problems. The main reason lies in that under the geometric distance metrics, the closeness
between data points is fully determined by the positions of the two points being measured in the
feature space, and the influence of any other surrounding data points is ignored. However, in many
cases, being geometrically close does not necessarily mean that two data points are more likely to
belong to the same cluster.

In this section, we propose a Closeness Measure based on the Neighborhood Chain (CMNC) that
quantifies the closeness between data points by measuring the difficulty for one data point attempting
to “reach” another through a chain of neighbors. The difficulty is measured by two quantifications
called the neighborhood reachability cost and the neighborhood reachability span. Under such a
closeness measure, a data point can reach another data point at a low cost as long as they belong to the
same cluster, while a data point costs much more to reach another if they belong to different clusters.

Note that the terms “reach” and “reachability” have also appeared in DBSCAN and OPTICS
(Ordering Points To Identify the Clustering Structure) [50], describing whether two data points are
density connected based on the geometric distance alone. However, in this paper, the “neighborhood
reachability” is defined based on the neighborhood relationship between two data points.
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3.1. Neighborhood Chain

The neighborhood chain contains a series of data points, including a start point and an end point.
Each data point in the chain (except the start point) is one of the k nearest neighbors of its precedent
data point. Before giving the formal definition of the neighborhood chain, we first use an example to
intuitively illustrate how a chain is established.

Example 1. As shown in Figure 4a, assume that A, B and C are the data points in a dataset. Obviously, B is in
the two nearest neighbors of A, and C is in the two nearest neighbors of B. Thus, through an intermediate data
point B, a chain from A to C based on the two nearest neighbors is established. We say that C can be reached by
A via the chain of two nearest neighbors through B.

Figure 4. (a) A can reach C based on two nearest neighbors. (b) A can also reach C based on three
nearest neighbors. (c) A cannot reach C based on one nearest neighbor.

As shown in Figure 4b, Bis also in the three (or more) nearest neighbors of A, and C at the same
time is in the corresponding number of the nearest neighbors of B, which means that the chain from
A to C based on three (or more) neighbors can also be established. However, the chain established
based on the two neighbors takes a lower cost (which means that the required neighbor’s number
is less).
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Actually, in Figure 4, two nearest neighbors comprise the minimum requirement to establish
a chain from A to C (Figure 4c shows that the chain from A to C cannot be established based on one
nearest neighbor). Therefore, we say that A can reach C through a neighborhood chain with two
nearest neighbors, or C is two-reachable from A.

The formal definition of the neighborhood chain is as follows. Assume that Ω ⊆ �n is a dataset
and A, C ∈ Ω. Let f (A, C, Ω) be a positive integer that makes a set of data points {A, M1, M2, ..., Mq, C}
in Ω satisfy: ⎧⎪⎨⎪⎩

M1 ∈ Neighbors(A, f (A, C, Ω))

Mi ∈ Neighbors(Mi−1, f (A, C, Ω)), 1 < i ≤ q
C ∈ Neighbors(Mq, f (A, C, Ω))

(1)

where Neighbors(·, f (A, C, Ω)) represents the set containing a data point and its f (A, C, Ω) nearest
neighbors. If such an integer f (A, C, Ω) exists, we say that the neighborhood chain from A to C can
be established.

In the given dataset Ω, f (A, C, Ω) can take different values to establish different chains from data
point A to C. For example, in Example 1 shown above, f (A, C, Ω) can be 2, 3 or 4 (or even more),
which respectively can establish the chain A-B-C, A-L-C, or A-C. Therefore, we define:

R(A, C) = min( f (A, C, Ω)) (2)

as the required neighbor’s number to establish the neighborhood chain from A to C. In the rest of this
paper, the neighborhood chain refers to the chain established based on the required neighbor’s number.

When the required neighbor’s number is determined, the corresponding data points
{M1, M2, ..., Mq} that satisfy Equation (1) are called the intermediate point in the chain from A to C.
In Figure 4a, R(A, C) = 2, and B is an intermediate point from the data point A to C.

In practice, the required neighbor’s number and the corresponding intermediate points can be
determined through a “trial and error” process. Such a process can be illustrated by Figure 5.

Figure 5. “Trial and error” process to determine the required neighbor’s number.

As shown in Figure 5, A, B,...,G are seven data points in a dataset. Now, we would like to
establish a neighborhood chain from A to G and determine the required neighbor’s number R(A, G).
First, we try the one nearest neighbor relationship. As shown in the first row of Figure 5, in Step 1,
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we search the nearest neighbor of the start point A, which is B, and add it into the chain. In Step 2, we
continue to search the nearest neighbor of B. However, we find that A is B’s nearest neighbor, and A is
already in the chain. Therefore, the searching process enters a loop, and the chain from A to C cannot
be established.

Then, we start over to try the two nearest neighbors’ relationship. As shown in the second row
of Figure 5, in Step 1, we find that B and C are both in the two nearest neighbors of the start point A,
and we add C into the chain, because C is closer to the destination (the end point G). In Step 2, we
continue to search the two nearest neighbors of C, which is newly added into the chain, and B and D
are found. In this step, D is added into the chain because it is closer to G. In Steps 3 and 4, E and F are
added into the chain sequentially. However, in Step 5, when we search the two nearest neighbors of
the newly added F, we only find E and D, which are both in the chain already. Therefore, the searching
process fails in this step, and the chain from A to G cannot be established.

As shown in the third row of Figure 5, we start over to try the three nearest neighbors’ relationship.
In Step 1, we add D into the chain, because it is the closest to the destination (the end point G) in
the three nearest neighbors of A. In Step 2, we find C, E and F in the three nearest neighbors of D,
and we add F into the chain for the same reason. In Step 3, we find the end point G in the three nearest
neighbors of F, which means that the chain from A to G is successfully established. Therefore, the
three nearest neighbors comprise the minimum neighbor’s number required to establish the chain,
which means that R(A, G) = 3.

Along with the determination of R(A, G), the neighborhood chain from A to G is obtained,
which is A-D-F-G. {D,F} is the set of intermediate points of the chain from A to G.

In practical applications, in the “trial and error” process to establish the neighborhood chain, we
might encounter some situations where several data points in the neighborhood of a point (which
is newly added into the chain) have the same distance to the end point we want to reach. In such
situations, we just randomly choose one of these points to be added into the chain.

3.2. Quantifying the Difficulty to Establish a Neighborhood Chain

In this part, we define two quantifications of the difficulty in establishing a neighborhood chain,
which are the neighborhood reachability cost and neighborhood reachability span.

Neighborhood reachability cost (NRC): The neighborhood reachability cost is designed based on
the required neighbor’s number when establishing a chain from one data point to another. Note that
the required neighbor’s number is usually not symmetric, i.e., the required neighbor’s number from a
data point A to another data point C is usually different from that from C to A (as shown in Figure 6).
We define a symmetric quantification:

NRC(A, C) = f (max(R(A, C), R(C, A))) (3)

as the neighborhood reachability cost when establishing a chain between A and C, where f (·) can be
a function that is monotonically increasing on (0, ∞). Obviously, the more neighborhood reachability
cost needed, the more difficulty in establishing the chain.

In the rest of this paper, f (·) in Equation (3) is designated as the exponential function, because it
can make the NRCvalue grow much faster than the R value grows, which will magnify the difference
between the closeness value of two data points from the same cluster and that of two data points from
different clusters.

In Equation (3), max{·, ·} is used to select the bigger one out of R(A, C) and R(C, A) to make
NRC(A, C) a symmetric quantification.
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Figure 6. (a) The required neighbor’s number from A to C is 2. (b) The required neighbor’s number
from C to A is 3.

Neighborhood reachability span (NRS): Although using the geometric distance alone to measure
the closeness between data points might cause problems as previously mentioned, it can still be used
as a part of the closeness measure to depict in detail the difficulty in establishing a neighborhood chain.
The neighborhood reachability span of a neighborhood chain quantifies the maximum span (distance)
between the two adjacent intermediate points in a chain. ∀A, C ∈ Ω, if {M1, M2, ..., Mn} are the
intermediate points in the chain from A to C, then there is:

S(A, C) = max{d(A, M1), ..., d(Mn−1, Mn), d(Mn, C)} (4)

where S(A, C) is the unidirectional span in the chain from A to C, and d(·, ·) is the Euclidean distance
between two intermediate points. The neighborhood reachability span of the chain between two data
points A and C is defined as:

NRS(A, C) = max{S(A, C), S(C, A)} (5)

By selecting the bigger one out of the two unidirectional spans, the NRS is also a
symmetric quantification.

3.3. Closeness Measure between Data Points Based on the Neighborhood Chain

The neighborhood reachability cost and the neighborhood reachability span are two parts that
jointly quantify the difficulty to establish a neighborhood chain between two data points, and the
difficulty in establishing the chain can be used to measure the data points’ closeness. The CMNC
between any two data points A and C in a dataset is defined as:

CMNC(A, C) =
1

NRC(A, C) · NRS(A, C)
(6)

A bigger CMNC value means that the chain between the two data points can be more easily
established, which represents that the two points are closer, while a smaller CMNC represents
the opposite. Strictly speaking, CMNC is not a distance metric since it violates the triangle inequality
due to the use of the neighborhood relationship. However, using CMNC as a kind of closeness
(similarity) measure, we can obtain more intuitive and rational closeness quantifications compared

352



Sensors 2017, 17, 2226

with using traditional closeness metrics based on the geometric distance alone in clustering tasks.
The followings are two examples illustrating the computation of CMNC.

Example 2. As shown in Figure 7a,b, assume that the distance between any two adjacent data points belonging
to the same cluster is one (e.g., the distance between M1 and M2 is one) and the distance between the nearest
pair of data points that belong to different clusters is 1.5 (i.e., the distance between A and C is 1.5).

Figure 7. (a) Value of the closeness Measure based on the Neighborhood Chain (CMNC) between A
and B. (b) Value of CMNC between A and C.

In Figure 7a, we calculate the CMNC value between data points A and B. Note that M1 is in the
nearest neighborhood of A; M2 is in the nearest neighborhood of M1; and the relationship spread all
the way to B. Therefore, R(A, B) = R(B, A) = 1, and we have NRC(A, B) = emax{RC(A,B),RC(B,A)} =

e1 ≈ 2.72. M1 to M5 are the intermediate points in the chain between A and B, and the
distance between any two adjacent intermediate points is one. Therefore, we have NRS(A, B) =

max{S(A, B), S(B, A)} = 1. Then, CMNC(A, B) = 1/[NRC(A, B) · NRS(A, B)] = 0.37.
In Figure 7b, we calculate the CMNC value between data points A and C. Note that two nearest

neighbors are needed to establish a chain between A and C, so we have NRC(A, C) = e2 ≈ 7.40 and
NRS(A, C) = 1.5. Therefore, CMNC(A, C) = 1/[NRC(A, C) · NRS(A, C)] = 0.09.

In this example, we see that although the geometric distance between A and B is much longer
than that between A and C, A and B is much “closer” than A and C using the CMNC measure.

Example 3. As shown in Figure 8a, the chain between A and B can be established with one nearest neighbor,
thus NRC(A, B) = e1 and NRS(A, B) = 5. In Figure 8b, C can be reached by A with one nearest neighbor,
and thus, R(A, C) = 1. However, the lowest cost that it takes for A to be reached by C is 12 nearest neighbors,
which means that R(C, A) = 12. Therefore, we have NRC(A, C) = e12. This shows that although the
geometric distance between A and C is equal to that between A and B (e.g., the Euclidean distances between A
and C and that between A and B are both five in this case), the data points from two different clusters can be
clearly separated using the CMNC measure (CMNC(A, C) = 1/(5e12) ≈ 1.2 × 10−6 is much smaller than
CMNC(A, B) = 1/(5e1) ≈ 7.4 × 10−2).
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Figure 8. (a) CMNC value between A and B in clusters with different scales. (b) CMNC value between
A and C in clusters with different scales.

In fact, in the case shown in Figure 8, the neighborhood reachability cost between any two data
points that belong to the same cluster is always e1 (e.g., NRC(A, B) = NRC(C, D) = e1). This means
that although the densities of the two clusters are different from the global point of view, the relationship
between data points within each cluster, from the clusters’ local point of view, are very similar. In other
words, this means that seeing from the individual cluster they belong to, the closeness between A and B
is similar to that between C and D. In such a situation, the closeness of data points depicted by CMNC
can adapt to different clusters’ “local density”, while traditional density-based methods like DBSCAN
using geometric distance metrics alone can only deal with the clusters having the same density.

In the last part of this section, we give the algorithm to compute the CMNC value in pseudocode.
The Algorithm 1 is as follows:

Algorithm 1

Input: Start_Point = A, End_Point = C, k = 1, Result_Set={A}, and the dataset Ω.
Output: the value of CMNC(A, C).

S1: find Start_Point’s k nearest neighbors in Ω, and denote them as kNN_set.
S2: In kNN_set, find the point closest to End_Point, and denote it as temp_Point. If multiple points in

kNN_set have the same distance to End_Point, choose one randomly, and denote it as temp_Point.
S3: If temp_Point==End_Point, GO TO S5. Otherwise, GO TO S4.
S4: If temp_Point is found in Result_Set, then set Result_Set = {A}, Start_Point = A, k = k + 1, and

GO TO S1.
Otherwise, Result_Set=Result_Set∪temp_Point, Start_Point = temp_Point, and GO TO S1.
S5: If this is the first time entering S5, then R(A, C) = k, and S(A, C) equals the maximum distance

between any two adjacent points in Result_Set. Set k = 1, Result_Set={C}, Start_Point = C, End_Point = A,
and GO TO S1.

Otherwise, R(C, A) = k, and S(C, A) equals the maximum distance between any two adjacent points in
Result_Set. GO TO S6.

S6: Calculate NRC(A, C) = emax{R(A,C),R(C,A)},
NRS(A, C) = max{S(A, C), S(C, A)}, and CMNC(A, C) = 1

/
NRC(A, C) · NRS(A, C).

3.4. Computational Complexity of CMNC

In the worst case, the computational cost to calculate CMNC(A, C) could be O
(

n(n − 1)2
)

. In the
following, we will illustrate how the expression is obtained.

In order to quantify the computational cost when measuring the closeness between two data
points (say A and C) with CMNC, we need to examine the computational cost of each component
(NRC and NRS) of the CMNC measure.

Computational cost to calculate NRC(A, C): As shown in Equation (3), we need first to compute
R(A, C) and R(C, A) before computing NRC(A, C). As illustrated in Section 3.1, we use a “trial and
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error” process to build the neighborhood chain from A to C. Assume that we need to try t times
to successfully build the chain from data point A to C (which means that the chain is established
on the t-th try, and R(A, C) = t), and in each try i, 0 < i < t, we have added mi points into the
(unaccomplished) chain before the establishing of the chain fails. In the t-th try, the chain is established;
therefore, mt is the number of the intermediate points from A to C. Under such assumptions, we

actually need to execute
t

∑
i=1

mi times the nearest neighbor searching algorithm, where the distance

between one data point (whose neighbors are to be found) and all other data points in the dataset will

be computed. Therefore, the computational cost calculating R(A, C) can be expressed as O(n · t
∑

i=1
mi),

where n is the number of data points. Similarly, we assume that R(C, A) = t∗ (which means that the
chain from C to A is established on the t∗-th try), and in each try to establish the chain from C to A,
m∗

j (0 < j ≤ t∗) represents the number of data points added into the chain. The computational cost

calculating R(C, A) can be expressed as O(n · t∗
∑

j=1
m∗

j ). Therefore, the computational cost calculating

NRC(A, C) can be obtained by summing the cost of R(A, C) and R(C, A) and be expressed as

O

(
n · ∑

0<i≤t,0<j≤t∗
(mi + m∗

j )

)
.

Computational cost to calculate NRS(A, C): As shown in Equations (4) and (5), we need to
compute the distance between each pair of the adjacent intermediate points in the chain from A to C
and that from C to A. Therefore, under the assumptions in the previous paragraph, the computational
cost calculating NRS(A, C) can be expressed as O(mt + m∗

t∗).
The total computational cost to calculate CMNC(A, C) can be obtained by summing the cost of

NRC(A, C) and NRS(A, C). In normal situations, mt and m∗
t∗ are much less than the data points

number n; therefore, the cost of NRS(A, C) is negligible. The computational cost to calculate

CMNC(A, C) can be expressed as O

(
n · ∑

0<i≤t,0<j≤t∗
(mi + m∗

j )

)
.

The expression illustrates that the computational cost to calculate CMNC(A, C) is determined
by the total execution times of the nearest neighbor searching algorithm in the establishing of the
neighborhood chain from A to C and from C to A. Such an expression of the computational cost
depends largely on the inner structures of the given dataset, and the selected start and end points;
therefore, we can hardly use it to evaluate the average computational cost to calculate the CMNC
value between any two data points in a dataset. However, we can still use it to estimate the highest
possible cost to calculate CMNC(A, C) in the worst case. In the extreme situation, t and t∗ can both
reach n − 1, and mi and m∗

j∗ can also reach n − 1. Therefore, in the worst case, the computational cost

to calculate CMNC(A, C) could be O
(

n(n − 1)2
)

.

3.5. Substituting Closeness Measures in Traditional Clustering Methods with CMNC

In this part, we test the performance of the proposed closeness measure by substituting the
geometric-distance-based closeness measures between data points in some clustering methods
with CMNC. The methods for testing include the original versions of k-medoids, single-link, CURE
and their CMNC-based versions (the closeness between the data points or between clusters in these
methods is calculated with pairwise-distance-based measures; thus, it is easy to substitute these
measures with CMNC). DBSCAN is also tested for comparison.

In the test of all the original version methods, Euclidean distance is used as the closeness measure.
In the test of k-medoids and CMNC-based k-medoids, to exclude the impact of initial centers selection,
we give them the same initial centers, where each center is randomly selected from one natural cluster.
In CMNC-based k-medoids, the “distance” between data points and the centers is calculated with
CMNC. In CMNC-based single-link method, the similarity of two clusters is represented by the

355



Sensors 2017, 17, 2226

CMNC value of their most similar (using CMNC measure) pair of data points. In CMNC-based CURE
method, the clusters with the closest (using CMNC measure) pair of representative data points are
merged in each iteration. The natural (true) clusters number is assigned to k-medoids, single-link,
CURE and their CMNC-based versions as the input parameter.

The test results of the aforementioned methods on three datasets [51–53] are shown in Figures 9–11.
For DBSCAN, the shown results are the best results selected by traversing its parameters eps
and minpts.

In Figure 9, there are two natural clusters, and the two clusters have different densities and
twisted shapes. In Figure 10, four natural clusters can be found, in which two clusters have the shapes
of concentric circles and the other two have very different densities. In Figure 11, there are three
clusters in total, and two of them are spherically distributed. However, the third one that surrounds
the two clusters makes the situation more complicated.

These datasets are difficult for the test using traditional clustering methods, and they fail to find
all the clusters correctly as shown in Figures 9–11. However, by substituting the closeness measures,
the CMNC-based methods successfully find the correct clusters in all the tested datasets. In this test,
DBSCAN can also handle the non-spherical clusters shapes. However, it cannot deal with the clusters
having different densities. For example, in Figure 10, if a big eps is set, the two natural clusters in the
upper-right corner will be considered as a whole cluster, while if a small eps is set, the data points in
the sparsely-distributed cluster will all be considered as the noise.

Figure 9. Comparison of clustering results on the “double-moon” dataset.

Figure 10. Comparison of clustering results on the “compound” dataset.
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Figure 11. Comparison of clustering results on the “path-based” dataset.

We have also tested the clustering methods on some UCI datasets [54]. The Normalized Mutual
Information (NMI) [55] and the Clustering Error (CE) [56] are used as the quantitative criterion for the
performance evaluation of the tested methods.

NMI provides an indication of the shared information between a pair of clusters [55]. The bigger
this NMI value, the better the clustering performance. For CE, obviously, a lower value is preferred.
The test results are shown in Tables 1 and 2. For k-medoids and CMNC-based k-medoids, the results
shown are the average results of 20 runs. For CUREand CMNC-based CURE, the results shown are
the best results found by traversing the needed parameters.

Table 1. Clustering Error (CE) results of the tested methods.

k-Medoids
CMNC-Based

k-Medoids
Single-Link

CMNC-Based
Single-Link

CURE
CMNC-Based

CURE

iris 16.67% 14.67% 32.67% 32.00% 32.67% 30.67%

glass 43.27% 40.19% 62.62% 61.68% 59.81% 52.34%

wine 30.11% 28.65% 56.74% 41.57% 35.39% 31.46%

DataUser
Modeling 47.09% 36.43% 63.57% 63.18% 64.73% 51.16%

Table 2. Normalized Mutual Information (NMI) results of the tested methods.

k-Medoids
CMNC-Based

k-Medoids
Single-Link

CMNC-Based
Single-Link

CURE
CMNC-Based

CURE

iris 0.6957 0.7151 0.7355 0.7452 0.7229 0.7452

glass 0.3148 0.3668 0.1196 0.1415 0.1751 0.3523

wine 0.4199 0.4326 0.0914 0.3041 0.3982 0.4392

DataUser
Modeling 0.2316 0.3173 0.0774 0.0822 0.0490 0.1098

Note that the CE and NMI results of k-medoids and CMNC-based k-medoids methods are
obtained by averaging the results of 20 runs, where their initial centers are chosen randomly, so we
need further to implement a test of significance to validate that the results of CMNC-based k-medoids
are significantly better than that of the original k-medoids method. The methodology we use in this
paper is the t-test [57]. In the test, we assume that the CE and NMI results of each run of k-medoids and
CMNC-based k-medoids come from two normal distributions that have the same variance. The null
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hypothesis (H0) is that the mean of the CE (or NMI) results of CMNC-based k-medoids equals that of
the original k-medoids method. On the contrary, H1 represents that the mean values of the two groups
of data are statistically different (under certain significance level). If H0 holds, we have:

X̄ − Ȳ

Sw

√
1

n1
+ 1

n2

∼ t(n1 + n2 − 2) (7)

where X̄ and Ȳ respectively represent the mean of the CE (or NMI) results obtained by CMNC-based
k-medoids and the original k-medoids methods, n1 and n2 respectively represent the number of
instances in X and Y and:

Sw =

√
(n1 − 1)S2

1n1
+ (n2 − 1)S2

2n2

n1 + n2 − 2
(8)

where S2
1n1

and S2
2n2

respectively represent the variance (using Bessel’s correction) of the two sets
of results.

If the observation of the t-statistic t = X̄−Ȳ
Sw
√

1
n1

+ 1
n2

falls into the rejection region, which means that

|t| ≥ tα/2(n1 + n2 − 2), then H0 will be rejected, representing that the mean values of the CE and
NMI results obtained by CMNC-based k-medoids are statistically different from those obtained by
the original k-medoids method. The test results are shown in Tables 3 and 4.

Table 3. Significance test of CE results: CMNC-based k-medoids vs. k-medoids.

t-Statistic Value Rejection Region ( α = 0.1) H0: mean(CECMNC−based−k−medoids) = mean(CEk−medoids)

iris −2.5131 |t| > 1.6860 rejected

glass −3.0482 |t| > 1.6860 rejected

wine −1.8074 |t| > 1.6860 rejected

DataUser
Modeling −2.9970 |t| > 1.6860 rejected

Table 4. Significance test of NMI results: CMNC-based k-medoids vs. k-medoids.

t-Statistic Value Rejection Region (α = 0.1) H0: mean(NMICMNC−based−k−medoids) = mean(NMIk−medoids)

iris 2.8505 |t| > 1.6860 rejected

glass 7.5803 |t| > 1.6860 rejected

wine 3.7374 |t| > 1.6860 rejected

DataUser
Modeling 3.6979 |t| > 1.6860 rejected

The results in Tables 3 and 4 illustrate that we have sufficient reasons to reject the null hypothesis
H0 on all the tested datasets (under significance level α = 0.1), which means that the results obtained by
CMNC-based k-medoids are statistically better (lower under CE index and higher under NMI index)
than those of the original k-medoids method.

Synthesizing the clustering results shown in Figures 9–11 and the test results in Tables 1–4,
it can be concluded that, on the tested datasets, by substituting the closeness measures with CMNC,
the CMNC-based methods can counter-act the drawbacks of the traditional methods and generate
correct results in clustering tasks with arbitrary cluster shapes and different cluster scales. The results
also show that the CMNC-based methods can work well for the tested real-world data and can achieve
better performance (under CE and NMI indexes) than their original versions.
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4. Multi-Layer Clustering Ensemble Framework Based on Different Closeness Measures

In previous sections, we proposed CMNC to deal with the problems brought by the closeness
measures based on geometric distance and achieved good results in clustering tasks with arbitrary
cluster shapes and different cluster densities. However, as shown in Section 3.4, the computational
cost of CMNC is high due to the involvement of neighborhood relationships. Actually, in many simple
clustering tasks, or for the “simple part” of some complicated tasks, the geometric distance-based
closeness measures can also lead to satisfactory clustering results. They can handle these simple
tasks with low computational cost, and they are also easy to implement. Therefore, in this section,
we try to incorporate the advantages of CMNC and geometric distance-based closeness measures to
deal with complicated clustering tasks with higher clustering accuracy and, at the same time, higher
time efficiency.

In order to combine the two kinds of closeness measures, we propose a multi-layer clustering
ensemble framework. In this framework, the data points that are hard to group into the correct
cluster (we call them the “bad data points”, e.g., the data points in the overlapping regions of two
non-spherical shaped clusters) can be identified. Thus (in prototype-based clustering schemes), we can
apply CMNC only to these data points when calculating their closeness to the clusters’ centroids.
In this way, the new framework can retain the low computational cost in simple clustering tasks, where
only a few “bad data points” need to be dealt with; while in complicated cases, the new framework
can achieve much better clustering accuracy than traditional ones and not much computational cost
due to the selective application of CMNC.

In the framework, a group of k-medoids algorithms with random k values (2 ≤ k ≤ kmax) and
k initial centroids (in the rest of this paper, we will call them the “member clusterers”) run repeatedly
from Layer-1 to Layer-T. In the first layer, Euclidean distance is used as the closeness measure of
all pairs of data points. In the following layers, along with the execution of the “bad data points”
identification algorithm on the previous layer’s output, some data points will be identified to be
the “bad data points”, and CMNC will be used when calculating the “distance” between these “bad
data points” and the clusters’ centroids in the member clusterers. The identification algorithm will
be executed once in each new layer based on the outputs of the previous layer, and the iteration
ends when no more “bad data points” (compared with the “bad data points” number found in the
previous layer) are found in a certain layer, or when the user assigned maximum layer’s iteration
number T is met. One additional k-medoids (or other clustering methods) will be executed based on
the finally found “bad data points” and normal data points to generate the final clustering results.
Figure 12 shows an illustration of the proposed framework.
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Figure 12. Illustration of the implementation of the proposed framework.

4.1. Output of One Layer

In the proposed framework, a group of member clusterers runs in each layer. Assume n is the
data point’s number in a dataset. Each clusterer will generate a n × n matrix called the Partitioning
Matrix (PM), where PM(i, j) = 1 if the i-th and the j-th data points belong to the same cluster, or zero
if otherwise. Assume m is the clusterer’s number. In each layer, we can obtain m instances of PM.

By extracting the value in position (i, j) from each PM, we can obtain a vector with the length
m indicating the m clusterers’ judgments on whether the i-th and the j-th data points belong to the
same cluster. We call this vector the Judgment Vector (JV).

Each pair of data points can generate one judgment vector, therefore, the outputs of one layer
will be n(n − 1)/2 instances of JV (the vectors generated for (i, j) and (j, i) are the same, and any data
point must be in the same cluster with itself).

4.2. Identification of “Bad Data Points”

The “bad data points” refers to those data points that cannot be easily clustered correctly, e.g., the
data points in the overlapping regions of two clusters. One possible pair of “bad data points” can be
characterized by one JV that has elements with high discrepancy. It indicates that the clusterers have
very different judgments on whether this pair of data points belongs to the same cluster, which means
that these two data points might be hard to cluster correctly under the available conditions.
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The discrepancy of the elements in one JV can be quantified by Shannon entropy as:

H(JV) = −[
m − Δ

m
log2(

m − Δ
m

) +
Δ
m

log2(
Δ
m
)] (9)

where Δ is the number of “1” elements in JV.
By calculating the entropy of each JV output from the previous layer, we can obtain an n× n matrix

where the element in position (i, j) indicates the quantified discrepancy of the clusterers’ judgments on
data points pair (i, j). We call this matrix the Entropy Matrix (EM). Assume W is a data point. In the
dataset, there are n different pairs of data points that contains W. In these n pairs of data points, if the
number of the pairs that have relatively high discrepancy is relatively large, then there will be a higher
possibility that W is a “bad data point”.

Therefore, we define data point W to be a “bad data point” if:

Card[high_En(W, α)] ≥ βn, α ∈ (0, 1), β ∈ (0, 1) (10)

where Card[] returns the elements’ number in a set, β is a user-defined parameter and high_E(W, α)

finds the elements in the w-th row (w is the order number of data point W in the n data points) of EM
whose values are bigger than another user-defined parameter α.

In Equation (10), α and β are two parameters influencing the number of “bad data points”
identified in a certain layer. The larger α and β are, the less “bad data points” will be found.

4.3. Output of the Clustering Ensemble Framework

After the “bad data points” are found in the previous layer, the clusterers in a new layer can
generate new PMs based on different closeness measures. In this new layer, the clusterers will
apply the CMNC metric when calculating the “distance” between the clusters’ centroids and the
“bad data points”.

After obtaining the new PMs, we can further obtain the new JVs and the new EM. The “bad data
points” identification algorithm will run again in this new layer and output the identified “bad data
points” to the next new layer. This iteration stops when no more “bad data points” are found in a
certain layer, or the user-given maximum iteration number T is met.

One additional instance of clustering methods will be executed using different closeness
measures based on the finally found “bad data points” and normal data points to generate the
final clustering results.

Following, we give an outline of the proposed clustering ensemble framework (See Algorithm 2).

Algorithm 2

Input: n data points, number of clusterers m, max clusters number kmax, max iteration number T, parameters
α, β.
Output: data partitioning
Steps:

S1. Initialize m member clusterers (k-medoids) with random k values
(constrained to kmax) and random k clusters centroids.

S2. Calculate PM1 to PMm with the m clusterers. If this is not the first time entering S2, then CMNC is
applied to the “bad data points”. Otherwise, only Euclidean distance is used.

S3. Extract JV for every pair of data points from PM1 to PMm.
S4. Calculate information entropy on each JV, and generate EM.
S5. Identify “bad data points” based on EM.
S6. If no more “bad data points” are identified compared with the last iteration, or the iteration number

reaches T, GO TO S7. Else, enter a new layer and GO TO S1.
S7. Generate the partitioning on the dataset. Return the clusters found.

4.4. Experiments

In this section, we will test the proposed clustering ensemble framework.
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4.4.1. Influence of Parameter Selection

In the proposed framework, parameters that need to be assigned by the user include the number
of member clusterers m, the number of max clusters kmax, number of max iterations T and the
parameters α, β.

The settings of m, kmax and T do not significantly influence the clustering results, while α and β

are two major parameters that influence the identification of “bad data points”. In the following, we
fist examine how the two parameters can influence the “bad data points” detection. The test is run on
the “double-moon” dataset, which contains two clusters and 400 data points.

Figure 13 shows the number of the “bad data points” found by the identification algorithm under
different α and β combinations. Figures 14–16 locate the “bad data points” (the blue asterisks) found
under three certain parameter combinations. The figures illustrate that along with the increase of the
number of “bad data points” found, the remaining data points (the dots) become much more easier to
cluster correctly with simple clustering algorithms.

Figure 13. The influence of α and β on the “bad data points” identification, m = 5.

Figure 14. The “bad data points” found under α = 0.3, β = 0.5 and m = 5.
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Figure 15. The “bad data points” found under α = 0.5, β = 0.4 and m = 5.

Figure 16. The “bad data points” found under α = 0.3, β = 0.3, and m = 5.

In order to more generally examine the effect of parameters α and β, we further test the parameter
combinations on several more datasets. We first change the data point’s number in the “double-moon”
dataset, varying from 200–1000, which is shown in Figure 17. The numbers of the “bad data points”
found in these datasets under different α and β combinations are shown in Figure 18.

Figure 17. Synthetic dataset with different data numbers from 200 to 1000.
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Figure 18. Number of “bad data points” found under different α and β combinations in datasets with
different data numbers.

We also test the parameter combinations on another synthetic dataset “path-based” (the dataset
is shown in Figure 11), and the numbers of the “bad data points” found under different parameter
combinations are shown in Figure 19.

Figure 19. Number of “bad data points” found under different α and β combinations in the
“path-based” dataset.

The results in Figures 18 and 19 show that, in different datasets, parameters α and β influence the
number of the “bad data points” in similar ways. Therefore, the changing tendency of the “bad data
points” number presented under different parameter combinations illustrated in the figures can be
seen as a general guide for the tested datasets when choosing the parameters in practice.

4.4.2. Clustering Results of the Proposed Framework

In this section, we give the clustering results of the proposed clustering ensemble framework on
some 2D datasets. The corresponding parameter settings are provided for each case.
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As shown in Figures 20–22, all the tested datasets have non-spherically-shaped clusters.
These datasets usually cannot be correctly clustered with the simple centroid-based clustering methods,
or the clustering ensemble methods based on them. However, by applying the CMNC metric to part
of the data points in the datasets, our proposed clustering ensemble framework can generate very
good results on these datasets.

Figure 20. Clustering result on the “path-based” dataset.

Figure 21. Clustering result on “double-moon” dataset.
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Figure 22. Clustering result on the “rings” dataset.

4.4.3. Time Complexity of the Proposed Framework

Although using CMNC for the “bad data points” in our proposed framework will promote the
accuracy of the clustering results, it is to some degree at the price of increasing the time complexity.
Here, we will make a comparison of the execution time between the proposed framework combining
different closeness measures and the traditional framework using only the Euclidean distance.
The execution time of the method that directly uses CMNC to substitute the Euclidean distance
in the traditional framework (i.e., the method without the “bad data points” identification) is also
given for comparison. Meanwhile, we will also compare the execution time of the new framework
under different parameter settings. All of the following tests are implemented in MATLAB R2009b,
Microsoft Windows 10 operation system and based on Intel core i7 3.6-GHz CPU (quad core), 8 G
DDR3 RAM.

The factors that influence the computation time of the proposed framework include the total data
points number n, the clusterers number m and the number of the found “bad data points” determined
by α and β. First, we will examine the change of the computation time on the synthetic dataset
“double-moon” when n increases. The dataset with different numbers of data points n is shown
in Figure 23.

Figure 23. Synthetic dataset with different data numbers from 400–2000.
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Figure 24 shows the increasing of the execution time of the three kinds of methods when the data
point’s number n increases. Obviously, under the shown parameter settings, the proposed framework
saves much time compared to using CMNC only in the clustering method.

Figure 24. Increase of execution time when n increases.

Next, we will examine the change of the computation time when the clusterer’s number m
changes. In Figure 25, the computation time of the proposed framework using different numbers of
sub-clusterers (m) is illustrated. As shown in the figure, the computation time increases along with
the increasing of m. Under the shown parameter settings, if m continues to grow, the computation
time of the proposed framework will exceed the time cost by the clustering method using CMNC
only. In practice, m could be assigned a relatively small value in order not to produce too much
computational cost.

Figure 25. Increase of execution time when m increases.
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The number of the found “bad data points” can also influence the computation time of the
proposed framework. As shown in Figure 26, we set the data point’s number n = 2000 and m = 5,
and choose different α, β values making the number of the found “bad data points” occupy from
20–50% of the total data point’s number. The figure shows that the time cost basically increases linearly
with the increasing of the found “bad data points” number.

Figure 26. Increase of execution time when the number of the found “bad data points” increases.

Generally speaking, the proposed framework can generate correct clustering results on the tasks
with which the traditional ones cannot deal. By using the Euclidean distance and the CMNC measure
together, the actual usage frequency of CMNC can be greatly lowered. Therefore, the framework is
also much more time efficient than the method using CMNC only.

5. Conclusions

This paper proposes a novel closeness measure between data points based on the neighborhood
chain called CMNC. Instead of using geometric distances alone, CMNC measures the closeness
between data points by quantifying the difficulty to establish a neighborhood chain between the
two points. As shown in the experimental results, by substituting the closeness measure in traditional
clustering methods, the CMNC-based methods can achieve much better clustering results, especially
in clustering tasks with arbitrary cluster shapes and different cluster scales.

Based on CMNC, we also propose a multi-layer clustering ensemble framework that combines two
closeness measures: the Euclidean distance and the CMNC metric. A “bad data points” (data points
that cannot be easily grouped into the correct cluster, e.g., the data points in the overlapping regions of
the two non-spherically-shaped clusters) identification algorithm is proposed to find those data
points whose closeness to the clusters’ centroids need to be computed with the CMNC metric.
By incorporating the two closeness measures, the proposed framework can counter-act the drawbacks
of the traditional clustering methods using the Euclidean distance alone. Meanwhile, it is more time
efficient than the clustering method using the CMNC metric alone.

The major focus of our future work is to further reduce the computational complexity of the
proposed framework. In our work, the execution time can be reduced by limiting the number of
data points that use CMNC metric. However, we find that in some complicated cases, in order
to ensure a tolerable clustering accuracy, a large proportion of data points will be identified to
be the “bad data points”. This might lead to a significant decline in the time efficiency of the
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framework. To resolve the problem, more work should be done to optimize the nearest neighbors’
searching process (which produces the most computational cost in CMNC) and to further refine
the “bad data points” identification algorithm. One possible improvement on which we will do
further research is to find some key data points that can represent part or even the whole group of
the “bad data points”. Applying CMNC on the representative data points might reduce the actual
computation involving CMNC.
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Abstract: We addressed the fusion estimation problem for nonlinear multisensory systems.
Based on the Gauss–Hermite approximation and weighted least square criterion, an augmented
high-dimension measurement from all sensors was compressed into a lower dimension. By combining
the low-dimension measurement function with the particle filter (PF), a weighted measurement fusion
PF (WMF-PF) is presented. The accuracy of WMF-PF appears good and has a lower computational
cost when compared to centralized fusion PF (CF-PF). An example is given to show the effectiveness
of the proposed algorithms.

Keywords: nonlinear system; weighted measurement fusion; Gauss–Hermite approximation;
particle filter

1. Introduction

State estimation algorithms play an important part in automatic control, target tracking,
navigation, fault diagnosis, and so on. However, it is difficult for single sensor to obtain accurate
estimation and good fault tolerance, so multisensory fusion estimation technology was created to
overcome this issue. There are two main kinds of fundamental estimation fusion structures: centralized
fusion and distributed fusion. Centralized fusion combines measurements of all sensors into an
augmented measurement, and then the data processing center outputs the fused state estimate.
The advantage of centralized fusion is that there is no information loss and is ideal when all sensors
are fully functional, so it is used as a comparative standard for other fusion algorithms. However,
with a large number of sensors, the centralized fusion algorithm performs poorly in real time and
is not reliable because of expensive computation due to augmented high-dimension measurements.
In the sensor network, a large number of different types of sensors exist. If the data from the sensors
are processed in a centralized way, the computational cost will be high. Especially in wireless sensor
networks, large amounts of data from nodes make it difficult for decision centers to make timely
decisions. In such cases, data compression must be used, and weighted measurement fusion (WMF) is
one of these data compression methods [1–3].

Distributed fusion algorithms produce a fused estimate by combining local state estimates under
a certain criterion in the fusion center [4–7]. Distributed fusion algorithms, such as the distributed
fusion federated Kalman filter [8], the distributed weighted fusion estimation [9], and the distributed
covariance intersection (CI) fusion estimation [10], are robust and flexible because of their parallel
computing structures [3]. They are optimal for local application but are suboptimal for global
use, as their accuracy is lower than the centralized fusion algorithm. WMF algorithms compress a
high-dimension measurement to a low-dimension measurement under certain criterion [11–13], so the
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computational cost can be reduced when implementing particle filter (PF) based on the compressed
measurement. For linear systems, the WMF algorithms are equivalent to centralized fusion [11,13],
so they are also optimal in terms of least mean squares. In this paper, the WMF method will be studied
given the abovementioned advantages.

Estimation fusion has formed a complete theory for linear systems over the past years. However,
most systems have nonlinear parts. For example, the measurement functions, in sensor models,
of most tracking systems are established under spherical coordinates, and are strongly nonlinear
when the states are estimated under Cartesian coordinates [14,15]. For nonlinear systems, fusion
algorithms, which are achieved by the Taylor series, based on the Extended Kalman filter (EKF)
are commonly used [16–19]. These algorithms are simple since they can be converted into linear
systems. However, they result in large estimation bias and even lead to filtering divergence due to
the amount of information being omitted. Many nonlinear fusion approaches have been presented,
including random set, artificial neural networks, fuzzy logic, rough set, dempster-shafer, and other
non-probabilistic approaches [20,21]. These methods fuse information and compress data. Given the
amount of information lost, they are usually suboptimal.

Nonlinear filtering algorithms, based on the Bayesian estimation framework and sample
approximation, have been widely studied over the past decades, including the Extended Kalman filter
(EKF), Unscented Kalman Filter (UKF) [22,23], Cubature Kalman Filter (CKF), and the particle filter
(PF) [24]. These algorithms are effective for nonlinear filtering problems with a single sensor [25–28].
In Hao et al. [29], we presented a weighted measurement fusion UKF (WMF-UKF) via Taylor series
and UKF, which can universally handle nonlinear fusion problems. However, this algorithm needs to
calculate the coefficients of a Taylor series expansion at every moment, so it is expensive and leads to
slow convergence if the wrong expansion location is used.

PF can solve the estimation problem for nonlinear non-Gaussian systems and has high accuracy
with an adequate number of sampling points. However, a large number of sampling points
results in a huge computational burden, especially for a multisensor centralized fusion estimator.
Gauss–Hermite approximation [30–33] can approximate most nonlinear functions with some sampling
points and has an excellent fitting effect. We first proposed a weighted measurement fusion based on
Gauss–Hermite approximation and weighted least squares. Next, a nonlinear weighted measurement
fusion particle filter (WMF-PF) is presented by combining the fusion algorithm with PF for nonlinear
multisensory systems. The proposed algorithm handles the nonlinear fusion problem with any
noise and reduces the computational cost compared to centralized fusion PF. Moreover, it overcomes
the shortcomings found in Hao et al. [29]. WMF-PF provides an effective compression method for
nonlinear multisensory systems, and has potential applications in target tracking [34], communication,
and massive data processing.

2. Problem Formulation

In order to facilitate the description of the algorithm, we used the scalar systems as an example.
Consider the scalar nonlinear systems with L sensors:

x(k + 1) = f (x(k), k) + w(k) (1)

z(j)(k) = h(j)(x(k), k) + v(j)(k), j = 1, 2, · · · , L (2)

where f (·, ·) ∈ � is the process function, x(k) ∈ � is the scalar state at time k, h(j)(·, ·) ∈ � is the
measurement function of the jth sensor, z(j)(k) ∈ � is the measurement of the jth sensor, w(k) ∼ pwk

(·)
(p∗(·) is the probability density function) is the process noise, and v(j)(k) ∼ p

v(j)
k

(·) is the measurement
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noise of the jth sensor. w(k) and v(j)(k) are uncorrelated white noises with zero mean and variances,
σ2

w and σ2
vj, i.e., {[

w(t)
v(j)(t)

][
wT(k) v(l)T(k)

]}
=

[
σ2

w 0
0 σ2

vjδjl

]
δtk (3)

where E denotes the mathematical expectation, the superscript T denotes the transpose, and δtk and δjl
are the Kronecker delta functions, i.e., δtt = 1 and δtk = 0(t �= k).

Assumption 1: The f (·, ·), h(j)(·, ·), pwk
(·), and p

v(j)
k

(·) are known.

Assumption 2: The state x(k) is bounded.

For the systems in Equations (1) and (2), the augmented measurement equation of the centralized
fusion system (CFS) is given a

z(0)(k) = h(0)(x(k), k) + v(0)(k) (4)

where
z(0)(k) = [z(1)(k), z(2)(k), · · · , z(L)(k)]

T
(5)

h(0)(x(k), k) = [h(1)(x(k), k), h(2)(x(k), k), · · · , h(L)(x(k), k)]
T

(6)

v(0)(k) = [v(1)(k), v(2)(k), · · · , v(L)(k)]
T

(7)

and the covariance matrix of v(0)(k) is given as

R(0) = diag(σ2
v1, σ2

v2, · · · , σ2
vL) (8)

where diag(·) denotes a diagonal matrix.
For the systems in Equations (1) and (4), we obtained the centralized fusion PF combined with

the particle filter. However, Equation (4), with a high dimension, will result in high computational
costs, particularly in massive sensor networks. Therefore, it is important to find the equivalent or
approximate fusion methods to reduce the computational cost.

Lemma 1. For the systems in Equations (1) and (2), if there are linear relationships between measurement
functions h(j)(x(k), k), j = 1, 2, · · · , L, that is to say, there is a intermediary function h(x(k), k) ∈ �p×1 that
satisfies h(j)(x(k), k) = H(j)(k)h(x(k), k) with matrix H(j)(k) ∈ �1×p, the compressed measurement function
of the weighted measurement fusion system (WMFS) is given as [29]

z(I)(k) = H(I)(k)h(x(k), k) + v(I)(k) (9)

z(I)(k) = [MT(k)R(0)−1M(k)]
−1

MT(k)(R(0))
−1

z(0)(k) (10)

v(I)(k) = [MT(k)R(0)−1M(k)]
−1

MT(k)(R(0))
−1

v(0)(k) (11)

R(0)−1 = (R(0))
−1

(12)

The covariance matrix of v(I)(k) is computed by

R(I)(k) = [MT(k)R(0)−1M(k)]
−1

(13)

where M(k), with full-column rank, and H(I)(k), with full-row rank, are the full rank decomposition

matrices of matrix H(0)(k) = [H(1)T(k), · · · , H(L)T(k)]
T

, that is,

H(0)(k) = M(k)H(I)(k) (14)
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which can be computed by Hermite canonical form [29].
We assumed that the statistics of w(k) and v(j)(k), j = 1, 2, · · · , L are known. In fact, we obtained

the noise statistics through identification [35–37]. For time-invariant systems, we identified them
offline and obtained the optimal weighted measurement fusion algorithms. For time-varying systems,
we identified them online and obtained the asymptotic optimal adaptive weighted measurement
fusion algorithm.

In order to determine the weighted measurement fusion based on the probabilistic method,
we needed to know two things: the relationships among the noise statistics of all the sensors and the
relationships among the measurement functions of all sensors. For systems with additive noises, if we
knew the relationships between the measurement functions, the relationships among the measurement
noise statistics could be determined. If a linear relationship exists among the measurement functions,
whether the measurement functions themselves are linear or not, we could use the least square
method to find the optimal compressed measurement. If a nonlinear relationship exists among the
measurement functions, we could use intermediary functions to achieve the optimal compressed
measurement. Unfortunately, finding the intermediary function is difficult because of the complexity
and diversity of nonlinear functions.

For example, there are four sensors and their measurement functions are as follows:

z(1)(k) = 1 + x(k) + x2(k) + v(1)(k), z(2)(k) = 2 + x(k) + 2x2(k) + x3(k) + v(2)(k),
z(3)(k) = 3 + 2x(k) + 3x2(k) + x3(k) + v(3)(k), z(4)(k) = 4 + x(k) + 4x2(k) + 3x3(k) + v(4)(k)

(15)

where the variances of v(j)(k), j = 1 · · · 4 are R(1) = 1, R(2) = 2, R(3) = 3, and R(4) = 4.

Set h(x(k), k) = [ 1 x(k) x2(k) x3(k) ]
T

, then Equation (15) can be written as

z(1)(k) = [1 1 1 0]h(x(k), k) + v(1)(k), z(2)(k) = [2 1 2 1]h(x(k), k) + v(2)(k),
z(3)(k) = [3 2 3 1]h(x(k), k) + v(3)(k), z(4)(k) = [4 1 4 3]h(x(k), k) + v(4)(k)

(16)

Let

H(0) =

⎡⎢⎢⎢⎣
1 1 1 0
2 1 2 1
3 2 3 1
4 1 4 3

⎤⎥⎥⎥⎦ = MH(I) =

⎡⎢⎢⎢⎣
1 1
2 1
3 2
4 1

⎤⎥⎥⎥⎦
[

1 0 1 1
0 1 0 −1

]
(17)

where M is full-column rank, and H(I) is full-row rank. According to the weighted least squares
criterion, the fused measurement function is

z(I)(k) = H(I)(k)h(x(k), k) + v(I)(k) (18)

wherez(I)(k) = [MT(k)(R(0))
−1

M(k)]
−1

MT(k)(R(0))
−1

z(0)(k) =

[
−0.3286 0.1000 −0.0429 0.3143
0.8571 0 0.2857 −0.4286

]
z(0)(k),

and the covariance of v(I)(k) is R(I)(k) = [MT(k)R(0)−1M(k)]
−1

=

[
0.5286 −0.8571
−0.8571 1.7143

]
.

The measurement function of WMF is two-dimensional, and that of the centralized fusion system is
four-dimensional, so the WMF can compress measurement dimensions effectively and reduce the
computational cost.

In the next section, we provide an approximation method to solve this problem.

3. Gauss–Hermite Approximation

Lemma 2. Let y(x) be a determined function [30]. Assuming that there is an ensemble of S points{
xi, i = 1, · · · , S

}
distributed uniformly in the interval [a, b], there exists a point yi such that yi = y(xi) for

each point xi. Then, the approximation function y(x) of y(x), by Gauss–Hermite folding reads
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y(x) =
1

γ
√

π

S

∑
i=1

yiΔxi exp

{
−
(

x − xi
γ

)2
}

fn

(
x − xi

γ

)
(19)

where γ is a coefficient, Δxi =
1
2 (xi+1 − xi−1), and fn(u) is the correction polynomials which can be

decomposed into a series of Hermite polynomials:

fn(u) =
n

∑
i=1

Ci Hi(u) (20)

Ci =
1

2ii!
Hi(0) (21)

where Hi(u) = (−1)ieu2
(e−u2

)
(i)

represents Hermite polynomials [31], and Hi(0) is defined as

Hi(0) =

⎧⎪⎪⎨⎪⎪⎩
1

2n(−1)n(2n − 1)!!

0

i = 0

i = 2n

i = 2n + 1

(22)

From Equations (21) and (22), we obtain

Ci =

⎧⎪⎨⎪⎩
1 i = 0

(−1)n (2n−1)!!
2n(2n)! i = 2n

0 i = 2n + 1

(23)

See the detailed proof in the literature [30–33].

Remark 1. Although γ is an arbitrary coefficient related to Δxi, it was found that y(x) approximates better
when γ = 1 and n = 2 or 4, for most elementary functions [30]. Thus, we used γ = 1 and n = 2 in this paper,
which yielded

y(x) =
1√
π

S

∑
i=1

yiΔxie
−(x−xi)

2
(1.5 − (x − xi)

2) (24)

4. Universal WMF Based on Gauss–Hermite Approximation

If the function
S
∑

i=1
e−(x−xi)

2
(1.5 − (x − xi)

2) in Equation (24) is seen as the intermediary function

h(x(k), k), and 1√
π

S
∑

i=1
yiΔxi is seen as H(j)(k) in Lemma 2, then we can obtain the linear relationships

among the measurement functions h(j)(x(k), k) and obtain the following theorem using Lemma 2.
Based on Lemmas 1 and 2, we can obtain the following Theorem 1.

Theorem 1. For the systems in Equations (1) and (2), and from Equation (24), the approximate
measurement equation of the weighted measurement fusion system is

z(I)(k) = H(I)

⎛⎜⎜⎜⎜⎜⎝
e−(x−x1)

2
(1.5 − (x − x1)

2)

e−(x−x2)
2
(1.5 − (x − x2)

2)
...

e−(x−xS)
2
(1.5 − (x − xS)

2)

⎞⎟⎟⎟⎟⎟⎠+ v(I)(k) (25)

376



Sensors 2017, 17, 2222

We denoted

H(0)
=

1√
π

⎛⎜⎜⎜⎜⎜⎝
y(1)1 Δx(1)1 y(1)2 Δx(1)2 · · · y(1)S Δx(1)S

y(2)1 Δx(2)1 y(2)2 Δx(2)2 · · · y(2)S Δx(2)S
...

... · · · ...

y(L)
1 Δx(L)

1 y(L)
2 Δx(L)

2 · · · y(L)
S Δx(L)

S

⎞⎟⎟⎟⎟⎟⎠ (26)

z(I)(k) = [MTR(0)−1M]
−1

MTR(0)−1z(0)(k) (27)

v(I)(k) = [MTR(0)−1M]
−1

MTR(0)−1v(0)(k) (28)

The covariance matrix of v(I)(k) is given by

R(I)
= [MTR(0)−1M]

−1
(29)

where y(m)
k (k = 1, · · · , S) is the kth sample point of the mth sensor, S is the sample point number, M

and H(I) are the full rank decomposition matrices of H(0), M ∈ RL×r is full-column rank, H(I) ∈ Rr×S

is full-row rank, r = rank(H(0)
), and r ≤ min{L, S}).

An approximate intermediary function,

h(x(k), k) =

⎛⎜⎜⎜⎜⎜⎝
e−(x−x1)

2
(1.5 − (x − x1)

2)

e−(x−x2)
2
(1.5 − (x − x2)

2)
...

e−(x−xS)
2
(1.5 − (x − xS)

2)

⎞⎟⎟⎟⎟⎟⎠ (30)

has been constructed using the Gauss–Hermite approximation method in Lemma 2. It establishes
some linear relationships between local measurement functions. Therefore, it solves the restriction that
the measurement functions must be linear relationships in Lemma 1.

From the above theorem, we can see that, if there is a nonlinear system with L sensors,
the centralized fusion system in Equations (1) and (4) has a measurement function with L dimension
and the WMF system in Equations (1) and (25) has a measurement function with r dimension. Because

r = rank(H(0)
) and r ≤ min{L, S}, the computational cost of the WMF filter is less than that of the

centralized fusion filter. After the sample point number S is determined, the compression efficiency
of the algorithm is significantly improved if there are a large number of sensors (L >> S and S is
a constant).

5. WMF-PF Based on Gauss–Hermite Approximation

In this section, we propose a WMF-PF algorithm based on the WMF system in Equations (1)
and (25) with a low-dimension measurement.

5.1. WMF-PF Algorithm

The computational procedure of WMF-PF is given as follows:

1. Initialization: x̂(I)(i)(0|0) ∼ px0
(x0), i = 1, · · · , Ns;

2. State prediction particles:

x̂(I)(i)(k|k − 1) = f (x̂(I)(i)(k − 1|k − 1), k − 1) + ζ(I)(i)(k − 1) (31)

where ζ(I)(i)(k − 1) is random number with the same distribution of the process noise w(k);
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3. Measurement prediction particles:

ẑ(I)(i)(k|k − 1) = H(I)h(x̂(I)(i)(k|k − 1), k) (32)

4. The importance weight:

ω
(I)(i)
k =

1
Ns

p(ẑ(I)(i)(k|k − 1)|x̂(I)(i)(k|k − 1)) (33)

that is,

ω
(I)(i)
k =

1
Ns

p
v(I)k

(z(I)(k)− ẑ(I)(i)(k|k − 1)) (34)

where z(I)(k) is computed by Equation (27), and ω
(I)(i)
k is given by

ω
(I)(i)
k =

ω
(I)(i)
k

N
∑

i=1
ω
(I)(i)
k

(35)

5. Filtering:

x̂(I)(k|k) =
Ns

∑
i=1

ω
(I)(i)
k x̂(I)(i)(k|k − 1) (36)

and the filtering variance matrix is computed by

P(I)(k|k) ≈
Ns

∑
i=1

ω
(I)(i)
k (x̂(I)(i)(k|k − 1)− x̂(I)(i)(k|k))2

(37)

6. Resampling: In this paper, systematic sampling is used as the resampling method, i.e.,

ui =
(i − 1) + r

N
, r ∼ U[0, 1], i = 1, · · · , Ns (38)

If ∑m−1
j=1 ω

(I)(j)
k < ui ≤ ∑m

j=1 ω
(I)(j)
k , we directly copied m particles as the resampling particles

x̂(I)(i)(k|k).
We then returned to Step 2 and reiterated.
The flow chart of the WMF-PF algorithm is shown in Figure 1.

 

Figure 1. Flow chart of the weighted measurement fusion particle filter (WMF-PF) algorithm.
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5.2. Time Complexity Analysis

From Equations (31)–(38), we found that the time complexity is determined by Equation (32).
From Equation (32), the time complexity of centralized fusion PF (CF-PF) is O(L2) and that of WMF-PF
is O(r2). Because r ≤ min{L, S}, the time complexity of WMF-PF is less than that of CMF-PF.
Particularly, when there are a large number of sensors (L >> S), the computational cost can be
substantially reduced.

6. Simulation Examples

6.1. Model Description

Let us consider a classical 10-sensor nonlinear system [38]:

x(k) =
x(k − 1)

4
+ x(k − 1)/(1 + x(k − 1)2)+2 cos(0.5(k − 1)) + w(k) (39)

z(j)(k) = h(j)(x(k), k) + v(j)(k), j = 1, · · · , 10 (40)

Taking observability into account, the sensors selected were single-valued functions within the
range of x(k):

h(1)(x(k), k) = 0.8x(k) + v(1)(k)
h(2)(x(k), k) = 1.2x(k) + v(2)(k)

h(3)(x(k), k) = exp(x(k)/3) + v(3)(k)
h(4)(x(k), k) = 1.2 exp(x(k)/3) + v(4)(k)

h(5)(x(k), k) = 0.05x(k)3 + v(5)(k)
h(6)(x(k), k) = 0.06x(k)3 + v(6)(k)

h(7)(x(k), k) = 5 sin(0.1πx(k)) + v(7)(k)
h(8)(x(k), k) = 6 sin(0.1πx(k)) + v(8)(k)

h(9)(x(k), k) = 5arctan(0.1πx(k)) + v(9)(k)
h(10)(x(k), k) = 6arctan(0.1πx(k)) + v(10)(k)

(41)

The w(k) ∼ U(0, 1) is uniformly distributed, and v(j)(k), j = 1, · · · , 10 are uncorrelated Gaussian
noises with variance σ2

vj = (0.5 + 0.01j)2. The initial state is x(0) = 0.

6.2. Gauss–Hermite Approximation

Because the state x(k) ranges from –3 to 4, we chose S = 10 sampling points (xi = −4, −3, · · · , 5)
to approximate, and the corresponding coefficients were γ = 1, Δxi = 1, and n = 2. Their mean square
errors (MSEs) are shown in Table 1, and the approximation curves are shown in Figure 2.

Table 1. Mean square errors.

Sensor Functions h(1)(·) h(2)(·) h(3)(·) h(4)(·) h(5)(·) h(6)(·) h(7)(·) h(8)(·) h(9)(·) h(10)(·)
MSEs using

Gauss–Hermite
0.0032 0.0017 0.0010 0.0014 0.0029 0.0042 0.0009 0.0013 0.0010 0.0015

MSEs using
McLaughlin series

0 0 0.0258 0.0371 0.9621 1.3854 0.2286 0.3292 0.3963 0.5707
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Figure 2. Approximation curves of nonlinear functions.

To compare with other approximate methods, we introduced the approximation method using a
McLaughlin series. We used a third-order McLaughlin series to approximate the nonlinear functions
h(j)(x(k), k). The MSEs of the approximation algorithm, using a McLaughlin series, are also shown in
Table 1. From Table 1, we can see that the MSEs of the approximation algorithm using a McLaughlin
series are larger than that when using Gauss–Hermite approximation.

6.3. Estimation Using WMF-PF

From the above experiments, we see that the approximation effect is good when using the above
coefficients. Next, we established the measurement equation and fusion matrix of WMF. As the

intermediary function h(x(k), k) is
(

e−(x−x1)
2
(1.5 − (x − x1)

2), · · · , e−(x−x10)
2
(1.5 − (x − x10)

2)
)T

,

from Equations (24) and (25), the coefficient matrices H(0), and its full rank decomposition matrices M

and H(I), can be computed as follows:

H(0)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.8054 −1.3541 −0.9027 −0.4514 0 0.4514 0.9027 1.3541 1.8054 2.2568
−2.7081 −2.0311 −1.3541 −0.6770 0 0.6770 1.3541 2.0311 2.7081 3.3851

0.1487 0.2076 0.2897 0.4043 0.5642 0.7874 1.0989 1.5336 2.1403 2.9871
0.1785 0.2491 0.3476 0.4851 0.6770 0.9449 1.3187 1.8404 2.5684 3.5845

−1.8054 −0.7617 −0.2257 −0.0282 0 0.0282 0.2257 0.7617 1.8054 3.5262
−2.1665 −0.9140 −0.2708 −0.0339 0 0.0339 0.2708 0.9140 2.1665 4.2314
−2.6829 −2.2822 −1.6581 −0.8717 0 0.8717 1.6581 2.2822 2.6829 2.8209
−3.2195 −2.7386 −1.9897 −1.0461 0 1.0461 1.9897 2.7386 3.2195 3.3851
−2.5350 −2.1321 −1.5825 −0.8587 0 0.8587 1.5825 2.1321 2.5350 2.8319
−3.0420 −2.5585 −1.8990 −1.0304 0 1.0304 1.8990 2.5585 3.0420 3.3983

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.8054 −1.3541 −0.9027 −0.4514 0
−2.7081 −2.0311 −1.3541 −0.6770 0
0.1487 0.2076 0.2897 0.4043 0.5642
0.1785 0.2491 0.3476 0.4851 0.6770
−1.8054 −0.7617 −0.2257 −0.0282 0
−2.1665 −0.9140 −0.2708 −0.0339 0
−2.6829 −2.2822 −1.6581 −0.8717 0
−3.2195 −2.7386 −1.9897 −1.0461 0
−2.5350 −2.1321 −1.5825 −0.8587 0
−3.0420 −2.5585 −1.8990 −1.0304 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H(I)
=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0 0 0 −1 −6.0696
0 1 0 0 0 0 0 −1 0 15.5971
0 0 1 0 0 0 −1 0 0 −21.6922
0 0 0 1 0 −1 0 0 0 15.8716
0 0 0 0 1 2.1121 2.4612 3.0862 4.0573 0.9212

⎞⎟⎟⎟⎟⎟⎠.

(42)
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Using the WMF-PF algorithm, we obtained the state estimate for the system in Equations (39)
and (40). The curves of the true values and their estimates, using WMF-PF based on Gauss–Hermite
approximation, are shown in Figure 3. The tracking performance is optimal.

k/step
0 50 100 150 200

-2

0

2

4

True valve Estimate valve

Figure 3. Curves of the true values and estimates using the WMF-PF algorithm based on
Gauss–Hermite approximation.

6.4. Analysis

In order to compare our findings with other fusion algorithms, we introduced a kind of distributed
fusion method, called a fast covariance intersection (CI) fusion algorithm [39]. Its calculation process is

x̂(CI)
k|k =

L

∑
i=1

ωiPCIP
−1
i x̂(j)

k|k (43)

where x̂(CI)
k|k is the fusion estimate by CI, x̂(j)

k|k, i = 1, · · · , L are the estimates of subsystems,
Pi, i = 1, · · · , L are the filter error variance matrices of subsystems, and

P−1
CI =

L

∑
i=1

ωiP
−1
i (44)

ωj =
trace(P−1

j )

L
∑

i=1
trace(P−1

i )

(45)

Using the CI fusion algorithm and the PF algorithm, we obtained the covariance intersection PF
(CI-PF). This fusion algorithm is simple, robust, and flexible. However, its accuracy is lower than WMF.
We introduced an evaluation indicator called the accumulated mean square error (AMSE) [29]:

AMSE(k) = ∑k
t=0

1
N ∑N

j=1 [x(t)− x̂j(t|t)]2 (46)

where x̂j(t|t) is the jth-time Monte Carlo experiment at time t. The AMSE curves of local PFs (LF1–LF7),
the WMF-PF, and the CI-PF are shown in Figure 4 with 20 Monte Carlo experiments. From Figure 4,
the WMF-PF based on Gauss–Hermite approximation is shown to have better accuracy than local PF
and CI-PF.

381



Sensors 2017, 17, 2222

k/step

A
M

SE

LF1
LF2
LF3
LF4
LF5
LF6
LF7
LF8
LF9
LF10

WMF-PF
CI- PF

0 50 100 150 200
0

5

10

15

20

Figure 4. Accumulated mean square error (AMSE) curves of local particle filters (PFs), WMF-PF, and
covariance intersection PF (CI-PF).

In addition, we simulated the AMSE curves of WMF-PF under S = 8,xi = −3.6, −2.4, · · · , 4.8,
Δxi = 1.2, n = 2, and γ = 1 and WMF-PF under S = 10, Δxi = 1, n = 2, and γ = 0.9. To distinguish
them with the above WMF-PF, we named them WMF-PF-1 and WMF-PF-2. The AMSE curves
of WMF-PF, WMF-PF-1, and WMF-PF-2 are shown in Figure 5. We can see that, as the interval
Δxi becomes larger, the computational cost is reduced, but the estimation accuracy declines, and a
reasonable parameter γ can improve the estimation accuracy. The AMSE curves of WMF-PF and CF-PF
are shown in Figure 6. We can see that the accuracy of WMF-PF approximates that of CF-PF.
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Figure 5. AMSE curves of WMF-PF, WMF-PF-1, and WMF-PF-2.
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Figure 6. AMSE curves of WMF-PF and CF-PF.
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Next, we compare the computational cost of WMP-PF and CF-PF. Because H(I) is a 5 × 10 matrix,
the time complexity of WMP-PF is O(52). However, H(0) is a 10 × 10 matrix and its time complexity is
O(102). Therefore, the computational cost of WMF-PF is obviously lower than that of CF-PF.

In summary, the proposed WMP-PF, based on Gauss–Hermite approximation, is more accurate
compared with local PFs, and has a lower computation cost when compared with CF-PF.

7. Conclusions

A general WMF algorithm is presented here for nonlinear multisensory systems based on
the Gauss–Hermite approximation of nonlinear functions and the weighted least square method.
An augmented high-dimension measurement from all sensors is compressed to a low-dimension
one. Combined with the particle filter, the nonlinear weighted measurement fusion PF (WMF-PF) is
presented. It can handle the nonlinear fusion estimation problem, and has reasonable accuracy and a
reduced computational cost compared to centralized fusion PF. The proposed WMF algorithm can
be used in systems of large-scale sensors, which can significantly reduce the computational cost and
improve the real-time feature.
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Abstract: Cooperative localization (CL) is considered a promising method for underwater localization
with respect to multiple autonomous underwater vehicles (multi-AUVs). In this paper, we proposed a
CL algorithm based on information entropy theory and the probability hypothesis density (PHD) filter,
aiming to enhance the global localization accuracy of the follower. In the proposed framework, the
follower carries lower cost navigation systems, whereas the leaders carry better ones. Meanwhile, the
leaders acquire the followers’ observations, including both measurements and clutter. Then, the PHD
filters are utilized on the leaders and the results are communicated to the followers. The followers
then perform weighted summation based on all received messages and obtain a final positioning
result. Based on the information entropy theory and the PHD filter, the follower is able to acquire a
precise knowledge of its position.

Keywords: cooperative localization (CL); multiple autonomous underwater vehicles (multi-AUVs);
information entropy; probability hypothesis density (PHD) filter

1. Introduction

Localization is a primary issue for guaranteeing successful and efficient mission execution for
autonomous underwater vehicles (AUVs) and other maritime robots. Common methods based on
inertial measurement units (IMUs) have irreplaceable merit with respect to independencies, however,
the accumulated error prevents high-accuracy localization in large-scale environments. In contrast
to the use of more advanced IMUs, incorporating external information is a feasible solution. The
authors of [1] considered the geomagnetic field sensor as an external information source during
localization. Acoustic sensors such as sonars are also utilized in AUVs. Long baseline (LBL) [2,3]
and ultra-short baseline (USBL) [4] systems often use sonars as an extension solution to support the
localization. Sonar can also be used in underwater scenes of simultaneous localization and mapping
(SLAM) [5]. The Doppler Velocity Log (DVL) is also a fundamental facility widely used for AUV
navigation. An inertial navigation system (INV), DVL, and range measurement-based localization
algorithm was designed for the AUV fleet [6]. Utilizing the DVL as an auxiliary sensor to INS, the
authors of [7] exploited Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF) to locate the
AUV positions . However, conventional methods work only in known areas (where essential facilities
are deployed to offer standard reference), and are often restricted by the position of the sensors. Once
the AUV flies beyond the border of these areas, the IMU system is the only option in the underwater
environment. Cooperative localization (CL) is thus designed to address such problems by deploying
sensors on the AUV. Moreover, CL can also extend the detection range to infinite regions, and enhance
the reliability of the acoustic network.

According to the configuration of the navigation systems, CL is divided into parallel and the
leader–follower structures. In the former structure, all AUVs carry same sensors, whereas in the latter,
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the follower carries lower accuracy navigation systems. Normally, systems in parallel structures are
more expensive for implementation. Roumeliotis [8] performed some related work with Kalman
filter-based multi robot cooperative localization strategies. The authors of [9] compared the algebraic
and EKF methods of AUV cooperative localization. An extended information filter was employed to
address CL issues in [10]. Uncertainty and communication constraints were also considered in [11–13].
The authors of [14] proposed an optimization approach to jointly localize the multi-AUVs. However,
the clutter is often caused by the echo from the air–water surface, seabed or some other objects, and
not considered in AUV CL applications. Traditional approaches often utilize the data association to
address the clutter, which is invalid once the surveillance region is small. The nearest neighbor (NN)
association is a basic approach. The authors of [15] investigated the application of the NN association in
scenarios of abrupt motion tracking. Research on global NN and suboptimal NN was reported in [16],
which provided approaches for multiple target tracking. The joint probabilistic data association (JPDA)
method is also a solution to the data association issue. However, its accuracy decreases once the targets
get to a small region [17]. Another widely utilized data association approach is the multiple-hypothesis
tracking (MHT) method [18]. In [19], the MHT method was utilized to track the targets in cluttered
images. Without data association steps, the probability hypothesis density (PHD) filter is a novel
method to solve multiple target tracking problem in cluttered environment. Based on the PHD filter, it
is possible to solve the disturbance caused by the clutter. In the PHD filter, all states and measures are
modeled as set-based values in the format of a random finite set (RFS), which makes the PHD filter a
promising approach to solving these issues. The PHD filter has been used in CL for vehicles [20,21] and
the experiment implied its effectiveness in clutter environments. The PHD filter was also introduced
to address the visual tracking issue [22,23], aiming to solve the number variation and noise corruption
of the camera. In this paper, we apply the PHD filter to solve the AUV cooperative localization
problem. Meanwhile, information entropy theory is a proper tool for determining the quality of the
estimations. It has been used in optimization [24] and industrial areas to value how useful one message
is [25–27]. Therefore, in this paper, underwater clutter is considered as a disturbance and the PHD
filter incorporated with information entropy theory is simultaneously employed.

The remainder of this paper is organized as follows. Section 2 introduces the background of this
paper and the mathematic models of the AUV and some sensors. Some basic knowledge about the
information entropy theory is also included. In Section 3, the problem is stated and the detailed steps
of the designed algorithm are provided. Section 4 provides the simulation results in two cases, both of
which support the validity of the proposed method. Finally, Section 5 gives the conclusions and points
out the prospects of this paper.

2. Background

2.1. Assumptions

As shown in Figure 1:

1. The leader–follower structure is taken in order to achieve high accuracy with lower cost, in contrast
to the parallel structure. Notice that the number of the leaders could be multiple, whereas the
number of the followers is strictly limited to one.

2. Each AUV receives relative measurements of the others in the format of the range and bearing
in local (body) coordinates. The global position of the follower can be calculated according to
the measurement and the accurate position of the leader. However, the sonar cannot classify the
clutter and the true measurements.

3. In this paper, only the communication between the leaders and the to-be-localized followers is
considered. The measuring noise and connectivity uncertainty of the network are incorporated,
whereas the time delay is beyond the scope of this paper.
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Figure 1. The leader–follower structure.

2.2. Mathematic Models

2.2.1. Model of AUV

As shown in Figure 2, the AUV is modeled in the two-dimensional horizontal plane, neglecting
the roll motion. According to [28,29], the kinematic model is utilized to describe the relationship
between the AUV body-fixed reference frame ({B}-frame) and the Earth-fixed inertial reference frame
({I}-frame). Note that the {I}-frame is a simplified north—east—down (NED) system in the 2D
horizontal plane, in which the X axis is pointing towards the north and the Y axis is pointing towards

the east. The state vector of the AUV is then described as X =
[

x y
]T

, describing the position of
the origin of the {B}-frame with respect to the {I}-frame (i.e., the position of the AUV in relation to

{I}). ψ is the orientation of the {B}-frame with respect to {I}, i.e., the yaw of the AUV. ν =
[
u v

]T

is the input of the AUV, denoting the linear velocity where u and v are the surge and sway speeds,
respectively. r is the yaw rate of the AUV, i.e., r = ψ̇.

Then the kinematic model of the AUV can be written as:

ẋ = u cos(ψ)− v sin(ψ)

ẏ = u sin(ψ) + v cos(ψ)

ψ̇ = r

(1)

Figure 2. Two-dimensional model of the Autonomous Underwater Vehicle (AUV).

In the undersea environment, both the currents and the unexpected waves can interfere the
movement of the AUV, and such noise is modeled as the additive systematic zero-mean white Gaussian
noise vector wX(k) ∈ R2 at instant tk. We have
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QX = E
[
wX(k)wT

X(k)
]
=

[
σ2

x
σ2

y

]
(2)

where QX represents the covariance matrix of wX .
Similarly, the noise of the yaw ψ is modeled as wψ(k) ∈ R, and the covariance is given by

Qψ = E
[
wψ(k)wT

ψ(k)
]
= σ2

ψ (3)

Thus, the real state (position) and yaw of the AUV can be written as:

Xreal = Xideal + wX

ψreal = ψideal + wψ

(4)

Only Xreal is used in the remainder of this paper, so it will be written as just X for clarity. Notice
that since the leaders are assumed to carry high performance sensors, and the observations are carried
out by the leaders, the yaw sensing error is neglected.

2.2.2. Model of the Detecting Sonar

The AUV often relies on acoustic sonars to observe the surrounding environments. Notice that
sonar signal processing includes transmitting, flying and receiving, etc.

A. Relative Distance-Sensing Part

The two-way time-of-flight sensor is utilized to compute the relative distance. Assuming that the
time period between transmitting and receiving the signal is t f and the underwater sound velocity is
C, the relative distance Dist can be expressed as

Dist = t f · C (5)

Figure 3 shows that sonar i detects the AUV j at instant k. The distance measurement zd
ij(k) is

then calculated by

zd
ij(k) =

∥∥Xj − Xi
∥∥+ vp(k) =

√(
xj(k)− xi(k)

)2
+
(
yj(k)− yi(k)

)2
+ vp(k) (6)

where Xi and Xj are the states of the AUV i and the sonar j. vp(k) is the noise and is modeled by the
additive stochastic zero-mean white Gaussian noise with variance Rp(k) = σ2

p .

Figure 3. Schematic diagram of the relative distance detection.

Remark 1. Here we define the state of a sonar in the same way as the AUV for convenience. Normally, the sonar
is fixed on the AUV in the head part sharing the forward direction with respect to the AUV. The third term of the
vector Xj, denoting the yaw of the AUV, plays an important role in direction sensing.
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B. Relative Direction-Sensing Part

The sonar is usually formed by a hydrophone array. Take Figure 4 as an example, A and B are two
hydrophones in a sonar, and AUV i is the target to be detected. Signals from different direction reflect
different hydrophones in a specific order. Hence, signal reflected by AUV i arrives at hydrophone B
earlier than A.

Figure 4. Schematic diagram of the relative direction detection.

Therefore, the time period τAB between the arrival instants can be used to compute the relative
direction of the AUV against the sonar. Generally, the distance between the AUV and the detecting
sonar (TA or TB) is much longer than AB. Assuming cos α = 1, and AD = AB, we have

AD = τAB · C (7)

Thus, the relative direction is given by

β = arcsin(τAB · C/AB) + vβ(k) (8)

where vβ(k) is the stochastic zero-mean white Gaussian noise with variance Rd(k) = σ2
d . zr

ij(k) denotes
the relative direction measure between the sensor j and the target j at tk.

Combing the relative distance and the direction (i.e. the relative measurements zr
ij), the position

of the AUV is acquired (see Figure 5).

Figure 5. Position calculation.
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2.3. PHD Filter

As aforementioned, observations from sonars also contain clutter due to the complicated
underwater environment. Therefore, the standard Bayesian filter cannot obtain satisfactory estimations
without data association. Compared to the standard Bayesian filters, finite set statistics analysis is
a convenient approach for achieving the task without considering data association [30,31]. Hence,
the RFS-based Gaussian mixture-probability hypothesis density (GM-PHD) filter is utilized.

Suppose that there are Nk−1 targets at instant tk−1 with states
Xk−1 =

{
x1(k − 1), x2(k − 1), . . . , xNk−1(k − 1)

}
, and there are Nk targets

Xk =
{

x1(k), x2(k), . . . , xNk (k)
}

including newborn and dead ones. With the same manner, both
Zk−1 and Zk are defined. In an RFS manner, we have

Xk =
{

x1(k), x2(k), . . . , xNk (k)
} ∈ F(X)

Zk =
{

z1(k), z2(k), . . . , zNk (k)
} ∈ F(Z)

(9)

where F(X) and F(Z) denote the sets containing all states and observations, respectively. Notice that
Z contains both the real measure of the target and the clutter.

Then, Equation (9) can be simplified as

Xk =

⎛⎝ ⋃
ζ∈X(k−1)

Sk|k−1(x)

⎞⎠ ∪ Γk

Zk =

⎛⎝ ⋃
x∈X(k)

Θk(x)

⎞⎠ ∪ Kk

(10)

where Sk|k−1 is the RFS of remaining targets at tk−1, Γk is the set of newborn ones at tk, Θk(x) is the
measure set of the targets, and Kk is the clutters RFS.

Given the survival and detection rate as ps,k and pd,k, the GM-PHD filter can be expressed in a
Bayesian prediction-and-update form as

Prediction:
vk|k−1(x) = vs,k|k−1(x) + γk(x)

vs,k|k−1(x) = ps,k

Jk−1

∑
j=1

ωi
k−1N(x; mj

s,k|k−1, Pj
s,k|k−1)

mj
s,k|k−1 = Fk−1mj

k−1

Pj
s,k|k−1 = Qk−1 + Fk−1Pj

k−1FT
k−1

(11)
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Update:
vk(x) = (1 − pd,k)vk|k−1(x) + ∑

z∈Zk

vd,k(x; z)

vk|k−1(x) =
Jk|k−1

∑
i=1

ωi
k−1N(x; mi

k|k−1, Pi
k|k−1)

vd,k(x; z) =
Jk|k−1

∑
j=1

ω
j
k−1N(x; mj

k|k, Pj
k|k)

ωi
k−1 =

pd,kωi
k−1qi

k(z)

κk(z) + pd,k

Jk|k−1

∑
l=1

ωl
k|k−1ql

k(z)

qi
k(z) = N(z; Hkmi

k|k, Rk + HkPi
k|k−1HT

k )

mi
k|k(z) = mi

k|k−1 + Ki
k(z − Hkmi

k|k−1)

Pi
k|k =

[
I − Ki

k Hk

]
Pi

k|k−1

Ki
k = Pi

k|k−1HT
k (HkPi

k|k−1HT
k + Rk)

−1

(12)

where Fk and Hk are the transition matrix and the measurement matrix, respectively. Note that if the
transition function fk and the measurement function hk are nonlinearly presented, we can take their
Jacobian matrices as Fk and Hk. γk denotes the Gaussian mixture and is given by

γk(x) =
JΓ,k

∑
i=1

ωi
Γ,k N(x; mi

Γ,k, Pi
Γ,k) (13)

Although the PHD filter estimates both the statements and its number, it does not have all of the
track information. Thus, the identification of a specific state in its life cycle is not available. Hence, we
have the information entropy theory to address this issue.

2.4. Information Entropy Theory

Normally, the standard PHD filter gives several results, which can fluctuate around the true
states. However, in this paper, the follower needs only one estimation of its position. Thus, a proper
method to calculate only one estimation with respect to all the results given by standard PHD filter is
needed. Information entropy is one feasible tool to evaluate the quality or usefulness of the estimation.
Therefore, it is employed to derive the weight coefficients for the PHD estimations.

Given a certain event ai with probability p(ai), the amount of information brought by ai can be
given by

I(ai) = logb
1

p(ai)
= −logb p(ai) (14)

where I(ai) denotes the self-information and b is the base value of logarithm. Shannon defined the
expected value of I(ai) as information entropy, given by

H(X) = E [I(X)] =
n

∑
i=1

p(xi)I(x)

= −
n

∑
i=1

p(xi)logb p(xi)

(15)

where E is the expect operator. Thus, information entropy can be a metric with respect to the uncertainty
of an information source.
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When considering several independent events (here we take two for example), the joint entropy
and the conditional entropy can be written as

H(X, Y) = −∑
i

∑
j

p(xi, yj) log p(xi, yj) (16)

H(X|Y) = ∑
i

∑
j

p(xi, yj) log
p(yj)

p(xi, yj)

= −∑
i

∑
j

p(yj)p(xi|yj) log p(xi|yj)
(17)

where X and Y denote two independent events with respect to xi and yi, respectively.
Since H(X) and H(X|Y) describe the prior and posterior uncertainties, their difference is defined

as mutual information as

I(X; Y) = H(X)− H(X|Y) (18)

When X is defined as n-dimensional Gaussian distribution, i.e., X ∼ N(μY, PY), and taking e as
the base to simplify the computation, the entropy can be written as

H(X) = 0.5ln(2πe)n |PX | (19)

3. Algorithm Design

In scenarios of N leader AUVs and one follower AUV j, all the AUVs can accurately obtain their
positions on the sea surface. Once both the leaders and the follower dive into the water, the INS is
utilized to localize them. The leaders can obtain accurate positions with the help of highly accurate
navigation sensors, in contrast to the follower. To enhance the positioning accuracy of the follower,
the leaders should also estimate the position of the follower via relative measures. However, due to
the complicated underwater environment, the clutter issue is quite challenging. The GM-PHD filter is
thus utilized to filter the clutter from the whole measurement set.

However, all the leaders give different estimations with respect to the same follower. For better
execution, the follower needs only one accurate position of itself. In this paper, a specific algorithm is
designed for the follower to cope with all the estimations from different sources properly. The process
of the algorithm is as follows.

Step 1: Measuring. At tk, the leaders measure the follower. For instance, the leader AUV i collects
the observations zij

k−1 including the true measurements of the follower AUV j ẑij
k−1 and the clutter cij

k ,

i.e., zij
k−1 =

{
ẑij

k−1

}
∪
{

cij
k−1

}
.

Step 2: Calculating. With the help of the GM-PHD filter, each leader computes the estimated
positions of the follower in the format of X̂ij,t

k|k . Moreover, according to Equations (17) and (19),

the entropy of X̂ij,t
k|k−1 and X̂ij,t

k|k are also calculated by the leaders, denoted as

H(X̂ij,t
k|k−1) = 0.5ln(2πe)n

∣∣∣Pk|k−1

∣∣∣
H(X̂ij,t

k|k) = 0.5ln(2πe)n
∣∣∣Pk|k

∣∣∣ (20)

where Pk|k−1 and Pk|k are the prior and posterior covariance matrices, respectively. Thus, the mutual
information is given by

Iij,t
k = I(X̂ij,t

k|k−1; X̂ij,t
k|k) = H(X̂ij,t

k|k−1)− H(X̂ij,t
k|k) (21)

which describes the amount of uncertainty eliminated by X̂ij,t
k|k .
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Step 3: Communicating. Leaders broadcast both the estimated positions and the corresponding
mutual information values.

Step 4: Fusing. The follower AUV j collects all the estimations and mutual information values
from the leaders. Note that the number of the data pairs is usually larger than the number of the
leaders due to the property of the PHD filter. The more uncertainty is eliminated, the better the
estimation. Assuming that the leader AUV i gives Mi pairs of the results, the weighted summation of
all the estimations is given by

X̂j
k|k =

N

∑
i=1

Mi

∑
t=1

witX̂
ij,t
k|k (22)

where wit is the normalized weighting coefficient computed by

wit =
I(X̂ij,t

k|k−1; X̂ij,t
k|k)

N
∑

i=1

M
∑

t=1
I(X̂ij,t

k|k−1; X̂ij,t
k|k)

(23)

Thus, the calculated X̂j
k|k is the final estimation of the follower AUV j, which is then broadcasted

by the follower to the leaders, for further PHD filtering steps.
Step 5: Back to Step 1.
Figure 6 presents a brief procedure of the proposed algorithm.

Figure 6. Working procedure of the proposed algorithm. PHD: Probability Hypothesis Density.

4. Simulation and Results

Simulations are designed to validate the proposed method, under the assumed communication
conditions with noise and intermittent network failure. Two scenarios are designed as follows.

Scenario 1:

There were two leading AUVs in this scenario, AUV 1 and AUV 2, and they both took straight
flights with a speed of 2 kn. Starting from the origin of the Earth-fixed frame, their directions were
northeast (45◦ to the north) and west, respectively. Their measuring frequency was set to 1 Hz.
The follower AUV 3 took a circular motion on the 2D square surveillance region with the x-range
[−200 m, 300 m] and y-range [−400 m, 200 m]. AUV 3 started its flight at (0, 0) with cruising speed of
5 kn and yaw angular velocity 0.05 rad/s. Note that the angular velocity is positive clockwise in the
NED frame. The motion noise was assumed to be zero mean white Gaussian noise with covariance
matrix Q = diag([1 m2, 1 m2, 10−4 rad2]), while the covariance matrix of the measurement noise was
R = diag([25 m2, 25 m2]). The clutter was uniformly distributed over the surveillance region and the
number of the clutter observations followed NClutters ∼ P(λClutters), where λClutters is calculated by the
area of the region and the occurrence probability pClutters. Here the pClutters = 12.5 × 10−6/m2. The
network failure ratio was set to 10% and the detection failure ratio was set to 2%.
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The trajectories under this condition are shown in Figure 7.

(a) (b)

Figure 7. Trajectories, clutter, and measurements in Scenario 1. (a) Result with respect to AUV 1 only;
(b) Result with respect to AUV 2 only.

The red, blue and green lines in Figure 7a,b are the actual trajectories of the leaders AUV 1 and 2,
and the follower AUV 3, respectively. Black circles represent the real measures of AUV 3 and the "×"
markers show the clutter. The magenta circles give the results of the standard PHD filter executed by
one single leader.

As aforementioned, the number of the clutter observations is randomly generated according to
the Poisson distribution. In this simulation, the number is plotted in Figure 8.

Figure 8. Number of the clutter observations.

We note that the true measures are merged in the clutter. Thus, the PHD filter was incorporated
to eliminate the effects of the clutter during filtering. Figure 9 illustrates the number of the
PHD estimations.
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Figure 9. Number of estimations.

Notice that without data association, the estimated number fluctuates around the true value.
From Figure 9, it is observed that the PHD cannot eliminate the clutter completely, but compared with
Figure 8, the number has been adjusted to a small range.

To better evaluate the proposed approach, a metric was needed to justify the accuracies. Notice
that the standard Root-Mean-Square Error (RMSE) cannot be directly used due to the random number
of the set-valued states. Therefore, the Optimal Sub-Pattern Assignment (OSPA) was utilized to
describe the accuracy of the localization. OSPA was first proposed in [32] as a metric in the multi-object
filtering field, describing the miss-distance, or error, between the reference values and the estimated
ones. Note that using OSPA, the number of reference values and the estimations do not have to be the
same. In other words, OSPA offers a metric between two sets regardless the cardinalities. A larger
value, i.e., larger miss-distance, indicates worse accuracy. Here we plotted the OSPA distance lines of
different algorithms in Figure 10. Note that the OSPA error lines were obtained after 100 Monte Carlo
simulations, and the saturation value of the OSPA is set to 50.

Figure 10. Positioning error. OSPA: Optimal Sub-Pattern Assignment, Dist: Distance, EKF: Extended
Kalman Filter.

The EKF with the nearest neighbor rule was also carried out as the comparison to the PHD
filter. Generally, the EKF performs the poorest, implying the superiority of the PHD filter. Also,
the OSPA distance of the proposed method is smalles than both the methods exploiting one AUV and
the alternative solutions using them both, which illustrates the advantage of the proposed method.

Scenario 2:

In this scenario, the AUVs cruise in different manner. The cruise velocities were 5 kn for the
leaders AUV 1 and AUV 2, and 2 kn for the follower AUV 3. As shown in Figure 11, the AUV 1 started
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from (0, −250) in the west of the origin of the NED frame, to the east in a sine wave routine, while the
AUV 2 took a circular path from (30, 30), with yaw rate 0.05 rad/s. AUV 3 traveled on the horizontal
region with both the x-range and y-range [−300,300], from the northwest (−250, 250) straight to the
southeast in 3 kn. Compared to Scenario 1, the network failure rate increased to 20% and the motion
(systematic) noise of the leaders was also considered. The rest parameters were set up in the same
manner as for Scenario 1.

(a) (b)

Figure 11. Trajectories, clutter and measurements in Scenario 2. (a) Result with respect to AUV 1 only;
(b) Result with respect to AUV 2 only.

The trajectories are described as red line (leader AUV 1), blue line (leader AUV 2), and green line
(follower AUV 3) in Figure 11a,b. The real measures of AUV 3 are denoted as black circles and the "×"
markers represent the clutter. The results of the standard PHD filter executed by one single leader are
given by the magenta.

The number of the clutter observations and PHD estimations are given in Figures 12 and 13.

Figure 12. Number of the clutter observations.
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Figure 13. Number of estimations.

Figure 12 and Figure 13 illustrate that the PHD filter still managed to reduce the influence of the
clutter. The OSPA distances with respect to different algorithms are shown in Figure 14.

Figure 14. Positioning error.

In this scenario, the proposed method still achieved the best performance compared to the EKF,
the single PHD filter, and the average of them.

However, the computational load slightly increases due to the calculation of mutual information.
Running on a computer with Intel(R) Core(TM) i7-4710MQ CPU at 2.5GHz, the computing time of
50 executions of the standard PHD filter and the proposed method in different scenarios are given in
the Table 1.

Table 1. Computing time of the standard PHD filter and the proposed method.

Standard PHD Filter (s) Proposed Method (s) Increased Percentage (%)

Scenario 1 211.602 229.887 8.64
Scenario 2 247.366 267.481 8.13

According to the simulation results, the PHD filter and information entropy-based cooperative
localization algorithm achieved higher accuracy and stability compared to the state-of-the-art
approaches. The computation burden is increased by computing the mutual information, but according
to the Table 1, the loads were only increased by around 8%.
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5. Conclusions

In this paper, an information entropy-based GM-PHD filter was employed to tackle the
cooperative localization issue. By exploiting both the GM-PHD filter and the information entropy
theory, the proposed method can obtain more accurate results in contrast to the standard GM-PHD
filter and the EKF approach with NN association strategy. Mathematical models were derived and
a simulation was designed, which implied that the designed method performed well in scenarios of
clutter, intermittent connection, and detection failure.

There are also some prospects that need to be investigated in future. One is to explore the
performance of the proposed method in the communication environment with time delay. The time
delay issue results in a bottleneck of underwater CL, which can decrease the positioning accuracy.
A deeper insight into this is required. Also, observability is an important feature of the multi-AUV
system [33]. The influence of the observability in the proposed method should be investigated.
Moreover, how to utilize the proposed method in scenarios of multiple followers is the key to applying
this algorithm more widely.

Besides the theoretical improvements of the proposed algorithm, experimental validations should
also be executed in the future for a more convincing conclusion. Primary experiments can be
implemented in artificial environments like swimming pools with preset clutter, or lakes, and the
AUVs can be replaced by sonar and acoustic communication units for simplification. Then, several
AUVs or some other underwater robots with similar motion patterns modeled in this paper should be
exploited and a sea experiment will be needed to validate the proposed method in practice.
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Abstract: In order to meet the higher accuracy and system reliability requirements, the information
fusion for multi-sensor systems is an increasing concern. Dempster–Shafer evidence theory
(D–S theory) has been investigated for many applications in multi-sensor information fusion due to its
flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is
independent of each other, which is often unrealistic. Ignoring the relationship between the evidence
may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely
prevents D–S evidence theory from practical application and further development. In this paper,
an innovative evidence fusion model to deal with dependent evidence based on rank correlation
coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence
degree between different evidence. Then, total discount coefficient is obtained based on the
dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount
evidence fusion model is presented. An example is illustrated to show the use and effectiveness of
the proposed method.

Keywords: D–S evidence theory; dependent evidence; rank correlation coefficient

1. Introduction

With the development of science and technology, in order to meet the higher accuracy and
system reliability requirements, the information fusion filters for multi-sensor systems have been
widely applied [1]. Various methods have been proposed for multi-sensor modeling and sensor data
fusion [2–7], including night-vision image fusion [8], weighted measurement fusion and Unscented
Kalman Filter [9], neural network models [10], fuzzy set theory [11], belief function theory [12],
and so on.

The fusion of different uncertain data is an important research topic of modern intelligent
multi-sensor systems. Among these methods, Dempster–Shafer evidence theory (D–S theory) has
been investigated for many applications in multi-sensor information fusion due to its flexibility
in uncertainty modeling [13–15]. D–S theory was first proposed by Dempster in 1967 [16],
and further developed by Shafer in 1976 [17]. It can not only deal with imprecise information and
uncertain information, but also deal with complimentary information and missing information [18–21].
Therefore, besides multi-sensor information fusion, D–S theory has also been investigated for
applications in many fields such as fault diagnosis [22,23], pattern recognition [24–28], multi-source
information fusion [29], multiple attribute decision making [30–36] and risk analysis [37–40].

In D–S theory, Dempster’s rule plays a vital part in the process of information fusion.
However, there is an issue that limits the application of evidence theory. The classical evidence
theory is based on the assumption that the evidence is independent of each other [41]. In practice,
the dependence is more common. In other words, some elementary item of evidence will be counted
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twice without considering dependent evidence in the process of information fusion [42]. For example,
one expert’s opinion may be affected by another expert’s opinion in an open decision making
environment. In addition, there will be dependence between the evidence “grain production” and the
evidence “natural disaster” in the agriculture risk analysis system [43]. A mistake will be generated
if ignoring dependence between different evidence. To deal with dependent sources of information,
many scholars proposed different methods [44]. The existing methods could be divided into two
categories [45]: (1) improve the combination rule or (2) modify the original belief structure.

For the first category, the basic idea is to find a new evidence fusion method without considering
dependence [45]. Some scholars have proposed their own combination rules. Cattaneo proposed
the rules based on an assumption of minimal conflict rather than the independence assumption [46].
However, this method only analyzes the dependence between BBAs (Basic Belief Assignments) and
fails to reveal the dependence between information sources. Destercke holds the view that the
minimum rule of possibility theory could be generalized to the dependent evidence fusion [47,48].
However, in [18], the author thought this rule didn’t satisfy the fundamental evidence equation.
In [42], the cautious rule of combination aiming at reliable sources of evidence and the bold disjunctive
rule aiming at unreliable sources of evidence is proposed. Both of them satisfy commutative law,
associative law and idempotent law. However, this combination rule was established in the canonical
decomposition of BBA. Choenni proposed a dependent evidence fusion method using the idea of joint
probability distribution of probability theory [49]. However, this method essentially deals with BBA
as a discrete probability distribution and the fusion result is a couple of focal elements rather than
BBA. Chebbah et al. proposed a new combination rule that takes consideration of sources’ degree of
independence and they also suggest a method to quantify sources’ degree of independence [50].

For the second category, the basic idea is to reduce the repetitive computation of the dependent
part of the information sources as far as possible [45]. In this category, there are two research ideas.
The first research idea is based on the relevant source evidence model, which is first proposed in [51]
by Smets. This paper holds that the reason why the two pieces of evidence are related is that they are
obtained from the same source of evidence. The same source of evidence represents the correlation
part between the pieces of evidence. Smets proposed a combination method in [51] based on the TBM
(transferable belief model). Then, Xiao et al. proposed a combination rule based on the model in [51],
and this rule is in the framework of D–S evidence theory. According to this theory, if we know the
correlation part of two information sources, and the evidence of the correlation information source
is available, this method is effective to deal with dependent evidence. However, this method is not
reasonable as it does not care about the significance of the common evidence in some application
systems. In addition, how to acquire the common evidence between two dependent pieces of evidence
remains a question.

The second research idea is based on the discount evidence model. The main idea of this model is
that dependent evidence shouldn’t be given the same weight as independent evidence in the process
of information fusion since it provides less effective information [52]. The dependent evidence should
be discounted in advance, and the discounting coefficients (or weight) are related to the degree
of dependence. Guralnik et al. [53] presented a formal definition of algorithm dependency based
on three criteria, i.e., method, sensors and features, and divided evidence into highly dependent,
weakly dependent and independent evidence. Yager [54] proposed an interesting approach that makes
use of a weighted aggregation of the belief structures where the weights are related to the degree of
dependence. It is more practical to be used in real applications; however, how to define the degree of
dependence is not addressed. To address this problem, Su et al. [43] presented a strategy of handling
dependent evidence at a systematic level, which is able to capture both inner dependence (or interior
relationship) and outer dependence (or exterior relationship). For inner dependence, they suggested
using the analytic network process (ANP) to derive the degree of dependence. For outer dependence,
they proposed a model based on the intersection of influencing factors identified during the information
propagating and evaluating process. However, the method is subjective to some extent. For variables
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with a certain amount of historical data and samples, statistical methods can be used to measure the
dependence among information sources. Su et al. [53] suggests using the Pearson correlation coefficient
to represent the correlation between evidence. However, the Pearson correlation coefficient presents
only a linear correlation between two variables, which is not always the case in real applications.
In this paper, we proposed a method to measure the dependence between evidence based on rank
correlation coefficient that could remove the limitation of Pearson correlation coefficient.

This paper is organized as follows. In Section 2, the preliminaries on D–S evidence theory,
the definition of the discounted BBA and Spearman’s rank correlation coefficient are briefly introduced.
In Section 3, the model based on Spearman’s rank correlation coefficient is proposed. In Section 4,
an experiment is illustrated to show the rationality of this new method. Finally, the conclusions are
given in Section 5.

2. Preliminaries

Some preliminaries are introduced in this section, including Dempster–Shafer evidence theory,
the discounted evidence, Pignistic Probability Transformation and Spearman’s rank
correlation coefficient.

2.1. Dempster–Shafer Evidence Theory

Definition 1. Let Θ= {A1,A2, · · · ,AN} be a finite nonempty set of N elements that are mutual and exhaustive,
and we define Θ as Frame of Discernment [43]. Let P(Θ) be the power set composed of 2N elements of Θ. The
Basic Belief Assignment function (BBA) is defined as a mapping from the power set P(Θ) to a number between
0 and 1, m : P(Θ) → [0, 1], which satisfies the following conditions [43]:

m(∅) = 0, ∑
A⊆Θ

m(A) = 1, (1)

where m(A) denotes the Basic Belief Assignment of proposition A.

Definition 2. (Dempster’s Rule) Let m1, m2 · · · mN be N independent BBAs in the frame of Discernment of Θ.
The result of their combination is denoted as m = m1 ⊕ m2 ⊕ · · · ⊕ mN, and calculated as follows [16]:⎧⎪⎨⎪⎩

m(∅) = 0,

m(A) = K−1 ∑
∩Aj=Ai=1

N
∏
i=1

mi(Aj),
(2)

where K is normalizing factor, calculated as:

K = 1 − ∑
∩Aj=∅

N

∏
i=1

mi(Aj). (3)

Definition 3. Let m be the BBA on Θ and α be the discount coefficient, α ∈ [0, 1] the discounted BBA αm
defined as:

αm = α ⊗ m :

{
αm(A) =αm(A), ∀A ⊂ Θ, A �= Θ,

αm(Θ) = 1 − α + αm(Θ).
(4)

Definition 4. (Pignistic Probability Transformation, PPT) To make a decision after BBA fusion results in
acquisition, there are two methods: the first method is decision according to the BBA fusion results, the second
method is translating the BBA fusion results to the probability and making decision. In the first method, the
information loss may be large, and the second method helps to draw a more accurate result. Based on such
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consideration, Smets proposed the Pignistic Probability Transformation method [55]. Supposing m is BBA in Θ,
let BetP be the Pignistic Probability distribution. The Pignistic Probability Transformation is defined as

BetPm(ω) = ∑
A⊆Θ,ω∈A

1
|A|

m(A)

1 − m(∅)
, m(∅) �= 1, (5)

where |A| is the cardinality of A, and ∅ is denoted as the empty set.

2.2. Spearman’s Rank Correlation Coefficient

There are all kinds of parameters to evaluate the dependent degree. The article [56] suggests using
the Pearson correlation coefficient to represent the correlation between evidence. However, before using
the Pearson correlation coefficient, it is necessary to assume that experiment data derived from normal
distribution and was equidistant at least within the logical range. The rank correlation coefficient
is a parameter-free measure for correlations that may be used to measure the level of agreement
between two stochastic variables without making assumptions regarding the parametric structure of
the probability distribution of the variables. The rank correlation coefficient, a parameter independent
of the distribution, was proposed by Sperman in 1904 and used to measure the correlation between the
two variables [57,58].

The basic idea of the Spearman rank correlation coefficient is to use the rank of the variable instead
of the specific data for statistical inference [59]. Suppose that the variables x and y have n samples
(measured values) denoted as xi, yi, where i = 1, 2, ... n. Sorting the sample data from large to small
(or from small to large), let x′

i , y′
i be the position of original data xi, yi after arrangment. The Spearman

rank correlation coefficient is defined as

rs =

n
∑

i=1
(x′

i − x̄′)(y′
i − ȳ′)√

n
∑

i=1
(x′

i − x̄′)2 n
∑

i=1
(y′

i − ȳ′)2
= 1 −

6
n
∑

i=1
d2

i

n(n2 − 1)
, (6)

where −1 ≤ rs ≤ 1, the |rs| is growing with x, y closer and closer to the strict monotonic function.
rs = 1 represents x, y becoming a strictly monotone increasing function and rs = −1 represents x, y
becoming a strictly monotone decreasing function. If rs = 0, x, y have no relevance to the distinct
monotonic function.

3. Proposed Method

3.1. The Framework of the Proposed Method

In this section, the method of handling dependent evidence is given in detail in order to
fuse dependent sensor data properly. A flowchart of the proposed method is given in Figure 1.
From Section 1, we can know that there are two basic directions to handle dependent evidence. One is
to modify the Dempster’s combination rule, finding a new evidence fusion method without considering
dependence. The other is to reduce the repetitive computation of the dependent part of the information
sources as far as possible. Here, we adopt the latter method to establish our evidence fusion model.
First, collect sensor data as the raw data to generate BBA. Then, analyze the association between every
two sensor information sources and calculate the correlation discount coefficient based on the analysis
of sensor data. In addition, fuse the discounted BBA according to Dempster’s combination rule. Finally,
a decision conclusion is making by using the method of Pignistic Probability Transformation proposed
in [55].
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Figure 1. Flowchart of the proposed method.

3.2. The Generation of the Correlation Discount Coefficient

Thinking of the need to experience the construction and fusion of BBA from the sensor information
source and the final decision making, the analysis of the relevance of the evidence should begin with
the initial information source, as the real application involves multi-sensor sources of information,
and the relationship between the sensor information source is complex. In order to find a simple and
effective representation, this paper adopts the following method:

Step1: Calculate the Spearman rank correlation coefficient between every two sensor information
sources according to Equation (6).

Step2: The correlation between the two sensor information sources can be divided into positive
correlation and negative correlation. In other words, rank correlation coefficients are
positive or negative, and negative correlation evidence can be regarded as conflict evidence.
Calculate the dependence degree dsx,sy between two information sources:

dsx,sy = |rsx,sy|. (7)

Here, dsx,sy is defined as the absolute value of rsx,sy because the positive correlation or
negative correlation does not substantially affect the fusion result for the information fusion
system based on the D–S evidence theory. To illustrate this problem, there is an example:

Suppose that there are two sensors A and B to qualitatively measure the water level.
The recognition framework is defined as Θ= {high, middle, low}. As shown in Figure 2,
sensor A measures the distance between the top of the well and water surface, denoted as LA,
while sensor B measures the distance between the bottom of the well and water surface,
denoted as LB.

Assume that the depth of this well is 1. The interval [0, 0.4], [0.3, 0.7] and [0.6, 1],
respectively, represent the statuses of low water level, middle water level and high water
level. By analysing the geometric relationship, LA and LB satisfy the follow equation:

LA = −LB + 1. (8)

That is, LA and LB have a strictly negative correlation relationship, rA,B = −1.
However, LA and LB may have different values for the same water level, and they established
the same BBA for the water level. For example, when LA = 0.9, LB = 0.1, both of the sensors
establish the same BBA:

m({low}) = 1. (9)
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In addition, when LA = 0.35, LB = 0.65, both of the sensors establish the same BBA:

m({middle}, {high}) = 1. (10)

In other words, the positive correlation or negative correlation does not substantially affect
the fusion result for the information fusion system based on the D–S evidence theory.

Supposing that there are M sensor sources, we can then establish dependency matrix D:

D =

⎡⎢⎢⎢⎢⎣
dS1,S1 dS1,S2 · · · dS1,SM
dS2,S1 dS2,S2 · · · dS2,SM

...
...

. . .
...

dSM,S1 dSM,S2 · · · dSM,SM

⎤⎥⎥⎥⎥⎦ . (11)

Figure 2. Measurement of the water level.

Step3: Calculate the total dependence degree of each sensor information source. The total
dependence degree of Si is defined as

TSi =
M

∑
k=1

dSi,Sk. (12)

Step4: Considering that the evidence with strong relevance should be given a smaller discount factor,
the correlation discount coefficient is defined as

αSi =
1

TSi
. (13)

3.3. Reliability Assessment

In a multi-sensor information fusion system, the global system performance is closely related to
each sensor’s reliability. The reliability of the information source refers to the correct rate obtained
by direct decision by the information source. The higher reliability evidence helps to draw a more
accurate result in the decision-making process. In addition, the higher reliability evidence should be
given larger weight in evidence fusion. For the target recognition, it is assumed that there are N groups
of training data to establish BBA by Si and M of them have correct classification results. The reliability
of the information source Si is defined as

βSi =
M
N

. (14)
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3.4. The Fusion of Dependent Evidence

On the basis of the above analyses, the total discounting coefficient of evidence from information
source Si, represented by ωSi, can be defined as

ωSi = αSiβSi. (15)

Suppose that BBA mS1, mS2, · · · mSM is established by S1, S2, · · · SM, whose total discounting
coefficient is ωS1, ωS2, · · · ωSM ∈ [0, 1]. The formula of dependent evidence fusion is as follows:

m = ωS1 ms1 ⊕ ωS2 ms2 ⊕ · · · ⊕ ωSM msM, (16)

where ωSi msi represents discount calculation with discounting coefficient ωSi. (see Equation (4)).

4. Experiment and Discussion

In this paper, Iris Dataset from the machine learning database [60] is used as the data source of
the experiment. The dataset contains three types of irises, such as Setosa, Versicolour and Virginica,
and each group of irises contains 50 sets of data samples. Each group has four different attributes:
SL (Sepal Length), SW (Sepal Width), PL (Petal Length) and PW (Petal Width). These four different
attributes can be used as four kinds of information sources to construct BBA.

4.1. Possible Application of the Proposed Evidence Fusion Model

The dependent evidence fusion method in this paper could effectively deal with uncertain
information fusion issues existing in the real world. One of the applications of this method could be
target recognition. For example, to recognize the enemy aircraft, which could be in the form of a bomber,
the Air Early Warning plane or fighter plane, we could first acquire information such as airborne
radar signal, infrared signal or the electronic support measure (ESM) information. Different types of
enemy aircraft usually have different features in the information. Thus, the type of aircraft could be
recognized based on the acquired information. The recognition rate can be improved by combining
information from different sensors. The dependence among the sensors is also considered in the
proposed method. Similar to the iris example, the airborne radar signal, infrared signal or the ESM
information are associated with the iris attributes SL, SW, PL or PW, and the types of enemy aircraft
are associated with the iris types Setosa, Versicolour or Virginica.

Another possible application could be fault diagnosis. For example, in a power transformer
fault diagnosis system, we want to recognize different fault types including transformer winding,
transformer core, arc discharge or transformer insulation aging, and so on. In addition, the
corresponding fault symptoms including transformer core earth current, insulation resistance or
other symptoms could be acquired to establish different BBAs. Different fault symptoms may be
dependent and the fusion method proposed in this article can handle this problem. In other words, the
dependent information fusion model based on rank correlation coefficient could be investigated for
applications in many fields.

4.2. Experimental Method

The main procedure of the proposed method to recognize iris class is shown in Figure 3.
In the experiment, some samples were randomly selected as the training set, and the remaining

samples were used as test set. The steps are as follows:

Step1: Calculate the correlation discount coefficient αSi of four attributes. Refer to Section 3.2.
Step2: Build BBA. Four BBAs were established for SL, SW, PL and PW. The BBA was established

according to the article [61].
Step3: Calculate reliability coefficient βSi, and refer to Section 3.3.
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Step4: Calculate the total discounting coefficient of four attributes according to Equation (15).
Step5: Model testing. Using the test data, we assume for four cases that the evidence is independent

from each other, only considering the dependence between the evidence, only considering the
reliability of the evidence, considering both dependence and reliability, and then calculating
the recognition accuracy. Then, we increase the proportion of training set data, and repeat
the above experiment. In the four cases, the fusion rule as follows:

Group 1: Assume that the evidence is independent from each other

m = ms1 ⊕ ms2 ⊕ · · · ⊕ msM. (17)

Group 2: Only considering the dependence between the evidence

m = αS1 ms1 ⊕ αS2 ms2 ⊕ · · · ⊕ αSM msM. (18)

Group 3: Only considering the reliability of the evidence

m = βS1 ms1 ⊕ βS2 ms2 ⊕ · · · ⊕ βSM msM. (19)

Group 4: Considering both dependence and reliability

m = ωS1 ms1 ⊕ ωS2 ms2 ⊕ · · · ⊕ ωSM msM. (20)

The method of decision-making after fusion is based on the Pignistic Probability Transformation
(PPT) proposed in [55].

Figure 3. The main procedure of the proposed method to recognize iris class.

4.3. Experimental Procedure

In this section, the correlation of iris data sets is performed. The main procedures are as follows:

Step1: The first step is to analyse the dependence among SL, SW, PL, and PW attributes. Rank
correlation coefficients among attributes of iris data sets are shown in Table 1.
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Then, we can establish dependency matrix D:

D =

⎡⎢⎢⎢⎣
1.0000 0.1595 0.8814 0.8344
0.1595 1.0000 0.3034 0.2775
0.8814 0.3034 1.0000 0.9360
0.8344 0.2775 0.9360 1.0000

⎤⎥⎥⎥⎦ .

Calculate the total dependence degree of each attribute as Equation (12). Results are
as follows:

TSL = 2.8753, TSW = 1.7404, TPL = 3.1208, TPW = 3.0479.

Considering that the evidence with strong relevance should be given a smaller discount factor,
the correlation discount coefficient is calculated as Equation (13). The results are as follows:

αSL = 0.3478, αSW = 0.5746, αPL = 0.3204, αPW = 0.3281.

Table 1. Correlation coefficients among attributes.

Attribute SL SW PL PW

SL 1.0000 −0.1595 0.8814 0.8344
SW −0.1595 1.0000 −0.3034 −0.2775
PL 0.8814 −0.3034 1.0000 0.9360
PW 0.8344 −0.2775 0.9360 1.0000

Step2: Build BBA. Four BBAs were established for SL, SW, PL and PW. The BBA was established
according to the article [61].

Step3: Calculate reliability coefficients of the four attributes as Equation (14). The results are
as follows:

βSL = 0.7267, βSW = 0.5467, βPL = 0.9533, βPW = 0.9600.

Step4: The total discounting coefficient of the four attributes can be calculated as Equation (15).
The results are as follows:

ωSL = 0.2527, ωSW = 0.3141, ωPL = 0.3054, ωPW = 0.3150.

After normalization, the total discounting coefficient of the four attributes is

ωSL = 0.8022, ωSW = 0.9971, ωPL = 0.9695, ωPW = 1.

Step5: Model testing. Based on the above calculation, we begin to test our evidence fusion model.
The detailed steps are shown in Section 4.2.

Step6: Then, we calculate the confidence interval of this experiment. For each piece of evidence,
we can acquire a BBA, and suppose its recognition result is A. Then, the Belief function
(Bel(A)), defined as a sum of the mass probabilities of all the proper subsets of A, is calculated
as follows:

Bel (A) = ∑
B⊆A

m (B). (21)

In addition, the Plausibility function ( Pl(A) ), defined as maximum belief of A, is calculated
as follows:

Pl(A) = ∑
B∩A �=∅

m(B). (22)
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Then, the Belief Interval is defined as [Bel (A) , Pl (A)]. Here, calculate the average Bel and Pl of
each proportion of testing data.

4.4. Results and Analysis

In four cases, the average classification recognition accuracy test results are shown in Figure 4.

Figure 4. Average classification recognition accuracy in four cases.

The confidence interval of this experiment as shown in Figure 5.

(a) the confidence interval of group 1. (b) the confidence interval of group 2.

(c) the confidence interval of group 3. (d) the confidence interval of group 4.

Figure 5. The confidence intervals of the experiments.

Comparing Group 1 with Group 3 (or Group 2 with Group 4), it is obvious that the recognition
accuracy is significantly improved when considering reliability. However, comparing Group 1 with
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Group 2 (or Group 3 with Group 4), the recognition accuracy is decreased. In addition, further research
shows the reliability coefficients of the four attributes and the correlation coefficients in Table 2.

Table 2. The reliability coefficient and correlation coefficient of four attributes.

Coefficient SL SW PL PW

reliability coefficient 0.7267 0.5467 0.9533 0.9600
correlation coefficient 0.3478 0.5746 0.3204 0.3281

From Table 2, the reliability coefficient of PW or PL is large, indicating higher reliability.
However, the correlation coefficient of PW or PL is small, indicating higher dependence of these
two attributes in the whole system. The reliability coefficient of SW is small (lower reliability),
while its correlation coefficient is the largest (the most independent attribute in the whole system).
In this experiment, a higher recognition accuracy was obtained when using PW or PL attributes.
However, there is strong dependence between PW and PL, and the higher recognition accuracy of
PW or PL attributes is actually unreasonable for repeating fusion of two similar pieces of evidence.
The recognition accuracy will be decreased when considering the effect of dependent evidence. On the
other hand, the recognition accuracy will be below actual accuracy if two dependent pieces of evidence
that both have low recognition accuracy are fused. In this case, the total recognition accuracy will
increase when considering dependent evidence. In the next section, a case study is used to show the
effectiveness of the proposed method.

4.5. Further Study

A case study is used to show the effectiveness of the proposed method. Assume that the
framework is Θ = {A, B, C}, and four independent pieces of evidence are R1, R2, R3 and R4. In this
case, the correct recognition result is A. As are shown in the following table, and the pieces of evidence
R1, R2, and R3 could draw the correct result; however, evidence R4 draws the wrong result (Table 3).

Table 3. Four pieces of evidence and their recognition results.

Item BBA PPT
Recognition

Result

R1 m(A) = 0.5, m(B) = 0.2, m(AC) = 0.3 p(A) = 0.65, p(B) = 0.2, p(C) = 0.15 A
R2 m(A) = 0.55, m(B) = 0.15, m(ABC) = 0.3 p(A) = 0.65, p(B) = 0.25, p(C) = 0.1 A
R3 m(A) = 0.61, m(AB) = 0.35, m(AC) = 0.04 p(A) = 0.805, p(B) = 0.175, p(C) = 0.02 A
R4 m(AC) = 0.15, m(B) = 0.55, m(BC) = 0.3 p(A) = 0.075, p(B) = 0.7, p(C) = 0.225 B

Case1: Combining these four independent pieces of evidence according to the traditional
Dempster’s rule:

m = mR1 ⊕ mR2 ⊕ mR3 ⊕ mR4

after PPT, the probability is

p(A) = 0.7834, p(B) = 0.2062, p(C) = 0.0104.

The recognition result is A, which is correct by combining four independent pieces of evidence.
Case2: Let us consider another condition: we have the fifth piece of evidence R5, which is the

same as R4, that is, R5 : m(AC) = 0.15, m(B) = 0.55, m(BC) = 0.3. Apparently, R4 is totally dependent
on R5, and there may be a mistake if we combine these five pieces of evidence regardless of their
association; for example:

m = mR1 ⊕ mR2 ⊕ mR3 ⊕ mR4 ⊕ mR5.
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after PPT, and the probability is

p(A) = 0.3942, p(B) = 0.5880, p(C) = 0.0178.

The recognition result is B; therefore, using traditional Dempster’s rule without considering
dependent can draw a wrong result. The reason is that one of the pieces of evidence is totally
dependent on another piece of evidence, which means that one of the pieces of evidence has been
counted twice.

Case3: By considering the dependent evidence based on the method proposed in Section 3,
the correlation discount coefficient could be given as follows:

αR1 = 1, αR2 = 1, αR3 = 1, αR4 = 0.5, αR5 = 0.5.

Then, the fusion rule is

m = αR1mR1 ⊕ αR2mR2 ⊕ αR3mR3 ⊕ αR4mR4 ⊕ αR5mR5.

The final result is
p(A) = 0.8881, p(B) = 0.1068, p(C) = 0.0051.

The recognition result is A. Thus, the proposed dependent evidence fusion model could improve
the decision-making result especially in the fusion of low recognition evidence.

5. Conclusions

With the rapid development of artificial intelligence, the acquisition of information has
increasing importance. In industrial applications, the multi-sensor information fusion system based on
Dempster–Shafer evidence theory plays a more and more important role in information collection and
decision-making. However, the classical evidence theory assumes that the evidence is independent
from each other, which is often difficult to establish in practice. To address this issue, this paper
analyzes the present researche about dependent evidence fusion. Comparing with all kinds of
correlation measurement methods, we select the Spearman’s rank correlation coefficient as the
metric to measure dependence existing in evidence. Rank correlation coefficient is a parameter-free
measure for correlations, which may be used to measure the level of agreement between two
stochastic variables without making assumptions regarding the parametric structure of the probability
distribution of the variables. Then, a dependent evidence fusion model based on rank correlation
coefficient is established. Finally, an experiment is developed to verify the effectiveness of this
model based on iris data sets. Experiment results suggest that considering reliability will improve
accuracy of decision-making and considering dependent evidence helps draw more reasonable and
robust conclusions. In other words, it is necessary to consider the influence of dependent evidence in
information fusion to gain a more credible result.

Acknowledgments: This work was partially supported by the National Natural Science Foundation of China
(Grant No. 61503237, Grant No. 61573290), the Shanghai Natural Science Foundation (Grant No. 15ZR1418300),
the Shanghai Science and Technology Commission Key Program (Grant No. 15160500800), the Shanghai
Key Laboratory of Power Station Automation Technology (No. 13DZ2273800), and the Shanghai Education
Commission Excellent Youth Project (Grant No. ZZsdl15144).

Author Contributions: F.S. and X.S. designed and performed the research; F.S. wrote the paper; H.Q. and N.Y.
performed the computation; X.S. and F.S. analyzed the data; and W.H. contributed analysis tools. All authors
discussed the results and commented on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

413



Sensors 2017, 17, 2362

References

1. Tian, T.; Sun, S.; Li, N. Multi-sensor information fusion estimators for stochastic uncertain systems with
correlated noises. Inf. Fusion 2016, 27, 126–137.

2. Tang, Y.; Zhou, D.; Xu, S.; He, Z. A weighted belief entropy-based uncertainty measure for multi-sensor
data fusion. Sensors 2017, 17, 928.

3. Villarrubia, G.; Paz, J.F.D.; Iglesia, D.H.D.L.; Bajo, J. Combining multi-agent systems and wireless sensor
networks for monitoring crop irrigation. Sensors 2017, 17, 1775.

4. Poria, S.; Cambria, E.; Bajpai, R.; Hussain, A. A review of affective computing: From unimodal analysis to
multimodal fusion. Inf. Fusion 2017, 37, 98–125.

5. Poria, S.; Cambria, E.; Howard, N.; Huang, G.B.; Hussain, A. Fusing audio, visual and textual clues for
sentiment analysis from multimodal content. Neurocomputing 2016, 174, 50–59.

6. Cambria, E.; White, B. Jumping NLP Curves: A Review of Natural Language Processing Research.
IEEE Comput. Intell. Mag. 2014, 9, 48–57.

7. Poria, S.; Cambria, E.; Gelbukh, A. Aspect extraction for opinion mining with a deep convolutional
neural network. Knowl. Based Syst. 2016, 108, 42–49.

8. Jin, X.B.; Zheng, H.-J.; Du, J.-J.; Wang, Y.-M. S-Retinex brightness adjustment for night-vision image. 2011,
15, 2571–2576.

9. Hao, G.; Sun, S.L.; Li, Y. Nonlinear weighted measurement fusion unscented kalman filter with
asymptotic optimality. Inf. Sci. 2015, 299, 85–98.

10. Alexandridis, A. Evolving RBF neural networks for adaptive soft-sensor design. Int. J. Neural Syst.
2013, 23, 1350029.

11. Chen, S.; Deng, Y.; Wu, J. Fuzzy sensor fusion based on evidence theory and its application. Appl. Artif. Intell.
2013, 27, 235–248.

12. Frikha, A.; Moalla, H. Analytic hierarchy process for multi-sensor data fusion based on belief function theory.
Eur. J. Oper. Res. 2015, 241, 133–147.

13. Deng, X.; Jiang, W.; Zhang, J. Zero-sum matrix game with payoffs of Dempster-Shafer belief structures and
its applications on sensors. Sensors 2017, 17, 922.

14. Jiang, W.; Hu, W.; Xie, C. A new engine fault diagnosis method based on multi-sensor data fusion. Appl. Sci.
2017, 7, 280.

15. Jiang, W.; Zhuang, M.; Xie, C. A reliability-based method to sensor data fusion. Sensors 2017, 17, 1575.
16. Dempster, A. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat.

1967, 38, 325–339.
17. Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976.
18. Cattaneo, M.E.G.V. Belief functions combination without the assumption of independence of the

information sources. Knowl. Based Syst. 2011, 52, 299–315.
19. Wang, Y.M.; Yang, J.B.; Xu, D.L.; Chin, K.S. On the combination and normalization of interval-valued

belief structures. Inf. Sci. Int. J. 2007, 177, 1230–1247.
20. Yang, Y.; Han, D. A new distance-based total uncertainty measure in the theory of belief functions.

Knowl. Based Syst. 2016, 94, 114–123.
21. Deng, Y. Generalized evidence theory. Appl. Intell. 2015, 43, 530–543.
22. Cheng, G.; Chen, X.H.; Shan, X.L.; Liu, H.G.; Zhou, C.F. A new method of gear fault diagnosis in strong

noise based on multi-sensor information fusion. J. Vib. Control. 2016, 22, 1504–1515.
23. Zhang, J.C.; Zhou, S.P.; Li, Y.; Su, Y.S.; Zhang, P.G. Improved D–S evidence theory for pipeline

damage identification. J. Vibroeng. 2015, 17, 3527–3537.
24. Liu, Z.G.; Pan, Q.; Dezert, J.; Martin, A. Adaptive imputation of missing values for incomplete pattern

classification. Pattern Recognit. 2016, 52, 85–95.
25. Liu, Z.G.; Pan, Q.; Dezert, J.; Mercier, G. Credal c-means clustering method based on belief functions.

Knowl. Based Syst. 2015, 74, 119–132.
26. Denoeux, T. A neural network classifier based on Dempster–Shafer theory. IEEE Trans. Syst. Man Cybern. Syst.

2000, 30, 131–150.
27. Kang, B.; Deng, Y.; Sadiq, R.; Mahadevan, S. Evidential cognitive maps. Knowl. Based Syst. 2012, 35, 77–86.

414



Sensors 2017, 17, 2362

28. Wei, D.; Deng, X.; Zhang, X.; Deng, Y.; Mahadevan, S. Identifying influential nodes in weighted networks
based on evidence theory. Phys. A Stat. Mech. Its App. 2013, 392, 2564–2575.

29. Yager, R.R. Set measure directed multi-Source information fusion. IEEE Tran. Fuzzy Syst. 2011, 19, 1031–1039.
30. Yager, R.R. A knowledge-based approach to adversarial decision making. Int. J. Intell. Syst. 2008, 23, 1–21.
31. Yang, J.B.; Xu, D.L. Nonlinear information aggregation via evidential reasoning in multiattribute decision

analysis under uncertainty. IEEE Tran. Syst. Man Cybern. Syst. 2002, 32, 376–393.
32. Yang, J.; Wang, Y.; Xu, D.; Chin, K. The evidential reasoning approach for MADA under both probabilistic

and fuzzy uncertainties. Eur. J. Oper. Res. 2006, 171, 309–343.
33. Ma, W.; Xiong, W.; Luo, X. A model for decision making with missing, imprecise, and uncertain evaluations

of multiple criteria. Int. J. Intell. Syst. 2013, 28, 152–184.
34. Yao, S.; Huang, W.Q. Induced ordered weighted evidential reasoning approach for multiple attribute

decision analysis with uncertainty. Int. J. Intell. Syst. 2014, 29, 906–925.
35. Huang, S.; Su, X.; Hu, Y.; Mahadevan, S.; Deng, Y. A new decision-making method by incomplete preferences

based on evidence distance. Knowl. Based Syst. 2014, 56, 264–272.
36. Wang, X.; Yang, F.; Li, D.; Zhang, F. Group decision-making method for dynamic cloud model based on

cumulative prospect theory. Int. J. Grid Distrib. Comput. 2016, 9, 283–290.
37. Yang, J.; Huang, H.Z.; He, L.P.; Zhu, S.P.; Wen, D. Risk evaluation in failure mode and effects analysis of

aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty. Eng. Fall. Anal.
2011, 18, 2084–2092.

38. Wang, X.; Yang, F.; Wei, H.; Ji, L. A risk assessment model of uncertainty system based on set-valued mapping.
J. Intell. Fuzzy Syst. 2016, 31, 3155–3162.

39. Ji, L.; Yang, F.; Wang, X. Transformation of possibility distribution into mass function and method of ordered
reliability decision. J. Comput. Theor. Nanosci. 2016, 13, 4454–4460.

40. Su, X.; Mahadevan, S.; Xu, P.; Deng, Y. Dependence assessment in human reliability analysis using evidence
theory and AHP. Risk Anal. 2015, 35, 1296–1316.

41. Shafer, G. The problem of dependent evidence. Int. J. Approx. Reason. 2016, 79, 41–44.
42. Denoeux, T. Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies

of evidence. Artif. Intell. 2008, 172, 234–264.
43. Su, X.; Mahadevan, S.; Xu, P.; Deng, Y. Handling of dependence in Dempster–Shafer theory. Int. J. Intell. Syst.

2015, 30, 441–467.
44. Su, X.; Han, W.; Xu, P.; Deng, Y. Review of combining dependent evidence. Syst. Eng. Electron. 2016,

38, 1345–1351.
45. Su, X.; Mahadevan, S.; Han, W.; Deng, Y. Combining dependent bodies of evidence. Appl. Intell. 2016,

44, 634–644.
46. Cattaneo, Marco EGV. Combining belief functions issued from dependent sources. In Proceedings

of the Third International Symposium on Imprecise Probabilities and Their Application (isipta’03),
Lugano, Switzerland, 14–17 July 2003; pp. 133–147.

47. Destercke, S.; Dubois, D.; Chojnacki, E. Cautious conjunctive merging of belief functions. In Symbolic and
Quantitative Approaches to Reasoning with Uncertainty: 9th European Conference, ECSQARU 2007, Hammamet,
Tunisia, 31 October 31–2 November 2007; Mellouli, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2007;
pp. 332–343.

48. Destercke, S.; Dubois, D. Idempotent conjunctive combination of belief functions: Extending the minimum
rule of possibility theory. Inf. Sci. 2011, 181, 3925–3945.

49. Choenni, S.; Blok, H.E.; Leertouwer, E. Handling uncertainty and ignorance in databases: A rule to combine
dependent data. In Database Systems for Advanced Applications: 11th International Conference, DASFAA
2006, Singapore, 12–15 April 2006; Li Lee, M., Tan, K.L., Wuwongse, V., Eds.; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 310–324.

50. Chebbah, M.; Martin, A.; Ben Yaghlane, B. Combining partially independent belief functions.
Decis. Support Syst. 2015, 73, 37–46.

51. Smets, P. The concept of distinct evidence. In Proceedings of the 4th Conference on Information Processing
and anagement of Uncertainty in Knowledge-based Systems (IPMU), Palma de Mayorca, Spain, 6–10 July
1992; pp. 789–794.

415



Sensors 2017, 17, 2362

52. Jiang, H.N.; Xu, X.B.; Wen, C.L. The combination method for dependent evidence and its application for
simultaneous faults diagnosis. In Proceedings of the 2009 International Conference on Wavelet Analysis and
Pattern Recognition, Baoding, China, 12–15 July 2009; pp. 496–501.

53. Guralnik, V.; Mylaraswamy, D.; Voges, H. On handling dependent evidence and multiple faults in
knowledge fusion for engine health management. In Proceedings of the 2006 IEEE Aerospace Conference,
Big Sky, MT, USA, 4–11 March 2006; pp. 9–10.

54. Yager, R.R. On the fusion of non-independent belief structures. Int. J. Gen. Syst. 2009, 38, 505–531.
55. Smets, P.; Kennes, R. The transferable belief model. Artif. Intell. 1994, 66, 191–234.
56. Su, X.; Xu, P.; Mahadevan, S.; Deng, Y. On consideration of dependence and reliability of evidence in

Dempster–Shafer theory. J. Inf. Comput. Sci. 2014, 11, 4901–4910.
57. Bishara, A.J.; Hittner, J.B. Testing the significance of a correlation with nonnormal data: Comparison of

Pearson, Spearman, transformation, and resampling approaches. Psychol. Methods 2012, 17, 399–417.
58. Puth, M.T.; Neuhauser, M.; Ruxton, G.D. Effective use of Spearman’s and Kendall’s correlation coefficients

for association between two measured traits. Anim. Behav. 2015, 102, 77–84.
59. Zhang, W.Y.; Wei, Z.W.; Wang, B.H.; Han, X.P. Measuring mixing patterns in complex networks by Spearman

rank correlation coefficient. Physica A 2016, 451, 440–450.
60. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml/datasets/Iris

(accessed on 10 August 2017).
61. Xu, P.; Deng, Y.; Su, X.; Mahadevan, S. A new method to determine basic probability assignment from

training data. Knowl. Based Syst. 2013, 46, 69–80.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

416



sensors

Article

A Novel Evidence Theory and Fuzzy Preference
Approach-Based Multi-Sensor Data Fusion
Technique for Fault Diagnosis

Fuyuan Xiao

School of Computer and Information Science, Southwest University, No. 2 Tiansheng Road, BeiBei District,
Chongqing 400715, China; xiaofuyuan@swu.edu.cn

Received: 12 September 2017; Accepted: 27 October 2017 ; Published: 31 October 2017

Abstract: The multi-sensor data fusion technique plays a significant role in fault diagnosis and in
a variety of such applications, and the Dempster–Shafer evidence theory is employed to improve
the system performance; whereas, it may generate a counter-intuitive result when the pieces of
evidence highly conflict with each other. To handle this problem, a novel multi-sensor data fusion
approach on the basis of the distance of evidence, belief entropy and fuzzy preference relation
analysis is proposed. A function of evidence distance is first leveraged to measure the conflict
degree among the pieces of evidence; thus, the support degree can be obtained to represent the
reliability of the evidence. Next, the uncertainty of each piece of evidence is measured by means
of the belief entropy. Based on the quantitative uncertainty measured above, the fuzzy preference
relations are applied to represent the relative credibility preference of the evidence. Afterwards,
the support degree of each piece of evidence is adjusted by taking advantage of the relative credibility
preference of the evidence that can be utilized to generate an appropriate weight with respect to
each piece of evidence. Finally, the modified weights of the evidence are adopted to adjust the bodies
of the evidence in the advance of utilizing Dempster’s combination rule. A numerical example and a
practical application in fault diagnosis are used as illustrations to demonstrate that the proposal is
reasonable and efficient in the management of conflict and fault diagnosis.

Keywords: sensor data fusion; evidential conflict; evidence distance; belief entropy; variance of entropy;
fuzzy preference relations; Dempster–Shafer evidence theory; fault diagnosis

1. Introduction

The multi-sensor data fusion technique plays a significant role in fault diagnosis. Due to
the complexity of the targets, the report collected from a single sensor is insufficient in decision
making processes. Additionally, because of the impact of the environment, the data gathered from
multiple sensors may be unreliable or even wrong so that it can cause erroneous results in fault
diagnosis. Hence, multi-sensor data fusion technologies are required in various fields of practical
applications [1–9], especially in the area of data fusion using vibration data [10–15]. However, in the
practical applications, the data that are gathered from the multi-sensors are usually uncertain. An open
issue is how to model and handle such kinds of uncertain information. To address this issue, a variety of
theoretical methods has been exploited for multi-sensor data fusion, like the rough sets theory [16,17],
fuzzy sets theory [18–22], evidence theory [23–25], Z numbers [26,27], and D numbers theory [28–30],
evidential reasoning [31–34], and so on [35–38].

Dempster–Shafer evidence theory, which is an uncertainty reasoning tool, was firstly proposed
by Dempster [23]; then, it was developed by Shafer [24]. Because Dempster–Shafer evidence
theory is flexible and effective in modeling the uncertainty regardless of prior information,
it is widely applied to various areas of information fusion, like pattern recognition [39–41],
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decision making [42–47], supplier selection [48,49], optimization problems [50,51], risk analysis [52–54]
and fault diagnosis [55–60]. Although Dempster–Shafer evidence theory has many advantages,
it may generate counter-intuitive results, when fusing highly conflicting pieces of evidence [61,62].
To solve this problem, many methods have been proposed. They are divided into two types
of methodologies [63–67]. The first type involves modifying Dempster’s combination rule, while the
second type involves pre-processing the bodies of evidence. The main research works for the first type
include the unnormalized combination rule presented by Smets [68], the disjunctive combination rule
proposed by Dubois and Prade [69] and the combination rule presented by Yager [70]. Nevertheless,
the modification of the combination rule often destructs the good properties, like the commutativity and
associativity. Furthermore, if sensor failure results in the counter-intuitive results, such a modification
is regarded to be unreasonable. Therefore, many researchers pre-process the bodies of evidence to
resolve the problem of highly conflicting evidence, which falls into the second type. The main research
works for the second type include the simple average approach of the bodies of evidence proposed by
Murphy [71], the weighted average of the masses based on the evidence distance presented by Deng et
al. [72] and the cosine theorem-based method proposed by Zhang et al. [73]. Deng et al.’s weighted
average approach [72] overcomes the weakness of Murphy’s method [71] to some extent. Later on,
Zhang et al. [73] made an improvement based on [72] and introduced the concept of vector space to
handle the conflicting evidence. However, the effect of evidence’s uncertainty itself on the weight
was overlooked.

In this paper, therefore, a novel multi-sensor data fusion method is proposed, which is a hybrid
methodology in terms of the distance of evidence, belief entropy and fuzzy preference relation analysis.
The proposal considers the support degree among the pieces of evidence, the uncertainty measure
of the evidence and the effect of the relative credibility of the evidence on the weight, so that it can
obtain more appropriately weighted average evidence before using Dempster’s combination rule.
Specifically, the proposed method consists of the following procedures. First, in order to measure
the support degree between the pieces of evidence, the function of evidence distance is leveraged,
where the support degree represents the reliability of the evidence. After that, the relative credibility
preference of the evidence is indicated by taking advantage of the fuzzy preference relation analysis on
the foundation of the uncertainty of each piece of evidence measured by the belief entropy. Based on
that, the support degrees of the evidence are adjusted, which can be utilized to generate the appropriate
weights with regard to the evidence. Finally, the weighted average evidence can be obtained on the
basis of the modified weights of the evidence before using Dempster’s combination rule. A numerical
example and a practical application in fault diagnosis are used as illustrations to demonstrate that
the proposed method outperforms the related methods with respect to the conflict management and
fault diagnosis.

The remaining content of this paper is arranged below. Section 2 introduces the preliminaries of
this paper briefly. In Section 3, a novel multi-sensor data fusion approach with regard to fault diagnosis
is proposed. Section 4 gives a numerical example to illustrate the effectiveness of the proposal. Then,
the proposed method is applied to a practical application in fault diagnosis in Section 5. Finally,
Section 6 gives the conclusion.

2. Preliminaries

2.1. Dempster–Shafer Evidence Theory

Dempster–Shafer evidence theory [23,24] is extensively applied to handle uncertain information
that belongs to the category of artificial intelligence. Because Dempster–Shafer evidence theory is
flexible and effective in modeling the uncertainty regardless of prior information, it requires weaker
conditions compared with the Bayesian theory of probability. When the probability is confirmed,
Dempster–Shafer evidence theory degenerates to the probability theory and is considered as a
generalization of Bayesian inference [74]. In addition, Dempster–Shafer evidence theory has the
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advantage that it can directly express the “uncertainty” via allocating the probability into the set’s
subsets, which consists of multi-objects, instead of a single object. Furthermore, it is capable of
combining the bodies of evidence to derive new evidence. The basic concepts and definitions are
described as below.

Definition 1 (Frame of discernment). Let Θ be a nonempty set of events that are mutually-exclusive and
collectively-exhaustive, defined by:

Θ = {F1, F2, . . . , Fi, . . . , FN}, (1)

in which the set Θ denotes a frame of discernment.
The power set of Θ is represented as 2Θ, where:

2Θ = {∅, {F1}, {F2}, . . . , {FN}, {F1, F2}, . . . , {F1, F2, . . . , Fi}, . . . , Θ}, (2)

and ∅ is an empty set.
When A is an element of the power set of Θ, i.e., A ∈ 2Θ, A is called a hypothesis or proposition.

Definition 2 (Mass function). In the frame of discernment Θ, a mass function m is represented as a mapping
from 2Θ to [0, 1] that is defined as:

m : 2Θ → [0, 1], (3)

which meets the conditions below:
m(∅) = 0,

∑
A∈2Θ

m(A) = 1. (4)

The mass function m in the Dempster–Shafer evidence theory can also be called a basic probability
assignment (BPA). When m(A) is greater than zero, A as the element of 2Θ is named as a focal element
of the mass function, where the mass function m(A) indicates how strongly the evidence supports the
proposition or hypothesis A.

Definition 3 (Belief function). Let A be a proposition where A ⊆ Θ; the belief function Bel of the proposition
A is defined by:

Bel : 2Θ → [0, 1],

Bel(A) = ∑
B⊆A

m(B). (5)

The plausibility function Pl of the proposition A is defined by:

Pl : 2Θ → [0, 1],

Pl(A) = 1 − Bel(Ā) = ∑
B∩A �=∅

m(B), (6)

where Ā is the complement of A, such that Ā = Θ − A.

Apparently, the plausibility function Pl(A) is equal to or greater than the belief function Bel(A),
where the belief function Bel is the lower limit function of the proposition A, and the plausibility
function Pl is the upper limit function of the proposition A.
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Definition 4 (Dempster’s rule of combination). Let two basic probability assignments (BPAs) be m1 and
m2 on the frame of discernment Θ where the BPAs m1 and m2 are independent; Dempster’s rule of combination,
defined by m = m1 ⊕ m2, which is called the orthogonal sum, is represented as below:

m(A) =

⎧⎨⎩
1

1−K ∑
B∩C=A

m1(B)m2(C), A �= ∅,

0, A = ∅,
(7)

with:
K = ∑

B∩C=∅
m1(B)m2(C), (8)

where B and C are also the elements of 2Θ and K is a constant that presents the conflict between the BPAs m1

and m2.

Notice that Dempster’s combination rule is only practicable for the BPAs m1 and m2 under the
condition that K < 1.

2.2. Distance of Pieces of Evidence

Jousselme et al. [75] presented a distance function of the evidence to measure the distance among
the basic probability assignments (BPAs), which is defined as below.

Definition 5 (Distance between two BPAs). Let two basic probability assignments (BPAs) m1 and m2 be on
the same frame of discernment Θ, which contains N number of mutually-exclusive and collectively-exhaustive
propositions. The distance between the BPAs m1 and m2 is denoted as:

d(m1, m2) =

√
1
2
(−→m1 −−→m2)

T D(−→m1 −−→m2), (9)

where −→mi(i = 1, 2) is a 2N-dimensional column vector and D is a (2N × 2N)-dimensional matrix.
The elements of D that measure the conflict of the focal elements in the BPAs m1 and m2 can be

represented as:

D(A, B) =
|A ∩ B|
|A ∪ B| , (10)

where A ∈ 2Θ and B ∈ 2Θ. |A ∩ B| denotes the amount of objects in common between the elements A and B,
while |A ∪ B| represents the subset’s cardinality of the union elements A and B.

It can be stated that D(A, B) ∈ [0, 1]. Specifically, the value of |A ∩ B| is zero, when no common
items exist between the elements A and B, which means that the element A highly conflicts with
the element B so that the degree of similarity between the elements A and B is zero. Therefore, the
smaller the D(A, B) is, the less similarity between the elements A and B there is; whereas, D(A, B) = 1
indicates that the element A is identical to the element B.

2.3. Belief Entropy

A belief entropy, called the Deng entropy, was first proposed by Deng [43] and has been applied
in various fields [76]. As the generalization of the Shannon entropy [77,78], the Deng entropy is an
effective math tool for measuring the uncertain information, because the uncertain information can be
expressed by BPAs, so that it can be used in the evidence theory. In such a situation that the uncertainty
is expressed by the probability distribution, the uncertain degree measured by the Deng entropy
will be identical to the uncertain degree measured by the Shannon entropy. The basic concepts and
definitions are introduced below.
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Let A be a proposition of the basic probability assignment (BPA) m on the frame of discernment
Θ; the Deng entropy Ed(m) of the BPA m is defined as follows:

Ed(m) = − ∑
A⊆Θ

m(A) log
m(A)

2|A| − 1
, (11)

where |A| is the cardinality of the proposition A.
When the belief is only allocated to the single object, which means that |A| = 1, the Deng entropy

degenerates to the Shannon entropy, namely,

Ed(m) = − ∑
A∈Θ

m(A) log
m(A)

2|A| − 1
= − ∑

A∈Θ
m(A) log m(A). (12)

The larger the cardinality of the proposition is, the larger the Deng entropy of evidence is, so that
the evidence contains more information. When a piece of evidence has a big Deng entropy, it is
supposed to be better supported by other evidence, which represents that this evidence plays an
important part in the final combination.

2.4. Fuzzy Preference Relations

Fuzzy preference relations play a fundamental part in many decision-making processes, and they
were first presented by Tanino [79] in 1984. It is a kind of method that can construct the decision
matrices of pairwise comparisons by using the linguistic values that are provided by experts. The basic
concepts are introduced below.

Definition 6 (Fuzzy preference relations [79–82]). Let P be a fuzzy preference relation and
X = {A1, A2, . . . , Ak} be a set of alternatives, where X ⊆ Θ, then the fuzzy preference relation is defined
as follows:

P = (pij)k×k =

⎡⎢⎢⎢⎢⎢⎣
0.5 · · · p1i · · · p1k
...

...
...

...
...

pi1 · · · 0.5 · · · pik
...

...
...

...
...

pk1 · · · pki · · · 0.5

⎤⎥⎥⎥⎥⎥⎦ , (13)

where pij ∈ [0, 1] (1 ≤ i �= j ≤ k) represents the preference value for the alternative Ai over Aj, which meets
the conditions below:

pij + pji = 1 and pii = 0.5. (14)

It should be stated that pij = 0.5 represents the indifference between the alternatives Ai and Aj; pij = 1
represents that Ai is absolutely preferred by Aj; pij > 0.5 represents that Ai is preferred by Aj.

Whereas, the preference values may be inconsistent in the fuzzy preference relation, hence,
Tanino [79] proposed the concept of the additive consistency for the fuzzy preference relation
P = (pij)k×k as follows:

pir = pij + pjr − 0.5, (15)

where pii = 0.5 and pij + pji = 1 (1 ≤ i �= j �= r ≤ k).
After that, Lee [80] claimed that the complete fuzzy preference relation may not satisfy the

consistency of the order in certain cases. Hence, the consistency of the order in fuzzy preference
relations was presented by Lee [80] to solve this problem.

Definition 7 (The consistency matrix [80]). Let P∗ = (pij)k×k be a complete fuzzy preference relation,
in which pij represents the preference values for the alternative Ai over Aj, pij + pji = 1 and pii = 0.5
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(1 ≤ i �= j ≤ k). The consistency matrix P can be constructed on the basis of the complete fuzzy preference
relation P∗, which is defined by:

P = (pir)k×k =

(
1
k

k

∑
j=1

(pij + pjr)− 0.5

)
k×k

. (16)

The consistency matrix P = (pir)k×k (1 ≤ i �= r ≤ k) has the properties below:

(1) pir + pri = 1;
(2) pii = 0.5;
(3) pir = pij + pjr − 0.5;
(4) pir ≤ pis for all i ∈ {1, 2, . . . , k}, where s �= i and s �= r.

Let P = (pir)k×k be a consistency matrix; the ranking value of alternative Ai, denoted as RV(Ai),
is defined by:

RV(Ai) =
2
k2

k

∑
j=1

pij, (17)

where 1 ≤ i ≤ k and ∑k
i=1 RV(Ai) = 1.

3. The Proposed Method

In this paper, by considering not only the conflicts between pieces of evidence, but also the impact
of the evidence’s uncertainty itself, a novel multi-sensor data fusion approach is presented and applied
in fault diagnosis. The proposed method is a hybrid methodology that integrates the distance of
evidence, belief entropy and fuzzy preference relation analysis, which consists of the following parts.

The function of evidence distance is first leveraged for measuring the conflict degree among
the pieces of evidence, then the support degree resulting from the distance of the evidence is obtained
to denote the evidence’s reliability. When the evidence is well supported by other pieces of evidence,
it is supposed to have less conflict with other pieces of evidence, so that a big weight should be
allocated to this piece of evidence. Instead, when the evidence is poorly supported by other pieces of
evidence, it is regarded to highly conflict with other pieces of evidence so that a small weight should be
allocated to this evidence. Next, the information volume of the evidence is calculated by making use
of the belief entropy. Based on the calculated quantitative information volume, the fuzzy preference
relations analysis is applied to indicate the relative credibility preference in terms of the pieces of
evidence. Whereafter, the support degree of the evidence is adjusted by taking advantage of the relative
credibility preference of the pieces of evidence. Thanks to introducing the fuzzy preference relations
analysis based on the belief entropy, it can automatically construct the fuzzy preference relation matrix,
rather than being determined by experts, which decreases the epistemic non-determinacy in the
decision-making process. Finally, the adjusted weights of the pieces of evidence are applied to modify
the body of the pieces of evidence before utilizing Dempster’s combination rule. The flowchart of the
proposal is shown in Figure 1.
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Step 1-3: Calculate the support degree of the evidence. Step 2-3: Construct the fuzzy preference relation matrix.

Step 3-1: Adjust the normalised support degree of the evidence.

Step 3-2: Normalise the adjusted support degree of the evidence.

Step 3-3: Compute the weighted average evidence.

Step 1-1: Construct the distance measure matrix.

Step 1-3: Calculate the support degree of the evidence

Step 1-2: Construct the similarity measure matrix.

The body of the evidences

Step 2-1: Measure the information volume of the evidence.

Step 2-3: Construct the fuzzy preference relation matrix

Step 2-2: Normalise the information volume of the evidence.

Step 2-4: Construct the consistency matrix.Step 1-4: Normalise the support degree of the evidence.

Step 2-5: Calculate the credibility value of the evidence.

Step 3-4: Combine the weighted average evidence by utilising the Dempster s rule of combination.

Figure 1. The flowchart of the proposed method.

3.1. Calculate the Support Degree of the Evidence

Step 1: The distance measure dij between the BPAs mi (i = 1, 2, . . . , k) and mj (j = 1, 2, . . . , k) can be
obtained by Equations (9) and (10); thus, a distance measure matrix DMM = (dij)k×k can be
constructed as follows:

DMM =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · d1i · · · d1k
... · · · ...

...
...

di1 · · · 0 · · · dik
... · · · ...

...
...

dk1 · · · dki · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Step 2: The similarity measure Sij between the BPAs mi and mj can be obtained by:

Sij = 1 − dij, 1 ≤ i ≤ k; 1 ≤ j ≤ k. (19)
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Then, the similarity measure matrix SMM = (Sij)k×k can be constructed as follows:

SMM =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · S1i · · · S1k
... · · · ...

...
...

Si1 · · · 1 · · · Sik
... · · · ...

...
...

Sk1 · · · Ski · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

Step 3: The support degree of the BPA mi is defined as follows:

Supi =
k

∑
j=1,j �=i

Sij, 1 ≤ i ≤ k. (21)

Step 4: The support degree of the BPA mi is normalized as below, which is denoted as S̃upi:

S̃upi =
Supi

∑k
r=1 Supr

, 1 ≤ i ≤ k. (22)

3.2. Generate the Credibility Value of the Evidence

In the course of information fusion, it is important to identify the relatively credible evidence
in terms of the obtained pieces of evidence. Due to the increase of the uncertainty in the collection
of information, the degree of anarchy involved in the systems rises, which violates the necessary
condition to use Dempster’s rule of combination. Utilizing the ordered information can make the
technologies based on the Dempster–Shafer evidence theory more robust. Therefore, we take advantage
of the fuzzy preference relations analysis [79] based on the belief entropy [43] to indicate the relative
credibility preference among the pieces of evidence. The concrete steps are listed as follows:

Step 1: The belief entropy of the BPA mi (i = 1, 2, . . . , k) is calculated by leveraging Equation (11).

Because the belief entropy of the evidence may be zero in a certain case, in order to avoid
allocating zero weight to such kinds of evidence, we utilize the information volume IVi for
measuring the uncertainty of the BPA mi as below:

IVi = eEd(mi) = e
− ∑A⊆Θ m(A) log m(A)

2|A|−1 , 1 ≤ i ≤ k. (23)

Step 2: The information volume of the BPA mi is normalized as below, which is denoted as ĨVi:

ĨVi =
IVi

∑k
r=1 IVr

, 1 ≤ i ≤ k. (24)

Step 3: The fuzzy preference relation matrix P = (pij)k×k, where pij ∈ [0, 1] can be constructed by
the following steps:

Step 3-1: According to Definition 6, the diagonal element pii is assigned to 0.5.
Step 3-2: If there are only two pieces of evidence, all of the off-diagonal elements pij and

pji will be assigned to 0.5, because we have no sufficient evidence to detect how
the pieces of evidence are preferred with respect to each other. Thus, the fuzzy
preference relation matrix P = (pij)k×k can be constructed by:

P = (pij)k×k =

[
0.5 0.5
0.5 0.5

]
. (25)
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Step 3-3: If there are more than two pieces of evidence, the variance of entropy for the
BPA mi (1 ≤ i ≤ k) will be calculated as follows:

Vari = Var({ ĨV1, ĨV2, . . . , ĨVi−1, ĨVi+1, . . . , ĨVk}). (26)

Step 3-4: The smaller the value Vari has, the more conflict the evidence has in the
decision-making system, so that a small preference value is supposed to be
assigned to this evidence. Otherwise, the bigger the value Vari has, the less
conflict the evidence has in the decision-making system, so that a big preference
value is supposed to be assigned to this evidence. On the basis of the above
variance of entropy, the off-diagonal elements pij and pji will be computed by
Equations (27) and (28) introduced in [79].

pij =
Vari

Vari + Varj
, (27)

pji =
Varj

Vari + Varj
, (28)

where 1 ≤ i ≤ k and 1 ≤ j ≤ k.

Step 4: Based on the obtained fuzzy preference relation matrix P = (pij)k×k, the consistency matrix
P can be constructed by Equation (16).

Step 5: With the consistency matrix P, the credibility value of the BPA mi is defined based on
Equation (17):

Crdi =
2
k2

k

∑
j=1

pij, 1 ≤ i ≤ k. (29)

We can notice that ∑k
i=1 Crdi = 1. Hence, the credibility value of each piece of evidence is

regarded as a weight that indicates the relative credibility preference in terms of the evidence.

3.3. Fuse the Weighted Average Evidence

Step 1: Based on the credibility degree Crdi, the normalized support degree of the BPA mi will
be adjusted, denoted as ASupi:

ASupi = Crdi × S̃upi, 1 ≤ i ≤ k. (30)

Step 2: The ASupi is normalized as below, denoted as ÃSupi, which is considered as the final weight
of the BPA mi.

ÃSupi =
ASupi

∑k
r=1 ASupr

, 1 ≤ i ≤ k. (31)

Step 3: On the basis of the final weight ÃSupi, the weighted average evidence WAE(m) can be
obtained as follows:

WAE(m) =
k

∑
i=1

(ÃSupi × mi), 1 ≤ i ≤ k, (32)

where k denotes the number of BPAs and mi represents the i-th BPA, which are modeled
from the sensor reports.

Step 4: The weighted average evidence WAE(m) is combined through Dempster’s combination rule,
namely Equation (7), by k− 1 times, if there are k number of pieces of evidence. Then, the final
combination result of multiple pieces of evidence can be obtained.

4. Experiment

In this section, to demonstrate the effectiveness of the proposal, a numerical example is illustrated.
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Example 1. Consider a target recognition problem based on multiple sensors associated with the sensor reports
that are collected from five different types of sensors. These sensor reports that are modeled as the BPAs are
given in Table 1 from [72], where the frame of discernment Θ that consists of three potential objects is given
by Θ = {A, B, C}.

Table 1. The basic probability assignments (BPAs) for Example 1.

BPA {A} {B} {C} {A, C}
S1 : m1(·) 0.41 0.29 0.30 0.00
S2 : m2(·) 0.00 0.90 0.10 0.00
S3 : m3(·) 0.58 0.07 0.00 0.35
S4 : m4(·) 0.55 0.10 0.00 0.35
S5 : m5(·) 0.60 0.10 0.00 0.30

Step 1: Construct the distance measure matrix DMM = (dij)k×k as follows:

DMM =

⎛⎜⎜⎜⎜⎜⎝
0 0.5386 0.3495 0.3257 0.3311

0.5386 0 0.8142 0.7850 0.7906
0.3495 0.8142 0 0.0300 0.0374
0.3257 0.7850 0.0300 0 0.0354
0.3311 0.7906 0.0374 0.0354 0

⎞⎟⎟⎟⎟⎟⎠ .

Step 2: Construct the similarity measure matrix SMM = (Sij)k×k as follows:

SMM =

⎛⎜⎜⎜⎜⎜⎝
1 0.4614 0.6505 0.6743 0.6689

0.4614 1 0.1858 0.2150 0.2094
0.6505 0.1858 1 0.9700 0.9626
0.6743 0.2150 0.9700 1 0.9646
0.6689 0.2094 0.9626 0.9646 1

⎞⎟⎟⎟⎟⎟⎠ .

Step 3: Calculate the support degree of the BPA mi as below:

Sup1 = 2.4551,
Sup2 = 1.0716,
Sup3 = 2.7689,
Sup4 = 2.8239,
Sup5 = 2.8055.

Step 4: Normalize the support degree of the BPA mi as follows:

S̃up1 = 0.2059,
S̃up2 = 0.0899,
S̃up3 = 0.2322,
S̃up4 = 0.2368,
S̃up5 = 0.2353.

Step 5: Measure the information volume of the BPA mi as below:

IV1 = 4.7894,
IV2 = 1.5984,
IV3 = 6.1056,
IV4 = 6.6286,
IV5 = 5.8767.

Step 6: Normalize the information volume of the BPA mi as follows:

ĨV1 = 0.1916,
ĨV2 = 0.0639,
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ĨV3 = 0.2442,
ĨV4 = 0.2652,
ĨV5 = 0.2351.

Step 7: Construct the fuzzy preference relation matrix P = (pij)n×n as follows:

P =

⎛⎜⎜⎜⎜⎜⎝
0.5000 0.9002 0.5238 0.5559 0.5144
0.0998 0.5000 0.1087 0.1219 0.1051
0.4762 0.8913 0.5000 0.5323 0.4906
0.4441 0.8781 0.4677 0.5000 0.4583
0.4856 0.8949 0.5094 0.5417 0.5000

⎞⎟⎟⎟⎟⎟⎠ .

Step 8: Construct the consistency matrix P = (pik)n×n as follows:

P =

⎛⎜⎜⎜⎜⎜⎝
0.5000 0.9117 0.5208 0.5492 0.5125
0.0883 0.5000 0.1091 0.1375 0.1008
0.4792 0.8909 0.5000 0.5284 0.4917
0.4508 0.8625 0.4716 0.5000 0.4633
0.4875 0.8992 0.5083 0.5367 0.5000

⎞⎟⎟⎟⎟⎟⎠ .

Step 9: Calculate the credibility value of the BPA mi as below:

Crd1 = 0.2395,
Crd2 = 0.0749,
Crd3 = 0.2312,
Crd4 = 0.2198,
Crd5 = 0.2345.

Step 10: Adjust the normalized support degree of the BPA mi based on the credibility value as below:

ASup1 = 0.0493,
ASup2 = 0.0067,
ASup3 = 0.0537,
ASup4 = 0.0521,
ASup5 = 0.0552.

Step 11: Normalize the adjusted support degree of the BPA mi as below:

ÃSup1 = 0.2273,
ÃSup2 = 0.0310,
ÃSup3 = 0.2474,
ÃSup4 = 0.2399,
ÃSup5 = 0.2543.

Step 12: Compute the weighted average evidence as below:

m({A}) = 0.5213,
m({B}) = 0.1606,
m({C}) = 0.0713,
m({A, C}) = 0.2469.

Step 13: Combine the weighted average evidence by utilizing Dempster’s rule of combination four
times. The results of the combination for the first time are shown below:

m({A}) = 0.8066,
m({B}) = 0.0393,
m({C}) = 0.0614,
m({A, C}) = 0.0929.

For the combination for the second time, the results are listed as follows:

427



Sensors 2017, 17, 2504

m({A}) = 0.9239,
m({B}) = 0.0087,
m({C}) = 0.0362,
m({A, C}) = 0.0317.

Next, the results of the third combination are calculated as:

m({A}) = 0.9701,
m({B}) = 0.0019,
m({C}) = 0.0184,
m({A, C}) = 0.0105.

Then, the combination results of the fourth time, namely the final fusing results, are produced
as follows:

m({A}) = 0.9888,
m({B}) = 0.0004,
m({C}) = 0.0087,
m({A, C}) = 0.0034.

From Example 1, we can notice that the evidence m2 highly conflicts with other pieces of evidence,
because the normalized support degree of the evidence m2 is 0.0899, which is much lower than the
normalized support degrees of other pieces of evidence.

The fusing results that are generated by different combination methods are shown in Table 2.
The comparisons of the BPA of the target A by different combination rules are shown in Figure 2.

Table 2. Combination results of the evidence in terms of different combination rules.

Evidence Method {A} {B} {C} {AC} Target

m1, m2, m3

Dempster [23] 0 0.6350 0.3650 0 B
Murphy [71] 0.4939 0.4180 0.0792 0.0090 A

Deng et al. [72] 0.4974 0.4054 0.0888 0.0084 A
Zhang et al. [73] 0.5681 0.3319 0.0929 0.0084 A

Proposed method 0.7617 0.1127 0.1176 0.0080 A

m1, m2, m3, m4

Dempster [23] 0 0.3321 0.6679 0 C
Murphy [71] 0.8362 0.1147 0.0410 0.0081 A

Deng et al. [72] 0.9089 0.0444 0.0379 0.0089 A
Zhang et al. [73] 0.9142 0.0395 0.0399 0.0083 A

Proposed method 0.9507 0.0060 0.0334 0.0087 A

m1, m2, m3, m4, m5

Dempster [23] 0 0.1422 0.8578 0 C
Murphy [71] 0.9620 0.0210 0.0138 0.0032 A

Deng et al. [72] 0.9820 0.0039 0.0107 0.0034 A
Zhang et al. [73] 0.9820 0.0034 0.0115 0.0032 A

Proposed method 0.9888 0.0004 0.0087 0.0034 A

As shown in Table 2, Dempster’s combination rule generates a counterintuitive result, even
though the other four pieces of evidence support the target A. As the number of pieces of evidence
increases from 3–5, Murphy’s method [71], Deng et al.’s method [72], Zhang et al.’s method [73] and the
proposed method present reasonable results. Additionally, the proposed method is efficient in dealing
with the conflicting pieces of evidence with better convergence as shown in Figure 2. The reason is
that the proposal not only makes use of the function of evidence distance to obtain the evidence’s
support degree, but also adopts the fuzzy preference relations analysis based on the belief entropy
to measure the relative credibility preference among the pieces of evidence. After considering these
aspects, the unreliable evidence’s weight is decreased, so that its negative effect can be relieved on the
final fusing results compared to other methods.
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(a)The comparison of the BPA of the target A when the
number of evidence increases from 3 to 5.

(b)The comparison of the BPA of the target A when the
number of evidence is 5.

Figure 2. The comparison of different methods in Example 1.

5. Application

In this section, the proposal is applied to the fault diagnosis of a motor rotor, where the practical
data in [27] are used for the comparison with the related method.

5.1. Problem Statement

Supposing that the frame of discernment Θ, which consists of three types of faults for a motor rotor
is given by Θ = {Rotor unbalance, Rotor misalignment, Pedestal looseness} = {F1, F2, F3}. The set of
vibration acceleration sensors given by S = {S1, S2, S3} is positioned at different places for gathering the
vibration signals. The acceleration vibration frequency amplitudes at 1X frequency, 2X frequency and
3X frequency are considered as the fault feature variables. The collected sensor reports at 1X frequency,
2X frequency and 3X frequency that are modeled as BPAs are given in Tables 3–5, respectively,
where m1(·), m2(·) and m3(·) represent the BPAs reported from the three vibration acceleration sensors
S1, S2 and S3.

Table 3. The collected sensor reports at the frequency of 1X modeled as BPAs.

BPA {F2} {F3} {F1, F2} {F1, F2, F3}
S1 : m1(·) 0.8176 0.0003 0.1553 0.0268
S2 : m2(·) 0.5658 0.0009 0.0646 0.3687
S3 : m3(·) 0.2403 0.0004 0.0141 0.7452

Table 4. The collected sensor reports at the frequency of 2X modeled as BPAs.

BPA {F2} {F1, F2, F3}
S1 : m1(·) 0.6229 0.3771
S2 : m2(·) 0.7660 0.2341
S3 : m3(·) 0.8598 0.1402
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Table 5. The collected sensor reports at the frequency of 3X modeled as BPAs.

BPA {F1} {F2} {F1, F2} {F1, F2, F3}
S1 : m1(·) 0.3666 0.4563 0.1185 0.0586
S2 : m2(·) 0.2793 0.4151 0.2652 0.0404
S3 : m3(·) 0.2897 0.4331 0.2470 0.0302

5.2. Motor Rotor Fault Diagnosis Based on the Proposed Method

5.2.1. Motor Rotor Fault Diagnosis at 1X Frequency

According to the proposed method in Section 3 and Table 3’s BPAs modeled by the collected
sensor reports at the frequency of 1X, the weighted average evidence in terms of motor rotor fault
diagnosis at 1X frequency is obtained as follows:

m({F2}) = 0.5636,
m({F3}) = 0.0006,
m({F1, F2}) = 0.0782,
m({F1, F2, F3}) = 0.3576.

After that, the weighted average evidence in terms of motor rotor fault diagnosis at 1X frequency
is fused by utilizing Dempster’s rule of combination two times. The results of the combination for the
first time are shown below:

m({F2}) = 0.8095,
m({F3}) = 0.0004,
m({F1, F2}) = 0.0621,
m({F1, F2, F3}) = 0.1280.

Then, the results of the combination for the second time, namely the final fusing results for motor
rotor fault diagnosis at 1X frequency, are generated as follows:

m({F2}) = 0.9169,
m({F3}) = 0.0002,
m({F1, F2}) = 0.0371,
m({F1, F2, F3}) = 0.0458.

5.2.2. Motor Rotor Fault Diagnosis at 2X Frequency

On the basis of the proposed method in Section 3 and Table 4’s BPAs modeled by the collected
sensor reports at the frequency of 2X, the weighted average evidence with respect to motor rotor fault
diagnosis at 2X frequency is obtained as follows:

m({F2}) = 0.7754,
m({F1, F2, F3}) = 0.2246.

Next, by leveraging Dempster’s rule of combination, the weighted average evidence with respect
to motor rotor fault diagnosis at 2X frequency is fused two times. For the combination for the first
time, the fusion results are given below:

m({F2}) = 0.9496,
m({F1, F2, F3}) = 0.0504.

Afterwards, for the combination for the second time, the final fusion results with respect to motor
rotor fault diagnosis at 2X frequency are shown below:

m({F2}) = 0.9887,
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m({F1, F2, F3}) = 0.0113.

5.2.3. Motor Rotor Fault Diagnosis at 3X Frequency

By applying the proposed method in Section 3 and Table 5’s BPAs modeled by the collected
sensor reports at the frequency of 3X, the weighted average evidence with regard to motor rotor fault
diagnosis at 3X frequency is obtained as follows:

m({F1}) = 0.3028,
m({F2}) = 0.4323,
m({F1, F2}) = 0.2254,
m({F1, F2, F3}) = 0.0395.

Therewith, the weighted average evidence with regard to motor rotor fault diagnosis at 3X
frequency is fused by utilizing Dempster’s rule of combination two times. The combination results for
the first time are listed below:

m({F1}) = 0.3415,
m({F2}) = 0.5634,
m({F1, F2}) = 0.0929,
m({F1, F2, F3}) = 0.0021.

Then, the final combination results for the second time for motor rotor fault diagnosis at 3X
frequency are shown below:

m({F1}) = 0.3266,
m({F2}) = 0.6365,
m({F1, F2}) = 0.0368,
m({F1, F2, F3}) = 0.0001.

5.3. Discussion

According to the results as shown in Tables 6–8, we can notice that the proposed method can
diagnose the fault type F2, which is consistent with Jiang et al.’s method [27]. Even facing the conflicting
sensor reports where the normalized support degrees of the sensor reports are different at 1X frequency,
2X frequency and 3X frequency, both of the methods can well manage the conflicting pieces of evidence
and diagnose the fault type F2.

Furthermore, the proposed method outperforms Jiang et al.’s method [27] in terms of dealing
with the conflicting pieces of evidence, as well as coping with the uncertainty as shown in Figures 3–5,
because the belief degrees assigned to the target F2 at 1X frequency, 2X frequency and 3X frequency by
the proposed method rise to 91.69%, 98.87% and 63.65%, respectively, while the belief degrees assigned
to the target F2 at 1X frequency, 2X frequency and 3X frequency by the method Jiang et al. [27] are
88.61%, 96.21% and 59.04%, respectively.

On the other hand, the uncertainty {F1, F2} falls to 0.0371 from 0.0582, and the uncertainty
{F1, F2, F3} falls to 0.0458 from 0.0555 at 1X frequency; the uncertainty {F1, F2, F3} drops to 0.0113
from 0.0371 at 2X frequency; the uncertainty {F1, F2} falls to 0.0368 from 0.0651, and the uncertainty
{F1, F2, F3} falls to 0.0001 from 0.0061 at 3X frequency. The main reason is that the proposed method
not only takes the support degree of the sensor reports into account by making use of the function of
evidence distance, but also considers the relative credibility preference of the sensor reports by taking
advantage of the fuzzy preference relations analysis on the basis of the belief entropy. As a result,
the proposed method can diagnose motor rotor fault more accurately.
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Table 6. Fusion results of different methods for motor rotor fault diagnosis at 1X frequency.

Method {F2} {F3} {F1, F2} {F1, F2, F3} Target

Jiang et al. [27] 0.8861 0.0002 0.0582 0.0555 F2
Proposed method 0.9169 0.0002 0.0371 0.0458 F2

(a)The comparison of the BPAs of the objectives. (b)The comparison of the BPA of the target F2.

Figure 3. The comparison of different methods for motor rotor fault diagnosis at 1X frequency.

Table 7. Fusion results of different methods for motor rotor fault diagnosis at 2X frequency.

Method {F2} {F1, F2, F3} Target

Jiang et al. [27] 0.9621 0.0371 F2
Proposed method 0.9887 0.0113 F2

Table 8. Fusion results of different methods for motor rotor fault diagnosis at 3X frequency.

Method {F1} {F2} {F1, F2} {F1, F2, F3} Target

Jiang et al. [27] 0.3384 0.5904 0.0651 0.0061 F2
Proposed method 0.3266 0.6365 0.0368 0.0001 F2

(a)The comparison of the BPAs of the objectives. (b)The comparison of the BPA of the target F2.

Figure 4. The comparison of different methods for motor rotor fault diagnosis at 2X frequency.
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(a)The comparison of the BPAs of the objectives. (b)The comparison of the BPA of the target F2.

Figure 5. The comparison of different methods for motor rotor fault diagnosis at 3X frequency.

6. Conclusions

In this paper, on account of the support degree among the pieces of evidence, the uncertainty
measure of the evidence and the effect of the relative credibility of evidence on the weight, a novel
method for multi-sensor data fusion was proposed. The proposed method was a hybrid methodology
by integrating the distance of evidence, belief entropy and fuzzy preference relation analysis.
It consisted of three main procedures. Firstly, the support degree of the evidence was calculated
to represent the reliability of the evidence. Secondly, the credibility value of the evidence was
generated to indicate the relative credibility preference of the evidence. Thirdly, based on the first
two procedures, the weighted average evidence was obtained; thus, it could be fused by applying
Dempster’s combination rule. As described above, the proposed method was a kind of approach
to pre-process the bodies of evidence. Through a numerical example, it was illustrated that the
proposal was more effective and feasible than other related methods to handle the conflicting evidence
combination problem under a multi-sensor environment with better convergence. On the other hand,
a practical application in fault diagnosis was presented to demonstrate that the proposed method
could diagnose the faults more accurately.

In future work, I intend to consider further fault diagnosis of complicated equipment/systems
that involves certain faults, such as cracks and misalignment. On the other hand, multiple faults,
like bearing faults, rotor-related faults, etc., will be taken into account in future work to improve the
robustness of the technique.
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Abstract: This paper focuses on the tracking problem of multiple targets with multiple sensors in
a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter
adjustment, improve numerical stability, and acquire more accurate estimated results for centralized
nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data
association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is
decomposed into several single-sensor multi-target tracking problems, which are sequentially
processed during the estimation. Then, in each sensor, the assignment of its measurements to target
tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted
probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to
estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and
the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the
state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational
cost, which provides a new idea to solve multi-sensor tracking problems.

Keywords: multi-sensor tracking; data association; cubature Kalman filter; state estimation;
centralized filtering

1. Introduction

The centralized state estimation method for multiple-target tracking with multiple sensors can
integrate detecting information from different sensors according to certain rules, which will make the
tracking results more accurate than that of a single sensor [1–3]. Multi-sensor fusion is an important
data processing method in the field of target tracking, especially under nonlinear conditions, and the
fused result with multiple sensors is often better for multiple-target tracking, which has been widely
concerned by scholars both at home and abroad [3–12].

The state-of-the-art techniques for multiple-target tracking mainly contains two categories.
The first category is the tracking method based on a random finite set; the other is the method based
on measurement to track association. The former method can directly track multiple targets without
associating the detected measurements with the tracks in the surveillance area. However, this kind
of method faces complex integral operations, which are often difficult to find an exact solution.
Although approximation methods have been a good choice for this problem, the computational cost is
too great, and improper approximation will lead to degradation of the tracking accuracy, thus making
it a long way from being extensively utilized in practical applications [4]. The latter method has been
widely applied in various tracking systems, and is still the most common method for centralized
tracking [5–14].
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In the second category, the sequential multi-sensor joint probabilistic data association algorithm
(MSJPDA) is a classical and effective method for multi-sensor tracking, which achieves better
tracking performance compared with its parallel counterparts [10,11]. Unfortunately, current MSJPDA
algorithms are often proposed to solve association problems under linear circumstances, and the
nonlinear environment is seldom involved in the literature. As is known, the nonlinear equation can
be linearized according to Taylor expansion, then a MSJPDA algorithm based on the extended Kalman
filter (EKF), the so called MSJPDA-EKF is derived [12–14]. However, it is essential for MSJPDA-EKF to
calculate the Jacobian matrix in the linearization step in each iteration, and the ignorance of higher
orders may introduce large linearization errors, which may result in degraded performance, and even
divergence [1,2,14]. In addition, the estimated state will affect the calculation of association probability
in the next iteration, thus causing changes in the computation of weights of joint events, which may
eventually makes false correlations, and even lead to divergence [15]. To conquer the shortcomings
of MSJPDA-EKF, the MSJPDA algorithm based on the unscented Kalman filter (MSJPDA-UKF) is
proposed. MSJPDA-UKF can acquire higher estimation accuracy than MSJPDA-EKF, and is relatively
more stable [16]. However, reasonable adjustments are needed in MSJPDA-UKF to achieve the
ideal performance, and a numerical instability phenomenon is easy to occur in the situation of high
dimensional estimation [16–18].

To address the high dimensional nonlinear estimation problem, the cubature Kalman filter (CKF)
based on the third-degree spherical-radial cubature rule has been recently proposed [19–25]. In the
procedure of CKF, a certain number of typical cubature points are selected to approximate the posterior
probability, then the mean and covariance are captured through a nonlinear transfer function to achieve
accurate estimation of the target state [19]. CKF and UKF are both moment-matching filters which
deterministically select a set of weighted sample points to approximate the posterior probability
density. Compared with EKF, CKF and UKF do not have to calculate the Jacobian matrix in each
iteration, thereby reducing the computational cost. At the same time, they both avoid the negative
influence of the truncation error in the process of nonlinear state estimation, which is particularly
effective in the case of state estimation with strong nonlinearity [19,21–23]. In UKF, to achieve a better
estimation performance, the adjustment of the scaling parameter is an essential step, as different scaling
parameters may yield completely distinct estimation results. The selection of the scaling parameter
is of great significance to the performance of UKF in some sense [16,19,21,25]. However, there is no
parameter to be adjusted for CKF, and the selected sampling points and weights are only related to
the dimension of the target state, which can be calculated in advance to reduce the computational
complexity. Furthermore, CKF is more accurate with respect to high dimensional estimation, and easy
for design and implementation [19,21–24]. Especially in the case of high dimension, EKF and UKF
suffer from the curse of dimensionality or divergence, or both, but CKF still performs well [19,21,25].
Unfortunately, in practice, arithmetic operations performed on finite word-length digital computers
may introduce large errors; then the symmetry and positive definiteness of the covariance are often
not satisfied. Moreover, perhaps the loss of positive definiteness is more perilous as it terminates the
running of the CKF. Then, the square root version of CKF, the so called SRCKF is proposed to address
this problem [19,21,23,24]. In SRCKF, only the square root factors are propagated during the iterations.
Therefore, the square rooting operations of the matrix are avoided, thus reducing the computation cost.
The symmetry and positive definiteness of the covariance are preserved, and the numerical accuracy is
also improved [19,21,25].

In this paper, to deal with the target tracking problem in a nonlinear system under a cluttered
environment, a novel centralized multi-sensor square root cubature joint probabilistic data association
algorithm (CMSCJPDA) is proposed. In CMSCJPDA, measurements of each single sensor are
sequentially processed to compute the association probabilities based on the similar rules in JPDA,
then SRCKF and the validated measurements are chosen to estimate the state of targets according
to weighed state fusion. Eventually, the accurate estimation of multiple targets’ states with multiple
sensors is accomplished.
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The rest of this paper is organized as follows: Section 2 describes the problem of tracking
multiple targets with multiple sensors. Then, in Section 3, a simple overview of the numerical integral
approximation method based on spherical-radial principle is introduced. The main idea of CMSCJPDA
is detailed in Section 4, and an algorithm flow is given. The numerical experiments are designed in
Section 5, and the comparison and analysis of CMSCJPDA against several existing methods is also
presented in this section. Concluding remarks of this paper and future work are given in Section 6.

2. Problem Formulation

Consider sensors are applied to track Nt targets in a cluttered environment. For arbitrary target
t (1 ≤ t ≤ Nt), Xt(k) denotes the state of target t at discrete time instant k. For brevity, without the
control input term, the discrete-time state equation of a nonlinear system is:

Xt(k + 1) = f t[k, Xt(k)
]
+ Vt(k) (1)

where k is the discrete time instant, f t(·) is a known nonlinear function, and Vt(k) is independent
zero-mean Gaussian process noise with covariance:

E
{

Vt(k)
[
Vt(l)

]T
}
= Qt(k)δ(k, l) (2)

where δ(k, j) is the Kronecker delta function.
The measurement equation of sensor i for target t is:

Zi,t(k) = hi[k, Xt(k)
]
+ Wi(k) (3)

where i = 1, 2, · · · , Ns represents the label of sensors. Zi,t(k) is the measurement vector of sensor i
for target t at time instant k. hi(·) represents a known nonlinear function. Wi(k) is the zero-mean,
independent of process noise in Equation (3) and independent from sensor to sensor, with covariance:

E
{

Wi(k)
[
Wi(l)

]T
}

= Ri(k)δ(k, l) (4)

3. Numerical Approximation of the Multi-Dimensional Weighted Integral

3.1. Third-Degree Spherical-Radial Rule

Before introducing the CMSCJPDA method, a brief description of the numerical integral
approximation based on spherical-radial principle is given. Consider the following multi-dimensional
Gaussian weighted integral:

I( f ) =
∫

Rn

f (x) exp
(
−xTx

)
dx (5)

where f (·) is an arbitrary function, Rn denotes the integral region. As is known, the key to addressing
the problem of nonlinear filtering based on Bayesian theory is to compute the first-order and
second-order moments. In other words, the core of the Bayesian filter is how to compute Gaussian
weighted integral which is of the form nonlinear function × Gaussian density that is illustrated in
Equation (5).

Let x = ry, where yTy = 1, So that xTx = r2 for r ∈ [0, ∞). Then the integral Equation (5) can be
rewritten as:

I( f ) =
∞∫

0

∫
Un

f (ry)rn−1 exp
(
−r2

)
dσ(y)dr (6)
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where Un =
{

y ∈ Rn∣∣yTy = 1
}

is the surface of the sphere and σ(·) is the spherical surface measure
or the area element on Un. Therefore, we can split Equation (6) into two integrals:

I( f ) =
∞∫

0

S(r)rn−1 exp
(
−r2

)
dr (7)

S(r) =
∫

Un

f (ry)dσ(y) (8)

where I( f ) is the radial weighted integral that is shown in Equation (7), S(r) is the spherical integral
with the unit weighting function ω(y) = 1 that is shown in Equation (8).

Then the above integrals described in Equations (7) and (8) can be solved according to the
third-degree spherical cubature rule and radical rule, respectively:

∫
Un

f (y)dσ(y) ≈ ω
2n

∑
i=1

f [u]i (9)

b∫
a

f (x)ω(x)dx ≈
m

∑
i=1

ωi f (xi) (10)

where [u]i represents the i-th element of generator u, and u is a generator if u = (u1, u2, . . . , ur, 0, . . . 0) ∈ Rn,
where ui > ui+1 > 0, i = 1, 2, . . . , (r − 1). For simplicity, the (n − r) zero coordinates are ignored and
notation [u1, u2, . . . , ur] is used to represent a complete fully-symmetric set of points that can be obtained
by permutating and changing the sign of generator u in all possible ways. For example, [1] ∈ R2 denotes
the following set of points:

[1] =

{(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
(11)

where ω(x) is a known weighting function which is non-negative on the interval [a, b].
As is shown in Equation (9), the spherical cubature rule indicates that the spherical integral can

be approximated by a weighted sum of function values at the sample points, which are located at the
intersection of the unit sphere and its axes. The radical rule described in Equation (10) indicates that
an m-point Gaussian quadrature is equal to the sum of (2m − 1) polynomials [21].

Especially, a standard Gaussian weighted integral can be computed based on third-degree
spherical-radial rule as follows [25]:

IN( f ) =
∫

Rn

f (x)N(x ; 0, I)dx ≈
2nx

∑
i=1

ωi f (ξ i) (12)

where:

ξ i =

√
2nx

2
[1]i, ωi =

1
2nx

, i = 1, 2, · · · , 2nx (13)

where ξ i is the cubature point, ωi is the corresponding weight. [1]i denotes the i-th row or column of
the generator [1].

Actually, the weighting function term ω(·) of the integrand is often not subject to the standard
Gaussian distribution. In other words, the Gaussian weighted integral in nonlinear filtering cannot be
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solved directly by Equation (12). Fortunately, the following equation makes it possible to work out the
nonstandard Gaussian weighted integrals which occur in nonlinear condition:∫

Rn

f (x)N(x; μ, Σ)dx =
∫

Rn

f
(√

Σx + μ
)

N(x; 0, I)dx (14)

Through Equation (14), which is proved in Appendix A, the nonstandard Gaussian weighted
integrals can be transformed into the standard ones. Then, the approximation of posterior mean and
error covariance can be addressed by Equation (12). Thus, an iteration of the time and the measurement
updates in the Bayesian filter is completed.

3.2. Accuracy Analysis

Assume an n-dimensional vector x ∼ N(x, P), where x is the mean of x, and P is the corresponding
covariance. We extend the nonlinear function f (x) at x based on Taylor extension:

f (x) = f (x) + DΔx f +
D2

Δx f
2!

+
D3

Δx f
3!

+
D4

Δx f
4!

+ · · · (15)

where Δx = x − x, DΔx f = [Δx]T ∇ f (x)|x=x, ∇ f (x) is the partial derivative of f (x).

(1) We use the third-degree spherical-radial rule to approximate the multi-dimensional integral
I( f ), then:

ICKF( f ) =
1

2nx

2nx

∑
i=1

f (xi) =
1

2nx

2nx

∑
i=1

f (x) + DΔxi f +
D2

Δxi
f

2!
+

D3
Δxi

f

3!
+

D4
Δxi

f

4!
+ · · · (16)

where xi is the sampled cubature point, Δx = xi − x. Through proper simplification, the final
result can be written as:

ICKF( f ) = f (x) +
(∇TP∇

2!

)
f +

nk−1

(2k)!

nx

∑
i=1

(
ai1

∂

∂x1
+ · · ·+ ain

∂

∂xn

)2k
f (x)

∣∣∣∣∣
x=x

(17)

where k = 1, 2, 3, · · · , aij =
[√

P
]

ij
, i, j = 1, 2, · · · , n, ∂

∂xi
f is the partial derivative of f (x) at the

ith component of x. The interested reader can be referred to paper [26] for details in the extension.
(2) Like the derivation process of ICKF( f ), we use UKF to operate the approximation, and the final

result is:

IUKF( f ) = f (x) +
(∇TP∇

2!

)
f +

(n + κ)k−1

(2k)!

nx

∑
i=1

(
ai1

∂

∂x1
+ · · ·+ ain

∂

∂xn

)2k
f (x)

∣∣∣∣∣
x=x

(18)

where κ is the scaling parameter, and the remaining notations are the same as Equation (17). To capture
the kurtosis of the prior density as correctly as possible, κ is suggested to be κ = 3 − nx [16].

This paper is to tackle the high-dimensional estimation problem, so here we just discuss the case
in which the state dimension nx > 3. As is shown in Equations (17) and (18), the first two terms in
both equations are the same, the only difference is in the last term. If nx > 3, nk−1 > (n + κ)k−1, and 2k
is an even number, then ICKF( f ) > IUKF( f ), which indicates that CKF is more accurate than UKF in
high-dimensional estimation.

We choose the stability factor I = ∑i|ωi|/∑i ωi defined as the measure of the numerical stability
of the multi-dimensional integral, where ωi is the sampling weight. It is proven that the sampling rule
implemented in a finite-precision arithmetic machine introduces a large amount of round-off errors
when the stability factor I is larger than unity [19].
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In UKF, if nx > 3, and κ + nx = 3, so κ = 3 − nx < 0, then ω0 = 1 − nx/3 < 0. The stability
factor is IUKF = 2nx

3 − 1 > 1, and it scales linearly with state dimension nx, which indicates that UKF
introduces significant perturbations in numerical estimates for the moment integral. However, in CKF,
the stability factor ICKF always meets ICKF = 1, which shows that CKF is more accurate than UKF for
high-dimensional state estimation.

4. Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association

In CMSCJPDA, measurements of each sensor are processed in sequence, then the multi-sensor
multi-target tracking problem can be reduced to several single-sensor multi-target tracking problems,
which are easier to solve.

Assume there are mt
i, k validated measurements for target t obtained by sensor i at time instant k.

li
(

0 ≤ li ≤ mt
i, k

)
is the label of validated measurements from sensor i, li = j (j �= 0) represents the jth

measurements in the validated region. Especially, li = 0 indicates that there is no measurement in the
validated region. Zi,t

li
(k) represents the lith validated measurement, Ẑt

i|i−1(k|k) represents the predicted
measurement, which will be discussed in detail later. βt

li ,i
(k) represents the association probability

that the measurement li originated from target t, Kt
i(k) is the filtering gain. The state estimate and the

corresponding error covariance after processing the measurements of the ith sensor are denoted by
X̂t

i(k|k) and Pt
i(k|k), respectively. X̂t

0(k|k) and Pt
0(k|k) represent the initial estimation, and X̂t

(k|k) and
Pt(k|k) represent the final estimation at time instant k, respectively. Then, the state update is as follows:

X̂t
i(k|k) = X̂t

i−1(k|k) + Kt
i(k)

mt
i, k

∑
li=0

βt
i, li (k)

[
Zi,t

li
(k)− Ẑt

i|i−1(k|k)
]

(19)

where: {
X̂t

0(k|k) = X̂t
(k|k − 1), X̂t

(k|k) = X̂t
Ns(k|k)

Pt
0(k|k) = Pt(k|k − 1), Pt(k|k) = Pt

Ns
(k|k) (20)

Then, the update of the error covariance is:

Pt
i(k|k) = Pt

i−1(k|k)−
[
1 − βt

0,i(k)
]
Kt

i(k)S
t
i(k)

[
Kt

i(k)
]T

+
mt

i, k

∑
li=0

βt
i, li

(k)X̂t
i, li (k|k)

[
X̂t

i, li (k|k)
]T − X̂t

i(k|k)
[
X̂t

i(k|k)
]T (21)

Note that the key point for nonlinear single sensor multi-target tracking problem is to compute
the association probability βt

i, li
(k) and nonlinear state estimation X̂t

i(k|k). JPDA is thought to be an
effective method for multiple targets tracking with single sensor, so we choose JPDA to compute
βt

i, li
(k) here. The remaining problem is to obtain X̂t

i(k|k). Although CKF is a good method to deal with
the nonlinear state estimation problem, it is easily influenced by limited computer word-length and
numerical errors, which may lead to loss of positive definiteness and symmetry of the error covariance
matrix [19,21–24]. The effective way to preserve both properties and improve the numerical stability
is to design a square root version of the CKF. Despite the fact that the square root cubature Kalman
filter (SRCKF) is reformulated to propagate the square roots of the covariance matrices, both CKF
and SRCKF are algebraically equivalent to each other, the interested reader is referred to [19]. In the
proposed method, we choose SRCKF to update the state of the targets after the correlation step.
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4.1. Computation of Association Probabilities

The probability βt
i, li

(k) that measurement li originated from target t can be calculated by summing
over all feasible events for which it is true [1]:

βt
li ,i(k) =

nt
i (k)

∑
m=1

ω̂m
li , t(θm(k))Pr

{
θm(k)

∣∣Zt
i(k)

}
(22)

where nt
i(k) is the number of joint events, θm(k) denotes the event m, and ω̂m

li , t(θm(k)) is the following
binary element.

ω̂m
li , t(θm(k)) =

{
1, if θm(k) occurs
0, else

(23)

Pr
{

θm(k)
∣∣Zt

i(k)
}

represents the posterior probability of event m, which can be computed by
Equation (24):

Pr
{

θm(k)
∣∣Zt

i(k)
}
= 1

C
φ[θm(k)]!
Vφ[θm(k)]

·
mt

i, k

∏
li=1

Ni, t
li

[
Zi,t

li
(k)
]τli

[θm(k)] Nt
∏

t=1

(
Pt

D
)δt [θm(k)](1 − Pt

D
)1−δt [θm(k)] (24)

where C is a constant, φ[θm(k)] is the total number of false measurements in event m. V is the volume
of the entire surveillance region, and Pt

D is the detection probability of target t. The target detection
indicator δt[θm(k)] is defined as:

δt[θm(k)] =
mki

∑
li=1

ω̂m
li , t(θm(k)) =

{
1, if target t is detected
0, otherwise

(25)

which indicates whether any measurement is correlated with target t in event m. In the same way, it is
also easy to define measurement association indicator:

τli [θm(k)] =
Nt

∑
t=1

ω̂m
li , t(θm(k)) =

{
1, if measurement li is associated with a target
0, otherwise

(26)

which indicates whether measurement li is correlated with a target in event m. Ni, t
li

[
Zi,t

li
(k)

]
is a

conditional probability density function under Gaussian assumption, i.e.:

Ni, t
li

[
Zi,t

li
(k)
]
= 1√

|2πSt
i (k)|

exp
{
− 1

2

[
Zi,t

li
(k)− Ẑt

i|i−1(k|k)
]T

· [St
i(k)

]−1
[
Zi,t

li
(k)− Ẑt

i|i−1(k|k)
]} (27)

4.2. State Update

During the update of state, the data processing in first sensor is a little different from that in other
sensors. Firstly, the specific procedures for the state update in sensors with label i > 1 are as follows:

Step 1: Calculate the cubature points (j = 1, 2, . . . , 2nx):

X̂t
i|i−1(k|k) = X̂t

i−1|i−1(k|k) (28)

Xt
j, i|i−1(k|k) = St

i|i−1(k|k)ξj + X̂t
i|i−1(k|k) (29)
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where nx is the dimension of the state. St
i|i−1(k|k) is the square root factor of Pt

i−1(k|k), i.e.:

Pt
i−1(k|k) = St

i|i−1(k|k)
[
St

i|i−1(k|k)
]T

(30)

Equations (28) and (29) indicate that the estimated state X̂t
i−1|i−1(k|k) and error covariance

Pt
i−1(k|k) of the previous sensor are regarded as the predicted state X̂t

i|i−1(k|k) and error covariance
Pt

i|i−1(k|k) of the next sensor, which is the greatest difference of the sensors with label i > 1 compared
with the first sensor with label i = 1 in the process of state estimation. That is to say, the time update
is not needed in sensors with label i > 1, and the estimation of the previous sensor is used as the
prediction of the next sensor.

Step 2: Evaluate the prediction of cubature points:

Zt
j,i|i−1(k|k) = hi

[
k, Xt

j, i|i−1(k|k)
]

(31)

Step 3: Estimate the prediction of the corresponding measurement:

Ẑt
i|i−1(k|k) =

1
2nx

2nx

∑
j=1

Zt
j, i|i−1(k|k) (32)

Step 4: Estimate the square-root of the innovation covariance:

St
zz, i|i−1(k|k) = Tria

([
Z t

i|i−1(k|k) SRi(k)

])
(33)

where St
zz, i|i−1(k|k) is a lower triangular matrix. SRi(k) denotes a square root factor of Ri(k) that

Ri(k) = SRi(k)

[
SRi(k)

]T
, and the weighed, centred matrix:

Z t
i|i−1(k|k) = 1√

2nx

[
Zt

1, i|i−1(k|k)− Ẑt
i|i−1(k|k), Zt

2, i|i−1(k|k)− Ẑt
i|i−1(k|k), · · · , Zt

2nx , i|i−1(k|k)− Ẑt
i|i−1(k|k)

]
(34)

Note that S = Tria(A) denotes the QR decomposition, where S is a lower triangular matrix.
The relationship of matrices S and A is as follows: Let B be an upper triangular matrix obtained from
the QR decomposition on AT. Then, the lower triangular matrix S is obtained as S = RT.

Step 5: Estimate the cross-covariance matrix:

Pt
xz,i|i−1(k|k) = X t

i|i−1(k|k)
[
Z t

i|i−1(k|k)
]T

(35)

where:

X t
i|i−1(k|k) = 1√

2nx

[
Xt

1, i|i−1(k|k)− X̂t
i|i−1(k|k), Xt

2, i|i−1(k|k)− X̂t
i|i−1(k|k), · · · , Xt

2nx , i|i−1(k|k)− X̂t
i|i−1(k|k)

]
(36)

Step 6: Estimate the filter gain:

Kt
i(k) = Pt

xz,i|i−1(k|k)/St
zz, i|i−1(k|k)/

[
St

zz, i|i−1(k|k)
]T

(37)

Step 7: Update the nonlinear state:

X̂t
li , i(k|k) = X̂t

i−1(k|k) + Kt
i(k)

[
Zi,t

li
(k)− Ẑt

i|i−1(k|k)
]

(38)

Equations (28)–(38) give a solution to the estimation of the target state and error covariance at
time instant k with sensor label i > 1.
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Now the estimation problem in the first sensor with label i = 1 is considered, the process of
the measurement update is the same as that in sensors with label i > 1, but the time update is quite
different. In the sensor with label i = 1, the estimation of prediction of the state and error covariance is
essential. The current cubature points are:

Xt
j(k − 1|k − 1) = St(k − 1|k − 1)ξj + X̂t

(k − 1|k − 1) (39)

The propagated cubature points are:

Xt
j(k|k − 1) = f t

[
k − 1, Xt

j(k − 1|k − 1)
]

(40)

Then the predicted state is:

X̂t
(k|k − 1) =

1
2nx

2nx

∑
j=1

Xt
j(k|k − 1) (41)

and the predicted error covariance is:

Pt(k|k − 1) = 1
2nx

2nx
∑

j=1

[
Xt

j(k|k − 1)− X̂t
(k|k − 1)

]
·
[
Xt

j(k|k − 1)− X̂t
(k|k − 1)

]T
+ Qt(k)

(42)

Equations (39)–(42) describe the time update in the first sensor with label i = 1. With the
measurement update process composed of Equations (28)–(38) applied, the estimated state X̂t

1(k|k)
and error covariance Pt

1(k|k) can be achieved respectively after the data of the first sensor is processed.
To state the proposed method more clearly, the algorithm flow of CMSCJPDA is illustrated in

Table 1.

Table 1. Algorithm flow of CMSCJPDA.

Input: The estimated state X̂t
(k − 1|k − 1) and error covariance Pt(k − 1|k − 1) at time instant k − 1;

Output: The estimated state X̂t
(k|k) and error covariance Pt(k|k) at time instant k;

Step 1. Time update (i = 1)
Compute the predicted state X̂t

(k|k − 1) and error covariance Pt(k|k − 1) according to Equations (39)–(42);
Step 2. Initialization

X̂t
0(k|k) = X̂t

(k|k − 1), Pt
0(k|k) = Pt(k|k − 1);

Step 3. Measurement update
For t = 1 : Nt

For i = 1 : Ns

Compute the estimation of state X̂t
i (k|k) and error covariance Pt

i (k|k) with the validated
measurements of sensor i according to Equations (19)–(38);

End
End

Step 4. Establish the final estimation
X̂t
(k|k) = X̂t

Ns
(k|k), Pt(k|k) = Pt

Ns
(k|k − 1)

5. Numerical Experiments

In this section, the numerical results and the effectiveness of the proposed CMSCJPDA algorithm
are discussed in two simulation scenarios: crossing target tracking and maneuvering target tracking.
The performance of CMSCJPDA is compared with MSJPDA-EKF and MSJPDA-UKF in two scenarios.

For a fair comparison, we make 50 independent Monte Carlo runs. In each run, the measurement
noises are generated independently, and the corresponding noisy position measurements are used
to initialize the estimate, which guarantees consistency of the initialization of the filter and makes
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the final estimate unbiased. Except for the initialization, the process of each Monte Carlo run is the
same, and the mean value of 50 runs is considered as the final result. The total number of steps per run
is 100. T = 1 s is the sampling interval. The nonparametric model is used for the probability mass
function (PMF) of the number of false measurements. The expected number of false measurements
in the validation gate is m = 2. The detection probabilities of all targets are assumed to be PD = 0.9.
The probability mass is assumed to be PG = 0.9997. Due to the large initial error, we display the
numerical results after the tenth step for clarity.

Targets in the surveillance area are observed by three two-dimensional sensors. The measurement
equation of sensor i is:

Zi(k) =

⎡⎣
√(

x(k)− xpi
)2

+
(
y(k)− ypi

)2

arctan
( y(k)−ypi

x(k)−xpi

) ⎤⎦+ Wi(k) (43)

where i = 1, 2, 3 is the sensor label. (x(k), y(k)) is the true state of the targets,
(

xpi, ypi
)

is the position
of sensor i. Other parameters of the sensors are set as shown in Table 2.

Table 2. Sensor position and parameter setting.

Sensor Labe Sensor Position (m) Ranging Error (m) Angle Error (rad)

1 (0, 0) 100 0.01
2 (−500, −500) 200 0.02
3 (−500, 500) 300 0.03

Performance metrics: To compare the tracking performance of different algorithms, the root mean
square error (RMSE) is chosen as the metric. The root mean square position error of target t at time
instant k is defined as:

RMSEpos(k, t) =

√√√√ 1
M

M

∑
i=1

(
xt

i (k)− x̂t
i (k|k)

)2 (44)

where M is the total number of Monte Carlo simulations. xt
i (k) and x̂t

i (k|k) are true and estimated
positions of target t in the x direction in the n-th Monte Carlo run. Similarly, we may also define
formulas of the root mean square velocity error.

5.1. Crossing Targets Tracking

5.1.1. Simulation Scenario

Consider a two-crossing target tracking case. The state model is:

X(k + 1) = F(k)X(k) + Γ(k)V(k) (45)

where the component of process noise q1 = q2 = 0.01. The state transition matrix F(k) is defined as:

F(k) =

⎡⎢⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎥⎦ (46)
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and the process noise distribution matrix is:

Γ(k) =

⎡⎢⎢⎢⎣
T2/2 0

T 0
0 T2/2
0 T

⎤⎥⎥⎥⎦ (47)

The initial states of two targets are X1(0) = [−29,500 m, 400 m/s, 34,500 m, 2,212,400 m/s]T,
X2(0) = [−26,500 m, 296 m/s, 34,500 m, −400 m/s]T. After about 31 s, the two targets cross at the
point (−17,000 m, 22,000 m).

5.1.2. Results and Analysis

The true and filtered tracks of two crossing targets are illustrated in Figure 1, which shows the
tracking performance of three algorithms in a single run.

To give a more explicit picture of the estimated results, the root mean square position error of
three data association algorithms in the x and y directions is shown in Figures 2 and 3, while the
root mean square velocity error in the x and y directions is shown in Figures 4 and 5. As is shown,
the three algorithms can effectively estimate the state of both targets. However, CMSCJPDA and
MSJPDA-UKF, which are based on deterministic sampling, are of higher tracking accuracy than
MSJPDA-EKF, and CMSCJPDA is slightly more accurate than MSJPDA-UKF, which just validates
the argument in [19]. With the square root version of CKF applied in the proposed method,
the square rooting operations of covariance matrix is avoided and the tracking performance is
effectively enhanced.

Figure 1. True tracks and filtered tracks of two crossing targets.

Figure 2. Root mean square position error of target 1.
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Figure 3. Root mean square position error of target 2.

Figure 4. Root mean square velocity error of target 1.

Figure 5. Root mean square velocity error of target 2.

To further validate the effectiveness of the proposed algorithm, numerical stability and
computational complexity of the three algorithms are compared in Table 3, which gives the average
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divergence times (ADT) and average time consumption (ATC) in 50 Monte Carlo runs. As is shown,
the ADT of MSJPDA-EKF is twice more than that of MSJPDA-UKF, and nearly four times more than
that of CMSCJPDA, to some extent CMSCJPDA is relatively more stable in terms of convergence.
As for the computational cost, the ATC of CMSCJPDA is almost half that of MSJPDA-EKF, and less
than that of MSJPDA-UKF. In a word, compared with MSJPDA-EKF and MSJPDA-UKF, CMSCJPDA
can achieve relatively higher tracking accuracy, and is more stable and less computationally complex
under a nonlinear cluttered environment.

Table 3. Performance comparison of the three algorithms.

Algorithms Average Divergence Times Average Time Consumption (s)

MSJPDA-EKF 0.87 0.423
MSJPDA-UKF 0.42 0.346
CMSCJPDA 0.27 0.257

5.2. Maneuvering Targets Tracking

5.2.1. Simulation Scenario

Assume there are two maneuvering targets in the surveillance area. The initial states of two targets
are X1(0) = [20,000 m, −600 m/s, 1800 m, 500 m/s]T, X2(0) = [4000 m, 600 m/s,1800 m, 200 m/s]T.
The two targets move at a constant speed in a straight line for 30 s. Then, from 30 s to 50 s, they both
move with constant accelerations of a1x = −30 m/s2, a1y = 20 m/s2, a2x = 30 m/s2, a2y = 20 m/s2 in
the x and y directions, respectively. From 50 s to 70 s, they still move with constant accelerations,
and the accelerations for both targets in the x and y directions are ax1 = −30 m/s2, ay1 = −20 m/s2,
ax2 = 30 m/s2, ay2 = −20 m/s2, respectively. After 70 s, they both move at a constant speed again until
100 s. The true trajectories of both targets are illustrated in Figure 6.

Figure 6. The trajectories of two cross-maneuvering targets.

5.2.2. Results and Analysis

The root mean square (RMS) position error of two targets is compared in Figures 7 and 8.
The results show that the estimation error of CMSCJPDA and MSJPDA-UKF is much smaller than that
of MSJPDA-EKF in the whole simulation. When t is about 40 s, the estimation error of MSJPDA-EKF
is about 200 m larger compared with CMSCJPDA and MSJPDA-UKF. Moreover, with the new
association strategy for maneuvering target tracking, CMSCJPDA has relatively higher accuracy
than MSJPDA-UKF. At some time instants, the RMS position error of CMSCJPDA is about 50 m smaller
than that of MSJPDA-UKF, and it converges relatively faster.
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Figure 7. Root mean square position error of target 1.

Figure 8. Root mean square position error of target 2.

Table 4 evaluates the tracking performance of the three algorithms in the aspects of mean RMS
position error (MRMSE) and correct association rate (CAR). The results indicate that both CMSCJPDA
and MSJPDA-UKF are more accurate than MSJPDA-UKF, and CMSCJPDA is slightly more accurate
than MSJPDA-UKF. Meanwhile, the CAR of CMSCJPDA is the highest among the three algorithms,
which is 11.1% higher than MSJPDA-UKF and 28.7% higher than MSJPDA-EKF, and CMSCJPDA is
more time-saving.

Table 4. Performance comparison of three algorithms.

Algorithms MRMSE (m) CAR (%) TC (s)

MSJPDA-EKF 206.2 47.6 0.735
MSJPDA-UKF 132.6 65.2 0.563
CMSCJPDA 104.3 76.3 0.432

6. Conclusions

In this paper, we propose a centralized multi-sensor square root cubature joint probabilistic data
association algorithm, which is based on the spherical-radial principle and the sequential update
scheme. Compared with the state-of-the-art method in two tracking scenarios, the proposed method is
much more accurate than MSJPDA-EKF, and a slightly better than MSJPDA-UKF by using the square
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root version of cubature Kalman filter to estimate the target state. Furthermore, the experimental results
also show that the proposed method is less prone to divergence than MSJPDA-EKF and MSJPDA-UKF,
and is more stable with respect to its numerical characteristics. Although the proposed method is
less time consuming among the compared methods, due to complicated calculation of the association
probability, the joint probabilistic data association-based methods are of significant computational cost,
which is still less practical in real applications. Currently, the sensors in our experiment are assumed
to be synchronized sampling, and there is no time difference in measurements from different sensors.
However, the actual applications can rarely meet this condition, and in the future we will pay more
attention to reducing the computational cost and improving the real-time performance. At the same
time, the tracking problem with asynchronous sampling and changing the number of targets also
deserves consideration.
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Appendix A. Proof of Equation (14)

For simplicity, define the weighting function ω1(x) = N(x; 0, I) and ω2(x) = N(x; μ, Σ).
Consider the left side of Equation (14). Since Σ is a positive definite matrix, then Σ can be factorized to

be Σ =
√

Σ
(√

Σ
)T

. Making a variable substitution by x =
√

Σy + μ, we have:

∫
Rn

f (x)ω2(x)dx =
∫

Rn
f
(√

Σy + μ
)

1√
|2πΣ| exp

{
−
(√

Σy
)T

Σ−1
(√

Σy
)}∣∣∣√Σ

∣∣∣dy

=
∫

Rn
f
(√

Σy + μ
)

1√
|2πI| exp

(−yTy
)
dy

=
∫

Rn
f
(√

Σy + μ
)

N(y; 0, I)dy

=
∫

Rn
f
(√

Σx + μ
)

ω1(x)dx

(A1)

Substituting ω1(x) and ω2(x) into Equation (A1), we have:∫
Rn

f (x)N(x; μ, Σ)dx =
∫

Rn

f
(√

Σx + μ
)

N(x; 0, I)dx (A2)
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Abstract: Automatic Dependent Surveillance–Broadcast (ADS-B) is the direction of airspace
surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System
(TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system
from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational
Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and
an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes
ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV)
platform. This paper describes the overall implementation of ADS-B minimum system, including
theoretical model design, experimental simulation verification, engineering implementation, results
analysis, etc. Simulation and implementation results show that the fused system has better
performance than each independent subsystem and it can work well in engineering applications.

Keywords: ADS-B; TCAS; integrated display; data fusion; airspace surveillance

1. Introduction

ADS-B [1,2] is defined by the U.S. Federal Aviation Administration (FAA) as the foundation of
free flight. It is an applicable and accurate airspace surveillance technology. It can be used in traffic
collision avoidance, surveillance, auxiliary approach and may have a great effect on all those aspects.
TCAS [3,4] is an airborne traffic alarm and collision avoidance system which is independent of air
traffic control on the ground.

The fusion of ADS-B and TCAS data can improve the prediction accuracy of TCAS systems [5],
increase the rate of true alarms and decrease the rate of false and missed alarms. There are many
benefits for airspace alarm accuracy and flight safety by combining with TCAS II and ADS-B system.
Even if essential information of a single system is missing, the system will work and not be affected
too much. The application of these technologies is closely related to the next generation of air traffic
systems, which are expected to have many benefits for the manufacture and use of civil aircraft.

Regarding the ADS-B system aspects, Kunzi [3] analyzed the benefits of ADS-B in general aviation
and pointed out that ADS-B will be the basis of the future surveillance system. Wang [6] designed
and implemented a complete mini ADS-B air traffic control system based on five aspects which are
monitoring data displaying, flight data displaying, ADS-B message processing, alarm computing and
equipment running status monitoring. McCallie [7] at the Air Force Institute of Technology performed
a safety analysis of the next generation of air traffic transportation. Mueller [8] proposed Aircraft
ADS-B Intent Verification based on a Kalman Tracking Filter in order to improve the accuracy of ADS-B
data transmission and to reduce the data error rate. Peng [9] proposed the CPR algorithm for 1090ES
ADS-B system encoding and decoding to improve transmission efficiency. Purton [10] solved some of
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the uncertainties in ADS-B. The procedural remedies are proposed for technical problems. Purton also
focused on technical solutions for the vulnerabilities and threats in the transmission and computation.

In the aspects of ADS-B and TCAS fusion, Ni [11] studied a ADS-B and TCAS II system fusion
algorithm. The Kalman filter is used and the data fusion is carried out according to the optimal
information fusion criterion with the minimum linear variance. Xu [12] proposed the local trajectory
estimation, optimized ADS-B local trajectory estimation of TCAS and the optimized fusion trajectory
estimations based on the data fusion algorithm of the Current Statistical (CS) model, however, it is not
appropriate for civil aircraft when cruising.

Many scholars have proposed or improved the Interacting Multiple Model (IMM) and Variational
Bayesian (VB) algorithm. A Sense-and-Avoid (SAA) system and IMM model is used to estimate the
state of intruders by Ramsamy [13]. Sabatini and Chen [14,15] introduced a SAA system. An extended
Kalman Filter and common IMM [16] algorithm were used to estimate the intruder’s state vector.
The IMM tracking models were focused on by the F.A.A. and the Thales Company. Constant
Velocity (CV), Constant Acceleration (CA) and Constant Turning (CT) models are designed for surface
tracking [17] and finally IMM was used to improve the accuracy of tracking. IMM has the characteristic
of being adaptive, and can effectively adjust the probability of each model. However, few methods
which are practical for real engineering issues. Variational Bayesian (VB) methods have been developed
for a wide range of models to perform approximate posterior inference at low computational cost
in comparison with the sampling methods (for a review of VB methods, see, e.g., [18,19]). The VB
method was utilized by Sarkka [20] to propose an adaptive Kalman filtering method which is based
on forming a separable variational approximation to the joint posterior distribution of states and noise
parameters on each time step separately.

Due to the fact the small deviations in the previous simulation is not sufficient to prove the
effectiveness of the fusion benefit, we built a fusion system based on a combined ADS-B physical
system and TCAS simulation. The ADS-B minimum system is defined as a system with ADS-B
equipment as the main part. It is in a semi-physical simulation environment which has some minor
differences with the real system. An ADS-B and TCAS data fusion model based on an adaptive
sampling period VB-IMM algorithm is proposed for integrated display from a theoretical model
design, experimental simulation verification, engineering implementing the three parts in ADS-B In.
An airspace traffic situation display is also presented. In ADS-B Out, some experimental verification
processes include ADS-B Out data transmission based on a simulation cockpit platform and ADS-B
Out data transmission based on an UAV platform.

The paper is organized as follows: Section 2 presents the design of ADS-B minimum system
from two aspects of ADS-B In and Out including mathematical formulations and engineering
implementation methods. Section 3 presents flight simulation and engineering implementation results
of our ADS-B minimum system. Section 4 presents our conclusions and discusses future challenges
and perspectives.

2. ADS-B Minimum System Design

The ADS-B minimum system design is shown from the two aspects of ADS-B In and Out.
The processes of ADS-B In and Out are shown in Figure 1. The main theoretical design content of the
ADS-B minimum system is a fusion model with a variable sampling VB-IMM (VSVB-IMM) algorithm.
The part of engineering design and experimental verification includes airspace traffic situation display,
ADS-B Out data transmission based on a simulation cockpit and UAV platform. The ADS-B minimum
system design is shown in Figures 2 and 5.
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Figure 1. Automatic Dependent Surveillance–Broadcast (ADS-B) data transmission.

2.1. ADS-B In Minimum System Design

The steps of ADS-B In is that the broadcast data are received at an ADS-B station or ADS-B
airborne equipment from 1090 MHz frequency and then the data is sent to the PC terminal through
a serial port or network port for data processing. The integrated display and airspace traffic situation
display is shown as the results of ADS-B In. The program of ADS-B In is shown in Figure 2.

Figure 2. ADS-B In minimum system design.
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2.1.1. ADS-B and TCAS Integrated Display Development

A VB-IMM algorithm was given by Dai [5] for maneuvering target tracking and estimating
unknown noise variance. The 3-dimensional trajectory is generated by an aircraft movement model or
flight simulation cockpit and IMM is utilized for filtering. The time-varying noise is estimated by the
VB method, which is the basis for failure prediction and adjustment of the sampling period. The CV,
CA and CS filter model is built in parallel in the IMM algorithm [21]. The state can be estimated by the
filter weighting of different motion models. The local optimal value is obtained from variable sampling
IMM (VS-IMM), fixed sampling IMM (FS-IMM) and the CS model algorithm. The global optimal value
is obtained from the local optimal value following the optimal information fusion criterion and is used
as input of the TCAS subsystem for obtaining the value of Tau (time until the closest point of approach)
between aircraft. False alarms and leak alarms are counted for statistical analysis. The system frame
diagram is shown in Figure 3.

Figure 3. System frame diagram.

1. Data preprocessing

(1) Coordinate transformation

The ADS-B coordinate in WGS-84 and TCAS II data is the relative position. The coordinates of
ADS-B and TCAS are transformed into a unified fusion coordinate system which is the “Earth-Centered,
Earth-Fixed (ECEF)” coordinate system.

(2) Time synchronization

Although the update rate for ADS-B reports and TCAS II data is 1 s, the system delay will result
in inconsistencies with data acquisition. Therefore, the data must be synchronized before data fusion.
Since the ADS-B is based on GNSS, the ADS-B time base is used as a benchmark, so the measured
values of TCAS II at time tj are synchronized to the common processing time ti of ADS-B which is
shown in Equation (1):

ZTCAS II(ti) = ZTCAS II(tj) + v × (ti − tj) (1)

where ZTCAS II(ti) is the measured values of TCAS II in time ti. v is the velocity of aircraft and the
v × (ti − tj) is a correction item.

2. Markov jump linear system and IMM model

The Markov jump linear system [22,23] is shown in Equations (2)–(5):

MX(k + 1) = ∅j(k)X(k) + ω(k) (2)

Z(k) = HjX(k) + vj(k) (3)

ω(k + 1) = cω(k) + ξ(k) (4)
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vj(k + 1) = djvj(k) + ηj(k) (5)

where M is the singular square matrix which means detM = 0. The system is regular which means
det (λM −∅) is not constantly 0. The state vector X(k) is an n-dimensional vector, the observation
process Z(k) is an m-dimensional vector and the subscript jεS = {1, 2, . . . , s} denotes the model.
The matrix functions ∅j(k) and Hj(k) are known. The vector ξ(k) is a zero-mean white Gaussian
process noise and the ηj(k) is an independent Gaussian measurement noise with zero-mean and
variance to be estimated.

Applying the augmented state method to convert the colored process noise ω(k) into part of the
system state. After the original system state component is expanded, the new system is defined as
Equations (6) and (7):

X(k + 1) = ∅(k)X(k) + Γξ(k) (6)

Z(k) = HjX(k) + γj(k) (7)

where X(k) =

[
X1(k)
ω(k)

]
, ∅ =

[
L1

−1T1 L1
−1Γ1

0 c

]
, Γ =

[
0
1

]
. The colored process noise ω(k)

converts to the white noise ξ(k). It exists orthogonal matrix P and Q to satisfy the equation PMQ =[
L1 0
L2 0

]
. L1 is lower non-singular triangular matrix. Hj = Hj(∅− dj I), γj(k) = HjΓξ(k) + η(k).

The colored process noise vj(k) converts to the white noise γj(k).
The paper describes the IMM algorithm with three models, including CV, CA and CS model.

X(k) is the state vector of target and it is a 3-dimensional vector consisting of position, velocity and
acceleration which is described in Equation (8):

X(k) =
[
x

.
x

..
x
]

(8)

Zhou [24] proposed the CS model and processed the noise of maneuvering target acceleration
with a Rayleigh distribution. The CS model is described in Equations (9)–(12):

X(k + 1) = ∅(k)X(k) + T(k)a + ω(k) (9)

Z(k) = HjX(k) + vj(k) (10)

∅(k) =

⎡⎢⎣ 1 T (−1+aT+e−aT)
a2

0 1 (1−e−aT)
a

0 0 e−aT

⎤⎥⎦, T(k) =

⎡⎢⎢⎣
(−T+ aT2

2 + (1−e−aT )
a )

a

T − (1−e−aT)
a

1 − e−aT

⎤⎥⎥⎦ (11)

Q(k) = 2aσa
2Q (12)

The process noise matrix Q(k). Q is a constant matrix. σa
2 is the maneuvering acceleration

variance. Maneuvering acceleration variance can be obtained in Equation (13):

σa
2 =

{
4−π

π (amax − â(k|k − 1)), i f a ≥ 0
4−π

π (â(k|k − 1)− a−max), i f a < 0
(13)

where amax and a−max are the upper and lower acceleration limits and the acceleration estimation is
â(k|k − 1). The closer the real value of acceleration is to amax, the smaller the σa

2 is. The closer the real
value of acceleration is to zero, the larger the σa

2 is. The value of σa
2 affects the process noise Q(k)

which decides the tracking accuracy of maneuvering targets. The problem is how to make the system
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have a constant speed or a small and large degree number of maneuvers track accurately as much as
possible and scholars have put forward ideas for this:

f (x, y, σ) = 1 − e
− (x−y)2

μσ2 (14)

Q′(k) = Q (k) ∗ f (x, y, σ) = 2aσa
2Q ∗ (1 − e

− (x−y)2

μσ2 ) (15)

Li [25] used Gaussian membership function of fuzzy control theory to improve the CS model
and the Equations (14) and (15) show the details of the improved model. The terms x, y, σ2 and μ are
the input of position, the estimation of current position, the variance of innovation and a constant,
respectively. The value |x − y| is big when there is a large maneuver, so f (x, y, σ) → 1 . Meanwhile
Q(k) is small and the improved model Q′(k) is relatively small. On the contrary, a small maneuver
causes f(x, y, σ) → 0 and the value of Q(k) is large, so it can also guarantee Q′(k) is stable.

3. The formal algorithm flow

The formal algorithm flow is shown in Figure 4. The unknown measuring noise variance is
estimated by the VB algorithm [26] which is in step one and two. m−

k is the acceleration estimation
and P−

k is the a priori state covariance. The main equation is shown as follows:

m−
k = ∅(k)m−

k−1 + T(k)m−
k−1 (16)

P−
k = ∅(k)Pk−1∅(k)T + Q(k) (17)

Figure 4. The formal algorithm flow.

The estimation of noise variance is input into the IMM model. The process of IMM filtering [27] is
shown in steps three, four and five.

In step three, the process of calculation of mixing probabilities is described in Equation (18),
where cj is a normalization factor:

μi|j(k − 1|k − 1) =

(
1
cj

)
pijμi(k − 1), cj = ∑

i
pijμi(k − 1) (18)

In step four, the system state is estimated which is calculated by a linear equation with
x̂i(k − 1|k − 1), μi|j(k − 1|k − 1), Pi(k − 1|k − 1), etc.

In step five, the measurement noise variance is obtained by VB estimation rather than
a predetermined constant in the common IMM algorithm. The state estimation and covariance
matrix are obtained by running each filter.

In step six, the likelihood function is calculated by the residual measurement and covariance. Finally,
in step seven, x̂(k|k) and p̂(k|k) are estimated by a weighted sum of the estimations from all filters.
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4. Variable sampling period VB-IMM [28]

The sampling period of VB-IMM is shown in Table 1. The F.A.A. issued the problem Airworthiness
Approval of Automatic Dependent Surveillance-Broadcast Out systems in 2011 [29]. The concept of
Navigation Accuracy Category for Position (NACP) specifies the accuracy of the aircraft’s horizontal
position information (latitude and longitude) transmitted from the aircraft’s avionics. EPU is the
Estimated Position Uncertainty. The sampling period is determined by position variance and NACP.
The sampling period can increase appropriately when the variance estimated by the VB algorithm is
relatively small, so the simulation sampling period is 1 s in the NACP 10 and 11 in Table 1. The sampling
should be intensive when the estimated variance increases and meantime the intruder is closer.
The sampling period in the simulation is 0.8 s in the NACP 9 and 0.6 s in the NACP 8, 7, 6. When the
intruder is far away, the sampling period is restored to 1 s. The simulation sampling period is adaptive
according to the value of NACP.

Table 1. Simulation sampling period corresponding to different Navigation Accuracy Category for
Position (NACP ) values.

NACP Horizontal Accuracy Bound Simulation Sampling Period

0 EPU ≥ 18.52 km (10 nm) 1 s
1 EPU < 18.52 km (10 nm) 1 s
2 EPU < 7.408 km (4 nm) 1 s
3 EPU < 7.408 km (4 nm) 1 s
4 EPU < 1852 m (1 nm) 1 s
5 EPU < 926 m (0.5 nm) 0.8 s
6 EPU < 926 m (0.5 nm) 0.6 s
7 EPU < 185.2 m (0.1 nm) 0.6 s
8 EPU < 92.6 m (0.05 nm) 0.6 s
9 EPU < 30 m 0.8 s
10 EPU < 10 m 1 s
11 EPU < 3 m 1 s

5. Optimal Information Fusion Criterion

The unbiased estimations of L sensors, x̂, i = 1, . . . , L. The estimation error covariance matrix
Pij, i = 1, . . . , L is obtained. The fusion is performed according to a matrix weighted linear minimum
variance criterion. There are two sensors (ADS-B and TCAS) in this paper, so L = 2. The process of
fusion is given in Equations (19) and (20):

[A1, . . . , AL] = [A1, A2] = [ATCAS, AADS−B] = (eT P−1e)
−1

eT P−1 (19)

X̂ f =
L

∑
i=1

Aix̂i = A1 x̂1 + A2 x̂2 = ATCASx̂TCAS + AADS−Bx̂ADS−B (20)

where Ai is an n-order square matrix, P is a block matrix with Pij as the (i, j) element and Pij =

cov (x̂i, x̂j), i, j = 1, 2. e = [In,..., In], In is an nth-order identity matrix. We can hypothesize that the
x̂TCAS and x̂ADS−B are unbiased because they are obtained from the results of variable sampling
VB-IMM, fixed sampling VB-IMM and the CS model algorithm.

2.1.2. Airspace Traffic Situation Display Development

The source of data which is received by an ADS-B station or ADS-B airborne equipment is from
the ADS-B signals of aircraft in the airspace. After decoding an ADS-B messages and transferring the
data to the PC terminal, the flight information is obtained. The flight information includes longitude,
latitude, height, ground speed, ground velocity direction, vertical velocity, etc. in plaintext. The flight
information is displayed on the airspace traffic situation interface. The paper develops two airspace
traffic situation interfaces according to different requirements for surveillance systems.

459



Sensors 2017, 17, 2611

2.2. ADS-B Out Minimum System Design

ADS-B Out is designed from two aspects. The first is the ADS-B Out data transmission based on
a simulation cockpit platform. The second is ADS-B Out data transmission based on an UAV platform.
The program of ADS-B Out is shown in Figure 5.

Figure 5. ADS-B Out minimum system design.

2.2.1. ADS-B Out Data Transmission Based on a Simulation Cockpit Platform

The simulation flight information is generated by the simulation cockpit platform. The flight
information of the aircraft are sent to a PC terminal through an Integrated Surveillance System (ISS).
After it is processed and converted by the protocols in the PC terminal, data are sent to the ADS-B
airborne equipment. Then they are transmitted to the airspace. The ADS-B data is received by the
ADS-B station or ADS-B airborne equipment. After decoding, the flight information can be obtained.

2.2.2. ADS-B Out Data Transmission Based on an UAV Platform

ADS-B airborne equipment is loaded on the UAV platform and it obtains the current flight
information through the airborne equipment GPS and Beidou modules. The ADS-B signal is received
by the ADS-B ground station or ADS-B airborne equipment, and the aircraft flight information is
obtained after decoding. The UAV flight path is displayed and is compared with the flight path that is
recorded by the positioning device of the UAV itself.

The main part of ADS-B minimum system is designed and shown in Figure 6. The three data
sourcee of this system include the flight simulation module, aircraft in airspace and the experimental
UAV platform. After decoding, the plaintext information can be used in two ways. The first is that
the plaintext information is sent to the display terminal to surveil the airspace traffic situation and
detect tany abnormal trajectory based on the recorded trajectory information or the flight recorder
data. The second way is to send it to a Digital Mock-up Module to process the aircraft information
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including information estimation and fusion, then into TCAS logic, to carry out a collision avoidance
solution. Finally, all this information is displayed on a TCAS Digital Mock-up and cockpit platform.

Figure 6. System design block diagram.

3. ADS-B Minimum System Implementation

3.1. ADS-B In Minimum System Implementation

3.1.1. ADS-B and TCAS Integrated Display

This scheme is the core of the ADS-B minimum system. According to the previous analysis of the
ADS-B In minimum system program, this part shows the results of a VB-IMM algorithm simulation
and application of an integrated display with the ADS-B and TCAS fusion system.

Simulation Results of Fusion Model Based on VB-IMM Algorithm

The 3-dimensional trajectory is generated by an aircraft movement model or flight simulation
cockpit. The IMM model is utilized for filtering. The VB method is used to estimate the time-varying
noise. The false alarm, leak alarm statistics and the data fusion’s benefit analysis for the fused system
are given to analyze the performance of system.

1. Flight path simulation

The parameters of simulation system are set as follows: Flight experience 3000 s, sampling period
T = 1 s. Flight position: 98◦00′00” E, 29◦00′00” N, 4502 m height. It climbs from 300 m height and then
cruises at constant height. The initial position of the intruder: 106◦00′00” E, 29◦00′00” N, 300 m height.
The observation noise variance of TCAS is 50 dB, ADS-B’s observation noise standard deviation is
time-varying. The 3-dimensional trajectory is shown in Figure 7.

2. Variable sampling period VB-IMM (VSVB-IMM) and fixed sampling period VB-IMM (FSVB-IMM)

Noise is estimated by a Variational Bayesian. The observation noise variance of TCAS is 50 dB
and the ADS-B’s observation noise standard deviation is time-varying. In Figure 8, the variance of
sinusoidal oscillation noise is 40 dB. The iteration is 30 in each cycle of this paper. Figure 8a,b are the
online variance estimation of measurement noise for ADS-B and TCAS.
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Figure 7. Aircraft trajectory.

Figure 8. Noise estimation of system. (a) Noise estimation of ADS-B; (b) Noise estimation of Traffic
Collision Avoidance System (TCAS).
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The following is the statistical results of experiments. Combining Figure 9a with Figure 9b for
analysis, we see the fused system’s estimation error is smaller than the TCAS and ADS-B subsystem’s
estimation error. The fused track information is better than that of any subsystem. The fusion system is
in a semi-physical simulation environment. A minimum system which combines the ADS-B physical
system and TCAS simulation is built. The ADS-B measured values are obtained from an ADS-B Out
experiment based on the simulator cockpit platform, which are sent to the air by the ADS-B airborne
equipment, and received by an ADS-B ground station. Then the ADS-B measured noise is obtained
from the ADS-B truth values and measured values.

Figure 9. Measurement noise and fusion estimation noise. (a) Measurement noise and fusion estimation
noise of TCAS; (b) measurement noise and fusion estimation noise of ADS-B.

3. Statistics of root mean squared error

The RMSE is calculated as Equation (21):

RMSEk =

[
1
M

M

∑
i
(x(i)k − ˆ

x(i)k )
2
] 1

2

, k = 1, 2, . . . , step (21)

where M is the number of Monte Carlo iterations, the parameter k is the simulation step. The statistical
result of 60 Monte Carlo experiments is shown in Figure 10.
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Figure 10. Root mean squared error of statistics. (a) Root mean squared error-Longitude; (b) Root
mean squared error-Latitude; (c) Root mean squared error-Height.
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The RMSE of fusion system is smaller than TCAS and ADS-B subsystem. The VSVB-IMM is
superior to FSVB-IMM as purple line with triangles is the smallest most of the time.

4. TCAS CPA calculation

The CPA calculation results in large time period are shown in Figure 11a. The CPA calculation
results in small time period are shown in Figure 11b. A fused track is added to the TCAS core solver
model [30] to calculate the time of CPA. The trajectory is filtered by a VSVB-IMM model and the results
of the fusion model are injected into the TCAS logic. The red line which represents the fused system is
more close to the blue line which represents the CPA true value than any other subsystem.

Figure 11. The CPA calculation results. (a) The CPA calculation results in large time period; (b) The CPA
calculation results in small time period.

Figure 12 is a flowchart of the TCAS algorithm. This algorithm firstly generates track information
by a flying solver model. The core processing program then receives data, conducts geodetic coordinate
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system and coordinate system conversion, executes the CPA algorithms and calculates the relative
position of aircraft. Finally, it is vital to estimate the time of encounter, anticipate conflicts and make
RA decisions. The relative position of aircraft is calculated and the value of Tau is estimated based on
trend extrapolation method. TA is the Traffic Advisories and RA is the Resolution Advisories in TCAS.

Figure 12. TCAS algorithm flowchart.
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5. False alarm, leak alarm analysis of fused system

The experiment is repeated for 200 times independently. One of the statistics is the number of
false alarms and leak alarms during the TA (CPA in 35–45 s) and RA (CPA < 35 s) period. Statistics for
false alarms are when the actual time is ahead of the theoretical alarm time and exceeds the threshold
value (it can be set to a constant 1 s). A leak alarm is when the actual time hysteresis of the theoretical
alarm time exceeds the threshold value (1 s). In conjunction with Figure 13 and Table 2, qualitative
and quantitative analysis can be carried out showing that the fused system can reduce the incidence
of false and leak alarms in the TA and RA warning alarm interval. Leak alarms and delayed alarms
compress the avoidance response’s time of the system and pilot, thus seriously affecting flight safety.
Therefore, a more accurate alarm time can improve system security.

Figure 13. System false alarm and leak alarm statistics graph.

Table 2. Statistics of early alarm and hysteresis alarm during ta (35–45 s), ra (<35 s) in 200 experiments.

Alarm Type
System Categories

TCAS ADS-B Fused System

False alarm (TA) (frequency) 1018 524 361
Leak alarm (TA) (frequency) 883 513 362
False alarm (RA) (frequency) 1104 334 172
Leak alarm (RA) (frequency) 1014 390 192

6. CPA cumulative deviation analysis after RA decision

The TCAS core processor assesses the situation of the neighboring airspace and makes RA
decisions. The intruder climbs to avoid detection at rate of 1500 feet per minute and meantime
simulates the dynamic response where a human is in the loop. Pilot’s delay of practical response,
mechanical and electrical system’s response delays can be taken into account. The delay was assumed
to be a constant in this paper during the computer simulation. The simulation accumulated deviation
data during the RA maneuver interval. It can be drawn from Figure 14 that the fused system can
improve the cumulative deviation of CPA, which ensures a more precise response to ensure flight
safety. Track graph of simulating maneuvering avoidance during RA is shown in Figure 15.
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Figure 14. Accumulated deviation of CPA during the RA decision interval.

Figure 15. Track graph of simulating maneuvering avoidance during RA.

Application of ADS-B and TCAS Integrated Display

This part describes the engineering experiments and implementation of the ADS-B and TCAS data
fusion algorithm. ADS-B message decoding, which obtains real-time flight information of the aircraft,
is an important part of the ADS-B In. The main process of ADS-B message analysis is that ADS-B
station or airborne equipment receives an ADS-B message and sends messages to the PC terminal
through the network port. Then the message is decoded in the PC.
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The data processing which includes calling the decoding function to decode the message,
obtaining the message type and storing the corresponding variable is done. The message type has the
air position information message (longitude, latitude and altitude in the air), the location information
message (the longitude, the latitude, the running speed and the running speed direction of the ground
target), the flight number information message (ICAO three word code, flight class set and flight
category), speed information message (ground speed, ground speed and vertical speed) and error
data messages.

Different ADS-B message types have different data composition order and data types. ADS-B
message decoding program is that each data for independent analysis firstly and then the data analysis
results are integrated, and finally the data statistics are calculated and stored.

The ADS-B message decoding program records the aircraft information received from the airspace.
For each aircraft, the program updates the information and all of information is written in a file when
a new ADS-B message is received and decoded. Table 3 is part of the ADS-B ground station to receive
part of the aircraft information, receiving a location in the latitude 31◦01′31.79” N east longitude
121◦26′29.75” E near the range of about 300 km. The flow chart of the ADS-B message decoding
software is shown in Figure 16.

Table 3. Part of aircraft information.

ID Latitude Longitude Altitude Speed North Speed West Speed Vertical

1 31.3268 122.629 4236.72 −45.2266 −312.967 −1728
2 31.3854 122.902 6156.96 −80.2507 −364.945 −1216
3 30.4038 121.241 4899.66 321.002 34.9823 64
4 30.6787 121.279 4038.6 351.002 36.9813 −1408
5 30.1474 121.154 5212.08 308.041 163.924 0
6 31.0127 122.763 7734.3 26.3675 477.98 1408
7 31.4885 123.445 7467.6 −76.2423 −351.948 64
8 29.8201 120.952 6454.14 355.048 191.911 −192
9 31.4381 123.173 7132.32 −82.2482 −362.944 −1088

10 31.0003 122.692 6156.96 0.335254 421 1792
11 30.2619 121.207 2834.64 263.014 87.9569 1088
12 31.7112 119.996 5394.96 −369.053 205.905 −2880
13 29.9003 121.456 3916.68 −13.2618 −336.99 1664
14 29.7201 122.295 8648.7 −94.3169 456.935 64
15 31.3854 122.902 6156.96 −80.2507 −364.945 −1216

The message decoding software process mainly includes three independent work modules:
message reception, message decoding, processing and saving. An ADS-B message is transmitted in
the link of UDP with a point-to-point protocol. The process of message analysis is shown in Figure 16
and the results of message processing and saving are shown in Table 3, which contains the discarding
process for abnormal packets.

The integrated display of ADS-B and TCAS is based on message analysis. The ADS-B message
received from the airspace by the ADS-B equipment is decoded by the PC terminal. The message is
transmitted to the fusion system as an input in the simulator cockpit platform. The purpose of system
design is to implement some functions including functionally testing the TCAS subsystem, improving
the accuracy of TCAS prediction, reducing unnecessary alarms, and improving the effectiveness and
safety of the system. The interface of the fusion system (TCAS Digital Mock-Up) in the laboratory is
shown in Figure 16. If there is a possibility of aircraft traffic collisions happening, the alarm status will
appear in the area.
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TCAS digital Mock-Up, which is the platform of ADS-B and TCAS fusion system, can also handle
single or multiple intrusion aircrafts including the four states of No threat, Proximate, TA and RA.
The conditions for the system to work normally are that the integrated exciter software, integrated
digital Mock-Up software and communication of all modules is normal. It combines the fusion model
based on VSVB-IMM into the core algorithm which has been described above. The input of the fusion
system (TCAS Digital Mock-Up) can be real-time flight data generated by an aircraft in the airspace or
simulated flight data from the cockpit platform. The four situations including Nothreat, Proximate,
TA and RA are shown in Figure 17a–d.

Figure 16. ADS-B message decoding software flow chart.

3.1.2. Display Interface Development

Figure 18 shows the airspace situation interface, which is able to display traffic conditions around
300 km in the air. The flight information which includes longitude, latitude, height, ground speed,
ground speed direction, vertical speed and the type of aircraft is obtained by clicking on an aircraft
icon. The flight path and height track information can also be more convenient to read out through
the interface.
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Figure 17. TCAS Digital Mock-Up. (a) Nothreat; (b) Proximate; (c) TA; (d) RA.

Figure 18. Airspace situation interface 1.
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3.2. ADS-B Out Minimum System Implementation

3.2.1. ADS-B Out Data Transmission Based On Simulation Cockpit Platform

Simulated flight information which is generated by the simulation cockpit platform is transmitted
to the airspace to simulate a real aircraft signal. Then the signal is received by the ADS-B station.
Figure 19 shows the position of simulated aircraft and the signal received from the ADS-B station in
the laboratory. The position of simulated aircraft is near the Shanghai Pudong Airport and over the
airspace of the East China Sea. The process has benefits for experimental simulation work including
traffic collision avoidance simulation, flight trajectory surveillance and verification, etc.

The airspace situation interface 2 is a new airspace situation interface in order to show some of
the geographic information details. The interface can be modified to display 2D maps, satellite maps,
or both by clicking on an icon. A variety of information including height trajectory of aircraft and
other flight information is presented in it. The interface also supports two forms as input which are
real-time flight data display and reads the saved data.

Figure 19. Airspace situation interface 2.

The development of the interface used a variety of Baidu map APIs to support the click
control, slide the mouse wheel map zoom, click on the map switch, display the monitored aircraft
location information and display the monitored aircraft height trajectory information. The interface
implementation process is divided into four parts: create a map, set the map events, add controls to
the map and add a cover to the map.

Compared with the monitoring interface shown in Figure 18, the airspace situation interface
of Figure 19 which can be switched between 2D maps, satellite maps and mixed maps with clearer
geographical features that can show more details of the map. The movement of the aircraft also shows
a more intuitive and follow-up scene surveillance so research can continue on this basis.

3.2.2. ADS-B Out Data Transmit Based On UAV Platform

In this experiment, ADS-B airborne equipment was installed on the UAV platform to test ADS-B
data transmission. The flight information is transmitted out by ADS-B airborne equipment and then
received by an ADS-B station. Figure 20 is the flight trajectory with software on the UAV and the
ADS-B signal.
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Figure 20. Unmanned Aerial Vehicle (UAV) trajectory verification. (a) Flight trajectory with software
on the UAV; (b) Flight trajectory from ADS-B signal.

By comparison, the ADS-B signal emitted by the ADS-B airborne equipment mounted on the
UAV platform is consistent with the recorded results of the UAV’s own GPS flight track recorder.
The experimental results show that the GPS module on the ADS-B airborne transmitter has a certain
position accuracy and can meet the basic flight test and test requirements of the UAV platform.

4. Conclusions

Safeguarding human safety during aviation activities is the goal pursued by aviation practitioners
and researchers. In our prior study, the simulation deviation of the fusion system is small but it is not
sufficient to prove the effectiveness of the fusion benefit, so this paper built a minimal system based on
an ADS-B physical system and TCAS simulation combined.

Based on the theory of ADS-B and TCAS, the paper designed and implemented an ADS-B
minimum system from both theoretical and engineering aspects. A fusion model with a variable
sampling VB-IMM (VSVB-IMM) algorithm is proposed in the theoretical aspect. A series of
experimental simulations are done to verify the benefits of the fusion system including higher precision,
lower false alarm rate and better flight security. In the engineering aspect, an airspace traffic situation
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display, ADS-B Out data transmission based on a simulation cockpit platform and an UAV platform are
designed and implemented from software architecture and comparative analysis design of the results.

More in-depth studies can be done in the future on the benefits of fusion system security and
large data analysis of airspace surveillance. In time synchronization, some methods will be added to
consider the measured time which is from the GPS navigation unit to transponder. The ADS-B and
TCAS fusion system would be improved by exploring two-system fusion methods which meet the
benefits and security of ADS-B and TCAS fusion. Pattern recognition or other methods can be used
to identify the model which makes it possible to have traffic collision situations in the surveillance
airspace and to alarm or perform some other action.
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Abstract: Direct measurements of external forces acting on a structure are infeasible in many cases.
The Augmented Kalman Filter (AKF) has several attractive features that can be utilized to solve the
inverse problem of identifying applied forces, as it requires the dynamic model and the measured
responses of structure at only a few locations. But, the AKF intrinsically suffers from numerical
instabilities when accelerations, which are the most common response measurements in structural
dynamics, are the only measured responses. Although displacement measurements can be used
to overcome the instability issue, the absolute displacement measurements are challenging and
expensive for full-scale dynamic structures. In this paper, a reliable model-based data fusion approach
to reconstruct dynamic forces applied to structures using heterogeneous structural measurements
(i.e., strains and accelerations) in combination with AKF is investigated. The way of incorporating
multi-sensor measurements in the AKF is formulated. Then the formulation is implemented and
validated through numerical examples considering possible uncertainties in numerical modeling
and sensor measurement. A planar truss example was chosen to clearly explain the formulation,
while the method and formulation are applicable to other structures as well.

Keywords: force estimation; heterogeneous sensor network; Kalman filtering; multi-metric
measurements; structural dynamics

1. Introduction

Many engineering structures are subjected to various natural and man-made dynamic loads,
including wind, earthquake, traffic, machine vibrations, and tidal loads. The structures can be damaged
severely when the applied loads are stronger than the structural capacities. Even for seemingly small
level loads, their continuing and long-term application may cause gradual degradation of the structural
performances over time, such as fatigue problems, so identifying the time histories of applied forces
to structures can significantly improve their design and effectively protect them against damaging
loading events. However, direct measurements of applied forces are impossible in practice or very
difficult and costly for dynamic structures. Even if structural responses (e.g., acceleration, velocity,
displacement, or strain) are measured at the locations where the forces are applied, capturing the
external forces from the measured responses is not possible. Even in the case that transducers are
available for force measurements, when the structure is large such as long span bridges, towers,
and skyscrapers, or when the spatial distribution of loading is complex, covering the entire structure
at the locations where forces would be applied is a challenging task. Therefore, indirect methods for
force identification have been investigated to overcome such limitations [1–3].

Input force identification is the procedure to determine the loads applied to the structure using
its measured responses. In other words, the goal is to find the inputs to the system using the known

Sensors 2017, 17, 2656 476 www.mdpi.com/journal/sensors



Sensors 2017, 17, 2656

or measured outputs. Theoretically, having the frequency response functions (FRF) matrix together
with the measured responses, it is possible to estimate the applied forces by inverting the FRF matrix.
However, a unique solution is usually not available, because of the rank deficiency in the FRF matrix.
The FRF-based input estimation is an ill-posed problem in general, so the presence of noise and small
deviations will cause significant errors that are far from reality [4–7]. To overcome this issue for
FRF-based methods, additional information, e.g., spatial distribution of loads, must be needed to have
a unique solution [8,9]. Classical time and frequency domain methods for input identification also
suffer from the requirement of needing an exact model, which is not possible in practice [10].

A variety of the load reconstruction approaches have been developed for specific force patterns;
including impulsive load estimation for composite structures [6,11], harmonic force estimation in
rotating machinery [12], and moving load identification in bridge and railway systems [13,14]. A sum
of weighted accelerations technique (SWAT) is a well-known method for reconstructing impulsive
loads from measured responses. In this method, measured accelerations are scaled by effective weights,
which are the coefficients of equivalent mass at each acceleration location, to estimate the applied
loading. This method is only suitable for systems with free boundary conditions [15,16]. For impact
estimation of nonlinear structures, artificial neural network-based methods are known to improve
the quality of the load estimation [17,18]. Such methods, unlike those based on convolution relation,
can construct the nonlinear relationship between inputs and outputs. However, the mathematical
model and algorithm used in this method has to be trained carefully by applying known forces to
the structure; which is a critical limitation when applying it to large structures that have complex
load patterns and distributions. A Bayesian inference-based regularization method has been proposed
to identify the excitation forces [19]; they have estimated the low frequency components with good
accuracy but the results for higher frequencies are not given.

In contrast to the force identification methods in frequency domain methods based on the fast
Fourier transform, time domain methods were developed [20–22]. These methods in general consist of
two main steps. First, using an operation matrix, the sequences of inputs are mapped to the outputs.
In the second step, ill-posed inverse problem is solved with a regularization method. However
when the size of operation matrix increases the force identification becomes highly difficult to solve.
To overcome the problem of large operation matrix, sequential deconvolution input reconstruction
(SDR) method was proposed [23]. Extensive parametric study of sequential deconvolution for input
reconstruction was conducted [24] and it was concluded that the method can identify the inputs
accurately in a moderately noisy environment.

Techniques based of the Kalman Filtering (KF) method have proven to be effective in identification
of different types of loadings [25]. As a recursive linear state estimator, the Kalman Filter can provide
statistically optimal estimates of the state, even with uncertainties in modeling and measurements,
in the sense that the error covariance matrix is minimized. It has application in many areas,
including navigation, object tracking, economics, signal processing, etc. [26]. The Kalman Filter
was initially developed for linear systems. But if states are described by nonlinear equations or the
observation relation is nonlinear, the extended Kalman Filter approaches have been explored [27–29].
To accommodate the non-gaussian noise and nonlinear dynamical system, Ensemble Kalman Filter
(EnKF), which can be considered as a variant of interacting particle systems or particle filtering,
has been developed using non-parametric approach [30]. However, in certain cases EnKF has poor
performance [31,32]. For example, EnKF has difficulties to handle highly non-Gaussian posterior
pdfs [33].

The Kalman filtering variants have been used for response identification at unmeasured
locations [34–36], parameter identification, and damage detection [29]. A Kalman Filter approach
in conjunction with a recursive least-square algorithm has been developed for force excitation
estimations [6,25]. But this method requires data vectors that contain displacement measurements
at all degree of freedoms which is not possible in most of the practical applications. Deconvolution
Kalman Filter (DKF) is recently introduced and estimates the input forces using an augmented state
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space system and Kalman filtering [37]. Augmented state space system is formed from combination
of state space matrices from an auto regressive moving average (ARMA) and the mechanical system
response modeling. Kalman filter-based approach is used to estimate external forces and torques
for a serial-chain robotic manipulator [38]. In this case, dynamic model of the robot and available
motor signals such as current, angles, and speed are used and there is no need for additional sensing.
In lead-through programming (LTP), which is a fast approach for teaching a trajectory by physical
interaction with robot, it is possible to use a sensor-less method based on Kalman filter using the
generalized momentum formulation [39]. The quality of estimated torque relies on dynamic model of
robot and the friction model.

Another variant of force identification using Kalman filter is to incorporate the unknown forces
into state vectors and estimate the unknown forces as part of the states; this method is called
Augmented Kalman Filter (AKF) [40]. In the original approach to use the AKF, acceleration responses
are used in the measurement update of the Kalman Filter for force estimation. Stability issues of
the AKF method have been investigated when accelerations are the only measured responses [41].
Becaus the error covariance matrix of AKF has the simple form of Riccati equations, it is discussed based
on analytical arguments that estimations based solely on acceleration measurement are inherently
unstable. To overcome the instability of input estimation from measured accelerations, dummy
measurement method is suggested [41]. But if there are slowly varying low-frequency forces,
the method will not be able to trace them. The other source of numerical instabilities in force estimation
is when there are more sensors than the order of reduced-order dynamic model; reduced order
models are frequently used since limited number of vibration modes dominate the response of a
structure subjected to dynamic loading [37]. Furthermore, joint input-state estimation was applied
in structural dynamics response and input estimation when accelerations are measured [42] and was
further extended to account for unknown stochastic excitations [43]. To resolves the numerical issues
related to the rank deficiency and un-observability of the AKF, dual Kalman filter approach for joint
input-state estimation was proposed [44] and experimentally validated [45]. The mentioned limitations
of AKF are solved through successive structure of dual Kalman filter.

Acceleration responses are usually the easiest and cheapest to measure and have been widely used
in structural system identification and response and force estimations. However, their performance is
not satisfactory in the low frequency range [46]. On the other hand, strain measurements work perfectly
at low frequencies and show direct relations to stress, hence failure and fatigue [47]. Force identification
relying solely on acceleration response measurements suffer from deficiencies such as instability,
inaccuracy, and even possibly misleading results. Incorporation of displacement measurement is one
remedy for the problem but it is expensive and complicated.

In this paper, a multi-metric approach is investigated to improve the stability and accuracy of
the force estimation using the AKF method. It is shown how the stability issue of the AKF can be
addressed and force estimation accuracy in both low- and high-frequency range can be enhanced
by combined use of multi-metric measurements, i.e., strain and acceleration responses measured at
limited locations of the structure, in the measurement update stage of the Kalman filter. The efficacy of
the proposed method is numerically validated using a planar truss bridge structure model. The force
estimation performances of the multi-metric method are compared with the applied reference loads
under various modeling and loading conditions, considering nonzero-mean loads, and measurement
noises. The proposed method is schematically shown in Figure 1.
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Figure 1. Schematic of proposed model-based heterogeneous data fusion for reliable force estimation.

2. Augmented Kalman Filter A

As a recursive linear state estimator, the Kalman filter provides statistically optimal estimates
of the states in a way that minimizes the mean of the squared error, assuming the system behaves
linearly and potential process noise and measurement noise are zero-mean Gaussian stochastic process.
The states are predicted using a system (i.e., numerical model of a structure) and the predictions
are updated using observations in a minimum-variance unbiased sense. This section describes the
conventional Kalman filter for response estimation and its extended approach, i.e., augmented Kalman
filter (AKF), for estimating both structural responses and input forces [40]. Furthermore, the stability
issue of the AKF is discussed.

2.1. State Space Model

Dynamic behavior of a linear mechanical system is described by a second order differential
equation of motion:

M
..
u(t) + C

.
u(t) + Ku(t) = S f f (t), (1)

where Mn×n, Cn×n, and Kn×n are mass, damping, and stiffness matrices and S fn×n f
is a force selection

matrix. “n” is the number of degrees of freedom and “n f ≤ n” is the number of degrees of freedom
which the force is applied to. The state space formulation of the above equation of motion in continuous
domain is [48]:

.
x(t) = Acx(t) + Bc f (t), (2)

where the subscript “c” stands for the continuous case:

x(t) =

{
u(t)
.
u(t)

}
; Ac =

[
0 I

−M−1K −M−1C

]
; Bc =

[
0

M−1S f

]
,

in the above equations x2n×1 is the state vector. A set of equations, in addition to those describing
the dynamics of the system, defined to describe the measured or observed values in term of the
system states:

y(t) = Hcx(t) + Dc f (t), (3)

the state Equation (2) together with the measurement Equation (3) form the continuous state space
model of the system.
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The discrete time form of the state space model is defined as:

xk+1 = Axk + B fk, (4)

yk = Hxk + D fk, (5)

where:
A = eAcΔt, (6)

B =
∫ Δt

0
eAcτdτBc = Ac

−1(A − I)Bc (7)

H = Hc, D = Dc. (8)

The Kalman filter estimates the states in a recursive optimal manner from the state space
formulation considering presence of uncertainties, either process errors (wk) or measurement
noises (vk):

xk+1 = Axk + B fk + wk (9)

yk = Hxk + D fk + vk (10)

2.2. Kalman Filter

Kalman filter has two main steps, i.e., time update and measurement update equations [27]:
Time update:

x̂k+1|k = Ax̂k|k + B fk−1

Pk+1|k = APk|k AT + Q,
(11)

Measurement update:

Kk|k = Pk|k−1HT(HPk|k−1HT + R)
−1

x̂k|k = x̂k|k−1 + Kk|k(yk|k − Hx̂k|k−1)

Pk|k = (I − Kk|k H)Pk|k−1,

(12)

where, Q and R are process (modeling) error and measurement noise covariance matrices, which are
assumed to be known, constant, and independent of time and represented by E

{
wiwT

j

}
= Qδij and

E
{

vivT
j

}
= Rδij, respectively; where δij is the Kronecker delta. For given covariance matrices Qc and

Rc for continuous system, the discrete Q and R can be obtained as below:

Q =
∫ Δt

0
eAcτQceAc

Tτdτ

R = Rc/Δt
(13)

and their order of magnitude is determined by the order of magnitude of state vector and signal to
noise ratio of sensors [40]. For more detail on the terms used in Kalman filter, see [27].

2.3. Augmented Kalman Filter (AKF)

Conventional formulation of the Kalman filter described above in (11) and (12) can provide
optimized estimates of the structural responses as the states (i.e., displacements and velocities) with
given information of input forces (f). However, the input forces are rarely known in reality, so additional
methods are needed to estimate the input forces [6,25].

The Augmented Kalman Filter (AKF) approaches use the augmented state vector that includes
the input force, and then estimates structural responses as well as the input forces together as the part
of the states. In order to build the full system equations for the AKF, an input force model should be

480



Sensors 2017, 17, 2656

required. A random walk model is a general approach for the input force model, the state equation for
the random walk model in continuous domain is defined:

.
f = 0 + η, (14)

where η is the input force model noise on the derivative of the force parameter, implying that the force
derivative or force increment is a completely random process.

Its discrete version is known as a Martingale process as below:

fk+1 = fk + ηk (15)

The original state vector is then extended to include the input force. Augmented state equation in
continuous time form is: { .

x(t)
.
f (t)

}
= Aac

{
x(t)
f (t)

}
+

{
w
η

}
(16)

Aac =

[
Ac Bc

0 0

]
(17)

In the above equation, Aac, is system matrix for augmented formulation in continuous form.
Observation equation is:

y = Hac

{
x(t)
f (t)

}
+ v (18)

Hac = [H D] (19)

In discrete form, the augmented state vector and the state equation are:

Xa
k =

{
Xk
fk

}
(ns+np)×1

(20)

In the above equation ns and np are number of states and inputs, respectively:

Xa
k+1 = AaXa

k + ζk

Aa =

[
A B
0 I

]
(21)

Observation equation becomes:
yk = HaXa

k + vk (22)

Ha = [H D] (23)

matrices H and D are given in Equation (30).
Then the time and measurement update equations in the KF method become [40]:
Measurement update:

Lk = Pk|k−1HT
a (HaPk|k−1HT

a + R )
−1

X̂a
k|k = X̂a

k|k−1 + Lk(yk − HaX̂a
k|k−1)

Pk|k = Pk|k−1 − Lk HaPk|k−1

(24)

Time update:
X̂a

k+1|k = AaX̂a
k|k

Pk+1|k = AaPk|k AT
a + Qa

(25)
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In augmented Kalman filtering, since the force vector is included in state vector, the modeling
error covariance matrix Q, together with regularization matrix (S) which is the covariance matrix of
input noise, η, form the augmented covariance matrix Qa:

Qa =

[
Q 0
0 S

]
(26)

To elaborate the observation (measurement) matrix Hac in augmented state space form, shown in
the Equation (22), the following general relation between the measurement and structural responses
is considered:

y(t) = Sa
..
u(t) + Sv

.
u(t) + Sdu(t) (27)

Sa, Sv, and Sd are “nd × n” selection matrices corresponding to acceleration, velocity, and
displacement state, respectively. “nd” is the number of measurements and “n” is the number of
degrees of freedoms.

We have:
..
u(t) = −M−1C

.
u(t)− M−1Ku(t) + M−1S f f (t)

y(t) = Sa

{
−M−1C

.
u(t)− M−1Ku(t) + M−1S f f (t)

}
+ Sv

.
u(t) + Sdu(t)

y(t) = (Sv − Sa M−1C)
.
u(t) + (Sd − Sa M−1K)u(t) + Sa M−1S f f (t)

⇒ H = Hc =
[
Sd − Sa M−1K , Sv − Sa M−1C

]
, D = Dc = Sa M−1S f

(28)

When strain is measured, the strains can be formulated as the linear combination of displacement
states, then the general relation Equation (27) can be rewritten as:

y(t) = Sa
..
u(t) + Sv

.
u(t) + Sdu(t) + Ssu(t) (29)

where Ss is the strain selection matrix. Therefore, if strain measurements are considered, then
(28) becomes:

H = Hc =
[
Ss + Sd − Sa M−1K , Sv − Sa M−1C

]
, D = Dc = Sa M−1S f (30)

2.4. AKF Update via Multi-Metric Observation

Multi-metric approaches combining specialized metrics have tremendous potential to enhance the
quality of the obtained information, providing a comprehensive way to take the respective advantages
and to overcome the weakness of such single-metric methods [49,50]. Civil structures are exposed to
both low- and high-frequency force excitations; therefore, the Multi-metric approach investigated here
can improve the AKF accuracy for estimating broadband force excitations.

In addition, the Multi-metric method can contribute to solving the stability issue of the
AKF. Naets et al., (2015) analytically pointed out the stability problem of the AKF using the
Popov-Belevitch-Hautus (PBH) criterion. Particularly, when acceleration measurements are only
used in the measurement update, the AKF intrinsically suffers from the instability issue [41].

Based on the PBH criterion, a system is detectable if and only if the PBH matrix (given below)
has full column rank for all the eigenvalues, s, or the undetectable modes have an eigenvalue with a
negative real part, i.e., are stable [41]:

PBH =

[
sI − Aac

Hac

]
(31)
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In the above equation, to test the detectability, it suffices to check the rank of matrix for the
eigenvalues of the augmented system which consist of eigenvalues of the dynamic system and zeros
accounted for the unknown forces [31]. Expanding PBH using (17) and (19) it would be easier to
investigate stability for different measurements:

PBH =

⎡⎢⎢⎢⎣
sI −I 0

M−1K sI + M−1C −M−1S f
0 0 sI

Ss + Sd − Sa M−1K Sv − Sa M−1C Sa M−1S f

⎤⎥⎥⎥⎦ (32)

In the case when acceleration only is measured in all DOFs, Ss = Sd = Sv = 0 and Sa = I, then in
the PBH matrix, the first and last columns are linearly dependent at s = 0, as shown in Equation (33).
Therefore, the system is not observable when acceleration measurements only are used. The same
problem occurs, when velocity only is measured:

PBH =

⎡⎢⎢⎢⎣
0 −I 0

M−1K M−1C −M−1S f
0 0 0

−M−1K −M−1C M−1S f

⎤⎥⎥⎥⎦ (33)

Another reason to consider zero eigenvalue, i.e., s = 0, to check the detectability is to account
for possible uncertainties available in the systems, numerical modeling, and response measurements.
For real dynamic systems, the case having zero eigenvalue do not exist. But such uncertainties can
result in zero eigenvalue in the observation. Thus, detectability of the system should be ensured for all
eigenvalues, including zero eigenvalue.

In the case of displacement measurements available, regardless of whether full or partial
displacement measurements are used, the system is detectable in the presence of system damping [41].
However, measuring absolute displacements in the field is a challenging task for full-scale
civil structures.

For the case where strain measurements are used, considering the observation matrix which
contains the strain selection matrix, see Equation (30), the same argument made for displacement
measurements hold and the system would be detectable in the presence of damping even for partial
strain measurements. When accelerations together with strains are measured, i.e., the Multi-metric
observation, Ss �= 0, Sd = Sv = 0 and Sa �= 0; then the PBH matrix becomes:

PBH =

⎡⎢⎢⎢⎣
sI −I 0

M−1K sI + M−1C −M−1S f
0 0 sI

Ss − Sa M−1K −Sa M−1C Sa M−1S f

⎤⎥⎥⎥⎦ (34)

Even if accelerations and strains for all DOFs are not measured, in presence of damping the
non-observable modes would be stable and therefore detectability of the system is satisfied. Instead
of using acceleration and strain measurements, one potential solution may be using acceleration
measurements to estimate velocity and displacement via numerical integration. This may seem a
straightforward and easy task but indeed it is not. Especially it is very difficult to handle nonzero
direct current (DC) value or low frequency components even in numerical simulation (see pages 51–55
in [51]). In practice, accelerometers are not sensitive to very low frequency and they can’t measure
static forces. Moreover, data acquisition (DAQ) systems have some drift and it is complicated to
separate such effects from low frequency forces. Therefore, integrating acceleration numerically does
not provide us with the correct estimate of velocity and displacement.
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2.5. Strain Selection Matrix for Planar Truss

Structural deformations of many civil structures can be reasonable assumed to be small, compared
with the size of the structure, during their operation. Exploiting this small deflection assumption, it is
possible to linearly relate the strains to the displacements (states) with high accuracy. To obtain the
linear relation between strains and displacements in a planar truss structure, a general deflection of
part of the truss is shown in Figure 2 (left). To see how the strains can be estimated from displacements
using a linear relation, it would be simpler if the deformed shape is translated such that one of the
shifted nodes coincide with its initial position, that is shifting i’ to i (right in Figure 2).

Considering the geometrical relation, when the deformation is small, using Equation (35) strain is
estimated from the states linearly:

Δ ≈ (D2j−1 − D2i−1) cos (θ) + (D2j − D2i) sin (θ) (35)

In matrix form:

ε =
Δ
L
=
[

0 · · · − cos (θ)
L

− sin (θ)
L · · · + cos (θ)

L
+ sin (θ)

L · · · 0
]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1
...

D2i−1
D2i

...
D2j−1

D2j
...

D2N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= Ssu(t) (36)

To better understand the selection matrices Sa, Sv, Sd, Ss, and S f consider the simple
one-dimensional lumped mass 4-DOF system shown in Figure 3:

Figure 2. General exaggerated deformation of part of the truss structure (Left)—translated deformed
shape to coincide the node “i” with its initial undeformed shape (Right).

Figure 3. Four Degree of Freedom system with one excitation on the 2nd DOF.
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A force (f) is applied on the 2nd mass (DOF) and the acceleration of the 1st, 2nd, and 4th DOF
are measured, and the strain between the 2nd and 3rd and between 3rd and 4th DOF (masses) are
measured. In the observation (measurement) vector, the first row has information of acceleration of
first mass; second row has information of acceleration of second mass; third row has information of
acceleration of fourth mass; fourth row has the strain between 2nd and 3rd DOF and the fourth row
has the information of the strain between 3rd and 4th DOF:

Sa =

⎡⎢⎢⎢⎢⎢⎣
1
0
0
0
0

0
1
0
0
0

0
0
0
0
0

0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎦, Sd = Sv =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎦, Ss =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
0

0
0
0
1
0

0
0
0
−1
1

0
0
0
0
−1

⎤⎥⎥⎥⎥⎥⎦, Sp =

⎡⎢⎢⎢⎣
0
1
0
0

⎤⎥⎥⎥⎦

2.6. Strain Selection Matrix for Planar Truss

In Finite Element Methods for solid mechanics, strain and nodal point displacements are related
via the following equation:

{ε} = TN{u} = Ssu(t) (37)

The product of differentiation matrix operator T, and shape function matrix N is called
displacement differentiation matrix. The differentiation matrix operator for different solid mechanics
elements such as beams, plates and shells can be found in solid mechanics finite element methods
books. For example see Chapters 2 and 3 in [52].

3. Simulations and Results

Responses of a planar steel truss structure model (see Figure 4) with 18 joints and 34 members are
simulated using the fourth order Runge-Kuta method [53]. The time step for response simulation is
1/4096 s. Quality of the simulation is validated by calculating the multiple coherence function [54]
shown in Figure 5. The coherence function is a scalar value between zero and one; in which one
indicates the outputs are fully due to the inputs. At resonance, there are some drops; which are partly
due to small numerical errors in solving the equation of motion and mainly due to spectral leakage
and biased and random errors of spectral estimations (see [51] pp. 205–240), because finite amount of
data is used to do so. The structure with its node and element numbers is depicted in Figure 4, and
the properties of the elements are given in Table 1. A modal damping ratio of 0.7% was considered
for all the modes of the structure. In Figure 4, red bold arrows show the applied force locations in
the structure; four different excitations are simultaneously applied to the system. H16,16—Frequency
Response Function (FRF) of the system between measured DOF “16” and excitation at DOF “16”,
called point FRF—is shown with a dotted line in Figure 6. DOF “16” is vertical direction of joint 8.
This system is used for response simulations. To have realistic situation for force estimation, the same
system used for simulation is not used in the Kalman Filter. This is done because a perfect model of
the structure almost never happens. A slightly different model which is 5% stiffer is used representing
a modeling error (5%). The point FRF (H16,16) of this stiffer model used in K-F is shown by red solid
line in Figure 6.

Several simulations are conducted with different combinations of responses, such as accelerations,
displacements, and strains for estimation of the applied forces using the augmented Kalman filter
method. For simulating the strain, Sij(t), which is the strain of the link with the end nodes “i” and “j”,
the following formula is used:

Sij(t) =

√[
(Xi + D2i−1)− (Xj + D2j−1)

]2
+
[
(Yi + D2i)− (Yj + D2j)

]2 −
√
(Xi − Xj)

2 + (Yi − Yj)
2√

(Xi − Xj)
2 + (Yi − Yj)

2
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Figure 4. The model of the truss used for simulation—Blue italic numbers show the member number
and the black ones indicate the node numbers. There are eighteen nodes and 34 members; Red bold
arrows show where the simultaneous excitations are applied.

Figure 5. Multiple coherence function is always between zero and one. One indicates all the measured
output is due to the considered inputs while zero means other factors (noises, unconsidered input, etc.)
have caused the output(s).

Table 1. Properties of the truss structure.

Elements Young Modulus (Pa) Cross Section Area (cm2) Density Kg/m3

1, 6, 10, 14, 18, 23, 27, 31, 34 200 × 109 15 7800

2, 3, 4, 7, 8, 11, 12, 15, 16, 20,
21, 24, 25, 28, 29, 32, 33 200 × 109 9.75 7800

5, 9, 13, 17, 19, 22, 26, 30 200 × 109 4.75 7800

Figure 6. Dotted black: FRF of the system that is used for simulation of response; Solid red line: FRF of
the perturbed system, to represent modeling error (5%) used for input estimation.

486



Sensors 2017, 17, 2656

In Figure 7 typical accelerations and strains responses from the numerical simulations, when the
system is subjected to the combination of different forces simultaneously applied to the structure, are
shown. In the right of Figure 7, low-frequency variations can be clearly observed in the strain data
due to very low frequency excitations applied to the system, but not in acceleration data; which are
intrinsic characteristics of acceleration and strain measurements.

 

Figure 7. Simulated acceleration (Left) in vertical direction at Node “8” and strain (Right) in
the member “22” when the forces shown in Figure 11 (dotted black) are applied to the structure
simultaneously. Low frequencies (almost DC components) are seen in the strain measurements.

If there are forces with zero mean value and no (or very small) measurement noise or modeling
error, it is possible to estimate the inputs using only acceleration. However, if different combinations of
loading are applied and some of them have non-zero mean values then acceleration-based estimation
is misleading. Different combinations of responses are simulated to use for force estimation:

Case 1

- Only acceleration measurements are used.
- System is subjected to random excitations (vertical direction at joints “4”, “8”, and “12”) and

impulse applied in the vertical direction of joint “6”.
- Regarding presence of noise and modeling errors, two cases are considered: i) without modeling

error and measurement noise and ii) with modeling error (5%) and measurement noise (2%).

Case 2

- Another case that only acceleration measurements are used.
- But, different forces are simultaneously applied at four nodes in vertical direction. Random

(vertical direction of Joint “4”), impulsive (vertical direction of Joint “6”), random + low varying
high amplitude (vertical direction of Joint “8”), noise + ramp shape (vertical direction of
Joint “12”).

- Whether errors are available or not, two cases are considered: (i) without modeling error and
measurement noise and (ii) with them where the results are again unstable as in case 1 when
noise was considered.

Case 3

- The case that only strain measurements are used.
- Loading condition is the same as Case 2
- Modeling errors and measurement noises are considered.
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Case 4

- The case that both acceleration and strain measurements are used.
- Loading condition is the same as Case 2
- Modeling errors and measurement noises are considered.

3.1. Case 1: Acceleration Measurements Only—Random and Impulsive Excitation

3.1.1. No Modeling and Error, No Measurement Noise

The model shown in Figure 4 is subjected to random excitations and impulse. Uncorrelated
random forces are exciting the structure in the vertical direction at nodes 4, 8, and 12 and impulsive
force is applied at node 6 also in the vertical direction. The applied forces are shown with dotted black
lines in Figure 8. Acceleration responses are simulated and measured in vertical direction at nodes 2, 4,
5, 6, 7, 8, 9, 12, 14, 15 and in horizontal direction at nodes 4, 5, 8, and 9.

Figure 8. System is subjected to three uncorrelated random noise in vertical directions at nodes 4, 8,
and 12 and impulse applied at node 6 (vertical). Excitations are estimated by AKF only using the
accelerations; neither modeling nor measurement error is considered.

Using the accelerations and AKF algorithm, without considering measurement noise and
modeling errors, the applied forces are estimated. The results are shown in Figure 8. In Figure 9,
the estimated loads are shown for a smaller time interval to see the accuracy of estimation.

It is seen that it is possible to estimate the excitation(s) using only acceleration measurements
provided that:

1) there is no measurement noise and modeling error, and
2) the structure is subjected to random zero mean and impulsive forces, Then, even when forces are

applied simultaneously at different locations of the structure, it is possible to estimate the input
loading reliably. However, assuming no measurement errors and no discrepancy between the
dynamic response of model and the real structure is too far from reality.
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Figure 9. Estimated and applied forces shown for smaller time interval: detail of Figure 8.

3.1.2. Modeling Error (5%) and Measurement Noise (2%)

In practice it is not possible to have an exact model, nor is it possible to have noise free
measurements, so we have considered such uncertainties for force estimation. The results are shown
in Figure 10. It is seen that the estimation becomes unstable; which is attributed to the fact that the
AKF to use only acceleration data in the measurement update stage is not detectable as described in
the Section 2.4. For undetectable systems, the states cannot be reliably estimated with the observed
information. Such instability issues have been reported in other papers as well [40,41].

Therefore, when the structure is subjected to multiple zero mean random and impulsive
forces, only acceleration measurements can be misleading to estimate the applied forces if there
are measurement noises or modeling errors. Since such uncertainties are inevitable in almost all
real-world situations, we can conclude that only acceleration measurements will end in erroneous
force approximation.

Figure 10. Same loading as in Figure 8, but in this case both the measurement noises (2%) and modelling
errors (5%) are present.
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3.2. Case 2: Acceleration Measurements Only—Presence of Low Varying and Non-Zero Mean Excitations

3.2.1. No Modeling and Error, No Measurement Noise

The measurement configuration is same as “case 1” but the excitations are different statistically;
that is in addition to random and impulsive load applied in vertical direction of nodes 4 and 6,
respectively, low varying plus random excitation and ramp shape plus random excitation are applied
to the nodes 8 and 12. The applied forces are shown with dotted black lines and estimated forces by the
AKF are shown with red solid lines in Figure 11. Even without considering any additional uncertainties,
such as measurement noise and modelling error, it is seen that only acceleration measurements are not
effective in estimating low-frequency (at node 8) and nonzero-mean excitation (at node 12); also, zero
mean random (at node 4) and impulsive load (at node 6). Estimations by AKF are highly biased in the
presence of nonzero low varying forces. This instability in the presence of nonzero mean low varying
excitations can be attributed to the rigid body modes as was discussed in the case of eigenvalues equal
to zero in Section 2.4.

Figure 11. System is subjected simultaneously to four different forces where some of them have nonzero
mean and low frequency and high amplitude. No error (modeling and measurement error) is added
and excitation is estimated by AKF only using the accelerations. Even without added uncertainties
relying solely on acceleration will fail to estimate the inputs.

Power spectrums of estimated and applied forces at two locations are given in Figure 12. It is
seen, even though no modeling error or measurement noises are considered, using acceleration only
the low frequency components cannot be captured.

Figure 12. Frequency contents of applied and estimated forces at nodes 4 and 12 for “case 2”.

When there are nonzero low varying forces applied to the structure, it is not possible to obtain good
estimates of applied forces based on only acceleration measurements even if there is no measurement
noise nor modeling error. Specifically, low frequencies cannot be captured in this case.
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3.2.2. Modeling Error (5%) and Measurement Noise (2%)

The results for the acceleration only case when modeling error and measurement noises are
present are shown in Figure 13. As expected, the estimation fails to approximate the excitations.

Figure 13. Same as Case 2 but there is modeling error (5%) and measurement noise (2%).

As expected, in the presence of nonzero low varying forces and modeling errors and measurement
noises there will be large deviations in the estimated excitations.

3.3. Case 3: Only Strains Are Measured—Modeling Error (5%) and Measurement Noise (2%)

Only strain measurements would be attractive to consider; for this case of force reconstruction
based only on strain measurements, Strain of members 4, 5, 9, 12, 13, 16, 21, 24, and 26 are simulated.
The results of estimated forces are shown in Figure 14.
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Figure 14. System is simultaneously subjected to four different forces shown with dotted black;
Modeling (5%) and measurement error (2% of rms of the random signal) is added and excitation is
estimated by AKF using the strain measurements with single acceleration measurement.

Again, the results shown in Figure 14 are plotted for shorter time interval and are given in
Figure 15.
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Figure 15. The results shown in Figure 14 are re-plotted for shorter time intervals to see the quality
of estimation.

In the case of only strain measurements, it is possible to capture the low variations of the force
even when both measurement noises and modeling errors are present. However, in high frequencies
the variations are not captured reasonably.

3.4. Case 4: Strain and Acceleration—Modeling Error (5%) and Measurement Noise (2%)

Since strain measurements are simpler and more accessible than displacement measurements,
a combination of acceleration and strain measurements for force estimation using AKF are investigated.
The linear estimation of strains based on displacements is given in Equation (35) for planar
truss structure.

The applied forces to the system are same as “case 2”. Modeling error and measurement noises
are considered. The accelerations are measured in vertical directions at nodes 4, 6, 8, and 12 and in the
horizontal direction at node 6; Strains are measured in members 5, 9, 13, and 26. To see the quality of
the estimated forces, the results shown in Figure 16 are plotted for shorter time interval and are given
in Figure 17.
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Figure 16. System is simultaneously subjected to four different forces shown with dotted black;
Modeling and measurement error (2% of rms of the random signal) is added and excitation is estimated
by AKF using the accelerations and strain measurements.
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Figure 17. The results shown in Figure 16 are re-plotted for shorter time intervals to see how the
estimation follows the applied forces in more detail.

It is seen that in the multi-metric case, i.e., deploying strain and acceleration measurements
together, the best results are achieved in low-frequency as well as high-frequency and the estimation is
stable. Frequency content of estimated and applied forces at nodes 4 and 12 are shown in Figure 18.

Figure 18. Frequency content of applied and estimated forces at Nodes 4 and 12 for “case 3”.

The results of the above-mentioned cases are summarized in Table 2. For the sake of conciseness,
the cases when there is no measurement noise and modelling errors were not discussed for only strain
measurements (case 3) and multi-metric measurements (case 4).

Table 2. Results summary for different cases. The symbols are: Yes (
√

), No (  ), and Not Applicable (-).

Configurations and
Frequency Ranges

Random and Impulsive Excitation
Random and Impulsive Excitations + Low Varying

and Non-Zero Mean Excitations

No Measurement Noise
& No Modelling Error

2% Measurement Noise
& 5% Modelling Error

No Measurement Noise
& No Modelling Error

2% Measurement Noise
& 5% Modelling Error

Acc.
Low Frequency - -   

High Frequency
√

   

strain
Low Frequency - -

√ √

High Frequency     

Acc. +
strain

Low Frequency - -
√ √

High Frequency
√ √ √ √
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3.5. Comparison of Different Types of Measurements

For the purpose of comparing the quality of input estimation based on different types of responses
or their combinations, the root mean square of the difference between estimated and applied force
vectors is calculated using Equation (38) and is plotted in Figure 19:

RMS error =

√√√√ 1
Nl

Nl

∑
i=1

(
F(i)− F̂(i)

)2 (38)

in the above formula, Nl is number of samples in the force vector, F is the applied (reference) force and
F̂ is the estimated force.

Figure 19. RMS error between the estimated and applied forces for different types of measurements.

NOTE: It is also possible to use other measures to check the quality of input estimation;
for example, one possible way is to compare norm of the estimated vector to the norm of reference
vector divided by the norm of reference vector:

error = 100 × ‖F‖ − ‖F̂‖
‖F̂‖ (39)

but in this case if low frequency estimation or the trend of estimation has good accuracy, then by
increasing the amplitude of low varying excitation the RMS error will be reduced. In this case,
the quality of estimation depends on the magnitude low frequency components and is misleading.
Therefore, we have selected former formula in order to check the quality of estimations.

It is seen that in the case of multiple loads simultaneously applied to the system where some of
them have low varying nonzero mean components, then if only accelerations are measured then the
error of estimation is very high compared to the case of only strain measurements. The best result is
obtained when multi-metric measurements, strain and acceleration, is used.

3.6. Effect of Different Configurations for Strain and Acceleration Measurements

Four different strain and acceleration arrangements to measure the responses of the structure
are considered (Figure 20). The quality of input force estimations for the applied forces described in
“case 2”, when modeling errors and measurement noises are present, are compared and plotted in
Figure 21.
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(a) (b)

(c) (d)

Figure 20. Four different strain and acceleration measurement configurations; Acceleration
measurement shown by red arrow and strain measurement shown by blue rectangle. (a) Set 1; (b) Set 2;
(c) Set 3; (d) Set 4.

Figure 21. RMS error of estimated and applied forces for different strain gauges and accelerometer
configurations on the truss structure, in presence of modeling error and measurement noises. Applied
forces are dotted black line in Figure 11.

Measurement configuration (a) was used for force estimation and the results are shown in case 4.
Using a different measurement configuration (b) shown in Figure 20, the same input forces applied to
the structure in case 4 are estimated for the purpose of Multi-metric measurement configuration and
the results are shown in Figure 22 and for smaller time interval in Figure 23.

It is seen that the results in the former sensor configuration (set “a”) for the strain and acceleration
is better particularly the estimated force at Node 12. Generally, having sensors closer to the input
locations increases the quality and accuracy of estimation [18,41]. It is observed that for the current
formulation, using multi-metric measurements solves the stability issue. But if accurate estimation of
excitation for a certain location is desired, there should be a measurement point close to that location.
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Figure 22. Same as Figure 16 but the measurement configuration is different. Sensor arrangement is
shown in Figure 20b.
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Figure 23. The results shown in Figure 22 are re-plotted for shorter time intervals to see the quality
of estimation.

4. Discussion and Conclusions

In this study, incorporation of strain measurements together with acceleration measurements
in AKF process has been explored to provide a reliable and accurate force identification scheme for
dynamic structures. Incorporating Multi-metric observations in AKF has been formulated and the
method has been numerically validated using a planar truss structure simultaneously subjected to
various types of forces. The proposed Multi-metric AKF approach showed significant improvements
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both in reliability and accuracy of dynamic force estimations under uncertain numerical modeling and
measuring environment.

When only acceleration measurements, which are cheap and easy-to-obtain in practice, were
used, AKF was found to be reliable just for the cases where none of the measurement noises, modeling
errors, low frequency and nonzero forces are present (see Table 2). Use of displacement measurements
resolves the stability issues, but are expensive and difficult to deploy in practice. On the other hand,
strain measurements are easier and more practical in many cases. As a remedy to the inaccuracy and
instability with the force estimation problem, AKF to use both acceleration and strain measurements
was formulated. And its efficacy was validated using numerical simulation of a truss structure
subjected to broad band excitations. To have more realistic simulation, measurement noises (2%) and
modeling error (5%) were considered in AKF. additionally, it was observed that using only strain
measurements for AKF can estimate the low-varying components of excitation with good accuracy but
not for the high-frequency components. The results for different measurement configurations and for
different cases were summarized in Table 2. In the future, researching the optimization of measurement
configuration will be carried out and experiments on the proposed multi-metric approach for AKF
will be conducted both in lab- and field-scale testbeds to further examine its performance.
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Abstract: The wide spread usage of wearable sensors such as in smart watches has provided
continuous access to valuable user generated data such as human motion that could be used to identify
an individual based on his/her motion patterns such as, gait. Several methods have been suggested to
extract various heuristic and high-level features from gait motion data to identify discriminative gait
signatures and distinguish the target individual from others. However, the manual and hand crafted
feature extraction is error prone and subjective. Furthermore, the motion data collected from inertial
sensors have complex structure and the detachment between manual feature extraction module and
the predictive learning models might limit the generalization capabilities. In this paper, we propose
a novel approach for human gait identification using time-frequency (TF) expansion of human gait
cycles in order to capture joint 2 dimensional (2D) spectral and temporal patterns of gait cycles.
Then, we design a deep convolutional neural network (DCNN) learning to extract discriminative
features from the 2D expanded gait cycles and jointly optimize the identification model and the
spectro-temporal features in a discriminative fashion. We collect raw motion data from five inertial
sensors placed at the chest, lower-back, right hand wrist, right knee, and right ankle of each human
subject synchronously in order to investigate the impact of sensor location on the gait identification
performance. We then present two methods for early (input level) and late (decision score level)
multi-sensor fusion to improve the gait identification generalization performance. We specifically
propose the minimum error score fusion (MESF) method that discriminatively learns the linear
fusion weights of individual DCNN scores at the decision level by minimizing the error rate on the
training data in an iterative manner. 10 subjects participated in this study and hence, the problem is
a 10-class identification task. Based on our experimental results, 91% subject identification accuracy
was achieved using the best individual IMU and 2DTF-DCNN. We then investigated our proposed
early and late sensor fusion approaches, which improved the gait identification accuracy of the
system to 93.36% and 97.06%, respectively.

Keywords: gait identification; inertial motion analysis; spectro-temporal representation; deep
convolutional neural network; multi-sensor fusion; error minimization

1. Introduction

Gait refers to the manner of stepping or walking of an individual. Human gait analysis
research dates to the 1960s [1] when it was used for medical purposes for early diagnosis of various
disorders such as neurological disorders such as Cerebral Palsy, Parkinson’s or Rett syndrome [2],
musculoskeletal disorders such as spinalstenosis [3], and disorders caused by aging, affecting large
percentage of population [4].

Reliable monitoring of gait characteristics over time was shown to be helpful in early diagnosis
of diseases and their complexities. More recently, gait analysis has been employed to identify
an individual from others. Unlike iris, face, fingerprint, palm veins, or other biometric identifiers,
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gait pattern can be collected at a distance unobtrusively [5]. In addition, recent medical studies
illustrated that there are 24 various components to human gait and that gait can be unique if all
movements are considered [6]. As a result, gait has the potential to be used for biometric identification.
It is particularly significant as gait patterns are naturally generated and can be seamlessly used for
authentication under smart and connected platforms e.g., keyless smart vehicle/home entry [7],
health monitoring [8], etc.

In recent years, there has been much effort on employing wearable devices for activity
recognition [9], activity level estimation [10], joint angle estimation [11], activity-based prompting [12],
and sports training [13]. Recently, gait identification using wearable motion sensors has become an
active research topic because of the widespread installation of sensors for measuring movements in
smartphones, fitness trackers, and smartwatches [7,14]. Most of the wearable motion sensors use Micro
Electro Mechanical Systems (MEMS) based inertial sensors. These inertial sensors (accelerometers,
gyroscopes) are one of the most important members of MEMS family and are combined together as
inertial measurement units (IMU). Most modern accelerometers are electromechanical devices that
measure acceleration forces in one, two, or three orthogonal axes. Gyroscope sensors are devices that
measure angular velocity in three directions. Due to their small-size, portability, and high processing
power, IMUs are widely used for complex motion analysis. Hence, gait recognition using wearable
IMUs has become an efficient Privacy Enhancing Technology (PET) [15].

Advent of MEMS-based accelerometers and gyroscopes and wireless interfaces such as Bluetooth
and Wi-Fi have made the measurement setup for gait analysis data collection non-intrusive and
ubiquitous. IMUs have become a significant part of ubiquitous smart devices and therefore integration
of inertial sensors in smart devices has become a common practice. There is a mass of people using
smart devices on a daily basis. With the latest achievements in the field of pervasive computing,
limitations of inertial sensors such as cost, storage, and computational power were overcome to
a great extent [16]. Therefore, inertial sensors are not only restricted to simple tasks such as tilt
estimation but also for complex tasks such as advanced motion analysis, and activity recognition [14].
They have also been evaluated in medical applications, such as analysis of patient’s health based on
gait abnormalities [17], fall detection [18]. Although the IMU-based wearables have enabled pervasive
motion and gait analysis, there are some intrinsic challenges with those devices. Since, the wearable
device is always worn casually, relative orientation between the sensors and the subject body cannot
be fixed over different sessions of data acquisition [19]. As the coordinate system used by sensors
is defined relative to the frame of the device, small orientation changes of sensor installation may
make measurements quite different [19]. The issue of ensuring orientation invariance in extracting gait
features has been a matter of concern in many studies. In [20], the authors introduced an orientation
invariant measure to alleviate the orientation dependency issue. In this work, we also employ
an orientation invariant resulting measures of motion as the input signals.

A large number of research studies have been conducted on developing gait recognition systems
using inertial sensors. As a pioneer study in this field, in [21], a triaxial accelerometer was used and
fixed on a belt to keep the relative position between the subject’s body and sensors unchanged. In order
to detect the gait cycles, they have applied a peak detection method. Then, they implemented a template
matching process to identify their subjects from their gaits. Due to the less contribution of axis Y,
authors just used X and Z axes. Similarity-based measures and machine learning are two frequently
used approaches for gait identification in the recent literature. Similarity-based measures such as
Tanimoto distance [22], dynamic time warping metrics (DTW) [23], and Euclidean distance [24] have
been used in the recent studies. Similarity-based approaches are dependent on selecting representative
gait patterns (commonly by an expert and manually) and requires storing them for all subjects in order
to compare them with the search population, which, in turn, results in lower efficiency in storage
and computation. Machine learning techniques are commonly designed in two major modules after
pre-processing of the motion data: (1) feature extraction from the input signal in short windows of the
streaming data; and (2) model training to generate a predictive model fed by the data at the feature
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space. Various modeling algorithms such as Bayesian network classifier [25], hidden Markov model
classifier [24], support vector machines, and decision trees [25] have been used in gait recognition
applications. The performance of such systems are highly dependent on the extracted features and
their resulting hypothesis class, which is the set of possible predictors with the fixed set of features.
The impact of noise interference and particularly motion artifacts on complex sensor data makes the
task of extracting relevant and robust features very challenging. Commonly, feature extraction is
undertaken manually and via handcraft effort for a specific application [15]. However, extracting
manual and hand crafted features for machine learning based systems is cumbersome, subjective,
and is prone to biases due to the complexity of sensor data collected from IMUs [26,27]. Manual feature
extraction is heuristic and can result in poor expressivity of the feature set (i.e., the set of possible
predictors with a fixed set of features may not be good enough). Therefore, the best model given the
manual features might generate poor accuracy compared to an optimal performance given the desired
representative feature subspace. Another important reason for poor expressivity of commonly used
machine learning-based methods can be the detachment of feature extraction and the predictive model
training. In this way, important information that might be crucial for high performance predictive
modeling, can be neglected in the process of feature extraction.

In this paper, we propose a gait recognition framework and investigate the ability to extract
time-invariant signature motion patterns within a gait cycle of each subject to identify him/her from
others. We first exploit the information provided by expanding the motion signals recorded from
various IMUs worn by the participants to 2D spectro-temporal space via time-frequency (TF) analysis.
Due to the non-stationarity of the motion signals, TF and instantaneous frequency (IF)-based methods
accommodate the temporal variations in the gait patterns during a gait cycle segment. However,
there are two major issues in order to extract relevant descriptors from the 2D TFs: (a) efficient
selection of relevant features from the 2D spectro-temporal expanded space might not be feasible
due to high dimensionality of the space; and (b) selection of a reliable predictive model given the 2D
TFs is a difficult task due to the high dimensionality of the input space and shallow models might
face the challenge of curse of dimensionality as discussed in [28]. The authors in [28] discussed
that placing decision hyperplanes directly the high dimension space space (the high resolution 2D
TF in this work) might raise the risk of curse of dimensionality and hurt the generalization ability
of the learnt predictive model. They illustrated that incorporating hierarchical locality using deep
learning structures can be sufficient to avoid the curse of dimensionality [28]. Therefore, in this
paper, we design a deep convolutional neural network (DCNN) model that is trained for each of
the sensor nodes (i.e., five inertial sensors) and the modalities (i.e., accelerometer and Gyroscope
readings) to extract individual signature patterns from the 2D expanded gait cycles and optimize
the predictive identi f ication model at the same time in a discriminative fashion. The best individual
DCNN performance reaches 91% identification accuracy. In order to aggregate the complementary
discriminative information from all sensors, we then investigate multi-sensor early and late fusion
with the aim of improving the gait identification performance. We achieve the average accuracy of
93.36% via early fusion by augmenting multi-sensor gait cycles at the input level. In late fusion,
a discriminative performance measure is introduced that directly relates the performance of the fusion
of individual sensor DCNN models to the fusion weight parameters. Using the introduced measure,
we propose the minimum error score fusion (MESF) learning method that discriminatively optimizes
the linear fusion weights of DCNN scores at the score level by minimizing the error rate on the training
data in an iterative manner. The average gait identification accuracy of 97.06% is achieved by applying
our proposed MESF method on the DCNN decision scores.

2. Method

We aim to automatically identify a target subject given their gait information. Assuming M target
subjects, given an unknown gait segment, a gait identification system gives the corresponding subject
identity, ϕ, where ϕ ∈ {1, · · · , M}. Figure 1 illustrates the structure of the gait identification task.
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As shown in Figure 1, gait segments are processed and relevant features are extracted from them either
manually or automatically. Then, a set of reference models, learned in the training phase using a set of
training data, is employed to classify the input gait segments to one of the M subjects. Each model,
ϕ, generates a likelihood score of an input gait segment belonging to the target subject ϕ. The aim
is to identify each subject based on their individual gait characteristics given that all the subjects are
performing the same activity i.e., gait. In order to achieved this goal in this paper, we capture and
identify visual high level spectro-temporal features in an isolated gait cycle in a discriminative fashion
using DCNN and multi-sensor fusion.

Figure 1. Human gait identification task.

The overview of the proposed gait identification system is depicted in Figure 2. Raw motion
data is collected from five inertial sensors worn by a population of subjects. Then, gait cycles are
extracted and transformed to 2D TF space. The high-level one-vs-rest subject discriminative features
of the expanded gait cycles are captured through the 10-layer hierarchies of the DCNN and predictive
model training is conducted jointly using the last layers of the DCNN network to perform the human
identification task. We then combine the individual sensor systems via performing multi-sensor early
and late fusion.

Figure 2. The overview of our proposed system for Human Gait Identification.
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2.1. Experimental Setup and Data collection

A total of 10 subjects participated in the experimental procedure. In this way, we present a solution
for a 10-class problem as a proof of concept of identifying a target person among overall 10 subject
population (with 10% expected accuracy of random guess). A set of five inertial sensors were placed at
various locations including chest, right wrist, right knee, right ankle and lower back in order to conduct
a gait identification performance comparison between different sensor locations and improving the
overall performance via multi-sensor fusion. Table 1 provides the detailed characteristics of the
sensors [29,30]. The motion sensor system employed for this study was Shimmer sensor platform,
which is a wearable senor platform with wireless interface. It houses both the accelerometer and
gyroscope inertial sensors. The data collection sessions were synchronized across all the sensors and
labeled using our in-lab designed Android application developed at the Wearable Sensing and Signal
Processing (WSSP) laboratory, University of Michigan, Dearborn. Each subject was asked to walk the
same route from a specific point to another outside the building.

Table 1. The parameter values of the Gyroscope and Accelerometer sensors.

Gyroscope Accelerometer

2 integrated dual-axis, InvenSense 500 series 3 Axis Accelerometer, Freescale MMA7260Q
Measures angular rate Sensitivity: 800 mV/g @ 1.5 g
Full scale range: ±5000 deg/s 12 bit analogue digital converter (integer number)
Sensitivity: 2 mV/deg/s Resolution: (1.5 g + 1.5 g)/(212) ≈ 7.10 − 4 g/unit
12 bit ADC (integer number) -

2.2. Preprocessing

The raw accelerometer and gyroscope data (Rx, Ry and Rz vectors) collected during the experiment
is contaminated with various noise factors such as motion artifacts, step impacts, sensor orientation
and location related noises along with the necessary gait information. To alleviate the orientation
related biases, resultant vectors of the triaxial sensor data (i.e., accelerometer and gyroscope recorded
data) is computed using Equation (1). Figure 3 illustrates a visualization of resulting factor extraction,
which is an orientation invariant measure of overall acceleration and angular velocity of each IMU.

Mag(t) = R =
√

Rx
2 (t) +Ry

2 (t) +Rz
2 (t) (1)

Figure 3. Resulting Factor Extraction. R indicates resulting factor.

Since typical gait data for normal walking has frequency components in the range of 0.5 to 3.5 Hz,
a 10-th order Butterworth bandpass filter was used to extract the required frequency components from
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the resultant vectors of the IMUs. For Gyroscope data, we assume the first estimated value of direction
vectors to be the same as the direction vectors measured by the accelerometer:

RxEst(0) = Rx Acc(0)

RyEst(0) = Ry Acc(0)

RzEst(0) = Rz Acc(0)

(2)

In our algorithm, we assume the value of the accelerometer, when the sensor device is at rest
(a first few seconds recordings before subjects started the gait paradigm), to be zero.

2.3. Gait Cycle Extraction

Since the data collection through all the sensors is time synchronized, we extracted the gait cycles
from the sensor#1 (i.e., the ankle sensor) and used the same markers for other sensors. The cycle
extraction process implements amplitude check and zero crossing check to extract noise free gait
cycle data.

To approximate the gait cycle frequency, the resultant vectors of accelerometer data from sensor#1
RAcc are passed through a band pass filter of rage 0.5–1.5 Hz. We conduct a more aggressive band pass
filtering only for the purpose of cycle extraction. This eliminates the interference of any high frequency
components while determining the gait cycle frequency. The frequency range of 0.5–1.5 Hz is chosen
to include the average gait frequency, which is 1 Hz. Frequency Analysis consists of finding the energy
distribution as a function of the frequency index ω. Therefore, it is necessary to transform the signal to
the frequency domain by means of the Fourier transformation:

X(ω) =
∫

x(t)e−jtωdt (3)

where x(t) is the time domain signal. A Fourier transform is performed on the resultant data and the
dominant frequency component within the range of 0.5 to 1.5 Hz is selected as the gait cycle frequency
of that subject fcycle.

In order to remove irregular gait cycles,the RAcc is checked against the amplitude threshold of
a signal 0.05. If there are samples that have values below the threshold, those samples are neglected
and samples with an amplitude above the threshold are collected into small local windows. Gait cycles
are extracted from these local windows (LW) following the process shown in the Algorithm 1.

Algorithm 1: Gait Cycle Extraction Process
ScycleStart = 0

while (LWend < length(LW))
ScycleEndTemp = ScycleStart + ScycleO f f set
ScycleEnd = ScycleEndTemp ± SzeroCrossing
ScycleStart = ScycleEnd
LWend = ScycleStart

end

To synchronize the cycles, zero crossing of the RAcc is taken as a reference point and the samples
between a given zero crossing and the subsequent zero crossing at ScycleO f f set samples away from
previous zero crossing is considered to be a gait cycle. ScycleO f f set is calculated using Equation (4),
where fs is the data sampling frequency 50 Hz in our empirical investigations.

ScycleO f f set =
fs

fcycle
(4)
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The end sample of this cycle ScycleEndTemp is approximated initially based on the fcycle but a more
precise ScycleEnd is calculated based on finding a zero-crossing sample near the initial approximation.
The local window indices of the start and end of cycle data ScycleStart and ScycleEnd are then mapped to
the global window of RAcc.

Cycle data collected across all subjects and sensors were observed for data consistency, i.e.,
the number of gait cycles extracted per sensor. Considering this number as a measure of data integrity,
the ankle-based accelerometer (sensor#1) captured nearly all of the gait cycles performed by different
subjects consistently. Hence, it was selected as the reference sensor with discriminative features to
represent the gait cycle. Gait cycles are extracted from other sensors based on the indices generated
from the sensor#1 RAcc. Figure 4 shows the gait cycle extracted from Subject#1 for all the five sensors.

Figure 4. Extracted cycle data sample plot for subject 1 across all the sensors.

2.4. Time Frequency Representation

One way to represent and describe a multi-component and non-stationary signal simultaneously
in frequency and time space is considering its instantaneous frequency (IF). To analyze a
multi-component signal, an IF rule can be assigned to all components of the signal. Several IF
estimation methods have been considered for multi-component signals in recent literatures [31]. These
methods first characterize and extract components of the signal and then conduct an IF estimation
procedure. Implementation of a multi-component IF estimation approach includes two major steps
as follows:

1. Applying time frequency transformation.
First step is mapping the input signal to the time and frequency space by applying an appropriate
time-frequency distribution (TFD). TFD method can be chosen by considering the characteristics
of the input signal.

2. Choosing a proper method for estimating IF.
Methods for estimating IF consider the TFD space (G(T, F)) as a two dimensional representation,
which its coordinates are row (time) and column (frequency) of the G space. Then, IF estimation
method by applying first and second derivative tests identifies the local extremums (with respect
to frequency). In this step, valid peak are the local extermums which have values higher or
lower than a predefined threshold. Finally, for detecting the linked components an algorithm
specifically designed for detection of linking component is applied by evaluating the connectivity
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of the pixels and also the number of the connected pixels. The fact behind this is that IF of
a component of a signal (where energy of the signal is concentrated) is observable in the TFD
space as a ridge which describes the IF.

Selection of a proper TFD representation approach for representing gait cycle can be counted
as the first step in designing any identification system using TF space. A proper TFD method is
the one which is capable of emphasizing the non-stationarities of the given signal which, in turn,
gives the system highest discriminative power to correctly discriminate between different cases in the
population under consideration. In this study we use smoothed Wigner-Ville distribution (SWVD)
as it is capable of reducing the cross-term affection while it provides good resolution [31,32]. SWVD
is a variant method which incorporates smoothing by independent windows in time and frequency,
namely (τ) and (t):

SPWV(t, ω) =
∫ +∞

−∞
Wω(τ)[

∫ +∞

−∞
Wt(u − t)x(u +

τ)

2
x∗(u − τ

2
)du]ejωτdτ (5)

The feature extraction using SWVD is based on Energy, Frequency and Length of the principal
track. Each segment gives the values Ek (energy), Fk (frequency), and Lk (length). The signal is firstly
divided into segments; then, the construction of a three-dimensional feature vector for each segment
will take place. Energy of each segment can be calculated as follows:

Ek =
∫ ∫ +∞

−∞
ϑk(t, f )dtd f (6)

where ϑk(t, f ) stands for the time-frequency representation of the segment. However, to calculate the
frequency of each segment k, we made use of the marginal frequency as follows:

Fk =
∫ +∞

−∞
ϑk(t, f )dt (7)

For the purpose of SWVD representation we use a MATLAB toolbox designed by François Auger
at CNRS (France) and Rice University (USA) [32]. Figure 5 illustrates the TF representation using
6 different TF approaches.

Figure 5. Time-frequency representation of one cycle data using different TFDs.

2.5. Deep Convolutional Neural Networks (DCNN)

Figure 6 demonstrates an example TF representation of gait cycle for 10 different subjects. Taking
a close look at the gait cycle data, it is evident that the temporal orientation and order of the data stand
out as significant discriminative features. We design a Convolutional Neural network (CNN) structure
as a deep hierarchical structure for feature extraction and predictive modeling. We intend to verify if
multiple feature maps generated by CNN process would preserve the temporal aspect of the gait cycle
data and provide higher level of discriminative feature space.
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CNNs are most commonly used in pattern recognition. A simple CNN is a sequence of steps
where each step transforms a volume of activations through a set of functions that are differentiable.
They are made up of neurons with learnable weights and biases [33]. Though the weight vector
optimization is similar to the conventional neural networks. CNNs are designed to deal specifically
with 2D or 3D image data. A variety of combinations of linear and non-linear differentiable steps could
be used to build a deep CNN and that determines the complexity of the system [34].

Figure 6. TF representation of gait samples as CNN inputs.

We have developed a non-parametric fully supervised DCNN model for motion-based gait
authentication. The model takes a 3D input image xi and transforms it into a prediction probability
vector yi for ten different classes which correspond to the 10 participating subjects. We train the
model using N labeled images {x,y} where the label yi is the class label of the input data. Training
minimizes a So f tMax loss function with respect to network parameters such as weights and biases
using a gradient descent method and network parameters are updated using back propagation.

We aim to conduct a comparison between the sensor locations in terms of how well each can
describe subject dependent gait signatures towards the identification task. Furthermore, we aim
to investigate multi-sensor fusion in order to enhance the gait identification performance using
complementary information among various sensors.

DCNN Architecture

We have used the following four main building blocks in the DCNN model:

• Convolution.
• Pooling.
• Rectified linear unit (ReLU).
• Fully connected layer.

The convolution layer performs convolution of input with a set of predefined filters, which is a dot
product between the filters and the region they are connected to in the input image. If we consider k
kernels of spatial dimensions’ hk and wk, then the filter tensor would have the dimension of hk × wk
× k × k′ which could be represented by tensor w. Considering a simple convolution layer with zero
padding and a unit stride, the output y after performing convolution on an input layer of tensor x
could be represented as

yi′ j′ k =
hk

∑
i=0

wk

∑
j=0

k

∑
k′=0

wijk′ k × xi+i′ ,j+j′ ,k′ (8)

In Equation (8), xi+i′ ,j+j′ ,k′ represents the (i + i
′
, j + j

′
, k

′
) indexed element of the input tensor x.
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The pooling layer applies a chosen operator and combines closely associated feature values.
It is used to down sample the input image along the width and height. This layer does not require
parameter learning. A simple implementation of max pooling can be represented as

yi′ j′ k =
Max
0 ≤i ≤hp , 0 ≤j ≤wp

{x
i′ ∗ hp+i, j

′ ∗wp+j, k
} (9)

where x and y represent the i
′
j′k indexed input and output layer and hp, wp are the pooling

window dimensions.
The Rectified Linear Unit (ReLU) is a non-linear activation layer introduces the non-linearity

when applied to the feature map. ReLU layer leaves the size of its input unchanged. A simple
implementation of ReLU would be as below:

yi′ j′ k= max{0,xi′ j′ k′ }. (10)

where x and y are input and output of corresponding tensors. Like pooling layer, ReLU does not need
any parameter learning and it does not alter the dimensions of the input layer.

3. Multi-Sensor Fusion

In this work, we investigate 5 different IMU sensor locations on the body and evaluate them for
the gait identification task. Besides the comparison between the sensor locations in terms of how well
each can distinguish subjects based on their gait, we also aim to investigate multi-sensor fusion in order
to incorporate complementary information among various sensors to enhance the gait identification
performance. The sensor fusion system is generally grouped into two types, namely early and late
fusion. The basic idea of fusion is to combine multiple decisions generated by different experts in
an attempt to enhance the performance of the overall system. A key issue to design a suitable and
effective fusion scheme is to appropriately exploit all the available discriminative cues to generate
an enhanced identification performance. Information fusion can be carried out at three levels of
abstraction closely connected with the flow of the classification process: (1) data level fusion; (2) feature
level fusion; and (3) model score fusion [35]. In this work, we present a simple data level fusion by
concatenating the TFs from different sensor nodes and modalities into one collective input to the DCNN
structure. We then propose and investigate an iterative minimum classification error multi-score fusion
algorithm. Figure 7 demonstrates a block diagram of the proposed early and late fusion.

Figure 7. block diagram for early and late score fusion.

3.1. Early Fusion

Sensor fusion at the input level was first considered in this study. We aim to investigate
multi-sensor fusion in order to enhance the gait identification performance using complementary
information among various sensors. The key advantage of CNN is the feature learning ability,
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which can automatically discover an intricate structure and learn useful features from raw data
layer by layer, which enables CNN to fuse input raw data and extract basic information from it in its
earlier layers, fuse the basic information into higher level representation of information, and further
fuse those information in its later higher layers to form the final classification result. For early fusion,
we aggregate the information in all the synchronous IMUs at the input level to feed the DCNN model.
The input level fusion is achieved by combining the 3D gait cycle images from five different sensors
to form a 120 × 120 × 30–dimensional image. The intuition behind early fusion is to incorporate all
possible information that various sensors generate in order for the DCNN learning structure to learn
the discriminative features in an iterative manner.

3.2. Late Fusion

The early-fusion method fuses two or more sensor readings by combining their transformed 2D
gait cycle data. It provides a comprehensive input space to discover higher performance predictors.
However, the input space grows in dimensions via early fusion and therefore, the search space for
the best predictor increases exponentially. On the other hand, DCNN is a gradient descent learning
method for the best predictor, which has serious limitations when the search space grows. Also,
early fusion often cannot handle incomplete measurements. If one sensor modality becomes useless
due to malfunctions, breakdown or etc, its measurements will be rendered ambiguous. In this
section, we investigate late fusion of multiple sensor nodes (i.e., five inertial sensors) and modalities
(i.e., Accelerometer and Gyroscope readings). In this way, a DCNN is independently trained to perform
human gait identification based on each sensor location and modality. Subsequently, the one-vs.-rest
discriminative output scores are fused at to generate the combined gait identification decision. We aim
to design discriminative fusion of classification scores generated by individual DCNNs to reduce the
classification error rate in the gait identification task. The fusion of multiple model scores operates
as a mixture of experts that makes a collective decision by exploiting complementary information
from each of the individual identification models. The input to each different classifier is generated
by the TF spectro-temporal front-ends. If the model outputs associated with the different IMUs offer
complementary information, multi-sensor fusion can improve the performance.

In this way, we generate the posterior probability scores from 10 DCNNs trained on the resulting
factors of accelerometer and Gyroscope readings from five sensor nodes, individually. We introduce
a discriminative performance measure to optimize the performance of the fusion of the 10 DCNNs.
We propose the minimum error score fusion (MESF) method that iteratively estimates the parameters of
a linear fusion with the aim to minimize the identification error rate on the training data. The proposed
iterative algorithm learns the score weights one by one by finding the optimum decision threshold of
each DCNN-i, {i|i = 1, ..., N} for each specific target subject.

3.3. The Minimum Error Score Fusion (MESF)

The human gait identification task is to recognize M target subjects using N individual gait
classifiers (i.e., DCNNs). The i-th DCNN maps the gait segment x to a score vector Si(x) = {Si,j(x)|j =
1, 2, ..., M}, in which each element, Si,j (x), is the log-likelihood score of x associated with the DCNN
i and target subject j. The fusion output score for the target subject j, Scorej(x), is calculated by
combining the output scores of the DCNN sub-systems,

Scorej(x) =

{
N

∑
i=1

wi,jSi,j (x)

}
, j = 1, 2, ..., M (11)

where wi,j is the weight corresponding to Si,j (x). However, unlike conventional linear score weighting
techniques, the weighting coefficients are subject-dependent in which, the weighting coefficients
vary for different subjects and individual DCNNs. By doing so, it is expected that the inter-subject
discriminative information is taken into account. It also may reflect how one DCNN sub-system
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contributes to identify each particular subject. There are a total of N × M weighting coefficients as
fusion parameters to be estimated using the MESF algorithm. We then apply a normalization process
on the scores of M target subjects.

3.3.1. The Process of Score Fusion

Figure 8 shows the process of learning the fusion weights. The MESF learning algorithm uses
error feedback from the final fusion decision to fine-tune the fusion weights. We propose and employ
a discriminative measure to find the optimum decision threshold in a one-vs-rest manner to learn the
fusion weights of the general M-class identification problem. The gait recognition results are reported
as the weighted average over multiple subject identifier DCNNs.

Figure 8. The training paradigm for learning the fusion weights.

As the distribution of the decision scores for each DCNN might be different due to different
node locations and modalities, the scores are less compatible across different DCNN models. Hence,
we conduct score normalization to provide consistency over the output scores of the DCNN models.
The Scoreϕ(x) from Equation (11) is converted to log-likelihood ratio (LLR) Ŝcoreϕ(x) as presented
in [36].

Ŝcoreϕ (x) = Scoreϕ (x)− log

〈
1

M − 1

M

∑
j=1,j �=ϕ

exp
(
Scorej (x)

)〉
(12)

The input segment x is classified as the target subject ϕ if,

Ŝcoreϕ (x) > θϕ (13)

where θϕ is the decision threshold for the target subject ϕ, which is to be learned using cross validation
on the training data. The weight wi,ϕ, corresponding to the DCNNs output score Si,ϕ(x), can be
interpreted as the degree to which Si,ϕ(x) contributes in the identification decision. From Equation (13),
the fusion weight wi,ϕ can be directly related to the final decision as follows,

wi,ϕ >
θϕ + log〈 1

M−1 ∑M
j=1,j �=ϕ exp(−Scorej(x))〉 − ∑N

k=1,k �=i wk,ϕSk,ϕ

Si,ϕ(x)
(14)

That is, wi,ϕ needs to satisfy Equation (14) in order for the input segment x to be identified as the
target subject ϕ. The MESF directly relates the performance of the system to the fusion parameters and
determines the weights one at a time iteratively by solving a one-vs-rest subject identification problem
to minimize the errors of the model score fusion.
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3.3.2. The MESF Algorithm for Fusion Weight Learning

(1) Discriminative performance measure of the linear fusion:

DCNN models usually assign a score S (x) to each unseen gait segment x, expressing the degree to
which x would belong to each of the subject classes. Ideally, the score is an accurate estimate of posterior
probability distributions over the target subject class (i.e., positive class), p(′pos′|x), and the rest of the
subjects (i.e., negative class), p(′neg′|x), for an input x which denotes the estimated probabilities that x

belongs to the positive and negative classes, respectively. We introduce a measure, Θ(x) to convert the
probabilities into discriminative scores as below:

Θ(x) =
p(′neg′|x)
p(′pos′|x) (15)

The measure Θ(x) demonstrates the the degree to which x is predicted to be of the negative class).
By optimizing a threshold on the Θ measure, a statistical classifier can be converted to a discriminative
classifier. In this way, the input x is classified as negative if the Θ(x) is greater than a specified threshold
and positive otherwise. The desired threshold is learned by minimizing the classification error rate on
the training data.

(2) Minimum error rate decision threshold in one-vs.-rest manner:

Assume that a training set {(xt, yt)|t = 1, 2, ..., n} consisting of n labeled data and their Θ measure
Θ(xt) is available. Using the training data, we aim to design an algorithm that finds the value of
the linear fusion weight parameter that makes the optimum decision on a set of labeled training
data samples. The proposed algorithm aims to return the decision threshold ’optimum_thresh’ that
minimizes the error rate of the linear classifier fusion by varying the threshold value from 0 to +∞
and find the optimum value by including false negatives (FN) in the positive class. Therefore, we
rank the data samples in an ascending order of their Θ(.) measure Θ(x1), ..., Θ(xP+N). Considering
any threshold, th, between Θ(xt) and Θ(xt+1), the first K data samples will be classified as positive,
where Θ(xK) < th, and the remaining P + N − K data samples as negative. In this way, a maximum of
P + N + 1 different thresholds has to be examined to find the optimum decision threshold. The first
threshold classifies everything as negative and the rest of the thresholds are chosen in the middle of
two successive Θ measures.

The threshold, optimum_thresh, on the Θ(.) measure is found such that it minimizes the error rate
of the DCNN model score fusion.The data sample xt is classified as positive if Θ(xt) ≤ optimum_thresh.
That is, xt is classified as ′pos′ if,

p(x|′neg′)
p(x|′pos′) < optimum_thresh → p(x|′neg′) < optimum_thresh × p(x|′pos′) (16)

The algorithm results in the highest accuracy achievable with the given Θ(.) on the given set of
data samples. In practice, the quality of the optimization depends on the quality of the positive and
negative scores, e.g., the output posterior probability distributions of the DCNN models. In our fusion
task, if the individual DCNN models generate good quality estimates, the fusion weight learning can
considerably improve the performance. It can also be implemented in an efficient way by exploiting
the monotonically ranked Θ measures.

(3) Discriminative learning of the fusion score weights

We propose an iterative learning procedure in order to minimize the error of the overall human
identifier in one-vs-rest manner by re-estimating the weight parameters of the model score fusion.
The proposed learning method adjusts the fusion weights in the interval [0,∞) using the training gait
segments. The weights assigned to the output scores Si,j(.) are set to one, for wi,j ← 1 for i = 1, ..., N,
and j = 1, ..., M, as an initial solution to the problem. Then, the following procedure is presented,
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in which the error rate of the DCNN model fusion is successively reduced by finding a better solution
than the current one by learning the locally optimum fusion weights, one at a time. To find the weight
wi,ϕ, corresponding to the output score of the DCNN i for target subject ϕ, the problem is considered
to be a 2-class problem where the target subject ϕ is the positive class and ϕ̄ comprising the rest of the
subjects is the negative class. The steps are as follows:

1. The wi,ϕ is set to zero, i.e., Si,ϕ(.) does not contribute in classification decision.
2. The gait segments in the training set belonging to the subject ϕ that are classified correctly with

current values of the model score weights are marked. Adjusting the weight wi,ϕ does not have
any impact on their classification.

3. The gait segments of ϕ̄ in the training set that are misclassified are marked. Adjusting the weight
wi,ϕ does not have any impact on their classification.

4. The remaining m gait segments in the training set {xt|t = 1, ..., m} that are left unmarked are used
to determine wi,ϕ so that the error of the model score fusion is minimized over {xt|t = 1, ..., m}.
From Equation (14), the measure Θi,ϕ(.) is calculated for every segment in {xt|t = 1, ..., m}
as follows:

Θi,ϕ(xt) = [θϕ + log〈 1
M − 1

M

∑
j=1,j �=ϕ

exp(−Scorej(xt))〉 −
N

∑
k=1,k �=i

wk,ϕSk,ϕ(xt)]/Si,ϕ(xt) (17)

where, Θi,ϕ (xt) is the amount of wi,ϕ necessary for xt to be classified as the target subject ϕ.
5. The training segments are ranked in an ascending order by their Θi,ϕ(.) measure. A threshold is

defined and initialized to zero. Then, assuming that xt and xt+1 are two successive segments in
the list, the threshold is computed as,

thresh = [Θi,ϕ(xt) + Θi,ϕ(xt+1)]/2 (18)

Then, the threshold is adjusted from the lowest score to the highest. For each threshold,
the associated accuracy of the score fusion is measured. The value of the optimum_thresh leading
to the maximum accuracy is used as the estimated score weight wi,ϕ, assuming that all other score
weights are fixed.

Figure 9 shows a data sample of a resulting threshold on the Θq,w(.) measure leading to the
highest accuracy. In this way, the input xt is classified as w if its Θ(xt) is lower than the threshold.
The algorithm determines the optimal value of the parameter φq,w assuming that all other parameters
are given and fixed.

Figure 9. A data sample of the resulting thresholds on the Θq,w(.) measure.
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The search for the locally optimum combination of weights is conducted by optimizing the score
weights one at a time and learning stops if no improvement to the current performance can be made.
Based on our observations, the above method consistently generated superior results. The MESF
method determines the decision score weights of the sub-systems in order to better discriminate
between the gait segments from subjects ϕ and those of the rest by finding the optimum decision
threshold of the score fusion in the one-vs-rest manner. By doing so, we can interpret that the ROC
curve of the score fusion is locally optimized. As shown below, it is illustrated that the error rate on
the training data always reduces during the optimization and will converge to a minimum point.

ErrorRate(Λ ∪ Φnew
q,w , D) ≤ ErrorRate(Λ ∪ Φold

q,w, D) (19)

where Λ is the set of all other parameters (Given & Fixed)

⇒ ErrorRate(Λ ∪ Φt
q,w, D) ≤ ErrorRate(Λ ∪ Φt−1

q−1,w, D) ≥ ErrorRate(Λ ∪ Φt−2
q−2,w, D) ≤ ... (20)

where t represent the iteration number starting from 1 and increment after each learning iteration.
After each iteration, the accuracy of the learning algorithm decreases.

3.4. Comparable Score Fusion Methods

In this section, some other linear score fusion methods are described for comparison. Assume
an input gait segment x, and the output decision scores of the sub-systems, {Si,j(x)|i = 1, ..., N & j =
1, ..., M} are available. Comparative methods include a simple non-trainable combiner and the large
margin method that require a more sophisticated training procedures.

• Summation: The output scores of the individual DCNNs are summed up and the subject that
receives the highest score is the output decision of the fusion system.

Scoresum
j (x) =

N

∑
i=1

Si,j (x) (21)

• Support vector machine (SVM): SVM has shown to be effective in separating input vectors in
2-class problems [37], in which SVM effectively projects the vector x into a scalar value f (x),

f (x) =
N

∑
i=1

αiyi (xi.x) + d (22)

where the vectors xi are support vectors, yi = {−1, 1} are the correct outputs, N is the number of
support vectors, (.) is the dot product function, αi are adjustable weights, and d is a bias. Learning
is posed as an optimization problem with the goal of maximizing the margin, which is the distance
between the separating hyperplane and the nearest training vectors. As a combiner method,
the output scores of all the DCNNs are concatenated to form a vector as the input to SVMs. Then,
one SVM is assigned to each of the M target subjects, the one-vs-rest scheme, and train accordingly
to get the final output scores,

ScoreSVM
j (x) =

N

∑
i=1

αiyi (φ (xi) .φ (x)) + d (23)

where φ(x) is the vector resulted by concatenating the output scores of all the DCNNs for the
input segment x.
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4. Results

We implemented a Matlab TF representation toolbox [38] to generate the SWVD TF representation
of the data and use Matlab print function to output a 2D image with specific resolution and size.
After experimenting with multiple image sizes, it was observed that higher image resolution did not
necessarily mean better model performance. DCNN model was tested with different input image
sizes. The image size was modified by changing the resolution of the figure generated by Matlab
print function. It was observed that the model prediction accuracies are highest with the image size of
120 × 120 × 3 for our current analysis.

For DCNN model designed in this study, the architecture guidelines as mentioned in [39,40]
were followed. Small filters were used and the image size was reduced using higher stride lengths
where necessary. Padding was introduced in the convolution layers to prevent convolution layer from
altering the spatial dimensions of the input. The spatial dimensions were altered in pooling layer by
down sampling. Also, more ReLU activation layers were used across the DCNN after each convolution
and pooling pair to bring in element wise non-linearity. The current model consists of 10 (CONV,
RELU, POOL) layers and one fully connected layer as shown in Figure 10.

Figure 10. CNN architecture.

4.1. Model Selection and Evaluation Procedure

We consider the human gait identification task as a pattern recognition problem, in which a set of
training samples was employed for gait signature pattern extraction and predicitve model training,
a separate set of validation samples was used for hyperparameter tuning, and an exclusive set of test
samples was used for predictive model evaluation. In order to estimate the generalization accuracy of
the predictive models on the unseen data, 10 fold cross validation (10-CV) was used. 10-CV divides
the total input data of n samples into ten equal parts. In every iteration one part is considered to be a
test sample set and the remaining nine parts are considered to be a validation and training sample set.
There is no overlap between the test sample set (10% of data) with the validation and training sample
set (90% of data). The latter set is further divided into 4:1 ratio of training and validation data samples.
The sets were permuted over 10 iterations to generate an overall estimate of the generalization accuracy.
For an input data set of n samples:

• Number of Test Samples: n/10
• Number of Validation samples: (n − n

10 ) × 1/5
• Number of Training samples: (n − n

10 ) × 4/5.

Data set has n = 4178 samples, which includes images from ten different subjects. Each iteration
of the 10—fold cross validation would have the following division of data (Note that there was no
overlap between the training set, the validation set, and the test set in all the iterations of 10-CV).

• Number of Test Samples: 417
• Number of Validation samples: 752
• Number of Training samples: 3008
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Figure 6, shows a sample image set of all subjects for sensor#1. The DCNN model was trained
using the training and validation set and tested independently with the testing set. In order to fine-tune
the parameters of the DCNN model, we conducted random restart hill climbing search method on
a low resolution quantized parameter space to achieve a reliable local minimum in the error function
(i.e., the average error rate of the model on the 5 individual sensor locations). Table 2 reports the
selected parameters to train the gait identification DCNN models. It must be noted that no of epochs
was set to 19 since, we terminate training at 19 epochs where we get maximum accuracy and the model
is able to generalize enough and avoids overfitting.

Table 2. CNN predefined parameters.

Parameter Values

Learning Rate 0.001
Momentum Coefficient 0.9

No. of Feature Maps 32, 64
No. of Neurons in Fully Connected Layer 64

Batch Size 40
Epoch Number 19
Epoch Number 19

4.2. Individual Sensor Performance

The prediction accuracies of the DCNN models for each iteration of the 10-CV and for different
sensors are shown in Figure 11. It demonstrates the average accuracies achieved using each of the five
individual sensors over the 10 iterations of 10-CV. The blue and red markers represent the accuracies
corresponding to the accelerometer and gyroscope data recorded from each sensors, respectively.
It can be observed that the gyroscope generated data (i.e., angular velocity) of the sensors are better
predictors than the acceleration data in 3 out of 5 cases. Only the acceleration data from sensor#1
(on the right ankle) and sensor#2 (on the right wrist) exhibited higher gait identification accuracy
compared to angular velocities from the same sensors. It might be due to wider range movements of
the ankles and wrists generating more individually descriptive accelerations. The acceleration data
from sensor#1 on the ankle generates the best average 10-CV accuracies among all 10 different sources
of data (Acc No.). This observation was expected since dynamics of gait is mostly captured by the
lower limb movement [41]. For the gyroscope data, the average 10-CV prediction accuracy for different
sensors in decreasing order is as follows: sensor#5 (lower back), sensor#3 (right knee), sensor#4 (chest),
sensor#1 (right ankle), sensor#2 (right wrist). For the accelerometer data, prediction accuracies of the
sensors in descending order is: sensor#1, sensor#3, sensor#5, sensor#2, sensor#4. The ranking of the
sensors in terms of identification accuracies are not consistent for gyroscope and accelerometer sensors.
It loosely suggests that upper trunk locations is more suitable for Gyroscopes and lower limb locations
are more suitable for accelerometers. The accelerometer at the at the right ankle sensor (capturing high
range lower limb acceleration) and the gyroscope sensor of of the lower back sensor (capturing the
angular velocity of trunk movements) generated the highest accuracies. This observation suggests that
incorporating the complementary discriminative information generated from different sensors and
modalities can be fused and improved. Therefore, multi-sensor fusion is investigated in early and late
fashions in order to improve the the recognition performance.

4.3. Early Fusion

In early fusion, we investigate aggregating the complementary discriminative motion data
recorded synchronously from the five IMUs. In this way, we conduct a sensor fusion at the input level
to the DCNN model as discussed in Section 3.1. The input level fusion is achieved by combining the 3D
gait cycle images from five different sensors to form a 120 × 120 × 30–dimensional image. The average
subject identification accuracy percentages of the DCNN model, whose parameters are optimized
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using 10-CV cross validation method, is shown in the Figure 12. The early fusion via input image
aggregation at the input to one overall DCNN demonstrated improved prediction accuracies as shown
in Figure 12. Results report that using Max pooling is preferable over Min pooling leading to higher
identification accuracy in 8 out of 10 subject cases. The average 10-CV gait identification performance
achieved, using Max pooling, was 93.36%. The results suggests that using a simple input aggregation
fusion of sensors by aggregation can enhance the performance of the best DCNN model (i.e., Sensor#1
Acc with 91.01% accuracy) with 26.2% relative improvement. In order to compare the results of the
early fusion model performance and Sensor#1 Gyro DCNN model, we conducted 10-CV test 10 times
and run a statistical test with the null hypothesis that the performance accuracies of the fusion and
’S1 Acc’ on different subjects comes from independent random samples from normal distributions
with equal means, using the two-sample t-test. The test rejected the null hypothesis with the
p-value = 0.028 which demonstrate significant improvement over the best individual sensor-based
DCNN model under the 95% confidence interval.

Figure 11. 10 Cross Validation Performance of the Individual Sensors Including Both Gyroscope (Gyro)
and Accelerometer (Acc) sensors. CVj indicates Cross-Validation j, and Si indicates sensor i.

Figure 12. Multi-sensor early fusion performance using min and max pooling.

4.4. Late Fusion

For late fusion, we employ the MESF algorithm described in Section 3.3. The discriminative
measure to find the optimum decision threshold in one-vs-rest manner introduced in Section 3.2 is
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utilized to learn the fusion weights of the general M-class identification problem (M = N = 10).
Therefore, the total number of weight coefficients as fusion parameters to be estimated are N × M = 50.
We applied log likelihood score normalization in order to provide consistency over the output scores
of the individual DCNNs. Table 3 presents the results for score level fusion using the MESF algorithm.
Table 3 reports that MESF using Max pooling lead to higher identification accuracy compared to Min
pooling in 9 out of 10 subject cases. As Table 3 reports, the proposed MESF method generates the
average 10-CV accuracies of 97.06% and 95.24% using Max pooling and Min pooling, which lead to
67.3% and 47.1% relative improvement compared to the best individual DCNN results, respectively.

Table 3. MESF, SUM, and SVM performance using min and max pooling. Bold numbers represent the
highest accuracy achieved for each subject using different methods.

MESF SUM SVM

Max (%) Min (%) Max (%) Min (%) Max (%) Min (%)

Subject 1 95.56 94.61 89.93 89.45 92.31 90.15
Subject 2 100 97.44 92.41 89.26 96.87 91.3
Subject 3 92.91 94.26 88.97 88.35 89.12 91.65
Subject 4 99.35 97.38 93.82 90.7 94.71 90.26
Subject 5 95.76 95.56 89.13 89.29 92.34 90.89
Subject 6 97.27 93.6 93.62 89.44 92.49 89.41
Subject 7 96.15 93.12 87.28 86.31 91.2 88.54
Subject 8 98.93 97.63 92.36 89.04 95.34 92.81
Subject 9 94.65 90.05 87.94 85.75 90.57 87.31
Subject 10 100 98.78 94.2 91.37 97.69 95.95

Average 97.06 95.24 90.96 88.89 93.27 90.83

Using the MESF fusion algorithm, we achieved the highest 10-CV accuracy of 97.06% on the
10-class identification problem with 10% expected accuracy of random guess. In the case of having
a larger subject population, its impact will be solely on the number of impostors per each one-vs-rest
subject identifier (the number of targets will remain the same). That will limit the potentially introduced
errors to false alarms. On the other hand, our proposed method in this paper is designed to minimize
the one-vs-rest identification errors. By decoding the gait cycles via spectro-temporal expansion,
we discover and capture discriminative individual low and high level signatures and predictive model
jointly via the trained DCNN structure and then discriminatively multi-sensor fusion model. Our aim
with the error minimizing design of joint our proposed models was to equip them to cope with both
false alarms and miss detections.

4.5. Comparative Study

We also compare the proposed MESF method with two other linear score fusion methods, namely
SUM and SVM methods introduced in Section 3.4. Table 3 presents the results for our MESF method,
SVM, and SUM using Max and Min pooling. According to Table 3, Max pooling performs better
in majority of cases for various subjects and fusion methods. SUM method did not demonstrate
improvements in either cases of Max and Min pooling compared to the best individual DCNN.
It might be due to the fact that the lower accuracy DCNN model scores adversely affect the fusion
identification decisions. On the other hand, SVM fusion method generates improved results in case of
Max pooling via solving an optimization problem with the goal of maximizing the margin between
the target subjects and the others. In this way, one SVM is assigned to each of the 10 target subjects
(i.e., one-vs.-rest scheme). We applied the two-sample t-test to evaluate the significance of improvement
of SVM fusion compared to the best individual DCNN. The test rejected the null hypothesis with the
p-value = 0.034, which is significant under 95% confidence level. Although the performances of the
SVM fusion relatively improves the best individual performance by 25.2%, they are inferior to the
MESF performance.
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5. Conclusions

In the human gait recognition task, the aim is to extract discriminative features and descriptors
from gait motion signals to identify our target subject from others. The manual feature extraction
is prone to error due to the complexity of data collected from inertial sensors and the disconnection
between feature extraction and the discriminative learning models. To overcome this shortcoming,
we proposed a novel methodology for processing non-stationary signals for the purpose of human
gait identification. The proposed methodology comprises four main components: (1) cycle
extraction; (2) spectro-temporal 2D expansion and representation; (3) deep convolutional learning;
and (4) discriminative multi-sensor model score fusion. We first isolated the gait cycles using a simple
and effective heuristic. Then, we conducted spectro-temporal transformation of isolated gait cycles.
The 2-D expansion of the gait cycle increased the resolution of the desired discriminative trends in the
joint time-frequency domain. In order to avoid manual feature extraction and incorporate joint feature
and model learning from the generated high resolution 2D data, we designed a deep convolutional
neural network structure in order to process the signal layer by layer, extract discriminative features,
and jointly optimize the features and the predictive model via error back propagation model training.
We investigated 5 IMU sensor placement on the body and conducted a comparative investigation
between them in terms of gait identification performance using synchronized gait data recordings
from 10 subjects. Due to complementary discriminative signature patterns captured from the recorded
signals collected via different sensors, we then investigated gait identification fusion modeling from
multi-node inertial sensor data and effectively expand it via 2-D time-frequency transformation.
We perform early (input level) and late (model score level) multi-sensor fusion to improve the
cross validation accuracy of the gait identification task. We particularly proposed the minimum
error DCNN model score fusion algorithm. Based on our experimental results, 93.88% and 97.06%
subject identification accuracy was achieved via early and late fusion of the multi-node sensor
readings, respectively.

6. Future Research Direction

In this paper, the problem of human gait identification was investigated under the bigger umbrella
of ubiquitous and continuous IMU-based gait analysis work group at the Wearable Sensing and Signal
Processing (WSSP) lab. Our main contribution and focus in this paper was our proposed model score
fusion algorithm to incorporate the complementary discriminative scores generated by each individual
DCNN model given a input human gait cycles. We used a local search and an overall accuracy to
generate a reliable baseline DCNN model for all the IMU recordings. Due to the fact that data from
different sensors (i.e., sources) may have different characteristics, the DCNN training paradigm can
be improved by sensor-dependent tuning for different sensor locations and modalities. Therefore,
our team is currently investigating sensor location and modality specific DCNN model optimization
and subsequently, designing multi-sensor and multi-model fusion algorithms. We are also increasing
the number of subjects and the walking conditions in our data set. When completed, our plan is to
create a link on our website to share our data set and our baseline model implementations with the
research community.
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Abstract: Travel times in congested urban road networks are highly stochastic. Provision of travel time
distribution information, including both mean and variance, can be very useful for travelers to make
reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous
data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from
point and interval detectors. In the proposed method, link travel time distributions are first estimated
from point detector observations. The travel time distributions of links without point detectors
are imputed based on their spatial correlations with links that have point detectors. The estimated
link travel time distributions are then fused with path travel time distributions obtained from the
interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution,
an optimization technique is further introduced to update link travel time distributions and their spatial
correlations. A case study was performed using real-world data from Hong Kong and showed that the
proposed method obtained accurate and robust estimations of link and path travel time distributions
in congested road networks.

Keywords: travel time distribution; data fusion; evidence theory; spatial correlation; uncertainty

1. Introduction

Accurate and robust estimation of travel time distribution, including mean and variance,
is a crucial requirement for advanced traveler information systems (ATIS). Provision of travel time
distribution information through ATIS enables travelers to make reliable path choice decisions,
ensuring a higher chance of on-time arrival [1–3]. The provided distribution information also allows
operators to evaluate network performance and reliability, and identify bottlenecks for proactively
deploying effective controls to improve overall traffic conditions [4,5].

Recent advances in information and communication technologies (ICTs) have produced a variety
of spatiotemporal big data for travel time estimation [6]. Existing data collection techniques could
be classified into point detection, interval detection, and floating car systems [7,8]. Point detectors
(such as loop detectors and video image detectors) are generally deployed at specific road segment
locations, to collect vehicle point speeds. Interval detectors consist of a pair of devices deployed in road
networks to directly calculate travel times between the device pair. Typical interval detectors include
automatic vehicle identification (AVI), Bluetooth, and license plate recognition devices. In contrast
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to the above fixed detectors, floating car systems use a fleet of probe vehicles, typically taxi cabs,
equipped with global positioning system (GPS) devices. The probe vehicle locations and speeds
are collected at given time intervals to estimate network traffic conditions [9]. These data collection
techniques have generated complementary heterogeneous data sources with distinct data quality and
network coverage.

Accurate and robust estimation of travel time distributions from heterogeneous data sources is
somewhat challenging in congested road networks. Firstly, although rich traffic observations from
multiple data sources are beneficial, data quality variability from different data sources presents
a serious impediment to robust estimation of travel time distributions. Data quality variability may
raise from a variety of reasons, such as detector failures, measurement errors, sample size variations,
etc. [10–13]. Therefore, traffic observations from different sources can be inconsistent and even
conflicting. Thus, robust data fusion techniques are urgently required, relatively insensitive to data
quality of heterogeneous data sources.

Secondly, traffic data from multiple data sources has enhanced data availability for major roads in
a network, but the limited coverage across the whole network poses a significant challenge to accurate
travel time distribution estimates. Traffic data from point detectors cover all vehicles at deployed
locations and have a very good temporal sampling, but their spatial coverage is restricted to the
(relatively few) deployed locations. Floating car and interval detector data have relatively better spatial
coverage on major roads, but sparse data issues remain for many arterial roads [14,15]. Therefore,
effective techniques to impute spatially missing data are also required.

This paper proposes an effective method to estimate travel time distributions from heterogeneous
data sources with missing data. The remainder of this paper is organized as follows. Section 2
reviews the literature on the travel time distribution estimation methods. Section 3 briefly introduces
Dempster-Shafer (D-S) evidence theory to provide the necessary background. Section 4 presents the
proposed heterogeneous data fusion method. Section 5 reports a case study using real-world data
from Hong Kong. Section 6 provides conclusions and recommendations for further research.

2. Literature Review

Travel time estimations have been intensively studied for over three decades. Early studies
proposed various methods to estimate deterministic travel times, e.g., mean travel time, using a single
data source [16–20]. A complete survey of these methods is beyond the scope of this paper; interested
readers can refer to comprehensive reviews by Mori et al. and Vlahogianni et al. [8,21].

In the last decade, many research efforts have focused on data fusion techniques to enhance
accuracy and robustness of deterministic travel time estimation using multiple data sources. Current
data fusion techniques can be broadly classified into statistical, artificial cognition, and probabilistic-based
techniques [22]. Statistical based techniques, such as simple convex combination algorithms, use statistical
information of data quality to determine weights for different data sources [16,23]. They are relatively
widely used due to their simple implementation. However, they are not well suited to fuse different
data sources, which are inconsistent and even conflicting. Artificial cognition based techniques
combine multiple data sources using artificial intelligence techniques, such as neural networks or
genetic algorithms [11]. They can tackle complex data fusion problems, but require large datasets
for training, which are generally infeasible for many real-world applications. Probabilistic based
techniques typically employ Bayesian and/or D-S evidence theory to provide mathematical reasoning
rules for fusing inaccurate and inconsistent data from multiple sources [24–26]. The D-S evidence theory
can be regarded as a generalization of Bayesian theory without the requirement of prior knowledge.
Nevertheless, most existing studies using D-S evidence theory are restricted to estimation of traffic
states (i.e., very congested, congested, medium, smooth or very smooth) rather than precise numerical
values of travel times [27–29].

Since no single data source covers the whole network, research efforts have also investigated
missing data imputing techniques to enhance data completeness. Missing data imputation can
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be broadly classified as prediction and spatial interpolation based techniques. Prediction-based
techniques adopt travel time prediction models, such as K-nearest neighbors, kernel regression,
and autoregressive integrated moving average, to forecast the missed data from historical data [30–32].
Spatial interpolation techniques impute missing data of a link by using established statistical
relationships between the link and its adjacent links [14–16,33]. For all techniques in both categories,
incorporation of travel time correlations is well recognized as an effective way to improve imputation
performance [32]. However, most missing data imputing techniques assume fixed travel time
correlations, which are inadequate to represent the dynamic nature of traffic conditions.

The above studies focused on estimating only deterministic travel times, while ignoring travel time
variances. Recent attention has investigated methods to estimate travel time distributions (including
means and variances) using a single data source. Dion and Rakha [34] proposed an exponential
smoothing filter to estimate travel time distributions using interval detector data. Jenelius and
Koutsopoulos [35] developed a maximum likelihood approach to estimate travel time distributions
using floating car data. Rahmani et al. [36] used the same data type and proposed a nonparametric
approach to estimate travel time distributions. Hans et al. [37] used point detector data and proposed
a kinematic wave approach for estimating travel time distributions at signalized intersections. Accurate
estimation of travel time distributions is more challenging, because more data with higher quality
are required to estimate reliable mean and variance information. Including multiple data sources is
obviously beneficial for accurate and robust estimations of travel time distributions, but to the best of
our knowledge, few studies have been done for estimating travel time distributions by fusing multiple
data sources.

To fill this gap, the current study proposes a heterogeneous data fusion method for estimating
travel time distributions, fusing interval and point detector data. In the proposed method, link travel
time distributions are first estimated from point detector observations. The spatially missing data
issue of point detectors is addressed. Travel time distributions of links without point detectors are
imputed based on their spatial correlations with links with point detectors. Estimated link travel time
distributions from point detector data are then fused with path travel time distributions obtained
from interval detectors. To fuse these two path distributions, a D-S distribution fusion algorithm is
proposed, built on D-S evidence theory. An optimization technique is further introduced to update link
travel time distributions and their spatial correlations according to the fused travel time distribution.

3. Brief Introduction of the D-S Evidence Theory

The D-S evidence theory was initially developed by Dempster [38], and later extended and
refined by Shafer [39]. This theory can be regarded as a generalization of Bayesian inference to tackle
uncertainty reasoning based on incomplete information [40,41]. In contrast to Bayesian inference,
D-S evidence theory does not assign priori probabilities to unknown propositions or states [42].
Probabilities are assigned only when supporting evidence is available [43]. This provides a flexible
framework for decision making by combining cumulative evidence, and has broad applications in
many areas, such as expert systems [40,44], artificial intelligence [45,46], false diagnosis [47,48], target
recognition [49–51], decision-making [52], information fusion [53], etc.

Let Ω = {S1, . . . , Sn} be a collectively exhaustive and mutually exclusive set of states, which is also
called the frame of discernment. This frame of discernment contains every possible state of a system.
A basic probability assignment (BPA) (also called a belief structure) is a function m : 2Ω → [0, 1] ,
satisfying m(φ) = 0 and ∑∀A⊂Ω m(A) = 1, where A is a subset of Ω; and 2Ω = {A|A ∈ Ω} is the
power set of Ω consisting of all the subsets of Ω. The assigned probability m(A) measures the belief
exactly assigned to A. All the assigned probabilities sum to unity and there is no belief in the empty
set φ. For notational consistency, boldfaced letters represent vectors or matrixes throughout the paper.
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Multiple independent evidence can be fused using the traditional Dempster’s combination
rule [43–48,51,52]. With BPAs of two independent evidences, m1 and m2, the combination rule is
defined as:

m f us(C) = m1 ⊕ m2 =
∑

A∩B=C �=φ,∀A,B⊂Ω
m1(A)×m2(B)

1−η

m f us(φ) = 0
(1)

where η is the conflict factor, which ranges from 0 to 1 and represents the degree of total conflict
between evidences m1 and m2. 1/(1 − η) is the normalization factor which ensures the sum of BPAs
can be unit. η is given by:

η = ∑
A∩B=φ,∀A,B⊂Ω

m1(A)× m2(B) (2)

Dempster’s combination rule, Equation (1), provides effective reasoning rules for fusing low
and moderate conflict evidences. However, in case of high or complete conflict evidences (i.e.,
η value approach to 1), traditional D-S evidence theory may lead to unreasonable synthesis results.
To reduce the degree of evidence conflict, an effective method is to modify the evidence. A common
technique [54,55] is to introduce an unknown state, Θ, into the frame of discernment as Ω′ = {Ω, Θ},
where Θ represents the unknown part of the evidence.

As an alternative, several researchers argued that high conflict are mainly caused by unreliable
evidences; and thereby they proposed methods to identify and correct the unreliable evidences before
the combination [48,51,56]. Overall, the D-S evidence theory provides mathematical reasoning rules
for fusing inaccurate and incomplete data from multiple sources. In Section 4.2.2, the D-S evidence
theory is employed to fuse travel time distributions from different data sources, which may be high
conflict or even complete conflict.

4. Travel Time Distributions Estimated by Fusing Heterogeneous Data Sources

4.1. Problem Statement

Let G = (N, E) be a directed network consisting of a set of nodes, N, and a set of links, E.
A link aij ∈ E is defined to be the road section between two adjacent nodes with ni ∈ N and
nj ∈ N. Travel time of the link is a random variable, Tij, with mean and standard deviation (STD)
tij and σij, respectively. The vector of mean travel times for all links is t = [. . . , tij, . . .]T, and the
variance-covariance matrix between all links is K. The matrix K is the variance-covariance matrix of
link travel times. In the variance-covariance matrix K, elements along the diagonal are the variance of
link travel times, and off-diagonal elements are the travel time covariance between two links.

Let pod be a path between starting and ending nodes, no and nd, respectively, consisting of λ

consecutive links. Let xod
ij be a link path incidence variable, where xod

ij = 1 means that link aij is on pod

and xod
ij = 0 otherwise. Let X = [. . . , xod

ij , . . .]
T

be the vector of link path incidence variables. The path

travel time distribution, Tod, can be calculated by summing link travel times along the path,

Tod = ∑
∀aij∈E

Tijxod
ij (3)

Let tod and σod be the mean and variance of the path travel time distribution, respectively, then:

tod =XTt (4)

σod =
√

XTKX (5)

To obtain travel time distribution information, many detectors of different types may be deployed
in the network, as shown in Figure 1 for a simple network with interval and point detectors. A pair
of interval detectors, e.g., AVI devices, are installed at no and nd of pod to record the set of vehicles
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passing them. The path travel time of each recorded vehicle can be obtained by the time difference
from entering to leaving the path, and path travel time distribution can be directly estimated from
this data, denoted as Tod

int. However, the detailed travel time distributions of all links along the path
are unknown and the interval detector data covers only a portion of vehicles with relatively poor
temporal sampling.

Figure 1. Illustrative example of the heterogeneous data fusion problem.

Point detectors, e.g., loop detectors, are generally deployed for a subset of network links in
real applications, e.g., ar

o1 and ar
23 in Figure 1, whereas other links, e.g., ae

12, ae
34, and ae

4d, are without
detectors. Thus, only travel time distributions of links with point detectors, e.g., Tr

o1 and Tr
23, can be

directly estimated, while travel time distributions of links without point detectors are unknown, e.g.,
Te

12, Te
34, and Te

4d. Nevertheless, the point detector data tend to have good temporal sampling, since
these detectors generally can collect the speeds of all vehicles passing through them.

Obviously, interval and point detector data have distinct spatial and temporal characteristics.
Fusing heterogeneous data from both interval and point detectors could be beneficial for estimating
travel time distributions for the path and all links either with or without point detectors.

4.2. Proposed Heterogeneous Data Fusion Method

This section presents the proposed heterogeneous data fusion method to estimate travel time
distributions for the path and all links either with or without point detectors. Empirical studies
have found that travel times can be well represented by either normal, gamma, or lognormal
distributions [10,39]. Therefore, to simplify the problem and present the essential concept, it is
assumed that all link and path travel time distributions follow the normal distribution [57,58]. Using
this normality assumption, the proposed method is to estimate the mean and STD of travel time
distributions of the path and all links.

Figure 2 shows that the framework of the proposed heterogeneous data fusion method consists of
three steps, described in detail in the following sections. The first step, called data preprocessing, is to
estimate path travel time distributions from interval and point detector data, respectively. The second
step, called distribution fusion, is to fuse the estimated path travel time distributions by using D-S
evidence theory. The last step, called posterior update, is to update link travel time distributions and
their travel time correlations based on the fused distribution.

Figure 2. Framework of the proposed heterogeneous data fusion method.
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4.2.1. Data Preprocessing Step

This step estimates path travel time distributions from interval and point detector data,
independently. The path travel time distribution, Tod

int, can be directly estimated from interval detector
data. Since interval detectors only record a set of vehicles equipped with electronic tags, the limited
sample size becomes a critical issue in the estimation, especially for low market penetration applications.
Outlier observations can also significantly affect path travel time distribution accuracy, e.g., some
vehicles may make stops or detours along the path, leading to atypical travel time observations.
To estimate path travel time distribution from interval detector data, the data filtering algorithm
proposed by Dion and Rakha [34] was adopted in this study. This data filtering algorithm utilizes
a series of low pass filters to remove outlier observations outside a dynamically varying validity
window. Such algorithms can perform well in both stable and unstable traffic conditions at low levels
of market penetration; and have been successfully applied in the real-time traveler information system
(RTIS) in Hong Kong [14]. Thus, an accurate and robust estimation of mean, tod

int and STD, σod
int of path

travel time distribution can be obtained from interval detector data.
As discussed above, path travel time distribution cannot be directly estimated through point

detector data, because only a few links are deployed with point detectors. To estimate the path travel
time distributions, links are divided into links with and without point detectors, so that the vector of
mean travel time comprises two parts tpoi = [tr

poi, te
poi]

T, where tr
poi and te

poi are mean travel times for
links with and without point detectors, respectively, at time interval �. The variance-covariance matrix

can be divided into four sub-matrixes, Kpoi =

[
Krr

poi Ker
poi

Kre
poi Kee

poi

]
, where Krr

poi is the variance-covariance

matrix for links with point detectors; Kee
poi is the variance-covariance matrix for links without

point detectors; Ker
poi is the covariance matrix between links without and with point detectors;

and Kre
poi = (Ker

poi)
T is the covariance matrix between links with and without point detectors. Let vr

poi

and ve
poi be vectors of travel time variances for links with and without point detectors, respectively.

They are elements along the diagonal of Krr
poi and Kee

poi, respectively.

For a link ai
r with a point detector, its mean, ti

r, and STD, σi
r, of the link travel time distribution can

be obtained from the collected data at the current time interval �, i.e., tr
poi and Krr

poi can be determined
from the point detector data. However, mean travel times for links without point detectors, te

poi, should
be indirectly estimated. Following Tam and Lam [14], te

poi is estimated using spatial correlations
between links with and without point detectors:

te
poi = te,�−1

upd + Ker,�−1
upd (Krr

poi)
−1(tr

poi − tr,�−1
upd ) (6)

where tr,�−1
upd and te,�−1

upd are mean travel times for the links with and without point detectors estimated

at the previous time interval �− 1, respectively; Ker,�−1
upd is the covariance matrix between links without

and with point detectors estimated at the previous time interval �− 1; and (Krr
poi)

−1 is the inverse
of Krr

poi.
Similar to Equation (6), ve

poi in this study was also indirectly estimated using the spatial
correlations between links with and without point detectors:

ve
poi = ve,�−1

upd + Ker,�−1
upd (Krr

poi)
−1(vr

poi − vr,�−1
upd ) (7)

where vr,�−1
upd and ve,�−1

upd are travel time variances of the links with and without point detectors
at the previous time interval � − 1, respectively. Therefore, elements along the diagonal of
Kee

poi and all elements of Krr
poi are estimated in the current time interval �. It is assumed that

(kee
poi)ij

= (kee,�−1
upd )

ij
, ∀i �= j and Ker

poi = Ker,�−1
upd , which means that off-diagonal elements of Kee

poi

and all elements of Ker
poi are the same as corresponding elements at the previous interval, �− 1. These

two matrixes, Kee
poi and Ker

poi, will be updated in the posterior update step in Section 4.2.3.
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After tpoi = [tr
poi, te

poi]
T and Kpoi =

[
Krr

poi Ker
poi

Kre
poi Kee

poi

]
are determined, the mean, tod

poi, and STD,

σod
poi, of the path travel time distribution, can be calculated. The vector of link path incidence variables

is divided into two groups as X = [Xr
poi, Xe

poi]
T, where Xr

poi and Xe
poi are link path incidence variables

for links with and without point detectors, respectively. Then, Equations (4)–(7) for calculating tod
poi and

σod
poi can be expressed as:

tod
poi =(Xr

poi)
Ttr

poi + (Xe
poi)

Tte
poi (8)

σod
poi =

√
(Xr

poi)
TKrr

poiX
r
poi + (Xe

poi)
TKee

poiX
e
poi + 2(Xe

poi)
TKer

poiX
r
poi (9)

Substituting Equation (6) into Equation (8), the mean travel time can be expressed as:

tod
poi =(Xr

poi)
Ttr

poi + (Xe
poi)

Tte,�−1
upd + (Xe

poi)
TKer,�−1

upd (Krr
poi)

−1(tr
poi − tr,�−1

upd ) (10)

Therefore, the path travel time distribution, Tod
poi, can be determined from point detector data.

4.2.2. Distribution Fusion Step

This step fuses two path travel time distributions, Tod
int and Tod

poi, estimated from interval and
point detectors, respectively. A fusion algorithm is proposed built on the D-S evidence theory. In this
study, the frame of discernment, Ω, is defined as a set of mutually exclusive travel time ranges,
{S1, . . . , Si, . . . , Sn}, where each travel time range, Si = [li, ui], is defined by a lower bound li and
upper bound ui.The mean travel time for range Si can be expressed as:

E(Si) =
ui + li

2
(11)

Path travel time distributions estimated by interval and point detectors can be regarded as
two independent sets of evidence. Based on the defined travel time ranges, these two path travel
time distributions are discretized to obtain corresponding discrete distributions, i.e., histograms,
as illustrated in Figure 3a. The resultant discrete distributions, mint and mpoi, are respectively modelled
as BPAs for Tod

int and Tod
poi. Then, m∗(Si) (either mint(Si) or mpoi(Si)) represents the corresponding

probability of travel time range Si, and can be expressed as:

m∗(Si) =
∫ ui

li
f∗(x)dx (12)

where f∗(x) is the probability density function of Tod∗ (either Tod
int or Tod

poi). When path travel time
distributions follow normal distributions, m∗(Si) can be expressed as:

m∗(Si) = Φsnd(
ui − trs∗

σrs∗
)− Φsnd(

li − trs∗
σrs∗

) (13)

where Φsnd(·) represents the cumulative distribution function (CDF) of the standard normal
distribution. In the literature, Hart’s formula [59] is a good numerical approximation approach
to calculate Φsnd(·):

Φsnd(x) ∼= 1
2
− 1

x
√

2π

{
e−x2/2 − [

πx2

2
+

(1 + 0.282455x2)
1/2

1 + 0.212024x2 e−x2/2]

}
(14)

Clearly, BPAs, m∗, satisfies m∗(φ) = 0 and ∑∀Si⊂Ω m∗(Si) = 1.
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Figure 3. Typical information conflict situations of interval and point detectors: (a) low conflict, (b) high
conflict, (c) complete conflict.

Figure 3 illustrates three typical situations of evidence conflict, representing the relationships
between interval detector and point detector. Two path travel time are discretized into five travel
time ranges as (5, 8), (8, 11), (11, 14), (14, 17) and (17, 20) which constitute the frame of discernment
Ω = {S1, S2, S3, S4, S5}. The corresponding BPAs of two path travel time distributions are shown in
Table 1. Figure 3a shows Case 1 that the two evidences have high belief level and low conflict degree,
with a large portion of histogram coverage. Figure 3b shows Case 2 that two evidences have low belief
level and high conflict degree, with only a small portion of histogram coverage. Figure 3c shows Case
3 that the two evidences are completely conflicted without histogram coverage.

Table 1. Simple example of distribution fusion using Dempster’s combination rule.

Travel
Time

Ranges

Case 1 Case 2 Case 3

mint(·) mpoi(·) mfus(·) mint(·) mpoi(·) mfus(·) mint(·) mpoi(·) mfus(·)
S1 0.1 0 0 0.3 0 0 0.4 0 -
S2 0.2 0.3 0.2143 0.6 0 0 0.6 0 -
S3 0.4 0.4 0.5714 0.1 0.1 1 0 0 -
S4 0.2 0.3 0.2143 0 0.6 0 0 0.7 -
S5 0.1 0 0 0 0.3 0 0 0.3 -

Table 1 shows the results of evidence fusion by using Dempster’s combination rule, Equation (1).
As shown, this combination rule can provide a good estimation of path travel time distribution

for Case 1 with a low conflict factor, η = 1 − 5
∑

i=1
mint(Si)× mpoi(Si) = 1 − (0.2 × 0.3 + 0.4 × 0.4 +

0.2 × 0.3) = 0.72. The fused BPA is calculated from m f us(Si) = mint(Si) × mpoi(Si)/(1 − η) (e.g.,
m f us(S3) = 0.4 × 0.4/(1 − 0.72) = 0.5714). After distribution fusion, travel time ranges, S2, S3 and S4,
supported by both evidence sets, are strengthened in a reasonable way.

However, for Cases 2 with high conflict factor, η = 1 − (0.1 × 0.1) = 0.99, the Dempster’s
combination rule can lead to an incorrect fusion result, m f us(S3) = (0.1 × 0.1)/(1 − 0.99) = 1, given
both evidence sets afford little support to S3. This situation is known as Zadeh’s paradox in the
literature. Further, Dempster’s combination rule cannot be used for Case 3 of the completely conflict
situation. In this case, mint(·) and mpoi cannot be fused, because η = 1 so all m f us(Si) become infinite.

To reduce the degree of data conflict, the generalized combination rule, Equation (2), is adopted in
this study, by introducing the unknown state into the frame of discernment, Ω = {S1, . . . , Si, . . . , Sn, Θ}.
Subsequently, to construct BPA m∗ (either mint or mpoi), a pre-defined small probability αΘ = m∗(Θ),
(e.g., αΘ = 0.05), is set for the unknown state Θ. Then, the path travel time distribution between
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tod∗ + Φ−1
snd(αΘ/2)σod∗ and tod∗ + Φ−1

snd(1 − αΘ/2)σod∗ is discretized to obtain m∗(Si), where Φ−1
snd(·) is the

inverse CDF of the standard normal distribution (e.g., Φ−1
snd(0.025) = −1.96 and Φ−1

snd(0.975) = 1.96).
High and complete conflict situations are usually due to various data quality from the different

detectors. To differentiate data sources with varying quality, an information quality parameter [48]
is adopted in this study to assign higher weighting to data sources with better information quality.
Let wint and wpoi be the information quality weights for the path travel time distribution from interval
and point detectors respectively. In this study, wint and wpoi are expressed as a function of sample size
and travel time variance:

wint =
1 − (1 − βint)

Nint

(σod
int)

2 (15)

wpoi =
1 − (1 − βpoi)

Npoi

(σod
poi)

2 (16)

where Nint is the sample size collected by interval detectors; Npoi is the average sample size for all
point detectors along the path; βint and βpoi are sensitivity parameters for interval and point detectors,
respectively, which should be calibrated independently. Other types of information quality function
could also be used in practice.

Applying different weightings wint and wpoi, the BPA m∗ (either mint or mpoi) is adjusted using
following formula [48]:

m∗ =

⎧⎨⎩ m∗(Si) =
w∗

wmax
· m∗(Si), ∀Si ⊆ Ω

m∗(Θ) = 1 − n
∑

i=1
m∗(Si)

(17)

where wmax = max(wint, wpoi) is the larger between wint and wpoi. Substituting the adjusted BPAs
into Equations (1) and (2), the fused BPA, m f us, can be determined following the generalized
combination rule:

m f us =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m f us(Si) =

mint(Si)×mpoi(Si)+mint(Si)×mpoi(Θ)+mint(Θ)×mpoi(Si)
1−η , ∀Si ⊆ Ω

m(Θ) =
mint(Θ)×mpoi(Θ)

1−η

η = 1 − mint(Θ)× mpoi(Θ)− n
∑

i=1
[mint(Si)× mpoi(Si) + mint(Θ)× mpoi(Si) + mpoi(Θ)× mint(Si)

(18)

Table 2 illustrates the distribution fusion built on the generalized combination rule using the same
example as in Table 1. In this example, mint(Θ) = mpoi(Θ) = 0.05 are set; and two BPAs, mint and
mpoi are modified to reflect this setting. Information quality parameters wint = 0.8 and wpoi = 0.6
are used for interval and point detectors, respectively. All BPAs, mpoi, for these cases are adjusted to

mpoi(Si) = mpoi(Si)× 0.6/0.8, ∀Si ⊂ Ω; and mpoi(Θ) = 1 − 5
∑

i=1
mpoi(Si) = 1 − 0.95 × 0.6/0.8 = 0.288.

The generalized combination rule, Equation (16), was adopted for fusing path travel time distribution.

Table 2. Simple example of distribution fusion using the generalized combination rule.

Travel
Time

Ranges

Case 1 Case 2 Case 3

mint(·) mpoi(·) mfus(·) mint(·) mpoi(·) mfus(·) mint(·) mpoi(·) mfus(·)
S1 0.075 0 0.0410 0.275 0 0.2415 0.375 0 0.3337
S2 0.2 0.275 0.2075 0.6 0 0.5270 0.575 0 0.5116
S3 0.4 0.4 0.4756 0.075 0.075 0.0874 0 0 0.0000
S4 0.2 0.275 0.2075 0 0.6 0.0687 0 0.675 0.0783
S5 0.075 0 0.0410 0 0.275 0.0315 0 0.275 0.0319
Θ 0.05 0.05 0.0273 0.05 0.05 0.0439 0.05 0.05 0.0445
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Table 2 shows that the generalized combination rule provides a reasonable outcome for Case 1 (i.e., low
conflict situation). More importantly, this generalized combination rule can well address the distribution fuse
problem for Case 2 (i.e., the high conflict situation). Introducing Θ significantly reduced the conflict factor η

to 0.6614. The probability of S3, which has little support from both evidence sets, is only slightly strengthened
as m f us(S3) = (0.075 × 0.056 + 0.075 × 0.288 + 0.05 × 0.056)/(1 − 0.6614) = 0.0874. The probabilities
of other travel time ranges, S1, S2, S4, and S5, are reduced, but a higher weighting is given to the
data source with better data quality (i.e. mint). The generalized combination rule also addressed the
distribution fusion for Case 3 (i.e., complete conflict situation), which cannot be fused using Dempster’s
combination rule.

From the fused BPA, m f us, the corresponding mean and STD, can be expressed as:

θ =
1

1 − m f us(Θ)
(19)

tod
f us =

n

∑
i=1

θ · m f us · (Si) · E(Si) (20)

σod
f us =

√
n

∑
i=1

(E(Si)− tod
f us)

2 · θ · m f us · (Si) (21)

where θ is the adjustment parameter to assign the probability of the unknown state to each travel time
range. Thus, the proposed D-S distribution fusion algorithm can estimate path travel time distributions
by fusing two path travel time distributions from interval and point detector data, even in the cases of
extreme conflict between the data sets.

4.2.3. Posterior Update Step

This step updates the link travel time distributions and their spatial correlations based on the
fused path travel time distribution. An optimization technique is proposed to update the travel time

means (i.e., tpoi = [tr
poi, te

poi]
T) and variance-covariance matrix (i.e., Kpoi =

[
Krr

poi Ker
poi

Kre
poi Kee

poi

]
) estimated

in the data preprocessing step.

Let tupd = [tr
upd, te

upd]
T and Kupd =

[
Krr

upd Ker
upd

Kre
upd Kee

upd

]
be the updated travel time means and

covariance matrix, respectively where (kee
upd)ij

is the element at row i and column j of Kee
upd. This

study uses tr
upd = tr

poi and Krr
upd = Krr

poi, because tr
poi and Krr

poi are directly obtained from point
detector data and assumed to be accurate. Therefore, to update the link travel time covariance matrix,
only Kee

upd and Ker
upd sub-matrixes need to be updated, since Kre

upd = (Ker
upd)

T holds. Accordingly,
the optimization problem of updating the spatial correlations is formulated as the following nonlinear
programming problem:

M1 min

(
∑
∀i

∑
∀j

(
(kee

upd)ij
− (kee

poi)ij

)2
+ ∑

∀i
∑
∀j

2
(
(ker

upd)ij
− (ker

poi)ij

)2
)

(22)

Subject to:

tod
f us =(Xr

poi)
Ttr

upd + (Xe
poi)

Tte,�−1
upd + (Xe

poi)
TKer

upd(K
rr
poi)

−1(tr
poi − tr,�−1

upd ) (23)

(σod
f us)

2
=(Xr

poi)
TKrr

poiX
r
poi + (Xe

poi)
TKee

updXe
poi + 2(Xe

poi)
TKer

updXr
poi (24)

The nonlinear programming M1 has a convex objective function and two linear constraints.
To ensure Kupd is stable over time, objective function (22) minimizes the total difference of
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updating elements in both Kee
upd and Ker

upd sub-matrixes. Constraints (23) and (24), derived from
Equations (9) and (10), ensure that the summation of means and variances of corresponding link travel
time distributions are equal to that of the fused path travel time distribution, i.e., tod

f us and (σod
f us)

2
. This

M1 problem is a typical quadratic programming problem. A unique solution can be determined using
several efficient algorithms, such as the quadprog function in MatLab.

Once Kupd is determined, the vector of travel time means for links without point detectors,
te
upd are updated as:

te
upd = te,�−1

upd + Ker
upd(K

rr
poi)

−1(tr
poi − tr,�−1

upd ) (25)

The updated tupd and Kupd are used for estimating travel time distributions of links without
point detectors in the subsequent time interval. The detailed steps of the Algorithm 1 are summarized
as follows.

Algorithm 1

Step 1. Data preprocessing stage:
Estimate Tod

int from interval detector data at current interval �.
Estimate tr

poi and Krr
poi for links with point detectors at current interval �.

Deduce te
poi and ve

poi for links without point detectors using Equations (6) and (7).

Estimate Tod
poi using Equations (9) and (10).

Step 2. Distribution fusion stage:
Estimate Tod

f us by fusing Tod
int and based on Equations (11)–(21).

Step 3. Posterior update stage:
Update Kupd using Equations (22)–(24); and update tupd using Equation (25).
Set K�−1

upd = Kupd, and t�−1
upd = tupd.

Go to Step 1 for next time interval.

5. Numerical Experiments

Performance of the proposed heterogeneous data fusion method was investigated using
real-world data from Hong Kong, as shown in Figure 4. A path from Aberdeen tunnel in Hong Kong
Island to the Cross Harbor tunnel (CHT) in Kowloon urban area was selected for this case study.
CHT is the most congested of the three tunnels connecting Kowloon urban area and Hong Kong
Island. The total travel distance of the chosen path was 3.7 km with free-flow travel time 3.6 min.
There were 11 links in the chosen path, with only two, Links 1 and 5, equipped with Autoscope video
image detectors (VIDs), which is a popular type of point detector. Two AVI devices were installed
at the beginning and end of the chosen path for automatic toll collection. Market penetration of AVI
systems was approximately 40%. Real-time AVI data were also utilized for the implementation of RTIS
(real-time traveler information systems) in Hong Kong [14]. Detailed information of this AVI system
was provided in Tam and Lam [14].

Traffic data from both interval and point detectors were collected during (07:00–23:00) of a typical
weekday: Wednesday, 20 August 2014. An offline link travel time covariance matrix was obtained
from RTIS [14] as the initial Kfus. To evaluate the performance of the proposed heterogeneous data
fusion method, a manual license plate matching survey was performed. Video recording equipment
was set at the starting and end nodes of the chosen path to record the license plate readings of vehicles.
The vehicles recorded at the starting and end nodes were manually matched. Path travel times of
matched vehicles were computed as ground truth for accuracy validation.
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Figure 4. Study area location.

5.1. Evaluation Metrics

Two widely accepted metrics, mean absolute percentage error (MAPE) and root mean square error
(RMSE), were adopted to evaluate the accuracy of the estimated mean of path travel time distributions:

MAPEt =
100%

n
·

n

∑
�=1

∣∣∣tod
f us − tod

obs

∣∣∣
tod
obs

(26)

RMSEt =

√
1
n
·

n

∑
�=1

(tod
f us − tod

obs)
2 (27)

where n is the number of time intervals during the period of interest, and tod
obs is the ground truth

observed mean travel time obtained from the field survey at time interval �. Smaller MAPEt and
RMSEt indicate higher accuracy of the estimated mean travel time.

The MAPE and RMSE concepts were extended to evaluate the accuracy of the estimate STD of the
path travel time as:

MAPEσ =
100%

n
·

n

∑
�=1

∣∣∣σod
f us − σod

obs

∣∣∣
σod

obs
(28)

RMSEσ =

√
1
n
·

n

∑
�=1

(σod
f us − σod

obs)
2 (29)

where σod
obs represents the ground truth observed travel time STD obtained from the field survey at

time interval �.
For many transportation applications, it is meaningful to construct a travel time interval at a given

confidence level from the estimated travel time distribution [60,61]. The travel time interval accuracy
represents the integrated accuracy of both the estimated mean and STD. Two metrics were adopted
to evaluate these accuracies: probability outside the predicted (estimated) time interval (POPI) and
probability outside the observed time interval (POOI) [62]. The POPI measures the percentage of
observed data outside the estimated travel time interval, while the POOI measures the percentage of
estimated distribution outside the observed travel time interval.
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Let l f us = Φ−1
f us(α/2) and u f us = Φ−1

f us(1 − α/2) be the lower and upper bounds of the estimated

travel time interval, respectively, at confidence level 1 − α, where Φ−1
f us(·) is the inverse CDF of the

estimated path travel time distribution. Then:

POPI =
100%

n
·

n

∑
�=1

(1 − Φobs(u f us)− Φobs(l f us)

1 − α
) (30)

where Φobs(·) is the CDF of the observed travel time distributions. The POPI value ranges from 0 to 1.
The smaller POPI indicates capture of larger proportion of observed data, i.e., higher accuracy of the
estimated travel time interval. As noted by Shi et al. [62], this POPI metric is very useful, but tends to
exhibit bias for situations of wide travel time intervals due to large STD errors.

As an alternative, POOI metric is the percentage of estimated distribution outside the observed
travel time interval. Let lobs = Φ−1

obs(α/2) and uobs = Φ−1
obs(1 − α/2) denote the lower and upper

bounds of the observed travel time interval, respectively, at confidence level 1 − α, where Φ−1
obs(·) is

the inverse CDF of the observed path travel time distribution, and Φ f us(·) denotes the CDF of the
estimated travel time distribution. Then:

POOI =
100%

n
·

n

∑
�=1

(1 − Φ f us(uobs)− Φ f us(lobs)

1 − α
) (31)

POOI also ranges [0, 1], and larger POOI indicates lower estimated travel time interval accuracy,
because a larger proportion is outside the observed travel time interval. Therefore, the POPI and POOI
matrices are complementary to evaluate the estimated path travel time distribution accuracy.

5.2. Experimental Results

This section reports experimental results of the case study using the proposed heterogeneous
data fusion method. Travel time distributions for the chosen path and links were estimated every
2 min. The probability of the unknown state for both interval and point detectors was set as
αΘ = mint(Θ) = mpos(Θ) = 0.05, and sensitivity parameters in Equations (15) and (16) were
set as βint = 0.2 and βpoi = 0.8, according to the sensitive analysis results obtained from Dion and
Rakha [34]. Setting βpoi = 4βint assigns a higher level of information quality to the interval detector
than point detector data, given the same sample sizes.

Figure 5 shows two path travel time distributions, Tod
int and Tod

poi, estimated from interval and
point detectors, respectively, in the data preprocessing step. Travel time intervals were constructed
for the 95% confidence level, i.e., αΘ = 0.05, for both interval and point detectors, shown in blue
and red, respectively. Observed data from the field survey, shown in green dots, were only used
for accuracy validation. As shown in the figure, two estimated travel time intervals from different
data sources can cover most observed data well during the period of interest. The two estimated
travel time distributions show high consistency during off-peak periods (21:00–23:00 and 7:00–7:30),
slight inconsistency during inter-peak periods (10:00–16:00), and high inconsistency during peak
periods (7:30–10:00 and 16:00–21:00). In general, Tod

int tended to have higher accuracy than Tod
poi. This

was expected, since Tod
int was estimated from interval detector data, whereas Tod

poi was estimated from
point detector data through spatial interpolation. Such a result also justified the chosen sensitivity
parameters, reflecting the higher level of information quality for the interval detector data.

Figure 6 shows the resultant path travel time distribution after fusing the two path travel time
distributions from Figure 5. A confidence level of 80%, i.e., α = 0.2, was used to construct the travel
time interval and calculate POPI and POOI metrics. The proposed heterogeneous data fusion method
provided an accurate and robust estimation of mean travel time, tod

f us, throughout the period of interest,
with MAPEt = 7.1%. However, the relative large MAPEσ = 17.9% showed that the proposed method
overestimated path travel time distribution STD, σod

f us, for the period of interest. This highlights
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the challenge of accurately estimating σod
f us in congested road networks. One major reason may be

the difficulty of estimating σod
obs of the population using biased samples with various data quality.

Fortunately, the slight STD over estimation could be beneficial to most travelers with risk-averse
attitudes regarding travel time uncertainty. POPI = 15.7%, somewhat better than the target (20%),
which indicates that a high proportion (84.3%) of observation data was well covered by the estimated
path travel time interval. It can also be seen from the figure that the estimated interval was not too
wide, given the relative large STD error. POOI = 25.6%, which was somewhat larger than the target
(20%). Thus, overall the POPI and POOI metrics verified that the proposed heterogeneous data fusion
method could obtain accurate and robust estimations of the path travel time interval (i.e., path travel
time distribution) by fusing heterogeneous interval and point detector data.

 

Figure 5. Two path travel time distributions obtained in the data preprocessing step.

Figure 6. Fused path travel time distribution during the period of interest.
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5.3. Comparison of Data Fusion and Single Data Source Results

In this section, the effectiveness of the proposed heterogeneous data fusion method was
investigated by comparing data fusion results with those estimated from single data source.
The estimated path travel time distribution (i.e., Tod

int) from single interval detector data was shown in
Figure 5 in blue. The estimated path travel time distribution from single point detector data (denoted
by T̃od

poi) was shown in Figure 7 in blue, which was different from the Tod
poi estimation shown in Figure 5.

It should be noted that T̃od
poi was generated using fixed offline spatial correlations obtained from

RTIS, and Tod
poi was generated by the proposed heterogeneous data fusion method using the updated

spatial correlations.

Figure 7. Path travel time distributions estimated from point detector data by using updated and fixed
spatial correlations.

Figure 7 shows travel time intervals of T̃od
poi and Tod

poi in blue and red colors for comparison.
The 80% confidence level was used for construing travel time intervals and calculating POPI and
POOI metrics. As illustrated, by using updated spatial correlations, the accuracy of the path travel time
distribution estimated from point detector data was significantly improved. The MAPEt, MAPEσ,
POPI, and POOI metrics were reduced by 46.4% (i.e., 1–24.9%/46.5%), 78.9%, 21.1%, and 22.1%,
respectively. This validates the effectiveness of the proposed optimization technique for updating
travel time spatial correlations. Such a result also highlights the necessity for considering the dynamic
nature of travel time spatial correlations in congested road networks, and implies that current spatial
interpolation techniques [14,15] built on fixed spatial correlations may lead to considerable errors
when imputing missing data.

Table 3 summarizes the evaluation metrics for all path travel time distributions estimated from
point detector, T̃od

poi; interval detector, Tod
int; and fused data, Tod

f us. Amongst these three distributions, the

accuracy of T̃od
poi was the poorest, with MAPEt = 46.5% and MAPEσ = 61.6%. The POPI = 85.9%

indicates that a large proportion (85.9%) of observations falling outside the travel time interval of
T̃od

poi. The POOI = 92.0% shows that almost whole travel time range of T̃od
poi was out of the observed

time interval. The accuracy of Tod
int was somewhat superior, with MAPEt = 17.1%, MAPEσ = 76.9%,

POPI = 26.4% and POOI = 48.9%. As shown, Tod
f us, using the proposed data fusion method, was the
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best for all evaluation metrics. By fusing interval and point detector data, the MAPEt, MAPEσ, POPI
and POOI metrics were respectively reduced by 58.5% (i.e., 1–7.1%/17.1%), 76.7%, 40.5%, and 47.6%,
when compared to that of Tod

int. Thus, the proposed heterogeneous data fusion method can significantly
improve the accuracy of path travel time distribution estimations from interval and point detectors.

Table 3. The accuracy of data fusion results and single data source results.

Data Source
Estimated Mean Estimated STD

POPI POOI
MAPE RMSE (min) MAPE RMSE (min)

Point detectors 46.5% 2.32 61.6% 0.75 85.9% 92.0%
Interval detectors 17.1% 1.42 76.9% 1.01 26.4% 48.9%

Data fusion 7.1% 0.85 17.9% 0.35 15.7% 25.6%

Fusion of interval and point detector data can improve the accuracy of travel time distributions
for links without point detectors. When only point detector data were used, travel time distributions
for links without point detectors were indirectly estimated through the fixed spatial correlations.
Fusing interval and point detector data provided better estimations of link travel time distributions
from the updated spatial correlations. Figure 8 compares individual link travel time distributions
estimated from point detector data and the proposed data fusion method. Ground truth data for
these link travel time distributions were not available for quantitative analysis of estimation accuracy.
Nevertheless, link travel time distributions estimated from the proposed heterogeneous data fusion
method better capture dynamic traffic conditions, with more distinct peaks occurring during the
morning and evening peak periods. The much superior accuracy of path travel time distribution
estimation (see Table 3) also justifies this visual observation, because the path travel time distribution
is the summation of corresponding link travel time distributions along the path.

 

Figure 8. Individual link travel time distribution estimated from point detector data and fused data.
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5.4. Comparison of Different Distribution Fusion Algorithms

This section investigates the effectiveness of the proposed D-S distribution fusion algorithm
built on the D-S evidence theory. To further evaluate and benchmark the proposed algorithm,
a linear combination fusion algorithm built on the linear combination approach was also implemented.
The linear combination approach (or simple convex combination approach) has been widely used as
a simple and effective technique to fuse two independent estimations of mean travel times [11],

tod
f us =

wint
wint + wpoi

tod
int +

wpoi

wint + wpoi
tod

poi (32)

where wint and wpoi are the data quality of interval and point detectors, respectively, as defined in
Equations (15) and (16). This study extended the linear combination approach to fuse two independent
STD estimations, as:

σod
f us =

wint
wint + wpoi

σod
int +

wpoi

wint + wpoi
σod

poi (33)

Assuming normal distributions, this extended linear combination fusion algorithm can be used to
fuse path travel time distributions from interval and point detectors.

In this study, the same set of input data was used to validate the results of the proposed D-S
distribution fusion and the linear combination fusion algorithms. Path travel time distributions
of interval and point detectors obtained in the data preprocessing step, shown in Figure 5, were
employed as the input data. Figure 9 reports the fused path travel time distributions using these two
algorithms. As shown, the proposed D-S distribution fusion algorithm produces better of path travel
time distribution estimates than the linear combination fusion algorithm. The proposed algorithm can
significantly reduce MAPEt, MAPEσ, POPI, and POOI metrics by 58.6%, 15.3%, 37.2%, and 38.0%,
respectively, compared to the linear combination fusion algorithm. This result indicates that the D-S
evidence theory is effective for fusing inaccurate and inconsistent distribution data from multiple
sources under various information conflict situations, including highly consistent, slightly inconsistent,
and highly inconsistent situations.

Figure 9. Path travel times of different methods during the period of interest.
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6. Conclusions and Future Research

Provision of travel time distribution information is a crucial requirement for travelers to make
reliable path choice decisions incorporating travel time uncertainties. With advances in information
and communication technologies, interval detectors (such as automatic vehicle identification devices)
and point detectors (such as loop detectors) are being increasingly deployed in road networks. These
interval and point detectors generate heterogeneous data sources with distinct characteristics of data
quality and network coverage. Fusing these heterogeneous data can be beneficial for robust and
accurate estimation of travel time distribution information.

This paper proposed a heterogeneous data fusion method to estimate travel time distributions,
fusing heterogeneous data from point and interval detectors. The proposed method consisted of
three steps. The first step, i.e., data preprocessing, was to respectively estimate path travel time
distributions from interval and point detector data. The spatially missing data issue of point detectors
was addressed. The travel time distributions of links without point detectors were imputed based on
their spatial correlations with links that had point detectors. The second step, i.e., distribution fusion,
was to fuse these two path travel time distributions estimated from interval and point detectors. A D-S
distribution fusion algorithm built on the Dempster-Shafer evidence theory was proposed to fuse path
travel time distributions from different data sources with various information qualities. The third
step, i.e., posterior update, was to update link travel time distributions and their spatial correlations.
The problem of updating spatial correlations was formulated and solved as a quadratic programming
problem with a convex objective function and two linear constraints.

To validate the accuracy of the proposed heterogeneous data fusion method, a case study was
performed using real-world data from RTIS in Hong Kong. The results validated that the proposed
method can obtain robust and accurate estimations of path travel time distributions in congested
road networks. Compared with either interval or point detectors alone, the proposed data fusion
method can significantly reduce estimation errors for path travel time distributions with respect to
MAPEt, MAPEσ, POPI, and POOI metrics. The proposed D-S distribution fusion algorithm was
also compared to a linear combination algorithm for the same case study, and it showed that the
proposed D-S distribution fusion algorithm can generate a robust and accurate fusion of travel time
distributions over the whole period of interest, including highly consistent, slightly inconsistent,
and highly inconsistent situations for the different data sources. Furthermore, the results of the case
study indicated that the proposed optimization technique can effectively update travel time spatial
correlations under dynamic traffic conditions, and incorporation of updated spatial correlations greatly
enhanced estimation accuracy of travel time distributions of the path and all links without point
detectors. Therefore, the proposed D-S distribution algorithm was validated to be effective for fusing
travel time distributions from different data sources under various information conflict situations,
including highly consistent, slightly inconsistent, and highly inconsistent situations.

There are several worthwhile directions for future research. First, travel times in this study
were assumed to follow normal distributions. However, several previous studies have found that
travel times in congested road networks could be better represented by asymmetric distributions
with strong positive skew, e.g., lognormal, gamma, or Burr distributions [10,57]. The proposed
heterogeneous data fusion method can be easily extended to other types of distributions with two
parameters, e.g., lognormal or gamma, by replacing Equation (14) with corresponding methods to
calculate the cumulative distribution function. Second, the spatial interpolation proposed by Tam
and Lam [14] was adopted in this study for imputing the travel time distributions of links without
point detectors. However, other effective spatial interpolation techniques have been proposed, such
as Kriging [15]. Integrating these alternative spatial interpolation techniques into the proposed
heterogeneous data fusion method warrants further study. Third, the proposed data fusion method
only considered heterogeneous data from point and interval detectors. How to extend the proposed
method to incorporate floating car data needs further investigation. Fourth, the case study only
involved a specific path. Extension of the proposed method to fuse travel time distributions of multiple
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paths between a pair of nodes is an interesting topic for further investigation. Last but not the least,
travel time distributions were estimated in this study for the current time interval. Extension of the
proposed data fusion method to the problem of short term travel time distribution prediction is another
interesting topic for further study.
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Abstract: A growing number of applications needs GIS mapping information and commercial 3-D
roadmaps especially. This paper presents a solution of accessing freely to 3-D map information and
updating in the context of transport applications. The method relies on the OSM road networks that is
2-D modeled intrinsically. The objective is to estimate the road elevation and inclination parameters by
fusing GPS, OSM and DEM data through a nonlinear filter. An experimental framework, using ASTER
GDEM2 data, shows some results of the improvement of the roads modeling that includes their
slopes also. The map database can be enriched with the estimated inclinations. The accuracy depends
on the GPS and DEM elevation errors (typically a few meters with the GNSS sensors used and the
DEM under consideration).

Keywords: multi-sensor fusion; non-linear filtering; GNSS-based navigation; land-vehicle localization;
digital road maps; digital elevation models

1. Introduction

Nowadays, an increasing number of transport applications would need to have access to 3-D
map information whether for location or route planning problems [1]. Some solutions of 3-D maps
exist but they are commercial and expensive. In this context, the purpose of our work is to offer a free
solution based on the use of OpenStreetMap (OSM, http://www.openstreetmap.org). OSM is a free
web-service that provides map data from uploaded GPS traces and user-registered information as
names, types, traffic directions and inclinations of roads [2]. More generally, OSM is built by volunteer
users who contribute and maintain these GIS data all over the world. The level of accuracy depends
primarily on existing data. It should be noticed that the level of accuracy is optimal when one is in
a dense area for that many users have refined the data over time. Providing none 3-D support, the
OSM database is increasingly used in the development of transport applications [3,4]. In our earlier
work [5], a method has been proposed to update the OSM roads slopes by using a car positioning
system composed of 2 GPS units. To make the method more robust, we are interested in the fusion
of the dual-GPS positioning system and data from a Digital Elevation Model (DEM) that accounts
for the terrain relief. This can lead to the improvement of the estimated elevations [6]. One of the
objectives of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) mission
was to produce a global DEM of a very large part of the Earth, based on a horizontal resolution of 1
arcsecond (30 m) [7]. In 2009, this American-Japanese collaboration allows to produce a model whose
horizontal resolution was three times sharper than the DEM of the Shuttle Radar Topography Mission
(SRTM) [8] that was built with at 3 arcseconds (about 90 m). However, the presence of many voids
and artifacts in this first model version made the exploitation of data quite difficult. In 2011, a new
model version was proposed with a significant refinement of the relief. Some artifacts as steps at scene
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boundaries, pits, bumps or mole runs are fixed without deleting all of them. Therefore, 1 × 1 degree
tiles of data are available with additional information of the elevation measurements quality. The
WGS84 horizontal datum is used to locate ASTER data while the EGM96 vertical datum levels the
stored elevations compared to the Mean Sea Level (MSL) geoid. Several authors published works
about the relevance and the accuracy of DEM data in comparison with calibrated GPS-altitudes [9,10].
Considering the horizontal resolution of ASTER DEM data, an elevation information is available about
every 30 m. This low spatial sampling can be a major drawback of the ASTER data. In a process of
estimating the slope of roads, it is hard to achieve a high level of accuracy using ASTER DEM only [11].
The possibility to use DEM only solutions is indeed related to the spatial dimensions of the tiles that
are for now not small enough. Three-dimensional modeling of road networks has resulted in many
publications of methods based on the processing of aerial images [12], geometric methods using 2D
GIS data only [13], or methods based on the fusion of GPS/GIS/DEM data [14–17].

This paper proposes to enrich the modeling of road network with an additional parameter related
to the inclination and the vertical height of roads. By fusing GPS/DEM data through a nonlinear filter
(typically an unscented Kalman filter [18]), our method allows to get an estimation of the OSM roads
slopes. The aim is to complete the mapping system with 3-D information as nodes elevations and
inclinations of roads. We equipped a standard vehicle with a Global Navigation Satellite System (GNSS)
based on a dual-GPS system whose receivers antennas are aligned on the extremities of the same side
of the roof. A such consideration induces a more accurate positioning of the vehicle by bounding the
possible errors due to GPS signal degradation [19]. Knowing that OSM provides a digital modeling of
roads that relies of the 2-D geolocation of their nodes depending on land surveys, the method requires
a map-matching step with GPS data. The goal is to deliver an estimation of the road inclinations.
To this end, we develop an original method based on a geometric approach to manage the DEM
data and compute a more accurate MSL-elevation. In the proposed solution, all measurements are
sequentially processed by an unscented Kalman filter (UKF) that is more suited to nonlinear equations
than the standard Kalman filter. An original aspect of our approach lies in the modeling of the OSM
and DEM databases. They are considered as sensors with their own measurement errors which makes
possible to develop a global filtering approach. Finally, by injecting the estimated vehicle elevations
and their orthogonal projections on the matched road into a least squares method, we get an estimate
of the slope of this road.

We have chosen to validate this approach in a context of road experimentation mainly composed of
highways that are built in an open environment with a varied but limited terrain elevation. We present
experimental results of 3-D time-location of the vehicle that allow to get an accurate estimation of the
inclination of the roads traveled during the test. Then, it becomes possible to register them in OSM for
later use in 3-D route planning applications, as developed in [20].

2. 3-D Modeling

Stating the standard kinematic equations are enough to model the car dynamics, the major
parameters are defined by the acceleration γ, the velocity v and the position. They are reported in the
following state vector by introducing their x, y and z-coordinates along the 3-D axes:

Xt = (xt, vx
t , γx

t , yt, vy
t , γ

y
t , zt, vz

t , γz
t )

T (1)
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2.1. Formatting of the Dynamics Equation

Introducing the u-axis with u = {x, y, z}, the car dynamics relies on the following third order
kinematic state model: ⎛⎜⎝ ut+1

vu
t+1

γu
t+1

⎞⎟⎠ =

⎛⎜⎝ 1 Δt 0
0 1 Δt
0 0 1

⎞⎟⎠
︸ ︷︷ ︸

Fu

⎛⎜⎝ ut

vu
t

γu
t

⎞⎟⎠+

⎛⎜⎝ Ωu
t

Ωvu
t

Ωγu

t

⎞⎟⎠ (2)

The dynamics matrix Fu reveals the navigation rate Δt. The Ω-vector is composed of additive
white Gaussian noises with Ωt ∼ N (0, Qt). This equation can be generalized to the three-dimensional
case and becomes:

Xt+1 = f (Xt, Ωt) = FXt + Ωt (3)

F models the linear flow of the dynamics. Stating O3×3, the null square-matrix of dimension 3, it
can be expanded as:

F =

⎛⎜⎝ Fx O3×3 O3×3

O3×3 Fy O3×3

O3×3 O3×3 Fz

⎞⎟⎠ (4)

2.2. Formatting the Measurement Equations

2.2.1. GPS Readings

The car carries two EGNOS-aided (SBAS) receivers that collect the GPS positioning (the specifications
of the GPS sensors are given in Section 5.1). Their antennas are fixed on the roof and are spaced by
a distance D. ZGPS,i

t+1 denotes the measurement that is providing by the receiver i = {1, 2}. Both them
are fused sequentially to get an estimation of the 3-D dynamics:

ZGPS,i
t+1 =

⎛⎜⎝ xGPS,i
t+1

yGPS,i
t+1

zGPS,i
t+1

⎞⎟⎠ = hGPS,i(Xt+1) + VGPS,i
t+1 (5)

VGPS,i
t+1 ∼ N (0, RGPS

t+1) is an additive white Gaussian noise with zero mean and RGPS
t+1 as the noise

covariance matrix.
A single coordinate system is used to define the car positioning. It refers to the GPS antenna of

unit #1. Taking into account this consideration, the measurement function of each GPS unit can be
formatted as follows:

• for the GPS unit #1, hGPS,1 is the linear measurement function:

hGPS,1(Xt+1) =

⎛⎜⎝ xt+1

yt+1

zt+1

⎞⎟⎠ (6)

• for the GPS unit #2, hGPS,2 is the nonlinear measurement function:

hGPS,2(Xt+1) =

⎛⎜⎜⎜⎜⎜⎜⎝
xt+1 + D ∗ vx

t+1
‖ vt+1 ‖

yt+1 + D ∗ vy
t+1

‖ vt+1 ‖
zt+1 + D ∗ vz

t+1
‖ vt+1 ‖

⎞⎟⎟⎟⎟⎟⎟⎠ (7)
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Here, the introduced non-linearities are derived from the calculations making it possible to define
the GPS measurement ZGPS,2

t+1 in the coordinate system that is fitted to the antenna of the receiver #1.

2.2.2. OSM Road Network

The next step is to fuse the previous GPS-estimated parameters with the OSM database in
order to match the traveled road. As a consequence, the accuracy of the car ground-positioning can
be increased since the OSM road network is modeled by road segments whose 2-D location of
transitional nodes from one segment to another is available. The accuracy of the GPS-based positioning
is straightforwardly related to the intrinsic performance of the GPS receiver (e.g., about a few meters
for our sensors). Fusing GPS-based estimation with the OSM data allows to consider the road geometry
as a constraint for the car displacement. In this case, the estimator can take benefit of the accuracy of
the map database. The ground-location (xOSM

t+1, yOSM
t+1) and the ground-direction of its road segment θOSM

t+1
are the main features of each node:

ZOSM
t+1 =

⎛⎜⎝ xOSM
t+1

yOSM
t+1

θOSM
t+1

⎞⎟⎠ = hOSM(Xt+1) + VOSM
t+1 (8)

VOSM
t+1 is an additive white Gaussian noise with zero mean and ROSM

t+1 as the noise covariance matrix so
that the statistical aspects related to the inhomogeneities and errors of land surveys can be integrated.
In order to link the stater vector components to the measurements, a new nonlinear function hOSM is
introduced as:

hOSM(Xt+1) =

⎛⎜⎜⎜⎜⎝
xt+1

yt+1

arctan

(
vy

t+1
vx

t+1

)
⎞⎟⎟⎟⎟⎠ (9)

When the vehicle is stopped, the previous direction is reused.

2.2.3. ASTER GDEM2 Terrain Surface

The final step is the identification of the DEM-area in which the car is driven. Once matched the
MSL-elevation is fused with the previous OSM-estimated parameters by the proposed algorithm that
takes into account the ASTER GDEM2 horizontal resolution of 1 arcsecond (about 30m). The DEM
measure features the ground-location of the MSL-elevation point as (xDEM

t+1, yDEM
t+1, zDEM

t+1).

ZDEM
t+1 =

⎛⎜⎝ xDEM
t+1

yDEM
t+1

zDEM
t+1

⎞⎟⎠ = hDEM(Xt+1) + VDEM
t+1 (10)

hDEM is the measurement function and VDEM
t+1 is an additive white Gaussian noise with zero mean and

RDEM
t+1 as the noise covariance matrix. This matrix defines the standard deviations relative to the

horizontal position and vertical elevation measurement.

hDEM(Xt+1) =

⎛⎜⎜⎝
xt+1

yt+1

zt+1 − H

⎞⎟⎟⎠ (11)

This function highlights the term H that defines the height that has been measured initially
between GPS antenna of the unit #1 and the ground.
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3. Estimation of the Road Inclination

The goal of this paper is to propose a theoretical framework to OSM data enrichment with road
inclination. The proposed nonlinear modeling is solved by an unscented Kalman filter (UKF). It is
known that the UKF approach improves the state estimation compared with the EKF-methods in the
nonlinear case [21]. The benefit of the UKF-approach also lies in its lower computational complexity
compared with the particle filtering methods [22] which are not essential here due to moderate
non-linearity of the modeling. Figure 1 shows that the filter is based on a sequential processing
structure of the GPS, OSM and DEM data. Finally, the filter estimates the inclination which is used to
enrich the road network database.

Figure 1. Multisensor fusion structure.

3.1. Dynamics Sampling: Prediction

A first step consists in a statistical sampling of the state-space vector using sigma-points. Let χ
j,X
t|t

and χ
j,Ω
t|t be the sigma-points at time step t based on the knowledge of the measurement at time step t,

respectively related to the state vector X and the dynamics noise Ω.
Their evolution is computed as follows:

χ
j,X
t+1|t = f (χj,X

t|t, χ
j,Ω
t|t ) (12)

χ
j,X
t+1|t is the jth column of χX

t+1|t. The predicted state is computed as follows:

X̂t+1|t =
2na+1

∑
j=1

wjχ
j,X
t+1|t (13)

na is the augmented state vector dimension and the weights wj are derived from the unscented
transform [23]. The covariance matrix P̃t+1|t is written as below:

P̃t+1|t =
2na+1

∑
j=1

wj(χ
j,X
t+1|t − X̂t+1|t)(χ

j,X
t+1|t − X̂t+1|t)T (14)
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3.2. Correction: General Principles

Let us denote Zα the measurement related to the sensor α where α ∈ {GPS1, GPS2, OSM, DEM}.
The measurement equation can be written as:

Zα
t+1 = hα(Xt) + Vα

t+1 (15)

From a general viewpoint, the correction step use the sigma-points χ
j,Zα

t+1|t related to the
measurement of the sensor α:

χZα

t+1|t = hα(χX
t+1|t) + χVα

t+1|t (16)

The predicted measurement Ẑα
t+1|t is computed as the weighted sum of the sigma-points χ

j,Zα

t+1|t
where the superscript j denotes the jth column of χZα

t+1|t:

Ẑα
t+1|t =

2na+1

∑
j=1

wjχ
j,Zα

t+1|t (17)

The state vector and the error covariance matrix are computed as follows:⎧⎪⎪⎨⎪⎪⎩
Kα

t+1 = P̃Xt+1Zα
t+1

P̃−1
Zα

t+1Zα
t+1

P̃α
t+1|t+1 = P̃t+1|t − Kα

t+1P̃Zα
t+1Zα

t+1
Kα

t+1
T

X̂α
t+1|t+1 = X̂t+1|t + Kα

t+1(Zα
t+1 − Ẑα

t+1|t)

(18)

where

P̃Xt+1Zα
t+1

=
2na+1

∑
j=1

wj(χ
j,X
t+1|t − X̂t+1|t)(χ

j,Zα

t+1|t − Ẑα
t+1|t)

T (19)

P̃Zα
t+1Z

α
t+1

=
2na+1

∑
j=1

wj(χ
j,Zα

t+1|t − Ẑα
t+1|t)(χ

j,Zα

t+1|t − Ẑα
t+1|t)

T (20)

3.3. Correction: Proposed Solution

The proposed solution is based on a sequential processing of sensor data. An original feature of
our method consists in a statistical modeling of map data from OSM and DEM. The popular approaches
match the estimate of the position with the road network [24]. Our statistical method allows to take
into account the mapping inaccuracies in the estimation process. Indeed, in many solutions, the map
matching procedure uses a projection onto the road network and thus does not consider the map
accuracy as a parameter of the problem. Our approach uses this accuracy to build a map-matching
procedure that gives in the estimation process a relative weight to the OSM-based correction. This is
done via the measurement covariance matrix ROSM

t . The accuracy of the OSM measurements is relative
to the accuracy of the GPS traces uploaded by the users in the database.

Moreover, the DEM database, also modeled as an additional sensor, is used to correct the
estimation of the elevation of the vehicle. Similarly to OSM measurements, the DEM data are used in
the estimation process, considering their accuracy defined by the covariance matrix RDEM

t . Again with
this ”sensor”, we do not use a all-or-nothing correction but a weighted correction using the DEM
measurement covariance matrix. This leads to an improvement of the estimation accuracy, especially
of the elevation which remains a parameter with high errors in GPS (typically several meters in some
cases or more in multipath propagation problems of GNSS signals).

As a consequence, the integration of OSM and DEM data leads to a better estimation of the road
network parameters and in particular of the road sections elevation (including slope). This estimation
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is performed in real time and improves the OSM database by extending it to the 3-D case. The updated
database will then be used for future positioning thus leading to an overall improvement in estimation.

Figure 1 details the different steps of the filtering solution. The measurements are sequentially
processed in the following order: GPS readings #1 and #2, OSM measurements and DEM measurements.
The relative weight of each sensor is related to their measurement error covariance matrix which
initially appears in the computation of the sigma-points χZα

t+1|t related to measurement equation
Equation (16).

3.3.1. Correction from GPS Sensors

The GPS readings of each receiver #i (i = {1, 2}) are sequentially processed to estimate the state
vector X̂GPSi

t+1/t+1.

3.3.2. Correction from the OSM Database

The OSM database is modeled as an additional sensor (see Equation (16)). The prediction of the
map measurement ẐOSM

t+1|t+1 is done from the unscented transform (Equation (17)). This prediction is
matched with the OSM road network and the matched segment is used to correct the estimation of the
ground-location and direction of the vehicle.

In [24], the author lists various approaches for map-aided positioning of a vehicle and most of
them concerns geometric methods. We propose to solve the map matching step through a statistical
approach that relies on the computing of the Mahalanobis distance [25] between the UKF-predicted
map measurement and all available OSM road descriptors. Knowing that the digital road map is
described by geolocated and interconnected nodes whose main drawback is their random sampling
grid, we have refined the map modeling. In the matching step, we introduce as inputs the orthogonal
projections of the UKF-predicted map measurement onto each nearby OSM road segment if possible,
otherwise the nearest line segment extremity is used instead of the projection. This step leads to the
identification of the position of the closest candidate for each road segment of the map database.

At time instant t + 1, we get the set of orthogonal projections ZOSM
m :

ZOSM
m = proj⊥,m(ẐOSM

t+1|t+1) (21)

m = {1, . . . , n} and n describes the maximum projections number. Map descriptor includes the
road direction. So, the Mahalanobis distance dm = d(ZOSM

m , ẐOSM
t+1|t+1) can be evaluated in the cases of

a two-way road (θ1, θ2) or a one-way road (θ1):{
ZOSM, θ1

m = (xOSM
m , yOSM

m , θOSM
m )T

ZOSM, θ2
m = (xOSM

m , yOSM
m , θOSM

m + π)T (22)

The Mahalanobis distances can be derived from the previous equation:

(dθk
m )2 = (ZOSM, θk

m − ẐOSM
t+1|t+1)

T(P̃GPS
t+1|t+1)

-1(ZOSM, θk
m − ẐOSM

t+1|t+1) with k = {1, 2} (23)

The innovation process has a Gaussian distribution. As a consequence, the squared Mahalanobis
distance is then distributed according to a chi-square law with three degrees of freedom. The correction
is done if the value is below a threshold ε that results from the statistical properties of the Mahalanobis
distance. Indeed, the measurement ZOSM,θ∗

m∗ that minimizes the criterion dθ
m(ZOSM

m , ẐOSM
t+1|t+1) ≤ ε is used

to correct the GPS-based estimate.

3.3.3. Correction from DEM Database

A DEM database is used to take into account the elevation in the multisensor processing. A first
solution has been proposed in [26] and was based on the minimization of Mahalanobis distances
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between the nearest horizontal point of elevation and the filter estimation. In area of low elevation
change, this approach may be sufficient. In areas with higher elevation, the use of raw DEM data can
generate significant errors. In Section 4, we develop our main contribution that is relative to a new
modeling of DEM data based on triangulations.

The last step concerns the correction with elevation measurements from the ASTER terrain
surface. The goal is to bound with DEM corrections [27], the well-known altitude errors of GPS
measurements [28]. The position and elevation errors of the DEM data are modeled by Equation (10)
and the unscented transform is used to derive the predicted measurement. It must be noticed that the
elevation components only are corrected to avoid horizontal positioning errors that can be caused by
the poor horizontal resolution of the DEM. So, the measurement ZDEM

0 is used to correct the previous
estimate and deliver the final estimate:

X̂t+1|t+1 = X̂DEM
t+1|t+1 (24)

3.4. Road Slope Computing

The final objective of this work is to propose an enrichment of OSM database with the inclinations
of the roads. This step is done from the estimated elevation (z-component of the state vector in
Equation (24)) and the matched orthogonal projection on the OSM road network (see Equation (21)).
The last step relies then on the estimation of the inclination parameters.

The following equation details the relationship between the elevation Es,t and the radial distance
ρs,t of the projected estimation at t onto the line segment #s to the extremity (xs,0, ys,0):

Es,t = asρs,t + zs,0 (25)

where as denotes the slope of the line segment #s and zs,0 its intercept.
For the ns projections onto the same line segment #s, Equation (25) can be written as follows:

Es = Hu =

⎛⎜⎝ ρs,1 1
...

...
ρs,ns 1

⎞⎟⎠(
as

zs,0

)
(26)

where the radial distance ρs,t is described by:

ρs,t =
√
(xOSM

s,t − xs,0)2 + (yOSM
s,t − ys,0)2 , ∀t (27)

H is a ns × 2 matrix. The parameter ns changes for each line segment #s and depends on several
parameters (vehicle speed, length of the line segment, . . . ).

For each segment, a least squares method is used to estimate the road inclination:(
âs

ẑs,0

)
=
(
HTH

)−1 HTEs (28)

This statistical estimation of the inclination is used to automatically enrich the road map database.

4. New Modeling of DEM Data

We propose a new modeling of DEM-data based on the triangulations in the vicinity of the
ground-location of the vehicle, instead of matching raw data as published in [26]. So, the problem is
now to estimate the elevation between two successive grid points. This method allows to compute
the pseudo-elevation of the vehicle from the DEM grid. Here, the new advantage is that the DEM
management method takes into account the topology of all terrain.
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4.1. Triangulation of the DEM

Another solution can be to decompose the grid into triangles. We use the rasterized DEM to
produce a triangulated irregular network (TIN). This modeling produce a continuous surface that
can be used in the filtering solution in a similar way to OSM road network (which is a line segment
network). This modeling avoids the problem of estimating planes equations using a least squares
method which can lead to difficulties in high variability of the orientation of the plane (for an approach
to 4 points) and introduce additional errors in calculating the elevation mainly due to the calculation
method. The advantage of a triangle-based approach is that it does not generate any additional errors.

Figure 2 shows a part of the ASTER GDEM2, for instance. A = (xDEM
i , yDEM

i , zDEM
ij )T is the 2-D grid

point (i, j) for which the MSL-elevation zDEM
ij is known.

Figure 2. Example of triangulation of the ASTER GDEM2 grid.

The triangles #1 (ABC) and #2 (BCD) are defined by these additional points:

• B = (xDEM
i + ΔxDEM, yDEM

i , zDEM
i+1,j)

T

• C = (xDEM
i , yDEM

i + ΔyDEM, zDEM
i,j+1)

T

• D = (xDEM
i + ΔxDEM, yDEM

i + ΔyDEM, zDEM
i+1,j+1)

T

The fixed horizontal resolution of the grid allows to write:{
xDEM

i+1 = xDEM
i + ΔxDEM

yDEM
i+1 = yDEM

i + ΔyDEM
(29)

The plane equation based on the triangle #1 needs to compute the normal −→n1 to the (ABC) plane :

−→n1 =
−→
AB ×−→

AC =

⎛⎜⎝ −ΔyDEM(zDEM
i+1,j − zDEM

i,j )

−ΔxDEM(zDEM
i,j+1 − zDEM

i,j )

ΔxDEMΔyDEM

⎞⎟⎠ (30)
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Then, the condition for a point M = (x, y, z)T to be on the plane (ABC) is written as follows :

−−→
AM · −→n1 = 0 (31)

This leads to the equation of the plane (ABC) that supports the triangle #1 :

z = zDEM
i,j +

zDEM
i+1,j − zDEM

i,j

ΔxDEM
(x − xDEM

i ) +
zDEM

i,j+1 − zDEM
i,j

ΔyDEM
(y − yDEM

i ) (32)

The point A being the support point, this equation gives the vertical elevation of the point M as
a function of these horizontal coordinates that is the goal to reach in the proposed method.

The point D is now the support point and the plane equation based on the triangle #2 needs to
compute the normal −→n2 to the (BCD) plane :

−→n2 =
−→
DB ×−→

DC =

⎛⎜⎝ ΔyDEM(zDEM
i+1,j+1 − zDEM

i,j+1)

ΔxDEM(zDEM
i+1,j+1 − zDEM

i+1,j)

−ΔxDEMΔyDEM

⎞⎟⎠ (33)

The point M = (x, y, z)T belongs to the plane (BCD) if :

−−→
DM · −→n2 = 0 (34)

The plane equation of (BCD) that supports the triangle #2 is :

z = zDEM
i+1,j+1 +

zDEM
i+1,j+1−zDEM

i,j+1
ΔxDEM (x − xDEM

i+1)

+
zDEM

i+1,j+1−zDEM
i+1,j

ΔyDEM (y − yDEM
i+1)

(35)

So, Equations (32) and (35) allow to compute the vertical elevation at the point M that belongs to
the triangle #1 or #2.

4.2. Identification of the Relevant Triangle and Computation of the MSL-Elevation

The challenge is now to identify the relevant triangle of the point M. At this step, the last estimator
allows to fix the horizontal location of the point in the DEM by writing:{

x = xOSM
t+1

y = yOSM
t+1

(36)

To compute the elevation of the point M, it must be determined if the point MDEM
0 = (xDEM

0 =

x, yDEM
0 = y, zOSM

0 �= z)T belongs to the triangle (ABC) or (BCD). For this, one computes the sum of the
angles formed by the point M0 and the tops of the relevant triangle:{

S(ABC) = ÂM0B + B̂M0C + ĈM0 A
S(BCD) = B̂M0C + ĈM0D + D̂M0B

(37)

If S(ABC) = 2π the relevant triangle is #1, otherwise S(BCD) = 2π and the relevant triangle is #2.
From Equations (32) or (35), the elevation zDEM

0 will be computed to lead to the following measurement
that is used in the DEM-correction step (see part Section 3.3.3):

ZDEM
0 = MDEM

0 (38)
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5. Experimental Framework

A scenario has been defined to validate our method. It relies on available OSM and ASTER
GDEM2 data in a selected area (3 km by 3 km) of the city of Calais, France. We focus here on the results
of estimated roads inclinations.

5.1. Scenario Context

The objective is to estimate the roads inclinations. Theses roads are extracted from the OSM
database. The experimentation context is shown in Figure 3. A car is driven on this part of OSM
road network composed of motorways mainly. It is fitted with a dual-GPS system that relies on
two u-blox EVK-6T receivers that collect the 3-D vehicle positionings. The receiver manufacturer
announces the position accuracy as 2.5 m CEP (Circular Error Probable) and 2 m CEP if SBAS is
enabled. These precisions may be more or less degraded depending on the experimental conditions
(multipaths, etc.).

Figure 3. Aerial view of the OSM road network.

The GPS antennas are located on the car roof and aligned with the driver side. The spacing
distance is D = 1.75 m. Their height from ground is H = 1.55 m. The improved SBAS positioning
(EGNOS) has been enabled on each receiver whose GPS navigation rate has been set to 1 Hz.

The ASTER GDEM2 informs on the elevation levels of the experimentation area. They are plotted
in Figure 4a,b. This dataset is composed of a grid of 14,560 MSL-elevation points that are spaced by
a known horizontal distance: ΔxDEM = ΔyDEM = 1 arcsecond (or 30 m) in a LLH geographical datum;
these values must be recomputed if a horizontal UTM datum is used. In addition, it must be noticed
that some voids and artifacts (step, pit-in-bump, mole-run, etc.) remain in this version of dataset,
although they announced as decreased in the northern area or almost disappeared. The ASTER
GDEM2 is provided with a quality parameter that informs on the measurement accuracy of the
elevation. This information can be used in the matching procedure of DEM to reject the measure,
if needed.
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(a) Planar representation (b) 3-D representation

Figure 4. ASTER V2 elevation levels in the vicinity of the OSM road network.

Note that the u-blox GPS receivers directly deliver MSL-elevations in the EGM84 vertical datum
while the ASTER GDEM V2 use the geoid of EGM96. The prerequisite is also to convert the u-blox
MSL-elevations in the same vertical datum. This is done by using the MSP GEOTRANS software [29].

5.2. Map-Matching Procedure

Our OSM dataset is composed of 73 polylines that represent various roads as primary or secondary
roads, motorways, etc. These polylines are modeled by nodes and road segments whose total number
is 417 as shown in Figure 5a. The 2-D location of MSL-elevation points are also plotted (light grey) on
this figure. The main objective is here to estimate the slope of each road segment on which the car is
driven. Therefore, the UKF-based algoritm allows to realize the fusion of GPS/OSM/ASTER data for
estimating the car path that is plotted in black squares here. Selected enlargements of the estimated
path are available in Figure 5b–d.

(a) Global view (b) Enlargement #1

(c) Enlargement #2 (d) Enlargement #3

Figure 5. Estimated path of the vehicle vs. OSM road network.
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Once the two GPS positioning fused, the OSM-matching step allows to identify the road segment
on which the car is located. This procedure relies on the computing of Mahalanobis distances whose
the time-evolution is plotted on Figure 6, highlighting ε that is the OSM-matching threshold. In order
to refine also the ground-location of the vehicle, this threshold is used to decide when the OSM road
network can be used. The map-matching step reaches a rate of 96.30%, knowing that a 100% score is
difficult to get due to land surveying errors or missing roads.

Figure 6. Time-evolution of the OSM-based matching criterion.

5.3. Road Inclination Estimation

The proposed approach fuses the GPS-based altitudes and the matched ASTER-based elevations
to refine the estimated altitude of the car as shown in Figure 7 where the time-evolution is plotted in
blue circles. This figure shows also the number of all matched OSM road segments—during the defined
scenario—that are plotted in black squares. To estimate the slope of each road segment, the proposed
least squares method needs the UKF-estimated altitudes and the matched map data as input.

As detailed in Equation (25), the road segment needs to be traveled during 2 GPS time-instants to
estimate the inclination but in order to improve the estimation, the minimum number of needed GPS
readings is set to 4. Figure 8 shows the results of roads inclination percentage. They concern only the
OSM road segments that the car could traveled during the test scenario. Overall, 34% of traveled road
segments have benefited from an estimate of their inclination. Among these estimations, about 28%
of these road segments are in an area with rather flat terrain. It is possible to find an explanation in
heavy climbs or descents when the vehicle has taken the entrances or exits of motorways that have
undergone an elevation to their construction. The vehicle has also used exchangers that are generally
on an upward or downward slope. Note that the estimation accuracy depends to the minimum
number of available UKF-estimated altitudes and this parameter can be set dynamically in term of
road segment length, car speed and GPS navigation rate.
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Figure 7. UKF-estimated altitudes vs. OSM matched roads.

Figure 8. Estimation of the OSM road inclinations.

6. Conclusions

This work states a general approach to estimate the inclinations of OSM road segments. It relies
on the collected data from a dual-GPS positioning, an OSM road network and an ASTER GDEM2
terrain surface that are fused following a centralized scheme. The proposed method takes into account
the topology of the geographical area and allows a new computation of the elevation point from the
terrain models. The map-matching procedure allows to select the used OSM road segments and the
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triangulation of DEM leads to a refinement of the ASTER MSL-elevation. Therefore, it becomes possible
to enhance the OSM database with the estimated slope of each matched road segment automatically.
Then, the road inclination parameter is available for further more reliable route planning applications,
for instance those of electric vehicles whose autonomy is yet limited for trips. Based on the OSM
concept, our method is designed for a collaborative enhancement of the database. This general and
theoretical framework is suitable to the implementation of other kinds of GNSS, DEM, etc. It provides
the basis for a 3-D modeling of the road segments in a map database. Cases of GPS outages and
non-existing OSM roads are not considered in this work. The next step is now to study multi-GNSS
positioning systems and alternative roadmap databases.
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