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Abstract: The information fusion technique can integrate a large amount of data and knowledge
representing the same real-world object and obtain a consistent, accurate, and useful representation
of that object. The data may be independent or redundant, and can be obtained by different
sensors at the same time or at different times. A suitable combination of investigative methods
can substantially increase the profit of information in comparison with that from a single sensor.
Multi-sensor information fusion has been a key issue in sensor research since the 1970s, and it
has been applied in many fields. For example, manufacturing and process control industries can
generate a lot of data, which have real, actionable business value. The fusion of these data can greatly
improve productivity through digitization. The goal of this special issue is to report innovative
ideas and solutions for multi-sensor information fusion in the emerging applications era, focusing on
development, adoption, and applications.

Information fusion technology has been in existence for several decades. At the beginning, this
technology was mainly applied in military. The main reason is that at that time, the sensor was still a
very expensive instrument. Military might be the only consumer who required superior performance
without considering the cost.

In recent years, the application background of multi-sensor information fusion technology has
undergone great changes. We have found that many civilian systems also have multi-sensor systems,
such as unmanned vehicle and intelligent robot systems. Moreover, we have noticed that these systems
have become a major part where the multi-sensor information fusion technology could be used, and
they usually contain great research value. In these new application systems, multi-sensor information
fusion technology also faces many new research issues. This is what the researchers are interested
in this research field recently. We have discovered that there are many areas in which multi-sensor
information fusion technology is worth investigating further.

Our special issue was consisted of 30 papers, including the latest research results of the multi-
sensor information fusion technology.

Sensors 2018, 18, 1162 1 www.mdpi.com/journal /sensors



Sensors 2018, 18, 1162

In general, these research papers were mainly divided into two parts: one is theoretical research
results, and the other is the application-oriented issues. The topic discussed in theoretical research
involves in-depth research on methods and theories, and it proposes new methods. The related papers
mainly included three aspects: (1) a new fusion method based on the Kalman filter, including the study
of various nonlinear Kalman filters, such as CKF, UKF, etc.; (2) a method based on DS evidence theory;
(3) new methods for images, including video tracking, expression recognition, etc. On the other hand,
we are also delighted to see that there are many papers involving solutions for various applications,
which also have extremely high reading and reference value.

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).
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Abstract: In the pattern recognition domain, deep architectures are currently widely used and they
have achieved fine results. However, these deep architectures make particular demands, especially
in terms of their requirement for big datasets and GPU. Aiming to gain better results without
deep networks, we propose a simplified algorithm framework using fusion features extracted from
the salient areas of faces. Furthermore, the proposed algorithm has achieved a better result than
some deep architectures. For extracting more effective features, this paper firstly defines the salient
areas on the faces. This paper normalizes the salient areas of the same location in the faces to the
same size; therefore, it can extracts more similar features from different subjects. LBP and HOG
features are extracted from the salient areas, fusion features” dimensions are reduced by Principal
Component Analysis (PCA) and we apply several classifiers to classify the six basic expressions at
once. This paper proposes a salient areas definitude method which uses peak expressions frames
compared with neutral faces. This paper also proposes and applies the idea of normalizing the
salient areas to align the specific areas which express the different expressions. As a result, the salient
areas found from different subjects are the same size. In addition, the gamma correction method
is firstly applied on LBP features in our algorithm framework which improves our recognition
rates significantly. By applying this algorithm framework, our research has gained state-of-the-art
performances on CK+ database and JAFFE database.

Keywords: facial expression recognition; fusion features; salient facial areas; hand-crafted features;
feature correction

1. Introduction

Facial expression plays an important role in our daily communication with other people. For the
development of intelligent robots, especially indoor mobile robots, emotional interactions between
robots and humans are the foundational functions of these intelligent robots. With automated facial
expression recognition technology, these home service robots can talk to children and take care of older
generations. Also, this technology can help doctors to monitor patients, which will save hospitals
much time and money. In addition, facial expression technology can be applied in a car to identify
whether the driver has fatigue, and this can save many lives. Facial expression recognition is worth
researching because many situations need this technology. Many research works have been done in the
literature; the universal expressions mentioned in papers are usually: anger, disgust, fear, happiness,
sadness and surprise [1-3] while some researchers add neutral and contempt [4,5]. Different sensors
are used to capture data of these expressions, and researchers recognize these basic expressions from
two-dimensional (2D) and 3D spaces [6,7] faces. While different methods are applied to recognize
the basic expressions in 2D and 3D spaces, landmarks localization processes are used in both 2D and
3D data. Vezzetti et al. [8,9] extracted many landmarks from multiexpression faces relying on facial

Sensors 2017, 17,712 3 www.mdpi.com/journal /sensors
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geometrical properties, which makes it easy to localize these parts on 3D faces. Many application
scenarios, such as service robots, apply 2D images to detect and recognize faces, so our research focuses
on recognizing expressions from 2D static images.

Different styles of data and various frameworks are applied to 2D space facial expressions
recognition. Like other recognition research, facial expressions recognition uses data from videos,
images sequences [10] and static images [3,11]. All of the movement processes of the expressions are
applied in the research, which use videos and images. Research using static images only uses the
peak frames because they contain sufficient information about the specific expressions, and that is
also the reason why this paper chose to use the peak frames. There are two main kinds of algorithm
frameworks applied in facial expressions recognition work. Algorithms that use mature descriptors
such as Histogram of Oriented Gradient (HOG) [12] and Local Binary Patterns (LBP) [4] extract
features from the images and then send the features to the classifiers. The performances of this kind
of algorithm framework rely on the effectiveness of these descriptors. In order to fuse more effective
descriptors, researchers extract different kinds of features and fuse them together [13]. Although the
fusion features behave better than one kind of feature, these features’ distinguishing features have not
been fully used. Feature correction method is applied to the features in our paper and this significantly
improves the recognition rate. Deep networks is another popular framework in the facial expression
recognition domain. AU-inspired Deep Networks (AUDN) [2], Deep Belief Networks (DBN) [14] and
the Convolutional Neural Network (CNN) [10,15] are used in facial expressions recognition work.
Apart from the higher recognition rate, more computing resources and data are needed in these
algorithms. For these reasons, the former framework is applied in our research.

Face alignment is applied to help researchers to extract more effective features from the static
images [4,16]. Automated facial landmark detection is the first step to complete this work. After finding
these landmarks on the faces, researchers can align the faces and extract features from these faces.
Early days, for the limitation of face alignment technology, researchers use fewer landmarks to align
the faces and separate the faces to several small patches for extracting features [13]. This can roughly
align the faces while more landmarks can improve the alignment precision. There are many methods
to detect landmarks from the faces. Tzimiropoulos et al. [17] proposed a Fast-SIC method for fitting
AAMs to detect marks on the faces. Zhu et al. [18] use a model based on the mixture of trees with
a shared pool which marks 68 landmarks on the face. This method is applied in our algorithm and
68 landmarks are used to align the salient areas. These landmarks mark the shape of the eyebrows,
eyes, nose, mouth and the whole face, which can help researchers to cut the salient patches. Although
alignment faces can help to extract more effective features from the faces, some areas on the faces do
not align well during this process. In this paper, the idea of normalizing the salient areas is firstly
proposed to improve the features” extracted effectiveness.

In order to reduce the features” dimensions and extract more effective features, different salient
areas definitude methods are proposed in the literature. Zhong et al. [3] explained the idea that
discovering common patches across all the expressions is actually equivalent to learning the shared
discriminative patches for all the expressions in their paper. They transferred the problem into a
multi-task sparse learning (MTSL) problem and by using this method they obtained a good result.
Happy et al. [13] applied these areas found in their paper and they also gained a decent result.
Liu et al. [2] used Micro-Action-Pattern Representation in the AU-inspired deep networks (AUDN)
and built four criterions to construct the receptive fields. This gained a better result and accomplished
feature extraction at the same time. In order to define the salient areas more accurately, our research
uses neutral faces to compare with the peak frames of these expressions. The Karl Pearson correlation
coefficient [19] is applied to evaluate the correlation between the neutral faces and the faces that
expressed different expressions. For finding the precise locations of the salient areas, the faces are
separated to several small patches. After comparing the small patches to their neutral faces, the patches
which have weaker correlation coefficient are found and these are the areas expressing the specific
expression. By using this method, the salient areas of the six fundamental expressions are found and
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after fusing these areas, the salient areas of the six basic expressions are found too. Landmarks of the
faces are used to locate these salient areas and different sizes of salient areas are normalized in our
research framework.

Different kinds of descriptors are applied in facial expressions recognition research. Regarding
the scale of the features extracted areas, previously, hand-crafted features were extracted from the
whole alignment face [4,16] but nowadays the salient areas are used in hand-crafted extraction [3,13].
Aiming to describe the different expressions more effectively, diverse features extracted methods are
used in facial expression recognition. Typical hand-crafted features include Local Binary Patterns
(LBP) [4], Histogram of Oriented Gradient (HOG) [12], Scale Invariant Feature Transform (SIFT) [20],
and the fusion of these features [11]. According to the literature, the fusion features contain more
information about these expressions and achieve better results. That is the reason why we chose to
extract LBP and HOG from the faces. Although fusion features can improve recognition rate, it is
hard to fuse these features well. Before different features fuse together, normalization methods are
applied to the features. Although utilizing this normalization method can improve the recognition
result, different kinds of features’ identities cannot mix well. Aiming to use more information of the
LBP features and normalize the LBP features, the gamma feature correction method is firstly applied
on LBP features in our algorithm framework.

In this paper, a straightforward but effective algorithm framework has been proposed to recognize
the six basic expressions from static images. The algorithm framework is shown in Figure 1. In order
to define and obtain these salient areas from these faces, the faces and facial landmarks are detected
in the first step. After doing that, these faces are separated into several patches and by comparing
neutral faces to these expressions, the salient areas are defined. Until this step, the salient areas are
separated from the faces according to these landmarks. For extracting more effective features from
these salient areas, the idea of normalizing the salient areas is firstly proposed to overcome salient
areas misalignment. After finishing that, LBP and HOG features are extracted from these salient
areas. The gamma correction method is firstly applied on LBP features and then the classifier can use
more information from these LBP features. The Z-score method is used to normalize the LBP and
HOG features to fusing them. Before applying different classifiers to classify these six expressions,
Principal Component Analysis (PCA) is utilized to reduce the dimensions. Finally, different classifiers
are applied to evaluate the effect of our framework, and our framework has achieved a better grade
than the deep networks [2,14].
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Figure 1. Framework of the proposed algorithm.
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2. Methodology

In this section, the proposed algorithm will be explained in detail. This section will introduce the
salient facial areas definitude principle and show the salient areas normalization and features fusion
methods. LBP features correction methods will be introduced and applied in our algorithm. We will
then introduce the following sections of this paper.

2.1. Faces Alignment and Salient Facial Areas Definitude

Automated face and facial landmark detection is the first step in our method. Facial landmark
detection is an important base for facial expression classification. The method that is applied in the
paper [18] is chosen to mark 68 landmarks on faces in our research. These landmarks mark the shape
of the eyebrows, eyes, nose, mouth and the whole face, so these specific areas can be located by these
landmarks. These 68 landmarks on the face and the normalized face have been shown in Figure 1.
According to the average length and width of the faces and the proportion of the length and width, the
faces in CK+ database are normalized to 240 x 200.

As we all know, these six fundamental expressions have different salient areas. In this paper, an
algorithm is proposed to find the salient areas in these expressions. For the purpose of extracting more
effective features from the faces, people have applied different methods to calculate the salient areas
in the faces. Zhong et al. [3] explained the idea that discovering the common patches across all the
expressions is actually equivalent to learning the shared discriminative patches for all the expressions in
the paper. Since multi-task sparse learning (MTSL) can learn common representations among multiple
related tasks [21], they transferred the problem into an MTSL problem. They used this method and
gained a good result. In order to learn expression specific features automatically, Liu et al. [2] proposed
an AU-inspired deep network (AUDN). They used Micro-Action-Pattern Representation in the AUDN
and built four criterions to construct the receptive fields. This gained a better result and accomplished
features extraction at the same time.

These methods all found salient areas from the aligned faces and extracted features from these
salient areas. As for our algorithm, the areas which are more salient to their own neutral faces are
firstly found. In the last paragraph, the 68 landmarks have been found and the faces are normalized
to 240 x 200. The areas in the six basic expressions are compared to their neutral faces at the same
location. If the areas during the expressions have not moved around, the areas must have more
correlation with the areas on the neutral faces. Using this principle, compared to the other correlation
coefficient methods in [19] the Karl Pearson correlation coefficient is applied to evaluate the correlation
between the neutral faces and the faces expressed in different expressions. The Karl Pearson correlation
coefficient is applied to evaluate the correlation between the matrixes. For finding the precise locations
of the salient areas, the faces are separated to 750 (30 x 25) patches and every patch is 8 x 8 pixels.
These 8 x 8 pixels patches are matrixes and by comparing the small patches from neutral faces and
specific expressions, the salient areas can be precisely found. The Karl Pearson correlation coefficient
formulate is shown next. _ _

,)/]_(_ _ Zm(EWl — E)(Nm — N)
7 V(En(En = E?)(Zn(Nm — N)?)

where 'yfj is the (7, j)th patch’s correlation coefficient of specific expressions, so the scale of i is 1 to 30,
jis 1 to 25. Ey, is the pixel value of one subject from the specific expression and m ranges from 1 to
64 while N is the pixel value of the neutral face of that subject. E is the mean of the small patch from
specific expression, and N is the mean of the neutral face.

M

Rij =) pr* Wi-(j (2)
*

In order to find the salient areas of all these six basic expressions, a formula is defined to evaluate
the final correlation coefficient. The R;; is the final correlation coefficient of the (7, j)th location on face.
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By changing the gy, the different proportion of the kth expression can be changed. Besides, the sum of
the oy must equal 1.

6
Yoo=1 3)
k

The results of the six expressions are shown in Figure 2. The areas found in this section will
be applied in the next section. From Figure 2, we can find that different expressions have different
salient areas. Equation (1) is used to evaluate the salient areas in the six fundamental expressions.
In Equation (3), p; expresses the proportion of the specific expression in the final result, the value of pj
can be changed according to the numbers of these different expressions because there are different
numbers of images in these expressions.

3 igug‘ e =& BLQ E’__@‘
Sl

Figure 2. The salient areas of the six expressions. (a) Salient areas of all expressions and neutral;
(b) Salient areas of anger; (c) Salient areas of disgust; (d) Salient areas of fear; (e) Salient areas of happy;
(f) Salient areas of sad; (g) Salient areas of surprise.

2.2. Salient Areas Normalization and Features Extraction

In this section, the idea of normalizing the salient areas rather than the whole faces is proposed
and applied. Furthermore, local binary patterns (LBP) features and the histogram of oriented gradient
(HOQG) features all are extracted from the salient areas. Compared to the method extracting features
from the whole faces, features extracted from salient areas can reduce the dimensions, lower noise
impacts and avoid overfitting.

2.2.1. Salient Areas Normalization

In the last section, these salient areas are determined. Our research has a similar result as the
result in [3], but the performance differs in the eye areas. In papers [3,13], the researchers used the
patches of the faces which come from alignment faces. Normalizing the whole faces is a good idea
before more landmarks are marked from the faces. Then, more landmarks can be marked from the
faces, which makes it easier to extract the salient areas from the faces. There are two main reasons for
choosing to normalize the salient areas.

Firstly, aligning the faces may result in salient areas being misaligned. In order to demonstrate
the alignment effects, the faces are aligned and then all the faces in one specific expression are added
to gain the average face. The each pixel X;; is the average of all images of the specific expression.

The salient mouth parts are separated from the faces and the average salient mouth areas are
calculated for comparison. Figure 3 shows the result of the average faces, average salient areas and
the mouth parts of the average faces. The mouth parts of the average faces are used to compare with
the mouth parts using salient areas alignment. From the figure, it is clear that the mouth parts of the
average faces have weaker contrast than the alignment mouth parts. This explains that aligning the
faces leads to salient areas being misaligned. In contrast, by aligning the salient mouth areas, the
mouths have a clear outline. Moreover, the alignment faces have different sized salient areas. Different
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faces have different size, and the different sizes of the salient areas are extracted from these faces when
we just use these landmarks to cut these salient areas. In the end, different dimensions of LBP and
HOG are extracted from these salient areas. Using these features to classify the expressions can lead
to worse recognition result. The reason why different LBP and HOG dimensions are extracted from
these different sizes of salient areas can be explained by the principles of LBP and HOG which will
be introduced in the next part. Aligning the whole faces may obtain different features from the same
expression subjects because they have different sized areas to express the expression. This negatively
influences the feature training in our algorithm framework. These are the reasons why the salient
areas are normalized in our algorithm. Because our salient areas normalization method can overcome
these shortcomings, our algorithm can gain a better result than only using the face alignment methods.
In the experimental section, comparative experiments will be designed to compare the effects of the
salient areas alignment method with the traditional faces alignment methods.
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Figure 3. Average faces and the average salient areas. (a) Average faces of the six expressions; (b) Mouth
areas of the average faces; (c) Average salient mouth areas.

2.2.2. Features Extraction

e Local Binary Patterns (LBP)

Texture information is an important descriptor for pattern analysis of images, and local binary
patterns (LBP) were presented to gain texture information from the images. LBP was first described in
1994 [22,23] and from then on LBP has been found to be a powerful feature for texture representation.
As for these facial expressions, actions of the muscles on the faces lead the faces to generate different
textures. LBP features can describe the texture information of the images and this is the reason why
LBP features are extracted from the salient areas. The calculation progress of the original LBP value is
shown in Figure 4a. A useful extension to the original operator is the so-called uniform pattern [24],
which can be used to reduce the length of the feature vector and implement a simple rotation invarijant
descriptor. In our research, a uniform pattern LBP descriptor is applied to gain features from the salient
areas, and the salient areas are all separated to small patches. LBP features are gained from these
salient areas respectively and these features are concatenated as the final LBP features. The length
of the feature vector for a single cell can be reduced from 256 to 59 by using uniform patterns. This
is very important, because there are many small patches in our algorithm. For example, the size of
the mouth area is 40 x 60 and the small patches’ size is 10 x 15, so the mouth area is divided into
16(4 x 4) patches. The uniform LBP features are extracted from each small patch and mapped to a
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59-dimensional histogram. The salient areas all are separated into several small patches and the results
are shown in Figure 5. The numbers are shown in Table 1. The dimension of the final LBP features is
found to be 3068 by adding the numbers in Table 1.
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Figure 4. (a) Calculation progress of the original Local Binary Patterns (LBP) value; (b) Mouth area
with pixels of 40 x 60; (c) Mouth area with the former pixels of 28 x 42, the real pixels are enlarged
from the former image; (d) Display models of (b,c) mouth.

Figure 5. Small patches of salient areas. (a) Mouth areas, anger, fear, happy; (b) Forehead areas,
anger, fear; (c) Cheek areas, left cheek fear, right cheek fear, left cheek anger, left cheek happy, right

cheek happy.
Table 1. Patches numbers and LBP dimensions of salient areas.
Salient Areas Forehead Mouth Left Cheek Right Cheek
Piexls 20 x 90 40 x 60 60 x 30 60 x 30
Small patches number 12 16 12 12
LBP dimension 708 944 708 708
Total 3068

Becuase different features will be extracted from different sizes of salient areas, these salient areas
should be aligned. In order to demonstrate the difference, different sizes of mouth areas are cut from
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one face and these areas are normalized to the same size. These mouth areas are shown in Figure 4.
LBP features are extracted from these normalized faces and their distributions are shown in Figure 4.
From the figure, we can know that the values in (d) and (e) result in different performance, and a
conclusion can be drawn that different sizes of images have different LBP features. Besides, HOG
features also are extracted from these salient areas, and they have a similar result as for LBP features.

e  Histogram of Oriented Gradient (HOG)

Histogram of oriented gradients (HOG) is a feature descriptor which is used in computer vision
and image processing [25]. The technique counts occurrences of gradient orientation in localized
portions of an image. HOG descriptors were first described in 2005 [26], the writers used HOG for
pedestrian detection in static images. During HOG features extraction, the image is divided into
several blocks and the histograms of different edges are concatenated as shape descriptor. HOG is
invariant to geometric and photometric transformations, except for object orientation. Because the
images that in these databases have different light conditions and different expressions have different
orientations in the eyes, nose, lips corners, as a powerful descriptor HOG is selected in our algorithm.
In our paper, for extracting HOG features, every cell is 5 x 5 and 4(2 x 2) cells make up a patch.
The dimension of the mouth area is 60 x 40 and every cell has 9 features, so the dimension of the mouth
area is 2772. The dimensions of the four salient areas are shown in Table 2. The HOG descriptors are
shown in Figure 6 and the figure shows that the mouth areas of different expression have different
HOG descriptors.

Table 2. Patches numbers and Histogram of Oriented Gradient (HOG) dimensions of salient areas.

Salient Areas Forehead Mouth Left Cheek Right Cheek
Piexls 20 x 90 40 x 60 60 x 30 60 x 30
Small patches number 51 77 55 55
HOG dimension 1836 2772 1980 1980
Total 8568

Figure 6. HOG descriptors of the mouths. (a) Happy mouth areas; (b) Fear mouth areas.

2.3. Features Correction and Features Fusion

2.3.1. LBP Correction

LBP feature is a very effective descriptor of the texture information of images. Many researchers [3,13]
applied LBP to describe these different expressions. In our algorithm, LBP features are extracted and

10
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processed before they are sent into the classifiers. For most papers, researchers extract features from
images and normalize the data to 0-1, e.g., [27] normalizes the data to 0-1. For our algorithm framework,
the image’s data are normalized to 0-1, and by using this method a better recognition rate can be
gained. In order to normalize the LBP features of every subject, the method in Equation (5) is applied
to normalize the LBP features to 0-1.

_In
Lm - W(lm) (5)

where m is the dimension number of every salient area and I, is the value of the LBP feature.

Aiming to utilize the specific characteristic of every area, these four salient areas are normalized
respectively. The distribution styles of these LBP features extracted from the four salient areas are
displayed in Figure 7. The figure shows that the distribution model of LBP features is the power law
distribution. In image processing, the gamma correction redistributes native camera tonal levels into
ones which are more perceptually uniform, thereby making the most efficient use of a given bit depth.
In our algorithm, the distribution of the LBP features is the power law distribution, and therefore
more information concentrates on minority LBP features. According to our experiment, although the
distributions of these subjects’” LBP features all follow the power law distribution, the specific values
are slightly different. For example, LBP values from 0 to 0.5 have different numbers when different
subjects’ images are processed. This can be changed by gamma correction method, and by doing
this, more information can concentrate on more LBP features. For using more information from LBP
features and making it easy to fuse LBP and HOG features, gamma correction is used to correct the
LBP feature data.

1
Lm = L1¢1 (6)

where A is the correct gamma number. As is well known, most values of the gamma number come from
experimental experience data. The parameter ¢ is proposed in our algorithm to help to find the proper
A. In Equation (7) we have defined the mathematical expression of ¢. From Equation (7) we know that
o has a similar meaning to variance and the zero value is separated from these data because it has no
meaning. The gamma correction method is proposed to use more information from the initial LBP
features, and the value of variance shows the fluctuation of the data. For the power law distribution,
fewer data contain more information. As for the LBP features when the gamma correction method is
applied, more LBP features contain more information and therefore the fluctuation of LBP features
becomes bigger. That is the reason why parameter ¢ is proposed and applied, and the relationship
between ¢ and the gamma number A proves the correctness of our method.

Every salient area is processed respectively, so four o values will be gained. The relationships
between these four salient areas’ o and the gamma number A are shown in Figure 8. According to the
experimental data, all the four salient areas have the maximum ¢ value around A’s value 2. Therefore,
all the four salient areas’ ¢ values are added to find the final sum and the related A.

_ 1 _ 2
o= L ;(an u,) @)
1
un = - Zan (8)
Py

where 7 is the number of the images’ number, and p is the number of nonzero data in LBP features of
the salient areas. Therefore, p is smaller than the dimensions of the salient areas” LBP features. L, p is
the value of LBP feature and Uj, is the mean value of LBP features from the specific subjects. In our
algorithm, the relationship between the ¢, gamma number A and the recognition rate have been found,
and the relationship is shown in Figure 9.

11
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Figure 7. (a) Display model of the mouth’s LBP features; (b) Display model of the left cheek’s
LBP features; (c) Display model of forehead’s LBP features; (d) Display model of the right cheek’s
LBP features.
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Figure 8. (a) Relationship between the mouth’s A and ¢; (b) Relationship between the left cheek’s A
and o; (c) Relationship between the forehead’s A and ¢; (d) Relationship between the right cheek’s A
and 0.

2.3.2. HOG Processing and Features Fusion

Different features describe different characters of the images; therefore, researchers have merged
some features together to be able to take advantage of the superiority of all the features [13,27]. For our
algorithm, the LBP and HOG descriptors are applied to utilize the texture and orientation information
of these expressions. Proper fusion methods are very important factors for recognition work and
unsuitable methods can make the recognition result worse. The recognition rate of the individual
feature and fusion features will be shown in the experimental section. Zhang et al. [27] applied a
structured regularization(SR) method which is employed to enforce and learn the modality specific
sparsity and density of each modality, respectively. As for our algorithm, the single features are

12
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firstly processed to their best performance and then they are normalized to the same scale. In the
experimental section, different experiments are proposed to explain the results of single features and
the fusion feature.

The gamma correction method is applied to ensure the LBP achieve their best performance.
Different features must be processed to the same scale when these features are fused together.
The Z-score method is used to process LBP and HOG features, and after applying the method the
average is 0 while the variance is 1.

J
o=Y(fi—w? ©)
]
J ¢,
= Z]Tf] (10)
heKGrE a

where f] is the data of LBP or HOG feature and f] is the feature data after processing. As for the LBP
features, although the display model has changed, the data are changed to the same scale and a better
result can be gained. Because f] is too small, number K is used to multiply f] In our experiment, the K
equal to 100.

2.4. Principal Component Analysis( PCA) and Classifiers

Principal Component Analysis (PCA) was invented in 1901 by Karl Pearson [28] as an analog of
the principal axis theorem in mechanics, it was later independently developed by Harold Hotelling in
the 1930s [29]. Principal component analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of values of
linearly uncorrelated variables called principal components. PCA is an effective method to reduce the
features dimension. There are many researchers using this method to reduce the features” dimension.
In our algorithm, the fusion features” dimension is 11,636, which is really a very large number. In order
to reduce the feature’s dimension, PCA is applied. The relationship between the recognition date
and the number of the dimension under softmax classifier is shown in Figure 10. According to the
experiment, the most appropriate dimension is 80.

There are many kinds of classifiers applied in the facial expression recognition research and the
researchers apply different classifiers to evaluate their algorithms. These classifiers include SVM with
polynomial [4,13], linear [2,4,13] and RBF [4,13] kernel, and softmax [10,15] is also utilized in this work.
In order to evaluate the effectiveness of our proposed algorithm and compare with the same work
in other literature, many classifiers are applied in our experimental part. In our algorithm, different
classifiers are applied to recognize these fusion features the dimensions of which are reduced by PCA.

3. Database Processing

3.1. CK+ Database

The CK+ database [5] is an extended database of the CK [30] database which contains both
male and female subjects. There are 593 sequences from 123 subjects in the CK+ database, but only
327 sequences are assigned to 7 labels. These 7 labels are anger (45), contempt (18), disgust (59),
fear (25), happy (69), sad (28), surprise (83). The sequences show the variation in the images from
neutral to the peak of the expressions. The different expressions have different numbers in the
sequences. In particular, the images extended in 2010 have different pixels and two types of pixels,
which are 640 x 490 and 640 x 480 in the database. In order to compare with other methods [2,3,14,27],
our experiments use these 309 sequences in the 327 sequences without contempt. Similar to the method
used in [2,3], the first image (the neutral) and the last three peak frames are chosen for training and
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testing. The ten-fold-validation method is applied in the experiments while the subjects are separated
into 10 parts according to the ID of every subject. There are 106 subjects in the chosen database, so the
subjects are distributed into 10 parts which have roughly equal image number and subject number.

3.2. JAFFE Database

The JAFFE database [31,32] consists of 213 images from 10 Japanese female subjects. Every subject
has 3 or 4 examples of all the six basic expressions and also has a sample of neutral expression. In our
experiment, 183 images are used to evaluate our algorithm.

4. Experiments

In this section the experimental setting and the details of our paper will be described.
All comparison experiment ideas came from the second section of our paper and these experiments
are applied to evaluate our methods and certify our algorithm’s correctness. Our experiments are
executed on CK+ and JAFFE database and the results are also compared with the recognition rates in
the related literature.

4.1. Salient Areas Definitude Method Validation

Th reasons why the salient areas rather than the whole faces are chosen in our algorithm have
been introduced in Section 2. Experiments are designed to evaluate the performance of our salient
areas’ definitive method. In addition, the LBP features are extracted from all of the aligned faces and
the aligned salient areas to gain the contrast recognition rates. These results are shown in Table 3.
In addition, the salient areas are separated from the raw images rather than the alignment faces
according to specific landmarks among the 68 landmarks on the face. In Table 3, the 10-fold cross
validation method is used to evaluate the performance of our method, and in this case only the LBP
features are used in our recognition experiment.

Table 3. Recognition rate on CK+ under different salient areas definitude methods.

Salient Areas Zhong 2012 [3] Liu2015[2] Liu2015[2] Proposed Method Proposed Method

Definitude Methods (MTSL) (LBP) (AUDN-GSL) (with Gamma) (without Gamma)
Classifer SVM SVM SVM SVM SVM
Recognition rate 89.9 92.67 95.78 95.5 96.6

For the purpose of distinguishing that whether using the salient areas can be more effective than
the whole face alignment methods or not, the mouth areas are normalized to 60 x 30, the cheek areas
are normalized to 30 x 60 while the eye areas are normalized to 20 x 90. LBP features are extracted
from the small patches whose sizes are 15 x 10 and then all these features are concatenated together.
LBP features are used to evaluate the performance of our algorithm and compare the result with other
methods. The results are shown in Table 3. Several comparison experiments are designed, SVM and
classifier are applied to evaluate our algorithm. Comparing LBP features extracted from the alignment
areas with the features extracted from salient areas on alignment faces and the whole alignment faces,
better recognition rates can be gained by our algorithm by using the SVM classifier. Polynomial, Linear,
and RBF kernel SVM are used in our experiment and the SVM classifier is designed by Chih-Chung
Chang and Chih-Jen Lin [33]. The gamma correction method is used to process the LBP features in our
experiment. Compared with the experiment designed by Zhong et al. [3] and Liu et al. [2], according
to the results in Table 3, our algorithm has a more precise recognition rate.

4.2. Gamma Correction of LBP Features

In Section 2.3, a method was proposed to process the LBP features and the relationship between
the o and gamma number A was found. In order to evaluate the effects of gamma correction and verify

14
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the relationship between ¢ and gamma number A some comparison experiments are designed in our
paper. CK+ and JAFFE datasets are used in our experiments. In our experiments, the number of A
ranged from 0.1 to 3 and all the results are recorded. In order to show the relationship between o,
gamma correction number A and the recognition rate clearly, some figures have been draw to display
the trend of recognition rate and ¢. In Figure 9 the ¢ is the sum of the four salient areas’ ¢ in CK+
database. In the figure, while A is equal to 1 there is no gamma correction, and from the figure one
can see that the biggest recognition rate and the biggest o value all result from the value of A near to
1.8. The relationship between ¢ and A of JAFFE database are shown in Figure 10. These two figures
show that our LBP correction method has good universality power. In addition, because there are
fewer images in the JAFFE database, we can see that the curves in Figure 10 are not smooth enough,
but their overall trends also correspond with the relationship in Figure 10. The performances of these
experiments are shown in Table 4, and different classifiers are used to evaluate the universality of
the gamma correction method. Table 4 shows that gamma correction has significantly improved the
recognition rate and this proves that our method of using ¢ to find the proper A can be applied in facial
expression recognition work. In Table 4, 10-fold cross validation is applied on the CK+ database and
the leave-one-person-out validation method is used on the JAFFE database.
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Figure 9. (a) Relationship between A and ¢ on CK+ database; (b) Relationship between A and
recognition rates from different classifiers on CK+ database.
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recognition rates from different classifiers on JAFFE database.

Table 4. Recognition rates on different classifiers with and without gamma correction.

CK+ JAFFE
Gamma-LBP LBP Gamma-LBP LBP
SVM(polynomial) 96.6 95.5 62.8 62.3
SVM(linear) 96.6 95.6 63.4 60.8
SVM(RBF) 96.0 87.1 62.8 61.2
Softmax 97.0 95.6 61.7 59.6

In order to compare our algorithm with other research, we apply the same classifier and validation
method as in the literature. Compared with the literature in Table 5, our experiment on the CK+
database has better results and this shows that our salient areas definitude methods and LBP correction
method have fine performance.

Table 5. Recognition rate on CK+ under LBP feature in different literature.

Methods Zhong 2012 [3] Shan 2009 [4] Proposed Methods
Classifier SVM SVM SVM
Validation Setting 10-Fold 10-Fold 10-Fold
Performance 89.9 95.1 96.6
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4.3. Features Fusion, PCA and Recognition Rate Comparison

In our algorithm, LBP and HOG features are used to train the SVM and softmax classifiers and
these features all are extracted from these salient areas. In order to gain a better result, LBP and HOG
features are fused in our research. Using only the HOG feature, we obtain a 96.7 recognition rate
and, using the fusion method, we obtain a better result, namely 98.3, which was reached on the CK+
database. In addition, a similar result has been obtained on the JAFFE database. Because using fusion
features can lead to a better recognition result, fusion features are used in our algorithm.

The full dimension of fusion features is 11,636, which is a very large number. In addition, huge
feature dimension can pull in some noise and lead to overfitting. As for the PCA method, if the
number of the features” dimension is bigger than the images” number the principal component number
is 1. In order to gain the most appropriate number, the number of the dimension is changed from 10
to 1000 and by using this method, the PCA dimension can be chosen according to recognition rate.
Because using the softmax classifier can obtain better recognition rate than the other classifiers, we use
softmax to show the effects of PCA. The relationship between PCA number and recognition rate is
displayed in Figure 11. The most appropriate PCA dimension number is chosen according to the
recognition rate and the dimension number of the features put into softmax is 80 on CK+ database and
a similar curve is obtained by JAFFE.
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Figure 11. Relationship between Principal Component Analysis (PCA) dimension and recognition rate.

Until this step, the best recognition rate of 98.3 is gained under the 10-fold-cross validation method
on the CK+ database. Therefore, to our knowledge, compared with the other methods in the literature,
a state-of-the-art result has been obtained. Our result has been compared with other methods in the
literature and the results are shown in Table 6. These four experiments all used deep networks while
hand-crafted features are used in our algorithm. This explains that our algorithm has fine recognition
ability by extracting features from the salient areas, correcting LBP features and fusing these features.
In order to evaluate the adaptability of our algorithm, our algorithm also is applied on the JAFFE
database. The results from other literature and our algorithm are shown in Table 7. The experiment
shows that our algorithm has quite a good adaptability. Compared with the literature [13], our method
can recognize about 5 more images than their method on average. In addition, compared with the
literature [4], our features’ dimension on CK+ and JAFFE is 11,636 which is much less than 16,640, and
this illustrates that our algorithm needs less time and memory to train and predict.
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Table 6. Recognition rate on CK+.

Literature Liu 2014 [14] Liu2015[2] Jung2015[10] Khorrami2015[15] Proposed Algorithm
Zero-bias LBP+
Method BDBN AUDN DTAGN CNN+AD HOG
Validation Setting 10-Fold 10-Fold 10-Fold 10-Fold 10-Fold
Accuracy 96.7 95.785 96.94 98.3 98.3

Table 7. Recognition rate on JAFFE.

. Proposed Proposed Proposed
Literature Shan 2009 [4] Happy 2015 [13] Algorithm Algorithm  Algorithm
Classifier SVM(RBF) SVM(Linear) SVM(Linear) SVM(Linear) Softmax

Validation Setting 10-Fold 5-Fold 5-Fold 10-Fold 10-Fold
Accuracy 81.0 87.43 87.6 89.6 90.0

5. Discussion

More information about salient areas definitude methods is needed. Zhong et al. [3] designed
a two-stage multi-task sparse learning algorithm to find the common and specific salient areas.
LBP features rather than these pure data are used in this method, i.e., the LBP features are used to
represent the information from the images. Liu et al. [2] built a convolutional layer and a max-pooling
layer to learn the Micro-Action-Pattern representation which can depict local appearance variations
caused by facial expressions. In addition, feature grouping was applied to find the salient areas.
Compared with these two methods, our algorithm only uses the raw image data and there is no
training procedure, but neutral faces are needed in our algorithm. For facial expressions, only partial
areas in the face have changed, so the neutral faces can be used to calculate the correlation between
neutral faces and specific expressions to localize the changed areas. Besides, the localiozation result can
be more accurate when the changes are smaller. Furthermore, LBP features extracted from the small
areas can also be used to compare and find the correlation. That is to say, by using these descriptors’
property, our algorithm can be used to localize the changed areas.

Making the features extracted from different subjects in one class have a similar value is the main
reason why gamma correction can improve our recognition rate. On the surface, gamma correction
has changed the display of LBP features, but in fact it has changed the value of LBP features. Different
subjects have different ways of presenting the same expression so their LBP features have some
difference. According to our experiments, although their LBP features’ values have some difference,
their basic properties are similar. For instance, LBP features from the happy class have different
values but these values are more different from those of the other classes. However, some subjects
from different classes have similar LBP features and this is the reason why these algorithms cannot
recognize the expressions. Our gamma correction method has shortened the distance in one class and
this improves the recognition rate. The application of gamma correction on LBP features has had a
positive effect on the recognition result and therefore some correction methods also can be applied on
other features to shorten the distance in the same class to obtain a better recognition.

Although our algorithm has achieved a state-of-the-art recognition rate, there are some weakness
in our method. Our algorithm selects these salient areas according to the landmarks on the faces, and
if the landmarks are not accurate our recognition result will be influenced. Furthermore, if there is not
enough image data, our gamma correction can not improve the recognition a lot. The performance of
gamma correction on the JAFFE database shows these weaknesses. These are the main weaknesses of
our algorithm.
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6. Conclusions

The main contributions of this paper are summarized as follows: (1) A salient areas definitude
method is proposed and the salient areas compared to neutral faces are found; (2) The idea of
normalizing the salient areas to align the specific areas which express the different expressions is
firstly proposed. This makes the salient areas of different subjects have the same size; (3) The gamma
features correction method is firstly applied on the LBP features and this significantly improves the
recognition result in our algorithm frameworks; (4) Fusion features are used in our framework, and
by normalizing these features to the same scale, this significantly improves our recognition rate.
By applying our algorithm framework, a state-of-the-art performance in the CK+ database under the
10-fold validation method using hand-crafted features has been achieved. In addition, a good result in
the JAFFE database has also been obtained.

In the future, video data processing will be the focus of our research work and we will try to
recognize facial expressions from real-time videos.
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Abstract:  Object tracking has remained a challenging problem in recent years. Most of the
trackers can not work well, especially when dealing with problems such as similarly colored
backgrounds, object occlusions, low illumination, or sudden illumination changes in real scenes. A
centroid iteration algorithm using multiple features and a posterior probability criterion is presented
to solve these problems. The model representation of the object and the similarity measure are two key
factors that greatly influence the performance of the tracker. Firstly, this paper propose using a local
texture feature which is a generalization of the local binary pattern (LBP) descriptor, which we call
the double center-symmetric local binary pattern (DCS-LBP). This feature shows great discrimination
between similar regions and high robustness to noise. By analyzing DCS-LBP patterns, a simplified
DCS-LBP is used to improve the object texture model called the SDCS-LBP. The SDCS-LBP is able
to describe the primitive structural information of the local image such as edges and corners. Then,
the SDCS-LBP and the color are combined to generate the multiple features as the target model.
Secondly, a posterior probability measure is introduced to reduce the rate of matching mistakes.
Three strategies of target model update are employed. Experimental results show that our proposed
algorithm is effective in improving tracking performance in complicated real scenarios compared
with some state-of-the-art methods.

Keywords: object tracking; multiple features; posterior probability measure; centroid iteration

1. Introduction

Among the numerous subjects in computer vision, object tracking is one of the most important
fields. It has many applications such as human computer interaction, video analysis, and robot
control systems.

Many object tracking algorithms have been brought up in the last decades. Welch [1] proposed
a Kalman filter-based algorithm considering Gaussian and linear problems to track one’s pose
in interactive computer graphics. Later, a particle filter-based approach was introduced with
respect to non-Gaussian and non-linear systems [2,3]. Other common trackers used include optical
flow-based tracking [4], multiple hypothesis tracking [5,6], and kernel-based tracking [7,8]. Recently,
Jodo F. Henriques et al. [9] proposed a new kernel tracking algorithm called high-speed tracking with
kernelized correlation filters that have been widely used. Unlike other kernel algorithms, the method
has the exact same complexity as its linear counterpart.

Though these algorithms have been successful in many real scenes, they are still confronted with
challenging problems, such as illumination changes, object occlusions, image noises, low illumination,
fast motions and similarly colored backgrounds. One of the effective solutions is the mean-shift
algorithm which can handle object partial occlusions and background clutters [10-12]. Mean-shift is a
non-parametric pattern matching tracking algorithm. It uses the color histogram as the target model
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and the Bhattacharyya coefficient as the similarity measure. The location of the target is obtained by
an iterative procedure [10]. The performance of the algorithm is determined by the similarity measure
and the target feature. Because of the background interference, the tracking result may easily get
biased or be completely wrong. The location of the target obtained by the Bhattacharyya coefficient [7]
or other similarity measures, such as normalized cross correlation, histogram intersection distance [13],
and Kullback-Leibler divergence [14] may not be the ground truth. To improve the accuracy of object
matching, a maximum posterior probability measure was proposed [15]. It takes use of the statistical
feature of the searching region and can effectively reduce the influence of background and emphasize
the importance of the target.

In some scenes with dramatic intensity or color changes, the effectiveness of the color decreases.
Thus, it is desirable that some additional features should be used as a complement to color to improve
the performance of the tracking system [16,17]. For example, Collins et al. [18] presented an online
feature selection algorithm based on a basic mean-shift approach. The method can adaptively select the
best features for tracking. They only used the RGB histogram in the algorithm, but it can be extended
to other features. Wang et al. [19] proposed integrating color and shape-texture features for reliable
tracking, and their method was also based on the mean-shift algorithm. Ning et al. [20] presented a
mean-shift algorithm using the joint color-texture histogram, which proved to be more robust and
insensitive than the color. Most of these methods used multiple features to describe the target model
in order to reduce the mistakes of tracking systems. Unfortunately, color, shape-texture silhouettes or
other traditional features can not track the target in some special scenes with variably scaled images
or rotated images. In recent years, some new features have been proposed to solve these problems
including Scale Invariant Feature Transform (SIFT) [21], Principal Components Analysis-Scale Invariant
Feature Transform (PCA-SIFT) [22], Gradient Location and Orientation Histogram (GLOH) [23],
Speed-up Robust Feature(SURF) [24], and Fast Retina Keypoint (FREAK) [25], just to name a few.
Among them, a texture feature named the local binary pattern (LBP) [26] has been widely used in
computer vision [27] due to its advantages of fast computation and rotation invariance. Recently, some
improvements have been made based on the LBP such as the center-symmetric local binary pattern
(CS-LBP) [28] and the local ternary pattern (LTP) [29].

This paper proposes a centroid iteration algorithm with multiple features based on a posterior
probability measure [15] for object tracking. The main goal is to solve the difficulties in real scenes
such as similarly colored backgrounds, object occlusions, low illumination color image and sudden
illumination changes. The proposed algorithm consists of a target model construction step and a
localization step. We improve the LBP descriptor to the DCS-LBP descriptor. For further improvement,
a simplified version of the DCS-LBP is used, which we call the SDCS-LBP. It can describe important
information of the image (the edge, the corner and so on). Then, this new texture feature and the color
are combined to constitute the multiple features used in the target model, which we call the color and
texture (CT) feature in this paper. After obtaining the target, three strategies for updating the target
model are presented to reduce the tracking mistakes.

The rest of the paper is organized as follows: in Section 2, a local color texture feature based on the
DCS-LBP along with its simplified form is introduced. In Section 3, the proposed tracking algorithm is
illustrated in detail. Experimental results are shown in Section 4. Section 5 draws conclusions.

2. Multiple Features

Feature descriptors are very important in matching-based tracking algorithms, especially for
applications in real scenes. In some simple scenes, color can work well because it distinguishes the
targets from the background easily and contains a lot of useful information of the target. However,
in complex scenes containing similarly colored backgrounds, object occlusions, low illumination color
image and sudden illumination changes, the tracker only using the color feature may easily miss the
target. One of the solutions is to integrate multiple features in the target model for reliable tracking.
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2.1. Local Binary Patterns (LBPs)

The LBP is an illumination invariant texture feature. The operator uses the gray levels of the
neighboring pixels to describe the central pixel. The texture model LBPp r is expressed as follows [26]:

P—1 )
LBPP,R = Z S(g,' — gc)zl,
i=0
1 >0 @
, X2V,
s(x) =
0, x<0,

where P is the number of the neighbours and R is the radius of the central pixel. g. denotes the
gray value of the central pixel and g; denotes that of the P neighbours withi = 0,..., P — 1, and s(x)
represents the sign function. Figure 1 gives an example of the LBP code when P = 8 and R = 1.

80 81 82 1 1 1
38 40 41 0 1
38 39 39 0 0 0

Binary code:10000111

Figure 1. The original LBP code.

There are two extensions of the LBP [26]. The first one is to make the LBP as a rotation invariant
feature as proposed by Ojala et al. [26]. It is defined as:

LBP{;{R = min(ROR(LBPpgR,i)li=0,1,--- ,P—1), )

where ROR(x, i) performs a circular bit-wise right shift on the P_bit number x by i times. Equation (2)
selects the minimal number to simply the function. They explained that there were 36 rotation invariant
LBP codes at P = 8, R = 1. The second one is the uniform LBP, which contains at most one 0-1 and
one 1-0 transition when viewed as a circular bit string. The uniform LBP codes contain a lot of useful
structural information. Ojala et al. [26] observed that although only 58 of the 256 8-bit patterns were
uniform, nearly 90% of all observed image neighborhoods were uniform and many of the remaining
ones contained noise. The following operator LBPg”ll“2 is a uniform and rotation invariant pattern with
Uwvalue of at most 2:

Yo s(8i —8c)2', U(LBPpr <2),

LBPp2 = )
P+1, otherwise,

©)

P-1

U(LBPpr) = |s(gp-1 — gc) —5(80 — gc)| + ; Is(gi — gc) —s(gi—1 — &c)I-

If we set P = 8, R = 1, the nine most frequent patterns with index from 0 to 8 are selected from the 36
different patterns, which are the rotation invariant patterns as shown in Figure 2.
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Figure 2. Nine uniform patterns of LBPéii‘z.

2.2. Center-Symmetric Local Binary Patterns (CS-LBPs) and Local Ternary Patterns (LTPs)

In Section 2.1, it can be seen that LBP codes have a long histogram, which require lots of
calculations. Heikkil4 et al. [28] designed a method by comparing the neighboring pixels in order
to reduce computation. They calculated the center-symmetric pairs of the pixels as defined in the
following function:

-1

CS-LBPP’R = Z S(gi 7gi+§)2i’
. @

s(x)—{l’ x>T,

0, otherwise.

N

This operator halves the calculations of LBP codes at the same neighbors. The LBP threshold
depends on the central pixel, which makes the LBP sensitive to noise especially in flat regions of the
image while the CS-LBP threshold is a constant value T that can be adjusted.

Tan et al. [29] extended the LBP to 3-valued codes, called the local ternary pattern (LTP). They set
the codes around g in a zone of width T to one. The codes above it are set to 2 and the ones below it
are set to 0. It is defined as:

p-1 ,
LTPpr = Y s(gi — )3,

i=0

2, x>T, ®)
s(x) =41, -T<x<T,

0, x<-T.

Here, T is the same threshold as the CS-LBP. Thus, the LTP is more insensitive to noise than the
CS-LBP. However, it is no longer invariant to gray-level transformations.

2.3. Double Center-Symmetric Local Binary Patterns (DCS-LBPs)

In Section 2.2, it is analyzed that the CS-LBP is more efficient than the LBP in calculation, but
they are both sensitive to noise. The LTP is insensitive to noise, but its computation is too complex.
A simple way is to combine the LTP and the CS-LBP, which yields the CS-LTP. It is defined as:

N

-1

CS-LTPpr = Y s(g; fgi+g)3",
i=0

2, x>T, (6)
s(x) =41, -T<x<T,
0, x<-T.
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By definition, the CS-LTP retains the advantages of the CS-LBP and the LTP, but the ternary values
are hard to calculate in the image.

Thus this motivates us to generate a DCS-LBP operator. The operator is divided into two parts:
DCS-LBPI(;‘IQ7 P 6’), in which the gray levels of the center-symmetric pixels above T are quantized to one
while those below T are quantized to zero, and DCS—LBPI(),,‘I){WV), in which the center-symmetric pixels
on the other side below —T are quantized to one while those below T are quantized to zero.

P_q . 1/ x> T/
DCS-LBPp)Y™ = Y74 s1(8i —8;,.2)2, s1(x) = {

0, otherwise,

@
DCS-LBPIwe — 2 g (0~ g 1121, sp(x) =4 =T
PR i=0 S8 8ip ey %2 0, otherwise.

T is the threshold used to eliminate the influence of weak noise. The value of T determines the
anti-noise capability of the operator. The upper-part and the lower-part of the DCS-LBP should be
calculated separately and then be combined together for use. By definition, there are 2 x 27 different
values, which are much less than the basic LBP (27) and the LTP (37), and are close to the CS-LBP (Zg)
and the CS-LTP (312’)). When P = 8, R = 1, the DCS-LBP has 32 different values. Table 1 shows
examples of all of these five local patterns. The first row are three local parts of an image including
texture flat areas, texture flat areas with noise, and texture change areas. The threshold is set to be 5.
It can be seen that the LBP and the CS-LBP can not exactly distinguish between texture flat and change
areas. The other three patterns are distinguishable and are all insensitive to noise, among which the
computational complexity of the DCS-LBP is lower than the other two.

It should be noted that there is a great amount of redundant information in the DCS-LBP, which
might cause matching errors. Thus, further optimization is necessary. The DCS-LBP patterns also
have the rotation invariant identity as shown in Figure 3. There are nine rotation invariant patterns.
Similarly, both DCS-LBPI(;fl’é7 P") and DC S-LBPI(J’%M) have the same uniform patterns as the LBP. Pattern
5 to Pattern 8, which cannot describe the primitive structural information corresponding of the local
image, are not uniform patterns. Pattern 0 to Pattern 4 each has its identity. Pattern 0 and Pattern 1
represent noise points, dark points and smooth regions. Pattern 2 represents the terminal. Pattern
3 represents angular points. Pattern 4 represents boundary. Thus, we improve the DCS-LBP to its
simplified version (called SDCS-LBP), which retains only the patterns with index from 0 to 4.

Figure 3. The nine rotation invariant patterns of the DCS-LBP.
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Table 1. Examples of five coding rules (T = 5).

ORONEENORO
Image local region @@@ @@@

Texture flat Texture flat areas ~ Texture change

areas with noise areas

620 o’o o°o

LBP pattern o‘ °° ° °
© ©)

[11111111] [10000111], [10000111],

CS-LBP pattern

[0000], [0000],

o°o 020 020
Q0D QOB OO
LTP pattern ° 06 ° 00 0 c‘

(111111113 (111111115 (211111225

CS-LTP pattern

[1111]5 [1111]3 [0001]3
DCS-LTP pattern . *
[0000] 2[0000 [0000],[0000], [1000],[0011],

2.4. Local Color Texture Feature (CT Feature)

Feature representation of the target model is very important for mean-shift based tracking
algorithms. The original mean-shift algorithm selects the RGB color space (16 x 16 x 16 = 4096)
as the features. However, in real scenes which contain similarly colored background, object occlusion,
low illumination color image and sudden illumination changes, the original mean-shift algorithm can
not track the target continuously. Inspired by [16], we consider designing a new feature combining the
color and the texture.

This paper chooses to use the HSV color space, which contains Hue, Saturation and Value.
The Value, which is measured with some white points, is often used for description of surface colors
and remains roughly constant even with brightness and color changes under different illuminations.
Hence, we replace the Value with the SDCS-LBP in the HSV space as the target model. The new feature
which combines the color and the texture is called the CT feature in this paper. The CT feature can be
considered as a special texture feature (terminal, angular point, boundary and some special points)
with a certain color. The HSV color space is reduced to the size of 8 x 8 after excluding the part of
the Value. Thus, the dimension of the CT feature is 640 (8 x 8 x 5 x 2 = 640). Figure 4 shows three
target models. For the CT feature, Figure 4b,c is the same and are different from Figure 4a, which can
not be distinguished using the color alone. The CT feature has the rotation invariant identity and can
distinguish between different texture patterns.
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(@ (b) (©

Figure 4. A particular target model.

The calculation process of the CT feature is as follows. Firstly, let P; be the set of pixels of the
target. Calculate DCS—LBP;[’;{’” “, DCS—LBPIIJU,}‘{” and the HSV color space of each point in P; in turn.
If the value of DCS- LBP””;{’ “ or DCS- LBPI"”’" does not belong to the SDCS-LBP, the point will be
seen as a meaningless point, which should be eliminated. Secondly, calculate C T“p P and C Tl‘”‘”"’ by
multiplying the SDCS-LBP, the Hue and the Saturation. Third, after all the pomts of the target have
been calculated, his"FP*"(H,S, T) and hzsl"w”(H, S, T) of the target are worked out by putting the CT
feature into the histograms. The histogram of the target model (his(CT)) is obtained by combining
his"PP"(H,S,T) and hisZ”w"(H, S,T). Figure 5 shows the representation of a target model by the
proposed method. Figure 5a is the first frame of a sequence. The target is showed in Figure 5b.
The histogram of the CT feature is showed in Figure 5c.

(] 100 200 300 400 500 600

(a) (b) (©)

Figure 5. The representation model of the target by the proposed algorithm. (a) 1st frame;
(b) target model region; (c) the histogram of CT feature.

3. Tracking Algorithm Using the CT Feature

Recently, many similarity measures are used in object tracking algorithms, such as the Euclidean
distance, the Bhattacharyya coefficient, the histogram intersection distance, and so on. However, there
is still lots of mismatching or misidentification in the tracking process. One of the reasons is that the
target model contains some background pixels [15]. This paper proposes using the similarity measure
based on maximum posterior probability to solve the problem.

3.1. Maximum Posterior Probability Measure

By introducing the candidate area, the maximum posterior probability measure (PPM) is able to
decrease the influence of background and increase the importance of the target model in the tracking
process. The PPM is a function to evaluate the similarity of the candidate and the target defined as:

1 &
u=1 %

where p, and g, are, respectively, the histogram features of the target candidate region and the target
model; s, is the feature of the search region of the target candidate; m is the pixel number of the target
model withu =1,---,m,; and m,, is the dimension of feature.
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Now, we define a vector w, which is computed according to Equation (9). u(j) is the feature of the
jth pixel; wj is the PPM of the jth pixel of the search region; A; is the set of pixel of the ith target candidate
region in the search region. Thus, the original PPM can be converted into a simple one as [15]:

: 1
p(p'a) = Y Wi
JEA;
v 9
Tuti) S i) >0, ( )

w; = { S0 u(j

O, Su(]') =0.

From the function, it can be found that the PPM and wj have a liner relationship. Therefore,
we compute the incremental part to obtain the PPM of neighborhood, which makes the recursive
algorithm a suitable one.

According to Equation (9), the PPM value of each pixel will be calculated, respectively. Thus,
the matching process is simplified to find a target candidate region with the biggest sum of PPM value.
The similarity measure of the target candidate and the target model is:

pyi = ) 8(x),
X;€Ay; (10)
N qu(x:)
g(x;) = S(1)

’

where {x;}i_1,...  is the set of pixel’s position with the present frame centered at y;; g(x;) is the PPM
value at x;; and Ay, is the target candidate centered at y;. Supposing the PPM value of each pixel as
density and the similarity of the target candidate region as mass, the center of mass y;;1 is the target:

Lsea,, Xig(xi)

. 11
Lxeny, 8(%i) v

Yiy1 =

Figure 6 shows the PPM of the target model. The target bounded by the blue box and the target
candidate region bounded by the green box in Figure 6a are resized. The target model and the target
candidate region are showed in Figure 6b. The PPM of the target model, which holds monotonic and
distinct peak shapes, is showed in Figure 6c.

Figure 6. The maximum posterior probability of the target model. (a) 1st frame; (b) target candidate
region; (c) the PPM of target model.

3.2. Scale Adaptation and Target Model Update

During the tracking process, the target always changes in shape, size, or color. Thus, the target
model must be updated. The update must abide by certain rules to prevent the tracking drift.
Three strategies are proposed for the target model update.
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1. Introduce an adaptive process to fit the target region to a variable target scale for the purpose of
precise target tracking.

2. Compute the similarity measure of the scale adapted target. If it is greater than a parameter,
update the target model.

3. Introduce a parameter into the tracking algorithm to update part of the target model.

Strategy 1 introduces a scale adaptation function given by [15]:

wk+2)+2, ifg_1>08and Py > 0.75and ¢; > 0.6,

wk+1) = w(k—2) -2, ifdy < 0.6and $; < 0.3, (12)
w(k), otherwise,
where w(k) is the size of the target region at frame k. ¢;(i = —a,...,0,...,a) is the average of the

PPM of each pixel. Furthermore, i < 0 means the ith outer layer. i = 0 represents the target region
border. a is the comparison step of scale adaptation and is set to 1 without losing the generality. In
Equation (12), the expanding condition means the pixels around the border are likely to be a part of
the target. The contracting condition means the target region should be reduced consequently. The
function is an empirical one. The parameters should be trained by a great number of experiments.

Strategy 2 shows that the frame will not be updated until the similarity measure is greater than a
certain parameter. In real scenes, some sudden changes may cause the tracking drift, so the update can
not work every frame. p is the current frame model, while g is the target model. ¢(p, q) is the similarity
of the PPM for the current frame and the target model. If Equation (13) is satisfied, we considered p as
the reliable CT feature model, and update the target model with p:

P(p,q) 29 (13)

Strategy 3 introduces a parameter into the algorithm to prevent the target model from being
updated completely. Because of the limitations of the description to the target model, p can not take
the place of 4. The y parameter is used to partially update the target model:

g =9p+(1-7)q, (14)

where v is the update factor; and g/ is the updated CT feature model. In our experiment, -y is set to be
a small value to adapt the changes of the target slowly.

3.3. Tracking Algorithm

Initialization: select the target object and compute the histogram his(C, T) of the target model
as qy. The center of the target y; is the initial position of the tracking object. Let {x;};_1 ... ,, be the set
of pixel’s position with the present frame centered at ;.

Set y; as the initial position. Calculate his(C, T) of the search region as S,,.

Calculate the PPM values g(x;) of each pixel of the region by Equation (10).

Initialize the number of iterations as k = 0.

Calculate the target location by Equation (11). k = k + 1.

Repeat Step 4 until ||y; 11 — y;|| <eork > N.

Adjust the scale of the target region by Equation (12)

Decide whether to update the target by Equation (13). If satisfied, update the target model by
Equation (14).

8. Read the next frame of the sequence and turn to Step 1.

NG LN

If the distance between two iterations is less than ¢ or the number of iterations exceeds N,
the algorithm is considered converged.
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4. Experiments

The environments are set in some real scenes with similarly colored backgrounds, object
occlusions, low illumination color image, and sudden illumination changes [12]. Eight public test
sequences are used in experiments which are from the Visual Object Tracking challenge (http://
votchallenge.net/index.html) and the Visual Tracker Benchmark [30] (http:/ /www.visual-tracking.net)
(see Figure 7). As the visual tracking benchmark, the test sequences are tagged with the following four
attributes: low illumination color image (LI), sudden illumination changes (IC), object occlusion (OC),
similarly colored background (SCB) (see Table 2). We designed a tracking system based on Matlab
R2014a (8.3.0.532). All the trackers run on a standard PC (Intel (R) Core (TM) i5 2.6 GHz CPU with
8 GB RAM).

We compared our algorithm with some state-of-the-art methods including classical mean-shift
tracking (KBT) [10], PPM-based color tracking algorithm (PPM) [15], a mean-shift algorithm using the
joint color-texture histogram (LBPT) [20] and high-speed tracking with kernelized correlation filters
(KCF) [9]. In addition, extra experiments are designed to test the function of the two major parts of the
proposed method-the CT feature and the PPM separately. One of the experiments that we use is the CT
feature with the Euclidean distance (CT&ED) instead of the PPM as the similarity measure. The other
one that we use is the LBP feature with the PPM (LBP&PPM) instead of the CT feature. Both of the
two trackers are tested in the experimental framework. All the methods aim at tracking one object in
our experiments. The target will be tracked continuously at the rest of the frames.

(h)

Figure 7. Eight test sequences used in current evaluation. (a) basketball; (b) car; (c) coke; (d) doll;
(e) lemming; (f) matrix; (g) trellis; (h) woman.

Table 2. Eight sequences in the experiment.

Sequences Size Frame fps Object Number Attributes
car 320 x 240 368 30 1 ICSCBLI
basketball 576 x 432 725 30 >8 IC OC SCB
coke 640 x 480 291 30 1 IC OC sCB
doll 400 x 300 3872 30 1 1ICOC
lemming 640 x 480 1336 30 1 ICOC
matrix 800 x 336 100 30 2 ICOCSCB LI
Trellis 320 x 240 569 30 1 IC SCB LI
woman 352 x 288 597 30 1 ICocC

4.1. Parameter Setting

The size of the search region of our methods is set to 2.5 times the target size. In addition, there are
five parameters in our tracking algorithm. We set 6 = 0.85 and « = 0.1 for the target model update in
Section 3.2. 4 is the control parameter used to determine whether update the model or not. N and ¢ are
the iteration parameters for the tracking algorithm in Section 3.3. N = 20 is the maximum number
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of the iteration, and ¢ = 0.5 is the minimum threshold of the iteration. The threshold parameter T
is important in our algorithm. In order to test the sensitivity of the parameter, the central location
error (CLE) is used to describe the tracking result. The CLE is defined as the Euclidean distance
between the center of the box predicted by the tracker and that of the box of the ground truth. We set
T =1,3,5,7,9 for the calculation of the DCS-LBP. The results of eight test sequences are showed in
Table 3. It can be seen that our algorithm performs well on all the tests when T is a small value
between 1 to 5. In addition, it only missed the target in the basketball test sequence when T gets larger.

Therefore, we set T = 1 in the experiments.

Table 3. The parameter setting (CLE).

SEQUENCE T=1 T=3 T=5 T=7 T=9

basketball 7 21 20 278 255
car 25 27 27 27 25
coke 19 18 17 14 16
doll 26 27 23 25 26
lemming 21 20 20 21 22
matrix 23 24 24 24 24
Trellis 13 13 12 12 12
woman 10 7 9 11 8

Average CLE 18 20 19 52 49

4.2. Qualitative Comparison

Some key frames of each sequence are given in Figure 8. The results of different trackers are

shown by the bounding boxes in different colors.

M

@

®)

*)

©)

(6)

@)

In the basketball sequence, the tracked player moves fast. The environment changes many times.
CT&ED lose the target at frame 80. KBT, PPM, and LBP&PPM fail at frame 473, when the player

goes through his partner. KCF, LBPT and our tracker can successfully locate the object.

In the car sequence, the target is a car, but the road environment is dark. There are bright lights
in the background. All of the trackers can merely track the car in the first 200 frames. However,
at frame 260, the car turns right, and only KCF can track the car accurately.

In the coke sequence, the target is a coke and the light changes three times. The coke moves
fast and is blocked by plants sometimes. When the coke is blocked by the plants the first time,
LBTP misses the target. At frame 221, the occlusion and the illumination happen at the same
time, and KBT and PPM obtain the wrong place. During the tracking, both KCF and our method
perform better than the others.

The doll sequence has 3872 frames, which is a very long sequence. The target is a doll. It is
blocked by the hand, and the scale of it changes sometimes. Because of the similar color with the
background, LBP&PPM, LBPT, and CT&ED fail at frame 2378. KCF gives the best result followed
by PPM and our tracker.

The lemming sequence is a challenging situation with fast motion, significant deformation and
long-term occlusion. KCF missed the target at frame 380 because the target moves fast with the
similar background. Our method is more effective than the others during the tracking.

In the matrix sequence, the target is the head. The sequence contains low illumination color image,
sudden illumination changes, object occlusion, and similarly colored background. Our tracker
gives the best result. At frame 30, all of the methods except ours lose the target. Our tracker
misses the target at frame 90, when the target has dramatic changes in shape.

In the trellis sequence, the target is a boy’s face in an outdoor environment. The situation has
severe illumination and poses changes. All trackers except KCF and our tracker show some
drifting effects at frame 270. The CT&ED loses the target at frame 410. Only KCF and our tracker
show a good performance along the whole sequence.
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(8) In the woman sequence, the track is a walking woman in the street. The difficulty lies in the fact
that the woman is greatly occluded by the parked cars. All the tracks fail at frame 124 except KCF
and our tracker because of the occlusion and the small size of the target.

—Qurs ----KBT ----PPM LBPFT KCF LBP&PFM CT&ED

Figure 8. Experiment results of our proposed algorithm, KBT [10], PPM [15], LBPT [20], KCF [9],
LBP&PPM and CT&ED on eight challenging sequences (from top to bottom are Basketball, Car, Coke,
Doll, Lemming, Matrix, Trellis, Woman, respectively).
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4.3. Quantitative Comparison

For performance evaluation and comparison, two metrics are considered: the CLE and the success
rate (SR), which have been widely used in object tracking [12,31]. A target is considered as successfully
tracked if the overlap region between the predicted bounding box and the ground truth exceeds 50%
in a frame [32]. The SR is defined as

_area(M; N M)

"~ area(MyUM,)’ (15

where M; is the bounding box predicted by the tracker. M, is the ground truth bounding box.
The function area(e) means to calculate the area of a region. The CLE has been described in Section 4.1.
The results of different methods on eight test sequences are showed in Tables 4 and 5. It can be seen
from Tables 4 and 5 that our algorithm achieves an SR of 94% and a CLE of 18 which are better than
the other algorithms. We also report the central-pixel errors frame-by-frame for each video sequence
in Figure 9.

Now, we discuss the influence of the two major parts in our method: the CT feature and the PPM,
separately. First, to test the influence of the similarity measure, we compare the trackers using the CT
feature and different measures: the Euclidean distance (CT&ED) and the PPM (which is the proposed
method—CT&PPM). It can be seen from Tables 4 and 5 that the PPM achieves an SR of 94% and a CLE
of 18, which are better than those achieved by the Euclidean distance (40% and 122%). Second, to test
the influence of the feature, we compare the trackers using the PPM and different features: the color
feature (PPM), the LBP (LBP PPM) and the CT feature (which is the proposed method—CT&PPM).
It can be seen from Tables 4 and 5 that the CT feature outperforms the others with the highest SR
and a lowest CLE. The results demonstrate the effectiveness of both the CT feature and the PPM in
improving the tracking accuracy.

Table 4. Success rates (%) of the proposed method compared with the other trackers.

SEQUENCE KBT[10] PPM[15] LBPT[20] KCF[9] Proposed LBP&PPM CT&ED
basketball 65 68 100 100 100 56 3
car 65 20 63 100 71 76 51
coke 18 37 7 94 94 48 89
doll 88 100 79 100 97 57 56
lemming 99 99 83 68 100 38 24
matrix 41 15 7 31 91 57 49
Trellis 67 90 27 100 100 87 27
woman 93 53 19 94 95 42 18
Average success rate 67 60 48 86 94 58 40

Table 5. Center location errors of the proposed method compared with the other trackers (pixels).

SEQUENCE KBT [10] PPM[15] LBPT[20] KCF[9] Proposed LBP&PPM CT&ED

basketball 113 68 11 8 7 123 288

car 29 77 31 6 25 16 36

coke 119 99 153 19 19 64 31

doll 25 12 42 8 26 51 67
lemming 13 12 61 78 20 149 132
matrix 75 14 249 76 23 61 85

Trellis 54 26 123 8 13 30 142
woman 22 85 145 10 10 46 196
Center location error 56 49 102 27 18 66 122
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Figure 9. Fame-by-frame comparison of center location errors (in pixels) on eight challenging
sequences. Based on the experimental results, our algorithm is able to track targets accurately and
stably. (a) Basketball; (b) Car; (c) Coke; (d) Doll; (e) Lemming; (f) Matrix; (g) Trellis; (h) Woman.
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4.4. Speed Analysis and Discussions

Table 6 lists the needed computation times of the five trackers on our test platform. The trackers
run from 160 fps to 60 fps in the current Matlab implementation. The speed of the trackers depends on
the area of the candidate region for all the test sequences and the number of iterations. Comparing with
KBT, PPM, and KCF, LBPT and the proposed method spend lots of time on texture feature computation.
However, they just calculate parts of useful points. Comparing with KBT, KCF and LBPT, PPM and
our algorithm can calculate the target model and the search region by joint points to decrease the
computational complexity. Because the dimension of the CT feature is 640 compared with KBT, PPM,
LBPT, KCE our tracker takes more time than the other trackers. However, the computational time can
satisfy real-time applications.

Table 6. Computation speed comparison (fps).

SEQUENCE KBT[10] PPM[15] LBPT[20] KCF[9] Proposed
Average success rate 164 100 88 165 66

5. Conclusions

A new object tracking method has been proposed in this paper. The algorithm can overcome
some difficulties in real scenes such as object occlusion, sudden illumination changes, similarly colored
backgrounds, and low illumination color images. This work integrates the outcomes of the color
texture feature and PPM centroid iteration tracking. A color texture model called the CT feature is
introduced. In addition, we propose using a posterior probability measure with the CT feature for
target location. Three target model update strategies are designed to improve the tracking accuracy.

The tracking algorithm only using color can not track the target at similarly colored regions or
low illumination regions. The combination of the color and the texture feature can overcome these
difficulties, and the SDCS-LBP is a texture feature, which is robust against gray-scale changes. In real
scenes, our algorithm shows a good performance. As our method is based on the histograms of the
regions, it can overcome the problem of object partial occlusion. PPM measure and the target update
strategies can reduce the tracking mistakes. In the experiments, our algorithm performs better than
others for most of the test sequences. Future work will be dedicated to decreasing the complexity of
the algorithm.
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Abstract: Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering
target tracking may decline in accuracy and even diverge when a target makes abrupt state changes.
To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature
Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical
simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm.
Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted
states” error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that
the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this
way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high
accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the
performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get
better estimation accuracy and greater robustness for maneuvering target tracking.

Keywords: maneuvering target tracking; spherical simplex-radial rule; cubature Kalman filter; fading
factor; strong tracking filter

1. Introduction

Maneuvering target tracking has drawn increasing attention because of its widespread
application in areas such as radar tracking, aircrafts surveillance, and spacecraft orbit control [1,2].
For maneuvering target tracking, many algorithms are developed and grouped into two types.
One type is to improve the accuracy of the motion model, such as multiple-model (MM) methods [3],
optimization of multiple model neural filter [4], current statistical (CS) model [5,6], and so on. The other
type is to detect the target maneuverability and then to cope with it effectively, such as strong tracking
filter (STF) [7], tracking algorithm based on maneuvering detection [8], and so on. In these methods,
the performance of the filter is an important factor affecting the performance of these methods.
Therefore, improving the accuracy of the filter is also a useful method to improve the performance
of maneuvering target tracking. Thus, a large number of nonlinear filters have been developed.
Among these algorithms, the extended Kalman filter (EKF) [9] is one of the earliest and most widely
used nonlinear filters. The EKF uses a linearization technique, based on the first-order Taylor series
expansion, and approximates the nonlinear system. However, EKF has some limitations, such as
complex Jacobian matrix calculations and poor accuracy in estimating the states of the strongly
nonlinear system.

As better alternatives to the EKE, many nonlinear filters based on the idea of Bayesian theory
have been proposed. One popular approach for the nonlinear non-Gaussian filtering problem
is to use sequential Monte Carlo methods. The most famous method is known as particle filter
(PF) [10-13]. The key idea of PF is to represent the posterior distribution by a set of random samples
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and to calculate estimates based on these samples and weights. Although the PF can provide good
performance, the computational cost is very high and suffers from the curse of the dimensionality
problem. These shortcomings restrict their applications in a real-time system. A different approach
for nonlinear filtering is based on the point-based filtering technique that approximates intractable
integrals encountered by a set of deterministically sampled points. Compared with the Monte Carlo
numerical integration that relies on randomly sampled points, the deterministic point-based method
has lower computational complexity with high accuracy. The type of filter includes the unscented
Kalman filter (UKF) [14], Gauss-Hermite filter (GHF) [15], central difference filter (CDF) [16], etc.
Among these methods, the well-known filter is UKE. The UKF uses unscented transform (UT) to capture
the mean and covariance of a Gaussian density. It is shown that the UKF has better performance than
the EKF. Besides its higher approximation accuracy, this UKF can avoid the cumbersome evaluation of
Jacobian and Hessian matrices, making the algorithm easier to implement. Nevertheless, the unscented
transform of the UKF is potentially unstable [17], which restricts its practical applications. Apart from
the aforementioned filters, the cubature Kalman filter (CKF) has been proposed [17,18] by Arasaratnam
and Haykin. Making use of the third-degree spherical-radial cubature rule, the CKF is reported to be
more flexible in implementation form and more stable than UKF. In addition, Jia et al. [19] proposed the
high-degree CKF where the number of sample points increases rapidly with the increase of the degree
or state dimension. To further improve estimation accuracy with low complexity, a new nonlinear
filter named spherical simplex-radial cubature filter (SSRCKF) is developed in [20]. The new class of
CKF is based on the simplex spherical radial (SSR) rule, which improves the accuracy of CKF with
only two more cubature points necessary.

Although the SSRCKF can achieve good accuracy in tracking non-maneuvering or weak
maneuvering targets, it may lose the tracking ability to the abrupt state change when the system
reaches the stable state. This is because the reaction of the gain matrix is delayed to the sudden change
of the prediction error. To tackle the problem mentioned above, a new algorithm called strong tracking
spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The STSSRCKF
is developed based on the combination of strong tracking filter (STF) [7,21,22] and SSRCKF. The new
algorithm using the strong tracking idea and the fading factor based on the residual to modify the prior
covariance matrix quickly. Thus, the gain of the filter can be adjusted in real time to enhance tracking
capacity for the maneuvering target. In addition, the algorithm can also keep a normal tracking
accuracy for weak maneuvering targets. Compared with the STE, strong tracking unscented Kalman
filter (STUKF) [23], strong tracking cubature Kalman filter (STCKF) [24] and SSRCKE, the proposed
algorithm has a good accuracy and robust advantage over a wide range of maneuver. The performance
of the proposed filter is demonstrated by the simulation.

The remainder of this paper is organized as follows. The overview of the background theory
is presented in Section 2. The proposed algorithm is developed in Section 3. Simulation results and
performance comparisons are presented in Section 4. Finally, conclusions are provided in Section 5.

2. A Review of UKF and CKF
The nonlinear discrete-time system is represented by
X = flxp-1) + Wi
{ zi =h(x) +o

@

where k € N denotes discrete time, f(-) represents the nonlinear function, h(-) represents the
measurement function. x; € R" is the state vector of system, zy € R™ is the measurement,
wy € R" is the process noise vector, and vy € R™ is the measurement noise vector. The process
wy, and measurement noise vy are uncorrelated zero-mean Gaussian white sequences and have zero
cross-correlation with each other, represented as wy, ~ N(0, Q;) and v, ~ N(0, Ry), respectively.
Under the Gaussian assumption in the Bayesian filtering framework, the key problem of the
nonlinear filtering problem is to calculate the multi-dimensional integrals. However, in most cases,
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the multi-dimensional integrals cannot be solved analytically. As a result, several approximation
methods have been proposed, such as the unscented transformation (UT) and the cubature rule.
The UT with 21 + 1 the sigma points ); and corresponding weights is chosen as

X0 = Xk|k

Xi =X+ [\/(”""A)Pk\k i(i:L'" /1)

Xi = Xy — [ (4 )Py, (F=n+1,---,2n)
i )
Wl = A/(n+A)

w® =A/(n+A)+ (1 — a2+ B)

a},(,i) = wﬁi) =1/2n+A)(i=1,---,2n)

where [Pk|k]i is the ith column of the matrix square root of Py, n is the dimension of state.
A =0a2(n+x) —n is the scaling parameter; a determines the spread of the sigma points around
xgx- The positive constants f and « are used as parameters of the method.

The third-degree cubature rule with 2# cubature points and weights is given by:

Xi:xk\k+[ (n/2)Py i(i:L"',”)
Xi :xk\kf [ (”/2)Pk\k ’(l:n+l, ,21’[) (3)
ws,’;):wéi):l/Zn (i=1,---,2n)

As indicated above, the main difference between the UT used in UKF and the third-degree
cubature rule used in CKF is that the UT has one more point in the center with a tune parameter .
If the parameter « is set to zero, the sigma points set will evolve into the cubature points set and the
UKF becomes identical to the CKF. For UKE, the scaling parameter x is always set to n — 3. Based on
this point, for high-dimensional problems (n > 3), it will lead to the negative weight of the center
point. The presence of the negative weight may lead the covariance matrix to become non-positively
defined. Thus, the cubature rule is more stable than the UT. In summary, the CKF is virtually a special
case of UKF and the CKF has better numerical stability than UKE.

3. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter

The heart of the spherical simplex cubature Kalman filter is the spherical-radial cubature rule.
The spherical-radial cubature rule does not approximate the nonlinear function, but it can approximate
the integral of the form (nonlinear function x Gaussian) using weighted quadrature point sets.
The integral with the standard Gaussian distribution N(x;0,I) can be approximated by the quadrature

m

[ fENG0,Ddx = Y- wif(n) )

i=1
where m is the total number of quadrature points in the state-space R”, {v; w;}!" is a set of

quadrature points and corresponding weights. The general Gaussian integral [, f(x)N(x;, P)dx can
be approximated by the following transformation

Jon FXN (2, P)dx = [pu f(VPx+ %)N(x;0,I)dx

~ é":l wf(ﬁ% + fc) ©)
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The computational complexity of the numerical integration is proportional to the number of
quadrature points, and the accuracy of the numerical integration rule is usually assessed by the
polynomial approximation degrees.

3.1. Review of the Third-Degree Spherical Simplex-Radial Cubature Rule

The SSRCKF algorithm has the same structure as the general Gaussian approximation filters,
such as the CKF, but uses the third-degree spherical simplex-radial cubature rule to calculate the
Gaussian weight integral I(f) = [¢s f(x)N(x;0,I)dx. By using the spherical simplex-radial cubature
rule, the SSRCKF method can get more accurate estimation than CKEF. In the third-degree spherical
simplex-radial cubature rule, the following integral is considered [19]:

I(f) = ./R” f(x) exp(—xTx)dx (6)

where f{(-) is arbitrary nonlinear function, R" is the integral domain. To calculate the above integral,
let x = rs (sTs = 1,r = VaTx). Equation (6) can be transformed into the spherical-radial

coordinate system

I(f) = /:o /unf(rs)r”’1 exp(—r?)do(s)dr (7)

where s = [s1,5p, - - - ,sn]T, U, ={seR": s% + s% 44 5,27 = 1} is the spherical surface, and o(-)
is the area element on U,. Then, the Equation (7) can be decomposed into the spherical integral
S(r) = [y, f(rs)do(s) and the radial integral I(f) = [5° S(r)r" ! exp(—r?)dr.

3.1.1. Spherical Simplex Rule

As can be seen from the literature [25], the spherical integral || u, f(rs)do(s) can be approximated
by the transformation group of the regular n-simplex with vertices a ;. Po The third-degree spherical
simplex rule with 2n 4 2 quadrature points is given by

A, nfl
S(r) = 2(7;1 (fraj) +f(—raj))

®

where A, = 2v/7t" /T"(1/2), Ns = 2n + 2.

3.1.2. Radial Rule

The radial integral [;°S(r)r"~lexp(—r2)dr can be calculated by the following moment
matching equation

(e} NV
/0 S(r)r"Lexp(—r?)dr = Y w,iS(ry) 9)
. i=1

where S(r) = 7 is a monomial in 7, with I an even integer. Using the moment method with the
minimum number of points, the third-degree radial rule (N, = 1) can be derived. From Equation (9)

we can obtain the moments’ equations as

1_.n
wrlr(l) = Er(i)
1 +2 (10)
n n_.n
wpary = Er( 3 )= Zr(*)
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By solving Equation (10), the points and weights for the third-degree radial rule are given by

{ r =+vn/2
w1 =T(n/2)/2

)

3.1.3. Spherical Simplex-Radial Rule
By using Equations (7), (8) and (11), the third-degree spherical simplex-cubature rule (N, = 1,
Ns = 2n + 2) is given by
S FON(x,0, I

_ \/% Jreo F(V/2%) exp(—xTx)dx

1 N N
W_Zl '21 W jws if(V2r;s;)
i=1j=

1 n+1 2142
= 25T (/Elf(\/ﬁaj) +j§+2f(\/ﬁaj))>

~

12)

-5 wif(x)
k=1

where m = 2n+ 2, § = \/nla, —a], and wy = 1/(2n 4 2) are the corresponding weights.
The steps of SSRCKF algorithm for the nonlinear system can be found in the literature [17].
3.2. Strong Tracking Filter

To improve the performance of EKF, a concept of STF was proposed by Zhou and Frank [7].
They proved that a filter can obtain the strong tracking estimation of the state can have the strong
tracking performance only if the filter satisfies the orthogonal principle [7]. In strong tracking,
the time-varying suboptimal fading factor is incorporated, which online adjusts the covariance of
the predicted state. In this way, the algorithm has the ability to track abrupt state change and strong
robustness against mode uncertainties. The algorithm has the following steps [21]:

ko1 = fieBeak1)

Pr-1 = )‘ka\k—lka;z‘k,l + Qx

Ki = Py (HI (HPy (HI +Ry) (13)
Xk = Xep—1 + Kie(zx — (3gp-1))

Py = [I = KeHy| Py

where Fy;_; and Hy are the process matrix and measure matrix, respectively. The suboptimal
time-varying fading factor Ay is given by

” >1 tr[N;
P il (14)
1, <1 tr[My]
Ny = Vi — HQ; H] — Ry (15)
My = HiFPy_qy_FLH (16)
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vovg k=0

Vi = 17)

Vi1 + ool

k>1
1+p -

where tr[-] is the trace operation, vy = zj — ;1 denotes the measurement residual vector; f > 11is
the softening factor, which can improve the smoothness of state estimation; 0 < p < 1is the forgetting
factor. In generally, the parameters  and p are chosen as 4.5 and 0.95, respectively [26,27].

3.3. Equivalent Expression of the Fading Factor

As we know, STF need calculate the linearization of the nonlinear measurement matrix (Hessian
matrix). However, SSRCKF is not necessary to compute the Hessian matrix. So we give the equivalent

expression of STF, which need not calculate the Hessian matrix. Suppose Pf(“#l is the state error

covariance matrix before introducing fading factor, PlZ is the measurement covariance matrix and

z,k[k—1

Piz Klk—1 is cross-covariance matrix, Equations (15) and (16) have the following equivalent expressions:

T -1 -1
Ny =V, — (Piz,k\kq) (Pi\kfl) Qk—l (Pquq) (Piz/k\kq) - .BRk (18)

M, = Plzz/k“ﬁl — Vi + N+ (B—1)R; (19)
The new fading factor can be obtained through Equations (14) and (17)—-(19). It can be verified
from Equations (18) and (19) that the calculation of suboptimal fading factor in the Equation expression

does not need to compute any Jacobian matrix.

3.4. Steps of the STSSRCKF

Based on the previous sections, the strong tracking spherical-simplex cubature Kalman filtering
(STSSRCKF) can adjust the prediction error covariance matrix by introducing a suboptimal factor.
Hence, the robustness and real-time tracking ability are provided in the STSSRCKF algorithm.
The initial state is assumed to be Gaussian distribution with %,y and Py|. The computation steps of the
third-degree strong tracking spherical simplex-radial cubature Kalman filter is summarized as follows:

Step 1. Give the state estimate %;_;;_; and the error covariance matrix Py_j;_1;

Step 2. State estimate prediction:

The cubature points are obtained as

! o T
Xikk—1 = Fe—1 + chol (Pk\kq) & 0)

where chol(-)is the Cholesky factorization.
Propagate the cubature points, the predicted state x;;_1, and the predicted covariance P;<|k—1
without the fading factor are given as

Xike—1 = f(Xjk-1) 1)
m
Rik-1= ) Wik g (22)
=
Py = Yt — i) e — B 1) +Q (23)
Kkl = P Xke—1 — %klk—1) (X k-1 — Xklk—1 k-1
=

where Q)1 is the covariance matrix of process noise.
Step 3. Calculation of the fading factor A:
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Using the predicted state %;;_; and the predicted covariance Pfcl «_1- the innovation covariance

P’Z 2 klk-1 and the cross covariance P’x k1 Can be calculated as
1 _ *
Zijk—1 = B(X 1) (24)
! S
o1 = 2 Wi (25)
=1
Pl = Lt~ ) g — 2o ) 20
xzklk—1 = i\ Xj k=1~ *kle=1)\Zj k-1~ Zkjk—1
j=1
P =Y w2 )y — 2 ) R 27)
2z klk—1 i\Zikle—1 ~ Zkk—1\Zj k=1~ Zjk—1 k
~

The fading factor Ay can be calculated by using Equations (14) and (17)—(19).
Step 4. Measurement updating modified by the fading factor:
The modified prediction covariance P;(‘ 1 can be updated by

Pk\kq = /\k(Pi\kq = Q1)+ Qx (28)

By utilizing the predicted state estimate &;_; and the modified predicted covariance P;c‘ 1 With
the fading factor Ay, the modified predicted measurement 2;(‘ 1 the modified cross covariance and

the modified innovation covariance P;Z Kk—1 €an be calculated as follows

’ / ~
Xjkfe—1 = hol(Py_1)8i + Ryt 29)
Z k-1 = P(Xj 1) (30)
m
Zhh—1 = Ew]'z/,k\k—l (31)
=
m
/ ’ N / o T
sz,k|k71 = 4 1(0;'(7(]',;(\1(71 - xk\kfl)(zj,k\kq - Zk\kq) (32)
iz
m
/ / N ’ N T
P k1= 2 9zt — 2oee) (Zieeo1 — Zp-1) + R (33)
i=1

Step 5. Estimation results:
The state estimate & and the covariance Py at time k are calculate as follows

/ / 71
Kk = sz,k\kfl (Pzz,k\k71> (34)
Rk = Fe—1 + Ki(zk — Zpq) (35)
/ / T
Py = Pypq — KiPp i1 Ki (36)

The STSSRCKF combines the advantages of STF and SSRCKEFE. Then the STSSRCKF has strong
robustness against model uncertainties and good real-time state tracking capability [28]. Moreover,
the STSSRCKF algorithm eliminates the cumbersome evaluation of Jacobian/Hessian matrices,
its numerical stability and estimated accuracy are significantly improved.
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4. Simulation and Results

The effectiveness of the proposed algorithm will be illustrated through two examples of
maneuvering target tracking. Taking the root mean square error (RMSE) and accumulative
RMSE (ARMSE), the study compared the STSSRCKF algorithm with the EKF algorithm and the
SSRCKF algorithm.

4.1. Tracking Model and Measurement Model

The constant acceleration (CA) model is a common tool for tracking target modeling. The state
Equation of CA model in two-dimensional case is described as follow:

Xy = diag[®@ca, PcalXx—1 + GeaVio1 + w1 (37)

where X;_; = [xk,l,xk,l,ik,l,yk,l,yk,l,yk,lf is the target state at time k — 1, (x¢_1,¥x-1),
(Xk-1,Y4—q) and (Xx_1,;_,) represent the target position, velocity and acceleration in the x and
y coordinate at time k — 1, respectively; diag[@ca, @c 4] is the state transition matrix, Gy_1 is the state
input matrix, Vi_; is the process noise, wy._ is zero-mean white Gaussian noise and its corresponding
covariance matrix is Q.,. Pca, Gi_1 are described as:

1 T T%2/2
dcp=|01 T (38)
00 1
T2/2
Gcp = T (39)
1

where T is the sampling interval.

In radar tracking system, the target motion is usually modelled in Cartesian coordinates, whereas
the target’s position and azimuth are obtained in polar coordinate. The radar is located at the origin,
and provides range and bearing measurements. The measurement model can be established as

zk:( \/X%er%))“,k (40)

atan2 (y, x¢

where atan2(-) is the four-quadrant inverse tangent function, vy is the white Gaussian measurement
noise with zero mean and covariance Ry = diag([c?,03]). 0y and 0y denote the standard deviation of
range measurement noise and bearing angle measurement noise, respectively.

4.2. Simulation of the STSSRCKF

Example 1. In this simulation, the sampling interval is T = 1 s and simulation time is 100s. The Monte Carlo
simulations are carried out 200 times. The RMSE of the target position at time k and the accumulative RMSE
(ARMSE) of estimated position at all times are defined in Equations (41) and (42):

M

RMSEpos (k) = % Yo (e — o)+ Wk — Gp)?) (41)
m=1
1N
ARMSEpos = || Y (RMSE3 4 (K)) (42)
k=1
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where M is the number of Monte Carlo runs, (xy,yx) is the actual value of the target position at time k and
(R ks Dmx) is the estimated position at time k in mth Monte-Carlo. The RMSE and the accumulative RMSE in
the velocity and acceleration can be defined in the same way.

This example considers a two-dimensional simulation scenario including one motion mode of
high maneuver. The initial location of the target is (x,y) = (100 m,400 m), its initial velocity is
(vx,vy) = (15 m/s,20 m/s), and its initial acceleration is (ay,ay) = (0 m/s?,0m/s?). The target
makes a uniform motion during the first 150 s. Then, it takes a high maneuver with the acceleration
(ax,ay) = (15m/ s2,25m/s?) up to the end of this simulation at t = 200 s. In this simulation,
the initial value %;)p and the initial covariance matrix Py are set to be (100 m,15 m/s,0 m/ 2,
400 m, 20 m/s, 0m/s%]T and diag[ (50 m)?, (20m/s)?, (1 m/s2)>, (50 m)?, (10 m/s)? (1 m/s2)’]7,
respectively. The standard deviation of range measurement noise ¢; is 30 m and the standard deviation
of bearing angle measurement noise 0y is 10 mrad.

The example is executed to examine the performance among the SSRCFK, STF, STUKF, STCKF
and STSSRCK methods. The RMSEs of the position, velocity and acceleration using the five filters
are shown in Figures 1-3. It can be shown that the STF, STUKF, STCKF and STSSRCK methods can
converge quickly when the target engages in high maneuvering. The SSRCKF algorithm only has a
good performance for uniform motion. However, the performance of SSRCKF decreases seriously
when the target engages in high maneuvering. This is because that the prediction covariance cannot be
adjusted timely when the target state suddenly changes. The STF algorithm has the fourth speed of
convergence, which is due to the fact that the linear approximation in the STF may introduce errors
in the state which may lead the state to diverge. As can be seen from Figures 1-3, when the target is
making uniform motion within the first 100 s, the five methods have a similar performance. When the
maneuver starts at t = 101 s, it obviously shows that STF, STUKF, STCKF and STSSRCKF have the
ability to convergence. The main reason is that the fading factor can adjust the prediction covariance
and the corresponding filter gain in real time, which makes these algorithms converge in a short
time. We can also see that the RMSE of the proposed algorithm is lower than that of STUKF and
STCKE. It means that estimate precision of the proposed algorithm is higher than that of the two
algorithms. It is demonstrated that the proposed algorithm can effectively track the abrupt motion
state of the target.
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Figure 1. Root mean square error (RMSE) of the estimated position.
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Figure 3. RMSE of the estimated acceleration.

To quantitatively describe the tracking performance, the ARMSEs of the five methods in estimating
different target parameters are listed in Table 1. As shown, the STSSRCKF provided the best result in
terms of estimation. The STCKEF also performed well, followed by the STUKF and STF. The SSRCKF
provided the worst estimate. We can also draw the conclusion that the STSSRCKEF has the highest
tracking accuracy of the position, velocity and acceleration.

Table 1. Tracking performance comparison.

Filters Position ARMSE/m Velocity ARMSE/(m/s) Acceleration ARMSE/(m/s?)
SSRCKF 152.1 31.2 6.9
STF 129.7 28.4 6.2
STUKF 124.5 275 59
STCKF 123.1 26.7 58
STSSRCKF 119.3 25.1 5.6

The program is made on the Intel Core (TM) i5-4430 3.0GHZ CPU with 4.00G RAM. Table 2
shows the computational complexity and the computational time of SSRCFK, STF, STUKEF, STCKF and
STSSRCK for each run. Apart from STF, the computational complexity of different filters is mainly
determined by the number of points they use. The computational complexity of STCKF as well
as STUKEF differs only by one points. The computational complexity of SSRCKF and STSSRCKEF is
O{(2n + 2)3}, where 1 denotes the dimension of state. In addition, we can see that the computational
complexity of STF is the lowest. Because there is a clear formula in STF to calculate the Jacobian matrix,
the computational complexity of STF is much smaller than other four algorithms. It is also shown
that the computational time of the SSRCKF is 0.07 s for each run. However, the computational time
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of the STSSRCKEF is 0.15 s, which is greater than that of the SSRCKF. This is because the STSSRCKF
needs to calculate the suboptimal fading factor at each time step. At present, the time consumption
is acceptable. The STSSRCKF needs more computational time than the SSRCKEF, but considering the
significant performance improvement gained from the STSSRCKE, this increased computational time
is not substantial.

From this simulation, we can conclude that the STSSRCKF can perform the best in terms of the
balance between computational complexity and estimation accuracy.

Table 2. Computational complexity and computational time of different filters.

Filters Computational Complexity =~ Computational Time (s)
SSRCKF Of@2n +2)%) 0.07
STF O{(n)?) 0.02
STUKF Of@2n + 1)%} 0.14
STCKF of(2n)%) 0.14
STSSRCKF o{(2n +2)3) 0.15

Example 2. This example evaluates the proposed algorithm in tracking a target with weak maneuver and
medium maneuver. Therefore, two simulations are simulated as follows. Assume that there is a target making
uniform at first. The initial location of the target is (x,y) = (5000 m, 5000 m), its initial velocity is (vy,vy) =
(150 m/s,80 m/s), and its initial acceleration is (ay,ay) = (0 m/s2,0m/s?).

Case 1: Simulation of medium maneuvering target tacking. The target moves with initial acceleration
until t = 150 5. Then, it maneuvers with acceleration of (ax(151),a,(151)) = (5m/s?,5m/s?)
up to end of this simulation at t = 200 s.

Case2: Simulation of weak maneuvering target tracking. The initial position, velocity and acceleration
of the target are the same as those in Casel. The target also moves with initial acceleration until
t =150 s. Then, it maneuvers with acceleration of (a,(151),a,(151)) = (0.5 m/s%,0.5 m/s?)
up to end of this simulation at t = 200 s.

Table 3 lists the accumulative RMSEs of the five methods in estimation the three target parameters.
As can be seen from Table 3, the STSSRCKEF algorithm also has a good tracking performance for a weak
or medium maneuvering target.

Table 3. ARMSEs in simulation of medium and weak maneuvering target.

Simulation Filters Position ARMSE/m Velocity ARMSE/(m/s) Acceleration ARMSE/(m/s?)

SSRCKF 101.6 21.2 5

STF 95.3 20.2 45

Case 1 STUKF 88.5 16.4 41

STCKF 874 16.8 41

STSSRCKF 81.1 159 3.7

SSRCKF 50.5 8.2 1.8

STF 65.1 10.8 24

Case 2 STUKF 57.3 8.8 2.2

STCKF 56.3 8.3 2.2

STSSRCKF 53.4 8.4 2.1

5. Conclusions

To implement higher tracking accuracy for a maneuvering target, a new method has been
proposed based on the STF and SSRCKF algorithms. Firstly, the time-varying suboptimal fading
factor is introduced in order to adjust the prediction covariance and the corresponding filter gain in
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real time. Secondly, in the proposed method, the spherical simplex-cubature rule takes the place of
calculating nonlinear function Jacobian matrix. In this way, STSSRCKF can converge rapidly in a
short time. Thus, the proposed method has a high tracking accuracy for maneuvering target tracking.
Simulation results show that the STSSRCKF can achieve higher accuracy and robustness than STF,
STUKEF, STCKF and SSRCKE, and indicate that it is suitable for maneuvering target tracking.
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Abstract: While most filtering approaches based on random finite sets have focused on improving
performance, in this paper, we argue that computation times are very important in order to enable
real-time applications such as pedestrian detection. Towards this goal, this paper investigates the
use of OpenCL to accelerate the computation of random finite set-based Bayesian filtering in a
heterogeneous system. In detail, we developed an efficient and fully-functional pedestrian-tracking
system implementation, which can run under real-time constraints, meanwhile offering decent
tracking accuracy. An extensive evaluation analysis was carried out to ensure the fulfillment of
sufficient accuracy requirements. This was followed by extensive profiling analysis to spot the
potential bottlenecks in terms of execution performance, which were then targeted to come up
with an OpenCL accelerated application. Video-throughput improvements from roughly 15 fps to
100 fps (6 x) were observed on average while processing typical MOT benchmark videos. Moreover,
the worst-case frame processing yielded an 18x advantage from nearly 2 fps to 36 fps, thereby
comfortably meeting the real-time constraints. Our implementation is released as open-source code.

Keywords: random finite set Bayesian filtering; OpenCL; real-time execution

1. Introduction

Current success in the practical implementations of random finite set (RFS) filters has made it
clear that RFS-based approaches are going to play a key role in the multisensor data fusion. This is
mostly due to the probability hypothesis density (PHD) filters that present a recursive algorithm to
jointly estimate target states in the presence of data association uncertainty, detection uncertainty,
noise and false alarms [1]. Since then, the performance of new extensions has been increasing at a
remarkable pace. The driving force behind the ever-increasing interest in RFS is its high potential in
the applications of aerospace, robotics and intelligent systems, as presented in an excellent survey on
the multisensor data fusion [2].

While the performance of RFS has been greatly improved, when dealing with real-world
applications, running times become important. New computer technologies have already been
proposed to accelerate the computation in many machine learning algorithms, but seldom applied
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to data fusion algorithms. An emerging computing architecture that has been adopted in industry is
the heterogeneous system architecture (HSA). HSA is a hardware platform that integrates central
processing units, graphics processors or other processors (e.g., FPGA, DSP) on the same bus,
with shared memory and tasks. With the support of the Open Computing Language (OpenCL),
the HSA is able to relieve the programmer of the task of planning the moving of data between devices’
disjoint memories, thus reducing the mutual communication latency and speeding up the computation.

In this paper, we investigate the problem of applying RFS filtering approaches to a heterogeneous
platform, aiming to provide some insights on how to improve the RFS filtering running times by the
heterogeneous system. For this purpose, we chose recently-proposed RFS-based filtering techniques
i.e., PHD, labeled multi-Bernoulli (LMB) filters, to tackle the underlying multi-target tracking problem.
PHD and LMB filters have been presented to be effective in tracking applications that require particle
implementation or object individual existence probabilities. However, implementing the tracking
algorithm in the heterogeneous system with OpenCL is a non-trivial problem. On the one hand,
the tracking application by PHD or LMB filters is a complex and convoluted system that is intrinsically
not suitable for parallel execution, as the parallel execution requires the system to be modular, and
the execution within each module is independent. On the other hand, to efficiently use OpenCL to
accelerate the execution, the execution bottlenecks should be spotted, and OpenCL configurations,
such as running batch size or memory usage, should be well tuned. Last, the accuracy should be
guaranteed while deploying OpenCL acceleration.

To this end, the tracking algorithms of this paper were developed in a highly modular system
design approach and practically implemented in tracking pedestrians of a video. Specifically,
we explored the use of the GM-PHD (Gaussian mixture-PHD) and SMC-LMB (sequential Monte
Carlo-LMB) class of filters from this family, to implement the tracking algorithm. Initially, pure
software (relying solely on CPU code in C++) implementations were carried out following a highly
modular overall system-design approach. In order to parallelize the executions as much as possible, we
made two major implementation modifications compared to the the original GM-PHD or SMC-LMB.
First, we did manual vectorization of code, as GM-PHD uses many small dimension matrices, which are
not effective for large-scale parallelization. Second, we consider each Gaussian component independent
of each other and splitting them into individual threads. Later, via extensive evaluation analysis
concerning tracking accuracy, the GM-PHD trackers were found to be inadequate, and hence, the
implementation focus was then shifted solely to SMC-LMB filters. To run the whole tracking application
meeting real-time constraints, we carried out an extensive execution profiling of the algorithm. The
spotted performance bottlenecks were then ported to the GPU accelerator using OpenCL programming
constructs to perform the parallelization potential of the algorithm. We demonstrated the effectiveness
of our developed approach by running the MOT benchmark [3]. In particular, we managed to
improve from 15 fps to 100 fps in processing MOT video frames on average, while for the most
computationally-expensive frame, we achieved 18X speedup improvements from 2 fps to 36 fps.
We should note that our SMC-LBM implementation is based on the approach of [4] that separated
the prediction and updating in the filtering. Now, another effective approach has been proposed to
integrate the prediction and updating together so that the execution would be faster [5]. The discussion
of them is in Section 4.

To the best of our knowledge, this is the first paper that reported the implementation results of
the RFS-based filtering in a heterogeneous system with OpenCL. Moreover, since the implementation
is designed in a highly modular way and the interface of each module is explicit, our developed
software is able to be well integrated with other projects. The related open source code is released here
(https:/ /github.com /nucleusbiao/Pedestrian-Tracking-using-SMC-LMB-with-OpenCL.git).

This paper is structured as follows: Section 2 describes the mathematic model of GM-PHD filter,
as well as the brief introduction of SMC-LMB. Section 3 presents the details of system implementation
design. Section 4 presents the simulation and execution results. The paper is concluded in Section 5.
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2. Preliminary

In the multi-target tracking problem, the number of targets to be tracked is unknown a priori and
stochastically varies with time. At the sensor, a random number of measurements is received due to
detection uncertainty and false alarms. Consequently, standard Bayesian filtering techniques are not
directly applicable, since it is not known which of the received measurements, if any, should be used
to update which target state, if any, at each sensor scan.

Towards this problem, the RFS approach is an emerging and promising alternative to the
traditional association-based methods like joint probabilistic data association [6] and multiple
hypothesis tracking filters [7]. Pioneered by Mahler [8,9], finite-set statistics analysis can be considered
as the first systematic and rigorous approach to Bayesian state-estimation while explicitly avoiding
the need for cumbersome association of measurements with targets or tracks. The RFS-based filtering
enables the use of the optimal Bayesian estimation framework for multi-target tracking scenarios by
introducing the concepts of a multi-target state/measurement expressed via random finite sets. In the
following, we provide the mathematic background for the Gaussian-mixture PHD filter and briefly
introduce the labeled multi-Bernoulli.

2.1. Gaussian Mixture-Probability Hypothesis Density Filter

In a multi-target tracking scenario, suppose that, at time #;_1, there were M(k — 1) targets
having states (xf_;,x2 .., x,é{(f 71)) witheachx! | € X. At #, some of these targets may die;
the surviving targets evolve to their new states; and new targets may appear. This results in M(k)
M(k))

targets having new states as (x,l(, x%, s Xy

(z}(,z%, ...,z,ljm) where each z;'( € Z are received at t;. States and measurements at t; can be aptly

represented as finite sets, as shown below:

. Similarly, at the sensor, suppose that N (k) measurements

X = {x}, 2, ., MO e Fx) )
Ze={zh, 2, ... 2h Y e F(2) )

where F(X') and F(Z) denote the sets of all finite subsets of X and Z, respectively.

For a given multi-target state X;_; at t;_j, each x_; € Xj_; either continues to exist at t; with
survival probability pg i (xx_1) or dies with probability (1 — pgx(x,_1)). Consequently, for a given
state x;_1 at t;_1, its behavior at the next time step #; is modeled as being an RFS Sy;_; (xx_1) that
can take on either {x;} when the target survives or ¢ when the target dies. A new target born at f; is
similarly modeled by an RFS I';.. Using these quantities, we can express the multi-target state X at
to be:

Xy = < U 5k|k1(§)> UTg (3)
CeXi

A given target x; € Xj at t; is either detected with detection probability pp i (xx) or missed
with probability (1 — pp x(x)). Consequently, at each t;, each state x; generates a measurement RFS
O (x) that can take on either {z;} when the target is detected, or ¢ when the target is missed by
the sensor. In addition to these target-originated measurements, the sensor also receives a set of
clutter measurements modeled via Ky RFS. Thus, given a multi-target state Xj at t, the multi-target
measurement Z; can be written as:

Zy = ( U @k(x)> UKy 4)
xeX

In a similar fashion to STTBayes filtering, the multi-target state-transition densities p(Xy|Xy_1)
and the multi-likelihood function (p(Zx| X)) can be derived from the underlying physical models
of targets and sensors using FISSTtechniques. Assuming their availability, the multi-target Bayes
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filter propagates the multi-target posterior state-conditional density p(Xk|Z¥) via the familiar
prediction-update mechanism as follows:

PGIZY) = [ pOGIX)p(X 1|25 )oX ©)

P(Zil Xi)p (Xel 2
(X¢|Z") = ©
P Thzd (2o
where the integrals in the recursion are FISST set integrals as introduced earlier.
To derive the GM-PHD recursion, the multi-target tracking context must also satisfy:

e  Each target follows a linear Gaussian dynamical model, and the sensor has a linear Gaussian
measurement model:

p(x[¢) = N(x; g, Qk) ?)
p(z|x) = N(z; Hyx, Ry) 8)

e  The survival and detection probabilities are state independent:

Psk(x) = psi )
Pox(x) = ppi (10)

e  The PHD or the intensity function of birth RFS <y is a Gaussian mixture (GM) of the form:

Jrk

Ye(x) = Y wh kN miy, Phy) @
i=1

Under these assumptions, it has been shown in [1] that the predicted posterior PHD, as well the
posterior state PHD at any ¢ is also a Gaussian mixture. Specifically, at t, if the prior PHD is expressed

as a GM of the form: ;
k—1

1 (x) =Y w};qN(x; mf;f],P,if]) (12)
i=1

then the GM-PHD recursion can be given by:

e  Prediction:

Opk—1 (%) = Vg pp—1 (%) + 7k (x) (13)
Jie1 . .
Vs k-1 (X) = psx ) W N(x; mJS,k\k—l’Pé,k\k—l) (14)
j=1
j _ j
Mg 1 = Fie-1My_4 (15)
Pl y = Qe+ Bl By (16)
e Update:
op(x) = (1= ppi(x)ogp_1(x) + Y opp(x;2)
z€Z;
Jk-1 . .
-1 (%) = 3 Wt N1y, Peey) a7
iz
Tkt ; j
opi(x;z) = Zl w ()N (G, P (18)
j=

j J
i PD kWi qk(z)
wl(z) = th1 (19)

Tor
Ky (z) + PD,k Zlkz‘}(]l wf{‘k,ﬂi(z)
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qh(z) = N(z Hyml,, R+ Hkp,i‘kle,E) (20)
m{(‘k(z) =my o+ Ki(z— Hkm{dkil) @1)
Ple=11- K{;Hk]PIZ‘kJ (22)
Kl = P,{‘kle[(HkP,{‘kle[ +Ry)! (23)

As shown by these equations, the GM-PHD provides a computationally-efficient mechanism to
propagate the posterior PHDs of multi-target state Xj; though with the passage of time, the GM-PHD
filter suffers from computation problems associated with the increasing number of such Gaussian
components. In practice, this problem is dealt by carrying out special pruning procedures in a part
of each recursion, which removes insignificant or negligible Gaussian components based on some
pre-designed criterion.

2.2. The Labeled Multi-Bernoulli Filter

In addition to the GM-PHD filters, other RFS-based approximations of the multi-target Bayes
filters include multi-Bernoulli filters and their various extensions. The idea of the multi-Bernoulli
filter was first proposed by Mahler [10] proposing a novel multi-target multi-Bernoulli recursion as a
tractable approximation to the recursive Bayes multi-target filter under low-clutter density scenarios,
whereby a multi-Bernoulli RFS distribution propagates directly as an approximation to the posterior
multi-target state Xj recursively instead of posterior PHDs.

However, [11] shows analytically that Mahler’s multi-target multi-Bernoulli filter (MeMBer)
overestimates the cardinality and proposes a new variant called the cardinality balanced multi-target
multi-Bernoulli (CBMeMBer) filter. The CBMeMBer filter extracts the cardinality bias of the MeMBer
filter in the update step and uses this to develop an unbiased update at the end of its recursion. Like the
PHD/CPHD filters, [11] has provided closed-form GM-based solutions in the case of linear/Gaussian
state-space models. For general non-linear /non-Gaussian considerations, SMC-based implementations
have also been provided. Interested readers are encouraged to refer to [11] for a further conceptual
understanding of multi-Bernoulli filters along with the detailed analysis of their prediction and
filtering steps.

While multi-Bernoulli filters are not formulated to output target tracks, their generalization,
referred to as the generalized labeled multi-Bernoulli (GLMB) filters [12], has been proposed to
overcome this limitation. These filters rely on the notion of labeled RFSs for their working principles.
We direct the readers to [12-14] for the large quantity mathematic formation of this approach. This
paper mainly elaborates the implementation design.

3. System Design and Implementation

This section describes the main essence or the methodology in coming up with the overall design
of the pedestrian tracking system. This is followed by a detailed overview of the techniques and
strategies utilized in carrying out the implementation of the overall system.

3.1. System Design Modules

Like any good engineering design, the main focus has been to come up with a modular design
approach to overcome the system complexity efficiently, while aiding in quick development of the
system with each module being designed in an isolated fashion and having a clear notion of its
input/output interfaces. Figure 1 presents a high-level abstracted view of the overall pedestrian
tracking system resulting from this approach. We explain these modules briefly as follows.
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Figure 1. Block diagram of the multi-target tracking system.

3.1.1. Sensor

The sensor module represents an information-capturing device that extracts some useful target
motion attributes (of interest) within the surveillance scene. This could be a stereo camera or a LIDAR
sensor, etc., giving target motion information at regular intervals of time. Specifically for our work,
we have made use of the following concepts as sensors:

e  Simulated sensor model: For an extensive evaluation of the implemented pedestrian tracking
system (Section 4), we design a simulation scenario simulating point targets whose motion follows
linear/Gaussian characteristics. The specific simulation scenario can be considered as a form
of sensor.

e  Video frames: Likewise, we make use of MOT benchmark for further evaluation of the tracking
system (Section 4). However, in this case, we are provided with camera video footage or
frames comprising different kinds of pedestrian motions. These video frames then act as
sensor observations.

3.1.2. Detector

The detector module is responsible for extracting the target-specific information from the sensor
outputs. Generally, this involves coming up with target approximate kinematic quantities from the
sensor scans to feed into the tracker module. In our work, the detector detects the individual target’s
2D position coordinates within the surveillance region.

e Simulated detector model: For carrying out the simulation scenario, the simulated positions
of the target from the sensor are corrupted with Gaussian noise to yield simulated detections.
Furthermore, these detections are generated as part of the probabilistic process governed by a
certain probability of detection p;, which allows for target misdetections to help come up with
robust tracker algorithms.

e  Fast feature pyramid detector: The MOT benchmark provides detection annotations (2D position
coordinates) on each of the training-video (sensor) frames. These detections are extracted by
running the fast feature pyramid object detector algorithm, as proposed by Dollar et al. [15].

e  Histogram of oriented gradients detector: The widely popular OpenCV library for developing
computer-vision applications provides a working implementation of the HOG detector [16]
targeting various platforms like C++, Python, CUDA, OpenCL, etc. We run this library function
over MOT frames to come up with the target positions that are then fed into the tracker module
further in the chain.

3.1.3. Tracker

The tracker module is the most crucial/significant processing element of the overall system
as it is responsible for outputting the target/pedestrian tracks utilizing the detections within every
sensor-scan. As will be explained later, we have employed mainly two trackers in our work:

e  GM-PHD tracker: This tracker implements the GM-PHD filtering recursions to estimate the 4D
(2D position, 2D velocity) target state. The original GM-PHD filtering algorithm [1] is enhanced
using the techniques presented in [17] in order to be able to extract not just individual target states,
but rather their trajectories or tracks.
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e  SMC-LMB tracker: This tracker carries out the implementation of the SMC/ particle-filter-based
LMB filter [12,13]. The LMB filtering is based on labeled RFSs, which helps to extract target
tracks from their states automatically. The implementation is carried out in C++, as well as using
OpenCL acceleration.

3.1.4. Analyzer

The analyzer module is the optional module responsible for analyzing the target tracks being
produced from the tracker and compute various evaluation metrics enabling extensive evaluation of
the implemented system (Section 4). Enabling this analysis, the analyzer module helps with coming up
with stable efficient tracking system. Though, using this module could make sense in the development
phase, it should be removed from the final system, as it provides no core functionality regarding
pedestrian tracking.

3.1.5. System Design Interfaces

The main intra-module interfaces carried out in the project as shown in Figure 1 are briefly
described below:

e  Sensor input: Generally, sensor input consists of the whole surveillance view /region containing
targets of interest. For our project, this represents either a simulated scenario or an MOT
tracking scenario.

e  Sensor-detector i/f: The interface between the sensor and the detector mainly represents the
sensor outputs. Further processing tasks could be carried out as part of this interface for helping
the detector in its algorithm. However, as part of this project, we simply forward the sensor
output frames into the detector. The frames are structured as 2D pixel data embedding the target
motion information.

e  Detector-tracker i/f: This interface mainly represents the target detections, which act as input
stimuli to the target algorithm. For our work, these detections are in the form of 2D position
coordinates (i.e., in the form of a 2D floating-point vector).

e  Tracker output: This primarily represents the overall output of the whole system. In this work,
output involves individual target 4D states (a 4D floating-point vector) along with a specific label
(a two-integer structure) being output from the tracker module within every sensor scan.

3.1.6. System Upgrades

As stated earlier, the proposed modular design methodology serves well to employ a
plug and play-based design approach whereby one can easily replace an existing module for a better
alternative without having to redesign the whole system from scratch, thus helping with efficient
upgrading of the overall system. Some of the key upgrades in the present pedestrian tracking system
could be:

e Sensor: There is no any specific requirement on the sensor. It can be a camera or a LiDAR.
This would generate real-world sensor data for using the pedestrian tracking system in actual
automotive scenarios to evaluate its effectiveness in carrying out its functionality.

e  Detector: coming up with a detector algorithm of our own. This implemented detector would
then help to do detections on the real scenario video footage.

o  Tracker: further optimization of the implemented tracking algorithm, improving both the tracker
accuracy, as well as its execution performance.

3.2. System Implementation

This subsection describes the major implementation aspect. As mentioned above, the sensor and
detector are either simulated or are used from the MOT benchmark. The optional analyzer module will
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be discussed at length in Section 4. Therefore, this subsection mainly focuses on the implementation of
the tracker module.

We initially carried out the implementation of the GM-PHD algorithm, which lacked the ability to
output target trajectories. This was overcome by using a tree-based approach to group the GM-terms
of a single target together to provide a notion of its trajectory. After extensive simulation analysis
(Section 4), we found the GM-PHD filter accuracy to be inadequate in dealing with general pedestrian
tracking scenarios where the pedestrians deviated from linear/Gaussian motion characteristics.
This led to the exploration of SMC approaches to offer better accuracy. In light of this, a particle-filter
implementation for the LMB filter was successfully carried out. Later via extensive profiling, the
LMB filter implementation in C++ was accelerated via OpenCL kernels by spotting the performance
bottlenecks and re-implementing them using parallel programming constructs.

3.2.1. GM-PHD Tracker

The GM-PHD filter works by propagating the posterior PHD of the multi-target state in time
during each of its recursions [1,17]. The GM-PHD filter recursion is carried out as shown in Figure 2.
Each of the block represents a C++ class method performing its specific functionality. The arrows
represent the data flow, whereby the GM terms representing the PHDs of multi-target state travel
back and forth between the prediction and the update modules. Each of the Gaussian terms used
throughout the filtering operation are compactly represented as a C++ struct with weight, mean and
covariance as its attributes. To carry out the linear-algebra matrix operations in C++, we make use
of efficient open-source library Armadillo. Therefore, while the weight is represented as a C++ float
variable, the mean and covariance are better represented via armadilloclasses.

l State X
Prediction o Praning . @ somk
| Birth Madel P + Merging Estimate

Measurement 7 T I

@ sean-k

Figure 2. Block diagram of GM-probability hypothesis density (PHD) filter recursion.

At the start of each filter iteration/recursion, the new scan detections are used by the birth model,
which compares them to the stored previous-scan detections. Based on likely association or similarities
between a specific pair within these consecutive scans, the birth model forms new targets by assigning
anew set of Gaussian terms, i.e., a Gaussian mixture as part of the predicted GM. These components are
then mixed /added with the predicted GM of the surviving targets (surviving targets are represented
by update GM in past iteration) obtained via (15) and (16).

Similarly in the update block, the current-scan detections are used along with the current
computed prediction GM to extract the update GM using (21) and (22). These Update GM terms
are then passed through the prune/merge block where we use a three-fold strategy to reduce the
computational complexity arising from the increasing GM terms. These are summarized as follows:

e  First, all of the close-by Gaussian terms (via their means) are merged together to form a composite
Gaussian term, as they are thought to represent a single target.

e Then, all of the Gaussian terms whose weights are less than the filter-specified threshold are
discarded as insignificant terms and are not processed further. This also allows one to gracefully
terminate target tracks.

e  Finally, we keep a cap on the maximum number of Gaussian terms corresponding to the maximum
number of expected pedestrians within the surveillance zone.
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After the pruning, the update GM represents the posterior PHD of the multi-target state with each
Gaussian term representing a possible target state. To avoid tracking clutter terms, a second threshold
is used here to discard the Gaussian terms that are not too significant as of the current iteration, but
could lead to greater weights in coming iterations. Such terms are not output as current target states,
but also not discarded, as they are being kept in the surviving target GM to be considered for the next
iterations. For the significant terms, their means represent the individual target states and are output
as such.

As should be obvious from these outputs, this preliminary filter is only capable of extracting
individual target states, but does not output tracks or trajectories, i.e., there is no association between
currently obtained states and the past ones. To overcome this limitation, the implementation algorithm
is enhanced via tree-based techniques. For the sake of brevity, we ignore here the implementation
details of those techniques, however. Interested readers are referred to [17] for further details in
this regard.

3.2.2. SMC-LMB Tracker

The GM-PHD tracker provides the optimal PHD recursive solution in the case of targets and
sensors following linear /Gaussian state-space characterizations. Therefore, expectedly, its accuracy
performance should be deteriorated to a certain degree when the targets exhibit non-linear and/or
non-Gaussian motion tendencies. We carry out simulation analysis (Section 4) to investigate this and
find that the tracker performance is severely affected up to a point that the error is too much to tolerate.
This led to the exploration of non-linear techniques to overcome this limitation.

SMC-based particle filters have been a popular approach in this context after being introduced
in the 1990s. We looked into the possibility of using the particle filter implementation of the PHD
filter in order to make it suitable for tackling generic pedestrian motions. However, we found that,
recently, a new class of RFS-based filters called the LMB filters has been proposed, which are deemed
to be more accurate than PHD filtering techniques. Furthermore, the SMC implementations of these
filters match with those of PHD filters in terms of computational complexity [14]. Therefore, this work
further focuses on implementing the SMC-LMB tracker as the main tracker module in Figure 1.

Figure 3 presents the overview of the implementation of the SMC-LMB tracker. Structurally, it is
similar to Figure 2, like any Bayesian estimator, but computationally, there are major differences. First,
instead of using GM to represent the posterior states, the SMC-LMB tracker relies on propagating a set
of multi-Bernoulli terms. Similar to the GM-PHD filter implementation, these terms are compactly
represented as a C++ struct using standard floats while the 4D state is conveniently represented via
Armadillo vectors. Moreover, based on labeled RFSs, each instance of this struct has a unique 2D
intlabel vector that acts as a tag for each tracked target. Each of the sub-blocks shown in Figure 3 is
implemented via C++ functions as member functions of the LMB filter class.

e  Filter initialization: This function is executed once for each instance of the tracker class at the
time of its construction. Here, all of the tracker parameters are set, like the number of particles to
represent state-pdfs, the maximum number of LMB components allowed to represent the posterior
multi-target state, etc., along with the state-space modeling parameters.

e  Birth model: Similar to GM-PHD filter implementation, the birth model in the SMC-LMB tracker
implementation relies on the associations between the measurements obtained in consecutive
scans. However, in the case of the birth of new targets, instead of representing it via a GM, a new
multi-Bernoulli term is generated. In the current implementation, we find speeds in the Cartesian
space between every detection pair using the current and the immediate past detection scan. If the
speeds for a specific pair lie within the tracker-parametrized V, value, the pair is deemed to
correspond to a single target, and hence, a new target track is created. This track is initialized via
parametrized existence probability while its state-pdf is supposed to be a Gaussian, and a certain
number of particles are drawn from it stochastically. This number of particles is also parametrized,
and we recommend them to be within powers of two for ease in GPU particle-level processing.
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e  Predict LMB: This module carries out the LMB prediction. Specifically, it generates predict-LMB
terms for new-born targets from the birth model, as well as survive-LMB terms for existing targets
via current update-LMB terms. We use two different sets of LMB terms instead of a single one, as
it is much easier to do further conversion into -GLMB components separately and then merge
them together.

e  Predict-LMB to predict-6-GLMB: Both of computed birth predict-LMB, as well as surviving
predict-LMB terms are then converted to their 5-GLMB terms. This step is necessary to allow the
6-GLMB update later in the data flow. Now, even for a moderate number of targets/pedestrians,
these -GLMB could become large, and processing them quickly becomes computationally
expensive. Like for the case of the GM-PHD tracker, we introduce pruning schemes to cap the
maximum number of components. However, in contrast to the former approach, the components
have not yet been computed. Therefore, to avoid computation of all such components followed by
the propagation of significant components, we rather formulate this problem as a K-shortest path
problem and use the computationally-efficient Eppstein solution [18] (using the Bellman-Ford
algorithm [19] internally) to directly compute only the significant components without the need
for further pruning. Interested readers are encouraged to read [4] in order to come up with such
a formulation.

After computing the separate §-GLMB components for the new-born and existing targets, they
are convolved together to give the overall /-GLMB terms that are used for the update phase in the
next scan/iteration while the LMB terms are simply concatenated together.

e  Update LMB intermediate: This is the first step within the update step of the SMC-LMB recursion.
It computes all possible update LMB terms based on every possible association of the current
measurement-set with the previous scan predict LMB terms. These terms would be required later
on in conversion of update 6-GLMB terms to their equivalent LMB terms. Hence, these terms are
considered intermediate within the recursion.

e J-GLMB update: This step performs the closed-form 6-GLMB update on the predict -GLMB [4]
terms as obtained in the previous iteration. Here, again, we are confronted with the similar
problems of rapidly growing terms and have to employ some sort of a cap on the maximum
number of components to deal with computational complexity. However, because of the
measurement involvement, this problem is formulated as the K-best assignment problem as
opposed to the K-shortest path problem. To solve this problem, we rely on using the Murty
algorithm [20] (using the Hungarian method internally) as explained in greater detail in [4].

e Update LMB: As shown in Figure 3, coming up with the update LMB terms within each
tracker iteration involves a two-fold process. First, a conversion from update 6-GLMB terms
to corresponding LMB terms is carried out such that the LMB set matches the PHD terms of
the /-GLMB set as was explained in [13]. Next, the particles needed to represent each of LMB
term’s state probability density functions p'(.) are replaced with new set in a commonly-used
procedure referred to as particle resampling to deal with the particle impoverishment problem.
The computation of these LMB components completes the SMC-LMB recursion.

e Track management: In contrast to GM-PHD tracker, no special procedures are required to
output target tracks, as the SMC-LMB filter outputs update LMB terms containing unique tags,
i.e., outputting target tracks or trajectories directly. Here, again, the techniques of merging
(to combine tracks formed from single target) and pruning (for tracks that we are not yet confident
of being either a new target or clutter) are used just like for the case of the GM-PHD tracker.

e  State estimation: The final step within each tracker iteration is to estimate individual target
states and to associate them to already existing tracks/trajectories. For this, we use Mahler’s
ESFfunction [4] to first estimate stochastically the cardinality of the current multi-target state
based on the pruned update LMB terms. Then, a certain number of most weighted /significant
components corresponding to this cardinality estimate is chosen for state-estimation. Using the
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particle representation of these components, an empirical measure is easily derived for each
chosen component.
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Figure 3. Block diagram of sequential Monte Carlo (SMC)-labeled multi-Bernoulli (LMB)
tracker recursion.

3.3. OpenCL Acceleration

Being satisfied with the tracking accuracy of the SMC-LMB tracker (Section 4), an extensive

profiling of the above-mentioned algorithm in C++ was carried out for the purpose of spotting
potential performance bottlenecks. As clear from the detailed analysis presented in Section 4, the
primary source of execution performance bottleneck within the recursion is the computation of
update LMB terms, roughly amounting to 75% of the computations. Therefore, in our strategy to
improve the execution performance of the algorithm, instead of redesigning the whole algorithm from
scratch via programming constructs, we relied rather on a hybrid of C++ and OpenCL computation
code. We transformed the sequential execution of the update LMB function into OpenCL kernels
to significantly improve the timing performance of the whole algorithm. The main implementation
aspects of this strategy are outlined below:

Generation of uniform random numbers on the GPU itself using the AMD CLRNGcompute library.
Breaking down the for-loops within the update block down to the level of particle computations.
Efficient parallel scan (prefix-sum) on the cumulative weight array to carry out the particle
resampling procedure.

Optimized memory organization for the LMB terms throughout the update part of the recursion
as a high amount of memory transfers between the host CPU and GPU accelerator severely affects
the performance and could possibly outdo the benefits achieved via GPU computations.
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e The number of particles allocated for each of the LMB terms is chosen to be in powers of two,
which makes it easier to use shared-memory optimizations within GPU computations for further
acceleration of the application.

e We use the extensive vector operation module for vectorizing code.

e  Each Gaussian component is computed in a separate thread; as the number of targets increases,
the number of components increases very rapidly. This feature exploits all advantages of a
parallel architecture.

4. Experimental Evaluations

This section presents a detailed evaluation and analysis of the pedestrian tracking system as
explained in previous sections. Primarily, the analysis was carried out in two-fold. We discuss the
tracking accuracy performance of the proposed design followed by its execution performance analysis.

4.1. Evaluation Metrics

It is paramount to have a clear notion of evaluation metrics before carrying out the actual
evaluation of the system itself. Given below is a brief overview of these evaluation metrics, which will
be used to evaluate the proposed system.

4.1.1. Tracking Accuracy

As mentioned earlier, the multi-target tracking problem attempts to jointly find the number of
targets, as well as their individual states from the received measurements with the passage of time.
Therefore, to quantify such a tracker’s accuracy, we make use of following metrics:

e  Cardinality estimate: this metric extracts the number of targets at the end of each tracker recursion.
This can then be compared with the truth/actual cardinality of the multi-target state to figure out
the tracking errors in this respect.

e Optimal sub-pattern assignment(OSPA): this metric defines a notion of mis-distance and
corresponding error between actual and estimated individual target states as proposed firstly
by [21].

4.1.2. Execution Performance

For profiling the tracker algorithm’s execution performance, we use a simple mechanism involving
the computation of the number of CPU cycles across the algorithm. In the context of video processing,
we can obtain an average measure of frames per second as a computational throughput measure for

the tracker via:
~ Number of frames in video

S =
fr Total execution time

(24)

4.2. Tracking Accuracy Analysis

This section details this work’s findings regarding the tracking performance of the proposed
LMB tracker. In order to evaluate the tracker for providing this analysis, we make use of a simulation
analysis, as well as using available dataset videos.

4.2.1. GM-PHD and SMC-LMB Comparisons

For carrying out an extensive analysis for evaluating the tracking accuracy of the implemented
LMB tracker, we created a 2D surveillance point-target-based simulation scenario. The target motion
dynamics, as well as the sensor model were made to follow linear/Gaussian characteristics. Apart
from that, the simulation was designed to be highly parameterized in the number of targets; their
birth locations; their birth times and death times; their detection and survival probabilities; the
amount of clutter; process/measurement noise, etc. This helps to generate a diverse range of
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simulation scenarios to adequately understand the tracking accuracy performance under the influence
of different constraints.

For the comparison, we designed two artificial simulation scenarios, whereby we simulated
12 linearly moving targets for a duration of 100 time steps. The first scenario was designed to show
the accuracy performance of the algorithm under highly ideal tracking conditions, while the other
scenario posed slightly more challenging conditions. These were parameterized as:

e  Easy tracking scenario: pg = 0.98, ppy = 0.98, o, = 1 m/secz, 0w =1m, A =1s, A, =5.
e  Hard tracking scenario: pgy = 0.90, ppx = 0.90, o, =5 m/sec?, 0p =10m, A =1s, Ac = 60.

where pg i, pp are the survival and detection probabilities. A is the sensor sampling period or the
inter scan-time. 0y, 0y, represent the variances within the Gaussian process and measurement noises,
respectively. The parameter A. denotes the clutter density, which is defined to be the average number
of clutter returns.

As can be seen from Figure 4, the GM-PHD tracker performs apparently perfectly in the easy
scenario for estimating the individual target states as illustrated by the OSPA measure. The cardinality
estimate, however, shows that even in ideal conditions, the tracker does make occasional mistakes. This
is attributed to the adaptive birth distribution model, being embedded inside the tracker algorithm,
which requires some initial scans to confirm successive measurements of the new target in order
to confirm it as a new track. This leads to cardinality errors at target births. Avoiding this can
lead to tracker performance being severely affected, causing it to consider every new detection as a
new target, which could very well be a clutter detection or a false-alarm. Similarly, when the target
dies, the tracker expectedly makes mistakes because the algorithm cannot be sure about the target
disappearance as an actual death or a miss-detection because of sensor imperfection. If one designs
the tracker algorithm to abruptly terminate tracks just because of one misdetection, then tracker
performance could suffer drastically. Consider for example the occurrence of a target misdetection.
When such a target is re-detected, then the tracker would consider it to be a new target/track instead
of continuing the previous known track. This behavior in most tracking scenarios is undesirable.
Furthermore, these plots clearly show the worsening performance of the tracker in dealing with more
severe tracking environments.

To evaluate the SMC-LMB tracker, we used a configuration of 512 particles and cap the update
0-GLMB hypotheses and the §-GLMB components to a maximum of 100. Figure 5 presents the
corresponding results under the designed simulation scenarios. It is a clear from these plots that using
a sufficiently high number of particles/samples (like 512 in our case) to approximate the true posterior
density, the LMB tracker shows comparable, if not better, performance than the more suitable GM-PHD
tracker for linear/Gaussian systems. Especially under severe tracking scenarios where the targets
show considerable deviation from the linear/Gaussian as governed by the higher o, value, these
results justify the use of SMC-based trackers for MTT tracking, by showing their robustness in dealing
with process modeling imperfections.
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Figure 5. Tracking accuracy of the SMC-LMB tracker. (a) OSPA distance (easy-scenario);
(b) OSPA distance (hard-scenario); (c) cardinality estimate (easy-scenario); (d) cardinality estimate
(hard-scenario).
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4.2.2. MOT Dataset Analysis

This subsection presents the tracking accuracy performance of the LMB tracker system on publicly
available dataset videos. The goal of the analysis is to further build on the understanding of the tracking
accuracy analysis developed via comprehensive simulations and to see whether the simulation results
correspond to pedestrian tracking scenarios in actual video footage.

For this purpose, we use an effective benchmark named the Multiple Object Tracking Challenge [3].
This benchmark is designed to provide video footage covering diverse multi-target tracking contexts
where the goal is to track pedestrians accurately. The benchmark is designed as a competition where
the current state-of-the-art approaches are ranked as per their tracking accuracy. The pedestrian
detections are already provided by the benchmark so the accuracy of tracking directly depicts the
efficiency of the tracking algorithm in dealing with various tracking challenges.

For the sake of brevity, in this section, we present an evaluation analysis of the LMB tracker on
two of the MOT videos as summarized in Table 1:

e  KITTI-17: static camera; mostly linear target motion
e  PETS(09-S2L1 static camera; targets move in irregular patterns

Table 1. MOT dataset videos.

Video Resolution Number of Frames Unique Targets Maximum Targets per Frame Target Density
KITTI-17 1224 x 370 145 9 4 4.7
PETS09-S2L1 768 x 576 795 19 8 5.6

Figure 6 shows the corresponding accuracy plots when these videos are fed to the LMB tracker
for pedestrian tracking. For the KITTI-17 video, the tracker takes some initial frames to confirm target
tracks, thereby making cardinality errors in the initial frames, but once the tracks are confirmed, the
tracker performs highly accurately in tracking each of the pedestrian motions. The reason for such
small OSPA distances in the later phase of the video can be attributed to the motion characteristics of
the pedestrians. In the KITTI-17 video, most targets move in a straight line, i.e., in a linear fashion,
hence the tracker performs as expected, as well as per the simulation analysis.

On the other hand, the PETS09-S2L1video presents a much tougher challenge in that the
pedestrians move in irregular patterns like moving abruptly or moving in circles, etc. As mentioned
earlier, due to the use of linear state-space models internally in the current SMC-LMB tracker
implementation, the accuracy performance deteriorates. Specifically, due to model deviation
from actual pedestrian motion, the tracker keeps on making erroneous predictions, and when the
corresponding target’s measurement does not tally with this prediction, the algorithm terminates
the track as evident by regular cardinality errors in the plots. Furthermore, the OSPA distances are
relatively high as compared to the KITTI-17 plots.

4.2.3. Execution Results:

In a heterogeneous platform with an Intel Xeon processor and an AMD GPU W7100, we carried
out the extensive profiling of the implemented SMC-LMB tracker algorithm. First, we extensively
evaluated the execution performance of the C++ code to spot the potential performance bottlenecks.
These were then subjected to OpenCL acceleration to come up with an implementation meeting the
real-time constraints. We made use of the MOT videos (Table 1) to carry out this analysis.

For helping in spotting the potential bottlenecks, we split the main C++ algorithm into six parts,
which are: (a) predict LMB; (b) predict -GLMB; (c) update LMB intermediate; (d) update J-GLMB;
(e) update LMB; (f) track-management and state-estimation.

Using the CPU clock-cycle metric as mentioned at the start of this section, we present our findings
in Figure 7. These plots clearly show that the update LMB computation is the major bottleneck within
the sequential SMC-LMB implementation. For KITTI-17, we get an average fps of 20 fps, while for the
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worst-case (WC) frame, we get up to 5 fps. For a more tough video PETS09-S2L1, we rather get an
average fps of 15 fps over all frames, while the WC frame corresponds to about 2 fps.

100 100
B B
=] =]
50 50 ¢
g g
0 0
1] a0 40 0
100 100
o o
B B
g 50 g 50
8 A 3 8
1 20 0 a0 E & 0 !
100 100 T
B B
; : ; |
S w - S w |
a a Taaa ] 4 y | |
2 2 LS TS .| | . : Nl
0 \ L L | o WU Rrnd ) i LATRL Uk OV
10 2 30 40 S0 (-] 7o 50 100 150 300 350
Time:
(@)
£3 i
2 i SO et e S PSR, O e i
5, e = = i 21 B 2155
& Troe 2 - 0 LT
B3 +  Estrated ) b1 e P~
o ) X 40 60
Tirne
() (d)

Figure 6. LMB tracker accuracy: MOT dataset videos. (a) OSPA distance KITTI-17; (b) OSPA distance
PETS09-S2L1; (c) cardinality estimate KITTI-17; (d) cardinality estimate PETS09-S2L1.

As explained in Section 3, we target the update LMB computation using OpenCL compute
kernels. Using this acceleration, we manage to gain substantial improvements in terms of execution
performance, as shown in Figure 8, where for the PETS09-52L1 video, we now get an average fps
of 100 fps, while the WC frame amounts to 36 fps. Figure 9 further compares the OpenCL timings
directly with the C++ ones to further show the substantial gains in performance for the two algorithmic
functions that have been accelerated up till now.
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Figure 7. C++ LMB tracker execution performance.
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Finally, we also carried out the profiling of the LMB tracker algorithm under its different
configurations. We studied the impact of changing its number of particles, birth components, survive
components and update components. For this purpose, we used four different configurations
(Table 2) to tackle a variant of the hard-scenario using A = 5. These results are presented in
Figure 10. As shown in these plots, the OpenCL implementation not only offers advantages in
terms of sheer execution timings, but also provides a much more scalable implementation as compared
to its pure C++ counterpart. The execution times rise nearly exponentially for both MOT videos
in the case of the C++ version, while the rise is much less steep or rather linear for the case of the
OpenCL-based implementation.
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Figure 10. Scalability of C++ and OpenCL LMB implementations. (a) C++ implementation;
(b) OpenCL implementation.
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Table 2. LMB tracker configurations.

# Particles  # Births # Survivals # Updates

128 5 20 20
256 10 50 50
512 20 100 100
1024 50 200 200

At last, we have to note that there is still much room to improve the computation time while
maintaining the tracking accuracy. In this paper, the prediction and update have been processed in
two separate steps. This separation decreases the computation efficiency. In a recent paper, Vo et al. [5]
proposed an efficient implementation by combining the prediction and update into a single step, which
has a linear complexity in the number of hypothesized objects. It has been shown in [5] that the joint
computation can speed up the execution time ranging from a dozen times to a thousand times for
the linear Gaussian scenario. In our scenario, the joint computation can improve the performance on
KITTI17 more than on PETS09 because most targets in KITTI17 move linearly. Figure 8 shows that
the computation part of updating and predicting has taken 99% of the computation for KITTI17 and
95% for PETS09. It is therefore estimated that that there will around a 10- to 100-times computation
speedup. The speedup effect on PETS09 will be less than on KITTI17 because targets in PETS09 move
in a nonlinear way.

5. Conclusions

In this paper, we have developed two random finite set-based Bayesian filtering approaches,
Gaussian mixture probability hypothesis density (GM-PHD) and labeled multi-Bernoulli (LMB) filters.
The two approaches were designed in a highly modular way. After conducting their accuracy
evaluations towards the multi-target tracking problem, we found that LMB filters were more
appropriate to track the pedestrians. Then, we implemented in the LMB filter in C++ and carried out
an extensive execution profiling. OpenCL programming was used to relieve the execution burden from
the execution bottlenecks. The experimental results demonstrated a high computation improvement.
In particular, the frame per second was improved from 15 fps to 100 fps on average, and the worst-case
computation was also improved 18 from 2 fps to 36 fps.
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Abstract: Estimating the state of a dynamic system via noisy sensor measurement is a common
problem in sensor methods and applications. Most state estimation methods assume that
measurement noise and state perturbations can be modeled as random variables with known
statistical properties. However in some practical applications, engineers can only get the range
of noises, instead of the precise statistical distributions. Hence, in the framework of Dempster-Shafer
(DS) evidence theory, a novel state estimatation method by fusing dependent evidence generated
from state equation, observation equation and the actual observations of the system states considering
bounded noises is presented. It can be iteratively implemented to provide state estimation values
calculated from fusion results at every time step. Finally, the proposed method is applied to a
low-frequency acoustic resonance level gauge to obtain high-accuracy measurement results.

Keywords: DS evidence theory; state estimation; liquid level measurement; alarm monitoring

1. Introduction

Estimating the state of a dynamic system based on noisy sensor measurements is a common
problem in sensor methods and applications [1,2]. Mainstream estimation methods all assume that
both the system state noise and measurement noise can be modeled as random variables with known
statistical properties. The Kalman filter, which supposes both of noises obey Gaussian distributions, is,
by far, the most popular method [3]. The basic Kalman filter is only applicable to linear systems.
In order to deal with nonlinear cases Bucy and Sunahara proposed the extended Kalman filter
(EKF) [4,5]. The EKF uses the first order Taylor expansion technique to linearize state and observation
equations, and then obtains state estimations by the Kalman filter. On the other hand, approximation to
a state probability distribution of a nonlinear system is, to a great extent, easier and more feasible than
a linear approximation to a nonlinear function [6]. Based on this idea, Gordon and Salmond proposed
the particle filter (PF) [6]. The performance of the PF is commonly superior to the EKF because it can
usually provide more precise information about state posterior probability distribution than does the
EKE, especially when it takes a multimodal shape or noise distributions are non-Gaussian [6,7].

The precondition of the above methods is that the noise statistical properties must be known.
However, in some practical applications, what engineers can obtain are not precise statistical
distributions [8], but ranges of noises. Hence, a group of state estimation methods considering bounded
noises, also known as the bounded-error methods, appeared [9-12]. Assuming that all variables belong
to known compact sets, these methods build simple sets, such as ellipsoids or boxes, guaranteed to
contain all state vectors consistent with given constraints. For linear systems, some scholars began to
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study such state estimation methods in the 1960s [9-11]. For nonlinear systems, the corresponding
studies are relatively rare. Khemane et al. and Jaulin proposed bounded-error state and parameter
estimations for nonlinear systems [13,14]. Gning proposed a relatively simple and fast bounded-error
method based on interval analysis and constraint propagation, which was successfully applied to
dynamic vehicle localization [12], but when the noise bounds cannot be precisely determined, its
robustness will unavoidably decline [7]. That is to say, if the bounds are too tight, then the data may
become inconsistent with the system equations, and in this case, this method fails to provide a solution.
On the contrary, if the bounds are overestimated, then the estimated state becomes very imprecise, and
this method becomes overly pessimistic [7].

In order to deal with this problem, Nassreddine proposed an improved method by integrating
interval analysis with DS evidence theory. Its key idea is to replace the set-based representation of
uncertainty by a more general formalism, namely, mass functions in evidence theory [7]. It introduces
possibility distributions to model bounded noises, and then uses mass functions, i.e., evidence
composed of interval focal elements and their masses to approximate these distributions. Essentially,
such mass functions can be regarded as “generalized boxes” composed of a collection of boxes with
associated weights. These mass functions can be propagated in the system equations using interval
arithmetic and constraint-satisfaction techniques to get the mass function of system state at each time
step. Pignistic expectation of this mass function is calculated as the state estimation value. Therefore,
this approach extends the pure interval approach, making it more robust and accurate.

Nassreddine’s research showed the powerful ability of DS evidence theory to deal with the
uncertainty of dynamic systems. Hence, this paper further presents a new state estimation method,
which uses not only evidential description of uncertainty, but also dependent evidence fusion. Here,
the state equation and the observation equation of a dynamic system and the actual observations of
system states are regarded as three information sources. The random set description of evidence and
extension principle of random set is used to obtain state evidence and observation evidence from
these three information sources and to propagate them in the system equations. There are correlation
among these evidence, so the proposed combination rule of dependent evidence is used to fuse the
propagated evidence and Pignistic expectation of fusion results is calculated as state estimation value
at each time step. Compared with Nassreddine’s method, it is shown that the proposed approach
generates more accurate estimation results by combining dependent evidence. An industrial liquid
level detection apparatus was employed to show the better performance of the approach.

2. Foundations of Dempster-Shafer (DS) Evidence Theory

The DS theory is a mechanism formalized by Shafer for representing and reasoning with uncertain,
imprecise, and incomplete information. It is initially based on Dempster’s original work on the
modeling of uncertainty in terms of upper and lower probabilities induced by a multi-valued mapping
rather than as a single probability value [15]. One of the specificities of this theory is that the objects
of study are no more the universe, i.e., a set, defined as the frame of discernment hereinafter, but the
power set of this universe. In this section we introduce some main concepts of this theory and some
necessary notions that will be used in the proposed approach. A more detailed exposition and some
background information can be found in [16].

2.1. Basic Concepts in DS Evidence Theory

Definition 1 (Frame of discernment). A set is called a frame of discernment if it contains mutually exclusive
and exhaustive possible hypotheses. This set is usually denoted as ©. The power set of © is denoted as 2°.

Definition 2 (Mass function). A function m: 2° — [0, 1] is called a mass function on @ if it satisfies the

following two conditions: (1) m(&) = 0; (2) 1400 m(A) = 1. This function is also named as a basic belief
assignment (BBA). A subset A with a non-null mass is viewed as a focal element. Commonly, if an information
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source can provide a mass function on ©, then this mass function is called a body of evidence, abbreviated to
evidence (E).

Definition 3 (Dempster’s combination rule). If my, my are two BBAs induced from two statistically
independent information sources, then a combined BBA can be obtained by using Dempster’s combination rule:

L mi(B)my(C)

B . ACOandA # o
mA) = | = L _mmmer A4S 7 M

0, A=0

Note that the Dempster’s combination rule is meaningful only when Y p~c—gm1(B)ma(C) < 1, ie.,
my and my are not totally conflicting. This rule can be used to synthesize uncertain, imprecise or incomplete
information coming from different sources.

2.2. The Degree of Dependence and the Combination of Dependent Evidence

In DS evidence theory, Dempster’s combination rule is the most important tool for computing a
new BBA from two BBAs based on two pieces of evidence. This rule requires that the two pieces of
evidence must be independent, which is considered to be a very strong constraint and cannot always
be met in practice. Wu, Yang and Liu [17] pointed that if there are two pieces of evidence which are
partially derived from the same information source, then both of them are mutually dependent. This
interpretation concentrates on the connotation of independence conception in evidence combination
operation. In this case, Wu, Yang and Liu [17] proposed the energy of evidence concept, and then,
deduced the degree of dependence and the dependency coefficient between the two from the energy
of the intersection of the two. Based on these notions, the combination of dependent evidence can
be realized.

Definition 4 (The energy of evidence E). The energy of evidence E, En(E) is defined as:

n(E) )
En(E)= ) ’”|(Af?‘z) @
i=1 '
A#£0O

where | A; | is the number of elements in the focal element A;, n(E) is the number of distinct focal elements in E.
Obviously, En(E) have some valuable characteristics: (1) if every m(A;) = 0, namely, m(®) =1, then En(E) = 0
and the evidence E represents no useful information; (2) if | A;| =1 and m(®) = 0, then En(E) = 1 and the E
contains the maximum useful information; (3) En(E) € [0, 1].

Suppose that the BBAs of evidence E1 and Ey are my and my, respectively, and their focal element sequences
are A; and B;. It is possible that some focal elements of Ey and E; are induced by the same information source. In
this case, Ey and E; will be dependent, then the energy of the intersection of the two pieces of evidence can be
described by:

KD}l (D
En(Ey, Ep) = ‘;,.’i) 3)
ij=1 g
Di]' ?é 1%

where D;; denotes dependent focal element, |{D;;}| is the number of distinct D;; and the BBA function m is
derived from my and my.

The relationship of En(E;), En(E;) and En(E;, Ep) is illustrated in Figure 1; especially, En(E;, E;) = 0
implies the independence between E; and E;. The value of En(E;, E;) measures the dependency of the
two pieces of evidence.
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En(£)) En(£1,£2) En(E)

Figure 1. The relationships of two pieces of dependent evidence.

Definition 5 (The degree of dependence between two pieces of evidence). En(Ey, Ey) is defined as the
degree of dependence between Ey and Ey. Actually, the partial energies En(E1) — En(Eq, Ep) in Eq and En(E;)
— En(Eq, Ey) in E; are independent of each other. If energy En(Eq, E,) is partitioned into two parts, with each
part attached to E1 and E;, respectively, as follows:
2EH(E1 ’ Ez)
D(Ey, Ey) = ——~——F=—~ 4

(Er, E) En(E;) + En(E,) @)

then two corresponding independent pieces of evidence can be generated from E1 and E.
For Ey, its final independent energy can be calculated as:

Enf(E1) = En(E;) - En(Ey, Ep) +En(E1/Ez)%
En(E
AR ik >
= En(E0) (1 = i) thn(Ey) : Eg(ﬁ))
=En(E;)(1— %D(EleZ) * EﬁEEig
Similarly:
B 1 En(Eq)
En/(E;) = En(Ez) <1 ED(ELEZ) * En(E2)> (6)

Definition 6 (The dependency coefficient between two pieces of evidence). The dependency coefficient of
Ej to E; is defined as:

1 En(E;)
Rip = ED(ELEz)m @)
and the dependency coefficient of Ej to Ey is defined as:
1 En(E;)
Ry = ZD(EI’EZ)En(EZ) ®)

Eq and E; can be modified by Ryp and Ry, respectively, to obtain their corresponding independent Ey' and
E,’, their BBA functions are given by:

, (1 — Rlz)ml (A), VA - @,A 7& (€]
m'(A) =4 1- ¥ m/(A) A=0© ©)
ACO

1— ¥ m'(B) B=0 (10)

(1 —R21)m2(B), VB C @,B 7é O
I’IZQI B) =
BCO

Consequently, the requirement of Dempster’s rule is met and the combination of Ey' and E,' can be
implemented according to Dempster’s rule in (1). Finally, the combination of E1 and E, is indirectly realized
by the combination of Ey" and E;’. Actually, reference [17] gives the decorrelation method to correct Ey and E,
by dependency coefficients such that the corrected E1" and Ep' can be deemed as the independent evidence and
combined using Dempster’s rule.
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2.3. The Random Set Description of Evidence

2.3.1. Random Set and Random Relation

Definition 7 (Random set [18,19]). A finite support random set on © is a pair (F,m) where F is a finite
family of distinct non-empty subsets of © and m is a mapping F — [0, 1] and such that }_ac ym(A) = 1.

F is called the support of the random set and m is called a basic belief assignment. Such a random set
(F,m) is equivalent to a mass function in the sense of Shafer.

Definition 8 (Random relation [18,19]). Let ©@ = ©1 x @y X ... X ©, be a multi-dimensional space, where
“x” indicates Cartesian product. A finite support random relation is a random set (F,m) on ©.

The projections of a random relation on Cartesian product @1 x @, x ... x ©y are defined by Shafer to
be the marginal random set (Fy,my) (k=1,2,...,n):

VG € O, mi(Cr) = Y {m(4)|Ce = Projg, (4) } (11)

Projg, (A) = {ux € OklFu = (w1, ,up, - up) € A} (12)

ForVA e F,A=C1 x Cy X ... X Cy, if m(A) =my(Cy) x mp(Cp) X ... X mu(Cy), then (F,m) is
called decomposable Cartesian product random relation, and marginal random sets (F1,my ), (Fp,mp), ...,
(Fu,my) are mutually independent.

2.3.2. Extension Principles

Let&=(C1,C82 ... ,Cn)beavariableon® =01 x @ X ... x Oy, {=f({), (€ O, f: O—=Dis the
function of ¢. The random set (R,p) of {, which is the image of random relation (F,m) of ¢ through f, is
given by extension principles [20-22]:

R ={R; = f(A)|Ai € F} (13)
p(Rj) =Y {m(A)|R; = f(A)} (14)

where:
flA) ={f(w)uec A},i=12,- M (15)

M is the number of element of . The summation in Equation (14) accounts for the fact that more than
one focal element A; may yield the same image R; through f.

The key of constructing (R,0) is to calculate the image of A; through f. If ¢ is a continuous variable
on O, then ® = R", F becomes a finite family of distinct non-empty sub-intervals on @. In this case,
the process of constructing (RR,p) is given as follows:

For each ¢y in ¢, let its marginal random set be (Fy,m) and the focal element of (Fy,my) be a
interval [a;",a;*], then the focal element of (F,m) can be given as:

A=[ay,af] x - x[ay,a}] (16)

The image of A can be calculated by using the methods of Interval Analysis [19-21]; if A is a
convex set, then A has 2" vertices, denoted as v; (j=12,...,2"). If function f has certain properties,
the Vertex Method can help reduce the calculation time considerably [22]:

Proposition 1. VA € F , if { = f(¢) is continuous in A and also no extreme point exists in this region (including
its boundaries), then the value of interval function can be obtained by:

f(A) = R= [min{f(e)) :j = 1,2, 2%} max{f(ey) = 1,2, , 2}] 17)
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Thus, function f has to be evaluated 2" times for each focal element A. This computational burden can be
further reduced if the hypotheses of the following Proposition 2 hold [21].

Proposition 2. If f is continuous, if its partial derivatives are also continuous and if f is a strictly monotonic
function with respect to each &y, k=1,2, ..., n, then:

va'm, f(vmm) = mln{f(v]) ] = 1,2, e ,2"} (18)
]

FUmax, f(Umax) = max{f(vj) 1j=12,---,2"} (19)
j

There is a case in point. Let ¢ = (1,62,63), A = [a1",m"] X [ay",ay*] x [a3",a3%]. Assume f and
its partial derivatives are all continuous. If f is increasing with respect to ¢y and &, decreasing with
respect to {3 respectively, then f has to be calculated only twice for each focal element A, namely, f(A) =
[f01in) fOmax)], Vi = [a17 227 ,@3% ], Oiax = [a17 2% ,a37]. Totally, 2M evaluations of f are needed to obtain
complete (R,0).

Furthermore, the expectation of (R,p) is given by [23]:

N r'." +r.
E(p) = ZP(R]‘)' <]2]> (20)
j=1
where Rj = [r]", rj+],j =1,2,---,N, N is the number of focal element Rj.

3. State Estimation Based on Dependent Evidence Fusion

3.1. Dynamic System Model under Bounded Noises

The dynamic systems mode constructed by the state and observation equations is as follows:

X1 = f(xk, 0p) k=1,2,3,--- (21)
Zg1 = §(Xks1, Wir1)

where the relationship between state x;,1 at time k + 1 and state x; at time k is described as function
f. The relationship between observation z;,; at time k + 1 and state x,; at time k + 1 is described
as function g. vy and wy are bounded additive state noise variable and observation noise variable
respectively, which are independent of each other. These two noises can be approximated to triangle
possibility distributions [7], noted as 7, and 7, respectively, (the noise distributions are identical at
each time step), as shown in Figure 2.

U—Ua ifvaSUSUc

Ve—0Uy
Tty (v) = ;’:__:C ifve<v <y (22)
0 otherwise

where [v,,0;] is the support interval of the state noise, v, is the mode of state noise, similarly:

w—w, :
v L fw, <w < we
wy—w .
Tt (w) = wbb—wc ifw. <w < wy (23)
0 otherwise
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Va Ve Ve V Wa We wp W

@ (b)
Figure 2. (a) Triangle possibility distributions of state noises, (b) Triangle possibility distributions of
observation noises.
3.2. Recursive Algorithm of State Estimation Based on Extension Principles and Dependent Evidence Fusion

Figure 3 shows the flow of the proposed recursive algorithm. The following steps will be
introduced in detail.

Construct noise
evider bout

Using Extension
principles

Using Extension principles

S xsv)

State prediction
evidence

Ry Pioe)

Using Extension principles

New evidence in
state domain

Observation °
prediction evidence

CF > )

State estimation
. evidence
s M)

-------------- Using Pignistic
expectation
State estimate

Xpr1lk+1

Figure 3. Flowchart of state estimation iterative algorithm.

Step 1: Construct noise evidence to approximate 71, and 7t,,. Initially, we construct evidence

( e m}f) to approximate the possibility distribution 77, of state noise variable ;. For any « € (0, 1],
cut set of 71, is [9]:

[ "] = {olmo(v) > a} (24)

If there exist o, 1, - -, &y 1 which satisfy 0 = ¢g < o1 <+ - < ¢y _1 < 1, then their corresponding
a-cut sets will satisfy [73", mof] C (75, ot € -+ C [ng; v 7'(‘,”(:'7 ] where p is a positive integer.
Take these p a-cut sets as focal elements with nested closed interval forms, then their corresponding

BBAs are:

it ifi=0
m(lmy, met ) = w1 —w;  ifi=1,2---,p—2 (25)
1—ua ifi=p—1

Figure 4 gives an example that when p = 3, and m can be constructed by uniformly cutting « three
times. Distinctly, m corresponds to a possibility distribution 7t that approximates 7t,. Certainly, a better
approximation of the continuous possibility distribution can be obtained by increasing the number p
of cut sets, at the expense of higher computational complexity.
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Figure 4. The possibility distribution of state noise and its evidence construction.

It is worth noticing that m is constructed on the condition that all values outside the support
interval [v,,05] are completely impossible. However, in practice, the bounds v, and v, are commonly
given based on available measurement knowledge or real data, so they may not be precise and the
values outside [v,,0;] may appear. To account for the imprecision of the support interval [7], constructs
(]—',f , mz) by discounting m with a small discount rate &;, in which, m} is defined as [9]:

1-— A ifAc &
(1—¢e5)m(O©) + ¢4 ifA=0
where E = {[ng;,ngf]‘z =12 ,p— 1}, © = R, accordingly, 7 = EU®. In the course of
implementing the proposed algorithm, © can be replaced by the closed interval [vs ,0p'], here v,/ >> v,
and v’ >> v}, such that the following interval operations can be done easily.

In the same way, we can construct evidence (F¥, m}’) using the possibility distribution 7, of
observation noise variable wy.

Step 2: Obtain state prediction evidence. Ej ke = (R +1\,{,,0;5 +1‘k) at time k + 1 from state
equation. Suppose the estimation result at time k is £;;. When k =1, £y is initialized as real
observation z;. Considering the influence of noise to the state, we construct the state evidence (F, n;)
of £y by adding noise to £y

Fi = {[WZ[ + R o+ Rkl (7 R T+ el o (R R TR +fk\k],®}; mf = mp

Thus, taking (F¢,m}) and (F{, m}) as the inputs of state equation xxq = f(x, vx), we can get
the state prediction evidence Ej k= (R 1k 0% | ) by mapping from the inputs to the outputs
based on the extension principles in Equations (13) and (14).

Step 3: Obtain observation prediction evidence. L}
observation equation.

Taking the state prediction evidence (R; 1 o Pk +1‘k) in Step 2 as the input of the

fZ

p .
kﬂ‘k,mkﬂ‘k) at time k + 1 from

+k = (

observation equation g(xy,1), we can get E7 = (F¢ ) based on the extension

k+1]k k1K mi+1\k
principles in (13) and (14).
Step 4: Obtain fusion evidence. E",f = (F 1 1 1 ) at time k + 1 in observation domain.
Firstly, in Step 1, we get evidence (F’, m}’) using the possibility distribution 7t,, of wy:

F = iy ) e it [ © =

After getting observation zj,; at time k + 1, considering the influence of noise to the observation,
we construct the evidence (F; o1 ME +1) of zi41 through adding noise to zj1:

Fip = {[”0%7 + 241, 7T+ zke], [T+ e, T F 2kl [”Z;;l + Zkt1s n;{’;l +Zk+l]r®}? m = my.

Secondly, using Dempster’s combination rule, we fuse (F7, |, mi, ;) and (Ff e M ,) to get
the fusion evidence Ef , ; = (F{, , 11, ;) in observation domain at time k + 1. As for the relationship

between (]:lfﬂlk’ miﬂ‘k) and (F¢,y,mi,,). The former is obtained by propagating £y from state
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equation f(xx, v) to observation equation g(xx1); the latter is constructed by adding noise 71, (w) to
Z+1- 1t can be seen that the former completely comes from the state information £y at past time step
k which does not use the observation noise wy (71, (w)), but uses the state noise vy (7, (v)). Because
W41 (71w (w)) and vy (71, (v)) are independent of each other, so it is believed that the former and the
latter are also independent of each other. Hence both of them can be directly fused using Dempster’s
combination rule.

Step 5: (jet new evidence. E,’fﬂ = (ﬁﬁﬂ,ﬁ,’jﬂ) at time k + 1 in state domain.

A Taking F¢, , 1t attained in the Step 4 as the input of inverse function ¢ '(2k41), we can get

(R4, 05 41) by using the extension principles in Equations (13) and (14).

Step 6: Get state estimation evidence. ( and state estimate £ ;1 at time
k+1.

Using Dempster’s combination rule, we can fuse (R ,0f,;) attained in Step 5 and
(R Y o 0% +1\k) attained in Step 2. That is to say, we utilize the former to revise the latter to get

yined X
‘Fk+1\k+1’mk+l\k+l)

state estimation evidence (]:'kv k1 rﬁ}’f Sk +1)' (7@,’5 1 Jips +1) is obtained by inverse mapping of fusion
evidence (F, i1, 71 1) in observation domain. (f-',f 1/ 111,1) is obtained by the fusion of observation
evidence (F%,;,m;, ) and observation prediction evidence (F; e my ot ). In Step 3, it is noted
that (]:’ir”k' mi+l|k) is related to (Riﬂ‘k,pfﬂ‘k), S0 (ﬁgﬂ,p,’gﬂ) and (R;H‘k,p,’c‘ﬂlk) are certainly
mutually dependent. Therefore, the combination of dependent evidence must be used for fusing both
of them. For the focal elements of (R} 1 P) and (RE " o it ;) are the closed intervals on real
numbers, here we extend the combination of dependent evidence in the discrete frame of discernment
introduced in Section 2.2 to that in the continuous frame of discernment (see the corresponding
proposition and example in Appendix A). (72; 110k +1) and (Ri "t O +1\k) can be fused using the
extended combination of dependent evidence to get state estimation evidence (F; i ks 1t K L) at
time k + 1.

Finally, Pignistic expectation of (]:',f k1 1t ik 41) is calculated as state estimation value
L 41jk+1 by Equation (20). Using state estimation at time k + 1 to do next iteration, we can estimate
state at every time step.

In conclusion, as shown in Figure 3, the whole recursive algorithm is actualized under the
framework of DS evidence theory. The corresponding evidence in state and observation domains are
not only propagated and transformed by the extension principle, but also fused by the Dempster’s
combination rule and the proposed combination rule for dependent evidence. Especially, fusion
procedure can make that the masses focus to those interval focal elements that contain the system state,
so as to get the accurate estimation results, which is the main difference from Nassreddine’s method
under the framework of the interval analysis. In next section, our approach will be applied to liquid
level estimation using an industrial level apparatus to show its better performance than possible with
Nassreddine’s method.

4. Application to Liquid Level Measurement

Level measurement methods based on sound reflection phenomena have been successfully
applied in some areas of process industry (chemical, waste water treatment, petroleum, etc.) because
the level is the main monitored process variable used in industrial alarm systems. Ultrasonic
measurement methods, with good directivity, convenient operation and so on, have become some of
the most commonly used techniques [24]. Their measuring principle is to emit an ultrasound toward
a liquid surface and receive the echos, then to calculate the distance from the surface to the acoustic
receiver device by multiplying the sound velocity by the round-trip time [25]. However, this method
is susceptible to the quality of the instrument itself and environmental noise, which will deteriorate
the measurement accuracy. Besides, if the ultrasound encounters foams, residues, deposits, etc., in the
measurement process, it is also prone to parasitic reflection, thereby the ultrasound propagation path
is changed, which seriously affects the measurement accuracy [26].
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On the contrary, low-frequency sound waves have longer wavelength and it is easy to generate
the diffraction phenomenon which can effectively overcome the problem of parasitic reflection due
to foams, residues, deposits, etc. When a speaker emits sound waves with a uniform change from a
frequency f1 to a higher frequency fy toward the surface and a microphone receives the corresponding
echoes, the generated standing wave signals extracted in the oscilloscope can be used to calculate
the height of the liquid level. Kumpers¢ak and Zavrsnik [25,26] used this idea to measure liquid
levels. However, they both directly used observations to calculate the liquid level. In practice, if
the measurements obtained by using a speaker and a microphone are not precise enough and if the
effect of environmental noise is inevitable, then the deviation of the final measurement results will be
unacceptable, which is the most common shortcoming in the present level measurement methods.

In our earlier work [27], we have used the Evidential Reasoning(ER) rule to deal with liquid
level estimation with bounded noises, but the ER-based method only provides an initial idea for state
estimation under the framework of DS evidence theory and only gives precise estimated results when
the level length is less than 1.6 m. In order to improve the evidence fusion-based state estimate method,
this paper introduces a new information source, Dempster combination rule and evidence dependence
conceptions. We construct the state equation and observation equation based on the principle of level
measurement using acoustic standing waves, and then use the proposed algorithm to estimate the
frequencies of the standing waves, which can be translated into the liquid level height (0 m-10 m).
Compared with the direct measurement method and Nassreddine’s method, the estimation results
verify that our algorithm has obvious advantages and improves the level estimation accuracy.

4.1. Acoustic Standing Wave Level Gauge

The structure of an acoustic standing wave level gauge is shown in Figure 5, and mainly consists
of a waveguide (a tube), a speaker, a microphone, a thermometer and a controller. When sound waves
in the frequency range [f fi] generated by a signal generator (audio card and speaker) vertically
propagate to a surface and echoes appear, superposition of both waves will generate standing waves.
Here, y; denotes the sound wave generated by speaker and y, denotes the echo reflected by the surface:

y1 = Acos2m(Pt — %) (27)
L
Yo = Acos2m(Pt+ X) (28)
The synthesis wave of y; and y, can be expressed as:
2L
y = 2A cos(mt=—) cos(27tPt) (29)

A

where A is the amplitude of sound wave, P is the frequency of sound wave and L is the distance from
the top of the tube to the surface of liquid as shown in Figure 5. From Equation (29), we know that
when L and A have the following relation, the amplitude of synthesis wave reaches the maximum:

L:nk% k=1,2,3,--- (30)

In this case, this synthesis wave is defined as the standing wave and its wavelength is:

A = ¢ _ 3314+06T 31)
i i
where Ay is the wavelength of kth standing wave, f; is the frequency of kth standing wave (kth resonance
frequency) in [f. fi]. c is sound velocity, and T is temperature.

79



Sensors 2017, 17,924

speaker —
\AT— microphone
L e
detection /
distance P temperature
airing ! sensor
L [
v d
surface & % \ . ide
\ VS waveguide

Figure 5. Structure of a level gauge.

Substituting Equation (30) into Equation (31), we obtain:

[ _ (3314 +0.6T)

32
2f @)

where, 1 is given as [28]:

i
n = 33
T e fo) 39
and:

Mgy = g +1 (34)

Theoretically, in Equation (33), fr+1 — fi = fr, fr is the fundamental resonance frequency and
fi =i fr, n € NT (the set of all positive integers) [26,28]. For example, if L = 9.6 m, T = 23.9 °C,
and n = 1, then the fundamental resonance frequency can be calculated by (32):

foo n(331.4; Zr 06T) _ jor 35)

If the frequency range [f; fi] is [1000 Hz, 2500 Hz], then there are 82 resonance frequencies in this
range, k=1,2, -+, 82, and ny = 56,57, - - ,137. Consequentially, f1 =56 x 18 Hz, f, =57 x 18 Hz,- - -,
fsp =137 x 18 Hz.

4.2. System Model

Firstly, we consider the resonance frequency as the estimated state and construct the corresponding
state equation. If we can continuously collect the resonance frequency fi,1, then we have the
following equations:

[ M (331.4+0.6T)

36
2f41 30)
From Equations (32) and (36), obviously, we can get:
M1 (3314 +0.6T)  1(331.4+0.6T) 7
2fr41 2fx
e +1
firn = ~“—fi (38)
T

Consequentially, we can establish the recursive linear state equation and observation equation,
respectively:

ng + 1
Xpp1 = Xk + vk (39)
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Zk1 = X1 + Wit (40)

where x; = fi, z; is the observation of f;, wy and vy are independent noise sequences coming from
speaker and microphone, respectively, satisfying the conditions:

Uk = [Va, Vp) (41)

Wy = [wa, wy) (42)

The intervals [v,,v,] and [w,,w,] denote the boundaries of the state noise and observation noise,
respectively. The state noise vy and observation noise wy can be expressed by possibility distributions
7Ty and 71, with the support intervals [v,,0;] and [w,,wy], respectively.

It should be noted that, in theory, 1 in (39) should be taken as a positive integer. However, in
practice, it can be only calculated by observations zj and z,1 according to Equation (33). Because
of observation imprecision, the calculated 7 is commonly not a positive integer, so it should be
approximated as:

Zk
m=ll gl (43)

where “||e||” denotes the operator that “round numbers to the nearest integer”.

4.3. Liquid Level Estimation Tests

In order to construct the level gauge in Figure 5, we use a low-precision microphone and speaker
to emit and receive cosine sound waves, respectively, an electronic thermometer to collect temperature
and a PVC tube with a diameter of d = 75 mm to transmit sounds. The estimated level L is the distance
from the surface to the speaker platform. The controller transmits sine or cosine waves to drive the
speaker to emit the signals vertically to the liquid surface. We use the software AUDIOSCSI (Brothers
Studio, Shenzhen, China) which is based on an audio controller (82801HBM-ICH8M with sampling
rate 44,100 Hz, Intel Corporation, Santa Clara, CA, USA) to generate sound waves. The frequencies
of wave change with uniform speed from f;, = 1000 Hz to fy = 2400 Hz in 5 s. Thus, the microphone
receives the synthesis waves and sends them to the controller as shown in Figure 6 (L = 4.6 m). It
can be seen that there are the frequencies of 39 adjacent standing waves collected by microphone in
[1000 Hz, 2500 Hz]. Figure 7 shows the resonance frequency fi (k = 1,2,- - -, 39) extracted from the
spectrum of the synthesis waves by the fast detecting algorithm in [28]. In this experiment, set liquid
level distance L = 4.6 m, the ambient temperature is 26.5 °C and sound velocity is 347.3 m/s. The state
equation and observation equation of resonance frequency are shown in Equations (39) and (40).

For the state noise vy, we use a high-precision oscillograph (TPS2024, Tektronix, Shanghai,
China) to receive the cosine sound waves emitted by the audio controller and speaker in range
[1000 Hz, 2500 Hz] and calculate errors about 100 frequency points uniformly selected from 1000 Hz to
2500 Hz. As in [7], the bounds of vy, are taken to be plus or minus three times the standard deviation of
errors. So the possibility distributions 77, of vy can be constructed as in Figure 8. Where the expectation
of 7y is 0, standard deviation ¢ is 0.1, then the support intervals [v,,v;,] = [-0.3, 0.3], mode v.= 0. Set
ap =0, 01 =1/3, g =2/3, we can get three nested closed intervals and their BBAs to approximate 71,
as in Figure 8.
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Figure 6. Waveform graph (L = 4.6 m).
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Figure 7. Resonance frequencies and amplitudes (L = 4.6 m).
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Figure 8. Probability distribution 7, of state noise v.

Furthermore, in Step 1 of the proposed algorithm in Section 3.2, discounting m at rate &, = 0.05
and approximating as the closed interval [v. — 1000, v. + 1000,] = [—10, 10], we can construct the
evidence (F¢, m}) of vy according to Equation (26) as shown in Table 1.

Table 1. Evidence of state noise.

Fy [-0.1,0.1] [-0.2,0.2] [—0.3,0.3] [—10, 10]
my 0.3167 0.3167 0.3167 0.05

The observation noise wy is mainly related to the microphone and the fast detecting algorithm.
Firstly, we extract observation values of resonance frequencies in range [1000 Hz, 2500 Hz] about 30
level values uniformly selected from L = 1.3 m to L = 10.6 m by the fast detecting algorithm. Secondly,
we calculate the errors between the theoretically correct values (true values) and observation values.
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In the same way, the possibility distributions 7, of wy and the corresponding closed intervals and
their BBAs can be constructed as in Figure 9, where, 0, = 1.23, w. = —6.9, so [w,,w,] = [-10.59,
—3.21]. Furthermore, discounting m at rate &, = 0.05 and approximating as the closed interval
[we — 10007, we + 10007,] = [—129.7, 115.7], we can construct the evidence (FY, my ) of wy, shown in
Table 2.

Ty

b,
J m([-8.13,-5.67]) =1/3

23 ————— -——-

I m([-9.36,-4.44]) =1/3

13— —— -
V -\J Im([—10.69,—3.21])=l/3

0 -10.59 -6.9 -3-.21 w

Figure 9. Probability distribution 7ty of observation noise w.

Table 2. Evidence of observation noise.

FY [-8.13, —5.67]  [-9.36, —4.44] [-10.59, —3.21] [-129.7,115.7]
my 0.3167 0.3167 0.3167 0.05

From Figure 7, it can be seen that the first observation value of resonance frequency z; = 1023.3 Hz.
According to Step 2) in Section 3.2, the first estimation result £;); is initialized as the real observation
z1. After obtaining (F7,mY) and (F{’, m}’), our recursive algorithm presented in Section 3.2 can be
used to estimate resonance frequencies at each step k. Figure 10a gives the estimation results of our
method and Nassreddine’s method, together with the true values and observations (z). Figure 10b
gives the absolute errors between true values and the estimated values of our method, the estimated
values of Nassreddine’s method, and z; respectively. It can be seen that the estimation accuracy and
convergence of our method are better than those of Nassreddine’s method because of the focusing
function of the proposed fusion procedure for dependent evidence.

9
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Figure 10. (a) Estimation results of resonance frequencies, (b) Absolute values of frequency
estimation errors.

Finally, we can calculate the estimate level L by Equation (32) according to the estimated resonance
frequencies of our method, Nassreddine’s method, and z; respectively as shown in Figure 11a,b
gives the corresponding absolute values of length estimation errors. Obviously, the more accurate
the estimations of resonance frequencies are, the more accurate the estimations of level L are. As
our method always provides more accurate estimations of resonance frequencies, it is therefore
always superior.
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Figure 11. (a) Estimation results of level L, (b) Absolute values of length estimation errors.

More experiments are performed for different values of L to find the mean of absolute values
of estimation errors and to show the efficacy of the proposed method as shown in Table 3. Here, for
every values of L, from above to below, Table 3 gives in order the experiment results of our method,
Nassreddine’s method, and direct measurement method (namely, substituting z; into (32)).

Table 3. Experimental results for different values of L.

No True L T Q) Runtime Mean Error No True L T 0 Runtime Mean Error
(m) (s) (m) (m) (s) (m)

1.81 0.0126 20.11 0.018

1 13 27 0.88 0.016 6 5.6 26.5 4.81 0.0374
= 0.238 = 0.0661

2.49 0.0254 23.57 0.0238

2 2.1 26.5 138 0.0364 7 6.6 26.5 5.61 0.0436
= 0.0441 = 0.088

7.81 0.0144 27.94 0.0299

3 2.6 26.5 2.05 0.0297 8 7.6 26.5 6.77 0.0530
= 0.0591 = 0.1060

9.62 0.0141 31.23 0.0216

4 3.6 26.5 2.34 0.0312 9 8.6 23.9 741 0.0456
= 0.0468 = 0.1295

16.07 0.0160 85815 0.0435

5 4.6 26.5 3.81 0.0337 10 9.6 23.9 8.36 0.0732
= 0.0552 = 0.1624

It should be noted that the calculation complexity of our algorithm is relatively high, and
meanwhile, with the increase of the measured length of level, the corresponding synthetic wave
contains more and more resonance frequency points, so the CPU time will increase, so it needs a
longer time (the hardware in this test: CPU E8400, CPU Clock Speed 3.00 GHz, RAM 2 GB). But to
the situation that liquid level change relatively slowly, our method is applicable. Certainly, the rapid
development of data processing capability of computer hardware will make the complexity less of
an issue.

5. Conclusions

The subject of Nassreddine’s method is still interval analysis, it introduces evidence, namely
belief-function to elaborate bounded noises. In detail, it gives the improved form of noise bounds (the
triangular possibility distribution), here the error interval is extended to the evidence construction,
namely many interval focal elements with the corresponding belief assignments. Obviously, the latter
has more information than the former. Then, it still uses interval arithmetic and constraint-satisfaction
techniques to propagate not only interval focal elements, but also its belief assignments, hence its
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performance is slightly better than that of pure interval propagation. However, the subject of our
method is DS evidence theory and random set theory and introduces Dempster combination rule
and evidence dependence conceptions. Although we still use Nassreddine’s evidence construction
technique, the random set description of evidence and extension principle of random set are used to
obtain state evidence and observation evidence from the defined information sources and to propagate
them in the system equations. The main contribution is to realize the fusion of the propagated evidence,
in which the degree of dependence and the combination of dependent evidence are further considered.

As a whole, compared with Nassreddine’s method, our method increases the state estimation
accuracy. The application in liquid level estimation using an industrial level apparatus shows the
efficacy of the proposed method. Certainly, it is worth noting that, in a given application, there are
some constraint conditions such as the continuous, monotonic and invertible properties of state and
observation equations, and state observability. When they cannot be satisfied, the computational
burden will inevitably be increased because of the use of additional complex interval operation
algorithms or matrix operation algorithms (for multidimensional states) in [21,22]. Hence fast operation
algorithms should be studied in the further. On the other hand, although the proposed procedure of
evidence fusion can make the masses focus to those interval focal elements that contain the system
state, so as to get the accurate estimation results, how to further evaluate the convergence of fusion
using available theories is still a problem worthy studying which will promote the usage of evidence
theory in state estimation.
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Appendix A

We first generalize the definition of evidence energy as shown in Proposition Al.

Proposition A1l. Suppose E = (F,m) is a body of evidence whose focal elements are the closed intervals. Energy
of the evidence E can be defined by:

L) m([x;,x!])
En'(E) = El d(lx; %) /min(d([x; %)) .
[, %] #©

where [x;*, x;"] denotes interval focal element, d([x;", x;*]) means interval width and n(E) is the number of
interval focal elements. For example, if E = (Fy,m), Ay =[—0.3, 2.6], m(Aq) = 0.3; A, =[0.3,1.9], m(A;) = 0.7,
mind([x;", x;*]) = 1.6, then:

0.3 0.7

! [ - =
En'(E) = 29/16 + 16/16 0.8655 (A2)

It can be proved that En’(E) meets the three conditions of the evidence energy: (1) if m(®) = 1, then En’(E)
= 0 and E represents no useful information; (2) if d([x;,x;"]) = min(d([x;", x;"])) and m(®) = 0, then En'(E)
1

=1 and E contains the maximum useful information; (3) En'(E) € [0, 1].

Proof. For mass function satisfying Y, ,+)ce m([x;,%;"]) = Land d([x;", x;"]) /min(d([x;, ] ])) > 1,
i = i
there are four cases to discuss:
Case 1: If m(©) = 1 and the mass of other focal elements is zero, then En/(E) = 0, namely, the
evidence does not provide any information. So, the Condition (1) holds;
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Case 2: If m@® = 0 and any interval focal element [x;*x;] meets that
d([x;,xf]) /miin(d([x;,xﬂ)) = 1, then En/(E) = 1, namely, the evidence provides maximum
useful information. The Condition (2) holds;

Case 3: If m(©) = 0 and not all of the interval focal elements [x;7,x;] meet that
d([x;,xf])/miin(d([xf,x;r])) =1, then En/(E)€(0,1);

Case 4: If 0 < m(®) < 1, then En/(E)€(0,1);

From Case 1 to Case 4, the Conditions (3) can be proved. Let Ey = (F,my) and E; = (F,my) be
two pieces of evidence with closed interval focal elements. If some focal elements of E; and E; be
induced by the same information sources, then the energy of the intersection of the two pieces of
evidence can be described by:

B (B E [{Djj}| m(Dy;) A3
RS L g a0y
- i :

where Dj; is the focal elements induced by the same sources, {D,-]-} is the set of these focal element,
[{D;;} | is the number of them. Consequentially, the degree of dependence between E; and E; can be
obtained by Definition 5:

2En’(Ey, Ey)
D'(Ey,Ep) = = A4
(EvE2) = 5E) + B (By) (a9
and the dependency coefficient between E; and E; can be redefined as:
1 En'(E,)
Ry = -D'(Ey, Bp) —— A5
12 2 ( 1 Z)En/(El) (A5)
1 En/(El)
Ry = -D'(Ey, E2) =~ A6
n = 5D'(En Z)En'(Ez) (A6)

Eq and E; can be modified by R/, and R}, respectively to obtain the corresponding two pieces of
independent evidence E;’ and E,’, their BBA functions are given by:

mi([x;, % ])(1=Ryy), [, %] #£ ©
mxnx =9 1= £ wi(x,x]) [ x]=0 (A7)
[x; xf)coe
mo(ly; v DA —Ry), vy 1#0©
m(y; v = 1= L mly.y) ly.y1=0 (A8)

— o+
v vjlco

After obtaining BBAs of E;’ and E;/, we can use Dempster combination rule to fuse E;’and E;’,
namely, to fuse the dependent evidence E; and E; indirectly. [J

Although Wu, Yang and Liu [17] gave the definition of the energy of the intersection as in
Equation (3), this conception of intersection is obscure, namely, D;; and m(Dy)) are rarely clearly
defined. Nevertheless, in our method, the two pieces of dependent evidence are (7% 4+1-0741) and
(R e 0 | ), according to the interval operations (extension principles and combination rule) used
to generate them, {D;j} = 7@,’;1 N R}f+1\k and m(Dy) = 7,1 (Dij) = P}f+1\k(D"f)'

For example, if the focal elements of the new fusion evidence (7@2 1,0F41) can be given as: Aq =
[—0.30, 2.60], m(A1) = 0.3; Ay =[0.30, 1.90], m(Ay) = 0.6, Az = [0.32, 1.93], m(A3) = 0.1; the focal elements
of the state estimation evidence (R,’f+1lk,p;f+”k) can be given as: Ay =[0.21, 3.50], m(A;) = 0.1, Ay =
[0.41, 1.61], m(A;) = 0.3, A = [0.30, 1.90], m(A3) = 0.6, then Dij = [0.30,1.90], m(D;;) = 0.6. From
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Equation (A1), obviously, we can get En'(R}, ;, 7 ;) = 0.8655, En’(’R;H‘k,p,fH‘k) =0.7865, then the

energy of the intersection of the two pieces of evidence can be calculated by Equation (A3):

Lose . e m([0.3,1.9]) 06
En' (R Pksr)s (R Prsai) = d([0.3,1.9]/min{1.6,12} ~ 1.6/1.2

=045 (A9)

We can calculate the degree of dependence between the new fusion evidence and the state
estimation evidence by Definition 5 and from Equation (A4), we can get:

ZXE“,((Rfﬂ/ﬁfﬂ)'(Riﬂ\k'P;mk)) _ 2%0.45

DR i) (R Plai)) = i, oy, bR ot ) = R 7mes = 05448 (A10)

The new fusion evidence is denoted as E7, and the state estimation evidence is denoted as Ej.
From Equations (A5) and (A6), we can get the dependency coefficient between E; and Ej:

1 0.7865

0.8655
[
2=; x 0.5448 x 0.8655

0.7865

=0.2475, R}, = % x 0.5448 x = 0.2997 (A11)

From Equations (A7) and (A8), we can calculate the BBAs of the corresponding E1’ and E’ as
m) (A1) = 0.4733, m}(A2) = 0.4515, n}(A3) = 0.0752 and m}(A1) = 0.3697, n)(A2) = 02101,
m}(A3) = 0.4202. Finally, using the Dempster combination rule to fuse E;" and E;’, we obtain state
estimation evidence (]:—If+1\k+1’ rhgﬂ‘kﬂ) as: A1 =[0.21, 2.60], m(A,) = 0.1749, A, = [0.41,1.61], m(Aj3)
=0.0994, A3 =[0.30, 1.90], m(As) = 0.1988, A4 = [0.30, 1.90], m(A4) = 0.1669, A5 = [0.41, 1.61], m(As)
=0.0948, Ag =[0.30, 1.90], m(Ag) =0.1890, A7 = [0.32, 1.93], m(Ay) = 0.0278, Ag = [0.41, 1.61], m(Ag) =
0.0157, Ag =[0.32, 1.90], m(Ag) = 0.0315.
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Abstract: Novel auxiliary truncated unscented Kalman filtering (ATUKF) is proposed for
bearings-only maneuvering target tracking in this paper. In the proposed algorithm, to deal with
arbitrary changes in motion models, a modified prior probability density function (PDF) is derived
based on some auxiliary target characteristics and current measurements. Then, the modified prior
PDF is approximated as a Gaussian density by using the statistical linear regression (SLR) to
estimate the mean and covariance. In order to track bearings-only maneuvering target, the posterior
PDF is jointly estimated based on the prior probability density function and the modified prior
probability density function, and a practical algorithm is developed. Finally, compared with other
nonlinear filtering approaches, the experimental results of the proposed algorithm show a significant
improvement for both the univariate nonstationary growth model (UNGM) case and bearings-only
target tracking case.

Keywords: bearings-only target tracking; statistical linear regression; auxiliary truncated unscented
Kalman filtering

1. Introduction

Bearings-only maneuvering target tracking has been widely researched for decades. It is important
for many applications such as maritime surveillance, navigation and aerospace, wireless sensor
networks (WSN), and infrared search and track (IRST) systems [1-6]. However, while implementing
this technology in unlimited situations, there remain some challenging problems, such as multiple
platform tracking, uncertainty of the target model and nonlinear non-Gaussian noise. To deal with
the uncertainty of the motion model, such as abrupt target maneuver, heavy clutter measurements,
highly nonlinearity of dynamic models and nonlinear non-Gaussian noise, etc., the interacting multiple
model (IMM) [7] based on the nonlinear filtering algorithm is a promising approach. However, to
model the uncertainty of the motion model, the performance of the IMM-type algorithm is directly
proportional to the number of the motion models. Generally, the more motion models we produce,
the greater accuracy of the estimated state we obtain. However, the computational complexity of
the algorithm becomes larger with the increase of the numbers of motion models, particularly in
heavily cluttered environments. Moreover, the nonlinear filtering has been studied extensively in
bearings-only maneuvering target tracking.

As is well-known, the most widely used nonlinear filtering for bearing-only tracking is to employ
an extended Kalman filter (EKF) [8,9]. However, when the nonlinearity of dynamic models becomes
more severe, the performance of the EKF degrades sharply. In order to solve this problem, the
unscented Kalman filter (UKF) [10] and the truncated unscented Kalman filtering (TUKF) were
proposed [11,12]. Compared with other conventional Kalman filter-type approaches, the TUKF can
achieve better performance in the conditions of the target tracking system, and can provide very
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informative nonlinear measurements compared to the prior. Moreover, to take into account the
available additional information the state given by the constraint, Ondrej et al. [13] proposed a generic
local filter for the inequality constrained estimation problem, and designed an efficient truncation
technique based on the Monte Carlo integration method for the approximation of the state probability
density function. Beatriz et al. [14] proposed a constrained dual state and parameter estimation
algorithm using a dual Kalman filter (DKF) and a probability density function (PDF) truncation
algorithm for analysis of lateral vehicle dynamics.

In recent years, particle filtering has been widely used for bearing-only tracking. In [15], Gordon
proposed the first particle filtering algorithm based on the resampling step. The main idea is that the
posterior distribution can be approximated by series of random samples with associated weights, and
its parameter estimates can be computed by these samples and weights. Therefore, particle filtering
can deal with nonlinear non-Gaussian problems in terms of the dynamics and measurements. Recently,
many particle filtering methods have been proposed [16-18], for example, the extended Kalman particle
filter (EKE-PF), unscented particle filter (UPF), and the multivariable feedback particle filter (GPF) [18].
Moreover, for the maneuvering target tracking problem, many particle filters have been proposed
based on Markovian switching systems [19-22]. Boers et al. [19] proposed a interacting multiple model
particle filter algorithm (IMM-PF) by combining a mixture of the interacting multiple model (IMM)
filter with the particle filter. For the maneuvering target tracking problem in bearings-only wireless
sensor networks (WSNs), Atiyeh et al. [20] proposed a interacting multiple model particle filter to
estimate the state variables of the moving target. Li et al. [21] proposed a Rao-Blackwellized particle
filter based on multiple model algorithm for maneuvering target tracking in a cluttered environment.
Yu et al. [22] proposed a distributed particle filter by incorporating the curvature of the sensing region
in the measurement model for bearings-only tracking of a moving target. In their method, to reduce the
communication load, the transformation of the observations is approximated as Gaussian distribution,
which the variance can be approximated using the average variance over all particles. However, abrupt
target maneuvers, modeling uncertainty and the high nonlinearity of model function remain to be
unsolved issues.

For achieving a successful tracking performance, the aforementioned methods require accurate
motion models and adaptive nonlinear filtering methods. However, particularly in maneuvering target
tracking, accurate motion modeling is almost impossible, and an adaptive nonlinear filtering needs to
be used to handle abrupt maneuver of target. More importantly, these two challenges are not separate
problems and should be considered simultaneously. In previous research [23,24], Ehsan et al. [23]
proposed a new bearing-only bias estimation model based on triangulation using the associated
measurement reports (AMR) or local bearing-only tracks from different sensor pairs for distributed
tracking systems. Li et al. [24] proposed novel truncated quadrature Kalman filtering (TQKF) based on
the Gauss-Hermite quadrature rule for bearings-only maneuvering target tracking. In order to avoid
the requirement of the measurement function being bijective, the modified prior PDF of the TQKF
algorithm can be approximately computed by the least square estimation approach. However, the
most important limitation of the TQKEF is the expensive computational burden, and it cannot be used
for real time target tracking.

In this paper, novel auxiliary truncated Kalman filtering (ATUKF) is proposed for bearings-only
maneuvering target tracking. Unlike the TUKF algorithm, to overcome the modeling uncertainty,
a modified prior probability density function (PDF) is defined based on several auxiliary target
characteristics and current measurements, which can effectively minimize the variance of the prior
distribution. Moreover, to achieve the requirement of bijective measurement function, the statistical
linear regression based on the unscented transformation is used to linearize the nonlinear measurement
function, and the modified prior PDF is approximated as Gaussian. Finally, the posterior PDF can be
approximately estimated based on the prior PDF and the modified prior PDF, and a practical algorithm
is developed for bearings-only target tracking systems.
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The rest of the paper is organized as follows. The proposed algorithm is given in Section 2.
In Section 3, we provide the experimental results. Finally, some conclusions are given in Section 4.

2. Proposed Algorithm

In order to track the maneuvering target, accurate motion modeling and nonlinear filtering are
two challenging problems that should not be separated. However, most research on maneuvering
tracking investigates these problems separately. In this section, in the bearings-only maneuvering
target tracking, novel auxiliary truncated unscented Kalman filtering is proposed. In Section 2.1, the
joint prior distribution is approximately constructed. In Section 2.2, in order to track the bearings-only
maneuvering target, the modified prior PDF is approximated based on statistical linear regression by
introducing the target spatio-temporal information. Section 2.3 summarizes the proposed algorithm.

2.1. Joint Prior Distribution

Suppose the target dynamic system can be written as:
Xn = f(xp-1) + mu e

Zn = h(xn) +en (2)

where z,;, € R" denotes the observation vector at time 7, x, € R" denotes the target state vector
at time n, and f(-) and h(-) denote the nonlinear state transition function and observation function,
respectively.

Suppose that r, denotes the set of target characteristics including ¢ independent components
rp = {rhr2,. .15}, In order to derive the proposed algorithm, there are two basic hypotheses,
firstly, that the nonlinear function h,(+) in (2) is a bijective, continuous function; and secondly, that the
probability density function of the measurement noise ¢, has bounded, connected support.

Pey (Un) =0,en &1, C R 3)

where I, is an n,-dimensional measurement validation region. Therefore, according to the second
assumption, the measurement likelihood function can be defined as follows:

p(zulxn, 1) = pe, (20 — hn(xn))?(le,, (zn = hu(xn)) 4)
p(zu|Xn, n) = Pe,(zn — hn(xn))?(lx,, (z,,)(xn) (@)
Iy, (zn) = {xn|xn =h, Nz —en),en € Ien} (6)

where xj, (-) is the indicator function on the subset I,,. Therefore, the state posterior PDF can be
defined as:

_ PGalx0mz10-111:0) P X120 1,210 - 1,710 P (1012001, 7101)
X021, 71- =
P( OAn‘ 1‘”’ 1'") p(zn/rn‘z1:ﬂ 1/"]:” ])
e (=) Xpy (z) )P (o [ ¥n 1 211 1) P (11 [ 2101710 1) 7)

P rklzrk—114-1)
x p(Z” |xn)P1 (Xn ‘an Xn—1, 71:n)p(x1:n—1 |Zlirl*1/ rl:nfl)

pl(xn

Zn, Xn—1,71m) = p(%n xnflleznfl/rl:n)Xlx,, (z,,)(xn)/sl ®)

where ¢; is a constant. From Equation (8), we can see that the modified prior PDF is defined by
incorporating the current measurement information z,. According to the conclusions in [11], if the
measurement noise is informative, the modified prior p;(+) is not only the minimum variance of the
prior po(-), but also can improve the algorithm’s performance. Further, to deal with the uncertainty
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of motion models, the joint prior distribution p(x,|X.y—1,21:4,71:n) of the proposed algorithm can be
defined as follows:

P(xn|x0:n—1/21:n/7’1:n) = “nPl(xn‘Zn/ xnflrrl:n) + (1 —“n)PO(xn‘Xn—lrzl:n—l) (9)
= “np(xn ‘xnfl/ rl:n)XIX” (zn) (xn) + (1 - lxn)Po(Xn ‘xnflr Zl:nfl)

where a,, € [0,1] is a proper parameter. To approximately calculate the mean and covariance of the

posterior distribution, we apply a UKF update to po(-) (UKF1), and another UKF update to p;(-)

(UKF2). Finally, the posterior estimates can be approximately calculated through merging both results

obtained by UKF1 and UKF2.

2.2. Approximation of p1(-)

In the subsection, our object is to approximate the modified prior PDF p;(-) as Gaussian. For this
reason, we write the state vector as x, = [anT, bnT} T, where a,, € R" denotes the position components
of x, by € N denotes the velocity components of x,,, and ny = 1, + n,. The derivation of the mean
£p,,n and covariance Py, , of pi(-) is the same as in the truncated unscented Kalman filter (TUKF) [11],
which can be shown as follows:

. Hay 1 Y1 Yaba1
b3 , — un ,P , — nr T nUn, (10)
o { b, 1 } e (e 1) Lb,1
o T
Zﬂml =H, 1Rn (Hn 1) (11)

where pup, 1, Zp,1, Za,p,1 can be found in [11]. p,, 1 denotes the estimated mean of state a,, R,
denotes the measurement noise covariance, and H;; ! = [V, 1} (a,)] T|a”: tay1 18 the Jacobian of nl(an)
evaluated at 14, 1.

Now, how to calculate the estimated mean y,, 1 remains a key problem to be solved. For the
passive sensor tracking system, the modeling of target dynamic system is a challenging problem when
the target maneuvers, and some auxiliary target characteristics need to be used to deal with arbitrary
changes in motion models. To achieve a high tracking performance, a statistical linear regression
method (SLR) [25] is proposed to estimate the state mean p,, 1.

Firstly, to evaluate the state mean ji,, 1, three approximations are used: (S1) the prior PDF p(a,)
is constant over the connected region I,, (z,); (52) the nonlinear function /(-) can be locally linearized;
and (S3) the measurement noise satisfies uniform distribution e, ~ Uj, in the connected region I,,.
According to S2, the nonlinear measurement Equation (2) can be approximated as a linear estimator of
Zn, 2, such that:

Zp = hpan +dy (12)

where i, denotes a linear measurement matrix, and d,, denotes a noise vector, which are derived by
minimizing the objective function defined as follows:

{hn,d,} = argminE (T, T7,) (13)

where T, is the linearization error, T, = z,; — 2.
Substituting 7, into (13), and setting the partial derivative of the objective function with d;, to zero,

(=2)E(zn — hpay —dy) =0

14
¢>>dnzzn_hnan ( )

where @, = E(x,) and z, = E(z,). Substituting d,, into (13)

= [(Zn *Zn) - hn(an - En)}T[(Zn - Zn) - ﬁn(xn *yn)]
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Then, setting the gradient with respect to /i, to zero,

(—2)E{[(zn —Zu) — hu(an —an)][zu