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Editorial

Perspectives and Advancements on “Land Use and Land Cover
Mapping in a Changing World”
Giuseppe Pulighe

CREA-Research Centre for Agricultural Policies and Bioeconomy, Via Barberini 36, 00187 Rome, Italy;
giuseppe.pulighe@crea.gov.it

1. Introduction

It is increasingly recognized that land use and land cover changes driven by anthro-
pogenic pressures are increasingly impacting terrestrial and aquatic ecosystems and their
services, human society, and human livelihoods and well-being. Mapping and monitoring
land use and land cover change dynamics are essential for preserving the environment and
natural capital and ensuring the sustainability of ecosystem services.

In recent years, the rise of new geospatial technologies around computational tech-
niques and the Internet brought forth a revolution in mapping creation, visualization, and
dissemination, bringing new prospects for land mapping and monitoring and enabling
near-real-time and cost-effective analysis at multiple scales.

Among others, salient mapping approaches at multiple scales were applied to in-
vestigate land use and land cover changes seeking to provide answers in the spheres of
human-dominated landscapes and land-related issues (i.e., to explore, manage, organize,
or predict land changes). Examples include automated cropland mapping [1], glacier
inventory [2], flood inundation [3], mapping forest harvesting [4], and mapping urban
agriculture at high-resolution [5].

This Special Issue contains 12 original papers covering various issues related to land
use and land use change in several parts of the world (see references), with the purpose to
provide a forum to exchange ideas and progress in related areas. Research topics include
land use targets, dynamic modelling and mapping using satellite images, pressures from
energy production, deforestation, impacts on ecosystem services, aboveground biomass
evaluation, as well as investigations on libraries of legends and classification systems.

2. Key Findings and Insights

Measuring and mapping aboveground biomass is a critical component for carbon
stock inventories and quantification (Appendix A). In the first paper of this Special Issue,
Amara et al., assessed aboveground biomass distribution in a multi-use savannah landscape
in southeastern Kenya using airborne laser scanning data, field surveys, and Sentinel-2
satellite images in the Google Earth Engine. Their study evidenced that fences and conser-
vation areas can lead to reduced biomass stocks, which is a vital role of savannahs. The
paper by Žoncová et al. used CORINE land cover data for mapping extent and character
of land cover changes in the Low Tatras National Park in Slovakia over the last 30 years
(1990–2018). This approach allowed them to exploit the potentials of CORINE data to
evaluate the long-term landscape changes in protected areas.

Similarly, the study by Gu et al., analyzed land use and land cover dynamics and their
impacts on ecosystem services in central Himalaya using the Google Earth Engine between
2000 and 2005. This study highlighted that the Google Earth Engine is a valuable source of
data to evaluate the effects of land use and land cover changes on ecosystem service values.

Monitoring the intensity of land use and urban expansion is of great importance
for environmental policies. Kim et al. determined changes in land coverage for 31 satel-
lite cities surrounding Seoul using land cover maps from 1988 and 2018 and employing

1
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morphological spatial pattern analysis and cluster analysis. The authors suggested that
their results can serve for establishing differentiated environmental policies at the local
level. The paper by Nedd et al., performed a literature review to scrutinize and evaluate
land and land cover definitions and classification systems at the national, regional, and
global scales, highlighting the most important challenges, discrepancies, and knowledge
gaps. The methodology proposed by the authors will aid the researcher in analyzing the
information required in land us and land cover studies.

Deforestation and forest degradation is one of the main environmental problems
in Africa. The paper by Kabuanga et al. evaluated deforestation in the Ituri-Epulu-Aru
Landscape (Democratic Republic of the Congo) analyzing historical changes and future
trajectories through the diachronic analysis of satellite images (2003–2010–2014–2016) and
using the DINAMICA EGO platform. The study shows that observed deforestation rates
remain relatively low compared to other regions, but forests are shrinking as a result of
the unsustainable land use pattern. In their Perspective article, Jand and Woo reaffirm
the importance of native trees and their potential for carbon sequestration and mitigation
of greenhouse gas emissions. The study highlighted the importance of native trees for
providing vital ecosystem services.

Renewable energies can play an important rule toward carbon neutrality. Nevertheless,
they can also impact on landscape integrity. Cole et al. assessed landscape dynamics in the
United Kingdom driven by pressures from energy production and forests, analyzing change
patterns and land cover transitions using CORINE data (years 2006–2018). The authors
reported that there has been an increase in the rate of change attributed to renewable
energy infrastructure.

Remote sensing images can be efficiently used for multitemporal analysis of changes
in forest ecosystems. De Oliveira et al., used high-resolution Landsat images to carry out a
multitemporal analysis of changes in land use and land cover in the municipality of Floresta
in Pernambuco State in Brazil. The authors analyzed impact of changes in the study area,
showing a reduction in the forest and agricultural classes and an increase for exposed-soil
class. In another study, Nicolau and Condessa assessed net land take in Portugal between
2007 and 201 by using the Land and Ecosystem Accounting (LEAC) system developed by
the European Environment Agency. The study shows that the land use rate amounted to
7.2 ha/day.

The paper by Mushtaq et al., developed an International online catalogue for land
cover legend, named Land Cover Legend Registry. This is an international platform
that can contribute to development of harmonized land cover legends and datasets at
various levels globally. In the final paper, Allan et al. performed a review on the drivers
of land use and land cover change in urban areas (2012 to 2022). The study shows that
transportation availability was the most frequent factor impacting land use and land cover
change processes.

3. Conclusions

A growing body of literature has shown that land use and land cover change can
impact the global ecosystem, shaping the future sustainability of natural resources. Re-
search findings, challenges, and key insights that emerged in the cutting-edge studies
in this Special Issue contribute to the literature by exploiting the full potential of land
mapping in understanding the complex nexus of dynamics among land ecosystems, use of
resources, and anthropogenic interaction with the land. We hope that the readers of the
Land journal find these articles of interest and that they may help in the development of
further applications of land use and land cover mapping.

Funding: This research received no external funding.

Acknowledgments: The author wish to thank Land for hosting this Special Issue on “Land Use and
land Cover Mapping in a Changing World”; those that submitted papers to this issue; and all the
anonymous reviewers for their thoughtful insights and comments.
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Driving Forces behind Land Use and Land Cover Change:
A Systematic and Bibliometric Review
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Abstract: This paper is based on reviewing the literature in the past 10 years on the drivers of
land use and land cover change (LULCC) in urban areas. It combines quantitative and qualitative
keyword analysis of papers drawn out from the Scopus database. The analysis is primarily based
on the number of mentions of keywords in the titles and abstracts of the papers, in addition to the
number of keywords appearing in the papers. On the basis of content analysis, a three-level structural
categorization of the driving factors was developed. These are presented in a schematic diagram,
where the contextual factors are shown as influencing economic and financial factors and policy and
regulation, which in turn influences transportation investments and availability, and industrial and
residential location choices. Transportation availability was seen as the most frequent factor identified
in the literature. This research contends that LULCC is mostly determined by interactions among
these four themes in a three-level structure, and on this basis, a model is presented that illustrates
LULCC drivers based on local circumstances across the globe.

Keywords: urban growth; land use change; land cover change; driving forces

1. Introduction

Land Use and Land Cover Change (LULCC) is the most prevalent and dynamic
landscape phenomena on the surface of the planet, and it plays a key role in reflecting
regional and global environmental changes. Urban regions, in particular, have seen the
most extreme alterations and transitions between urban vegetation, built land, water bodies,
and other forms of land [1]. Hence, urbanized places reflect the most dramatic changes
in LULCC [2]. When the aim is to optimize land use patterns for urban development, it
is critical to properly understand the factors that drive urban expansion. Because urban
expansion is a complex spatiotemporal activity, it is influenced by a variety of factors
including society, economy, geography, and policy [3]. Some researchers have considered
demographic factors such as population increase [4–7], population density [8–10] and
migration from rural to urban areas to be key drivers in LULCC [11–13].

Other researchers have identified economic factors as critically important in the ex-
pansion of urban areas such as increase of income [6,14–16], gross domestic product per
capita [10,17–19] and foreign direct investment [20–23]. Literature has also focused on
geographical factors such as slope [24–27], elevation [1,10,28,29], and distance from wa-
ter bodies [16,18,30–34] as key drivers. In this regard, the impacts of geomorphological
landscape [35], environmental and natural risks such as volcanoes [36], flood, subsidence,
unstable soils and rockfalls [37–39] were considered. On the policy side, many scholars
have placed emphasis on the fact that institutional factors such as local government pol-
icy [10,21,40,41], rules and regulations [7,22,42,43] and land ownership change [11,44–48]
have impacts on urban growth processes.
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Although many empirical studies show that urban growth is evolving under the
influence of varied and diverse factors [1,49–52] less research has been conducted on
the systematic classification and explanation of motivating factors affecting LULCC of
urban areas [16,53]. Hence, related work of albeit of secondary interest in related journals,
scholars’ specialties (including their theoretical, methodological and temporal dimension)
have tended to be overlooked.

The goal of this article is to offer the foundation for a comprehensive examination
and systematic analysis of chosen studies in order to determine the drivers of LUCC. To
do this, the primary issue is, what are the driving factors influencing land use change and
land cover during the urban development process? In this context, notable publications
published over the past decade (i.e., from 2012 to 2022) were investigated. The selected
publications evaluated in this study were both quantitative and qualitative. The study
focuses on three key indicators at the quantitative level: study timeline, primary concepts
and methods/tools, and journal characteristics. It is subsequently followed by two qualita-
tive analyses: the identification and classification of methodological structure, as well as
the identification and classification of factors affecting LUCC.

2. Materials and Methods

This article is a bibliometric and systematic review, with the aim of identifying the
drivers LULCC from 2012 to 2022. The systematic review process was conducted in
four steps: collecting, assessing, extracting, and explaining the data (thematic synthesis).

In the first step (collecting the data), attention was paid to academic papers published
in English from 2012 to 2022 selected from the prominent scientific Scopus database which
contain a significant number of contributions in the fields of urban development, urbaniza-
tion, urban growth, land use and land cover change. In order to ensure homogeneity and
consistency, conference papers, book chapters and dissertations and grey literature were
excluded from this process. To address the major research question and find peer-reviewed
articles published in Scopus, several keywords were then queried using the following
components of search formula in the title, abstract or keywords sections (Table 1).

Table 1. Components of search formula.

Item Sub-Item Details

Keywords

Main keywords

Land Use Change, Land Cover Change,
Land Use and Land Cover Change,

Land Use/Land Cover Change,
Land Use/Land Cover, Land Use,

Land Cover

Supplemented Key-Words

Urban Growth, Urbanization,
Urban Development, Urban Area,

Urban Planning, Urban Sprawl,
Urban Expansion,

Expansion, Land Use Planning, Planning

Operators “OR”, “AND”
Time period 2012–2022
Language English
Document type Journal paper

Following the collection of papers, the second phase (document assessment) was
followed by five steps (Figure 1). The initial collection of 1541 studies based on the searched
database was reduced to 1,121 after duplications were removed. By eliminating ambiguous
or irrelevant titles, the data set was reduced to 883 records. Subsequently, 432 records were
excluded through abstract screening yielding 451 pre-final records. These records were
centered on LULCC, providing the basis for an additional bibliometric study. The principal
eligibility criterion (encompassing the driving reasons for LULCC) was used to generate
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the final data set list of research encompassing 110 articles for a full-text content analysis in
order to develop the study’s synthesizing themes and conceptual model. The data was last
updated on 20 June 2022.
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Figure 1. Flowchart for retrieval of studies.

To review all of the selected publications, both quantitative and qualitative method-
ologies were used. In the case of the former, the following analyses were carried out using
the VOSviewer (version 1.6.15), developed by Leiden University, The Netherlands, 2022:

1. Study timeline: number of papers
2. The co-occurrence of fundamental concepts and methodological rules.
3. Journal specialisation and distribution: publications, citations, average citation/publication

In terms of content analysis, the full-texts contained were fed into MAXQDA (version
12.3.3), by VERBI GmbH, Berlin, Germany 2022. Using this method, the codes were
taken from the text of the studies (first-order coding) and then re-coded, resulting in the
formulation of the ideas (second-order coding). Finally, during the third-order coding
procedure, the concepts were synthesised and categories (i.e., theme and sub-theme) were
formed. As a result, the evaluation includes the following two key analyses:

1. Methodological approach: Type of methods, data collection, data analysis, and analyt-
ical software.

2. Theme of studies: Thematic framework, dimensions and frequency.

3. Results

Several approaches, such as citation analysis and publication count by authors, in-
stitutions, universities, or nations, are commonly employed to do this [54]. In this study,
a larger sample of articles (n = 451) was assessed using VOSviewer for the number of
papers published each year, occurrences of main codes (concepts), methodological codes,
and source journals.
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3.1. Timeline of Studies

The number of papers published annually varied from 2012 to 2022, but it witnessed
a rise as of 2016 with 48 articles, and reached a peak in 2019 with 60 published articles.
Figure 2 depicts the annual trends in publications on this topic based on a sample of
451 articles gathered on 25 June 2022.
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3.2. Primary Concept and Methodological Codes

The studies selected by abstract screening included primary codes, as illustrated in the
Figure 3 below. According to this, “urban growth”, “urbanization”, “urban expansions”,
“management”, “region”, “land”, “environment” were among major codes, in other words,
primary driving factors behind LULCC. They were thematically synthesized in the next
stage, qualitative meta synthesis, resulting in the study themes and sub-themes.

Land 2022, 11, x FOR PEER REVIEW 4 of 27 
 

3.1. Timeline of Studies 

The number of papers published annually varied from 2012 to 2022, but it witnessed 

a rise as of 2016 with 53 articles, and reached a peak in 2019 with 72 published articles. 

Figure 2 depicts the annual trends in publications on this topic based on a sample of 451 

articles gathered on 25 June 2022. 

 

 

Figure 2. Publication by year (2012–2022). 

3.2. Primary Concept and Methodological Codes 

The studies selected by abstract screening included primary codes, as illustrated in 

the Figure 3 below. According to this, “urban growth”, “urbanization”, “urban expan-

sions”, “management”, “region”, “land”, “environment” were among major codes, in 

other words, primary driving factors behind LULCC. They were thematically synthesized 

in the next stage, qualitative meta synthesis, resulting in the study themes and sub-

themes. 

 

29
24

32
27

48 50
54

60
54

46

27

0

20

40

60

80

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Frequency

Figure 3. Primary codes (factors driving LULCC) found in the 451 selected records by abstract.
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Finding the methodological codes given in the titles and abstracts of the papers
was another source of analysis. Figure 4 depicts this, indicating that modelling, scenario
building, modeling, mapping, and so on are among the most important methodologies
and tools. They cannot, however, represent the methodological approach and instruments
utilized in the focused research on variables causing LULCC, which were subsequently
produced in the first part of the meta synthesis section.
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3.3. Leading Journals

According to Dzikowski [55], a journal will have more impact if a greater number
of papers are published in it and the more the number of citations it possesses. On this,
the number of publications and citations as well as average citation per publication of
all journals were used to analyze the source journals. The results of top-ranked journals
portrayed that the journals of Computers, Environment and Urban Systems, Ecological Indicators,
Environmental Monitoring and Assessment and Land Use Policy were among the top-three
journal with the highest record of publications in the field of study (Table 2).

Table 2. Top-eight source journals, their number of publications and citations.

Journal Title Number of Papers Number of
Citations Citation per Paper

Computers, Environment and Urban Systems 34 381 11.21
Ecological Indicators 22 458 20.82
Environmental Monitoring and Assessment 22 227 10.32
Land Use Policy 22 621 28.23
Landscape and Urban Planning 19 745 39.21
Remote Sensing 17 241 14.18
Science of the Total Environment 14 992 70.86
Sustainability 12 593 49.42

3.4. Methodological Approach

Another source of analysis was locating the methodological codes listed in the titles
and abstracts of the studies. Figure 4 demonstrates this, revealing that among the most
essential approaches and tools are modelling, scenario building, modelling, mapping, and
so on. They cannot, however, represent the methodological approach and instruments
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utilized in the focused research on factors that cause LULCC, which was created later in
the first part of the meta synthesis section.

According to the findings, 68 studies (62 percent) of the total number of selected papers
were done quantitatively, 7 studies (6 percent) qualitatively, and 35 studies (32 percent)
utilising the combined method. In relation to data collection, the majority of research
(80 studies, 73 percent of total chosen papers) utilized primary data, 29 studies (26 percent)
relied on secondary data sources, and just one study applied mixed data collecting. In terms
of data analysis, their approach was based on an analytical technique consistent with the
study techniques used. The majority of the time, statistical analysis, geographical analysis,
descriptive analysis, and qualitative content analysis were used. The qualitative methods
mostly include: focus group; interview; policy review; case study research and content
analysis. Table 3 outlines the analytical tools used in the chosen LULCC-centered papers.

Table 3. Methodological Analysis of Selected Articles in LULCC.

Research Approach Number and Percentage
of Papers

Data
Collection Method Data Analysis Method Analytical Tools/Software

(Some Examples)

Quantitative 68 (62%) Primary data

Spatial analysis;
Spatiotemporal analysis &

Simulation

-Cellular automata, SLUETH: [34]
-Imperviousness Change Analysis Tool

(I-CAT) and MCE: [28]
-Satellite Image analysis: [40,56,57]

Statistical analysis -Descriptive comparison: [13,58]
- Regression analysis: [20,46,59,60]

Mixed (Spatial analysis,
Statistical analysis &
Descriptive analysis)

-Spatial auto-correlation: [61]
-Scenario-building: [62]

-IDRISI image analyser: [63]
-MCE (ANP): [64]

-Cellular automata [65,66]

Qualitative 7 (6%)

Primary or Descriptive analysis -Narrative: [67]

Secondary data -Case study research: [48]

Mixed (Primary and
secondary data) Qualitative content analysis

-Focus group discussion (FGD),
Questionnaire survey and Interview: [47,68]

-Systematic review: [16]

Mixed 35 (32%)

Primary or secondary data Spatial analysis and Statistical
analysis

-Satellite image analysis and Regression
analysis: Policy review [10,69]

Spatial analysis, Statistical
analysis & Descriptive

analysis

-Policy-analysis: [70]
-Mixed method [71]

Mixed (Primary and
secondary data) Spatial analysis -Principal component analysis (PCA):

Policy review [5]

Mixed (Spatial analysis,
Statistical analysis &
Descriptive analysis)

-Cross-tabulation: [72]
-Spatial Statistics and Logit Regression:

Policy review [73]

3.5. The Study Themes: Driving Factors of LULCC

Table 4 displays the core result of the systematic review including the factors driving
LULCC, categorized into themes, sub-themes, codes (factors), and the share of repeating
the codes within the papers investigated. A total of 64 final factors, 11 sub-themes and four
main themes titled Urban growth Factors, Policy and Regulation Factors, Economic and Financial
Factors, and Contextual Factors were acquired hierarchically (Figure 5).
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Table 4. Factors driving land use and land cover change process.

Theme Sub-Theme Code (Factor) Sample Studies Frequency Share

Urban
growth
factors

Transport in-
frastructure

Airport Kamh et al. (2012); Banzhaf et al. (2013); Nassar et al. (2014); Chen et al. (2018);
Essien & Cyrus (2019) 5 4.55

Bridge Geymen (2013); Cao et al. (2021); Chu et al. (2021); Jawarneh et al. (2015); Han & Jia (2017) 5 4.55
High-speed rail Zhang et al. (2020) 1 0.91

Highway

Feng & Wang (2021); Hanlon et al. (2012); Sandhya Kiran & Joshi (2013); Geymen
(2013); Nassar et al. (2014); Jawarneh et al. (2015); Kong et al. (2017); Chen et al.
(2018); Wang & Zhou (2018); Colsaet et al. (2018); Nadafianshahamabadi et al. (2021);
Meyer & Früh-Müller (2020); Chu et al. (2021); Pratama et al. (2022); Schumacher
et al. (2019); Inouye et al. (2015); Wu et al. (2021)

17 15.47

Light rail transit Hurst, et al. (2014); Wang, et al. (2020); Wu, et al. (2021); Moghadam et al. (2018) 3 3.64

Railway Feng & Wang (2021); Chu et al. (2021); Wang & Zhou, (2018); Chen et al. (2018); Kong
et al. (2017); Jawameh et al. (2015); Zhang & Xu (2015); Li et al. (2014); Zhao & Shen (2019) 9 8.19

Road network

Nassar et al. (2014); Chen et al. (2018); Colsaet et al. (2018); McGarigal et al. (2018);
Nadafianshahamabadi et al. (2021); Islam et al. (2021); Liu et al. (2020); Kasraian et al.
(2020); Tavares et al. (2019); Sunde et al. (2014); Kontgis et al. (2014) Li et al. (2014);
Fitawok et al. (2020); Bajracharya et al. (2020); Shafizadeh Moghadam & Helbich
(2013); Xu et al. (2013); Jawarneh et al. (2015); Gallardo & Martinezvega (2016); de la
Luz Hernández-Flores et al. (2017); Fen (2017); Kong et al. (2017); Essien & Cyrus
(2019); Schumacher et al. (2019); Daunt et al. (2021); Deslatte et al. (2022); Lal et al.
(2017); Inouye et al. (2015); Gerten et al. (2019); Ma, (2020); Leyk et al. (2020)

30 27.30

Subway and Subway
station Nassar et al. (2014); Feng & wang, (2021); Ahmad et al. (2016); Wu et al. (2021) 4 3.64

Traffic service Wenner & Thierstein (2021); Wu et al. (2021); Wang & Zhou (2018); Deng &
Srinivasan (2016) 4 3.64

Wharf Cao et al. (2021); Nassar et al. (2014); Daunt et al. (2021); Inouye et al. (2015) 4 3.64
Train Meyer & Früh-Müller (2020); Wu et al. (2021) 2 1.82

Industry

Technological
progress and

industrial
transformation

Din & Mak (2021); Cao et al. (2021); Dong et al. (2020); Liu et al. (2019); Dai et al.
(2018); Li et al. (2017); Kontgis et al. (2014); Nassar et al. (2014), Xu et al. (2013);
Hasan et al. (2019); Wang et al. (2018); Li et al. (2014); Jawarneh et al. (2015); Leyk
et al. (2020); Chu et al. (2021); Dou & Han (2021); Feng & Wang (2021); Tavares et al.
(2019); Sandhya Kiran & Joshi (2013); Kleemann et al. (2017); de la Luz
Hernández-Flores et al. (2017); Inouye et al. (2015)

22 20.02

Industrial parks/sites Cheng (2021), Kang et al. (2019), Zambon et al. (2019), Shin & Chae (2018), Han & Jia
(2017), Zhang & Xu (2015) 6 5.45

Factories Wu et al. (2021); Shin & Chae (2018); UI Din & Mak (2021) 3 2.73

Accessibility

Proximity to the
city/county/megacity

centre

Han & Jia (2017); Deng & Srinivasan (2016); Li et al. (2014); Lal et al. (2017); Wang &
Zhou (2018); Fitawok et al. (2020); Nguyen et al. (2018) 7 6.36

Commercial /leisure
centre/park

Gallardo & Martinezvega (2016); Chen et al. (2018); Kong et al. (2017); Bajracharya
et al. (2020); Han & Jia (2017); Wu et al. (2021) 6 5.45

Education and
research

Wu et al. (2021); Liu et al. (2020); Cao et al. (2021); Li et al. (2015); de la Luz
Hernández-Flores et al. (2017); Zhang & Xu, (2015) 6 5.45

Hotel Chen et al. (2018); Essien & Cyrus, (2019); Wu et al. (2021) 3 2.73
Neighbouring effect Luo et al. (2018) 1 0.91

Distance from
built-up areas Shafizadeh Moghadam & Helbich (2013); Xu et al. (2013) 2 1.82

Medical care de la Luz Hernández-Flores et al. (2017); 1 0/91
Accessibility to public

facilities Han & Jia (2017); Kong et al. (2017) 2 1.82

Residence
Constructing

residential
settlements

Meyer & Früh-Müller, (2020); Ponstingel (2020); Baj Racharya et al. (2020); Sandhya
Kiran & Joshi (2013) 4 3.64

Policy
and

regulation
factors

Urban/land
use policies

Administrative
division adjustment Feng & Wang (2021); Feng & Wang (2022) 2 1.82

Urban administrative
hierarchy Dong et al. (2020); Li et al. (2015) 2 1.82

Local government
policy

Xu et al. (2013); Nassar et al. (2014); Kontgis et al. (2014); Xu et al. (2015); Luo et al.
(2018); Cheng, (2021); Meyer & Früh-Müller (2020); Ponstingel (2020); Wang et al.
(2018); Wadduwage (2018); Deslatte et al. (2022); Dou & Han (2021); Dai et al. (2018);
Yue et al. (2014); Cao et al. (2021); Kuang, (2020); Essien & Cyrus (2019); Gerten et al.
(2019); Chen et al. (2018); Kong et al. (2012); Kleemann et al. (2017); Li et al. (2015)

22 20.02

Private enterprise Hamnett (2020); Soria et al. (2020) 2 1.82
User (property owner,

developers, real
estate companies)

Deslatte et al. (2022); Fitawok et al. (2020); Soria et al. (2020); Colsaet et al. (2018);
Zhang et al. (2015); Nassar et al. (2014) 6 5.45

Changing land
ownership

Kleemann et al. (2017); Schumacher et al. (2019); Whiteside (2020); De Tong et al.
(2018); Adam (2019); Zhang et al. (2015) 6 5.45

Zoning Colsaet et al. (2018); McGarigal et al. (2018) 2 1.82
Land use policies Daunt et al. (2021); Deslatte et al. (2022) 2 1.82
Developable land Deslatte et al. (2022); Deng & Srinivasan (2016) 2 1.82

Regulations

Impact property tax Bimonte & Stabile (2015); Deslatte et al. (2022); Colsaet et al. (2018); Kontgis et al. (2014) 4 3.64
Municipalities

regulation Deslatte et al. (2022) 1 0.91

Urban planning
regulation

Feng & Wang (2022); Fitawok et al. (2020); Dai et al. (2018); Yue et al. (2014); Banzhaf
et al. (2013); Kong et al. (2012); Kong et al. (2017) 7 6.36

Regulation of
residential Land use Tiitu (2018); Daunt et al. (2021); Colsaet et al. (2018) 3 2.73
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Table 4. Cont.

Theme Sub-Theme Code (Factor) Sample Studies Frequency Share

Economic
and

Financial
factors

Investment
Foreign direct

investment
Li et al. (2015); Kontgis et al. (2014); Dai et al. (2018); Asabere et al. (2020); Dou &
Han (2021) 5 4.55

Investment attraction Dou & Han (2021); Deslatte et al. (2022); Kuang (2020); Chen et al. (2018); Admaus
(2015) 5 4.55

Urban
Economy

Market
power/incentives Hamnett (2020); Chen et al. (2018); 2 1.82

Land market Simwanda et al. (2020); Yue et al. (2014) 2 1.82
Land price Magliocca et al. (2015); Hasan et al. (2019) 2 1.82
Land price
distribution Hu et al. (2012); Hanlon et al. (2012) 2 1.82

Housing price Magliocca et al. (2015); Daunt et al. (2021) 2 1.82

Tourism development Kamh et al. (2012); Sang et al. (2019); Colsaet et al. (2018); Nassar et al. (2014); Chu
et al. (2021); Daunt et al. (2021) 6 5.46

Economic
opportunities (trade,

industrial)

Simwanda et al. (2020); Tavares et al. (2019); Sandhya Kiran & Joshi (2013); Nguyen
et al. (2018) 4 3.64

Contextual
factors

Demographic

Rural population
migration

Kleemann et al. (2017); Ul Din & Mak (2021); Cao et al. (2021); Islam et al. (2021);
Asabere et al. (2020); Xu et al. (2020); Gerten et al. (2019); Essien & Cyrus (2019);
Simwanda et al. (2020); Fitawok et al. (2020)

10 9.1

Labor migration Shin & Chae, (2018); Essien & Cyrus (2019); Kleemann et al. (2017); Dai et al. (2018);
Simwanda et al. (2020); Nassar et al. (2014); Sang et al. (2019); Azhdari et al. (2019) 7 6.36

Internal migration Colsaet et al. (2018); Kang et al. (2019); Liu et al. (2019); Jawarneh. et al. (2015); Skog
& Steinnes (2016); Kamh et al. (2012), Abulibdeh et al. (2019). 6 5.45

Increase in urban
population

Li et al. (2022); Dou & Han (2022); Daunt et al. (2021); Din & Mak (2021); Cao et al.
(2021); Leyk et al. (2020); Xu et al. (2020); Bajracharya et al. (2020); Fitawok et al.
(2020); Gerten et al. (2019); Tavares et al. (2019); Luo et al. (2018); Kleemann et al.
(2017); Skog & Steinnes (2016); Sandhya Kiran & Joshi (2013); Banzhaf et al. (2013); Li
et al. (2014); Nassar et al. (2014); Sunde et al. (2014); Zhang & Xu (2015); Lal et al.
(2017); de la Luz Hernández-Flores et al. (2017); Essien & Cyrus (2019); Essien &
Cyrus (2018); Tiitu (2018); Jawarneh et al. (2015); Kamh et al. (2012); Colsaet et al.
(2018)

28 25.48

Population density Banzhaf et al. (2013); Lal et al. (2017); de la Luz Hernández-Flores et al. (2017); Xu
et al. (2013); Liu et al. (2020); Meyer & Früh-Müller (2020) 6 5.45

Socio-
economic
features

Lifestyle Kleemann et al. (2017) 1 0.91

Gross Domestic
Production (GDP)

Xu et al. (2013); Jiang et al. (2013); Li et al. (2014); Gong et al. (2014); Luo et al. (2018);
Colsaet et al. (2018); Liu et al. (2019); Hasan et al. (2019); Dong et al. (2020); Kuang,
(2020); Cao et al. (2021); Liu et al. (2020); Chu et al. (2021); Dou & Han (2021); Ul Din
& Mak (2021)

15 13.65

Increased income Hasan et al. (2019); Ponstingel (2020); Colsaet et al. (2018) 3 2.73
Economic down-

turn/unemployment
rate

Meyer & Früh-Müller (2020); Tomao et al. (2021); Salvati (2019); Kang et al. (2019) 4 3.64

Environment
and natural
resources

Slope

Kamh et al. (2012); Shafizadeh Moghadam & Helbich (2013); Xu et al. (2013); Sunde
et al. (2014); Han & Jia (2017); Kong et al. (2017); Wadduwage (2018); Wang & Zhou
(2018); Colsaet et al. (2018); Liu et al. (2020); Fitawok et al. (2020); de la Luz
Hernández-Flores et al. (2017); Wu et al. (2021); Gerten et al. (2019); Jawarneh et al.
(2015)

15 13.65

Elevation Xu et al. (2013); Sunde et al. (2014); Han & Jia (2017); Wang & Zhou (2018); Liu et al.
(2020); Wu et al. (2021); Gerten et al. (2019); Jawarneh et al. (2015) 8 7.27

Climate Yan et al. (2013); Colsaet et al. (2018); Wang et al. (2018); Admaus (2015) 4 3.64

Geographical location Hasan et al. (2019); Dai et al. (2018); Ul Din & Mak (2021); Kamh et al. (2012);
Nguyen et al (2018) 5 4.55

Flood prone areas Jawarneh et al. (2015) 2 0.91
Sea shoreline Kamh et al. (2012); Leyk et al. (2020) 2 1.82

Distance from water
Han & Jia (2017); Feng (2017); Li et al. (2014); Shafizadeh Moghadam & Helbich
(2013); Kong et al. (2017); Sunde et al. (2014); Colsaet et al. (2018); Deslatte et al.
(2022); Leyk et al. (2020); Bajracharya et al. (2020)

10 9.09

Resource Ma, (2020) 1 0.91
Oil resource Li et al. (2014); Nassar et al. (2014); Daunt et al. (2021); Essien & Cyrus, (2019) 4 3.64

Mine Lal et al. (2017); de la Luz Hernández-Flores et al. (2017); Wu et al. (2021) 3 2.73
Ecosystem services Pan et al. (2021); Peng et al. (2021) 2 1.82
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4. Discussion
4.1. The Interacting Model

Apart from the driving factors identified above, the consequences determined the
frequency of factors among the selected studies. In total, they referred to different terms
373 times. Accordingly, urban growth factors- with about 40% of the total references—account
for more than double the number of references to policy and regulation factors and a little
more than contextual factors. With regard to the sub-theme level, the most frequently
cited items are transport infrastructure (an urban growth factors), by a considerable margin,
and then demographic (a contextual factor) with about 23% and 15% of the total references,
respectively. Accessibility and industry subthemes in the urban growth theme are similar
with socio-economic (a contextual factor), in terms of the number of references. This is also the
case for environment subtheme (a contextual factor) and urban/land use policies, as the most
frequent cited subtheme in policy and regulation factors. Figure 5 schematically portrays the
extent to which themes and sub-themes are frequent by proportionally sized squares.

Beyond theme synthesis and frequency computation, the results expanded on the
relationships between driving elements. This helps in understanding inter-factor processes
and side effects, which are highly interdependent. Using placement, level grouping, and
arrows, the picture above reveals complicated links between analytical categories (i.e.,
themes and sub-themes). They may be studied in a three-level interaction on this basis. In
the center, direct, place-based urban development initiatives (i.e., building transportation
infrastructure, industries, housing, and services) create LULCC in urban areas. The second
tier drives urban processes through the creation of policies, regulations, and financing of
urban development projects, which is facilitated via various agents, entities and operational
processes. Finally, the outer tier, contextual, is perceived as a set of effective factors (i.e.,
demographic, socio-economic, environment) through which the process of LULCC of
an urban area is developed. In other words, these factors drive urban growth through
decisions on urban policies and other operations (i.e., the second level or immediate inner
circle in Figure 5). The theme and sub-themes, and factors (codes) are shown on Figure 6A
(top), and B (bottom) respectively.
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Figure 6. Components of the driving forces system causing LULCC: (A) themes and sub-themes
(top); (B) theme, sub-themes, and factors (codes) (bottom).
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4.2. Urban Growth Factors

These factors explore the driving forces of urban growth that contribute to changing
the spatial structure and LULC of urban areas. This theme includes physical factors and
growth of transportation infrastructure, industry, accessibility to services, and residential
development.

4.2.1. Transport Infrastructure

Transport infrastructure is the most frequently cited factor in LULCC, which refers
to the large effect of transportation development on a city spatial structure. In this way,
transportation networks such as subways [1,3,40,74], can provide a new access model for
the city and upset existing spatial equilibrium. Besides development potentials associated
with the operation of a subway system [74], the potential for development in the areas
around stations are affected by the presence of developable/vacant lands, plot size, urban
fabric and pedestrian access.

Another factor is the development potential of rapid bus transit (BRT), light-rail
transit [1,75–77], highspeed rail and stations, in value capturing and added value to adjacent
properties and spaces. This is related to the dual functions of transit stations, facilitating
accessibility to mass transit and multi-modal connections (i.e., as a transit node) [72], but
also characterized by mixed-use development, a diversity of architecture and planned
open spaces (i.e., transit place). These functional characteristics of transit stations are the
key reasons that they are able to be catalysts for increased urban development potential
within a larger urban system resulting in higher development intensity and providing
structure to urban form [73,78]. Accordingly, a railway station is not an ordinary station,
rather, it is a place where various activities take place [79,80] and can completely affect
the surrounding space and change the type and composition of established uses. Such
modifications can have a significant influence; for example, urban planning regulations and
codes allow some activities to take place in residential settings, transferring these activities
to these locations, freeing residential areas from everyday traffic disruptions. In general,
transportation networks not only facilitate the flow of commodities and passengers, but
they also have an impact on urban growth at different scales.

The review confirms that the quality of transit systems such as fast and low-cost rail
transportation networks can also play a role in driving urban growth [1,3,18,27,32,56,79,81,82]
which can change the growth of the city from a nuclear, centralized form to a multi-centre
city through with multiple (employment) centres. Improving the quality, type and speed of
access to various urban areas in a metropolitan characterized by distance between areas, is
a major driver determining the rate of urban growth over time.

The effect of access networks on urban/regional development is markedly different
for road networks, and ring roads when compared to mass transit networks [5,9,10,12,
13,16,18,21,24,26–29,31–33,44,57,63,66,83–92], or highway [1,3,16,24,27,32,40,44,57,66,69,79–
81,84,93–95]. Road networks are catalysts for residential, office, and commercial develop-
ment, by facilitating development opportunities through ubiquitous transport connections
and accessibility, being particularly suited to Road based transport modes such as motor
vehicles, cycling and walking.

Additional factors were identified in the transport infrastructure sub-theme, which
were also linked to physical-spatial change in urban areas. Wharfs, ferries, harbors, and
ports characterized with special functions and coordinates can increase the speed of urban
expansion in coastal cities [40,66,71,88]. Similarly, airports in convenient location contribute
to the growth of urban and complementary transport infrastructure, and occasionally, when
located near the core of a city can encourage substantial urban growth, that subsequently
affects urban form and structure across a metropolitan area [1,8,13,24,25,40,57]. In the
case of large-scale transport infrastructure projects, this can lead to the expansion of socio-
economic factors such as GDP, industries, increasing investments in real estate, and the
development of other complementary transport assets [27,30,71,81,94].
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4.2.2. Accessibility

This factor originally refers to the index of distance from other regions/destinations,
which has an impact on the development of urban areas. Proximity to the city cen-
tre [18,30,73,79,88,90,96] and distance from built-up areas [10,94], accessibility to public
facilities such as public transport stations [30,32], access to education and research cen-
tres (such as colleges, universities, school, etc.) [1,9,20,56,85], commercial/leisure centre/
park [1,30,56,68,96–98], hotel [1,13,57], neighboring effects [16,99], medical care e.g., hospi-
tal [1,9] are all considered to be crucial in driving urban growth. This factor refers not only
to the physical distance of one region/destination from another, but also to the functional
distance or distance to access a region/destination. Indeed, it relates to the tendency and
potential of a population to live, work, recreate and invest, which are determinants in
attracting development to a particular location. As in Burgess’s model of a centralized nu-
clear city, lower-income households move from the centre to the suburbs as their financial
capacity increases and they seek larger dwellings. Apart from the “location” factor, new
transportation networks and systems affect the distribution of residential development by
providing access to potential job opportunities. However, as the city grows, transportation
costs increase, either due to the expansion of the city, the increasing complexity of new
transport technologies, demands for increasing transport sophistication or due to the costs
of congestion. The role of transport in shaping urban form in the future is however uncer-
tain as the relevance of current forms of transport modes and infrastructure are challenged
with increasing uptake of digital technologies incorporating innovative mobility solutions
such as shared mobility, micro mobility, electric motor vehicles and autonomous vehicles
(including land based and aerial drones).

4.2.3. Industrial Development

The second most frequent factor in urban growth factors is industry. Accordingly,
industrial parks or sites [1,30,56,68,97,99], technological progress and industrial transfor-
mation [2,3,5,9–11,14,17–19,21,22,24,27,33,40,41,66,71,81,93,99–102], and factories [1,68,100],
were cited as influencing factors on changing the spatial structure and LULC of urban areas.

Indeed, this component has played a critical role in the development of under de-
veloped areas, because the factors of production in the industrial sector, as opposed to
agriculture, have higher potential for change with regard to environmental, regional, and
national circumstances. As a result, development centres are industry-based, particularly
in the global south and in places with limited agricultural development potential. Thus,
urban growth is a direct outcome of the Industrial Revolution and the establishment of the
capitalist economy, which occurred first in the developed world and later in the developing
world. Many new industrial cities in nineteenth-century England, for example, such as
Manchester and Birmingham, grew from a hamlet or a small town into a major metropolis.
Similarly, with industrialization, French cities increased rapidly in the second half of the
nineteenth century, a phenomenon mirrored in German cities.

4.2.4. Residential Development

The last effective factor of LULCC, relates to developing newly developed areas on the
urban periphery [15,34,80,93], subsequently resulting in a decentralized spatial structure
characterized by the formation of new sub-centres outside of the main urban core. This
factor relates to the functional complementarity among the various sub-centres of urban
areas and the main core and sub-centres, made possible by population migration from the
urban core to the outer suburbs and facilitated by investment in both road transport and
mass transit infrastructures, complemented by large investments in denser, higher value
urban development in these sub-centres [53].

4.3. Policy and Regulation Factors

These factors refer to a series of policies, rules, regulation and operational efforts on
general urban issues (such as land use) and processes by which urban growth requirements
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are facilitated. In this way, the physical and spatial structure of cities including land
use/land cover is formulated.

4.3.1. Urban/land Use Policies

On the policy side, land use policies [88,89], include a wide range of activities by which
governments seek to influence land use and controlling land ownership [11,45–48], zon-
ing [16,44,83]. The varying role of local government policies on urban growth [2,10,11,13,15,
17,20–22,29,40,41,43,57,61,62,70,71,80,89,99,103,104], is influenced by the state/provincial,
national and global context. Developing countries, in particular, are increasingly dominated
by government-led policies and measures, and consequently, their urbanization depends
on how the government acts, predominantly within these communities. Hence, this can
be regarded as one of the significant stimuli for the formation and/or change of spatial
structure and LULCC. This factor also contains the availability of developable lands [73,89],
private enterprise [67,105], participation and the role of property owners, developers and
real estate agencies which contribute to the long-term development of the city through
land supply, financing, investment, design and construction of large-scale projects and
infrastructures [16,40,86,88,89,103].

Additionally, according to some other studies conducted in the context of Chinese
cities, administrative division adjustments (ADA) as city country mergers [3,42] and urban
administrative hierarchy-spatial system of allocating urban resources [20,101], resulted
an enormous transformation in the spatial structure of cities by stimulating industrial de-
velopment, infrastructure development, and accelerating urban renewal and the equitable
distribution of public services.

4.3.2. Regulations

Although less significant than the previous sub-theme, the secondary dimension of
regulations, includes centralized rules imposed through official plans and/or directly by
governmental entities. For example, effective regulation factors in the growth of urban
areas include municipal regulations [89], that impose various types of land purchase and
property impact taxes [16,21,61,89], land use regulations [7,16,88] and urban planning
regulations [3,8,22,32,42,43,104,106].

4.4. Economic and Financial Factors

Along with policy and regulation factors, these factors drive urban growth through
rendering developmental projects feasible. On this basis, it is important to study the
economic structure of cities as well as financial system.

4.4.1. Urban Economy

As shown in Table 4, Economic Factors investigate market power/market incentives,
land market, land price, land price distribution, housing prices, tourism development
and economic opportunities (trade, industrial). According to the studies selected, market
power or market incentives [57,67] were identified as effective forces in the changing spatial
structure of urban areas. In fact, the market plays an important role in housing development,
housing density and development time. However, a recession can curb urban growth or
redirect it to different locations or types of investment through imposing restrictions on
housing development, in addition to increasing rents and housing prices [107]. In recent
decades, the demand for urban land has increased sharply in many cities with the supply of
land in order to keep up with demand, precipitating inflation of land values [14,43,64,108]
and housing prices [88,108]. Land and housing prices are subject to different factors and
conditions, so that it varies at different times and places [93,109]. Moreover, this inflation
of development costs reduces the ease of access of government and public institutions, as
well as low- and even middle-income people to the land market over time, undermining
the viability of marginal businesses, which reinforces the importance of the land market in
urban growth processes [43,64]. It can also promote the ability to influence other strategic
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axes, highlighting land management as amongst the most effective urban management tool.
Despite these controls in setting the price of urban land, the price of land can be volatile in
responses to speculative behaviors in markets.

Another cited factor was development of the tourism industry [16,25,40,81,88,110] as
one of the effective factors in the development of relations between regions and/or nations,
which is associated with creating job opportunities in the economic sector [5,64,93] and in
improving socio-cultural interactions.

4.4.2. Investment

Although this factor has been less referenced in the selected papers, the role of fi-
nancing and investment is crucial. This factor includes two main components: investment
attraction and foreign direct investment. As the factors of urban expansion in the develop-
ment of service infrastructure and urban projects [2,57,89,111] these have direct impacts on
the location of the settlements and activities.

4.5. Contextual Factors

Finally, how does urban context affect LULCC; what are core contextual dimensions
influencing physical-spatial structure of cities? These factors point to several external
driving forces through which policies and process are directly, and urban growth are
indirectly shaped.

4.5.1. Demographic

Increasing urban population is the major demographic factor that many articles take
into account as the effective factors in the formation and changes of land use and land
cover [2,4,5,7,9,11,13,16–18,25,27–29,33,34,56,59,61,71,88,90,93,99–101,111–113] and popula-
tion density [8–10,16,19,80,85,90]. Demographic changes are the result of the improvement
in the state of health and well-being of families and individuals, housing affordability,
and the growth of communication technology in many regions. As a result, there has
been an increasing trend of an intensification of population density in some cities and the
emergence of mega cities (i.e., 10 million or more people) in recent years.

Another frequently-cited issue related to LUCLCC is the migration of rural populations to
the city as the consequence of agricultural land transformation [11–13,23,24,29,59,64,71,88,100].
Other migration concepts such as internal migration within metropolitan regions [16,
19,25,27,97,112]; and labor migration [11,13,22,40,64,68,110], were also attributed to the
changes in built environment and consequently the change in spatial distribution of job
oppurtunities or urban amentities resulted in improving the attractiveness of an area to
absorb migrants. Another reason for internal migration includes the disparity in wages and
working conditions in different locations, which creates a labour market duality. The influx
of immigrants, on the other hand, raises the demand for housing and the expense of living,
leading to marginalization. Changes in family structure and lifestyle necessitate changes in
housing demands, which encourages bigger households to relocate from core districts to
the periphery, affecting the land market and affecting the motive for suburban land usage.

4.5.2. Socio-Economic Features

As the least referenced sub-theme, the socio-economic features include gross do-
mestic product per capita (GDP) [2,10,14,16–19,61,71,80,85,99–101,114–116], and increased
income [14–16] which have increased the demand for a luxurious consumer oriented
lifestyle [11]. Often this implies status conscious, spacious, comfortable houses accessible
to convenient high quality transportation in master-planned estates, thereby increasing the
demand for urban land [106]. IN addition, another socio-economic dimension is the phe-
nomenon of second homes and second houses on the urban periphery to provide a retreat or
for investment purposes to increase personal capital. Economic downturns/unemployment
rate is another factor [80,97,116,117] influencing urban growth that can lead to the loss of
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population from an urban core or declining suburbs and result in urban decay. Hence,
economic recessions can have a powerful role in shaping urban spatial development.

4.5.3. Environment and Natural Resources

In conjunction with the previous contextual dimensions, environment and natural
resources have the capability to change urban land use and land cover patterns. They
include geographical location [14,22,25,27,96,101], flood prone areas [118,119], climate qual-
ity [16,41,111,120–122], sea shoreline [25,33], distance from water bodies such as rivers,
lakes, wetlands, ponds [16,18,26,28,30–34,89,95], all of which are fundamentally important
determinants of the extent, spatial distribution, and spatial expansion of urban lands. Fur-
thermore, it can relate to the efficiency of terrestrial resources such as forestry and ecological
resources [91], oil resources [13,18,40,88], minerals [1,9] and ecosystem services [65,123].
Slope [1,9,10,16,24–30,32,62,79,85,87,95] and elevation [1,10,27–30,79,85] also determines
the location of physical developments within a city since the developers generally prioritise
development in flatter areas.

5. Conclusions

With the global urban population rapidly increasing, further physical growth and
associated land use and land cover changes are unavoidable. Hence, a critically important
strategic priority in the urban planning agenda is in identifying, analysing and modelling
the effective drivers underlying land use and land cover change. The work in this paper
was a bibliometric and systematic review of LULCC, with the goal of identifying the drivers
of land use and land cover change (2012 to 2022), as well as contributing to an analysis of
the most significant concepts, methdological rules, and journals in LULCC research.

The main finding from this study is that the LULCC process is impacted by a variety of
interconnected elements, ranging from transportation development to legislation, as well as
contextual demographic, socioeconomic, and environmental aspects. Although they were
arranged in groups and three levels of interactions, and their significance was only explored
using the number of occurrences in the literature, it is worth noting that the factors are
highly context-sensitive, so that their relationships and significance can change depending
on factors such as time, geography, scale, and decision-making agents. It was found
that transportation availability was the most frequent factor identified in the literature,
although this can be detailed to include multiple dimensions of transport avilability such
as provosion of mobility systems, fuel price and vehicle ownesrship area [124]. A caveat
is that the frequency of topic mentions in the literature does not necessarily indicate that
a factor is stronger in influencing urban growth, since the context of discussion can be
supportive or critical of the role of a particular factor and the relative magnitude of a factor
is often not easily ascertained from mapping the frequency of a term. Moreover, there may
be a bias resulting from funding factors, or other factors that influenced the direction of
research. Hence, various elements ambiguously examined in the existing body of literature
in this field introduce a degree of uncertainty and have the potential to influence urban
growth at various local, municipal, regional/state/provincial, national and globally levels.
In terms of scale, for example, the spatial scale at which the studies were conducted has
an impact on the results in such a way that human and artificial factors have the greatest
impact at the micro level, and as the scale becomes larger (i.e., at the regional scale), the role
of environment and natural factors becomes more pronounced, as is the case in the Beijing
metropolitan area [125], in relation to altitude, distance from the river, and urbanisation rate.

This is also in line with the fact that the notion of urban growth is highly dynamic
with a high level of complexity and uncertainty. Urban growth can be an unstable and
discontinuous process that expands metropolitan boundaries and imposes drastic changes
in land use that overwhelms social and environmental capacities and the capacity of
existing plans and regulations to cope. As a result, governments and urban management
systems are confronted with complex challenges, particularly in relation to the stresses to
ecologies and human constructed environments arising from climate change.
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Additional study is recommended to investigate the usefulness of the model of driving
variables (Figure 5) in relation to its unique emphasis and local circumstances. This may
include thoroughly examining the impact of particular components (such as transportation
infrastructure) or drawing on aspects within each level (such as outer contextual factors).
Furthermore, in light of the vast diversity of publishing landscapes globally, further review
studies evaluating driving variables depending on country categories (such as global south)
with a particular refrence to the social context [126,127] and city size (such as aggolor-
mationa nd scale effects) would expand the scope of this work. Reviews of additional
databases (e.g., Web of Science, Google Scholar) would also be beneficial in refining a model
to determine LULCC that not only identified key drivers of change but which has predictive
capabilities in response to key stressors in natural and human environments.
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Abstract: Information on land cover is vital to numerous United Nations (UN) missions, including
achieving the Sustainable Development Goals (SDGs). Because land cover data are developed by a
variety of organizations for a range of objectives, they are based on different classification schemes
and have discrepancies. In addition, the sustainability for land cover is hampered by limited access to
information and documentation. Accordingly, international standards for land cover are developed to
improve interoperability between different land cover datasets. However, the use and development
of land cover datasets are limited by various factors including availability of properly documented
land cover legends in support of different applications including change assessment, comparison,
and international reporting. The purpose of this article is to highlight the importance of land cover
in achieving several goals and to introduce the first international platform for land cover legend,
named Land Cover Legend Registry (LCLR). This registry is a contribution to the international land
cover community and the UN in effort to promote and support data harmonization processes and
interoperability from local to global level, and vice versa. Users can not only use the registry for
preparing consistent datasets, but also contribute to it by providing the latest data to ensure the
long-term availability of both updated and existing datasets around the world. Moreover, building
on the experience developing land cover legends with different nations, a brief explanation on the
preparation of legends is also provided. Additionally, it is more important than ever to develop
land cover registers to support the use, expansion, integration, and use uptake of land cover data,
particularly for innovative remote sensing, machine learning, and information and communication
technologies and techniques that build on existing and national contexts.

Keywords: interoperability; standards; geospatial; semantic ontology; harmonization; classification

1. Introduction

The critical need for monitoring natural resources has increased over time because of
many factors, including rapid growth in population and climate change [1]. The impacts of
climate change are not limited to one country and extend beyond national and political
administrative boundaries. An assessment presented in the Intergovernmental Panel on
Climate Change (IPCC) report suggested that climate change has had severe effects on
freshwater, terrestrial, and marine ecosystems, including alterations in seasonal timing with
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negative socioeconomic consequences, heat extremes with extinction of local species, forest
degradation, hydrological changes, and agricultural productivity stress. This condition
exacerbates the global food and water security crisis and obstructs progress toward reaching
the SDGs [2].

Land cover information is a critical component in monitoring natural resources and is
recognized by the UN as one of the fourteen fundamental data layers [3]. This information
is essential to support many mandates of the UN, including the United Nations Framework
Convention on Climate Change (UNFCCC), United Nations Convention to Combat Deser-
tification (UNCCD), and United Nations Forum on Forests (UNFF) [4,5], as well as many
other national, regional, and/or international initiatives. The land cover information serves
as a critical baseline information for land, water, and/or hazard monitoring, including
agriculture production [6], rapid crisis impact assessment on agriculture sector [7], food
security [8], nutrition, environmental conservation and management, climate science, and
many others.

Different organizations create land cover datasets to meet specific user needs utilizing
a variety of classification schemes, tools, approaches, and datasets at the global [9–11],
regional [12,13], and national levels [14]. Because different land cover classification schemes
are used, the interoperability between land cover datasets and their compatibility and com-
parability are often very limited. Such consistency is required to aggregate and harmonize
results to allow cross-comparison and validation for understanding regional and global
landscape trends and/or climate changes [15,16], as well as for the sustainability of the land
cover monitoring efforts. Several international, regional, and national organizations and
agencies have emphasized the vital need for improved, consistent, and harmonized land
cover statistics and spatial data from local to global levels to address the environmental
and climatic issues at a larger scale.

In this context, geospatial technologies are important in the paradigm shift and tran-
sition to climate change initiatives, greener economies, natural resource conservation,
sustainable carbon emissions, catastrophe effect assessment and management, and sustain-
able agriculture production, among other things [17–22]. These technologies play a crucial
role in the development of land cover maps and datasets using integrated efficient and
cost-effective approaches including remote sensing and machine learning [14]. The use of
standardized information is required for the proper processing of data and information to
profit from recent technological advancements in geospatial fields.

To overcome the inconsistencies in generic classification systems, dozens of countries
and international organizations have now created land cover datasets using the Food and
Agriculture Organization of the United Nations (FAO) Land Cover Classification System
(LCCS) based on Land Cover Meta Language (LCML-ISO 19144-2) [14]. In LCML, the
land cover classes are defined using a hierarchical structure [16,23]. This system does not
intend to alter or replace the previous classification systems. Nonetheless, it provides a
consistent framework for the comparison and integration of data for any generic land cover
classification [23], building upon the involvement of FAO in several countries. Therefore,
these datasets can be used for integration and harmonization processes to analyze the
results and changes at the global, regional, and national levels.

The role of the land cover legends is the initial step in the preparation of land cover
maps and datasets [15]. For this, proper and complete documentation, as well as informa-
tion on the land cover classes in a land cover legend, including clear and unique description
of the class and/or photo-keys using field photographs and/or satellite imageries, is re-
quired. Therefore, to fill the gap, development of land cover registers is needed where
information can be stored and be easily accessible to the user.

Development of land cover registers are needed (1) to facilitate the broader use and
expansion of the land cover register, (2) to create sustainable ownership and technical
capacity to use the register for land cover translation purposes, and (3) to support the
migration of the register to incorporate new land cover and land use schemas. Accordingly,
the first international platform, named the Land Cover Legend Registry (LCLR), was
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developed to support cataloguing land cover legend descriptions based on international
standards. The register is meant to host a curated list of legends created at the global,
regional, and national levels. Users can easily and freely access and download land cover
legends, their datasets, and relevant documents.

The rest of the article is organized as follows. Section 2 reports on a survey of land
cover and a few key findings that prompted the development of the LCLR. The focus then
shifts to the latter, reporting on some aspects, like standardization, that have influenced
its architecture, as well as its place in a growing ecosystem of tools developed by FAO
in collaboration with other international institutions. This is followed by a discussion of
important aspects that LCLR helps to address, before moving to the conclusions.

2. Land Cover Legend Registry Development
2.1. Land Cover User Need Assessment

The work on the development of the registry was inspired by a survey on the impor-
tance of land cover in different domains and applications, including change assessment,
comparison, international reporting, and others at different levels. Various organizations
contributed to the development of the survey questionnaire, including the FAO; Organi-
zation for Economic Co-operation and Development (OECD); United Nations Statistics
Division (UNSD); Basque Centre for Climate Change (BC3Research); United States Geologi-
cal Survey (USGS); National Research Council, Italy (CNR); and University of Southampton
(Soton). The main aims of this survey were (1) to assess the user requirement on the use of
land cover information in the context of SDGs; (2) to present limitations in the development
of land cover; and (3) to contribute to the establishment of international standards, i.e.,
LCML and others.

Numerous academic, scientific, government, and public sector entities from the na-
tional, regional, and international levels participated in the survey, particularly from the
environmental, agricultural, and climate sectors. The results revealed that land cover
information is very important and is used for all SDGs at different levels and dimensions,
particularly for climate action (SDG 13) and life on land (SDG 15) (Figure 1) [24,25]. More-
over, the results indicated that the lack of documentation and information on land cover
and unavailability of existing datasets are the main issues in the development of consistent
and/or harmonized land cover maps.
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2.2. Land Cover Database

A registry database was developed for land cover legends based on the registry
concepts that is derived from ISO 19135-1 [26], identified in ISO 19144-1 [27], and makes
use of the descriptive metalanguage described in ISO 19144-2. The LCLR was internally
developed as a spreadsheet application (i.e., Microsoft EXCEL) and is a flat table linked
through a primary key with different sub-registers. After a set of postprocessing, it is
presented in a more compelling form. The registry consists of three main parts, i.e.,
(1) metadata describing the whole register (content), (2) a description of the meaning of
each item in the register (content description), and (3) the registered items (categorization)
(Figure 2) [28].
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Ref. [28]. 2021, FAO, UoS and STIIMA-CNR. * Multiplicity (https://khalilstemmler.com/articles/
uml-cheatsheet/, accessed on 15 June 2022): a classification register can have 1 or more regis-
ter/RegisterItem/ItemClass.

The registry contains information about the land cover legend, land cover legend
classes, land cover dataset, and relevant reference documentation. Several of the land cover
legends in the database were prepared and translated from the original classification system
into ISO 19144-2 standard using LCCS software [29]. Moreover, this database also contains
land cover legends in different classification systems but marked as not yet translated. The
registry is multilingual to support the adaptability of systems in local and/or national
languages for data integration, comparison, and many other purposes.

2.3. Land Cover Legends

The land cover legends provided in land cover legend registry are at the global,
regional, national, and sub-national levels. Legends are available in different formats that
are used worldwide. The different legend file formats are CSV, LCCS, EAPX, HTM, and
XSD, and are devised to be used under different software and platforms. Furthermore,
the land cover legends in the registry were created to account for a variety of scenarios,
including the following:

1. Country- or region-specific legend available and translated to LCML, e.g., non-
irrigated arable land [30] translated into LCML using LCCS version three (LCCS3)
software. This class was translated as “herbaceous growth forms” with the charac-
teristics “cultivated and managed” and “rainfed”. With an “optional” presence type
of the LCML element “woody growth form” defined by a standard characteristic as
“Orchard and other Plantation” (Figure 3);

2. Land cover legend available and translated from version 2 to version 3 using LCCS3
software, e.g., tree crop class from Himalaya land cover legend [31] (Figure 4);

3. A new legend prepared using LCCS3, e.g., “evergreen hill forest” class [32] (Figure 5).
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2.4. Land Cover Legend Registry Platform

The open-source LCLR platform is an online library for land cover legend and relevant
products. This platform is available on the FAO Hand-In-Hand geospatial platform [33]
and data can be downloaded directly in different formats. Meta data for this registry
are available on the FAO CKAN [34]. The datasets on the LCLR platform are updated
weekly. A user can download land cover legends in provided file formats, i.e., LCCS, CSV,
EAPX, HTM, XSD, and so on. Land cover classes are prepared based on Unified Modeling
Language (UML) and are available in JPEG format for download. Relevant land cover
datasets are available in raster and/or vector format. All reference data for relevant land
cover legends are available in PDF format. A list of land cover legends that are currently
available on this platform is provided in Figure 6.
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2.5. Connectivity to Other Platforms

The Land Cover Legend Registry (LCLR) platform has the potential to link to the cloud
computing platforms including System for Earth Observation Data Access, Processing, and
Analysis for Land Monitoring (SEPAL) [35] and Google Earth Engine (GEE), as well as
other desktop software like Enterprise Architect and many others. For example, the land
cover legend in CSV format after downloading from the LCLR platform can be directly
uploaded into the SEPAL platform to classify the satellite images for land cover preparation
(Figure 7) using machine learning techniques including random forest (RF), support vector
machine (SVM), and others.
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2.6. Availability of Land Cover Datasets in the Registry

The availability of land cover datasets is as important as the development of datasets.
There are several organizations and countries that have developed and are developing
land cover datasets for different purposes and using different approaches and supporting
documents. In most cases, land cover legends have limited documentation and the land
cover legend registry provides only land cover legends that have been prepared using
LCCS3. For example, the national land cover map for Bangladesh 2015 was prepared based
on the LCML using the LCCS3 tool [34,36]. This interoperable system and the land cover
dataset are used for a variety of applications including national forest resources assessment,
estimation of REDD+ activity data, integration of biophysical and socioeconomic infor-
mation, and semantic similarity assessment [14]. The land cover legend for Bangladesh is
available in the registry along with a dataset and reference document. Moreover, land cover
maps for Jordan [37], Afghanistan [38], and many others are also available in the registry.
Therefore, a user can access existing and latest land cover datasets using this registry and
can further use it for their purpose.

3. Discussion
3.1. Land Cover Data for All

Although there are several global and regional products and platforms that provide
land cover products, accessibility in a user-friendly manner is always a hurdle. There is no
platform that can provide updated information on existing land cover legends at the global,
regional, national, or local levels. The LCLR, as an online library for land cover legend,
aims at closing this gap by ensuring its wider use and accessibility by anyone around
the world. This registry is based on international standards that are widely recognized
by land cover experts. LCLR has potential to be used by the land cover community for
different purposes and sectors including agriculture and food security monitoring, land and
water resources assessment, environmental accounting, land use planning, and emergency
reporting. Furthermore, there is potential for the scientific community to contribute to
improve land cover at local to international level by following LCML and contributing to
using or providing new legends and datasets to LCLR.

3.2. Semantic Interoperability and Comparison

Because traditional land cover legends contain symbols that are symbolic, brief, and
vague, determining land cover similarity has always been difficult. The inconsistency of
classification systems continues to hinder how the world is represented and managed,
despite the advancements in geospatial technology that give access to new images, tools,
and methods. In order to normalize geographic representation of our surroundings, nomen-
clatures have been developed over time [30,39], but they have not addressed the issue of
sufficient representation of land cover semantic meaning.

In this context, under ISO TC211, 19,144 series comprise the set of standards that are
meta languages for addressing different classification systems and approaches. For example,
ISO 19144-2 (LCML) on land cover provides a common reference structure for comparison
and integration of different data. It is not intended to replace any classification system. The
translation of classification systems from national systems can support data integration as
integration of data is required to address regional and worldwide requirements.

Classes that are coded using the LCML syntax can be easily used for land cover
similarity assessment analysis. Exploiting the intrinsic modularity of the LCML standard,
the similarity between land cover classes can be assessed quantitatively [15]. For instance,
hosted in the Bangladesh Forest Information System (BFIS) geoportal, an object-based
methodology is operationalized to make an automatic similarity assessment between
LCML-derived classes present in different databases. Therefore, using LCLR, a user can use
the LCML syntax-based legend information and compare the results with original datasets
and/or new datasets.
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3.3. Connectivity, Multi-Languages, and Multiple Formats

Land cover legend data are available in different file formats and in different languages
from where a user can download data directly from the platform under the ‘file section’
and can be used in various platforms and tools, cloud computing, as well as desktop
software, e.g., SEPAL platform, Enterprise Architect (EA), and so on. Legends in different
languages make the comparability at national context more understandable. This registry
has the potential to add more languages and file formats in the future. A user can use and
contribute to the registry by providing legends in local language and different file formats.

3.4. Sustainability of the Registry—Future Aspect

There has been tremendous work on the development of land cover classification
schemes, tools, and methods to support the land resource monitoring and to develop
efficient and consistent land cover maps all around the world. The development of registers,
in this context, can contribute to the international community by providing the latest
existing land cover legends. For this, the first international register based on international
standards has been developed [28]. In order to sustain the registry, a user can contribute by
providing land cover legend using the LCCS3 tool, as described in Section 2. Moreover,
a user can also provide a land cover legend in local classification schemes that can be
translated using LCCS3 and will be accessible through this platform.

For the sustainability of land cover registers, existing and/or new, there is a need to
develop a global register that incorporates all of the existing register to ensure the data
availability to users.

4. Conclusions

Consistency in land cover datasets at national level is crucial to many applications
that can be used and integrated in the analysis of local to global issues and trends. Land
cover registers can fill the gaps, including limitations in data sharing and accessibility to the
user. LCLR is the first international online catalogue that provides complete information
on land cover legend at different levels. The registry supports multiple languages and
multiple formats and is easily adaptable from local to global systems. The development of
this registry is the first step towards harmonizing the different schemes using LCML and
providing a platform that can facilitate end users at its best in the most common ways. It
aims to support various international initiatives like ISOTC211 AG13, the FAO Hand in
Hand (HIH) initiative, Global Agro Ecological Zoning (GAEZ) [40], WaPOR [41], SEPAL,
and so on by providing the LCML-based land cover legend.

Using LCLR, a user can not only access a land cover legend with a proper description
but can also contribute to populating the registry to ensure the sustainability of the system
by engaging land cover community all around the world. They can also support the process
of data transparency, consistency, and comparability through efficient ways. Moreover,
this LCLR can contribute to development of harmonized land cover legends and datasets
at various levels including global. Also, there is a possibility in the future to develop
a registry for land cover or land use using multi-model database management system
that can incorporate all existing and/or new registers with a sustainable framework and
ownership.
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Abstract: This study discusses the situation of mainland Portugal concerning the achievement of
the European “no net land take” target by 2050. This target aims to curb land take by increasing the
recycling of developed land and offsetting the consumption of undeveloped land by re-naturalizing
an equivalent area of artificial land. Setting targets and interventions in each country to reach this goal
requires monitoring land take, developed land recycling, and re-naturalization. This study assesses
these processes in mainland Portugal, by NUTS III regions, for the first time, analyzing the land
cover/land use changes that occurred between 2007 and 2018. In this period, the land take rate in
mainland Portugal amounted to 7.2 ha/day. Re-naturalization and recycling of developed land were
1.0 and 0.2 ha/day, respectively, showing the shortage of their practices on the mainland. During
said period, mainland Portugal and most of its regions experienced a reduction in population and an
increase in artificial land, revealing low efficiency in urban land use. Since Portuguese legislation
does not mention the European target, we believe that most decision-makers are unaware of it
or have little knowledge of the practices that can contribute to its fulfillment. In this regard, the
study aims to raise awareness among policymakers and public authorities about the need to limit,
mitigate, and compensate for land take and to set land take targets for different levels of action. In
addition, it describes how some European countries and regions are evaluating the same processes
and approaching the goal under consideration.

Keywords: land consumption; urbanization; land re-naturalization; developed land recycling; urban
land use efficiency

1. Introduction

In recent decades, land as an environmental resource has gained increasing importance
in European policies. The goal of “no net land take” by 2050 defined in the 2011 Roadmap
to a Resource Efficient Europe [1] is part of the European Union’s 7th Environmental Action
Program [2] and is also part of the Soil Strategy of the European Union for 2030 [3]. The
strategy recommends that Member States set their own national, regional, and local targets
by 2023 for net land take reduction by the year 2030 and report on their progress in order
to make measurable contributions to the EU’s 2050 target. The strategy also proposes the
application of “land take hierarchy” principles to increase land-use efficiency through more
effective land reuse—promoting reductions in land take and soil sealing.

Land take is “the loss of undeveloped land to human-developed land” [4] (p. 4).
Land take can also be defined as the loss of natural and semi-natural land to urban and
other artificial land developments. Accordingly, it is also known as land consumption
or land artificialization [5,6]. It includes the development of areas that are sealed by
construction and urban infrastructure, and non-sealed areas, such as urban green parks
and some sports and leisure facilities [7]. Land take leads to the loss of natural capital
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and landscape fragmentation [7,8]. Soil sealing is considered the most harmful expression
of land take because it is a generally irreversible process that reduces habitat space and
compromises the soil’s ability to provide important ecosystem services, such as biomass
supply, water and nutrient cycling, and organic carbon storage [9,10]. The loss of soil’s
ecological functions triggers heat island effects and flooding, and can even increase soil,
water, and air pollution [7,11].

The main drivers of land take are population growth and economic development [12,13].
The former is mainly related to a need for more housing, public facilities, and transporta-
tion; the latter relates to new industrial and commercial sites, the competition between
municipalities to attract more investment, and the prioritization of economic development
over environmental sustainability, in a broad sense. Colsaet et al. [12] carried out an exten-
sive literature review on this topic, concluding that urban expansion “is not a mere result
of market forces but is also shaped by institutions and public policies” (p. 346), including
land use regulation, the legal and fiscal framework, the lack of both vertical (between
administrative levels) and horizontal (between municipalities) coordination, and the strong
dependence of local governments on tax revenues (such as property taxes).

The reverse process of land take (the conversion of artificial land into non-artificial
land) is generally known as the re-naturalization or restoration of developed land. It is
also less commonly referred to as the re-cultivation of developed land [7]. An increase
in vegetation cover provided by re-naturalization translates into an increase in soil car-
bon stocks [14].

Net land take evaluates, for a given period, the difference between land take and
re-naturalization of developed land. The “no net land take” target aims to protect soils and
safeguard the services they provide through more sustainable land use, which involves
reducing the consumption of undeveloped land [15]. Meeting this target by the year
2050 calls for new construction to take place on abandoned or underutilized urban land
and for the non-artificial land consumed by urbanization be offset by re-naturalizing an
equivalent amount of artificial land, which requires significant investment in developed
land recycling [7]. Recycling of developed land aims at increasing the density of buildings
(densification or infilling), building on abandoned or underused land (gray recycling), or
converting developed land into green urban areas (green recycling). Both densification and
gray recycling allow nations to respond to the housing needs of a growing population and
diversify economic activity in areas that are already part of the urban perimeter, maximizing
the use of existing infrastructure. Green recycling allows for preserving some of the natural
soil functions that are vital to urban sustainability. Proper planning of green urban areas
can contribute to the development of green infrastructure [7].

It should be noted that land designated herein as urban or developed refers to the
Corine Land Cover (CLC) level 1 class known as artificial surfaces, and land designated as
non-urban, undeveloped, or natural refers to the remaining CLC classes.

1.1. Framing the “No Net Land Take” Goal

Given the lack of a binding legal framework to achieve the goal of “no net land take”
by 2050, the European Union has sought to raise awareness among Member States on
the issues of land take and recycling of developed land by means of the dissemination
of various studies [7,11,16,17], and more recently, through inclusion of said issues in the
Soil Strategy of the European Union for 2030 [3]. Over recent decades, most European
countries have adopted strategic planning guidelines to promote the sustainable develop-
ment of their territories [5], following the principles of the European Spatial Development
Perspective [18], the Territorial Agendas of the European Union [19–21], and the New
Urban Agenda [22].

At the global level, the 2030 Agenda for Sustainable Development established 17 Sus-
tainable Development Goals and 169 targets, which should be achieved by the year 2030
by all countries [23]. Targets 11 and 15 deal with land consumption and land degradation,
respectively, which are both related to net land take. Target 11.3 aims, among other things,
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to improve inclusive and sustainable urbanization in all countries. The indicator chosen
for monitoring this (11.3.1) is the “ratio of land consumption rate to population growth
rate.” As land take reflects the consumption of non-artificial land for urban development, it
constitutes part of land consumption. The other part comprises the consumption of artificial
land, which in this study corresponds to developed land recycling and re-naturalization.
Target 15.3 aims, among other things, to combat desertification and restore degraded land.
The proposed indicator for the monitoring thereof (15.3.1) measures the proportion of land
that is degraded, which is also related to net land take. Land degradation can be assessed by
the loss of ecosystem services provided by soil, such as a decrease in soil carbon stocks [24],
and the re-cultivation of developed land usually increases these stocks [14].

1.2. Types of Interventions to Avoid, Reduce, or Offset Land Take

Based on the analysis of over 200 case studies from different European territorial
contexts, the ESPON SUPER project (Sustainable Urbanization and Land Use Practices in
European Regions) has identified the following types of interventions that can contribute to
avoiding, reducing, and/or compensating for land take: densification, regeneration, urban
containment, and governance and sectoral policies [25,26].

Densification aims at increasing the density of people living in built-up areas, usually
by defining zones and quantitative thresholds for the closure of gaps. This may involve an
increase in building volume or the reorganization of the existing urban structure [26].

Regeneration aims at reusing and improving abandoned and problematic sites, such
as brownfields. Brownfields are urban areas that have been abandoned or are underused,
such as former industrial sites, which may have contamination problems.

Containment initiatives aim to limit land development beyond a certain area, to reduce
urban sprawl and promote more rational land use (e.g., green belts and urban growth
boundaries). Normally, these interventions foster the redevelopment and densification of
urban neighborhoods and improve the green spaces in the rural-urban interface.

Governance approaches to reduce land take can encompass policy goal setting, spatial
planning at different levels or sectors of action, financial incentives, and environmental as-
sessments of plans and projects aimed at urban development [27]. According to the SUPER
conclusions [26], interventions that address various sectoral policies (e.g., transportation,
environment, and agriculture) and their potential impacts on land use tend to promote
more sustainable development.

The types of interventions mentioned can make use of more than one instrument,
such as legislation (binding laws and regulations), zonal land-use regulations establishing
binding principles, incentive and economic programs (policy packages aimed at a particular
objective), and projects (e.g., those implemented under the URBACT III program) [25].

Given that strategies or visions are non-binding instruments, their success often
depends on the existence of financial or binding instruments that make it possible to achieve
targets. Accordingly, the adoption of strategies does not in itself guarantee successful
interventions.

1.3. Data Sources Used at the European Level to Estimate Land Take, Re-Naturalization, and
Recycling of Developed Land

Assessment of land cover/land use changes associated with the land take, re-naturalization,
and recycling of developed land, can be achieved through a wide variety of data sources.
The net land take indicators produced by the European Environment Agency (EEA) [7,11]
for Europe are based on CLC maps, which are inadequate for monitoring these processes at
the level of countries and their regions, as they do not make it possible to identify change
areas of less than 5 ha [28]. The indicators for developed land recycling produced by the
EEA are based on the Urban Atlas [29], which has a higher spatial resolution than CLC but
only covers medium to large cities and their functional areas, preventing the monitoring of
the phenomenon in other areas of interest. Another data source available at the European
level is the Land Use/Cover Area frame Survey, known as LUCAS [30]. As the estimates
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for land take provided by LUCAS are based on sampling locations, they are less accurate
than those resulting from full coverage datasets. The high-resolution imperviousness layers
produced by Copernicus [31] capture “the spatial distribution of artificially sealed areas,
including the level of sealing of the soil per area unit.” Accordingly, they only make it
possible to monitor the sealed land, i.e., permanent land take, but integration with other
land cover or land use datasets may make it possible to estimate non-permanent land take.
Given the limitations of European data sources, the evaluation in each member state of
the above processes is often based on national data sources, generally more detailed than
those available at the European level. The definitions of the processes and their assessment
methodologies also vary substantially among countries and regions.

1.4. How Are Some Countries and Regions in Europe Approaching the “No Net Land Take” Goal?

The definition of quantitative targets aimed at achieving national objectives, such as
a reduction in net land take, and the monitoring of such targets, are the responsibility of
central governments. However, as land-use planning decisions are mainly taken at the
regional or municipal levels, to meet a national target, translation into regional or local
targets is necessary [5].

Some European countries have already set national quantitative targets for reducing
land take or increasing the recycling of developed land. Among these, one should highlight
Luxembourg, which limited land take to 1 ha per day by the year 2020 in its National
Sustainable Development Plan, designed in 2007 [5]. As a result, the land take dropped to
0.46 ha/day between 2007 and 2018 [32]. The Luxembourg Spatial Planning Program is cur-
rently under review, and it is expected that it will reduce the land take target to 0.25 ha/day
by 2035 [32]. Assessment of the land take in Luxembourg is based on orthophotos [33].

In Austria, land take is estimated based on cadastral data. In 2002, the Austrian
government set a threshold of 1 ha/day by 2010 for soil sealing [16]. The report on Land
Take Reduction in Austria, presented on 8 October 2019, revealed a downward trend in
land take since 2010 [34]. However, the land take was still 11.5 ha/day between 2018 and
2020, and soil sealing was also above the limit set for 2010 (>4.0 ha/day) [35]. Given this
situation, the Austrian government’s program for 2020–2024 has set a land take target of
2.5 ha/day by the year 2030.

In Flanders (a region of Belgium), two data sources are used to monitor land take: the
official federal cadastral statistics on built-up areas, available with annual updates since
1985, and the Flanders land use database [36], which is updated every 3 years but was
only made available in 2013. In 2016, land take in Flanders amounted to 6 ha/day [37]. In
order to reach the “no net land take” target by 2050, the Flemish Spatial Policy Plan aims
to curb settlement growth so that it is zero by 2040. To meet this objective, the Flemish
government intends to densify settlements, promote the multifunctional use of space,
encourage management of contaminated sites, redevelop brownfield sites, and further
dynamic landfill management [38].

In Wallonia (another region of Belgium), land take is also quantified on the basis of
cadastral data. The target of “no net land take” by 2050 is addressed by the 2018 Walloon
Spatial Development Perspective (Schéma de Développement du Territoire), which limits
land take to 1.6 ha/day by 2030 in order to meet the 2050 target. In 2020, the land taken in
Wallonia doubled the 2030 target. The aforementioned document also states that by 2030,
50% of new housing and 30% of economic areas should be developed in brownfields [39].

In Germany, land take was quantified based on two datasets: the “Authoritative
Real Estate Cadastre Information System” and the “Digital Basic Landscape Model of the
Authoritative Topographic and Cartographic Information System” [40]. In Germany, the
land take evaluates the conversion of non-artificial areas into settlements and transportation
networks (excluding, for example, the creation of mining sites from non-artificial areas).
The first national target for curbing land take was set in 2002, to reduce it to 30 ha/day
by 2020. In order to achieve this goal, the German government promoted the reuse of
brownfields and the development of under-utilized urban areas [41]. In 2013, a legally
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binding priority for inner urban development come into force, requiring settlements to
consider inner urban potential before expanding into surrounding areas. In 2016, the
German Sustainable Development Strategy was relaunched, and the land take target was
reset to less than 30 ha/day by 2030. The monitoring of land consumption in Germany relies
on combined quantification by three indicators: the surface area occupied by settlements
and transportation networks, the density of settlements, and open urban space per capita.
The goal is reducing land take at the expense of increasing settlement density without
decreasing urban open space per capita [42]. Meeting these targets is supported by two
territorial planning instruments: the land consumption reduction action plan and the land
certificate trading scheme [26]. The land certificate trading scheme was implemented in a
pilot project led by the German Environment Agency, involving 87 municipalities. Each
municipality received a number of certificates representing the area available for new
development based on its population. Surplus or insufficient areas were tradeable between
municipalities through the sale or purchase of certificates. This project showed that the
trading scheme effectively reduces land take [43]. Despite the enormous importance given
to land as an environmental resource by the instruments in place in Germany, undeveloped
land consumed by built-up areas, open urban space, and transportation still amounted to
57.9 ha/day in 2020 [44].

Although the “no net land take” target was only introduced into French legislation
in 2018, as a response to measure 1.3 of the Biodiversity Plan, which aims to limit the
consumption of natural, agricultural, and forest areas [45], in 2010 the French Law on
modernization of agriculture and fisheries had already set a target to halve the rate of
agricultural land consumption by 2020 [5]. The French Biodiversity Plan is, however, silent
on the deadline for achieving the “no net land take” target. In 2019, the French land take
observatory was set up. It reports that since 2016 there has been stagnation in the land take
rate in France, and that the consumption of natural, agricultural, and forest areas amounted
to 54.8 ha/day between 2019 and 2020 [46]. By 2020, the French government started funding
private and public brownfield redevelopment operations [15]. The data sources used in
France for assessing land take are the OCS GE reference database and the cadastral tax
files (“fichiers fonciers”), which enable the detection of changes in land use, in particular,
the conversion of natural, agricultural, or forest areas into built-up areas. By definition,
cadastral files do not cover the land in the public domain, such as the road network.

Monitoring of land transformation in Italy is carried out under Law 132/2016. Net
land take is assessed annually from maps produced by means of photo-interpretation and
the semiautomatic classification of remote sensing images (Sentinel-1 and Sentinel-2). In
said assessment, land take covers changes from non-artificial to artificial areas (excluding
the creation of green urban areas from agricultural areas) and the conversion of green urban
areas into sealed areas. A clear distinction is made between permanent land take (land
sealing) and reversible land take [47]. In Italy, the net land take was 14.2 ha/day between
2019 and 2020. In the same period, land re-naturalization amounted to 1.4 ha/day. The
main difficulties experienced in controlling land take in Italy are the lack of a uniform
policy framework at the national level and the absence of effective regulatory measures in
most of the country [47,48].

Although the UK’s National Planning Policy Framework makes no reference to the
goal of “no net land take” [15], the re-use of previously developed land for housing has
been an objective of English spatial policy since the late 1990s, intending to reduce urban
sprawl and greenfield development and to densify urban areas [49]. The national target
set in 1998 of having at least 60% of new housing built on brownfield land by 2008 was
achieved and surpassed before 2008.

It should be noted that the above summary has sought to depict how the objective of
reducing land take is being addressed in some countries and regions in Europe without
looking at the effectiveness of the measures adopted, as this would require an analysis of
the political and social contexts, and how the initiatives described are implemented by the
legal instruments in place.
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1.5. Study Aims

The main objective of this study was to quantify and characterize the non-artificial land
transformed by urban development, and the artificial land that has been re-naturalized
or recycled, between 2007 and 2018, in mainland Portugal. This assessment aims to
contribute to:

• Deepening the knowledge on the land take, re-naturalization, and recycling of devel-
oped land, and on drivers thereof;

• Assessing the situation in mainland Portugal regarding the “no net land take” target;
• Supporting the setting of national and regional targets which, thus far, do not exist;
• Raising awareness among decision-makers and public authorities of the context of the

issues addressed.

Although Portuguese legislation does not explicitly refer to the goal of “no net land
take,” the European guidelines on spatial planning were reflected in the Law on Public
Policy on Soil Land-use Planning and Urban Planning (2014), in the National Strategy
for Sustainable Urban Development 2014–2020 (2015), and finally, in the strategy and
territorial model of the National Program for Spatial Planning Policy (2019). In 2015, the
legal framework for spatial planning instruments and the land-use regime for municipal
master plans were revised. These revisions included, among other things, the suppression
of the urban expansion area category and the strengthening of the exceptional nature of the
reclassification of rural land to urban land (to avoid the expansion of urban perimeters).
Since then, this reclassification has required proof of economic and financial sustainability,
and justification of the need for it, in the form of demographic indicators and levels of
supply and demand for urban land. Portuguese Law also provides for certain tools similar
to Tradeable Development Rights, which have the potential to encourage the densification
and redevelopment of urban centers. However, said instruments have found little use so
far. It is also worth noting the existence of different types of funding for urban regeneration.
Furthermore, since the 1970s and 1980s, Portugal has had several other spatial planning
instruments to protect agricultural and natural land and promote biodiversity, namely, the
National Agricultural Reserve, the National Ecological Reserve, and the National Network
of Protected Areas.

The monitoring of Sustainable Development Goals 2030 in Portugal is only carried
out at the national level, and there are no regionally differentiated targets and criteria
defined by the central government. Concerning net land take and developed land recycling,
since their extent was unknown until now, this study aims to contribute to their regular
follow-up, and to inform decisions regarding the establishment of national or regional
quantitative objectives to meet the European target.

2. Materials and Methods

This study is based on the Land and Ecosystem Accounting (LEAC) system developed
by the EEA [50–52]. This system describes land cover/land use changes through flows
between land cover types, allowing us to understand how their stocks are transformed
over time. Flows correspond to gains or losses due to transfers of land area between land
cover/land use types [50]. When applying this accounting system to the land cover class
known as artificial surfaces, a gain (or formation) is any conversion of non-artificial land to
artificial land, and a loss (or consumption) is any conversion of artificial land to non-artificial
land. While land take evaluates gains, re-naturalization evaluates losses. Developed land
recycling evaluates the transformations between different types of artificial land.

The LEAC system provides a framework for linking changes in land use and land
cover to their causes (driving forces). The processes that cause area transfers between land
cover/land use types were classified into Land Cover Flows (LCFs) by the EEA [50,51].
An LCF represents a set of land cover changes grouped by a common driving force. It is
essential to have a good understanding of the processes that are driving land cover changes
to design policy measures that help shape future trends [50]. Analysis of LCFs by source
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and target land cover classes provides knowledge (quantitative and qualitative) of each
land cover/land use change.

The Land Cover Flows identified by EEA [50] resulted from the analysis of the change
matrix obtained from the overlay of two CLC maps. Given that the third level of the CLC
nomenclature contains 44 land cover classes, the change matrix includes over 1800 changes.
These were grouped into processes (LCFs) in accordance with three hierarchical levels.
The first level contains nine LCFs, which at the second level are broken down into 40 [52].
Table 1 identifies the first-level LCFs causing land cover changes and the second-level
processes underlying the land take, re-naturalization, and recycling of developed land.
One should point out that in this table, and indeed the whole study, assumes that urban or
developed land is representative of the CLC classes relating to artificial surfaces, and that
non-urban or undeveloped land is representative of the remaining CLC classes.

Table 1. First-level processes (LCFs) that drive land cover changes and second-level processes linked
to land take, re-naturalization, and recycling of developed land. Sources: adapted from [50,52].

Land Cover Flows (LCF)–Level 1 Land Cover Flows (LCF)–Level 2

LCF1 Urban land
management

LCF11 Urban development (densification or infilling). Conversions between
artificial areas: (i) Conversion of discontinuous urban fabric to continuous urban
fabric, industrial, commercial and transportation units, and construction sites; (ii)
Conversion of green urban areas and sport and leisure facilities to the urban fabric,
industrial, commercial and transportation units, and mineral extraction, dump and
construction sites.
LCF12 Recycling of developed urban land (gray recycling). Conversions between
artificial areas: (i) Conversion of the continuous urban fabric, industrial,
commercial and transportation units, and mineral extraction, dump and
construction sites to other artificial areas, with the exception of green urban areas
and sport and leisure facilities; (ii) Conversion of discontinuous urban fabric to
mineral extraction and dumpsites. Construction on urban Greenfields is not
considered as LCF12, but LCF11.
LCF13 Development of green urban areas: Conversion of urban and non-urban
land in green urban areas.

LCF2 Urban
residential expansion

LCF21 Urban dense residential expansion: Land uptake by means of continuous
urban fabric (CLC 111) from non-urban land.
LCF22 Urban diffuse residential expansion: Land uptake by means of
discontinuous urban fabric (CLC 112) from non-urban land.

LCF3 Expansion of economic sites and
infrastructures

LCF31 Expansion of industrial or commercial units: Non-urban land uptake by
means of new industrial and commercial sites.
LCF32 Expansion of transportation networks: Non-urban land uptake by means of
new transportation networks.
LCF33 Expansion of port areas: Development of port areas through non-urban
land and sea.
LCF34 Expansion of airports: Development of airports through non-urban land
and sea.
LCF35 Expansion of mining and quarrying areas: Non-urban land uptake by
means of mines and quarries.
LCF36 Expansion of dumpsites: Non-urban land uptake by means of waste
dumpsites.
LCF37 Expansion of construction sites: Conversion of non-urban land to
construction sites.
LCF38 Expansion of sport and leisure facilities: Conversion of urban and
non-urban land to sport and leisure facilities.
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Table 1. Cont.

Land Cover Flows (LCF)–Level 1 Land Cover Flows (LCF)–Level 2

LCF4 Agriculture
internal conversions –

LCF5 Conversion from other land covers to
agriculture

LCF54 Conversion of developed areas to agriculture: Conversion of urban land to
any type of farmland.

LCF6 Increase in forest land cover and other
semi-natural areas

LCF63 Forest creation, afforestation: Forest and woodland creation from other
semi-natural, wetlands, water or artificial areas.

LCF7 Forest internal land cover changes –

LCF8 Waterbody and wetland creation
and management

LCF81 Waterbody creation: Extension of water surface areas resulting from the
creation of dams and reservoirs.

LCF9 Changes in land cover due to natural
and multiple causes

LCF91 Semi-natural creation and rotation: Changes in natural and semi-natural
land cover due to natural factors.
LCF93 Coastal processes: Any process of coastal erosion or accretion.
LCF99 Rare or not-applicable changes: Landcover changes that are rare, more
likely improbable or not applicable due to definitions in nomenclature.

To identify the source (origin) and target (destination) classes of land cover conver-
sions to which the LCFs refer, we subsequently aggregated the 44 CLC classes used to
identify LCFs into eight land cover types, which integrate the LEAC nomenclature (see
Table A1 in Appendix A). This nomenclature groups CLC classes with similar land use or
environmental characteristics and simplifies the interpretation of LCF processes.

The methodology adopted to assess land take is similar to that used by the EEA for
calculating the CSI 014/LSI 001 indicator [7], which assesses the amount of non-artificial
surfaces (agricultural, forest, semi-natural and natural areas, wetlands, or water surfaces)
converted to artificial surfaces. This methodology is explained in Figure 1 by level-2
Land Cover Flows (in green) and the changes between land cover classes (CLC-level 3),
accounted for in the land take amount assessment. According to Figure 1, the processes
(level-2 LCFs) driving land take (in green) are LCF21, LCF22, LCF31, LCF32, LCF33, LCF34,
LCF35, LCF36, LCF37, and those parts of LCF38 and LCF13 that relate to the conversion of
non-artificial areas into sport and leisure facilities and green urban areas, respectively.

The formation or creation of artificial land assesses, for a given period, the sum of
the surface areas gained by each of the classes that make up the artificial surfaces (CLC-
level 3). This sum comprises internal conversions between these classes and their gains in
terms of surface area due to land take. According to the LEAC quantification system, the
formation of artificial land is explained by four types of processes (LCF-level 1): Urban land
management (LCF1); urban residential expansion (LCF2); expansion of economic facilities
and infrastructures (LCF3); and land cover changes due to multiple natural causes (LCF9).
As land take excludes conversions between classes of artificial surfaces, only some of the
conversions between land cover classes considered by these four processes are included in
land take estimation. Accordingly, the land take estimate is usually lower than the creation
of artificial land that occurred in the same period.

Land re-naturalization assesses, for a given period, the surface area of artificial land
converted into non-artificial land (agricultural, forest, semi-natural and natural areas,
wetlands, and water bodies). The transitions between land cover classes (CLC-level 3)
accounted for in the land re-naturalization quantification are shown in Table 2, which
also shows the level-2 LCFs related to land re-naturalization—namely, the conversion of
artificial areas to agricultural areas (LCF54), forests and woodlands (partial LCF63), dams
and reservoirs (partial LCF81), semi-natural areas (partial LCF91), and intertidal flats,
estuaries, or sea and ocean (partial LCF93).
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Figure 1. Level-2 Land Cover Flows (LCFs) and transitions between land cover classes (CLC-level 3)
taken into consideration in the assessment of land take (in green) and recycling of developed land (in
gray). Source: adapted from [50].

The consumption or loss of artificial land assesses, for a given period, the total area
lost by each of the classes (CLC-level 3) of the artificial surfaces. This sum includes internal
conversions between these classes and the surface area loss due to land re-naturalization.
In accordance with the LEAC quantification system, the consumption of artificial land can
be explained by four types of processes (LCF-level 1): conversion from other land covers to
agricultural land (LCF5), increase in forest land cover and other semi-natural areas (LCF6),
waterbody and wetland creation and management (LCF8), and land cover changes due to
multiple natural causes (LCF9). As land re-naturalization excludes internal conversions be-
tween classes of artificial surfaces, only some of the conversions between land cover classes
considered by these four processes are included in the land re-naturalization estimate.
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Accordingly, the land re-naturalization estimate is usually lower than the consumption of
artificial land that occurred in the same period.

Table 2. Transitions between land cover classes (CLC-level 3) accounted for in the land re-
naturalization quantification and related LCFs processes. Source: adapted from [50,52].

Source/Origin
(CLC Class Level 3)

Target/Destination (CLC
Class Level 3) Processes–LCF Level 2 Processes–LCF Level 1

1XY 1 2XY LCF54 Conversion from
developed areas to agriculture

LCF5 Conversion from other land
covers to agriculture321

1XY 1 31X LCF63 Forest creation,
afforestation

LCF6 Increase in forest land cover
and other semi-natural areas324

1XY 1
322

LCF91 Semi-natural creation and
rotation LCF9 Changes in land cover due to

natural and multiple causes

323
33X 2

1XY
423 LCF93 Coastal processes
52X

1XY 51X LCF81 Waterbody
creation

LCF8 Waterbody and wetland
creation and management

Notes: X and Y represent any integers between 1 and 5, which combined, correspond to a valid CLC class-level 3;
1 excluding 141; 2 excluding 334 and 335.

As explained in the Introduction, net land take assesses the difference between land
take and land re-naturalization, and the monitoring thereof allows one to evaluate how far
we are from the European target [1].

From the analysis of Table 1 and Figure 1, it follows that the changes between artificial
surfaces related to LCF11 and LCF12 are due to urban development (densification or
infilling) and gray recycling, respectively. The changes resulting from LCF11 and LCF12,
and those resulting from LCF13 (conversion of artificial and non-artificial areas into green
urban areas), are integral parts of a process called urban land management (LCF1).

Our assessment of developed land recycling (in the broadest sense) covers urban
development or infilling (LCF11), gray recycling (LCF12), and green recycling; and ex-
cludes the conversion of non-artificial areas into urban green areas (partial LCF13) and
the conversion of construction sites into any land cover class. The latter is based on the
premise that such sites represent a transitional land cover class that will evolve in the short
term into a definitive one [17] (p. 42). Such sites usually include areas under construction,
roads and infrastructures, and other areas under transformation, which, after completion
of the construction work, may revert to land cover classes other than artificial. Figure 1 also
shows (in gray) the changes between land cover classes (CLC-level 3) accounted for in the
assessment of the recycling of developed land and the processes (level 2 LCFs) linked to
these changes.

Our approach to assessing the recycling of developed land (in the broadest sense)
differs from that used by the EEA for calculating the LSI 008 indicator [53] in that the
latter takes into consideration a more comprehensive account of green recycling, which
additionally includes the conversion of artificial areas into sports and leisure facilities (part
of LCF38).

To assess the importance of each of the processes of developed land recycling (LCF11,
LCF12, and part of LCF13), we determined their representativeness in urban land manage-
ment (LCF1). Furthermore, we also evaluated the weight of developed land recycling in
the creation (formation) of artificial areas, as this indicator is commonly used in interna-
tional comparisons.

The processes addressed by this study are described in terms of areas per spatial
unit for a given period. As spatial units have unequal sizes, we produced the following
indicators to make it possible to compare a process between spatial units or to compare our
results with those of analogous studies:
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• Indicator reported in km2/year—this indicator is an annual average (the area of
interest, in km2, was divided by the number of years composing the period);

• Indicator reported in m2/year.km2—this indicator is an annual rate (the area of interest,
in m2, was divided by the number of years in the respective period and multiplied by
the spatial unit surface, in km2).

Study Area

Portugal is a southern European state composed of three NUTS (level I) regions:
mainland Portugal and the autonomous regions of Madeira and Azores. Mainland Portugal
is located in the extreme southwest of the Iberian Peninsula, bordered to the north and east
by Spain and to the west and south by the Atlantic Ocean.

This study assesses the land take, re-naturalization, and recycling of developed land
in mainland Portugal, broken down by NUTS III, between 2007 and 2018.

This assessment was based on the 2007 and 2018 national land cover/land use maps
(known as COS and hereafter referred to as COS2007 and COS 2018), which are vector
maps produced by the Directorate-General for Territory. The current COS nomenclature
features 83 classes organized in a four-tier hierarchical structure. Although the COS maps
do not cover all the classes that make up the third level of the CLC map, it is possible to
establish equivalences with CLC nomenclature. Despite the thematic similarities between
COS and CLC, COS maps are based on different technical features, namely, the Minimum
Mapping Unit (MMU) and the Minimum Distance Between Lines (MDBL). Both are smaller
for COS than for CLC (the MMU of COS is 1 ha, whereas that of CLC is 25 ha, and the
MDBL of COS is 20 m, whereas that of CLC is 100 m). These differences cause the surface
area of the same land cover class (e.g., artificial surfaces) to be larger when calculated using
COS than when calculated using CLC.

Since the Land Cover Flows of interest for our assessment were defined based on the
third level of the CLC nomenclature, the two national maps (COS2007 and COS2018) were
initially reclassified at the third level of the CLC nomenclature. A change matrix was then
created for the period 2007–2018 by overlaying the two reclassified maps with the NUTS III
boundaries of 2018. Each change between CLC classes (level 3) provided by this matrix was
then associated with a Land Cover Flow (LCF level 2) and classified as to its contribution
to the phenomena of interest (land take, re-naturalization, or recycling of developed land).
Thus, each phenomenon totals the area of a set of changes between land cover/land use
types (CLC classes), which were driven by one or several processes (LCFs).

Although the above tasks were carried out based on CLC-level 3 classes, to simplify
the description of the source and destination classes to which each flow refers, we adopted
the eight land cover types of the LEAC nomenclature (Table A1 in Appendix A).

3. Results

The results presented below begin by quantifying the land take, re-naturalization, and
net land take in mainland Portugal and its NUTS III regions, during the period 2007–2018.
Then, we describe the drivers of land take and re-naturalization and the land cover types
they have transformed. Subsequently, developed land recycling and the weights of its
components (densification, grey recycling, and green recycling) are estimated. Finally,
urban land use efficiency is assessed by comparing the expansion of artificial areas and non-
artificial land transformed by new development (i.e., land take) with population growth.

In the period under review, several spatial planning instruments were already in force
in mainland Portugal to regulate changes in land use. However, it was only in 2014 that
the Law for Public Policy on Soil, Land-use Planning, and Urban Planning reinforced the
stance, already expressed in the previous Law of 1999, of considering land (i.e., the soil) as
a scarce resource.

Although the national objectives for spatial planning in 2007 already made allowances
for the profitability of existing infrastructures, to avoid unnecessary expansion of infrastruc-
ture networks and urban perimeters, the use of empty urban spaces, and the rehabilitation

45



Land 2022, 11, 1005

of historical centers, among other things, these objectives were reiterated in 2014, thereby
reinforcing the need to contain urban sprawl and dispersed building, and the need to favor
urban redevelopment and regeneration over new construction.

3.1. Land Take, Re-Naturalization, and Net Land Take

Land take in mainland Portugal amounted to 26.4 km2/year between 2007 and 2018,
representing a change from non-artificial to artificial areas of 7.2 ha/day. Figure 2 maps the
annual land take rate by NUTS III in this period. In addition to this rate, Table 3 presents
(in the second column) the annual average of these land transformations on the mainland,
by NUTS III, in the same period. The following facts stand out after analysis of both:

• The land take rate shows a similar spatial distribution to that of the resident population,
decreasing from the coastal regions towards the interior of the mainland. The highest
rates occurred in the two metropolitan areas (M.A. LISBOA and M.A. PORTO) and
their neighboring regions.

• The land take rate was highest in the Porto metropolitan area (1153 m2/year.km2),
slightly lower in the Lisbon metropolitan area (1021 m2/year.km2), and reached figures
of 600 m2/year.km2 in the Aveiro, Oeste, and Ave regions.

• The lowest land take rates refer to the interior regions of Alto Alentejo and Beira Baixa
(83.8 and 107.8 m2/year.km2, respectively).

Table 3. Land take, land re-naturalization, and net land take indicators by NUTS III region and for
mainland Portugal in 2007–2018.

Land Take Land Re-Naturalization Net Land Take

NUTS III
Region

Annual
Average

(km2/year)

Annual
Rate

(m2/year.km2)

Annual
Average

(km2/year)

Annual
Rate

(m2/year.km2)

Annual
Average

(km2/year)

Annual
Rate

(m2/year.km2)

ALTO MINHO 0.5 245.8 0.1 47.5 0.4 198.3
CÁVADO 0.7 538.6 0.1 90.4 0.6 448.2
AVE 0.9 602.0 0.1 68.1 0.8 533.9
M. A. PORTO 2.4 1153.0 0.2 93.1 2.2 1059.9
ALTO TÂMEGA 0.4 152.8 0.1 31.1 0.4 121.7
TÂMEGA E SOUSA 0.9 515.2 0.1 37.9 0.9 477.2
DOURO 1.1 281.2 0.2 45.9 0.9 235.4
TERRAS DE
TRÁS-OS-MONTES 1.2 210.9 0.1 12.6 1.1 198.3

ALGARVE 1.8 353.9 0.1 28.9 1.6 325.1
OESTE 1.4 638.4 0.3 148.1 1.1 490.4
REGIÃO DE AVEIRO 1.1 663.1 0.2 89.1 1.0 574.0
REGIÃO DE
COIMBRA

1.8 423.3 0.2 52.4 1.6 370.9

REGIÃO DELEIRIA 1.2 486.2 0.2 69.3 1.0 416.9
VISEU DÃO
LAFÕES

0.9 281.6 0.1 39.0 0.8 242.6

BEIRA BAIXA 0.5 107.8 0.04 9.0 0.5 98.8
MÉDIO TEJO 0.8 238.3 0.04 12.2 0.8 226.1
BEIRAS E SERRA
DA ESTRELA 1.0 152.4 0.2 38.4 0.7 114.0

M. A. LISBOA 3.1 1021.0 0.5 157.9 2.6 863.2
ALENTEJOLITORAL 1.2 226.6 0.1 22.8 1.1 203.8
BAIXO ALENTEJO 1.2 144.4 0.3 40.4 0.9 104.0
LEZÍRIA DO TEJO 0.8 184.3 0.2 56.5 0.5 127.8
ALTO ALENTEJO 0.5 83.8 0.1 10.9 0.4 72.9
ALENTEJOCENTRAL 0.9 126.8 0.1 9.1 0.9 117.7
MAINLAND
PORTUGAL 26.4 296.2 3.7 41.6 22.7 254.5
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Figure 2. Land take rate by NUTS III region for mainland Portugal, 2007–2018 (m2/year.km2).

Land re-naturalization is, in comparison to the reverse phenomenon (land take), a rare
process that covers small surface areas on the mainland. The land re-naturalized between
2007 and 2018 (40.8 km2) represents only 0.05% of mainland Portugal and corresponds to
an annual average re-naturalization of 3.7 km2/year. Table 3 presents land re-naturalization
indicators (in the fourth and fifth columns) for mainland Portugal, by NUTS III, in the
above period. Figure 3 maps the land re-naturalization rate by NUTS III for the same
period. The following facts stand out from the analysis of both:

• The rate of re-naturalization of developed land in mainland Portugal was 41.6 m2/year.km2.
• At the NUTS III level, the highest re-naturalization rates refer to the Lisbon metropolitan

area (157.9 m2/year.km2), the Oeste region (148.1 m2/year.km2), the Porto metropolitan
area (93.1 m2/year.km2), and the Cávado region (90.4 m2/year.km2).

• The lowest re-naturalization rates per NUTS III (<13 m2/year.km2) were in the inland
regions of the mainland (Beira Baixa, Alto Alentejo, Alentejo Central, and Terras de
Trás-os-Montes).
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Figure 3. Land re-naturalization rate by NUTS III region for mainland Portugal, 2007–2018
(m2/year.km2).

A more detailed geographical analysis also revealed that 14% of the municipalities in
mainland Portugal did not re-naturalize developed land in the period under review.

The balance between land take and re-naturalization shows an annual average of net
land take in mainland Portugal of 22.7 km2/year between 2007 and 2018. Figure 4 maps the
annual net land take rate by NUTS III in this period, and Table 3 presents (in the 6th and
7th columns) additional net land take indicators for both NUTS III and mainland Portugal.
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Figure 4. Net land take rate by NUTS III region for mainland Portugal, 2007–2018 (m2/year.km2).

As noted for the land take rates, the highest rates of net land take occurred in the
two metropolitan areas and their immediate surroundings. These rates were higher in the
Porto metropolitan area (1059.9 m2/year.km2), slightly lower in the Lisbon metropolitan
area (863.2 m2/year.km2), and close to 500 m2/year.km2 in the Aveiro and Ave regions.
The lowest net land take rates were in the Alto Alentejo and Beira Baixa regions (72.9 and
98.8 m2/year.km2, respectively).

Figure 5 identifies the processes (LCFs) that drove land take and land re-naturalization
in mainland Portugal and the land cover types transformed by each LCF (in km2) between
2007 and 2018. In this figure, the gray bars (negative values) represent the re-naturalization
processes, and the bars in other colors (positive values) represent the land take processes.
Table 4 identifies the surface area and land cover types transformed by the land take and
land re-naturalization processes. Land cover types are shown as percentages of the surface
area transformed by the process. The meanings of the processes in Table 4 are provided
in Figure 5.
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Table 4. Land surface transformed by land take and land re-naturalization processes (LCFs) and land
cover types consumed per process (% of the surface area transformed by LCF) for mainland Portugal,
2007–2018.

Land Take
and Re-

naturalization
Processes

(LCFs)

Surface
Area
(km2)

Artificial
Surfaces

(%)

Arable
Land &

Permanent
Crops
(%)

Pastures &
Mosaic

Farmland
(%)

Forests and
Transitional
Woodland

Shrub
(%)

Natural
Grassland,
Heathland,

Sclerophyllous
Vegetation

(%)

Open Space
with

Little or No
Vegetation

(%)

Wetlands
(%)

Water
Bodies

(%)

LCF13 6.7 24.9 10.5 29.7 34.4 0.2 0.4
LCF21 7.9 29.7 17.4 19.9 32.1 0.8 0.03 0.05
LCF22 31.8 30.2 23.2 29.4 17.1 0.1 0.03
LCF31 74.5 25.4 13.8 40.5 20.1 0.1 0.2 0.06
LCF32 59.4 23.1 7.7 52.3 16.6 0.1 0.03 0.1
LCF33 0.3 20.4 24.8 4.3 50.4
LCF34 1.9 16.2 38.5 23.7 21.5
LCF35 26.6 6.1 3.9 53.9 33.6 2.2 0.3
LCF36 2.9 9.5 12.2 64.6 13.8
LCF37 62.5 17.7 12.6 45.7 23.4 0.2 0.03 0.3
LCF38 15.8 13.1 17.3 45.7 23.1 0.7

Total Land
Take 290.3 0.0 21.2 12.8 43.6 21.8 0.3 0.1 0.2

LCF54 8.8 100.0
LCF63 11.1 100.0
LCF81 6.3 100.0
LCF91 14.6 100.0
LCF93 0.004 100.0

Total Re-
naturalization 40.8 100.0

In the period 2007–2018, five land take processes stood out for their relative importance
in terms of the area of non-artificial surfaces transformed:

• Construction of new industrial and commercial sites (LCF31) accounted for 26% of
the non-artificial land taken. The land cover types most used in this conversion were
forests and transitional woodland shrub (41%); arable land and permanent crops (25%);
natural grassland, heathland, and sclerophyllous vegetation (20%); and pastures and
mosaic farmland (14%).

• Conversion from non-urban land to construction sites (LCF37) was the process with
the second highest relative importance (22%) in land take. The land cover types most
used by this conversion were forests and transitional woodland shrub (46%); natural
grassland, heathland, and sclerophyllous vegetation (23%); arable land and permanent
crops (18%); and pastures and mosaic farmland (13%).

• The expansion of transportation networks (LCF32) accounted for 20% of the non-
artificial land taken. The land cover types that contributed most to the development of
transportation networks were forests and transitional woodland shrub (52%); arable
land and permanent crops (23%); and natural grassland, heathland, and sclerophyllous
vegetation (17%).

• Diffuse residential expansion (LCF22) was responsible for 11% of the non-artificial
land taken. The land cover types that contributed most to the creation of discontinuous
urban fabric were arable land and permanent crops (30%), forests and transitional
woodland shrub (29%), pastures and mosaic farmland (23%), and natural grassland,
heathland, and sclerophyllous vegetation (17%).

• The expansion of mining and quarrying areas (LCF35) accounted for 9% of the non-
artificial land taken. The land cover types that contributed most to the development of
those areas were forests and transitional woodland shrub (54%) and natural grassland,
heathland, and sclerophyllous vegetation (34%).

In summary, in the period under review, the consumption of non-artificial surfaces
in mainland Portugal was mostly driven by the expansion of economic sites and infras-
tructures (LCF3). The land cover types most expended by those changes were forests and
transitional woodland shrub (43.6%), natural grassland, heathland, and sclerophyllous
vegetation (21.8%), and arable land and permanent crops (21.2%).
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The processes with the highest significance in terms of land re-naturalization in the
period 2007–2018 were the conversion of artificial areas into semi-natural areas (partial
LCF91), forest and woodlands (partial LCF63), and agriculture (LCF54). These processes
contributed respectively, 36%, 27%, and 22% to the creation of re-naturalized land.

An analysis based on CLC classes (level 3) showed that conversions from mineral
extraction sites and construction sites (131 + 133) to non-artificial land accounted for 91% of
re-naturalization. Among these transformations, the most common were the conversions
from the two classes above to bushes (322) and to broad-leaved and coniferous forests
(311 + 312), which had shares of 32% and 26%, respectively, in the re-naturalization of
developed land. As far as the creation of agricultural areas from mineral extraction and
construction sites is concerned, the development of non-irrigated arable land (211) and per-
manent pastures (231) stands out, which together accounted for 8% of land re-naturalization.
The conversion of construction sites to inland waters (511 + 512) accounted for 14% of
land re-naturalization.

3.2. Recycling of Developed Land

In this section, we analyze transformations between artificial surface classes, namely,
urban development (LCF11) or densification, gray recycling (LCF12), and green recycling
(partial LCF13). As mentioned above, these three processes are referred to (in a broad
sense) as developed land recycling. Figures A1–A3 in Appendix B illustrate the conversions
between CLC classes (level 3) covered by these three processes. In line with the explanation
provided in Section 2, our assessment of developed land recycling (in the broadest sense)
excludes conversions of sites under construction for any class (illustrated in light blue in
the figures in Appendix B).

Table 5 provides indicators of recycling (in the broadest sense) of developed land for
mainland Portugal, by NUTS III regions, in the period under assessment. Figure 6 maps
the rates shown in the third column of this table. The following conclusions stand out from
the analysis of both:

• Recycling of developed land is still rare in mainland Portugal. Between 2007 and
2018, the area recycled (6.8 km2) was well lower than that re-cultivated (40.8 km2).
The low recycling rates are attributable to the fact that almost half of the mainland
municipalities (49%) have not recycled developed land in this period.

• The rate of developed land recycling had a similar spatial distribution to that of land
take, decreasing from the coast to the mainland’s interior. This rate was 7 m2/year.km2

for mainland Portugal in the period under review.
• The highest recycling rates occurred in the Aveiro region (50.6 m2/year.km2); the

metropolitan areas (38.4 m2/year.km2 in Lisbon and 27.1 m2/year.km2 in Porto); and
the Lezíria do Tejo, Ave, Cávado, and Oeste regions, which had recycling rates of
around 10 m2/year.km2.

• The lowest recycling rates (≤0.7 m2/year.km2) were observed in interior Alentejo
regions (Alto Alentejo, Alentejo Central, and Baixo Alentejo).

• The recycling of developed land accounted for 9.1% of the mainland’s urban land
management (LCF1) between 2007 and 2018. This share was much higher (≥25%) in
regions adjacent to the metropolitan areas, namely, Aveiro and Lezíria do Tejo.

• Developed land recycling also accounted for 1.9% of the formation of artificial surface
areas on the mainland. The regions with the highest shares were also Lezíria do Tejo
(7.1%) and Aveiro (6%).

Figure 7 shows the relative significance of developed land recycling processes in
the period under analysis. It allows concluding that gray recycling prevailed over urban
development (or densification) in mainland Portugal and most of its regions. The majority
of NUTS III regions did not carry out green recycling in the 2007–2018 period. This type of
land recycling only had some relative importance (less than 20%) in the following spatial
units: mainland Portugal, the two metropolitan areas, and the regions of Alto Minho,
Aveiro, Beira Baixa, and Coimbra.
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Table 5. Developed land recycling indicators by NUTS III region for mainland Portugal, 2007–2018.

NUTS III Region Yearly Recycling *
(km2/year)

Land Recycling Rate *
(m2/year.km2)

Weight of Land Recycling *
in Urban Land Management

-LCF1 (%)

Weight of Land Recycling *
in the Formation of Artificial

Areas (%)

ALTO MINHO 0.01 3.0 8.9 1.1
CÁVADO 0.02 13.6 11.3 2.1
AVE 0.02 15.7 9.7 2.2
M. A. PORTO 0.06 27.1 9.6 1.9
ALTO TÂMEGA 0.003 1.1 4.5 0.7
TÂMEGA E SOUSA 0.01 5.2 6.3 0.9
DOURO 0.003 0.8 3.1 0.3
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Table 5. Cont.

NUTS III Region Yearly Recycling *
(km2/year)

Land Recycling Rate *
(m2/year.km2)

Weight of Land Recycling *
in Urban Land Management

-LCF1 (%)

Weight of Land Recycling *
in the Formation of Artificial

Areas (%)

TERRAS DE
TRÁS-OS-MONTES 0.01 2.1 14.6 0.9

ALGARVE 0.04 8.9 7.4 1.6
OESTE 0.02 10.2 5.5 1.2
REGIÃO DE AVEIRO 0.09 50.6 26.9 6.0
REGIÃO DE COIMBRA 0.03 6.2 3.3 1.0
REGIÃO DE LEIRIA 0.02 8.2 9.0 1.4
VISEU DÃO LAFÕES 0.03 7.9 12.0 2.3
BEIRA BAIXA 0.01 1.5 7.5 1.2
MÉDIO TEJO 0.01 2.6 5.0 0.9
BEIRAS E SERRA DA
ESTRELA 0.03 4.5 19.8 2.5

M. A. LISBOA 0.12 38.4 8.7 2.7
ALENTEJO LITORAL 0.01 2.6 6.4 1.0
BAIXO ALENTEJO 0.01 0.7 3.4 0.4
LEZÍRIA DO TEJO 0.08 18.5 24.5 7.1
ALTO ALENTEJO 0.004 0.6 1.7 0.5
ALENTEJO CENTRAL 0.002 0.3 2.1 0.2
MAINLAND
PORTUGAL 0.6 7.0 9.1 1.9

* Sum of the surface areas transformed by densification (LCF11), gray recycling (LCF12), and green recycling
(partial LCF13), excluding conversions from construction sites to any class.
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3.3. Land Take and Population Growth

This section compares the population growth with the expansion of artificial areas
between 2007 and 2018 in mainland Portugal and its NUTS III regions. Table 6 presents
the following additional indicators to assess urban land use efficiency: land take per new
inhabitant, artificial area per capita, and share of artificial land by region.

Table 6. Indicators of the growth of resident population and artificial surface areas, land take per
new inhabitant, artificial surface area per capita, and share of artificial land, by NUTS III region for
mainland Portugal, 2007–2018. Sources: inter-census population estimates produced by Statistics
Portugal; land cover and land use classes extracted from COS2007 and CO2018 maps produced by
Directorate-General for Territory.

NUTS III Region
Population

Growth
2007–2018 (%)

Artificial Surface
Area Growth

2007−2018 (%)

Land Take per New
Inhabitant * 2007–2018

(m2/inhab)

Artificial Surface
Area per Capita 2007

(m2/inhab)

Artificial Surface Area
per Capita 2018

(m2/inhab)

Artificial
Land 2018

(%)

ALTO MINHO −7.1 2.7 −341.6 717.9 793.5 8.3
CÁVADO −1.1 3.2 −1631.5 471.4 491.9 15.9
AVE −4.0 4.4 −562.1 451.0 490.4 13.9
M. A. PORTO −2.4 4.9 −616.3 276.9 297.4 25.1
ALTO TÂMEGA −12.1 4.6 −412.6 864.3 1028.5 3.0
TÂMEGA E
SOUSA −4.6 5.2 −515.6 425.2 468.8 10.7

DOURO −9.7 9.8 −608.4 501.3 609.7 2.9
TERRAS DE
TRÁS-OS-
MONTES

−11.1 16.3 −955.0 609.6 797.8 1.6

ALGARVE 1.0 7.0 4515.4 586.6 621.6 5.5
OESTE −0.1 5.4 −39373.2 622.1 656.3 10.5
REGIÃO DE
AVEIRO −2.2 5.2 −1484.7 559.0 601.3 12.9

REGIÃO DE
COIMBRA −6.9 6.4 −632.3 594.6 679.1 6.8

REGIÃO DE
LEIRIA −3.4 5.0 −1304.7 761.5 827.9 9.6

VISEU DÃO
LAFÕES −7.1 5.1 −520.4 626.9 709.1 5.5

BEIRA BAIXA −11.3 8.9 −529.2 615.3 756.1 1.3
MÉDIO TEJO −7.2 4.4 −488.6 753.7 847.5 5.9
BEIRAS E SERRA
DA ESTRELA −12.8 5.8 −339.0 553.7 671.7 2.3
M. A. LISBOA 2.5 4.6 479.3 225.2 229.7 21.7
ALENTEJO
LITORAL −5.8 15.0 −2313.7 803.5 980.4 1.7
BAIXO
ALENTEJO −10.3 9.5 −1014.5 789.8 964.2 1.3

LEZÍRIA DO
TEJO −3.8 3.5 −912.4 700.2 753.5 4.2

ALTO
ALENTEJO −13.4 7.1 −344.0 564.5 698.0 1.2
ALENTEJO
CENTRAL −10.1 8.6 −600.8 656.6 792.9 1.6
MAINLAND
PORTUGAL −2.6 5.7 −1100.8 438.2 475.5 5.2

* Land take 2007–2018 (in m2)/(inhabitants 2018 − inhabitants 2007).

A comparison of the first two indicators in Table 6 shows that, between 2007 and 2018,
in most regions and in mainland Portugal, there was an expansion of artificial land despite
a population decrease. As a result, the artificial area per capita increased in all regions
and the mainland. The Lisbon metropolitan area and the Algarve are the only regions that
had population increases, but they were, nevertheless, lower than those for their artificial
surface areas.

On the other hand, the inner regions of the mainland (Alto Alentejo, Beiras e Serra da
Estrela, and Alto Tâmega) experienced the highest population reductions.

The land take per new inhabitant indicator shows the uniqueness of the Lisbon
metropolitan area and the Algarve compared to the other regions of mainland Portugal,
which presented negative figures for this indicator, because they had population declines
between 2007 and 2018. The lowest land take per new inhabitant happened in the Oeste
region (−39373.2 m2/inhabitant). Although in this region, the area of non-artificial land
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transformed by urban development (15.6 km2) is not among the highest, the decrease
in its population (−396 inhabitants) was the smallest of those observed in regions that
lost population.

The fact that in 2018 almost half (47%) of the resident population in mainland Portugal
was concentrated in the two metropolitan areas justifies that these two regions had the
highest shares of artificial land (25.1% for Porto and 21.7% for Lisbon).

Although in 2018, the Lisbon metropolitan area had about one million more inhabitants
than the Porto metropolitan area, the artificial area per capita in Porto (297 m2/inhabitant)
was higher than in Lisbon (230 m2/inhabitant), which shows that Lisbon is denser than
Porto. Despite the higher shares of artificial land observed in the two metropolitan areas
(see Table 6), the regions of Cávado, Ave, Aveiro, Tâmega e Sousa, and Oeste also stand out
for having, in 2018, more than 10% of their surface areas occupied by artificial land. In the
above regions, the lowest artificial surface area per capita value was registered in Tâmega e
Sousa (469 m2/inhabitant), and the highest was in Oeste (656 m2/inhabitant).

4. Discussion

We would first like to point out that, like other authors, we consider that the term
‘land take’ is controversial, as the land is not taken but transformed by urban develop-
ment [5,6,25,26]. Its use in this paper is only justified by the recognition the term has gained
with the spread of the goal of “no net land take”. The designation ‘land consumption’ is
also in itself questionable, as it reflects a change in land cover/land use, and only changes
of non-artificial to artificial land are accounted for by land take.

This study assessed the land take, re-naturalization, and recycling of developed land
in mainland Portugal, broken down by NUTS III region, through an analysis of land
cover/land use changes between 2007 and 2018.

The 2007 and 2018 national land cover/land use maps (COS) served as baseline data.
Since national cadastral data is either not available or up to date for the whole of the
mainland, COS maps were considered the most complete and accurate data source for
quantifying and tracking the phenomena of interest due to their regular updating (every
three years) and their spatial coverage (mainland Portugal).

The Land and Ecosystem Accounting system, developed by the EEA [50–52], was
adopted to assess the land cover/use changes contributing to the phenomena addressed
and their driving forces. In this assessment, a Minimum Mapping Unit was not defined
for change identification, which may have contributed to some of the changes considered,
especially those related to small areas, no longer reflecting their original land cover/land
use classification. This approach was, however, justified by both the small number and
small size of some of the changes of interest for this study.

The main innovative contribution of this study was the assessment of land take, re-
naturalization, and recycling of developed land using national data sources and the Land
and Ecosystem Accounting system. Monitoring the European target in any country or
region requires a quantitative assessment of these phenomena, and their extent in mainland
Portugal was previously unknown.

Since our findings depend on the data sources and assessment approach used, their
comparability with results published by the EEA [7,11,17,53] for mainland Portugal, which
considers different assessment periods and data sources, is limited. Regarding this issue,
Decoville and Schneider [5] point out that the land take estimates provided by distinct data
sources present significant variability, which questions the measurability of the 2050 target
and its comparison across countries. Furthermore, land take is described by most countries
using an average annual or daily surface area, which is not comparable across countries
due to their uneven spatial extents, so this metric only evaluates the performance of the
same spatial unit over time.

The following is a summary of the main results obtained in this study, which are
compared, whenever possible, with the European trends and discussed in light of the
policies in force in mainland Portugal.
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The non-artificial land consumed by urbanization during the period under considera-
tion (7.2 ha/day) represents 0.3% of mainland Portugal’s surface area, which is more than
double that observed between 2006 and 2018 in 39 European countries (0.14%) (percentage
based on the content available at [11]).

The main drivers of land take in the mainland in the 2007–2018 period were the
development of new industrial and commercial sites and the creation of construction sites,
transportation networks, and residential areas. The first three accounted for 68% of the
land taken, and residential extension accounted for 13.7%. Although the period available
for comparison at the European level (2006–2018) was slightly longer than that taken into
consideration herein (2007–2018), it was found that the main drivers of land taken in
Europe (39 countries) are similar to those observed for mainland Portugal. Nevertheless,
the expansion of mining and quarrying areas in the rest of Europe was more significant
than the expansion of transportation networks.

The land cover types most consumed by the conversion of non-artificial areas into
artificial areas in mainland Portugal were forests and transitional woodland shrub (43.6%),
and natural grassland, heathland, sclerophyllous vegetation (21.8%). The consumption of
arable land and permanent crops by the land take was 21.2%. In contrast to observations
for mainland Portugal, arable land and permanent crops (44.6%) and pastures and mosaic
farmland (26.9%) were the land cover classes most used by land take in Europe (39 countries)
between 2006 and 2018 (percentages based on the content available at [11]).

Daily re-naturalization in mainland Portugal between 2007 and 2018 (1.0 ha/day)
was about seven times less than the land uptake by new urbanization. The highest rates
of re-naturalization were in the coastal regions, mainly those interconnecting the two
metropolitan areas. Re-naturalization was even null in several municipalities in mainland
Portugal (14%). Since re-naturalization makes it possible to compensate for some of the
non-artificial land used by urbanization, its practice should be promoted on the mainland.
Although the land lost for human development is commonly much higher than that re-
naturalized, the proportion of land re-naturalized in mainland Portugal between 2007 and
2018 (0.5%) was higher than that re-naturalized in Europe (39 countries) between 2006 and
2018 (0.013%) (percentage based on the content available at [11]).

In the period under analysis, the changing of artificial areas into semi-natural areas
accounted for 36% of re-naturalization in mainland Portugal; the conversion of mineral
extraction sites and construction sites to bushland was the most common (32%). Given that
scrub development results from land abandonment and increases the risk of forest fires, it
should be noted that this is the least desirable type of re-naturalization for our territory.

The conversion of developed land into agricultural areas accounted for 22% of the
land re-naturalization in mainland Portugal. This conversion was, however, the most
noteworthy (at 71.5%) in 39 European countries between 2006 and 2018 (percentage based
on the content available in [11]).

Regarding the reuse of developed land, the surface area recycled between 2007 and
2018 in mainland Portugal (6.8 km2) was six times less than the surface area re-naturalized
(40.8 km2), so the annual average of land recycled (0.6 km2/year) was very low. This low
average is attributable to the fact that almost half of the mainland municipalities (49%)
have not recycled developed land in this period. Of the regions that did register recycling,
Aveiro stands out with a maximum annual recycling rate of 50.6 m2/year.km2, along with
the two metropolitan areas and some regions adjacent to these.

A European study on this topic [17,53] reported that, between 2006 and 2012, the
contribution of developed land recycling to the creation of artificial surface areas in 318
functional urban areas of medium to large European cities was still relatively low (13.5%).
This value is, however, much higher than that observed in the mainland (1.9%) and in the
Lezíria do Tejo region (7.1%), which recorded the highest figure.

As for land recycling processes, gray recycling was more relevant than urban develop-
ment (or densification) in most regions, and in mainland Portugal, where it accounted for
55% of land recycled between 2007 and 2018. In contrast to mainland Portugal, densification
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was the most frequent recycling process in the above-mentioned European cities. This
disparity between results is likely due to the use of different base data. As observed in the
aforementioned European cities, green recycling was the least common recycling process in
mainland Portugal (4.9%), though most regions have not implemented it.

It should be highlighted that our green recycling estimate is, by definition, lower than
that of the EEA [17,53] because it only includes the development of green urban areas from
artificial areas. The EEA estimate additionally covers the development of sports and leisure
facilities from artificial land, based on the assumption that this creates additional green
cover, and therefore increases the area of unsealed land. We have not included this option
because our base maps show that more than half of the surfaces occupied by sports and
leisure are is sealed.

Since the reuse of developed land prevents land take and the contribution thereof to
the creation of artificial surface areas in mainland Portugal was extremely low, we conclude
that practice thereof should be encouraged in Portugal.

Our results show that the daily net land take in mainland Portugal (6.2 ha/day)
between 2007 and 2018 is still far from the “zero net land take” target, mainly due to
the rarity or even lack of either re-naturalization (1 ha/day) or developed land recycling
processes (0.2 ha/day).

Between 2007 and 2018, mainland Portugal and most of its regions experienced a
decrease in inhabitants and an expansion of artificial surface areas. The Lisbon metropolitan
area and Algarve were the only regions that recorded an increase in population, but these
increases were less than the growth in their artificial surface areas. In the said period, the
rate of land take in mainland Portugal (7.2 ha/day) decreased substantially in comparison
to the 1990–2007 period (34 ha/day) [54]. However, in the period 1990–2007, the population
increased in the mainland and most of its regions, whereas from 2007 to 2018, there were
population declines in most of the territory. Despite the positive reduction in the land
take rate between the two periods, the rate observed in the latter period did not follow
population dynamics. As most of the non-artificial land taken between 2007 and 2018
served for the development of economic sites and infrastructures, and while some regions
still need to invest in this to halt population loss, it is not sustainable for artificial areas to
continue to grow over the next decade at the same rate.

The above results show that the current legislation in Portugal to control land use,
namely, the instruments to protect agricultural and natural land (often seen by local gov-
ernments as obstacles to the development of their territories), is not effective enough to
promote the re-use of developed land, which is vital to reduce land take. On the other hand,
the recent reinforcement in the national legislation of concerns containing urban sprawl
and encouraging urban densification and regeneration may have contributed to the fact
that their impact on reversing the trend of land take in the mainland is not yet noticeable.

The introduction of the European target in countries such as Portugal, which have
multi-level planning systems and where land take presents significant spatial variability,
makes it advisable to define differentiated guidelines or targets for the regional and local
levels. Since in our country, it is up to the local authorities to authorize and issue building
permits under the municipal land use plans, it is paramount that the regional guidelines
allow for balance and articulation among the municipalities. Furthermore, it is necessary to
make decision-makers and stakeholders aware of the existence of the European goal, inform
them about the type of interventions that can help achieve it, and promote stakeholder
involvement in the development and implementation of land use plans [13].

As highlighted by Build Europe [15], the target of “no net land take” ignores the
different social and economic conditions in European countries and regions. Accordingly,
measures aimed at achieving the target should be adapted to the specific context of each
country or region. In line with this view, Decoville [33] argues that land take should not be
assessed based on a single indicator, as evaluation thereof requires the identification of the
main drivers and knowledge of the demographic and economic developments and policy
measures in place in the same period.
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The definition of interventions to reach the European goal requires a comprehensive
evaluation of the phenomena addressed, such as the one provided by this study for main-
land Portugal. It is recognized, however, that the study would be improved by regional
and municipal assessments similar to those presented for mainland Portugal, which would
allow differentiating the driving forces of net land take at these levels and support the
definition of more targeted interventions. Quantifying permanent land take is another
aspect that could help improve the study. Knowledge of the surface area of sealed land
would reveal the most intense form of land take, which is usually irreversible [16].

Shortage of time did not allow the evaluation of the aforementioned aspects. Thus,
the research we intend to undertake in the short term will include the regional analysis of
both sealed land and land take drivers and the identification of inland urban areas with
reuse potential.

5. Conclusions

This study discloses that the term “land take” has different significance among Member
States, which prevents comparisons of its estimates across countries. For this reason,
clarification of the land use changes that the term covers are needed. Despite the ambiguity
of land take’s definition, there is evidence that several countries are acting on the message
contained in the goal, which is the protection of soils, especially those that are most fertile
and productive. To this end, some countries, such as Italy, already assign economic value
to soil based on the functions and ecosystems it provides, to classify land and estimate
losses and gains due to its transformations [47]. Moreover, the economic valuation of
soil also supports the establishment of fees for land take or rating systems for defining
building rights [13].

A reduction in net land take is only feasible through an increase in the re-naturalization
of developed land, a process that is undertaken in specific and rare circumstances. Ac-
cordingly, developed land recycling (or inner urban development) is the only intervention
that can seriously mitigate land take. As implementation thereof may be unfeasible in
already highly densified urban areas where the population continues to grow, it must be
admitted that the “no net land take” target may be unattainable for some countries and
regions in Europe by the year 2050. Such countries should pursue more sustainable urban
development, which preserves land as a natural resource and maximizes the functions and
services it provides.

The descriptions in the first section of some of the initiatives and instruments used
to prevent land take also showed that the actions aimed at the 2050 target differ across
countries and that the indicators monitored are equally diverse, favoring an adjustment
in the target to match the land use planning objectives of the countries or regions. In line
with the vision of the ESPON SUPER project, we believe that the ultimate aim of the “no
net land take” target should be “to harness the potential of each territory to contribute
to European sustainability” [26] (p. 97). Therefore, replication of good practices from
other countries or regions (extensively described in [26]), with appropriate vertical and
horizontal coordination and adapted to the political and socio-economic contexts, may be
more effective in achieving this ultimate aim than policy and regulatory harmonization.

Thus, the recommendations we make regarding the implementation of the European
goal are based on the RECARE project [13] and aim at the allocation of dedicated EU
funding for more sustainable land use, namely, the increase in green and blue infrastructure,
the reuse of brownfield sites, and the creation of binding policy instruments to reduce soil
sealing. We also recommend that member states establish laws and regulations to combat
land take and financially support local governments in their implementations. Along
with the definition of a legal framework concerning land take and soil sealing, they must
promote dialogue about the European goal, adopting communication strategies adjusted to
the different stakeholders and levels of decision-making.

Regarding mainland Portugal, our findings show low efficiency in urban land use in
the mainland and most of its regions (while the mainland’s artificial land increased by 5.7%,
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its population decreased by 2.6%). The main drivers of land take were the development of
new industrial and commercial sites and the expansion of construction sites, transportation
networks, and residential areas. Our results also show that the recycling of land developed
on the mainland is still very low because almost half of the municipalities do not undertake
it. These municipalities are some of inland regions that had the most significant population
reductions between 2007 and 2018. While some of these regions still need to invest in new
jobs and infrastructures to halt population loss, these should be targeted to sites within the
urban perimeters with the potential to be reused.

The European guidelines on land take do not seem sufficient for its mitigation in
Portugal, so we consider that setting quantitative targets for different levels (national,
regional, and municipal) would be more effective for reducing land take.

This study is of interest to spatial planning actors unaware of the European goal
and the interventions European nations can undertake to meet it by 2050. The contents
presented can serve as an example for countries that have not yet started to monitor net
land take and related processes. Moreover, the study is also of interest to those concerned
with sustainable urban development.
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Appendix A

Table A1. -CLC land cover classes and LEAC land cover types. Source: adapted from [50,52].

CLC-Level 1 CLC-Level 2 CLC-Level 3 LEAC

1 Artificial surfaces

11 Urban fabric
111 Continuous urban fabric

1 Artificial surfaces

112 Discontinuous urban fabric

12 Industrial, commercial and
transport units

121 Industrial or commercial units
122 Road and rail networks and
associated land
123 Port areas
124 Airports

13 Mine, dump and
construction sites

131 Mineral extraction sites
132 Dump sites
133 Construction sites

14 Artificial, non-agricultural
vegetated areas

141 Green urban areas
142 Sport and leisure facilities
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Table A1. Cont.

CLC-Level 1 CLC-Level 2 CLC-Level 3 LEAC

2 Agricultural areas

21 Arable land
211 Non-irrigated arable land

2A Arable land & permanent
crops

212 Permanently irrigated land
213 Rice fields

22 Permanent crops
221 Vineyards
222 Fruit trees and berry plantations
223 Olive groves

23 Pastures 231 Pastures 2B Pastures & mosaic
farmland

24 Heterogeneous agricultural
areas

241 Annual crops associated with
permanent crops

2A Arable land & permanent
crops

242 Complex cultivation patterns

2B Pastures & mosaic
farmland

243 Land principally occupied by
agriculture, with significant areas of
natural vegetation
244 Agro-forestry areas

3 Forest and semi
natural areas

31 Forest
311 Broad-leaved forest

3A Forests and transitional
woodland shrub

312 Coniferous forest
313 Mixed forest

32 Shrub and/or herbaceous
vegetation associations

321 Natural grassland 3B Natural grassland,
heathland, sclerophyllous
vegetation

322 Moors and heathland
323 Sclerophyllous vegetation

324 Transitional woodland/shrub 3A Forests and transitional
woodland shrub

33 Open spaces with little or
no vegetation

331 Beaches, dunes, sands

3C Open space with little or
no vegetation

332 Bare rock
333 Sparsely vegetated areas
334 Burnt areas
335 Glaciers and perpetual snow

4 Wetlands

41 Inland wetlands
411 Inland marshes

4 Wetlands
412 Peatbogs

42 Coastal wetlands
421 Salt marshes
422 Salines
423 Intertidal flats

5 Water bodies

51 Inland waters
511 Water courses

5 Water bodies
512 Water bodies

52 Marine waters
521 Coastal lagoons
522 Estuaries
523 Sea and ocean

61



Land 2022, 11, 1005

Appendix B

Land 2022, 11, x FOR PEER REVIEW 30 of 33 
 

523 Sea and ocean 

Appendix B 

 

Figure A1. Conversions between classes of artificial surfaces (CLC-level 3) covered by the urban 

development or densification (LCF11). 

 

Figure A2. Conversions between classes of artificial surfaces (CLC-level 3) covered by gray recycling 

(LCF12). 

Figure A1. Conversions between classes of artificial surfaces (CLC-level 3) covered by the urban
development or densification (LCF11).

Land 2022, 11, x FOR PEER REVIEW 30 of 33 
 

523 Sea and ocean 

Appendix B 

 

Figure A1. Conversions between classes of artificial surfaces (CLC-level 3) covered by the urban 

development or densification (LCF11). 

 

Figure A2. Conversions between classes of artificial surfaces (CLC-level 3) covered by gray recycling 

(LCF12). 

Figure A2. Conversions between classes of artificial surfaces (CLC-level 3) covered by gray recy-
cling (LCF12).

62



Land 2022, 11, 1005Land 2022, 11, x FOR PEER REVIEW 31 of 33 
 

 

Figure A3. Conversions between classes of artificial surfaces (CLC-level 3) covered by green recy-

cling (partial LCF13). 

References 

1. European Commission. Roadmap to a Resource Efficient Europe. COM/2011/571 Final; Brussels. 20 September 2011. Available 

online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0571&from=EN (accessed on 24 May 2022). 

2. European Union. 7th Environmental Action Programme of the European Union; Official Journal of the European Union, Stras-

bourg. 28 December 2013. Available online: https://ec.europa.eu/environment/action-programme/index.htm (accessed on 24 

May 2022). 

3. European Commission. EU Soil Strategy for 2030. Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate. 

COM/2021699 Final; DG Environment, Brussels. 17 November 2021. Available online: https://ec.europa.eu/environment/docu-

ment/download/ae853f10-c9a2-4665-a9f2-c29d11c49374_en (accessed on 24 May 2022). 

4. European Commission. DG Environment. Science for Environment Policy. No Net Land Take by 2050? Future Brief 14; Science 

Communication Unit, UWE, Bristol, Abril 2016. Available online: http://ec.europa.eu/science-environment-policy (accessed on 

24 May 2022). 

5. Decoville, A.; Schneider, M. Can the 2050 zero land take objective of the EU be reliably monitored? A comparative study. J. Land 

Use Sci. 2015, 11, 331–349. https://doi.org/10.1080/1747423X.2014.994567. 

6. Marquard, E.; Bartke, S.; Gifreu i Font, J.; Humer, A.; Jonkman, A.; Jürgenson, E.; Marot, N.; Poelmans, L.; Repe, B.; Rybski, R.; 

et al. Land consumption and land take: Enhancing conceptual clarity for evaluating spatial governance in the EU context. Sus-

tainability 2020, 12, 8269. https://doi.org/10.3390/su12198269. 

7. European Environment Agency. Land Take in Europe—Indicator Assessment (CSI 014/LSI 001). 13 December 2019. Available 

online: https://www.eea.europa.eu/data-and-maps/indicators/land-take-3/assessment (accessed on 24 May 2022). 

8. Zambrano, L.; Aronson, M.F.J.; Fernandez, T. The Consequences of Landscape Fragmentation on Socio-Ecological Patterns in a 

Rapidly Developing Urban Area: A Case Study of the National Autonomous University of Mexico. Front. Environ. Sci. 2019, 7, 

7–152. https://doi.org/10.3389/fenvs.2019.00152. 

9. European Commission, DG Environment. Soil Sealing. Science for Environment Policy-In-Depth Reports; Science Communication 

Unit, University of the West of England (UWE): Bristol, UK, March 2012; p. 41. Available online: https://ec.europa.eu/environ-

ment/archives/soil/pdf/sealing/Soil%20Sealing%20In-depth%20Report%20March%20version_final.pdf (accessed on 18 June 

2022). 

10. Tobias, S.; Conen, F.; Duss, A.; Wenzel, L.M.; Buser, C.; Alewell, C. Soil sealing and unsealing: State of the art and examples. 

Land Degrad. Dev. 2018, 29, 2015–2026. https://doi.org/10.1002/ldr.2919. 

11. European Environment Agency. Land Take and Net Land Take. 10 September 2019. Available online: https://www.eea.eu-

ropa.eu/data-and-maps/dashboards/land-take-statistics (accessed on 24 May 2022). 

12. Colsaet, A.; Laurans, Y.; Levrel, H. What drives land take and urban land expansion? A systematic review. Land Use Policy 2018, 

79, 339–349. https://doi.org/10.1016/j.landusepol.2018.08.017. 

13. Naumann, S.; Frelih-Larsen, A.; Prokopp, G. RECARE-Preventing and Remediating Degradation of Soils in Europe through 

Land Care. Policy Brief on Soil Sealing and Land Take. September 2018. Available online: https://www.ecologic.eu/sites/de-

fault/files/publication/2018/2730_recare_soil-sealing_web.pdf (accessed on 24 May 2022). 

14. Intergovernmental Panel on Climate Changes. IPCC Special Report on Climate Change, Desertification, Land Degradation, 

Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Summary for Policymak-

ers. Approved Draft. 7 August 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Mi-

crosite_FINAL.pdf (accessed on 24 May 2022). 

Figure A3. Conversions between classes of artificial surfaces (CLC-level 3) covered by green recycling
(partial LCF13).

References
1. European Commission. Roadmap to a Resource Efficient Europe. COM/2011/571 Final; Brussels. 20 September 2011.

Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0571&from=EN (accessed
on 24 May 2022).

2. European Union. 7th Environmental Action Programme of the European Union; Official Journal of the European Union,
Strasbourg. 28 December 2013. Available online: https://ec.europa.eu/environment/action-programme/index.htm (accessed on
24 May 2022).

3. European Commission. EU Soil Strategy for 2030. Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate.
COM/2021699 Final; DG Environment, Brussels. 17 November 2021. Available online: https://ec.europa.eu/environment/
document/download/ae853f10-c9a2-4665-a9f2-c29d11c49374_en (accessed on 24 May 2022).

4. European Commission. DG Environment. Science for Environment Policy. No Net Land Take by 2050? Future Brief 14; Science
Communication Unit, UWE, Bristol. April 2016. Available online: http://ec.europa.eu/science-environment-policy (accessed on
24 May 2022).

5. Decoville, A.; Schneider, M. Can the 2050 zero land take objective of the EU be reliably monitored? A comparative study. J. Land
Use Sci. 2015, 11, 331–349. [CrossRef]

6. Marquard, E.; Bartke, S.; Gifreu i Font, J.; Humer, A.; Jonkman, A.; Jürgenson, E.; Marot, N.; Poelmans, L.; Repe, B.; Rybski, R.;
et al. Land consumption and land take: Enhancing conceptual clarity for evaluating spatial governance in the EU context.
Sustainability 2020, 12, 8269. [CrossRef]

7. European Environment Agency. Land Take in Europe—Indicator Assessment (CSI 014/LSI 001). 13 December 2019. Available
online: https://www.eea.europa.eu/data-and-maps/indicators/land-take-3/assessment (accessed on 24 May 2022).

8. Zambrano, L.; Aronson, M.F.J.; Fernandez, T. The Consequences of Landscape Fragmentation on Socio-Ecological Patterns in a Rapidly
Developing Urban Area: A Case Study of the National Autonomous University of Mexico. Front. Environ. Sci. 2019, 7, 7–152. [CrossRef]

9. European Commission, DG Environment. Soil Sealing. Science for Environment Policy-In-Depth Reports; Science Communication
Unit, University of the West of England (UWE): Bristol, UK, March 2012; p. 41. Available online: https://ec.europa.eu/
environment/archives/soil/pdf/sealing/Soil%20Sealing%20In-depth%20Report%20March%20version_final.pdf (accessed on
18 June 2022).

10. Tobias, S.; Conen, F.; Duss, A.; Wenzel, L.M.; Buser, C.; Alewell, C. Soil sealing and unsealing: State of the art and examples. Land
Degrad. Dev. 2018, 29, 2015–2026. [CrossRef]

11. European Environment Agency. Land Take and Net Land Take. 10 September 2019. Available online: https://www.eea.europa.
eu/data-and-maps/dashboards/land-take-statistics (accessed on 24 May 2022).

12. Colsaet, A.; Laurans, Y.; Levrel, H. What drives land take and urban land expansion? A systematic review. Land Use Policy
2018, 79, 339–349. [CrossRef]

13. Naumann, S.; Frelih-Larsen, A.; Prokopp, G. RECARE-Preventing and Remediating Degradation of Soils in Europe through Land
Care. Policy Brief on Soil Sealing and Land Take. September 2018. Available online: https://www.ecologic.eu/sites/default/
files/publication/2018/2730_recare_soil-sealing_web.pdf (accessed on 24 May 2022).

14. Intergovernmental Panel on Climate Changes. IPCC Special Report on Climate Change, Desertification, Land Degradation,
Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Summary for Policymakers.

63



Land 2022, 11, 1005

Approved Draft. 7 August 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_
Microsite_FINAL.pdf (accessed on 24 May 2022).

15. Build Europe. No Net Land Take by 2050 Solving the Unsolvable–10 Solutions for an Improved Management of European Land.
13 January 2022, p. 32. Available online: https://buildeurope.net/wp-content/uploads/2022/01/No-net-land-take-by-2050
-Solving-the-unsolvable.pdf (accessed on 24 May 2022).

16. European Commission, Directorate-General for Environment; Prokop, G.; Jobstmann, H.; Schönbauer, A. Overview of Best Practices
for Limiting Soil Sealing or Mitigating Its Effects in EU-27: Final Report; Publications Office: Brussels, Belgium, 2011; p. 227. Available
online: https://data.europa.eu/doi/10.2779/15146 (accessed on 24 May 2022).

17. European Environment Agency. Land Recycling in Europe-Approaches to Measuring Extent and Impacts; EEA Report No. 31/2016;
Publications Office of the European Union: Luxembourg, 2016; p. 56.

18. European Union. European Spatial Development Perspective-Towards Balanced and Sustainable Development of the Territory of the
European Union; Official Publications of the European Communities: Luxembourg, 1999.

19. European Union. Territorial Agenda of the European Union. Towards a More Competitive and Sustainable Europe of Diverse
Regions. 2007. Available online: https://ec.europa.eu/regional_policy/en/information/publications/communications/2007
/territorial-agenda-of-the-european-union-towards-a-more-competitive-and-sustainable-europe-of-diverse-regions (accessed
on 24 May 2022).

20. European Union. Territorial Agenda of the European Union 2020. Towards an Inclusive, Smart and Sustainable Europe of Diverse
Regions. 2011. Available online: https://ec.europa.eu/regional_policy/en/information/publications/communications/2011
/territorial-agenda-of-the-european-union-2020 (accessed on 24 May 2022).

21. European Union. Territorial Agenda–A Future for All Places. 2020. Available online: https://www.territorialagenda.eu/home.
html (accessed on 24 May 2022).

22. United Nations. New Urban Agenda–Habitat III. 2017. Available online: https://habitat3.org/wp-content/uploads/NUA-
English.pdf (accessed on 24 May 2022).

23. United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https:
//sdgs.un.org/2030agenda (accessed on 24 May 2022).

24. Cowie, A.; Orr, B.; Sanchez, V.; Chasek, P.; Crossman, N.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.; Minelli, S.;
et al. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35.
[CrossRef]

25. ESPON. SUPER Project-Sustainable Urbanisation and Land-Use Practices in European Regions. Main Report; ESPON EGTC: Luxem-
bourg, November 2020; p. 86. Available online: https://www.espon.eu/sites/default/files/attachments/ESPON%20SUPER%20
Final%20Report%20-%20Main%20report_newtemplate.pdf (accessed on 30 June 2022).

26. ESPON. SUPER Project-Sustainable Urbanisation and Land-Use Practices in European Regions. In A Guide to Sustainable
Urbanisation and Land-Use; Cotella, G., Evers, D., Rivolin, U.J., Solly, A., Berisha, E., Eds.; ESPON EGTC: Luxembourg, November
2020; p. 108. Available online: https://www.espon.eu/sites/default/files/attachments/2020_ESPON_SUPER_Guide_final_A4
_screenview.pdf (accessed on 30 June 2022).

27. Schatz, E.; Bovet, J.; Lieder, S.; Schroeter-Schlaack, C.; Strunz, S.; Marquard, E. Land take in environmental assessments: Recent
advances and persisting challenges in selected EU countries. Land Use Policy 2021, 111, 105730. [CrossRef]

28. Copernicus. CORINE Land Cover. 2022. Available online: https://land.copernicus.eu/pan-european/corine-land-cover
(accessed on 24 May 2022).

29. Copernicus. Urban Atlas. 2022. Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 24 May 2022).
30. Eurostat Statistics Explained. LUCAS–Land Use and Land Cover Survey. 2021. Available online: https://ec.europa.eu/eurostat/

statistics-explained/index.php?title=LUCAS_-_Land_use_and_land_cover_survey (accessed on 24 May 2022).
31. Copernicus. Imperviousness. 2022. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/

imperviousness (accessed on 24 May 2022).
32. Wealer, R. Comment Integrér le Principe de “Zero Artificialisation Nette” dans le PDAT en Cours de Refonte? [How to Integrate

the Principle of “Net Zero Artificialization” in the PDAT revision?]. ESPON Peer Learning Workshop: How to Reach no Net
Land Take by 2050? Belgium. 9 February 2022. Available online: https://www.espon.eu/no-net-land-take-workshop (accessed
on 24 May 2022).

33. Decoville, A. Use and misuse of indicators in spatial planning: The example of land take. Plan. Pract. Res. 2018, 33, 70–85.
[CrossRef]

34. Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology. Flächenrecy-
cling und Brachflächen-Dialog [Land Recycling and Brownfields Dialogue]. 2022. Available online: https://www.bmk.gv.at/
themen/klima_umwelt/abfall/flr-bfd.html (accessed on 30 June 2022).

35. Umweltbundesamt. Flächeninanspruchnahme [Land Take]. 2022. Available online: https://www.umweltbundesamt.at/
umweltthemen/boden/flaecheninanspruchnahme (accessed on 24 May 2022).

36. Geodynamix. Land Use Database. 2018. Available online: https://geodynamix.eu/land-use-database (accessed on 24 May 2022).
37. Bovet, J.; Marquard, E.; Schröter-Schlaack, C. Workshop Report. In Proceedings of the International Expert Workshop on Land

Take, Berlin, Germany, 4–5 April 2019; Available online: https://www.ufz.de/export/data/464/239439_235934_SURFACE%20
Workshop%20report_final_2019-11-07.pdf (accessed on 24 May 2022).

64



Land 2022, 11, 1005

38. Vanongeval, S.; Vanacker, S.; Bieseman, H.; Pisman, A.; Wille, E.; Isenborghs, C. Land Take Objectives and Strategies in
Flanders (Belgium). In Proceedings of the SURFACE Virtual Symposium, Virtual, 4 February 2022; Available online: https:
//www.ufz.de/export/data/464/262038_Land%20take%20objectives%20and%20strategies%20in%20Flanders.pdf (accessed on
24 May 2022).

39. Ruelle, C. No Net Land Take by 2050 in Wallonia? In Proceedings of the International Conference on Soils, Sediments and
Water-Intersoil 2020, Brussels, Belgium, 2–3 March 2020; Available online: https://orbi.uliege.be/bitstream/2268/246065/1/
Ruelle-Intersoil-3Mars2020.pdf (accessed on 24 May 2022).

40. Schorcht, M.; Krüger, T.; Meinel, G. Measuring Land Take: Usability of National Topographic Databases as Input for Land Use
Change Analysis: A Case Study from Germany. ISPRS Int. J. Geo-Inf. 2016, 5, 134. [CrossRef]

41. Umwelt Bundesamt. Brownfield Redevelopment and Inner Urban Development. 2014. Available online: https://
www.umweltbundesamt.de/en/topics/soil-agriculture/land-use-reduction/brownfield-redevelopment-inner-urban-
development#inner-urban-development-and-brownfield-redevelopment (accessed on 24 May 2022).

42. Fina, S. Land Take Data in a European Context–Comparing Apples and Oranges. In Proceedings of the SURFACE Virtual
Symposium, Virtual, 4 February 2022. Available online: https://www.ufz.de/export/data/464/262036_Land%20take%20data%
20in%20a%20European%20context%20%E2%80%93%20Comparing%20apples%20and%20oranges.pdf (accessed on 24 May 2022).

43. Umwelt Bundesamt. Land Take: Make Goals Binding, UBA Recommends a Quota System and Land Certificate Trading
Scheme. 2017. Available online: https://www.umweltbundesamt.de/en/press/pressinformation/land-take-make-goals-
binding (accessed on 24 May 2022).

44. Leibniz Institute of Ecological Urban and Regional Development. Monitor of Settlement and Open Space Development. 2022.
Available online: https://www.ioer-monitor.de/en/results/analysis-results/land-take/ (accessed on 24 May 2022).

45. République Française, France Stratégie. Objectif «zéro artificialisation nette»: Quels Leviers Pour Protéger les Sols ? [Objective
“Zero Net Artificialization”: Which Levers Should Be Used to Protect Soils?]. 2019. Available online: https://www.strategie.gouv.
fr/publications/objectif-zero-artificialisation-nette-leviers-proteger-sols (accessed on 24 May 2022).

46. Gouvernement Francais. Portail de L’artificialisation des sols [Portal of the Artificialization of Soils]. 2021. Available online: https:
//artificialisation.developpement-durable.gouv.fr/suivi-consommation-espaces-naf#paragraph--2164 (accessed on 24 May 2022).

47. Sistema Nazionale per la Protezione dell’Ambiente; Munafò, M. (Eds.) Consumo di Suolo, Dinamiche Territoriali e Servizi
Ecosistemici. Edizione 2021. [Land Use, Spatial Dynamics, and Ecosystem Services. 2021 Edition]. Report SNPA 22/2021; Italy.
July 2021. Available online: https://www.snpambiente.it/wp-content/uploads/2021/11/Rapporto_consumo_di_suolo_2021
.pdf (accessed on 24 May 2022).

48. Strollo, A.; Smiraglia, D.; Bruno, R.; Assennato, F.; Congedo, L.; Fioravante, P.; Giuliani, C.; Marinosci, I.; Riitano, N.; Munafò, M.
Land consumption in Italy. J. Maps 2020, 16, 113–123. [CrossRef]

49. Wong, C.; Bäing, A.S. Brownfield Residential Redevelopment in England. What Happens to the Most Deprived Neighbourhoods?
Joseph Rowntree Foundation. June 2010, p. 28. Available online: https://www.jrf.org.uk/sites/default/files/jrf/migrated/files/
brownfield-residential-redevelopment-full.pdf (accessed on 24 May 2022).

50. Haines-Young, R.; Weber, J.-L. European Environment Agency. In Land Accounts for Europe 1990–2000-Towards Integrated Land and
Ecosystem Accounting; EEA Report No. 11/2006; Office for Official Publications of the European Communities: Luxembourg,
2006; p. 107.

51. European Environment Agency. Land Cover Accounts—An Approach to Geospatial Environmental Accounting. 2020. Available
online: https://www.eea.europa.eu/themes/landuse/land-accounting (accessed on 24 May 2022).

52. Ivits, E.; Milego, R.; Mancosu, E.; Gregor, M.; Petersen, J.; Büttner, G.; Löhnertz, M.; Maucha, G.; Petrik, O.; Bastrup-Birk, A.; et al.
European Environment Agency & European Topic Centre on Urban, Land and Soil Systems (ETC-ULS). In Land and Ecosystem
Accounts for Europe towards Geospatial Environmental Accounting; ETC/ULS Report 02/2020; ETC-ULS: Vienna, Austria; p. 78.

53. European Environment Agency. Land Recycling and Densification. 2018. Available online: https://www.eea.europa.eu/data-
and-maps/indicators/land-recycling-and-densification/assessment-1 (accessed on 24 May 2022).

54. Nicolau, R.; Condessa, B. Dinâmicas de Artificialização do Solo em Portugal Continental nos períodos 1990–2007 e 2007–2018 [Land
Artificialization Dynamics in Mainland Portugal in the Periods 1990–2007 and 2007–2018]; Direção Geral do Território: Lisboa, Portugal,
January 2022; p. 52. Available online: https://www.dgterritorio.gov.pt/sites/default/files/projetos/Nicolau_Condessa_31
janeiro2022.pdf (accessed on 24 May 2022).

65





Citation: de Oliveira, C.P.; de Lima,

R.B.; Alves Junior, F.T.; de Lima

Pessoa, M.M.; da Silva, A.F.; dos

Santos, N.A.T.; Lopes, I.J.C.; de Melo,

C.L.S.-M.S.; Silva, E.A.; da Silva,

J.A.A.; et al. Dynamic Modeling of

Land Use and Coverage Changes in

the Dryland Pernambuco, Brazil.

Land 2022, 11, 998.

https://doi.org/10.3390/

land11070998

Academic Editor: Giusppe Pulighe

Received: 26 May 2022

Accepted: 23 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Dynamic Modeling of Land Use and Coverage Changes in the
Dryland Pernambuco, Brazil
Cinthia Pereira de Oliveira 1, Robson Borges de Lima 1,* , Francisco Tarcísio Alves Junior 1 ,
Mayara Maria de Lima Pessoa 2, Anderson Francisco da Silva 2 , Nattan Adler Tavares dos Santos 2,
Iran Jorge Corrêa Lopes 3, Cybelle Laís Souto-Maior Sales de Melo 2, Emanuel Araújo Silva 2,
José Antônio Aleixo da Silva 2 and Rinaldo Luiz Caraciolo Ferreira 2

1 Laboratório de Manejo Florestal, Universidade do Estado do Amapá, Macapá CEP 68901–262, Brazil;
cinthia.oliveira@ueap.edu.br (C.P.d.O.); francisco.junior@ueap.edu.br (F.T.A.J.)

2 Laboratório de Manejo de Florestas Naturais “José Serafim Feitosa Ferraz”, Departamento de Ciência
Florestal, Universidade Federal Rural de Pernambuco, Recife CEP 52171-900, Brazil;
mayara.pessoa@ifmg.edu.br (M.M.d.L.P.); engf.anderson@gmail.com (A.F.d.S.);
nattantavares@gmail.com (N.A.T.d.S.); engf.cybelle@gmail.com (C.L.S.-M.S.d.M.);
emanuel.araujo@ufrpe.br (E.A.S.); jaaleixo@uol.com.br (J.A.A.d.S.); rinaldo.ferreira@ufrpe.br (R.L.C.F.)

3 Departamento de Ciência Florestal, Universidade Federal do Paraná, Curitiba CEP 80210-170, Brazil;
iranjorge._@hotmail.com

* Correspondence: robson.lima@ueap.edu.br

Abstract: The objective of this work was to carry out a multitemporal analysis of changes in land
use and land cover in the municipality of Floresta, Pernambuco State in Brazil. Landsat images were
used in the years 1985, 1989, 1993, 1997, 2001, 2005, 2009, 2014, and 2019, and the classes were broken
down into areas: water, exposed soil, agriculture, and forestry, and using the Bhattacharya classifier,
the classification was carried out for generating land use maps. The data was validated by the
Kappa index and points collected in the field, and the projection of the dynamics of use for 2024 was
constructed. The thematic maps of land use and coverage from 1985 to 2019 show more significant
changes in the forest and exposed soil classes. The increase in the forest class and the consequent
reduction in exposed soil are consequences of the interaction between climate and human activities
and the quality of the spatial resolution of the satellite images used between the years analyzed.

Keywords: caatinga domain; digital classification; remote sensing

1. Introduction

The dry forests of the Brazilian semiarid, known as Caatinga, have been going through
a continuous and lengthy reduction in their coverage [1–3]. In short, changes in land use
and land cover are prominent, caused mainly by the advance in agriculture and livestock
farming, raising goats and cattle, etc. [4–6], exploitation of wood and non-wood products
(firewood, charcoal, fodder, etc.), in addition to urban expansion [7], as well as expansion
of infrastructure and changes in the land structure. Despite being responsible for meeting
the demand for forest resources in the Northeast region of Brazil, multitemporal studies on
changes in their use and coverage are still incipient.

Knowledge of the human and biophysical dimensions of changes in tropical dry forests
and their effects is highlighted as a priority for research [8,9]. Through remote sensing
tools, there is the possibility of answers that contribute to identifying problems inherent to
unrestricted land use in drylands [10] and, consequently, related to the reduction of forest
cover in these areas [11].

Our current understanding of the importance of this ecosystem has been generated us-
ing remote-sensing approaches that provide spatially-explicit values relating to forest area,
land cover, topography, soil, and climate variables. This information is widely used in many
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dynamic models for generating predictive maps of land cover and land-use changes [4,6].
Although these maps have improved our understanding of the morphoclimatic charac-
teristics of the caatinga, they currently do not address land-cover predictions, which are
essential for environmental management.

Therefore, a better understanding of the spatial and temporal dynamics of land use
forms and their potential drivers in recent years is needed to be projected into future scenar-
ios as an effective way to inform environmental policy and decision-making. Importantly,
spatially explicit scenarios can anticipate the magnitude and distribution of land-cover loss,
thus providing valuable information to develop corresponding measures to manage, for
example, deforestation and desertification and mitigate their impacts. Simulated scenarios
can also be used to evaluate development policies, which involve proposals to build infras-
tructure in strategic natural systems, the establishment of land protection schemes [12], or
the assessment of the combined effects of climate change (e.g., [13]).

The use of remote sensing, primarily orbital, as an aid to planning activities related to
natural resources and the environment has facilitated, over the years, studies in different
ecosystems [5,14–16] and allied to these techniques, spatial simulation models have been
receiving greater attention from researchers, becoming a promising field of research [17,18].

Spatial or landscape simulation models simulate changes in environmental attributes
across the geographic territory [19,20] and seek to help understand the causal mecha-
nisms and development processes of environmental systems, and thereby determine how
they evolve under a set of circumstances over time [21]. Therefore, data from remote
sensing of the landscape and modeling together with field surveys become potentially
relevant for disseminating sustainable forest management, especially in Pernambuco, as
well as being essential tools for the formulation of public policies and environmental in the
future region [11].

In order to provide information that better supports planning and land use in the
medium term, the objective of this work was to carry out a multitemporal analysis of
changes in land use and land cover in the municipality of Floresta in Pernambuco State in
Brazil. As secondary objectives, we sought to (1) Understand the changes in land use and
land cover from 1989 to 2019, based on the production of maps; (2) Analyze land use and
land cover change (LULCC) conversions by investigating impacts resulting from 10 years
(from 2014 to 2024) of changes (in a dry forest area from remote sensing tools.

2. Materials and Methods
2.1. Study Area

The study was conducted in the municipality of Floresta (Figure 1), located 433 km
west of the city of Recife, in the São Francisco mesoregion and Itaparica microregion, Per-
nambuco, Brazil. The municipality covers an area of 3674.9 km2, with an average altitude
of 316 m, and is located at geographic coordinates 8◦36′02′ ′ S latitude and 38◦34′05′ ′ W lon-
gitude.

According to Köppen’s climate classification, the region’s climate is of the BS’h type,
which reports a warm semi-arid climate. The average total annual precipitation is between
200 and 800 mm, with a concentrated rain period from January to May, with the wettest
months being March and April [22]. The average annual air temperature is more significant
than 26 ◦C. The soil in the region is classified as Chronic Luvissol, characterized as shallow
and usually presenting an abrupt change in its texture [23].
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2.2. Classification of Land Use and Land Cover

Landsat-5 sensor TM (TematicMapper) satellite images from the years 1985, 1989, 1993,
1997, 2001, 2005, 2009, and Landsat-8 were used, with the sensor OLI (Operational Land
Imager) from the years 2014 and 2019, acquired free of charge from the image catalog
of the National Institute for Space Research (INPE), with cloud-cover rates of less than
30% and 30 m spatial resolution, for orbit/point 216/66, comprising a scene for each date
evaluated; the images obtained from the TM sensor needed to be registered spatially. Image
acquisition dates are shown in Table 1.

Table 1. Date of acquisition of the evaluated images.

Satellite Acquisition Date Orbit/Point Spatial
Resolution

Spectral Bands
Used

Spectral Range
(µm)

Landsat 5

1 October 1985

216/66 30

1
2
3
4
5
7

(0.45–0.52)
(0.52–0.60)
(0.63–0.69)
(0.76–0.90)
(1.55–1.75)
(2.08–2.35)

28 October 1989
7 October 1993
2 October 1997

27 September 2001
24 October 2005

20 November 2009

Landsat 8 23 March 2014
29 October 2019 216/66 30

2
3
4
5
6
7

(0.45–0.51)
(0.53–0.59)
(0.64–0.67)
(0.85–0.88)
(1.57–1.65)
(2.11–2.29)

For the digital classification, it was necessary to perform the image segmentation.
For the Landsat-5 and Landsat-8 satellite images, the values of spectral similarity of 12
and 10 and the area sizes of 15 and 100 pixels were adopted, respectively. From the

69



Land 2022, 11, 998

Bhattacharya classifier implemented in the Spring software, the following thematic classes
were identified:

• vegetation (areas covered with natural forest)
• farming (areas intended for agriculture and livestock)
• water (all watercourses present in the area of study)
• exposed soil (uncovered areas of vegetation and in the soil preparation phase and

agricultural fallow)

The images generated from the classifications were quantified areas (hectares), accord-
ing to thematic classes and generated maps of land use and land cover for all mapped dates.

To verify the reliability of the digital classification of land use and land cover in the
municipality of Floresta, the Kappa index [24] was used, calculated from the confusion
matrix, obtained during the training sample collection phase in each of the classified images.
The acceptance intervals of the Kappa index (K) results followed the classification suggested
by [24], in which it is categorized as “poor” when K is less than 0.4, “reasonable” with a K
of 0,4 to 0.8, and “excellent” with K greater than 0.8.

The validation was carried out from georeferenced points in loco with a GPS device
Garmin® GPSMAP 62sc (Chicado, IL, USA). A photographic record was carried out to
compare the data from the digital classification of the year 2014.

2.3. Dynamic Spatial Modeling

For the input data of the model in the dynamic variables, only the thematic maps of
land use and land cover for the years 2009 and 2014 were used, and the static variables
were represented by the maps of hydrography, urban areas, road network, slope, altimetry,
soils and geology of the study area. The urban area was vectored based on Landsat 5 and
8 images. The maps of the road network, water network, soils, and geology were generated
from shapefiles of the State of Pernambuco from the Mineral Resources Research Company
(CPRM) database. Altimetry and slope maps were generated using Spring software (version
5.2.6) based on NASA’s Shuttle Radar Topography Mission (SRTM). The vector maps were
converted to matrix format and standardized in the exact spatial resolution, the number of
rows and columns, and the same coordinate system with Universal Transverse Mercator
(UTM) and Datum WGS-84 projection.

Dynamic spatial modeling was performed in Dinamica EGO software, version 2.4.1.
Moreover, it was divided into three stages: (1) construction and calibration of the model,
(2) simulation, and (3) validation. The construction and calibration of the model were
performed from the calculation of historical transition matrices, indicating the variation of
land use and land-cover classes at two different time points, obtaining the transitions that
occurred annually (multiple-step matrix) and the changes that happened in the total study
interval (single-step matrix), in this case, five years, corresponding to the years between
2009 and 2014.

Once the transition rates were obtained, it was possible to perform, based on Bayes’
conditional probability theorem, the method of weights of evidence adopted by Dinamica
EGO for the definition of transition probabilities, which visualized the areas that are
more favorable for possible changes. The procedure to follow was the calculation of the
coefficients, using as input data the result of the weights of evidence method, initial and
final land-use map, and static variables. The Weights of Evidence method assumes that the
input maps must be spatially independent. The Cramer indices and the Join Information
Uncertainty were used to assess this correlation between variables; with the selection
requirement for the variables to remain in the model, a correlation threshold of 0.5 was
adopted, and variables that presented a correlation above 0.5 were discarded.

The algorithms incorporated in Dinamica EGO (patcher and expander) and the isom-
etry index and the variance of the changing area calculated in the change map were
considered for the simulation model of the transitions of the spatial patterns of the use
classes. In order to obtain the most suitable model, tests were carried out varying the
input parameters. Model validation was performed by the fuzzy similarity comparison test
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between the 2014 simulated map and the reference map for the same date; the closer to 1,
the greater the similarity between the maps; thus, the distinctions being identified between
the maps of actual end and initial use, and simulated ending and natural starting.

With the validation of the model, it was possible to simulate the scenarios for 2024 with
the help of the SPRING software (version 5.2.6), quantifying land use and coverage and also
observing the trends in class changes (Agriculture, Exposed Soil, Water, and Vegetation) on
the map of initial use (2014) and of the simulated use map (2024).

3. Results and Discussion
3.1. Land Use and Coverage

The Kappa index values obtained for the municipality of Floresta using the error
matrix of classified images of the years under study showed excellent acceptance levels for
the most part, except for the year 2001, which was categorized as reasonable. The thematic
maps obtained by the supervised digital classification process—the Bhattacharya algorithm,
in the municipality of Floresta, allowed the visualization of the spatial distribution of the
thematic classes (Figure 2) and their dynamic and quantification (Figure 3).
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Among the various areas where the 25 points marked in loco in the municipality of
Floresta were collected, only seven did not correspond to the classification of the images,
corresponding to 72% of correct answers. However, for the forest class, the correct answer
was only 50%, which is associated with strong seasonality and high heterogeneity in terms
of phytophysiognomy of the Caatinga, making the digital-image classification process
difficult. Classifications in which the Kappa index indicates excellence can be found when
working with a reduced number of classes [25].

The results corroborate [26] that for classifications involving four to seven classes,
the use of the confusion matrix presents more minor variations. However, it is worth
emphasizing the issues [27] raised regarding the basic assumptions underlying the accuracy
assessment, such as generalization of the number of classes, mixed-pixel problems, incorrect
category registrations, and sampling plan. It is also noteworthy that a problem associated
with multitemporal remote-sensing data for detecting changes is that they do not have
the same date (day/month), which varies between solar incidence angles, atmospheric
conditions, and soil moisture [28].

The forest class presented an area in 2001 of 119,962.44 hectares, representing a smaller
area compared to 2014 (218,602.62 ha.), equivalent to 61.70% of the area this year (Figure 3).
However, for 2014 the classification was influenced by rainfall, as it was lower and unevenly
distributed when observed in other periods (Figure 4). Thus, it is recommended to compare
maps from 1985 to 2009, since rainfall is no more significant influence. Therefore, it can be
observed that between 1985 and 2009, there was a reduction in the forest and agricultural
classes, from 48.86 to 41.69% and from 10.0% to 7.58%, respectively. In comparison, the
exposed-soil class increased from 40.58 to 49.64% and water from 0.58 to 1.09%.

According to Silva et al. [11], in a study in the municipality of Floresta, the removal of
vegetation was necessary due to the works to transpose the São Francisco river from the
east axis (started in 2007), which runs from the municipality of Floresta (PE) to Monteiro
(PB), in a 220 km route in which 430 ha were deforested to make way for canals, reservoirs,
construction sites, service roads and places for earth and stone extraction. Compared with
the years between 1985 and 2009, the results found in this study reveal that it may be a
reflection of these works, which are still in the execution phase.
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The increase in exposed soil during the study period requires attention since the
municipality of Floresta is inserted in the Cabrobó desertification nucleus [29,30], and
according to [31], this class is a characteristic fundamental of this phenomenon in the
semi-arid region of the Northeast, whose problem can worsen as a result of the successive
droughts that devastate the Northeast.

There is more incredible difficulty in the digital classification of images in these areas,
as the vegetation is of reduced size and greater spacing between woody individuals than
in the other vegetation physiognomies of the study area, generally coinciding with the
presence of the steppe savanna wooded and open. Still, the water class had a lower
percentage share (0.44) in the study area, probably due to the long period of drought that
has passed through this region since 2009, which did not allow the restoration of the most
significant area observed in 2005 (4707.90 ha).

Except 2001 and 2014, the other years showed an increasing area of the water class,
which can be explained by [2,11], due to the creation in 1988 of the Luiz Gonzaga Hy-
droelectric Power Plant (Itaparica) in Petrolândia-PE, which produced a greater flow of
water for the Municipality of Floresta with the widening of the São Francisco River and
also because this period had a more significant presence of public policies to alleviate the
drought in construction of wells and weirs.

The reduction in agriculture observed between 1985 and 2009 can be explained by
the fact that this class and exposed soils are closely linked, as they are part of agricultural
areas [4,6,15,32]. In addition, exposed soils are generally fallow or under crop prepara-
tion [2]. Still, it may also reflect the prolonged period of drought that the region has been
experiencing since 2009, corroborating the assertions of Soares [27] and Mariano et al. [31]
that in times of drought, agriculture is seriously compromised. In addition, and among
the main income-generating activities, the removal of firewood stands out, which, together
with agriculture, promotes substantial changes in the caatinga vegetation and soils.

3.2. Dynamic Modeling of Land Use and Land Cover

The weight of evidence allowed us to infer what contribution a class occurred in each
transition. The positive weights of evidence favor the transition’s occurrence (Table 2). The
highest positive values achieved in each class were considered.
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Table 2. Continuous and static variables that most influenced land use and land cover transitions in
the municipality of Floresta-PE.

Transition Local Variables (0 to 500 m) Weight of Evidence (W+)

Farming→Water Vegetation 0.9936
Farming→ exposed soil Water 0.759
Farming→ Vegetation Water 0.8178

Water→ Farming exposed soil 0.9434
Water→ exposed soil Farming 0.9946
Water→ Vegetation Vegetation 0.891

exposed soil→ Farming Slop 0.9445
exposed soil→Water Water 0.9163

exposed soil→ Vegetation Vegetation 0.7112
Vegetation→ Farming Farming 0.9496

Vegetation→Water Hypsometric 0.9581
Vegetation→ exposed soil Farming 0.9551

It was observed that the transition from vegetation to agriculture and exposed soil
was influenced by agriculture itself, which can be explained by the high demand for this
activity in the municipality. The expansion of vegetation with agriculture and exposed soil
undergoing the transition to vegetation was explained by the variable water and vegetation
having to be taken into account for this result when the image was obtained. The existence
of dependence in the maps tested was observed only for the variable “exposed soil,” in
which it presented a Cramer Index (V) greater than 0.5, as for the Joint Uncertainty Index
(U), this variable presented values less than 0. 5 (Table 3). As it is an essential variable for
the model, it was not excluded from it.

Table 3. Higher Cramer Index and Joint Information Uncertainty values in the model variables.

Variable Cramer (V) Uncertainty of Information
Joint (U)

Exposed soil 0.54844644 0.285369436
Exposed soil 0.548146466 0.332466886
Exposed soil 0.547584512 0.367988266
Exposed soil 0.530289258 0.199917044
Exposed soil 0.530248771 0.26247358
Exposed soil 0.530062551 0.324499163

From the simulation performed in the Dinamica EGO software, the simulated map of
the year 2014 was obtained, compared with the classified map of the same year to observe
the quality of the model (Figure 5). The fuzzy similarity index values (Table 4), obtained
from the constant and exponential decay functions for different sizes of windows with
gradual clustering of pixels, presented good values in the literature.
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Table 4. Fuzzy similarity indices obtained from the constant and exponential decay functions for
different window sizes in the periods between 2009 and 2014.

Similarity Index Fuzzy

Windows (Pixels)
Decay Function

Constant Exponential

1 × 1 0.4713 0.4713
3 × 3 0.5944 0.5373
5 × 5 0.6448 0.5605
7 × 7 0.6820 0.5720
9 × 9 0.7132 0.5785

11 × 11 0.7399 0.5822

Ferrari [33], for example, in an Atlantic Forest ecosystem, obtained a fuzzy similarity
value for 11× 11 windows and a constant decay function of 0.84. Macedo [34], in the border
region between Cerrado and Atlantic Forest, obtained a fuzzy similarity value of 0.52 as a
function of constant decay for the same windows. The generation of future scenarios, or
the simulation of maps a posteriori, is illustrated in Figure 6 over ten years. The first map
is presented corresponding to the 2014 map used as a reference for the comparison.

Obtaining simulated maps for ten years allowed the quantification of the conversion
rates of classes between the years 2014 and 2024. Table 5 shows the modeling results for
the municipality of Floresta-PE.

Table 5. Quantification of the future scenario of the municipality of Floresta-PE and comparison with
2014.

Class Área 2014 (ha) Área 2024 (ha) 2014–2024 (ha) 2014–2024 (%)

Vegetation 218,602.62 229,940.64 11,338.02 5.19
Farming 55,365.75 61,320.78 5955.03 10.76

Exposed soil 78,790.59 62,569.71 −16,220.88 −20.59
Water 1555.47 801.72 −753.75 −48.46
Total 354,314.43 354,632.85 - -

It was found that there is an increase linked to the areas of vegetation and agriculture in
the municipality of Floresta. The areas of exposed soil had a considerable drop. According
to Benedetti [25], the trend is that if the area is maintained, the same conditions as extensive
activities such as agriculture will be reduced over time. From the evolutionary analysis of
land use and land cover, as well as the spatial, historical survey of the occupation of the
area and its prediction of how its uses will tend to behave in the future, it is possible to
understand the location of the areas of these uses and the changes to which these areas are
likely to be subject [19].

However, it is essential to note that our analyzes do not specifically consider direct
anthropogenic factors in the modeling. Furthermore, if the effects of indirect factors, such
as feedback from the surface atmosphere, were also considered, the resulting simulated
vegetation area could represent significant decreases motivated by the increased severity
of droughts and fires [35,36]. The risk of triggering these processes of amplification of
forest loss and, therefore, reduction of vegetation cover is possibly more significant in the
scenario of currently imminent climate change [37,38]. Under current deforestation trends,
not only does forest loss increase, but the remaining forest areas become more fragmented,
impacting their ecological functions and the future stability of the ecosystem.

Finally, while the approaches presented here help to draw relevant links between
cause and effect of changing spatial points and ecological processes in tropical, dry forest
landscapes, inferring complex and dynamic land-use processes is still tricky [39] because
multiple processes may account for the same pattern and may change substantially because
they are geographically structured [40]. To better understand the processes that drive the
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observed land-cover dynamics and use [36] recommended applying dynamic models based
on site-specific factors. By assessing the relative influence of different biotic and abiotic
processes over longer time horizons, these models can further inform decisions about
which restoration interventions will lead to spatial patterns of land use similar to those
observed in reference areas. All these effects ultimately affect the ability of ecosystems
to provide services to society, potentially amplifying socioeconomic inequality, which is
highly documented in South America [41].
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4. Conclusions

This study complements the knowledge about the direct and indirect causes of land
use and land cover in tropical dry forests in Brazil. Our results indicate that from 1985 to
2014, more significant changes were observed in the forest and exposed-soil classes. The
increase in forest class and the consequent reduction in exposed soil are consequences
of the interaction between climate and human activities, as well as the quality of the
spatial resolution of the satellite images used between the years analyzed. The low rainfall
climatic conditions in the analyzed periods are primarily associated with the exposed soil
throughout the municipality, as indicated by our spatially-explicit scenarios. However, their
particular influences are variable in space and time and act in a complex way in combination
with the other environmental drivers to produce specific trends in the transformation of the
dry-forest ecosystem. These results suggest the need to complement the variables modeled
in this study under the direct influence of other environmental factors inherent to the place.
More specifically, our results may suggest potential future trajectories of land-cover changes,
such as possible loss of vegetation area. This information is valuable for developing public
policies and management strategies to combat the effects of environmental degradation
and the loss of natural areas on a larger scale.
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Abstract: The CORINE Land Cover (CLC) map was established in 1985 and is now one of the
most widely used products from the Copernicus Land Monitoring Service. As the world’s longest
consistent operational land cover monitoring product, CLC maps have been produced for reference
years 1990, 2000, 2006, 2012 and now for 2018. This paper presents the results from the CLC2018
mapping project in the UK and analyses the results of the land cover status layer and the change
layer from the period 2012–2018. It sets this change in context with the change results from the period
2006–2012 and finds that the rate of change between the subsequent CORINE land cover maps is
continuing to increase. Changes mapped for the period 2012–2018 covered 76,032 ha greater than
the change mapped between 2006 and 2012, an increase of 26% of mapped change. The area of
changes mapped covered an area equivalent to 1.16% of the total land area of the UK. The number of
different types of changes also continue to diversify; however, the dominance of rotational forestry
is consistent with the previous map. The process of urban land take has been highlighted in the
results between 2012 and 2018 and is a trend identified in previous iterations of the CLC inventories.
The largest gain is in industrial or commercial units (an increase of 14.4%). This growth is mainly
attributed to renewable energy infrastructure. As well as the descriptive analysis, the results have
been analysed to identify the likely pressures being experienced on the land in the UK. Although
the CLC mapping approach is consistent, there have been improvements to the input EO data used
to map the changes. For 2018, the Copernicus Sentinel-2 system offered a consistent and reliable
image source for the first time. This increased the spatial resolution of the source datasets to 10 m,
allowing for more accurate identification of small features and those with fine spatial textures such as
suburban, road networks and windfarms. We also look forward to the development of CLC+, the
new generation of CORINE land mapping, and the improvements it could make.

Keywords: land cover; land use; change mapping; land use pressures; energy production; forestry

1. Introduction

Over decadal time scales, land cover and land use in the UK have undergone signifi-
cant changes as a result of multiple policy drivers, economic shifts and now, increasingly,
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environmental impacts. The primary policy drivers of change in the coming decade are the
new Agriculture Bill that replaces the Common Agricultural Policy of the European Union
in the UK after Brexit, and the Defra 25-year Environment Plan [1], with its ambitious goals
for environmental improvements and the directive to achieve net zero carbon emissions by
2050 to address climate change. Global policy options towards climate-friendly and sus-
tainable lifestyle changes that are being discussed include bans on advertising high-carbon
foods, reducing food waste and prioritising the distribution of food to undernourished
people [2]. If higher costs were placed on emissions-intensive foods such as beef and lamb,
whilst encouraging fruit and vegetable consumption as a means to mitigate climate change,
substantial land use changes would likely be the consequence. The impacts of climate
change such as sea-level rise and the flooding caused by the increase in the intensity of
storms are likely to see more land being handed over to mitigation schemes.

A recent policy report by the British House of Commons Committee on Climate
Change concluded that land use in the UK must change to meet its net-zero greenhouse gas
emissions target by 2050: “Fundamental change in the use of land across the UK is needed
to maintain a strong agriculture sector that also delivers climate mitigation, adaptation and
wider environmental objectives” [3]. The report sets out ambitions for a high uptake of low
carbon farming practices and suggests releasing 22% of land out of traditional agricultural
production for long-term carbon sequestration. Other policy drivers include the drive to
stimulate housing supply, with a pledge of 300,000 new homes a year in The Housing White
Paper [4]. Land use change on this scale is unprecedented in the UK since the operational
monitoring of land cover and land use from satellites began. Monitoring of land cover and
land use (LCLU) has been one of the major uses of new satellite data products, which have
continued to increase in coverage, quality and accessibility in recent decades [5]. There
are many approaches to the mapping of LULC change, with different methods suited to
different contexts. Land cover and land use maps have been produced at a range of scales
from local to continental levels to address particular requirements, political drivers and
funding regimes, and as a baseline for simulations of future LULC change under different
scenarios [6].

LULC change mapping is conventionally based on satellite images from two reference
periods sufficiently separated in time to allow the changes to be identified reliably, given
the constraints of the input data and the mapping approach. However, satellite data cannot
always be captured at regular intervals due to weather conditions or technical issues such
as variation in sensor orbits [7]. This has been a challenge within the remote sensing
community since its inception, and as such there are numerous methods for interpolating
missing images for planned timeseries for analysis while maintaining accurate results, such
as pixel-based temporal composites [8] and spatiotemporal data fusion [9]. Frequent return
periods of recent satellite missions such as the European Space Agency’s Sentinel satellites
are valuable for addressing this challenge [10].

Automated methods for identifying and mapping LULC change are a large research
focus, as the volume of geospatial data collected outstrips our capacity for manual inter-
pretation and analysis [11], and as high-performance computing and machine learning
methods become more advanced [12,13]. These approaches are highly suited to certain
mapping applications, for example, where the focus is on land cover as opposed to land use,
or there are a small number of highly contrasting classes in the mapping specification [9].
Complex classifications such as CORINE, which characterise land cover and land use using
44 classes in total, incorporate contextual information for interpretation of changes, for
example, an awareness of the policy pressures discussed above, for which visual interpreta-
tion by skilled analysts remains unparalleled. Despite this, some elements of automation
have been incorporated into the CORINE methodology [14].

The CORINE Land Cover (CLC) methodology was established in the mid-1980s and
is now one of the most widely used products from the Copernicus Land Monitoring
Service [15]. As the world’s longest consistent operational land cover monitoring product,
CLC maps have been produced for reference years 1990, 2000, 2006, 2012 and now for 2018.
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This paper presents results from the CLC2018 mapping exercise in the UK and analyses the
results of the land cover status layer with a 25 ha minimum mapping unit (MMU) and the
change layers from 2006 to 2012 and 2012 to 2018 with a 5 ha MMU [16].

Over its long history, more than 870 publications have made use of the CLC data [17],
and a large body of work has been summarised in [18]. CLC data have been used for
research in geography, remote sensing, ecology, forestry, agriculture, engineering, optics
and computer science [17], as well as for many operational applications in businesses
and policy contexts. The CLC data addresses many common challenges identified in
remote sensing of land cover, because it is free to access and comprises a long-standing
data timeseries, covering a large, multiregional scope, with consistent methodology, data
processing, validation and verification, the details for which are publicly available [19].

The CLC2018 is therefore a further step in delivering a powerful and rich time-series of
landscape dynamics in Europe. The UK component thus provides an important stocktake
of the primary land cover and land use types before all of the new drivers described
above manifest themselves as landscape changes. There are some limitations in the CLC
methodology, namely the spatial resolution [20] and some nomenclature definitions, for
detailed assessment of the implementation of environmental objectives. However, there
is huge value in the large-scale consistent mapping approach. Recent improvements in
the use of higher resolution input data from Sentinel and future developments of CLC+
are addressing some of these limitations. This paper aims to present an assessment of the
large-scale land cover and land use types in the UK in 2018, examine the primary changes
since 2006, and their likely drivers, and analyse change patterns and land cover transitions
quantitatively.

2. Methods

The CLC is now part of the Copernicus Land Monitoring Service (CLMS) and inte-
grated within a portfolio of products that provide a range of spatial and temporal detail
for thematic or biophysical properties for either selected hotspot locations or wall-to-wall
coverage at a pan-European level. The CLC could be described as a classical parcel-based
land cover map that covers the EEA-38 countries plus the UK. Selected products from the
CLMS can be combined to produce further monitoring and assessment information that
is beyond the capabilities of a single dataset. The CLMS is now producing the second
generation of CLC, or CLC+, giving improved spatial detail and an advanced thematic
data model, but it will still be able to generate the traditional CLC for long term monitoring
purposes.

The CLC classes are defined in a 3-level hierarchical structure grouped into artificial
surfaces, agricultural areas, forest and semi-natural areas, wetlands and water bodies at
Level 1. The detailed class descriptions as set out in the nomenclature [21] were followed
during the interpretation processes of this work. The status and changes in CLC are mapped
based on the 44 individual classes at Level 3, but during reporting and analysis these can
be aggregated up to 15 classes at Level 2, and just the 5 broad classes at Level 1. Table 1
shows an overview of the CLC class nomenclature. In this paper, we focus on the 44 classes
at Level 3.
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Table 1. CORINE class nomenclature of the 44 land cover/land use classes at Levels 1, 2 and 3.

Level 1 Level 2 Level 3

1 Artificial Surfaces

1.1 Urban fabric
1.1.1 Continuous urban fabric
1.1.2 Discontinuous urban fabric

1.2 Industrial, commercial and transport units

1.2.1 Industrial or commercial units
1.2.2 Road and rail networks and associated land
1.2.3 Port areas
1.2.4 Airports

1.3 Mine, dump and construction sites
1.3.1 Mineral extraction sites
1.3.2 Dump sites
1.3.3 Construction sites

1.4 Artificial, non-agricultural vegetated areas 1.4.1 Green urban areas
1.4.2 Sport and leisure facilities

2 Agricultural areas

2.1 Arable land
2.1.1 Non-irrigated arable land
2.1.2 Permanently irrigated land
2.1.3 Rice fields

2.2 Permanent crops
2.2.1 Vineyards
2.2.2 Fruit trees and berry plantations
2.2.3 Olive groves

2.3 Pastures 2.3.1 Pastures

2.4 Heterogeneous agricultural areas

2.4.1 Annual crops associated with permanent
crops

2.4.2 Complex cultivation patterns

2.4.3 Land principally occupied by agriculture
with significant areas of natural vegetation

2.4.4 Agro-forestry areas

3 Forests and
semi-natural areas

3.1 Forests
3.1.1 Broad-leaved forest
3.1.2 Coniferous forest
3.1.3 Mixed forest

3.2 Shrub and/or herbaceous vegetation
associations

3.2.1 Natural grassland
3.2.2 Moors and heathland
3.2.3 Sclerophyllous vegetation
3.2.4 Transitional woodland scrub

3.3 Open spaces with little or no vegetation

3.3.1 Beaches, dunes, sand plains
3.3.2 Bare rock
3.3.3 Sparsely vegetated areas
3.3.4 Burnt areas
3.3.5 Glaciers and perpetual snow

4 Wetlands

4.1 Inland wetlands
4.1.1 Inland marshes
4.1.2 Peat bogs

4.2 Coastal wetlands
4.2.1 Salt marshes
4.2.2 Salines
4.2.3 Intertidal flats

5 Water bodies

5.1 Continental waters
5.1.1 Water courses
5.1.2 Water bodies

5.2 Marine waters
5.2.1 Coastal lagoons
5.2.2 Estuaries
5.2.3 Sea and ocean

The production of CLC2018 in the UK followed the same production methodology as
CLC2012, with some modifications and improvements. Following the technical guidelines
set out by the European Environment Agency (EEA) [22], the method applied is the ‘change
mapping approach’ based on the CLC2012 product and using visual interpretation of
satellite imagery. The change mapping approach aims to map real land cover/land use
change, representing the change process on the ground, and also technical changes (errors in
CLC2012 that were missed during the 2012 update). This is achieved by interpreting change
based on a comparison of multi-date satellite imagery with direct delineation of change
polygons relative to the 2012 status map. This produces a CLC Change2012–2018 layer with
an MMU of 5 ha. The process also produces a revised CLC2012 dataset (CLC2012revised) in
which the technical changes are corrected. The CLC2018 status product is then produced
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by combining the CLC change2012–2018 polygons and the CLC2012revised polygons and is
represented by the equation:

CLC2018 = CLC2012revised + CLC-Changes2012-2018

As the CLC2012revised and CLC2018 status layers are mapped at a 25 ha MMU and the
change layer is mapped at 5 ha MMU after intersection and unification, any small polygons
are generalised with their neighbours according to a priority table [23].

As a consequence of the two different MMUs between the CLC status layers and the
change layer, ‘Technical change polygons’ are produced as auxiliary change polygons to
avoid major inaccuracies in the CLC2018 database, but do not represent a real change
in land cover/land use. These technical change polygons have been removed from the
2012–2018 change database for analysis in this paper.

There are some limitations to the current CLC methodology for monitoring the im-
plementation of environmental interventions or the impact of land cover/land use change
on climate change drivers. As the MMUs of 25 ha for the status layer map and 5 ha for
the change layer map are considerably larger than some other monitoring and mapping in
the UK, this can lead to different figures if compared directly between data sources (e.g.,
the natural capital accounts [24]). The differing results are not incorrect but caused by
variations in scale and nomenclature. For example, the construction of renewable energy
infrastructure is often captured in the CLC MMU, but does not always fill the land parcel,
and the definition of the nomenclature translates this change to industrial development.
Further analysis at a finer resolution would require additional field or land inventory data
at a much higher spatial resolution. The improvements made by incorporating higher
resolution input data, and the development of the CLC+ and the full integration of the
CLMS data product suite, go a long way to improving these limitations. The power of the
CLC time series of products is its length and the consistency of implementation so that
multi-decadal landscape changes and trends of change are identified easily and reliably
using these data

Input Data

The available satellite data for interpretation of changes between 2012 and 2018 con-
sisted of two slightly different datasets. IMAGE2012, the imagery from the previous
production, was reused and mainly consisted of images from 2011 through 2013 (a mixture
of IRS-P6 LISS III, IRS-R2 LISS IV and RapidEye systems). IMAGE2018 consisted of images
from 2017 only (aiming to document the situation at the beginning of the reference period)
acquired by the European Copernicus Sentinel-2 satellites, with the US Landsat 8 satellite
used for gap filling. The move to Sentinel-2 data as the input for the CLC2018 represents a
big change in the ability to interpret land cover types and change as the spatial resolution is
improved from approximately 25 m down to 10 m. This increase in spatial resolving power
of over 6 enabled clearer identification of features. Furthermore, images were available
within a shorter reference period due to the more frequent revisit of Sentinel-2 compared to
other similar class systems.

Each set of image data contained images from two separate acquisition windows,
coverage 1 and 2, preferably for the same year and with an optimum date difference of
6 weeks to allow for relative phenological change of different land covers to aid their
discrimination (Table 2). The aim was to have at least two full coverages of the UK.
However, due to cloud cover, it was necessary to select some images that only conformed to
the minimum time difference of 4 weeks. The image availability in IMAGE2018 was greatly
improved to that in IMAGE2012, where availability was limited and had to be combined
over several years to piece together the coverage required [25]. In 2017, 64.6% of the UK
had between 3 and 6 images available and only 10% was interpreted by a single image.
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Table 2. UK acquisition windows for IMAGE2018, for the North and South of the UK.
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In-situ and online data was also used in the CLC2018 production in areas where
satellite imagery was not sufficient for the interpretation of particular classes and/or
changes. Examples include ordnance survey open data, the national forestry inventory
and very-high spatial resolution satellite imagery. All data was open access and sourced
online from commercial or government department websites. The satellite imagery can be
viewed freely in Google Earth and greatly aided visual interpretation of IMAGE2012 and
IMAGE2018.

The results presented in this paper are from a map representing the whole of the
United Kingdom. The Channel Islands and Northern Ireland were reprojected from their
native coordinate systems and stitched together with the UK data. The map has a 25 km
buffer around the coastline to ensure all islands, estuaries, tidal flats and ports and harbours
are included. The buffer is clipped to the border between Northern Ireland and the Republic
of Ireland. The status layer statistics used in each set of results are the up-to-date revisions
created during each production, i.e., CLC2018 and CLC2012revised for 2018 and CLC2012
and CLC2006revised for 2012. Class 523 (sea and ocean) has been removed from the statistics
for the status layers to avoid skewing the results.

3. Analysis of the CORINE Land Cover Map
3.1. Status Layer

The UK CLC2018 status map is shown in Figure 1; it provides a comparable repre-
sentation of the UK in the context of the EEA-38 countries, our immediate geographical
neighbours. The CLC2018 map includes 36 of the 44 Level 3 classes in the CORINE nomen-
clature (Table 1); 8 classes were not present in the UK, such as olive groves and rice fields.
The area covered by each class is shown in Figure 2; this has been aggregated up to Level 1
nomenclature to see the overall proportions of land cover types in Figure 3. Agriculture
remains the most dominant land cover, accounting for 55% coverage of the UK. There is
an approximately even split between 6,660,235 ha of non-irrigated arable land (211) and
6,926,447 ha of pasture (231), covering 26.7% and 27.7% of land, respectively. There is also
an east-west split, with arable land predominantly occupying the east of the country and
pastures in the west, due to environmental conditions. However, at a local scale, there
is often a more complex mosaic between these classes due to topography, soils and farm
management practices.

The second most dominant Level 1 class is forest and semi-natural areas, representing
24.2% of the territory. The natural vegetation classes 321 (natural grassland) and 322
(moors and heaths) account for the largest part of this, with 13.3% of the coverage. When
the peatland class, 412, is added, which covers another 9.2%, the natural open moorland
landscapes occupy nearly a quarter of the country, concentrated in the upland areas of
Scotland, Wales and the Pennines. The forestry classes cover a combined area of 2,437,987 ha,
or 9.8% of the country if you include class 324, transitional woodland scrub. This class
can represent woodland degradation, forest regeneration or natural succession. It also
includes clear cut areas in forests, regeneration areas in the transitional stage or regrowth
lasting 5–8 years or until the trees reach 5 m in height [21]. In the UK, the majority of this
class is attributed to the clear cut or regrowth of harvested coniferous woodland. There are
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556,176 ha of broad-leaved forest, 1,198,586 ha of coniferous forest and 300,353 ha of mixed
forest.

Artificial surfaces occupy 8.6% of the country and are widely distributed, with a
greater density in the south. The majority of this class is made up of urban settlements,
containing class 112 discontinuous urban fabric (5.4%) and 142 sport and leisure facilities
(1.2%), which can be large areas of open land including, for example, golf courses. To put
this into context, 83.4% of the UK population lived in urban areas in 2018 [26].

Land 2022, 11, x FOR PEER REVIEW 7 of 25 
 

 
Figure 1. CORINE Land Cover (CLC) map for the UK 2018. See Table 1 for class descriptions. 

Figure 1. CORINE Land Cover (CLC) map for the UK 2018. See Table 1 for class descriptions.

85



Land 2022, 11, 192Land 2022, 11, x FOR PEER REVIEW 8 of 25 
 

 
Figure 2. Area and proportion of UK land in each class for 2018. 

 
Figure 3. Proportion of UK land area aggregated to Level 1 class for 2018. 

The second most dominant Level 1 class is forest and semi-natural areas, represent-
ing 24.2% of the territory. The natural vegetation classes 321 (natural grassland) and 322 
(moors and heaths) account for the largest part of this, with 13.3% of the coverage. When 
the peatland class, 412, is added, which covers another 9.2%, the natural open moorland 
landscapes occupy nearly a quarter of the country, concentrated in the upland areas of 
Scotland, Wales and the Pennines. The forestry classes cover a combined area of 2,437,987 
ha, or 9.8% of the country if you include class 324, transitional woodland scrub. This class 
can represent woodland degradation, forest regeneration or natural succession. It also in-
cludes clear cut areas in forests, regeneration areas in the transitional stage or regrowth 
lasting 5–8 years or until the trees reach 5 m in height [21]. In the UK, the majority of this 
class is attributed to the clear cut or regrowth of harvested coniferous woodland. There 
are 556,176 ha of broad-leaved forest, 1,198,586 ha of coniferous forest and 300,353 ha of 
mixed forest. 

Artificial surfaces occupy 8.6% of the country and are widely distributed, with a 
greater density in the south. The majority of this class is made up of urban settlements, 
containing class 112 discontinuous urban fabric (5.4%) and 142 sport and leisure facilities 
(1.2%), which can be large areas of open land including, for example, golf courses. To put 
this into context, 83.4% of the UK population lived in urban areas in 2018 [26]. 

  

Figure 2. Area and proportion of UK land in each class for 2018.

Land 2022, 11, x FOR PEER REVIEW 8 of 25 
 

 
Figure 2. Area and proportion of UK land in each class for 2018. 

 
Figure 3. Proportion of UK land area aggregated to Level 1 class for 2018. 

The second most dominant Level 1 class is forest and semi-natural areas, represent-
ing 24.2% of the territory. The natural vegetation classes 321 (natural grassland) and 322 
(moors and heaths) account for the largest part of this, with 13.3% of the coverage. When 
the peatland class, 412, is added, which covers another 9.2%, the natural open moorland 
landscapes occupy nearly a quarter of the country, concentrated in the upland areas of 
Scotland, Wales and the Pennines. The forestry classes cover a combined area of 2,437,987 
ha, or 9.8% of the country if you include class 324, transitional woodland scrub. This class 
can represent woodland degradation, forest regeneration or natural succession. It also in-
cludes clear cut areas in forests, regeneration areas in the transitional stage or regrowth 
lasting 5–8 years or until the trees reach 5 m in height [21]. In the UK, the majority of this 
class is attributed to the clear cut or regrowth of harvested coniferous woodland. There 
are 556,176 ha of broad-leaved forest, 1,198,586 ha of coniferous forest and 300,353 ha of 
mixed forest. 

Artificial surfaces occupy 8.6% of the country and are widely distributed, with a 
greater density in the south. The majority of this class is made up of urban settlements, 
containing class 112 discontinuous urban fabric (5.4%) and 142 sport and leisure facilities 
(1.2%), which can be large areas of open land including, for example, golf courses. To put 
this into context, 83.4% of the UK population lived in urban areas in 2018 [26]. 

  

Figure 3. Proportion of UK land area aggregated to Level 1 class for 2018.

3.2. Main Land Cover/Land Use Changes between 2012 and 2018

The total area of land cover/land use changes between 2012 and 2018 amount to
290,368 ha, which corresponds to 1.16% of the total land area of the UK. Most of the changes
occurred around the English–Scottish border, the southwest of Scotland and in Wales,
and are predominantly related to forest management, i.e., clear-cutting and replanting of
coniferous woodland. The spatial distribution of changes between 2012 and 2018 is similar
to those detected from 2006 to 2012. The amount and the spatial distribution of changes
between CLC classes are shown in Figure 4.

There were 205 different types of land cover/land use change in the CLC change layer
during the period 2012–2018. The complete dataset of all changes at the national scale is
summarised in the change matrix shown in Table S1 in the Supplementary Material. Table 3
shows a slimmed-down version, showing classes with over 1000 ha of change. The class
transitions with the largest area of change between 2012 and 2018, which represents almost
90% of the area, are shown in Table 4.
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Table 3. Change matrix, 2012 to 2018, showing the total area (ha) of each change. Only classes with
more than 1000 ha are shown in this matrix for size purposes. Totals are for all classes. The full
change matrix can be found in Supplementary Material Table S1.

2018

CLC
Code 112 121 122 131 133 142 211 231 311 312 313 321 322 324 512 Total

20
12

121 190 1289 152 10 1640
131 134 186 143 66 682 3186 1383 573 208 778 7819
132 26 81 56 910 436 116 85 1742
133 5867 3314 215 473 130 575 137 125 11,473
141 362 179 40 41 525 11 1165
142 134 75 576 90 73 17 17 25 1017
211 2805 12,827 486 3094 10,874 260 1118 21 23 518 209 33,498
231 2495 5655 878 1345 7073 107 2989 16 9 25 125 299 39 21,524
311 59 25 23 48 80 27 781 1044
312 14 3528 18 143 250 10 400 126,935 131,317
313 27 8 12 63 40 2482 2633
321 11 1762 38 248 168 14 65 437 54 111 3000
322 9 2496 107 231 125 14 35 308 64 52 346 3979
324 1019 76 124 8 1418 55,133 2342 220 345 60,716
334 1018 322 1340
412 3448 22 96 149 11 41 16 7 113 3915

Total 12,199 35,203 1840 5401 22,206 1033 4094 7161 1521 55,299 2743 3466 1498 131,843 1263

Table 4. The 20 most common CLC land cover/land use changes by total area between 2012 and
2018 detected in the change layer with a minimum mapping unit of 5 ha. The change code shows the
transition from one Level 3 class to another. The impacts of these land cover/land use changes in
relation to climate change are noted as positive or negative.

Change
Code Change Description Impact for Climate

Change Area (ha) % Changed
Area in UK

312-324 Clear-cutting of coniferous forest -ve 126,935 43.7
324-312 Regrowth of coniferous forest +ve 55,133 19.0
211-121 Arable land to industrial and commercial development -ve 12,827 4.4
211-133 Arable land converted to construction sites -ve 10,874 3.7
231-133 Pastureland converted to construction sites -ve 7073 2.4
133-112 Completion of construction sites to urban areas -ve 5867 2.0
231-121 Pastureland to industrial and commercial development -ve 5655 1.9
312-121 Coniferous forest to industrial and commercial development -ve 3528 1.2
412-121 Peatland to industrial and commercial development -ve 3448 1.2

133-121 Completion of construction sites to industrial and commercial
developments -ve 3314 1.1

131-231 Mineral extraction sites converted to pastureland +ve 3186 1.1
211-131 Arable land to mineral extraction sites -ve 3094 1.1
231-211 Pastureland converted to arable land (intensification of agriculture) -ve 2989 1.0
211-112 Arable land to urban areas -ve 2805 1.0
322-121 Moors and heath to industrial and commercial development -ve 2496 0.9
231-112 Pastureland to urban areas -ve 2495 0.9
313-324 Clearing of mixed forest -ve 2482 0.9
324-313 Growth/replanting of mixed forest +ve 2342 0.8
321-121 Natural grassland to industrial and commercial development -ve 1762 0.6
324-311 Regrowth of broad-leaved forest +ve 1418 0.5

Total 259,724 89

The felling and planting of coniferous woodland (changes 312-324 and 324-312) ac-
counted for the greatest amount of change; 62.7% to 64.4% of all change in the UK can be
attributed to this driver of change (the uncertainty is introduced when considering the
mixed wood class, 313). This forestry change was most common in Scotland, particularly
focused around both sides of the Scottish Border with some occurring in Wales and other
parts of England.

Seven of the top twenty changes are from a vegetated CLC class to industrial and
commercial development (121). This type of change may initially seem unusual, but this
change can, in some cases, be a predominantly land use rather than a land cover change.
The majority of these areas were not completely denuded of vegetation but converted to a
land use primarily aimed at renewable energy generation. New windfarm developments
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in vegetated areas necessitate access road building and small areas without vegetation
in the immediate vicinity of the windfarm, but they generally leave the majority of the
CLC polygon unchanged in terms of its land cover. However, because the primary land
use changes from forestry or agriculture to energy generation, under the CLC technical
guidelines, such alterations are mapped as a class change. The agricultural classes that
changed from 2xx to industrial and commercial development (121) were often converted
to solar energy farms (72%), while the forest and semi-natural classes in the uplands that
changed to 121 were mainly converted to windfarm developments (92%). The agricultural
classes changing to the industrial or commercial class covered 9241 ha, accounting for
a combined 6.4% of all changes. This is an increase from previous CLC inventories [25]
and can be mainly attributed to the increase in the number and scale of solar energy farm
developments. The overall increase in the 121 industrial class is 33,562 ha, a greater increase
than that of the urban fabric, class 112, with 11,896 ha. The net decrease of both the arable
class by 29,404 ha and the pasture class by 14,363 ha represents a combined total of 15.1%
of the total UK change.

Figure 5a shows the ten CLC classes with the largest amount of land use/land cover
change between 2012 and 2018 in terms of change area in hectares, and Figure 5b shows
the net change (gains and losses) for those classes. These ten classes showed over 2000 ha
of changed area per class.

The artificial surfaces classes 111 (continuous urban fabric), 121 (industrial or com-
mercial units) and 133 (construction sites) all gained more area than they lost, which is
indicative of continued urban land take and in particular large housing developments and
construction sites over 5 ha in area. Only class 131 (mineral extraction sites) showed a net
decrease. More new construction site areas (133) were started than completed from 2012 to
2018.

The classes 211 (non-irrigated arable land) and 231 (pastures) both lost more in area
than they gained. Urban expansion often occurs on former agricultural land around cities
and towns in the UK, and also farmland has been given over to renewable energy supply.
The advent of government solar incentives for farmland since 2010 [27] is likely to have
contributed to this apparent industrial expansion.

More than twice as much land of class 312 (coniferous forest) in 2012 was lost than
gained. Mirroring that change, class 324 (transitional woodland/shrub) gained approxi-
mately twice as much land as it lost over the 6 years. Transitions between these two classes
are representative of typical rotation forestry practices in the UK, where mature forest
stands are clear-cut and then replanted. Until the replanted forest stand is sufficiently
established, the land is classed as transitional woodland/shrub in the CORINE nomen-
clature. What is significant about the change statistics between these two classes is that
coniferous forest was harvested much faster than it was re-establishing on harvested land.
Even though this does not change the primary land use of coniferous forest land, it does
change the total coniferous forest cover and the carbon stock stored in UK forests. Wood
production has increased across the UK since 1975 [28], although since 2014 it has reached
a plateau (Figure 6a). The increase in wood production is driven mainly by softwood
production. Since the Kyoto Protocol baseline year of 1990, new tree planting in the UK
has declined, mainly because of a drop in conifer planting, due to the ending of the tax
breaks that fuelled conifer planting in the 1970s and 1980s [29,30], which has not been
compensated for by the increase in planting of deciduous trees (Figure 6b). We can see this
in the CLC change data, with class 312 showing an overall loss of 76,018 ha (Figure 5).
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Classes 322 (moors and heathland) and 412 (peat bogs) also lost more than they gained,
which is concerning given that these land cover types are generally thought of as deserving
and receiving, in many cases, protected status. The change that is occurring in these classes
is mainly to 121 (industrial), which can be attributed to renewable energy and the building
of windfarms. As discussed above, these occupy a smaller area than is often classified
on the map because of the CLC minimum mapping width of 100 m, and that the surface
provisions in windfarms still leave vegetated areas.

3.3. Land Cover/Land Use Classes That Have Experienced the Most Gains or Losses

To put the amount of land cover/land use changes observed in the CLC change layer
2012 to 2018 into the context of the nature of UK landscapes, Figure 7 shows the gains and
losses of CLC classes as a percentage of their area extent in the UK in 2012.
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Figure 7. Percentage of the area gained and lost between 2012 and 2018 per CLC class as a proportion
of the area covered by that class in 2012. Graph shows A ± x the log of the absolute value of % change.
Only the classes with more than 1% of the change in their area are shown.

In contrast to Figure 5 above, Figure 7 emphasises the relative change that affected the
CLC classes over the six years. The artificial surface classes 121 (industrial or commercial
units) and 122 (road and rail networks and associated land) expanded their cover substan-
tially compared to their area extent in 2012. Industrial or commercial units increases in
cover by 14.4% and road and rail networks is only slightly less at 12.5%.

Classes 124 (airports), 131 (quarries) and 132 (dump sites) decreased in area. There is
a significant redevelopment of retired military airbases into residential areas, with dozens
of projects currently underway showing changes to other urban classes, and the ceasing of
operations of some smaller airports. Similarly, there is a regeneration of quarry and landfill
sites as brownfield areas for residential and industrial expansion. Class 133 (construction
sites) showed the largest relative increase in area, which is indicative of the large areas that
were made available for housing development, road building and industrial development.
Class 141 (green urban areas) decreased in coverage, although urban green spaces are often
protected against development. It is possible, however, that developments on brownfield
sites and losses of greenbelt land in cities occurred over the reporting period. The total
loss was only 929 ha; this is distributed fairly evenly across the country, with one or two
polygons of change to either construction sites or discontinuous urban fabric in each of the
larger cities.

Out of the agricultural areas, Class 222 (fruit trees and berry plantations) has increased
significantly relative to the small absolute area that they covered in 2012. The forest and
semi-natural area class 312 (coniferous forest) has decreased significantly since 2012, while
class 324 (transitional woodland-shrub) increased even more relative to its cover in 2012.
These two large relative changes show an intensification of timber harvesting in the UK.
Class 334 (burnt areas) decreased considerably in comparison to its original extent in 2012,
which was driven by large-scale wildfires between 2006 and 2012 that were not matched in
area by new fires from 2012 to 2018. The extent of burnt areas was very low in the UK, so a
small number of changes can make a big difference to the relative size of the class.

The wetland classes 411 (inland marshes) and 421 (salt marshes) saw an increase in
relative extent compared to the baseline of 2012, representing the development of new
sites for nature conservation and natural flood management, typically by conservation
charities in partnership with the UK Environment Agency, e.g., Steart Coastal Management
Project [31].
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3.4. Changing Trends—2006–2012 Change Layer Compared to 2012–2018 Change Layer

Figure 8 shows a visualisation of the main land cover/land use transitions for both
time periods as connected graphs. The two graphs show at a glance that, from 2012 to 2018,
there were a substantially greater number of transitions in land cover/land use than from
2006 to 2012 (thicker arrows of darker colour and red hue). In both time periods, the largest
transitions in terms of change area were between 312 (coniferous forest) and 324 (transitional
woodland-shrub) in both directions, which indicate rotation forestry practices for softwood
production and tree planting after harvest. As already mentioned, the transition from 312
(coniferous forest) to 121 (Industrial or commercial units) are largely indicative of new wind
turbines in forested landscapes for the primary purpose of renewable energy generation.
This type of change is classed as 121 under the technical methodology of CORINE because
the primary purpose of the land use changes from forestry to energy production, even
though in the vast majority of cases the wind turbines only require small clearings in the
forest and most trees remain intact (Figure 9).
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Between 2010 and 2019, wind power capacity in the UK more than quadrupled to
24 GW, with greater production capacity on land (up from 4.1 GW in 2010 to 14.2 GW in
2019) and offshore (up from 1.3 GW to 9.8 GW) (BEIS, 2020). This trend is set to continue.
Figure 8 shows an increasing transition from 211 (non-irrigated arable land) to 131 (mineral
extraction sites) and 133 (construction sites), with some changes from 231 (pastures) to
131 in 2006–2012 and 133 in 2012–2018. The transitions from 211 (non-irrigated arable
land) and 231 (pastures) to 112 (discontinuous urban fabric) also increased in magnitude.
Class 112 describes types of housing development with associated gardens and green
spaces that are typical for urban expansion around the fringes of towns and cities. Urban
expansion is often taking place on agricultural land previously used for crop production or
as pastures, and the CORINE statistics suggest a much greater degree of urban expansion
and new settlements over 5 ha in area since 2012 compared to 2006–2012. Additionally, the
transitions from agricultural land (211) and pastures (231) to industrial or commercial land
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(121) increased substantially from 2012; it increased from a change of 1477 ha in 2006–2012
to 18,462 ha in 2012–2018. From 2012–2018 there is also a new transition from 412 (peat
bogs) to 121 (industrial or commercial units), which was caused by the creation of wind
turbines in the uplands where the main peatland cover still remains but the primary land
use is now for energy production.
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3.5. Analysis of Pressures on Land Cover/Land Use Change in the UK

Beyond the descriptive analysis of large-scale land cover/land use change, the ques-
tion arises of which pressures have acted on land cover/land use in the UK that led to the
observed transitions between CORINE classes over these two 6-year periods. Most land
use and land cover changes are caused by a combination of social, economic and natural
processes which operate at all scales, from the local to the global level. For example, agri-
cultural policies combined with varying local employment opportunities lead to intensified
use of land in some areas and abandonment in other areas. These changes can therefore
affect the environment and its condition and biodiversity in either a positive or a negative
manner, depending on context.

In the early 2000s, the BIOPRESS project [32] aimed to provide quantitative information
on how changes in land cover and land use affected the environment and biodiversity in
Europe in terms of pressures. The project produced consistent and coherent sets of historical
(1950–1990–2000) land cover/land use change information for selected sites located from
the Boreal to the Mediterranean, and from the Atlantic to the Continental regions of
Europe. BIOPRESS focused on Pressures, State and Impact parts of the DPSIR framework
(D = Drivers; R = Response) and the Pressure State Impact (PSI) model MIRABEL [33]. This
model was originally designed as a tool for predicting pressures, impacts and scenarios
of change, so the MIRABEL approach was not only being used to identify (and quantify)
pressures based on observed land cover changes over the preceding 50 years, but also aimed
to look at predicting future impacts on biodiversity. The land cover change statistics were
converted into quantitative measures of pressures on biodiversity through the integration
of socio-economic indicators.

In the BIOPRESS project, pressures have been defined as the processes that can be
determined by the spatial patterns of land cover changes that are related to habitat fragmen-
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tation at the local scale. In other words, the processes determine how land cover changes
may affect local environmental conditions. It is well known that land cover change is not
a unidirectional process (e.g., forests being converted to agriculture). In the land cover
change–pressure matrix, each land cover conversion was associated with a unique and
particular process, which was meant to represent a specific anthropogenic pressure on
biodiversity. This assumption was far from being satisfactory. Firstly, the same land cover
change might be associated with two different processes at the same time, depending on
where the land cover change took place in the first period. Secondly, it is not advisable to
assume that any type of land cover change is always a pressure on a habitat. BIOPRESS
dealt with these issues by applying expert knowledge to carry out the final mapping of
land cover conversions.

The change statistics in BIOPRESS were produced by the backdating of CORINE land
cover for Level 3 of the nomenclature at the selected sites. A land cover change–pressure
association matrix was developed which can be considered as a compact format for repre-
senting the pressures that have resulted in different transitions between all possible land
cover categories. Six main pressures were selected in BIOPRESS for the statistical analysis
of land cover change patterns in combination with economic development, technology, and
other social factors:

• Agricultural Intensification (I): agricultural conversions as well as transformations to
more intensive practices.

• Land Abandonment (Ab): cropping cessation and conversion into early successional,
herbaceous habitats. The transition to woody, later-successional habitats was consid-
ered as a Mediterranean extension of Afforestation.

• Afforestation (A): conversion of open (more or less natural) habitats into forests or
macchias.

• Deforestation (D): conversion of forest to non-forest classes.
• Drainage (Dr): All changes affecting aquatic habitats that are transformed into more

terrestrial ones, including land gain from intertidal and sea areas and the loss of
peatlands drained due to agricultural practices or forests.

• Urbanisation (U): transformation to urban covers but also to related covers (road
system, leisure areas, construction sites, etc.).

The work here considered three further pressures/processes because it was beyond
the scope of this paper to analyse local context, specific interpretations and fragmentation
which had been undertaken in the BIOPRESS project. The additional pressures were
therefore:

• Urban greening (Ug): conversion of urban classes to more vegetated classes.
• Extensification (Ex): conversion of intensive agricultural classes to more extensive

management.
• Re-wetting (Rw): conversion of ‘dry’ classes to wetlands and intertidal cover types.
• The resulting adapted land cover change–pressure matrix is given in Figure 10, where

the colour of the land cover change combination gives the type of pressure.

In this paper, we have therefore compared the UK CLC changes from 2006 to 2012
and from 2012 to 2018 to the adapted land cover change–pressure matrix to summarise the
likely pressures being experienced in the UK.

As expected from the Level 3 change results reported above, the dominant pressures
are related to afforestation (A) and deforestation (D), Figure 11, but this is only the man-
ifestation of rotational planting in commercial forestry. The BIOPRESS analysis shows
that deforestation had a higher percentage of the total changes than afforestation over
both periods, but deforestation declined more between the two periods than afforestation
(Figure 11). These changes are also reflected by the Forest Research wood production data
(Figure 6). According to these official statistics, the average annual rate of increase in wood
production (slope of the trend line) reduced between 2012 and 2018 to 64,000 green tonnes
per year from 397,000 tonnes per year between 2006 and 2012 (Figure 6). At the same time,
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the average annual rate of tree planting across the UK slowed down substantially from
+380 ha per year between 2006 and 2012 to a declining trend of −930 ha per year from
2012–2018 (Figure 6). These trends are problematic in the context of the UK’s legally binding
commitment to achieve a net zero greenhouse gas budget by 2050. In an assessment of
pathways to achieve this commitment, the Sixth Carbon Budget for the UK by the Climate
Change Committee made four key recommendations in 2020, one of which states that
460,000 ha of new mixed woodland need to be planted by 2035, increasing woodland cover
from 13% of UK land in 2020 to 15% by 2035, and 18% by 2050 to remove CO2 and deliver
wider environmental benefits. Additionally, 260,000 ha of farmland would need to switch
to producing energy crops [3].
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When the likely changes related to commercial forestry are removed, the pressures of
afforestation and deforestation are equal at around 0.5% of the changes and stable between
the two change periods. This would suggest that the impacts of any government tree
planting schemes are not being detected; however, it is reported that the government
are falling short of their targets. The CLMS High spatial Resolution Layer (HRL) for
forests records changes in forest area in its dominant leaf type change sublayer. It records
forest changes on a 20 m grid (0.04 ha) rather than the 25 ha MMU of CLC, but it gives a
similar order of magnitude for the changes and a similar split between afforestation and
deforestation.

The next largest pressure is related to urbanisation or urban land take through a range
of developments, from housing and industrial to infrastructure and construction. Given
the MMU of CLC-Changes, only the large urbanisation projects will be detected and the
considerable number of small brownfield infilling developments will not be recorded. Of
particular interest, as they were identified by the interpreters during the production of both
CLC2012 and CLC2018, were the creation of renewable energy sites related to onshore wind
and solar. In CLC terms, these sites would be represented by conversion to industrial and
commercial (121). Between the 2006–2012 and 2012–2018 periods, urbanisation doubled, but
this conversion to industrial and commercial actually trebled. As onshore wind dominates
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in the uplands and solar tends to be in the lowlands, a rough breakdown of the split
between onshore wind and solar can be made by considering the source class for the
change. From a sample of the 500 largest change objects going to 121, it was found that 92%
of the changes from forest, semi-natural and bog classes were related to onshore wind, and
72% of the changes from arable and pasture were to solar, so the assumption holds. In fact,
of the changes in the 2012–2018 period to 121, 79% were related to renewable energy. In
the 2006–2012 period, the split in the percentages of change was 2.60 and 0.69 for onshore
wind and solar, respectively. By the 2012–2018 period, the changes had both increased and
the split altered to 3.88 and 6.37, respectively, giving increases by a factor of 1.5 and 9.2.
These increases and the change in the split between onshore wind and solar are comparable
with the BEIS electrical generating capacity figures for renewable sources, which increased
factors between the two periods of 1.7 and 6.5, respectively. The CLC-Change results are
very realistic, even considering there will be some commission of changes that are not
related to renewable energy.
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The remaining pressures are relatively minor compared to forestry and urban devel-
opment. However, there appear to be increases in agricultural intensity which goes against
the need for increased biodiversity in the agricultural environment and the promotion of
regenerative farming in recent years. It will be interesting to see if this has changed by
the next CLC update. More promising is the increase in urban greening, a trend which
must continue in order to keep established urban areas habitable given the likely impacts
of climate change. This result may appear to contradict those in Figure 7, but in that case
only changes to the CLC class 141 (green urban areas) were considered. In this pressure
analysis, all changes from an urban to a vegetated class, e.g., 131 (mineral extraction sites)
to 231 (pastures), associated with the restoration of sites were included. It is hoped that this
pressure will increase in future and be more strongly detectable in CLC updates.

4. Discussion

The change results described above raise a number of issues and important conclusions
for land cover/land use mapping and changes to the UK landscape. Firstly, the rate of
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change between the subsequent CORINE land cover maps is continuing to increase. As
reported in [25], between the 2000–2006 map and the 2006–2012 map, there was an increase
in the amount of change mapped by 21,854 ha, or 11%, and the variety of types of change
also increased. This increase is continuing with changes between 2012 and 2018, covering
an area of 76,032 ha greater than 2006–2012, which represents 26% of the total change. The
changes mapped in 2006–2012 covered an area equivalent to 0.86% of the total land area of
the UK, and in 2012–2018 this increased to 1.16%. The number of different types of changes
is also continuing to diversify, as seen in Figure 8, the diagram of directions of changes
between the two time periods. The results of land cover/land use change presented in the
paper are broadly indicative of the important processes happening in the UK landscape.
However, developments in both the CORINE mapping process and the pressures on the
UK landscape have resulted in some changes being represented accurately, or enhanced,
while others are less well-captured. It is important to consider these while moving forwards
into the next generation of CORINE.

Because the CORINE class descriptions and the technical manual have stayed essen-
tially unchanged for decades, some new land use forms have to be mapped into an existing
class. This is most prominent in the mapping of renewable energy infrastructure, which
is classed as ‘artificial surfaces’ if the primary land use of an area has changed from, say,
forestry or agriculture to energy production. However, the dominant land cover of that
land parcel may not have changed that much. Often, wind turbines are erected that use
up very small areas of the parcel and that are connected by narrow roads or bridleways.
Similarly, fields which host solar farms can and do continue to be used as pasture for
small livestock such as sheep and poultry in a multi-purpose land use arrangement [34].
However, under the CORINE guidelines, these parcels are still classified as an artificial
surface. This represents a trade-off between continuity and contemporary relevance; on the
one hand, mapping to the same specification over decadal timescales enables long-term
trends to be analysed, which is valuable in landscape studies [35]. On the other hand,
newly developing trends in the dynamics of the landscape may not be best captured by
older specifications and, as a result, the interpretation of the results of the changes requires
an in-depth understanding of the mapping guidelines [21] in order not to misinterpret the
data. From the perspective of the map producer, this means that the mapping guidelines
must be clearly communicated as part of the data product.

Although the CLC mapping guidelines have remained relatively stable from the first
products in 1990, there has been continuous variability in the specifications of the input EO
data against which the changes are mapped. Originally, the 30 m spatial resolution Landsat
series of satellites was the preferred choice, but due to the loss of Landsat 6, instrument
problems on Landsat 7 and the shortening repeat frequency of the product from 10 to
6 years, other systems had to be used to plug the gap to give a relatively heterogeneous
image data source. For 2018, the Copernicus Sentinel-2 system offered a consistent and
reliable image source with similar capabilities to Landsat. However, a key change was
the reduction of the spatial resolution down to 10 m, giving a resolving power six times
better than Landsat (Figure 12). As can be seen, this allowed more accurate identification
of small features and those with fine spatial textures such as suburban, road networks and
windfarms. Although there was no change to the method, the improved 2018 data allowed
the identification of technical changes (e.g., small suburban areas) that were not visible
in IMAGE2012. Now that these technical changes have been made to CLC2018, future
updates should be easier and more accurate, and Sentinel-2 will continue to be available
over the next few decades at least.
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northeast England, showing the increased resolving power of 10 m spatial resolution data (right),
particularly the traffic roundabout in the centre of the image and the suburban areas in the lower right.

The dominant landscape change in the UK is clearly the cutting of coniferous forests,
and their subsequent regrowth as part of the rotation forestry for timber production. This
has not changed since the last analysis between 2006 and 2012; however, what has been
identified this time is the net reduction of the replanting and regrowth. A significant
number of land parcels that were ‘coniferous forest’ in 2012 changed to ‘transitional wood-
land/scrub’ in 2018, leading to a net reduction in the coniferous forest cover over this
period in the CORINE map. This is also reflected in Deforestation being one of the main
pressures on the UK habitats according to the BIOPRESS methodology (Figure 11). Al-
though over the same timeframe, the UK wood harvesting statistics are fairly stable at a
very high level (Figure 6), the new tree planting statistics (Figure 6) appear to be insufficient
to compensate for the high harvesting intensity. This is particularly an issue of concern
in the context of the UK’s pathway towards net zero carbon emissions by 2050, which
was turned into law in June 2019. The UK’s Sixth Carbon Budget [3] recommended that
the UK’s woodland cover should increase from 13% to 15% by 2035. To achieve this goal,
a further 440,000 ha of mixed woodland will have to be planted to remove CO2. Over
the same timescale, 260,000 ha of agricultural land should switch to bioenergy produc-
tion, including short-rotation forestry. The CORINE class definitions in their current form
would not be able to adequately quantify the changes towards these new forms of land use.
Bioenergy production would be classed as agricultural cropland or, if covered by young
trees, as transitional woodland/scrub. In terms of assessing the UK’s habitats and carbon
balance, it is important to know whether an area of transitional woodland/scrub is actively
growing new trees as part of commercial forestry and bioenergy production or if it has been
abandoned; there is an opportunity to incorporate this into the next generation of landscape
mapping. Peatland restoration is also part of ongoing climate mitigation efforts in the UK,
which has substantial peatland areas, most of which are degraded to some degree. The
CORINE classes do not currently distinguish between restored and degraded peatland,
although that will become a major issue for policy.

The process of urbanisation or urban land take has been highlighted in the results
between 2012 and 2018 and is a trend identified in previous iterations of the CLC inventories.
The major headline to note is the dramatic increase in the amount of renewable energy
infrastructure in the UK over the last two decades. Due to the specifications of CLC, it may
not always precisely represent the area of land that is being taken, but it is clearly picking
up the trends in this sector and even the split between onshore wind and solar projects due
to their context. In the case of onshore wind, the visual interpretation of satellite images
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and the exaggeration of this class with the mapping rules have been an advantage. Future
developments of CLC, described below, will more accurately map windfarms as turbines
and access roads, but the use of a characterisation rather than classification approach will
allow both land cover and land use attributes to be attached to these features.

Other growths in impervious land such as the reported 12.5% rise in transport infras-
tructure and 105% increase in construction sites, although significant, need to be viewed
with caution as the total areas these land uses cover are relatively low across the whole of
the UK. Urban fabric, in the sense of the built environment, is captured in the CLC classes
111 and 112. These classes have both increased between each iteration of the CLC maps;
however, the rise between 2012 and 2018 is 11,925 ha, accounting for an increase in just
below 1% of their cover in the UK.

Moving forward the CLMS will continue to expand its portfolio to provide improved
land cover/land-use products and provide more information on surface characteristics
and dynamic behaviours. Central to the CLMS development at the pan-European scale
will be the CLC+, or 2nd generation CLC, initiative, which will provide base datasets with
improved spatial resolution and thematic content. The CLC+ Backbone will provide a
wall-to-wall land cover map with a 0.5 ha MMU, but a relatively simple nomenclature
compared to current CLC standards. The CLC+ Core will be a corresponding grid-based
(1 ha) thematic information engine holding detailed land cover, land-use and additional
characteristics for each cell. CLC+ Core will adopt the EAGLE data model [36], which is
specifically designed to characterise rather than classify landscape features, thus allowing
improved descriptions, greater flexibility and better representations in different application
contexts. CLC+ Core will be drawn from a broad range of CLMS, EEA Member State
and open-source datasets. By combining CLC+ Backbone and CLC+ Core via appropriate
mapping specification and rule sets, an almost infinite number of derived CLC+ Instances
can be produced, based on a common underlying information source. The first CLC+
Instances to be produced will be related to Land Use, Land-Use Change and Forestry
(LULUCF), an inventory for emissions and removals of greenhouse gases resulting from
direct human-induced land use, and CLC+ Legacy, the conventional CLC that we have
today. Together, these products will form a powerful tool for tracking and understanding
our environment in increasing detail while being compatible with the long time series of
CLC.

5. Conclusions

There has been an increase in the rate of change in UK land cover/land use, both in
area and type of change. An area covering 1.16% of the total UK has changed between 2012
and 2018. The urban fabric has increased by 1% and the industrial or commercial units by
14%, which has been driven by the increase in renewable energy infrastructure, accounting
for 79% of this change. The dominant landscape change in the UK remains the clearcutting
and regrowth of coniferous forests; however, there seems to be a reduction in replanting
and regrowth leading to net reduction of forest cover.

The two largest changes in the UK landscape during the period 2012–2018—forestry
and renewable energy—while represented clearly in the change mapping are both some-
what vulnerable to misinterpretation under the current CORINE methodology. The pro-
ducers of this map emphasise the need for careful review of mapping guidelines before use
of the data.

The nomenclature has been stable for decades, which enables long-term changes and
trends to be identified; however, some more recent types of changes, such as the renewable
energy types, are not as well captured. In its current form, CORINE is not well suited to
mapping the classes required for the UK net zero assessment because the class definitions
would not adequately quantify the change to the new forms of land use required to meet
the UK climate change targets. However, the new methodology based on CLC+, which
enables the distinction of land use and land cover, and the increase in spatial resolution will
be able to more accurately capture some of the most important contemporary land changes.
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Consistent long-term monitoring of land change is extremely important in the changing
environment of the 21st century and should be maintained in the UK to support progress
towards climate commitments, which will require a component of significant land-use
change in the coming decades.

However, at the time of writing, it had not been confirmed whether the UK will
continue to be part of the Copernicus programme and therefore whether the CLMS products
will be updated for the UK following Brexit. As environmental time-series grow, their value
increases, and at this time of climate emergency and biodiversity crisis it is important that
CLC and other CLMS products continue to be regularly produced for the UK in a manner
consistent with the complete European coverage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/land11020192/s1, Table S1: full change matrix showing total area (Ha) of each change
2012–2018.
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Abstract: In New Zealand, over 87% of the population currently resides in cities. Urban trees can face
a myriad of complex challenges including loss of green space, public health issues, and harm to the
existence of urban dwellers and trees, along with domestic greenhouse gas (GHG) and air pollutant
emissions. Despite New Zealand being a biodiversity hotspot in terms of natural environments,
there is a lack of knowledge about native tree species’ regulating service (i.e., tree development and
eco-physiological responses to low air quality, GHG, rising air temperatures, and drought) and how
they grow in built-up environments such as cities. Therefore, we argue for the value of these native
species in terms of ecosystem services and insist that they need to be viewed in relation to how they
will respond to urban abiotic extremes and climate change. We propose to diversify planted forests
for several reasons: (1) to improve awareness of the benefits of diverse planted urban forests; (2) to
foster native tree research in urban environments, finding new keystone species; and (3) to improve
the evidence of urban ecosystem resilience based on New Zealand native trees’ regulating services.
This article aims to re-evaluate our understanding of whether New Zealand’s native trees can deal
with environmental stress conditions similarly to more commonly planted alien species.

Keywords: tree diversity; ecosystem resilience; native tree; urban environment; urbanization

1. Introduction
1.1. Effects of Urbanization on Tree Growth and Development

Urbanization is a worldwide phenomenon and a key driver of environmental degra-
dation and climate change [1,2]. An urban environment can generally be defined as an area
containing an aggregation of infrastructure, buildings, and open spaces that provide for the
urban community’s socio-economic functions [3]. Currently, over half of the global human
population lives in urban and metropolitan areas [4], and this proportion is expected to
increase to 70% by 2050 [5].

Trees in urban areas can suffer from chronic abiotic stresses, such as changes in the
growing season and circadian rhythm due to urban thermal discomfort, disorders caused
by air pollution, and droughts, which are typically enhanced by increasing urbanization [6].
The drastic changes in the urban landscape and environment have negatively affected
urban tree and ecosystem health as many plant species have been moved from their
provenance to cities (i.e., new environment) [7]. For instance, soil moisture, atmospheric
temperature, relative humidity (RH), and vapor pressure deficit (VPD) are often less
favorable for urban trees than for their rural environmental counterparts. This is because
they result in different tree growth rates (i.e., slower or faster), lower density root systems,
and higher leaf temperature, showing different relative tree growth rates until final tree
development [8,9]. Another environmental feature for an urban area is a specific airborne
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chemical composition produced by emissions from traffic, households, and industries,
which results in higher CO2 concentration and more air pollution, raising the atmospheric
temperature through GHG. Hence, urban trees growing in built-up areas are subjected to
a microenvironment characterized by higher pollution and GHG emission levels due to
traffic volume, additional soil drought, and contamination by the input of heavy metals
or high salinity [10], as well as a restricted area for root extension which in turn decreases
water availability (i.e., cover plate of a tree disc, tree pit covers, and road pavement) [11,12].

This article examined case studies currently used for carbon sequestration and air
pollutant removal of urban trees native to New Zealand and compiled currently available
results in New Zealand native trees in cities. However, the currently available results
are related to alien tree studies and a large degree of uncertainty due to the limitation of
applied studies on New Zealand native trees. For a better understanding of New Zealand
native trees for urban ecosystem services, it is proposed that planted forests should be
diversified for several reasons in this paper: (1) to improve awareness of the benefits
of diverse planted urban forests; (2) to foster native tree research in urban environments,
finding new keystone species; and (3) to improve the evidence of urban ecosystem resilience
based on New Zealand native trees’ regulating services. This article aims to re-evaluate
our understanding of whether New Zealand’s native trees can deal with environmental
stress conditions similarly to the more commonly planted alien species. We compiled
146 publications that reported existing data, literature, and opinion on urban forestry and
ecology. This perspective article explored and discussed whether New Zealand native
trees can provide urban ecosystem services and confirmed that the existing literature can
support the advantages of having native trees in cities.

1.2. The Decline of Native Forests after Human Settlement in New Zealand

As shown in Figure 1, the decline of New Zealand’s native forests began with the
arrival of Māori pioneers in AD 1000, who began deforestation for land-use conver-
sion [13–16]. With the arrival and establishment of the first European settlers around
1840, more natural forests were lost as more towns were developed and agricultural activity
increased. By 2000, nationally forest cover in New Zealand had been reduced to only 25% of
its pre-settlement level ([15,17]; see Figure 1A). The decline of native trees has also been
consistent with urban sprawl and the urbanization trend of New Zealand chronologically
by the early 20th century (1920s) ([18]; see Figure 1B). Currently, many introduced species
(approximately 2264 species: 30 mammals, 34 birds, and 2200 plants), including in urban
areas, are reported in New Zealand [19].
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that were once common are now classified as threatened or protected in both rural and 
urban areas [25,26]. However, New Zealand is currently host to a wide range of alien spe-
cies, defined as species non-native to New Zealand [24–30]. Since the 1990s, alien (non-
native) tree species have had a significantly higher afforestation rates than native species 
in New Zealand [31,32]. Historically, the use of alien tree species, such as Quercus spp. 
and Fraxinus spp., has been preferred in urban green spaces and for garden planning 
[33,34]. The invasion of alien species in New Zealand cities has contributed to a severe 
decline in native clusters (indigenous trees clusters) over time [27–29]. In Hamilton, cur-
rently the fourth largest and second fastest-growing city in New Zealand, the distribution 
of native trees in the city is only 2.1%, which is the lowest among New Zealand’s six main 
cities—namely, Auckland, Wellington, Christchurch, Hamilton, Tauranga, and Dunedin 
[18]. The remnants or patches of native dominated vegetation in each of the cities are very 
small (2.1–8.9% in the urban boundary) [18,19] and most native trees, except for nature 
heritage parks in cities, have been planted through urban restoration projects since the 
1990s [19]. Although the resilience and flexibility of all trees to abiotic stress caused by 
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With agriculture, dairy farming, and township settlement, forestry activities (i.e., es-
tablishing plantation forests, logging, and timber yield) have contributed to the decline of
native forests [22–24]. As a result of these activities, many native New Zealand tree species
that were once common are now classified as threatened or protected in both rural and ur-
ban areas [25,26]. However, New Zealand is currently host to a wide range of alien species,
defined as species non-native to New Zealand [24–30]. Since the 1990s, alien (non-native)
tree species have had a significantly higher afforestation rates than native species in New
Zealand [31,32]. Historically, the use of alien tree species, such as Quercus spp. and Fraxi-
nus spp., has been preferred in urban green spaces and for garden planning [33,34]. The
invasion of alien species in New Zealand cities has contributed to a severe decline in native
clusters (indigenous trees clusters) over time [27–29]. In Hamilton, currently the fourth
largest and second fastest-growing city in New Zealand, the distribution of native trees in
the city is only 2.1%, which is the lowest among New Zealand’s six main cities—namely,
Auckland, Wellington, Christchurch, Hamilton, Tauranga, and Dunedin [18]. The remnants
or patches of native dominated vegetation in each of the cities are very small (2.1–8.9%
in the urban boundary) [18,19] and most native trees, except for nature heritage parks in
cities, have been planted through urban restoration projects since the 1990s [19]. Although
the resilience and flexibility of all trees to abiotic stress caused by human settlement and
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urbanization require further study, the physiological adaptation of urban trees that are
native to New Zealand has been investigated less (especially in urban settings) than that of
species indigenous to other countries, such as Central Europe [6,35,36], North America [37],
East Asia [38], and Australia [39]. Since the 2000s, urban restoration, including native tree
planting in cities, has continued to grow in New Zealand, but relevant research effort is
required to overcome a lack of interdisciplinary breadth (i.e., environmental science, plant
physiology and biochemistry, forest science, and urban ecology) [19].

2. Urbanization in New Zealand, Its Consequences, and the Role of Tree Diversity
2.1. Urbanization and CO2 Emission Rate Increment in New Zealand

In the case of New Zealand, as much as 87% of the population currently reside in urban
environments and cities [40], and urbanization is increasing especially in the Auckland
region, reaching suburban areas such as Tauranga and Hamilton [41]. Urbanization is a
strong influencer of population growth (including internal and international migration),
building and infrastructure construction, and the spreading of residential areas and frag-
mentation of urban forests [41,42]. Half of New Zealand’s population is expected to live in
the Auckland metropolitan area by 2050, and the country’s population is expected to reach
8 million by 2073 [41]. New Zealand is heading toward the upper end of urbanization,
defined as rapid population growth with new infrastructure, based on Auckland [43]. In
total, 76.5% of New Zealanders reside on the country’s North Island, which has four major
cities: Auckland, Wellington, Hamilton, and Tauranga [44].

Anthropogenic impacts are likely to accelerate abrupt changes in tree growth condi-
tions (i.e., atmospheric temperature, humidity, CO2 concentration, air quality, and drought
extent) in cities. Even though New Zealand has among the highest air quality in the
world [45], the amount of domestic anthropogenic greenhouse gas (GHG) emissions has
increased over time. This increase in GHG emissions (mainly CO2, SF6, and HFCs) is highly
related to urbanization in New Zealand [46,47]. However, since the adoption of the Climate
Change Response (Zero-Carbon) Amendment Act 2019 of New Zealand, it is expected that
New Zealand’s government will focus on the reduction of GHG emissions [46].

The GHG inventory report of New Zealand’s government largely attributed the
increases in GHGs to the energy/transport sectors, determining that these sectors are
responsible for 38.2% of the net increase in CO2 emissions since 1990. In addition, land
use, land-use change, and forestry activities (LULUCF) have not shown a decreased rate
(i.e., carbon sequestration process in plants and soils) against the build-up of atmospheric
CO2 over time (+7203.3 Kt(CO2) increment between 1990 and 2017) ([46]; see Appendix A).
Approximately 20% of New Zealand’s annual energy consumption is from road trans-
portation in urban areas [48], and the emission rate from road transportation steadily
grew during the last two decades with an increased rate of private vehicle ownership [49].
Consequently, 47% of New Zealand’s total domestic CO2 emissions come from the road
transportation sector and these emissions have tripled over the past three decades [50].

2.2. High Private Vehicle Usage and Deterioration Extent in New Zealand

Over time, road transportation and the use of fossil fuel-dependent vehicles have
dramatically increased. They are consistent with the 2020 population growth rate per year
(2.1–2.8%). Although Auckland has 52.4 km of bicycle routes [51], private vehicle usage is
still the most common form of daily transport [41,52]. In Christchurch, the second most
populated city in New Zealand [53], the proportion of CO2 emissions from vehicles has
increased over the last two decades [48]. The use of private vehicles is very dominant in
Christchurch, being used for the daily commute by 84% of commuters, which is similar
to Auckland (85%). However, the proportion of public transportation use in many cities
is still low (2–8%), except for Wellington (21%) ([52]; see Appendix B). This dominance
of private vehicles is likely to affect New Zealand’s urban environment and contribute
to global climate change (GCC), especially as the population growth rate of Christchurch
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has been 13.5% for five years since 2013 [52], and therefore, the population is predicted to
continue to rise.

The deterioration of private vehicles is likely to have a profound effect on New
Zealand’s GHG emissions. The average age of New Zealand’s vehicle fleet is estimated
at 14.2 years [54], which is older than that of most OECD countries; the average private
vehicle ages in USA, Canada, and Australia are lower than 12 years [55]. Between 2000 and
2017, the proportion of vehicles over 15 years old in New Zealand increased from 24.5% to
42.3% [55,56], and this trend is likely to continue [55]. In addition, over the last 15 years,
the proportion of 0–4-year-old vehicles remained under 20% [55,56]. Kjellström and Mer-
cado [57] reported that the average age of vehicles is an important indicator of urban
environmental health; old vehicles are likely to be less energy efficient than newer vehicles,
have lower fuel efficiency, and their exhaust fumes have stronger links to GHG emissions
in cities, including CO2, CO, NO, NO2, and particulate matter of less than 10 or 2.5 µm
(PM10 and PM2.5, respectively) [58]. In the case of Auckland, the concentration of multiple
air pollutants (PM2.5, black carbon (BC), and NO2) is highly related to a high density of ve-
hicular traffic, showing 2.5-fold (PM2.5) and 2.9-fold (NO2) higher concentrations in the city
center (central business district) than other suburban areas in Auckland [59]. Consequently,
it might affect human health and tree disservices issues to urban dwellers (87% of New
Zealand population). Therefore, it is important to find proper urban tree species among
various genetic diversity pools for effective GHG mitigation and air pollutant removal in
the changing environment of New Zealand cities.

2.3. The Role of Tree Diversity in Ecosystem Resilience

Ecosystem services are the varied benefits to people provided by the natural environ-
ment and healthy ecosystems [60,61]. Ecosystem resilience can generally be defined as
the ability to absorb disturbance and provide a stable condition for the ecosystem with-
out loss of ecological function or ecosystem service [62]. Therefore, understanding the
role of species diversity of native trees in ecosystem resilience can be vital for strategic
ecosystem management tactics to combat anthropogenic disturbances, because it supports
functional diversity based on species interaction under interwoven abiotic factors [63].
As a sufficient level of species diversity affects the maintenance of resilience-based man-
agement [64], native species can constitute an important proportion of resilience. Species
richness is empirical evidence of plant biodiversity [65] and can contribute to effective
ecosystem resilience [66]. Species diversity can improve ecosystem stability and act as
an environmental buffer [66]. Moreover, increased diversity of trees in an ecosystem can
mitigate the disturbance of carbon cycling through trees’ species-specific eco-physiological
functions and different spreading extent of root systems [67]. Thus, understanding tree
diversity is important for climate change regulations [63]. One example of the vital role of
native species in imparting resilience is that they attract more pollinator species than alien
species [68]. The flowering and fruit production of trees are significantly increased when
the monotonous alien proportion decreases [68]. In addition, native trees provide diverse
faunal biodiversity habitats [69–71].

Tree species diversity in cities can provide a characterized tree population for improved
species structure, function, and value [72]. However, native trees tend to be underutilized
in cities [73,74]. Relying excessively on a small number of species threatens urban forest
resilience and reduces ecosystem services [75]. Urban tree species are generally removed
and/or replanted once they are regarded as having disservice and/or no use in urban forest
management [2,76]. Complex interactions between biotic and abiotic factors can affect
species imbalances and/or deletions in resilience [77]. Hence, it is important to conduct
strategic management of urban ecosystems and vegetation to create a sustainable urban
forest that is resilient to environmental disturbances (e.g., fragmentation and imbalances
caused by invasive species) [78].

During the last five years, in the Auckland area, there was a net increase of 226 ha
in tree canopy cover in built-up areas, 46 ha in urban parkland/open space, and 4 ha
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in transport infrastructure. However, owing to limited information on the effectiveness
of native trees in urban ecosystems and environmental services in New Zealand, there
remains an imbalance between alien and native species in this new tree canopy cover,
possibly hindering the long-term environmental, cultural, and socioeconomic impacts on
urban areas [71].

Planting alien trees in cities can be suitable for environmental regulating, different cul-
tural or heritage purposes, and ecosystem services in some cases, especially for deciduous
trees required to enlarge the canopy, or to establish community orchards [65]. Previous
studies have noted that alien species on diversity can foster soil nutrients by increasing
nitrogen cycling and the composition of soil microbial communities [79]. However, alien
species can affect local native plant communities and diversity by minimizing species
richness [80] and by affecting pollinators and soil carbon-degrading enzymes of native
species [81,82]. In addition, native trees might provide better ecosystem services (with bene-
ficial environmental regulating services) than alien trees in cities. Rahman et al. [2] reported
that Central European native tree species planted in cities showed better regulating services
(i.e., cooling effect) with 2.8 ◦C air temperature reduction (∆AT) and higher transpiration
rate than that of alien tree species in a case study of an urban area in Munich, Germany.
Many urban trees (alien and native) have differing wood anatomies that highly affect trees’
strategies under urban environmental stress such as drought and urban heat island (UHI).
Moser-Reischl et al. [83] reported that diffuse-porous and anisohydric trees have a higher
cooling effect with high canopy-scale transportation rates amid thermal discomforts in
cities, whereas ring-porous and isohydric trees provide higher water potential with high
survival rate (low maintenance) by affecting urban hydrology over time. Sonti et al. [37]
reported that North American native trees planted in cities showed higher or equivalent
stress tolerances with alien trees (i.e., increased air temperature stress, air pollution, and
drought) by showing higher chlorophyll fluorescence parameters (e.g., Fv/Fm) than those
of alien trees in cities (case studies of New York, NY; Philadelphia, PA; Baltimore, MD).
Therefore, it is likely important to find native trees’ characteristics (e.g., benefits on reg-
ulating services) [37,83], control the number of alien species, and reject uniformity [68].
According to previous studies, however, species diversity showed positive or negative im-
pacts on ecosystem resilience to environmental stresses in many case studies. For instance,
Mulder et al. [84] and Steiner et al. [85] reported that diversity enhances plant communi-
ties with species interactions by reducing drought impact. However, Wardle et al. [86],
Griffiths et al. [87], and Caldeira et al. [88] reported that species diversity did not affect
ecosystem resilience, resistance, or mitigating effects on drought. Hence, further studies
of the impact of tree diversity on ecosystem resilience to abiotic stressors in urban areas
are required.

3. Lower Proportion of Native Trees That Live in New Zealand’s Cities

In this article, we define urban forest as a collection of trees that grow in a city and/or
town that encompasses green space in a developed (built-up) area, yards and corridors,
and park/roadside trees [89]. New Zealand’s urban forests are dominated by alien tree
species [90]. There are no well-documented reports on whether trees native to New Zealand
have prominent ecosystem functions and increase resilience to abiotic stressors in the city.
Because of their well-known benefits (environmental regulating services, e.g., carbon
storage and air pollutant removal) [91], alien trees are often planted in urban forests
and streets, leading to an imbalance in the ratio between alien and native tree species
particularly in Auckland [92] and Christchurch [34]. Despite Christchurch being named
the “garden city” of New Zealand (due to an urban botanic garden area and the number
of urban parks), native species vegetation, clusters, and forests have become increasingly
fragmented and insignificant in size [24,34], with the trend being toward small numbers of
alien species, leading to a small genetic pool of native trees [34,90]. There are several reasons
for the unequal distribution of tree cover across the region in New Zealand cities, such
as land ownership (public/private greenspace), land use (urban/industrial/agricultural),
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geography, and natural heritage for legal protection. For instance, except for natural
heritage sites in urban areas and some public/private green spaces, mostly alien species
have planted and grown with higher coverages in the cities [90]. Historically, the types
of tree planting and development, street trees, and urban vegetation are influenced by
municipal urban planning manuals, funding resources, available space, urban dwellers’
species preferences, practitioners’ preferences based on alien species well known for their
environmental regulating services and physiological functions for tree planting rather
than genetic diversity, cultural services, and provenance [2,92–94]. Consequently, alien
tree species (mainly Betula pendula, Fraxinus ornus, Quercus palustris, Prunus yedoensis,
Liquidambar styraciflua, and Quercus robur) have become more dominant than native trees
(mainly Plagianthus regius, Sophora tetraptera, Cordyline australis, and Sophora microphylla) in
parklands and on streets in Christchurch [34,95]. Previous case studies of other countries’
cities reported that increasing tree diversity and enlarging green spaces through planting
native trees may increase physiological resistance to environmental stressors (regulating
service), including those caused by urbanization [91,93] with the fulfillment of cultural
services (i.e., cultural identity (e.g., Māori culture, local history) and aesthetic inspiration
in New Zealand cities). This means that high genetic diversity with native trees might
improve ecosystem resilience to miscellaneous abiotic extremes in cities. Native species
can, therefore, constitute an important proportion of resilience [94].

Native trees in cities are generally planted in private greenspaces, where they have
moderate to high canopy cover rates but offer a low level of protection to biotic/abiotic
stressors and management [94]. Many native tree species are statistically highly distributed
across housing estates with a high New Zealand Social Deprivation Index (NZDep) [92].
Huang [92] reported that alien street trees were higher in species richness (75.76% of total
species) and abundance (68.51% of total individuals) than native trees in many urban
forests and street trees in Auckland. A previous study in Christchurch also found that
84.1% of street trees were alien species, and found a similar array of alien street tree species
in Auckland (i.e., Acer spp., Betula spp., Quercus spp., Prunus spp., Ulmus spp., and Fraxinus
spp.) Recent data also show that tree cover canopy of all the land in Christchurch is
15.59%, and alien street trees are more dominant than native tree species in Christchurch
([33,34,96,97]; see Table 1).

Table 1. List of the main street trees of Christchurch and planting status in 2020 [33,34,96–98].

Species Common Name Provenance Species Abundance ††

Betula pendula Silver birch Europe 4642

Fraxinus ornus Manna ash southern Europe,
southwestern Asia 4384

Quercus palustris Swamp Spanish oak United States 4241

Plagianthus regius † Lowland ribbonwood New Zealand 3340

Prunus yedoensis Yoshino Cherry Japan 2722

Liquidambar styraciflua Sweetgum North America, Asia 2594

Sophora tetraptera † Large-leaved Kōwhai New Zealand 2472

Cordyline australis † New Zealand cabbage tree New Zealand 2411

Sophora microphylla † Kōwhai New Zealand 2291

Quercus robur English oak Britain 2242

Sum of main trees 31,339

Others (mixed with small numbers of numerous alien species) 81,547

Total (total abundance of street trees) 112,886
† native tree species; †† number of trees.
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4. Current Roles and Further Research Direction for Urban Ecosystem Services
Provided by New Zealand Native Trees
4.1. Definition of Ecosystem Service in New Zealand

Urban forests have a history of providing ecosystem services (i.e., cultural, provision-
ing, supporting, and regulating services) and increasing resilience to abiotic stresses in
cities and can help to mitigate GHG emissions and GCC caused by urbanization, road
transport, and prolonged exhaust exposure [89,99,100]. The planting and management of
trees in urban forests offer effective ecosystem services [101] (e.g., pleasing esthetic val-
ues [102], shade/shelter functions against thermal disservices [2], and cooling effects [6]).
New Zealand focuses on six major ecosystem services (benefits) for forestry: (1) carbon stor-
age, (2) soil erosion control, (3) biodiversity for threatened species, (4) water purification,
(5) provision of agroforestry/understory crops, and (6) recreation [103]. However, there are
certain ecosystem services that are more likely to affect urban dwellers in New Zealand’s
cities, that present many opportunities to support ecosystem services in urban areas, which
is not possible in rural landscapes [60]. Meurk et al. [61] reported that ecosystem services in
New Zealand’s urban areas can be classified as (1) provisioning services, (2) environmental
regulating services, and (3) cultural services. They noted that regulating services have
more direct benefits for human health, well-being, and environmental rehabilitation for
urban dwellers.

For urban ecosystem services, such as the conversion of land use and biodiversity
conservation, tree species selection can substantially contribute to developing biosphere
reserves. Urban forests have a wide spectrum of environmental ecosystem services, such
as air, water, soil, and climate regulation, as well as ecological habitat quality through the
function of various tree species and their assemblage [104]. Trees are crucial for carbon
reduction and GHG elimination in cities as part of New Zealand’s Zero-Carbon Act (Climate
Change Response Act) in the post-Paris Agreement era [46,105]. Under Article 7 of the Rio
Earth Summit ratified in 1992, New Zealand is required to submit an annual inventory
of GHG emissions to the UNFCCC [106]. With these regulating services, planting native
trees in cities can also contribute to diversity conservation and educating society about
native species (e.g., cultural and supporting services). Clarkson [107] reported that native
tree species such as Cordyline, Sophora, and Carex can be important for the restoration of
native vegetation in New Zealand’s urban areas. However, there is less understanding of
native trees in New Zealand’s cities than in cities of other countries [108], as there is less
preference for native trees [70,109,110]. Therefore, developing an understanding of native
trees for suitable species selection and utilization is likely to contribute to improved urban
ecology and urban ecosystem services provision.

4.2. Urban Trees’ General Environmental Regulating Service: Carbon Sequestration

Proper tree species selection and management contribute to carbon storage and act
as urban ecosystem services. Various perspectives and approaches to species selection
for urban ecosystem services have been proposed to reduce GHG emissions in many
cities [99]. For instance, in an urban forestry context, “carbon-neutral carbon commonly
involves measuring carbon emissions through emission reduction actions and carbon
offsets” [111]. Moreover, urban forests can contribute to carbon neutrality and sequestration
through urban tree management with updated tree inventories [72]. In addition, carbon
management and urban ecosystem service functions are strongly influenced by the level of
urbanization, knowledge of carbon sequestration management, and education levels, such
as management skills and environmental awareness, and familiarity with the ecosystem
services and carbon storage functions of urban trees [100]. For example, Akbari et al. [112]
reported that atmospheric temperature reduction by vegetation in cities has an equivalent
effect of 7 kg of total CO2 emission reduction. Urban areas can contribute to long-term
carbon storage for carbon emission mitigation through absorbing CO2 with urban trees and
forest resources through alternative methods such as chemical carbon substitution [2,43,113].
Forests are non-artificial terrestrial carbon sinks that account for approximately 45% of
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global land surface [114,115]. Moreover, forests account for 80% of the global above ground
and 40% of the global below-ground carbon storage in terrestrial ecosystems [116]. During
the last two decades, the carbon sink in temperate forests increased by more than 10%.
However, the carbon sink of tropical forests decreased and that of boreal forests showed
insignificant changes [114]. The decrease in tropical forests was driven by decreases in
tree size, shifts in tree species distribution, and elevated tree respiration rates under high
temperatures due to GCC [117,118]. Conversely, in boreal forests, the significant change
was due to vulnerability to GCC and the very low nutrient-absorption ability of trees [119].
New Zealand belongs to the temperate region, except for some subtropical parts of North
Island [120]. Therefore, focusing on the role of temperate forest trees and urban forests in
GHG mitigation is important for New Zealand.

The importance of forest conservation in global efforts to fight climate change was
recognized by Article 5 of the Paris Agreement, on Forests, which endorsed the role forests
play in mitigating GHG emissions [115]. Unlike natural forest (non-urban forest), urban
forests generally include green space/infrastructure and roadside trees located within or
close to cities, namely population centers of building aggregation, such as commercial,
residential, and industrial areas [89,121,122]. Therefore, scientists are debating how to use
native trees as “green infrastructure for climate change adaptation” and for mitigation in an
urban forestry context [69,107] to try to ameliorate environmental problems that threaten
ecosystems and human health [107,123]. There are also discussions about the role of urban
forests in ecosystem services for urban dwellers in the post-COVID-19 era [124]. Social
restrictions and changes in lifestyle paradigms may fundamentally alter the relationship
between urban dwellers and urban green spaces [125]. Hence, it is crucial to study and
determine the roles of native trees in tackling current challenges such as climate change,
water scarcity, after-effects of COVID-19, and plant biodiversity loss [109,123]. Each tree
species has different climate change-adaptation strategies and responds with different
mechanisms and/or resistances to these changes [126,127].

4.3. Unexploited Potential of Native Trees’ Regulating Service in New Zealand’s Cities

Past studies have demonstrated that trees native to New Zealand (see Appendix C for
pictures of a sample of common native trees) are valuable for urban ecosystem services. By
adopting selective native tree planting, afforestation in built-up environments might have
similar effects as those of natural native forests on carbon storage potential and absorption
rates in New Zealand [128–130].

Huang [92] reported that the mean diameter growth rate of abundant street trees
managed by the city council in Auckland was 13.54 ± 1.04 mm y−1. Even though
the average growth rate of native trees (9.59 ± 4.76 mm y−1) is slower than alien trees
(13.15 ± 7.08 mm y−1) in urban areas, several scientists have suggested that Auckland’s
urban forests/street trees composed of native trees have equivalent or better climate change
mitigation potential than alien trees and can support enhanced provision of ecosystem ser-
vices through eco-assessment and carbon sequestration [131–133]. By studying the carbon
sequestration potential of native trees, Carswell et al. [134] found that the sequestration rate
of Kānuka (Kunzea ericoides) was approximately 2.3 MgC ha−1 y−1 (slower sequestration
rate than average of alien trees through comparison study). In addition, Schwendenmann
and Mitchell [133] reported that the carbon sequestration values of native trees ranged
from 69.8 to 290.9 kgC, with carbon concentration values of 44.9–49.6%. This is based
on a case study of native tree species widely planted in Auckland for urban revegeta-
tion and restoration project fulfilment: Kānuka, Karaka (New Zealand laurel; Corynocar-
pus laevigatus), Lemonwood (Tarata; Pittosporum eugenioides), and Kōhūhū (Pittosporum
tenuifolium). Compared with the sequestration rate of New Zealand’s common alien tree
Pinus radiata (8 MgC ha−1 y−1) and the common trees of U.S. cities (2.8 MgC ha−1 y−1)
(Nowak et al., 2013, as cited in [133]), the average value of these four native trees in urban
areas (2.1 MgC ha−1 y−1) was significantly lower (Maclaren 2000, as cited in [133]). Never-
theless, Carswell et al. [134] stated that native trees have significant potential to mitigate
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GHG emissions, providing that they have success in long-term woody succession. They
reported that Kānuka and red beech (Nothofagus fusca) showed notable carbon storage
potential after 50 years of succession with values of 148 ± 13 MgC ha−1 50 years−1 and
145 ± 19 MgC ha−1 50 years−1 with biodiversity fulfilment, respectively.

Marden et al. [130] reported that the eight most distributed native trees in New
Zealand are conifers—Matai (Prumnopitys taxifolia), Kauri (Agathis australis), Miro (Prumno-
pitys ferruginea), Totara (Podocarpus totara), Kahikatea (Dacrycarpus dacrydioides), and Rimu
(Dacrydium cupressinum)—and broadleaved species: Tı̄toki (Alectryon excelsus) and Puriri
(Vitex lucens). Native conifers collectively contribute 90% of New Zealand’s total live-plant
carbon by volume, with the softwoods Rimu, Totara, Miro, and Kahikatea being the most
abundant species (Peltzer and Payton, 2006, as cited in [130]). Among them, only Tı̄toki
and Totara trees are relatively dominant in proportion to the Auckland urban area [131].
However, the potential for carbon storage and sequestration of large native trees is scarcely
reported in urban areas.

Nı̄kau (Rhopalostylis sapida) and Pōhutukawa (Metrosideros excelsa) are the most com-
mon native tree species in New Zealand cities. In particular, Pōhutukawa is the most
numerous street tree in the Wellington urban area, and it has the highest air pollutant (PM10
and O3) removal efficiency (75 g (PM10) tree−1 y−1, 61 g (O3) tree−1 y−1) in the Auckland
urban area [132]. Dale [131] investigated the carbon sequestration potential of seven native
species (Nı̄kau, Pōhutukawa, Northern rata, Pōhutukawa × Northern rata hybrid, Taraire,
Puriri, and Karaka) in the Wynyard Quarter area, Auckland, and estimated the total tree
carbon storage potential for the sample street trees to be 1.5 MgC y−1, which is equivalent
to the carbon emissions from driving 30,000 km in a private vehicle (57 tree samples of
7 native species). Dale [131] also reported that Pōhutukawa trees had the highest average
storage potential (0.099–0.11 MgC tree−1 y−1) due to higher wood density and tree maturity.
In addition, in a case study of the Wynyard Quarter area, Findlay [132] determined Nı̄kau
and Pōhutukawa as having the highest carbon removal efficiencies with higher canopy
values and biomass. These findings can have significant implications for the debate over
diversity needs and ecosystem services along with environmental acclimation through the
provenance of trees in cities, but more information is still required (i.e., carbon storage,
physiological responses, and long-term assessment) for various types of native tree species
in urban settings.

4.4. Further Research Direction of Urban Ecosystem Services in New Zealand

Most studies on tree responses in urban areas to GCC have focused on species alien
to New Zealand, and there is a lack of knowledge regarding how native urban trees will
respond to the changing climate in New Zealand’s cities. The annual precipitation in
New Zealand is predicted to be strongly affected by changing patterns of evaporation,
which are influenced by higher surface temperatures [135]. Moreover, intensification of
the El Niño cycle is likely to enhance the regularity, severity, and duration of droughts in
New Zealand [136,137]. Indeed, recent New Zealand climate change projections indicate
that droughts are likely to increase in both intensity and duration in many cities on the
North Island [138]. Currently, drought in New Zealand is not a serious issue, despite a
drought occurring in Huapai, Auckland during the summer season of 2013. During this
drought, the soil volumetric moisture content was recorded in the range of 29–51% at 10 cm
depth, compared with 43–60% in 2012 [139]. The threat of drought leading to urban water
shortages has been raised as a severe issue on the Kapiti Coast and in Wellington. This is
because climate change can lower the water level and yield of the Waikanae River, leading
to water shortage in surrounding urban areas that rely on the river for water [140,141].
More frequent drought events are therefore likely to lead to water shortages from the
river to the built-up environment in the Kapiti Coast/Wellington and Wairarapa regions.
In the Auckland and Northland regions, the frequency and intensity of El Niño events
are associated with periods of drought [138]. Changes in the physiological responses and
carbon and nitrogen budgets of New Zealand native trees in response to climatic conditions,
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such as drought, higher temperatures, and elevated CO2, especially in urban environments,
have seldom been explored in New Zealand [95]. There is also very little information
available on fluxes of nutrients (e.g., carbon allocation) in New Zealand’s native trees [139].
Consequently, there is a poor understanding of native tree growth and responses in New
Zealand, as most research and management in New Zealand urban forestry has focused on
alien tree species [95,107].

Species diversity contributes to a better provision of urban ecosystem services [142].
It affects ecosystem resilience in terms of urban forest protection from pests and plant
diseases, climate change, warmer (higher) temperatures, and abiotic extremes [142,143].
Therefore, tree diversity is an important buffer against catastrophic tree loss in managed
forests, including urban forests [144]. Generally, monocultures are more vulnerable to
biotic and/or abiotic stressors [75,144]. Urban forests with low tree diversity and biotic
homogenization may be vulnerable to ecological disturbances and are at greater risk from
local/regional climate changes [145]. Therefore, it is necessary to confirm whether these
findings are consistent with the large body of evidence that shows that most urban trees
grow better with a diverse mixture of species rather than in a monoculture or with less
diversity.

5. Conclusions

Urban trees grow under extreme/harsh/difficult and complex conditions. There has
been continuous debate and controversy regarding whether native trees are resilient to
urban abiotic stresses and should be planted in cities instead of alien trees [70,107,109,110].
In the case study that explored the carbon sequestration potential of native trees growing in
an Auckland urban park, the potential sequestration of native trees was estimated to be in
the range of 69.8–290.9 kgC, with a carbon concentration of 44.9–49.6%. Even if these carbon
sequestration rates are lower than those of alien trees such as Pinus radiata, New Zealand
native trees may have significant potential in mitigating GHGs if they are competitive in
long-term woody succession.

The stress resistance of native tree species in New Zealand cities to GCC and air
pollution has received less attention [47,95,108]. This is due to the relatively short history of
anthropogenic environmental changes in the growth of trees in urban settings. Therefore,
further investigations are needed on the growth and physiological changes in response to
future GCC projections, including high temperatures, elevated O3, PM2.5, and CO2 levels,
and increased drought severity. Previous studies have considered the effects of individual
components of GCC on tree species. However, few studies have assessed the interactive
effects of stress factors, such as higher temperatures, drought stress, and elevated CO2 [146].
Therefore, these must be assessed together more in future studies. In particular, intensive
tree physiological studies during drought and the combined effects of more than two factors
on species tolerance to GCC will aid in proper tree species selection and environmental
policy in New Zealand’s cities. Research on the adaptability to urban abiotic extreme
conditions would improve the current poor understanding of native trees’ responses in the
urban areas of New Zealand. Therefore, it is necessary to pay attention to the role of native
trees in cities to develop novel ideas that can positively affect New Zealand’s climate policy
in the post-Paris Agreement era.
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Appendix A

Table A1. New Zealand’s CO2 emissions by sector between 1990 and 2017.

Sectors
Kt (CO2)-Equivalent Change from 1990

(Kt (CO2)-Equivalent) Change from 1990 (%)
1990 2017

Energy and road transport 23,785.7 32,876.6 +9090.9 +38.2

Industrial processes and
product use 3579.9 4968.6 +1388.7 +38.8

Agriculture 34,257.2 38,880.7 +4623.5 +13.5

Waste 4041.9 4124.7 +82.9 +2.1

Gross (excluding
LULUCF †) 65,668.3 80,853.5 +15,185.2 +23.1

LULUCF −31,161.8 −23,958.4 +7203.3 +23.1

Net (including LULUCF) 34,506.5 56,895.0 +22,388.5 +64.9

Source: MfE [46]. † LULUCF refers to land use, land-use change, and forestry sector under the United Nations
Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol.

Appendix B

Table A2. Comparison of the ‘means of transportation for daily commute’ among New Zealand’s six
biggest cities [43,44,52].

Private Vehicle Fleet Usage
Region 2020 Population Growth Rate (%)

City (Population in 2020) Percentage (%) Rank

Tauranga (136,700) 91 1 Bay of Plenty 2.8

Hamilton (160,900) 87 2 Northland 2.6

Auckland (1,571,700) 85 3 Waikato 2.3

Christchurch (369,000) 84 4 Auckland 2.2

Dunedin (126,300) 82 5 Canterbury † 2.2

Wellington (202,700) †† 54 6 National wide 2.1

Bus/Train Usage Walk

City Percentage (%) Rank City Percentage (%) Rank

Wellington 21 1 Wellington 21 1

Auckland 8 2 Dunedin 12 2

Christchurch 4 3 Hamilton 7 3

Hamilton 3 4 Christchurch 5 4

Dunedin 3 5 Auckland 5 5

Tauranga 2 6 Tauranga 4 6
† Selwyn’s growth rate is 5.2%, which means the largest net internal migration, followed by Tauranga city and
Waikato. †† This value has excluded the population of Upper Hutt and Lower Hutt.
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(Lemonwood), Colin C. Ogle (Nīkau), Simon Walls (Karaka), Gillian M. Crowcroft (Pōhutukawa), 
and John E. Braggins (Puriri), CC BY 4.0 [147]. 
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Abstract: The Ituri-Epulu-Aru landscape (IEAL) is experiencing deforestation and forest degradation.
This deforestation is at the root of many environmental disturbances in a region characterized by
endemism in biodiversity. The importance of this article is to provide useful information for those
who wish to discuss a model that can be replicated for other territories affected by deforestation and
changes in natural and anthropogenic forest structure. This article focuses on the triangulation of
spatialized prospective scenarios in order to identify future trajectories based on the knowledge of
historical dynamics through the diachronic analysis of three satellite images (2003–2010–2014–2016).
The scenarios were designed in a supervised model implemented in the DINAMICA EGO platform.
The three scenarios: business as-usual (BAU), rapid economic growth (REG) and sustainable man-
agement of the environment (SME), extrapolating current trends, show that by 2061 this landscape
will always be dominated forests (+84%). Old-growth forests occupy 74.2% of the landscape area
in the BAU scenario, 81.4% in the SEM scenario and 61.2% in the REG scenario. The SEM scenario
gives hope that restoration and preservation of biodiversity priority habitats is still possible if policy
makers become aware of it.

Keywords: land use change; modeling; scenario; deforestation; DINAMICA EGO; PFBC landscapes;
Democratic Republic of the Congo

1. Introduction

Deforestation is one of the main environmental problems in the Democratic Republic
of the Congo (DRC) [1]. Studies show that deforestation and forest degradation cause
disturbances at several levels, such as biodiversity loss, soil erosion and global warming [2].
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Indeed, these two processes lead to the modification of the composition and configuration of
forest landscapes [3]. Old-growth forest is considered as the priority habitat for biodiversity
because it corresponds with the undisturbed natural ecosystem [4,5]. Its replacement by
other land uses is therefore of significant ecological concern [6]. Moreover, deforestation
and habitat loss represent complex phenomena linked to several causes, in particular the
expansion of agriculture, the extension of infrastructure, logging, economic, demographic,
cultural, technological, political factors and institutional establishment [7–9]. However, the
influence of these factors depends on their intensity and the duration of their pressure [10].

Although quantitative and qualitative studies on the influence of various causes
remain rare, the literature agrees that shifting slash-and-burn agriculture is the main driver
of deforestation in DR Congo [11,12]. Knowledge from studies of land use and occupation
changes is available at the national level [12,13], but it remains less numerous at the
provincial and local level, particularly in landscape conservation [13]. In the Ituri-Epulu-
Aru landscape (IEAL), studies on change stop at estimating forest area and deforestation
rates [2,14,15]. Moreover, studies on the spatiotemporal modeling of forests have recently
been produced however very few have been developed and applied at the scale of a
conservation landscape [1].

The Ituri-Epulu-Aru landscape is one of twelve conservation landscapes under the
Congo Basin Forest Partnership (CBFP). This landscape is mainly dominated by tropi-
cal rainforests [15]. Furthermore, it abounds in an exceptional biodiversity including in
particular more than 1192 species of plants, 62 species of large mammals (including the ex-
tremely rare okapi, the forest elephant and the chimpanzee) and 312 species of birds [15,16].
Deforestation and forest degradation are the main threats to this biodiversity.

The changes in land cover and use across the Ituri-Epulu-Aru landscape are poorly
understood and poorly documented [14]. Yet, it is the sum of local dynamics that deter-
mines change at the national, regional and global scale [17]. Consequently, the expansion
of deforestation raises a series of questions regarding the evolution of priority habitats for
biodiversity, its impact on the composition and configuration of the landscape, the role of
the dominant factors in the past dynamics and the possible future devastation of forests in
the short, medium and long term.

Remote sensing is useful for monitoring vegetation [18]. However, the mapping of
land use by remote sensing remains a methodological challenge in the tropical region,
given the heavy cloudiness there. Access to satellite images also remains limited. In
the Ituri-Epulu-Aru landscape, many institutions working in the management of natural
resources rely on cartographic material from national studies [2] regional or global due to
lack of technology or financial constraints [13]. However, the definition of the legend or
the observation time may not always meet the expectations of managers.

The interest of this study was to simulate deforestation in the future based on present
and past deforestation. In addition, the simulations were analyzed in contrasting scenarios
in order to plan future actions to fight against deforestation [7,8,19–21].

2. Materials and Methods
2.1. Study Area

The Ituri-Epulu-Aru landscape (2◦37′022′ ′–0◦31′030′ ′ N, 27◦34′034′ ′–30◦00′039′ ′ E,
40,862 km2) is one of the twelve CBFP landscapes (Figure 1). It is located in the north-
eastern part of the Democratic Republic of the Congo. Most of the landscape is located in
Ituri province (in the administrative territories of Mambasa, Irumu and Djugu). A part of
the landscape is included in the province of Haut-Uélé (territories of Wamba and Watsa).
Another part also affects the province of North Kivu from where part of the population
leaves and affects the landscape.
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groups that traditionally live in the forest is based on a rotation of two years of crops and 
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Figure 1. Geographical and topographical context of the study area.

EIAL is characterized by its high biodiversity and number of endemic species. The
biophysical occupation of the Ituri-Epulu-Aru landscape is mainly dominated by dense
semievergreen dryland to closed canopy forests. These forests include, in particular, the
monodominant forests with Gilbertiodendron dewevrei and the mixed forests in which no
species is predominant. In the extreme northeast of the landscape there is the semide-
ciduous forest, the canopy of which is mainly composed of heliophilous species such as
Entandrophragma spp. and Khaya anthotheca, Albizia spp. [15,22,23]. Secondary forests and
the rural complex are very often along the roads. The region’s economic activities are
shifting slash-and-burn agriculture, artisanal and semi-industrial mining, artisanal and
industrial logging and animal husbandry. The agricultural area is divided into two distinct
sectors: the hut gardens and the fields far from the villages. The agriculture practiced by
the groups that traditionally live in the forest is based on a rotation of two years of crops
and ten years of fallow. The fields are small, generally less than 2 ha, and represent only a
small proportion of the agricultural mosaic. Recent immigrants practice more intensive
agriculture, with larger fields, shorter fallow periods, and greater clearing of old-growth
forest [22,23].

Land use at the landscape scales (Figure 1) includes the Okapis Wildlife Reserve
(OWR) (13,720 km2), the Mai-Tatu Community Reserve (proposed), a logging concession
Enzyme Refines Association (ENRA) (520 km2) and three community management zones:
Banana (575 km2), Andekau (6973 km2) and Bakwanza (2181 km2) [22,23].

2.2. Data Used
2.2.1. Satellite Images

Satellite images used for land use dynamics in the Epulu-Ituri-Aru landscape are
annual CARPE composites of 0.025 degree resolution. These composites come from Landsat
TM, ETM + and OLI images (respectively, Thematic Mapper, Enhanced Thematic Mapper
plus and Operational Land Imager). These composites are made up of four spectral bands:
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NIR (0.845–0.885 µm), RED (0.63–0.68 µm), SWIR1 (1.56–1.66 µm) and SWIR2 (2.1–2.3 µm).
These composites have undergone atmospheric, radiometric and geometric corrections [24].

The Central Africa Regional Program for the Environment (CARPE) composites were
chosen because they have no cloud cover and allow the analysis of multi-date changes.
They cover all the countries of the Congo Basin and can be downloaded free of charge from
the CARPE website (https://carpe.umd.edu/ (accessed on 3 September 2021)) [24]. These
images are organized in square tiles of one degree. For this article, 40 tiles were used for
the four dates selected (i.e., 10 tiles per date). The CBFP landscapes were created in 2002
and development works started in 2003 in the Epulu-Ituri-Aru landscape. Therefore, the
year 2003 was chosen as the reference date. In addition, 2016 was chosen in alignment with
a field data collection campaign. And 2010 is the year that roughly halves the observation
period (2003 and 2016). The year 2014 was chosen for the validation of the spatialized
prospective model. Indeed, 2014 is relatively close to 2010 and 2016 and far enough away
from 2003; an ideal time step for validation [25–27].

To ensure multi-temporal comparability, a series of preprocessing were useful. First,
the rectified images were projected in the same reference coordinate system: WGS 84, UTM
zones 35 North. Then, for each spectral band, a mosaic of tiles was created in the chosen
years. Radiometric shifts due to differences in acquisition dates were minimized by doing
histogram equalization while taking the sharper tiles as references.

2.2.2. Field Data

Supervised classification generally requires a certain number of training samples and
verification samples [26]. Typically, traditional search uses manual visual interpretation
to get points. Thus, the sampling consisted of the selection of the objects according to the
spectral profiles defined using the GPS field surveys (surveys from 20 December 2016 to
15 January 2017). Then, the training areas that were chosen, on the images after 2016, for
each class correspond to areas considered unchanged (built-up areas and inselberg for
example) or having signatures close to the profile of 2016. In total, 950 measurement points
have been taken (Table 1). This set was split into two groups of data: 665 used for the
classification of land use in 2016 (i.e., 70% geographic coordinates) and 285 points used for
the validation of the 2016 classification.

Table 1. Description of land use classes.

Land Cover Code Number of Points Description Sources

Old-growth forest Pf 257

Woody formation consists of a very dense cover of large
trees. Old-growth forest can be semi-deciduous or

evergreen, or even swampy. In all cases, the carpet of
grasses is absent, and the forest has not undergone

significant modification by human activities. The tree
layer can reach 50 m in height.

[24,28,29]

Secondary forest Sf 302

Woody formation corresponding to a stage of
reconstitution of forest massifs which have undergone

strong anthropogenic interventions, or which have
evolved from wastelands. It usually has a strong

dominance of moderately fast growing semi-heliophilic
species. The tree layer generally reaches 35 m in height

[6,24,29–31]

Non-Forest NF 315

Non-forest plant formation including wasteland, shrub
savannah, land cultivated on an itinerant or intensive

basis, as well as recent fallows. This class also includes
areas occupied by buildings, dwellings and other

high-density constructions as well as areas without
vegetation with bare soil, rocky outcrops or even sandy

beaches along rivers. This class is represented by the
major roads and their right-of-way

[24,28,30–32]

Water Ww 76 This class includes all bodies of water, including the Ituri
River and Epulu [13,24,28,30]
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2.3. Methods

The technical process can be divided into 2 steps:

• Land use and land cover (LULC) classification.
• Modeling of deforestation.

The overall technical process is shown in Figure 2.
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2.3.1. Land Use and Land Cover (LULC) Classification

The Random Forest classification (RFC) was applied to the images of 2003, 2010, 2014
and 2016 via the R software [33] with the R package “RandomForest” [34] to obtain LULC
information. RFC [35] is a supervised technique of nonparametric statistical methods [36].
RFC has been used in several studies in the past [24,32,36–43]. In the RFC, when a sample
is entered into the model, each decision tree performs a separate evaluation to determine
which category the sample should belong to, and the category that is most often selected
is ultimately considered the category sample. The RF method can effectively reduce
the uncertainty of a particular algorithm and improve the precision of the discriminant
classification. The informational dimension of RF processing is larger and more complex
than that of other classification algorithms.

In this study, the data entered into the RF model included the full range of raw bands
of the annual composites of CARPE (RED, NIR, SWIR1 and SWIR2), Normalized difference
vegetation index (NDVI), Normalized difference moisture index (NDMI), Band5/Band 4
ratio (B54R), Normalized brown ratio (NBR), SRTM products. During the study, we found
that the classification accuracy of the full band combination was highest when comparing
different combinations of bands. Additionally, we have found that SRTM products improve
overall accuracy. The number of decision trees was set at 2000 using 70% of all samples.
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2.3.2. Modeling of Deforestation

Spatial modeling of deforestation was made on the basis of historical changes in land
use assessed between 2003 and 2016. The combination of the transition matrix (2003–2016)
adapted to three scenarios: business as usual (BAU), sustainable environmental manage-
ment (SEM) and rapid economic growth (REC), with maps of transition potential and
explanatory factors has enabled regular prospective monitoring up to 2061 to be estab-
lished using a probabilistic model designed in the DINAMICA EGO platform [10,21,44].
The deforestation simulation included: (i) selection of factors of change, (ii) transitions, (iii)
exploratory analysis of deforestation factors, (iv) simulation and (v) validation.

Selection of Variables

Variable selection eliminates overly correlated variables and contributes to the success
of the modeling [9,45]. On the basis of the literature, fieldwork and general reflection made
it possible to identify the variables (factors) explaining deforestation [11,14,22,23,30,46].
The variables identified were grouped into six categories (Agriculture, Economic factors,
Transport, Demographic factors, Sociopolitical factors, Biophysical factors [11]. Only spa-
tially explicit variables were retained for this study. Then, these variables were quantified
in a geographic information system (Figure 3). Finally, an exploratory univariate analysis,
calculating the correlation between the explanatory variables and deforestation and forest
degradation, was carried out to identify the relationships between deforestation and each
of the explanatory variables (Table 2).

Table 2. Explanatory variables of deforestation.

Category Variable Retained Code Sources

Agriculture
Distance to agricultural areas d_agri Spatial analysis [24]

Rural complex Comp [24]
Distance to rural complex d_comp Spatial analysis [24]

Economic factors

Distances to built-up areas d_abat Spatial analysis [24]
Distances to major center d_gcent Spatial analysis [24]

Forest concessions Ccf [47]
Mining square Mining [47]

Distance to mining squares d_mining Spatial analysis [47]

Transport
Distance to national road d_road1 Spatial analysis [47]

Distance to provincial road d_road2 Spatial analysis [47]
Distance to local road d_road3 Spatial analysis [47]

Demographic factors Population density Dens [48]

Sociopolitical factors
Protected areas Ap [49]

Agricultural zones delimited Areaagr [49]
community management Areamngt [49]

Biophysical factors

Elevation Dme [50]
Slope Slope Spatial analysis [50]

Distance to watercourses d_w Spatial analysis
[13,24,50]

Distances to non-forests d_nf Spatial analysis
[24,30,46]

Distance to degraded forest d_fd Spatial analysis [24]
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ence of each variable on the spatial probability of an i-j transition. A work of adjustment 
of the weights of evidence was useful because the input data is not always entirely relia-
ble, and some categories resulting from the operations of discretization may be nonexist-
ent. This adjustment, requiring expert knowledge, brought relevant added value. The op-
eration was based on the automatically calculated values and is carried out through a vis-
ualization interface made available by DINAMICA EGO. As required by the literature 
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titude), and to adjust the values deemed unrealistic. Then, pairwise tests were performed 
for categorical maps to assess the independence hypothesis. The methods used are Chi2, 
Crammer’s V index, contingency, entropy and joint uncertainty information [52]. The pur-
pose of this step was the selection of variables because the study of the past and the pre-
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Transitions

The transition corresponds to the total amount of LULCC that occurred during the
simulation period. The quantities of change were calculated by the Markovian method.
They constitute an essential element in the simulation of changes in land cover and land
use because they determine the surface area to be allocated in space according to the change
probability maps and the various constraints defined [18]. Transitions modeled in this study
include (a) transition from old-growth to secondary forest (degradation), (b) transition from
old-growth to non-forest (deforestation), (c) transition from secondary forest to old-growth
(maturation), and (d) transition from secondary forest to non-forest (deforestation).

Exploratory Analysis of the Data

When the dynamics of LULCC was modelled, weight of evidence (WoE) was applied
to the transition probabilities of the project. The weight of evidence represents the influence
of each variable on the spatial probability of an i-j transition. A work of adjustment of the
weights of evidence was useful because the input data is not always entirely reliable, and
some categories resulting from the operations of discretization may be nonexistent. This
adjustment, requiring expert knowledge, brought relevant added value. The operation was
based on the automatically calculated values and is carried out through a visualization
interface made available by DINAMICA EGO. As required by the literature [18,51], no
fundamental modifications were applied. The purpose of the adjustment is twofold: to
model the most obvious functions (for example in the case of distances or altitude), and to
adjust the values deemed unrealistic. Then, pairwise tests were performed for categorical
maps to assess the independence hypothesis. The methods used are Chi2, Crammer’s V
index, contingency, entropy and joint uncertainty information [52]. The purpose of this
step was the selection of variables because the study of the past and the present which
was not the only way of explaining future deforestation. Its interest was to retain those
who best contribute to the establishment of each land use class. Although there is no
unanimity on the cut-off that should be used to exclude a variable, a common practice, also
adopted in this study, is to choose a cut-off of 0.5 from the Crammer V index. (Measure

130



Land 2021, 10, 1042

of the relationship between categorical variables). Above this value, the variables are
correlated [21,53].

Simulation of Deforestation

The simulation of land use changes is carried out in order to facilitate decision making.
The interest of this simulation lies in its ability to construct the future image of forests
according to three contrasting scenarios: a “trend scenario” (business as usual, (BAU))
which starts from the hypothesis of the absence of new economic or environmental poli-
cies, a “sustainable environmental management” (SEM) scenario in which legislation and
government subsidies encourage the emergence of forestry (multiplication of plantations
and agroforestry) and the protection of wood resources, and finally, a “socio-economic”
scenario (rapid economic growth, (REG)), i.e., acceleration of the destruction of tree and
shrub plant cover and expansion of agricultural land (tendency towards disaster).

Validation

The validation of the simulation model focused on budgeting for errors and correct
predictions [54,55]. In practice, this involves comparing three maps: (i) the map of the
initial year (2003), (ii) the simulated map in 2014, and (iii) the one produced by satellite
image classification in the same year (2014). This three map analysis shows how simulated
change compares to baseline change by revealing five components [54,56,57]: (1) the
reference change simulated correctly as a change (i.e., hits), (2) reference change simulated
incorrectly as persistence (i.e., misses), (3) reference persistence incorrectly simulated
as a change (i.e., false alarms), (4) persistence of the correctly simulated reference as
persistence (i.e., correct rejections) and (5) reference change simulated incorrectly as a
change to the wrong gain category (i.e., false results) (Table 3). Based on these pixels, two
types of errors were evaluated in order to judge the accuracy of the overall prediction
across the entire landscape. First, the quantity error (Q) was determined by the difference
between false alarms and misses (Q = |F −M|). Finally, the allocation error (A) calculated
by the difference of the total observed changes (OC = M + H) with the quantity errors
[A = (F + M) − Q]. The total observed changes (OC) are given by the sum of misses and
hits (OC = M + H). Also, the total predicted changes were determined by the combination
of false alarms and hits (PC = F + H).

Table 3. Approach to error budgeting and correct predictions. 1 = Old-growth forest; 2 = Secondary
forest; 3 = Non-Forest; 4 = Water.

Comparison of Three Maps

2003 2014 2014si Components

1 1 1
Reference persistence simulated

correctly as persistence
Correct rejections2 2 2

3 3 3
4 4 4

1 2 1

Reference change simulated
incorrectly as persistence Misses

1 3 1
1 4 1
2 1 2
2 3 2
2 4 2
3 1 3
3 2 3
3 4 3
4 1 4
4 2 4
4 3 4
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Table 3. Cont.

Comparison of Three Maps

2003 2014 2014si Components

1 1 2

Reference persistence simulated
incorrectly as change False Alarms

1 1 3
1 1 4
2 2 1
2 2 3
2 2 4
3 3 1
3 3 2
3 3 4
4 4 1
4 4 2
4 4 3

1 2 2

Reference change simulated
correctly as change Hits

1 3 3
1 4 4
2 1 1
2 3 3
2 4 4
3 1 1
3 2 2
3 4 4
4 1 1
4 2 2
4 3 3

1 2 3

Reference change simulated
incorrectly as change to the wrong

gaining category
Wrong Hits

1 2 4
1 3 2
1 3 4
1 4 2
1 4 3
2 1 3
2 1 4
2 3 1
2 3 4
2 4 1
2 4 3
3 1 2
3 1 4
3 2 1
3 2 4
3 4 1
3 4 2
4 1 2
4 1 3
4 2 1
4 2 3
4 3 1
4 3 2

3. Results
3.1. Assessment of the Quality of Land Use Maps

The overall precision of land cover classifications in the study area from 2003 to 2016
was 0.94 ± 0.03. In detail, old-growth forest, Non-Forest and Water exhibited a higher
classification accuracy than the Secondary Forest class. Their User Precision (UA) and
Producer Precision (PA) values were in all cases greater than 0.75 (Table 4). The precision
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was low for secondary forests, with AU of 0.8 ± 0.02 and PA of 0.78 ± 0.02. In addition,
non-forests had intermediate precision values, with AU of 0.82 ± 0.03 and BP of 0.8 ± 0.02.
There have been many instances in which secondary forests have been incorrectly classified
as old-growth forest and non-Forest.

Table 4. Accuracy assessments of land cover classifications.

Accuracy Land Use 2003 2010 2014 2016

User

Pf 0.91 0.93 0.89 0.98
Sf 0.78 0.82 0.79 0.77
Nf 0.81 0.82 0.79 0.85

Ww 0.92 0.94 0.91 0.90

Producer

Pf 0.89 0.90 0.86 0.94
Sf 0.77 0.79 0.76 0.81
Nf 0.79 0.80 0.78 0.82

Ww 0.90 0.92 0.89 0.95

Over all 0.91 0.93 0.93 0.97

3.2. Analysis of Historical Changes of Deforestation between 2003 and 2016

Table 5 presents: (i) forest areas (ha), (ii) deforested areas between 2003–2010 and
between 2010–2016 (ha) and (iii) observed deforestation rates by axis (%). For all dates,
old-growth forest represents more than 3,600,000 ha. The most deforestation event is
observed between 2010–2016. It is the deforestation of old-growth forests estimated at
more than 108,000 ha. It is worth recalling the dramatic increase in secondary forests. The
overall assessment of forest dynamics provides information on increasing deforestation
over the two periods. Indeed, 14,983 ha of forests were deforested between 2003–2010 and
over 37,000 ha between 2010–2016. As a result, the annual rates of deforestation almost
tripled between 2003–2016. They went from 0.05% to 0.14% between 2003 and 2016.

Table 5. Areas and annual rates of deforestation between 2003–2010 and 2010–2016.

Forest
Type

Forest Areas Deforested Areas

2003 2010 2016 2003–2010 2010–2016

Ha % Ha % Ha % DA Td DA Td

Pf 3,801,767 91.75 3,751,719 91.73 3,643,399 89.28 50,048 0.19 108,319 0.42
Sf 178,472 5.83 213,538 5.28 284,351 6.91 −35,065 −2.56 −70,813 −4.09

Total 3,980,240 97.58 3,965,257 91.73 3,927,751 96.19 14,983 0.05 37,505 0.14

Td = Annual rate of deforestation in percentage; DA = Deforested area in hectares.

3.2.1. Historical Transitions

Table 6 summarizes the transitions observed between 2003 and 2016. From a global
point of view, the historical dynamics of the landscape occur to the detriment of old-growth
forest s over the entire observation period. Old-growth forests decrease by 2.69% compared
to the proportion of 2003. They occupy from 91.75% in 2003. They barely represent 89% in
2016. In addition, secondary forests are experiencing an increase in area. They increased
from 5.83% in 2003 to 6.91% of the total landscape area in 2016. This increase in secondary
forests results from the conversion of old-growth forest s into secondary forests (2.18%) and
non-forests into secondary forests (1.14%). Furthermore, the non-forest class increased by
26%, from 2.12% in 2003 to 3.50% of the total area of the landscape in 2016. The proportion
of the landscape occupied by forests in 2003 and converted to non- forest in 2016 are
estimated at 2.52% of the total area of the landscape. Indeed, secondary forests are the
most affected by the changes. In terms of stability, the old-growth forest class shows great
stability. In addition, non-forests are very fluctuating. Indeed, they show a stability of 46%
compared to their proportion of 2003. The comparison of the proportions of land use in
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2003 with those of 2016 does not reveal any significant changes in the composition of land
use occupation. (X-squared = 0.46; df = 3; p = 0.93).

Table 6. Matrix of transitions between 2003 and 2016.

2003–2016
Land Use in 2016

Total 2003
Pf Sf Nf Ww

Land use
in 2003

Pf 87.66 2.18 1.90 0.00 91.75
Sf 1.61 3.59 0.62 0.00 5.83
Nf 0.00 1.14 0.97 0.00 2.12

Ww 0.00 0.00 0.00 0.31 0.31
Total 2016 89.28 6.91 3.50 0.31 100

3.2.2. Deforestation Effort between 2003 and 2016

The smallest deforestation spot is 0.06 ha for all periods and for both classes of forest
cover. On the other hand, the largest event of deforestation was estimated at 1007 ha over
the period 2010–2016 in old-growth forest s. In addition, between 2003–2010, the biggest
spot of deforestation in old-growth forest covers an area of 756 ha. The average area of
deforestation plots in old-growth forest is estimated at 1 ha and 1.6 ha, respectively between
2003–2010 and between 2010–2016. Indeed, the area of deforestation spots observed in
old-growth forest does not change significantly. depending on the observation period
(p-value = 0.39). However, in secondary forest, the average area of deforestation is esti-
mated at 1 ha between 2003–2010 and 0.7 ha between 2010–2016. The largest deforestation
spot is estimated at 240 ha between 2003–2010 and at 410 ha between 2010–2016. There is
also no significant difference between the areas of deforestation in secondary forest between
the two periods (p-value = 0.54). For the entire observation period (2003–2016), the average
area of deforestation in old-growth forest is 1.3 and 0.8 ha in secondary forest. Comparison
of the deforestation spots in old-growth forest with those observed in secondary forests
reveals a significant difference between the areas of deforestation spots observed in these
two forest types (p-value = 0.04). Old-growth forest appears to be more vulnerable to
deforestation than secondary forest. Taken as a whole, the deforestation spots observed
between 2003–2010 seem to be smaller than those observed between 2010 –2016. Their
average area is 1 ha between 2003–2010 and 1.2 ha between 2010–2016. Indeed, there is no
significant difference between the areas of the deforestation spots over the two periods
(p-value = 0.08). Figure 4 shows the variation in the areas of deforestation spots according
to the type of forest cover. The diamond represents the mean.
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Figure 5 illustrates these changes observed between 2003–2016. Visual analysis reveals
that the landscape seems to be more affected by deforestation in the Southeast. Deforesta-
tion forms a disturbance gradient linked to the road and to major centers. The area of the
wildlife reserve seems to be more stable. Indeed, this variability in forest deforestation
seems to be a function of land use (macro-zones).

Land 2021, 10, x FOR PEER REVIEW 15 of 25 
 

 
Figure 4. Variation in deforestation areas between 2003 and 2016. 

Figure 5 illustrates these changes observed between 2003–2016. Visual analysis re-
veals that the landscape seems to be more affected by deforestation in the Southeast. De-
forestation forms a disturbance gradient linked to the road and to major centers. The area 
of the wildlife reserve seems to be more stable. Indeed, this variability in forest deforesta-
tion seems to be a function of land use (macro-zones). 

 
Figure 5. Mapping of forest cover changes: deforestation (left) and forest degradation (right). 

  

Deforestation of the old-growth forest Deforestation of the secondary forest

2003 to 2010 2010 to 2016 2003 to 2010 2010 to 2016
0.0

0.5

1.0

1.5

2.0

 Observation period

Ar
ea

 in
 h

a

Figure 5. Mapping of forest cover changes: deforestation (left) and forest degradation (right).

3.3. Future Trajectories of Deforestation
3.3.1. Validation of the Model in 2014

The comparison of the changes observed and predicted between 2003 and 2014 made
it possible to validate the simulation model of deforestation. The results of error budgeting
and correct prediction reveal that 88.1% of the pixels in the landscape are correct due to
observed and predicted consistency (Correct rejections [N]). Additionally, the correct pixels
due to an observed and predicted change (Hits [H]) represent 4.25% of the pixels in the
landscape. On the other hand, the errors due to a constancy observed but predicted to be
changed (False alarms [F]) amount to 1.67% of the pixels in the landscape. The errors due
to a change observed but predicted as constant (Misses [M]) are 5.42% (Figure 6). The total
observed changes (OC = M + H) are 9.66% while the total predicted changes (PC = F + H)
were underestimated with 5.92%.

The accuracy of the global prediction of changes across the entire landscape indicates
that the quantity errors (Q = |F − M|) are estimated at 3.75% of the landscape pixels
while the allocation errors [A = (F + M) − Q] represent only 3.34% pixels of the landscape.
Therefore, the total error (Q + A) is 7.09% pixels of the landscape.

Figure 7 gives a spatial overview of the distribution of errors and correct predictions.
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The landscape observed in 2014 consists of 90.20% of old-growth forests, 6.16% of
secondary forests, and 3.36% of non-forests and 0.28% of water. The concordance of
simulated and observed land cover is estimated at 84.87% of the landscape for old-growth
forests, 3.54% of the landscape for secondary forests and 1.37% of the landscape for non-
forests. In addition, the landscape simulated in 2014 consists of 87.42% of old-growth
forests, 8.17% of secondary forests, 4.11% of non-forests and 0.28% of water. The model
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seems to underestimate old-growth forests. It also overestimates secondary forests, non-
forests and water (Table 7).

Table 7. Comparison between observed and simulated land use.

Observed–Simulated
Simulated Land Use in 2014 Total

ObservedPf Sf Nf Ww

Observed
land use in

2014

Pf 84.87 3.64 1.68 0.00 90.20
Sf 1.55 3.54 1.06 0.00 6.16
Nf 0.99 0.99 1.37 0.00 3.36

Ww 0.00 0.00 0.00 0.29 0.28
Total simulated 87.42 8.17 4.11 0.29 100

3.3.2. Future Trajectories of Deforestation

The combination of the transition matrix adapted to the different BAU, SME and REG
scenarios with the transition potential maps and explanatory factors has made it possible
to establish regular prospective monitoring until 2061 and the evolving statistics of land
use areas (Figures 8–10). In the BUA scenario, the dynamic future of the landscape will
come at the expense of old-growth forests (Figure 8).
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In the SEM scenario, the dynamics of land use will benefit forests (Figure 9). Consid-
ering the changes to be observed between 2016 and 2061, 8.84% of the proportion of the
landscape occupied by old-growth forests will come from secondary forests (7.86%) and
non-forests to secondary forests (2.73%). Furthermore, the non-forest class will experience
a decrease in future years. They represent 3.50% of the proportion of the landscape in 2016.
They will cover only 2.71% of the landscape by 2061. The proportion of the landscape that
will remain unchanged is estimated at 87.03% of the total area of the landscape (respectively,
80.11% covered by old-growth forests, 5.95% by secondary forests, 0.66% non-forest and
0.31% water). Table 8 shows the transitions obtained in the SEM scenario between 2016
and 2061.

Table 8. Transition matrix in the SEM scenario between 2016 and 2061.

2016–2061
Land Use in 2061

Total 2016
Pf Sf Nf Ww

Land use
in 2016

Pf 80.11 7.86 1.30 0.00 89.28
Sf 0.21 5.95 0.75 0.00 6.91
Nf 0.12 2.73 0.66 0.00 3.50

Ww 0.00 0.00 0.00 0.31 0.31
Total 2061 80.44 16.54 2.71 0.31 100

The change in the composition of land cover in the SEM scenario between 2016 and
2061 is illustrated in Figure 9.

In the rapid economic growth scenario, the future dynamics of the landscape will
come at the expense of forests (Figure 10).

Between 2016 and 2061, 28.84% of the proportion of the landscape occupied by old-
growth forests will be converted to secondary forests (12.62%) and non-forests (17.52%).
The non-forest class will experience a dramatic increase in the years to come. It represents
3.51% of the proportion of the landscape in 2016. It will cover more than 25.25% of
the landscape by 2061. The proportion of the landscape that will remain unchanged is
estimated at 64.22% of the total area landscape (respectively, 59.13% covered by old-growth
forests, 1.92% by secondary forests, 2.86% non-forest and 0.31% water). Table 9 shows the
transitions obtained in the REG scenario between 2016 and 2061.
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Table 9. Transition matrix in the REC scenario between 2016 and 2061.

2016–2061
Land Use in 2061

Total 2016
Pf Sf Nf Ww

Land use
in 2016

Pf 59.13 12.62 17.52 0.00 89.28
Sf 0.11 1.92 4.87 0.00 6.91
Nf 0.07 0.58 2.86 0.00 3.50

Ww 0.00 0.00 0.00 0.31 0.31
Total 2061 59.31 15.13 25.25 0.31 100

The comparison of the proportions of land use simulated in 2061 with those observed
in 2016 shows significant differences in two different scenarios: BAU (X-squared = 16.46;
df = 3; p = 0.03) and REG (X-squared = 17.25; df = 3; p = 0.001). Moreover, the sim-
ulated occupation of the SEM is not statistically different from that observed in 2016
(X-squared = 20.71; df = 3; p = 0.06).

4. Discussion
4.1. Historical and Future Trajectories of Deforestation

The dynamics of land use in the study area are characterized by deforestation and
forest degradation. Deforestation observed in the Ituri-Epulu-Aru landscape shows signifi-
cant differences between periods, forest types and macro-zones (protected area, sustainable
management zone for natural resources and extraction zone). Indeed, before 2010, the
annual rate of deforestation was relatively low (0.05%) and the average area of deforestation
spots was 1 ha. It more than doubled between 2010–2016 reaching 0.14% per year and the
average area of deforestation spots increased by 1.2 ha. The significant decrease over time
in forest area confirms the hypothesis of continual anthropization of Ituri’s forests. How-
ever, comparing deforestation rates by period does not reveal any significant difference.
Likewise, in all cases, the average area of deforestation spots is not significantly different
over the two periods, which shows that there is no “period” effect on deforestation rates.

Considering land use, the differences in annual deforestation rates are very large
ranging from 0.02 to 3.05% for the period 2003–2010 and from 0.1 to 3.20% for the second
observation period. At the landscape level, these rates remain below the national average
of 0.22% per year [1]. Moreover, except in the OWR, these rates are above this average,
particularly in the second period. Several authors share the same opinion that deforestation
is increasing in the majority of forests [2,29].

Comparison of key deforestation figures obtained in this study with those of other
similar studies should be done with caution since the methodologies and data used are
not always compatible. FACET [2] estimates the area of old-growth forests in 2010 at
3,843,218.88 ha. This area is slightly less than that obtained in the present study. Some
scenes used may be different. Statistics from FACET [2] reveal increasing rates of defor-
estation, a trend shared by our results. Furthermore, Lusana et al. [14] estimate this area
at 4,049,204 ha in 2003 and 3,997,690 ha in 2010, i.e., a loss of 51,514 ha between 2003 and
2010. Note that this latest study is based on the mapping materials of Hansen et al. [13]
who overestimate the forest area [25]. The main reason given by these researchers is that
the scale of analysis does not allow a good definition of the forest. Thus, it is possible
that certain wastelands are confused with forests. This explains why the estimates of
Lusana et al. [14] seem to exceed those carried out in this study.

Deforestation rates observed in the Ituri-Epulu-Aru landscape remain relatively low
compared to other regions of the country, such as in the Bombo-Lumene reserve located
not far from Kinshasa (0.46% per year between 2000 and 2015), the Yangambi Biosphere
Reserve (4.5% between 2003 and 2016) [29] and very low compared to tropical America
(0.51%) or Tropical Asia (0.58%) [58].
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4.2. Simulation of Deforestation

This article provides useful information for those who wish to discuss a model that
can be replicated for other territories affected by deforestation and changes in natural and
anthropogenic forest structure. Fieldwork identified agriculture, forestry, infrastructure,
demographic factors, socio-political factors, economic factors and biophysical factors.
Among the variables retained, the distance from rural complexes, distance from national
roads, artisanal mining and distance from major centers seems to play an important role in
view of the main changes observed between 2003 and 2016. These results are similar to
those of several authors [11,59].

The development of images from trendy and contrasting prospective scenarios will
promote the identification of areas with socio-environmental issues concerning on the one
hand the living environment of Pygmy communities and on the other hand the preservation
of old-growth forests. For decades, primary and secondary forests have given way to crops
in agricultural areas [59]. The use of these deforested areas makes it possible to benefit
from new fertile land and therefore to increase agricultural production.

In summary, the trend of regression of the forest landscape in favor of culture and
urban spaces has been observed for several decades [2]. This is then done at the expense of
urban and village centers but also along the main communication axes (road network, net-
work of tracks) [3,11]. Moreover, this degradation mainly impacts old-growth forests [28].
Suddenly, deforestation leads to a loss of biodiversity due to the destruction of many
natural habitats [60]. The different prospective scenarios designed here take into account
the different socio-economic activities developed in the study environment.

In general, forest dynamics are regressive although secondary forests are increasing.
The trend scenario (BAU) suggests an alarming deforestation in the next four decades,
which makes it possible to verify the fourth hypothesis. In this BAU scenario, both non-
forests and secondary forests have increased. Indeed, this increase could be explained by
the increase in population and therefore the need for food and housing. In compensation
for this strong demand for land, there is a reduction in the area of old-growth forests. These
results are corroborated by those of Samie et al. [61] obtained in Punjab (Pakistan).

The catastrophic scenario (REG) predicts that natural plant formations will regress in
favor of anthropogenic ones. The sustainable environmental management (SEM), which
combines both the preservation of plant cover with agricultural activities, empowers
the state in its role of controlling deforestation and subsidizing domestic gas to replace
fuelwood. This is similar to the densification scenario developed by Lajoie and Hagen-
Zanker [62] which encourages the preservation of forests and limits urban sprawl in
Reunion Island by 2031.

The validation of the model constitutes a first step in the prospective modeling of
forests by 2061. The prospective model designed presents conclusive results and seems to be
able to better take into account the evolution trends, the latter, by its unsupervised character.

The prediction model developed in this study to estimate the quantities of land cover
changes produced values close to reality. In fact, it confirms, on the whole, the trends in
land use. Nevertheless, it presented difficulties in predicting the changes that took place
between 2003 and 2014. This is linked to the high observed and simulated constancy which
was 88% at the landscape scale. This means that our analysis, both at the landscape level
and at the level of land cover classes, highlights interesting results but which should be
qualified. Moreover, there are fewer false alarms than failures, indicating that the simulated
change is less than the baseline change. The quantity component does not indicate whether
the false alarms are less than the misses or vice versa. The quantity component is about the
same size as the allocation component. If our false alarms are less than your errors, it may
be because the rate of change during the calibration time interval is slower than the rate of
change during the validation time interval.

Overall, the observation of errors reveals that they are localized near the non-forests
observed. The limitation of the model lies mainly in the fact that there are other variables
that may explain the changes in land cover and use. These are, for example, political
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and institutional factors such as poverty, unemployment, conflicts and the forest code,
demographic factors such as migration and population distribution, cultural factors (house-
hold consumption) and economic factors (cost of labor and capital). The addition of these
additional variables was limited by their non-quantifiable nature and their unavailability
in digital format [19,27,55,63]. In addition to the variables used.

5. Conclusions

This article aimed to analyze deforestation in the Ituri-Epulu-Aru landscape. This
article provides valuable information on deforestation and forest degradation patterns. The
results obtained confirm the trend towards deforestation. Although the landscape has seen
a slight increase in the area of secondary forests, that of old-growth forests has declined
significantly. Taken as a whole, forests are shrinking as a result of the unsustainable land
use pattern characterized by shifting slash-and-burn agriculture with increasingly shorter
fallows. The great concern lies in maintaining priority habitats for the biodiversity of this
landscape. Our model predicts an increase in secondary forests over the entire landscape
studied. This increase is not good news; indeed, it is indicative of a strong deterioration
due, in particular, to subsistence activities.

Taking into account the results obtained, we propose that the landscape management
consortium initiates local environmental and social management plans around hot zones
of deforestation, in particular around Mambasa and Walese-Vonkutu. Land use should
favor the restoration of severely degraded landscapes while highlighting sustainable devel-
opment approaches (agro-ecology, renewable energies, etc.) and biodiversity conservation
(particularly in sensitive areas). Raising awareness and improving the agrarian system
through agroforestry techniques (particularly agro-forests, which are particularly suited to
the region) must be at the center of strategies for the creation and development of village
secondary forests, a pledge of the sustainable management of natural resources from which
the populations will be able to obtain forest products for their usual needs.

It is also recommended that future analyzes assess the influence of this deforestation
on the climate by quantifying the associated emissions. It would be interesting to say
the impact of this loss of forests on the well-being of neighboring populations in order to
further inform policy choices.
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Abstract: Land is a natural resource that humans have utilized for life and various activities. Land
use/land cover change (LULCC) has been of great concern to many countries over the years. Some
of the main reasons behind LULCC are rapid population growth, migration, and the conversion of
rural to urban areas. LULC has a considerable impact on the land-atmosphere/climate interactions.
Over the past two decades, numerous studies conducted in LULC have investigated various areas of
the field of LULC. However, the assemblage of information is missing for some aspects. Therefore, to
provide coherent guidance, a literature review to scrutinize and evaluate many studies in particular
topical areas is employed. This research study collected approximately four hundred research articles
and investigated five (5) areas of interest, including (1) LULC definitions; (2) classification systems
used to classify LULC globally; (3) direct and indirect changes of meta-studies associated with
LULC; (4) challenges associated with LULC; and (5) LULC knowledge gaps. The synthesis revealed
that LULC definitions carried vital terms, and classification systems for LULC are at the national,
regional, and global scales. Most meta-studies for LULC were in the categories of direct and indirect
land changes. Additionally, the analysis showed significant areas of LULC challenges were data
consistency and quality. The knowledge gaps highlighted a fall in the categories of ecosystem services,
forestry, and data/image modeling in LULC. Core findings exhibit common patterns, discrepancies,
and relationships from the multiple studies. While literature review as a tool showed similarities
among various research studies, our results recommend researchers endeavor to perform further
synthesis in the field of LULC to promote our overall understanding, since research investigations
will continue in LULC.

Keywords: synthesis of land use/land cover definitions; meta-analysis studies in land use/land
cover; challenges and knowledge gaps in land use/land cover assessments; literature review

1. Introduction

The land is the earth’s terrestrial surface (immediately above or below the surface)
that is delineable and with attributes [1] and is considered a nexus for environmental
challenges [2]. Its characterized by land objects (distinguishing properties) and land key el-
ements [1]. Anandhi et al. (2020) provided a narrow and broad definition of land resources
more recently [3]. They broadly defined a land resource to include multiple components
such as ecological resources of climate, water, soil, landforms, flora, and fauna, and all
the socio-economic systems that interact with agriculture, forestry, and other land uses
within some system boundary. Knowledge of land use and land cover is essential for
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(1) understanding land development, loss and degradation [4]; (2) food and energy se-
curity for the growing population [5]; (3) simulating water and carbon cycles, ecosystem
dynamics, and climate change inland surface models [6]; (4) equalizing tax assessment in
many states [4]; (5) assessing associated land use related environmental effects and impact
on provisioning of ecosystem services (e.g., eutrophication, pollution, biodiversity loss
or climate effects) [5]; (6) land management consideration, which account for land cover
modifications that influence approximately 71–76% of free range land under land cover
conversions [7,8]; (7) change detection analysis (e.g., location where the change occurs, the
type of change, and how the change is) [9]; (8) understanding and assessing the effects of
landscape changes on the atmosphere, climate and sea level [10,11]; (9) considering the
changes of land dynamics, how habitats and biodiversity are impacted [12,13]; (10) use
of monitoring tools in policy change, landscape monitoring, and natural resource man-
agement within the environment [14]. These contributed to the observation, researching,
planning, and implementation of policies that will strike a balance between managing
resources on the land, such as agriculture, forestry, and building construction that alters
the land surfaces while protecting the environment (ecosystems and wildlife habitat) [15].
(11) Administration of a variety of land conservation programs. The USDA 2019 Economic
Research Service report identified the principal need for a better understanding of the
drivers that will help with strategic planning and program design. This would considerably
improve land conservation programs resulting in billions of dollar savings. Additionally,
the United Nations Convention to combat desertification targets land degradation neutral-
ity (LDN), addressing sustainable development goals to strengthen national capacity and
quantitatively assess land degradation [16].

Several literature reviews have published investigations in the field of LULC. This
study has summarized the review studies since the year 2000. Over the decades, the
diverse research literature has defined “Land-use” and “Land-cover” in various ways.
Depending on the specific area of interest, they have further broken down each region
separately to clarify meaning. Land-use and land-cover can carry separate definitions,
where land-use relates to what purpose the land is utilized, e.g., agricultural or recreational
use. In contrast, land-cover states specific landscape patterns and characteristics [17]. While
the terminologies for LULC may be used interchangeably [18,19], the concept remains
the same for any particular region. It focuses on man’s utilization in time and space of
the various physical, chemical, and cultural factors of the land [20]. A synthesis of LULC
definitions fills an apparent gap in the existing literature.

Land-use and land-cover are key physical elements that observe the Earth’s surface
and answer basic questions: What is this (land-cover)? What is it for (land-use)? [21].
classification systems are required to differentiate between land-use and land-cover. These
systems provide the essential functions of tool structuring for classification, naming, and
identifying objects on the earth [21]. Classification systems have incorporated mapping and
spatial data as an essential function for analysis, and challenges have arrived with these
classification system’s assessment of land observations. “Continuity in observation” for
both fine and coarse resolution satellite data along with in-situ information is an essential
issue to addressed [22]. Challenges in LULC have given rise to associated knowledge
gaps in data collection, image sampling, naming rules, overlap, and the inclusion of new
objects [21]. Finally, a chart summarizes the knowledge gained in this study that will be
useful to potential stakeholders working in the field of land use and land cover. Land
use and land cover are important aspects of land resources. The general goal of this
study is to review land use and land cover literature. Specific objectives are to summarize
current knowledge in their definitions, classification systems, meta-studies, challenges, and
knowledge gaps while building on past reviews in the field. Finally, this study seeks to
systematically interpret and summarize that knowledge for stakeholders who work in land
use and land cover.

A literature review was the methodology followed out in this study. It is a procedure
used by investigators or researchers to compare the results from various studies. It finds
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common patterns, accomplishes synthesis, finds discrepancies or relationships using multi-
ple studies [23,24]. This methodology will focus on five areas of interest related to LULC
from various articles to give a clear and concise understanding of LULC. The five (5) areas
of research interest for this paper are as follows:

1. Land use/land cover definitions and how the various authors define them.
2. The use of land use/land cover classification systems and how they are used by

countries, regionally and on a global scale.
3. Land use/land cover meta-analysis studies in the areas of direct and indirect LULC,

as well as data and methods of change.
4. Associated challenges correlated to land use/land cover changes.
5. Knowledge gaps and needs associated with land use/land cover change.

2. Methodology

This research project downloaded three hundred and eighty-nine (389) research arti-
cles, and one hundred and forty-six (146) were used to present research findings in this
study. This research used a systematic meta-analysis framework adopted from Mengist
et al. (2020) [25]. This framework takes into consideration protocol (P), search (S), appraisal
(A), synthesis (S), analysis (A), and report (R). The methodology used for this research
is the PSALSAR framework. Research articles for this study were taken from the year
2000 to 2019 and obtained through search engines accessed during the period 10 January
2020–30 April 2021: Science Direct (https://www.sciencedirect.com/) and Google Scholar
(https://scholar.google.com/). There was a specific protocol used for the collection of pub-
lished articles for the research objectives. According to the aim of this study, articles were
downloaded and compiled on the keywords for each research objective. Keywords used in
the “search” aspect of the framework are as follows: (1). Land; (2) Land-use/Land-cover;
(3) Land classification systems; (4) Land-use/land-cover challenges; (5) Knowledge gaps
and needs associated with land-use/land-cover.

These terms were used in the extensive search, appraisal, synthesis, and analysis based
on the research questions: (1) How do various authors define land-use and land-cover?;
(2) Land use/land cover classification systems used by countries, regionally, and on a global
scale; (3) Meta-analysis studies of various LULC investigations for direct and indirect im-
pacts on land use; (4) The associated challenges with LULC; (5) Identification of different
LULC knowledge gap areas. The methodology presents a step-by-step process used in
the synthesizing of LULC: (1) Definitions; (2) Classification systems used worldwide;
(3) Meta-studies of LULC; (4) Challenges related to LULC; (5) Knowledge gaps associated
with LULC. This systemic literature review summarizes information, ideas, explanations,
and various methods from secondary data (published research articles). This protocol in
Table 1 describes the process of acquiring papers to report actual findings. The method-
ological steps are outlined accordingly and broken down for each research objective.

Table 1. A systematic step by step process to acquire research articles for each objective.

Research Source Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

1. Google Scholar
2. Science Direct

Research articles
were downloaded

based on scope
and keywords.

The articles were
selected for

specific
objectives.

The articles were
appraised for a

specific objective.

Specific
information was

used from the
appraised articles.

Tables and figures
represent research

findings.

Result findings
are reported and

discussed.

2.1. The Steps Used According to the PSALSAR Framework for Collecting and Synthesizing Land
Use/Land Cover Definitions for This Literature Review

1. The defined scope and terms “land use and land cover definitions” was used as the
keywords as part of the search strategy.

2. A total of thirty-five (35) articles on “land use and land cover definitions” were
downloaded based on the terms.
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3. “Backward and forward snowball” sampling for a further thirteen (13) research
articles based on the terms “land use/land cover definitions”.

4. Thirty (30) articles for “land use and land cover definitions” were selected and ap-
praised for information.

5. The definitions were synthesized and placed into a table template, separated into two
categories: land use and land cover.

6. The definitions were divided by regions where the specific authors did research.

2.2. The Steps Used According to the PSALSAR Framework for Collecting and Synthesizing Land
Use/Land Cover Classification System Used for This Literature Review Worldwide

1. The defined scope and terms “land use and land cover classification systems” was
used as the keywords as part of the search strategy.

2. A total of two hundred and thirty-three (233) articles on “land use/land cover classifi-
cation systems” were downloaded for information.

3. One hundred and seventy-one (171) articles on “land use/land cover classification
systems” were selected based on their relevance.

4. Sixty-two (62) articles were reviewed and appraised for “land use/land cover classifi-
cation systems” information based on classification systems.

5. Twelve (12) articles were synthesized and placed into a table template for “land
use/land cover classification systems”.

6. The table contains three categories (national, regional, and global) and shows classifi-
cation systems used by various countries.

2.3. The Steps Used According to the PSALSAR Framework for Collecting and Synthesizing Land
Use/Land Cover Meta-Analysis Studies for (1) Direct Changes in LULC; (2) Indirect Changes in
LULC and; (3) Meta-Studies of Data/Methods

1. The defined scope and terms “land use and land cover meta-analysis” was used as
the keywords for the search strategy in the search engines.

2. A total of fifty-five (55) articles were downloaded for information on “land use/land
cover meta-analysis”.

3. To conduct the “land use/land cover meta-analysis”, forty-eight (48) articles were
selected and appraised.

4. Three categories: Direct, indirect, and data/methods associated with “land use/land
cover meta-analysis” were used to present the papers in figures.

2.4. The Steps Used According to the PSALSAR Framework in Synthesizing Associated
Challenges Correlated to Land Use/Land Cover Changes

1. The defined scope and terms “land use and land cover challenges” was used as the
keywords as part of the search strategy.

2. A total of thirty-five (35) articles were downloaded on “land use/land cover chal-
lenges” for information.

3. Twenty-nine (29) papers were selected and appraised for information related to “land
use/land cover challenges”.

4. Two categories: Data quality and data consistency on “land use/land cover chal-
lenges”, were used for the paper and presented in a table.

2.5. The Steps Used According to the PSALSAR Framework in Synthesizing Knowledge Gaps and
Needs Associated with Land Use/Land Cover Change

1. The defined scope and terms “land use/land cover knowledge gaps and needs” were
used for land use/land cover,

2. A total of thirty-one (31) articles were downloaded on “land use/land cover knowl-
edge gaps and needs” for information,

3. Twenty-seven (27) articles were selected and appraised for information “land use/land
cover knowledge gaps and needs”,
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4. “Land use/land cover knowledge gaps and needs” were identified and placed into
four categories related to LULC, namely ecosystem services, forestry, data, and mod-
eling.

3. Results
3.1. Land Use/Land Cover Definitions

The terms “land use” and “land cover” are widely used. Therefore, several definitions
are utilized by authors to describe them. This study attempts to analyze the purpose of
land-use and land-cover by highlighting the similarities and differences in the diverse
descriptions used to explain the terms. The literature review presented various definitions
for the terms “land use” and “land cover” from appraised research articles (Table 2). Finally,
the “definitions” are illustrated and interpreted in Figure 1 with a paragraph description
for potential stakeholders (Figure 1).

Figure 1. Showing simple and broad definitions of LULC developed and interpreted in this study.

Studies assume these concepts (land use and land cover) to be similar and interchange-
able in the literature. Moreover, other concepts regarding land characteristics are defined
based on species land class [10]. Other researchers consider them as different concepts [8,26].
The review of thirty (30) definitions revealed variations in the definition/description of
land use and land cover (Figure 1). These definitions from different regions worldwide
(e.g., North America, European nations, Africa, and Asian countries) showed how the
meaning of LULC has similarities based on various authors in different regions worldwide.
While exploring the concept of land use, the simplest definition observed coincides with its
semantic meaning “What this land is used for?”. However, a more complex description
can be regarded with the following components:

1. Most of the definitions have the word “use” while describing the term. However,
Anderson et al. (1976) defined land use as “Man’s activities on land which are directly
related to the land” [4], while Sreedhar et al. (2016) describe it as “Human activity or
economic functions associated with a specific geography” [20]. These definitions do
not have the term “use”.

2. Many interpretations focus on who is using the land. The majority of the studies
have a human component. Man, human, anthropogenic, land managers are used
to describe this component [27]. Other definitions that highlight habitats or species
using the land have been described [28,29].

3. Definitions often include the activities or functions related to the use of land. Ad-
ditionally, terms such as arrangements and inputs have been used in describing
this component. Further, the employment of land is used in descriptions by social
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scientists [10]. In some cases, this component precisely defines the purpose of these
activities, such as economic, social, and physical reasons.

4. Definitions can describe the effect of these activities. Additionally, beneficial or
harmful impacts of the changes in the land are included in these interpretations.

5. A few of the definitions have a space component in them. Geographic scales are the
terms associated with this component [20,30].

6. A few of the definitions have a time component in them. Terms such as historical are
associated with this component [30].

Table 2. Definitions for “Land use” and “Land cover” from various articles.

S.N. Land Use Land Cover Country Citation

1 Man’s activities on land that are directly related to the
ground.

The vegetational and artificial constructions covering
the land surface. USA [4]

2 Land use denotes the human employment of the land and is
primarily studied by social scientists.

Land cover denotes the physical and biotic character of
the land surface and is studied mainly by natural

scientists.
USA [10]

3

Land cover, which we define as ‘the observed
biophysical cover of the earth’s surface’ is an expression
of human activities and, as such, changes with changes

in land use and management.

USA [11]

4 Land use refers to the purposes for which humans exploit
the land cover.

The term land cover refers to the attributes of a part of
the Earth’s land surface and immediate subsurface,

including biota, soil, topography, surface and
groundwater, and human structures.

Belgium [12]

5 Land-use areas refer to what this land is used for, such as
commercial areas, industrial areas, or residential areas.

Land-cover materials refer to what is actually on the
land, such as grass, asphalt, or soil. USA [31]

6
Land use is characterized by the arrangements, activities,

and inputs people undertake in a certain land cover type to
produce, change or maintain it.

Land cover is the observed (bio) physical cover on the
earth’s surface. Rome [32]

7
Land use deals with the socio-economic inputs to land and,
thus, describes an activity with an input, a process, and an

output.

Land cover is the observed (bio) physical cover on the
Earth’s surface. Scotland [22]

8

Natural scientists define land use in terms of syndromes of
human activities such as agriculture, forestry and building

construction that alter land surface processes including
biogeochemistry, hydrology, and biodiversity.

Land cover refers to the physical and biological cover
over the land’s surface, including water, vegetation,

bare soil, and artificial structures.
Brazil [15]

9 Land use is related to important changes in species
composition on and around the used area. United Kingdom [29]

10 Land use is referred to as man’s activities and the various
uses which are carried on Land.

Land cover is referred to as natural vegetation, water
bodies, rock/soil, artificial cover, and others resulting

due to land transformation.
India [30]

11 Land use is the manner in which human beings employ the
land and its resources.

Land cover describes the physical state of the land
surface. Malaysia [26]

12 Land use is defined as the way or manner in which the land
is used or occupied by humans.

Land cover refers to the observed biotic and abiotic
assemblage of the earth’s surface and immediate

subsurface (Meyer and Turner, 1992). *
USA [33]

13 Land use includes the human activities and management
practices for which land is used.

Land cover includes the status of vegetation, bare soil,
developed structures (for example, building, roads, and

other infrastructure), and water bodies, including
wetlands.

Kenya [34]

14 Land use, in contrast, refers to the purposes for which
humans exploit the land cover.

Land cover addresses the layer of soils and biomass,
including natural vegetation, crops, and human

structures that cover the land surface.
Netherlands [13]

15

Land use corresponds to the description of the former areas
in terms of their socio-economic purpose (the function they
serve): areas used for residential, industrial, or commercial

purposes, for farming or forestry, for recreational or
conservation purposes, etc.

Land cover corresponds to a physical description of
Earth, leading to a simple definition: the observed

physical cover of Earth’s surface.
USA [21]

16 Land use is characterized by anthropogenic activities to
modify, manage and use certain types of land cover.

Land cover describes the physical cover of the Earth’s
surface, including vegetation, non-vegetation, and

man-made features.
Germany [35]

17 Forest land use is a function of the social and economic
purposes for which land is managed.

Forest land cover is a human definition of the biological
cover observed on the land (Watson et al., 2000). * USA [36]
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Table 2. Cont.

S.N. Land Use Land Cover Country Citation

18
Land use normally refers to the arrangements, activities,
and inputs people engage in a certain land cover type to

produce, change or maintain it (Liang, 2008). *

Land cover is defined as the observed biophysical state
of the earth’s surface and is largely described by the

presence or absence of various vegetation types
(Anderson, 2005). *

Germany [37]

19

Land use is determined by environmental factors such as
soil characteristics, climate, topography, vegetation, basic

human forces that motivate production, and its responses to
environmental changes. (Dinakar S., 2005; Dinakar and

Basavarajappa., 2005). *

India [38]

20

Land use denotes the approach in which land has been used
by humans for economic activities. (Mengistu and Salami,
2007; Reis, 2008; Forkuo and Frimpong, 2012; Olokeoguna

et al., 2014). *

“In common, land cover is defined as the perceived
(bio)-physical cover on the Earth’s surface which may

include vegetation, man-made features, bare rock, bare
soil, and inland water surfaces, etc.”

India [39]

21
“In general, the term “land use” refers to the human activity

or economical functions associated with a specific
geography.”

Land cover as a type of natural features present on the
surface of the earth. (Lillesand and Kiefer, 2000). * India [20]

22

Land use is more complex. On the one hand, it can be
equally approached by natural scientists by analysing the

“syndromes of human activities” in the context of
biodiversity, hydrology, or biochemistry (Ellis, 2013). *

Land cover describes the directly observable
bio-/physical overlay of the Earth’s surface (Fisher

et al., 2005; Verheye, 2009). *
Germany [1]

23
Land-use refers to the way in which humans and their

habitat have used land, usually with accent on the functional
role of land for economic activities (Kumar et al., 2013). *

Land cover refers to the physical characteristics of
earth’s surface, captured in the distribution of

vegetation, water, soil and other physical features of the
land, including those created solely by human activities,

e.g., settlements (Kumar et al., 2013). *

India [28]

24
Land use can be broadly defined as the manner in which the

observed biophysical cover is actually used by humans
(Cihlar and Jansen, 2001). *

Land cover can be broadly defined as the manner in
which the observed biophysical cover is actually used

by humans (Di Gregorio, 2005). *
China [40]

25
Land use is commonly defined as a series of operations on
land, carried out by humans, with the intention to obtain

products and benefits through using land resources.

Land cover is commonly defined as the vegetation
(natural or planted) or man-made constructions

(buildings, etc.) which occur on the earth’s surface.
Water, ice, bare rock, sand, and similar surfaces also

count as land cover.

Ethiopia [8]

26
Land use describes the social, economic, and cultural utility

of the land (Turner 1997) and is known to alter how
ecosystems function (DeFries, Foley, and Asner 2004). *

Land cover informs the functional relationship between
terrain, climate, and soils, providing biophysical

insights into the environment and drivers of change.
Canada [41]

27

land use refers to the conversion or transformation of the
land cover into the desired human purposes which are

associated with that cover, e.g., cropping, conservation, or
settlement.

The formation of a given land cover results complex
processes and can be considered as the biophysical state

of the earth’s surface and immediate subsurface.
Ethiopia [42]

28

Land cover is a biophysical indicator that refers to both
the observed biotic and abiotic assemblage of Earth’s
surface, including the vegetation and anthropogenic
structures covering the land (Hansen and Loveland

2012; Meyer and Turner 1992). *

[43]

29 Land use documents how people are using the land for
development, conservation, or mixed uses (NOAA, 2015). *

land cover refers to the physical land type, such as how
much of a region is covered by forests, impervious

surfaces, agricultural lands, wetlands, and open water
(NOAA, 2015). *

Bangladesh [44]

30

The events that take place in the land represent the current
use of the properties such as built-up institutions, shopping

centers, parks, and reservoirs are described as land use
categories (Fonji and Taff 2014). *

Natural and biological landscapes such as forests,
marshlands, grasslands, water lands, and urbanized

and built areas denote the land cover.
Germany [45]

All definitions are direct quotes from research articles. * Multiple authors have similar definitions.

These components in the complex definition establish direct links between land cover
and the people’s action in their environment on a space and time scale.

While exploring the land cover definitions, most descriptions describe the land surface
and immediate sub-surface properties and characteristics. The definitions vary with
the number and type of properties and characteristics used in the interpretations. They
include the physical, biological, morphological, and topographical cover of land in terms
of vegetation, biota, soil, topography, water, structures, etc., which can be anthropogenic or
natural. A simple definition of land cover can be its semantic meaning “What’s this land
cover”. A more complex description can have more specific components.
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3.2. Land Use/Land Cover Classification System Used Worldwide
3.2.1. Classification Systems

Over the years, the need for structuring information systems on LULC has devel-
oped into “classification systems” that are abstract representations of the situation in the
field using well-defined diagnostic criteria. Earlier stages it was defined by Sokal in 1984
as: “the ordering or arrangement of objects into groups or sets based on their relation-
ships [46]”. Jansen and Gregorio (2002) also described this coordination of objects as: “the
systematic framework with the names of the classes and the criteria used to distinguish
them, and the relation between classes” [9]. Understanding LULC classification systems
have caused researchers to investigate further how they work, and their definitions have
broadened. According to Duhamel (2012), classification systems have three main functions
of structuring information, facilitating communication and exchange among users of these
systems [21]. These are (1) classification (assignment of all objects in a hierarchical series);
(2) nomenclature (naming and describing the groups of objects); and (3) identification
(allowing to assigning the membership status of individual objects in the classification) [21].
For classification systems to work efficiently, there is a need for land cover maps. Land
cover maps are the foundation for accurate extraction of information from land covers to
remote sensing modeling [6]. A literature review has shown various studies that provided
the accuracies and a comparison of different LULC classification systems [47]. There are
several classification systems examined in this study, and they are categorized based on
their use as national, regional, and global systems (Table 3).

Table 3. Classification Systems used at National, Regional and Global Scales.

Category Classification System Year Scale Location Citation

National

1. National Land Cover Data
Classification System 1992; 2006; 2011

1:5000–1:10,000 U.S.A [48,49]
2. US National Vegetation

Classification Standard 1997

National Forest Inventory Land Cover
Classification Scheme 1999 1:5000–1:10,000 Canada [41]

National Institute of Statistics,
Geography and Informatics 1993; 2000 1:25,000 Mexico [50]

National Land Use Database (NLUD) 2001 1:100,000 United Kingdom [51]

Sistema de Información de Ocupación del Suelo
en España (SIOSE) 2000 1:25 000 Spain [51,52]

National Land Survey Classification
System 1984; 2007 1:100,000–1:125,000 China [53]

NRSA LULC Classification System 2007 1:250,000 India [30]

South African Standard Land
Cover Classification System 1996 1:100,000 South Africa [49]

The MapBiomas LULC Classification Scheme 2020 1:125,000 Brazil [54]

ALUM Classification System 2005 1:100,000–1:125,000 Australia [51]

New Zealand Land use Class. 1984 1:100,000–1:125,000 New Zealand [51]

Regional

CORINE/Land Cover2006 1985–2018 1:100,000–1:125,000 Europe [55]

AFRICOVER Land Cover
Classification System 1995–2002 1:100,000–1:125,000 Africa [11]

AARS Land Cover
Classification 1999 1:100,000–1:125,000 Asia [49]

North American Land Change Monitoring
System 2005 1:100,000–1:125,000 North America [49]

Global

Land Cover Classification System (FAO) 1996 1:100,000–1:125,000 FAO [11]

USGS Land Use/Land Cover Classification
Systems (National) 1972/1976 1:100,000–1:125,000 USGS [4,49]

International Geosphere-Biosphere Programme-
Data and Information System 1996 1:100,000–1:125,000 IGBP [49]
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3.2.2. National Classification System

Classification systems at the national level assist policymakers, leading to the sustain-
able development of land resources [56]. National classification systems use land cover
maps from remote sensing data to model, monitor, and understand landscape changes [6].
Table 3 shows how some countries have specific national classification systems for LULC
at lower spatial scales. These classification systems describe the structure and relationship
of various land objects [57]. To understand this process, land cover products that aggregate
maps and multiple datasets are used for different land cover projects. For example, tech-
nological advances have used remote sensing. Wulder et al. (2018) showed “Land Cover
2.0” to be a great tool that emerged in that it enabled free and open access to data; it is high
performing, accurate, and rapidly developed data processing and analysis capabilities [41].
This system is user-friendly and efficient in generating land object data for classification
systems, and it’s used widely for various LULC model projects.

On the national scale, many countries have developed classification systems. Table 3
shows countries with LULC classification systems for the identification of land cover
objects. Notable examples of the national classification system are found in the North
American region, which has employed consecutive land cover classification data for the
past decade. The National Land Cover Database (NLCD) contains classifications for the
United States for 1992, 2001, 2006, 2011, and 2016 [48,58]. There are many different sources
of information on existing land use and land cover and the various changes occurring
over time in the United States of America, including the U.S. Geological Survey (USGS)
Land Cover Trends (LCT), National Land Cover Database (NLCD), North American Forest
Dynamics (NAFD), Monitoring Trends in Burn Severity (MTBS), Protected Areas Database
(PADUS), and North American Forest Age [59].

While Canada has its land cover classification system (National Forest Inventory Land
Cover Classification Scheme), most land classifications use the NLCD. While countries like
Mexico have the Instituto Nacional de Estadística y Geografía (INEGI) Uso del Suelo y
Vegetación land cover product (INEGI, 2014) contains consistent classifications over Mexico
for years 1985, 1993, 2002, 2007, and 2011 [59].

Table 3 shows national classification systems used by countries with significant land
development and changing landscapes pushed by population density. The synthesis
indicates that various literature resources have identified these different classification
systems at the national level, their scale of use, and year of development. Due to the
small-scale ranges, these systems update readily with changing land covers by human
activities and are utilized locally. The use of accurate land cover maps identifies land
classes and objects, classifying at the sub-national scales, division, district, sub-district,
county, city, and municipality levels [60]. While classification at the local level is for the
observation of land objects, the result is for advancement and documentation of changing
land covers. The literature review has shown that many researchers use remotely-sensed
information for land cover classification. The typical practice involves using raw numerical
data or calibrated reflectance from other land cover studies [61]. This information from
national land cover classification (detected land classes and objects) is adapted for regional
and global classifications.

3.2.3. Regional Classification Systems

Regional classification systems are sometimes known as continental classification
systems, and they are used at large scales (from 1:250,000 to 1:100,000) compared to
those used at national levels [62]. As shown in Table 3, they would periodically involve
multiple countries or overlapping landscapes, depending on project type. Large projects
employ continental classification systems. For example, while the services of other LULC
classification systems are used locally, the CORINE (Coordination of Information on the
Environment) classification system is used as a system to classify significant areas in
Europe [49]. Eurostat was developed at the early stages in the European Union as a LULC
statistical system [63]. There has been significant land development through decision-
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making for most European countries. The AFRICOVER Land Cover Classification System
(LCCS) developed by the Food and Agricultural Organization (FAO), classified twenty-one
African countries [49]. There is also the AARS land cover classification that develops land
products for Asia [64]. Similarly, the North American Land Change Monitoring System
covers the North American region, including Canada, the United States, and Mexico. This
system provided continental information and met the need for country-specific monitoring
programs with improved land cover maps for accurate databases [65].

Regional land classification systems are employed for continental landscape monitor-
ing. Regions, such as North and South America, Asia, Africa, and Europe, did initial work
for general land classification. However, with multiple accurate land products, land maps,
and numerous land features, objects, and legends, more countries have developed a local-
ized classification system for land objects for decision-making related to land management,
monitoring, and ecosystem preservation. The key to many regional classification systems
is land-cover products. While many land products may not accurately update changing
land covers [66], these land products are used at the local and regional levels for classifying
and decision making. Numerous LULC methods have been used at the local and regional
levels to develop and amend various landscape policies, safeguarding ecosystems and
biodiversity [67]. These regional classification systems update land characteristics and are
also pivotal in regional decision-making from these landscape surveys.

3.2.4. Global Classification System

Global LULC classification systems have been around since the 1980s. As shown in
Table 3, international organizations developed such systems for use worldwide. These
include The Food and Agricultural Organization (FAO), which created the Land Cover
Classification System (LCCS); The CORINE Land Cover (CLC) of the European Union
and classification system designed by the International Geosphere-Biosphere Programme
(IGBP) [1]. The MODIS Land Cover, GlobCover, or Global Land Cover [1], are examples.
Others include UMD land-cover product, Globeland-30, Corine-2012, GlobeCover-2009,
and Global Historical Land-Cover Change [62,68]. Once these land-cover products are
validated, they provide accurate information and datasets related to land cover classes,
objects, and features for global use in LULC classification systems. Classified land products
lead to enhanced decision-making related to landscape management, monitoring, and
change.

The FAO LCCS, a land-cover classification system, is used regionally and globally [32].
According to Keil (2016), the LCCS is a standardized multi-purpose system usable for any
land cover condition independent of collection method and hierarchy [1]. The LCCS is a
hierarchical classification scheme. Its classification focuses on specific classes, containing
twenty-three (23) exclusive categories, divided into three layers with dimensions for land
use, land cover, and surface hydrology [69]. The LCCS system is widely used as a global
classification system and using various datasets from various sources. However, the Global
Land Cover Network (GLCN) (http://www.fao.org/geonetwork/srv/en/main.home
(accessed on 17 September 2021)) is one of the primary dataset sources used by LCCS
created by the FAO [70]. There are other global land-cover dataset maps used as part
of land classification, and these are as follows: (1) International Geosphere-Biosphere
Project (IGBP), http://www.igbp.net/ (accessed on 17 September 2021); (2) University of
Maryland (UMD) https://geog.umd.edu/research/landingtopic/land-cover-land-use-
change (accessed on 17 September 2021) [71]; (3) Global Land Cover 2000 (GLC2000)
https://ec.europa.eu/jrc/en/scientific-tool/global-land-cover (accessed on 17 September
2021), and (4) Moderate Resolution Imaging Spectroradiometer (MODIS) https://modis.
gsfc.nasa.gov/data/ (accessed on 17 September 2021) [72].

3.3. Synthesis of Meta-Analysis Studies in LULC

Land use and land cover changes have been investigated extensively over the years.
These research studies have been linked to the landscape’s various changes from human
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modification to the earth’s surface. Meta-analysis is a valuable technique that employs a
combination of peer-reviewed studies to determine relationships [73]. Research studies
have used meta-analysis to synthesize studies that show direct impacts on the changes
in LULC. The focus of the analysis is on specific sites and landscapes [47]. Most peer
reviews concentrated on deforestation and reforestation studies [74–76], while some meta-
studies have focused on the indirect effects of LULCC [77–79]. The analysis of such studies
addressed categories of direct and indirect LULCC, then further subcategorized into specific
areas of interest (Figure 2). A further category was added to show meta-studies of data
and method changes in LULCC. The information for these studies was also placed into
a diagram (Figure 3) between the years 2000 and 2020, showing how the meta-analysis
studies have developed over the years. More peer reviews in the area of LULC analyzed by
this method provided qualitative and quantitative results from published research studies.

Figure 2. Diagram showing meta-studies divided based on categories.

3.3.1. Meta-Analysis Related to Direct Changes in LULC (Forest)

Land use has essential impacts on forests, the use of forest products, and changes
in forest cover. These changes appear primarily in the United States but also occur glob-
ally [34]. In the context of LULC forestry and forestry cover, meta-studies look at the
public response concerned with deforestation and the implementation of policies that have
slowed down deforestation of some protected areas [76].

The meta-analysis allows a researcher to test specific hypotheses about the effect of a
treatment by considering research information from various studies in the past in a par-
ticular topical area. This approach and technique are utilized for medical research [80,81].
LULC in forestry is unique and appropriate for meta-analysis studies. While other studies
focus on agents of deforestation, for example, growing population, new settlements, roads,
even topography, and other general factors that affect forest loss [82]. A meta-analysis
is a valuable tool for understanding how LULC changes in forestry are changing [83].
Some case studies looked at the forest and agricultural land change [74], while others
have looked at forest restoration, attributing it to the enhancement of 15–84% of biodiver-
sity and 36–77% of vegetation structure compared to other ecosystems that are showing
signs of degradation [75]. It is also helpful to identify the various services the forest may
provide, specifically the storage of carbon, biodiversity for habitat, disease suppression,
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water filtration, storm mitigation, food, medicines, recreation, timber, and non-timber
products [75].

Figure 3. Diagram showing meta-studies timeline of articles.

The literature review showed meta-analysis studies focused exclusively on specific
services that afforestation has benefited soil [84]. Various studies, including their respective
experiments and statistical software, have shown that water infiltration increased due to
afforestation [81]. Our synthesis revealed similar meta-analysis work by another researcher,
offering a different meta-analytical approach to determine land use and climate effects
on streamflow and infiltration [84]. Some studies focused on land use capacity and its
impacts on soil infiltration [85]. Some others investigated the potential of soil carbon
stock, the effects after reforestation, and the abilities to perform carbon sequestration [86].
Additional studies showed differing results between the carbon sequestration in a natural
forest against a plantation-type forest. The meta-analysis technique showed the differences
based on stand age, stand types, tree species, and origin of the plantation [87]. Some studies
look at various factors that make up a forest, including investigations within watersheds,
focusing on tropical forest services, and comparing hydrological flows between plantation
and natural forests [88].

3.3.2. Meta-Analysis Related to Indirect Changes in LULC (Climate Change)

Various landscape projects utilize land use/land cover meta-analysis, significant
catalysts of soil-carbon changes in recent decades center around land-use changes. A
notable example would be replacing natural forest and vegetation for cropland and urban
areas, leading to soil carbon loss. However, the reverse can lead to soil carbon being
replenished [89,90]. Older meta-analyses focus on forest soil being a sink for Carbon
(C) and Nitrogen (N). Johnson and Curtis (2001) conducted a meta-analysis on various
management techniques and determined the mean response of forest soil C and N [91]. This
method is adaptable for quantitative analysis of studies with multiple experiments for soil
investigations [91]. In contrast, Luo et al. (2006) showed patterns among various studies
due to C and N processes within the soil interaction with plants in response to high carbon
dioxide [92]. Soil N2O and NO emissions and their effects on the level of greenhouse gases
in the atmosphere have been reviewed and synthesized from multiple studies from land-
use changes in tropical and sub-tropical areas [93]. Meta-analysis identified interactions at

156



Land 2021, 10, 994

the soil level to lower some of these emissions into the atmosphere [79]. Synthesizing is
the appropriate approach for studies that seek an understanding of forestry-based projects
and how researchers can select specific topics for a particular research area. Researchers
would have compiled studies on the costs of sequestering carbon in terrestrial ecosystems
by activities within the forests [94]. While another study focused on the forests’ ability to
accumulate carbon, their analysis examines the various experimental techniques used to
determine carbon content among studies, thus drawing rational conclusions [95].

While many land-use change projects are formed after deforestation or in cooperation
with reforestation practices, some land use characteristics such as agriculture have been
responsible for carbon loss from the soil by converting forest and grasslands to arable lands.
This depleted soil carbon and biomass have potentially seen carbon emissions into the
atmosphere from the biosphere due to intensified agricultural activities [96]. Meta-analyses
studies focus on the microbial biomass levels at various land-use sites and their effects
on the ecosystems [97]. Soil provides significant storage for carbon. As such, depleted
soil from agricultural enterprises can remove soil carbon by destroying primary forests,
releasing soil carbon that results in higher CO2 in the atmosphere [98]. These depleted
soil can take atmospheric carbon to replenish what they would have lost [99,100]. There
are numerous strategies to sequester atmospheric carbon into the soil through agricultural
measures. These include reduced tillage intensity, increasing residue inputs from higher
yields, eliminating summer fallows, nutrient and manure management, and restoring
permanent grasslands or forests [100,101].

While replanting forest has been a sure way of carbon sequestration, the meta-analysis
of various studies has shown numerous ways of soil loss. The investigation of soil loss
shows a positive correlation with annual rainfall, plot runoff, and annual runoff coeffi-
cient [102]. This used investigative approaches of the effect at the subcontinental scale
based on various environmental conditions. Land-use changes have significant impacts on
soil degradation. While studies have shown the effects of land-use change through research,
a meta-analysis methodology shows studies on specific areas. Shi et al. (2016) conducted a
global meta-analysis across broad climatic zones using one hundred and thirty-nine (139)
papers that investigated the changes in soil carbon, nitrogen, phosphorus, sulfur, and their
stoichiometry in the soils of planted forest investigation [103]. Other meta-analyses on
carbon stocks and sequestration investigated soil organic carbon in cultivated soils using
cover crops [104]. They quantified soil organic carbon changes accumulation as a response
to the use of cover crops. In comparison, researchers use meta-analysis to investigate the
effects of agroforestry systems on carbon stocks [24]. Another meta-analysis may look at
carbon stock based on land-use changes in a general sense [89]. Meta-analysis can analyze
case studies on historical and future global soil carbon response to land-use change [105].

Land-use change meta-analyses have documented research in the area of soil erosion
studies globally. Some studies meta-analytically investigated the rate of sheet and rill
erosion in Germany [106]. Comparatively, others used meta-analysis to investigate soil in-
filtration rate effects in China from comparisons of various studies from LULC changes [85].
The use of soil erosion studies to understand the rates of erosion from global sites showed
the estimation method for erosion rates and the rationale for improving the practices and
theory on soil erosion studies [107]. Land use meta-analysis studies have been centered
around agriculture, from investigations into an intensification of agriculture and global
changes [78]. Meta-analysis investigations on crop yield and nitrogen dynamics, using
cover crops in fertilizer-intensive cropping systems [108]. This methodology has also
been applied in no-till cultivation operations, focusing on cost and carbon benefits [109].
The impact of agricultural policy reform on land prices shows quantitative analysis as a
focal area [77] and their effects on plant density on a global scale [110], as well as their
concentration of dissolved organic matter impacts as a result of land management [111].
This method has contributed to land-use science and its effects on a global scale. Using
case studies and other literature as exploratory focal points for identifying impacts of land
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use/land cover change on climate change, scientific references of anthropogenic effects on
the biosphere have shifted to a new geological epoch [112].

Meta-analytical approaches have informed other researchers’ use of multiple studies
to observe land-use change, anthropogenic activities, and the impacts on climate change
within a particular region. Zanten et al. (2014) conducted a meta-analysis study to examine
generic preferences of particular landscape attribute across Europe [113]. The assessment
conveyed responses from the general public on their willingness to pay for goods and
services provided by the environment. In contrast, another study used meta-analysis to
investigated land abandonment effects on plants species richness and animal abundance.
The results showed the impacts on the biodiversity of the Mediterranean Basin, specifically
on arable land, pastures, agroforestry systems, and other permanent crops [114]. Another
looked at biodiversity measures under various land covers, assessing different land-use
types [115].

Furthermore, this methodology identified objectives and models adopted in the hydro-
logical response attribute of Mediterranean catchment areas [116]. The use of meta-analysis
to show the various impacts of land-use changes on the environment compares and shows
similarities in specific areas, but it can be used as a guide for multiple researchers, whether
regionally or globally, to synthesize, contrast, and show correlations in specific topical
areas, perform quality checks, combine and aggregate information from various studies,
and then provide estimates of the average magnitudes on particular topics [90].

3.3.3. Meta-Analysis Related to Data and Methods

According to our research findings, meta-analysis is considered a method of analysis
in land-use change [117]. Various research can provide different explanatory interpretations
and for land-use change. Analytical differences analysis is dependent on data use. For
example, one can use spatial units such as pixel images and political units or inform
individual decision-making [118,119]. Remote imaging and maps of land-use changes
have equipped researchers to identify, summarize, develop, and document the use of
various factors of object-based land-cover image classification with the help of meta-
analysis [73]. Their results provided instructions on the use of these classifiers for land
cover mapping, whereas another researcher used meta-analysis to provide systematic
guidance classification process performance, using research literature to inform supervised
per-pixel classification over fifteen years [47]. Meta-analysis has been used to quantify
how researchers used various studies, showing LULCC impacts through hydrological
influxes on discharge, surface runoff, and low flow in the East African Region [120]. Other
researchers have used the meta-analytical approach to research forest cover maps from
various data sets over a long period throughout various studies, observation deforestation
rate and forest cover change through comparison of land cover images [121]. Conducting
meta-analysis at the remote sensing level has been observed over several years to develop
land cover models, to analyze unrealized synergies between land change meta-studies and
the evaluation, framework, and designs of land change models [117]. Additionally, they
navigated data types and relevant research questions for land-use change data, using the
typological synthesis approach.

3.4. Land Use/Land Cover Associated Challenges

Land use and land cover change remain an urgent environmental challenge related
to sustainable management of the earth’s surface [120,122]. Anthropogenic activities on a
global, regional, and local scale have seen significant landscape changes, land degradation,
ecosystem changes, and a shift in the biodiversity of numerous areas that were once forest.
These economic and environmental changes to the landscape have characterized LULC
changes that provide livelihood (e.g., urban settlements and agriculture enterprises) for
persons occupying these land spaces. The last two decades have seen significant encounters
of humans and changing land surfaces, and these changes accelerated due to socioeconomic
and biophysical drivers from anthropogenic activities [123,124]. Generalized knowledge on
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the impacts of local, regional, and global land change continues to be an essential challenge
of land use science [121,125,126]. Some of the leading documented challenges identified in
LULCC are logging, fires, drainage, forest cover change, and other changes to wetlands
that degrade soils in cropland areas. Additionally, alterations in these land’s volume and
beneficial capacity could result in these changes [60,125]. This research investigated LULC
change for two areas using meta-analysis, there are “data quality and data consistency”.
These categories were chosen since they were so familiar in relation to LULC remote
sensing and modeling. Significant challenges determined from research in Table 4 have
been identified based on specific research articles in the literature review. A word cloud is
used in Figure 4 to identify the crucial challenges determined in the research papers, and
they are associated with the challenges in landscape monitoring.

Table 4. Showing significant challenges and recommendations.

Category Major Challenges Highlighted Recommendation Citation

Data Quality

• Incomplete data coverage,
• Various changes in definitions of categories,
• Different methods used by source agencies,
• Various data age,
• Incompatible classification systems.

The correct classification and standardization of
land objects and features. [4]

• The difference in datasets for biogeography of contrasting
regions.

Measure and determine the impacts of land-use
changes on land quality and biogeography. [29,126]

• No concept application at the landscape level,
• Inappropriate data for quantification.

Engaging frameworks and methods with the use of
classification systems to track ecosystem goods and

services
[127]

• Unrecorded and undocumented information. The classification, quantification, and validation of
ecosystem services for past land-use data. [128,129]

• Incorrect data,
• Use of wrong classification system,
• Use of the insufficient resolution.

The use of land cover polygons and valuations in
dollars/hectare/year to show the total value of

ecosystem services.
[130]

• The lack of reliable or comprehensive data,
• There are different levels of resolution and quality of datasets.

Good data pools are needed to analyzes dynamics
between ecosystem services. [131]

• Few data sets are designed to provide very similar atmospheres
over crops and forests.

Test how models capture LULCC impacts on
weather. [132]

• Absent of comprehensive knowledge base for datasets
associated with remote-sensing.

Correct data must be used at the right time for policy
change and decision making (e.g., climate change) [133]

• Difficulty in mapping global land -use,
• The need for local-based data from local-based study areas are

required for producing,
• No accurate LULC datasets.

There are databases worldwide that offer free access
to current and past information on LULC changes

globally.
[40]

Very High Resolution (VHR) images to develop national, regional, or
global maps have proven to be challenging:

• The high cost associated with VHR imagery,
• Their low spatial extent (a few hundreds of km2) (Gibbs et al.,

2007),
• Low availability due to their low temporal resolution and lack of

global coverage (Pangra et al., 2015),
• The variation of radiometric properties among sensors,
• The influence of acquisition conditions (i.e., Sun-scene-sensor

angles) (Anser et al., 2003; Barbier et al., 2011; Bastin et al., 2014;
Ryan et al., 2016),

• Classic atmospheric perturbations (e.g., cloud, fires) (Pangra
et al., 2015).

“Collect Earth” as a free search engine for past and
present LULC change information can be used for

many investigations.It’s readily updated and
accurate with data at multiple scales.

[134]

• Time series data (various image composite for land cover
mapping);

• Movement of algorithms from a research to operational phase
(such as data handling and processing).

Progressive work over the years in technology and
data availability has seen advance/updated

algorithms used for time series data.
[135]
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Table 4. Cont.

Category Major Challenges Highlighted Recommendation Citation

Data
Consistency

• Low accuracy and quality of assessment,
• Challenges obtaining national land cover maps for distinctive

timestamps.
Accurately mapping global land cover maps. [136]

• The challenge of representing decision-making mechanisms in
models to show land change.

Model coupling—focused on representing human
decision-making, the coupling between human and

environmental systems.
[137]

• Inconsistent global maps. Mapping projects use accuracy assessment as a tool
to accept land cover components. [36]

• Discrepancies between maps,
• Different features and maps,
• Comparison between maps from the same source,
• Difference between product features in the same year.

Data consistency is essential when given the
capacity to produce maps that have acquired data

from a single sensor.
[138]

• Comparison of different legend information from various
classification schemes,

• Inconsistencies for land class definitions,
• Errors arising from different methods of data collection,
• Incomplete compilation of remotely-sensed datasets.

Validation efforts are needed to assess precise
accuracy at the regional and global scales for LULC

classification.
[133]

• Large data volume,
• Unavailable data in certain seasons,
• Challenges obtaining cloud-free images,
• Technical difficulties in Landsat satellites,
• Revisiting the cycle of the Landsat model, making it more

difficult to trust.

The Landsat model needs a continued upgrade. [139]

Figure 4. Showing significant challenges associated with Land-use and Land-cover.

3.4.1. Data Quality

The diverse challenges associated with LULCC impact assessment are centered around
data quality and consistency. Some conference presentations have shown a need for land
classification standardization of land feathers [4]. However, some of the challenges are
incomplete data coverage, change in definitions of categories, changes in methods used by
source agencies, varying age of data, and incompatible classification systems by agencies.
Researchers need to measure and determine the impacts of land-use changes on land
quality and biogeography. The life cycle impact assessment (LCIA) is a method developed
to undertake such a task. As such, it has provided accurate data regarding land quality
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changes [29]. However, challenges are present in extricating changes and the quality of
biogeography of contrasting regions. Therefore, additional maps and images should dis-
tinguish other land feathers, such as varying vegetation, soil types, and climates [29,126].
Various studies have shown engaging frameworks and methods using classification sys-
tems to track ecosystem goods and services [43]. At the same time, there is an urgency
to centralize and determine land, ecosystem, biodiversity quality, and climate changes
under one approach, a significant restriction to ecosystem goods and services would be
the application of concepts at the landscape level as a result of inappropriate data for
quantification [127]. Quantifying ecosystem services for past land use, one of the severe
challenges is understanding what occurred in the past related to land use for a particular
area. The information might be known but not documented, characteristics such as land
cover practices or specific resources from the land. The information may be passed on
orally by indigenous dwellers from generation to generation [128,129].

The use of land cover polygons and valuations in dollars/hectare/year shows the
total value of ecosystem services given the land cover type. However, the challenge is that
the data for the particular area must be correct, and using the right classification system at a
suitable resolution is essential [130]. A central challenge in the earth systems and resources
is sustainable land management. There’s a high demand for the supply of food and other
resources for a growing human population. However, land management has potential
negative impacts on the environment and ecosystem globally. Effects are observed in global
climate change, the loss of biodiversity, pollution of soil, water, and the atmosphere [15].
The management of ecosystem services in agricultural landscapes is challenging, specifi-
cally in agro-ecological conditions and topographic areas; thus, ecosystem services must
be assessed by various approaches that provide multi-temporal information at a national
level [131]. The only regions globally that are not directly affected or have evaded large-
scale land alteration with limited LULC changes are Antarctica, boreal/tundra areas in
Siberia, parts of the Amazon, and parts of the Congo [132]. Other regions have been
affected globally. Therefore, LULC change impacts must be made locally, with a literature
review to understand the effects on a regional and global scale [132]. However, there
are some challenges to using Geographic Information System (GIS) data. Researchers
must have a comprehensive knowledge base of the datasets for remote sensing. Correct
data must be used at the right time for policy change and decision-making, especially in
climate change, monitoring deforestation, urban landscape planning, and policy changes
by governmental offices [133].

Various research models have been developed to study LULCC, specifically in urban
land use and ecosystem services. The model InVEST Framework observes the sensitivity
of ecosystem services through spatial resolution from input data [140]. The data models
conceptual approaches of the scale dependence of different ecosystem services, the model
compares spatial patterns and measured future ecosystem services in a particular area [140].
In contrast, other research findings used meta-analysis to quantify LULC change impacts
through hydrological influxes on discharge, surface runoff, and low flow in the East African
Region [120]. While global land use may be difficult to map, data from local-based study
areas are required to produce accurate LULC datasets. There is a need for datasets to
provide information on LULC changes and the human impact [40]. Technological advances
for LULC mapping and remote sensing have seen some of the previous challenges annulled.
There are databases worldwide that offer free access to current and past information on
LULC changes globally. “Collect Earth” has been identified as a free search engine for
past and present LULC change information, developed by the Food and Agriculture
Organization (FAO) [134]. Collect Earth provides satellite imagery of high spatial and
temporal resolution (e.g., Google Earth) and uses archived images with multiple resolutions
to enable land monitoring suitability. The need for accurate and up-to-date data is essential
to understand changes in LULC monitoring. This will alleviate most of the challenges of
understanding continuous differences and help researchers and decision-makers monitor
change, observe trends, and efficiently manage land resources.
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3.4.2. Data Consistency

Progressive work over the years in technology and data availability has seen its
challenges related to data quality. The challenges related to time series data (various
image composite for land cover mapping) and challenges involved in the movement of
algorithms from research to operational phase (such as data handling and processing)
are mostly user-based [135]. There have been various efforts to map global land cover
maps [141]. There are still existing challenges regarding the accuracy and quality of
assessment, and developing countries face challenges in obtaining national land cover
maps for unique timestamps [136].

A major challenge identified in the literature review was representing decision-making
in these models as a mechanism by which land changes. Research has focused on human
decision-making, namely the coupling between human and environmental systems while
answering questions associated with ecological sustainability challenges through model
coupling [137]. Mapping projects use accuracy assessment as a tool to accept land cover
components. However, the challenges associated with global maps related to data quality
are imperative for successful projects [36]. Data consistency is essential when given the
capacity to produce maps that have acquired data from a single sensor [138]. While this is
an advantage, it poses various challenges (e.g., in previous studies, Bontemps and others
compared the GlobCover 2005 and 2009 maps features discrepancies between products).

Various studies have identified land cover classifications with multiple challenges
related to mapping, inconsistent class definitions, descriptions in data collection for land
characteristics, legends, objects, and other errors with various systems [133]. The use
of Landsat data poses some significant challenges, including (1) large data volume in
comparison to coarse spatial resolution data, (2) data inconsistency among changing
seasons, (3) land images are challenging to obtain as a result of the sixteen-day cycle
of Landsat satellites, and (4) there’s a great concern for the Landsat satellites that need
maintenance. Such technical issues can delay land cover data if not addressed within a
timely manner [139]. Another challenge associated with LULC classification systems data
is their ability not to be user-friendly. Some databases have unvalidated data or confusion
among datasets; in other occurrences, the data are not broken down by specific classes or
objects, making it difficult for researchers to understand the best fit for their projects [11].
The challenges described and summarized critical areas of importance in LULCC. While
this meta-analysis focused on secondary data from other research articles, it shows essential
areas of existing challenges, observed gaps, and even trends among similar research topics,
implying that such recognized challenges must be addressed for LULCC.

3.5. Land Use/Land Cover Knowledge Gaps

Land use and land cover have encountered various challenges based on numerous
studies. A literature review can determine many knowledge gaps associated with LULCC.
Multiple studies have identified specific needs for particular research areas within this
discipline to work efficiently. According to Mengist et al. (2020), an accurate meta-analysis
with minimal errors can contribute reliable conclusions for a particular area of interest,
which leads to the decision-making process [25]. The knowledge gaps for this section
separated specific needs into four categories (ecosystem services, forestry, data modeling,
and hydrology). Knowledge gaps identified from the literature review were presented in a
word cloud showed in Figure 5. The more prominent words indicate how often particular
knowledge gaps were highlighted from the synthesis and their importance to land use and
land cover.

3.5.1. Ecosystem Services

Initial examination of LULC impacts on ecosystem services has given rise to the need
for assessments on severe LULCC within various ecological systems. A valuable tool of
assessment identifies the spatiotemporal approach [131]. Ecosystem services would need
internationally accepted land cover classification systems with consistent time-series maps,
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considering their validation and accuracy to identify land characteristics (e.g., distinguish
between cropland, fallow, barren, and wasteland) [142]. While there are various areas of
ecosystem services, researchers recommend intermittent surveying and mapping of these
services provided to monitor their quality, which helps with the overall management and
control of ecosystems [143].

Figure 5. Showing knowledge gaps associated with Land-use and Land-cover.

3.5.2. Forestry

The need in any forestry system fall into either land degradation, deforestation, or
restoration of forest lands. While many forested areas have converted to urban and
agricultural areas, the meta-analysis for this study has focused on areas within a forest
system with identified knowledge gaps in various literature. There is a need for land
use planning and reforestation of barren regions, such as degraded lands, hillsides, and
the expansion of cultivated land for sustainable resource management [42]. Another
knowledge gap has been understanding environmental changes in the forest and predicting
climate-induced changes in mature trees [144]. Some authors have identified specific areas
of interest. For example, Kayet et al. (2016) undertook research on land surface temperature
(LST) and described knowledge gaps related to LST being affected on hilltops, highlighting
the evaluation of impacts along with policy changes [145]. Other researchers have focused
on analyzing LULC classifications systems, specifically on land products such as map
accuracy for these systems to function [36].

3.5.3. Data/Images/Modeling

The meta-analysis also focused on studies in the area of data, image, and modeling.
Our analysis identified studies that stressed the need for research in land cover change,
with a focus on modeling future spatial patterns [146]. Meanwhile, another focused on
spatial data modeling of classification systems, emphasizing areas of need such as accuracy,
changing land monitoring, and current [134]. In contrast, another researcher focused
on validating of data and models for unexplained points in data [147]. While most of
these knowledge gaps are addressed with the multiple studies on LULC data, images,
and modeling, research studies have described the need for user-friendly images with
high resolution for LULC classification. This contributes to decision-making for urban
planners [148]. Another research has focused on land surface climate-change models and
their simulation at different scales [149] and provides information for changing landscapes
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and human impacts [40]. While technological advances have seen data, images, and
modeling improvements, their practical use is encouraged for further advancements. This
helps to optimize model ensembles, compare images of a given area and identify erroneous
output data; validation and accuracy are critical factors for transparent LULC classification
of objects and classes [150]. Satellite images need to be preprocessed and accurate, which
helps with information advancement, accuracy, reliability, and appropriate estimates of
LULCC at the global level [139].

The synthesis identified the following needs related to data, images, and modeling:

1. The general need for:

• Accurate statistical testing;
• Identical land-cover configurations;
• Reduction of model uncertainty;
• Clear experimental protocols [151].

2. Systematic monitoring and management of land use systems [38].
3. Automating image classification processes for accessible data and processing results

in a shorter time [35].
4. The assessment of the performance and sensitivities in LULC classification algo-

rithms [111].
5. Improve accuracy, eliminate uncertainties and discrepancies in the spatio-temporal

changes [60].
6. Consistency and comparability of different land cover maps, understanding their

suitability and limitations for specific applications [152].
7. Detailed datasets for environmental change studies, resource management, climate

modeling, and sustainable development of terrestrial land cover are needed [62].
8. Available data for modeling the advancement and collection of new datasets are

needed [8].

3.5.4. Hydrology

The meta-analysis focused on the effect of LULCC on hydrology, with a specific
interest in groundwater flow and management. The need for further studies of LULCC
assessment impacts on groundwater fluxes is paramount since water management is
essential [120]. Researchers are concerned with accurate references of existing information
related to landscape changes. There is a need for the assessment and harmonization of
information [153]. The measurement of land quality impact indicators by various units to
measure pathways affected is also essential for water assessment [29].

4. Discussion
4.1. Land Use and Land Cover Definition

The extent to which “Land-use and Land-cover” definitions differ among research
articles has changed over the decades. The direct descriptions for each have been used
directly by authors to show differences [8]. There are some uncertainties related to the
understanding of each term for definitive use [51]. Researchers have stated that definitions
can be contingent on the sector based on their description [154]. This research investigation
shows the author’s intention as being simple, clear, and concise, where “Land use” is
defined base on the activities done by human intervention and “Land cover” corresponds
to the physical structures that may occupy the land. This research focused on the synthesis
of research journal articles that defined “Land-use and Land-cover”. Showing similarities
based on keywords used (land use/land cover) and how each research journal interpreted
these terms while synthesizing these definitions from the meta-analysis resulted in a
general description used for each term. The definitions were placed into a table format to
show from researchers (Table 2) and interpreted into a form that researchers can use to
define “land use” and “land cover” based on the attributes each term represents (Figure 1).

This synthesis found various similarities as it relates to multiple articles using “land
use” as part of the definition to define “Land use” and “cover of land” for the description
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of “Land cover”. Limitations related to this literature review identified research articles
collectively defining these terms together, conferring broad base definitions to explain the
terms holistically or in contrast to each other [26,41]. Other reports have shown definitions
to overlap [155], even established that the purpose for each term is not absolute [51]. This
was identified from research findings related to definitions by particular region and research
year. The use of a standard and straightforward explanation for “Land-use and Land-cover”
should always be clear for readers to understand the dynamics of each description. Hence,
the findings from this research propose that definitions for each term should be direct,
suitable, and relevant for clear understanding, separated to show a disparity between each
term and transparent as it relates to their concepts. Inferences such as “use of land” and
“cover of land” will continue to be part of the definitions for both “Land use” and “Land
cover”. Further, researchers will curtail these definitions to suit specific land management
projects types or for decision making.

4.2. Land Use and Land Cover Classification System

The use of “Land-use and Land-cover” classification systems has contributed to
the awareness of land-use/land-cover objects by country, continent, and global scale.
Countless research articles have shown remote sensing of land images and objects (e.g.,
forest, cropland, urban areas), land cover mapping databases, and empirical datasets to
develop classifications for particular regions. “land use and land cover” classification
systems give a spatial analysis of objects for specific landscapes [156], the monitoring
of land change from temporal and spatial scales [157], and clear insight on land cover
dynamics related to land resources and ecosystem services [158]. This research synthesized
articles representing classification systems using the key terms “Land-use and Land-cover”
and “classification system and scheme”. These classification systems were recognized
based on their use by country, regionally, and globally. Yang et al. (2017) have identified a
solid base for our research findings on classification systems used globally [49]. Remote
sensing technology for LULC mapping across a range of spatial scales has guided many
nations to establish land cover mapping and monitoring programs that use moderate
resolution satellite data [43]. These LULC information sources have been vital for various
disciplines (e.g., urban planning, forestry, etc.) and regularly updated for land monitoring.
Remote sensing technological advances have led to a more accurate assessment from
LULC classification systems and model simulations. This aids in improved monitoring,
observation, and analysis of land used and alteration by anthropogenic activities [34].

The literature review identified, collected, evaluated, and review various research
articles that give specific information on each classification system related to (1) the year
established; (2) the country, region, or global use; and (3) the scale of use. The synthesis
provided information on classification systems, with a direct approach to LULC changes,
whether hierarchical or used based on their ease of access, spatial scale, and user-friendly
qualities. It identified the ability for classification systems suited for a country as against
continental use. The synthesis identified key challenges and limitations related to gathering
information for each classification system. Contingent on the region of use, classifications
are either “scheme” or “system”. This is highly dependent on their temporal scale of use,
type of projects, meeting requirements, and bypass limitations [11]. This synthesis showed
similarities of particular classification systems among research articles used in this study.
While many classification systems are associated with their country of origin, the literature
review shows that researchers favor particular ones. Primarily, they are chosen based on
their constant upgrades, accuracy, validation, and fitness of use.

4.3. Land Use and Land Cover Meta-Analysis

This research took an analysis of various “Land-use and Land-cover” meta-studies
as a means to investigate (1) direct changes, (2) indirect changes, (3) data and method
changes of LULC. These meta-studies were identified based on each category and placed
into a tree diagram (Figure 2), further breaking down each to show how each category’s
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meta-studies were synthesized. Meta-studies used meta-analysis to congregate various
data sources, methods, and ideas to advance a missing knowledge base for a particular
study area [119]. This study used a literature review to show the various meta-analysis
studies for LULC. A total of fifty-five (55) articles were downloaded and sorted, forty-eight
(48) were appraised and used to build the analysis tree (Figure 2). A timestamp for the
appraised articles presented in Figure 3 is for the years 2000 to 2019. They were compiled
on their synergistic efforts in LULC studies, their effects on direct and indirect landscape
changes and their affiliation to land use/land cover remote sensing and modeling.

This research showed how various meta-analyses for each category used different
protocols for information collection and synthesis. This research identifies LULC meta-
studies in areas of direct land influence (e.g., forest related and for ecosystem services) and
indirect land influences (e.g., biodiversity and carbon sequestration). While researchers
focused on LULC modeling and dataset imagery [119], this research used narrow criteria
to identify ideal meta-studies for this category. Therefore, there were few meta-studies.
However, it would be advisable to adopt different measures, focusing on future research
objectives related to modeling and remote sensing. The benefits of this analysis will
help in understanding the various complexities for synthesizing meta-studies in LULCC.
A literature review of meta-studies can provide inferences for researchers determining
research journals as “best use” for particular interest categories. This analysis shows
how studies in LULC were more fitted to direct and indirect land use and land cover.
Most studies complied information for decision-making for land management, ecosystem
services, and biodiversity. The next step relates to meta-studies used as a premise to
understand land monitoring for various ecosystems. The information is regularly updated
with more research conducted in these areas internationally and at the local level. Further
synthesis revealed meta-studies that identified necessary action for specific land projects,
leading to proper decision-making and, in some cases, policy modification or changes.

4.4. Land Use and Land Cover Challenges

Research findings have identified several challenges related to “Land-use and Land-
cover”, some were minor, while others were crucial. The literature review identified
significant articles that comprise LULC challenges; the PSALSAR framework character-
ized the challenges into two categories for LULC, namely (1) data quality and (2) data
consistency (Table 4). The focus of this synthesis considered remote sensing and imaging
in LULC. Our investigation identified some keywords associated with data quality and
consistency to develop a word cloud (Figure 4), where significant challenges for each cate-
gory were highlighted and deemed necessary. There were limitations since our synthesis
was category-specific and focused on challenges related to data quality and consistency.
However, these categories identified are significant in the field of LULC [119].

The importance of data value and verification for GIS has increased with the devel-
opment of satellite data for land-cover mapping [159]. As a result, large amounts of data
are required for global land-cover mapping [160]. This research highlighted significant
challenges related to data accuracy and consistency. The analysis, classification, and de-
scription of valid data are essential. Therefore, the focus on data processing, validation,
verification, access, and accuracy are vital to address major challenges in LULC changes.
This information can determine how LULC projects form conclusions and make decisions.
While some of the challenges identified in this study are continuously being addressed, re-
search synthesis describes and determines which challenges are still primary concerns. The
idea is to highlight significant problems and encourage researchers to approach continued
technological advancement in such areas. Comparable findings reported by Verburg et al.
(2011) support that the purpose of LULC challenges is to see them dissolved over time [13].

4.5. Land Use and Land Cover Knowledge Gaps

The combination of Land use/Land cover challenges and knowledge gaps correlates
to each other. While many knowledge gaps associated with remote sensing studies are
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related to LULC [161,162], further LULC investigations have various knowledge gaps.
Related to the importance of our studies, we identified significant articles in four categories
and created a word cloud (Figure 5) based on the critical knowledge gaps for “land Use
and land Cover”. Our synthesis found most knowledge gaps corresponded to the category
of remote sensing, specifically for data, imaging, and modeling. The information identified
specific knowledge gaps that were time-sensitive and relevant. Our finding highlights
many knowledge gaps to be data-related: Verification/validation of data, data quality,
data harmonization, data gaps, data inconsistency, and the uncertainties associated with
data were the major knowledge gaps from our analysis. Our findings revealed that there
was no single approach to addressing the knowledge gaps identified. There need for
comparison and assessment of updated data to improve data quality is paramount to
enhance information for LULC projects [13].

Each category gives information on knowledge gaps and the importance of them being
addressed critically. The results indicate that some knowledge gaps will be addressed over
time. However, this accomplishment will occur with ongoing investigations in LULC [62].
Research findings did not specify a single path to address the knowledge gaps. The
consensus was clear that if researchers did not focus on them, they would continue to cause
significant consequences in LULC investigations for global change [144]. Consequently,
the significant gaps identified have provided areas of analysis that represent the challenges
in this field. Data quality, availability, and harmonization emerged from our synthesis as
direct reasons for the LULC challenges. This literature review presented the necessary
information that requires focus and assessment for LULC research.

5. Conclusions

The primary objective of the present work was to present five critical areas of LULC
in the form of a literature review. Enormous work on LULC has been executed over the
decades in numerous topical areas by multiple researchers over time. The PSALSAR
framework for this systemic review will support scientific and straightforward synthesis.
This synthesis has proven to be a method to synthesize, organize, and present LULC
information and make inferences related to specific areas of interest. Our study showed a
systemic approach to how secondary information on LULC is presented so researchers can
interpret and make assumptions. Figure 6 shows a step-by-step process of our research
procedure, as well as how secondary information from research articles was collected,
appraised, and presented on the five topical areas of our research interest. This flowchart
provides a holistic view of how research articles were used to answer questions in each
specific category.

Our research findings recommend understanding various land use/land cover areas.
A literature review helps synthesize, compare, and present information among multiple
studies. Our bias related to articles selected was based on the keywords for each to keep
our research concise. We would recommend using more keywords for LULC studies to
get a broader range of articles for analysis. Future research for LULC studies should focus
on remote sensing, land-cover monitoring, and their effects on ecosystem services. We
recommend a research procedure presented in Figure 6. This will aid the researcher in
analyzing the information required for new LULC initiatives accurately. This methodology
can find similarities for missing knowledge in LULC studies, giving researchers a base
method to apply detailed synthesis. The identification and assortment of summarized
knowledge in particular LULC research areas are vital. Thus, using this methodological
framework, LULC investigations will report findings accurately and provide inputs for
environmental monitoring.
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Figure 6. Flowchart of the synthesized research process, the procedure developed for a continuous
flow of information from information acquisition to analysis.
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Abstract: The objective of the present study was to determine changes in land coverage for 31 satellite
cities surrounding Seoul and changes in values of MSPA (Morphological Spatial Pattern Analysis) for
a time period of about 30 years (from 1988 to 2018). Cities that showed similar environmental changes
were grouped utilizing a hierarchical cluster analysis. The results of this study are summarized as
follows: First, as a result of analyzing changes in land coverage, urbanized areas in all 31 cities greatly
increased, whereas areas of forest, grassland, farmland, wetland, etc., greatly decreased. Second, as a
result of carrying out MSPA for green areas in each city, the number of Cores, Islets as stepping-stone
green areas, and Branches greatly decreased. As a result of analyzing factors in cluster analysis,
12 variables were classified into four groups. After performing a cluster analysis, the 31 cities were
classified into six clusters. Cluster-6 showed the biggest decrease in wetland areas. These results
could be used as basic data for establishing differentiated environmental policies for clusters of cities
that show similar environmental changes, and for establishing policy priorities that break away from
uniform environmental policies at the local level.

Keywords: land-cover change; MSPA; cluster analysis; land use management

1. Introduction

Korea has achieved economic growth at a very high speed since the 1960s. Rapid
urbanization and industrialization has particularly progressed around Seoul, the capital
of Korea. As the traffic congestion problem in Seoul became severe in the late 1970s, a
suburbanization phenomenon involving population movements into Gyeonggi-do, the
outskirts of Seoul, quickly emerged to mitigate this problem [1–3]. As a result, the capital
area including Seoul and Gyeonggi-do formed a typical metropolitan area. About 26 million
people, close to half of the Korean population, live in this capital area.

Although this rapid growth of the city has been accompanied by changes in various
aspects such as the natural environment and the human environment, it has had direct
effects on the natural environment in particular. Environmental damage in the capital area
is intensifying day by day. Such environment damage is occurring across Korea and all over
the world. As numerous development plans are damaging the natural environment at an
irrevocable level, efforts have been made to solve environmental problems in various aspects.

First, in relation to basic studies, European countries such as Germany, Italy, etc.,
where environmental damage is intensifying, have conducted studies based on landscape
ecology, and many efforts have been made to create sustainable land environments by
grafting diverse theories into actual land plans [4–7]. Similar studies are also actively
conducted in North American countries such as the USA [8–11]. For example, Forman has
arranged a theoretical basis for North American landscape ecological planning based on a
landscape ecology [12].
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Moreover, data about environmental changes (in land use and land coverage) can
now be collected and analyzed within a short period of time thanks to the development of
diverse technologies such as Geographic Information System (GIS) and Remote Sensing
(RS) technology [13–18]. In particular, FRAGSTATS, a spatial pattern analysis program
developed by McGarigal and Marks [19], is a core tool that can quantitatively determine
structural patterns and change aspects of landscape elements. Utilizing FRAGSTATS,
various studies have been actively conducted all over the world [20–23]. For example,
Reddy et al. [24] investigated the effect of forest fragmentation in India by utilizing land-
scape indices such as Mean Patch Size (MPS) and Edge Density (ED).

In legal and institutional aspects, efforts have been steadily made to cope with envi-
ronmental changes in accordance with “Sustainable Development”, which has been widely
used after the announcement of the Bryndtkand report of WCED in 1987 and the “Paris
Climate Agreement” adopted in the UN Weather Change Conference in 2015. Korea is
working on an interlocking between land plans and environmental plans based on Article
5 (Environment-friendly Land Management) of the Framework Act on the National Land,
and the Framework Act on Environmental Policy (Responsibilities of the State and Local
Governments). The objective of such an interlocking plan is to sustainably upbuild the
land by minimizing the effect on the environment at a plan level in advance [25–27].

Considering that development plans are direct causes of environmental problems that
take place mostly in cities, establishing environmental policies at a city level has a very impor-
tant meaning. However, it may be more effective to solve housing problems, traffic problems,
and, in particular, environmental problems caused by urban expansion by comprehensively
bundling up several cities together rather than solving these problems within individual cities.
Thus, it is necessary to create a new spatial unit that bundles up cities that show similar
environmental changes that transcend the boundaries of administrative districts.

In relation to this, studies that group cities showing similar characteristics have been
actively conducted through cluster analyses [28–33]. Targeting about 280 villages where
mountain village development programs have been carried out, Ko et al. [34] categorized
villages showing similar mountain village scenery by utilizing the altitude, forest ratio,
farmland ratio, coniferous forest ratio, broadleaf forest ratio, and ecological and natural
map rating ratios. Further, Kuo et al. [35] classified the impact of urban development on
the natural environment into six clusters for Tainan, Taiwan. Based on this, an evaluation
methodology was established to simulate and analyze the impact of urban growth.

Although diverse efforts have been made to solve environmental problems, as men-
tioned earlier, precedent studies have the following limitations: First, studies that utilized
FRAGSTATS did not present analysis results as drawings. They had limitations in that it
was difficult to correlate their results with drawings of development plans. Additionally,
with respect to cluster analyses, cities were categorized by considering various aspects such
as social and economic issues, transportation, land cover change, MSPA structure, water
supply and demand, surface temperature, and surface runoff. Among the various factors
for colonization, MSPA has been limitedly used mainly for studies related to eco-corridors
such as wildlife passageways. In other words, there have been relatively few studies
examining changes in MSPA values and diagnosing environmental problems based on the
changes in green areas for each cluster due to urbanization.

Accordingly, in the present study, we categorized 31 cities in Gyeonggi-do adjacent to
Seoul at a regional level based on results of time-sequential environmental changes to grasp
characteristics of environmental changes by type. We believe that the results of the present
study could be used as basic data for establishing differentiated environmental plans for
cities with similarities or for establishing environmental policy priorities, breaking away from
standardized policies related to the environment that appear at the regional level in particular.
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2. Data and Methods
2.1. Research Area

The present study was conducted for 31 satellite cities in Gyeonggi-do adjacent to
Seoul, the capital of Korea (Figure 1). The main status of each city is shown as follows. First,
the city with the biggest area among these 31 cities was found to be Yangpyeong (877.8 km2),
followed by Gapyeong and Pocheon. We could see that Gwacheon, Gwangmyeong, and
Gunpo were much smaller in size than the other cities. Looking at the number of pop-
ulations by city, Suwon, Goyang, Yongin, Seongnam, and Hwaseong had the largest
population in that order. On the other hand, Yeoncheon, Gwacheon, Gapyeong, and Dong-
ducheon have low population numbers. In particular, Yeoncheon has about 44,000 people,
showing the lowest population among all 31 cities. In addition, when we looked into the
geographical characteristics of each city, Yeoncheon and Paju were playing an important
role militarily as they are close to North Korea. Goyang, Seongnam, Bucheon, and Hanam
were under high development pressure in the past as they were directly in contact with
Seoul. Such development pressure still exists today. The area, population, and location
characteristics of the 31 cities are presented in Appendix A.
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2.2. Procedure for Conductiong the Study

The procedure for conducting the present study is largely divided into three stages
(Figure 2). First, an analysis of changes in land coverage for each of the 31 cities was per-
formed based on land cover maps of 1988 and 2018. Second, an MSPA was performed for
structural changes in each of the 31 cities. Third, a cluster analysis was performed to grasp the
characteristics of each cluster. The detailed study method of each stage is shown below.
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2.3. Analysis of Changes in Landcover Change in Each City

For the analysis of changes in the land coverage in each city, a Level I Land Cover
Map provided by Environmental Geographic Information Service [36] was used. The major
classification Level I Land Cover Map has been constructed every 10 years, starting in 1988.
In this study, the most historical data, from 1988, and the most recent, from 2018, were
used. The reason for this is that the first new town developments (Ilsan, Bundang, etc.)
were carried out from 1989 to 1996, and the second new town developments (Seongnam,
Hwaseong, etc.) were carried out from 2001 to 2017. In other words, out of the 31 cities,
large-scale development plans were carried out for cities adjacent to Seoul until recently.
Therefore, it was judged that the changes in land cover and the changes to MSPA structure
according to the development plan for each city could be best understood if the data for
1988 and 2018 were used. A Level I Land Cover Map was divided into seven land cover
types (urbanized areas, agricultural areas, forest areas, grassland, wetland, bare land, and
waters). It was prepared based on a resolution of 30 m × 30 m. Changes in land coverage
for each city were examined based on such land cover maps. Land cover maps utilized in
the present study are as follows (Figure 3).
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2.4. MSPA Pattern Changes in Green Area of Each City

For MSPA of the structural changes in the green areas of each city, GUIDOS [37]
was utilized for forest and grass areas among seven land cover types. The analysis was
conducted after converting forest types extracted from land cover maps of 1988 and 2018
into Geo Tiff files and then applying a pixel size of 20 m [38].

GUIDOS (Graphic User Interface for the Description of Image Objects and their
Shapes) is a program designed to overcome the limitations of numerical data presented
by FRAGSTATS [39], and is an existing landscape pattern analysis program that can
intuitively grasp changes in spatial forms. GUIDOS has been widely utilized in diverse
fields recently [40–42].

In this study, MSPA (Morphological Spatial Pattern Analysis) analysis was used
among various analysis methods of GUIDOS. MSPA has a high potential for being utilized
during the establishment of various plans as it presents relations between diverse elements
displayed on maps and their distribution patterns in the form of a diagram. In more
detail, MSPA showed green areas on a drawing after dividing them into seven types (Core,
Islet, Bridge, Loop, Branch, Perforation and Edge) depending on their forms. At the same
time, the number of MSPA types of each city was calculated using the following formula
(Figure 4). Accordingly, it is very useful for grasping changes in the form of green areas
resulting from urbanization, as well as the extinction of dotted green spaces and strip green
spaces on a small scale.
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Characteristics of these seven MSPA types are shown as follows (Table 1). First, a Core
is a park located in a large-scale forest or a city center. It is a type where the scale is big in
comparison with other types. In other words, it is a type that functions as a key space for
the inhabitation of biospecies. Next, a Bridge is a strip type that connects different Cores
with each other and carries out a function similar to an eco-corridor. An Islet is a green
space smaller than a Core. Although it plays an important role as a middle stopover during
the movement of wild animals, it is also a type with a very high risk of extinction [43].

Table 1. Morphological spatial pattern analysis (MSPA) categories and ecological implication.

Categories Description

Core
It can be used as the “source” of a variety of ecological processes, most of

which are forest parks with large patch areas and large forest farms, etc., which
are of great significance for species reproduction and biodiversity protection

Islet

Small patches, which are independent of each other and have low connectivity,
are less likely to communicate with other patches in terms of materials and

energy, and are mostly small green spaces in urban or rural areas. In addition,
an islet is effective in enhancing connectivity by functioning as a stepping

stone green area

Bridge

The narrow and long areas connecting the patches of different core areas; they
have the characteristics of ecological corridors, which are mostly green belts,

which are conducive to the migration of species and the connection of
landscape within the territory

Loop The internal channel of material and energy exchange in the same core area;
they are shortcuts for material and energy exchange in the core area

Branch
Only one end is connected to the main patch; mainly an extension of the green
space, which is the channel for species diffusion and energy exchange with the

peripheral landscape

Perforation As a transition region, the edge, etc., also exists between the core patch and its
inner non-green space

Edge

The transition zone between the marginal zone of the core area and the
peripheral non-green landscape area, which can reduce the impact brought by

the external environment and human disturbance; usually the peripheral
forest zone of forest parks and large forest farms

2.5. Cluster Analysis of 31 Cities

To effectively conduct categorizations by city through a cluster analysis, a factor anal-
ysis was conducted first. To enhance the accuracy of the analysis, 12 variables, excluding
Grass and Waters, with low communality among a total of 14 selected variables (7 land
cover types and 7 MSPA categories), were utilized for the analysis. Factors of these 12 se-
lected variables were extracted through PCA (Principal Component Analysis) [44]. The
Varimax Method of Orthogonal Rotation, widely utilized to simplify the characteristics
of each factor, was utilized as a Factor Rotation Method. As the analysis was conducted
without setting the number of clusters in advance during a cluster analysis based on factor
scores, a hierarchical cluster analysis was performed. Hierarchical cluster analysis is a
method where two objects close to each other start to form a cluster, and a dendrogram in
the shape of a tree is formed through continuous clustering of the clusters adjacent to each
other to determine the number of clusters. Ward’s Method of hierarchical cluster analysis
was used for grouping these 31 cities.

3. Results
3.1. Analysis of Landcover Changes by Each City

Changes in land coverage areas for each of the 31 cities are as follows (Table 2). First,
in the case of Hwaseong, the increase in urbanized areas was found to be the biggest among
the 31 cities. On the contrary, its sizes of agricultural areas, forest, wetland, and waters
decreased. In particular, the sizes of its agricultural areas and wetland decreased by 7600 ha
and 1705 ha, respectively. Decreases in the areas of these two land cover types were found
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to be the biggest among the 31 cities. Next, forest areas decreased by 2600 ha. The decrease
in the area of natural space due to urbanization was noticeable in Hwaseong as a whole.
In the case of Pyeongtaek, its urbanized areas increased by 6296 ha. It was found to be
a city showing the second biggest increase in urbanized areas, following Hwaseong. Its
farmland areas decreased by 7233 ha. It was found to be a city showing the second biggest
decrease in farmland areas, following Hwaseong. Its forest areas decreased by 1325 ha. On
the contrary, its grassland and wetland areas increased by 618 ha and 1737 ha, respectively.

In the case of Namyangju, its land cover types that showed increases in size were
found to be urbanized areas, bare land, and waters (Figure 5). On the contrary, its land cover
types that showed decreases in size were found to be agricultural areas, forest, grassland,
and wetland. In particular, forest areas in Namyangju decreased by about 3900 ha due to
urbanization. It was found to be a city showing the second biggest decrease in forest area,
following Yongin. In the case of Siheung, its land cover types that showed increases in
size were found to be urbanized areas and grassland. On the contrary, its land cover types
that showed decreases in size were found to be agricultural areas, forest, wetland, and
waters. In particular, its areas of wetland and waters decreased by 1286 ha and 1514 ha,
respectively, due to large-scale reclamation projects that appeared in the areas close to the
coast. Due to such reclamation projects, wetland and waters were converted to farmland
and urbanized areas.

On the contrary, in the case of Gwacheon, Dongducheon, and Uiwang, urbanized
areas increased by 193 ha, 503 ha and 601 ha, respectively. In particular, forest areas in
Gwacheon and Dongducheon increased differently from other cities. This was because
farmland and bare land located in the forests were converted into forests. When we put
these results together, urbanized areas were found to have increased in all 31 cities. It
was found that urbanization was concentrated in cities adjacent to Seoul, the capital. In
addition, most of the forest, grassland, and wetland areas with high ecological values were
found to show decreases in size due to urbanization.
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Table 2. Changes in land cover type areas by city (2018–1988) Unit: ha.

Division Urban Area Agricultural Land Forest Grass Wetland Barren Water

Gapyeong 695.24 −950.63 −1511.13 1044.13 −1.31 385.59 33799
Goyang 5688.11 −5789.74 −441.85 −185.05 −15.24 794.60 86.48

Gwacheon 193.32 −338.93 159.62 −115.88 2.01 100.42 −0.33
Gwangmyeong 668.63 −611.38 −209.67 111.89 24.41 17.31 −0.49

Gwangju 3565.62 −727.47 −2518.27 −522.29 −1.53 125.61 78.32
Guri 717.07 −736.47 −119.85 −191.99 −1.68 285.31 48.34

Gunpo 839.36 −417.37 −138.19 −317.95 4.88 19.85 9.45
Gimpo 3346.53 −4033.38 −477.35 660.85 −661.73 638.35 525.64

Namyangju 4887.68 −1762.00 −3893.74 −603.03 −6.25 1275.71 101.63
Dongducheon 503.07 −534.42 165.59 −302.75 0.00 180.23 −11.73

Bucheon 1106.49 −1204.96 −97.41 191.61 −12.99 16.71 0.46
Seongnam 3737.96 −1967.57 −1390.05 −599.82 1.67 191.00 26.90

Suwon 3465.44 −2384.74 −590.55 −365.06 −23.54 −151.07 49.52
Siheng 3920.09 −1059.52 −920.43 182.25 −1286.49 677.93 −1514.39
Ansan 3868.27 −1045.76 −193.47 −292.40 −395.83 −1256.51 −684.71

Anseong 2328.93 −3439.41 −1072.45 1207.44 248.58 416.41 310.35
Anyang 1060.33 −767.78 71.54 −345.75 9.59 −26.93 −0.68
Yangju 2167.23 −2846.65 −192.94 −964.60 19.74 1785.28 31.97

Yangpyeong 451.60 1392.15 −2949.07 722.90 −3.79 339.36 47.25
Yeoju 1054.44 374.18 −3336.62 1129.63 128.86 400.46 249.24

Yeoncheon 1240.57 −1354.95 1755.13 −2062.68 76.26 128.85 221.89
Osan 1163.97 −944.33 −286.36 −135.66 8.49 183.58 10.31

Yongin 7130.08 −2978.75 −4976.87 −115.09 40.98 748.52 151.12
Uiwang 600.60 −406.09 −105.01 −252.72 0.33 145.49 17.39

Uijeongbu 1486.09 −1073.46 −292.48 −386.06 1.56 253.46 10.82
Icheon 2426.24 −1974.78 −976.91 −581.47 −0.96 1092.76 16.01

Paju 2990.49 1274.16 −2585.27 −3131.46 −276.22 1073.22 655.89
Pyeongtaek 6296.37 −7232.52 −1325.11 869.68 1737.38 1375.68 −1724.09

Pocheon 2416.37 −3083.93 −645.79 3.05 68.83 1088.78 153.31
Hanam 1402.77 −1506.13 −734.63 364.14 38.92 219.31 216.10

Hwaseong 8598.49 −7597.43 −2637.48 617.70 −1705.32 3221.19 −498.11

3.2. MSPA Pattern Changes in Green Area of Each City

Regarding MSPA changes for each of the cities, the results are as follows (Table 3).
First, in the case of Yeoju, a city with the biggest number of Cores and Branches, it showed
decreases compared to the data of the late 1988. In addition, the number of Bridges and
Loops greatly decreased because most of its linear green areas with relatively small sizes
ceased to exist due to the expansion of urbanized areas and increases in farmland areas.
Moreover, Islets with small size green areas that could have played an important role as
stepping-stone green areas greatly decreased in number.

In the case of Goyang, the number of Islets among the seven MSPA types decreased
by 1322 when compared to that of 1988. Such a result was due to an increase in urbanized
areas resulting from its geographical characteristic of being close to Seoul, as shown earlier
in the land coverage changes. In addition, Cores known to play an important role as habitat
spaces for biospecies also greatly decreased in number. In the case of Hwaseong (Figure 6),
the number of Islets decreased by 3963, the biggest decrease among the 31 cities due to the
urbanization of the last 30 years. Its Branches and Bridges also greatly decreased in number.
Nevertheless, it is worth noting that its Cores increased in number because large scale green
lands were fragmentized due to new constructions of roads and developments. Anseong
was found to show changes in the spatial structure of green lands different from other cities.
The result of MSPA showed that Cores, Loops, Bridges, and Branches increased in number
in Anseong due to an increase in grassland areas among the land cover types. Next, in the
case of Guri, Perforations belonging to the type arising from land use by humans in forests
showed the biggest increase in number among the 31 cities. On the contrary, Perforations
in Yangpyeong and Yongin decreased greatly in number due to the prohibition of farming
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activities, which took place in forests and forestation projects. MSPA drawings for 1988
and 2018 for all 31 cities are presented as Appendix A.

Table 3. Changes in MSPA categories by city (2018–1988).

Division Core Islet Perforation Edge Loop Bridge Branch

Gapyeong −183 105 −261 −342 109 −189 −944
Goyang −127 −3122 −51 −536 −122 −167 −720

Gwacheon 3 −30 5 −20 5 −18 −34
Gwangmyeong 1 −258 −1 −49 −24 −7 −65

Gwangju −138 128 −425 −878 −175 −235 −814
Guri −42 −79 166 −109 −16 −25 −129

Gunpo −6 −129 −12 −114 −17 −35 −83
Gimpo −61 −1284 8 −155 −49 −30 −396

Namyangju −284 793 −443 −1148 −123 −397 −900
Dongducheon −70 −109 28 −172 −24 −72 −272

Bucheon 4 −263 2 28 −6 4 −30
Seongnam −46 −151 −158 −432 −196 −57 −393

Suwon −46 −979 −10 −223 −71 −62 −308
Siheng −16 −336 −58 −332 −90 −79 −313
Ansan 0 −935 −15 −270 −90 −40 −356

Anseong 172 −990 −126 372 175 41 819
Anyang −21 −216 −57 −120 −80 −31 −190
Yangju −240 −547 −144 −1040 −107 −296 −979

Yangpyeong −370 −236 −892 −1695 −113 −460 −1423
Yeoju −514 −1575 −55 −2008 −350 −462 −2387

Yeoncheon −313 −1004 38 −1093 2 −411 −1302
Osan −63 −308 −6 −171 −38 −50 −348

Yongin −43 −63 −475 −680 −231 −205 −539
Uiwang −7 −51 −83 −136 −73 −24 −31

Uijeongbu −11 −215 −30 −168 −64 −20 −144
Icheon −45 −2143 −7 −74 38 −81 −375

Paju −284 −1944 −337 −2040 −337 −484 −1712
Pyeongtaek −124 −2190 −16 −275 7 −134 −493

Pocheon −357 −2329 −55 −1302 −72 −301 −1705
Hanam −18 −88 −41 −96 −26 −24 −188

Hwaseong 60 −3963 −39 −869 −419 −116 −824
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3.3. Cluster Analysis of 31 Cities

As a result of factor analysis, which utilized a total of 12 variables selected for cate-
gorization by city, factors were classified into a total of four (Table 4). These four factors
converged a total of 25 times according to the Varimax Method. They explained about 88%
of the total variance. The communality of the 12 variables was found to have high values
(not smaller than 0.7). In addition, the KMO (Kaiser–Meyer–Olkin) value, which was the
result of conducting a goodness of fit test of the measuring tool, was 0.575, meaning that
there was no problem in selecting these variables. The goodness of fit of this model was
found to be very high, because the probability value was found to be 0.00 in Bartlett’s test
of sphericity. Thus, there were significant differences, and commonality existed for the 12
selected variables.

The characteristics of each classified factor are shown as follows. First, the four
variables belonging to Factor-1 were “Branch”, “Core”, “Bridge” and “Edge”. They had an
explanatory power of about 34% for the total variance. They were found to be variables
with a high importance in the aspect of green networks. The reason these four variables
are grouped un the same factor is because the annihilation of the Core directly affects the
Branch, Bridge, and Edge. In fact, in the case of Yeoju, the number of Cores decreased the
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most, and at the same time, the number of Branches and Bridges existing in a linear form
at the edge of the forest also decreased significantly compared to other cities.

Next, Factor-2 had an explanatory power of about 24%. It included “Agricultural
Land”, “Urban Area”, “Barren”, and “Islet”. “Urban Area” and “Barren” showed negative
values, differently from other variables. This was because “Urban Area” and “Barren”
increased in size, contrary to the other 12 variables, for which the size or the number
decreased when compared to those of 1988. Like this, the variables of Factor-2 were found
to play an important role in clustering cities, with changes in the size of farmland due to the
expansion of urbanized areas. Changes in Islets known to function as stepping-stone green
areas were similar (i.e., highly urbanized cities). Factor-3 was made up of “Perforation”
and “Forest”. Its explanatory power was found to be about 17%. The reason these two
variables are grouped as the same factor is because the disappearance of Perforation is
directly related to the forest. As defined in Table 2, Perforation is a non-green space that
appears in the forest, and is a variable that disappears when the forest is destroyed. In
fact, looking at the cases of Yongin and Namyangju, it was found that the number of
Perforations greatly decreased as the areas of forest decreased. Lastly, Factor-4 had an
explanatory power of about 12%. This factor had a high effect on the grouping of cities in
which time-sequential changes of “Wetland” and “Loop” were similar.

Table 4. Results of factor analysis.

Factor Factor-1 Factor-2 Factor-3 Factor-4

Branch 0.965 0.112 0.100 0.113
Core 0.961 −0.080 0.101 −0.145
Edge 0.927 0.083 0.288 0.185

Bridge 0.920 0.036 0.316 −0.021
Agricultural land −0.236 0.926 −0.061 −0.142

Urban area 0.083 −0.826 −0.400 −0.168
Barren −0.234 −0.781 −0.135 −0.173

Islet 0.283 0.778 −0.318 0.195
Perforation 0.330 −0.146 0.856 −0.029

Forest 0.276 0.251 0.853 0.136
Wetland −0.087 0.069 −0.018 0.942

Loop 0.471 0.317 0.323 0.609
Eigen value 4.173 2.971 2.050 1.463

Explained amount of
total variance (%) 34.777 24.759 17.084 12.190

Cumulative
explanation (%) 34.777 59.536 76.620 88.810

Based on these results of the factor analysis, 31 cities in Gyeonggi-do were classi-
fied into six clusters (Figure 7). Cluster-1 was made up of 15 cities, the biggest number
of cities, which included Gwangmyeong, Gunpo and Anyang. Cluster-2 was a cluster
made up of five cities, including Suwon, Gimpo and Goyang. Cluster-3 was made up
of Gwangju, Namyangju, Yangpyeong and Yongin. Cluster-4 had five cities, Yeoju, Paju,
Yangju, Pocheon and Yeoncheon, that showed similar environmental changes. Cluster-5
was an independent cluster formed by Pyeongtaek alone. Cluster-6, too, was an indepen-
dent cluster formed by Hwaseong alone.
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4. Discussion
4.1. Discussion and Limitation

In the present study, we determined changes in land coverage and changes in MSPA
values in each of the 31 satellite cities surrounding Seoul for about 30 years, from 1988 to
2018. Cities that showed similar environmental changes were grouped. First, for changes in
land coverage, urbanized areas in all 31 cities were found to have increased. In particular,
urbanization was concentrated in cities adjacent to Seoul, the capital. For example, in the
case of Goyang (Figure 8), most spaces that were farmland in the past were converted
into urban areas due to such geographic characteristics. As a result, forest, grassland
and wetland with high ecological values greatly decreased in size. Accordingly, for large
cities such as Suwon, Icheon, Gimpo and Siheung, which showed environmental changes
similar to those of Goyang, it is particularly important to preferentially search for a plan
to effectively preserve natural spaces with high values in advance when establishing
development plans.
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Next, when we look into the results after analyzing changes in MSPA category in each of
the 31 cities, 103 Cores and 733 Islets were found to have decreased, on average, in these 31 cities.
A total of 115 Perforations, 521 Edges, 83 Loops, 144 Bridges and 567 Branches decreased on
average. As can be seen from such an analysis result, Cores that are key green lands and Islets
that are stepping-stone green lands have ceased to exist in most cities due to the urbanization
that has progressed for several decades, meaning that the green network function is greatly
deteriorated at a whole city level. Accordingly, an environmental plan should be established
with a focus on quantitatively/qualitatively securing green lands by creating additional green
lands of diverse sizes and forms to recover the function of green networks.

To look into the characteristics of each of these six clusters in more detail, the average
value of the factor of each cluster was calculated based on the characteristics examined
(Table 5). In particular, as factors with a positive value and a negative value appeared
in a mixture in Factor-2, among the four factors, the Agricultural Lands and Islets with
decreased sizes and numbers were classified as Detailed Factor 2-1, and Urban Areas and
Barrens with increased sizes were classified as Detailed Factor 2-2.

Table 5. Factor score average by cluster (the numbers in bold indicate the average value of the highest or lowest factor
among the six clusters and can represent the characteristics of each cluster).

Factor Cities Factor-1
Factor-2

Factor-3 Factor-4
2-1 2-2

Cluster-1

Gwangmyeong, Gunpo, Anyang,
Gwacheon, Uiwang, Bucheon,

Uijeongbu, Hanam, Guri,
Dongducheon, Osan, Ansan,

Gapyeong, Seongnam, Siheung

0.62999 0.44254 −0.48388 0.39217 0.23549

Cluster-2 Suwon, Icheon, Gimpo, Goyang,
Anseong 0.35109 −0.60356 0.08633 0.42075 −0.05106

Cluster-3 Gwangju, Namyangju,
Yangpyeong, Yongin −0.83973 0.63843 0.40742 −1.96838 −0.24216

Cluster-4 Yeoju, Paju, Yangju, Pocheon,
Yeoncheon −1.60644 −0.22083 0.11427 0.02580 −0.29516

Cluster-5 Pyeongtaek 0.11024 −2.03963 1.43641 0.13906 2.08189
Cluster-6 Hwaseong 0.07547 −3.03028 3.18919 −0.38086 −2.91448

First, Cluster-1 was found to be the cluster for which the score for Factor-1 was higher
than that of any other cluster. That is, it is a cluster without a big environmental change. In
reality, Cores, Branches, and Bridges were found to have decreased less in relevant cities
than in cities of other clusters, although urbanization progressed. It was worth noting
that the extinction of green lands was not high in Bucheon, Hanam, Guri, or Gwacheon,
although these cities were very close to Seoul, the capital. Such a result is attributable
to the restriction on development enforced by designating forests of relevant cities as
Greenbelts to prevent the thoughtless expansion of Seoul. However, as Greenbelts are
released gradually due to continuous development pressure, the emphasis should be put
on maintaining the function of green networks by minimizing the extinction of small-scale
green lands of diverse forms such as Branches, Bridges, Islets, etc., when development
plans are established.

Cluster-2 was a cluster made up of five cities, including Suwon, Gimpo and Goyang,
that were classified as relatively large cities. It showed the highest value for Factor-3 among
the four Factors, meaning that its decrease in forest area was not high compared to the
other clusters. However, it showed negative values for Factor-4 and Factor-2-1. Its spaces
with high values such as wetland, stepping-stone green lands, etc., greatly decreased
in number due to urbanization. In addition, as cities belonging to this cluster are still
under high development pressure due to the continuous population increase and industrial
development, emphasis should be put on the arrangement of a plan to preserve natural
resources with high ecological values.
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Cluster-3 was made up of Gwangju, Namyangju, Yangpyeong and Yongin. It was a
cluster that showed a negative score for Factor-3. This cluster had a higher score for Factor -3
than the other clusters. Thus, it was a cluster with a large decrease in forest area. Further, as
it had a big negative value for Factor-1, it was characterized by a big decrease in the number
of linear connection green lands such as Branches, Bridges, etc. Accordingly, cities in the
relevant cluster should put an emphasis on the minimization of additional damage to and the
fragmentation of forests, while preserving small linear green lands at the same time.

Cluster-4 was a cluster made up of Yeoju, Paju, Yangju, Pocheon and Yeoncheon. It
showed a higher negative value for Factor-1 than the other clusters. It was characterized
by a big decrease in the actual number of large-scale green lands and linear green lands of
diverse forms. As such a decrease in the number of green lands will lead to a decrease in
the function of urban green networks, it is desirable to prioritize the creation of additional
green lands to enhance green land connectivity when environmental plans are established.

Cluster-5 was an independent cluster formed by Pyeongtaek alone. It showed the
highest positive value for Factor-4 among the four Factors. In fact, Pyeongtaek was the city
with the largest increase in wetland areas. Accordingly, environmental plans should be
established with an emphasis on the effective preservation of wetland and swamps that
play an important role as habitats for biospecies.

Lastly, Cluster-6 was an independent cluster formed by Hwaseong alone, a city with
the highest negative value for Factor-4. That is, this city had the biggest decrease in wetland
areas. In addition, Cluster-6 showed larger changes for Factor 2-1 and 2-2 than the other
clusters. As a whole, Cluster-6 showed a large environmental change due to urbanization.
Accordingly, quantitative expansion of green spaces through the creation of additional
green lands, and the establishment of a systematic preservation and management plan for
wetland and swamps, should be preferentially considered for Hwaseong in order for it to
function as an environmentally sustainable city.

From a small specific unit space to a large-scale city and even regional and territorial
space, it is predicted that future land space will be more directly affected by numerous
developments. Therefore, how will the various impacts caused by development change the
future land space? By what means and methods will we be able to control the influencing
factors and change processes in a natural environment and landscape-friendly way? In
this respect, the results of this study are different from other related studies in that they
involve clustered cities at the regional level and are based on the results of time-series
environmental changes. The results thus present directions for establishing environmental
policies for each cluster.

First, among studies examining environmental changes using landcover change [45–48],
Kumar et al. [49] used land cover types in 1976, 1989, 2000 and 2014 for Usri watershed.
They looked at the changes in the landscape matrix, and based on these analysis results,
clustered land cover types showing similar values for each year. However, a limitations is
that the scope of the space was limited to a specific watershed and that the analysis result
could not be visually confirmed.

In addition, in the case of Korea, the consideration of the physical environment and
the human psychological behavior aspect rather than the natural environment factor is con-
sidered more important in figuring out the value of the city. Lee’s [50] research emphasizes
the need for qualitative growth such as the quality of life rather than quantitative growth
focusing on economic aspects. For this purpose, the 31 cities in Gyeonggi-do were grouped
based on the Physical Environment Satisfaction and Neighborhood Satisfaction indices. Of
the total of 14 indicators used for grouping, it was found that one of the indicators related
to the natural environment was satisfaction with the park.

As evidenced by numerous studies, urban land use and environmental changes are
inevitable phenomena in the process of urban development. Therefore, the Fragstats pro-
gram, using the land cover map, has been used importantly in diagnosing environmental
changes due to urbanization, but the fact that the analysis results cannot be looked at in
drawings is a big limitation. In this aspect, the MSPA analysis used in this study is different
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in that the analysis results are presented in drawings. In addition, the results of this study
are environmentally friendly in that they suggest a direction for establishing differentiated
environmental policies for each city, such as the quantitative expansion of green areas,
conservation of small-scale linear green areas, wetland conservation, and minimization
of forest fragmentation in connection with land cover change. However, since a city is a
space where humans and nature coexist, it is judged that it is desirable to comprehensively
consider factors such as the physical environment and human psychological behavior, not
just the natural environment aspect.

However, in order to increase the effectiveness of the study, it is necessary to addi-
tionally consider the following aspects in future studies. First, environmental changes
in cities need to be determined using more detailed basic data. In Korea, a City Biotope
Map was recently prepared with a high spatial resolution of a 5 m level on a national
scale pursuant to Article 34-2 (Preparation/Utilization of City Biotope Map) of the Natural
Environment Conservation Act. Accordingly, it is required to determine environmental
changes by actively utilizing a more detailed basic map such as a City Biotope Map and
to establish environmental plans based on it. Moreover, the present study had another
limitation: the cities were clustered based on results of changes in land coverage and spatial
structures of green lands. Accordingly, it is desirable to determine environmental changes
in cities comprehensively by taking into account the values of diverse aspects such as soil,
air, surface temperature and water quality and supply, as well as endangered species, etc.,
to find the appropriate direction to take when coping with such environmental changes
based on the results of such determinations.

4.2. Policy Proposal

Although spatial plans for national land are established in Korea for each of the
diverse spatial scales, such as Comprehensive National Territorial Plans, Metropolitan City
Plans, Si/Gun Master Plans, etc., when we take into account the fact that concrete and
detailed physical plans established under the premise of implementation are realized at a
city level, we can see that establishing differentiated environmental plans for sustainable
land use management based on time-sequential environmental changes at a city space level
is very important.

However, most environmental policies established for many cities that belong to the
same area (Gyeonggi-do, Gyeongsangbuk-do, etc.) put emphasis on the quantitative expan-
sion of green lands. Accordingly, it is important to grasp time-sequential environmental
changes and secure environmental drawings that can be connected to development plan
drawings at the same time to establish differentiated environmental policies. In Korea,
although a Biotope Map is built and renewed at five-year intervals based on Article 34-2
(Preparation/Utilization of Biotope Map) of the Natural Environment Conservation Act,
there is no mandatory provision that forces its utilization when establishing development
plans. Accordingly, the law/system is required to be reinforced to obtain basic data so
that a Biotope Map or Ecosystem Service Map is mandatorily taken into account when
establishing development plans.

Moreover, when we look into the budget of each ministry of the Korean government as
of 2020, the budget of the Ministry of Environment was much smaller than that of the other
ministries. It was about KRW 9 trillion, while that of the Ministry of Land, Infrastructure,
and Transport was about KRW 50 trillion, that of the Ministry of National Defense was
about KRW 50 trillion, and that of the Ministry of Employment and Labor was about KRW
30 trillion. Accordingly, to build diverse basic data and diagnose environmental changes
in cities, the expansion of the budget is required. Each city is also required to use more of
their budget for the preservation and management of the environment.

In addition, for sustainable urban development, the connection between disciplines
that are being pursued in different perspectives, laws, and administrative organizations will
be of utmost importance. For example, the natural environment conservation plan is mainly
researched in the field of biology, the park and green space plan in the landscape field, and
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the artificial landscape plan in the field of architecture and civil engineering. However,
as mentioned earlier, transdisciplinary cooperation to diagnose and solve environmen-
tal problems by integrating and synthesizing problems themselves for environmentally
sustainable city development is more important than dealing with each environmental
problem as a separate entity [51,52].

5. Conclusions

As pressure on the suburbs of large cities is increasing worldwide, this study examined
land cover changes and MSPA changes over the past 30 years in 31 cities adjacent to the
capital of Korea, Seoul. Cities with similar patterns were clustered based on the analysis
results. Based on these results, this study is meaningful in that it suggests the characteristics
of environmental change for each community and the direction of environmental planning
based on these.

However, in the case of Korea, a number of development plans are scheduled for
small and medium-sized cities that have not experienced significant environmental change
compared to large cities. Therefore, prior to development plans, it is necessary to identify
high-value environmental resources, key green areas for green network construction, and
major habitats for species conservation, and to establish an urban development plan that
prioritizes these spaces.

In addition, we believe that transdisciplinary cooperation is more important than
ever. Therefore, experts in land use planning, landscape planning, forest planning, traffic
planning, and climate change planning, which are all highly related to urban development
planning, need to actively reflect their research results in urban development plans. It is
judged that only if these efforts are supported, it will be possible to develop the national
space more environmentally and sustainably.
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Appendix A

Table A1. Current status of 31 cities.

City Name Area(km2) Population Location and Characteristics

Gapyeong 834.4 62,605 Located in the northeast of Seoul
Goyang 267.4 1,076,406 Located in the north of Seoul and in direct contact with Seoul

Gwacheon 35.9 61,902 Located in the south of Seoul and in direct contact with Seoul
Gwangmyeong 38.5 308,678 Located in the southwest of Seoul and in direct contact with Seoul

Gwangju 431.8 379,480 Located in the southeast of Seoul
Guri 33.3 197,889 Located in the east of Seoul and in direct contact with Seoul

Gunpo 36.4 275,508 Located in the south of Seoul
Gimpo 276.6 458,505 Located in the west of Seoul

Namyangju 460.1 709,881 Located in the east of Seoul
Dongducheon 95.7 93,968 Located in the north of Seoul

Bucheon 53.5 824,865 Located in the east of Seoul and in direct contact with Seoul
Seongnam 141.8 940,966 Located in the south of Seoul and in direct contact with Seoul

Suwon 121.1 1,190,074 Located in the south of Seoul

190



Land 2021, 10, 799

Table A1. Cont.

City Name Area(km2) Population Location and Characteristics

Siheng 134.4 489,077 Located in the southwest of Seoul
Ansan 147.1 653,733 Located in the southwest of Seoul

Anseong 554.1 186,104 Located in the southeast of Seoul
Anyang 58.5 554,857 Located in the south of Seoul and in direct contact with Seoul
Yangju 310.2 229,052 Located in the north of Seoul

Yangpyeong 877.8 118,372 Located in the east of Seoul
Yeoju 607.9 111,438 Located in the southeast of Seoul

Yeoncheon 695.3 43,542 Located in the north of Seoul and on the border with North Korea
Osan 42.7 228,718 Located in the south of Seoul

Yongin 591.5 1,075,659 Located in the southeast of Seoul
Uiwang 54.0 162,751 Located in the southeast of Seoul

Uijeongbu 81.6 456,660 Located in the northwest of Seoul and bordering North Korea
Icheon 461.2 219,537 Located in the southeast of Seoul

Paju 672.6 459,158 Located in the northwest of Seoul and bordering North Korea
Pyeongtaek 452.1 527,166 Located in the south of Seoul

Pocheon 826.4 147,854 Located in the northeast of Seoul
Hanam 93.1 285,693 Located in the east of Seoul and in direct contact with Seoul

Hwaseong 688.1 842,864 Located in the south of Seoul
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Abstract: Land use and land cover (LULC) changes are regarded as one of the key drivers of
ecosystem services degradation, especially in mountain regions where they may provide various
ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats
extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the
Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however,
the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as
the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed
LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE)
and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which
decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal.
Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by
cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis
showed that the expansions of cropland were the major drivers of the forest cover change in the
KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment
existed in the KSL during the study period. The observed forest degradation directly influenced
the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in
2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by
1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the
loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the
LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.

Keywords: land use and land cover; ecosystem service value; Google Earth Engine (GEE); forest
fragmentation; transboundary landscape; Himalaya

1. Introduction

Ecosystem services can be defined as the benefits that humans gain from ecological
processes that contribute to human well-being [1–4]. However, global ecosystem services
have been altered by human activities over the past few centuries [5]. Anthropogenic
activities can be found in almost every corner of the globe after the onset of the Anthro-
pocene and have emerged as a global driver rapidly sculpturing the ecosystem [6–8].
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According to Costanza et al. [9], 60% of worldwide ecosystem services have degraded
over the past several decades. Land use and land cover (LULC) changes, mainly driven
by human activities [10], are considered to be one of the greatest and most immediate
threats affecting ecosystem services [11,12]. LULC changes have thus been considered
an important research topic with regard to global environmental change and sustainable
development [13–16]. Mountain ecosystems are rich sources of biodiversity [17] and host
high plant endemism [18]. They also provide diverse ecosystem services [19]. On the
other hand, mountain regions are fragile areas that are sensitive to external forces [20].
Human-driven LULC changes are considered to be among the greatest ecological pressures
in mountain regions [21].

As a typical mountain system, the Hindu Kush Himalayan (HKH) region extends ca.
four million square kilometers, encompassing eight countries: Afghanistan, Bangladesh,
Bhutan (all), China, India, Myanmar, Nepal (all), and Pakistan [22,23]. It is the source
of ten major river systems, which provide water, ecosystem services, and the basis for
livelihoods to a population of around 210.53 million people in the region [24]. Harboring
four of 36 global biodiversity hotspots [25], it provides habitats for numerous wild species
but is deeply threatened. The region is extremely fragile in terms of land cover diversity
and its association with variable terrain, climate, and sociodemographic interactions. The
HKH region is significantly rich in terms of biodiversity but is also one of the least studied
in the world [26,27]. The fourth and fifth reports of the Intergovernmental Panel on Climate
Change (IPCC) explicitly pointed to the HKH as a data deficient area [28,29].

Even though 39% of the HKH region’s land is divided into protected areas to support
better conservation [30], the effectiveness of protected areas still faces challenges [31,32].
Almost one-third of the protected areas are transboundary and in these areas, as elsewhere
in the HKH region, ecosystems and habitats extend across political boundaries [23]. When
conservation policies meet with the administrative and political borders in the territory, the
situation becomes more complex because of the nonconformity between natural ecological
boundaries and administrative borders [33]. This means that landscape-level planning is
necessary and management requires regional cooperation if the ecosystems or habitats are
transboundary in nature [34]. For better conservation, seven transboundary landscapes
have been identified across the HKH region—based on biodiversity significance, representa-
tion of ecoregions, cultural significance, and contiguity of ecosystems for conservation and
sustainable development of the region [35]—and are being used to develop transboundary
landscape-level planning and management approaches.

The Kailash Sacred Landscape (KSL) is one of the seven transboundary landscapes,
named after the Mount Kailash, which is seen as the holiest shrine for several religions [36].
Three of Asia’s great rivers have their sources in the landscape: the Indus, the Brahma-
putra, and the Ganges River, which provide essential transboundary ecosystem goods
and services, both locally and downstream [37]. However, increasingly frequent human
activities, together with climate change, have caused rapid land use and land cover changes
over the past decades. Uddin et al. [23] have shown the forest fragmentation in Nepal’s
Kailash Sacred Landscape from 1990 to 2009 and further predicted the future LULC in
2030. Duan et al. [38] assessed LULC changes in the Kailash Sacred Landscape of China
from 1990–2008 and quantified driving forces. Singh et al. [39] studied the LULC changes
in the Kailash Sacred Landscape of China from 1976–2011 and also pointed out forest
fragmentation in the Indian part. All of these studies assessed the LULC changes in three
countries using different data sources, study periods, classification systems, and meth-
ods. It is almost impossible to compare the differences in LULC changes among the three
countries. In short, LULC data covering the entire area are still unclear.

A detailed and accurate knowledge of land cover is crucial for many scientific and
operational applications and, as such, it has been identified as an Essential Climate Vari-
able [40]. The development of remote sensing provided an important tool to explore
historical and current land cover information at the local, national, regional, and global
levels [41]. The complicated process of processing satellite imagery and the high cost of

198



Land 2021, 10, 173

computing power has limited the relevant research. Google Earth Engine (GEE) provides a
high-performance cloud-based platform and access for any researcher [42,43]. GEE houses
a massive imagery data collection, including Landsat, MODIS (Moderate Resolution Imag-
ing Spectroradiometer), and Sentinel that can be directly accessed using the JavaScript code
within minutes, allowing users to interactively test and develop algorithms and preview
results in real time without downloading any images [44]. Furthermore, GEE offers a pack-
aged algorithm for image preprocessing and machine learning classifiers. The efficiency of
GEE has been demonstrated by recent studies, including with regard to vegetation change
detection [45,46], urban area mapping [47,48], agricultural land mapping [49], grassland
monitoring [50,51], extraction of water bodies [52,53], and disaster monitoring [54].

Hence, we used satellite images and GEE to assess LULC changes and examine their
impacts on ecosystem service values (ESVs) in the KSL between 2000 and 2015. Our main
objectives were to explore: (1) the dynamics of LULC between 2000 and 2015; (2) the
ESV changes based on LULC; and (3) their implications for landscape conservation and
sustainable land use. This study is expected to provide insights into sacred landscape
conservation for future land management.

2. Materials and Methods
2.1. Study Area

The Kailash Sacred Landscape is located between 79◦40′ E–82◦30′ E and 29◦10′ N–
31◦20′ N (Figure 1). Mount Kailash, which is considered by multiple religions as the center
of the universe, and Lake Manasarovar are the most prominent features in the KSL. There
are two sacred lakes near Mount Kailash, Lake Manasarovar and Lake Rakshastal. The
region covers an area of over 31,000 km2, including parts of far-western Nepal, northern
India, and Purang County, Tibet Autonomous Region of China [23,38,39]. The elevation
drop from the highest mountain, Naimona’nyi, to the southern parts is over 7000 m. This
loss in elevation causes abundant vegetation types, ranging from tropical broadleaved
forest to alpine steppe. Diverse ecosystems provide habitats with rich biodiversity. The
landscape is also home to 93 mammal species, 497 bird species, and 134 fish species, among
other fauna, making it one of the ecologically richest areas in the western Himalayas [37].

Over a million people live within the landscape and most of this population resides in
India and Nepal, with very few persons inhabiting the sparsely populated high-elevation
areas on the Tibetan Plateau [37]. Local people rely heavily on the natural resources of this
region. In KSL-China, grazing is the primary mode of utilization of grassland, often exert-
ing pressures on fragile ecosystems. Agriculture accounts for a relatively small proportion
of land use. In KSL-Nepal and KSL-India, forests cover large parts of these two regions
and offer livelihoods to the local people while simultaneously supporting biodiversity con-
servation. Deforestation and fragmentation because of cropland expansion, infrastructure
construction, and illegal timber harvesting have been reported in these regions. Forest
cover loss and fragmentation are regarded as main causes of global ecosystem degrada-
tion [56]. Accordingly, human activities pose a serious threat to the fragile ecosystems in
the KSL.
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Figure 1. Map showing the location and topographic features of Kailash Sacred Landscape (KSL).
The Hindu Kush Himalaya (HKH) boundary was obtained from https://rds.icimod.org/home/
datadetail?metadataid=3924 (accessed on 8 February 2021) and the Tibetan Plateau boundary from
Zhang et al. 2014 [55].

2.2. Classification System and Training Data Collection

Land cover classification systems have been defined separately in KSL-China, KSL-
Nepal, and KSL-India. Duan et al. [38] classified land cover in KSL-China into ten types:
barren land, cropland, desert, glacier, wetland, water bodies, built-up land, low coverage
rangeland, medium coverage rangeland, and high coverage rangeland. Uddin et al. [23]
divided the land cover in the KSL-Nepal into seven types: forest, shrub land, grassland,
cropland, barren area, water bodies, and snow/glacier. Singh et al. [39] classified the
land cover system for KSL-India into seven types: forest, settlement, water, agriculture,
grassland, scrubland, and snow. The landscape in KSL-China differs from that in KSL-
Nepal and KSL-India, thus resulting in different land cover systems. Even though there is
a certain resemblance in landscape between KSL-Nepal and KSL-India, differences exist
in the classification systems. Following previous frameworks [57–59], we defined our
land cover classification system as shown in Table 1. Land cover classes were defined
through visual interpretation of high-resolution imagery available from Google Earth,
using Landsat images as a reference. Visual interpretation of reference imagery was based
on elements that help identify land cover features such as location, size, shape, tone/color,
shadow, texture, and pattern [60]. Furthermore, considering the time intervals defined
in this study, the training points that were stable during the study period were selected.
Finally, we obtained all the defined land cover types and training points shown in Table 1
and Figure S1.

Table 1. Classification system and list of training points.

Land Cover Code Land Cover Type Number of the Training Points

1 Water bodies 165
2 Snow/glacier 255
3 Forest 182
4 Built-up area 80
5 Shrub land 113
6 Cropland 194
7 Grassland 439
8 Barren land 285
9 Wetland 89
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2.3. Preprocessing of the Landsat Images

The Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper Plus
(ETM+), and Landsat-8 Operational Land Imager (OLI) top-of-atmosphere (TOA) re-
flectance products were used for land cover change analysis (available online: https:
//earthengine.google.com (accessed on 8 February 2021)). The Landsat datasets cover-
ing our study area were then imported as image collections into GEE, a cloud-based
geospatial analysis platform, for subsequent preprocessing tasks. Preprocessing meth-
ods presented by Alban et al. (2018) [61] were modified and applied in this study. The
main preprocessing functions, including cloud masking, shadow masking, adding spec-
tral index, etc., were packaged together. Using pixel-based image compositing methods,
the best available observations from multiple Landsat images were selected to gener-
ate high-quality Landsat image composites for 2000 and 2015 [62–65]. Users can de-
fine parameters according to their own requirements, including location of the study
area, composite years, cloud cover threshold, etc. The detailed parameters used in this
study can be found in the supplementary materials. The quality of the image always
suffers from high cloud cover, resulting in empty pixels or scenes. To solve this prob-
lem, we combined two strategies. First, we set the combine year parameter to three
years to obtain as many images as possible; then we applied the focal_mean function
offered by GEE (available at: https://developers.google.com/earth-engine (accessed on
8 February 2021)), a morphological mean filter, to each band of an image using a cus-
tom kernel (Figure S2). The detailed parameters used in this study can be found here:
https://code.earthengine.google.com/17f98d1e3fe5b7c0e6b432480a65dc9b (accessed on
8 February 2021).

2.4. Classification Features Input and Classifier

Multiple spectral indices have been developed to establish the relationship between
the spectral and radiometric responses measured by remote sensors and the presence
of various land covers, especially vegetation [66]. Huang et al. [67] used the B2–B7 and
nominalized difference vegetation index (NDVI) bands as predicting bands for mapping
land cover changes in Beijing; Teluguntla et al. [68] used the B2–B7 and NDVI bands as
the classification features to map the 30-m cropland extent in Australia and China; and
Xiong et al. [69] used B2–B4, B8, and NDVI bands as the predicting bands to acquire a 30-m
resolution cropland extent map of continental Africa. Tsai et al. [44] mapped the LULC in
Fanjingshan National Nature Reserve using the Landsat spectral band together with the
NDVI, normalized difference blue and red (NDBR), normalized difference green and red
(NDGR), normalized difference shortwave infrared and near-infrared (NDII), modified
soil-adjusted vegetation index (MSAVI), and spectral variability vegetation index (SVVI).

To obtain the most suitable predicting bands, we added spectral bands as below: the
B2–B7 and temp bands were selected as the main classification feature inputs, together
with 15 spectral indices derived from the Landsat data, including the NDVI [70], the land
surface water index (LSWI) [71], the nominalized difference snow index (NDSI) [72], the en-
hanced vegetation index (EVI) [73], the normalized difference tillage index (NDTI) [74], the
normalized difference moisture index (NDMI) [75], the normalized burn ratio (NBR) [76],
the vegetation index green (VIG) [77], tasseled cap transformation [78], and other spectral
index (SI). These indices were defined as follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

LSWI =
ρNIR − ρSWIR1
ρNIR + ρSWIR1

(2)

NDSI =
ρGreen − ρSWIR1
ρGreen + ρSWIR1

(3)
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EVI =
ρNIR − ρRed

ρNIR + 6× ρRed− 7.5× ρBlue + 1
(4)

NDTI =
ρSWIR1 − ρSWIR2
ρSWIR1 + ρSWIR2

(5)

NDMI =
ρNIR − ρSWIR1
ρNIR + ρSWIR1

(6)

NBR =
ρNIR − ρSWIR2
ρNIR + ρSWIR2

(7)

VIG =
ρGreen − ρRed
ρGreen + ρRed

(8)

SI =
ρRed − ρBlue
ρRed + ρBlue

(9)

where ρNIR, ρRed, ρGreen, ρSWIR1, ρSWIR2, and ρBlue represent the surface reflectance
values of the near-infrared band (0.76–0.9 µm), the red band (0.63–0.69 µm), the green
band (0.52–0.6 µm), the shortwave infrared band 1 (1.55–1.750 µm), the shortwave infrared
band 2 (2.11–2.29 µm), and the blue band (0.45–0.52 µm) for a given pixel, respectively.
Furthermore, we also took the topographical factors (slope, elevation, and aspects, avail-
able at: https://developers.google.com/earth-engine/datasets/catalog (available in EE
as USGS/SRTMGL1_003) (accessed on 8 February 2021)) and nighttime data (available
at: https://developers.google.com/earth-engine/datasets/catlog/NOAA_VIIRS_DNB_
MONTHLY_V1_VCMSLCFG (accessed on 8 February 2021)) into consideration to better
depict cropland and urban areas. We obtained a total of 24 features.

GEE provides 21 classifiers of which random forest (RF) is one of the most widely
used as it yields higher classification accuracies, requires less model training time, and is
less sensitive to training sample qualities compared to support vector machine (SVM) and
artificial neural network (ANN) classifiers [79,80]. In this study, the RF classifier in GEE
was trained using 70% of the training data randomly selected and extracted from the sets of
image stacks, with the remaining 30% of the training data used for the model validation. A
confusion matrix was implemented to assess the accuracy of the classified image with the
independent set of ground truth points [81]. The overall accuracy was calculated in GEE,
together with the producer’s accuracy (PA) and user’s accuracy (UA) of each land cover
type. A previous study indicated that that the accuracy of a LULC map should higher than
85% for optimal interpretation and identification [82]. To deal with salt and pepper noise,
classified images were postprocessed with a majority filter to smooth isolated pixels [83,84].
The overall levels of accuracy for 2000 and 2015 were 88.6% and 89.42%, respectively. The
RF classifier produced overall acceptable levels of accuracy for the four classification points
in time and the defined LULC types (Tables S1 and S2).

2.5. Detection of LULC Changes and Estimation of ESVs

The LULC changes can be calculated using Equation (10). To identify the main
conversion directions and highlight the dominant dynamic events in land use/cover
changes, we used ArcGIS (version 10.4) to generate the transfer matrix for each period
and visualized the transfer process with a Sankey Diagram (available online at: https:
//sankey.csaladen.es (accessed on 8 February 2021)) [85,86]. The calculation is as follows:

R =
Lt − Lt−1

Lt−1 ∗ ∆t
× 100% (10)

where R represents the LULC change rate, Lt represents land cover type in year t, Lt−1
represent land cover in the most recent time interval, and ∆t denotes the time interval
(15 in this study).

To better understand the consequences of the conversion from forest to other LULC
types, we further assessed the forest fragmentation of the KSL in 2000 and 2015 following
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the method described by Vogt et al. [87]. The forest LULC type was divided into six classes,
patch, edge, perforated, small core (SC) (<250 acres), medium core (MC) (250–500 acres),
and large core (LC) (>500 acres), by computing the distance from forest pixels to non-forest
pixels. We defined the edge width as 100 m in reference to previous studies [23].

Costanza et al. [1] presented a model to estimate global ecosystem service value.
However, this estimation method is best suited for Western countries; Xie et al. [88]
therefore grouped the ESVs into four types and nine subtypes specific to China on this
basis and using data from [5]. Costanza et al. [9] further presented a new method for the
estimation of global ESVs and found that the ESVs of certain land cover types increased (e.g.,
the ESVs of forest land cover increased by 2462 USD per hectare per year from 1997–2011)
while the remaining land cover types remained stable. In this study, we adopted the same
equivalent value as that used by Song et al. [89] (Table 2). The equations used to evaluate
the KSL’s ESVs and their changes are as follow:

ESVt =
n

∑
i=1

Areai × ESVi (11)

C∆t =
Eend − Estart

EStart
× 100% (12)

where ESVt denotes the total ESV at time t (2000, 2005, 2010, 2015); Areai represents the area
of land cover i, ESVi represents the ESV of land cover I, and n denotes the total number of
land cover types (seven types after reclassification in this study). Ct represents the changes
in ESV within a time interval (e.g., 2000–2005) and Eend and Estart denote the ESVs at the
end and start of the time interval, respectively.

Table 2. Ecosystem service values (ESVs) of land cover types defined in this study.

Land Cover Defined in This Study Equivalent Biome
(Song et al. 2017) [89]

ESVs Per Unit Area
($/hm2/year)

Water bodies
Water areas 2607.77Snow/glacier

Forest Forestry areas 1616.99Shrub land
Grassland Grassland 671.06
Cropland Cultivated land 454.28

Built-up area Built-up areas 0
Barren land Unused land 79.93

Wetland Wetland 3149.45

2.6. Elasticity of ESV Changes in Response to LULC Changes

For the purpose of investigating the relation between LULC and ESVs, elasticity as
defined by Song et al. [89] was applied in this study. The concept of elasticity is used to
measure the sensitivity of a variable to change in another variable. Here, elasticity was
used to measure the percentage change in ESV in relation to the percentage change in
LULC, and thus can be described as follows:

EEl =

∣∣∣∣
(Eend − Estart)/Estart × 100%

LCP

∣∣∣∣ (13)

LCP =
∑7

i=1 ∆LUTi

∑7
i=1 LUTi

(14)

where EEI represents the elasticity of ESV change in response to changes in LULC, Eend
is the ESV at the end of the study period, Estart is the ESV at the beginning of the study
period, LCP is the conversion percentage of land (which reveals both speed and degree of
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LULC conversion), ∆LUTi is the converted area of the i type of LULC, LUTi is the area of
the i type of LULC, and T is the time gap (in years) of the study period.

3. Results
3.1. The Spatial Distribution of LULC and Its Changes

As shown in Figure 2, there was a significant difference in land cover between the
Himalayan northern slopes (China side) and southern slopes (Nepal and India side).
Statistical results indicated that most land in the KSL was covered by grassland (23.98% in
2000, 25.74% in 2015) followed by barren land (21.34% in 2000, 21.98% in 2015), and forest
(17.45% in 2000, 16.04% in 2015) (Table 3). Grassland was mainly distributed in KSL-China
and widely distributed on the Tibetan Plateau (55.73% in 2000, 52.84% in 2015). Over 60%
of barren land was distributed in KSL-China and forest land cover was mainly distributed
in KSL-Nepal and KSL-India (60.69% and 39.31% in 2000, respectively). Snow/glacier
accounted for more than 15.16% of the total area and over 53% of snow/glacier was
distributed in KSL-Nepal (54.14% in 2000, 53.61% in 2015). Cropland and built-up areas
were the main land cover types closely relevant to human activities and these were mainly
distributed in KSL-Nepal and KSL-India.
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Table 3. Land use and land cover (LULC) in the KSL during the period 2000–2015.

Land Cover Area in 2000 (km2) % Area in 2015 (km2) % Changed Area
(2000–2015)

Change Rate
(2000–2015)

Water bodies 990.27 3.17 994.71 3.19 4.43 0.03
Snow/glacier 4728.51 15.16 4687.55 15.03 −40.96 −0.06

Forest 5443.20 17.45 5003.37 16.04 −439.82 −0.54
Built-up area 65.59 0.21 66.05 0.21 0.46 0.05
Shrub land 2917.78 9.35 2528.17 8.11 −389.61 −0.89
Cropland 1910.59 6.13 2257.50 7.24 346.90 1.21
Grassland 7479.89 23.98 8028.35 25.74 548.46 0.49

Barren land 6655.26 21.34 6854.46 21.98 199.20 0.20
Wetland 1000.04 3.21 770.98 2.47 −229.07 −1.53

Total 31,191.13 100 31,191.13 100

Between 2000 and2015, four land cover types showed decreasing trends and the other
five land cover types showed increasing trends (Table 3). The greatest loss was found for
forest: a total of 439.82 km

2
forest cover loss was observed in the KSL. The decrease of forest

cover in KSL-Nepal contributed 89.68% of the total forest loss during the research period.
Shrub land also showed an obvious decreasing trend, with a total loss of 389.61 km2 during
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the research period, decreasing at a rate of 0.89% per year. The decrease of shrub land in
KSL-Nepal and KSL-India contributed 65.55% and 34.3%, respectively, to the total shrub
land loss. During the research period, wetland and snow/glacier decreased by 229.07 km2

and 40.96 km2, respectively. Among the land cover types with increasing trends, the biggest
gains were found in grassland: grassland increased by 548.46 km

2
during the research

period. The increase in grassland in KSL-Nepal and KSL-India contributed 58.32% and
28.22% to the total gains in grassland in the KSL, respectively. From 2000–2015, cropland
increased by 346.90 km2 and at a rate of 1.21% per year. The biggest increase was observed
in KSL-Nepal, where cropland increased by 247.94km2 from 2000–2015. Barren land was
found to increase from 6655.26 km

2
to 6854.46 km

2
between 2000 and 2015 and at a rate

of 0.2% per year. Changes in water bodies and built-up areas were not obvious and only
increased by 4.43 km

2
and 0.46km

2
, respectively, during the research period. The results

indicate that the area of land types with higher ecosystem service values (e.g., forest, shrub
land, and wetland) decreased.

Forest, barren land and grassland were significantly converted to other land cover
types in the period from 2000–2015 (Table 4 and Figure 3). A total of 857.81 km

2
of forest

were converted to other land cover types, including 59.18% that were converted to shrub
land and 34.19% that were converted to cropland. This indicates the forest fragmentation
occurred between 2000 and 2015. About 1125.07 km

2
of barren land were converted into

other land cover types during the research period, 39.96% of which were converted to
snow/glacier. Snow/glacier mainly converted to barren land during the research period:
a total of 526.78 km2 of snow/glacier were converted to barren land. About 1150.91 km2

of grassland were converted to other land cover types with 61.17% converted to barren
land. During the study period, shrub land contributed most to the expansion of cropland: a
total of 425.48 km2 of shrub land was converted to cropland. Meanwhile, cropland mainly
converted to shrub land and forest between 2000 and 2015: a total of 288.38 km2 and
170.74 km2 of cropland converted to shrub land and forest, respectively. The expansion of
built-up areas was mainly at the cost of cropland. The results indicate that deforestation
and cropland abandonment occurred in KSL-Nepal and KSL-India simultaneously.

Table 4. Transition matrix of different LULC types in the KSL during the period 2000–2015.

2015

2000

Water
Bodies

Snow/
Glacier Forest Built-up

Area
Shrub
Land Cropland Grassland Barren

Land Wetland

Water bodies 832.23 61.02 19.24 4.54 4.40 0.91 32.87 35.5 0.00
Snow/glacier 48.92 4068.60 2.66 2.43 3.55 0.27 76.05 526.78 0.70

Forest 7.87 0.09 4586.69 8.21 507.66 293.25 39.95 0.79 0.00
Built-up area 7.74 0.06 6.49 23.11 1.40 25.02 1.39 0.49 0.00
Shrub land 16.12 31.59 203.00 0.85 1641.12 425.48 588.14 11.69 0.00
Cropland 1.59 0.02 170.74 10.41 288.38 1420.75 17.31 1.62 0.24
Grassland 29.40 77.80 13.99 8.32 79.91 75.55 6329.91 704.02 161.93

Barren land 51.32 449.60 1.83 8.22 1.94 3.48 555.73 5531.32 52.95
Wetland 0.00 0.32 0.00 0.03 0.00 13.31 387.99 43.23 555.29
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3.2. Forest Fragmentation in the KSL

A conversion of forest to other land cover types indicating forest fragmentation
occurred in the KSL during the research period (Table 5). The distribution of and changes
in forest fragmentation in 2000 and 2015 are depicted in Figure 4. During the study
period, the forest fragmentation changed significantly. In 2000, core forest (>500 acres)
covered 34.24% of the forest area, followed by edge forest covering 30.39%, perforated
forest covering 18.44%, core forest (<250 acres) covering 7.72%, patch forest covering 5.95%,
and core forest (250–500 acres) covering 2.89%. In 2015, edge forest covered 33.67% of the
forest area, followed by core forest (>500 acres) covering 28.1%, perforated forest covering
17.22%, patch forest covering 8.69%, core forest (<250 acres) covering 8.53%, and core
forest (250–500 acres) covering 3.79%. Core forest (>500 acres) decreased from 1883.90 km

2

to 1406.05 km
2
, with a change rate of 25.36%. Meanwhile, patch forest increased from

323.81 km
2

to 434.83 km
2
, with a change rate of 34.29%.

Table 5. Forest fragmentation and change in KSL between 2000 and 2015.

Type of Patches 2000
(km2)

2015
(km2)

2000–2015
(km2)

Change Rate
(%)

Patch 323.81 434.83 111.02 34.29
Edge 1654.24 1684.39 30.15 1.82

Perforated 1003.80 861.59 −142.21 −14.17
Core (<250 acres) 420.12 426.81 6.69 1.59

Core (250–500 acres) 157.33 189.71 32.37 20.58
Core (>500 acres) 1883.90 1406.05 −477.85 −25.36
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Forest land cover was mainly distributed in KSL-Nepal; this also true for the core
forest (>500 acres), covering 57.68% of the total core forest (>500 acres) in KSL. In 2000, core
forest (>500 acres) covered 32.90% of the forest area in KSL-Nepal, followed by edge forest
covering 31.23%, perforated forest covering 18.28%, core forest (<250 acres) covering 8.24%,
patch forest covering 6.12%, and core forest (250–500 acres) covering 3.23%. During the
research period, core forest (>500 acres) decreased by 31.97% and patch forest increased by
38.62%. The rest of the forest land cover was distributed in KSL-India. In 2000, core forest
(>500 acres) covered 37.25% of the forest area in KSL-India, followed by edge forest covering
29.09%, perforated forest covering 18.70%, core forest (<250 acres) covering 6.91%, patch
forest covering 5.68%, and core forest (250–500 acres) covering 2.36%. From 2000–2015,
core forest (>500 acres) decreased by 16.36% and core forest (250–500acrs) increased by
56.59%. The results suggest that deforestation and forest fragmentation occurred in KSL,
especially in KSL-Nepal, during the research period.

3.3. The LULC Changes in KSL-China, KSL-Nepal, and KSL-India

In 2015, most land in the three countries was covered by different land cover types
(Table 6). In KSL-China, barren land accounted for the largest proportion of land cover.
During the research period, no evident changes were observed in barren land (increase of
2.43 km2). As the second largest land cover type, grassland increased from 4168.41 km2 to
4242.24 km2 during the research period. Between 2000 and 2015, snow/glacier increased
from 756.58 km2 to 815.46 km2, an increasing trend opposite to the broader picture for KSL
snow/glacier. A great increase was observed in cropland, which increased by 73.07 km2

between 2000 and 2015. Wetland, water bodies and shrub land showed decreasing trends
during the research period, while the largest decrease was found in wetland (decreased
by 203.29 km2). In KSL-Nepal, grassland, cropland, and barren land contributed most
to land cover increases. During the research period, the greatest gains were found in
grassland, which increased by 319.87km2, followed by cropland, which contributed the
most to the cropland expansion in the KSL (increase of 247.94 km2, accounting for over
70% of the total increase). Forest in KSL-Nepal decreased from 3303.37 km2 to 2908.90 km2

during the research period. Between 2000 and 2015, shrub land decreased by 255.43 km2,
second only to the loss of forest. Snow/glacier showed a decreasing trend and decreased
by 47.31 km2 during the research period. In KSL-India, the greatest gains were found for
grassland, which increased by 154.76 km2 between 2000 and 2015. Changes in cropland
were not evident, with an increase from 796.86 km2 to 822.83 km2. Shrub land decreased
from 905.79 km2 to 772.13 km2 during the research period. The most significant changes
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were observed for cropland expansion and forest loss, which were mainly distributed in
KSL-Nepal.

Table 6. Dynamic changes in LULC types between 2000–2015.

Land Cover

KSL-China KSL-Nepal KSL-India

2000
(km2)

2015
(km2)

Change
Area
(km2)

Change
Rate
(%)

2000
(km2)

2015
(km2)

Change
Area
(km2)

Change
Rate
(%)

2000
(km2)

2015
(km2)

Change
Area
(km2)

Change
Rate
(%)

Water
bodies 754.55 748.52 −6.03 −0.05 136.44 150.07 13.64 0.67 99.45 96.30 −3.15 −0.21

Snow/glacier 756.58 815.46 58.89 0.52 2560.67 2513.36 −47.31 −0.12 1412.07 1359.45 −52.63 −0.25
Forest 0.00 0.00 0.00 0.00 3303.37 2908.90 −394.47 −0.80 2140.04 2094.67 −45.38 −0.14

Built-up
area 0.15 1.83 1.69 75.37 32.92 32.26 −0.67 −0.14 32.60 32.04 −0.56 −0.11

Shrub land 0.63 0.05 −0.58 −6.17 2011.52 1756.09 −255.43 −0.85 905.79 772.13 −133.66 −0.98
Cropland 13.61 86.67 73.07 35.80 1100.41 1348.35 247.94 1.50 796.86 822.83 25.97 0.22
Grassland 4168.41 4242.24 73.83 0.12 2358.69 2678.55 319.87 0.90 952.65 1107.41 154.76 1.08

Barren land 4227.39 4229.81 2.43 0.00 1659.08 1801.75 142.67 0.57 767.51 821.74 54.23 0.47
Wetland 898.35 695.06 −203.29 −1.51 97.66 71.42 −26.24 −1.79 4.08 4.49 0.41 0.68

3.4. The Spatial Distribution of ESVs and Their Response to LULC Changes

The ESVs of the KSL in 2000 and 2015 were estimated (Figure 5 and Table 7). The total
ESV of the KSL in 2000 was 36.53 × 108 USD y−1. During the research period, the total ESV
decreased by 1.17 × 108 USD y−1. In general, water areas and forestry areas contributed
most to the total ESV, accounting for about 77.83% in 2000 and 76.38% in 2015. In 2000, water
areas contributed about 40.82% of the total ESV in the KSL and 41.91% in 2015. Forestry
areas contributed the second most to the total ESV and decreased from 13.52 × 108 USD y−1

in 2000 to 12.18 × 108 USD y−1 in 2015. The ESVs of grassland, cultivated land, and
unused land showed an increasing trend. The greatest gains were found in grassland:
the ESV of grassland increased from 5.42 × 108 USD y−1 to 5.67 × 108 USD y−1 during
the research period. With the expansion of cropland, the ESV of cropland increased by
0.16 × 108 USD y−1 from 2000–2015. Although wetland accounted for a small area in the
KSL, the high ESV of wetland enlarged its influence on the total ESV. During the research
period, the ESV of wetland decreased by 0.16 × 108 USD y−1, which offset the increase
of ESV of cropland. Since the ESV of built-up areas was zero, this kind of land cover
contributed no ESV.
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Figure 5. The distribution of ESVs in the KSL in 2000 and 2015.
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Table 7. The ESVs of 11 LULC types in 2000 and 2015.

Land Cover
Value

(108 USD y−1)
Change Value
(108 USD y−1)

Change Rate
(%)

2000 2015 2000–2015 2000–2015

Water areas 14.91 14.82 −0.09 −0.6
Forestry area 13.52 12.18 −1.34 −9.91

Grassland 5.42 5.67 0.25 4.61
Cultivated land 0.87 1.03 0.16 18.39
Built-up areas 0 0 0 0
Unused land 0.53 0.55 0.02 3.77

Wetland 1.28 1.12 −0.16 −12.50
Total 36.53 35.35 −1.17 −3.20

In KSL-China, the total ESV was 8.44 × 108 USD y−1 in 2000, lower than the ESVs
in KSL-Nepal (18.07× 108 USD y−1) and KSL-India (10.03 × 108 USD y−1). Water bodies
contributed most to the total ESV in China, accounting for almost half of the total ESV
in KSL-China, followed by Grassland (3.20 × 108 USD y−1). From 2000–2015, the total
ESV in KSL-China increased by 0.06 ×108 USD y−1. The increase of water bodies by
0.13 × 108 USD y−1 contributed most to the increase of the total ESV in KSL-China. The
decrease of the ESV of grassland was the main cause for the decrease of total ESV in the KSL.
The ESV of wetland decreased from 0.95 × 108 USD y−1 in 2000 to 0.93 × 108 USD y−1

in 2015. In KSL-Nepal, the total ESV accounted for about 50% of the total ESV in the
KSL. During the research period, ESV in KSL-Nepal decreased by 0.88 × 108 USD y−1;
the decrease of the ESVs of forestry areas was the main cause of the loss of total ESV in
KSL-Nepal. In 2000, the ESVs of forestry areas accounted for 47.54% of the total ESV in KSL-
Nepal. However, this number decreased to 43.87% in 2015. From 2000–2015, the ESV of
forestry areas decreased by 1.05 × 108 USD y−1. The ESVs of cultivated land and grassland
increased by 0.11 × 108 USD y−1 and 0.21 × 108 USD y−1, respectively, and offset a small
part of the ESV loss. In KSL-India, the total ESV decreased from 10.03 × 108 USD y−1 in
2000 to 9.67 × 108 USD y−1 in 2015. The ESV of forestry areas contributed most to the
total ESV in KSL-India, similar to KSL-Nepal, followed by water areas. The greatest loss
was observed in forestry areas: the ESV of forestry areas decreased by 0.29 × 108 USD y−1.
From 2000 to 2015, the ESV of water areas decreased by 0.15 × 108 USD y−1, second only to
the loss in ESV of forestry areas. The greatest gains in ESV were found for grassland, which
increased by 0.12 during the research period. The small changes of cropland in KSL-India
made a relevant but small contribution to the changes in ESV in KSL-India.

The elasticity of ESV change with respect to LULC changes during the research period
was 2.33, which indicates that a conversion of 1% of land area would result in an average
change of 2.33% in the ESV. The elasticity of the ESVs in the three countries was further
calculated. The results show that KSL-China had the highest elasticity at 5.27, indicating
that a conversion of 1% of land area would result in an average change of 5.27% in the ESV.
In KSL-Nepal, the elasticity was 4.34, higher than that of KSL-India (1.57).

4. Discussion
4.1. LULC Changes across the KSL

Detailed LULC research is of great significance for managing natural resource effec-
tively [23]. In this study, we applied an RF algorithm to classify the LULC in the KSL
in 2000 and 2015 using GEE. For a solution to the problem of the low-quality imagery
caused by the high cloud cover in this region, we adopted a pixel-based image composite
algorithm and filled the blank pixels using the focal_mean function. Furthermore, the
spectral index, terrain factors, and nighttime light data were used to improve the accuracy
of the classification. The entire process of LULC classification, except where otherwise
noted, was accomplished in GEE. The overall accuracies of the LULC classification in 2000
and 2015 were 87.69% and 85.73%, respectively, indicating the good performance of our
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methods. Based on the LULC, we further estimated the ESVs of the KSL and qualified the
responses of ESVs to LULC changes.

During the research period, the greatest land cover loss was found for forest cover,
which decreased by 439.82 km2. Forest area in Nepal and India decreased from 3303.37 km2

to 2908.90 km
2

and from 2140.04 km
2

to 2094.67 km
2
, respectively. The same phenomenon

of forest cover decrease has also been found in other Himalayan regions [90,91]. The second
greatest land cover loss was found for shrub land, which decreased by 389.61 km2 between
2000 and 2015. These decreasing vegetated areas, especially the forest cover loss, may
pose a threat to biodiversity conservation and livelihood [92,93]. Meanwhile, grassland
and cropland areas significantly increased during the research period, which is consistent
with the findings of Uddin et al.’s [23] and Singh et al. [39]. Cropland increased from
1910.59 km

2
to 2257.50 km

2
, with a change rate of 1.21% per year. The three countries

showed the same increasing trend. The largest growth was found in Nepal, where cropland
increased by 247.94 km2. Results from the transfer matrix show that expansions of cropland
were mainly derived from forest and shrub land in KSL-India and KSL-Nepal. It has been
previously shown that expansion of cropland is one of the major drivers of deforestation in
the Himalayas [94]. Through statistical analysis of the LULC changes along the elevation,
we further found that the increase of cropland was mainly distributed between 1000 and
2500 m in the KSL, accounting for 79.63% of the total increase (Figure S3). The largest
growth was found at 1500–2000 m, accounting for 35.01%. The decrease of forest was
mainly distributed between 1000 and 3500 m, accounting for 99.28% of the total loss. The
most passive change of forest cover was between 1500 and 2000 m. An earlier study
has shown that, in the final three decades of the 20th century, forest degradation mainly
occurred in temperate oak forests at elevations of 1800–2800 m, with some forests also
lost at lower elevations [95]. Lowland areas are considered more favorable for supporting
human livelihood and thus result in more intense LULC changes [96].

The forest in the KSL is undergoing a process of fragmentation under the drivers
of cropland expansion and illegal timber extraction [23,39]. As an important habitat for
countless wild species, the decrease in forest cover along with forest fragmentation put
wild life in danger. Sarker et al. (2018) assessed the habitat suitability and connectivity of
the common leopard (Panthera pardus) in Kailash Sacred Landscape [97]. Their results
show that the best forest connectivity for leopards lies between large forest patches situated
at the middle elevational range of the landscape, associated with moderate to medium
slopes and a high density of rivers and streams. The decrease in core forest cover may
threaten the habitat of the common leopard. Increasing human activities (expansion of
cropland and built-up areas) [98,99], together with climate change [100], have resulted in
rapid changes in the Himalayan ecosystem [101]. Invasive species are another important
issue to consider. Research has shown that species, including invasive species, tend to
move to higher elevation regions in global warming contexts [102,103].

The conversion of cropland to forest and shrub land indicates that farmland abandon-
ment occurred in the KSL. Between 2000 and 2015, 288.38 km2 of cropland were converted
to shrub land. A noticeable increasing trend in farmland abandonment has been reported
all around the world, especially in mountain regions [104,105]. According to a previous
study, the hill and mountain regions of the Nepal Himalayas are more prone to farmland
abandonment because of labor migration [106–108]. Singh et al. (2015) also found that, in
KSL-India, continuous migration forced the conversion of high-altitude agricultural lands
into grasslands and scrublands [39]. From the perspective of ecosystems service, farmland
abandonment itself has positive effects [109]; however, it also poses a threat to the food
security of local livelihoods [107].

4.2. ESV Changes in Response to LULC Changes

LULC changes are generally accepted as one of the critical drivers of global change [110].
During the studied 15-year period, the total ESV of the KSL decreased from 36.53 × 108 USD y−1

to 35.35× 108 USD y−1, decreasing at a rate of 0.21%/year. The decrease of forestry areas was
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the primary cause for the loss of ESV. The largest ESVs were observed in KSL-Nepal, due
to the large forestry areas, whereas KSL-China was responsible for the smallest propor-
tion of the ESV. However, the ESVs in KSL-China showed an inverse trend compared to
KSL-Nepal and KSL-India. Between 2000 and 2015, the total ESV of KSL-China increased
by 0.06 × 108 USD y−1 thanks to the increase in water areas. On a global scale, the global
terrestrial ESV decreased at a rate of 2.06%/year from 1997 to 2011 [9]. Hence, changes
in ESVs in the KSL were more modest than those globally. On a national scale, the terres-
trial ESVs in China decreased at a rate of 0.03% per year from 1988–2008. This indicates
that the decreases in ESVs in KSL were much more rapid. However, there are large gaps
in other Himalayan regions. Bhaskar et al. [111] assessed the ESVs in the Transbound-
ary Karnali River Basin (KRB), Central Himalayas, and showed that they increased by
1.59 × 108 USD y−1 from 2000–2017. Increase of shrub/grassland contributed the most to
the increase of ESVs in this region, followed by bare land. Raju et al. [112] estimated the
ESVs in the Transboundary Gandaki River Basin (GRB), Central Himalayas, indicating
that there was a 1.68 × 108 USD y−1 increase in ESVs from 1990–2015 due to the increase
of cropland and forest cover. Zhao et al. [113] assessed the LULC changes and ESVs in
the Koshi River Basin (KRB) and found that the latter decreased by 2.05 × 108 USD y−1

from 1990–2010 because of the decrease in forest and glacier cover. Even though large
knowledge gaps are still present for different regions, the importance of forest land cover
is obvious and changes to it directly affect regional ESVs.

With regard to the elasticity in the KSL, a result of 2.33 indicates that that the conver-
sion of 1% of land area would result in average changes of 2.33% in ESVs. The region where
changes in ESVs had the highest elasticity in relation to LULC changes was KSL-China,
where the high elasticity of ESV change in relation to LULC changes was attributable to
the concentrations of unused land, wetland, and water bodies, the LULC types with the
highest and the lowest ESVs. In KSL-Nepal, deforestation was the main cause of the high
elasticity. Forest cover in KSL-Nepal accounted for the largest proportion of this type of
land cover in the KSL and decreased by 394.47 km2 during the studied 15-year period.
The elasticity in KSL-India was relatively small, mainly due to the small decrease of forest
cover. High elasticity indicates that even small LULC changes would have serious effects
on ESVs.

4.3. Uncertainty and Limitations of This Study

In this study, we failed to accurately extract the built-up areas in the KSL because of
the limited resolution of Landsat images and relevant small buildings in the KSL mountain
regions. To resolve this problem, we tried adding nighttime light data to improve accuracy
for built-up areas. However, this approach only works in regions with night lights, such
as Pithoragarh (Figure S4). Therefore, the changes to built-up areas in KSL-Nepal and
KSL-India showed a slightly decreasing trend. Even so, LULC and ESV changes were
not strongly affected due to the small proportion of built-up areas and their ESVs of zero.
Long time-series LULC change monitoring can reveal more details behind these changes.
Given the available images, we only studied the LULC changes from 2000–2015, and
thus LULC change fluctuations may have been hidden. In this study, we adopted the
benefit/value transfer method presented by Song et al. [89], though many critiques of the
benefit/value transfer method remain unanswered. Biophysical models might be more
helpful for analyzing complex ecological systems and their impacts.

5. Conclusions

In this study, we extended an LULC study to the entire KSL and further assessed the
changes in ESVs between 2000 and 2015. During the study period, the KSL experienced
significant LULC changes: forest and shrub land decreased by 439.82km2 and 389.61km2,
respectively, whereas grassland and cropland increased by 548.46km2 and 346.90km2,
respectively. The conversion of forestry areas to cropland was the main cause of cropland
expansion. Meanwhile, the conversion of cropland to shrub land indicates that there
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was farmland abandonment in the KSL. The decrease of forestry areas may pose a threat
to biodiversity and livelihoods there. During the studied 15-year period, the large core
(>500 acre) forest type decreased by 25.36% and patch forest increased by 34.29%. Severe
forest fragmentation was observed in the KSL, mainly distributed in KSL-Nepal, leading to
a decrease in ESVs in the KSL. Between 2000 and 2015, the total ESV in the KSL decreased
by 1.17 × 108 USD y−1 and the ESV of forestry areas decreased by 1.34 × 108 USD y−1.
The decrease of ESV in forestry areas contributed most to the loss of total ESV and also to
the high elasticity. This study revealed that even small LULC changes can cause relevant
high ESV changes in the KSL.
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focal_mean function (right); Table S1. The confusion matrix in 2000; Table S2. The confusion matrix
in 2015; Figure S3. The LULC changes along the elevation in KSL from 2000–2015; Figure S4. Built-up
areas of Pithoragarh in 2000 and 2015.
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Abstract: Savannahs provide valuable ecosystem services and contribute to continental and global
carbon budgets. In addition, savannahs exhibit multiple land uses, e.g., wildlife conservation,
pastoralism, and crop farming. Despite their importance, the effect of land use on woody aboveground
biomass (AGB) in savannahs is understudied. Furthermore, fences used to reduce human–wildlife
conflicts may affect AGB patterns. We assessed AGB densities and patterns, and the effect of land use
and fences on AGB in a multi-use savannah landscape in southeastern Kenya. AGB was assessed
with field survey and airborne laser scanning (ALS) data, and a land cover map was developed using
Sentinel-2 satellite images in Google Earth Engine. The highest woody AGB was found in riverine
forest in a conservation area and in bushland outside the conservation area. The highest mean AGB
density occurred in the non-conservation area with mixed bushland and cropland (8.9 Mg·ha−1),
while the lowest AGB density (2.6 Mg·ha−1) occurred in overgrazed grassland in the conservation
area. The largest differences in AGB distributions were observed in the fenced boundaries between
the conservation and other land-use types. Our results provide evidence that conservation and fences
can create sharp AGB transitions and lead to reduced AGB stocks, which is a vital role of savannahs
as part of carbon sequestration.

Keywords: savannah; multifunctionality; protected areas; conservation; airborne laser scanning;
aboveground woody biomass

1. Introduction

Savannahs are characterized by scattered tree cover and continuous coverage of grass-dominated
herbaceous plants [1,2]. On the African continent, savannahs and woodlands play a particularly large
role in the carbon cycle, and wildlife and biodiversity conservation, while providing livelihoods for a
huge human population [3]. The area covered by savannahs is roughly three times larger than that
of forests, corresponding to approximately 50% of the total area of the African continent. Savannahs
therefore represent a major carbon stock in Africa despite having a lower carbon density compared
to forests [4–6]. Another significant feature of the African carbon cycle is that emissions caused by
land-use change are greater than fossil fuel emissions [7,8]. A large part of these emissions originates
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from land cover conversion of savannahs and woodlands to croplands while forests still remain
an important sink [7]. Woody vegetation is mainly converted into agricultural land in response to
rapid population growth [9]. In contrast to woody cover loss, widespread woody encroachment has
also been observed in African savannahs [10–13]. Encroaching is particularly severe in the central
interior of Africa in areas with moderate woody cover, e.g., Cameroon, the Central African Republic,
South Sudan, and Uganda [12]. Species with the potential to fix nitrogen, such as Vachelia tortillis and
Senegalia mellifera [11], are typical encroachers in African savannahs.

African savannahs often exhibit multi-use landscapes. They can be used for wildlife-based
activities, pastoralism, subsistence agriculture, forestry, and fuelwood production, and provide other
ecosystem services such as climate change regulation and water reservoirs [14]. Wildlife conservation
in protected areas, such as national parks, national reserves, community conservancies, and wildlife
sanctuaries, promote wildlife-based tourism [15,16], which is a significant source of income for many
countries, e.g., Kenya. Through wildlife management, some savannahs have been transformed into
game ranching areas with high economic growth, albeit at a significant cost to conservation [17]. On the
other hand, in some cases these areas have provided funds for conservation efforts. Furthermore,
savannah ecosystems are suitable for livestock grazing. Therefore, they support both wild and domestic
herbivores and their potential predators [18], considering the nutritional suitability of the plants [19],
and the structure, productivity, phenology, composition, and chemical attributes of the ecosystem.
Uncontrolled domestic herbivore populations in protected areas threaten the conservation of wild
herbivores [20]. In addition, communities in savannah areas and near conservation areas grow crops
for their own use and as cash crops to support their livelihoods. Population growth and land-use
policies support the expansion of agricultural activities [20] at the expense of biodiversity and wildlife
conservation. Although the extraction of timber, fuelwood, and non-timber forest products contributes
to the livelihood options of savannah landscape dwellers, these practices may also have a negative
impact on woody vegetation structure and biodiversity.

Savannahs in Eastern Africa are extremely rich in biodiversity, with high numbers of threatened species
that constitute part of the largest remaining populations of iconic wildlife left on the continent [21,22].
Many countries in this region have designated a significant portion of their terrestrial areas to
biodiversity conservation, amongst them some of the world-famous national parks and reserves
(e.g., Serengeti National Park in Tanzania, and Tsavo National Parks and Maasai Mara National Reserve
in Kenya) [22]. Their management depends on the ownership and purpose of the conservation. A large
portion of these sites are owned and managed by the government for tourism, biodiversity conservation,
education, and research. Recently, private and community owned conservation areas, mainly for
tourism, have increased [23]. The social and economic conditions that support their management are
critical for the maintenance of wildlife within their boundaries [15]. This means that human-induced
drivers have more influence on wildlife abundances than those affecting ecological processes such as
changes in the size of a conservation area [15].

Megaherbivores (e.g., elephants) are often of disproportionate importance in motivating
conservation actions [24]. These animals are sensitive to human impact and are most likely to
survive in conservation areas. However, they impact ecosystem structure [25], shape ecosystem
functions [26], and affect primary productivity and soil nutrient balance [27]. They impact habitats and
the presence of other animals, even small ones such as termites [28,29]. Fences are used as conservation
measures to reduce the impact of large herbivores on vegetation and human habitat [29–32]. Fencing
can protect stands of dense vegetation [31,32] and mitigates human–wildlife conflicts [33]. Fences are
also used to demarcate protected area boundaries. However, fencing can alter ecological processes,
such as dispersal of wildlife and livestock and lead to differences in plant biomass densities in
grazed and non-grazed areas [34]. The role of fencing in threatening biodiversity has been also
stressed [33]. Cost associated with the construction and maintenance of fences and the conflicts
occurring between protected area management and communities around fenced areas are further
drawbacks [35]. Woody biomass in savannah landscapes is highly variable as a result of the various
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factors affecting vegetation structure. However, very little information currently exists on the biomass
variations in African multi-use savannahs.

Remote sensing has a central role in understanding terrestrial carbon dynamics and in the
implementation of national greenhouse gas (GHG) emission inventories and payments for ecosystem
services schemes such as Reducing Emissions from Deforestation and Forest Destruction (REDD+) [36–39].
Remote sensing provides information on the extent and changes of the land-use and land cover (LULC)
types, and on biomass and carbon densities. The former is typically based on LULC classification, and
the latter is derived from aboveground biomass (AGB) maps. AGB maps also serve other purposes,
such as natural resource management [40,41]. Optical satellite images are the most common data
for LULC classification and are increasingly used in cloud computing platforms, particularly Google
Earth Engine (GEE) [42]. On the other hand, airborne light detection and ranging (LiDAR, also known
as airborne laser scanning, ALS) provides the most accurate remote sensing method for mapping
the AGB of forests [43], but savannah, bushland, and cropland AGBs in Africa have remained less
studied [44,45]. Therefore, more research on the feasibility of ALS data on AGB estimation outside
forests in the African savannahs are needed.

In this study, our main objective was to assess the effect of land use and wildlife fences on woody
AGB density and distribution patterns in a multi-use savannah landscape in southeastern Kenya.
In this landscape, fences between conservation areas and other land-use regions are used to reduce
human–wildlife conflict. More specifically, we (1) used ALS and other remote sensing data to map AGB
distribution and land cover in the study area, (2) examined the effect of land use (wildlife conservation,
livestock management, small-holder farming) and land cover types on AGB, and (3) studied the
effect of wildlife fences on AGB patterns in the boundaries of land-use regions. We hypothesized
that land use considerably affects the woody AGB distribution in the studied landscape because it
drives the observed patterns of land cover, and each land cover type has a characteristic AGB density.
Furthermore, fences affect the distributions and effects of wildlife and livestock, and hence, contribute
to the observed woody AGB patterns.

2. Material and Methods

2.1. Study Area

The study area is located in the plains southwest of the Taita Hills (3◦20′ S, 38◦15′ E), in southeastern
Kenya (Figure 1). The area belongs to Taita Taveta County. The county covers an area of 17,071 km2

and has 340,670 inhabitants [46]. Typical lowland land uses include conservation in national parks,
livestock management on ranches, mining, commercial sisal plantations, and dryland small-holder
agriculture [6,46]. Lowland soil type is characterized by very deep, acidic, dark red, sandy clay soil
(Ferralsols). Elevation ranges from 600–1000 meters above sea level (m a.s.l.) in the plains to the
highest peak in the Taita Hills at 2208 m a.s.l. Average daily temperature ranges between 20 ºC and
30 ºC. Mean annual rainfall ranges from 500 mm to 1200 mm from the plains to the hills, and the
rainfall pattern is bimodal with long rains in March–May and short rains in October–December [47,48].
Lowlands are much drier than highlands, e.g., the average yearly rainfall recorded at the Maktau
weather station located within the study area was 483 mm in 2014–2016 [49].

Considerable variation in annual rainfall may also occur. A drought period occurred from 2007
to 2010 according to Voi meteorological station data at 580 m a.s.l., located 40 km east of the study
area. The lowest annual rainfall (241 mm) was recorded in 2008 and the highest (553 mm) in 2009.
The short rains in November–December 2008 resulted in only 35 mm of precipitation. The average
annual precipitation was 563 mm from 2000 to 2018, while rainfall in 2006 and 2011 was 866 mm and
794 mm, respectively. As the Maktau weather station was established in October 2013 [50], we possess
no rainfall data from the area of interest for the drought period, but the drought was evident. It caused
a lack of water and forage for large mammals, such as elephants, which consequently caused a loss of
woody vegetation, especially in conservation areas.
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The Tsavo ecosystem, including Tsavo East and West National Parks (NP), cover ca. 62% of Taita
Taveta County. In addition to Tsavo NPs, the Tsavo ecosystem consists of several other protected
areas, namely Taita Hills Wildlife Sanctuary (THWS), Rukinga, and LUMO Community Wildlife
Sanctuary, and gazetted forest patches in the Taita Hills and Kasigau Mountain. Wildlife populations
(e.g., elephants, buffaloes, lions, antelopes, and giraffes) are large in the lowlands of the Tsavo
ecosystem [51,52]. Cattle, elephants, and buffaloes constitute the most important herbivores and have
increased from the late 1970s to date [53]. Wildlife densities may vary significantly during the wet
and dry seasons. For example, 462 elephants were recorded in THWS in November 2013 during the
dry season ground census, while only 17 were sighted during the wet season census in June 2013 [54].
Wildlife congregates in man-made waterholes, the Bura River, and riverine forests of THWS during the
dry season, in search of water and fresh vegetation.

The study area (Figure 1) was defined by the extent of ALS data (see details in Section 2.3). The
landscape includes typical lowland land-use and land cover types within THWS and a small part of
Tsavo West National Park (TWNP) and LUMO Community Wildlife Sanctuary (LUMO). The three
conservation areas are very different in their wildlife and livestock management. Tsavo West National
Park is the largest of the three, covering ca. 9065 km2, while LUMO and THWS are smaller. Although
the conservation areas are managed exclusively for wildlife and wildlife-based tourism, large cattle
herds may be found grazing seasonally within the boundaries. Within LUMO, the western part of
Mramba (West Mramba) is preserved for livestock management, while the eastern part (East Mramba)
is preserved for wildlife but is very often invaded by large cattle herds that may further invade the
western plains of THWS. Cattle typically only graze in the eastern parts of THWS, while livestock
occurs very seldom within TWNP. Mramba ranch holds 3500 heads of cattle and 2000 heads of goats.
The entire Oza area has 3000 goats, 1500 cattle, and 130 camels, but numbers are smaller in our study
site [55] and the number of livestock fluctuates between seasons and years.

Agriculture is practiced on single farms in West Mramba and in the eastern parts of THWS. Outside
the conservation areas, the landscape consists of grazing land and dryland agriculture, for which the
term ‘matrix’ is used here (Figure 1). The most common crops include cassava, maize, and legumes.
Common woody species in the Acacia-Commiphora bushlands and thickets (Figure 2) include Vachellia
tortillis, Commiphora baluensis, Vachellia xanthophloea, Albizia antihelmintica, Commiphora schimperi, Maerua
angolensis, Carres tomentosa, Commiphora trothe, Senegalia mellifera, Acacia brevispica, Acacia elata, Balanites
aegyptica, Boscia coriacea, Newtonia hildebrantii, Delonix elata, and Grewia villosa. The landscape is divided
by the road from Voi to Taveta. A 33 km long electric wildlife fence constructed in 1999 separates the
matrix and conservation areas (Figure 1).
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Figure 1. (A) Location and topography of the study area with land-use regions, fences, and buffers.
Land-use regions: Taita Hills Wildlife Sanctuary (THWS), LUMO Community Wildlife Sanctuary (West
Mramba and East Mramba), Tsavo West National Park (TWNP), and other land use (matrix). Numbers
refer to buffers. (B) False color composite of Sentinel-2 satellite image showing positions of the field
plots for woody aboveground biomass (AGB) estimation.

2.2. Field Data

The field data were collected between 15 and 22 August 2018 to estimate the AGB of woody plants
(trees and shrubs). The sample plots were selected subjectively to cover variation in land-use and land
cover type based on high resolution satellite imagery in Google Earth, and tree cover and tree height
based on ALS data (Figure 1). In total, 49 sample plots were surveyed. The field plots were positioned
using a Trimble GeoXH GNSS receiver with differential correction.

The sample plot design consisted of circular plots of different sizes. The main plot was 0.1 ha in
size (radius 17.84 m) and was used for inventorying all the trees with a diameter at breast height (DBH,
1.3 m height from the ground) of more than 5 cm. Height (H) for the highest, median, and shortest
tree were also measured at each plot using a hypsometer (Suunto). Tree species was identified for
all of these trees. Furthermore, four “subplots” of 0.01 ha (radius 5.64 m) located within the main
plot were used for inventorying shrubs with DBHs of 1–5 cm (see [56] for subplot locations), and four
“micro plots” of 0.001 ha (radius 1.78 m) in the central points of the subplots for measuring shrubs with
DBHs < 1 cm. Shrub measurements included count, DBH, basal diameter (BD), crown diameter (CD),
and height for a median-sized shrub. The dominant woody species of each plot was also recorded.
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Figure 2. Land-use and land cover types in the study area. (A) Riverine forest characterized by
Vachellia xanthophloea trees along the Bura River in THWS (J. Heiskanen, 27.8.2018). (B) Partly grazed
Acacia-Commiphora bushland characterized by Vachellia tortillis and Commiphora baluensis in the matrix
in Maktau (P. Pellikka 26.2.2019). (C) Grassland in the THWS conservation area with a Vachelia tortillis
tree (P. Pellikka, 29.9.2018). (D) A maize (Zea mays) field next to Maktau weather station with Taita
Hills in the background (P. Pellikka, 5.1.2020). (E) Degraded grassland in the livestock management
area of West Mramba in LUMO (P. Pellikka, 16.8.2018).

Aboveground biomass of trees with DBH > 5 cm (AGBtrees) was computed using pan-tropical
biomass model [57] due to the absence of local, species-specific allometric equations. The model
(Equation (1)) is based on DBH (cm), H (m), and wood-specific gravity (ρ, g/m3). Wood densities were
obtained from a species-specific list in the BIOMASS package [58] in the R software environment [59].

AGBtrees = 0.0673×
(
ρDBH2H

)0.976
(1)

Aboveground shrub biomass (AGBshrubs) was calculated using the equation in Conti et al. [60].
The model is based on BD (cm), CD (m), and H (cm) (Equation (2)). As BD, we used diameter at
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the 10 cm height (D10), which was calculated from the ground-level diameter using equation [61],
as recommended in [60].

AGBshrubs = exp(−2.281 + 1.525 ln(BD) + 0.831 ln(CD) + 0.523 ln(H)) (2)

Finally, we normalized AGB values per hectare and calculated the plot-level AGB as a sum of the
tree and shrub AGB. Hereafter, by AGB, we refer to this aboveground biomass of woody plants unless
specified otherwise.

2.3. Airborne Laser Scanning Data (ALS) and Biomass Mapping

Airborne laser scanning data were used to generate a reference canopy height model and to
predict a high-resolution wall-to-wall AGB map for the study area. The scanning was conducted in
late March 2014 and covered an area of 433 km2. The sensor was a Leica ALS60 and a maximum of
four returns per pulse were recorded. The pulse density was 1.04 pulses/m2.

The data vendor (Ramani Geosystems, Kenya) pre-processed the ALS data, including filtering of
the ground returns using Terrascan software (Terrasolid Oy, Finland). The data were delivered
as georeferenced point clouds in the UTM/WGS84 coordinate system with ellipsoidal heights.
The ground-classified returns were used for generating digital elevation models (DEM) at a 1-m
cell size. The ALS point cloud elevations were normalized to height from the ground levels using DEM.
Furthermore, buildings, power lines, and outliers (high points) were filtered using Terrascan, LAStools
(Rapidlasso GmbH), and manual editing.

A 3.5-m height threshold provided the best model between ALS metrics and field biomass and
was used to separate understory and ground returns from the canopy returns. Height metrics were
calculated separately using first and last returns and canopy cover metrics using all returns (single, first,
and last) (Table A1). The variables included all the variables available in the FUSION software [62]
and ones used in our earlier study [63]. Square root transformation was applied to AGB, as it was
found to improve the linear relationship between AGB and explanatory variables. The “regsubset”
function in the “leaps” package [64] was used to fit multiple linear regression models between the ALS
metrics calculated from the ALS point density clipped over the field plot and the AGB calculated from
that field plot. The leave-one-out cross-validation root mean square error (RMSE) and the coefficient of
determination (R2) were used to select the best AGB model. The predictions were back-transformed
(squared), and the square of the residual standard error was added to the predicted values to avoid
back-transformation bias [45,65]. For AGB prediction at wall-to-wall level, spatial grids of ALS metrics
were generated at a spatial resolution of 30 m × 30 m. Mean densities of AGB in each land-use and
land cover class was calculated from the AGB map.

2.4. Satellite Imagery and Land Cover Mapping

We collected Sentinel-2 images (top of atmosphere reflectance) with cloud cover less than 20% in
the images during the dry seasons [short dry season (January 1 to February 28) and long dry season
(July 1 to September 30)] in 2017 and 2018, and pre-processed them in the GEE platform. In total,
103 Sentinel-2 images (bands with a resolution of 10 m and 20 m only) were used to calculate the
median dry season image. Median dry season images were calculated for all bands in the blue to the
shortwave infrared spectral range based on all available cloud-free pixels (Figure 1B). In addition,
a normalized difference vegetation index (NDVI) [66], an enhanced vegetation index (EVI) [67],
EVI2 [68], two variants of normalized difference infrared index (NDII-1 and NDII-2) [69], and an
optimized soil-adjusted vegetation index (OSAVI) [70] were calculated from the median image.

Additionally, land cover classification was performed in the GEE platform. In addition to median
dry season Sentinel-2 composite and vegetation indices, input data included an ALS-based canopy
height model (CHM). The land cover in the landscape was classified into four land cover types (cropland,
grassland, forest and bushland) according to the Land Degradation Surveillance Framework [71].
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Cropland is cultivated land with annual or perennial crops, while grassland contains grasses and other
herbs with less than 10% woody cover. Forest in our classification is made up of a continuous stand of
trees with partly interlocking crowns, typically along the riverbeds. Bushland is made up of mixed
trees and shrubs with a canopy cover of 40% or more, while thickets are closed stands of bushes and
climbers usually between 2 m and 7 m tall and shrubland are open or closed stands up to 3 m tall.
For this study, thickets and shrubland were incorporated into bushland because we had few field plots
for those classes and the classes were similar in reflectance and vegetation characteristics.

In the first step, training data were collected through visual interpretation using ArcGIS 10.3
for the four land cover classes. The pixels for training the classifier were selected based on image
interpretation and CHM. Classification and regression trees (CART) [72] were observed to obtain the
highest overall accuracy among the classifiers in GEE and was thus selected for the classification.
The reference data set for accuracy assessment included the 49 points surveyed in 2018 in the field,
which were not used as training points in the classification. Finally, manual editing was performed in
ArcGIS to address some of the apparent misclassification in the land cover map.

2.5. Wildlife and Livestock Data

Elephant, buffalo, and cattle data were taken from the Tsavo–Mkomazi large mammal census of
2014 to be comparable with the 2014 ALS data used. The wildlife census is conducted by the Kenya
Wildlife Service (KWS) every three years to establish the status of key species in the Tsavo ecosystem.
The census is carried out from fixed-wing aircrafts and the data collection procedure is described in
detail in [73]. The animal spatial distribution and densities were further compared with AGB in the
studied landscape (Figure 3).

2.6. Statistical Analyses of AGB Data

The plot-level AGB values were used for computing descriptive statistics (range, mean, median,
and standard deviation) for the field data. The Kruskal–Wallis test was conducted to study whether
differences in AGB were statistically significant between the land-use regions and land cover classes.
Furthermore, median and mean values of the AGB per class were illustrated with a box plot for the
different land-use regions and land cover classes. We also estimated the percentage area covered by
each land cover in the respective land-use region. Finally, 500-m wide buffers were set in 11 segments
of land-use region boundaries to assess local AGB differences (Figure 1A). The buffers were categorized
into fenced and non-fenced segments to determine the effect of the fence on AGB. Pixel values were
studied separately for two sides of the boundary by calculating the percentage of zero AGB pixels.
Furthermore, medians of the non-zero AGB values were studied using the Wilcoxon test. All analyses
were performed in the R statistical environment [74].

3. Results

3.1. Aboveground Biomass Estimates and Map

Woody AGB estimates based on the field plot measurements are summarized in Table 1.
The maximum plot-level values are nearly 365 megagrams per hectare (Mg/ha) and were observed in
the riverine forest. The plots with the lowest AGB had very little woody biomass and were located in
the grassland areas.
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Table 1. Summary of the aboveground biomass (AGB) values based on the field data according to the
diameter at breast height (DBH) class (n = 49). AGB was estimated based on diameter at ground level
for shrubs with a DBH < 1 cm. SD = standard deviation, IQR = interquartile range.

DBH Class
AGB (Mg/ha)

Mean Min Max SD IQR Median

DBH > 5 cm 42.15 0.28 364.04 85.41 20.94 7.91
DBH 1–5 cm 3.69 0.00 19.46 4.98 4.03 2.07
DBH < 1 cm 0.52 0.00 2.56 0.60 0.49 0.35

Total 38.02 0.00 364.54 78.27 21.56 10.04

The final modeling results for mapping AGB using ALS data are shown in Figure 3. The model
was based on two variables: CC.all (percentage of all returns above 3.5 m; p < 0.001) and Elev.min.fr
(minimum elevation of the first returns above 3.5 m; p < 0.001). The model performed well in terms
of model fit (R2 = 0.88) although RMSE based on leave-one-out cross-validation was relatively large
(26 Mg/ha, 75.6% of the mean AGB). However, the model did not show any signs of systematic over- or
under-estimation (Figure 3).
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Figure 3. Airborne laser scanning- (ALS)-predicted vs. field-observed AGB based on leave-one-
out cross-validation.

The AGB map shows predicted biomass density patterns at 30 m × 30 m resolution (Figure 4).
The mean AGB in the study area was 5.9 Mg/ha. The Riverine forests in the southern and southeastern
parts of the landscape within THWS had the largest AGB densities. We also observed relatively large
AGB densities outside the protected areas towards the foothills of the Taita Hills, in the northeastern
part of the landscape. Aboveground biomass spatial variations were also relatively large in the matrix
and in LUMO Oza. On the other hand, the lowest AGB values were found in the nearly treeless
grassland of THWS, LUMO East Mramba, LUMO West Mramba, and TWNP.

Wildlife (elephant and buffalos) and livestock (cattle) were highly evident in the conservation
areas based on the 2014 KWS wildlife census. Elephants were present in LUMO Mramba East and
THWS, and were absent in the matrix (Figure 4, Table 2). Cattle were found in all the land-use regions,
except in the small portion of TWNP captured during the ALS campaign (Figure 4). Their density
was highest in LUMO East Mramba (11.43 animals/km2), a portion of the landscape secured for
livestock grazing and was second highest in the matrix (4.40 animals/km2), where agriculture is the
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most common land use. Buffalos were found in the conservation areas, showing the highest number
per unit area in THWS (Table 2). We categorized the animals into three herd sizes, in which the number
of animals per herd differed per animal species (Figure 4). We saw no elephants or buffaloes in the
matrix during the 2014 wildlife census. Furthermore, no animals were visible in LUMO Oza.
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Figure 4. Biomass map showing the boundaries of the land-use regions: Taita Hills Wildlife Sanctuary
(THWS), LUMO Community Wildlife Sanctuary (LUMO East Mramba, LUMO West Mramba,
and LUMO Oza), Tsavo West National Park (TWNP), and other land use (matrix), and animal
counts for elephants, buffalos, and cattle in 2014.

Table 2. Animal counts (animals) and densities (animals/km2) per land-use region during the 2014
wildlife census by Kenya Wildlife Service. Land-use regions: Taita Hills Wildlife Sanctuary (THWS),
LUMO Community Wildlife Sanctuary (LUMO East Mramba and LUMO West Mramba), Tsavo West
National Park (TWNP), and other land use (matrix).

Animal

Land-Use Region (area)

TWNP
(48.92 km2)

LUMO East
Mramba

(47.24 km2)

LUMO West
Mramba

(33.92 km2)

THWS
(101.50 km2)

Matrix
(141.63 km2)

Elephant 5 (0.10) 137 (2.90) 0 (0) 237 (2.33) 0 (0)
Cattle 0 (0) 540 (11.43) 20 (0.59) 100 (0.99) 623 (4.40)

Buffalo 2 (0.04) 7 (0.15) 0 (0) 802 (7.90) 0 (0)

3.2. Land Cover Classification

The overall land cover classification accuracy was 88.78%. The producer’s and user’s accuracy
are shown in Table A2. The land cover map shows the distribution of the land cover classes in the
landscape (Figure 5). Bushland and cropland dominate the matrix in northern and northeastern
parts of the landscape, while grassland that is representative of the savannah biome dominates the
southern and southeastern parts (THWS, LUMO Mramba, TWNP). LUMO Oza is almost completely
bushland as there is less agriculture and livestock management. Forest is the land cover type with the
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smallest area, located mostly in THWS along the Bura River. THWS also has relatively large patches
of bushland in its eastern parts bordering the matrix. Cropland is also present in the eastern part of
THWS, while it is not observed in the other conservation areas. The THWS wardens consider it a form
of informal encroachment.
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3.3. Effect of Land Cover and Land Use on Aboveground Biomass

Aboveground biomass values for the land cover types are shown in Figure 6 and Table 3. The forest
had the highest mean AGB (75.5 Mg/ha) followed by bushland (9.0 Mg/ha) and cropland (5.8 Mg/ha).
Grassland had clearly the lowest mean AGB, as it is mostly treeless (mean 1.8 Mg/ha, median 0 Mg/ha).
However, bushland, cropland, and grassland also had very high AGBs at certain locations (maximum
values in Table 3). These areas correspond to “forest-like” bushland with trees and large shrubs.
The highest values in the cropland were found in the fallowed fields and patches of bush and in the
tree-covered areas next to the fields. In addition, certain farmers practice agroforestry, meaning that
they grow trees for fruit and timber production and for providing shade for crops. Furthermore,
the grasslands also have scattered large trees, e.g., in Figure 2C. We observed significant AGB differences
among the land cover types (p < 0.001) according to the Kruskal–Wallis mean rank test. Furthermore,
the Dunn test indicated a significant difference (p < 0.05) between all the land cover types (Figure 6).

When comparing the land-use regions, the mean AGB values in descending order were 8.9 Mg/ha
in the matrix 8.8 Mg/ha in LUMO Oza, 4.8 Mg/ha in THWS, 3.8 Mg/ha in TWNP, 2.6 Mg/ha in LUMO
West Mramba, and 2.4 Mg/ha in LUMO East Mramba (Table 3). According to the Kruskal–Wallis test,
the AGB differences among land-use regions were significant (p < 0.001). These differences are mainly
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explained by dissimilarities in the land cover class distributions (Figure 7). The matrix has very little
grassland with low AGB, but a large fraction of bushland with a relatively high AGB. The area also has
some forest and cropland with high maximum values, which increase the mean AGB. LUMO Oza also
mainly consists of higher AGB bushland, while lower AGB regions have larger fractions of grassland.
This includes both the West Mramba grazing area and various protected areas. We conducted pairwise
comparisons between the classes using the Dunn test, which indicates a significant difference (p < 0.05)
between all the classes (Figure 7).
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Table 3. Aboveground biomass (AGB) statistics for land-use regions and land cover types based on
AGB and land cover maps. IQR = interquartile range. Land-use regions: Taita Hills Wildlife Sanctuary
(THWS), LUMO Community Wildlife Sanctuary (LUMO East Mramba, LUMO West Mramba, and
LUMO Oza), Tsavo West National Park (TWNP), and other land use (matrix).

Land-Use Region Land Cover
AGB (Mg/ha)

Mean Min Max SD IQR Median

LUMO Oza
Bushland 8.8 0.0 82.3 7.9 6.3 7.3
Grassland 3.9 0.0 20.1 4.4 6.6 5.2

All 8.8 0.0 82.3 7.9 6.2 7.2

LUMO East Mramba
Bushland 5.9 0.0 106.2 7.6 8.7 5.3
Grassland 2.0 0.0 50.9 3.8 4.7 0.0

All 2.4 0.0 106.2 4.6 5.1 0.0

LUMO West Mramba
Bushland 5.4 0.0 104.4 6.3 8.1 5.3
Grassland 2.6 0.0 55.6 4.2 5.3 0.0

All 2.6 0.0 104.4 4.4 5.4 0.0

THWS

Forest 77.4 0.0 353.0 79.0 92.5 49.0
Bushland 8.1 0 159.3 11.9 10.1 5.5
Grassland 1.4 0 237.3 4.2 0 0
Cropland 3.0 0.0 100.3 7.0 5.1 0.0

All 4.8 0.0 353.0 18.6 5.1 0.0

TWNP
Bushland 8.8 0 71.8 8.3 12.2 7.1
Grassland 1.7 0 100.9 3.4 0 0

All 3.8 0.0 100.9 6.3 6.2 0.0

Matrix

Forest 66.0 0.0 346.7 73.8 99.3 35.0
Bushland 9.9 0.0 353 13.3 6.6 6.9
Grassland 2.2 0.0 54.5 4.0 5.1 0.0
Cropland 6.0 0.0 241.3 9.4 8.1 5.2

All 8.9 0.0 353 13.5 10.5 6.3

All Land cover

Forest 75.5 0.0 353.0 78.3 94.2 47.8
Bushland 9.2 0 353 11.9 11.2 6.7
Grassland 1.8 0 237.3 4 0 0
Cropland 5.8 0.0 241.3 9.3 7.9 5.1

All 5.9 0.0 353.0 13.1 7.6 0.0

3.4. Effect of Fences on Aboveground Biomass

Lastly, we compared AGB values in the fenced and non-fenced boundaries of the land-use regions
(see Figure 1A for buffer numbers). Table 4 reports the fraction of zero AGB pixels for two sides of the
buffer and the Wilcoxon test results for the non-zero AGB values.

The largest differences in the percentage of zero AGB occurred in the fenced boundaries (buffers 3,
5, 7 and 8). Most of the non-fenced boundaries (buffers 1, 2, 4, 6 and 11) showed only small differences.
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However, a greater difference was observed in the non-fenced buffer 9, which corresponds to the
boundary between bushland part of THWS and the cropland-dominated matrix. Buffer 10 showed
relatively small difference in the presence of zero AGB although there is a fence. This boundary is
between THWS and the matrix in the eastern part of the study area.

The medians of the non-zero AGB values differed most substantially in the fenced buffers 7, 8 and
10 (all differences highly significant according to the Wilcoxon test) (Table 4). Although percentage zero
AGB was substantially higher in LUMO West and East Mramba than in the matrix in the fenced buffers
3 and 5, median AGB did not differ significantly (P > 0.05). However, smaller but highly significant
differences were also observed in the non-fenced buffers 1, 6 and 9. Buffer 1 is located in the non-fenced
boundary between TWNP and LUMO West Mramba, where bushland in the northern part of TWNP
has a relatively high AGB compared to grassland-dominated West Mramba. Buffer 6 corresponds to
the boundary between two conservation areas, LUMO East Mramba and THWS.

Table 4. Percentage of zero woody aboveground biomass (AGB) and median AGB for non-zero AGB
pixels. P value refers to the Wilcoxon test results made for the non-zero AGB values. Numbers in the
end of land-use region names refer to the numbers of buffers in Figure 1A.

Side 1 Side 2 Fence
Percentage Zero AGB Median for Non-Zero AGB

Side 1 Side 2 Side 1 Side 2 P Value

TWNP_1 LUMO West Mramba_1 No 57.6 52.9 7.1 6.6 <0.001
LUMO Oza_2 Matrix_2 No 20.7 17.0 8.2 8.2 >0.05

LUMO West Mramba_3 Matrix_3 Yes 84.3 44.1 6.5 6.4 >0.05
LUMO East Mramba_4 LUMO West Mramba_4 No 63.2 58.2 6.7 6.8 >0.05

Matrix_5 LUMO East Mramba_5 Yes 32.6 62.6 7.2 7.2 >0.05
LUMO East Mramba_6 THWS_6 No 85.9 84.9 6.5 6.9 <0.001

THWS_7 Matrix_7 Yes 75.2 22.0 6.9 8.8 <0.001
THWS1_8 THWS2_8 Yes 5.3 72.0 12.6 8.0 <0.001
Matrix_9 THWS_9 No 31.0 10.6 9.1 10.0 <0.001

Matrix_10 THWS_10 Yes 56.2 61.9 6.7 9.7 <0.001
THWS_11 Matrix_11 No 69.9 56.4 6.6 6.8 >0.05

4. Discussion

4.1. Remote Sensing—Based Biomass and Land Cover Maps

We used field data and ALS metrics to create a wall-to-wall high-resolution AGB map. The model
fit and accuracy were similar [75,76] or compared favorably with previous studies in temperate and
tropical forests [65,77–79]. Our model was based on two predictors: minimum elevation of the first
returns above 3.5 m and percentage of all returns above 3.5 m. These variables characterize canopy
height and cover, both of which are related to AGB. Similar combinations of height and cover variables
have also been used in previous studies in sub-Saharan Africa [78,80,81]. Field-measured AGB included
both shrubs and trees. According to the field data, shrubs (DBH 1–5 cm) can make an important
contribution to woody AGB. However, as a height threshold of 3.5 m was used to separate canopy and
ground returns, woody vegetation less than 3.5 m in height does not affect the ALS variables. Therefore,
areas where shrubs are less than 3.5 m in height appear as zero AGB in the map. We selected the height
threshold from the tested values, as it provided the most accurate predictions. Further research should
be conducted to map AGB variations in the smallest shrubs and grasses.

We used Sentinel-2 satellite images and the CART algorithm in the GEE platform for creating
the LULC map. We achieved a good overall accuracy of 88.78% when using dry season composites.
Previous studies have shown that the dry season is best suited for separating variations in woody
AGB [82,83]. One topic for further research would include classifying various grassland types within
the study area.

Spatially explicit AGB and LULC maps offer additional knowledge of AGB variations across the
savannah landscapes compared to spatially limited field inventories. In this study, maps demonstrated
the link between LULC and AGB, and sharp AGB gradients in certain boundaries of the land-use
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regions. Furthermore, maps enable geospatial analyses of the AGB patterns, e.g., together with wildlife
and livestock inventories, and can inform land management interventions [45]. In our study, maps
showed that grassland concentrated in the wildlife conservation areas, where AGB was reduced due to
the browsing effect on trees [83]. As there are fewer large mammals outside the conservation areas,
their negative impact on woody vegetation is less in these areas. Therefore, wildlife and livestock
frequency in the multi-use landscape contributes to the low biomass densities in the region.

4.2. Effect of Land Cover and Land Use on Aboveground Biomass

Our results reveal a significant difference (P < 0.05) in woody AGB among the land cover and
land-use classes in the studied landscape. In general, AGB is concentrated in areas with larger tree
densities. According to the field data, shrubs and smaller trees can also have a considerable effect on
woody AGB density. We observed the highest AGB densities in the forest along the Bura River Valley
and towards the foothills of the Taita Hills, while grassland had the lowest AGB densities. As the forest
class only occupies a small area, other land cover classes contributed more to the total AGB stock at
the landscape level. This emphasizes that a greater amount of AGB is stored in open savannah and
bushland than in the forest. Bushland occupies more than half of the total area, and therefore contributes
the most to the total AGB stock. The contribution of cropland to the total AGB in the landscape
is due to agroforestry (i.e., trees growing on cropland). The mean AGB densities in the landscape
were low compared to montane forest, exotic plantation, and woodland in the higher altitudes of the
Taita Hills [65,84]. Furthermore, biomass in the bushland was comparable to the leaf biomass of sisal
(Agave sisalana) in a commercially owned plantation established in the savannah landscape in Taita
Taveta [85]. Low precipitation [39,86], small-scale farming by resource-poor farmers [87], low CO2

concentrations in arid and semiarid regions [88], and disturbance from fire and herbivores [89,90] are
among factors responsible for the generally low AGB in the savannah landscape.

We categorized the multi-use savannah landscape into conservation (TWNP, THWS, and LUMO)
and non-conservation areas (matrix) based on land use. Furthermore, the conservation types were
categorized based on ownership and management. The TWNP, LUMO, and THWS are government,
community, and privately owned and managed, respectively. The AGB differences between land-use
regions are driven by the land cover differences. We observed the highest woody AGB densities
in non-conservation areas (matrix), which are mainly bushland and cropland, while LUMO West
Mramba and LUMO East Mramba, community owned and managed wildlife sanctuaries that are
mainly grassland, showed the lowest mean AGB densities. THWS and TWNP had similar mean
AGB densities, while LUMO Oza had a much higher AGB compared to grassland-dominated regions
because of its larger fraction of bushland.

Our results support the hypothesis that there is a link between the land use (conservation and
non-conservation) and dominant land cover type, which affect the observed AGB patterns. Presence
of wildlife is important for grassland to remain sparsely wooded, and hence, wildlife conservation
contributes to open grassland with relatively low woody AGB. Furthermore, ranches for livestock
contribute to the low AGB. THWS and LUMO West Mramba serve as a migratory corridor for elephants
moving between Tsavo West and Tsavo East NPs in search of food and water [51]. Contrary to
the February 2011 elephant census [73], the elephant density in the region increased from less than
0.5 elephants/km2 in 2011 to > 2 elephants/km2 in February 2014. This considerable increase in
elephant population contributes to low AGB densities in the region. Habitat improvements through
water supplementation in the protected areas also attract wildlife and further create pressure on the
vegetation. Waterholes attract large congregations of herbivores particularly during the dry season [73].
Williams et al. [91] have also suggested the presence of surface water acts as a determinant of the
distribution of water-dependent wildlife species. The wildlife and livestock census data also showed
that private (THWS) and government (TWNP) owned conservation areas had more wildlife (elephants
and buffalos) while the community owned conservation areas attract more livestock. This could be
associated with the management strategies employed by the respective agencies. Therefore, policies
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and management strategies geared towards woody vegetation protection should be introduced into
wildlife conservation management plan in order to reduce AGB decline in conservation areas.

Recent studies in the same region show that conversion of bushland to treeless cropland [92]
increases land surface temperatures and decreases evapotranspiration, and low tree canopy cover
areas cause higher land surface temperatures and higher temperatures in general [93]. Together with
increasing proportion of agricultural areas, conservation areas have a negative contribution to the
local climate, and furthermore, to the regional climate. Furthermore, bushland protection is vital for
the conservation of flora and fauna, and for habitat conservation [91,94]. Furthermore, high AGB
bushland supports, for example, the mitigation of wildfire, poor water quality, soil erosion, soil PH,
air temperature and other ecosystem services of importance to the ecology, climate and wildlife [91,92,95].
Restoration of degraded areas by fencing, enrichment planting of woody plants and translocation of
wildlife (browsers) to high biomass areas, agroforestry, and sustainable environmental regulation are
some ways to mitigate these effects. Therefore, the trade-offs between the wildlife conservation and
benefits of woody vegetation should be considered carefully in the conservation area management and
land-use planning.

Although not addressed in this study, in addition to land use, natural factors, such as soil type,
ground water table level, and rainfall, may contribute to land cover and AGB patterns. The soil type is
typically red laterite, but parts of the landscape are characterized by sedimentary carbonites, which are
drier and less fertile soils, thus introducing sparser woody vegetation. The water table level is high,
especially along the Bura River Valley, enabling better tree growth. Furthermore, rainfall and mist
emergence in topographically higher areas, such as Maktau Hill in LUMO Oza, may increase tree
cover and height. Further studies should aim to clarify the roles of land use and natural factors on
land cover and AGB in the study area.

4.3. Effect of Wildlife Fences on Biomass Distribution and Density

Fencing conservation areas is primarily done to prevent wildlife from intruding into
surrounding communities and farmlands, in other words, to reduce human–wildlife conflicts [96–99].
Fences additionally help minimize wildlife poaching and the illegal extraction of other vital resources
from protected areas [33] and hinder the transmission of vector-borne diseases between livestock and
wildlife, as production animals and wildlife are kept separate. In Kenya, 60% of all protected areas are
fully or partially fenced [35].

The ecosystem in the Taita Hills lowlands faces challenges, including livestock incursion, poaching,
drought, land-use change, human–wildlife conflict, unprescribed fires, invasive species, and vegetation
damage by elephants [100]. Electric and non-electric fences have therefore been constructed on the
borders of the protected areas to minimize some of these challenges. The fence from Maktau to
Bura Village was built in 1999 [33]. It restricts the movement of wildlife from conservation areas and
hinders unauthorized access to the areas [99]. Fences also protect degraded habitats and support forest
regeneration trials. Furthermore, fences around farms restrict wildlife and livestock from entering
the farms.

According to our analysis of the AGB variation in the boundaries of the land-use regions (buffers),
the largest differences in the percentage of zero AGB and median AGB occurred in the fenced boundaries.
In the buffers 3, 5 and 7, which correspond to the boundary between the conservation areas (LUMO
West and East Mramba, THWS) and the matrix, the percentage of zero AGB was considerably higher in
the conservation area sides of the fence. The zero AGB pixels refer to pixels without any woody AGB,
which may indicate large pressure from herbivores on woody vegetation. This is supported by the
high density of wildlife close to the fence in LUMO East Mramba and THWS (Figure 4). In the buffer
7, matrix side also had higher median AGB but buffers 3 and 5 did not show significant difference
in median AGB. The latter suggest that although woody vegetation is considerably less in LUMO
West and East Mramba sides of the buffers, woody vegetation in both sides has similar character and
median AGB. Buffer 8 matches the fenced boundary in the northern part of THWS and it is associated
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with a sharp transition from grassland to relatively dense bushland. This explains both the larger
fraction of zero AGB pixels and the lower median AGB in the grassland side. Furthermore, buffer 10 is
located in the fenced boundary between THWS and the matrix. THWS side of this boundary had
slightly higher percentage of zero AGB than matrix side, similar to other conservation areas but the
difference was smaller. However, THWS side of the buffer had significantly higher median AGB.
This can be explained by the presence of riverine forest in that side of the boundary with greater AGB.
Furthermore, the matrix in this area lies on a flood plain dominated by cropland interspersed with
bushland in contrast to grassland in the THWS side, which may explain this difference.

Among the non-fenced boundaries, buffer 9 had the most apparent difference between the two
sides of the boundary. This buffer corresponds to the northern boundary of THWS with rapid change
from bushland to cropland-dominated area within the matrix. Matrix-side had clearly more zero
AGB pixels corresponding to cropland and lower median AGB. Although not fenced, this boundary
follows a road, which makes it clearly visible. Furthermore, the fence south of the area protects it from
herbivores in THWS. In addition, statistically significant differences in median AGB were observed in
the non-fenced buffers 1 and 6. In the boundary between TWNP and LUMO West Mramba (buffer 1),
bushland in the northern part of TWNP has a relatively high AGB compared with grassland-dominated
West Mramba, which explains higher median AGB in the TWNP side. Buffer 6 corresponds to the
boundary between two LUMO East Mramba and THWS. Slightly higher AGB in the THWS side could
relate to higher grazing pressure in LUMO East Mramba. However, differences in these two unfenced
boundaries are very small in comparison to the fenced boundaries with obvious differences.

Our results support our hypothesis that fences play a role in the distribution of wildlife and
livestock, and woody AGB patterns in the landscape. This creates sharp land cover transitions to the
fenced boundaries of the land-use regions. The conservation and grassland sides of the buffers 5, 7 and
8 experience high pressure from wildlife and cattle while pressure is particularly low in the matrix
sides of buffers 7 and 8 with fewer cattle (Figure 4). In buffers 3 and 10, the difference in herbivore
density between the conservation areas and the matrix were not as evident at the time of counting.
However, free ranging wildlife are constantly moving based on resource conditions.

In general, fencing can increase the wildlife population in the conservation areas and enhance
biodiversity conservation [101–103]. However, an increased abundance of (mega)herbivores [104]
reduce biomass densities due to tree mortality caused by browsing. The browsers suppress woody
plant recruitment in the grassland and have a long-term impact on their growth and mortality
rates [105]. This is particularly true for non-selective feeders, such as elephants, who debark trees and
thus suppress recruitment and vegetation generation. According to Ogutu et al. [52], the landscape
experienced a moderate growth in elephant density between 1977 and 2016. Similar pressure
on woody plants was observed during 1970–1973, when the elephant population was large [55].
The problem is further aggravated by the fence, which restricts wildlife dispersal, and hence, reduces
the ecosystem’s resilience [98]. Thus, fencing combined with heavy browsing may reduce the biomass
in conservation areas.

5. Conclusions

Taita Hills lowland savannah landscape, similar to other typical African savannah biomes, exhibits
multi-use functionality, which results in heterogeneous land cover. We combined field data with
ALS metrics to predict a woody AGB map in the study area and created a land cover map using
Google Earth Engine. AGB densities in the region were comparatively low and influenced by wildlife
conservation. The highest AGB densities were observed in the forest class (riverine forest) in THWS
in the conservation area. Greater AGB densities were also found in the bushland in the matrix,
LUMO Oza, and southern parts of THWS. The western parts of the landscape dominated by grassland
and influenced by wildlife conservation and livestock grazing had a lower woody AGB density.
Wildlife and livestock densities in the conservation area are high compared to the matrix. Bushland
and cropland dominate the matrix, which support the livelihood of community members through
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farming and other livelihood options (fuelwood, etc.). The electric fence restricts the movement of
wildlife, creating grassland within protected areas and contributing to the low densities of woody AGB.
In addition to human–wildlife conflict mitigation, fencing also influences the spatial distribution and
density of woody AGB in a multi-use savannah landscape. Further investigating the effect of wildlife
and livestock fencing on land cover and biomass (including grass biomass) in multi-use savannah
landscapes at various spatial and temporal scales is important. Furthermore, our results need to be
scaled up and contributions of livestock management and conservation areas to climate change require
investigation. The impact of wildlife conservation on land cover change, and plant species diversity
and composition also deserve further investigation.
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Appendix A

Table A1. Summary of airborne laser scanning metrics computed using Fusion [62,63].

Predictor Description

H.p01, H.p05, H.p10, H.p20, H.p25, H.p30, H.p40, H.p50,
H.p60, H.p70, H.p75, H.p80, H.p90, H.p95, H.p99 1st, 5th, 10th . . . and 99th percentile of return height > 3.5 m

H.L1, H.L2, H.L3, H.L4 L-moments 1–4 of return height > 3.5 m
H.L.cv L-moments coefficient of variation of return height > 3.5 m
H.L.skewness L-moments skewness of return height > 3.5 m
H.L.kurtosis L-moments kurtosis of return height > 3.5 m
H.max Maximum of return height > 3.5 m
H.mean Mean of return height > 3.5 m
H.min Minimum of return height > 3.5 m
H.mode Mode of return height > 3.5 m
H.cv Coefficient of variation of return height > 3.5 m
H.v Variance of return height > 3.5 m
H.stdev Standard deviation of return height > 3,5 m
H.skewness Skewness of return height > 3.5 m
H.kurtosis Kurtosis of return height > 3.5 m
H.IQ 75th percentile minus 25th percentile for cell
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Table A1. Cont.

Predictor Description

CC.first First returns > 3.5 m/Total first returns * 100
CC.all All returns > 3.5 m/Total all returns * 100
CC.all.first All returns > 3.5 m/Total first returns * 100
CC.first.mean First returns above mean/Total first returns * 100
CC.all.mean All returns above mean/Total all returns * 100
CC.all.mean.first All returns above mean/Total first returns * 100
CC.first.mode First returns above mode/Total first returns * 100
CC.all.mode All returns above mode/Total all returns * 100
CC.all.mode.first All returns above mode/Total first returns * 100

All height variables (beginning with ‘H’) were calculated separately using first and last pulse returns, which are
indicated by the prefix ‘FR_’ or ‘LR_’, respectively. All canopy variables (beginning with “CC”) were calculated
using all returns only.

Table A2. Errors of omission and commission per class in the land cover classification.

Forest Bushland Grassland Cropland Row Total Producer’s Accuracy

Forest 47 5 0 0 52 95.91
Bushland 1 59 4 2 66 76.62
Grassland 0 6 100 3 109 92.59
Cropland 1 7 4 55 67 91.66

Column total 49 77 108 60 294
User’s accuracy 90.38 89.39 91.74 82.08
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Abstract: At present, the protection of nature and landscape in the high mountains of the Western
Carpathians, protected as national parks, is becoming increasingly at the forefront of society’s interests
in connection with the development of their economic use and the development of mass tourism.
Our research was focused on analyzing the extent and character of land cover changes in the Low
Tatras National Park in Slovakia over the last 30 years (1990–2018) using CORINE land cover (CLC)
data. The period captures almost the entire existence of the Slovak Republic. Therefore, it was possible
to evaluate the landscape changes in the protected area and to identify barriers and possibilities of its
long-term sustainable development. Based on computer modeling, the main areas of the land cover
changes were identified, and on the basis of historical-geographical and field research, land cover
flows were determined and justified in the studied landscape of the national park. Changes were
monitored using three methods: by comparing CLC maps over the years, by analyzing land cover
flows, and by comparing landscape metrics obtained through the PatchAnalyst. Land cover changes
occurred on up to 20% of the national park area in the given period. The most significant change was
observed in the CLC class coniferous forests, with almost a 12% decrease. Conversely, there was an
increase of more than 11% in the CLC class transitional woodland-shrub.

Keywords: CORINE land cover; mapping of changes; GIS tools; land cover flows; protected areas;
Low Tatras National Park

1. Introduction

Land cover changes (whether natural or occurring by anthropogenically affected development)
are a continuous process worldwide [1–5], especially in developing countries of Asia and South
America, but also in the (“post-socialist”) countries of Central and Eastern Europe, including Slovakia.
Socio-political reforms occurred after 1989, and subsequent transformations that began after 2004,
when Slovakia joined the European Union, can be considered as the leading causes of land cover
changes in this region. Issues of environmental protection also came to the forefront, and in 2002 the
Act No. 543/2002 Coll. on Nature and Landscape Protection was adopted. This act strengthened
the protection of natural balance, the protection of the diversity of natural conditions and life forms,
natural values and creates the preconditions for the sustainable use of natural resources and ecosystem
services, taking into account the economic, social and cultural needs as well as regional and local
circumstances. The act defines five zones of protection, the fifth being the highest.
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Large-scale protected areas, which include national parks and protected landscape areas,
are declared in Slovakia within the scope of nature conservation. A national park is defined as
an area of over 1000 ha, predominantly with ecosystems substantially unchanged by human activity or
with a unique and natural landscape structure constituting supra-regional biocentres and the most
significant natural heritage, in which nature protection and conservation are superior to other activities.
Territories of national parks fall under the third zone of protection.

One prominent body of research on the mountain environment in Slovakia focuses on geodynamic
and geomorphological processes [6,7]. The second prominent body of research focuses on changes
in the landscape structure, but this research captures especially changes at the turn of the 18th,
19th and 20th centuries. The main processes in this period were mainly the development of
urbanization and agriculture [8] or the transformation of scattered settlements into recreational
areas [9]. Changes in the landscape structure are partly a reflection of social changes that occurred after
1949 and later after 1989 in Slovakia [10]. All of these processes resulted in changes in ecological stability,
both in the mountain environment and in the lowlands [11,12]. In recent years, the disproportionate
spatial expansion of recreational infrastructure [13–15] has had a significant impact on the landscape,
and it is, therefore, essential to set the limit of unbearability and to develop tourism inside the
protected areas only up to a point, where no disruption of elemental links between ecosystems can be
guaranteed [16]. This phenomenon often becomes irreversible when humans disproportionately affect
the natural environment, affecting water [17], soil [18], flora, fauna, and the overall biodiversity of the
landscape [19,20] in the protected areas. Changing climate, frequent temperature fluctuations, fires [21],
windstorms, torrential rains and storms, droughts, and other natural phenomena also affect changes in
nature. The most important anthropogenic influences are grazing, intensification and extensification of
agriculture, mining of raw materials, areal growth of rural settlements, the development of recreational
infra, and suprastructure.

The monitoring of landscape changes in Europe is mostly conducted using the CORINE land cover
(CLC) database [7,10,22–24], which is considered to be the most complex database of spatial-temporal
data. The functioning of the CLC database is financed by the Member States of the European Union,
and it is managed by the European Environmental Agency (EEA) and is one of the products of the
Copernicus Land Monitoring Service (CLMS). The extent and quality of information within the CLC
database are different across European countries. The CLC database of Slovakia is one of the most
accurate and complete. The quality and detail result from the use of a minimum scale (1:50,000) as well
as from the adaptation of its legend to the specific local conditions [25].

The main aim of our research is to evaluate land cover changes in the Low Tatras National
Park between 1990 and 2018. The selection of time periods was primarily based on data availability.
These data also capture significant historical context since social-political changes in 1989, accession to
the European Union in 2004 to nowadays. We have specified three sub-objectives within our research:

1. to find out the character of landscape structure based on a comparative analysis of land cover
maps from 1990 and 2018 using the CORINE land cover (CLC) data;

2. to assess land cover flows based on CORINE land cover change layers in period 1990–2000,
2000–2006, 2006–2012, 2012–2018;

3. to describe landscape structure changes based upon landscape metrics calculations.

The following primary research questions should be answered:

• What type of landscape changes prevailed in the Low Tatras National Park during the research period?
• What was the intensity of landscape changes in the observed period in the Low Tatras National Park?
• How do the land cover changes influence the ecological attributes of a national park?
• What were the causes and processes (drivers) of landscape changes in the Low Tatras National

Park within the monitored period?
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The research of land cover changes is necessary to identify the negative anthropogenically
conditioned and created processes and phenomena in the protected landscape, their prediction,
analysis, prevention, and elimination concerning the active management of the landscape.

2. Materials and Methods

2.1. Territory of Interest

The Low Tatras National Park is located in the central part of the Western Carpathians (Figure 1).
It spreads in the top part of the Low Tatras Mountains, which is the second-highest in the Carpathian Arc.
The asymmetric vault of the central mountain ridge, located in the center of Slovakia, is significantly
extended in the west-east direction. The highest point of the mountain range is the summit of Ďumbier
(2043 m). From the orographic point of view, the territory of the national park consists mainly of the
beforementioned Low Tatras, while some parts of Vel’ká Fatra Mountains, Staré Hory Mountains,
Zvolen Basin, Horehronské Podolie Basin, Podtatranská Basin, Kozie chrbty Mountains and Spiš-Gemer
Karst extend partially to this area.

Figure 1. The location and demarcation of Low Tatras National Park in Slovakia.

The main ridge of the Low Tatras is built by the crystalline core (Tatrikum). It consists mainly of
rocks formed in the Paleozoic when large rock complexes metamorphosed at the sea bottom during
the younger geological times. During the long-term geological-tectonic development, these rocks were
lifted and folded into a complex vaulted structure. The core was encapsulated initially by sandstone,
shale, dolomite, and limestone strata, which were gradually removed by denudation, but mainly by
the Quaternary glacial activity. The process has been particularly evident on the northern slopes of the
mountain range, which is why the main range has a distinctly asymmetric profile (the northern slopes
are much steeper and shorter than the southern ones) [26,27].

Glacial relief is characterized by steep rock walls, glacial cirques, moraines, and glacial lakes.
There were 16 glaciers in the territory of the Low Tatras National Park. The longest one was in
Dúbravská Valley and reached a length of more than 6000 m. The largest glacier lake (“pleso”) is
Vrbické Lake with an original area of 0.73 ha, which is situated in Demänovská Valley and was created
on the frontal moraine after the glacier retreat [28].
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Up to 5 climatic-geographical types (the highland climate-very cold, cold, cool and moderately
warm, and the basin climate-cold) can be distinguished in the Low Tatras due to high vertical
articulation (from 500 to 2043 m a.s.l.). Mountain locations above 1500 m a.s.l. have a very cold
mountain climate with average temperatures of −7 ◦C to −8 ◦C in January and approximately −9 ◦C
on the main ridge [29,30].

The highest annual rainfall values are reached in the area between the peaks Prašivá and Dereše,
which is caused by the global western streaming (1400–1700 mm on average, maximum annual totals
are 1900–2300 mm, and the minimum annual rainfall is about 1000 mm) [31].

The streaming has a strongly variable direction due to local relief shapes. In the basins oriented
in the west to east direction, the wind generally flows in the same direction, while the north-south
streaming prevails in the mountain ridge part. However, winds from the northwest and southwest
are also frequent. The least occurring are south-eastern and northeastern winds. The average wind
speed increases with the increasing altitude reaching an average of 9.6 m/s at Chopok (2023 m) and
only 1.2 m/s at Jasná (1200 m) [29].

Large areas of the National Park territory had been covered mostly by beech and beech-fir primeval
forests until the 15th century, except for the peak areas of the highest part of Chopok and Ďumbier
massifs. The vast extent of the mountain range and the articulation of the relief enabled primeval
forests to retain their natural character for quite a long time. The gradual settlement, development of
mining and metallurgy, and since the 13th century, the related logging and pasturing since the 14th
century, have significantly accelerated the deforestation process [32]. A substantial part of today’s
national park was mostly a clear-cutting in the 16th century [33]. The current composition of forest
vegetation was significantly affected by artificial restoration since the 19th century, when the emphasis
on spruce monocultures began.

Heavily anthropogenically affected beech and fir-beech forests nowadays cover the western edges
of the national park mountain range, lined with oak stands in contact with basins. A wide belt of
monocultural spruce stands extends above this level, which completely prevails in the eastern part
(Král’ovohol’ské Tatras) and creates the timberline at an altitude of 1500–1600 m a.s.l. Forest pine
grows on the rocky northern slopes. A dwarf mountain pine belt gradually changes into human-made
mountain grasslands occurring from an altitude of about 1400 m a.s.l. [30,34].

The Low Tatras National Park was declared (as the third national park in Slovakia) by Decree of
the Government of the SSR no. 119/1978 Coll [35]. Subsequently, the Ministry of Culture of the SSR
issued Decree No. 120/1978 [36], establishing its status on 17 October 1978. It was confirmed by Act No.
287/1994 Coll. on Nature and Landscape Protection [37], as well as Act no. 543/2002 Coll [29,38,39].
The area of the largest national park in Slovakia was limited to 205,085 ha, including a protection
zone (81,095 ha was the area of the national park itself, and 123,990 ha was the area of the protection
zone). The border length was 340 km and up to 575 km together, including the boundaries of the
protection zone [39]. There were eight small-scale specially protected areas at the time of its declaration,
while currently there are 48 of them. There are also protected areas of NATURA 2000:2 sites—birds
directive and 10 sites—habitats directive. Almost the whole area of the national park is under specific
protection (except the part of the Demänová valley and Bystrá valley) (Figure 2).

National park boundaries were changed mainly due to property-law relations 19 years later,
in 1997. The area of the national park was 72,842 ha, and the area of the protection zone was 110,162 ha.
Approximately 11,000 ha of the most valuable parts of its territory are strictly protected (included
within the 4th and the 5th zone of protection-A and B zone).
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Figure 2. Protected areas of Low Tatras National Park.

Despite the lengthy and complicated process, the declaration of the national park had been a
successful culmination of many years of effort of a large number of professional and voluntary nature
conservationists, various experts, as well as simple supporters of this unique mountain range in the
middle of Slovakia.

2.2. Data

For a long time, aerial and satellite imagery has been used to detect and classify landscape
transformations over time, as it is useful to capture the impacts of many processes causing natural
(e.g., fires, wind disasters) and anthropogenic (e.g., deforestation, urbanization, agriculture) changes [40].
The CORINE land cover (CLC) data for 1990 and 2018, created by visual interpretation of high-resolution
satellite images, were applied in our research. CLC data uses a minimum mapping unit (MMU) of
25 hectares (ha) for areal phenomena and a minimum width of 100 m for linear phenomena. The CLC
change layers, which highlight changes in land cover with an MMU of 5 ha, have been used to monitor
land cover changes. Different MMUs mean that the change layer has a higher resolution than the status
layer (Table 1) [41].

Table 1. The specifications of the CORINE land cover data in the reference years 1990 and 2018.

Specification CLC 1990 CLC 2018

Geometric accuracy, satellite data ≤50 m ≤10 m

Min. mapping unit/width 25 ha/100 m 25 ha/100 m

Geometric accuracy, CLC 100 m Better than 100 m

Thematic accuracy, CLC ≥85% ≥85%

Using this data, we were able to capture and analyze changes occurring in almost 30 years.
We have identified 13 land cover classes within the studied area (Table 2). We have used RGB color
codes defined by EEA in the maps of land cover.
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Table 2. CORINE land cover classes in the studied area.

Level 1 Level 2 Level 3

1 Artificial surfaces
11 Urban fabric 112 Discontinuous urban fabric

14 Artificial, non-agricultural
vegetated areas 142 Sport and leisure facilities

2 Agricultural areas

21 Arable land 211 Non-irrigated arable land

23 Pastures 231 Pastures

24 Heterogeneous
agricultural areas

243 Land principally occupied by
agriculture, with significant areas

of natural vegetation

3 Forest and semi-natural areas

31 Forests
311 Broad-leaved forest

312 Coniferous forest
313 Mixed forest

32 Scrub and/or herbaceous
vegetation associations

321 Natural grasslands
322 Moors and heathland

324 Transitional woodland-shrub

33 Open spaces with little or
no vegetation 333 Sparsely vegetated areas

5 Water bodies 51 Inland waters 512 Water bodies

2.3. Methods

We have used the ArcMap 10.5 software in our research, in which the land cover maps from
1990 and 2018 and maps of land cover changes using available CLC change layers had been made.
We have focused mainly on the percentual evaluation of changes in the individual elements of the
land cover and analyzed them statistically and spatially. We have made a cross-table to express
qualitative relationships between the two variables [42,43]. Using this method, we have found out
which land cover classes had been changed and to which classes they had been modified at the same
time. Thus, we were able to identify the core processes that took place in the landscape. At the
same time, we can identify the period in which the most changes took place and which left the most
significant consequences on the landscape.

Landscape changes were categorized into so-called “land cover flows (LCFs)”, i.e., classes that
reflect processes taking place in the observed area. The definition of these changes was studied by
many scientists, who have defined different amounts and types of land cover flows [44–47].

The most extensive and detailed categorization was introduced by Haines-Young and Weber in
2006 [48], defining nine types of changes:

• LCF1 Urban land management—internal transformation of urban areas
• LCF2 Urban residential sprawl—land uptake by residential buildings altogether with associated

services and urban infrastructure (classified in CLC111 and 112) from non-urban land (extension
over sea may happen)

• LCF3 Sprawl of economic sites and infrastructures—sprawl of economic sites and infrastructures:
Land uptake by new economic sites and infrastructures (including sport and leisure facilities)
from non-urban land (extension over sea may happen)

• LCF4 Agriculture internal conversions—conversion between farming types. Rotation between
annual crops is not monitored by CLC

• LCF5 Conversion from forested and natural land to agriculture—extension of agriculture land use
• LCF6 Withdrawal of farming—farmland abandonment and other conversions from agriculture

activity in favor of forests or natural land
• LCF7 Forests creation and management—creation of forests and management of the forest territory

by felling and replanting. Due to the CLC cycle of 10 years, only one part of the shrubs is tall
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enough to be identified as trees. In order to take stock of all recent plantations, conversions of
semi-natural land to CLC324 are conventionally recorded as afforestation (although some natural
colonization may take place)

• LCF8 Water bodies creation and management—creation of dams and reservoirs and possible
consequences of the management of the water resource on the water surface area

• LCF9 Changes of land cover due to natural and multiple causes—changes in land cover resulting
from natural phenomena with or without any human influence.

This categorization was chosen for its detail and complexity for our research. Dominant processes
in the landscape of the Low Tatras National Park can be identified based on the percentual data
of individual changes. Land cover flows summarize and interpret all possible one-to-one changes
between the CORINE land cover classes. The changes are grouped into so-called flows and are
classified according to major land-use processes. We have focused on the main class of land cover
flows (e.g., LCF7), which consist of several subclasses of land cover flows (LCF71, LCF72, LCF73 and
LCF74) (Figure 3).

Figure 3. Methodology of the land cover flows.

The last part of our research consisted of assessing landscape structure changes based on landscape
metrics calculations using the PatchAnalyst tool. Patch Analyst is an ArcGIS extension that facilitates
spatial analysis of landscape patches. It is used for spatial pattern analysis, often in support of habitat
modeling, biodiversity conservation, and forest management. The software offers analyses of several
types of landscape-ecological metrics, which are often used in scientific research, primarily to assess
landscape fragmentation in Slovakia [49–51] and abroad [52–54]. In addition to national or regional
spatial data [55], CORINE land cover data, which are also applicable to regional research, are suitable
and frequent input data for the calculation of landscape metrics. However, they are not suitable for
research of a smaller area due to their lower accuracy. Krajewski [56] distinguishes three approaches to
the study of landscape changes: identification of spatiotemporal changes [57], identification of driving
forces of changes [2], and identification of landscape changes based on landscape metrics [52,58]. In our
research, we combine all three approaches and make a comprehensive analysis of changes in land
cover in the Low Tatras National Park. Following Kumar et al. [52], Obeidat et al. [59], Singh et al. [53],
we have not used all of the indices from the PatchAnalyst tool because some of them are closely related
and some are redundant. The selection was made following the intention of the study based on the
knowledge of previous research. An important principle is to select unrelated indices. The following
six indices were selected:

• Number of patches (NumP)—a simple indicator that indicates the total increase, respectively,
a decrease in the number of patches in all categories in the observed area.

• Mean patch size (MPS)—average patch size. This indicator shows the disintegration of the spatial
structure of the landscape.

• Total edge (TE)—an indicator that represents the sum of perimeters of all patches.
• Area weighted mean shape index (AWMSI)—an index that reflects the shape complexity of

patches. The index is equal to 1 if the patches have a circular or square shape. The index value
increases if the shape is irregular. It differs from the “mean shape index” metric by assigning
different weights to individual patches (the larger the area, the higher the weight).
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• Shannon’s diversity index (SDI)—an index that determines landscape diversity calculated as
the proportions of the land cover classes across the total area. SDI increases by the number of
patches in the landscape feature categories. The higher the index value, the higher the landscape
heterogeneity, i.e., the landscape is more abundant in the number of categories of landscape
features and the number of patches [60]. The index will be equal to 0 when there is only one patch
in the landscape and increases as the number of patch types or the proportional distribution of
patch types increases.

• Shannon’s evenness index (SEI)—an index that determines the distribution of patches and their
abundance. A proportional reduction in the number of patches and categories also causes a
reduction in the overall balance. The landscape metrics balance within the observed landscape is
better when the value of this index converges to one.

It is important to evaluate changes in the landscape, especially in national parks, from the
ecological point of view, too. The interpretation of the quantified data is important to determine
ecological signification and the current state of the landscape, e.g., [52,53,56,58,59].

3. Results

3.1. Land Cover of Low Tatras National Park in 1990 and 2018

There were 13 land cover classes in 1990 and one less in 2018 in the observed area. The land cover
of the Low Tatras National Park in 1990 and 2018 is shown in Figure 4.

Figure 4. Land cover of Low Tatras National Park in 1990 and 2018.
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Almost two-thirds of the National Park area was covered with coniferous forests (CLC 312) in
1990, which consisted of various closed formations of conifers-spruce, fir, pine, and larch. A sample
of the class was formed by islands of trees of the abovementioned species, alternating individually
or in groups, represented by several types of conifers. They were complemented by fragments of
incidental deciduous trees, grasslands of forest meadows, shrubs, transitional woodland-shrubs,
forest roads, or parts of recreational facilities, scattered settlements, croplands [61] and abandoned
mining sites. Approximately 11% of the National Park area was covered by natural grasslands
(CLC 321), consisting mainly of alpine meadows. These areas were not primarily suited for agricultural
function, and their natural development was not inhibited by human influence. Meadows were
sometimes supplemented by dwarf mountain pine growths, rocks, or groups of trees and shrubs [60].
Nearly 9% of the area was occupied by mixed forests (CLC 313), consisting mainly of spruce, pine,
larch, beech, oak, maple, birch, and other tree species. The sample of mixed forests consisted of groups
of alternating solitary individuals or islands of coniferous and deciduous trees [61]. Approximately 6%
of the area was covered by dwarf mountain pine (CLC 322) sporadically interrupted by enclaves of
rock relief forms and alpine meadows. Its occurrence was related to the top parts of the Low Tatras
mountain ridge [61].

Almost 5% of the area was covered with transitional woodland-shrub. Young forest trees
(deciduous and coniferous) planted after loggings or various calamities were mainly represented in
this class, together with forest nurseries, naturally developed forest formations (shrubs and herbaceous
vegetation with scattered trees), or shrub formations on abandoned meadows, pastures and forest
cuttings for high-voltage power lines. A representative sample of the class consisted of alternating
coppice belts and forest remnants (the areal representation of coppice within the respective patches
reached 60% or more) [61]. Other land cover classes had not reached values higher than 3% (Table 3).

Table 3. Land cover classes of Low Tatras National Park in 1990 and 2018.

CLC
1990 2018

Area in ha % Area in ha %

112 6.39 0.01 0.46 0.00
142 421.92 0.56 576.05 0.76
211 47.48 0.06 - 0.00
231 1641.91 2.16 1004.76 1.32
243 203.73 0.27 228.45 0.30
311 1458.41 1.92 1286.17 1.69
312 48,913.12 64.35 39,958.69 52.57
313 6814.73 8.96 9114.03 12.00
321 8392.56 11.04 6632.16 8.72
322 4330.54 5.70 5062.95 6.66
324 3597.34 4.73 12,021.51 15.81
333 185.37 0.24 131.21 0.17
512 3.05 0.00 0.11 0.00

Total 76,016.55 100.00 76,016.55 100.00

Legend: 112 Discontinuous urban fabric, 142 Sport and leisure facilities, 211 Non-irrigated arable land, 231 Pastures,
243 Land principally occupied by agriculture, with significant areas of natural vegetation, 311 Broad-leaved
forest, 312 Coniferous forest, 313 Mixed forest, 321 Natural grasslands, 322 Moors and heathland, 324 Transitional
woodland-shrub, 333 Sparsely vegetated areas, 512 Water bodies.

3.2. Land Cover Flows in Low Tatras National Park between 1990 and 2018

Five main processes were identified in the studied area between 1990 and 2018. LCF7 had the
largest share in terms of the proportion of the total area changed (Table 4, Figure 5). This process was
clearly dominant in all monitored periods and is mainly represented by two processes: wind calamities
and grazing.
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Table 4. Land cover flows (LCF) in the Low Tatras National Park between 1990 and 2018.

LCF 1990–2000 2000–2006 2006–2012 2012–2018 1990–2018 CLC Classes Changes

LCF3
ha 0.00 0.00 13.80 193.32 207.12

312–142
% 0.00% 0.00% 0.19% 6.50% 1.38%

LCF4
ha 0.00 54.01 0.00 0.00 54.01

211–231
% 0.00% 1.80% 0.00% 0.00% 0.36%

LCF5
ha 9.07 0.00 0.00 0.00 9.07

243–211
% 0.48% 0.00% 0.00% 0.00% 0.06%

LCF6
ha 133.98 66.00 0.00 0.00 199.98

231–324
% 7.14% 2.20% 0.00% 0.00% 1.33%

LCF7
ha 1732.54 2901.05 7170.29 2778.76 14,582.64 311–324, 312–324, 313–324, 313–311,

321–324, 324–312, 324–313, 324–311% 92.37% 96.03% 99.81% 93.50% 96.88%

change of
total area (%) 2.47% 3.97% 9.45% 3.91% 19.80% -

An increase of CLC class 324 (transitional woodland-shrub) on one hand, and a significant decline
of CLC 312 (coniferous forests) on the other, was observed due to a frequent occurrence of wind
calamities in the recent years, which are a result of widespread climate change, not only on a global but
also on a local scale in the last three decades. Mountain ranges of the Carpathian Arch are no exception.
Recurring extreme climatic situations, which occur in the observed area, are becoming increasingly
frequent [62], and the forest stands are destructively affected mostly by windstorms [63].

Several massive windstorms have swept through the mountain ridge of the Low Tatras belonging
to the Low Tatras National Park over the past 25 years, causing vast windfalls in the spruce monocultures
forest growths, especially in the eastern part (Král’ovohol’ská part) of the mountain range (National
Park). Since the beginning of the studied period, windstorms with an impact on the spread of
spruce monocultures had been recorded on 8 July 1996 (wind calamity Ivan), 27–28 October 2002
(wind calamity Sabina), 16–17 November 2002 (wind calamity Klaudia), 19 November 2004 (wind
calamity Alžbeta), 18–19 January 2007 (wind calamity Kyrill), 23–24 August 2007 (wind calamity Filip),
17–19 May 2010 (wind calamity Gizela) [63–65]. The last more extensive one occurred on 14–15 May
2014 (windstorm Žofia) [66].

It is logical to conclude that the consequences of windstorms manifested by large-scale windfalls
will be reduced significantly in the future years, since the critical relief sites overgrown with
monocultural spruce forests, which were exposed to impact air currents, have been replaced mainly by
transitional woodland-shrub.

Relatively extensive changes in vegetation have also been recorded in the zone of the
(anthropogenically created) timberline in the subalpine level, in addition to the extensive area changes
caused by windstorms scattered throughout the National Park (mountain range). The dwarf mountain
pine belt (CLC 312) experienced an area increase of almost 1%. The phenomenon of windstorms was
also marginally present here, causing a slight retreat of monocultural coniferous forests which were
replaced by transitional woodland-shrub (CLC 324) on the timberline, especially in the area of Vel’ký
Gápel’ and Malý Gápel’, as well as in the area of the northern and southern slopes of Lajštroch.

Land cover flows in the anthropogenically lowered (current) timberline had been affected by
grazing of sheep and cattle in the past decades (before the beginning of the studied period). Currently,
climate change is seen as a significant phenomenon of dwarf mountain pine expansion and acceleration
of succession in the subalpine level of mountain meadows, as well as the shifting of the timberline to
its original altitude.
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Figure 5. Land cover flows in Low Tatras National Park between 1990, 2000, 2006, 2012 and 2018.

Relatively significant changes in the area extent of individual types of land cover have occurred
on the timberline in the high mountain ranges of the Western Carpathians, including the Low Tatras,
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in recent decades. According to R. Midriak’s research, the tree and dwarf mountain pine vegetation
at the timberline expanded by up to 6% at the expense of the subalpine mountain meadows level
in the decade from 1990 to 2000 [67]. These changes occurred due to the end of sheep and cattle
grazing above the timberline. Attenuation of grazing began during the 60 s and 70 s of the 20th century,
especially in the Král’ovohol’ská (eastern) part of the Low Tatras. Decrease of grazing is the reason
why the succession at the timberline and the shift of the anthropogenic timberline to higher altitudes
are more pronounced in the eastern than in the western (Ďumbierska) part of the mountain range [68],
where grazing finally disappeared only after 1989.

Up to the 14th century, the original-natural timberline, which existed before anthropogenic
interventions of shepherds, ascended to an altitude of 1600 m a.s.l., even up to 1700 m a.s.l. in some
parts of the mountain range [69–71]. Artificial timberline in the Low Tatras oscillates nowadays
between altitudes of 1300–1520 m a.s.l. [67,70]. Climate change also plays a role in the land cover
development and thus significantly shifts the timberline to higher altitudes in addition to the end of
grazing and the natural course of succession. These processes create much more favorable ecological
conditions for the growth of dwarf mountain pine or spruce trees on the timberline. For this reason,
we expect an increase in dwarf mountain pine formations, as well as the expansion of transitional
woodland-shrub with the potential of their conversion to coniferous (spruce) forest formations to
higher altitudes in the coming years or decades [72,73]. The average temperature in mountain areas of
the Western Carpathians should increase by at least 2 ◦C over 30 to 50 years, according to climatological
models [74]. Longer periods of droughts should also occur. Under such conditions, the montane zones
(800–1200 m) will be unsuitable for the natural occurrence of spruce, which will shift to higher altitudes.

The increase of the mixed forest (CLC class 313 mixed forest) during the observed period is linked
to montane and foothill areas, which were used as agricultural areas with 80% permanent grassland in
the second half of the 20th century [75].

Significant changes in the long-term use of pastures in this landscape area occurred after 1989.
The transformation of the political-economic situation and the ownership relations has led to a rapid
reduction in the numbers of cattle grazing to almost zero and a gradual reduction of sheep herds,
which are currently grazed here only rarely. This trend has caused the beginning of a rapid succession
downwards into the landscape parts, from which the mixed or deciduous forests have been pushed
out as a result of extensive agriculture in the recent centuries [76].

These rapid changes in the long-term use of permanent grassland-agricultural land after
1989 triggered the abandonment of foothills and mountain pastures, which caused a rapid spontaneous
overgrowth of the landscape (succession). The result can be seen as a 3% increase in the CLC class
313 mixed forest after less than thirty years. All of these factors are understood as driving forces within
the DPSIR model developed by the European Environment Agency [77]. They represent the triggering
mechanisms of landscape processes, which induce area extent changes of each CLC category.

3.3. Assessment of Land Cover Changes Based on Landscape Metrics

Landscape metrics is the most commonly used tool to compare the evolution of land cover changes
over time. The values of the selected landscape indices calculated at the landscape level are shown
in Table 5.

A small increase in the number of patches (NumP) was observed, indicating only a slight increase
in the heterogeneity of the landscape. The MPS index values point to a higher degree of landscape
fragmentation in 2018. This finding is also reflected in the value of the TE index, which has shown a
visible increase. The AWMSI index indicates a decrease in the heterogeneity of patch shapes, which may
be caused by regular rectangular or oval shapes of patches created in the process of salvage collection.
The Shannon Diversity Index was higher in 2018 than in 1990. However, only a minimal increase can
be seen, which points to a higher balance in the proportions of the landscape features. The Shannon
Equilibrium Index, which is complementary to the SDI, increased by almost 0.1 over the studied period.
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Thus, we can speak of a slight trend in an increasing uniformity of patch expansion in the landscape
mosaic classes.

Table 5. Landscape metrics changes between 1990 and 2018 at the landscape level.

Landscape Metric 1990 2018 Change Manifestation in Landscape

NumP 275 281 +6 a small increase in the number of patches

MPS 276.536 270.521 −6.015 a more fragmented landscape

TE 2,998,750 3,609,590 +610,840 an increase in the total perimeter of patches

AWMSI 9.65107 6.16634 −3.48473 a decrease in the heterogeneity of patch shapes and
a higher regularity of the shapes of larger patches

SDI 1.27467 1.46898 +0.19431 an increase in landscape heterogeneity

SEI 0.496958 0.591159 +0.094201 an increase in landscape balance

4. Discussion

The main research questions asked in the introduction of this study can be answered based on
analyses made during the research.

As already mentioned and presented in Table 4, five significant land cover flows have been
identified in the Low Tatras National Park between 1990 and 2018. The most significant land cover
flow (96.88%) was the LCF 7 Forest creation and management, in which up to eight types of processes
took place (Table 4). Area changes of all classes are spatially located throughout the national park,
but to a greater extent in the Král’ovohol’ská part (Figure 5). The main reason for their predominant
location in the eastern part of the National Park lies in its geographical location. Land cover in the form
of monocultural forests is the result of intensive forestry during the second half of the 20th century.
Spruce monocultures on the exposed mountain slopes cannot withstand the wind as the original
anthropogenically removed forests [32,62,67,73].

The massive windstorms in the prevailing north-western streaming naturally oscillated on
the northern slopes of the mountain range, after running off the Tatra’s massive vault, to impact
the large-scale artificial monocultural spruce formations located at inappropriate relief sites with
catastrophic consequences. This process was dominant in all four monitored periods, but mostly in
2006–2012, which is the result of frequent wind disasters.

LCF 6 Withdrawal of farming (1.33%) was shown in the CLC class 231 pastures (meadows and
pastures), which was transformed into CLC 324 (transitional woodland-shrub). The end of the almost
500 years of farm animals grazing was very rapid at the end of the 20th century. The grazing ban was
related to legal regulation in connection with the protection of the landscape within the national park.
Farm animals have disappeared from alpine pastures, which have been subject to intense succession
since then [67,68,76,78–80].

This process is closely related and complementary to the previous land cover flow. It is reflected
in a greater extent again in the Král’ovohol’ská part of the national park, significantly in the entire
valley of Ipoltica, in the broader hinterland of Liptovská Teplička, in the vicinity of the Čierny Váh
water reservoir and the transformed areas to the east extend up to the main ridge near Král’ova Hol’a.
This process occurred only in the period 1990 to 2006. In addition to wind disasters, the reason is also
the human factor (logging).

LCF 5 Conversion from forested and natural land to agriculture is the inverse process to the
previous one, although it is of lower intensity (0.06%). CLC class 243 land principally occupied
by agriculture, with significant areas of natural vegetation, has been transformed into CLC class
211 non-irrigated arable land. This process was identified only in the period 1990–2000 in the vicinity
of the village Liptovská Teplička as a conversion from agriculture–nature mosaics to continuous
agriculture [81,82]. The cause of this transformation must be sought within links of ownership in
the second half of the 20th century. After the transformation of the original strip fields into large
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agricultural areas used as meadows and pastures, these were abandoned after 1989. The original
owners have gradually begun to use them again during the period studied. Original meadows and
pastures in higher altitudes succumbed to succession and have been transformed into forests, while the
original fields of arable land in the lower altitudes have been transformed and are currently used as
grasslands–meadows, and pastures [83].

A surprising result of our research was the finding that the development of touristic centers
with high demands on recreational infra and suprastructure does not manifest itself as a significant
land cover flow. LCF 3 Sprawl of economic sites and infrastructures has transformed the CLC class
312 coniferous forests into the CLC class 142 sport and leisure facilities, but this impact is not significant
compared to changes caused by wind calamities or agricultural land use. The most significant changes
have been identified on the southern and northern slopes of Chopok [84–86], where the ski resort
Jasná was built. Tatry mountain resorts, Inc. operates 23 lifts and 39 ski slopes in the largest resort
in Slovakia. Other location of transformations can be found in the territory of Demänovská Valley
(Demänovská Ice Cave).

LCF 4 Agriculture internal conversions (0.36%) was recorded only in the period 2000–2006 in the
vicinity of the village Liptovská Teplička. Arable land was transformed into meadows and pastures in
this locality. Based on the landscape-ecological metrics results, the studied area showed an increase
in the land cover heterogeneity, although the shape of patches was more regular. These results
also showed that the landscape of the national park has significantly lost its forest potential at the
expense of less valuable forest formations over the studied period. Analyses have shown that the
timberline shifted to higher altitudes, and there is a trend of a continual succession of alpine grasslands.
Although most of the landscape metrics results were positive, it is not possible to draw more profound
conclusions from them. According to Ružičková et al. [78], the resulting values of the landscape
diversity index do not describe the ecological stability and quality of the assessed area and do not take
into account the internal differentiation of landscape structure features. For this reason, we do not
refer to our calculation results as absolute, and we consider the different (and changing) quality and
structure of landscape features over time as well. We can expect extensive linear and areal interventions
into the current land cover based on the expected future changes that will occur due to the planned
construction of new transportation projects and the technical infrastructure connected to tourism (ski
cableways in Demänovská Dolina resort and sports hall in Donovaly resort). Combined with the
anthropogenically predisposed development of the timberline and the progress of succession, the CLC
class 142 Sport and leisure facilities will increase at the expense of classes 312 Coniferous forests,
324 Transitional woodland-shrub, and 333 Sparsely vegetated areas in the critical construction localities.
The construction of express road R1 section Slovenská L’upča-Liptovská Osada will affect CLC classes
at lower altitudes [87]. A decrease in the areal spread of the classes 231 Pastures, 311 Broad-leaved
forest, and 313 Mixed forests is predicted.

Landscape metrics were used in this research because they have been providing a backbone for
spatial pattern analysis in landscape ecology for more than three decades. It is very important to select
the correct approach, or combination of approaches, for investigating the issue [88]. On the basis
of landscape metrics results, we could contend that area of the National Park is more heterogenous,
uniform and balanced. These conclusions are very one-sided; therefore, it is required asses the
landscape changes according to several approaches. Changes in the landscape of the national park
caused by radical interventions (natural and anthropogenic) were reflected in an increase of diversity,
but they may also have an impact on ecological stability. These values should be interpreted sensitively
because it does not take the internal differentiation of land cover classes into account. Assessment of
land cover changes is especially relevant for protected areas where long-term ecosystem stability is a
critical aspect of protecting and maintaining high levels of biodiversity and ecosystem functions [89].

Based on the results of our research, we can formulate basic recommendations for the management
of the National Park concerning the negative processes caused by unwanted changes in the land cover
resulting from the results and conclusions of the study. The priorities should be:
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• To stop the deterioration of habitat status, in particular, for the habitats of European and national
importance, maintain their current state, and then take steps towards a measurable improvement.
Therefore, the National Park Administration should give priority to the detailed mapping
of the habitat status, complete an overall map of the National Park and provide operational
data for decision-making by state administration authorities, in a particular state and private
forest managers;

• To map in detail the natural forests and primeval forests relics of the National Park in the shortest
possible time to ensure that their area extent is maintained and to gradually increase their extent
of areas with a potential for natural forest development;

• Prevent further fragmentation of forests and encourage their regeneration while ensuring
compensatory mechanisms to cover the loss of forest management and favoring alternative
uses of high nature value forests;

• Implement measures to preserve and improve habitats of European importance, particularly in
Natura 2000 sites and habitats of national importance within the National Park;

• Improve the effectiveness of communication between the environmental and agricultural departments;
• Define or revise the nature and landscape conservation objectives in the National Park in more detail.

5. Conclusions

Based on the analyses of changes in land cover transformation over the observed period, we can
conclude that wind calamities were the main transformation factor of national park landcover changes
between 1990 and 2018. Their destructive power stems from improper forest management in the second
half of the 20th century in combination with anthropogenic climate change. The ending of livestock
grazing on foothills, but also montane pastures, was also an essential factor. The end of grazing
triggered succession towards lower, as well as higher altitudes, to the original forest habitats. At the
end of the 1980s, this disrupted the landscape balance of the National Park, maintained by humans
since the Middle Ages. Changes in agricultural management at the foothills of the National Park were
another essential impulse in the transformation of land cover. Last but not least, the development of
tourism and the growth of recreational infrastructure have been among the most intensive transforming
factors of land cover changes in recent decades.

Analyses of land cover changes over the last 30 years in the Low Tatras National Park have clearly
pointed to the inaccuracy of forest management and planting of monocultural forests, especially on the
northern slopes, which are most exposed to extreme wind situations. The combination of these two
factors has the most negative effect on the alpine country. When managing the forests of a national
park, emphasis must be placed on the species composition of forests, which should be as close as
possible to the composition of the original forests. After wind calamities, monocultural spruces should
be replaced by beech and beech-fir forests.

A plan for making the zones of the national park in terms of its economic use should also be drawn
up. Currently, the Ministry of the Environment of the Slovak Republic is working intensively on it.
The proper delimitation of individual zones of use, especially in relation to tourism, could significantly
prevent the expansion of recreational areas at the expense of the surrounding countryside, where the
main example is the Demämovská valley on the northern side of the mountain range.

Our conclusions clearly show that analyses of land cover and land cover flows can contribute to
the proper planning of land use in national parks and thus to its stabilization and sustainability.
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Landscape Ecology: Bratislava, Slovakia, 2016; pp. 57–67.

11. Ivanová, M.; Michaeli, E.; Boltižiar, M.; Fazekašová, D. The analysis of changes ecological stability of
landscape in the contrasting region of the mountain range and a lowland. In Book Series: International
Multidisciplinary Scientific GeoConference-SGEM, 1st ed.; STEF92 Technology Ltd.: Sofia, Bulgaria, 2013;
pp. 925–938.

12. Muchová, Z.; Tarniková, M. Land cover change and its influence on the assessment of the ecological stability.
Appl. Ecol. Environ. Res. 2018, 16, 2169. [CrossRef]

13. Sweetman, B.M.; Cissell, J.R.; Rhine, S.; Steinberg, M.K. Land Cover Changes on Ambergris Caye, Belize:
A Case Study of Unregulated Tourism Development. Prof. Geogr. 2019, 71, 123–134. [CrossRef]
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