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Tullius Scotti and Juliana Quero Reimão
Drug Repurposing Based on Protozoan Proteome: In Vitro Evaluation of In Silico Screened
Compounds against Toxoplasma gondii
Reprinted from: Pharmaceutics 2022, 14, 1634, doi:10.3390/pharmaceutics14081634 . . . . . . . . 201
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Preface to ”In Silico Strategies for Prospective Drug
Repositionings”

Drug design means planning a new chemical structure that purposely interacts with the

biological targets known as being relevant for a given medical condition. The discovery of new

drugs is one of the pharmaceutical research’s most exciting and challenging tasks. Unfortunately,

the conventional drug discovery procedure is chronophagous and cumbersome. However, over time,

the successfully developed medicines—acting as planned on the intended targets—are also proven to

work on other targets as efficient therapies for other diseases. Medicines have a proven proclivity to

having multiple functions; a well-known example is Aspirin, initially used as an analgesic but later

uncovered as an antiplatelet drug at low doses.

In this context, the process of systematically finding new functions for approved drugs—often

called drug repositioning—becomes a valuable strategy in drug discovery. The literature also

mentions similar terms: repurposing, reprofiling, redirecting, rediscovery, retasking, rescuing,

recycling, redirection, therapeutic switching, etc. [1]. The common denominator of all these

taxonomic variants is identifying a new indication for an existing drug. Nevertheless, there are

significant differences in the characterizations of the repurposed entity—from “old drugs” [2] to

“drug candidates from academic institutions and public sector laboratories not yet fully pursued” [3],

“drugs that have previously passed safety testing for human use”, or “drugs that have advanced to

the clinical trial stage of development but have failed or stalled at that stage” [4].

Pursuing drug repurposing has obvious financial reasons. In 2004, Ashburn and Thor [5] argued

that a solution for the pharma industry—facing high costs for launching new drugs—is to focus on

drug repositioning. Indeed, in a 2020 June FDA virtual conference [6], participants estimated the costs

for a repurposed drug to reach the market to be USD 500 thousand (for a development period of 1–3

years), in contrast to over USD 1.5 billion for a new drug (for a development period of 12–19 years).

Such significant cost reductions mean drug repurposing is also suitable for identifying existing drugs

as efficient in rare diseases with low economic incentives. Drug repositioning’s massive potential

to impact healthcare practices is further emphasized by the growth of this subject in the scientific

literature. Thus, the number of papers containing the terms “drug” and “repurposing” has grown

exponentially between 2005 and 2019 [7] (790 documents accumulated in 2019, according to Scopus).

Twenty years ago, pharmacists and medical doctors relied on fortuity to reposition medicines.

The reason is that the drug-target search space is enormous, and exploring it requires vast

human and material resources. Nevertheless, efficiently benefiting from serendipity requires that

opportunity (drugs’ apparent propensity for multiple functions) meets preparation (systematic,

practical methods). The recent progress in machine learning, complex systems, and big data

computational analysis provides systematic methods for drug repositioning. Such approaches

successfully prune the drug-repositioning search space, providing valuable hints to experimental

biologists and biochemists. As such, computational repositioning was recently employed as a

valuable tool for identifying potential therapies for COVID-19.

Following this new and exciting trend, our Special Issue’s scope was to collect papers

introducing innovative computational methods to identify potential candidates for drug

repositioning. The papers in this Special Issue introduce a wide array of in-silico strategies, such

as complex network analysis, big data, machine learning, molecular docking, molecular dynamics

simulation, and QSAR; these strategies target diverse diseases and medical conditions: COVID-19

and post-COVID-19 pulmonary fibrosis, non-small lung cancer, multiple sclerosis, toxoplasmosis,

ix



psychiatric disorders, or skin conditions such as Hidradenitis Suppurativa.
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Abstract: Since its emergence in March 2020, the SARS-CoV-2 global pandemic has produced more
than 116 million cases and 2.5 million deaths worldwide. Despite the enormous efforts carried out by
the scientific community, no effective treatments have been developed to date. We applied a novel
computational pipeline aimed to accelerate the process of identifying drug repurposing candidates
which allows us to compare three-dimensional protein structures. Its use in conjunction with two in
silico validation strategies (molecular docking and transcriptomic analyses) allowed us to identify
a set of potential drug repurposing candidates targeting three viral proteins (3CL viral protease,
NSP15 endoribonuclease, and NSP12 RNA-dependent RNA polymerase), which included rutin,
dexamethasone, and vemurafenib. This is the first time that a topological data analysis (TDA)-based
strategy has been used to compare a massive number of protein structures with the final objective of
performing drug repurposing to treat SARS-CoV-2 infection.

Keywords: COVID-19; drug repurposing; topological data analysis; persistent Betti function

1. Introduction

On 11 March 2020, the World Health Organization (WHO) declared the Coronavirus
Disease 2019 (COVID-19) outbreak, produced by the novel SARS-CoV-2 virus, a global
pandemic [1]. To date, three previously approved antiviral drugs and one antimalarial
medication (remdesevir, iopinavir, interferon-1, and hydroxychloroquine) have been tested
for efficacy against SARS-CoV-2 infection by the WHO SOLIDARITY consortium in a large
multicentric study. The results of the trial suggested that these treatments had little or no
effect in a set of clinical outcomes which included overall mortality, time to initiation of
mechanical ventilation, and duration of hospital stay [2].

With the third wave ongoing in many countries, herd immunity a distant prospect,
and new strains challenging the existing vaccines, it is still a pressing need to find adequate
treatments for the disease. De novo drug development and testing, including preclinical re-
search and clinical trials, is a slow process that could take more than 12 years [3,4]. However,
the current sanitary emergency makes it imperative to shorten this time frame. Therefore,
sustained efforts to identify potential candidates for drug repurposing are necessary.
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In the context of COVID-19, Kumar and co-workers compiled sets of genes linked
to the disorder and studied their distribution in the human interactome [5]. They first
identified the interactome subnetworks’ hub genes in which the disease-related genes
were placed. Then, they queried the drug–gene interaction database to identify Food and
Drug Administration (FDA)-approved drugs that had the hub genes as their target (i.e.,
chloroquine, lenalidomide, pentoxifylline) [6,7]. Zhou and collaborators compiled a list of
human proteins that physically interact with four previous human coronaviruses (SARS-
CoV, MERS-CoV, HCoV-229E, and HCoV-NL63) and used network proximity measures to
prioritize 16 potential anti-human coronavirus repurposable drugs including melatonin,
mercaptopurine, and sirolimus [8]. Drug repurposing studies using virtual screening
procedures based on molecular docking have also been reported. To cite an example,
Kerestsu et al. used a protease inhibitors database (MEROSP) and the geometric structure
of the 3C-Like virus protease (3CLpro) to identify 15 potential inhibitors using the surflex-
Dock software [9].

Here, we present a general-purpose drug repositioning workflow and its application
to the specific case of COVID-19. Our procedure is based on recent developments in the
field of topological data analysis (TDA) and its use in the study of biological geometric
structures [10]. In particular, our method relies on the idea that drugs that are known to
target a specific protein would likely target other proteins that present high degrees of
topological similarities with the initial protein. Therefore, the accumulated knowledge of
drug–protein interactions available in public repositories such as DrugBank in combination
with the information about protein three-dimensional structures found in the Protein
Data Bank (PDB) can be used to predict new potential drug protein targets based on the
computation of protein–protein topological similarities. Figure 1 contains a brief summary
of the general methodology.
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Figure 1. Bioinformatic work-flow used. (A) Data preprocessing and acquisition (B) Topological
data analysis phase, Vietoris–Rips complexes at scale ε are computed to generate the barcodes. Each
ε-associated Betti number captures a unique topological feature of the protein. (C) To compare
barcodes of viral proteins against structures with known drugs, it is necessary to transform barcodes
into comparable curves using persistent Betti functions (PBFs). (D) Candidate drugs from proteins
with a mean persistent similarity score above 0.9 were validated by a dual in silico strategy. We
used AutoDock 4 to analyze the capacity of the drug to bind against viral proteins. Transcriptomics
analysis was performed to test the capacity of the candidate drugs to revert the transcriptomics effect
induced by the COVID-19.

2. Results
2.1. Drugs, Protein Targets, and PDB Structures Included in This Study

DrugBank queries yielded 1825 drugs approved by the American Food and Drug
Administration (FDA). The identified drugs had 1821 known unique protein targets, for
which 27,839 three-dimensional structures were available in the protein databank. The first
three persistent Betti functions (PBFs, see Section 4.2) were successfully calculated for 25,800
of the 27,839 structures, whereas computational limitations prevented us from estimating
the remaining 1622 structures’ PBFs. We also retrieved multiple protein structures from
SARS-CoV-2 that were available in PDB, including the Spike protein receptor binding
domain, the RNA-dependent RNA polymerase (NSP12), the endoribonuclease (NSP15),
the ADP ribose phosphatase (NSP3), the RNA binding protein (NSP9), the 3C-like protease,
and the NSP 8 and 7. In total, we calculated the PBFs of 23 viral protein structures. Table 1
shows the complete information regarding the included SARS-CoV-2 protein structures.

2.2. TDA Results, Viral Proteins Showing Mean Persistent Similarities above 0.9 with Structures
Targeted by Known FDA-Approved Drugs

We compared 23 PDB structures derived from SARS-CoV-2 with 25,800 structures
belonging to proteins that are known targets of FDA-approved drugs through the compu-
tation of 593,400 persistent similarity measures. We selected a stringent threshold of 0.9 for
the mean of the persistent similarity measures (see Section 4.2) in order to call two protein
structures similar. Three viral structures, the 3CL protease (6M2Q), the RNA-dependent
RNA polymerase (6M71), and the NSP15 endoribonuclease (6W01), presented a mean of
the persistent similarity measures with values higher than the selected threshold with
proteins known to be targeted by approved drugs. The 3CL protease was found to be
associated with 284 PDB structures (Supplementary Table S1), most of them classified as
Aldo/Keto reductases and protein kinases, which were targeted by 55 different pharma-
cological compounds (Supplementary Table S2). The RNA-dependent RNA polymerase
was found to be significantly associated with 361 PDB structures (Supplementary Table S3),
which in many cases belonged to the protein kinase and flavin-containing oxidoreductase

3



Pharmaceutics 2021, 13, 488

families, and that were found to be targeted by 204 unique drugs (Supplementary Table S4).
Finally, the viral NSP15 endoribonuclease presented topological similarity values higher
than 0.9 with 13 PDB structures (Supplementary Table S5), where the most abundant group
was the poly(Adp-RIbose) Polymerase Catalytic Domain. These structures were targeted
by 45 drugs (Supplementary Table S6).

Table 1. Protein Data Bank (PDB) structures of SARS-CoV-2 proteins analyzed in the study. Entry ID (column 1) encodes
the PDB identifyers of the analyzed protein structures, Structure Title (column 2) provides the protein structure description,
Macromolecular Name (column 3) is the protein short name and Chain ID (column 4) are the studied chains.

Entry ID Structure Title Macromolecule Name Chain ID

6LVN 2019-nCoV HR2 Domain Spike protein S2 A, B, C, D

6YI3 The N-terminal RNA-binding domain of the SARS-CoV-2
nucleocapsid phosphoprotein Nucleoprotein A

6M3M SARS-CoV-2 nucleocapsid protein N-terminal RNA binding domain SARS-CoV-2 nucleocapsid protein A, B, C, D

6VYO RNA binding domain of nucleocapsid phosphoprotein from SARS
coronavirus 2 Nucleoprotein A, B, C, D

6WJI C-terminal Dimerization Domain of Nucleocapsid Phosphoprotein
from SARS-CoV-2 SARS-CoV-2 nucleocapsid protein A, B, C, D, E, F

6LXT Structure of post fusion core of 2019-nCoV S2 subunit Spike protein S2 A, B, C, D, E, F

6VSB Prefusion 2019-nCoV spike glycoprotein with a single
receptor-binding domain up SARS-CoV-2 spike glycoprotein A, B, C

6VYB SARS-CoV-2 spike ectodomain structure (open state) Spike glycoprotein A, B, C

6W41
Crystal structure of SARS-CoV-2 receptor binding domain in

complex with human antibody CR3022

CR3022 Fab heavy chain H

CR3022 Fab light chain L

Spike protein S1 C

6YLA
Crystal structure of the SARS-CoV-2 receptor binding domain in

complex with CR3022 Fab

Spike glycoprotein A, E

Heavy Chain B, H

Light chain C, L

6M0J Crystal structure of SARS-CoV-2 spike receptor-binding domain
bound with ACE2

Angiotensin converting enzyme 2 A

Spike receptor binding domain E

6M17 2019-nCoV RBD/ACE2-B0AT1 complex

Sodium-dependent neutral amino acid transporter
B(0)AT1 A, C

Angiotensin converting enzyme 2 B, D

SARS-coV-2 Receptor Binding Domain E, F

6M2Q SARS-CoV-2 3CL protease (3CL pro) apo structure (space group C21) SARS-CoV-2 3CL protease A

6W4B Crystal structure of Nsp9 RNA binding protein of SARS CoV-2 Non-structural protein 9 A, B

6W9Q Peptide-bound SARS-CoV-2 Nsp9 RNA replicase 3C-like proteinase peptide, Nonstructural protein 9
fusion A

6VXS Crystal Structure of ADP ribose phosphatase of NSP3 from SARS
CoV-2 Non-structural protein 3 A, B

6W9C Crystal structure of papain-like protease of SARS CoV-2 Papain-like proteinase A, B, C

6WCF Crystal Structure of ADP ribose phosphatase of NSP3 from
SARS-CoV-2 in complex with MES Non-structural protein 3 A

6WEN Crystal Structure of ADP ribose phosphatase of NSP3 from
SARS-CoV-2 in the apo form Non-structural protein 3 A

6WIQ Crystal structure of the co-factor complex of NSP7 and the
C-terminal domain of NSP8 from SARS CoV-2

SARS-CoV-2 NSP7 A

SARS-CoV-2 NSP8 B

6M71 SARS-Cov-2 RNA-dependent RNA polymerase in complex with
cofactors

SARS-Cov-2 NSP 12 A

SARS-Cov-2 NSP 8 C

SARS-Cov-2 NSP 7 B, D

6W01 1.9 A Crystal Structure of NSP15 Endoribonuclease from SARS
CoV-2 in the Complex with a Citrate Uridylate-specific endoribonuclease A, B

6VWW Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 Uridylate-specific endoribonuclease A, B

Drugs known to target proteins presenting a mean of the persistent similarity measures
larger than 0.9 with the SARS-CoV-2 structures were subjected to blind docking with
the viral proteins. Blind docking was carried out using the complete viral protein and
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drug structure information preprocessed as detailed in Section 4, which included polar
hydrogen addition. A set of potential repurposable candidates was then selected based
on the topological similarity criteria (a mean of the persistent similarity measures), the
correlations between the transcriptomic profiles observed in patients infected by SARS-
CoV-2 and those generated by treating cell lines with the candidate drugs, and the blind
docking analyses results. Therefore, the selected candidates are known to target proteins
with large topological similarities with a specific viral protein, present high affinities with
the viral structures, and have the capacity to partially revert the transcriptomic effects
induced by the viral infection. Figure 2 provides a schematic overview of the narrowing-
down process followed to identify the final 16 drug candidates. Furthermore, the full
description of the candidates can be consulted in Table 2.

We identified six repurposable candidates to target the 3CL viral protease (6M2Q).
Cholic acid, an amphipathic sterol, presented the strongest binding energies
(BE = −15.06 kcal/mol), and was found to negatively correlate with transcriptomic dataset
2 (DS2 r = −0.11). Rutin (BE = −14.52 kcal/mol, DS2 r = −0.184 DS3 r = −0.1), a flavonoid-
3-o-glycoside with known antioxidant and cytoprotective activity, was also selected [11,12].
Two non-steroidal anti-inflammatory drugs, indomethacin (BE = −13.31 kcal/mol, DS2
r = −0.12) and sulindac (BE = −13.14 kcal/mol, DS2 r = −0.12), were also identified.

Whereas indomethacin presents antipyretic and analgesic properties [13], sulindac is used
to treat conditions that involve chronic inflammation, such as arthritis [14]. Finally, sulfisox-
azole (BE = −11.59 kcal/mol DS2 r = −0.13), a sulfanilamide used as a broad-spectrum
antibiotic, and dasatinib (BE = −10.94 kcal/mol DS2 r = −0.15), a tyrosine kinase inhibitor
indicated for the treatment of chronic myeloid leukaemia [15], were also identified as drugs
with the potential of targeting the viral 3CL protease.

Five compounds were found to be candidates to target the SARS-CoV-2 NSP15 endoribonu-
clease (6W01), which included two corticosteroids, dexamethasone (BE =−11.42 kcal/mol, DS2
r = −0.15) and spironolactone (BE = −10.99 kcal/mol, DS1 r = −0.12 and DS2 r = −0.1),
which are indicated for the treatment of allergies and asthma and resistant hypertension, re-
spectively [14,16,17]; phenolphthalein (BE = −11.15 kcal/mol, DS1 r = −0.13), a compound
historically used as a laxative [18]; mifepristone (BE = −10.04 kcal/mol, DS1 r = −0.13,
DS2 r = −0.14), a synthetic steroid progesterone antagonist drug that is indicated for Cush-
ing’s syndrome and is also used as an emergency contraceptive pill [19,20]; and, finally,
carbamazepine (BE = −9.66 kcal/mol, DS2 r = −0.15), a pharmacologically active molecule
related to the group of tricyclic antidepressants, mainly used as anticonvulsant [14,21].

Lastly, the analysis of the NSP12 RNA-dependent RNA polymerase (6M71) yielded multi-
ple antineoplastic drugs as possible repurposing candidates: vemurafenib (BE = −8.09 kcal/mol
DS2 r =−0.16), a BRAF inhibitor [22,23]; sorafenib (BE =−7.34 kcal/mol DS1 r = −0.11, DS2
r = −0.15), a multitarget protein kinase inhibitor [24]; levonorgestrel (BE = −7,21 kcal/mol,
DS2 r = −0.14), a synthetic progestogen used as a first-line oral emergency contractive
pill [14]; the opioid antagonist naloxone (BE = −7.07 kcal/mol, DS2 r = −0.11); and ralox-
ifene (BE = −7.05 kcal/mol, DS1 r = −0.13 and DS2 r = −0.17), a selective estrogen receptor
modulator mainly used to treat osteoporosis in postmenopausal women and avoid bone
loss [25]. Supplementary File 2 shows the interacting residues between the three viral
proteins and the 16 drugs identified as potential repurposing candidates.

2.3. Transcriptomic Data Analysis Results

Differential gene expression analyses were carried out with the three identified
datasets including samples infected with SARS-CoV-2 and uninfected controls, and were
followed by Gene Set Enrichment Analysis (GSEA) and LINCS L1000 analysis. GSEA
analyses allow the identification of coordinated changes in the expression of genes belong-
ing to specific biological processes and pathways in case samples compared to controls.
GSEA results are reported using the Normalized Enrichment Score (NES) and the p-value
adjusted by multiple comparisons (p-adj). LINCS L1000 analyses aim to find drugs capable
of reverting the transcriptomic effects produced by SARS-CoV-2 infection. Differential
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gene expression analysis of DS1 yielded 451 deregulated genes (DEGs), of which 213 were
found to be upregulated and 238 were downregulated in SARS-CoV-2 infected samples
compared to controls. The top upregulated genes were derived from the virus open read-
ing frames. Gene Set Enrichment Analysis (GSEA) showed that pathways linked to the
immune response were heavily upregulated in SARSCoV-2-infected samples. Instances
of such pathways included immune response mediated by circulating immunoglobulin
(p-adj = 1.8 × 10−25), B-cell mediated immunity, (p-adj = 3.2 × 10−22), and adaptive im-
mune response (p-adj = 2.0 × 10−20). The FDA-approved drugs showing the strongest
negative correlation in LINCS L1000 analysis were niclosamide, bisacodyl, and perhexiline
(r = −0.21, −0.19, −0.18, respectively). GSEA analysis of the transcriptomic signatures
produced by these medications suggested that they induce significant gene expression
changes in pathways linked to interleukin signaling and NF-kB activation. Genes included
in the set of potential 105 therapeutics for SARS were also found to be upregulated in the
bisacodyl signature (NES = 1.61, p-adj = 2.19 × 10−2). The JAK-STAT complex and the
TCF-dependent signaling pathways were found to be downregulated in the perhexiline
and niclosamide signatures, respectively.
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A total of 8380 DEGs were identified in the DS2 analysis. A total of 4606 genes were
found to be upregulated, and 3774 were found to be downregulated in SARS CoV-2 infected
samples compared to uninfected controls. Upregulated genes were enriched in components
of the humoral immune response, epidermis development, keratinization, and B-cell-
mediated immunity (p-adj = 1.1× 10−20, 8.2× 10−20, 1.3× 10−18, 2.5× 10−10, respectively),
among others. The top negatively correlated drugs included instances of several different
compound families, such as anti-inflammatories (phenylbutazone, r = −0.21), antidiabetics
(troglitazone, r = −0.20), antimalarials (chloroquine, r = −0.20), and other compounds
such as nicotine (r = −0.17). Treatment with phenylbutazone was found to upregulate
the gene expression of genes included in the interleukin-12 and 17 signaling pathways.
In contrast, interleukin-4 and 13 signaling-related genes tended to be downregulated
by chloroquine treatment (NES = −1.45, p-adj = 4.30 × 10−2). Genes involved in the
viral mRNA translation and the ISG15 antiviral mechanism were also upregulated in the
gene expression profiles induced by treatment with chloroquine, phenylbutazone, and
troglitazone. In addition, the SARS-CoV infection pathway was found to be upregulated in
samples treated by chloroquine and troglitazone. ADORA2B-mediated anti-inflammatory
cytokine production-related genes were downregulated by the treatment of the three top
negatively correlated drugs.

DS3 presented the lowest yield in terms of differentially expressed genes. A total of
188 genes were found to be upregulated to controls, whereas 31 genes were found to be
downregulated in infected samples compared to controls. Twenty-nine biological processes
were found to be significantly upregulated and were mainly linked to mechanisms aimed to
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fight the viral infection and immune system-related processes including, defense response
to virus (p-adj = 7.2 × 10−13), myeloid leukocyte-mediated immunity (p-adj = 8.8 × 10−15),
regulation of cytokine production (p-adj = 1.5 × 10−8), and response to interferon-gamma
(p-adj = 1.9 × 10−8), among others. Chloroquine was found to be the top negatively
correlated drug (r = −0.11), followed by others such as pazopanib, spectinomycin, and
troglitazone (r = −0.11, −0.11, −0.10, respectively). The correlations observed in this
dataset tended to be weaker than those computed for DS1 and DS2. GSEA analyses of the
drug signatures showed that troglitazone increased the expression of genes classified as
potential therapeutics for SARS (NES = 1.46, p-adj = 4.65 × 10−2), in addition to antiviral
pathways such as the ISG15 and IFN-stimulated antiviral mechanisms. Spectinomycin
was found to reduce the expression of interferon-gamma signaling 135 and interleukin
2, 3, and 5 pathway-related genes, whereas pazopanib was found to upregulate viral-
related pathways such as viral mRNA translation influenza and SARS-CoV-2 infection.
Supplementary File 1 includes the complete differential gene expression and enrichment
analysis results for transcriptomic datasets 1, 2, and 3, whereas Supplementary File 2
contains the full LINCS L1000 analysis information.

Table 2. Drug repurposing candidates based on the topological, trascriptomic, and docking criteria. PC: Pearson correlation.
LE: Lowest energy conformation in the cluster. Candidates with a PC of <−0.1 may revert the transcriptomic effects of
SARS-CoV-2 infection. The maximum number of the AutoDock cluster is 150. Drug ID (colum 2) encodes the DrugBank ID
of the corresponding drug (column 1).

6M2Q (SARS-CoV-2 3CL Protease)

Drug Name Drug ID PC DS1
(GSE150316)

PC DS2
(CRA002390)

PC DS3
(GSE147507)

AutoDock LE
(kcal/mol) AutoDock Cluster

CholicAcid DB02659 −0.09 −0.11 −0.08 −15.06 74
Rutin DB01698 −0.07 −0.18 −0.1 −14.52 149

Indomethacin DB00328 −0.07 −0.12 −0.05 −13.31 146
Sulindac DB00605 −0.07 −0.12 −0.07 −13.14 73

Sulfisoxazole DB00263 −0.05 −0.13 −0.09 −11.59 77
Dasatinib DB01254 −0.04 −0.15 −0.09 −10.94 43

6W01 (NSP15 Endoribonuclease)

Dexamethasone DB01234 −0.07 −0.15 −0.08 −11.42 49
Phenolphthalein DB04824 −0.13 −0.1 −0.04 −11.15 101
Spironolactone DB00421 −0.12 −0.1 −0.09 −10.99 110
Mifepristone DB00834 −0.13 −0.14 −0.06 −10.04 28

Carbamazepine DB00564 −0.08 −0.14 −0.07 −9.66 86

6M71 (NSP12 RNA-dependent RNA polymerase)

Vemurafenib DB08881 −0.09 −0.16 −0.08 −8.09 13
Sorafenib DB00398 −0.11 −0.15 −0.05 −7.34 30

Levonorgestrel DB00367 −0.08 −0.14 −0.08 −7.21 89
Naloxone DB01183 −0.06 −0.12 −0.09 −7.07 69
Raloxifene DB00481 −0.13 −0.17 −0.07 −7.05 6

2.4. GSEA Analysis of the Repurposing Candidates

We determined the transcriptomic impact of the treatment with the selected can-
didates on two sets of biological processes linked to COVID-19, viral infections, and
immune-related pathways by performing Gene Set Enrichment Analysis (GSEA) of their
gene expression signatures derived from LINCS L1000. The transcriptomic profiles gener-
ated by cholic acid, rutin, sulfafurazole, and sulindac treatment (candidates to target the
3CL protease) were found to be enriched in the ISG15 antiviral mechanism. Furthermore,
genes related to interleukin-1 and 12 signaling tended to be upregulated in rutin’s signature,
in addition to genes belonging to the potential therapeutics for SARS gene set (NES = 1.51,
p-adj = 3.85 × 10−2) whereas WNT ligand biogenesis and trafficking (NES) genes were
found to be downregulated by rutin treatment (NES = −1.99, p-adj = 2.12 × 10−3) (Sup-
plementary Table S7). RNA-dependent RNA polymerase drug candidates, levonorgestrel
and raloxifene, were found to be enriched in pathways related to antiviral processes such
as ISG15 antiviral mechanism (levonorgestrel, NES = 2.08, p-adj = 9.95 × 10−4; raloxifene,
NES = 2.06, p-adj = 8.13 × 10−4) and antiviral mechanism by IFN-stimulated genes (lev-
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onorgestrel, NES = 1.95, p-adj = 1.22× 10−3; raloxifene, NES = 1.94, p-adj = 1.12× 10−3). In
addition, interferon alpha/beta signaling was observed to be depleted in raloxifene-treated
cells (NES = −1.52, p-adj = 4.59 × 10−2) (Supplementary Table S8). Finally, in the case
of NSP15 endoribonuclease candidate drugs, dexamethasone produced gene expression
signatures upregulated in pathways associated with viral infection response, such as ISG15
antiviral mechanism (NES = 1.82, p-adj = 3.17 × 10−3) and the antiviral mechanism by
IFN-stimulated genes (NES = 1.59, p-adj = 1.20 × 10−2). This pathway was also found to
be upregulated in the gene expression profiles of carbamazepine and mifepristone. Finally,
interleukin-7 signaling (NES = −1.64, p-adj = 3.47 × 10−2) and interferon alpha/beta
signaling (NES = −1.68, p-adj = 5.48 × 10−3) were downregulated by dexamethasone
treatment (Supplementary Table S9). Figure 3 shows a dot plot representation of the GSEA
analysis results.Pharmaceutics 2021, 13, x 10 of 20 
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Figure 3. Gene Set Enrichment Analysis (GSEA) results for candidate drugs for 6M2Q, 6M71, and
6W01 SARS-CoV-2 structures with the expression signature yields from correlation analyses from
DS2. Reactome pathways related to the immune system and viral infections. Only drugs with at
least one pathway with an adjusted p-value < 0.05 are displayed. The GSEA table with the results is
available in Supplementary Tables S7–S9.
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3. Discussion

On December 31st, 2019, the World Health Organization (WHO) was officially notified
about several cases of pneumonia in Wuhan City, China, caused by COVID-19, a disease
with no effective treatment nor a specific vaccine at that time, which history and quest for a
cure is a daily struggle and is constantly being rewritten. As specific antiviral treatments
are still under development and the vaccination campaign has faced difficulties derived
from unmet forecasts in the process of production and distribution, drug repurposing
strategies suggesting the use of FDA-approved drugs continue to be a valuable option to
find candidate drugs for the effective treatment of COVID-19 in a short timeframe.

Here, we report a novel TDA-based strategy for drug repurposing in combination
with current methodologies of molecular docking, differential expression analysis of SARS-
CoV-2 infected cells, and correlation with FDA-approved drugs transcriptomic profiles.
Our results indicate that the proposed TDA-based formalism is a promising tool to address
biological problems from a dual perspective. First, from a structural biology perspective,
we used the Vietoris–Rips complex to compute the PBF encoding the shape of each protein
structure. Next, to measure the degree of similarity between proteins we introduced the
persistent similarity measure (PSM, see Section 4.2). This allowed us to classify proteins
based solely on the C atomic coordinates. TDA-based methods have been previously pro-
posed as a method to study the topological invariants of the three-dimensional structure of
biomolecules. Several studies have employed this framework to classify protein structures
using only the three-dimensional coordinates of the atoms from crystallographically re-
solved proteins. For instance, Xia and collaborators performed TDA-based methods on
three-dimensional biomolecular structures to study their structural characteristics, flexibil-
ity prediction, and folding properties [10]. Hence, they defined the molecular topological
fingerprints (MFTs) to extract the topological information from protein structures using the
so-called persistent Betti numbers [26]. K. Dey and colleagues proposed another topology-
based method to generate protein signatures to create a fast domain classifier using a
support vector machine [27]. Interestingly, our mean persistence similarity metric was able
to achieve results comparable to those obtained by the state-of-the-art structural alignment
method, DALI [28], and presented a high predictive power clustering protein in terms of
external classifications.

Molecular docking simulation is a rapid screening method to test compound binding
activity. Additionally, transcriptomic data represent a rich alternative resource for infer-
ring non-obvious relationships between drugs and genes. Previous in silico molecular
docking studies have highlighted the potential of repurposed drugs for the treatment of
COVID-19 [29–35]. However, here we used in silico molecular docking combined with
transcriptomic small molecule treatment data from LINCS L1000 to determine which FDA-
approved drugs may reverse the effects of SARS-CoV-2 infection. The gene expression
profiles in response to the identified drugs support the docking results and offer a plausible
perspective for the pathways associated with protein responses to drugs binding to SARS-
CoV-2 proteins. To our knowledge, this is the first time that an application of barcode-based
similarity measures has been used for the analysis of large datasets of PDB structures.

The generation of PBF depends upon the previous construction of Vietoris–Rips
complexes, which have a computational store cost that scales exponentially with the
number of points defining a particular structure. Moreover, in the worst case, the standard
algorithm to compute the barcodes has cubic complexity in the number of simplices.
Although our analyses were carried out in a cluster with 32 cores and up to 500 GB of RAM,
the computational cost of the barcode generation of the excluded 1622 genes exceeded the
available amount of RAM or required an exponential amount of runtime.

Among all of the SARS-Cov-2 proteins analyzed (n = 23, Table 1), only three showed a
persistent similarity score above 0.9 against other protein structures targeted with known
drugs. Interestingly, these proteins are key components in coronavirus replication and
structural assembly: the Viral 3CL protease (6M2Q), a chymotrypsin-like protease that
is essential for the production of non-structural proteins [36]; the nsp12 RNA-dependent
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RNA polymerase (6M71), the main component of coronavirus replication and transcription
machinery, and because of that an excellent target for new therapeutics [37]; and the nsp15
endoribonuclease (6W01), a protein with a poorly defined role in SARS-CoV-2 infection,
but which has been described to be linked to pRB downregulation affecting host cell cycle
division and coronavirus infection in other coronaviruses (SARS-CoV), and with a role
as an antagonist of host dsRNA sensors during coronavirus infection in macrophages to
evade innate immune system defenses [38,39]. Hence, in this study, we selected three
proteins from the SARS-CoV-2 coronavirus as the best candidates to find repurposed drugs
to combat the disease.

Our differential expression analyses revealed that troglitazone, niclosamide, and
chloroquine, among multiple candidates, were the top negatively correlated drugs that may
revert the effects of SARS-CoV-2 infection to the cell transcriptome. Moreover, chloroquine
is already under study in several clinical trials, although recent results reported by the WHO
SOLIDARITY study stated that chloroquine has no significant effect on hospitalized COVID-
19 patients, in terms of the overall mortality level [2]. Niclosamide is also being evaluated
under a Phase 2 clinical trial [40]. In addition, the antiviral activity of the niclosamide has
been demonstrated against SARS-CoV in in vitro studies [41] and recent investigations
against SARS-CoV-2 [42], and also previously against other MERS coronaviruses [43].

To date, no therapeutic agents have been proven to be effective against SARS-CoV-2.
Several treatments have been reported under investigation specifically to treat COVID-19
as the result of drug repurposing strategies [44,45] and, as this draft is being written, up
to 700 research papers have already been published. The number of clinical trials using
repurposed drugs such as hydroxychloroquine, remdesivir, and lopinavir/ritonavir, among
others, alone or in combination, is also exponentially growing, although in most cases
unfortunately the results are not as good as initially expected [46–48]. Recently, a new
treatment, plitidepsin, has been reported as the most potent antiviral drug against the
coronavirus [49].

Our more promising candidates arise from the combination of molecular docking
and transcriptomic results, and the cornerstone of our work, the TDA-based formalism.
Among the 16 compounds related to the three SARS-CoV-2 proteins analyzed, nine have been
described as possible candidates in other repurposing studies and five of these have already
shown antiviral activity or have already been described as possible COVID-19 treatments
(Supplementary Table S10), although preclinical studies will be required to determine their
efficacy. In this direction, 3 of the 16 compounds are being evaluated under different clinical
trials (indomethacin (n = 2), dexamethasone (n = 40), and spironolactone (n = 4)).

Rutin and indomethacin were amongst the notable compounds selected from 3CL
main protease. In addition, they have been proven as good candidates in other studies.
Rutin is a polyphenolic flavonoid that has shown a wide range of pharmacological appli-
cations due to its significant antioxidant properties [50]. Our results from GSEA analyses
revealed that rutin might act in early stages of SARS-CoV-2 infection by activating the
interferon-induced ISG15 pathway. ISG15 is an interferon-induced protein that has been
implicated as a central player in the host antiviral response, and is the key element for
the innate immune response against viral infection [51]. Furthermore, ISG15 modulates
the immune system stimulating the IFN-gamma production by NK cells that lead to the
promotion of early viral response [52]. Although the result of the possible interaction
between rutin and 3CL protease has been reported by other studies using an in silico
approach [53], our results provide a transcriptomic dimension to the possible effect of
rutin during infection with SARS-CoV-2. Moreover, to our knowledge this is the first time
the natural compound rutin has been related with the antiviral activity induced by the
protein ISG15.

Dexamethasone, a corticosteroid used in a wide range of conditions for its anti-
inflammatory and immunosuppressive effects, could be one of the most promising repur-
posed drugs chosen to treat COVID-19 disease, based on some results that prove a decrease
in the incidence of death versus the usual care group among patients receiving invasive
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mechanical ventilation [54]. This compound was chosen because of its immunosuppressant
properties to treat the cytokine storm induced by the immune response to coronavirus
infection in late stages of the disease. Nonetheless, our results indicated that dexametha-
sone could also be a good candidate to target nsp15 endoribonuclease, although some
repurposed works also suggested it as the target of the main protease [55]. These data
could support the idea of administering corticosteroids, not just at the advanced infection
stage, but also at the beginning. However, a recent study tested multiple pharmacological
compounds derived from the steroids in vitro and demonstrated that dexamethasone has
no antiviral activity against SARS-CoV-2 [56]. Nevertheless, we also found other corticos-
teroids that could interact with nsp15 protein, such as mifepristone, which suppressed
viral growth conferring more than 95% of cell survival rate after viral infection and drug
administration in vitro [56].

Lastly, the RNA-dependent RNA polymerase nsp12 of SARS-CoV-2 is a protein that
performs essential functions in the coronavirus life cycle with no host cell homolog. This is
an advantage for antiviral drug development, reducing the risk of affecting any protein
present in human cells, as has been proven by many drug repurposing studies directed
against nsp12 RdRP [57–60]. Vemurafenib, sorafenib, and raloxifene may be potential
candidates against nsp12 RdRP. Vemurafenib can disturb the cellular Raf/MEK/ERK
signaling cascade via binding in the ATP-binding site of BRAF(V600E) kinase and inhibiting
its function [61], whereas sorafenib is another kinase inhibitor that targets VEGFR, PDGFR,
and RAF kinases [62]. Interestingly, SARS-CoV-1 uses Raf/MEK/ERK signaling pathways
to promote its replication via various mechanisms, indicating that this signaling cascade is
a critical therapeutic target for host-directed SARS-CoV-2 antivirals [63–65].

4. Materials and Methods
4.1. Data Acquisition

DrugBank queries were carried out to retrieve the information regarding drugs with
known protein targets [66]. In short, the DrugBank database version 5.1.5 (https://go.
drugbank.com/releases/5-1-5, accessed on 21 March 2020) was downloaded in XML
format, and the dbparser package and custom R scripts were employed to extract the
relevant information [67]. We only selected drugs approved by the American Food and
Drug Administration (FDA) and retrieved the names and UniProt identifiers of their
protein targets. Then, UniProt IDs were mapped to their respective Protein Data Bank
(PDB) structures using the Retrieve/ID mapping tool available at UniProt. All of the PDB
structures targeted by FDA-approved drugs were downloaded in PDB format and stored
for downstream analysis. Protein Data Bank queries were also performed to identify the
three-dimensional structures of SARS-CoV-2 proteins.

4.2. A Topological Data Analysis Based Formalism to Compare, at Quantitative Level, the
Homological Similarities of Pairwise Three-Dimensional Molecules Considered as Surfaces

In this paper, we used an adapted a TDA-based strategy which combines concepts and
results from Algebraic Topology to compare three-dimensional protein structures [68–70].
More precisely, we considered the shape of the protein structure as a surface for which
we only know a sample of points that are given by the coordinates of its Cα. Using this
information, we construct a set of simplicial complexes associated to that protein. This
set is composed by three classes of geometrical objects: isolated points, non-intersecting
segments connecting these points, and non-intersecting triangles composed using non-
intersecting segments. To quantify the above geometrical information, we associate a
non-negative continuous function to each of the three components of a simplicial complex.
The first function, denoted by f0, represents the structure of the position of the individual
points, the second function f1, corresponds to the non-intersecting segments and finally,
the third function f2 correspond to the triangles. These three functions are called the
persistent Betti Functions (PBFs) and allow us to characterize the representation of a
protein’s tertiary structure.
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Therefore, we computed the persistent Betti functions using PDB structures from
DrugBank. To compare the shape of both structures, one given by the PBF { fi}i=2

i=0 of each

structure from DrugBank, against the PBF of SARS-CoV-2 proteins
{

f SARS−Cov−2
i

}i=2

i=0
we

construct the persistent similarity measure (PSM), which is defined as

PSMi =

∫
min

(
fi(x), f SARS−Cov−2

i (x)
)

dx
∫

max
(

fi(x), f SARS−Cov−2
i (x)

)
dx

for i = 0, 1, 2. (1)

Then, we calculate the mean of the persistent similarity measures:

PSM =
1
3
(PSM0 + PSM1 + PSM2) (2)

for each protein comparison. A PSM ≥ 0.9 threshold value was established, considering
those drugs whose target protein had a value of 0.9 or higher for their mean persistent
similarity measure with a SARS-CoV-2 protein as drug repurposing candidates.

4.3. Data Preprocessing and Persistent Similarity Measures Computation

All protein structures in PDB format were loaded into the R environment using the
bio3d package [71]. Then, the coarse-grain representation of each structure was generated
by selecting only the three-dimensional atomic coordinates of the alpha-carbons of the
amino acids [26]. Two main reasons compelled us to work with this reduced representation.
First, the construction of simplicial complexes scales exponentially with the number of
initial points present in the point cloud. Therefore, structures defined by a very large
number of points are not computationally tractable even in state-of-the-art computers.
Second, all-atom models present a high degree of detail that could mask the general
structure of the protein. Barcodes were constructed using the R package of TDAstats [72].
TDAstats makes use internally of the Ripser C++ library [73], an optimized fast software
package for simplicial complexes and barcodes construction.

4.4. Protein–Ligand Binding with AutoDock 4.2

Ligand preparation was carried out as follows: First, the FDA-approved drugs in SDF
format were retrieved from DrugBank. A custom R script and Open Babel v.3.0.0 were used
to transform SDF into the mol2 format [74–77]. Following, the MGLTools v.1.5.7 toolkit
was employed to add the polar hydrogens and protonation at pH 7.4. Then, mol2 drug
structures were converted into PDBQT format, and their stereochemical properties were
computed using AutoDock 4.2 [78]. A virtual screening library was then constructed using
the preprocessed drug structures. Drugs containing atoms different from those included in
the following list (H, C, N, O, F, Mg, P, S, Cl, Ca, Mn, Fe, Zn, Br, I) were discarded from
the subsequent analyses because AutoDock does not include the values of their atomic
force fields and is, therefore, unable to perform molecular docking using them. Polar
hydrogens were also added to the SARS-CoV-2 protein PDB structures which were also
transformed to the PDBQT format. Docking was carried out using AutoDock 4.2 [78], a
molecular docking software package developed by the Scripps Research Institute. A grid
box spanning the whole protein structure was set to perform blind docking. AutoDock
was configured following the manual recommendations [79]. We increased the parameter
ga_runs from 10 to 150 to improve the accuracy of the results.

4.5. Differential Gene Expression Analyses of SARS-CoV-2 Infected Human Samples and Cell
Lines and Uninfected Controls

We carried out searches for transcriptomic datasets of patients and human-derived
cell lines including samples infected with SARS-CoV-2 and uninfected controls. At the time
the searches were carried out, three datasets were identified. Dataset 1 (DS1) was found
in the gene expression omnibus (GEO) under ID GSE150316 [80]. This includes formalin-
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fixed paraffin-embedded samples from multiple tissues (i.e., lung, jejunum, heart) derived
from SARS-CoV-2-infected individuals and uninfected controls obtained in autopsies. We
restricted our analysis to lung samples. Twenty-one samples (16 cases and five controls)
were selected for downstream analysis.

Dataset 2 (DS2) gathers samples derived from bronchoalveolar lavage fluids (BALF) of
SARS-CoV-2 infected patients (four samples derived from two patients with two technical
replicates) and three healthy controls [81]. Samples derived from infected patients were
stored at the National Genomics Data Center under accession number CRA002390, whereas
control samples were downloaded from the NCBI SRA database and were available under
the identifiers SRR10571724, SRR10571730, and SRR10571732. Sequence alignment using
the human reference genome hGR38 and count extraction were carried out using the
Rsubread package [82].

Finally, the third dataset (DS3) was available in GEO under accession ID GSE147507 [83].
It presented a complex design including both primary cell lines derived from the human
lung epithelium and transformed lung alveolar which were either mock treated or infected
with different viruses including the influenza A virus (IAV), the respiratory syncytial virus
(RSV), and SARS-CoV-2, in addition to samples derived from infected ferrets and two tech-
nical replicates of a lung sample derived from a SARS-CoV-2-infected human patient. We
restricted our analysis to the cell lines NHBE, A549, and Calu-3, which were either infected
with SARS-CoV-2 or were mock treated. The infected human lung samples and the healthy
lung biopsies were also included. Overall, 28 samples were analyzed in this dataset.

For each dataset, differential gene expression analysis between SARS-CoV-2 infected
samples and uninfected controls was carried out using the DESeq2 package [84].

4.6. Identification of LINCS 1000 Signatures Negatively Correlated with the SARS-CoV-2
Differential Gene Expression Profiles

LINCS L1000 contains an extensive collection of gene expression profiles generated us-
ing thousands of perturbagens (i.e., small molecules, ligands, micro-environments, CRISPR
gene over-expression, and knockdown perturbations) and different cell lines, doses, and
exposure times [85]. In particular, LINCS L1000 Level 5 data includes differential gene
expression signatures computed by comparing three technical replicates of the same pertur-
bation to appropriate controls. Level 5 LINCS L1000 phases I (GSE92742) and II (GSE70138)
datasets were downloaded from GEO. Signatures involving FDA-approved drugs were
identified with the help of the information contained in file repurposing_drugs_20180907.txt
and repurposing_samples_20180907.txt available at the LINCS L1000 repurposing hub [85]
(see Supplementary Materials). Drugbank and LINCS 1000 data were merged based on
Pubchem compound identifiers. Then, the subset of signatures corresponding to FDA
approved medications with 435 known Pubchem identifiers were selected. Overall, we
obtained 52,144 expression signatures generated using 1313 approved drugs. To identify
drugs with the potential of reverting the differential expression profiles generated by SARS-
CoV-2 infection, we computed Pearson’s correlations between each expression signature
derived from LINCS L1000 and the differential expression profiles from DS1, DS2, and DS3,
and picked those drugs exhibiting the most negative correlations.

4.7. Gene Set Enrichment Analysis (GSEA)

Dysregulated biological processes were identified for each transcriptomic dataset
using the pre-ranked Gene Set Enrichment Analysis (GSEA) implementation of the fgsea
package [86]. The C5 molecular signatures collection, which contains gene sets derived
from the three branches of Gene Ontology (GO), was used as a source of functional in-
formation. GO terms including more than 500 or less than 15 genes were filtered out.
GSEA analyses were also performed for those LINCS L1000 level 5 expression signa-
tures negatively correlated with the differential gene expression profiles generated by
the SARS-CoV-2 infection to determine their effect in specific pathways and biological
processes. Reactome (version 73) was used as a source of pathway information and analy-
ses were carried out using the clusterProfiler R-package (https://www.rdocumentation.
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org/packages/clusterProfiler/versions/3.0.4, accessed on 21 March 2020) [87]. Biological
processes and pathways presenting false discovery rate (FDR) adjusted p-values were
called to be significantly deregulated.

5. Conclusions

In conclusion, our strategy of quantitative homological similarities using TDA-based
formalism would allow researchers and clinicians to select optimal candidates from drug
repurposing to achieve the desired target, not only regarding the SARS-CoV-2 coronavirus,
but also any new viruses that may appear in the future, by choosing the best targets among
all virus proteins. In this specific case, targeting nsp15 endonuclease and nsp12 RNA poly-
merase, in addition to other promising drug targets of the 3CL main protease, could support
the development of a cocktail of anti-coronavirus treatments that could also be potentially
used for the discovery of broad-spectrum antivirals. In particular, we identified 16 po-
tential repurposable drug candidates including cholic acid, rutin, indomethacin, sulindac,
sulfisoxazole, dasatinib, dexamethasone, phenolphthalein, spironolactone, mifepristone,
carbamazepine, vemurafenib, sorafenib, levonorgestrel, naloxone, and raloxifene. Further-
more, by choosing a precision multidrug treatment, we could rescue any specific drug
failure or avoid any future drug resistance due to possible acquired mutations in any of
the proteins as a consequence of continuous virus replication and spreading, because the
virus will be attacked from different fronts. Nevertheless, our results based on multidrug
combinations should be validated in both in vitro and in vivo experiments, not just to
prove the effectiveness of the treatment, but also to select the best combination against
SARS-CoV-2 infection and consequent disease symptoms.
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Abstract: Since coronavirus disease 2019 (COVID-19) is a serious new worldwide public health
crisis with significant morbidity and mortality, effective therapeutic treatments are urgently needed.
Drug repurposing is an efficient and cost-effective strategy with minimum risk for identifying novel
potential treatment options by repositioning therapies that were previously approved for other
clinical outcomes. Here, we used an integrated network-based pharmacologic and transcriptomic
approach to screen drug candidates novel for COVID-19 treatment. Network-based proximity
scores were calculated to identify the drug–disease pharmacological effect between drug–target
relationship modules and COVID-19 related genes. Gene set enrichment analysis (GSEA) was then
performed to determine whether drug candidates influence the expression of COVID-19 related
genes and examine the sensitivity of the repurposing drug treatment to peripheral immune cell types.
Moreover, we used the complementary exposure model to recommend potential synergistic drug
combinations. We identified 18 individual drug candidates including nicardipine, orantinib, tipifarnib
and promethazine which have not previously been proposed as possible treatments for COVID-19.
Additionally, 30 synergistic drug pairs were ultimately recommended including fostamatinib plus
tretinoin and orantinib plus valproic acid. Differential expression genes of most repurposing drugs
were enriched significantly in B cells. The findings may potentially accelerate the discovery and
establishment of an effective therapeutic treatment plan for COVID-19 patients.

Keywords: SARS-CoV-2; COVID-19; drug repurposing; network-based pharmacology

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the coron-
avirus disease 2019 (COVID-19) and triggered the largest pandemic since 1918 [1], which
was responsible for >100 million cases and >2 million deaths reported globally [2]. How-
ever, there are no specific antiviral drugs for SARS-CoV-2 infection so far, for the reduc-
tion of morbidity and mortality of COVID-19, active symptomatic support was urgently
needed [3].

According to recent reports [4–6], the majority of COVID-19 patients are currently
given antiviral and antibiotic treatments or combination therapy including oseltamivir,
ribavirin, lopinavir, ritonavir, and moxifloxacin. Additionally, several drugs are under
clinical trials to verify their safety and efficacy for COVID-19 treatment, such as favipiravir,
remdesivir, and hydroxychloroquine [7]. However, existing therapeutic options for the
treatment of COVID-19 remain controversial. For example, remdesivir is an FDA Emer-
gency Use Authorization (not FDA-approval) viral RNA polymerase inhibitor which has
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been widely used in COVID-19 patients [8], however, a recent randomized clinical trial
demonstrated there was no significant beneficial effect [9]. Similarly, the COVID-19 WHO
SOLIDARITY trial showed that other proposed treatments such as hydroxychloroquine,
lopinavir, and interferon regimens appeared to have little or no effect on hospitalized
COVID-19 patients [10]. Therefore, there is an urgent necessity to develop novel potential
candidates for COVID-19 treatment.

Traditional drug development is a time-consuming and costly process that frequently
takes 10–15 years and costs about 2–3 billion dollars from initial lab-scale experiments
through the three phases of clinical trials and final approval for clinical usage [11]. Drug
repurposing, as an effective and rapid drug discovery strategy from existing drugs [11,12],
is considered the most practical approach as a rapid response to the emergent pandemic
since the candidate treatments have already previously been tested for their safety [13].
The availability of the genomic sequence of SARS-CoV-2 has rapidly accelerated the devel-
opment of clinical perspectives and recommendations. For example, David E. Gordon et al.
identified 332 SARS-CoV-2 human protein-protein interactions and 69 drug candidates
including 29 FDA-approved drugs, 12 clinical trial drugs, and 28 drugs at a preclinical
stage [14]. Additionally, gene set enrichment analysis (GSEA) can be applied to identify
underlying pathological processes using gene expression of COVID-19 patients, which can
retrieve efficient drugs from patient-derived gene expression data using drug–target gene
sets [15]. Therefore, the application of GSEA for drug targets based on drug–transcriptome-
responses datasets and disease-associated gene sets can serve as an excellent screening
tool for diseases that lack a safe and reliable cellular model for in vitro screening, such as
COVID-19 [16].

This study uses an integrated network-based pharmacologic and transcriptomic ap-
proach to screen drug candidates for COVID-19 treatment. Network-based pharmacology
is an effective and holistic tool to identify drug treatments, where the drug effects are
provided by the distance between drugs and disease in the interactome [17]. Additionally,
several databases containing genome-wide expression profiles of human cell lines treated
with bioactive compounds have been developed for drug discovery [18]. Transcriptional
profiling studies have successfully identified potential therapies for diseases such as breast
cancer [19], diabetes [20], and Parkinson’s [21]. Using a network-based pharmacology
approach combined with the transcriptional profiling databases, we detected 18 single
drug candidates (e.g., dexamethasone, chloroquine, and tretinoin) and 30 synergistic drug
combinations as potential therapies for COVID-19.

2. Materials and Methods

We screened novel drug combinations for COVID-19 by integrated network-based
pharmacology and transcriptome analysis based on the following steps: (1) collection
of COVID-19 related genes; (2) collection of target-available drugs and construction of
drug–target modules; (3) calculation of network-based proximity between drug–target
modules and COVID-19 related genes; (4) filtering drugs based on gene set enrichment
analysis (GSEA); (5) network-based prediction of drug combinations (Figure 1). These
steps will be detailed in the following.
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1 
 

 Figure 1. Schematic illustration of the computational framework. (1) Collection of the coronavirus disease 2019 (COVID-19)
related genes from published SARS-CoV-2 human host data and differential expression genes (DEGs) from a single-cell
study of the peripheral immune response in patients with severe COVID-19 (GSE150728). (2) Drug–target information
retrieved from DrugBank and SuperTarget. (3) Quantify the therapeutic effect by computing the proximity between drug
targets and COVID-19 related genes. (4) Gene set enrichment analysis (GSEA) to determine whether COVID-19 related
genes show significance in drug-induced gene expression profiles. (5) Drug candidates were further prioritized for drug
combinations using the “Complementary Exposure” model.

2.1. Genes Related to COVID-19

Genes related to COVID-19 were retrieved from the latest SARS-CoV-2 human host
data and a single-cell transcriptomic study of the peripheral immune response to severe
COVID-19 (GSE150728). SARS-CoV-2 protein sequences, viral genomes, literature, clinical
resources submitted to the National Center for Biotechnology Information (NCBI) on the
SARS-CoV-2 special subject have been rapidly evolving [22]. In total, 65 SARS-CoV-2 hu-
man host proteins were selected from the coronavirus genomes of NCBI datasets and
1070 potential COVID-19 related genes were obtained from the transcriptomic study by
selecting the differential expression genes (DEGs) between individual COVID-19 samples
(n = 7) and healthy controls (n = 6) in 7 cell types, that was 409 genes from CD14+ Mono-
cytes, 257 genes from CD16+ Monocytes, 261 genes from Dendritic Cells, 173 genes from
NK (nature killer) cells, 180 genes from CD8+ T cells, 172 genes from CD4+ T cells and
481 genes from B cells (Tables S1 and S2) [23]. All the identified proteins were mapped to
the official gene symbols of humans reported by the HUGO Gene Nomenclature Commit-
tee (HGNC). Finally, 63 SARS-CoV-2 related genes derived from human host proteins and
971 DEGs were retained as the COVID-19 potential related genes after removing duplicates.

Gene Ontology (GO) enrichment analysis was performed on the potential COVID-
19 related genes to identify significant pathways. By using the R package ClusterPro-
filer [24], all potential COVID-19 related genes were functionally categorized according to
their biological processes, cellular components, and molecular functions. Functional term
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enrichment analysis was performed to provide insights into the biological mechanisms
underlying the COVID-19 related genes. Using this approach, only genes involved in
the significantly enriched GO terms (p-value < 0.05) were retained for further analysis as
COVID-19 related genes in the context of networks.

2.2. Drug–Target Relationship Modules

The drug information was obtained from DrugBank and SuperTarget [25,26]. Briefly,
7485 drugs with 21,335 drug–protein links were selected from DrugBank (version 5.1.6),
and 3138 drugs with 16,579 drug–protein links were retrieved from SuperTarget. After
removing drugs without targets as well as duplications, and converting all target genes
into human gene symbols, 31,139 interactions containing 3121 targets of 7811 drugs were
finally identified (Supplemental Table S3). A drug–target relationship module was defined
by the drug–target interaction information, where multiple targets share one drug.

2.3. Network-Based Proximity between Drugs and COVID-19

A network-based approach was used to analyze the correlation between drug and dis-
ease, in which proximity scores were quantified by calculating the closest distance between
the drug–target module and COVID-19 related genes in the context of the human protein-
protein interaction (PPI) network. The PPI data were obtained from Pathway Commons
(version 12), which contains over 5772 pathways and 2.4 million interactions [27]. Genes
(nodes) with interaction (links) constructed a network graph of PPI, while the interaction
between two nodes was undirected and unweighted. Here, a proximity score was defined
by the average shortest path length between the drug target genes and their nearest disease
proteins in the context of PPI to quantify the therapeutic effect of drugs [28,29]. Given the
set of COVID-19 related genes sourced from SARS-CoV-2 proteins (S), the group of drug
target genes (T), the shortest distance between two genes in the PPI network d(s, t) where
s∈S and t∈T (Equation (1)),

d(S, T) =
1
|T| ∑

t∈T
mins∈S(d(s, t) + w) (1)

where w is the drug influencing weight, defined as w = − ln(D + 1) if the drug target is
one of the COVID-19 related genes sourced from DEGs (D is the connectivity degree of
targets) and w = 0 otherwise.

A simulated reference distance score distribution corresponding to the drug was gen-
erated to assess the significance of the results by linking the drug’s random target modules
and disease-related genes. Referenced drug modules were constructed by selecting random
genes (denoted as R) with the same degree of drug target sets in the network, where the
distance d(S, R) indicates the relationship between a simulated drug and COVID-19. The
reference distribution was established based on 30,000 replications. A drug with a score
lower than 98% of the reference distribution scores was considered significant [28]. The
network proximity was converted to Z-score based on permutation tests (Equation (2)):

Z(S, T) =
d(S, T)− µd(S,R)

σd(S,R)
(2)

where µd(S,R) and σd(S,R) are the mean and standard deviation of the permutation tests.

2.4. Biological Enrichment Analysis of COVID-19 Related Genes on the Drug-Induced
Expression Profiles

We performed GSEA as a further prioritization strategy to screen drug candidates by
examining the distribution of disease-related genes in drug-induced gene expression pro-
files. GSEA was utilized to determine whether a priori defined sets of genes showed statisti-
cally significant enrichment in a collected gene list [30], which could identify whether drug
candidates affected the expression of disease pathways. We first collected perturbation-
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driven gene expression profiles from LINCS (Library of Integrated Network-based Cellular
Signatures), which provided transcriptional responses of human cells to chemical and
genetic perturbation [31]. Human myeloid leukemia mononuclear (THP-1) cell line from
blood was selected due to the important association of peripheral blood and myelomono-
cytic cells with COVID-19 [32–34]. The goal of GSEA was to determine whether the
COVID-19 related genes sourced from the SARS-CoV-2 related gene set was randomly
distributed throughout the drug-induced expression data set sorted by correlation with
the phenotype of interest or enriched at either the top or bottom. Drugs with FDR (False
Discovery Rate) less than 0.25 and ES (Enrichment Scores) higher than 0 were identified as
potential drug candidates for COVID-19.

2.5. GSEA Analysis of Repurposing Drugs in Specific Cell-Types

According to the Seurat data provided by Aaron J. Wilk [23], we chose “Cell type
(coarse)” as the standard to select scRNA seq data of seven cell types, including B Cells,
CD14+ Monocytes, CD16+ Monocytes, CD4+ T Cells, CD8+ T Cells, Dendritic Cells, NK
(natural killer) Cells, and calculated differentially expressed genes between total COVID-
19 samples (n = 7) and all healthy controls (n = 6). Each cell type was divided into two
groups, diseased and healthy controls, according to whether the donor had COVID-19.
Subsequently, differential gene expression profiles between the diseased and healthy
controls in specific cell-types were calculated by using the “FindMarkers” function in
Seurat (Supplemental Tables S7–S13) [35]. GSEA analysis of repurposing drug-induced
THP-1 differential expression genes (logFC > 1) and specific cell-type transcriptomes were
used to assess the enrichment of sets of genes (repurposing drugs DE genes) in each cell
type (scRNA seq gene list). For each repurposing drug, a specific cell with FDR < 0.05 and
ES < 0 was identified as potential drug-sensitive cell types for COVID-19.

2.6. Network-Based Prediction of Drug Combinations

Drug combination therapies are more beneficial rather than individual drug since the syn-
ergistic drug pairs can target more genes and play role in multiple complicated pathways [36].
The Complementary Exposure model has previously been demonstrated as an effective ap-
proach to predict useful combinations [37]. The model is based on the following conditions:
drug targets and disease genes overlap topologically (ZDA < 0, ZDB < 0, ZDA < 0, ZDB < 0) ,
and two sets of drug targets are separated topologically (SAB > 0). The Complementary
Exposure model network proximity between a drug (A or B) and a disease (D) is defined
by the z-score (Equation (3)):

ZDA =
dDA − µd

σd
(3)

The z-score is calculated by randomly sampling both degrees of nodes (drug targets
and disease genes) with 1000 replications. The mean distance µd and standard deviation σd
of the reference distribution are used to convert dDA to a normalized distance (Equation (4)),
where dDA relies on the average shortest path lengths d(d, a) between disease genes
(d, d ∈ D) and drug targets (a, a ∈ A).

dDA =
1
‖D‖ ∑

d∈D
mina∈Ad(d, a) (4)

The network-based separation SAB is quantified with two drug targets module A and
B by calculating the mean shortest distances dAA and dBB (Equation (5)):

dAA =
1
‖A‖ ∑

a∈A
mina′∈Ad

(
a, a′

)
(5)

where a′ (a′ ∈ A) is the closet node to a (a ∈ A) within the interactome network. The
mean shortest distance dAB between their proteins is defined by the “closest” measure,
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where d(a, b) is the shortest path length between a (a ∈ A) and b (b ∈ B) in the interactome
network (Equation (6)).

dAB =
1

‖A‖+ ‖B‖
(
∑a∈A minb∈Bd(a, b) + ∑b∈B mina∈Ad(a, b)

)
(6)

A networked-based separation of a drug pair, A and B, can be calculated as follows
(Equation (7)):

SAB = 〈dAB〉 −
〈dAA〉+ 〈dBB〉

2
(7)

where dAB = 0 if genes are included in both the drug A and B target modules [38].

3. Results
3.1. GO Enrichment Analysis of COVID-19 Related Genes

To obtain meaningful molecular mechanisms underlying COVID-19, GO enrich-
ment analysis classified potential COVID-19 related genes into enriched terms (Sup-
plemental Table S4). All 63 SARS-CoV-2 related genes were categorized functionally
into 1035 Gene Ontology terms including biological processes, cellular components, and
molecular functions. Among the 971 COVID-19 DEGs, 860 genes were enriched in
1399 Gene Ontology terms. The COVID-19 related genes we identified were significantly
enriched in blood pressure regulation (p-value = 5.29 × 10−23), inflammatory response
(p-value = 3.62 × 10−09), neutrophil activation (p-value = 6.16 × 10−60), and response to
virus (p-value = 8.68 × 10−32) (Figure 2). The results are consistent with previous studies,
indicating that the renin-angiotensin system (RAS) plays an important role in the biological
mechanisms of COVID-19 [39,40].

Figure 2. GO enrichment analysis of COVID-19 related genes. The dot plot is used to visualize enriched terms, (a) shows
the COVID-19 related genes (n = 63) enrichment visualization and category interpretation. (b) pathway enrichment analysis
visualization of single-cell DEGs (n = 860).
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3.2. Network-Based Proximity Scores between Drug–Target Modules and COVID-19
Related Genes

We obtained the drug–disease proximity scores to evaluate the drug effect on COVID-
19 through a network-based calculation. Drugs with low proximity scores are more likely
to be effective against SARS-CoV-2 infection since the proximity scores reflect the distance
between drug target sets and COVID-19 related genes in the interactome networks. Using
this approach, we explored the distance of 7811 drug–target modules and COVID-19 related
genes. The distance distribution of the drug targets to COVID-19 related genes was in the
range of −2.66 to 2.79, and both real drugs and simulated drugs were widely distributed
near the point of 1.70 (Figure 3). A ranked list of the potential drugs was clearly distributed
in the range of −2.66 to 0.99, suggesting that the targets of existing drugs were closer to the
COVID-19 genes than the reference sets (simulated drugs). We selected a distance smaller
than 0.99 as the threshold to screen the potential drug candidates for COVID-19, where
the corresponding Z-score was approximately −2.33 after converting into the proximity
value. Finally, 468 drugs with proximity less than −2.33 were included in further analyses
(Supplemental Table S5).

Figure 3. Distance distribution of all 7811 drugs and simulated reference. Peaks suggest that the distance corresponding
to most members was around this value. The red line shows the distribution of the distance of the 7811 drugs to COVID-
19 related genes. The black line illustrates the distance distribution of the simulated reference based on 30,000 replications.
The blue line shows the threshold (distance < 0.99, Z-score < −2.33) to screen the drug candidates for COVID-19.

3.3. GSEA Analysis of COVID-19 Related Genes in Drug-Induced Signatures

To further estimate the drug candidate’s efficacy on the disease and explore the
underlying signaling pathways, we performed GSEA to examine their impact on the
transcriptome of THP-1 cells. Since drugs were not fully matched between DrugBank and
LINCS, some drugs were removed during the matching progress. In the total of 7811 drugs
included in DrugBank and 377 from LINCS (THP-1 cell line), 112 drugs were matched
by common name and 101 were matched by InChI Key (International Chemical Identifier
Key). After removing overlaps, 131 drugs were included in both DrugBank and LINCS,
27 of which had low proximity scores (Z < −2.33) and were obtained for further GSEA.

We identified 18 drugs (FDR < 0.25 and ES > 0, Table 1) as potential therapeutic
candidates since they significantly affected the expression of COVID-19 related genes
in the mononuclear cells (Supplemental Table S6). These candidates included anti-viral
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agents (curcumin, dexamethasone, chloroquine), anti-diabetic agents (glibenclamide), anal-
gesics (resveratrol), anti-convulsant (valproic acid), anti-cholesteremic agents (simvastatin),
anti-carcinogenic agents (phenethyl isothiocyanate), anti-neoplastic agents (tretinoin),
immunosuppressive agents (fostamatinib, atorvastatin, cyclosporine), anti-estrogen (ta-
moxifen), anti-hypertensive (nicardipine, nifedipine), anti-allergic agents (promethazine),
and anti-cancer agents (orantinib, tipifarnib).

Table 1. Eighteen repurposable candidates for COVID-19.

DrugBank ID Z-Score Drug Name Structure Pharmacodynamics
Reported Studies

of COVID-19
(PMID)

DB12010 −8.75 Fostamatinib
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anti-cholesteremic agents 32626922 

DB00675 −4.75 Tamoxifen 
 

anti-estrogen 32663742 

DB01076 −4.74 Atorvastatin 
 

immunosuppressive agents 
32664990 
32817953 

DB11672 −3.65 Curcumin 
 

antiviral agents 32430996 
32442323 

DB00755 −3.37 Tretinoin 
 

anti-neoplastic agents 32707573 

DB01234 −3.21 Dexamethasone antiviral agents 32706553 
32620554 

DB00608 −3.14 Chloroquine 
 

antiviral agents 32145363 
32147496 

DB00313 −2.90 Valproic acid 
 

anti-convulsant 32498007 

DB01016 −2.82 Glibenclamide 
 

antiviral agents 32787684 

DB00622 −2.75 Nicardipine 
 

anti-hypertensive NA 

DB01115 −2.68 Nifedipine 
 

anti-hypertensive 32226695 
32411566 

DB00091 −2.65 Cyclosporine 
 

immunosuppressive agents 
32376422 
32487139 

DB02709 −5.63 Resveratrol 
 

analgesics 
32412158 
32764275 

DB12072 −2.54 Orantinib 
 

anti-cancer agents NA 

DB04960 −2.40 Tipifarnib 
 

anti-cancer agents NA 

1 NA: Not previously been reported as potential treatments for COVID-19. 

3.4. Repurposing Drugs Sensitivity in Specific Cell Type 
Differential expression analyses in 7 cell types between COVID-19 patients (n = 7) 

and controls (n = 6) were performed based on the scRNA-seq data (Supplemental Tables 
S7–S13). According to the GSEA analysis, the DE genes of most repurposing drugs were 
enriched significantly in B cells (Table 2, Supplemental Table S14). CD14+ Monocytes Cells 
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3.4. Repurposing Drugs Sensitivity in Specific Cell Type

Differential expression analyses in 7 cell types between COVID-19 patients (n = 7) and
controls (n = 6) were performed based on the scRNA-seq data (Tables S7–S13). According
to the GSEA analysis, the DE genes of most repurposing drugs were enriched significantly
in B cells (Table 2, Table S14). CD14+ Monocytes Cells and Dendritic Cells also showed
sensitivity to the repurposing drug treatment. None repurposing drug DE genes were
significantly enriched for the Single-cell gene expression spectrum of NK Cells, CD8+ T
Cells, CD4+ T Cells.

Table 2. GSEA analysis of drug-induced different expression (DE) genes in scRNA profiles.

Drug Name B Cells CD14+
Monocytes Cells

CD16+
Monocytes Cells

Dendritic
Cells NK Cells CD4+ T

Cells
CD8+ T

Cells

Chloroquine NA 1 NA NA NA NA NA NA
Nicardipine Significant 2 Significant NA NA NA NA NA
Simvastatin NA NA NA NA NA NA NA
Tamoxifen Significant Significant NA Significant NA NA NA

Promethazine NA NA NA NA NA NA NA
Nifedipine Significant NA NA NA NA NA NA
Resveratrol Significant NA NA Significant NA NA NA
Tipifarnib Significant Significant NA Significant NA NA NA
Orantinib NA NA NA NA NA NA NA
Tretinoin Significant Significant Significant Significant NA NA NA

Atorvastatin Significant NA NA NA NA NA NA
Dexamethasone Significant Significant Significant Significant NA NA NA

Curcumin NA NA NA NA NA NA NA
Fostamatinib Significant Significant NA Significant NA NA NA
Valproic-acid Significant NA NA NA NA NA NA
Glibenclamide Significant Significant NA NA NA NA NA

Phenethyl
Isothio-
cyanate

Significant NA NA NA NA NA NA

Cyclosporin Significant NA NA NA NA NA NA
1 Significant: Drug-induced DE genes statistically significant enrichment in scRNA profile; 2 NA: Drug-induced DE genes statistically no
significant enrichment in scRNA profile.

3.5. Identification of Synergistic Drug Combinations

Based on the Complementary Exposure model, we identified 153 drug combinations
based on the 18 potential therapeutic candidates for COVID-19. Among these combinations,
123 drug pairs were excluded due to close drug–target modules (SAB < 0), while 30 drug
combination conformed to the Complementary Exposure Model and may therefore be
effective in the treatment of COVID-19 (Table 3).

Table 3. All predicted possible combinations for COVID-19.

Drug A Drug B Drug A Common. Name Drug B Common. Name SAB ZDA ZDB

DB01069 DB12072 Promethazine Orantinib 0.76 −2.58 −2.53
DB12072 DB00313 Orantinib Valproic acid 0.67 −2.53 −2.99
DB12072 DB00755 Orantinib Tretinoin 0.66 −2.53 −2.44
DB00755 DB12010 Tretinoin Fostamatinib 0.66 −2.44 −3.68
DB00622 DB12072 Nicardipine Orantinib 0.60 −2.81 −2.53
DB01115 DB12072 Nifedipine Orantinib 0.57 −2.71 −2.53
DB12072 DB01234 Orantinib Dexamethasone 0.54 −2.53 −3.40
DB01069 DB04960 Promethazine Tipifarnib 0.49 −2.58 −2.35
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Table 3. Cont.

Drug A Drug B Drug A Common. Name Drug B Common. Name SAB ZDA ZDB

DB12695 DB00091 Phenethyl Isothiocyanate Cyclosporine 0.43 −3.22 −2.67
DB04960 DB12695 Tipifarnib Phenethyl Isothiocyanate 0.43 −2.35 −3.22
DB00675 DB12072 Tamoxifen Orantinib 0.42 −3.40 −2.53
DB01069 DB12010 Promethazine Fostamatinib 0.42 −2.58 −3.68
DB12072 DB01016 Orantinib Glyburide 0.40 −2.53 −2.90
DB00641 DB12072 Simvastatin Orantinib 0.39 −4.37 −2.53
DB12072 DB00091 Orantinib Cyclosporine 0.37 −2.53 −2.67
DB02709 DB12072 Resveratrol Orantinib 0.37 −3.91 −2.53
DB12072 DB01076 Orantinib Atorvastatin 0.37 −2.53 −4.23
DB01069 DB01076 Promethazine Atorvastatin 0.37 −2.58 −4.23
DB01069 DB12695 Promethazine Phenethyl Isothiocyanate 0.34 −2.58 −3.22
DB00608 DB12072 Chloroquine Orantinib 0.34 −3.31 −2.53
DB01069 DB02709 Promethazine Resveratrol 0.33 −2.58 −3.91
DB12072 DB12695 Orantinib Phenethyl Isothiocyanate 0.30 −2.53 −3.22
DB01069 DB11672 Promethazine Curcumin 0.26 −2.58 −2.81
DB01016 DB12695 Glyburide Phenethyl Isothiocyanate 0.18 −2.90 −3.22
DB12010 DB12695 Fostamatinib Phenethyl Isothiocyanate 0.17 −3.68 −3.22
DB00622 DB12695 Nicardipine Phenethyl Isothiocyanate 0.16 −2.81 −3.22
DB04960 DB00755 Tipifarnib Tretinoin 0.14 −2.35 −2.44
DB01076 DB12695 Atorvastatin Phenethyl Isothiocyanate 0.11 −4.23 −3.22
DB11672 DB12695 Curcumin Phenethyl Isothiocyanate 0.06 −2.81 −3.22
DB00608 DB11672 Chloroquine Curcumin 0.04 −3.31 −2.81

One notable potential drug combination was fostamatinib (F) plus tretinoin (T).
Fostamatinib (ZDF = −3.68) and tretinoin (ZDT = −2.44) targets were both overlapped
with the COVID-19 disease module, indicating that the drug combination might have
a therapeutic effect on the disease. At the same time, the targets of fostamatinib and
tretinoin were independent with network-based separation (SFT > 0), and therefore fit
the Complementary Exposure pattern (Figure 4a). We also used the Sankey diagram to
represent the interactions among drug–target-disease (Figure 4b). Apart from the drug
directly targeting COVID-19 related genes, un-targetable drug–disease effects were present
due to the drug–target interaction with COVID-19 related genes in the PPI as reflected
by the proximity scores. Additionally, take promethazine (P) and nicardipine (N) as a
counterexample. Promethazine (ZDP = −2.58) and nicardipine (ZDN = −2.81) targets fell
into the Overlapping Exposure with the COVID-19 disease module. Although promet-
hazine and nicardipine showed effective treatment on the disease, overlapping drug pair
(SPN < 0) was not a synergistic drug pair due to adverse effects such as overlapping drug
toxicity (Figure 4c). Additionally, sharing targets of promethazine and nicardipine meant
the drug pair had limits in treatment from different therapeutic pathways (Figure 4d).
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Figure 4. Network-based stratification of hypertensive drug combinations. (a) A network-based separation of a drug pair,
fostamatinib (F), and tretinoin (T). For ZDF < 0 and ZDT < 0, the drug–target module of fostamatinib (F) and tretinoin
(T) was overlapped with the disease module (D). For SFT > 0, the two sets of drug targets are separated topologically.
Fostamatinib and tretinoin targets both separately hit the COVID-19 module, which was captured by the Complementary
Exposure pattern. The disease module in orange (D) included disease-related genes (nodes) and their undirected and
unweighted interactions (links), while the drug module (F or T) in blue (green) included drug–targets (nodes) and their
undirected and unweighted interactions (links). (b) Sankey diagram visualizes drug pairs’ mechanism hypothesis: drugs
are on the left, and COVID-19 related genes are right. Links show drugs that were mapped onto COVID-19 related
genes through drug–target associations and human protein-protein interaction. (c) Nicardipine (N) and Promethazine
(P) drug–target modules overlapped the network. For SPN < 0, the two sets of drug targets were Overlapping Exposure,
which meant more adverse effects and less efficacy compared to the Complementary Exposure pattern. (d) Sankey diagram
showed how drug–targets of Nicardipine and Promethazine overlapped and interacted with related genes.

4. Discussion

This study used a network-based drug repurposing combined with a transcriptomics
strategy to identify potential drug candidates and drug pairs for COVID-19 treatment. The
joint analysis of the proximity of drug–target relationship modules, SARS-CoV-2 genomics,
transcriptomics, and synergistic drug effects could overcome the limitations of analyzing
data from only network distance or transcriptome and improve drug candidate prediction.
We proposed 18 drugs and 30 drug combinations including broad-spectrum antiviral
agents, receptor antagonists, channel blockers, and renin-angiotensin system agents.

Some medications such as dexamethasone, chloroquine, curcumin [41], glyburide [42],
tretinoin [43,44], cyclosporine [45,46], valproic acid [47], fostamatinib [48,49], atorvas-
tatin [50–52], and phenethyl-isothiocyanate [53] have recently received major attention for
the treatment of COVID-19 and have been validated by previous studies, supporting the
reliability of our findings. Nicardipine, promethazine, orantinib, and tipifarnib have not
previously been reported as potential treatments for COVID-19. Therefore, we will discuss
these novel drug candidates in the following.
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• Nicardipine

With a similar structure to nifedipine (Z = −2.68), nicardipine (Z = −2.75) was ini-
tially developed to regulate high blood pressure as a dihydropyridine calcium channel
blocker [54]. Nifedipine is indicated to potentially be effective in the treatment regimens
of elderly patients with hypertension hospitalized with COVID-19 [55,56]. Therefore,
nicardipine might play a similar role with nifedipine in the adjuvant treatment of COVID-
19 patients.

• Promethazine

Promethazine (Z = −5.65) antagonizes various receptors including dopaminergic,
histamine, and cholinergic receptors, and is commonly used for indications such as allergic
conditions, motion sickness, sedation, nausea, and vomiting [57]. The proximity score of
promethazine was significantly low partly by targeting genes including CALM1, KCNS1,
LPAR4, LPAR6, P2RY12, P2PY8, and P2RX5, which were DEGs between T cell subsets of
COVID-19 samples and healthy controls. Characteristics of the bronchoalveolar immune
genes have been explored as potential mechanisms underlying pathogenesis in COVID-
19 [58]. These findings implied that promethazine might be effective for COVID-19 by
regulating the immune cell microenvironment.

• Orantinib and Tipifarnib

Orantinib (Z = −2.54) showed preliminary efficacy and safety in advanced hepa-
tocellular carcinoma [59]. Tipifarnib (Z = −2.40) was studied in the treatment of acute
myeloid leukemia (AML) and other types of cancer [60]. Although orantinib and tipifarnib
are both not yet approved by the FDA, anticancer drugs identified by our study such
as phenethyl isothiocyanate have been reported to be an effective treatment strategy to
treat COVID-19 [53]. Drug repurposing against COVID-19 focused on anticancer agents
was previously predicted to be effective and it was speculated that drugs interfering with
specific cancer cell pathways may be effective in reducing viral replication [61]. Therefore,
the anticancer drugs orantinib and tipifarnib might also be potential candidates for the
treatment of COVID-19.

In contrast with our results, tamoxifen (Z = −4.75) was reported to increase the
COVID-19 risk due to its anti-estrogen and P-glycoprotein inhibitory effects [62]. Data from
previous experiments suggested that estrogen could regulate the expression of angiotensin-
converting enzyme 2 (ACE2) [63], which was reported to be the critical natural cellular
receptor for SARS-CoV-2 and was an important factor for infection. However, a recent study
discussed the uncertain effects of RAS blockers on ACE2 levels and activity in humans and
proposed an alternative hypothesis that ACE2 might more likely be beneficial than harmful
in patients with lung injury [64]. The controversies of ACE2 system inhibition attempt to
explain the relationship between the virus and the RAS [65], but existing research is too
limited to support or refute these hypotheses. Our research suggested that tamoxifen may
influence cytokine storm syndrome by regulating cytokine-mediated signaling pathways
(ES = 0.67, P = 0.14), which is a severe clinical symptom of COVID-19 [66,67]. Several studies
have indicated that tamoxifen could reduce cytokines to normal levels and it has been
demonstrated to be beneficial for inflammation in rats [68,69]. Overall, we recommend that
tamoxifen may protect against cytokine storms and alleviate ARDS in COVID-19 patients
as well as reduce the incidence of critical illness and mortality.

There are some limitations to our strategy. First, the proximity calculation regards
proteins interaction as nodes and links, which may not completely capture important
information about the interaction types. Second, the LINCS and DrugBank databases
are only partly matched, and therefore many important drug candidates may be ignored.
Additionally, some of the potentially interesting drugs, such as alemtuzumab (Z = −3.27),
were not able to be included in the final screening. Third, although THP-1 cells might
be a useful tool in the research of monocyte and macrophage-related mechanisms [70],
heterogeneity still exists in the gene expression profile of the mononuclear cells of COVID-
19 patients and THP-1 cells. Additionally, considering that the impaired function of heart,
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brain, lung, and liver were complications of COVID-19 [71], more types of infection-related
cell lines could be taken into account to fully investigate drugs and treatment outcome on
COVID-19.

In conclusion, our effective drug repurposing strategy combined network-based
pharmacology and transcriptomes methods to identify 18 potential COVID-19 drugs, and
recommend 30 drug combinations. Although several candidate repurposing drugs were
previously reported to have the anti-COVID-19 effect, four drugs such as nicardipine,
promethazine, orantinib, and tipifarnib were recommended for the first time in COVID-
19 treatment. Additionally, based on our repurposing drug sensitivity analysis, DE genes
of most repurposing drugs were enriched significantly in B cells. Our analysis contributed
to guide and accelerate research in COVID-19 drug development, and this method would
be kindly applicable for drug repurposing research in future complex diseases. However,
the identified drug candidates still require future experimental validation and large-scale
clinical trials before their use in COVID-19 management.
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Abstract: The ongoing SARS-CoV-2 pandemic requires efficient and safe antiviral treatment strategies.
Drug repurposing represents a fast and low-cost approach to the development of new medical
treatment options. The direct antiviral agent remdesivir has been reported to exert antiviral activity
against SARS-CoV-2. Whereas remdesivir only has a very short half-life time and a bioactivation,
which relies on pro-drug activating enzymes, its plasma metabolite GS-441524 can be activated
through various kinases including the adenosine kinase (ADK) that is moderately expressed in all
tissues. The pharmacokinetics of GS-441524 argue for a suitable antiviral drug that can be given
to patients with COVID-19. Here, we analyzed the antiviral property of a combined treatment
with the remdesivir metabolite GS-441524 and the antidepressant fluoxetine in a polarized Calu-3
cell culture model against SARS-CoV-2. The combined treatment with GS-441524 and fluoxetine
were well-tolerated and displayed synergistic antiviral effects against three circulating SARS-CoV-2
variants in vitro in the commonly used reference models for drug interaction. Thus, combinatory
treatment with the virus-targeting GS-441524 and the host-directed drug fluoxetine might offer a
suitable therapeutic treatment option for SARS-CoV-2 infections.

Keywords: combination therapy; SARS-CoV-2; nucleoside GS-441524; fluoxetine; synergy

1. Introduction

The Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory
Syndrome Related Coronavirus 2 (SARS-CoV-2) has resulted in over 2 million deaths
within one year and demonstrates the risk of newly emerged pathogens [1,2].

In contrast to other human circulating coronaviruses, SARS-CoV-2 leads to a severe
disease with multiple organ failures, especially in elderly patients and those with chronic
medical conditions [3–5]. Although vaccines are available, their production, distribution
and vaccine hesitancy are critical limiting factors in healthcare. Thus, additional therapeutic
strategies to combat the SARS-CoV-2 infection are needed. However, the development and
production of new antiviral drugs is a time-consuming process that can be accelerated by
the repurposing of already clinically licensed drugs [6,7].

One of the repurposed FDA-approved drugs that has received considerable attention
as an antiviral agent against SARS-CoV-2 is remdesivir, a nucleotide monophosphate ana-
logue of adenosine monophosphate (AMP) that interferes with the viral RNA-dependent
RNA polymerase [8,9]. Remdesivir was originally developed by Gilead for the treatment
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of Ebola [10], and is shown to have strong therapeutic efficacy in in vivo models of coron-
aviruses (MERS-CoV, SARS-CoV, SARS-CoV-2) in mice and primates [11–13]. However, it
has a very limited half-life time in the plasma of patients [14–16]. Remdesivir is converted
into its predominant serum metabolite GS-441524, which maintains the antiviral proper-
ties [12,15–18]. A study conducted in rhesus macaques infected with SARS-CoV-2 treated
with remdesivir revealed 1000-fold higher GS-441524 serum levels than those of remde-
sivir [16]. The benefit of GS-441524 over remdesivir is the lower molecular weight and
hydrophilicity, which makes it easier to produce an aerosolized formulation for inhalable
therapeutic treatment. An inhalable formulation would allow a high concentration of the
drug in lung cells and minimized systemic toxicity [17]. Hence, GS-441524 has a higher
potential to be used for antiviral treatments of respiratory pathogens like SARS-CoV-2.

While the majority of antiviral drugs such as remdesivir or GS-441524 are directly
targeting viral proteins and are quite efficient to eliminate the pathogen, they pose the
risk of emerging viral resistance [19–21]. Thus, combination therapies that include virus-
and host-directed drugs are considered to cause less resistance. We recently reported the
importance of the endosomal lipid balance for the entry process of enveloped viruses like
SARS-CoV-2. The clinically licensed antidepressant fluoxetine, a drug belonging to the class
of functional inhibitors of acid sphingomyelinase (FIASMA), blocks the sphingomyelin
converting acid sphingomyelinase (ASMase) within the late endosomal/lysosomal (LEL)
compartments [22]. The inhibitory effects of fluoxetine relies on its ability to interfere with
the endosomal lipid balance, preventing the entry of SARS-CoV-2 [23].

Here, we evaluated the antiviral potential of GS-441524 in a polarized Calu-3 cell
culture model when administered alone or in combination with the host-directed drug
fluoxetine. The drug combination of fluoxetine and GS-441524 showed stronger antiviral
activities against three different SARS-CoV-2 variants compared to the monotherapies.
Notably, both drugs act synergistic, as calculated with the commonly used reference models
for drug interaction studies.

2. Materials and Methods
2.1. Cells and Compounds

The human bronchial epithelial cell line Calu-3 and the Vero E6 cells derived from the
kidney of an African green monkey were cultivated in Dulbecco’s modified Eagle’s medium
(DMEM, Sigma-Aldrich, Darmstadt, Germany) with a 10% standardized fetal bovine serum
(FBS Advance; Capricorn, Ebsdorfergrund, Germany), 2 mM L-glutamine, 100 U/mL
penicillin, 0.1 mg/mL streptomycin, and 1% non-essential amino acids (Merck, Darmstadt,
Germany) in a humidified incubator at 5% CO2 and 37 ◦C. Calu-3 monolayers were
polarized and cultured as described [24]. Fluoxetine (5 mM, Sigma-Aldrich, Darmstadt,
Germany) and GS-441524 (100 mM, Biomol, Hamburg, Germany) were solubilized in
DMSO.

2.2. Cytotoxicity Assay

Calu-3 cells were cultured at the indicated concentrations with either the solvent
DMSO, GS-441524, fluoxetine or with the combinations of fluoxetine/GS-441524 for 48 h.
To estimate cytotoxic effects, a staurosporine solution (1 µM) was used as a positive
control. The cell viability was evaluated by adding MTT 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (Sigma-Aldrich, Darmstadt, Germany) to the cells for
4 h and OD562 measurements according to the manufacturer’s protocols (Sigma-Aldrich,
Darmstadt, Germany).

2.3. Virus Infection and Drug Treatment

The Muenster SARS-CoV-2 isolate hCoV-19/Germany/FI1103201/2020 (EPI-ISL_463008,
mutation D614G in spike protein), and the two newly emerged variants B1.1.7 UK VOC
(alpha) and B1.351 SA VOV (beta) were amplified on Vero E6 cells (passage 1) and used for
the infection assays. Polarized Calu-3 cells were washed once with PBS and inoculated with
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the virus diluted in infection-PBS (containing 0.2% BSA, 1% CaCl2, 1% MgCl2, 100 U/mL
penicillin and 0.1 mg/mL streptomycin) at a multiplicity of infection (MOI) of 0.1 at 37 ◦C
for 1 h. Following infection, cells were washed with PBS and cultured in infection-DMEM
(serum-free DMEM containing 0.2% BSA, 1 mM MgCl2, 0.9 mM CaCl2, 100 U/mL penicillin,
and 0.1 mg/mL streptomycin) at 5% CO2 and 37 ◦C. Calu-3 cells were then treated with the
solvent DMSO or the indicated GS-441524 or fluoxetine concentration at 2 h post-infection
(hpi) for the entire 48 h infection period. Afterwards, the apical culture supernatants were
collected and immediately frozen at −80 ◦C to determine the number of infectious particles.

2.4. Plaque Assay

The number of infectious particles in the supernatant of treated cells were governed
via a standard plaque assay. Briefly, monolayers of Vero E6 cells cultured in six-well dishes
were washed with PBS and infected with serial dilutions of the respective supernatants
in infection-PBS for 1 h at 37 ◦C. Subsequently, the inoculum was replaced with 2x MEM
(MEM containing 0.2% BSA, 2 mM L-glutamine 1 M HEPES, pH 7.2, 7.5% NaHCO3,
100 U/mL penicillin, 0.1 mg/mL streptomycin, and 0.4% Oxoid agar) and incubated at
37 ◦C for 72 h. A neutral red staining was performed to visualize virus plaques, and virus
titers were calculated and expressed as plaque-forming units (PFU) per mL.

2.5. Data and Statistical Analysis

The required sample sizes (to detect a > 90% reduction in virus titers at a power > 0.8)
were determined by using the a priori power analysis G*Power 3.1 (Faul et al., 2007). Data
were analyzed using the software GraphPad Prism version 8.00 (GraphPad).

To define dose–response curves, virus titers were normalized to the percentages
of titers detected in cells treated with the solvent DMSO (control), and drug concentra-
tions were log-transformed. EC values were calculated from the sigmoidal curve fits
using a four-parameter logistic (4PL) model. The combinatory effects of the drug pair
fluoxetine/GS-441524 were analyzed by using SynergyFinder, an open-source, free, stand-
alone web application for the analysis of drug combination data [25]. The synergy was
evaluated based on the Zero Interaction Potency (ZIP), Bliss independence, and highest
single agent (HSA) reference models. Additionally, we analyzed the overall drug com-
bination sensitivity score (CSS) by using the CSS method [26]. For statistical analysis of
cytotoxicity assays, values were normalized to the percentages of toxicity detected in the
control cells (cells treated with the solvent DMSO); significant differences were evaluated
using a one-way ANOVA followed by Dunnett’s multiple comparison test. ** p < 0.01,
*** p < 0.001, **** p ≤ 0.0001.

3. Results

We have recently reported that the clinically used antidepressant fluoxetine in com-
bination with the viral RNA-dependent RNA polymerase inhibitor remdesivir exhibits
synergistic antiviral effects against the SARS-CoV-2 infection in vitro [27]. A major draw-
back for the in vivo use of the prodrug remdesivir is the very short plasma half-life time
of approximately 20 min [17]. Remdesivir is converted into its main plasma metabolite
GS-441524 when administered to patients [14,17]. Thus, we wanted to assess the antiviral
potential of GS-441524 in a polarized Calu-3 cell culture model. We infected Calu-3 cells
with the isolate hCoV-19/Germany/FI1103201/2020 at MOI 0.1 for 48 h and quantified
the production of infectious SARS-CoV-2 particles by a plaque assay. Control Calu-3 cells
that were treated with the solvent DMSO yielded viral titers up to 2 × 106 PFU, whereas
treatment with the nucleoside GS-441524 2hpi significantly inhibited the production of
the circulating SARS-CoV-2 variant in a dose-depended manner (Figure 1). Fitting of the
experimental dose–response values to a nonlinear four-parameter logistic model resulted
in a half-maximal inhibitory (EC50) and 90% inhibitory concentrations (EC90) of 0.28 µM
and 1.33 µM, respectively, for the Muenster Isolate (Figure 1). Validation of Calu-3 cell
viability after administration of GS-441524 via an MTT assay revealed that only a very high
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concentration of GS-441524 resulted in detectable cytotoxicity, whereas all concentrations
further used in the pharmacological interaction studies had no influence on the cell viability
(Figure S1a, Supplementary Material). The calculated 50% cytotoxic concentration (CC50)
of the remdesivir metabolite is 47.66 µM with a selectivity index (SI) of 170.21, which
emphasizes a safe antiviral treatment window.
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Figure 1. Analysis of GS-441524-mediated reduction of infectious SARS-CoV-2 particle production. Polarized Calu-3 cells
were infected with 0.1 MOI of SARS-CoV-2 (hCoV-19/Germany/FI1103201/2020) for 48 h. At 2 hpi, cells were treated with
GS-441524 at the indicated concentrations. Data were expressed as mean infectious viral titers ± SEM or as mean percent
inhibition ± SEM of SARS-CoV-2 replication (control cells that were treated with the solvent DMSO were set to 100%), n = 5.
LogEC50 and LogEC90 values were determined by fitting a four-parameter non-linear regression model.

We next addressed whether a combinatory treatment with the drug pair fluoxetine-
GS-441524 had a synergistic interaction to limit the SARS-CoV-2 infection. For studying
the antiviral properties of the drug combinations, we used, for both drugs, concentrations
that were previously reported to have an individual antiviral activity below 90%, whereas
their combination was able to achieve a more than 90% reduction in viral titers [27]. The
highest single dose of GS-441524 (1000 nM) was able to achieve 95% inhibition on viral
titers, whereas treatment with the highest single dose of fluoxetine reduced viral titers up
to 75% (Figure 2).
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Next, we determined the number of infectious virus particles in Calu-3 cells that
weretreated with a combination of both drugs. On the basis of our recent publications [27]
on the antiviral potential of fluoxetine alone or in combination with remdesivir, we now
analyzed the antiviral effects of a combined fluoxetine/GS-441524 treatment (Figure 3A,B).
We observed a noticeable increase in the pharmacological inhibition of infectious virus
production (>90%) when cells were treated with a concentration of 500 nM GS-441524 and
1000 nM fluoxetine or higher doses of the drug pair (Figure 3A,B), thus showing the great
potential of a combination treatment of the remdesivir metabolite GS-441524 with fluoxe-
tine. Additionally, we assessed the cytotoxic effects of the combinatory treatments via an
MTT assay to exclude the potential synergistic toxicity of the drug pair. The MTT assay is
based on the reduction in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to
formazan crystals by NAD(P)H-dependent oxidoreductase enzymes in metabolically active
cells, this colorimetric assay measures the metabolic activity as an integrated indicator of
changes in the cell viability, cytotoxicity, and proliferation. As the analysis of the combina-
tion treatments with fluoxetine and GS-441524 did not reveal any toxicities (Figure S1b),
we continued to analyze the drug synergy without the subtraction of cytotoxicity.
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Although drug synergy is not necessarily required for clinical benefits, synergy scoring
remains an important parameter for the evaluation of drug combination therapies. Thus,
we next evaluated the drug interaction profile of fluoxetine and GS-441524 by using
three commonly used reference synergy models: ZIP, Bliss independence and highest
single agent (HSA). Even though these different reference synergy models analyzed the
drug interactions based on different basic interaction assumptions, they emphasized a
synergistic action of GS-441524 and fluoxetine (Figure 4). The drug interaction relationships
and landscape visualizations revealed in all models, a high synergy score when cells were
treated with a combination of 500–1000 nM GS-441524 and ~1000 nM fluoxetine. The strong
synergy of the combinatory treatment with both drugs led to an overall drug combination
sensitivity score (CSS) of 92.42.
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Figure 4. Pharmacological interaction profile of the drug pair GS-441524 and fluoxetine. Drug interactions were analyzed
based on the three commonly used reference models: (A) Zero Interaction Potency (ZIP), (B) Bliss independence, and
(C) highest single agent (HSA). While the HSA model assumes a synergistic drug combination that produce additional
benefits on top of what the drugs can achieve alone, the Bliss independence model uses probabilistic theory to model the
effects of individual drugs in a combination as independent yet competing events. Synergy calculations via the ZIP model
includes the comparison of potency changes of the dose–response curves between individual drugs and their combinations.
A color-coded interaction surface was used to illustrate the synergy scores of the responses, where high synergistic scores
are colored in red. Synergy score calculations via the ZIP and Bliss independence model revealed a synergy of ~ 15, while
the HSA model showed a higher synergy score of ~23.

We further assessed the antiviral capacity of the combination therapy with GS-441524
and fluoxetine against the SARS-CoV-2 alpha and beta variants of concern (VOC). Both
strains have mutations in the spike protein’s receptor binding domain (for example, 501Y,
a change from asparagine (N) to tyrosine (Y) in amino-acid position 501), which impair
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angiotensin-converting enzyme 2 (ACE2) binding specificity and lead to an increased
transmissibility [28–31]. At least for the beta variant, changes in the spike protein’s
receptor-binding domain enables a partial immune escape from neutralization induced by
vaccination or previous virus infection and is therefore considered to be of concern [28]. Im-
portantly, the combination of GS-441524 and fluoxetine potently reduced viral titers of both
VOCs synergistically when compared to monotherapy (Figure 5). While the monotherapy
reduced viral titers between 60 to 70% for fluoxetine or up to 90% when treated with GS-
441524, the combination of both drugs resulted in a viral inhibition above 99% (Figure 5).
Thus, the combination of the host-directed fluoxetine and the virus-targeting GS-441524
showed great antiviral potential against SARS-CoV-2 variants that have significant changes
in the spike protein’s receptor-binding domain.
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4. Discussion

Emerging zoonotic diseases such as the current SARS-CoV-2 pandemic are global
threats to humans and the health care systems. SARS-CoV-2, which causes COVID-19, has
already led to more than 2 million deaths within one year. Thus, vaccines and antivirals are
urgently needed to decelerate the global spreading and community transmission of SARS-
CoV-2. Antiviral therapy often includes a combination of several drugs, each targeting
different steps in the virus life-cycle to circumvent the emergence of drug resistance. The
benefit of antiviral combinations has been reported in a large number of studies [32–35]. The
most significant and latest successes of antiviral combination therapy was achieved in the
fight against HIV-1 or HCV, where drugs that interfere with the virus entry and replication
were used [36–38]. While host-directed drugs mostly impair the viral replication without a
complete eradication of the pathogen, antivirals that directly target viral proteins are much
more efficient in eradicating viruses. However, a major concern of direct antiviral therapy
is the risk to induce new resistant virus strains [39], an adaptive step that was already
observed in the antiviral therapy against influenza or HIV [40,41]. The combination of
antivirals with host-directed drugs makes it much more unlikely that a virus can overcome
the antiviral barrier and emerge resistances. Thus, the combination of both is routinely
explored for enhanced treatment success [42–44].

One critical step in the life cycle of enveloped viruses such as SARS-CoV-2 is the entry
into the host cell. SARS-CoV-2, similar to other enveloped viruses, needs to overcome
the host cell membrane for transferring the viral genome into the cytosol, a step that is
limited by the fusion of viral and cellular membranes [23,45]. SARS-CoV-2 binds via its
spike protein, a viral envelope protein, to the host cell receptor ACE2 [46–48]. Attachment
of virus particles facilitate a priming of the spike protein via proteolytic cleavage, which
is mediated by several host proteases and a prerequisite for membrane fusion. Cleavage
by the cellular transmembrane protease serine 2 (TMPRSS2) triggers the fusion with
the plasma membrane, whereas other endosome-residing proteases are required for the
fusion of endocytosed SARS-CoV-2 particles with endosomes [23,45]. Thus, the endosomal
compartment is a critical host/pathogen interface for SARS-CoV-2 [23]. The antiviral mode
of action of fluoxetine is most likely based on its inhibitory effect on the endolysosome-
residing enzyme sphingomyelin phosphodiesterase (“acid sphingomyelinase”, ASM). The
blocking of ASM activity results in sphingomyelin accumulation, which negatively affects
cholesterol release from the endolysosomal compartment, causing the favored antiviral
barrier [22,23].

In our recent study [27], we showed that the combination of the host-directed drug
fluoxetine and the viral RNA-dependent RNA-polymerase inhibitor remdesivir results in a
synergistic antiviral effect on the production of infectious virus particles. Remdesivir was
originally developed for the treatment of Ebola [18], but exerts antiviral activity against a
number of other viruses, including Ebolavirus, Marburg virus, MERS-CoV and also SARS-
CoV-2 [9,11,15,18,49]. Remdesivir was the first drug that received an FDA emergency use
authorization for severe COVID-19 treatment. Since remdesivir has a very short half-life
time in the plasma of patients (approximately 20 min) and, moreover, requires activation
through pro-drug enzymes (such as carboxylesterases (CES1), cathepsin A (CTSA) and
histidinetriad nucleotide binding proteins (HINT)) which are preferentially expressed in
the liver [17,50–53], it is unsuitable for a lung-specific delivery and its clinical use remains
controversial [17]. Structural similarity studies between the main remdesivir metabolite
GS-441524 and human enzymes suggest that the bioactivation of GS-441524 relies on
adenosine kinase (ADK) [17]. ADK is moderately expressed across all tissues and, thus,
the administration of GS-441524 would be more eligible for systemic and lung-specific
delivery. GS-441524 has been reported to potently inhibit SARS-CoV-2 replication in vitro
and in a mouse model of SARS-CoV-2 infection and pathogenesis [11,12], implying this
metabolite as a promising drug candidate for further evaluation. The favorable safety
profile of GS-441524 (shown by the better SI values [10,54] and by animal models [55,56])
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suggests an increased therapy window, which allows for a higher dosing of GS-441524
compared to remdesivir without causing adverse side effects.

Our data are consistent with recent studies demonstrating that the monotherapy of
the remdesivir metabolite GS-441524 elucidated similar EC50 and EC90 values similar to
remdesivir in polarized Calu-3 cells (GS-441524; EC50 = 0.28 µM and EC90 = 1.33 µM;
remdesivir: EC50 = 0.28 µM, EC90 = 2.48 µM, ref. [11]).

We further evaluated the overall antiviral effect of the combination GS441524 and
fluoxetine, which was larger than the expected sum of the independent drug effects,
showing a synergistic effect against three circulating SARS-CoV-2 variants (Figures 4
and 5). Treatment of GS-441524 in combination with fluoxetine indicates a comparable
synergistic activity to the recent published combination of fluoxetine and remdesivir [27].
Both combination treatments lead to an average synergy score of ~15 (in the ZIP or Bliss
independence reference model) or of ~23 in the HSA reference model with a high synergy
score when cells were treated with a combination of 500–1000 nM GS-441524 or remdesivir
and 1000–2500 nM fluoxetine [27]. Of note, no cytotoxic effects were observed when the
cells were treated with the combination of both drugs. For successful monotherapy of
the individual drugs, high drug doses are required, and a prolonged treatment is often
associated with poor patient compliance. The synergistic action of fluoxetine and GS-
441524 offers the administration of lower concentrations of the individual drugs, which
can reduce potential side effects.

The transfer of in vitro data to the in vivo situation is critical in antiviral research.
Thus, we compared the concentrations shown to be effective in our in vitro study with
reachable plasma concentrations in patients when drugs were administered. The nucleoside
analog GS-441524 can reach plasma concentrations up to 1000-fold higher than remdesivir
(maximum plasma levels 3 mg/L directly after intravenous infusion and 80–170 µg/L after
1 h when given intravenously) [14], whereas orally administered fluoxetine (20 mg/day) has
a high bioavailability with plasma levels of 350 µg/L after two weeks and up to 1055 µg/L
for longer treatment periods in patients [57,58]. For both drugs, plasma concentrations are
well within the ranges that equal effective drug concentrations in vitro.

Our results demonstrate a strain-independent potential therapeutic capacity of com-
bined treatment with the direct antiviral acting nucleoside analog GS-441524 and the
host-directed drug fluoxetine to combat the SARS-CoV-2 infection and limit deleterious
COVID-19 outcomes. At least mutations occurring in the spike protein’s receptor binding
domain had no influence on the antiviral efficacy of the combination or monotherapies with
GS-441524 and/or fluoxetine (Figure 5) [28–31]. The eligibility of combining host-directed
drugs with antivirals in SARS-CoV-2 therapy was recently confirmed in a double-blind,
randomized, placebo-controlled trial where combination therapy with remdesivir and the
host-directed Janus kinase inhibitor baricitinib was beneficial in the treatment of hospital-
ized COVID-19 patients [59,60].

However, combined medications pose the risk of drug–drug interactions which may
lead to a reduced therapeutic benefit or even severe adverse effects. Thus, it is indispensable
to survey the drug interactions and to carefully evaluate the appropriate treatment strategy
against SARS-CoV-2. While clinical data from healthy donors showed that remdesivir and
its metabolite GS-4412524 are metabolized through Cytochromes P450 (CYPs) enzymes
(CYP2C8, CYP2D6, and CYP3A4), clinical studies that examined drug–drug interactions
were not yet complete, although the mathematical prediction of DDI liability suggested that
remdesivir and GS-441524 might elevate the levels of co-prescribed drugs that depend on
these CYP enzymes [61–63]. However, the influence of remdesivir on CYP-enzyme depen-
dent metabolism is suggested to be weak [61,63]. Thus, simultaneous administration with
fluoxetine, another known inhibitor of CYPs (CYP2D6 and CYP2C9/10) should be carefully
monitored [64–66]. As fluoxetine is also a serotonin-reuptake inhibitor (SRI), simultaneous
administration with other SRIs should also be avoided (including amphetamines and
other sympathomimetic appetite suppressants) [67,68]. For further information about
possible drug–drug interaction, visit Drugs.com (accessed on 18 February 2021) [69]. Since
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fluoxetine can exert, in some patients, serious side effects, we do not recommended self-
medication. The careful administration of drugs should exclusively rely on medical advice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13091400/s1, Figure S1: Analysis of the cytotoxicity of GS-441524 monotherapy
and of the combinatory treatment with fluoxetine.
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Abstract: The current treatment of depression involves antidepressant synthetic drugs that have a
variety of side effects. In searching for alternatives, natural compounds could represent a solution,
as many studies reported that such compounds modulate the nervous system and exhibit antide-
pressant effects. We used bioinformatics methods to predict the antidepressant effect of ten natural
compounds with neuroleptic activity, reported in the literature. For all compounds we computed
their drug-likeness, absorption, distribution, metabolism, excretion (ADME), and toxicity profiles.
Their antidepressant and neuroleptic activities were predicted by 3D-ALMOND-QSAR models built
by considering three important targets, namely serotonin transporter (SERT), 5-hydroxytryptamine
receptor 1A (5-HT1A), and dopamine D2 receptor. For our QSAR models we have used the following
molecular descriptors: hydrophobicity, electrostatic, and hydrogen bond donor/acceptor. Our results
showed that all compounds present drug-likeness features as well as promising ADME features and
no toxicity. Most compounds appear to modulate SERT, and fewer appear as ligands for 5-HT1A
and D2 receptors. From our prediction, linalyl acetate appears as the only ligand for all three targets,
neryl acetate appears as a ligand for SERT and D2 receptors, while 1,8-cineole appears as a ligand for
5-HT1A and D2 receptors.

Keywords: antidepressant; natural compounds; QSAR; molecular docking

1. Introduction

Depression is a common mental disorder, 264 million persons being affected world-
wide, according to the WHO. A severe consequence of depression is suicide, and near
800,000 people commit suicide every year [1]. Depression can be treated by psychotherapy
and medication involving antidepressant and antipsychotic drugs. Although these drugs
have beneficial effects in the management of depression, their usage could lead to severe
side effects like hepatotoxicity, weight gain, sexual dysfunction, cardiovascular disorders,
central nervous system disturbances, etc. [2].

Natural compounds may represent a viable alternative in depression treatment with
possibly fewer side effects, supporting their administration even in patients with comor-
bidities [3,4]. Here we used an in silico approach to predict the antidepressant activity of
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the following natural compounds: resveratrol, quercetin, limonene, sabinene, 1,8-cineole,
chamazulene, linalyl acetate, germacrene D, nerol, and neryl acetate.

Resveratrol is a polyphenol with benefits in inflammation, brain diseases, and de-
pression [4]. A study on irritable bowel syndrome rat model shows that resveratrol had
inhibitory activity on the 5-hydroxytryptamine receptor 1A (5-HT1A), thus improving the
brain–gut axis [5]. A review of twenty-two studies concludes that resveratrol has positive
effects on animal models with depression, comparable with those of antidepressant drugs.
Regarding safety, the same review concludes that resveratrol has an exceptional safety
profile and only a few side effects [6].

Quercetin is a flavonoid whose antidepressant activity was studied on diabetic
mice and compared with antidepressants fluoxetine and imipramine. Results show that
quercetin had similar results with those drugs in diabetic mice but not in naive mice [7]. An-
other study on mice concludes that pre-administrated quercetin decreases stress-induced
behaviour, regulates cholinergic and serotoninergic functions, has an anxiolytic and an-
tidepressant effect, and boosts memory function [8]. Quercetin also inhibits the behavioral
effects induced by corticotropin-releasing factor (anxiety and depression) in mice model
study [9].

Limonene is a monocyclic monoterpene known for its antiviral, antibacterial, anti-
cancer, and anti-inflammatory activities [10]. This compound also shows neuroprotective
effects in a Drosophila model [11] and antidepressant-like activity (mediated by its anti-
neuroinflammatory action and by lowering hippocampal nitrite levels) in a mice model [12].
Studies on mice models showed that limonene regulates dopamine levels and 5-HT func-
tion [13] and increases dopamine and norepinephrine levels [14].

Sabinene is a monoterpene with antimicrobial and antifungal activity, with possible
effects on the central nervous system [15,16]. Sabinene is a component of Origanum vul-
gare (oregano) essential oil (4.95%), and it may show antidepressant-like activity in a rat
model [17].

Eucalyptol, 1,8-cineole, is a monoterpenoid with benefits as an anti-mucolytic or anti-
spasmolytic [18]. Additionally, 1,8-cineole inhalation shows an anxiolytic effect in both mice
and humans [19,20]. Eucalyptol is found in various plants, including Rosmarinus officinalis
(rosemary) aerial plants oil (8.58%). This oil shows inhibitory activity on 5-HT1A [21]. Even
if this compound had antidepressant effects, the mechanism of action is not clear yet [14].

Chamazulene is an aromatic compound found in Matricaria chamomilla (chamomile)
and is known as a compound with antioxidant, anti-inflammatory, and hepatoprotective
effects [22]. Chamomile is known for its benefits in generalized anxiety and insomnia [23].

The monoterpene linalyl acetate is the main constituent of Lavandula angustifolia (la-
vander) essential oil. Lavender essential oil is known for its antidepressant and anxiolytic
properties [24,25]. Linalyl acetate’s mechanism of action as an antidepressant is well
studied: this compound has binding affinity for N-methyl-D-aspartate (NMDA) recep-
tor [26], and reduces the activity of 5-HT1A receptor [24], but not of serotonin transporter
(SERT) [26]. Nerol monoterpene can also be found in Lavandula angustifolia essential oil [27]
or in Rosa damascene (damask rose) oil. It can decrease the lipid peroxidation levels, a
process occurring under chronic mild stress [28].

Germacrene D is a sesquiterpenoid found in Anthriscus nemorosa (chervil) essential
oil in a proportion of 5.6%. Studies on rats revealed that scopolamine-induced memory
impairment, anxiety, and depression can be improved using chervil essential oil [14]. Neryl
acetate is one of the main constituents of Cananga odorata (ilang-ilang) essential oil. This oil
decreases dopamine levels and increases serotonin levels in mice [29].

The compounds that we have chosen to analyze are indexed in FooDB, a resource
on food constituents, comprising detailed descriptions of compound, including their
physiological and presumed health effects [30]. Except for sabiene, linalyl acetate, nerol,
and neryl acetate, the compounds are also indexed in DrugBank, a database comprising
extensive information on drugs and drugs targets, including natural compounds and herbs
used in therapeutic products [31]. The applications of selected compounds as indexed in

50



Pharmaceutics 2021, 13, 1449

the two databases are summarized in Table 1. It is essential to highlight that DrugBank—
or any other database, for that matter—does not index the considered compounds as
antidepressants. Taking into account their promising benefits in depression, as revealed
mostly by studies conducted in animal models, we considered here the possibility to
reposition some of these compounds as antidepressants and even as neuroleptics to be
used in the treatment of humans.

Table 1. Applications of the natural compounds indexed in the critical data bases DrugBank 5.1.8 [31] and Foodb [30].

Compound DrugBank
Accession Number

Medical
Applications

Foodb
Accession Number

Medical
Applications

resveratrol DB02709
anti-inflammatory,

antioxidant,
anticancer effects

FDB031212
suppresses NF-kappa B

activation in HSV
infected cells

quercetin DB04216

specific quinone reductase 2
(QR2) inhibitor,

may contribute to killing the
malaria causing parasites

FDB011904

non-specific protein
kinase enzyme inhibitor,

agonist of the G
protein-coupled estrogen
receptor in human breast

cancer cell lines

limonene DB08921

common in cosmetic
products,

a flavoring to mask the bitter
taste of alkaloids, a fragrance

in perfumery

FDB013567 antimicrobial,
expectorant

sabinene not available not available FDB001456 not available

1,8-cineole DB03852

controls airway mucus
hypersecretion and asthma

via anti-inflammatory
cytokine inhibition,
eucalyptol reduces

inflammation and pain

FDB014616 antibronchitis,
antiallergic

chamazulene DB15931 not available FDB015363 analgesic, antioxidant

linalyl acetate not available not available FDB019133 antimicrobial,
antioxidant, flavor

germacrene D DB11276

as component of pine needle
oil is used as disinfectant,

lubricant, sanitizer,
antimicrobial, insecticide

FDB003856 pesticide

nerol not available not available FDB014945 antimicrobial, flavor,
perfumery

neryl acetate not available not available FDB013794 antimicrobial, flavor,
perfumery

Previously, we used structure-activity relationship (SAR) models to investigate the
potential of natural compounds from Mentha spicata essential oil to modulate acetyl-
cholinesterase and NMDA receptor, two important targets considered in Alzheimer’s
disease therapy [32]. A similar approach can be applied in the case of other nervous system
diseases, like depression. In depression, important therapy targets are SERT, dopamine
receptor 2 (D2), and 5-HT1A [33,34]. In our previous work, we built quantitative structure-
activity relationship (QSAR) models to predict the effect of candidate compounds against
these targets [33,34].

Particularly useful in drug design, discovery, and development is 3D-QSAR method-
ology, which helps to understand the relationship between spatial parameters of molecules
and their biological properties [35]. Recent studies have used 3D-QSAR as a screening step
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in drug repositioning strategies, some examples being [36–39]. In these cases, QSAR mod-
els were used to screen compounds from: (i) DrugBank database [31] in order to identify
promising candidates that modulate histone deacetylases [37] or inhibit SARS-CoV main
protease [38]; (ii) FDA approved drugs from ZINC database [40] that inhibit Sirt2 [39]; or
(iii) FDA approved drugs from e-Drug3D database [41] to identify druggable compounds
for iatrogenic botulism treatment [36]. 3D-QSAR is valuable in drug repositioning, being
complementary to other methods like molecular docking, because it predicts the activity
of compounds (high/low activity) and yields the molecular features important for their
effect [39].

In the present study we built three QSAR models to screen our collection of natural
compounds identified from the literature against SERT, D2, and 5-HT1A receptor in order
to identify the most promising compound with antidepressant and neuroleptic activity.
Additionally, we analyzed the interactions between receptors and lead ligands using
molecular docking.

2. Materials and Methods
2.1. Preparation of Natural Compounds Structures

The present study looked at ten natural compounds, including resveratrol, quercetin,
limonene, sabinene, 1,8-cineole, chamazulene, linalyl acetate, germacrene D, nerol, and
neryl acetate, based on their potential antidepressant effects identified in the literature, as
described in the Section 1. The antidepressant efficacy of these drugs is determined using
SERT and 5-HT1A receptors, as well as the neuroleptic effect on the D2 receptor.

MOE software was used to model and optimize the 3D structures of molecules. We
minimized the energy using the MMFF94x force field at a 0.005 gradient and Gasteiger-type
charges [42].

2.2. Prediction of Compounds Drug- and Lead-Likeness Features

The Lipinski [43], Veber [44], Ghose [45], and Egan [46] filters, which were predicted
in the SwissADME online tool [47], were used to evaluate the drug-likeness of the natural
compounds. The analyzed compounds should not violate more than three of these rules.
According to the Lipinski criteria, compounds must have a molecular weight lower than
500 Daltons, no more than 10 hydrogen bond acceptors, no more than 5 hydrogen bond
donors, and a log octanol/water (Log P(o/w)) lower than 5.

The molecular weight must be between 160 and 480, the Log P(o/w) must be between
0.4 and 5.6, the molar refractivity must be between 40 and 130, and the number of atoms
must be between 20 and 70, according to the Ghose filter.

If the total polar surface area is less than 140 and the number of rotatable bonds is less
than 10, the Veber rule applies. The Log P(o/w) must be less than 5.88, and the total polar
surface area must be less than 131, according to the Egan filter.

2.3. Computational Pharmacokinetics and Pharmacogenomics Profiles of Natural Compounds

The SMILES files of natural compounds were used to predict their absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET) profiles using the pkCSM database [48].

We started by calculating all of the ADMET entries that the bioinformatics portal
sent us. The following were chosen as related to our research: (i) intestinal absorption
(percentage)—a molecule with an absorption rate of less than 30% is deemed poorly ab-
sorbed; (ii) permeability of the blood-brain barrier (BBB) represented as log BBB (logarithm
of the brain to plasma drug concentration ratio)—higher than 0.3 indicates high BBB per-
meability, while lower than 1 indicates low BBB permeability; (iii) central nervous system
(CNS) permeability—a compound with a permeability-surface area product (logPS) higher
than −2 can penetrate the CNS; (iv) fraction unbound (human) is represented by the ratio
of the unbounded compound on plasmatic proteins; (v) substrate of renal organic cation
transporter 2 (OCT2), the main renal uptake transporter that is expressed on the basolateral
side of the proximal tubule.
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We investigated the potential of the compounds to serve as inhibitors or substrates
for cytochromes involved in the metabolization of neuropsychiatric medications, such as
CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9, to predict their pharmacogenomic
profile. The prediction of toxicity was a significant aspect of our research.

We assessed AMES toxicity, hepatotoxicity, LD50 (median lethal dose), and maximum
tolerated dose (human).

2.4. Building 3D-ALMOND-QSAR to Predict Natural Compounds Effects

We used Pentacle software to create three 3D-QSAR-ALMOND models to predict the
action of natural compounds on SERT, D2, and 5-HT1A receptors [33,49]. The three models
are further called QSAR-SERT, QSAR-D2, and QSAR-5-HT1A in correlation with the target
they address.

For each molecule, we computed several molecular descriptors. Each descriptor’s
contribution to biological activity was assessed singly or in groups of different combinations.
The hydrophobicity, electrostatic, and hydrogen bond donor/acceptor features were found
to be the most important statistical combination of molecular descriptors for all QSAR
models.

The chemometric analysis was made using the regression analysis, partial least squares
(PLS) within PENTACLE. The number of PLS components (latent variables, LVs = 5) was
chosen to achieve optimum values of statistical parameters. These are r2 > 0.8 (fitted
correlation coefficient) and q2 > 0.6 (cross-validated correlation coefficient). Additionally,
SDEP (standard deviation of error prediction) and SDEC (standard deviation of error
calculation) were evaluated.

The generation of consistent statistical models depends on the quality of training,
validation, and testing sets in terms of structural diversity and property values distribution.

QSAR-SERT model has amitriptyline, citalopram, clomipramine, desipramine, dox-
epin, escitalopram, fluoxetine, imipramine, lofepramine, paroxetine, sertraline, trazodone,
venlafaxine, aripiprazole, chlorpromazine, clozapine, fluphenazine, haloperidol, risperi-
done, sertindole, and zotepine in the training set and, in the validation set, bupropion,
olanzapine, quetiapine, thioridazine, ziprasidone, and fluvoxamine.

QSAR-5-HT1A model has amitriptyline, desipramine, doxepin, escitalopram, fluox-
etine, trazodone, aripiprazole, chlorpromazine, fluphenazine, haloperidol, iloperidone,
loxapine, olanzapine, prochlorperazine, quetiapine, risperidone, spiperone, trifluoper-
azine, and ziprasidone in the training set and, in the validation set, clozapine, sertindole,
thioridazine, and zotepine.

QSAR-D2 model has amitriptyline, despyramine, flufenazine, haloperidol, iloperi-
done, loxapine, prochlorperazine, risperidone, spiperone, trifluoperazine, clomipramine,
clozapine, mesoridazine, olanzapine, promazine, remoxipride, sertindole, thioridazine, and
zotepine in the training set and, in the validation set, doxepine, aripriprazole, quetiapine,
chlorpromazine, and ziprasidone.

The test set used in all QSAR models is represented by the ten natural compounds
that we investigated.

The biological activities of compounds in training and validation sets expressed as Ki
values (inhibition constants) were retrieved from PDSP Ki Database—Psychoactive Drug
Screening Program [50]. The three models that we built predict the biological activities of
compounds as pKi values (log 1/Ki) for a better statistical analysis.

2.5. Molecular Docking Protocol

The interactions of the lead compounds identified using our QSAR models with SERT,
D2, and 5-HT1A receptors were predicted using molecular docking.

The 3D protein structures were imported from Protein Data Bank in the case of SERT
(PDB ID: 6VRH [51]) and D2 (PDB ID:6CM4 [52]) receptors; the structure of the 5-HT1A
receptor was imported from AlphaFold [53].
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The molecular docking was performed using the CDOCKER algorithm [54] imple-
mented in Biovia Discovery Studio v16.1.0.15350 (BIOVIA Dassault Systemes, San Diego,
CA, USA).

The ligands were docked in the drug binding cavities according to the PDB files
used [51,52]. In the case of 5-HT1A, the binding site was identified by similarity with the
site of the D2 receptor [52]. The Docking protocol was applied as described in the study of
Rao et al. [55].

3. Results
3.1. Drug-Likeness, Pharmacokinetics, and Pharmacogenomics Profiles of Compounds

The structures of compounds were retrieved from PubChem database [56] as SMILES
(Simplified Molecular Input Line Entry) files, as presented in Table 2.

Table 2. The name of natural compounds and PubChem ID, 2D structure, SMILES [56], natural source, compound FooDB
ID [30], and the druglikness features [47].

Compound Smiles Natural Source/
FooDB Id Lipinski Veber Ghose Egan

1,8-cineole
[PubChem
ID = 2758]
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To determine the drug-likeness of compounds, we applied different filters, as pre-
sented in Table 2. As can be seen, all compounds comply with Lipinski, Veber, and Egan 
rules. In the case of the Ghose rule, only 1,8-cineole, limonene, and sabiene present one 
violation of the rule. These results show that the compounds present drug-likeness fea-
tures and could present a good bioavailability. 

ADME and toxicity profiles of compounds were computed, with an emphasis on 
human intestinal absorption (HIA), BBB and CNS permeabilities, human fraction un-
bound (HFU), renal OCT2 substrate, mutagenesis features-AMES, hepatotoxicity, max-
imum of tolerated dose (human), and LD50 (Table 3).  

Table 3. Computed human intestinal absorption (HIA), blood-brain barrier permeability (log BBB), CNS permeability, 
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linalyl acetate 95.27 0.51 −2.37 0.42 0.54 1.72 
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To determine the drug-likeness of compounds, we applied different filters, as pre-
sented in Table 2. As can be seen, all compounds comply with Lipinski, Veber, and Egan
rules. In the case of the Ghose rule, only 1,8-cineole, limonene, and sabiene present one
violation of the rule. These results show that the compounds present drug-likeness features
and could present a good bioavailability.

ADME and toxicity profiles of compounds were computed, with an emphasis on
human intestinal absorption (HIA), BBB and CNS permeabilities, human fraction unbound
(HFU), renal OCT2 substrate, mutagenesis features-AMES, hepatotoxicity, maximum of
tolerated dose (human), and LD50 (Table 3).

Table 3. Computed human intestinal absorption (HIA), blood-brain barrier permeability (log BBB), CNS permeability,
human fraction unbound (HFU), maximum tolerated dose (human), and LD50 for selected compounds.

Compound HIA Log BBB CNS
Permeability HFU Max. Tolerated Dose

(Human) LD50

1,8-cineole 96.50 0.36 −2.97 0.55 0.55 2.01
limonene 95.89 0.72 −2.37 0.48 0.77 1.88
sabinene 95.35 0.83 −1.46 0.29 0.36 1.54

resveratrol 89.05 −0.04 −2.09 0.18 0.48 1.79
chamazulene 94.50 0.79 −1.82 0.24 0.05 1.45
germacrene D 95.59 0.72 −2.13 0.26 0.49 1.63
linalyl acetate 95.27 0.51 −2.37 0.42 0.54 1.72

nerol 93.46 0.62 −2.17 0.44 0.85 1.71
neryl acetate 96.06 0.56 −2.19 0.37 0.74 1.95

quercetin 77.20 −1.09 −3.06 0.20 0.49 2.47

Here, we also computed the biological activities of considered natural compounds at
some very important human cytochromes involved in neuropsychiatric disorders, namely
CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9 [57].

The biological activities of natural compounds were expressed as inhibitors or sub-
strates of human cytochromes, as presented in Table 4.
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Table 4. The inhibitor/substrate features of natural compounds at CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9.

Compound CYP2D6 Substrate/
Inhibitor

CYP3A4 Substrate/
Inhibitor CYP1A2 Inhibitor CYP2C19

Inhibitor
CYP2C9
Inhibitor

1,8-cineole no/no no/no no no no
limonene no/no no/no no no no
sabinene no/no no/no no no no

resveratrol no/yes no/yes yes yes yes
chamazulene no/no no/no no no no
germacrene d no/no no/no no no no
linalyl acetate no/no no/no no no no

nerol no/no no/no no no no
neryl acetate no/no no/no no no no

quercetin no/no no/no yes no no

We intended to generate a pharmacogenomic pathway of natural compounds through
these predictions, establishing if these are metabolized by the same cytochromes as classical
antidepressants or neuroleptics, which is relevant when a combinatorial therapy involving
classical antidepressants, classical neuroleptics, and natural compounds is indicated.

3.2. Natural Compounds’ Antidepressant Activities Predicted by 3D-ALMOND-QSAR

Three QSAR models (QSAR-SERT, QSAR-D2, and QSAR-5-HT1A) were built to predict
the biological effect of natural compounds against SERT, 5-HT1A, and D2 receptors. In
building the models we initially considered individual descriptors like hydrophobicity,
hydrogen bond donor/acceptor, electrostatic, or steric. These models could not predict
biological activities in correlation with experimental activities.

Further, we considered the contribution of several descriptors at the same time, which
led to a significant improvement of the prediction accuracy of our models (r2 > 0.9, q2 > 0.8,
SDEP < 0.5), the statistical parameters being given in Table 5.

Table 5. Summary of the ALMOND statistical parameters in QSAR-SERT, QSAR-5-HT1A, and
QSAR-D2.

Statistical Parameters QSAR-SERT QSAR-5HT-1A QSAR-D2

No. of molecules in a training set 21 19 19
q2 0.80 0.90 0.83
r2 0.96 0.95 0.95

SDEP 0.50 0.29 0.40

The predicted activity of classical neuropsychiatric drugs in the training and valida-
tion sets was calculated according to the QSAR equations previously generated and was
compared with experimental activity on SERT, 5-HT1A, and D2 receptors (Table 6).

Our QSAR models are described by very good statistical parameters, which allow us to
predict the biological activities of 1,8-cineole, limonene, sabinene, resveratrol, chamazulene,
germacrene D, linalyl acetate, nerol, neryl acetate, and quercetin at SERT, 5-HT1A, and D2
by following the QSAR equation generated in ALMOND-Pentacle (Table 6).
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Table 6. Predicted and experimental biological activities of compounds at SERT, 5-HT1A, and D2
receptors. The biological activities of molecules in the validation set are in italics. In brackets are
the predicted biological activities of natural compounds versus the most active compounds of each
QSAR model (paroxetine in QSAR-SERT; ziprasidone in QSAR-5HT-1A; spiperone in QSAR-D2).

Compounds pKiSERTexp/
pKiSERTpredicted

pKi 5-HT1Aexp/
pKi 5-HT1Apredicted

pKi D2exp/
pKi D2predicted

amitriptyline 8.55/8.68 6.34/6.62 6.70/7.17
citalopram 9.00/8.74 - -

clomipramine 9.85/9.66 - 7.11/7.29
desipramine 7.75/8.07 5.19/5.29 5.80/5.42

doxepin 7.16/7.58 6.55/6.45 6.44/7.35
escitalopram 8.95/8.85 5.00/5.06 -

fluoxetine 9.09/9.23 5.00/4.96 -
imipramine 9.82/9.31 - -
lofepramine 7.15/7.19 - -
paroxetine 10.09/9.83 - -
sertraline 9.58/9.57 - -
trazodone 6.79/6.72 7.00/6.91 -

venlafaxine 8.12/8.02 - -
aripiprazole 5.74/5.87 8.25/8.40 9.18/8.53

chlorpromazine 8.88/9.23 6.93/6.78 9.18/8.22
clozapine 6.00/5.49 6.97/5.32 7.55/8.23

fluphenazine 5.22/5.22 6.83/6.68 9.69/9.95
haloperidol 6.00/5.51 5.92/5.97 9.45/9.38
risperidone 6.00/6.04 6.72/6.87 9.52/9.65
sertindole 6.00/6.42 6.55/7.19 9.02/9.11
zotepine 6.82/7.35 6.89/6.26 8.09/8.06

bupropion 5.04/5.62 - -
olanzapine 6.00/5.69 5.68/5.61 8.52/8.13
quetiapine, 6.00/5.20 6.63/6.47 7.79/8.66
thioridazine 5.89/7.29 6.96/6.50 9.39/8.69
ziprasidone 7.27/6.57 8.72/8.80 8.92/8.67
fluvoxamine 8.79/8.64 - -
iloperidone - 7.48/7.52 9.45/9.38

loxapine - 5.60/5.73 8.28/8.22
prochlorperazine - 5.22/5.30 9.69/9.07

spiperone - 7.76/7.50 10.15/10.06
trifluoperidine - 6.02/5.93 -
mesoridazine - - 8.36/8.52

promazine - - 6.79/7.07
remoxipride - - 7.79/7.72

trifluoperazine - - 8.92/9.16
Natural compounds

1,8-cineole 8.57 (−1.52) 7.09 (−1.63) 8.11 (−2.04)
limonene 9.45 (−0.64) 6.73 (−1.99) 7.99 (−2.16)
sabinene 9.37 (−0.72) 6.68 (−2.04) 7.98 (−2.17)

resveratrol 8.68 (−1.41) 5.23 (−3.49) 6.72 (−3.43)
chamazulene 9.50 (−0.59) 6.51 (−2.21) 7.96 (−2.19)
germacrene D 9.52 (−0.57) 6.49 (−2.23) 7.90 (−2.25)
linalyl acetate 9.40 (−0.69) 6.89 (−1.83) 8.11 (−2.04)

nerol 9.74 (−0.35) 6.17 (−2.55) 8.05 (−2.10)
neryl acetate 10.61 (0.52) 6.06 (−2.66) 8.14 (−2.01)

quercetin 6.42 (−3.67) 5.87 (−2.85) 8.39 (−1.76)

The correlation between the training and validation sets of our QSAR models is also
represented in Figure 1.
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D2, and 5-HT1A; neryl acetate was docked at SERT and 5-HT1A; and 1,8-cineole was 
docked at D2 and 5-HT1A (see Section 4.3). The binding of ligands was evaluated based 
on CDOCKER energy and CDOCKER interaction energy; values are presented in Table 7.  

Table 7. Molecular docking predictions of interactions between molecular targets in depression, natural compounds li-
nalyl acetate, neryl acetate, and 1,8-cineole and CDOCKER scores calculated for analyzed ligands. 

Compound Target -CDOCKER_ENERGY -CDOCKER_INTERACTION_ENERGY 
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linalyl acetate D2 −3.94 30.82 
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We further analyzed the structural basis of the interaction between ligands and 
targets. The 2D interaction maps are presented in Figure 2. 

Figure 1. The correlation between experimental and predicted values of QSAR SERT (a), QSAR
5-HT1A (b), and QSAR D2 (c) models. Data were plotted and fitted using Origin Pro, version 9.2
(2015), OriginLab Corporation, Northampton, MA, USA.

3.3. Molecular Docking

The interaction of the most promising compounds acting on the three protein targets
were investigated by molecular docking. Therefore, we docked linalyl acetate at SERT,
D2, and 5-HT1A; neryl acetate was docked at SERT and 5-HT1A; and 1,8-cineole was
docked at D2 and 5-HT1A (see Section 4.3). The binding of ligands was evaluated based
on CDOCKER energy and CDOCKER interaction energy; values are presented in Table 7.

Table 7. Molecular docking predictions of interactions between molecular targets in depression, natural compounds linalyl
acetate, neryl acetate, and 1,8-cineole and CDOCKER scores calculated for analyzed ligands.

Compound Target -CDOCKER_ENERGY -CDOCKER_INTERACTION_ENERGY

linalyl acetate SERT 4.65 31.46
linalyl acetate D2 −3.94 30.82
linalyl acetate 5-HT1A −1.96 27.17
neryl acetate SERT −11.64 31.29
neryl acetate 5-HT1A −9.79 33.85
1,8-cineole D2 −14.66 17.25
1,8-cineole 5-HT1A −8.22 19.07

We further analyzed the structural basis of the interaction between ligands and targets.
The 2D interaction maps are presented in Figure 2.
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Figure 2. Interaction maps (2D) calculated based on the complexes formed by linalyl acetate with 5-HT1A (a), SERT (c), or 
D2 (g); 1,8-cineole with 5-HT1A (b) or D2 (f) and neryl acetate with SERT (d) or D2 (e). The maps were generated using 
Discovery Studio Visualizer v21.1.0.20298 (BIOVIA Dassault Systemes, San Diego, CA, USA). 

Figure 2. Interaction maps (2D) calculated based on the complexes formed by linalyl acetate with 5-HT1A (a), SERT (c), or
D2 (g); 1,8-cineole with 5-HT1A (b) or D2 (f) and neryl acetate with SERT (d) or D2 (e). The maps were generated using
Discovery Studio Visualizer v21.1.0.20298 (BIOVIA Dassault Systemes, San Diego, CA, USA).
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4. Discussion

Drug repositioning involves the identification of novel treatments for diseases based
on “old” drugs or compounds [58]. Several strategies were developed to achieve the identi-
fication of druggable compounds against novel targets, like QSAR studies, in conjunction
with molecular docking [36], with molecular docking and molecular dynamics [37,38],
and even with quantum mechanics/molecular mechanics methods [39]. High perfor-
mance QSAR models can be obtained by using machine learning approaches to classify
the molecular descriptors of compounds from large datasets [59]. Repositioning drug
candidates can be identified using drug-drug interaction networks [60]; the method even
allows the ranking of compounds into simple and complex multi-pathology therapies [61].
Unsupervised machine learning approaches can be used to establish dug–drug similarity
networks based on drug–target interactions, which also lead to the identification of reposi-
tioning candidates [62]. Other approaches in drug repositioning, as well as limitations and
recommendations, are presented in [58].

In the present study we performed a computational investigation on the possibility of
repositioning some natural compounds as antidepressants and neuroleptics. Our tentative
hypotheses were supported by previous experimental studies that report their antidepres-
sant effects mainly in animals, as presented in the Section 1. Our strategy involved an
initial filtering of compounds based on their drug-like properties, their predicted phar-
macokinetic, and pharmacogenomic profiles (Sections 4.1 and 4.2). In the following step,
QSAR models were built to predict the most active inhibitors of three druggable targets in
depression, namely SERT, 5-HT1A, and D2 receptors. We selected the potent compounds
that modulate three or at least two targets at once (Section 4.3). The interactions between
lead compounds and the targets were addressed by molecular docking (Section 4.4).

4.1. Assessment of Compounds Drug-Likeness Features

Generally, all the natural compounds studied here are in agreement with the medicinal
chemistry rules (Table 2). One rule of the Ghose filter (MW < 160) was violated only by
1,8-cineole, limonene, and sabinene. The molecular descriptors of resveratrol, chamazulene,
germacrene D, linalyl acetate, nerol, neryl acetate, and quercetin presented values within
the ranges defined by Lipinski, Veber, Ghose, and Egan rules. Our results suggest that the
natural compounds considered here present drug-likeness features and should be further
characterized by computing their pharmacokinetic and pharmacodynamic profiles.

4.2. Computational Pharmacokinetics and Pharmacogenomics Profiles of Natural Compounds

The ADME profiles predicted for the compounds showed that the human intestinal
absorption parameter lies in the 77.20% (quercitin) to 96.50% (1,8-cineole) range, as shown
in Table 3. Very good human intestinal absorption values were recorded for 1,8-cineole,
neryl acetate, and limonene.

Regarding the distribution of the natural compounds in the human body, the human
fraction unbound parameter presented a large variation, from 0.18 (resveratrol) to 0.55
(1,8-cineole). Unfortunately, the selected natural compounds presented low human fraction
unbound percents. Other critical parameters for describing the natural compounds’ distri-
bution in the body are BBB and CNS permeabilities. As shown in Table 3, the considered
natural compounds recorded very good BBB permeability values, log BBB ranging from
0.83 (sabinene) to −1.09 (quercitin). An easy BBB penetration was recorded for sabinene,
limonene, chamazulene, germacrene D, and nerol, our results being in good agreement with
the experimental studies [14,63]. The predicted CNS permeability values range from −1.46
(sabinene) to −3.06 (quercitin). These suggest that the considered natural compounds
should have a good CNS permeability, the most permeable compounds being sabinene,
chamazulene, resveratrol, germacrene D, and nerol (Table 3). These results are supported
by experimental studies showing a possible activity of these compounds at CNS level [15].

The metabolism of compounds was addressed by predicting their affinities for hu-
man cytochrome P450 proteins (CYPs): CYP2D6, CYP3A4, CYP1A2, CYP2C19, and
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CYP2C9 (Table 4). Our results revealed that resveratrol inhibits CYP2D6, CYP3A4, CYP1A2,
CYP2C19, and CYP2C9, quercitin and chamazulene inhibit CYP1A2. Our results are in
agreement with an experimental study mentioning that resveratrol modified the metabolism
of aripiprazole by CYP2D6 and CYP3A4 [64]. The predicted inhibitory activity of quercetin
on CYP1A2 is supported by a previous study [65] showing that quercetin is able to change
the metabolism of melatonin by CYP1A2. Quercetin was also reported to be a strong
inhibitor of CYP2D6 and a moderate inhibitor of CYP3A4 [66]. Chamazulene was experi-
mentally proved to be a potent inhibitor of CYP1A2, CYP4A4, and CYP2D6 [67].

Important results were recorded for the elimination rate: none of the ten natural com-
pounds are renal OCT2 substrates. In our study, high importance was given to predicting
the toxicity of compounds. Our results predict that none of the compounds should present
hepatotoxicity, cardiotoxicity, or AMES features. Additionally, we evaluated the maximum
tolerated dose (human) and LD50 of natural compounds. Predicted LD50 values vary in a
short range, from 1.54 (sabinene) to 2.47 (quercetin). A significant fluctuation was recorded
for the maximum tolerated dose, from 0.05 mol/Kg (chamazulene) to 0.85 mol/Kg (nerol).
Taken together, our results suggest that none of the natural compounds that we considered
are toxic.

4.3. Predicted Pharmacodynamic Profiles of Natural Compounds on SERT, 5H-T1A, and D2
Active Sites by 3D-ALMOND-QSAR

The application of the QSAR-SERT model to molecules from the training and testing
sets resulted in a suitable correlation between experimental and calculated biological
activities. The differences between experimental and predicted biological activities for
the molecules in the training set vary from 0.00 (fluphenazine) and −0.53 (zotepine),
while the differences between experimental and predicted biological activities for the
molecules in the validation set vary from 0.15 (fluvoxamine) and −1.40 (thioridazine).
The statistical parameters (Table 5) and the good correlation between experimental and
predicted biological activities of classical neuropsychiatric drugs support the strong power
of prediction of QSAR-SERT model. Therefore, the model was used to predict the biological
activities of natural compounds against SERT. These are presented in Table 6.

In order to evaluate the potency of natural compounds against SERT, their predicted
biological effects were subtracted from the value obtained for paroxetine, the most active
compound from the training set (pKi experimental = 10.09). The results show that natural
compounds such as limonene (pKiparoxetine-pKilimonene = −0.64), sabinene (pKiparoxetine-
pKisabinene = −0.72), chamazulene (pKiparoxetine-pKichamazulene = −0.59), germacrene D
(pKiparoxetine-pKigermacrene D = −0.57), linalyl acetate (pKiparoxetine-pKilinalyl acetate = −0.69),
nerol (pKiparoxetine-pKinerol = −0.35), and neryl acetate (pKiparoxetine-pKineryl acetate = 0.52)
have a strong antidepressant character.

Our results are in accord with other studies [14,68] which mention that limonene and
sabinene reduce the depression-related behaviors in a similar manner with fluoxetine [69],
linalyl acetate increases 5-HT levels in the amygdala, hypothalamus, and hippocampus of
mice [70] and nerol effectively reduces the symptoms of depression and sensitivity.

In QSAR-5-HT1A model, a good correlation between predicted and experimental
biological activities was noticed for molecules from the training set, where residual value
varies from 0.04 (fluoxetine, iloperidone) to−0.28 (amitriptyline) and also for the validation
set, where the residual value varies from 0.46 (thioridazine) to 1.65 (clozapine). The
biological activities of natural compounds at 5-HT1A were evaluated relative to the activity
of ziprasidone, the most active compound of the training set (pKi experimental = 8.72).
We noticed that the natural compounds presented a middle antidepressant activity. A
good affinity was predicted in the case of 1,8-cineole (pKiziprasidone-pKi1,8-cineole = 1.83) and
linalyl acetate (pKiziprasidone-pKilinalyl acetate = 1.83) (Table 6).

The neuroleptic activity of natural compounds was evaluated by their affinity at
D2 receptor. The power of prediction of QSAR-D2 model was sustained by the good
statistical parameters (Table 5). Similar to previous QSAR models, a good correlation
between predicted and experimental biological activities were obtained in both train-
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ing and validation sets (Table 6). The neuroleptic activity of natural compounds was
evaluated versus spiperone (pKi experimental = 10.15) and we noticed that a good neu-
roleptic activity is recorded by quercetin (pKispiperone-pKiquercetin = −1.76), neryl acetate
(pKispiperone-pKineryl acetate = −2.01), linalyl acetate (pKispiperone-pKilinalyl acetate = −2.04),
and 1,8-cineole (pKispiperone-pKi1,8-cineole = −2.04). The affinity of quercitin at D2 is close
to the affinity of mesoridazine, loxapine, and olanzapine, our results being supported by
experimental studies [71].

4.4. Molecular Basis of the Interaction between Lead Compounds and Targets

The docking scores that we calculated were CDOKER energy (calculated based on
ligand strain energy and receptor-ligand interaction energy) and CDOCKER interaction
energy (calculated based on ligand-receptor nonbonded interaction energy). In the case of
linalyl acetate acting on the three targets, neryl acetate acting on SERT, and 5-HT1A and
1,8-cineole acting on D2 and 5-HT1A we obtained negative CDOCKER interaction energies,
confirming that the ligands present favorable interaction energies with the targets (Table 7).
The most favorable interaction energies were obtained for linalyl acetate and neryl acetate,
while less favorable energies were calculated for 1,8-cinole.

By analyzing the 2D interaction maps presented in Figure 2 we observe that com-
pounds form hydrogen bonds with the targets in the case of linalyl acetate with SERT and
5-HT1A or in the case of neryl acetate and SERT. Other types of interactions established
by the compounds and the targets fall in the category of: (i) van der Waals interactions—
important for the binding of linalyl acetate to SERT, linalyl acetate to D2, or 1,8-cineole
to D2; (ii) alkyl or π-alkyl interactions—important for the binding of linalyl acetate to
5-HT1A or D2, neryl acetate to D2, or 1,8-cineole to D2; and (iii) µ-σ interactions—which
appear only in the case of linalyl acetate binding to SERT. The types of interactions that we
identified are consistent with the molecular properties relevant for target binding that we
identified using our QSAR models.

5. Conclusions

Medication repositioning is a quick way to employ an existing drug to treat new
diseases [72–74]. The present study has investigated the opportunity to reposition ten
natural compounds identified from the literature, namely resveratrol, quercetin, limonene,
sabinene, 1,8-cineole, chamazulene, linalyl acetate, germacrene D, nerol, and neryl acetate,
as antidepressants and even as neuroleptics. These compounds are found in common
fruits, spices, and tea herbs. All compounds are indexed in databases (DrugBank, FooDB)
with different effects like anti-inflammatory, antioxidant, antimicrobial, antiallergic, or anti
cancer, but none of them are indexed as antidepressants. Several experimental studies
conducted mostly in animal models point toward their antidepressive effects. Therefore,
we used computational methods to address the ability of compounds to modulate three
major targets in depression, namely SERT, 5-HT1A, and D2 receptors and compared their
predicted effect with the effect of potent drugs used in clinics.

All ten compounds present drug-likeness features and no toxicity, meaning that they
could be used in therapy. Their ADME features showed a very good intestinal absorption,
as well as a good BBB and CNS permeability, suggesting that the compounds can reach the
brain, where they should exert their biological effects.

Their biological activities relevant to depression were determined against SERT, 5-
HT1A, and D2 receptors. For each target, we built powerful QSAR models that were trained
and validated based on synthesis drugs that modulate their function. When predicting
the effect of natural compounds, we determined that most compounds, namely limonene,
sabiene, chamazulene, germacrene D, linalyl acetate, nerol, and neryl acetate, should
inhibit SERT to an extent similar to paroxetine. Only two compounds appear as candidates
to modulate 5-HT1A, namely 1,8-cineole and linalyl acetate, in a manner comparable
with fluoxetine. Concerning the neuroleptic effect of compounds, quercetin, neryl acetate,
linalyl acetate, and 1,8-cineole could be active against D2 receptors, in a similar manner
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with ziprasidone. Overall, we identified linalyl acetate as a strong affinity ligand for
all three targets (SERT, 5-HT1A, and D2 receptor), and we consider it to be a promising
antidepressant compound. Neryl acetate appeared as a promising ligand for both SERT and
D2, while 1,8-cineole appears as a common ligand for 5-HT1A and D2 receptors. Molecular
docking results confirm the favorable interaction between lead compounds and the targets.

The results obtained here show that linalyl acetate, neryl acetate, and 1,8-cineole target
the proteins relevant in depression and present drug-likeness features, suitable ADME
profiles, and no toxicity, suggesting they represent viable candidates for repurposing as
antidepressants. Our simulation study offers evidence on the molecular mechanism of these
compounds and the results should be confirmed experimentally. Results obtained here can
be the starting point for studies on the repositioning of natural compounds and plants for
an alternative treatment of depression, with significant efficiency, but reduced side effects,
that can be administered even to patients with comorbidities or during pregnancy.
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Abstract: Effective therapies for COVID-19 are still lacking, and drug repositioning is a promising
approach to address this problem. Here, we adopted a medical informatics approach to reposition-
ing. We leveraged a large prospective cohort, the UK-Biobank (UKBB, N ~ 397,000), and studied
associations of prior use of all level-4 ATC drug categories (N = 819, including vaccines) with
COVID-19 diagnosis and severity. Effects of drugs on the risk of infection, disease severity, and
mortality were investigated separately. Logistic regression was conducted, controlling for main
confounders. We observed strong and highly consistent protective associations with statins. Many
top-listed protective drugs were also cardiovascular medications, such as angiotensin-converting
enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), calcium channel blocker (CCB), and
beta-blockers. Some other drugs showing protective associations included biguanides (metformin),
estrogens, thyroid hormones, proton pump inhibitors, and testosterone-5-alpha reductase inhibitors,
among others. We also observed protective associations by influenza, pneumococcal, and several
other vaccines. Subgroup and interaction analyses were also conducted, which revealed differences
in protective effects in various subgroups. For example, protective effects of flu/pneumococcal
vaccines were weaker in obese individuals, while protection by statins was stronger in cardiovascular
patients. To conclude, our analysis revealed many drug repositioning candidates, for example several
cardiovascular medications. Further studies are required for validation.

Keywords: COVID-19; drug repositioning; UK Biobank; vaccine

1. Introduction

Coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting more
than a hundred countries worldwide [1–3]. More than 220 million confirmed infections
and 4.56 million fatalities have been reported worldwide as of 6 September 2021 (https:
//coronavirus.jhu.edu/map.html, accessed on 6 September 2021). Besides the burden
due to the disease itself, COVID-19 has created heavy burdens on the medical systems
in many countries and has led to delays in the diagnosis and treatment of other types of
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diseases [4,5]. Therefore, it is of urgent public interest to gain deeper understanding into
the disease, including identifying risk factors (RFs) for infection and severe disease, and
uncovering new treatment strategies.

Although vaccines have been developed for COVID-19, its distribution is highly
uneven and only a small proportion of the world’s population has been fully vaccinated
so far. In addition, vaccine hesitancy remains a major issue that has led to suboptimal
vaccination coverage [6,7]. Inadequate knowledge and awareness of COVID-19, especially
among the younger population, may also contribute to the continuous rise in the number of
cases [8]. Coupled with viral variants that may be associated with increased transmission
and reduced vaccine effectiveness [9], the search for drugs that may reduce susceptibility
to disease and/or disease severity remains highly important.

A number of clinical risk factors (e.g., age, obesity, cardiometabolic disorders, renal
diseases, presence of multiple comorbidities) [10–15] have been found to increase the risk
of infection or complications. However, it is less well-known how different drugs may
affect the risks of COVID-19 or its severity. Importantly, drugs with protective effects may
be potentially repurposed for the prevention or treatment of the disease, as development
of a new drug is often extremely lengthy and costly.

Drug repositioning by computational or statistical approaches for COVID-19 is an area
of intense interest. Please refer to other reviews (e.g., [16–18]) for an overview of recent
studies. For instance, one widely used methodology is the network-based approach, which
can integrate different data sources, including omics data and drug–protein–disease inter-
action networks [16,19–21]. Another methodology is the structure-based approach, which
enables a large number of compounds to be screened for their ability to bind to known or
predicted molecular targets for COVID-19 treatment [16,22–25]. These methodologies are
promising but may have their limitations. For example, they generally do not provide direct
evidence for the candidates’ effectiveness in real-world or clinical settings. In addition,
these approaches may be limited by inadequate knowledge of the pathophysiology and
molecular basis of COVID-19. Another limitation is that most drug repositioning studies
did not consider patient characteristics; for example, a drug may be more effective within a
certain age group or in those with a certain comorbidity. In addition, the effect size (e.g.,
relative risk reduction) of individual drugs and the level of statistical significance usually
cannot be easily estimated by network/structure-based approaches.

Here, we employed a different methodology not previously applied to drug reposi-
tioning studies for COVID-19. We adopted a medical informatics approach which involves
screening a large number of drugs for their associations with the disease, leveraging a large-
scale population cohort. In brief, we performed a comprehensive study on all Anatomical
Therapeutic Chemical Classification System (ATC) level-4 drug categories (N = 819) and
assessed their associations with susceptibility to, and severity of, COVID-19 in the UK
Biobank (UKBB), controlling for possible confounders. Vaccines were also included for
analysis. To our knowledge, this is the most comprehensive analysis to date to screen
for drug associations and repositioning candidates for COVID-19, leveraging real-world
population data.

While pharmacoepidemiology studies are typically focused on one or a few drugs,
COVID-19 is a new disease, and we still have limited understanding of its pathophysiology
and treatment. As a result, a hypothesis-driven approach may have important limitations
of missing potential drug associations and new repositioning candidates. In the field of
genetic epidemiology, it has been observed that hypothesis-driven candidate gene studies
are not as reliable as genome-wide association studies (GWAS) [26] which are relatively
unbiased, indicating merits of the latter approach. In the same vein, here we adopted
a “drug-wide” association study approach, which provides a systematic and unbiased
assessment of drug associations and repositioning candidates. This approach has also been
advocated before [27].

In the present study, we performed rigorous analyses on the impact of medica-
tions/vaccinations on the risk of infection, disease severity, and mortality. Analyses
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were also conducted within infected patients, tested subjects, and the whole population
respectively, and for five different time windows of prescriptions. We also performed
further subgroup and interaction analyses to reveal differential effects of the drugs in
people with different clinical background. This may enable more “personalized” drug
repositioning, i.e., prioritizing drug candidates for specific patient subgroups.

2. Methods
2.1. UK Biobank Data

The UK Biobank is a large-scale prospective cohort comprising over 500,000 subjects
aged 40–69 years who were recruited in 2006–2010 [28]. In this study, subjects with recorded
mortality before 31 January 2020 (N = 28,930) were excluded, as it was the date for the first
recorded case in UK. This study was conducted under project 28732.

2.2. COVID-19 Phenotypes

COVID-19 outcome data were downloaded from UKBB data portal. Information
regarding COVID-19 data in the UKBB can be viewed at http://biobank.ndph.ox.ac.uk/
showcase/exinfo.cgi?src=COVID19 (accessed on 3 November 2020). Briefly, the latest
COVID test results were downloaded on 6 November 2020 (last update 3 November
2020). We consider inpatient (hospitalization) status at testing as a proxy for severity. Data
on date and cause of mortality were also extracted (latest update on 21 October 2020).
Cases indicated by U07.1 were considered to be (laboratory-confirmed) COVID-19-related
fatalities.

A case was considered as having “severe COVID-19” if the subject was hospitalized
and/or if the cause of mortality was U07.1. We required both test result and origin to be
1 (positive test and inpatient origin) to be considered as a hospitalized case. For a small
number of subjects with initial outpatient origin and positive test result, but changed to
inpatient origin and negative result within 2 weeks, we still considered these subjects
inpatient cases (i.e., assume the hospitalization was related to the infection).

For a minority of subjects (N = 19) whose mortality cause was U07.1 but test results
were negative within one week, to be conservative, they were excluded from subsequent
analyses.

2.3. Medication Data

Medication data was obtained from the primary care data for COVID-19 research in
UKBB (details available at https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/
gp4covid19.pdf, accessed on 9 November 2020). We made use of the latest release of
General Practice (GP) records released by UKBB, which contains prescription data from
two electronic health record (EHR) systems (TPP or EMIS) for ~397,000 UKBB participants.
The drug code and issue date of each drug are available. Please also refer to Figure 1 for an
overview of our analysis workflow.
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(IPW) of the probability of being tested (Prob(tested)) was employed to reduce testing bias. Multivariable logistic regres-
sion was conducted, controlling for main confounders. We primarily focused on drugs with protective effects, as residual 
confounding tends to bias towards harmful effects. In addition, we performed further subgroup and interaction analysis 
to identify factors that may modify the drug effects. 
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Since the GP records cover many years of prescriptions, we set time windows to re-

strict prescriptions with a certain time period as the “exposure”. The “index date” was 
defined as (1) the date of the first positive COVID-19 test for infected subjects (for U07.1 
cases, the mortality date was regarded as the index date if no test record was found); or 
(2) the date of last test for those who were tested negative; or (3) 3 November 2020 (the 
date of the latest update of COVID-19 test results) for those who were untested. 

The issue date of each prescription was available, but the duration was not. Time 
windows were determined by whether the drug was issued within a specified period be-
fore the index date. The following windows were considered for medications: 6 months, 
1 year, 2 years, and 5 years. Narrower time windows (<6 months) may not be desirable 
and may lead to many prescriptions being missed, as the latest issue date was 25 July 2020, 
but the latest index date was 3 November 2020. 

As for vaccines, unlike many medications, vaccines are not prescribed regularly, and 
most vaccines only need to be given once or less than a few times; hence, a narrow time 
window is not optimal due to sparsity of data. For seasonal vaccines, namely flu vaccines, 
they are usually given in autumn (September to November) or early winter in the UK. A 
time window of 6 months will lead to missing most of the flu vaccines given. On the other 
hand, it is also reasonable to consider a longer time window (e.g., 10 years) as vaccine 
effects can be more long-lasting [29]. In view of the above, we considered time windows 
of 1, 2, 5, and 10 years for vaccinations. For flu vaccines, we defined “past 1 year” as pre-
scriptions from 1 September 2019 onwards (and similarly for past k years) to account for 
the seasonal nature of vaccination. 

Figure 1. An overview of the analytic workflow. We considered five exposure time windows and multiple statistical
models. We conducted analyses within infected patients, tested subjects, and the whole population, respectively. Effects of
prescribed medications/vaccinations on the risk of infection, severity of disease (hospitalization as proxy) and mortality
were investigated separately. Missing data were accounted for by multiple imputation. Inverse probability weighting (IPW)
of the probability of being tested (Prob(tested)) was employed to reduce testing bias. Multivariable logistic regression
was conducted, controlling for main confounders. We primarily focused on drugs with protective effects, as residual
confounding tends to bias towards harmful effects. In addition, we performed further subgroup and interaction analysis to
identify factors that may modify the drug effects.

2.3.1. Time Window of Prescriptions

Since the GP records cover many years of prescriptions, we set time windows to restrict
prescriptions with a certain time period as the “exposure”. The “index date” was defined
as (1) the date of the first positive COVID-19 test for infected subjects (for U07.1 cases, the
mortality date was regarded as the index date if no test record was found); or (2) the date
of last test for those who were tested negative; or (3) 3 November 2020 (the date of the
latest update of COVID-19 test results) for those who were untested.

The issue date of each prescription was available, but the duration was not. Time
windows were determined by whether the drug was issued within a specified period
before the index date. The following windows were considered for medications: 6 months,
1 year, 2 years, and 5 years. Narrower time windows (<6 months) may not be desirable
and may lead to many prescriptions being missed, as the latest issue date was 25 July 2020,
but the latest index date was 3 November 2020.

As for vaccines, unlike many medications, vaccines are not prescribed regularly, and
most vaccines only need to be given once or less than a few times; hence, a narrow time
window is not optimal due to sparsity of data. For seasonal vaccines, namely flu vaccines,
they are usually given in autumn (September to November) or early winter in the UK. A
time window of 6 months will lead to missing most of the flu vaccines given. On the other
hand, it is also reasonable to consider a longer time window (e.g., 10 years) as vaccine
effects can be more long-lasting [29]. In view of the above, we considered time windows
of 1, 2, 5, and 10 years for vaccinations. For flu vaccines, we defined “past 1 year” as
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prescriptions from 1 September 2019 onwards (and similarly for past k years) to account
for the seasonal nature of vaccination.

2.3.2. Mapping to ATC

All the medications were mapped to the ATC Classification (https://www.genome.
jp/kegg-bin/get_htext?br08303, accessed on 9 November 2020). Drug categories were
defined by the fourth level of ATC classification.

2.4. Covariate Data

We performed multivariable regression analysis with adjustment for potential con-
founders including basic demographic variables (age, sex, ethnic group), comorbidities
(coronary artery disease (CAD), diabetes (DM), hypertension, asthma, chronic obstruc-
tive pulmonary disease (COPD), depression, dementia, history of cancer, blood urea and
creatinine reflecting renal function), indicators of general health (number of medications
taken, number of non-cancer illnesses), anthropometric measures (body mass index (BMI)),
socioeconomic status (Townsend deprivation index) and lifestyle risk factor (smoking sta-
tus). For disease traits, we included information from ICD-10 diagnoses (code 41270) and
self-reported illnesses (code 20002), and incorporated data from all waves of follow-ups.
Subjects with no records of the relevant disease from either self-report or ICD-10 were
regarded as having no history of the disease.

2.5. Sets of Analysis

We performed a total of eight sets of analysis (Table 1). The impact of prescribed med-
ication/vaccination on the risk of infection (Models E and F), severity of infection (Models
A, C, and G) and risk of mortality (Models B, D, and H) from COVID-19 were investigated
separately. Both hospitalized and fatal cases were grouped under the “severe” category.

Table 1. The eight sets of analyses based on infected patients (model A, B), tested subjects (models F, G, H) and the
population (models C, D, E).

Model Cohort 1 Cohort 2

A Hospitalized or fatal infection (U07.1) (Severe) Non-hospitalized COVID-19 (Mild)
B U07.1 cases All other COVID-19 cases
C Hospitalized or fatal infection (U07.1) (Severe) UKBB subjects without COVID-19 Dx or tested-ve
D U07.1 cases UKBB subjects without COVID-19 Dx or tested-ve
E Infected UKBB subjects without COVID-19 Dx or tested-ve
F Infected Tested-ve
G Hospitalized or fatal infection (U07.1) (Severe) Tested-ve
H U07.1 cases Tested-ve

U07.1 is the code for fatal (laboratory-confirmed) COVID-19 infection based on the latest ICD coding. Dx, diagnosis; -ve, negative.

We also considered different study designs and conducted our analyses with different
comparison samples. Models A and B are restricted to the infected subjects, while models
C, D, and E involve comparison of severe, fatal and general infected cases to the general
population (with no known diagnosis of COVID-19). On the other hand, models F, G, and
H compared infected, severe, and fatal cases, respectively, against subjects who were tested
negative for SARS-CoV-2.

There were 397,000 subjects in the UKBB with available GP prescription records.
Among them, 30,835 subjects have received at least one COVID-19 test, and 3858 had been
tested positive. There were 1318 cases classified as “severe” (hospitalized or mortality
from COVID-19) and 170 fatal cases. In total 393,142 UKBB participants did not have a
known diagnosis of COVID-19. The detailed count of participants for each model is listed
in Table 2.
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Table 2. Number of available subjects for analysis for the 8 models.

Model Cohort 1 Cohort 2 Total

A 1318 2540 3858
B 170 3688 3858
C 1318 393,142 394,460
D 170 393,142 393,312
E 3858 393,142 397,000
F 3858 26,977 30,835
G 1318 26,977 28,295
H 170 26,977 27,147

Only subjects with available GP prescription records are shown.

2.6. Statistical Analysis Methods

Logistic regression (using the R package speedglm) was used to examine the impact
of medication on different outcomes in the eight sets of analysis. For more stable estimates,
analysis was not performed if the number of subjects taking the drug in the affected or
unaffected group was less than five. All statistical analyses were conducted using R. The
false discovery rate (FDR) approach by Benjamini and Hochberg [30] was performed
to control for multiple testing. This approach controls the expected proportion of false
positives among the rejected null hypotheses.

2.7. Imputation of Missing Data

Missing values of remaining features were imputed with the R package “missRanger”.
The program is based on missForest, which is an iterative imputation approach based
on random forest (RF). It has been widely used and shown to produce low imputation
errors and good performance in predictive models [31]. The program missRanger is largely
based on the algorithm of missForest, but uses the R package “ranger” [32] to build RF for
improvement in speed (we found that other packages, such as MICE and missForest, are
computationally too slow to produce results for the large-scale analyses here). Predictive
mean matching (pmm) was employed to avoid imputation of values not present in the
original data, and to increase variance to more realistic levels for multiple imputation (MI).
We followed the default settings with pmm.k = 5 and num.trees = 100. We performed the
analyses on multiply imputed datasets (imputed for 10 times) and combined the results by
Rubin’s rules [33] using the function “mi.meld” under the R package “amelia”. Another
advantage of missRanger is that out-of-bag errors (in terms of classification errors or
normalized root-mean-squared error) could be computed, which provides an estimate of
imputation accuracy.

2.8. Inverse Probability Weighting of the Probability of Being Tested

Bias due to non-random testing has been discussed previously in other works [34,35].
As a person has to be tested to be diagnosed with COVID-19, factors leading to increased
probability of being tested will also lead to an apparent increase in the risk of infection [35].
In addition, it has been raised that collider bias can occur when conditioned on the tested
group. This could result in spurious associations, for example, between a risk factor and
COVID-19 severity if both increases the probability of being tested (Pr(tested)). One way
to reduce this kind of bias is to employ inverse probability weighting (IPW) of Pr(tested).
Essentially, we wish to create a pseudo-population, or mimic a scenario under which testing
is random instead of selected for certain subgroups. The IPW approach up-weighs those
who are less likely to be tested and down-weighs those who have a high chance of being
tested. This may create more unbiased estimates of the effects of drugs.

We took reference to the approach described in [34] to analyze the data with IPW.
Following our recent work [36] which aims to predict COVID-19 severity with machine
learning (ML), here we also employed an ML model (XGboost) to predict Pr(tested) based
on a range of factors. An advantage of using ML models is that nonlinear and complex
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interactions can be considered, which may improve predictive performance over logistic
models. We employed the same set of predictors as in our previous work [36], and
followed the same analysis strategy of hyper-parameter tuning and cross-validation to
obtain predicted probabilities (please refer to [36] for details). Beta-calibration [37] was
performed, and the resulting average AUC was 0.622. The predicted probabilities (i.e.,
Pr(tested)) were used to construct weights for IPW. Stabilized weights [38] were used.

2.9. Subgroup Analysis

For selected drugs showing tentative protective effects, we also performed further
subgroup and interaction analyses. These drugs included cardiovascular medications listed
in Table 3, four vaccines with protective associations (influenza, pneumococcal, typhoid,
and combined bacterial/viral vaccines), and other top drugs with consistent protective
associations across multiple models/time windows as listed in Table 4.

Table 3. Cardiometabolic medications showing significant protective associations (limited to FDR < 0.05) within time
windows of 6, 12, and 24 months.

Window Model ATC Code OR conf.low conf.high p FDR.BH Full Name

1 year C A10BA 0.67 0.51 0.88 4.01 × 10−3 1.11 × 10−2 Biguanides
2 years C A10BA 0.68 0.52 0.90 5.79 × 10−3 1.68 × 10−2 Biguanides
0.5 year F C07AB 0.78 0.68 0.89 3.56 × 10−4 7.40 × 10−3 Beta blocking agents, selective
1 year F C07AB 0.80 0.70 0.91 7.59 × 10−4 1.29 × 10−2 Beta blocking agents, selective
2 years F C07AB 0.78 0.69 0.88 9.10 × 10−5 2.15 × 10−3 Beta blocking agents, selective
1 year C C08CA 0.76 0.64 0.90 1.31 × 10−3 4.23 × 10−3 Dihydropyridine derivatives
2 years C C08CA 0.78 0.66 0.92 3.27 × 10−3 1.11 × 10−2 Dihydropyridine derivatives
0.5 year A C09AA 0.68 0.53 0.87 2.11 × 10−3 1.43 × 10−2 ACE inhibitors, plain
0.5 year C C09AA 0.75 0.62 0.91 3.15 × 10−3 6.48 × 10−3 ACE inhibitors, plain
0.5 year G C09AA 0.68 0.56 0.83 1.13 × 10−4 1.54 × 10−3 ACE inhibitors, plain
1 year A C09AA 0.68 0.54 0.86 1.15 × 10−3 1.03 × 10−2 ACE inhibitors, plain
1 year C C09AA 0.61 0.51 0.74 1.59 × 10−7 1.25 × 10−6 ACE inhibitors, plain
1 year D C09AA 0.57 0.36 0.92 2.22 × 10−2 4.31 × 10−2 ACE inhibitors, plain
1 year E C09AA 0.79 0.72 0.88 1.40 × 10−5 8.63 × 10−5 ACE inhibitors, plain
1 year G C09AA 0.71 0.59 0.85 2.80 × 10−4 4.00 × 10−3 ACE inhibitors, plain
2 years A C09AA 0.67 0.54 0.84 5.87 × 10−4 1.10 × 10−2 ACE inhibitors, plain
2 years C C09AA 0.63 0.53 0.75 2.84 × 10−7 2.60 × 10−6 ACE inhibitors, plain
2 years E C09AA 0.81 0.73 0.90 5.38 × 10−5 3.41 × 10−4 ACE inhibitors, plain
2 years G C09AA 0.71 0.59 0.85 1.40 × 10−4 2.81 × 10−3 ACE inhibitors, plain
1 year C C09CA 0.68 0.54 0.85 7.58 × 10−4 2.61 × 10−3 Angiotensin II receptor blockers, plain
1 year G C09CA 0.69 0.55 0.87 1.95 × 10−3 1.85 × 10−2 Angiotensin II receptor blockers, plain
2 years C C09CA 0.73 0.58 0.90 3.97 × 10−3 1.25 × 10−2 Angiotensin II receptor blockers, plain
2 years G C09CA 0.72 0.58 0.90 3.93 × 10−3 4.80 × 10−2 Angiotensin II receptor blockers, plain
0.5 year A C10AA 0.57 0.47 0.68 3.37 × 10−9 8.37 × 10−8 HMG CoA reductase inhibitors
0.5 year C C10AA 0.79 0.68 0.91 1.20 × 10−3 2.63 × 10−3 HMG CoA reductase inhibitors
0.5 year E C10AA 1.14 1.05 1.24 1.64 × 10−3 4.26 × 10−3 HMG CoA reductase inhibitors
0.5 year G C10AA 0.66 0.57 0.76 2.55 × 10−8 9.03 × 10−7 HMG CoA reductase inhibitors
1 year A C10AA 0.50 0.42 0.60 2.87 × 10−13 5.17 × 10−11 HMG CoA reductase inhibitors
1 year C C10AA 0.49 0.42 0.57 2.97 × 10−21 7.42 × 10−20 HMG CoA reductase inhibitors
1 year D C10AA 0.50 0.34 0.74 5.28 × 10−4 1.57 × 10−3 HMG CoA reductase inhibitors
1 year E C10AA 0.83 0.77 0.91 1.69 × 10−5 1.00 × 10−4 HMG CoA reductase inhibitors
1 year G C10AA 0.63 0.54 0.73 4.15 × 10−10 2.77 × 10−8 HMG CoA reductase inhibitors
2 years A C10AA 0.49 0.40 0.58 1.55 × 10−14 3.19 × 10−12 HMG CoA reductase inhibitors
2 years C C10AA 0.49 0.43 0.57 7.09 × 10−21 2.60 × 10−19 HMG CoA reductase inhibitors
2 years D C10AA 0.50 0.34 0.74 4.38 × 10−4 1.63 × 10−3 HMG CoA reductase inhibitors
2 years E C10AA 0.86 0.79 0.93 3.09 × 10−4 1.52 × 10−3 HMG CoA reductase inhibitors
2 years G C10AA 0.63 0.54 0.72 2.65 × 10−10 2.92 × 10−8 HMG CoA reductase inhibitors

For space limits, only results with FDR < 0.05 are shown. Please refer to Tables S3 and S6 for full results. OR, odds ratio; conf.low, lower
95% CI for OR; conf.high, upper 95% CI for OR; FDR.BH, false discovery rate by the Benjamini–Hochberg method.
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Table 4. Drugs showing consistent protective associations across 4 time-windows and 8 models
(ranked by the frequency of being nominally significant, i.e., p < 0.05).

ATC Code Drug Name Freq

1 C09AA ACE inhibitors, plain 21
2 J07BB Influenza vaccines 20
3 C10AA HMG CoA reductase inhibitors 19
4 H03AA Thyroid hormones 17

5 C09CA Angiotensin II receptor blockers,
plain 15

6 G04CB Testosterone-5-alpha reductase
inhibitors 12

7 A02BC Proton pump inhibitors 11
8 C08CA Dihydropyridine derivatives 11
9 R03BA Glucocorticoids 9
10 C07AB Beta blocking agents, selective 8
11 A10BA Biguanides 7

12 B01AC Platelet aggregation inhibitors excl.
heparin 7

13 G03CA Natural and semisynthetic
estrogens, plain 7

14 J07CA Bacterial and viral vaccines,
combined 7

15 A03AA Synthetic anticholinergics, esters
with tertiary amino group 6

Frequency (freq) calculated based on results from time windows of 6 months to 5 years. Ophthalmological and
dermatological agents are not listed in the above table.

Subgroup analysis was performed with respect to main demographic features (age,
sex, and ethnicity) and main comorbidities (same as the diseases listed under “covariate
data”). We also compared log(OR) estimates across the subgroups with or without the risk
factor of interest. The test statistic was obtained by z = (β1 − β2)/

√
var(β1) + var(β2),

where β1 and β2 refer to the coefficients under the two independent subgroups.

2.10. Interaction Analysis

As a complementary approach, we also performed analysis with a logistic model
including an interaction term (drug*risk_factor). The same set of drugs and risk factors
were studied. The two approaches are similar in principle; however, stratified analysis
yields more unbiased estimates if confounders have subgroup-dependent associations,
while the interaction term approach produces more precise (lower-SE) estimates (hence
higher power to detect interactions) [39].

2.11. Controlling for Other Drugs

We also performed additional regression analyses controlling for other top-ranked
drugs. Two sets of analyses were conducted. In the first set of analysis, we controlled for
the top 10 or 20 protective and harmful drugs in each time window and model. As for the
second analysis, for drugs with protective associations, we controlled all other protective
drugs with FDR < 0.05 or 0.1 (this analysis was performed for protective drugs only, as
there were too many drugs associated with harmful effects to be included as covariates).

3. Results

Due to the large number of models and drugs being studied, we highlight the main
results and findings from different sensitivity analysis.

Confounding by indication and other comorbidities is unavoidable, and, in particular,
drugs showing harmful effects may possibly be explained by such confounding. On the
other hand, as it is expected that most diseases tend to increase the risk/severity of infection,
drugs showing protective effects are much less likely to be affected by confounding, and
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such associations may be relatively more reliable. We therefore place a greater emphasis
on protective drugs in the sections below; this is also in line with our primary objective to
prioritize repositioning candidates. Drugs with harmful effects are briefly discussed for
comprehensiveness.

A summary of the demographic and covariate data of the original UKBB dataset is
shown in Table S1. The missing rates and out-of-bag (OOB) errors for different variables
from multiple imputations are shown in Table S2.

3.1. Primary Analysis with Multiple Imputation of Covariates

Full results of all drug categories across all time windows (including 6, 12, 24, 60,
and 120 months; the last time window only for vaccines) are shown in Tables S6–S10.
All protective associations (with at least nominal significance, i.e., p < 0.05) are shown in
Table S3, while all association results with vaccines are presented in Table S4. For drugs
associated with increased odds of infection/severity, we also summarize the top 10 drugs
(ranked by p-value) from each model and time window, and organize them together in
Table S5.

3.1.1. Overview

Across all categories, statins showed the strongest and most consistent protective
associations. Highly significant protective effects were seen across infected subjects, tested
subjects, or the whole population, especially in reducing the severity or mortality of
infection. Albeit with smaller effect sizes, we also observed that statins might be linked to
lower susceptibility to infection (model E). Interestingly, a number of top-listed drugs are
also cardiovascular medications, such as angiotensin-converting enzyme inhibitors (ACEI),
angiotensin receptor blockers (ARB), calcium channel blocker (CCB), and beta-blockers.

For simplicity, odds ratios (OR) are presented for a time horizon of 1 year if not further
specified.

3.1.2. Drugs for Cardiometabolic Disorders

Significant protective associations with FDR < 0.05 are shown in Table 3. Statins
showed protective effects across models A, C, D, E, and G. Significant protective effects
against severe infection were seen among infected subjects (OR for prescriptions within
a 12-month window, same below: 0.50, 95% CI: 0.42–0.60), tested subjects (OR = 0.63,
0.54–0.73), or when comparing severe cases to the general population (OR = 0.49, 0.42–0.57).
In addition, protective association against fatal infection was observed (OR = 0.51, CI
0.34–0.74). Statins was also associated with lower susceptibility to infection, with ORs
of 0.83 (CI: 0.77–0.91) and 0.86 (CI: 0.79–0.93) for prescriptions within 1 year and 2 years,
respectively.

Another group of drugs with highly consistent protective associations were ACEI and
ARB. ACEI showed protective associations against severe disease among infected subjects
(model A: OR for 1-year time window, same below: 0.68, CI: 0.54–0.86), and when compared
to the general population (model C: OR 1 year = 0.61, CI: 0.51–0.74) or test-negative subjects
(model G: OR 1 year = 0.71, CI: 0.59–0.85). We also observed association with lower odds
of infection at a population level (model E: OR 1 year = 0.81, CI: 0.73–0.90); the effect size
seemed to decrease over longer time windows. ARBs also showed protective associations
against severe disease in the population (model C: OR 1 year = 0.68, CI: 0.54–0.85) or among
tested individuals (model G: OR 1 year = 0.68, CI: 0.55–0.87).

Biguanides (mainly metformin) were associated with lower odds of severe illness
among the infected (model A: OR for 2-year time window = 0.60, CI: 0.42–0.86) and in
the population (model C; OR 1 year = 0.67, CI: 0.51–0.88). Other drugs of interest include
beta-blockers, which were associated with lower risk of infection among tested subjects
(model F, OR 1 year = 0.80, CI: 0.70–0.91), and CCBs (C08CA) which were associated with
lower odds of severe disease in the population (model C, OR 1 year: 0.76, CI: 0.64–0.90).
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3.1.3. Vaccines

Significant associations for vaccines with FDR < 0.05 are shown in Table 5. One of the
most consistent associations was observed for influenza vaccines. Protective associations
were observed across almost all models (B to H), and across all time windows. Flu vaccina-
tion was associated with lower odds of infection when compared to population controls
(model E; OR 1 year = 0.73, CI: 0.65–0.83) or compared to test-negative individuals (model
F; OR 1 year = 0.60, CI: 0.53–0.68). Similar protective effects were also observed when
restricting the cases to severe cases (model C: OR 1 year = 0.74; CI: 0.60–0.91; model G: OR
1 year = 0.61, CI: 0.50–0.76). Association with lower odds of mortality was also observed,
although the confidence interval is wide as the number of fatal cases was small (model D:
OR 1 year = 0.28, CI: 0.13–0.63; model H: OR 1 year = 0.23, CI: 0.11–0.52). The effect sizes in
general became weaker with longer time windows.

Table 5. Vaccines with significant protective associations (limited to FDR < 0.05) within time windows of 1, 2, 5, and 10 years.

Window Model ATC Code OR conf.low conf.high p FDR.BH Full Name
1 year F J07AL 0.50 0.31 0.82 5.29 × 10−3 4.65 × 10−2 Pneumococcal vaccines
2 years F J07AL 0.59 0.42 0.82 1.59 × 10−3 2.17 × 10−2 Pneumococcal vaccines
5 years E J07AL 0.70 0.55 0.89 3.81 × 10−3 1.62 × 10−2 Pneumococcal vaccines
5 years F J07AL 0.61 0.47 0.79 1.47 × 10−4 3.27 × 10−3 Pneumococcal vaccines

10 years E J07AL 0.78 0.67 0.91 1.89 × 10−3 8.52 × 10−3 Pneumococcal vaccines
10 years F J07AL 0.67 0.57 0.78 9.39 × 10−7 4.23 × 10−6 Pneumococcal vaccines
10 years G J07AL 0.67 0.51 0.87 3.32 × 10−3 9.20 × 10−3 Pneumococcal vaccines
5 years F J07AM 0.45 0.29 0.68 1.93 × 10−4 3.73 × 10−3 Tetanus vaccines

10 years E J07AM 0.65 0.45 0.92 1.60 × 10−2 4.23 × 10−2 Tetanus vaccines
10 years F J07AM 0.49 0.34 0.71 1.69 × 10−4 3.80 × 10−4 Tetanus vaccines
5 years F J07AP 0.70 0.58 0.84 1.60 × 10−4 3.30 × 10−3 Typhoid vaccines

10 years E J07AP 0.86 0.76 0.97 1.88 × 10−2 4.23 × 10−2 Typhoid vaccines
10 years F J07AP 0.76 0.67 0.88 1.18 × 10−4 3.55 × 10−4 Typhoid vaccines
10 years G J07AP 0.74 0.58 0.95 1.61 × 10−2 2.82 × 10−2 Typhoid vaccines
1 year C J07BB 0.74 0.60 0.91 3.80 × 10−3 1.08 × 10−2 Influenza vaccines
1 year D J07BB 0.28 0.13 0.63 1.92 × 10−3 4.68 × 10−3 Influenza vaccines
1 year E J07BB 0.73 0.65 0.83 5.93 × 10−7 4.50 × 10−6 Influenza vaccines
1 year F J07BB 0.60 0.53 0.68 2.94 × 10−15 6.97 × 10−13 Influenza vaccines
1 year G J07BB 0.61 0.50 0.76 4.35 × 10−6 1.09 × 10−4 Influenza vaccines
1 year H J07BB 0.23 0.11 0.52 4.04 × 10−4 3.32 × 10−3 Influenza vaccines
2 years C J07BB 0.75 0.62 0.90 2.01 × 10−3 7.27 × 10−3 Influenza vaccines
2 years D J07BB 0.30 0.15 0.60 7.22 × 10−4 2.30 × 10−3 Influenza vaccines
2 years E J07BB 0.75 0.68 0.84 4.83 × 10−7 4.83 × 10−6 Influenza vaccines
2 years F J07BB 0.62 0.55 0.70 4.38 × 10−16 1.14 × 10−13 Influenza vaccines
2 years G J07BB 0.62 0.52 0.75 8.86 × 10−7 2.78 × 10−5 Influenza vaccines
2 years H J07BB 0.25 0.12 0.50 9.64 × 10−5 9.11 × 10−4 Influenza vaccines
5 years D J07BB 0.53 0.32 0.86 9.80 × 10−3 3.83 × 10−2 Influenza vaccines
5 years E J07BB 0.80 0.73 0.88 7.01 × 10−6 5.79 × 10−5 Influenza vaccines
5 years F J07BB 0.66 0.60 0.73 7.67 × 10−16 1.11 × 10−13 Influenza vaccines
5 years G J07BB 0.69 0.59 0.81 8.14 × 10−6 2.93 × 10−4 Influenza vaccines
5 years H J07BB 0.44 0.27 0.72 1.12 × 10−3 1.07 × 10−2 Influenza vaccines

10 years D J07BB 0.59 0.39 0.90 1.51 × 10−2 4.54 × 10−2 Influenza vaccines
10 years E J07BB 0.82 0.75 0.89 6.70 × 10−6 6.03 × 10−5 Influenza vaccines
10 years F J07BB 0.67 0.61 0.74 5.16 × 10−17 4.64 × 10−16 Influenza vaccines
10 years G J07BB 0.69 0.59 0.80 9.82 × 10−7 6.87 × 10−6 Influenza vaccines
10 years H J07BB 0.50 0.32 0.76 1.44 × 10−3 4.31 × 10−3 Influenza vaccines
1 year F J07CA 0.56 0.38 0.84 4.30 × 10−3 3.97 × 10−2 Bacterial and viral vaccines, combined
2 years F J07CA 0.71 0.57 0.89 3.05 × 10−3 3.59 × 10−2 Bacterial and viral vaccines, combined

10 years F J07CA 0.85 0.78 0.94 7.85 × 10−4 1.41 × 10−3 Bacterial and viral vaccines, combined
10 years G J07CA 0.78 0.66 0.92 3.94 × 10−3 9.20 × 10−3 Bacterial and viral vaccines, combined

For space limits, only results with FDR < 0.05 are shown. Please refer to Table S4 for full results.

In view of the significant findings, we repeated the analyses on flu vaccines with other
ways to define the exposure (Table S14). First, we defined the exposure based on the actual
season of vaccination instead of any vaccines received in the past k years. For people who
had received flu vaccination in 2019–2020 (regardless of vaccination in other years), the
OR for infection was 0.60 (CI: 0.53–0.68), compared to those who had not (test-negative
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subjects as controls, model F; same below). The OR was attenuated to 0.76 (CI: 0.67–0.87)
if the exposure was defined as flu vaccination in 2015–2016 (regardless of vaccination in
other years). We then narrowed down the exposure as receiving flu vaccine in the last
season (2019–2020) but not in 2018–2019; the resulting OR was 0.67 (CI: 0.53–0.83). On
the other hand, if we considered exposure as vaccination in 2018–19 but not 2019–20, the
OR became weaker and nonsignificant (OR = 0.80, CI: 0.63–1.01). Those who received the
vaccine consecutively for the last two seasons had similar but slightly stronger protection
from infection (OR = 0.59, CI: 0.51–0.69); however, the CI overlaps with other estimates. A
similar pattern of association was observed for model E (population controls). In general,
more recent vaccination was associated with stronger protective effects.

Pneumococcal vaccines were also associated with protection against infection, espe-
cially within tested subjects (model F: OR 1 year = 0.50, CI: 0.31–0.82), which shows a trend
of attenuation with longer time windows (OR for 10-year window = 0.67, CI: 0.51–0.87).
Another group of vaccines showing protective effects is J07CA (bacterial and viral vaccines),
which was significant under model F (OR for 1-year window: 0.56, CI: 0.38–0.84); it also
showed weakening of effect over time. Other significant associations included tetanus and
typhoid vaccines, which were observed to be protective against infections.

3.1.4. Other Drugs Showing Protective Associations

Significant results for other drugs having protective effects and FDR < 0.05 are shown
in Table 6. As for other drugs, proton pump inhibitors (PPI) were associated with lower
odds of infection when we compared test-positive against test-negative patients (model
F: OR 1 year = 0.77, CI: 0.71–0.83); the ORs showed a gradient with largest effect within
6 month of use (OR = 0.72) and became weaker at the 5-year time window (OR = 0.87). PPI
was also significantly associated with lower severity of disease.

Natural and semisynthetic estrogens (ATC G03CA) were linked to lower risk of
infection and severity in the tested population (model F: OR 1 year = 0.67, CI: 0.58–0.78),
which showed attenuation of effect over time. The largest effect size was noted within
6 months of use (OR = 0.63), which was attenuated for a 5-year time window (OR = 0.73).
Similar protective associations were observed under model G, with severity as the outcome.

Prior use of thyroid hormones was consistently associated with lower risk of infection
and severity, no matter whether the general population or test-negative individuals were
considered as controls. The ORs were similar across all time windows. For model E
(infected vs. population), the OR for 1-year time window was 0.80 (CI 0.71 to 0.92), which
was close to the effect size under model F (infected vs. test-negative). For model C
(hospitalized/fatal cases vs. population), the OR for 1-year time window was 0.62 (CI 0.48
to 0.79), and it was similar when constrained to tested subjects.
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Table 6. Other drugs with significant protective associations (limited to FDR < 0.05) within time windows of 6, 12, and
24 months.

Window Model ATC Code OR conf.low conf.high p FDR.BH Full Name
0.5 year F A02BC 0.72 0.67 0.79 1.05 × 10−13 2.18 × 10−11 Proton pump inhibitors
0.5 year G A02BC 0.70 0.61 0.81 1.06 × 10−6 2.08 × 10−5 Proton pump inhibitors
1 year A A02BC 0.77 0.65 0.91 2.37 × 10−3 1.78 × 10−2 Proton pump inhibitors
1 year F A02BC 0.77 0.71 0.83 2.01 × 10−11 2.38 × 10−9 Proton pump inhibitors
1 year G A02BC 0.66 0.58 0.76 1.56 × 10−9 7.80 × 10−8 Proton pump inhibitors
2 years A A02BC 0.77 0.66 0.90 1.05 × 10−3 1.80 × 10−2 Proton pump inhibitors
2 years F A02BC 0.80 0.74 0.86 2.94 × 10−9 2.55 × 10−7 Proton pump inhibitors
2 years G A02BC 0.68 0.59 0.77 1.81 × 10−9 9.96 × 10−8 Proton pump inhibitors
2 years F A03FA 0.51 0.37 0.70 3.67 × 10−5 1.19 × 10−3 Propulsives
1 year F A09AA 0.24 0.09 0.64 4.19 × 10−3 3.97 × 10−2 Enzyme preparations
2 years F A09AA 0.23 0.09 0.60 2.81 × 10−3 3.48 × 10−2 Enzyme preparations

0.5 year F A12AX 0.80 0.69 0.93 2.74 × 10−3 3.49 × 10−2 Calcium, combinations with vitamin D and/or
other drugs

1 year F A12AX 0.83 0.72 0.94 4.36 × 10−3 3.97 × 10−2 Calcium, combinations with vitamin D and/or
other drugs

1 year F B03AA 0.74 0.60 0.91 4.00 × 10−3 3.97 × 10−2 Iron bivalent, oral preparations
2 years F C05AE 0.33 0.16 0.69 3.18 × 10−3 3.59 × 10−2 Muscle relaxants
0.5 year F G03CA 0.63 0.52 0.76 3.03 × 10−6 1.58 × 10−4 Natural and semisynthetic estrogens, plain
1 year F G03CA 0.67 0.58 0.78 4.08 × 10−7 2.42 × 10−5 Natural and semisynthetic estrogens, plain
2 years F G03CA 0.70 0.61 0.80 1.89 × 10−7 9.83 × 10−6 Natural and semisynthetic estrogens, plain
2 years G G03CA 0.66 0.51 0.86 2.43 × 10−3 3.35 × 10−2 Natural and semisynthetic estrogens, plain
0.5 year F G04CB 0.63 0.46 0.85 3.02 × 10−3 3.49 × 10−2 Testosterone-5-alpha reductase inhibitors
0.5 year F H03AA 0.80 0.69 0.92 2.24 × 10−3 3.11 × 10−2 Thyroid hormones
0.5 year G H03AA 0.66 0.51 0.86 2.10 × 10−3 1.96 × 10−2 Thyroid hormones
1 year C H03AA 0.62 0.48 0.79 1.77 × 10−4 6.57 × 10−4 Thyroid hormones
1 year E H03AA 0.80 0.71 0.92 9.47 × 10−4 4.23 × 10−3 Thyroid hormones
1 year F H03AA 0.81 0.71 0.93 2.51 × 10−3 2.98 × 10−2 Thyroid hormones
1 year G H03AA 0.64 0.49 0.82 5.53 × 10−4 6.50 × 10−3 Thyroid hormones
2 years C H03AA 0.62 0.48 0.79 1.50 × 10−4 7.36 × 10−4 Thyroid hormones
2 years E H03AA 0.80 0.70 0.91 5.94 × 10−4 2.81 × 10−3 Thyroid hormones
2 years F H03AA 0.81 0.71 0.93 2.57 × 10−3 3.35 × 10−2 Thyroid hormones
2 years G H03AA 0.64 0.50 0.83 6.06 × 10−4 9.52 × 10−3 Thyroid hormones
1 year F J01MA 0.49 0.34 0.72 2.40 × 10−4 5.93 × 10−3 Fluoroquinolones
2 years F J01MA 0.59 0.46 0.76 5.39 × 10−5 1.56 × 10−3 Fluoroquinolones
0.5 year F L02AE 0.29 0.14 0.60 9.84 × 10−4 1.86 × 10−2 Gonadotropin releasing hormone analogues
1 year F L02AE 0.41 0.23 0.72 2.02 × 10−3 2.62 × 10−2 Gonadotropin releasing hormone analogues
2 years F L02AE 0.42 0.25 0.70 9.73 × 10−4 1.49 × 10−2 Gonadotropin releasing hormone analogues
0.5 year F M01AE 0.68 0.56 0.82 4.61 × 10−5 1.37 × 10−3 Propionic acid derivatives
1 year F M01AE 0.79 0.70 0.91 6.65 × 10−4 1.29 × 10−2 Propionic acid derivatives

0.5 year F N02AX 0.56 0.41 0.76 1.88 × 10−4 4.33 × 10−3 Other opioids
1 year F N02AX 0.63 0.49 0.80 1.63 × 10−4 4.84 × 10−3 Other opioids
2 years F N02AX 0.68 0.56 0.83 1.14 × 10−4 2.29 × 10−3 Other opioids
0.5 year F N03AX 0.68 0.58 0.81 1.72 × 10−5 5.96 × 10−4 Other antiepileptics
1 year F N03AX 0.70 0.60 0.82 1.00 × 10−5 3.95 × 10−4 Other antiepileptics
2 years F N03AX 0.73 0.64 0.84 7.15 × 10−6 3.10 × 10−4 Other antiepileptics
0.5 year F N06AA 0.77 0.65 0.92 3.99 × 10−3 4.15 × 10−2 Nonselective monoamine reuptake inhibitors
1 year F N06AA 0.79 0.68 0.92 1.98 × 10−3 2.62 × 10−2 Nonselective monoamine reuptake inhibitors
2 years F N06AA 0.79 0.70 0.90 2.67 × 10−4 4.96 × 10−3 Nonselective monoamine reuptake inhibitors
1 year A R03BA 0.48 0.31 0.73 7.44 × 10−4 7.44 × 10−3 Glucocorticoids
2 years A R03BA 0.55 0.38 0.81 2.44 × 10−3 3.36 × 10−2 Glucocorticoids
0.5 year F R05DA 0.69 0.55 0.87 1.46 × 10−3 2.33 × 10−2 Opium alkaloids and derivatives
1 year F R05DA 0.74 0.62 0.88 5.47 × 10−4 1.18 × 10−2 Opium alkaloids and derivatives
2 years F R05DA 0.80 0.70 0.91 7.02 × 10−4 1.22 × 10−2 Opium alkaloids and derivatives

For space limits, only results with FDR < 0.05 are shown. Please refer to Tables S3 and S6 for full results. Ophthalmological and other
topical agents are not listed in the above table.

3.1.5. Drugs Ranked by Consistency of Protective Associations

We also ranked the drugs in term of their consistency of protective associations. Briefly,
drugs were ranked by their frequency of being at least nominally significant (p < 0.05)
across the four time windows and eight models (Table 4). This serves as an alternative
approach to prioritize drugs. For some drugs, the results may not be significant after FDR
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correction. Nevertheless, if a drug showed consistent associations (at least nominally)
across multiple models or time-frames, it may also be worthy of further investigation.

3.1.6. Drug Associated with Increased Odds of Risk/Severity of Infection

Among the drugs with harmful associations, the more frequently top-listed ones
include laxatives, opioids (N02AA), benzodiazepines, tetracycline, penicillins, other an-
tipsychotics (N05AX), and antidementia drugs (N06DA/DX). The full results are presented
in Tables S6–S10, and a summary is also provided in Table S5.

3.2. Analysis Restricted to Subjects with Complete Covariate Data, and Models with/without IPW

As a sensitivity analysis, for the above analysis with imputed covariates, we also
repeated models A to H without IPW of Pr(tested). In addition, we also repeated the
analyses, limiting to subjects with complete covariate data, with or without the IPW
approach. In general, we observed similar drugs with significant results, and the top-
ranked protective or harmful drugs were similar to the above. Comparing results with and
without IPW, the list of significant drugs remained similar although the OR estimates and
SE were adjusted. The full results are presented in Tables S7 and S8 (complete covariate
data with and without IPW) and Table S9 (imputed covariates without IPW).

3.3. Subgroup Analysis

The proportion of subjects falling into each subgroup is presented in Table S10, while
full results are presented in Table S11. We performed a statistical test to compare the log(OR)
across the two subgroups with and without the risk factor; drugs with protective effect
in one subgroup but significantly different OR in the other subgroup are listed in Table 7.
For example, the protective effects of pneumococcal and flu vaccines were significantly
weaker in obese (BMI > 30) subjects under model F. With regards to age, several drugs, such
as PPI and ACEI, showed larger protective effects in those with age > 70 under models
F and E, respectively. Statins, ACEIs, and PPI showed stronger protective associations
in hypertensive patients under models C, E, and F, respectively. Regarding ethnicity as
a subgroup, a number of drugs, including several vaccines, appeared to have stronger
protective effects in the white compared to non-white subjects. However, only <10%
of the UKBB subjects included here were non-white, and the non-white subgroup was
heterogeneous and composed of several different ethnicities. We did not observe clear
evidence of sex-specific effects in this analysis.

Table 7. Summary of subgroup analysis, showing drugs having significant protective association in one subgroup but
significantly different OR in the other subgroup (FDR < 0.2).

Subgp Windows Model OR_Y OR_N sig_Y sig_N z_OR_cmp p_OR_cmp p.adjust_OR_cmp Name

AGE > 70 5 years F 0.81 0.99 1 0 −2.65 8.15 × 10−3 1.47 × 10−1 A02BC Proton pump inhibitors

AGE > 70 1 year E 1.19 0.49 0 1 2.11 3.47 × 10−2 1.56 × 10−1 A10AE Insulins and analogues
for injection, long-acting

AGE > 70 1 year E 0.81 1.04 1 0 −2.38 1.72 × 10−2 1.55 × 10−1 C09AA ACE inhibitors, plain
Asthma 5 years E 0.60 0.86 1 1 −2.66 7.76 × 10−3 1.40 × 10−1 J07BB Influenza vaccines
Asthma 10 years E 0.61 0.87 1 1 −2.95 3.22 × 10−3 1.29 × 10−2 J07BB Influenza vaccines

BMI > 30 1 year F 1.04 0.31 0 1 2.42 1.56 × 10−2 1.40 × 10−1 J07AL Pneumococcal vaccines
BMI > 30 1 year F 0.76 0.54 1 1 2.52 1.17 × 10−2 1.40 × 10−1 J07BB Influenza vaccines
BMI > 30 2 years F 0.79 0.56 1 1 2.75 6.01 × 10−3 1.08 × 10−1 J07BB Influenza vaccines
BMI > 30 6 months F 0.92 0.16 0 1 2.68 7.40 × 10−3 1.26 × 10−1 R03BA Glucocorticoids

CAD 5 years H 0.36 1.32 1 0 −2.39 1.71 × 10−2 1.53 × 10−1 C08CA Dihydropyridine
derivatives

CAD 5 years H 1.72 0.18 0 1 2.42 1.53 × 10−2 1.53 × 10−1 G04CB Testosterone-5-alpha
reductase inhibitors

CAD 5 years C 1.92 0.56 0 1 2.38 1.72 × 10−2 1.55 × 10−1 J07AL Pneumococcal vaccines
CAD 5 years F 1.55 0.56 0 1 2.55 1.07 × 10−2 1.92 × 10−1 J07AL Pneumococcal vaccines
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Table 7. Cont.

Subgp Windows Model OR_Y OR_N sig_Y sig_N z_OR_cmp p_OR_cmp p.adjust_OR_cmp Name

Depression 1 yearr B 0.07 0.73 1 0 −2.60 9.36 × 10−3 1.50 × 10−1 C10AA HMG CoA reductase
inhibitors

HT 2 years F 0.75 0.93 1 0 −2.69 7.20 × 10−3 1.30 × 10−1 A02BC Proton pump inhibitors
HT 5 years F 0.76 1.00 1 0 −3.36 7.92 × 10−4 1.43 × 10−2 A02BC Proton pump inhibitors
HT 1 year E 0.86 1.07 1 0 −2.11 3.49 × 10−2 1.26 × 10−1 C09AA ACE inhibitors, plain

HT 1 year C 0.71 1.02 1 0 −2.58 9.90 × 10−3 8.91 × 10−2 C10AA HMG CoA reductase
inhibitors

OR_Y, odds ratio within the subgroup defined in the 1st column; OR_N, OR in the other subgroup. Sig_Y, sig_N, significance in the two
subgroups, 1 denotes significant protective effect, 0 denotes nonsignificant effect, −1 denotes significant harmful effect. p_OR_cmp, p-value
based on comparison of ORs; p.adjust_OR_cmp, corresponding FDR. Ethnicity as a subgroup is not shown here; please refer to Table S11
for details. CAD, coronary artery disease, HT, hypertension.

3.4. Interaction Analysis

A summary of results (results with FDR < 0.2) is presented in Table 8, while a fuller
version is given in Table S12. Full results are given in Table S13. More significant results
(at FDR < 0.2) are observed compared to stratified analysis, presumably due to the higher
power of this approach. For example, we found that most vaccines showing protective
effects, including influenza and pneumococcal vaccines, interacted with BMI and obesity
significantly. Higher BMI was associated with reduced protective effects, in line with
evidence from subgroup analysis.

On the other hand, statins, biguanides (metformin), and antiplatelet drugs showed
positive interactions with BMI. For CAD, significant interaction was observed with several
cardiometabolic drugs, including beta-blockers (nonselective), antiplatelet drugs, and
statins, suggesting larger protective effects for such drugs in CAD patients. In a similar
vein, most cardiometabolic medications showed interaction with HT, indicating more
prominent protective associations in HT patients.

Considering age as an interacting variable, interaction was observed with a large
number of drugs, most suggesting weaker protection as age increases. Considering specific
medications, statins interact with multiple risk factors and demonstrate larger protective
effects with CAD, obesity, DM, CAD, HT, dementia, and in males. However, its effect tends
to be weaker with increasing age. Interaction analysis with flu vaccines showed that its
effect may be weaker in the obese and with increasing age, but was stronger in the white
population and asthmatic subgroup. ACEI and ARB showed stronger protective effects in
the white and HT patients, but weaker effects with advanced age.

3.5. Controlling for Other Medications

We primarily focused on protective drugs, as the number of drugs with significant
negative effects is large and is hard to control for all. Overall, most drugs with protective
effects remain significant (at least for a subset of models), despite controlling for other
medications (Table S15). However, biguanides (A10BA), CCB (C08CA), and platelet ag-
gregation inhibitors, excluding heparin (B01AC), showed a relatively consistent trend of
nonsignificant association with outcome when other protective drugs were controlled
for. The findings are similar when controlling for top-10/20 drugs or all protective drugs
having FDR < 0.05/0.1.
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Table 8. Summary of interaction analysis, showing pairs of variables with significant interactions (FDR < 0.2).

ATC
Code

Interacting
Factor Drug Name Interaction

Term
ATC
Code

Interacting
Factor Drug Name Interaction

Term
A02BC AGE Proton pump inhibitors 1/−1 A02BC CAD Proton pump inhibitors 1

A03AA AGE
Synthetic anticholinergics,
esters with tertiary amino

group
−1 A03AA CAD

Synthetic anticholinergics,
esters with tertiary amino

group
1

A10AE AGE Insulins and analogues for
injection, long-acting −1 B01AC CAD Platelet aggregation

inhibitors excl. heparin 1

B01AC AGE Platelet aggregation
inhibitors excl. heparin −1 C07AB CAD Beta blocking agents,

selective 1

C07AB AGE Beta blocking agents,
selective −1 C10AA CAD HMG CoA reductase

inhibitors 1

C08CA AGE Dihydropyridine derivatives −1 J07AL CAD Pneumococcal vaccines −1

C09AA AGE ACE inhibitors, plain −1 C10AA Dementia HMG CoA reductase
inhibitors 1

C09CA AGE Angiotensin II receptor
blockers, plain −1 J07CA Dementia Bacterial and viral vaccines,

combined −1

C10AA AGE HMG CoA reductase
inhibitors −1 C08CA COPD Dihydropyridine derivatives −1

G04CB AGE Testosterone-5-alpha
reductase inhibitors −1 J07AP COPD Typhoid vaccines −1

J07AL AGE Pneumococcal vaccines −1 A03AA Depression
Synthetic anticholinergics,
esters with tertiary amino

group
−1

R03BA AGE Glucocorticoids 1 C10AA DM HMG CoA reductase
inhibitors 1

A02BC AGE > 70 Proton pump inhibitors −1 A02BC Dx_cancer Proton pump inhibitors −1

A10AE AGE > 70 Insulins and analogues for
injection, long-acting −1 J07AL Dx_cancer Pneumococcal vaccines −1

A10BA AGE > 70 Biguanides −1 A10BA Ethnic
(White) Biguanides 1

B01AC AGE > 70 Platelet aggregation
inhibitors excl. heparin −1 C08CA Ethnic

(White) Dihydropyridine derivatives 1

C07AB AGE > 70 Beta blocking agents,
selective −1 C09AA Ethnic

(White) ACE inhibitors, plain 1

C08CA AGE > 70 Dihydropyridine derivatives −1 C09CA Ethnic
(White)

Angiotensin II receptor
blockers, plain 1

C09AA AGE > 70 ACE inhibitors, plain −1 H03AA Ethnic
(White) Thyroid hormones 1

C10AA AGE > 70 HMG CoA reductase
inhibitors −1 J07AL Ethnic

(White) Pneumococcal vaccines 1

G04CB AGE > 70 Testosterone-5-alpha
reductase inhibitors −1 J07AP Ethnic

(White) Typhoid vaccines 1

J07AL AGE > 70 Pneumococcal vaccines −1 J07BB Ethnic
(White) Influenza vaccines 1

J07BB AGE > 70 Influenza vaccines −1 A02BC Hypertension Proton pump inhibitors −1

R03BA AGE > 70 Glucocorticoids −1 A03AA Hypertension
Synthetic anticholinergics,
esters with tertiary amino

group
1

A10AE Asthma Insulins and analogues for
injection, long-acting −1 B01AC Hypertension Platelet aggregation

inhibitors excl. heparin 1

A10BA Asthma Biguanides −1 C07AB Hypertension Beta blocking agents,
selective 1

C08CA Asthma Dihydropyridine derivatives −1 C08CA Hypertension Dihydropyridine derivatives 1

C09CA Asthma Angiotensin II receptor
blockers, plain −1 C09AA Hypertension ACE inhibitors, plain 1

J07AL Asthma Pneumococcal vaccines −1 C09CA Hypertension Angiotensin II receptor
blockers, plain 1

J07BB Asthma Influenza vaccines 1 C10AA Hypertension HMG CoA reductase
inhibitors 1

A02BC BMI Proton pump inhibitors 1 J07AL Hypertension Pneumococcal vaccines −1

A03AA BMI
Synthetic anticholinergics,
esters with tertiary amino

group
−1 B01AC Obesity Platelet aggregation

inhibitors excl. heparin 1
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Table 8. Cont.

ATC
Code

Interacting
Factor Drug Name Interaction

Term
ATC
Code

Interacting
Factor Drug Name Interaction

Term

A10BA BMI Biguanides 1 C10AA Obesity HMG CoA reductase
inhibitors 1

B01AC BMI Platelet aggregation
inhibitors excl. heparin 1 J07AL Obesity Pneumococcal vaccines −1

C10AA BMI HMG CoA reductase
inhibitors 1 J07BB Obesity Influenza vaccines −1

J07AL BMI Pneumococcal vaccines −1 A02BC Sex (male) Proton pump inhibitors 1

J07AP BMI Typhoid vaccines −1 C10AA Sex (male) HMG CoA reductase
inhibitors 1

J07BB BMI Influenza vaccines −1 J07AL Sex (male) Pneumococcal vaccines −1

J07CA BMI Bacterial and viral vaccines,
combined −1 J07AP Sex (male) Typhoid vaccines 1

We added an interaction term drug*interacting factor in the regression model. For “interaction term”, 1 denotes significant interaction
effects towards protection (i.e., presence of the interacting factor tends to increase the protective effect of the drug); −1 denotes significant
interaction effects towards harmful side (presence of the interacting factor tends to reduce the protective effect of the drug). We consider
significant results in any model or time window. For age and BMI, they were modeled as continuous variables unless otherwise specified.
For full results, please refer to Tables S12 and S13.

4. Discussion

In this work, we performed a thorough and rigorous analysis on the effect of drugs
and vaccines on COVID-19 susceptibility and severity. We uncovered a number of drugs
with potentially protective effects, which may be further explored as candidates for drug
repositioning.

As an approach based on observational data, different kinds of bias, such as confound-
ing and selection bias, may affect the results. We performed analysis on infected subjects
(models A and B), the whole population (models C, D, E) and the tested population (models
F, G, H) to obtain a more comprehensive picture of drug effects under different settings,
and to avoid limitations (e.g., selection bias, collider bias, unscreened controls) of some
designs.

4.1. Highlights of Relevant Drugs

Below, we highlight drugs that are tentatively associated with altered risk or severity
of infection. We preferentially consider drugs that showed significant associations across
multiple models and time windows, those with stronger statistical significance, and those
with protective effects, as confounding by indication is much less likely.

4.1.1. Drugs for Cardiometabolic Disorders with Protective Effects

Interestingly, many drugs with potential protective effects are indicated for car-
diometabolic (CM) disorders. Cardiometabolic risk factors, such as obesity, hypertension,
DM, and CAD, have consistently been shown to be associated with risk and severity of
infection [15,40]; as such, it is biologically plausible that drugs for treating CM disorders
may be beneficial.

Among all drugs, the strongest and most consistent protective association was ob-
served for statins. The beneficial effects of statins are supported by several previous
studies. For example, a recent meta-analysis of four retrospective studies of COVID-19
patients [41] showed a significantly decreased hazard of severity or mortality of infection
(pooled HR = 0.70) when comparing statin users against nonusers. Another retrospective
study by Tan et al. [42] also reported lower risk of intensive care unit (ICU) admission
among statin users in infected patients. Yet another work showed that statins may be effec-
tive in reducing in-hospital mortality among diabetic patients [43]. Potential mechanisms
for the protective actions of statins have been discussed elsewhere [44–46]. It has been
postulated that, besides reducing CVD risks, statins may reduce risk/severity of infection
by inhibiting inflammation and excessive immune response, producing direct antiviral
effects, improving endothelial function, and exerting an antithrombotic effect, among other
actions [44–46].
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Another group of drugs worth highlighting is ACEI and ARB. There have been intense
discussions on whether ACEI/ARB may affect risk or severity of infection from early on,
as ACE2 is a receptor for SARS-CoV-2. Nevertheless, a recent study showed that ACE2 is
localized in respiratory cilia, and the use of ARB/ACEI does not change its expression [47].
Recent systemic reviews and meta-analysis (for example, see [48] with continuous updates)
of observational studies do not support an association between ACEI/ARB prior use and
severity of infection. However, several studies [47,49–55] reported protective effects of
ACEI/ARB on severity or mortality of disease. Here, we observed consistent association of
prior use of ACEI/ARB with reduced risks of severe/fatal infection (models A, C, G) and
overall infection risk in the population (model E).

For several other kinds of cardiometabolic drugs, the associations were not as strong,
but may still be worthy of further studies. Biguanides (mainly metformin) are observed to
be protective for severe COVID-19 infection, both among the infected and at a population
level. For example, in a meta-analysis on four observational studies of hospitalized patients
mostly with type 2 DM, the use of metformin was associated with a lower risk of mortality
(OR = 0.75, 95% CI = 0.67–0.85) [56]. A number of mechanisms have been proposed [56,57].
For example, besides improving glycemic control and weight reduction, metformin may
lead to AMPK activation which potentially reduces viral entry by phosphorylation of ACE2
receptor. It may also lead to mTOR pathway inhibition and prevents hyperactivation of the
immune system [56].

Other drugs of interest may include beta-blockers and calcium channel blockers
(C08CA, dihydropyridine derivatives). It was suggested that beta-blockers may be useful
in preventing hyperinflammation and hence beneficial for COVID-19 [58]. For calcium
channel blockers (CCBs), a study using cell culture suggested that CCBs, especially am-
lodipine and nifedipine, were useful in blocking viral entry and infection in epithelial lung
cells [59]. In another retrospective study [60], both beta-blockers and CCBs were associated
with lower mortality. Another relevant study in the UK [61] utilized data from the UK
Clinical Practice Research Datalink (CPRD) and found that ACEI/ARB, CCBs, and thiazide
diuretics were all associated with lower odds of diagnosis, while beta-blockers do not show
any association after adjusting for consultation frequency. None of the above drugs were
associated with mortality in that study [61].

4.1.2. Vaccines

There has been intense interest in whether vaccines indicated for other diseases may
protect against COVID-19. Here, we observed that a number of vaccines showed protection
against infection or severe infection. For example, pneumococcal vaccines were protective
against infection in the population and tested subjects, and risk of severe infection (model
G). Significant protective associations were also observed for tetanus and typhoid vaccines
at a time horizon of 10 years (the power to detect associations is likely stronger over
longer periods due to larger number of people having received the vaccine; it does not
exclude the possibility that the vaccines may have effects over shorter time windows). We
also observed associations with the J07CA category, which contains various bacterial and
viral vaccines (see https://www.whocc.no/atc_ddd_index/?code=J07CA, accessed on 9
November 2020).

For influenza vaccines, we observed highly consistent protective associations. It has
been proposed that “trained innate immunity”, which may involve epigenetic reprogram-
ming of innate immune cells, may enable a vaccine to protect against other diseases [62,63].
Interestingly, two studies in Italy reported that higher coverage rate of flu vaccine was
associated with lower rate of infection, hospitalization, and mortality from COVID-19.
Another larger-scale study, based on electronic records of 137,037 subjects who have re-
ceived viral PCR tests, showed that a number of vaccines (given in the past 1, 2, or 5 years)
were associated with lower risks of infection [64]. These included flu and pneumococcal
vaccines also implicated in the present study. Another recent study in the Netherlands [65]
also showed a reduced risk (Relative risk = 0.61, 95% CI: 0.46–0.82) of infection among
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recipients of flu vaccine, and this effect size was similar to that observed here. In vitro
studies by the same authors showed that the vaccine was able to induce a trained immunity
response, including an increase of cytokine responses after stimulation of immune cells
with SARS-CoV-2.

We note that this is an observational study, and residual confounding may be present.
For example, it is possible that people receiving flu vaccines are more health-conscious
and observe preventive measures better. However, we observed waning protective effects
over time, which makes sense biologically but could not be entirely explained by the above
confounder alone. In addition, the vaccine appears to have stronger effect sizes if fatal
infection is considered as the outcome (although the confidence interval is large), which
cannot be easily explained by health-consciousness. On the other hand, as flu vaccines
are more likely to be received by the elderly and those with chronic illnesses, residual
confounding of these factors tend to push the effects towards the harmful side.

Taken together, we believe that the protective effects of vaccines may not be easily
and fully explained away by other confounders. Further experimental and clinical studies
are warranted to investigate the nonspecific effects of flu and other vaccines, especially
since COVID-19 vaccines may not be easily available to many people (especially those in
low-income countries) in a short timeframe.

4.1.3. Other Potential Protective Drugs

We briefly highlight a few other drugs with potential protective effects. Estrogens
(G03CA) were among the drugs showing protective associations. As many studies reported
higher risks of severe disease in men than in women, it has been hypothesized that estrogen
may play a part in the sex-discordant outcomes, for example via its effects on immune
response to infections [66–68].

Thyroid hormones (TH) were also among the top-ranked drugs. It was postulated
that TH may ameliorate tissue injury due to hypoxia by suppression of p38 MAPK [69].
Clinical trials on TH are ongoing [69,70], and our findings support a protective role of TH
in COVID-19.

Another drug category of note is proton pump inhibitors (PPI). Several studies have
suggested harmful effects of PPI on disease severity, which may be related to reduced
gastric acid production with subsequent bacterial overgrowth [71–73]. However, an in vitro
screening study revealed that PPIs may serve as a potent inhibitor of SARS-CoV-2 replica-
tion [74]. The difference in findings between the current study and previous works may be
due to heterogeneity in study samples and designs, differences in the outcome studied (e.g.,
hospitalization vs. ICU admission used in some other studies; infection risk vs. severity of
disease, etc.), and variations in the covariates being adjusted for. Residual confounding,
such as by other comorbidities and drugs given, may also affect the results. Interestingly,
we observed that effects of PPI may be stronger in certain subgroups (e.g., older age, HT),
which may also account for the discrepancy in results across different studies.

Several other top-ranked drug categories in Table 4 may also be worth discussing.
Testosterone-5-alpha reductase inhibitors (5ARis) were recently shown in a small random-
ized controlled trial (RCT) to reduce the time to remission [75]. Two earlier observational
studies also reported lower risk of ICU admission and frequency of symptoms [76,77];
5ARis block the conversion of testosterone to its more potent form, dihydrotestosterone.
Of note, one of the key receptors for the SAR-CoV-2 virus is TMPRSS2 [78], and the only
known promoter of the gene is an androgen response element in the promoter region [79].

Another drug category of interest is platelet aggregation inhibitors (B01AC). It has
been reported that COVID-19 is associated with higher risk of thrombotic events, including
deep vein thrombosis and pulmonary embolism [80]. Antithrombotic therapies have
been hypothesized to reduce thrombo-inflammatory processes as a result of endothelial
dysfunction related to viral infection [81]. An observational study reported that aspirin
is associated with reduced risk of mechanical ventilation and mortality in hospitalized
patients [82]; however, RCTs are lacking.
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For some of the protective drugs highlighted above, we note that their significance
weakened (or became nonsignificant) when controlling for other medications. However, we
expect multicollinearity among the drug variables, as cardiometabolic disorders are highly
comorbid and one patient often takes multiple medications. Multicollinearity may render
interpretation of individual predictors difficult due to unstable coefficient estimates [83].

In our secondary analyses, we also considered subgroup and interaction effects. While
this is a more exploratory analysis and further replications are required, it shed light on
how the effects of drugs/vaccines may differ in people with different clinical background
and may contribute to more “personalized” drug repositioning in the future. For instance,
we observed a consistent trend that the protective associations of flu and pneumococcal
vaccines were weaker in obese individuals. As an example, comparing those who received
flu vaccine in the past season (2019–2020) against those who did not, the estimated OR for
infection was 0.76 in the obese group and 0.54 in the non-obese group (model F). It has
been observed before that obese individuals respond less well to flu and other vaccines due
to impaired immunological responses [84,85]. As another example, statins were observed
to have more prominent protective effects in those with cardiometabolic abnormalities,
such as DM, HT, CAD, and obesity. This is also supported by a recent study [43] which
showed mortality reduction in statin users in diabetic patients only.

4.1.4. Drugs with Potentially Harmful Effects

We noted a number of drugs with potentially harmful effects, but we caution that
residual confounding, such as confounding by indication, other comorbidities, and general
poor health, may lead to bias towards an increased odds of infection or severe disease.

For example, people who have poorer health in general may visit their GPs more
often and be prescribed drugs (e.g., laxatives, antibiotics, painkillers), which may lead to
confounding. Nevertheless, it is possible that some of the top-ranked drugs may indeed
increase the risk/severity of infection. For instance, it is slightly unexpected that laxatives
were highly significant across multiple models and time windows. It has recently been
postulated that dysregulation of gut microbiome may be associated with susceptibility or
resilience to infection [86,87], and laxatives represent a main category of drugs that affect
the gut microbiome [88]. Interestingly, several associations involve psychiatric medications
such as benzodiazepines, antipsychotics, and antidementia drugs. The association may
be due to underlying neuropsychiatric conditions (e.g., anxiety, psychosis, dementia, etc.),
or the effect of the drugs, or a combination of both. Some of the above drugs overlap
with those revealed in a recent study using primary care data in Scotland. In a univariate
analysis restricted to nonresidents in care homes and those without major conditions,
laxatives, anxiolytics, penicillins, and opioid analgesics were significantly associated with
ICU admission or mortality from COVID-19 when compared to population controls [89].
These drugs were also top-listed as drugs with harmful effects in this study.

Patients taking immunosuppressants are more susceptible to viral infections in general,
and it is possible that these drugs are also associated with increased vulnerability to COVID-
19 infection [90]. On the other hand, such drugs may dampen excessive immune responses
(“cytokine storm”) that may occur in severe infections [91]. However, here we did not find
consistent evidence of associations between immunosuppressive agents and COVID-19.
Across immunosuppressive drugs (ATC category L04), we only found two significant
associations (FDR < 0.05). Interleukin inhibitors were associated with higher susceptibility
to infection (model E) and selective immunosuppressants (L04AA) were associated with
higher risk of severe infection (model C), respectively, when compared to population
controls (Table S6). No other significant associations were observed. Of note, a few
preclinical studies reported that thiopurines, a type of immunosuppressant, may lead to
reduced viral replication [92,93] via other mechanisms, although clinical studies suggested
possible harmful effects [94,95]. However, the number of patients taking such drugs was
too small for meaningful analysis in this study.
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4.1.5. Different Results under Different Models

We note that sometimes the different models may yield different results. One main
observation is that analysis on the tested population appears to result in more findings of
drugs with protective effects. We also observed that some drugs in model F (infected vs.
tested negative) may show different effects under model E (infected vs. general population).
Several reasons may explain this finding. First, confounding by indication is inevitable
and may play a more important role when analyzing general population samples. It is
possible that apparent harmful effects of drugs are due to the diseases/conditions that the
prescription is related to, or poorer health in general. Based on a machine learning model
for predicting testing probability (see Figure S1), we observed that people who are older,
having more comorbidities and taking more medications, suffering from cardiovascular
conditions, etc. were more likely to be tested. Compared to the general population, the
tested group may represent a more “homogeneous” population, enriched for people with
poorer health and more comorbidities in general. Therefore, a proportion of confounders
which overlap with factors associated with higher Pr(tested) are essentially controlled for
by stratification, if we only study the tested subjects. On the other hand, in the general
population, as there is a higher proportion of healthy subjects, the effect of confounding by
indication may be stronger. Another possibility is collider bias due to conditioning on a
subgroup of subjects. For example, a drug may be associated with certain conditions which,
in turn, are associated with higher chance of being tested; on the other hand, those who
have more severe symptoms or complications are more likely to be tested. Conditioning
on testing may result in spurious associations between the drug and severity of infection.
However, we have tried to minimize this type of bias by the IPW approach, and we did not
observe substantial difference in results with or without IPW correction for most drugs.
However, we note that, even with adjustment by IPW, there is still chance for residual
selection or collider bias. For example, some factors associated with Pr(tested) may not
be captured in the prediction model. A third possibility to consider is that a drug may
truly produce different effects in different subgroups, due to effect modification by other
factors or diseases. For instance, a recent study reported that the protective effect of statins
is more marked in patients with diabetes [43]. The fact that risk factor associations may
differ between a whole-population- or tested-population-based study has also been noted
previously, for example in [35].

4.2. Strengths and Limitation

This study has a number of strengths. First and foremost, the study was performed
on a large cohort with a sample size close to half a million. The sample was not limited
to one or a few medical centers, and covered the entire UK population, although this
is not an entirely random sample and participation bias still exists [34]. The large and
well-characterized sample also enables analysis of infected and tested, as well as the whole
population. We have studied all level-4 ATC drug categories, allowing an unbiased and
systematic analysis on the association of different drugs with COVID-19 risks or outcomes.
This avoids the risk of publication bias, especially negative results to be unreported. Drugs
showing null associations can still be of important public health interest, as this may suggest
that patients on such medications may not need to change their regimen in view of the
pandemic. In addition, medication history was retrieved from GP records, which minimize
recall bias and errors from self-reporting. Another strength is that we performed a variety
of statistical analysis to reduce bias, including control for potential confounders, multiple
imputation, IPW to reduce effects of testing bias, and study of different time windows and
multiple models. Some of our findings were also corroborated by previous studies. Many
previous clinical studies were limited to hospitalized or infected individuals, which cannot
study the effect of drugs on susceptibility to infection. Selection on hospitalized/infected
subjects may also be prone to selection/collider bias, as discussed elsewhere [34]; therefore,
we included multiple models with infected and tested, as well the whole population as
samples, which aims to reduce limitations due to specific designs.
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There are also various limitations, some of which have been mentioned above. First
and foremost, this is an observational study based on a retrospective cohort of UKBB. As
this is not a randomized controlled trial, confounding is inevitable, especially confounding
by indication. Although we have controlled for main confounders in the regression model,
residual confounding is still likely. Since confounding by indication will likely bias towards
increased odds of infection or severe disease, null or protective associations may be more
reliable. Confounding by the use of other types of drugs is also possible. In addition, the
UKBB cohort is not random, and participants are on average healthier than the general
population [96]. The majority of participants are of European descent, so the findings may
not be generalizable to other ethnicities. In addition, the subjects are mostly >50 years old,
and drug effects in younger individuals may be different.

Regarding drug history, it is worth noting that vaccination records are not complete, as
individuals may receive vaccination outside GP practices. Over-the-counter prescriptions
were not counted, and it cannot be guaranteed that all drugs issued are dispensed by
the pharmacy (see https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/tppgp4covid19.
pdf, accessed on 9 November 2020). However, if this misclassification is nondifferential
(unrelated to outcome), the bias will be towards the null. There is a relatively high missing
rate of GP prescription records for deceased COVID-19 patients, which leads to reduced
power to detect associations. While the UKBB cohort sample is large, we still have low
power to detect associations for drugs that are uncommonly prescribed. Another limitation
with the GP records is that only the issue date, but no duration or dosage, is available.

As for the outcome, hospitalization is a rough proxy for severity only. For models
comparing to the general population, it is likely that a proportion of the population may be
infected but were not tested. This tends to lead to bias on the conservative side (akin to the
use of unscreened controls in genetic studies [97,98]), especially under model E. Patients
with more severe symptoms are less likely to remain untested, so other models may be
less affected by this bias. We note that this study focuses on prior (or pre-diagnostic)
use of drugs and their association with infection risk/severity, and does not provide
direct evidence for whether newly prescribed drugs to recently diagnosed patients will
be useful or not. The current study represents one approach to drug repositioning with
real-world population data, yet integrating results from other repositioning approaches
(e.g., network/structure-based) may further improve the reliability of candidates.

4.3. Clinical Implications

We highlight a few clinical implications here, although we stress that further studies
are required to confirm our findings. We discovered a number of drugs with potential
protective effects that, if replicated and tested in further trials, may represent promising
repurposing candidates (for prevention or treatment of disease). As CM disorders are a
major risk factor for severe infection, this study also provides further support for the safety
of CM medications and reinforces the need to continue these drugs for those indicated. In
a similar vein, negative findings (nonsignificant associations with COVID-19) in this study
may also be of value, given that some patients or physicians may have concerns over the
risk of COVID-19 induced by existing drugs.

Another important finding is that flu (and possibly others, e.g., pneumococcal) vac-
cines may be associated with lower odds of infection and severity of disease. If further
confirmed, the finding is clinically important as COVID-19 vaccines are not fully available
yet to a large part of the world’s population (especially those in developing countries), some
may be hesitant to take the new vaccine, and the efficacy of existing vaccines varies and is
less than perfect. At least, the present work supports that flu and other vaccinations should
be continued and encouraged amid the pandemic. For any vaccines/drugs that may be
repurposed for COVID-19, we believe that even a modest reduction in the risk/severity of
infection may still be highly useful, given the huge number of people at risk for COVID-19
and its complications.
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5. Conclusions

Here, we observed that a number of drugs, including many for cardiometabolic
disorders, may be associated with lower odds of infection/severity of COVID-19. Several
existing vaccines, especially flu vaccines, may be beneficial against COVID-19 as well.
Due to the observational nature of the study, confounding cannot be excluded, and other
limitations may be present. We understand that causal relationship between drugs and
disease cannot be reliably concluded from this study alone, and shall regard the findings
as more exploratory than confirmatory. Nevertheless, to our knowledge, this is the most
comprehensive study to date on drug/vaccine associations with COVID-19. We believe
that the current work provides a valuable resource to prioritize repositioning candidates
for future meta-analyses, clinical trials, and/or experimental studies.
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Abstract: Rearranged during transfection (RET) is a tyrosine kinase oncogenic receptor, activated in
several cancers including non-small-cell lung cancer (NSCLC). Multiple kinase inhibitors vandetanib
and cabozantinib are commonly used in the treatment of RET-positive NSCLC. However, specificity,
toxicity, and reduced efficacy limit the usage of multiple kinase inhibitors in targeting RET protein.
Thus, in the present investigation, we aimed to figure out novel and potent candidates for the inhibi-
tion of RET protein using combined in silico and in vitro strategies. In the present study, screening of
11,808 compounds from the DrugBank repository was accomplished by different hypotheses such as
pharmacophore, e-pharmacophore, and receptor cavity-based models in the initial stage. The results
from the different hypotheses were then integrated to eliminate the false positive prediction. The
inhibitory activities of the screened compounds were tested by the glide docking algorithm. More-
over, RF score, Tanimoto coefficient, prime-MM/GBSA, and density functional theory calculations
were utilized to re-score the binding free energy of the docked complexes with high precision. This
procedure resulted in three lead molecules, namely DB07194, DB03496, and DB11982, against the
RET protein. The screened lead molecules together with reference compounds were then subjected to
a long molecular dynamics simulation with a 200 ns time duration to validate the inhibitory activity.
Further analysis of compounds using MM-PBSA and mutation studies resulted in the identification
of potent compound DB07194. In essence, a cell viability assay with RET-specific lung cancer cell line
LC-2/ad was also carried out to confirm the in vitro biological activity of the resultant compound,
DB07194. Indeed, the results from our study conclude that DB07194 can be effectively translated
for this new therapeutic purpose, in contrast to the properties for which it was originally designed
and synthesized.

Keywords: LC-2/ad cell line; drug discovery; docking; MM-GBSA calculation; molecular dynamics;
cytotoxicity assay

1. Introduction

Targeted therapies using tailored inhibitors against oncogenic driver kinases have
transformed the landscape of cancer management, including non-small-cell lung cancer
(NSCLC) [1]. Notably, first-generation inhibitors against oncogenic drivers such as gefi-
tinib, erlotinib (EGFR mutations), and crizotinib (ALK rearrangement) have established a
novel treatment paradigm for the use of targeted inhibitors in genetically defined NSCLC
patients [2,3]. Despite the earlier success of these strategies, the emergence of acquired
resistance against the therapy has become a significant challenge in developing selective
and more potent next-generation inhibitors.
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Rearranged during transfection (RET), a transmembrane tyrosine kinase receptor was
found to be overexpressed in 1–2% of never-smoking NSCLC patients [4]. In general,
it plays a vital role in the development of neural crest cells in the nervous system and
kidney morphogenesis. RET consists of three domains: adhesion, tyrosine kinase, and
extracellular domain. Activation of RET involves autophosphorylation of a fusion pro-
tein complex with a glial cell line derived from neurotrophic factors (GDNF) and GFR-α,
a cell membrane-bound coreceptor [5,6]. The downstream signaling of RET assists in
cell migration, proliferation, and differentiation. Nevertheless, genetic alteration of RET
oncogenes promotes ligand-independent activation of driver kinases, resulting in tumorige-
nesis. A study in late 2011 revealed that pericentric inversion, rearrangement, dimerization,
and activation of RET proteins with KIF5B and CCD6C in NSCLC were analogous to
the mechanism of ALK [7]. Multiple Kinase Inhibitors (MKIs), including cabozantinib
and vandetanib, gave the first glimmer of hope for the treatment of RET-positive NSCLC
patients. However, these nonselective MKIs demonstrated limited response durability and
off-target side effects in NSCLC patients [8]. Thus, selective inhibitors such as selpercatinib
and pralsetinib were developed to offset the debility of the multiple kinase inhibitors.

Recently, the emergence of solvent front mutations and gatekeeper mutations in RET-
positive NSCLC patients has been reported as the primary cause for the development
of acquired resistance against the targeted kinase inhibitors [9]. A similar pattern of the
solvent front and gatekeeper mutations was observed in several types of oncogenic driven
NSCLCs. A typical example of other proteins associated with resistance in NSCLC includes
ALK rearrangement, ROS-1 positive, and EGFR mutations. A significant number of reports
are available to tackle resistance caused by the above genes [10]. However, studies on RET
mutations in NSCLC are very minimal and are not satisfactory [11]. In addition, it is to
be noted that MKIs were the only choice of drug to treat RET-driven NSCLC. Recently,
the selective inhibitor pralsetinib was administered in both naïve and platinum-based
chemotherapy-treated patients. Among the cohort, 10% of the patients were detected with
solvent front mutations (G810C/S), 15% were detected with MET amplification and 5%
of the cohort were detected with KRAS amplification [12]. Although the study ended up
with satisfactory results and was found to have overcome gatekeeper mutations during
the clinical trials, the adverse side effects of the drug limit its efficacy and it failed to
overcome solvent front mutations [13]. Moreover, the resistance mechanism of solvent
front mutations to selective inhibitors is not yet reported in the literature [14]. Hence,
developing next-generation targeted kinase inhibitors particularly against RET solvent
front mutations is desperately needed to overcome the acquired resistance.

Virtual screening of active compounds for hit identification and lead optimization has
been made possible by advancements in bioinformatics and computer modeling in modern
drug research [15]. For instance, Misra et al. identified two potent human great wall
kinase inhibitors using the ZINC database that mitigate mitotic division in various types of
cancer [16]. Similarly, Tamta et al. identified and validated three natural inhibitors against
Mpro of SARS-CoV-2 using different in silico strategies including molecular docking,
dynamics and MM-PBSA analysis [17]. In view of the successful evidence mentioned above,
we implemented an integrated approach using pralsetinib as the reference inhibitor towards
the screening of potent candidates against RET protein. Three different models were
generated for performing a virtual screening process using FDA approved, experimental
and investigative subsets of the DrugBank database, followed by docking analysis, to
identify potent and highly selective RET inhibitors. The combined assessment in this study
provides a highly potent drug-like candidate tailored for RET oncogenic drivers that can
overcome acquired resistance in NSCLC patients.

2. Materials and Methods
2.1. Dataset Retrieval and Structural Refinement

The 3D conformation of RET tyrosine kinase with PDB ID: 2IVU and resolution
of 2.5 Å were retrieved from Protein Data Bank (PDB) (www.rcsb.org/pdb, accessed
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on 27 August 2021). RET protein was prepared using the protein preparation wizard
of the Schrödinger suite [18]. This process involves eliminating water molecules and
impurities and incorporating hydrogen bonds and ionization states to the protein. The
optimization and minimization of 2IVU were performed using the optimized potential for
liquid simulation _2005 (OPLS_2005) force field, to increase the protein’s binding efficiency
during docking analysis.

Table S1 (see Supplementary Materials) represents the existing RET inhibitors re-
trieved from various literature. They were utilized for pharmacophore hypothesis gen-
eration [19–21]. In addition, the spatial data file (SDF) of molecules in a different subset
of the DrugBank repository containing a total of 11,808 compounds was extracted for
proceeding with standalone library generation and the virtual screening process. The
existing inhibitors and generated library were refined by attaching the hydrogen bonds,
generating the stereoisomer, and identifying the significant ionization state using the Lig-
Prep module of Schrödinger. Finally, the OPLS_2005 force field was used to optimize the
ligand structures considered in our study [22].

2.2. Hypothesis Generation and Molecular Docking

The screening hypotheses were generated based on three different approaches, such as
ligands, protein structure, and energetics of protein–ligand interactions with the aid of the
Phase module of Schrödinger (version 5.3). Initially, the reference ligands were divided into
actives and inactives based on their IC50 values (Table S1, see Supplementary Materials).
Compounds with IC50 values higher than 5.0 µM were classified as inactive molecules.
Consequently, the ligand-based pharmacophoric hypothesis was generated based on the
common features of the active ligands using a tree-based partitioning algorithm [23]. Each
common pharmacophore hypothesis (CPH) undergoes a rigorous scoring function based
on alignment score, volume score, and vector score of the active ligands. The best CPH with
high survival score was chosen for the virtual screening analysis. In the e-pharmacophore
strategy, CPH was generated by docking the reference ligand pralsetinib and by mapping
the energetic scores onto the atoms [24]. Similarly, receptor cavity-based CPH was devel-
oped based on the potential binding site of the RET protein using the SiteMap module of
Schrödinger. Altogether, the chosen CPH contained four basic pharmacophoric features,
namely a hydrophobic group (H), aromatic ring (R), hydrogen bond acceptor (A), and
donor (D) [25]. Finally, the above-generated high precision CPH was used independently
to screen the subsets of the DrugBank database. The resultant set in each screening was
subjected to three hierarchical docking strategies, namely high-throughput virtual screen-
ing (HTVS), standard precision (SP), and extra precision (XP), which were implemented
using the Glide module to identify the binders from nonbinders [26]. It is worth nothing
that pralsetinib was used as the reference inhibitor throughout the investigation. Finally,
the interaction pattern and the essential pharmacokinetic parameters such as stars, central
nervous system response (CNS), and human oral absorption (HOA) were analyzed using
the Qikprop module of Schrödinger.

2.3. Machine Learning-Based Standalone Rescoring Function

Random Forest score (RF score) based the rescoring function was implemented to
determine the binding affinity between the ligand and RET for virtual screening using the
open drug discovery toolkit available in https://github.com/oddt/rfscorevs, accessed
on 27 August 2021. This scoring function is built using an RF algorithm with descriptors
generated based on the distance between the atoms of the protein and the ligand that lie
within 12 Å [27]. Compounds that have an RF score greater than the pralsetinib score were
considered for further evaluation.

2.4. Chemical Similarity Calculations

Tanimoto coefficient (Tc) was similarly calculated based on the MACCS fingerprint to
evaluate the structural similarities of all the compounds. A higher value of Tc depicts the
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high structural similarity of the compounds with the reference molecule. Hence, the cut-off
Tc value of >0.4 was considered in this analysis to quantify the fraction of compounds that
exhibit structural similarity to pralsetinib [28]. In the present study, RDKit of the python
library was implemented to generate the MACCS fingerprint and to calculate the Tc of
the compounds.

2.5. Binding Free Energy and DFT Calculations

The prime module of the Schrödinger suite was used to determine the binding free
energy of RET protein–ligand complexes. It is interesting to note that the binding free
energies that were calculated using the MM-GBSA method correlated with the experimental
study most of the time. The pose viewer file of the protein–ligand complex generated
during Glide XP docking was used as a query for binding free-energy calculations. Further,
the prime module utilizes the VSGB 2.0 solvation model to optimize hydrogen bonds,
hydrophobic interactions, π–π interactions, and self-contact interactions [29]. The energy
terms such as electronic interactions, Van der Waal’s interaction, entropy terms, polar and
nonpolar contributions were considered for the binding free-energy calculations in the
Prime package of Schrödinger.

Density functional theory (DFT) was calculated for the hit compounds obtained during
the virtual screening process. Jaguar v8.7 was employed to calculate the nature of the
interaction between the protein and ligand and molecular electrostatic properties such
as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO). Frontier orbital gaps of the hit compounds were calculated to analyze the kinetic
stability and chemical activity [30].

2.6. Assessing the Stability and Binding Mode of 2IVU–Ligand Complex

A molecular dynamics (MD) simulation of the RET–ligand complex was used in this
study to assess the stability and conformational changes of a protein–ligand complex.
GROMACS v5.1.2 (Virginia Tech Department of Biochemistry, Blacksburg, VA, United
States) with GROMOS96 43a1 force field was used for the simulation. The topology files and
the parameters for the ligands were developed using the PRODRG server. Dodecahedron
box with dimensions of 1 nm × 1 nm × 1 nm was configured using editconf inbuilt
tool of GROMACS. Subsequently, the Simple Point Charge model was explicitly used for
solvating the complex system in a dodecahedron box. During the solvation process, the
system exhibited a total charge of +8. Hence, eight chlorine counter ions were added to
neutralize the protein system. The weak Van der Waals linkages were removed using
the Steepest Descent algorithm to minimize the energy of the complex. Electrostatic
interactions were enlightened by applying the Particle-Mesh Ewald method. LINCS
algorithm was implemented for constraining the hydrogen bonds and for truncating the
Van der Waals interactions. The canonical calculations of NVT (Number of particles,
Volume, and Temperature) and NPT (Number of particles, Pressure, and Temperature)
ensembles were executed for restraining the position. The complex system was heated
using a Berendsen thermostat at 300 K with a lapsing time of 0.1 ps and pressure of
1 bar. Precedent to MD simulation, a pre-run was performed with a 1000 kJ mol−1 nm−2

force constant as a positional restraint for 50 ps. Ultimately, final MD for the apoprotein
(without ligand) and protein–ligand complex were carried out for 200 ns [31]. Trajectories
for the complex system were saved every 2 fs. Root Mean Square Deviation (RMSD),
Root Mean Square Fluctuation (RMSF), H-bond linkages, free-energy landscape, and
the salt bridge between the ligand and the protein were also evaluated using GROMACS
utilities. In essence, the MM-PBSA strategy was also implemented to calculate the empirical
free energies between the RET receptor and the identified potential ligands with high
precision [32].
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2.7. In Vitro Analysis

The anticancer activities of the potential compounds together with pralsetinib were
determined using MTT assay [33]. The LC-2/ad cell was purchased from the European Col-
lection of Authenticated Cell Cultures (Catalogue number: ECACC 94072247, Merck KGaA,
Darmstadt, Germany) and grown in high-glucose Dulbecco’s Modified Eagle Medium
(AL149, Himedia, Mumbai, India) for 24 h. The cell line contains CCDC6-RET driver gene
fusion isolated from the lung of a 51-year-old adenocarcinoma Japanese patient. This
cell line is widely used to study intracellular signaling pathways, resistance mechanisms,
and drug sensitivity against RET fusion in NSCLC samples. The chemical compounds
pralsetinib and DB07194 were purchased from MolPort (Catalogue number: HY-112301,
Molprot, Riga, Latvia) and Merck (Catalogue number: 574715-2mg, MercK KGaA, Darm-
stadt, Germany), respectively. Consequently, the grown LC-2/ad cells were exposed to
reference and hit compound concentrations ranging from 6.25 µM/mL to 100 µM/mL for
four days at 37 ◦C in a 5% CO2 atmosphere. The absorbance of the samples was read at
570 nm and 630 nm as the reference wavelength to correct the nonspecific background
values. The experiment was performed in triplets, and the mean value of the assays was
considered in our analysis. Finally, the IC50 of the compound was determined using a
linear regression equation and viability graph. In addition, a statistical comparison of cell
viability between control and drug candidates was carried out using one-way ANOVA. For
all comparisons, a p-value of less than 0.05 was regarded as statistically significant.

3. Results and Discussion
3.1. Pharmacophore Modeling and Virtual Screening

A pharmacophore is a collection of chemical features and spatial properties required
for the ligand to interact with a macromolecular target and elicit a biological response [34].
In the present investigation, about 193 ligand-based pharmacophore hypotheses were de-
veloped with the assistance of actives and inactives (Table S1, see Supplementary Materials)
using the Phase module of Schrödinger (v5.3). Depending on the survival score, a five
feature CPH containing one hydrogen bond acceptor (A), one hydrogen bond donor (D),
one hydrophobic group (H), and two aromatic rings (R) were selected. Likewise, two
other hypotheses, DHRRR and ADDHR, were generated from the e-pharmacophore and
receptor cavity-based strategies, respectively. A total of 3673, 1198, and 4595 compounds
were obtained after phase screening using pharmacophore, e-pharmacophore, and receptor
cavity-based hypotheses, respectively. The screened compounds were subjected to three
tiers of docking such as HTVS, SP and XP using pralsetinib (−7.79 kcal/mol) as a reference
compound. In each stage, 50% of high-scoring leads were passed on to further analysis.
This process yielded a total of 887 (Pharmacophore–208; e-Pharmacophore–103; Receptor
cavity-576) compounds possessing better binding capability than the reference compound
which were carried for further analysis.

3.2. Rescoring Methodologies

Random Forest scoring is a novel machine-learning algorithm implemented exten-
sively in virtual screening to forecast binding affinity on a varied range of targets, using
descriptors based on RF Score version v1-3. Despite being less precise on physicochemical
properties, the RF scoring function typically outperformed conventional scoring systems
in estimating binding affinity [35]. Hence, in the current investigation, rescoring was
conducted using a random forest approach for all the hit molecules obtained in the screen-
ing process. The results from our algorithm depict that 500 out of 887 compounds had a
higher RF score than pralsetinib. Further, Tc was calculated between the reference ligand
and the hit molecules to measure the structural similarity [36]. The results indicate that
406 molecules were highly similar to pralsetinib with a Tc threshold value greater than 0.4.
RF score and Tc values of compounds obtained from pharmacophore, e-pharmacophore
and receptor cavity-based strategy are tabulated in Tables S2–S4, respectively (see Supple-
mentary Materials). On comparing the RF score and Tc results of all the hit molecules, 78,
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39, and 59 compounds were found to possess better similarities and RF scores, respectively
from pharmacophore, e-pharmacophore, and receptor cavity-based strategies. The results
from all three hypotheses were then integrated to eliminate false positive prediction. No-
tably, only 18 lead molecules were found to be in common among all the three approaches
with high similarities and RF scores. The combined result of 18 lead molecules and their
scores are tabulated in Table 1.

Table 1. Docking and rescoring evaluation of lead molecules using different strategies.

S. No DrugBank ID XP GScore
(kcal/mol) RF Score Tanimoto

Coefficient (Tc)

Reference Pralsetinib −7.79 5.962 1.000
1 DB07194 −9.556 5.974 0.418
2 DB08583 −9.012 6.235 0.423
3 DB12672 −9.579 6.986 0.435
4 DB03496 −10.791 7.108 0.48
5 DB07606 −9.291 7.099 0.502
6 DB12848 −8.066 5.978 0.405
7 DB11982 −9.001 6.644 0.436
8 DB04751 −8.395 6.955 0.432
9 DB07981 −8.117 6.054 0.484
10 DB07248 −8.133 6.268 0.413
11 DB08052 −9.398 7.098 0.451
12 DB07474 −8.133 6.219 0.447
13 DB11665 −9.034 5.99 0.48
14 DB07382 −9.381 6.071 0.4
15 DB02933 −9.169 6.084 0.429
16 DB04338 −9.691 7.005 0.401
17 DB06852 −9.327 6.589 0.432
18 DB02282 −9.108 6.048 0.436

3.3. Postdocking MM-GBSA Analysis

The binding free energies of complexes were determined to validate the binding
ability of the ligands to the target protein. The summary of the binding free energy of each
complex is tabulated in Table 2. It can be observed that the ∆Gbind of the complexes varied
from between −69.235 kcal/mol and −39.610 kcal/mol. Note that only eight compounds
resulted in a binding free-energy value above −55 kcal/mol. The Van der Waals energy
for all the compounds was observed to be highly favorable to the overall binding energy.
The coulomb energy provided the second-highest contribution to the interaction in all the
compounds; however, the high solvation energy compensated coulomb contribution in
∆Gbind. The contribution of covalent energy is almost unfavorable or negligible to the
binding of the compounds DB08583, DB07606, and DB04751. Additionally, ligand strain
energy depicts the deformation of ligands during the interaction, which is considered one
of the most important parameters during the MM/GBSA analysis [37,38]. It is clear from
the table that almost all the predicted compounds undergo less deformation than pralse-
tinib during interaction with the target protein except DB08583, DB07606, and DB04751.
Although, the compounds DB08583, DB07606, and DB04751 exhibited better binding free
energy. Higher ligand strain energy decreases the binding efficacy of the compounds with
target receptors. Eventually, DB07194, DB03496, DB11982, DB12672, and DB12848 showed
more satisfactory Coulombic potential and ligand strain energy than the other compounds,
facilitating tight binding to the RET protein. Of note, these compounds exhibited minimal
covalent energy contributions towards ∆Gbind, a key factor for forming a thermostable
complex with RET protein.
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Table 2. The predicted binding free energy of RET-complex structures calculated using MM-GBSA approach.

S. No DrugBank
ID

dG Bind
(kcal/mol)

Van der
Waal’s
Energy

(kcal/mol)

Ligand
Strain
Energy

(kcal/mol)

Electrostatic
Potential

(kcal/mol)

Lipophilicity
(kcal/mol)

Covalent
Interaction
(kcal/mol)

Solvation
Energy

Reference Pralsetinib −63.348 −58.387 6.20432 −12.472 −19.969 −0.4283 37.3355
1 DB07194 −69.235 −46.133 3.22011 −46.443 −17.32 2.77209 40.7179
2 DB08583 −61.769 −48.94 6.4073 −11.888 −18.303 7.34065 36.8761
3 DB12672 −60.017 −51.402 5.56562 −23.095 −20.949 3.90398 33.2395
4 DB03496 −55.502 −46.937 4.2076 −21.81 −20 2.56844 31.9131
5 DB07606 −55.367 −42.62 8.36976 −10.801 −25.237 4.99298 28.2519
6 DB12848 −55.33 −43.57 5.76015 −27.463 −23.935 0.53004 21.6655
7 DB11982 −55.102 −41.865 5.45963 −30.654 −16.496 2.69688 30.5778
8 DB04751 −55.091 −53.348 13.4545 −16.888 −18.303 11.9706 24.1207

3.4. HOMO–LUMO Theory Analysis

All five compounds with high binding free energy and lower ligand strain energy were
optimized using B3LYP-D3 theory and LACVP++ basis set (Schrödinger, Bangalore, India).
Since the reactivity of a compound is directly related to the energy gap, the parameters
HOMO and LUMO had are significant [39]. The molecule with a minimal energy gap
between frontier orbitals is usually accompanied by a substantial chemical reactivity and
weak kinetic stability which depicts the highly favorable potential reactions [40]. The
energy gap between HOMO and LUMO is shown in Figure 1. It is observed that DB07194,
DB03496, and DB11982 exhibited a lower or equivalent gap to pralsetinib than DB12672 and
DB12848. These results imply that compounds such as DB07194, DB03496, and DB11982
exhibit better biological activities than pralsetinib.

3.5. Interaction Pattern and Pharmacokinetic Analysis

The interaction pattern of hit compounds in the binding pocket of the receptor is
represented in Figure S1 (see Supplementary Materials). On analyzing the binding pattern
of pralsetinib, two hydrogen bonds were found between the cyclohexane carbomide group
and the ALA807 residue of RET, and one additional hydrogen link was observed between
the pyridine ring of pralsetinib and the SER811 residue of the protein. The ligand interaction
diagram of DB07194 clearly shows the formation of two hydrogen bonds between the
amino pyrimidine group of DB07194 and the residues ASN879, ASP892 of the RET protein.
Likewise, the N-methylpiperidinyl and flavone group of DB03496 displayed hydrogen
bonds with ARG878 and ALA807 residues of the receptor. In addition, a salt bridge was
formed between the tertiary amino group of N-methylpiperidinyl and the residue ASP892
in the DB03496-RET complex. In the case of DB11982, a hydrogen bond formation between
the pyridine carboxamide and ARG878 of RET protein was observed. It is interesting to
note that the anticancer property of these functional groups of the hit compounds involved
in the interaction with the RET protein has been reported recently [41–43]. The existence
of interactions by the key residues ASN879 and ASP892 of hydrophobic pockets in RET
proteins has also been observed in the other approved drugs, crizotinib, and sorafenib,
respectively. The interaction pattern of the drugs is given in supplementary Figure S2.
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Furthermore, the essential pharmacokinetic parameters were analyzed to prevent
the elimination of the compounds during clinical trials in the future. Table S5 (see
Supplementary Materials) characterizes the interaction patterns and pharmacokinetic fea-
tures of the lead compounds. The hit compounds displayed satisfactory pharmacokinetic
and pharmacodynamics properties. Of note, key properties such as solubility, blood–brain
barrier, stars, human oral absorption, and CNS activity were found to be in the acceptable
range Stars denote the number of pharmacokinetic features that lie outside the required
range. Interestingly, none of the hit compounds were found to have outliers based on the
star values. Moreover, the capability of stimulating the central nervous system response by
the hit molecules was comparatively similar to pralsetinib (CNS = −2). Undeniably, the
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HOA of all the predicted molecules was higher than pralsetinib (HOA = 2), which shows
the efficacy of a drug that can be attained easily through oral administration in humans.

3.6. Protein–Ligand Complex Stability Analysis

The stability and dynamic characteristics of protein-lead inhibitor complexes were
investigated using MD simulations. It provides precise insights on protein–ligand interac-
tions, allowing for the visualization of the influence of ligand binding on protein and its
contribution to their stable, bound conformation [32]. The RET protein complexed with
three hit compounds alongside the reference complex was analyzed using 200 ns MD simu-
lations. The extent of deviation of atoms in the protein-lead complex during the simulation
process is explained using RMSD plots. It is interesting to note that the obtained results cor-
relate well with our initial findings. The results are shown in Figure 2a–d. Figure 2 reveals
that all the compounds showed an increased RMSD deviation within the interval of 0–30 ns
simulation time. A minimal deviation in the pattern was observed between 30 ns and 75 ns.
Consequently, all the compounds maintained a stable equilibrium of ~0.30 nm from 75 ns
to the end of the simulation process. Towards the end of the simulation, minimal RMSD
values of 0.345 nm, 0.323 nm, and 0.371 nm were observed for DB07194, DB03496, and
DB11982, respectively, smaller than pralsetinib (0.385 nm) and apoprotein (0.414 nm). In all
the cases, the RMSD data corresponding to apoprotein was significantly higher than the
ligand-bound structure investigated in our analysis. This suggests that the hit compound
could adapt to a more stable conformation than pralsetinib in the binding pocket of RET
protein. Moreover, the overall deviation of hit molecules was less than ~5 nm, depicting
the stability of the RET protein in the presence of lead molecules. Thus, we hypothesize
that the predicted DB07194 compound could have a higher inhibitory potential against
RET protein than pralsetinib.

Guterres and Im showed that active compounds have less RMSD than inactive com-
pounds in 100 ns MD simulations [44] From the DUD-E set, they randomly selected
56 targets. For each target, 10 compounds, five actives and five decoys were selected. They
observed that the active compounds have a unimodal RMSD distribution centered at 4 Å,
whereas the decoys have a skewed-right distribution, showing that a lot of them leave the
binding pocket during the simulation. As mentioned, our molecules including pralsetinib
have RMSD ~0.3 nm, which is consistent with the work of Guterres and Im. This implies
that the three compounds could act as active compounds.

3.7. Residue Mobility Analysis (RMSF)

RMSF depicts the flexibility of protein residues within the protein–ligand complex.
As demonstrated in Figure 3, a similar pattern of fluctuation in the backbone was observed
among all four systems. The region between Val871–Asp898 exhibited the least fluctuation,
with less than ~0.05 nm, indicating the contribution of these residues to stable binding of
predicted inhibitors with the RET receptor. Notably, important residues such as Asn879
and Asp892 showed fluctuations of ~0.04 nm, which were found within the conserved
interaction region. It is to be noted that the presence of a highly stable protein–ligand
complex was due to the formation of hydrogen bonds between these residues and the
inhibitors. The other residues, Met700–Lys722 and Pro957–Arg982, showed high flexibil-
ity of about ~0.1 nm, suggesting that these residues contributed less to the RET–ligand
interaction. These results are correlated well with the ligand interaction pattern discussed
earlier. Moreover, a lower RMSF value depicts the well-organized region whereas a high
RMSF value indicates loosely structured terminal ends of the complex [33]. In the present
study, the apoprotein exhibited an RMSF value of 0.0696 nm whereas the complexes RET–
Pralsetinib, RET–DB07194, RET–DB03496, and RET–DB11982 showed 0.069, 0.0665, 0.0773,
and 0.033 nm RMSF values, respectively. The RET–DB07194 and RET–DB11982 complexes
showed decreased RMSF values in comparison with the apoprotein and RET–pralsetinib
complexes. This clearly depicts that the binding of lead molecules resulted in decreased
flexibility of the catalytic residues. Hence, the identified lead compounds were very well po-

103



Pharmaceutics 2021, 13, 1775

sitioned in the binding pocket of RET protein compared with other compounds considered
in our analysis.

3.8. Hydrogen Bond Analysis

The stability of a protein–ligand complex is usually analyzed based on different
types of transient interactions, including electrostatic interaction, Van der Waals, hydrogen
bonds, and many others [45]. Among them, the hydrogen bond is regarded as an important
transient interaction facilitating the binding of ligands with protein. The existence of
hydrogen bonds in the complex structures was calculated from the MD trajectory. The RET–
DB7194, RET–DB03496, and RET–DB11982 showed 0–8, 0–4, and 0–6 H-bonds, respectively
(Figure 4). These observations demonstrated that the predicted hits showed a higher
number of H-bonds than the reference drug during simulation. From the results of the
H-bond analysis, it can be concluded that the predicted compounds form a more stable
interaction with the RET protein than pralsetinib.
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3.9. Free Energy Landscape (FEL)

An inbuilt GROMACS tool gmx_sham was employed further to investigate the con-
formational stability of the protein–ligand complex. The exchange of heat in a closed
protein–ligand complex system is measured in Gibbs free energy [46]. This analysis pro-
vides information on energy minima confirmation and molecular fluctuation. Initially,
the covariance matrix containing the eigenvalues was constructed using gmx_covar tool
of GROMACS. Subsequently, the eigenvectors were obtained by diagonalizing the con-
structed matrix. Finally, the first two principal components (PC 1 and PC2) mapping the
eigenvector to its corresponding eigenvalues were obtained using gmx_anaeig tool [47].
Figure 5 was plotted using the obtained PC1 and PC2, demonstrating the free energy
landscape of the complexes. A dark blue color corresponds to the energetically stable and
energy-minima favored complex conformation whereas a yellow color demonstrates the
unfavorable conformation. The deep energy basin observed during the MD simulation
process indicates the high stability of the complex system, while the shallow basin denotes
the lower stability of the complex. The RET–pralsetinib complex contained two connected
energy minima and one distinct energy minima. In the case of RET–DB03496 and DB11982,
one deep energy basin as well as one shallow energy basin was observed, whereas, in the
case of RET–DB07194, three deep energy basins were observed. Moreover, the Gibbs free
energy of the two compounds (DB07194 and DB03496) was 14.8 kJ/mol and 14.4 kJ/mol,
respectively, which were similar to the Gibbs free energy of pralsetinib (14.8 kJ/mol).
Nevertheless, the Gibbs free energy of DB11982 was higher (16.2 kJ/mol) than the other
two complexes. From Figure 5, it is evident that the energy basins were broad, clear, and
distinct in all three compounds, and exhibited lower Gibbs free energy, which shows the
stable confirmation of all three protein–ligand complexes.
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3.10. MM-PBSA

The binding free energy analysis of the three hit compounds and the reference
molecule were calculated using the trajectories pulled out from the last 10 ns of the
simulation process. The binding energy for RET–pralsetinib (−9.445 ± 65.091 kJ/mol),
RET–DB07194 (−111.920 ± 17.179 kJ/mol), RET–DB03496 (−74.514 ± 77.458 kJ/mol) and
RET0–DB11982 (−37.949 ± 42.465 kJ/mol) were demonstrated in Table 3. RET–DB07194
exhibited a stable conformation with the least binding energy among all other compounds
screened from our study. The total binding energy is composed of Van der Waals energy,
electrostatic energy, polar solvation, and solvent accessible surface area energy. Among
them, Van der Waals energy has the highest contribution to the overall binding energy,
followed by polar solvation energy, SASA, and electrostatic energy, respectively. It is to
be noted that the estimated pattern of binding free energies was similar to that of the
MM-GBSA strategy. The predicted binding energies were well correlated with RMSD and
hydrogen-bond analysis.
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Table 3. Total binding energy of the lead molecules against RET protein obtained from MM-PBSA analysis.

S. No DrugBank
ID

Binding Energy
(kJ/mol)

Van der Waal
Energy (kJ/mol)

Electrostatic
Energy (kJ/mol)

Polar Solvation
Energy (kJ/mol)

SASA Energy
(kJ/mol)

Reference Pralsetinib −9.445 ± 65.091 −23.022 ± 53.334 −0.074 ± 3.936 15.905 ± 55.514 −2.254 ± 6.035
1 DB07194 −111.920 ± 17.179 −141.170 ± 11.926 −13.371 ± 9.680 55.122 ± 16.524 −12.500 ± 1.161
2 DB03496 −74.514 ± 77.458 −73.039 ± 94.546 1.261 ± 3.289 2.851 ± 61.775 −5.587 ± 7.630
3 DB11982 −37.949 ± 42.565 −90.713 ± 51.388 −43.922 ± 25.645 106.888 ± 52.148 −10.202 ± 6.052

3.11. In Silico Evaluation of Lead Compounds against Point Mutant RET Receptor

As reported by Solomon et al., point mutations at different locations of RET resulted
in the development of acquired resistance against the existing inhibitors. Specifically, the
development of resistance due to solvent front mutations prevented the inhibitors from ac-
cessing the binding pocket of the protein [9,10]. Hence, we evaluated the binding capability
of lead compounds against the mutant RET receptor using docking studies and MM-GBSA
analysis. The results of docking and MM-GBSA analysis are tabulated in Table S6 (see
Supplementary Materials). About 11 points mutated the RET-protein structure, contain-
ing 4 point mutations at the gatekeeper region, 4 mutations at the solvent front region,
and 3 mutations at other regions, were generated using the homology modeling suite of
Schrödinger. The docking analysis of the three lead compounds against RET mutants
revealed that DB07194 had overcome G810C and G810V solvent front mutations with
higher binding free energy than pralsetinib and the other two hit molecules. On the other
hand, the compound DB03496 exhibited significant inhibitory activity against the G810R
solvent front mutation. In addition, both the compounds DB07194 and DB03496 inhibited
M918T mutation with high binding free energy, at −74.11 kcal/mol and −87.16 kcal/mol,
respectively.

In some cases, including V804M mutational study, all the three lead compounds ex-
hibited a high docking score. In contrast, the binding free energy of the lead compounds
was lower than the pralsetinib, preventing them from overcoming resistance. Unfortu-
nately, DB11982 did not overcome the acquired resistance in any RET mutant structures
investigated in our study. On analyzing the interaction pattern of DB07194, three hydro-
gen bonds formed between the amino pyrimidine group and ARG874, ARG878, ASN879
had assisted the compounds in overcoming the acquired resistance caused by the G810C
mutation in RET. Interestingly, a similar pattern of interaction was observed against the
G810V mutation. In the case of M918T mutation, three hydrogen bonds were formed
between DB07194, SER811 and ALA807 of the RET protein. Overall, DB07194 showed
higher inhibitory activity against RET mutants, including G810C, G810V, and M918T, than
DB03496 and DB11982. It is to be noted that pralsetinib has a comparatively lower potential
than DB07194 to overcome the solvent front mutation, which might be due to the absence
of an amino pyrimidine group in its structure.

3.12. Cell Viability Analysis of DB07194 against LC-2/ad

Finally, the inhibitory activity of pralsetinib and DB07194 was assessed against LC-
2/ad cell lines using a colorimetric MTT assay. The compounds were examined and
compared at five different concentrations, 6.25, 12.5, 25, 50, and 100 µM/mL, respectively.
The experiment was performed in triplet to overcome the experimental error. Figure 6
and supplementary Table S7 (see Supplementary Materials) represent the comparative cell
viability upon treatment with pralsetinib and DB07194. A similar pattern of inhibition
was observed between pralsetinib and DB07194 at concentrations 6.25 and 12.5 µM/mL.
Interestingly, a sudden rise in the inhibition of LC-2/ad cell using DB07194 was noted at
25 µM/mL, whereas only a smaller variation was observed on using pralsetinib at the
same concentration. The inhibitory action does not show much deviation after 50 µM/mL
of drugs, which shows the saturation level of inhibition. Overall, LC-2/ad showed higher
sensitivity to DB07194 (IC50 = 12.48 µM) than pralsetinib (IC50 = 23.31 µM). Consistent with
its anti-cancer activity, both pralsetinib and DB07194 can decrease the cell viability more
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significantly than control. Moreover, the anticancer property of DB07194 reveals different
pharmacological properties of the compound tested earlier in the experiments as an SYK
inhibitor [48,49]. Subsequently, one-way ANOVA analysis was implemented to examine
the significance of the difference in cell viability between the control and drug-treated
samples. A p-value of less than 0.001 is observed between the control and drug-treated
sample. This highlights the statistical significance of the experimental data carried out in
our study. In addition, no literature evidence has been reported on the toxicity and side
effects of the compound. Hence, the toxicity of the hit molecule was also assessed using the
ProTox II server and compared against pralsetinib [50]. For instance, predicted LD50 values
of pralsetinib and DB07194 were found to be 800 mg/kg and 681 mg/kg, respectively,
and thus fall into the class four (slightly toxic) category of compounds. All these data are
evidence that the identified hit molecule, DB07194, belongs to an experimental subset of the
DrugBank database, displaying favorable drug-like properties and potential progression
into clinical application. Thus, it could be considered for the treatment of RET-positive
NSCLC, a contrast to the properties for which it was originally designed and synthesized.
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Figure 6. In vitro evaluation of DB07194 inhibitory activity against LC-2/ad cell lines.

4. Limitations and Future Prospective

Acquired drug resistance is the major restraint among RET inhibitors resulting in
reduced efficacy of drugs in NSCLC patients. Therefore, we examined the activity of the hit
compound against 11 different RET mutations in this study. Although the identified hit can
demonstrate potent activity against solvent front mutations (G810C, G810V, and M918T),
experimental validation of the compound activity using mutant cell lines is certainly
needed to validate this finding. The toxicity studies of this compound either by in vivo
micronucleus assays or in vitro genotoxicity assays are also interesting future directions.
The in vitro activity of the compound identified by the LC-2/ad cell line in our study opens
up a new avenue for biologists to explore the synergistic activity of the compound. Finally,
the results of our study will facilitate hit-to-lead optimization to reach novel compounds
with economic value in the near future.
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5. Conclusions

The current research focuses on the identification of potential candidates against
RET and its associated solvent frontline mutations using high-throughput drug discovery
strategies. Different pharmacophore models were employed along with docking, Tanimoto
coefficient calculations, rescoring with RF score, and MM-GBSA to deduce the structural
characteristics and binding poses that govern the activity of inhibitors against the RET
receptor. Comparative DFT analysis was carried out, and it was observed that the lead
molecules exhibited a lower energy gap than pralsetinib, depicting more inhibitory poten-
tial against the protein. Furthermore, the stability and flexibility of the complex system
were analyzed using molecular dynamics for 200 ns. The interaction surface of the protein
Val871–Asp898 was found to be conserved, and contained a series of important residues
and thus formed hydrogen bonds with the lead molecules. Moreover, the aminopyrimidine
group in DB07194 facilitated inhibition of both native and mutant forms of RET with higher
binding free energy than pralsetinib. Ultimately, the cell line studies proved the efficiency
of the predicted RET inhibitor, showing a lower required minimal drug concentration for
inhibiting the RET protein than the existing FDA-approved drug pralsetinib. J.L. Kutok’s
patent, namely WO2017223422A1 also mentions the chemical compound DB07194 as a po-
tential third chemotherapeutic agent used in combinations with phosphoinositide 3-kinase
inhibitors for cancer treatment. Taken together, the results from our study provide a new
gateway for developing DB07194 as a potent anticancer agent targeting RET protein and
overcoming the RET-associated solvent front mutations.
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Abstract: In multiple sclerosis (MS), oxidative stress (OS) is implicated in the neurodegenerative
processes that occur from the beginning of the disease. Unchecked OS initiates a vicious circle caused
by its crosstalk with inflammation, leading to demyelination, axonal damage and neuronal loss.
The failure of MS antioxidant therapies relying on the use of endogenous and natural compounds
drives the application of novel approaches to assess target relevance to the disease prior to preclinical
testing of new drug candidates. To identify drugs that can act as regulators of intracellular oxidative
homeostasis, we applied an in silico approach that links genome-wide MS associations and molecular
quantitative trait loci (QTLs) to proteins of the OS pathway. We found 10 drugs with both central
nervous system and oral bioavailability, targeting five out of the 21 top-scoring hits, including
arginine methyltransferase (CARM1), which was first linked to MS. In particular, the direction of
brain expression QTLs for CARM1 and protein kinase MAPK1 enabled us to select BIIB021 and PEITC
drugs with the required target modulation. Our study highlights OS-related molecules regulated by
functional MS variants that could be targeted by existing drugs as a supplement to the approved
disease-modifying treatments.

Keywords: GWAS; multiple sclerosis; oxidative stress; repurposing; ADME-Tox

1. Introduction

Multiple sclerosis (MS) is the most common chronic inflammatory and progressively
disabling disease of the central nervous system (CNS), affecting young adults and leading
to demyelination and neuronal degeneration [1]. It is found worldwide, with the highest
prevalence (>100 cases per hundred thousand) in the populations of Western Europe, North
America and Australasia, with considerably lower prevalence (<30 cases per hundred
thousand) in populations that live nearer to the equator [2]. MS is likely the result of an
interaction between genetic and environmental factors, but its etiology remains unknown.
Although approved immunomodulatory therapies are effective in the early stages of the
disease, they have little or no benefit in terms of preventing the transition to a more steadily
progressive phase, characterized by accumulation of neuronal injury and loss. Thus, the
search for agents that slow neurodegeneration and disability progression in MS is urgent.

Neuroinflammation is recognized as a key player in MS pathogenesis. It is present in
all stages of the disease and involves adaptive and innate immune responses. Histopatho-
logical studies of MS indicate that demyelination and neurodegeneration are associated
with the production of inflammatory molecules by both blood-derived immune cells re-
cruited to the CNS and activated resident microglia [3]. Prolonged or chronic generation of
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cytokines, chemokines, reactive oxygen species (ROS) and reactive nitrogen species (RNS)
creates a self-perpetuating loop that provokes CNS damage and is considered to play a key
role in the onset and progression of the disease [4].

ROS and RNS, including superoxide ions, hydrogen peroxide, nitric oxide and perox-
ynitrite, are generated by NADPH oxidase and nitric oxide synthase during normal cellular
metabolism. However, these molecules are deleterious if overproduced because they can
damage lipids, proteins and nucleic acids, eventually leading to cell death. Significant evi-
dence indicates that the sustained inflammatory phase of MS creates an imbalance between
ROS/RNS generation and the antioxidant defense systems, causing oxidative/nitrosative
stress which has a role in CNS tissue damage [5]. Antioxidant defense is normally achieved
with enzymes, such as superoxide dismutase, catalases and peroxiredoxins, as well as sys-
tems of antioxidant production, like the thioredoxin and glutathione systems. In addition,
reactive species directly interact with critical signaling molecules, such as the transcription
factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NfkB) and
mitogen activated kinases (MAPK) [6–8] which regulate antioxidant gene expression and
cell survival. A recent gene expression study of MS brain areas adjacent to perivascular
inflammatory cell infiltrates showed a significant induction of antioxidant genes in actively
demyelinating and chronically active white matter lesions as part of a counter-regulatory
response aimed at containing inflammation and limiting tissue damage [9]. Hence, the
identification of drugs able to effectively support the maintenance of redox homeostasis
represents a rational approach to limit MS-associated neurodegenerative processes.

Among current MS drugs, only dimethyl fumarate has been linked to the induction of
antioxidant pathways, specifically through direct activation of Nrf2, a transcription factor
with a crucial role in the regulation of the antioxidant defense response [10]. In addition,
the clinical efficacy of natalizumab and fingolimod could in part be explained by their
ability to increase antioxidant molecules and reduce oxidative stress (OS) biomarkers in
MS patients [11,12], even though the mechanism responsible for these effects has not yet
been established. Nevertheless, most complementary antioxidant therapies relying on en-
dogenous and natural compounds have been previously investigated without overcoming
MS clinical evaluation [13]. A possible explanation of this oversight is that the rationale
behind the use of small molecules acting as scavengers was based on misconceptions
linked to an incomplete understanding of antioxidant defense processes during disease
development [14]. Hence, novel approaches should be used to assess the disease relevance
of antioxidant targets prior to preclinical testing of new drug candidates.

It is now widely accepted that the selection of targets based on genetics significantly
increases the success rates of clinical development programs [15,16]. The idea is to identify
targets involved in disease processes that can be therapeutically modulated [17,18]. Over
the past fifteen years, genome-wide association studies (GWAS), in increasingly larger
sample sets, have succeeded in identifying more than 200 susceptibility loci for MS outside
the major histocompatibility complex (MHC) [19]. In parallel, new functional genomic
techniques assessing molecular quantitative trait loci (QTLs), such as chromatin inter-
actions, protein level and gene expression regulation, have proven to be useful for the
systematic identification of genes through which trait-association variants act, improving
the clinical impact of GWAS [20]. Computational searches for existing drugs that modulate
the molecular targets identified by genetic studies offer the advantage of repositioning,
reducing the costs and timescales of drug development. In addition, in silico approaches
are currently being used for the prediction of physicochemical properties, such as the
blood–brain barrier (BBB) permeability and oral bioavailability of drugs, further reducing
the risk of failure [21].

Here, we designed and applied an integrated approach that combines MS GWAS,
molecular QTLs and in silico techniques of drug discovery, providing support for single
drug candidates known to act as modulators of genes and/or gene products that are linked
to OS pathways (Figure 1).
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Figure 1. Schematic illustration of the in silico workflow. Multiple sclerosis (MS) genetic variants were collected from
the Genome-Wide Association Studies (GWAS) Catalog and molecular Quantitative Trait Loci (QTLs) were exploited for
each hit in the LinDA browser to identify gene targets. In parallel, all proteins from 22 oxidative stress-related pathways
were retrieved from the Reactome database. The overlap of these data allowed for the identification of 85 common targets
which were then prioritized through score assignment. Query of public drug databases for the 21 top targets enabled
the selection of 35 drugs either already approved or in clinical trials that bind to six MS molecular targets. Absorption,
Distribution, Metabolism, Excretion and Toxicity (ADME-Tox) selection highlighted 10 drugs with CNS localization and
oral bioavailability for repurposing in MS.

2. Materials and Methods
2.1. Data Collection

MS GWAS summary statistics were extracted from the GWAS Catalog [22,23]. The
selected genetic variants represent the most associated signal (top variant) in each genomic
region (locus) given a significance threshold of p-value < 1 × 10−5. All variants have been
annotated by their rsID in dbSNP154, when available, or by chromosome and genomic
positions encoded in the Genome Assembly GRCh38/hg38. To assign the most reliable
gene target to each associated variant, molecular QTLs were searched for each hit in a
large manually curated QTL resource, the LinDA browser [24,25]. Data from protein
QTLs (pQTLs), expression QTLs (eQTLs), splicing QTLs (sQTLs), polyadenylation QTLs
(polyQTLs) and methylation QTLs (mQTLs) were collected. The genomic positions in
the LinDA browser being encoded in the Genome Assembly GRCh37/hg19, genomic
coordinates were converted from GRCh38/hg38 to GRCh37/hg19 using the LitfOver tool
in the UCSC Genome Browser [26,27].
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Top variants were searched for molecular QTLs, including all variants showing a
linkage disequilibrium (LD) r2 > 0.7 with the top variants (proxies) in the European
population. LD was calculated using the –ld option in the plink v.1.9 software [28,29] on
data from the 1000 Genome Project reference panel [30].

The functional role of each tested variant was further evaluated by the Variant Effect
Predictor (VEP) tool [31], and missense or more deleterious variants with a deleteriousness
score (combined annotation dependent depletion, CADD-Phred) > 15 were prioritized [32].

Genes regulated at the RNA or protein level by a hit variant (or by a variant in strong
LD with a hit variant) or tagged by a functionally relevant variant were flagged as “gene
targets”.

The direction of the effect of each disease risk variant on the target product was
calculated to establish the direction of the gene target modulation by therapy. To this end,
the disease risk alleles available from the GWAS Catalog were coupled with the molecular
QTLs alleles by applying the Plink –ld option to the European ancestry genotypes encoded
in the 1000 Genome Project reference panel [30]. The direction of the effect of the disease
risk allele on the molecular QTL was thus indicated as positive if the coupled molecular
QTL allele showed a positive effect, and negative otherwise.

In parallel, 22 pathways related to OS were identified by Reactome [33,34], and all
proteins belonging to the pathways were extracted.

Genes and/or proteins obtained by the overlapping between the MS-related genes
and the OS-related proteins were recorded as “targets”.

For each target, a prioritization score was defined by leveraging the gene-level infor-
mation derived from GWAS and from LD. In particular, for each target, all top variants,
together with their molecular QTL proxies pointing to the same gene, were collected. A
score was attributed to the target for each of the following criteria met by at least one
collected variant:

Top hit significantly associated with MS (p-value < 5 × 10−8: score = 5, if lying in the
MHC region (chr6:27–33 mb in GRCh37): score = 2);

Top hit having a high effect on the disease compared to all top hit effects (odds ratio,
OR > 1.2), with a decreasing score depending on the LD with gene-level molecular QTLs
(LD ≥ 0.99: score = 4; LD range (0.95–0.99): score = 3; LD range (0.90–0.95): score = 2; LD
range (0.80–0.90): score = 1);

eQTL available (score = 10; if the eQTL acts in the brain: additional score = 5);
LD level between the top hit and the eQTL (LD ≥ 0.99: score = 5; LD range (0.95–0.99):

score = 3; LD range (0.90–0.95): score = 2; LD range (0.80–0.90): score = 1);
QTL (except eQTL) with LD ≥ 0.99 with top hit: score = 3.
An overall score was calculated as the sum of the partial scores and the top 25% targets

were then prioritized.

2.2. g:Profiler Analysis

To perform functional enrichment analysis, g:Profiler e94_eg41_p11_9f195a1 was
used [35,36]. The parameters for the enrichment analysis were as follows. A specific
organism was chosen: H. sapiens (human). Gene Ontology (GO) analyses, GO molecular
function (GO:MF), GO cellular component (GO:CC) and GO biological process (GO:BP)
were carried out sequentially. The biological pathways used were the Kyoto encyclopedia
of genes and genomes (KEGG), Reactome (REAC) and WikiPathways (WP) databases.
The protein databases used were the Human Protein Atlas and CORUM databases. The
statistical domain scope was used only for annotated genes. The significance threshold
was the g:SCS threshold. The user threshold was 0.05.

2.3. Drug Searching

Four different databases, OpenTarget [37,38], SuperTarget [39], DrugBank [40,41] and
DGIdb [42,43] were used to search for drugs related to the targets of interest.
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2.4. In Silico Prediction of Physicochemical Properties of Drugs

The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME-Tox) profile
of the investigated compounds was predicted using the Schrodinger QikProp tool (Small-
Molecule Drug Discovery Suite 2021–1, Schrodinger, LLC, New York, NY, USA). QikProp
uses several indicators to estimate the activity in the CNS and thus also the ability of a
compound to cross the BBB. The three most important are: (i) LogBB, which represents the
blood–brain partition coefficient; (ii) the Madin–Darby dog kidney cell model (apparent
MDCK permeability), which estimates the penetration of the substances through a layer of
these cells, measured in nm/sec; (iii) the predictor of activity in the CNS. The indicators
used to evaluate oral absorption include Human Oral Absorption, Percent Human Absorp-
tion and apparent Caco2 permeability, Caco2 being a human colon carcinoma cell line used
to predict human intestinal permeability and to investigate drug efflux.

3. Results
3.1. Genetic-Driven Identification of Targets Linked to Oxidative Pathways in MS

We systematically collected GWAS data for MS from the GWAS Catalog (Methods),
identifying 698 different genetic variants (hits; Table S1, Supplementary Materials). We
then examined molecular QTLs to identify gene targets by searching each hit or its proxies
(with r2 > 0.7) in the LinDA browser (Table S2). This LD-based searching strategy allowed
us to maximize the information collected, considering that differences in the genetic map
and/or in the sample size used in each study (both on disease and molecular QTLs) could
lead to the identification of different genetic variants representing the same genetic signal.
In addition, we evaluated the functional role of each tested variant by VEP, focusing on
missense or more deleterious variants with a CADD-Phred score >15 (Table S3). Thus,
each gene regulated at RNA or protein level by a hit variant or tagged by a functionally
relevant variant, excluding MHC genes, was recorded for a total of 2,085 unique gene
targets (Table S4). In parallel, we extracted the proteins encoded by 931 unique targets
included in 22 OS-related pathways from the Reactome database [44] (Tables S5 and S6).
The overlap between the 2,085 MS-related gene targets and the 931 OS-related proteins led
to the identification of 85 shared targets (Table S7), including KEAP1 and HDAC1, which
are both known to be modulated by drugs currently in use for MS (dimethyl fumarate
and fingolimod, respectively). Among the 85 targets, 18 are supported by molecular QTLs
in the brain (ASF1A, ATP6V1G2, BBC3, BCL2L11, CAPN1, CARM1, CHAC1, CRTC3,
CSNK2B, DNM2, FOXO3, HSPA1L, KEAP1, MAPK1, NUP85, POM121C, PSMB9 and
TRMT112). In addition, for each variant whose risk allele effect on the gene product was
available in the brain, we were able to establish the direction of action (up or down) on
the transcript/protein level and, consequently, to choose drugs with the proper mode of
modulation: inhibition or activation (Table S8). In particular, 10 targets were regulated
by MS risk variants at some level in the brain, and among them we observed increased
expression levels for seven targets (ASF1A, CAPN1, CARM1, CHAC1, NUP85, POM121C
and TRMT112) and decreased levels for three targets (BBC3, MAPK1 and PSMB9).

3.2. Functional Enrichment Analysis of the Identified Targets

To obtain the enrichment information for the 85 candidate targets showing QTLs,
g:Profiler analysis was performed [36]. The default analysis implemented in g:Profiler
searches for pathways whose genes are significantly enriched (i.e., over-represented) in
the target list of interest and compares them to all genes in the genome. Among the most
significant pathways detected by REAC, “cellular response to stress” (p-value = 4.2 48
× 10−36) and “cellular responses to external stimuli” (p-value = 1. 326 × 10−35) have
been pointed out, consistent with OS being the investigated disease phenotype (Figure 2).
“Proteasome” (p-value = 8. 289 × 10−7) and “proteasome degradation” (p-value = 9. 576 ×
10−7) have been identified as the most represented pathways by KEGG and WP, respectively.
The three most significant cellular functions outlined by GO were “transcription factor
binding” (GO:MF, 1. 942 × 10−6), “cellular response to stress” (GO:BP, 8. 022 × 10−19)
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and “cytosol” (GO:CC, 1. 303 × 10−19). Table S9 gives details of all the individual targets
involved in the described analyses.

Figure 2. g:Profiler analysis of 85 targets. (A) Graphic representation of the results. (B) The most significant results for Gene
Ontology (GO) and pathways enrichment were shown. GO molecular function (GO:MF); GO biological process (GO:BP);
GO cellular component (GO:CC); Kyoto encyclopedia of genes and genomes (KEGG); Reactome (REAC); WikiPathways
(WP).

3.3. Target Prioritization and Drug Search

To prioritize the 85 selected targets, we assigned to each of them a genetic-based score
which considers the strength of association (variant effect magnitude and significance) with
the disease, the presence of QTLs regulating the gene target at protein expression level,
particularly in the brain, and the extent of LD supporting all the molecular information.

Based on the score distribution, we then fixed a threshold of score ≥20, which cor-
responds to the top 25% of the OS-related targets (Figure S1). We prioritized 21 targets
(Table S10), including seven targets regulated by eQTLs in the brain for which we es-
tablished the required direction of modulation (TRMT112, CAPN1, ASF1A, NUP85 and
CARM1, suggested to be inhibited, and BBC3 and MAPK1, suggested to be activated).

In four different databases, we searched for modulators of the 21 top-ranking targets
(Table S10), selecting only: (i) drugs approved or in clinical trials; (ii) drugs known to act
directly on the specific target or as transcriptional target modulators based on established
criteria (DGIdb interaction score >0.50 and published data on experimental validation);
(iii) drugs having a mode of action consistent with the direction of the eQTL for the risk
allele in the brain, if present. This analysis identified 35 modulators of six out of the 21 top
targets (MAPK1, MAPK3, CARM1, CDK4, STAT3 and FOS), with a substantial number of
drugs for each target, except for CARM1, which had only one. To increase the modulators
of CARM1 and to investigate the druggability of the remaining top-ranking targets, we
also looked for experimental drug trials, finding five CARM1 inhibitors and 11 compounds
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for two additional targets (NR1D1 and CAPN1). In addition, the presence of at least one
modulator on Pharos makes the targets ASF1A, HVCN1 and YWHAQ druggable [45,46].
We then compiled a final list of 50 compounds for the next selection phase.

3.4. Pharmacokinetic Prioritization of the Selected Drugs

By QikProp, the ADME-Tox properties of 35 repurposable drugs and 15 experimental
compounds associated with the eight selected targets were predicted (Table S11). Among
the selection criteria, we prioritized the expected penetration into the CNS and the oral
bioavailability, which are essential for maintaining drug function and potency towards the
respective targets. In addition, physicochemical descriptors and other general properties
related to good overall pharmacokinetics and metabolism profiles were considered. In
detail, we selected compounds having (i) a value ≥0 for predicted CNS activity; (ii)
medium–good values of logBB and MDCK apparent permeability; (iii) high values of
human oral absorption and percent human oral absorption; (iv) medium–good values of
Caco2 apparent permeability (Table S11). Overall, this analysis identified 10 repurposable
drugs (Table 1) and seven experimental compounds. The selected drugs include: (i) the
CARM1 inhibitor BIIB021 in clinical trial for breast and gastrointestinal tumors; (ii) the
MAPK1 activator PEITC in clinical trial for lung and oral cancer; (iii) four CDK4 inhibitors,
ABEMACICLIB approved for breast cancer, ALVOCIDIB, MILCICLIB and PHA-793887 in
clinical trials for several tumors; (iv) three STAT3 modulators, ERLOTINIB approved for
lung cancer, ENMD1198 and ATIPRIMOD in trial for neuroendocrine cancer and multiple
myeloma; (v) PILOCARPINE approved for the treatment of presbyopia as an inducer of
FOS expression. Some of the drugs that are presented in Table 1 do not directly modulate
the identified targets but may act through indirect mechanisms. The MAPK1-3 inhibitors,
MK8353 and LY3214996, were removed from the list since they have a mechanism of
modulation not consistent with the direction of eQTLs that we identified for MAPK1
in the brain. The seven experimental compounds that exceeded the pharmacokinetics
investigation comprise three CARM1 inhibitors (MS049, MS023, TP064) and four NR1D1
modulators (agonists GSK4112, SR9009 and SR9011 and antagonist SR8278) (Table S11).

Table 1. Repurposable candidates for oxidative-stress phenotype in MS. The table shows drug candidates with their
mechanism of action and clinical trial status for each target. The queried databases are also reported.

Target Drug Mechanism of
Action Status * Database

CARM1 BIIB021 HSP90 and CARM1
inhibitor

Phase II for breast cancer
and gastrointestinal stromal

tumors
DGIdb

MAPK1
PHENETHYL

ISOTHIOCYANATE,
(PEITC)

Bioactive compound
activates ERK signal

Phase II lung cancer,
tobacco use disorder and oral

cancer
Super Target

CDK4 ABEMACICLIB CDK4/6 inhibitor Approved for breast cancer DGIdb, DrugBank,
OpenTarget

CDK4 ALVOCIDIB CDKs inhibitor

Phase II for chronic lymphocytic
leukemia; relapsed or refractory

multiple myeloma;
B-cell lymphoma; sarcoma; acute

myeloid leukemia; prostate
cancer; advanced ovarian

epithelial cancer or primary
peritoneal cancer;

adenocarcinoma; kidney cancer;
melanoma;

endometrial cancer

DGIdb; DrugBank;
OpenTarget
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Table 1. Cont.

Target Drug Mechanism of
Action Status * Database

CDK4 MILCICLIB CDKs inhibitor Phase II for malignant thymoma
and hepatocellular carcinoma DGIdb; OpenTarget

CDK4 PHA-793887 CDKs inhibitor Phase I for advanced-
metastatic solid tumors DGIdb

STAT3 ATIPRIMOD Blocks STAT3
activation

Phase II for neuroendocrine
cancer and multiple myeloma DGIdb

STAT3 ENMD 1198
Mitosis inhibitors; tubulin

modulators;
STAT3 inhibitor

Phase I for advanced cancer DrugBank

STAT3 ERLOTINIB
EGFR inhibitor; stimulated

phosphorylation and
activation of STAT3

Approved for lung and
pancreatic cancer SuperTarget; DGIdb

FOS PILOCARPINE

Muscarinic receptor
agonist-

induced c-fos
expression

Approved for the treatment of
presbyopia DGIdb

* Only the highest phase is shown.

4. Discussion

Advanced genetic analysis in MS has identified variants that clearly influence gene ex-
pression of CNS-resident immune cells [19], highlighting potential functional consequences
for dysregulation of genes involved in the generation of inflammatory and oxidative medi-
ators that trigger neurodegenerative processes. Our purpose was to link genome-wide MS
associations and the correlated molecular QTLs to targets of OS pathways, improving the
prediction of drug candidates that act as regulators of intracellular oxidative homeostasis.
We selected 10 drugs already in use for cancer therapies that are specific for five out of the
21 top-scoring targets involved in the interplay between oxidation–apoptosis–autophagy–
inflammation. Of these, MAPK1, STAT3, CDK4 and FOS targets have been indicated in
previous MS GWAS [19,47–49], while the potential genetic link of CARM1 with MS is novel.
However, drugs with CNS and oral bioavailability have not been predicted for any of these
targets.

GWAS-associated genes have already resulted in candidate targets for drug discovery
and repositioning in both complex and monogenic diseases [50]. Concerning MS, several
studies have outlined the functional consequences of a set of disease variants [47] but these
findings have not yet been translated into clinical practice. Moreover, the crosstalk between
OS, neurodegeneration and neuroinflammation has a central role in the pathogenesis of
MS [51].

In this study, we correlated MS susceptibility loci to OS pathways, finding those alleles
(outside the MHC) that influence risk for this relevant disease phenotype. Notably, 85
shared targets were identified and ranked by assigning a score to each genetic outcome
available. The reliability of our results is supported by the high score for KEAP1 and
HDAC1, known targets of two drugs currently in use for MS, the antioxidant dimethyl
fumarate and the immunomodulator fingolimod, respectively. As expected, our selected
targets are linked with OS at different levels, in line with the dynamic outline of this
process, which accounts for various interrelated events occurring in different cellular
compartments. Our list includes: NCF4, a component of the NADPH oxidase system, and
the proton channel HVCN1, which are involved in ROS generation [52]; MAPK1, MAPK3,
STAT3 and FOS, inflammatory signaling molecules directly activated by ROS [53,54]; the
arginine methyltransferase CARM1, a transcriptional co-activator known to regulate NFkB-
dependent gene expression [55] and to be involved in cellular processes, such as autophagy,
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control of the cell cycle and differentiation [56]; the kinase CDK4, which promotes cellular
growth by stimulation of mitochondrial biogenesis and concomitantly increases ROS
generation [57]; the circadian gene NR1D1, which improves cellular bioenergetics and
is regulated by OS and inflammation [58,59]. Interestingly, targets involved in complex
regulatory mechanisms have recently attracted interest in the treatment of multifactorial
diseases, such as neurodegenerative diseases, in which several biochemical events and
molecular targets operate simultaneously [60].

Our approach of genetic-driven target identification is based on the integration of
GWAS with eQTLs, especially those measured in brain tissues, to assess genes whose
expression levels are modulated by non-coding disease-related variants [49]. The fact that
80% of the genetic variants identified by GWAS map in non-coding regions highlights
the potential of functional genomic tools [50,61]. The use in this pipeline of different MS
GWAS datasets, including those not containing complete whole-genome results, increased
the number of potential candidate targets. Moreover, when the correspondence between a
disease-risk variant and an eQTL allele has been derived, we were able to obtain important
information about the direction of drug target modulation to be considered.

Query of public databases, combined with in silico pharmacokinetics, allowed for
the selection of 10 drugs acting as modulators of five targets associated with oxidative
pathways in MS. The direction of brain eQTLs for CARM1 and MAPK1 enabled us to
identify two drugs with the required target modulation, prioritizing BIIB021 and PEITC
over modulators of targets without the direction of their allelic effect. In particular, BIIB021
is a CARM1 and HSP90 inhibitor currently in clinical trials for treating hematopoietic
malignancies and solid tumors (NCT01004081, NCT00618319 and NCT00344786) which
easily crosses the BBB and can be administered orally. The drug mechanism responsible
for CARM1 inhibition has not yet been defined, and there is the possibility that it acts
indirectly via the inhibition of HSP90, which was identified as a CARM1 interactor (EP 3
208 615 B1). In addition, we also indicated highly selective inhibitors of CARM1, recently
developed and tested in experimental models [62–64]. PEITC is an organosulfur bioactive
compound, known as an MAPK1 activator, that is currently in trial for lung cancer and
leukemia treatment (NCT00691132 and NCT00968461). Notably, the anti-inflammatory
and antioxidant activity of PEITC has been extensively demonstrated in both in vitro and
in vivo models. [65,66]. Of note, our in silico ADME analysis confirmed previous data on
the BBB permeability of this drug [67].

Lack of data on the direction of the effects of MS risk variants in the modulation of
STAT3, CDK4 and FOS in the brain does not allow the selection of drugs with adequate
therapeutic modulation (activation or inhibition). Previous studies based on genetic vari-
ants and QTLs have suggested drugs for repurposing without exploiting the direction of
effects [49,68], further supporting the potential relevance of our results.

In our study, we exclusively selected drugs that had passed clinical phase I and which
therefore should be free of serious side effects regardless of their selectivity. Nevertheless,
some drugs, including the CDKs inhibitor Alvocidib, present dose-dependent adverse
effects that might be evaluated in the disease of interest by a risk–benefit analysis. As
shown for CARM1, small molecules with a higher selectivity can be found among com-
pounds active in preclinical studies but, by definition, these are not currently repurposable
compounds.

The knowledge about targets relevant to OS in MS for which no approved modulators
are currently available could be exploited in future drug discovery studies. Our search for
experimental modulators of these targets led to the identification of NR1D1 agonists and
antagonists [69], thus proving the druggability of an additional target.

A major limitation of our in silico approach concerns the finding that only about 22%
of protein-coding genes are druggable [70], which is consistent with the low proportion
of top-identified targets engaged by approved or in clinical trial drugs. A more stringent
selection of genes strongly associated with disease may result in the loss of relevant targets
showing small effect sizes [71]. In addition, the smaller number of QTLs assessed in the
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brain compared to other tissues and the lack of protein-QTLs significantly reduce the
number of candidate genes to be matched with the selected disease phenotype. It should
also be kept in mind that public databases for GWAS, drug targets and pathways make
available data that are usually not uniform, often incomplete and frequently not up-to-date,
and these represent important constraints for the achievement of a comprehensive analysis.

5. Conclusions

This study highlights the support of genetics in identifying targets which can poten-
tially result in an unbalance of OS-related pathways in MS and existing drugs that can be
repositioned to aim at these targets. We showed for the first time an increased expression of
CARM1 genetically linked to MS. This finding agrees with the emerging dysregulation of
methylation pathways in MS, which may impact immune and neurological processes [72].
Notably, several links between arginine methylation and neurodegenerative diseases, such
as amyotrophic lateral sclerosis, Alzheimer’s and Huntington’s disease, have been estab-
lished over the last few years [73]. However, preclinical studies will be necessary to validate
the best drug candidates in cellular or animal models before their therapeutic application.
A network pharmacology analysis could be helpful in identifying combinations of drugs
targeting different unbalanced signaling pathways consistent with omics data integration
and a multitarget drug development approach [74].
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Abstract: Drug repurposing is a valuable alternative to traditional drug design based on the assump-
tion that medicines have multiple functions. Computer-based techniques use ever-growing drug
databases to uncover new drug repurposing hints, which require further validation with in vitro and
in vivo experiments. Indeed, such a scientific undertaking can be particularly effective in the case of
rare diseases (resources for developing new drugs are scarce) and new diseases such as COVID-19
(designing new drugs require too much time). This paper introduces a new, completely automated
computational drug repurposing pipeline based on drug–gene interaction data. We obtained drug–
gene interaction data from an earlier version of DrugBank, built a drug–gene interaction network,
and projected it as a drug–drug similarity network (DDSN). We then clustered DDSN by optimizing
modularity resolution, used the ATC codes distribution within each cluster to identify potential drug
repurposing candidates, and verified repurposing hints with the latest DrugBank ATC codes. Finally,
using the best modularity resolution found with our method, we applied our pipeline to the latest
DrugBank drug–gene interaction data to generate a comprehensive drug repurposing hint list.

Keywords: bioinformatics; drug repurposing; complex network analysis; modularity clustering;
ATC code

1. Introduction

The growth in the number of newly approved pharmaceutical substances has stag-
nated despite the ever-growing resources that the industry allocates [1–4]. Designing,
developing, and testing new medicines is an expensive, long, and cumbersome pro-
cess [5], which becomes explicitly bothersome for new rare diseases—because funds are
limited—and new pathogen epidemics—stopping the disease spread requires a rapid
therapeutic solution [6,7]. One convenient alternative to the pharmaceutic industry’s pro-
ductivity challenges is drug repurposing, underpinned by the R&D in the pharmaceutical
industry, as well as the observations and long-time experience indicating the favorable
polypharmacological profile of drugs (in other words, most pharmaceutical substances tend
to have multiple functions) [8–10]. The trend that calls for drug repurposing techniques is
in sync with the recent expansion of Big Data and machine learning in genetics, biology,
and medicine; therefore, we witnessed the development of a wide array of computer-based
methodologies to uncover new drug repurposing [11–13].

A significant area in computational repurposing (or repositioning) relies on the
complex network representations of various drug interaction/relationship types, e.g.,
drug–drug [14], drug–target [15–17], drug–side effect [18], drug–gene. The networks con-
sist of nodes/edges—representing drugs, targets, genes, or side effects—and links/edges—
representing interactions or other types of relationships [19]. The network of specific drug
interactions allows for the characterization of a complex biological system under therapy;
therefore, researchers can use computational techniques and network science principles to
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explore the interplay between microscale interactions and macroscale behavior [14]. An
important area in network science is community/cluster detection and analysis [20,21].
The assumption is that nodes from a distinct cluster have similar topological properties
and, thus, share a common feature; this results in drug repurposing opportunities [6].
(If most drugs in a cluster have a particular therapeutic function, then it is reasonable
to assume that the function also exists at least in some of the other drugs in the cluster).
Many network-based computational drug repurposing methods use topological network
features, such as centralities (topological indicators/measures of a node’s importance in
the network) and modularity, to identify potential repositioning [22,23].

All computational drug repositioning methods produce lists of hints or predictions
that require testing or confirmation in silico (e.g., molecular docking) [24], in vitro, and in
vivo [25]. One can also indirectly prove the effectiveness of the computational technique by
applying it on an earlier database version and testing the predictions on the latest data [14,22].
The existing computational pipelines predicted several important drug repurposings. More-
over, the crisis generated by the COVID-19 pandemic called for drug repurposing solutions to
counter SARS-CoV-2 infections.

In our prior study, we also approached the problem of drug repositioning by building
a drug–drug interaction network [14] and a drug–drug similarity network based on drug–
target interactions [22]; we used the corresponding drug–drug and drug–target interaction
data from DrugBank 4.1 and 4.2, respectively. In [14], we used community detection with
energy-based layouts and fixed modularity; in [22], we also used energy-based layouts
and fixed modularity, as well as ranking nodes by network centralities; in both previous
approaches, we labeled the clusters and confirmed predictions with expert analysis.

In this paper, we also use a method based on network community detection and
analysis. To this end, we build a drug–drug similarity network, because similarity networks
are better suited for community detection: Nodes in the same community are more likely
to be similar. Indeed, many other computational drug repurposing methods operate on
similarity networks [26,27], with similarity defined on various criteria—from drug–target
interactions [22] to adverse effects [18]. We find inspiration in the diseasome project [28,29]
based on processing a disease–gene bipartite network (i.e., with two types of nodes, namely,
genes and diseases); the processing of the disease–gene network projects it as either a gene–
gene similarity or a disease–disease similarity network. In the gene–gene network, a link
between two genes exists if there is at least one common disease with which they interact;
in the disease–disease network, a link between two diseases exists if at least one gene is
responsible for both diseases.

Our method builds a drug–gene interaction network with drug–gene interaction data
from the earlier DrugBank 5.0.9 version, then projects it as a drug–drug similarity network;
this is the first drug repurposing method derived from a gene-based drug–drug similarity
network to the best of our knowledge. Our drug–drug similarity network is weighted—
the weight of the link between two nodes/drugs represents the number of genes with
which the two drugs interact in the same manner. We then use modularity-based network
clustering to identify drug communities/clusters. We adopt the same assumption as in the
case of the diseasome analysis in [30] that nodes inside the same community most probably
share a common function or property. In this manner, if a drug inside one community
does not have the ATC code level 1 of the majority, then we hypothesize that the drug can
be repurposed accordingly. Nonetheless, we improve the efficiency of the approach by
providing an automated procedure for tuning modularity resolution [31] by comparing
the ATC code level 1 predicted with our method applied to DrugBank 5.0.9 [32] with the
level 1 ATC codes of the drug in the latest DrugBank version 5.1.8 [33]. Finally, we apply
our pipeline—with the optimized modularity resolution—to the latest DrugBank data to
generate a new list of repurposing hints, which we support by existing literature findings.
Refer to the overview of our proposed methodology in Figure 1. We only considered drugs
listed as approved in DrugBank.
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Figure 1. The overview of our proposed computational drug repurposing pipeline. In the first step, we use drug–gene
interaction information from DrugBank 5.0.9 to build the (bipartite) drug–gene interaction network, which we then
projected as a drug–drug similarity network (DDSN). In the second step, we used modularity class network clustering
to identify drug communities with shared properties, analyzed the DrugBank 5.0.9 first-level ATC code histograms in
each community to predict new drug properties, and checked these predictions against the latest DrugBank 5.1.8 level 1
ATC codes. The procedure in the second step allows maximizing the number of confirmed repositionings by adjusting
modularity resolution. The third step uses our method with the optimized resolution value determined in the second step
to generate a repurposing hints list according to DrugBank 5.1.8.

Three arguments support the novelty of the research presented in this paper. First,
this manuscript is—to the best of our knowledge—the first to build and process a DDSN
based on drug–gene interaction data. Second, we present a novel method (based on level 1
ATC codes) that labels clusters and generates repositioning hints automatically. Third, we
tuned modularity resolution algorithmically and automatically confirmed repositioning
hints by comparing two chronologically distinct DrugBank versions.

From a pharmacological perspective, our overarching contribution is to develop, for
the first time, and promote the drug–gene interaction networks as a valuable analytical,
screening, and visualization tool in drug repositioning. Our method can complement
existing computational repositioning pipelines; therefore, it can be integrated into more
sophisticated ensemble methods.

2. Materials and Methods

In this section, we present the conceptual description of our algorithmic drug reposi-
tioning method from Figure 1. The thorough technical implementation and description are
provided on our GitHub page https://github.com/GrozaVlad/Drug-repurposing-using-
DDSNs-and-modularity-clustering (last commit on 21 October 2021). We used Nodejs
with packets xml-js (for parsing the DrugBank xml files) and pg (for interacting with the
PostgreSQL database), and Docker and Docker-compose for containerized databases [34].
For building and clustering DDSN, we used the Python packages Psycopg2, Pandas [35],
NetworkX [36], and Cdlib [37]; for visualizing the networks, we used Gephi [38]. The hard-
ware platform for running this project was a MacBook Pro, Intel Core i9—2400 MHz with
16 GB RAM, GPU Radeon Pro 560× 4 GB.
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2.1. Databases

In order to facilitate an automated procedure of validating our drug repurposing
pipeline, we used the earlier DrugBank version 5.0.9 to generate repurposing predictions
in one of the anatomical or pharmacological groups described by the first-level ATC
codes, then we validated the predictions with the ATC codes with the latest DrugBank
version 5.1.8 (last accessed on 30 September 2021).

In DrugBank version 5.0.9, there are 1966 drugs, 2352 genes, and 7249 drug–gene
interactions; the interaction types are part of the set Ie = {inhibitor, agonist, antagonist,
other/unknown, ligand, partial agonist, inducer, other, suppressor, binder, antibody, modu-
lator, allosteric modulator, potentiator, neutralizer, stimulator, activator, component of, sub-
strate, inactivator, blocker, antisense oligonucleotide}. In the latest DrugBank version 5.1.8,
there are 3117 drugs, 4108 genes, and 8396 drug–gene interactions with interaction types
part of the set Il = {inhibitor, agonist, antagonist, other/unknown, antibody, substrate,
ligand, partial agonist, inducer, other, suppressor, binder, potentiator, modulator, activator,
cofactor, degradation, positive allosteric modulator, incorporation into and destabilization,
allosteric modulator, neutralizer, stimulator, binding, inactivator, inverse agonist, blocker,
chaperone, inhibition of synthesis, antisense oligonucleotide, gene replacement, regulator}.
Refer to Section 4.1 for explanations.

We chose DrugBank [33] because it is a comprehensive, versioned, and scientifically
curated (i.e., robust) database with consistent support for in silico drug design and reposi-
tioning space exploration [32].

2.2. Building the Drug–Drug Similarity Network

The bipartite drug–gene interaction network is a graph G = (V, E), where V is the
set of vertices or nodes, and E is the set of edges. The network G is bipartite because
V = VD ∪ VG, where VD is the set of drugs and VG is the set of genes. The edges eij ∈ E
represent interactions between a drug Di ∈ VD and a gene Gj ∈ VG (the interaction is of the
type Tk ∈ I, with I defined in Section 2.1). An example of such a drug–gene bipartite graph
is presented in Figure 2a, with 4 drugs, 3 genes, and 3 types of drug–gene interactions.

Figure 2. An illustrative example of projecting the bipartite drug–gene interaction graph G (a) into a weighted drug–drug
similarity network W (b). In our example, G has 4 drugs (D1, D2, D3, and D4), 3 genes (G1, G2, and G3), and 3 types of
drug–gene interactions. In the drug–drug similarity network from panel (b), nodes are drugs, and links between two drugs
represent the number of genes with which the drugs interact in the same manner. For instance, as shown, the link w1,3 between
nodes/drugs D1 and D3 has a weight of 3 because D1 and D3 have the same type of interaction with genes G1, G2, and G3.
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From the drug–gene bipartite network G, we generated the weighted drug–drug
similarity networkW = (VD, W) using network projection [39]. In the DDSN, the nodes
represent drugs, and a link between two nodes exists if there is at least one gene with
which the two drugs interact in the same manner (i.e., the interactions are of the same type
Tk ∈ I). In Figure 2b, we present the DDSN projection of the drug–gene example network
in Figure 2. The network is weighted because two drugs Di and Dj can have the same type
of interactions with m genes; therefore, the weight of edge wij ∈W is m.

2.3. Network Clustering Analysis

The clustering of network G = (V, E) is the process of classifying all nodes vi ∈ V in
one of the n (disjoint) subsets Cj, with V =

⋃n
j=1Cj, according to their topological properties.

In this paper, we use modularity-based clustering because of its proven effectiveness in
drug network analysis [14,22,23]. As defined in [40], the modularity of a clustering C in a
weighted network such as our DDSN—represented asW—is defined as follows.

M =
1
2a∑ij

(
wij −

kik j

2a

)
p
(
Ci, Cj

)
. (1)

In Equation (1), a = 1
2 ∑ijwij; i and j are the indexes of nodes vi, vj ∈ VD; ki and k j are

the node degrees (i.e., the sums of weights of incident edges) for nodes vi, vj ∈ VD; wij
is the adjacency matrix of nodes inW ; Ci and Cj are the communities that include nodes
vi, vj ∈ VD, respectively; and p is a function p(x, y) that returns 1 if x = y and 0 otherwise.
(In our DDSN, nodes vi and vj are drugs Di and Dj, respectively).

The modularity of clustering C is a value MC ∈ [−1, 1], representing the edge density
within the clusters with respect to the edge density between clusters. The clustering
algorithms are based on modularity search for the best partitioning C of the node-set
such that the value of M is maximized. The problem is that an exhaustive search for the
best modularity entails large computational burden. Consequently, in practice, heuristic
algorithms approximate optimal modularity clustering. However, if the network is very
large, such approximations cannot identify small-size clusters—even if the density of
internal edges is high and the density of edges between these small clusters and the rest of
the network is low.

In this paper, we use the modularity-based clustering algorithm from [41], which
controls the resolution of the clustering using a recursive procedure that starts with each
node being a cluster and then moving nodes vi (i.e., Di in our DDSN) to a different cluster
Cj if this generates a positive modularity gain expressed as follows.

∆M =
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In Equation (2), K*
Cj

is the sum of the weights of all edges within cluster Cj; KCj is the
sum of the weights of all edges incident to nodes in cluster Cj; Ki is the sum of the weights

of all edges incident to node vi (Di in DDSN); and K
Cj
i is the sum of the weights of links

from vi to all nodes in cluster Cj. The algorithm controls the clustering resolution using the
value of λ = ∆M—a lower λ determines a higher number of clusters.

2.4. Tuning Resolution λ

Using Algorithm 1, we tune the modularity resolution to achieve efficiency in predict-
ing new drug properties. To this end, we try λ values in the [0.1, 5] interval, with a step
of 0.1, generate the modularity clustering C for each resolution value (Clustering(G, λ)),
and determine the dominant property Pi in each cluster Ci ∈ C. The dominant property
Pi corresponds to the level 1 ATC code of the majority of drugs in cluster i, Dj ∈ Cj,
as resulting from the level 1 ATC code histogram of Ci, and denotedA1(Ci). Then, for each
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drug Dj in each cluster Ci, we checked the list of first level ATC codes for drug Dj (denoted
A1(Dj

)
) against the drug’s cluster dominant property Pi. If Pi is not in the list of DrugBank

5.0.9 level 1 ATC codes for Dj (i.e., A1(Dj
)
), but it is present in the list of DrugBank 5.1.8

level 1 ATC codes (i.e., A1
c
(

Dj
)
), then we consider this as a confirmed repositioning of Dj

to property Pi. As such, we will add drug Dj to the list of repositionings confirmed with
DrugBank 5.1.8 level 1 ATC codes, Rc. Value λmax corresponds to Rc with the biggest
number of elements, namely max{|Rc|}.

Algorithm 1 Find the parameter λ, such that the clustering C of nodes/drugs Di in G with
modularity resolution λ (i.e., Clustering(G, λ)) produces the biggest number of reposition-
ings confirmed with the level 1 ATC codes in DrugBank 5.1.8.
Input: Drug-drug similarity network G = (VD, E) based on drug-gene interaction data
from DrugBank 5.0.9., ATC codes for drugs in DrugBank versions 5.0.9 and 5.1.8
Output: The λ value that generates the highest number of confirmed repositionings.

1: for λ in range (0.1 to 5), with 0.1 steps do
2: C ⇐ Clustering(G, λ)
3: for all Ci ∈ C do
4: Pi ⇐ A1(Ci)
5: Rc

i ⇐ ∅
6: for all Dj ∈ Ci do
7: if thenPi /∈ A1(Dj

)
& Pi ∈ A1

c
(

Dj
)

8: Rc
i ⇐ Rc

i ∪
{

Dj
}

9: end if
10: end for
11: end for
12: Rc =⇐ ⋃

iRc
i

13: end for
14: Return the value of λmax corresponding to max{|′Rc|}

2.5. Generating New Repurposing Hints

We generated a list of new repositioning hints using the modularity clustering with
the resolution value determined by Algorithm 1 in Section 2.4. Algorithm 2 presents the
method we follow: Cluster the DDSN built with drug–gene interaction information from
DrugBank 5.1.8 using the tuned resolution λmax (C = Clustering(G, λmax)); determine
the dominant property Pi of each cluster Ci ∈ C as resulted from Ci’s level 1 ATC code
histogram (denoted A1(Ci)); and check for each drug Dj in each cluster Ci the list of first
level ATC codes of Dj (denoted A1(Dj

)
) against its cluster’s dominant property Pi. If

the cluster’s dominant property Pi is not in A1(Dj
)

(the list of Dj level 1 ATC codes), we
hint that Dj can be repositioned to Pi. Consequently, we add these repositioning cases as
drug–predicted property pairs

(
Dj,Pi

)
to the repositioning hints list N .
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Algorithm 2 Generate the list of drug repurposing hints by clustering the DDSN G with
the tuned modularity resolution.
Input: Drug–drug similarity network G = (VD, E) based on drug–gene interaction data
from DrugBank 5.1.8, λmax, and the ATC codes for drugs in DrugBank 5.1.8.
Output: The repositioning hintsN as a list of drug–predicted property pairs,

(
Dj,A1(Ci)

)
.

1: C ⇐ Clustering(G, λmax)
2: N ⇐ ∅
3: for all Ci ∈ C do
4: Pi ⇐ A1(Ci)
5: for all Dj ∈ Ci do
6: if Pi /∈ A1(Dj

)
then

7: N ⇐ N ∪
{(

Dj,Pi
)}

8: end if
9: end for

10: end for
11: Return the list of drug repositionings N as drug–predicted property pairs

3. Results
3.1. DDSN Using Drug–Gene Interactions from DrugBang 5.0.9

Following the algorithmic approach presented in Figure 1, according to the methods
described in Sections 2.2–2.5, we employ cluster-based network analysis on the drug–drug
similarity network (DDSN) built with drug–gene interaction information from DrugBank
5.0.9 to search for the most effective modularity resolution λmax—in other words, the
modularity resolution that produces the highest number of drug repositionings confirmed
with level 1 ATC codes from DrugBank 5.1.8. Figure 3 presents the result of running
Algorithm 1 from Section 2.4; the best results correspond to resolutions 1.9 and 2.0 (the
same nine confirmed repositionings in both cases). Henceforth, we will consider λmax = 2.0.

Figure 3. The number of confirmed repositioningsRc for resolution λ values in the [0.1, 5] interval,
with a step of 0.1, after running Algorithm 1 on the DDSN G built with drug–gene interaction
information from DrugBank 5.0.9. The highest number of repositionings confirmed with level 1 ATC
codes from DrugBank 5.1.8 (i.e., 9) corresponds to resolutions 1.9 and 2.0.

Figure 4 presents the largest connected component of the DDSN, constructed with
drug–gene interaction data from DrugBank 5.0.9 and clustered with modularity resolution
λmax = 2.0; the text indicates the topological coordinates of repositionings confirmed with
DrugBank 5.1.8 data.
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Figure 4. Drug–drug similarity network (DDSN) built with drug–gene interaction data from DrugBank 5.0.9, clustered
using modularity classes for resolution λmax = 2.0. We indicate the position of drugs repositioned and confirmed (with
level 1 ATC codes from DrugBank 5.1.8) them by labeling the corresponding nodes with their names. The brown nodes
represent drugs in cluster C0 (512 drugs), yellow nodes represent drugs in cluster C1 (238 drugs), green nodes represent
drugs in cluster C2 (197 drugs), pink nodes represent drugs in cluster C3 (143 drugs), and light blue nodes represent drugs
in cluster C4 (88 drugs).

In Figure 4, nodes represent drugs, and links represent similarity relationships based
on drug–gene interactions, as described in Section 2.2; node colors correspond to spe-
cific clusters, as determined by the modularity class, and all links are represented with
grey lines.

In Appendix A.1, Figures A1–A3, present zoomed details of DDSN from Figure 4 in the
vicinity of nine confirmed repositionings corresponding to λmax = 2.0. The repositionings
come from cluster C0–brown and cluster C2–green nodes. We indicated the drug reposi-
tionings confirmed with DrugBank 5.1.8 data with red arrows (→) in Figures A1 and A2;
in Figure A3, we have many confirmed repurposed drugs and a high density of nodes;
hence, red diamonds (�) were used instead of arrows.

The zoomed details provided by Figures A1 and A2 show that mepolizumab and
naloxone are within cluster C0 (brown nodes), where the dominant property is given by the
level 1 ATC code N–Nervous system, followed by code R–Respiratory system. As such, our
method automatically predicts that mepolizumab (listed as L–Antineoplastic and immunomod-
ulatory drugs in DrugBank 5.0.9) acts as a drug with level 1 ATC code R. (In Appendix A.2,
Figure A4 shows that in cluster C0—in addition to the dominant level 1 ATC codes N—we
also have many subcluster drugs with level 1 ATC codes A–Alimentary tract and metabolism;
R–Respiratory system; and C–Cardiovascular system). Our method predicts that naloxone
(an opioid overdose antidote in DrugBank 5.0.9) also acts on the nervous system (first level
ATC N). The more recent DrugBank 5.1.8 confirms the predictions, listing mepolizumab
with first level ATC code R and naloxone with N (see more details in Section 3.3.1).

In Appendix A.1, Figure A3, we zoom in to the region in DrugBank 5.0.9 DDSN
with the confirmed repositionings in cluster C2 (green nodes), with the dominant level
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1 ATC code G–Genitourinary system and sex hormones (see the histogram in Appendix A.2
Figure A4). The confirmed repositionings in cluster C2 are torasemide (ATC level 1 code
C, cardiovascular system), quinetazone (C), methazolamide (S, sensory organs), acetazo-
lamide (S), dorzolamide (S), and brinzolamide (S). Zonisamide (N, nervous system) is a
brown node (cluster C0) but in the close vicinity of cluster C2; therefore, one can expect
functional overlappings [14]. Our method automatically predicts that all these drugs have
genitourinary system properties, and DrugBank 5.1.8 confirms the predictions (see the
detailed description in in Section 3.3.1).

Using ATC codes as references for drug repurposing is already used in the state-
of-the-art contexts, although confirmations based on ATC codes are very conservative
(i.e., the World Health Organization assigns new ATCs after a long and thorough pro-
cess) [25,42]. Confirming the predicted drug repositionings by performing a research
literature review will reveal many more confirmations [25,43]. By this logic, our analysis
of DrugBank 5.0.9 does not reveal many confirmed repurposings, yet it helps tune the
modularity resolution λ.

3.2. DDSN Using Drug–Gene Interactions from DrugBang 5.1.8

According to the algorithmic approach presented in Figure 1, we generated the DDSN
based on the drug–gene interactions reported in DrugBank 5.1.8 and clustered DDSN
using the modularity classes obtained for resolution λmax (by employing Algorithm 1 with
the results presented in Section 3.1). We display the largest connected component of the
DrugBank 5.1.8 DDSN in Figure 5, with cluster C0 (brown nodes) having the dominant level
1 ATC code N–Nervous system; clusters C1 and C2 (green and orange nodes) J–Anti-infectives
for systemic use; cluster C3 (light blue nodes) L–Antineoplastic and immunomodulating agents;
and cluster C4 (pink nodes) A–Alimentary tract and metabolism.

By running Algorithm 2 on the DDSN built with DrugBank 5.1.8 data and clustered
with modularity classes at resolution λmax, we generated lists of drug repurposing hints
for each drug cluster. In the Supplementary Materials Table S1 file DDSN-results.xls, tab
DB 5.1.8 resolution 2.0, we present the first 10 drug clusters and the entire list of drug
repurposing candidates generated with Algorithm 2 (759 candidates).

Generating a list of 759 drug repurposing candidates with the latest DrugBank data
and experimental confirmation is beyond the focus of our paper, and we select the first
10 drugs in each cluster in terms of betweenness/degree centrality (the methodology
used in [22]) and checked them with the state-of-the-art scientific literature. For checking
repositioning hints, we searched for articles in PubMed. The terms we used to search
the literature were the name of the drug and the words/pharmacological terms that form
level 1 of the ATC code. For example, our methodology predicted for methotrexate ATC
code with level 1 J–Anti infectives for systemic use; we searched for the confirmation of this
prediction by using keywords methotrexate anti-infective, as well as keywords representing
therapeutic groups included in class J (i.e., methotrexate antiviral, methotrexate antibacterial,
or methotrexate antimycotic). The confirmation results of our extensive literature check
are presented in Table 1, showing the drug name, cluster number, current level 1 ATC
code, predicted level 1 ATC code, and confirmation references. We also added a detailed
discussion of the repurposing hints from Table 1 in Section 3.2.
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Figure 5. Drug–drug similarity network (DDSN) built with drug–gene interaction data from Drug-
Bank 5.1.8, clustered using modularity classes for resolution λmax = 2.0. The brown nodes represent
drugs in cluster C0 (479 drugs), green nodes represent drugs in cluster C1 (346 drugs), light blue
nodes represent drugs in cluster C2 (270 drugs), orange nodes represent drugs in cluster C3 (129
drugs), and pink nodes represent drugs in cluster C4 (12 nodes).

We present the topological DDSN placement of Pyridoxal phosphate—predicted repo-
sitioning from cluster C0—in Figure 6, where a red diamond (�) marks the exact position.

In Figure 7, we illustrate the position of albendazole and methotrexate in the DDSN
built with DrugBank 5.0.8 data as predicted drug repositionings from cluster C1. Other drug
repurposing candidates from cluster C1 (presented in Table 1) are shown in Appendix B.1
and Figure A5: simvastatin, fluvastatin, lovastatin, and atorvastatin.

Figure 8 displays the DrugBank 5.0.8 DDSN placement of cholecalciferol, ergocal-
ciferol, and calcifediol—drug repurposing candidates from cluster C2. In Appendix B.1,
Figures A6–A8, we identify the topological positions of the other drug repurposing candi-
tates in cluster C2 (Table 1): meloxicam, theophylline, and chloroquine.
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Table 1. The list of drug repurposing candidates generated with our methodology in Figure 1 on data from DrugBank 5.1.8,
and confirmed with scientific literature. The rows correspond to drugs or drug classes (for example, simvastatin, fluvastatin,
lovastatin, and atorvastatin are statins). The columns indicate—from left to right—the name, the cluster, the current level 1
ATC code in DrugBank 5.1.8, the predicted level 1 ATC code, and the confirmation references for the drug (or drug class) in
each row.

Drug Cluster Current Level 1 ATC Predicted Level 1 ATC References

Pyridoxal phosphate C0 A H [44,45]
Albendazole C1 P J [46,47]
Methotrexate C1 L J [48–50]


Simvastatin
Fluvastatin
Lovastatin
Atorvastatin

C1 C J [51,52]

Theophylline C2 R L [14,53]
Meloxicam C2 M L [54–56]


Cholecalciferol
Ergocalciferol
Calcifediol

C2 M, A L [57,58]

Chloroquine C2 P L [59–63][
Mecasermin
Mecasermin rinfabate C4 H A [64–66]

Ornithine C25 A N [67]

We also show the placement of drug repurposing candidates mecasermin and mecaser-
min rinfabate (in Figure 9, in cluster C4, with red diamonds �) and ornithine (in Figure 10,
in cluster C25, with a red arrow→).

The histograms showing the dominant properties (as level 1 ATC codes) in clusters
C0, C1, C2, and C4 are presented in Appendix B.2, Figure A9.

Figure 6. The DrugBank 5.1.8 DDSN network’s zoomed detail shows the repositioning within
cluster C0 (brown nodes) with a red diamond (�). Our repositioning pipeline predicts that pyridoxal
phosphate (currently at ATC level 1 code A–Alimentary tract and metabolism) has properties described
by the level 1 ATC code N—Nervous system.
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Figure 7. The DrugBank 5.1.8 DDSN network’s zoomed detail shows two repositionings within
cluster C1 (green nodes) with a red diamond (�). Our repositioning pipeline predicts that albendazole
and methotrexate (currently at ATC level 1 codes P–Antiparasitic products, insecticides, and repellents
and L–Antineoplastic and immunomodulating agents, respectively) have properties described by the
level 1 ATC code J–Anti infectives for systemic use.

Figure 8. The DrugBank 5.1.8 DDSN network’s zoomed detail shows three repositionings (vitamin
D derivatives) within cluster C2 (light blue nodes) with a red diamond (�). Our repositioning
pipeline predicts that cholecalciferol, ergocalciferol, and calcifediol (currently at ATC level 1 codes
A–Alimentary tract and metabolism and M–Musculo-skeletal system) have properties described by the
level 1 ATC code L–Antineoplastic and immunomodulating agents.
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Figure 9. The DrugBank 5.1.8 DDSN network’s zoomed detail shows two repositionings within
cluster C4 (pink nodes) with a red diamond (�). Our repositioning pipeline predicts that mecasermin
and mecasermin rinfabate (currently at ATC level 1 codes H–Systemic hormonal preparations, excluding
sex hormones and insulins) have properties described by the level 1 ATC code A–Alimentary tract
and metabolism.

Figure 10. The DrugBank 5.1.8 DDSN network’s zoomed detail shows a repositioning within cluster
C25 (light orange) with a red arrow (→). Our method predicts that ornithine (currently at ATC
level 1 code A–Alimentary tract and metabolism) has properties described by the level 1 ATC code
N–Nervous system.
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3.3. Repositioning Confirmations
3.3.1. Confirmed Drug Repositionings in DrugBank 5.0.9

This section discusses the drug repositioning hits generated with our methodol-
ogy in DrugBank 5.0.9 and confirmed with the level 1 ATC codes in DrugBank 5.1.8.
Our procedure confirmed the predicted hints in modularity classes 0 and 2.

Modularity Cluster C0

In modularity cluster C0, DrugBank 5.1.8 confirms mepolizumab and naloxone (see
Figures A1 and A2). Naloxone (ATC code V03AB15) is a µ-opioid receptor antagonist
indicated in the treatment of opioid overdose. In DrugBank 5.0.9, naloxone’s first level
ATC is V–Various; its level 4 (V03AB) means naloxone is in the Antidotes category.

Our methodology predicts naloxone’s level 1 ATC as N–Nervous system; the latest
DrugBank 5.1.8 adds two N level 1 ATC codes to naloxone (level 4 ATC category Natural
opium alkaloids for the combinations with hydromorphone and oxycodone), thus confirming
our prediction.

Mepolizumab (ATC code L04AC06) is a monoclonal antibody acting as an antagonist
of interleukin-5, included in the L–Antineoplastic and immunomodulating agents level 1 ATC
category by DrugBank 5.0.9.

DrugBank 5.1.8 does not list the L04AC06 code anymore for mepolizumab; instead,
it uses the level 1 ATC code R–Respiratory system (the level 4 ATC is R03DX, which includes
other systemic drugs for obstructive airways diseases, as mepolizumab is indicated in severe
eosinophilic asthma).

Modularity Cluster C2

In modularity cluster C2, DrugBank 5.1.8 confirms torasemide, methazolamide, aceta-
zolamide, dorzolamide, brinzolamide, zonisamide, and quinetazone (see Figure A3).

Torasemide, quinetazone, methazolamide, acetazolamide, dorzolamide, and zon-
isamide, brinzolamide (ATC codes: C03CA04, C03BA02/C03BB02, S01EC05, S01EC01,
S01EC03, N03AX15, S01EC04/S01EC54) are sulfonamide compounds with various pharma-
codynamic effects. According to DrugBank 5.0.9, torasemide and quinetazone are diuretics
used as antihypertensive drugs, included in the C–Cardiovascular system level 1 ATC cate-
gory. Zonisamide is an antiepileptic drug (level 1 ATC N–Nervous system). Methazolamide,
acetazolamide, dorzolamide, and brinzolamide are carbonic anhydrase inhibitors used in
glaucoma (level 1 ATC S–Sensory organs).

Our methodology predicts G–Genito urinary system and sex hormones as the level
1 ATC code for torasemide, quinetazone, methazolamide, acetazolamide, dorzolamide
zonisamide, and brinzolamide. Indeed, the latest DrugBank 5.1.8 version includes all these
drugs in the G level 1 ATC category—more precisely, in the G01AE level 4 ATC category of
Anti-infective and antiseptics having a sulfonamide-based chemical structure.

3.3.2. Drug Repositioning Hints in DrugBank 5.1.8

This section discusses the validity of some drug repositioning hints generated with
our methodology in DrugBank 5.1.8; as this is the latest database version, we cannot use
the same confirmation procedure based on ATC codes. Consequently, we provide evidence
found in the state-of-the-art literature as confirmation clues. However, as both the number
of clusters and their size prohibit an exhaustive literature search, we focus on the clusters
with confirmed drug repurposing candidates—clusters C0, C1, C2, C4, and C25.

Pyridoxal phosphate (cluster C0, ATC code A11HA06) is the active form of vitamin B6
and belongs to the A–Alimentary tract and metabolism level 1 ATC category, along with the
rest of water-soluble and fat-soluble vitamins. Our method predicts pyridoxal phosphate as
level 1 ATC code N–Nervous system (see Figure 6); H-S Wang et al. reported that pyridoxal
phosphate controls idiopathic intractable epilepsy in children [44]. P.B. Mills and team
identified two groups of patients with neonatal epileptic encephalopathy (determined by
PNPO mutations) that respond to pyridoxal phosphate [45].
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Albendazole (cluster C1, ATC code P02CA03) is an antiparasitic drug (first level ATC
P–Antiparasitic products, insecticides and repellents) efficient in various helminthic infec-
tions. Our methodology predicts J as level 1 ATC code, suggesting potential systemic
anti-infective effects (see Figure 7). Of note, ATC lists drug classes such as antivirals,
antibacterials, antimycotics, and vaccines in the J–Anti-infectives for systemic use category.
In vitro results show that albendazole exerts antifungal activity against Aspergillus spp. [46];
moreover, experiments on mice revealed antifungal effects against Pneumocystis carinii [47],
confirming the new potential antifungal medical use of albendazole.

Methotrexate (cluster C1, ATC codes L04AX03, L01BA01) is an anticancer and immuno-
suppressant agent; therefore, the level 1 ATC is L–Antineoplastic and immunomodulating
agents. We predict the first level J–Anti infectives for systemic use (see Figure 7). The literature
survey reveals several papers reporting in vitro antiviral effects of methotrexate in a dose-
dependent manner on SARS-CoV-2 [48] and Zika virus replication [49]; methotrexate also
prevents the replication of human cytomegalovirus and inhibits viral DNA synthesis [50].

Simvastatin, fluvastatin, lovastatin, and atorvastatin (cluster C1, ATC codes A10BH51/
C10AA01/C10BX04/C10BA02/C10BX01/C10BA04, C10AA04, C10AA02/C10BA01, and
C10BX15/C10AA05/C10BX03/C10BA05/C10BX11/C10BX08/C10BX06/C10BX12) are
HMG-CoA reductase inhibitors (also called statins) that lower serum lipid levels, reducing
the risk of cardiovascular events caused by hyperlipidemia; they are in the level 1 ATC C–
Cardiovascular system class. The first level of their ATC code, as predicted by our method, is
J–Anti infectives for systemic use (see Figure A5), confirmed by literature; as such, simvastatin
exhibits in vitro antimicrobial effect on methicillin-susceptible Staphylococcus aureus [51].
S.P. Parihar et al. [52] review the literature reporting preclinical and clinical evidence of
statins effects in viral, parasitic, fungal, and bacterial infections, pointing out the factors
that influence the response to statins, such as human polymorphism, metabolism, and drug
interactions; this review includes data on all mentioned statins. Our algorithm predicts
that all statins in cluster C1 are potential anti-infective agents. As shown, for the statins
we highlighted in Figure A5, we found literature confirming our prediction; for the other
statins, new experiments and studies may provide confirmation.

Theophylline (cluster C2, ATC codes R03DA54, R03DA74, R03DA20, R03DA04, and
R03DB04) is a methylxanthine derivative used to treat obstructive respiratory conditions,
such as asthma and COPD, hence having R–Respiratory system as first level ATC code.
Our methodology indicates theophylline’s Anticancer and immunomodulating properties, as
reflected by the predicted ATC first level L (see Figure A7), thus further confirming the repo-
sitioning proposed by our previous research [14]. Indeed, recent literature demonstrates
the anticancer properties of theophylline in breast and cervical cell lines [53].

Meloxicam (cluster C2, ATC codes M01AC56 and M01AC06) is an oxicam derivative
with anti-inflammatory and antirheumatic properties of the M–Musculo-skeletal system
ATC category. Our network-based methodology predicts L as the first level of the ATC
code (see Figure A6). The literature confirms our prediction of the anticancer properties
of meloxicam: Meloxicam inhibits tumor growth in COX-2 positive colorectal cancer [54].
Tsubouchi et al. report that COX-2 plays a significant role in the pathogenesis and pro-
gression of non-small cell lung cancer (NSCLC), demonstrating the inhibitory effect of
meloxicam on the NSCLC growth by preferentially inhibiting COX-2 [55]. Reference [56]
shows that meloxicam is efficient in osteosarcoma in both COX-2-dependent and indepen-
dent inhibitory manners.

Cholecalciferol, ergocalciferol, and calcifediol (cluster C2, ATC codes M05BB09/
M05BX53/M05BB07/M05BB08/A11CC55/M05BB05/A11CC05/M05BB03/M05BB04,
A11CC01, and A11CC06) are vitamin D analogs. Cholecalciferol (vitamin D3) is a
fat-soluble vitamin (ATC level 1 A–Alimentary tract and metabolism, a category which
includes hydro-soluble and lipo-soluble vitamins) with a well-established role in bone
mineralization (ATC second level M05–Musculo-skeletal system, drugs for treatment of
bone diseases). Ergocalciferol and calcifediol are also grouped in A–Alimentary tract and
metabolism level 1 ATC. We predict these drugs as targeting diseases at level 1 ATC code
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L–Antineoplastic and immunomodulating agents (see Figure 8).There is extensive literature
reporting the beneficial effects of vitamin D analogs in different cancers and highlighting
the epidemiological, preclinical, and clinical results; all these back up their evolution as
prophylactic and curative anticancer drugs [57,58].

Chloroquine (cluster C2, ATC code P01BA01) is an antimalarial drug; consequently,
it belongs to the P–Antiparasitic products, insecticides and repellents level 1 ATC category.
According to our results, the predicted first-level ATC is L–Antineoplastic and immunomod-
ulating agents for chloroquine (dominant in cluster C1, see Figure A8). Multiple research
reviews report in vitro, in vivo, and clinical trials testing chloroquine’s anticancer effect
in glioblastoma [59] and other types of cancers [60–63], hence supporting the potential
repositioning of chloroquine as an anticancer drug, as uncovered by our methodology.

Mecasermin and mecasermin rinfabate (cluster C4, ATC codes H01AC03, H01AC05)
are recombinant insulin-like growth factor-1 drugs indicated in growth failure in children
with primary IGF-1 deficiency and, hence, are included in the H–Systemic hormonal prepara-
tions, excluding sex hormones and insulins. Literature and medicine regulatory authorities
reports present the secondary pharmacologic actions of mecasermin and mecasermin rin-
fabate, including the anabolic and insulin-like effects (i.e., hypoglycemia) [64–66]; these
pharmacologic effects could place the drugs in the A–Alimentary tract and metabolism level 1
ATC, as predicted by our methodology (see Figure 9).

Ornithine (cluster C25, ATC code A05BA06) is a non-essential amino acid indicated as
nutritional supplementation and for a good liver function and included in the A–Alimentary
tract and metabolism level 1 ATC. M. Miyake et al. suggest that L-ornithine may interfere
with the Central Nervous System, following a randomized, double-blind controlled trial
that demonstrated that L-ornithine relieved stress and improved sleep quality in humans
compared to the placebo group [67]. Indeed, we predicted ornithine at level 1 ATC N–
Nervous system (see Figure 10).

4. Discussion

In this section, we discuss the particularities of our method, namely the data we use,
the limitations of our method and its validation with ATC codes, and the way to integrate
it into an ensemble drug repositioning framework.

4.1. Drug–Gene Interactions

The method we propose in this paper uses drug–gene interaction data from DrugBank
versions 5.0.9 and 5.1.8. Table 2 presents examples of drug–gene interactions and their cor-
responding types, as defined by DrugBank 5.1.8 (see a detailed list of drug–gene interaction
types in the Supplementary Materials Table S1 file DDSN-results.xls and how to retrieve
such drug–gene interactions from DrugBank in the GitHub page https://github.com/
GrozaVlad/Drug-repurposing-using-DDSNs-and-modularity-clustering (last commit on
21 October 2021)).

4.2. Method Limitations

The mechanisms that influence the polypharmacological profile of drugs are highly
complex. Indeed, the medicinal compound interacts with a complex system represented by
the human organism. Complex systems are context-dependent; in other words, any detail
at the micro-scale influences the macroscale behavior. As such, many factors can be consid-
ered when analyzing the functions of any pharmaceutical substance: from the chemical
structure to various types of relationships and interactions, as well as pharmacokinetics and
pharmacodynamics. By this logic, our approach is limited to considering a narrow informa-
tional angle, namely drug–gene interactions. Nonetheless, considering many mechanisms
and types of data simultaneously within the same model would be prohibitively complex,
and the networks would become much too dense for any centrality of community analysis.
Even considering one type of information has become significantly complex; for instance,
the drug–drug interaction networks in DrugBank 3.0 had an average degree of ∼20, and
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in DrugBank 5.1.8 the average DDI network degree is ∼600). Recent literature [68–70]
advances the so-called ensemble methods to address this new situation of being confronted
with an overabundance rather than scarcity of data (see Section 4.4).

Table 2. Examples of drug–gene interactions listed in DrugBank.

Drug Name Gene Name Interaction Type

Alteplase PLG activator
Hydromorphone OPRK1 agonist
Varenicline CHRNB2 partial agonist
Prazosin ADRA1B antagonist
Ascorbic acid EGLN1 chaperone
Pyridoxal phosphate GAD1 cofactor
Vardenafil PDE6G allosteric modulator
Trastuzumab ERBB2 antibody
Nusinersen SMN2 antisense oligonucleotide
Methysergide HTR1F binder
Tiapride DRD2 blocker
Carvedilol KCNJ4 inhibitor
Clobetasol propionate ANXA1 inducer
Clofazimine PPARG modulator
Cerliponase alfa IGF2R ligand
Filgrastim CSF3R stimulator
Dalteparin SERPINC1 potentiator
Vitamin A RDH13 substrate
Nedocromil CYSLTR1 suppressor
Belimumab TNFSF13B neutralizer
Esmirtazapine HRH1 inverse agonist
Procainamide DNMT1 other
Haloperidol HTR2A other/unknown

4.3. Labeling and Validation with ATC Codes

Employing computational methods (i.e., data mining and machine learning) in drug
repositioning is generally hampered because we do not a have robust ground truth. In-
deed, databases such as DrugBank record positive information about the drugs’ known
properties and functions, yet the absence of evidence is not evidence of absence (some drug
properties may be hidden, and only future experiments can fully reveal them). That is
why performance evaluation and validation of computational drug repositioning models
are still an open issue; therefore, researchers adopt ad hoc, particular strategies, which
are hard to compare [71]. Consequently, we resorted to making predictions with an older
database version and then validating them with the latest version. However, even the latest
database still cannot contain exhaustive information about drug functions. Furthermore,
the negative information on drug functions/effects (stating what properties a drug does not
have) will help prune the vast search space in drug repositioning. Unfortunately, negative
information is scarce and scattered throughout the literature; to the best of our knowledge,
no comprehensive dataset contains such data based on experimental results. As such, the
existing negative information cannot be used algorithmically/automatically. As explained,
one feasible method for filtering the noise and navigating the search space affected by
uncertainty—an approach supported by recent research—is to integrate tools (such as the
one we propose here) in ensemble methods.

Many computational drug repositioning methods based on complex networks rely
on community detection and community labeling. However, labeling can be cumbersome
and subjective; thus, we decided to use ATC codes, since this system is the standard for
classifying medicines accepted by the WHO. Furthermore, the automated approach is
fostered because the ATC code aggregates all information about a drug in a combination of
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letters and numbers, which are easier to process algorithmically. The ATC code classifies
drugs on five levels considering three criteria simultaneously: anatomical (A)—the first
level; therapeutic (T)–levels 2 and 3; and chemical (C)—levels 4 and 5. The anatomical
criterion indicates the anatomical level or the physiological organ systems on which a
specific drug acts. Each anatomical level is indicated in the ATC code by a letter (e.g.,
A–Alimentary tract and metabolism, C–Cardiovascular system, M–Musculoskeletal system, or
R–Respiratory system); the ATC system contains 14 anatomical groups. Level 2 represents
the therapeutic classification criterion and is encoded by two digits. Level 3 (encoded by
a letter) indicates the particular pharmacological group of the drug. Level 4 (encoded
by a letter) indicates the chemical class of the drug. Level 5 is encoded by two digits the
chemical structure of the drug. This paper only used the first-level ATC codes for labeling
and validation of prediction, although drug function is more precisely expressed by levels
1–3; we opted perform this because the sophisticated hierarchical clustering algorithms
entailed by such an approach would have unnecessarily intensified the computational
character of our study.

4.4. Method Application

When the problem at hand is too complex to solve by employing a single model,
machine learning uses an ensemble strategy [72], which trains several models on the same
set of data to operate collectively for solving the problem. This strategy is already used
in bioinformatics to approach complex problems such as motif discovery in ChIP-Seq
data [73]. The problem of drug repositioning is also very complex; however, prediction
accuracy is not the primary indicator of success (the benefit of correctly predicting even a
few drug repositionings is more significant than the cost of experiments entailed by testing
the wrong predictions [74].) As such, very recent literature advances the idea of using
ensemble methods for drug repositioning [69,70].

In this context, considering that—as explained in Section 4.2—our method uses drug–
gene interaction data that partially describes the behavior of drugs, we indicate the ensem-
ble strategy as ta method to use our method. As shown in Figure 11, drug repositioning
prediction based on drug–gene interaction data may be Methodi from the group of machine
learning methods based on distinct models {Method1, Method2, . . . Methodm}. The reposi-
tioning hints list i is aggregated (i.e., via voting, averaging, or other procedures) to produce
a final drug repositioning hints list. The aggregation process may use pharmacological
expertise, e.g., to adjust the weights of a weighted average. However, implementing the en-
semble strategy is beyond the scope of this paper, which aims to analyze and promote—for
the first time—the beneficial role of drug–gene interaction networks for computational
drug repositioning.

Figure 11. Overview of the ensemble strategy in drug repositioning. A group of machine learning and
data mining methods {Method1, Method2, . . . Methodm}, implementing various models and using
distinct features (e.g., drug–drug interactions, drug–target interactions, drug–gene interactions, drug–
adverse reactions relationships, pharmacokinetic properties) from the same comprehensive dataset
and predicting a list of drug repositioning hints. Each method Methodi generates its repositioning
hints list, and an aggregation process assembles all lists in the final repurposing hints list.
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5. Conclusions

In this paper, we propose a new drug repurposing methodology based on algorithmic
complex network analysis. To this end, we introduce an original method of building the
Drug–Drug Similarity Network (DDSN) using drug–gene interactions from DrugBank,
clustering DDSN with modularity classes, and labeling each cluster with the dominant
first level ATC code of drugs within the cluster. The assumption that results in drug
repurposing hints is that drugs in a cluster share the dominant property of the cluster.
We use an automated procedure to tune modularity resolution, to apply our methodology
on a DDSN built with data from DrugBank 5.0.9, to generate the list of drug repurposing
hints (i.e., drugs for which the first level ATC does not match the dominant cluster label),
and to check it against ATC codes in DrugBank 5.1.8.

By running our method on the DrugBank 5.1.8 DDSN, we generated a consistent list
of drug repositioning candidates; we select the top betweenness/degree drugs in each
cluster and perform a preliminary validation with state-of-the-art experimental results
reported in the literature. Due to the fact that we collected many literature confirmations of
our method’s predictions, we argue that our fully automated pipeline, based on Big Data
and unsupervised machine learning, is a practical tool that can substantially narrow the
enormous search space in drug repositioning.

To summarize, the overarching methodological contributions of our paper are listed
as follows:

(i) A new method to build weighted drug–drug similarity networks based on drug–
gene interactions;

(ii) An automated procedure to optimize the modularity resolution such that network
clustering maximizes the number of identified drug repurposings. A known/
confirmed drug repurposing is a drug with more level 1 ATC codes in the latest
drug database, compared with the earlier database—used to generate the drug–
drug similarity network;

(iii) A new drug repurposing list was generated with our pipeline from the latest
DrugBank 5.1.8 by analyzing the three most representative clusters.

In the present context, affected by the COVID-19 pandemic, we believe that the most
promising findings/results presented in our paper are the anti-infective effects of statins,
especially their potential antiviral effects. Indeed, the very recent comprehensive study [6]
also finds, following in vitro screening, that fluvastatin presents what the authors call
“strong effect” against SARS-CoV-2.

Considering all aspects presented in Section 4.2, we will extend our research on drug–
gene interaction networks by implementing hierarchical clustering to predict ATC codes on
levels 1–3, developing a dedicated cluster overlapping algorithm as a drug repositioning
prediction strategy (i.e., one would reasonably expect that drugs in the overlapping zone
would inherit the dominant properties of the respective clusters) and integrating the drug–
gene network method into an ensemble strategy. These future objectives require substantial
reliance on developing bioinformatic tools, entailing algorithm design, machine learning,
and Big Data analytics.
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Appendix A. Repositionings and Statistics for DrugBank 5.0.9 DDSN

Appendix A.1. DDSN Zoomed Details

Figure A1. The zoomed detail of the DDSN network built with drug–gene interaction data from
DrugBank 5.0.9, which shows the relative position of mepolizumab within cluster C0 (brown nodes)
with a red arrow (→). Our repositioning pipeline predicts that mepolizumab—listed as antineoplastic
in DrugBank 5.0.9—also acts as a drug with level 1 ATC code R (Respiratory system), confirmed by the
more recent DrugBank version 5.1.8.
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Figure A2. The zoomed detail of the DrugBank 5.0.9 DDSN network showing the relative position of
naloxone within cluster C0 (brown nodes) with a red arrow (→). Our repositioning pipeline predicts
that naloxone—listed as opioid overdose antidote in DrugBank 5.0.9—also acts as a drug with level 1
ATC code N (Nervous system), confirmed by the more recent DrugBank version 5.1.8.

Figure A3. The DrugBank 5.0.9 DDSN network’s zoomed detail shows the confirmed repositionings
within cluster C2 (green nodes) with red diamonds (�). Our repositioning pipeline predicts that
torasemide and quinetazone (both with ATC level 1 code C–Cardiovascular system in DrugBank
5.0.9), methazolamide, acetazolamide, dorzolamide, and brinzolamide (all with ATC level 1 code
S–Sensory organs in DrugBank 5.0.9) are Genito urinary system and sex hormones drugs (first level ATC
G). Zonisamide (N–Nervous system) is a brown node (cluster C0) but in the close vicinity of cluster C2;
therefore, they are also predicted at level 1 ATC code G.

147



Pharmaceutics 2021, 13, 2117

Appendix A.2. DDSN Cluster Histograms

Figure A4. Histograms of level 1 ATC codes in the DrugBank 5.0.9 DDSN clusters holding drug
repositionings confirmed by DrugBank 5.1.8: cluster C0 (brown nodes) in the left panel and cluster C2

(green nodes) in the right panel. The dominant property in cluster C0 is N–Nervous system, with many
subcluster drugs with level 1 ATC codes A, R, and C (Alimentary tract and metabolism, Respiratory
system, and Cardiovascular system, respectively). The dominant properties in cluster C2 are G, C, and
D (Genito urinary system and sex hormones, Cardiovascular system, and Dermatologicals, respectively).

Appendix B. Repositionings and Statistics for DrugBank 5.1.8 DDSN

Appendix B.1. DDSN Zoomed Details

Figure A5. The DrugBank 5.1.8 DDSN network’s zoomed detail shows four repositionings within
cluster C1 (green nodes) with a red diamond (�). Our repositioning pipeline predicts that simvastatin,
fluvastatin, lovastatin, and atorvastatin (currently at ATC level 1 codes C–Cardiovascular system) have
properties described by the level 1 ATC code J–Anti infectives for systemic use.
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Figure A6. The DrugBank 5.1.8 DDSN network’s zoomed detail shows a repositionings within cluster
C2 (light blue nodes) with a red diamond (�). Our repositioning pipeline predicts that meloxicam
(currently at ATC level 1 code M–Musculo-skeletal system) has properties described by the level 1 ATC
code L–Antineoplastic and immunomodulating agents.

Figure A7. The DrugBank 5.1.8 DDSN network’s zoomed detail shows a repositioning within cluster
C2 (light blue nodes) with a red diamond (�). Our repositioning pipeline predicts that theophylline
(currently at ATC level 1 code R–Respiratory system) has properties described by the level 1 ATC code
L–Antineoplastic and immunomodulating agents.
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Figure A8. The DrugBank 5.1.8 DDSN network’s zoomed detail shows repositioning within cluster
C2 (light blue nodes) with a red diamond (�). Our repositioning pipeline predicts that chloroquine
(currently at ATC level 1 code P–Antiparasitic products, insecticides and repellents) has properties
described by the level 1 ATC code L–Antineoplastic and immunomodulating agents.

Appendix B.2. DDSN Cluster Histograms

Figure A9. Histograms of level 1 ATC codes in the DrugBank 5.1.8 DDSN clusters holding drug
repositionings confirmed by literature review: cluster C0 (brown nodes), cluster C1 (green nodes),
cluster C2 (light blue nodes), and cluster C4 (pink nodes). The dominant property in cluster C0 is N–
Nervous System, J–Anti-infectives for systemic use in cluster C1, L–Antineoplastic and immunomodulating
agents in cluster C2, and A–Alimentary Tract and Metabolism in cluster C4.
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Abstract: The RAS–RAF–MEK–ERK pathway plays a key role in malevolent cell progression in
many tumors. The high structural complexity in the upstream kinases limits the treatment progress.
Thus, MEK inhibition is a promising strategy since it is easy to inhibit and is a gatekeeper for
the many malignant effects of its downstream effector. Even though MEK inhibitors are under
investigation in many cancers, drug resistance continues to be the principal limiting factor to achieving
cures in patients with cancer. Hence, we accomplished a high-throughput virtual screening to
overcome this bottleneck by the discovery of dual-targeting therapy in cancer treatment. Here,
a total of 11,808 DrugBank molecules were assessed through high-throughput virtual screening for
their activity against MEK. Further, the Glide docking, MLSF and prime-MM/GBSA methods were
implemented to extract the potential lead compounds from the database. Two compounds, DB012661
and DB07642, were outperformed in all the screening analyses. Further, the study results reveal that
the lead compounds also have a significant binding capability with the co-target PIM1. Finally, the
SIE-based free energy calculation reveals that the binding of compounds was majorly affected by the
van der Waals interactions with MEK receptor. Overall, the in silico binding efficacy of these lead
compounds against both MEK and PIM1 could be of significant therapeutic interest to overcome
drug resistance in the near future.

Keywords: drug-repositioning; MEK inhibitor; MM/GBSA; Glide docking; MD simulation; MM/PBSA

1. Introduction

Lung cancer accounts for about a quarter of all cancer deaths, among them 82%
of deaths were being caused by intentionally smoking cigarettes. The development of
advanced therapies for the management of the early and metastatic stages of lung cancer
were not yet discovered over the past 40 years. Although some treatment measures are
available to control the earlier stages of lung cancer, poor outcomes reduce the overall
patient survival rates. One of the common clinical symptoms of lung cancer is frequently
coughing for a particular period. For example, patients in the United States who had
been coughing for three weeks were finally identified with lung cancer [1]. In the United
Kingdom, smoking is responsible for 71% of lung cancer deaths, whereas 1% of the deaths
of passive smokers were reported. The Canadian researchers reports that the lung cancer
deaths in smokers were 15% higher than in non-smokers. In India, 9.3% of the cancer deaths
were associated with lung cancer, containing both male and female patients [2]. The low
lung cancer survival rates reflect the high number of patients diagnosed with metastatic
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disease (57%). Currently, surgery, radiation therapy, chemotherapy and targeted therapies
were used to treat the lung cancer patients. Among these methods, targeted therapies
demonstrated better outcome during the cancer treatment [3,4]. Genetic expression and
mutational studies were certainly used to identify the definitive target for lung cancer.
The incidence of particular mutations varies depending on ethnicity and location. The
EGFR mutations that were reported in Caucasians were found to be 10%, whereas 60%
of the mutational rates were reported in Asian people [5]. Ultimately, the tyrosine kinase
pathway plays a major role in the tremendous increase in lung cancer deaths. Mitogen-
activated protein kinase (MAPK) is one of the promising growth signaling pathways.
The aberrant activation of this pathway’s intermediates leads to uncontrolled cell growth
and differentiation. In many cancer types, concomitant mutations occurred in RAS and
BRAF, which is the reason for the consecutive activation of ERK, which is responsible for
the activation of many transcription factors [6]. Hence, targeting the pathway receptors
using checkpoint inhibitors leads to effective therapy in most cancers. However, a strong
association between RAS and GTP impedes the direct inhibition of RAS. The lack of
understanding regarding the allosteric sites is also a hindrance to the development of
RAS targeting inhibitors [7]. The next intermediate RAF is another important target when
there is an existence of BRAFV600 mutations. Nevertheless, the acquired resistance in
RAF selective inhibitors is the reason for the constant activation of the MAPK pathway
in many cancers [8]. Therefore, it is possible to affirm a downstream cut-off of the MAPK
pathway at a protein kinase called MEK. The MEK receptor is a key node in the MAPK
pathway, which is the only known substrate of its downstream effector, ERK. In the recent
decade, hundreds of MEK inhibitors were discovered to target the allosteric binding site
of MEK [9]. Although these selective inhibitors were effective at the allosteric site, a poor
cytotoxicity profile limits their treatment progress. For instance, the most potent kinase
inhibitors, such as binimetinib, selumetinib, cobimetinib and rafametinib, caused diarrhea,
elevated lipase levels and rashes as adverse effects [10,11]. It is important to note that
a recently approved MEK selective inhibitor trametinib showed the most efficacy in the
BRAF mutant tumors in combination with dabrafenib [12,13]. However, trametinib alone
showed additional side effects during the treatment period in non-small cell lung cancer
patients. For instance, trametinib specifically affects the ocular region of the patients.
Moreover, a severe complication in the ocular region may lead to permanent vision loss in
the patients [14]. In addition to their toxic effects, several MEK inhibitors were resistant to
the BRAF mutations through the activation of adjutant signaling pathway receptors. The
initial solution to the problem of resistance to therapy is the dual inhibition of crucial targets
with the administration of a single therapy. It is also interesting to note that the inhibition
of multiple kinases will produce better outcomes during clinical trials. For instance, the
combination of MEK and JAK2/STAT3 pathway inhibition reduces the potential impact on
drug resistance in colon cancer [15]. Similarly, a combination of MEK and PI3K inhibitors
is a powerful treatment option for NSCLC patients who have developed resistance to
EGFR–TKIs [16]. Note that dual inhibitors will produce more beneficial effects than the
combined inhibitors in terms of cost and time taken for the approval. Note also that PIM1
is a critical effector facilitating cross-talk across several neighboring pathways, in particular
to the MAPK pathway. Recent studies highlight that MEK inhibitors lead to the increased
expression of PIM1, thereby increasing cancer cell growth [17,18]. Keeping this in mind,
we framed an in silico-based drug repurposing workflow to screen the potential inhibitors
that act against both MEK and PIM1.

Drug repurposing has become one of the most popular ways for increasing the ef-
ficiency and cost-effectiveness of drug development. Importantly, the discoveries of the
novel indications of existing drugs were the major applications in drug repurposing strate-
gies. In recent years, almost 30% of the FDA-approved drugs and vaccines were discovered
by in silico approaches. For instance, the discovery of zanamivir was made possible using
a computer-aided drug design technique based on the crystal structure of influenza virus
neuraminidase [19]. Adding together the implementation of machine learning principles
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and virtual screening would certainly enhance the accuracy of screening results. Machine-
learning-based approaches produce more reliable results and provide faster outcomes by
learning existing experimental data [20]. Hence, we incorporated machine-learning-based
scoring functions (MLSF) to screen the potential compounds against the MEK receptor since
they have attained a plateau in their performance during the binding affinity prediction [21].
We are certain that the outcome of this study is of immense importance for the experimental
biologist involved in the screening of MEK inhibitors.

2. Methodology
2.1. Dataset

Structural information of proteins and ligand molecules were retrieved from the pro-
tein data bank (PDB) and DrugBank database, respectively. The 3D structure of two protein
molecules, such as MEK1 (PDB ID:3W8Q) and PIM1 (PDB ID: 5KZI), were downloaded in
the PDB format [22,23]. Eventually, the DrugBank molecules were downloaded as three
subsets containing FDA (Food and Drug Administration)-approved drugs (n = 3085), ex-
perimental drugs (n = 5689) and investigational drugs (n = 3034) for screening application.

2.2. Protein and Ligand Preparation

Preparation of the receptor molecules was carried out using protein preparation wizard
present in the maestro workspace. The four major pre-processing steps that were carried out
include: (i) bond order assignment, (ii) addition of missing hydrogen atoms, (iii) creation
of zero-order bond for the metal atoms and (iv) di-disulfide bond creation. The pre-
processed proteins were then subjected to a hydrogen bond optimization process. During
the optimization, the protonation state of each amino acid residue was calculated, and the
pH was adjusted to 7 ± 0.5 using the predicted pKa values. The predicted and adjusted pKa
values of amino acid residues of the proteins were presented in Supplementary Materials
Table S1. If the predicted pKa was less than pH value, the amino acid functional groups
were protonated during the optimization process. On the other hand, if the pKa was greater
than pH value, the deprotonation process took place in those amino acid functional groups.
Note that, if the pKa and pH values were equal, 50% protonation and 50% deprotonation
took place. Subsequently, the excess water molecules were removed because of the higher
occupancy at the receptor binding pocket. Finally, the heavy atoms were converged at
the RMSD (root-mean-square deviation) value of 0.30 Å using restrained minimization
process [24].

The ligand molecules were processed using LigPrep module in the maestro workspace.
Initially, all the ligand molecules were subjected to energy minimization using OPLS_2005
(optimized potentials for liquid simulations) force field at pH 7.0 ± 2. To avoid stereoiso-
mer formation, the chiral centers of all the ligand molecules were chosen to preserve
their original state. Notably, all the ligand molecules were allowed to generate only one
structural conformation.

2.3. Binding Site Analysis and Grid Generation

Binding site prediction and pocket druggability analysis are the few important perquisites
in drug repurposing strategy [25,26]. Here, we used the sitemap algorithm to predict the
binding as well as druggable pockets present is the target receptor. Sitemap predicts the
hot spots based on the number of hydrogen bond donors and acceptors, hydrophobic
atoms and the concave sites present in the receptor [27]. Later, the grid generation was
executed by using receptor grid generation wizard. The grid box was generated around the
predicted hot spot residues with the partial charge cut-off of 0.25 and a scaling factor of 1.

2.4. Glide Docking and MM/GBSA Analysis

All prepared ligand molecules were screened through the high-throughput virtual
screening (HTVS) method followed by being docked into the predicted binding sites using
Glide XP (Extra-precision) protocols. We have utilized a flexible docking method with the
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van der Waals radii scaling factor of 1 Å to soften the receptor binding site. The atoms
of the protein with partial charges less than or equal to 0.25 were scaled with a van der
Waals scale factor of 0.8 [28]. Later, the ligand interaction diagram was visualized for the
in-depth understanding of ligand contacts with the target receptor. Further, the docking
score was revalidated by the binding free energy calculations using Prime-MM/GBSA
(molecular mechanics with generalized born surface area) analysis. XP docked complexes
were further subjected to minimization at the local optimization feature with the force field
of OPLS_2005. Prime estimates the binding free energy by comparing the energy of the
complex state to the energy of the individual protein and ligand molecules [29].

2.5. Scoring Functions
2.5.1. RF-Score Analysis

The MLSF analyzes the molecular docking outputs of the existing protein–ligand
complex to predict the binding affinity of unknown compounds [30]. Here, we used
RF-Score-VS, which uses a random forest algorithm to predict the binding affinity of the
molecules. It is a standalone program (https://github.com/oddt/rfscorevs, accessed on
3 June 2021) that was implemented using the ubuntu terminal. In this tool, a random forest
model was robustly set to generate a maximum number of 500 trees. It is worth noting that
random forest model used in this study implicitly captures binding effects that are hard
to model explicitly. Protein and ligand molecules were supplied in sdf and pdb format,
respectively, for the RF score calculation.

2.5.2. Tanimoto Coefficient Calculation

Tanimoto coefficient is one of the most important similarity measures during the
virtual screening process [31]. BulkTanimotoSimilarity() function in the RDKit package
gets a fingerprint query and a collection of fingerprints to display the list of similarity
results for each fingerprint target. This metric estimates the proportion of the common
bits in the range of 0 to 1 between the chemical fingerprints. In this section, the Tanimoto
resemblances of all DrugBank compounds were tested against the fingerprints generated
by the trametinib.

2.6. Molecular Dynamics (MD) Simulations

The complex structures of two focused compounds and the known drug from molecu-
lar docking were dynamically simulated by the near-physiological-motion MD simulations.
The AMBER ff14SB force field and generalized AMBER force field version 2 (GAFF2)
were employed to treat bonded and non-bonded interaction parameters of all simulated
complexes [32]. The TIP3P water model [33] was used to solvate the system with mini-
mum padding of 10.0 Å between the protein surface and the solvation box edge. Then,
either sodium or chloride ions were randomly added to neutralize the overall charge of
the molecular system. Minimization of the hydrogen atoms and water molecules was
performed by using 500 steps of steepest descent (SD) followed by 1500 steps of conjugated
gradient (CG) methods. All studied systems were proceeded to run under the periodic
boundary condition with the isothermal–isobaric (NPT) scheme according to the previous
studies [34–38]. The electrostatic interactions were treated by the particle mesh Ewald
summation method [39], whereas The SHAKE algorithm [40] was used to constrain all
covalently connected hydrogen atoms. The temperature was controlled by the Langevin
thermostat [41] with a collision frequency of 2 ps−1 and gradually increased from 10
to 310 K. In addition, Berendsen barostat [42] was employed to control pressure with
a relaxation time of 1 ps. Each simulated system was subsequently simulated under the
NPT ensemble (310 K, 1 atm) until reaching 100 ns. The MD production for all systems
was set to 100 ns by the 2-fs increment of a time step. The root-mean-square displace-
ment (RMSD) and hydrogen bond (H-bond) occupations were calculated through the
cpptraj module, while per-residue decomposition energy (∆Gresidue

binding) was estimated by
MM/PBSA.py implemented in AMBER16.
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2.7. End-Point Binding Free Energy Calculations

To evaluate the ligand-binding capability, the total binding free energy (∆Gbinding) of
each complex was estimated based upon the solvated interaction energy (SIE) approach [43].
In theory, ∆Gbind can be estimated as the summation of the van der Waals (EvdW), electro-
static (Eele(Din)), reaction field (∆GRF(ρ,Din)), cavity (γ∆SA(ρ)), and a constant (C) value,
which was expressed as the following equation

∆Gbind (ρ,Din, α, γ, C) = α[EvdW + Eele(Din) + ∆GRF(ρ,Din) + γ∆SA(ρ)] + constant

where Din is the solute interior dielectric constant. EvdW and Eele are denoted as intermolec-
ular van der Waals and Coulombic interaction energies in the bound state, respectively.
∆GRF is the electrostatic polarization component of the solvation free energy to binding,
and ∆Gcavity (γ∆SA) represents the nonpolar contribution of the solvation free energy to
the binding. The coefficients set to every calculation are α = 0.105, γ = 0.013 and C = −2.89.

3. Result and Discussion
3.1. Binding Site Prediction

The identification and characterization of the druggable binding pocket of the MEK1
receptor were identified by employing the sitemap module. The best five binding sites of
MEK1 and their physiological characteristics predicted by the sitemap were tabulated in
Table 1. The larger quantity of hydrophobic residues at the top three sites shows improved
pocket adaptation for the ligand binding. Notably, the druggability score of each pocket
was in the range of 0.6 to 1. Sites 4 and 5 have a Dscore less than 0.7, which implies the poor
druggability of those pockets. Whereas, sites 1, 2 and 3 have resulted in a Dscore of ~1,
which indicates that these sites highly encourage the binding of drug-like molecules on their
pocket residues [44]. Although the enclosure of site 3 (0.673) is lower, the higher Dscore
(1.005) and sitescore (0.974) make the pocket suitable for molecule binding. The top three
sites that displayed significant physiological characteristics for the binding of drug-like
molecules are shown in Figure 1. Among these three binding sites, site 1 encompasses the
end of the activation loop region where the substrate ERK binds to MEK. In addition, site 1
comprises the important amino acid residues for the activation of the MEK receptor and
DGF motif, which is an important motif involved in the MEK phosphorylation process. In
addition, site 1 comprises amino acid residues, such as VAL 127, SER212, LYS97, VAL211
and ATP binding site [45]. Since site 1 comprises the crucial pockets, we have utilized the
results obtained from site 1 during the validation step and other analyses.

Table 1. The top five binding sites of MEK1 receptor predicted by sitemap.

Sites Site Score Dscore Binding Pocket Region

1 1.067 0.995
LEU74, GLY75, ALA76, GLY77, ASN78, GLY79, GLY80, VAL82, ALA95, LYS97, ILE99, VAL127,
MET143, GLU144, HIS145, MET146, GLY149, SER150, ASP152, GLN153, LYS192, SER194,
ASN195, LEU197, CYS207, ASP208, PHE209, GLY210, VAL211, SER212

2 1.028 1.05

GLU39, GLN45, GLN46, ARG49, LEU50, ALA52, PHE53, LEU54, GLN56, LYS57, LEU92,
VAL93, HIS119, GLU120, CYS121, ASN122, SER123, PRO124, TYR125, ILE126, VAL127,
GLY128, PHE129, TYR130, GLU144, HIS145, MET146, ASP147, LYS168, ILE171, ALA172,
LYS175, ASN199, ARG201, GLY202, GLU203, ILE204, LYS205, ASP365, VAL369, ASP370,
PHE371, ALA372

3 0.974 1.005 GLU39, LEU40, GLU41, LEU42, GLN46, ASN122, SER123, PRO124, TYR125, ILE174, LYS175,
THR178, TYR179, ARG181, GLU182, LYS183, VAL242, LEU352, LYS353, MET356

4 0.819 0.782 LEU118, HIS119, ILE126, LEU180, HIS184, LYS185, ILE186, MET187, HIS188, ARG189, ASP208,
PHE209, GLY210, GLY213, GLN214, ASP217

5 0.702 0.673 VAL254, VAL258, PRO262, PRO265, PRO266, LEU271, PRO321, PRO322, PRO323, LYS324,
LEU325, PRO326, SER327, GLN335, ASN339
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Figure 1. (a) Schematic representation of top three predicted binding sites. (b) Functionally important
residues in site 1.

3.2. Validation of Molecular Docking

The validation of Glide XP docking and RF-Score-VS were accomplished by using
external datasets (Table S2). The dataset consists of 25 active compounds and 75 decoy
compounds against mitogen-activated protein kinase, which were randomly sampled
from the Database of Useful Decoys-Enhanced (DUD-E) using the ‘sample()’ function in
pandas to validate the docking and RF-Score-VS analysis. The results were incorporated
into the maestro workspace for enrichment analysis [46]. The ‘enrichment calculator’ tool
was used here to evaluate the screening process. On both of the screening analyses, the
compounds were sorted by the respective scoring functions, for instance, the Glide XP
score and RF-Score-VS_v2 for molecular docking and RF-Score-VS analysis, respectively.
Later, the effectiveness of the screening methodologies to differentiate between the actives
in the decoy set of compounds was tested by producing a receiver operating curve (ROC)
(Figure S1). A total of 11 decoys were outranked during the screening process using RF-
Score-VS. On the other hand, seven decoys were outranked during the molecular docking
analysis. The smaller number of outranked compounds indicates the effectiveness of these
screening algorithms. Further, these measures were evaluated using receiver operating
characteristic curve (ROC) analysis. Importantly, the ROC value of docking and RF-Score-
VS were 0.902 and 0.850, respectively. Moreover, the area under the curve (AUC) was
calculated as 0.801 and 0.762 for molecular docking and RF-Score-VS, respectively. Since
the AUC value of docking and RF-Score-VS are above 0.7, we believe that both algorithms
have the potential to discriminate the active compounds from the target database. Further,
we have accessed Pearson’s and Spearman’s correlations between the docking score and
experimentally determined binding affinity of the 25 active compounds. It is worth noting
that Pearson’s and Spearman’s correlation values of 0.758 and 0.818, respectively, were
observed. All of these findings indicate that the lead compounds produced through these
screening approaches may potentially be effective towards further experimental works.
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3.3. Virtual Screening

A total of 11,808 molecules from the three subsets of Drugbank were screened through
the HTVS docking method. Later, the screened hit molecules (n = 7075) were docked
into the best predicted binding site, such as site 1, using the Glide XP method. Note that
trametinib was used as a reference compound in all the analyses. The XP docking score
of reference compound −3.423 kcal/mol in site 1 was then used as a threshold for further
screening of hit molecules. Subsequently, the top 50% of the molecules resulting from the
XP docking on site 1 were redocked to site 2 and site 3. A total of 3125 and 2813 compounds
were predicted to bind better than the reference compound on site 2 and site 3, respectively.
The results from the docking study were then integrated to eliminate the false positive
compounds. The results indicate that 2468 compounds were able to bind tightly with all
three binding sites predicted by the algorithm.

Recently, machine-learning-based scoring functions evolved to measure the binding
affinity of the compounds with their multiple characteristic features. In particular, RF-Score-
VS obtains a remarkable hit rate up to 88.6% throughout the DUD-E targets [21]. Hence,
we analyzed the binding ability of all the screened hit compounds using RF-Score-VS. It is
notable that the reference compound trametinib showed an RF-score of 6.565. Fortunately,
a total of 5152 compounds were ranked better than the reference compound in RF-Score-VS
analysis. The comparison of the docking study and RF-Score calculation yielded a total
of 1654 compounds. These compounds were screened through the Tanimoto coefficient
calculation using the rdkit package. All the compounds’ fingerprints were generated and
tested for structural similarity against the reference compound. The calculations of the
Tanimoto coefficients of the screened hit compounds were tabulated in Table S3. Here, we
chose a Tanimoto coefficient of 0.6 as a threshold value for screening the compounds [47].
Overall, 368 compounds gained a Tanimoto coefficient value above 0.6, which will be taken
for further screening studies.

3.4. MM/GBSA Analysis

Recent literature studies highlight that the total binding free energy values predicted
during the MM/GBSA calculation correlate well with the experimentally measured bio-
logical activity [48]. Thus, Prime-MM/GBSA was implemented as a post-scoring process
for the validation of the screened hit molecules. The pose viewer file generated during the
Glide XP docking on site 1 was considered as an input file for this analysis. The results of
the MM/PBSA studies on the top 15 hit compounds and their associated energy values
were represented in Table 2. Moreover, the replicability of the binding affinity by Glide
docking was evaluated through three-fold validation of XP docking on 15 hit compounds.
The binding free energy values obtained during the three iterations were represented in
Table S4. It is evident from the table that the 14 hit compounds were able to display a better
docking score than the reference compound in all three docking processes. Although the
docking score slightly differs during each docking simulation, the compounds ranking
was most likely the same as the initial docking simulation. These results demonstrate
the excellent consistency of the compounds ranking during the docking simulation. It is
evident from Table 2 that the binding free energy values of the compounds varied from −46
to −87 kcal/mol. The available literature information depicts that lipophilicity and van
der Waals energy were key factors for the proper binding of the ligand molecules with the
target receptor [49,50]. It is evident from the table that the lipophilicity of the compounds
DB12661, DB07642, DB01771 and DB07177 were highly favorable for the ligand binding.
Although two compounds, DB01711 and DB07177, showed better lipophilicity, the minimal
van der Waals interaction limits the total binding free energy of these compounds.

It should be noted that, except DB02849 and DB04841, most compounds in terms of
binding have been highly favored by van der Waals interaction energy. In particular, the
compounds DB12661 and DB07642 displayed a massive van der Waals interaction energy
value of −57.476 and −55.062 kcal/mol, respectively. Although these compounds show
limited coulombic potential, the maximum contribution of van der Waals interaction energy
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is responsible for the tight binding of these compounds with the MEK1 receptor. Moreover,
the total binding free energy values of these compounds, DB012661 and DB07642, were
much higher (>−80 kcal/mol), which is also higher than the other compounds investigated
in this analysis. Hence, we believe that the compounds DB012661 and DB07642 may more
tightly bind with the MEK1 receptor than the other compounds screened in our analysis.

Table 2. Molecular docking and binding free energy calculations of hit compounds against
MEK1 receptor.

Compound ID Docking Score
(kcal/mol)

∆Gbind
(kcal/mol)

∆Gbind
Coulomb

∆Gbind
Lipophilic

∆Gbind Solv
GB ∆Gbind vdW Ligand Strain

Energy

Reference −3.423 −46.137 −13.639 −32.888 32.888 −43.528 24.43
DB12661 −7.051 −87.013 −16.84 −46.647 31.692 −57.476 5.29
DB07642 −6.174 −83.845 −20.352 −42.431 28.151 −55.062 8.453
DB02366 −7.427 −76.925 −34.282 −36.488 39.865 −47.657 7.09
DB08251 −11.98 −75.956 −34.186 −24.74 27.909 −44.926 3.995
DB01771 −7.775 −75.093 −28.532 −45.543 38.739 −46.271 10.615
DB12847 −6.716 −66.948 −29.293 −28.799 31.254 −41.632 4.669
DB07177 −6.989 −65.876 −14.264 −51.153 31.763 −39.082 18.693
DB13174 −9.287 −64.939 −22.947 −21.409 20.618 −42.359 2.315
DB07125 −8.416 −63.963 −20.194 −26.628 25.206 −42.305 8.554
DB07773 −9.256 −61.255 −31.925 −29.541 32.325 −36.44 7.628
DB07546 −6.456 −61.064 −24.4 −37.67 35.031 −36.04 9.162
DB02849 −8.72 −59.793 −49.808 −16.914 42.084 −35.493 5.028
DB02709 −7.091 −59.576 −21.878 −29.309 21.114 −32.041 3.817
DB04241 −8.469 −57.965 −46.177 −23.207 30.706 −27.2 10.366

3.5. Structural Properties of Hit Compounds

The similarity between the ligand molecules was evaluated by mapping the pharma-
cophoric structure of the hit compounds. Here, we have used “2D structure alignment”
utility present in the maestro workspace to align the structure of the compound. Moreover,
we have predicted the ADME/T properties of the hit compounds using the QikProp mod-
ule available in the Schrödinger package. These results were incorporated in Table 3. Note
that these structures were aligned against the reference compound trametinib. Interestingly,
four hit compounds, such as trametinib, DB08251, DB02849, DB04241 and DB12847, had
pyridine as a common scaffold in their structures. Pyridine is an essential pharmacophore
and an extraordinary heterocyclic system in the realm of anti-cancer drug development [51].
It is also noted that the hit compounds displayed acceptable ADME/T values during
the QikProp analysis. The central nervous system activity prediction is one of the main
properties during the ADME/T prediction [52]. All the compounds except DB12661 and
DB07642 were exhibited at the in-active state, which is indicated by a CNS value of −2.
Moreover, the other properties, such as stars (acceptable range: 0–5) and HOA (acceptable
range: 1–3), were in the acceptable range in all the hit compounds.

Table 3. 2D structure of hit compounds with their predicted ADME properties.

DrugBank ID 2D Strucure Stars a CNS b QPlogS c HOA d

Reference
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at each binding site were more or less the same in site 1 and site 3. Since the binding site 
residues were dispersed larger in site 2, a few compounds, such as DB12661, DB02709, 
DB12847 and DB08251, were positioned differently from the other compounds. Most of 
the ligand molecules were bound tightly in site 1, as indicated by the better docking score 
in Table S3. Hence, the ligand binding conformations of the top hit compounds in site 1 
were analyzed (Figure 2). It is evident from the figure that all the hit compounds exhibited 
two hydrogen bond interactions with the MEK1 receptor, while the reference compound 
displayed three hydrogen bond interactions with the binding site of MEK1. The iodoali-
nine moiety of trametinib produces a hydrogen bond interaction with SER 194 of the 
MEK1 receptor. On the other hand, the cyclopropyl moiety of trametinib makes two hy-
drogen bond interactions with SER 194 and ASN 195 of the MEK1 receptor. Surprisingly, 
the quinazoline moiety of the compound DB07642 and methoxy phenyl group DB012661 
were producing interactions with LYS 97, which is also an important catalytic residue 
present in the rooftop of the MEK1 binding pocket. It is also noted that LYS 97 located in 
the β strand is responsible for the pairing of ATP phosphate to GLU 114 on an adjacent 
alpha helix [45]. Moreover, the oxygen atom linked with the pyrimidine group of DB12661 
makes a hydrogen bond interaction with MET 146, a hinge residue that connects the N 
and C lobes in the MEK1 receptor [53]. Most importantly, the quinazoline moiety of 
DB07642 forms an additional hydrogen bond interaction with activation loop residue, 
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3.6. Binding Mode Analysis

The binding frequencies of the top 14 compounds on the three different binding sites
were represented in Figure S2. It is notable that the binding positions of the compounds
at each binding site were more or less the same in site 1 and site 3. Since the binding site
residues were dispersed larger in site 2, a few compounds, such as DB12661, DB02709,
DB12847 and DB08251, were positioned differently from the other compounds. Most of
the ligand molecules were bound tightly in site 1, as indicated by the better docking score
in Table S3. Hence, the ligand binding conformations of the top hit compounds in site 1
were analyzed (Figure 2). It is evident from the figure that all the hit compounds exhibited
two hydrogen bond interactions with the MEK1 receptor, while the reference compound
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displayed three hydrogen bond interactions with the binding site of MEK1. The iodoalinine
moiety of trametinib produces a hydrogen bond interaction with SER 194 of the MEK1
receptor. On the other hand, the cyclopropyl moiety of trametinib makes two hydrogen
bond interactions with SER 194 and ASN 195 of the MEK1 receptor. Surprisingly, the
quinazoline moiety of the compound DB07642 and methoxy phenyl group DB012661 were
producing interactions with LYS 97, which is also an important catalytic residue present
in the rooftop of the MEK1 binding pocket. It is also noted that LYS 97 located in the β
strand is responsible for the pairing of ATP phosphate to GLU 114 on an adjacent alpha
helix [45]. Moreover, the oxygen atom linked with the pyrimidine group of DB12661 makes
a hydrogen bond interaction with MET 146, a hinge residue that connects the N and C lobes
in the MEK1 receptor [53]. Most importantly, the quinazoline moiety of DB07642 forms
an additional hydrogen bond interaction with activation loop residue, such as SER 212,
which plays a major role in the phosphorylation of MEK1. It is evident from the literature
that most of the MEK 1/2 ligands generate strong interactions with SER 212 [54]. It is
important to note that both the lead compounds are bound on the same pattern where the
known MEK inhibitors bind. For instance, rafemetinib and RO4987655 interacted with the
amino acid residues LYS97 and SER212 of the MEK receptor. On the other hand, CI-1040,
PD-0325901, cobimetinib, TAK-733 and GDC-0623 were successfully involved in contact
with SER212 of the MEK receptor [6,45]. Based on these pieces of evidence, we are certain
that compounds such as DB07642 and DB12661 make strong contact with the functionally
important amino acid residues of MEK.

In general, the compound DB012661, also known as urapidil, acts as an antihyper-
tensive drug that inhibits the activity of α-adrenoceptor. It is worth noting that the
compound urapidil also resulted in substantial inhibitory activity in several cancer cell
lines [55]. On the other hand, the compound DB07642 (5-[1-(2-Fluorobenzyl)piperidin-
4-yl]methoxyquinazoline-2,4-diamine) contains crucial pharmacophores. For instance,
piperidine, a heterocyclic pharmacophore, has immense importance in the field of drug
development. The piperidine derivatives effectively block the several kinase targets (ERK 2,
VEGFR 2 and Alb 1) during the in vitro assessment in the liver cancer cell line (HepG2) [56].
Quinazoline is another important pharmacophore that is present in the many approved
anticancer drugs, such as erlotinib and vandetanib [57]. Overall, we believe that these
compounds may potentially block the activation of MEK, thereby reducing the risk of many
malignant effects.

3.7. Binding Analysis of Lead Compounds with PIM1

The binding abilities of the lead compounds were also tested on the PIM1 receptor,
which is frequently cross-talked with the MAPK pathway. Molecular docking and prime-
MM/GBSA analysis of the lead compounds tested against PIM1 were tabulated in Table S5.
It is notable that the recently identified dual inhibitor (MEK1 and PIM1) KZ-02 was used as
the reference compound in this analysis. The compound KZ-02 obtained a docking score
of −4.892 kcal/mol and a binding free energy value of −50.61 kcal/mol. It is notable that
both lead compounds displayed better docking scores and binding free energy values than
the PIM1 reference compound. The interactions of the lead compounds with the PIM1
receptor were represented in Figure S3. Interestingly, the compound DB07642 displayed
three hydrogen bond interactions and 2 pi-pi stacking with the PIM1 receptor. This implies
the greater binding potential of the compound DB07642 with the PIM1 receptor. Altogether,
we hypothesize that the lead compounds specified in this study may significantly inhibit
the activation of both MEK1 and PIM1.
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3.8. SIE-Based Free Energy of Binding

Since molecular recognition and drug binding have been recognized as dynamic
processes, it is thus particularly important to elaborate on the protein–ligand binding
capabilities in a presumed dynamic system. To this end, the free energy of binding (∆Gbind)
calculations based on the solvated interaction energy (SIE) were applied and theoretically
used to predict the inhibitory activity as it is directly proportional to an experimental
inhibitory parameter, Kd (∆Gbind = −RTln1/Kd) [58]. Here, the ∆Gbind values of two
focused compounds extracted from the last 10 ns (90–100 ns) snapshots, which were
considered to be reaching their equilibrated state (Figure S4), were listed in Table 4 in
comparison to the trametinib. The calculated molecular mechanics calculations showed that
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Van der Waal (vdW) is the main interactive force contributing to the process of molecular
complexation of all the focused compounds as well as trametinib (>five to six-fold than
electrostatic interaction energy), which corresponds to the molecular docking study by
Glide XP. Apart from that, the average ∆Gbind values of the focused compounds and
a reference drug were nearly the same, within the range of −8.4 to −7.5 kcal/mol. In
particular, DB12661 possessed a slightly lower ∆Gbind when compared to the trametinib
(∆Gbind of −8.41 and −8.17 kcal/mol, respectively), suggesting a minutely higher binding
strength than the known drug. On the contrary, compound DB07642 exhibited a slightly
higher ∆Gbind value (∆Gbind of −7.52 kcal/mol), which may imply a slight reduction in the
ligand binding capability. However, we believed that these two screened compounds could
be thermodynamically able to bind to the MEK1 at the ATP-binding site, and both are of
particular interest to be subjected to next-step experimental studies, for which DB12661
and DB07642 were rationally considered as a priority and a second top, accordingly.

Table 4. Average ∆Gbind values (kcal/mol) of focused compounds as well as trametinib in complex
with MEK1 calculated by the SIE method using α = 0.105, γ = 0.013 and C = −2.89, respectively.

Compounds
Energy Components

EvdW Eele Reaction Field Cavity ∆Gbind

Trametinib −51.05 ± 0.34 −9.58 ± 0.20 19.25 ± 0.26 −9.05 ± 0.07 −8.17 ± 0.04
DB12661 −52.08 ± 0.32 −4.29 ± 0.17 12.18 ± 0.24 −8.52 ± 0.05 −8.41 ± 0.04
DB07642 −43.91 ± 0.37 −6.90 ± 0.21 14.62 ± 0.36 −8.02 ± 0.06 −7.52 ± 0.04

3.9. Key Binding Residues

In order to elucidate the key binding amino acid residues within the ATP-binding
pocket located at the ATPase domain of MEK1, the decomposition free energy (∆Gbind

residue)
based upon the MM/GBSA method was computationally predicted, and the total con-
tribution of each amino acid of the known drug and focused complexes was plotted, in
which the negative and positive decomposition free energy values manifested the ligand
stabilization and destabilization, respectively, as illustrated in Figure 3. It was found that
the contributing amino acid residues observed in all the complexes were mainly stabilized
through van der Waals (vdW) interactions rather than electrostatic force. This indicates
that these two candidate compounds may rely on a mechanism of inhibitory action similar
to trametinib. In particular, the amino acids that largely contributed towards the tram-
etinib’s binding (∆G < −1.0 kcal/mol) include ASN78, VAL82, LYS97, SER150, SER194,
ASN195, LEU197 and ASP208, of which the SER194 and ASN195 were also found from
the docking pose. Among these, ASN78, LYS97 and ASN195 played a pivotal role in the
complex stabilization (∆G < −2.0 kcal/mol). In the case of the candidate compounds, it was
found that the key amino acid residues contributing to the DB07642 binding are mostly the
same residues responsible for trametinib’s binding (ASN78, VAL82, LYS97 and ASN195);
one additional residue, M143, was observed. Apart from that, compound DB12661 was
primarily stabilized through hydrophobic residue of VAL82 (∆Gbind = −2.73 kcal/mol),
while seven other residues (LEU74, GLY80, VAL81, LYS97, HIS145, MET146 and LEU197)
were also found in the stabilization of the complex via vdW interactions with ∆Gbind

residue in
the range of −2.0 to −1.0 kcal/mol. Nevertheless, one negatively charged residue, ASP208,
was found to be slightly destabilized; that was probably due to the charge–charge repulsion
in the complex system. To sum up, with a higher number of residues largely contributing
to DB12661 binding, this compound, as expected, possessed the lowest vdW interactive
and total binding free energy (Table 4), where the set of vdW interactions became the main
driving force towards the complex formation. On the contrary, some contributing amino
acid residues (observed in both trametinib and DB12661) may be somewhat lost during
the MEK1–DB07642 complex formation, resulting in the slightly lower ∆Gbind when com-
pared to the trametinib. We noted that these results are correlated well with the calculated
SIE-based ∆Gbind and each energy component, as listed in Table 4.
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3.10. Ligand–Protein Hydrogen Bonding

Hydrogen bonding is one of the non-covalent interactions observed in the formation
of protein–ligand complexes and could influence the ligand binding strength. Hence, the
intermolecular hydrogen bond interactions were investigated in terms of the percentage of
occupations and plotted in Figure 4. As expected, a few strong hydrogen bonds could be
observed in the screened compounds and even the trametinib since they are intrinsically
hydrophobic ligands. The reference drug trametinib created a strong hydrogen bond with
ASN195 (65%), which was also observed by the docking pose (Figure 2). In addition,
ALA76 and ASN78 moderately stabilized the drug through 45% and 44.5% of the hydrogen
bond occupations, while ASN78 could additionally interact with the drug through 35% of
it. For the MEK1–DB12661 complex, we found that the H atom in the backbone (-NH2) of
MET146 exhibited a very strong hydrogen bond, while the polar H atom in the imidazole
ring of HIS145 showed a moderate level. In the case of DB07642, there are three amino
acid residues stabilizing the DB07642 binding, which include ASN195, ASP208 and SER194.
Among these, the H atom in the amino side chain of ASN195 displayed the highest chance
of hydrogen bond occurrence with percentage occupations of 26%, while the other two
residues merely exhibited a weak hydrogen bond (≈17%). Altogether, these obtained results
suggested that the intermolecular hydrogen bond interactions did not play a major role
responsible for the complex stabilization observed in all the studied compounds, including
the trametinib. On the other hand, the ligand binding within the ATP-binding pocket of
MEK1 was predominantly contributed by vdW interactions, as discussed previously.
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4. Conclusions

In conclusion, the DrugBank compounds were screened through the different compu-
tational approaches to discover the potential MEK inhibitors. Initially, molecular docking
and various scoring functions were implemented to screen the active molecules against the
MEK protein. Overall, the screening demonstrated that compounds such as DB07642 and
DB12661 were able to tightly bind with the MEK receptor. Notably, the presence of crucial
pharmacophore moieties in the hit compounds gives additional support to their inhibitory
activity. In addition, the modes of action of these compounds were comprehended through
the connection of the ligand with the MEK active segment residues. Most importantly,
the compounds’ inhibitory activity was also examined with the PIM1 receptor since it
upregulated during the action of several MEK inhibitors. Further, the MD simulation
and end-point free energy calculation validated the binding mode of the lead compounds
with the MEK receptor. Thus, we hypothesize that further experimental validation of our
research findings will help to level up the cancer treatment in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14010059/s1. Table S1: Predicted pKa values of
each amino acid residues at different conditions. Table S2: Compounds used for validation of docking
and RF-Score-VS. Table S3: Multiple screening analysis of the compounds against MEK1. Table S4:
Three-fold validation on glide docking analysis of hit compounds. Table S5: Molecular docking
and binding free energy calculations of top hit compounds against PIM1 receptor. Figure S1: ROC
analysis of screening methods. (a) Docking; (b) RF-Score-VS. Figure S2: Binding frequency of the
ligand molecules on top three predicted binding sites. The coloured dots represent the binding
sites: site 1 (red), site 2 (orange), and site 3 (yellow). The coloured chemical structures depict ligand
molecules binding positions on various binding sites. Ligand bound in site 1 (purple); site 2 (green);
site 3 (sky blue). Figure S3: Ligand interaction diagram of hit compounds (a) KZ-02 (Reference);
(b) DB012661; (c) DB07642 with PIM1 receptor. Figure S4: Root-mean-square displacement (RMSD)
plot for the backbone amino acid residues within a 5-Å sphere around the ligand. The data were
derived from the three independent runs with different initial velocities.

Author Contributions: M.K.T. performed the data collection, preparation and virtual screening. U.S.
performed the molecular dynamic simulation and binding free energy analysis. M.K.T. and U.S.
performed the result analysis and wrote the initial version of manuscript. R.K. and T.R. conceived
this study and are responsible for the overall design, interpretation, manuscript preparation, and
communication. All authors have read and agreed to the published version of the manuscript.

Funding: T.R. acknowledge the supports from the Thailand Research Fund (grant number RSA6280085).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors (M.K.T. and R.K.) thank the management of Vellore Institute of
Technology. The author (U.S. and T.R) would like to thank the Science Achievement Scholarship
(SAST) of Thailand for the Ph.D. scholarship, the 90th Anniversary of Chulalongkorn University
Fund (Ratchadaphiseksomphot), and the Overseas Presentations of Graduate Level Academic Thesis
from Graduate School.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Bradley, S.H.; Kennedy, M.P.T.; Neal, R.D. Recognising lung cancer in primary care. Adv. Ther. 2019, 36, 19–30. [CrossRef] [PubMed]
2. Malik, P.S.; Raina, V. Lung cancer: Prevalent trends & emerging concepts. Indian J. Med. Res. 2015, 141, 5–7. [PubMed]
3. Li, S.; Xu, S.; Liang, X.; Xue, Y.; Mei, J.; Ma, Y.; Liu, Y.; Liu, Y. Nanotechnology: Breaking the current treatment limits of lung

cancer. Adv. Healthc. Mater. 2021, 10, 2100078. [CrossRef]
4. Yuan, M.; Huang, L.-L.; Chen, J.-H.; Wu, J.; Xu, Q. The emerging treatment landscape of targeted therapy in non-small-cell lung

cancer. Signal Transduct. Target. 2019, 4, 61. [CrossRef]

169



Pharmaceutics 2022, 14, 59

5. Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer
2007, 7, 169–181. [CrossRef] [PubMed]

6. Han, J.; Liu, Y.; Yang, S.; Wu, X.; Li, H.; Wang, Q. Mek inhibitors for the treatment of non-small cell lung cancer. J. Hematol. Oncol.
2021, 14, 1. [CrossRef]

7. Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-RAS (G12C) inhibitors allosterically control GTP affinity and
effector interactions. Nature 2013, 503, 548–551. [CrossRef]

8. Yaeger, R.; Corcoran, R.B. Targeting alterations in the RAF–MEK pathway. Cancer Discov. 2019, 9, 329–341. [CrossRef] [PubMed]
9. Hegedüs, L.; Okumus, Ö.; Livingstone, E.; Baranyi, M.; Kovács, I.; Döme, B.; Tóvári, J.; Bánkfalvi, Á.; Schadendorf, D.;

Aigner, C. Allosteric and ATP-competitive MEK-inhibition in a novel spitzoid melanoma model with a RAF-and phosphorylation-
independent mutation. Cancers 2021, 13, 829. [CrossRef]

10. Heigener, D.F.; Gandara, D.R.; Reck, M. Targeting of MEK in lung cancer therapeutics. Lancet Respir. Med. 2015,
3, 319–327. [CrossRef]

11. Zhao, Y.; Adjei, A.A. The clinical development of MEK inhibitors. Nat. Rev. Clin. Oncol. 2014, 11, 385–400. [CrossRef]
12. Menzies, A.M.; Long, G.V. Dabrafenib and trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin.

Cancer Res. 2014, 20, 2035–2043. [CrossRef]
13. Odogwu, L.; Mathieu, L.; Blumenthal, G.; Larkins, E.; Goldberg, K.B.; Griffin, N.; Bijwaard, K.; Lee, E.Y.; Philip, R.; Jiang, X. Fda

approval summary: Dabrafenib and trametinib for the treatment of metastatic non-small cell lung cancers harboring BRAF V600E
mutations. Oncologist 2018, 23, 740. [CrossRef]

14. Renouf, D.J.; Velazquez-Martin, J.P.; Simpson, R.; Siu, L.L.; Bedard, P.L. Ocular toxicity of targeted therapies. J. Clin. Oncol. 2012,
30, 3277–3286. [CrossRef]

15. Jin, J.; Guo, Q.; Xie, J.; Jin, D.; Zhu, Y. Combination of MEK inhibitor and the JAK2-STAT3 pathway inhibition for the therapy of
colon cancer. Pathol. Oncol. Res. 2019, 25, 769–775. [CrossRef]

16. Sato, H.; Yamamoto, H.; Sakaguchi, M.; Shien, K.; Tomida, S.; Shien, T.; Ikeda, H.; Hatono, M.; Torigoe, H.; Namba, K.; et al.
Combined inhibition of MEK and PI3K pathways overcomes acquired resistance to EGFR-TKIs in non-small cell lung cancer.
Cancer Sci. 2018, 109, 3183–3196. [CrossRef]

17. Cortes, J.; Tamura, K.; DeAngelo, D.J.; De Bono, J.; Lorente, D.; Minden, M.; Uy, G.L.; Kantarjian, H.; Chen, L.S.; Gandhi, V. Phase
I studies of azd1208, a proviral integration moloney virus kinase inhibitor in solid and haematological cancers. Br. J. Cancer 2018,
118, 1425–1433. [CrossRef] [PubMed]

18. Le, X.; Antony, R.; Razavi, P.; Treacy, D.J.; Luo, F.; Ghandi, M.; Castel, P.; Scaltriti, M.; Baselga, J.; Garraway, L.A. Systematic func-
tional characterization of resistance to PI3K inhibition in breast cancer. Cancer Discov. 2016, 6, 1134–1147. [CrossRef] [PubMed]

19. Swinney, D.C.; Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 2011, 10, 507–519. [CrossRef]
20. Sohraby, F.; Bagheri, M.; Aryapour, H. Performing an in silico repurposing of existing drugs by combining virtual screening and

molecular dynamics simulation. In Computational Methods for Drug Repurposing; Springer: Cham, Switzerland, 2019; pp. 23–43.
21. Wójcikowski, M.; Ballester, P.J.; Siedlecki, P. Performance of machine-learning scoring functions in structure-based virtual

screening. Sci. Rep. 2017, 7, 46710. [CrossRef] [PubMed]
22. Wurz, R.P.; Sastri, C.; D’Amico, D.C.; Herberich, B.; Jackson, C.L.; Pettus, L.H.; Tasker, A.S.; Wu, B.; Guerrero, N.; Lipford, J.R.

Discovery of imidazopyridazines as potent PIM-1/2 kinase inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 5580–5590. [CrossRef]
23. Protein Data Bank; Nakae, S.; Kitamura, M.; Shirai, T.; Tada, T. Structure of the Human Mitogen-Activated Protein Kinase Kinase

1 (MEK1). 2014. Available online: https://datamed.org/display-item.php?repository=0002&id=5952ebec5152c64c3b126f08&
query=MAP2K1 (accessed on 3 May 2021).

24. Rohini, K.; Ramanathan, K.; Shanthi, V. Multi-dimensional screening strategy for drug repurposing with statistical framework—
A new road to influenza drug discovery. Cell Biochem. Biophys. 2019, 77, 319–333. [CrossRef] [PubMed]

25. Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 2009, 49,
377–389. [CrossRef] [PubMed]

26. Patschull, A.O.; Gooptu, B.; Ashford, P.; Daviter, T.; Nobeli, I. In silico assessment of potential druggable pockets on the surface of
α1-antitrypsin conformers. PLoS ONE 2012, 7, e36612. [CrossRef] [PubMed]

27. Schrödinger. Sitemap, Schrödinger Release-2020; Schrödinger: New York, NY, USA, 2020.
28. Zhou, H.; Wang, C.; Deng, T.; Tao, R.; Li, W. Novel urushiol derivatives as HDAC8 inhibitors: Rational design, virtual screening,

molecular docking and molecular dynamics studies. J. Biomol. Struct. Dyn. 2018, 36, 1966–1978. [CrossRef]
29. Borkotoky, S.; Meena, C.K.; Murali, A. Interaction analysis of T7 RNA polymerase with heparin and its low molecular weight

derivatives—An in silico approach. Bioinform. Biol. Insights 2016, 10, 155–166. [CrossRef]
30. Ballester, P.J.; Mitchell, J.B. A machine learning approach to predicting protein–ligand binding affinity with applications to

molecular docking. Bioinformatics 2010, 26, 1169–1175. [CrossRef]
31. Williams, C. Reverse fingerprinting, similarity searching by group fusion and fingerprint bit importance. Mol. Divers. 2006,

10, 311–332. [CrossRef]
32. Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput.

Chem. 2004, 25, 1157–1174. [CrossRef]
33. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for

simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]

170



Pharmaceutics 2022, 14, 59

34. Kammarabutr, J.; Mahalapbutr, P.; Nutho, B.; Kungwan, N.; Rungrotmongkol, T. Low susceptibility of asunaprevir towards
R155K and D168A point mutations in HCV NS3/4A protease: A molecular dynamics simulation. J. Mol. Graph. 2019, 89,
122–130. [CrossRef] [PubMed]

35. Mahalapbutr, P.; Wonganan, P.; Chavasiri, W.; Rungrotmongkol, T. Butoxy mansonone G inhibits STAT3 and AKT signaling
pathways in non-small cell lung cancers: Combined experimental and theoretical investigations. Cancers 2019, 11, 437. [CrossRef]

36. Meeprasert, A.; Hannongbua, S.; Rungrotmongkol, T. Key binding and susceptibility of NS3/4A serine protease inhibitors against
hepatitis C virus. J. Chem. Inf. Model. 2014, 54, 1208–1217. [CrossRef] [PubMed]

37. Nutho, B.; Mahalapbutr, P.; Hengphasatporn, K.; Pattaranggoon, N.C.; Simanon, N.; Shigeta, Y.; Hannongbua, S.;
Rungrotmongkol, T. Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic
insights into the inhibitory mechanisms. Biochemistry 2020, 59, 1769–1779. [CrossRef] [PubMed]

38. Nutho, B.; Rungrotmongkol, T. Binding recognition of substrates in NS2B/NS3 serine protease of zika virus revealed by molecular
dynamics simulations. J. Mol. Graph. Model. 2019, 92, 227–235. [CrossRef]

39. Darden, T.; York, D.; Pedersen, L. Particle mesh ewald: An N·log(N) method for ewald sums in large systems. J. Chem. Phys. 1993,
98, 10089–10092. [CrossRef]

40. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with
constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [CrossRef]

41. Uberuaga, B.P.; Anghel, M.; Voter, A.F. Synchronization of trajectories in canonical molecular-dynamics simulations: Observation,
explanation, and exploitation. J. Chem. Phys. 2004, 120, 6363–6374. [CrossRef]

42. Berendsen, H.J.; Postma, J.V.; van Gunsteren, W.F.; DiNola, A.R.H.J.; Haak, J.R. Molecular dynamics with coupling to an external
bath. J. Chem. Phys. 1984, 81, 3684–3690. [CrossRef]

43. Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; et al.
Solvated interaction energy (SIE) for scoring protein−ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf.
Model. 2007, 47, 122–133. [CrossRef]

44. Ghattas, M.A.; Raslan, N.; Sadeq, A.; Al Sorkhy, M.; Atwater, N. Druggability analysis and classification of protein tyrosine
phosphatase active sites. Drug Des. Dev. Ther. 2016, 10, 3197. [CrossRef] [PubMed]

45. Wu, P.-K.; Park, J.-I. Mek1/2 inhibitors: Molecular activity and resistance mechanisms. Semin. Oncol. 2015, 42, 849–862. [CrossRef]
46. Gentile, F.; Agrawal, V.; Hsing, M.; Ton, A.-T.; Ban, F.; Norinder, U.; Gleave, M.E.; Cherkasov, A. Deep docking: A deep learning

platform for augmentation of structure based drug discovery. ACS Cent. Sci. 2020, 6, 939–949. [CrossRef]
47. Backman, T.W.; Cao, Y.; Girke, T. Chemmine tools: An online service for analyzing and clustering small molecules. Nucleic Acids

Res. 2011, 39, W486–W491. [CrossRef]
48. Tripathi, S.K.; Muttineni, R.; Singh, S.K. Extra precision docking, free energy calculation and molecular dynamics simulation

studies of CDK2 inhibitors. J. Theor. Biol. 2013, 334, 87–100. [CrossRef]
49. Abdel-Hamid, M.K.; McCluskey, A. In silico docking, molecular dynamics and binding energy insights into the bolinaquinone-

clathrin terminal domain binding site. Molecules 2014, 19, 6609–6622. [CrossRef]
50. Singh, K.D.; Muthusamy, K. Molecular modeling, quantum polarized ligand docking and structure-based 3D-QSAR analysis of

the imidazole series as dual AT1 and ETa receptor antagonists. Acta Pharmacol. Sin. 2013, 34, 1592–1606. [CrossRef] [PubMed]
51. Sahu, R.; Mishra, R.; Kumar, R.; Mazumder, A.; Kumar, A. Pyridine moiety: Recent advances in cancer treatment. Indian J. Pharm.

Sci. 2021, 83, 162–185. [CrossRef]
52. Miles, J.A.; Ng, J.H.; Sreenivas, B.Y.; Courageux, C.; Igert, A.; Dias, J.; McGeary, R.P.; Brazzolotto, X.; Ross, B.P. Discovery of

drug-like acetylcholinesterase inhibitors by rapid virtual screening of a 6.9 million compound database. Chem. Biol. Drug Des.
2021, 97, 1048–1058. [CrossRef]

53. Roskoski, R., Jr. MEK1/2 dual-specificity protein kinases: Structure and regulation. Biochem. Biophys. Res. Commun. 2012, 417,
5–10. [CrossRef] [PubMed]

54. Zhao, Z.; Xie, L.; Bourne, P.E. Insights into the binding mode of MEK Type-III inhibitors. A step towards discovering and
designing allosteric kinase inhibitors across the human kinome. PLoS ONE 2017, 12, e0179936. [CrossRef]

55. Varalda, M.; Antona, A.; Bettio, V.; Roy, K.; Vachamaram, A.; Yellenki, V.; Massarotti, A.; Baldanzi, G.; Capello, D. Psychotropic
drugs show anticancer activity by disrupting mitochondrial and lysosomal function. Front. Oncol. 2020, 10, 2148. [CrossRef]

56. Jin, F.; Gao, D.; Wu, Q.; Liu, F.; Chen, Y.; Tan, C.; Jiang, Y. Exploration of N-(2-aminoethyl) piperidine-4-carboxamide as
a potential scaffold for development of VEGFR-2, ERK-2 and ABL-1 multikinase inhibitor. Bioorg. Med. Chem. 2013, 21,
5694–5706. [CrossRef] [PubMed]

57. Ahmad, I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MedChemComm 2017,
8, 871–885.

58. Du, X.; Li, Y.; Xia, Y.L.; Ai, S.M.; Liang, J.; Sang, P.; Ji, X.L.; Liu, S.Q. Insights into protein-ligand interactions: Mechanisms, models,
and methods. Int. J. Mol. Sci. 2016, 17, 144. [CrossRef] [PubMed]

171





Citation: Li, A.; Chen, J.-Y.; Hsu,

C.-L.; Oyang, Y.-J.; Huang, H.-C.;

Juan, H.-F. A Single-Cell

Network-Based Drug Repositioning

Strategy for Post-COVID-19

Pulmonary Fibrosis. Pharmaceutics

2022, 14, 971. https://doi.org/

10.3390/pharmaceutics14050971

Academic Editors: Lucret,ia Udrescu,

Ludovic Kurunczi, Paul Bogdan and

Mihai Udrescu

Received: 26 February 2022

Accepted: 29 April 2022

Published: 30 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

A Single-Cell Network-Based Drug Repositioning Strategy for
Post-COVID-19 Pulmonary Fibrosis
Albert Li 1 , Jhih-Yu Chen 1 , Chia-Lang Hsu 2,3 , Yen-Jen Oyang 1, Hsuan-Cheng Huang 4,*
and Hsueh-Fen Juan 1,5,6,*

1 Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University,
Taipei 106, Taiwan; albert0325162@gmail.com (A.L.); a402250025@gmail.com (J.-Y.C.);
yjoyang@csie.ntu.edu.tw (Y.-J.O.)

2 Department of Medical Research, National Taiwan University Hospital, Taipei 106, Taiwan;
chialanghsu@ntuh.gov.tw

3 Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 106, Taiwan
4 Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
5 Department of Life Science, National Taiwan University, Taipei 106, Taiwan
6 Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan
* Correspondence: hsuancheng@nycu.edu.tw (H.-C.H.); yukijuan@ntu.edu.tw (H.-F.J.)

Abstract: Post-COVID-19 pulmonary fibrosis (PCPF) is a long-term complication that appears in
some COVID-19 survivors. However, there are currently limited options for treating PCPF patients.
To address this problem, we investigated COVID-19 patients’ transcriptome at single-cell resolution
and combined biological network analyses to repurpose the drugs treating PCPF. We revealed a
novel gene signature of PCPF. The signature is functionally associated with the viral infection and
lung fibrosis. Further, the signature has good performance in diagnosing and assessing pulmonary
fibrosis. Next, we applied a network-based drug repurposing method to explore novel treatments for
PCPF. By quantifying the proximity between the drug targets and the signature in the interactome,
we identified several potential candidates and provided a drug list ranked by their proximity. Taken
together, we revealed a novel gene expression signature as a theragnostic biomarker for PCPF by
integrating different computational approaches. Moreover, we showed that network-based proximity
could be used as a framework to repurpose drugs for PCPF.

Keywords: single-cell RNA sequencing; COVID-19; pulmonary fibrosis; biological networks;
drug repurposing

1. Introduction

Since 2019, the outbreak of the COVID-19 pandemic has caused millions of infections
globally. Some patients may suffer from sequelae of the viral infection [1]. Post-COVID-19
pulmonary fibrosis (PCPF) is one of the long-term complications being emphasized re-
cently [1]. Considering the medical treatments for this disease are limited, it is crucial to
leverage pharmacogenomic data to repurpose drugs treating this disease. In this study, we
combine single-cell analysis, machine learning, and network biology to identify a novel
transcriptomic signature. We show that this signature is promising in assessing the disease
and surveying drugs that can potentially treat pulmonary fibrosis.

Previously, network-based methods have successfully repurposed drugs treating
several diseases [2–5]. Based on the property of biological networks, drugs with smaller
proximity tend to be more effective than those with larger proximity [3]. However, since
the choice of disease-related genes will largely impact results and inferences [6], whether
the network-based approach can be applied to PCPF needs further verification.

Single-cell RNA-sequencing analysis (scRNA-seq) has been used to investigate the
host response in severe COVID-19 cases [7]. Melms et al. discovered that two cell types,
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pathological and intermediate-pathological fibroblasts, are associated with the pathogene-
sis of pulmonary fibrosis; these cells strongly express markers of pathological fibroblasts
(CTHRC1) and pathological extracellular matrix (COL1A1 and COL3A1) [7]. They also
revealed a clear relationship between fibrosis score and mortality, highlighting the im-
portance of pulmonary fibrosis in patients’ survival. Although the roles of pathological
fibroblasts have been elucidated, whether these cells are applicable in clinical diagnosis,
severity assessment, and treatment still needs further investigation.

Here, we aim to reveal a novel signature of PCPF by interrogating scRNA-seq data.
We showed that the signature could be used to diagnose and assess pulmonary fibrosis.
Further, this signature can also be used to repurpose and prioritize potentially effective
drugs treating PCPF.

2. Materials and Methods
2.1. Construction and Evaluation of the PCPF Signature

The preprocessed single-cell gene expression profile underwent linearly dimensional
reduction by principal component analysis (PCA). We used the Louvain algorithm to
cluster the cells on the K-nearest neighbors (KNN) graph, which was constructed on the
principal component (PC) space. We referred to the cell (sub)type information provided by
Melms et al. [7]. We annotated each cell cluster based on the majority of the cell subtype
in each cluster. Next, we made a case-control comparison to calculate the proportion
difference in different cell clusters. To identify the characters of the cluster with the greatest
proportional changes, we conducted differential gene expression analysis to compare the
gene expression profiles of the cases and controls. We selected the top 200 up-regulated
differentially expressed genes (DEGs) as the PCPF signature. We defined the signature
score as the mean of the signature gene expression. We implemented the single-cell analysis
with Scanpy [8].

We used DAVID (Available online: https://david.ncifcrf.gov/; (accessed on July 2021)) [9]
to infer the signature-related biological functions. We selected the Benjamini−Hochberg pro-
cedure for the adjustment of multiple hypothesis testing.

2.2. Support Vector Machine (SVM)

Samples from GSE32537 underwent a random selection where 80% of samples were
used for model training and the remainder for testing. A non-linear decision boundary,
radial kernel function, was used to maximize the margin M that delineates two different
classes (i.e., cases and controls). Ten-fold cross-validation was used to select optimal tuning
parameters C and γ, where C determines the tolerance of violation to the margin and
γ defines how far the support vectors should be taken. We compared the SVM values
between cases and controls in the testing dataset (Wilcoxon rank-sum test). The procedure
was implemented with the R package e1071.

2.3. Principal Component Regression

Observations from GSE32537 underwent random sampling where 2/3 of samples
were used for model training, and the remaining samples were used for testing. Expression
levels of genes within the signature were dimensionally reduced to PCs. We used PCs
as features to predict DLCO and FVC. Suppose there are m observations, y represents
the response vector in Rm, and n is the total number of PCs. We composed a design
matrix Pm × (k+1) with a constant column and the first k PCs, and fitted a linear regression
model as:

y = Pβ+ ε (1)

With the lowest loss (mean square error, MSE), where β ∈ Rk+1 is the coefficient
vector, ε ∈ Rm is the error vector, and k ∈ [1, n]. Ten-fold cross-validation was used
to assess the models for different k. Since the cut-offs of abnormal DLCO and FVC (%
predicted) are typically set at 75% and 80% [10], respectively, we filtered out samples
beyond those thresholds. The testing dataset was used to predict clinical traits (DLCO and
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FVC). Correlation analysis (Pearson’s r) was conducted to assess the association between
predicted and observed values. We implemented the procedure with the R package pls [11].

2.4. Calculation of Network-Based Proximity

Proximity is the shortest path length between two sets of nodes (drug targets and
disease-related proteins) in the interactome. Suppose that T is the set of protein target(s) of
a drug, D is the set of proteins relating to the disease, and l(t, d) is the shortest path length
between node t and d. Therefore, the shortest proximity (ds) is defined as follows:

ds =
1
||T|| ∑

t ∈T

1
||D|| ∑

d ∈ D
l (t, d) ∀ t ∈ T, d ∈ D (2)

To reduce the degree effect in proximity, we calculated the relative proximity Zds by
stratifying the nodes according to their degrees. Specifically, nodes in the interactome were
firstly arranged according to node degree and assigned to bins sequentially, where each bin
can at most contain 100 nodes. Here, nodes in each bin will have similar, if not identical,
degrees. Second, we randomly selected nodes from the same bin as nodes in the set T
and D, then computed their shortest proximity. The procedure was iterated 100 times to
obtain the mean (µds) and standard deviation (σds) of ds. The relative proximity (Zds) is
defined as:

Zds =
ds− µds
σds

(3)

3. Results
3.1. An Overview of the Analytical Pipeline

The aims of this study are to discover a novel PCPF signature and leverage the network-
based drug repurposing method to explore medications treating PCPF. The analytical
pipeline is shown in Figure 1. We first identify the cell (sub)types and annotate cell clusters.
We next construct the PCPF signature and evaluate its roles in diagnosing and assessing
pulmonary fibrosis. Finally, we use a network-based method to explore effective treatment
for PCPF.
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methods. DEA: differential expression analysis; PCR: principal component regression; SVM: support
vector machine.
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3.2. Identifying PCPF-Related Cell Clusters at the Single-Cell Level

To explore cell clusters contributing to PCPF, we first investigated lung tissues on the
dimensionally-reduced 2D plane (Figure 2A). To discover which cell cluster is mainly asso-
ciated with PCPF, we conducted a case-control comparison on each cell cluster to compare
their proportional differences (Figure 2B). We then noticed that cluster 12, pathological
fibroblasts (PFBs), has the most considerable difference (Figure 2C). Therefore, we posited
that PFBs play crucial roles in PCPF pathogenesis and further explored their clinical impact.
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Figure 2. Single-cell transcriptome analysis of the lung tissues in COVID-19 cases. (A) Single-cell
analysis of 116,314 cells from lung tissues. Nineteen cell clusters were identified and annotated
based on the cell (sub)types provided by the literature [7]. (B) Visualization of the proportional
difference of cells between COVID-19 patients and healthy controls. (C) Comparison of cluster 12
(PFBs) proportion between COVID-19 patients and healthy controls. (D) Differentially expressed
gene analysis of cluster 12. Up-regulated and down-regulated genes are highlighted in red and
blue, respectively. (E) Functional enrichment analysis of the differentially expressed genes. Enriched
biological processes are shown in a bar plot. pFB: pathological fibroblast. PCPF: post-COVID-19
pulmonary fibrosis.
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3.3. Comparison of Pathological Fibroblasts (PFBs) to Other Cell Types

To deduce the roles of PFBs in PCPF, we compared the gene expression profile be-
tween PFBs and other cells (Figure 2D and Supplementary Figure S1). To infer the bi-
ological functions in which DEGs are involved, we performed a functional enrichment
analysis to identify the enriched biological processes (BP) in PFBs (Figure 2E). We found
that viral transcription is the most enriched term, followed by fibrosis formation (e.g.,
extracellular matrix organization and collagen fibril organization). The DEGs derived
from PFBs show meaningful and related biological functions, suggesting that PFBs may
contribute to PCPF pathogenesis. Therefore, we constructed a transcriptome signature
(Supplementary Table S1) to represent the distinct expression profile of these PFBs and
further explored the roles of the signature on pulmonary fibrosis patients’ outcomes.

3.4. Difference in PFB Signature between the Patients and Healthy Controls

To further discover the signature derived from the scRNA-seq of COVID-19 samples,
we externally validated the PFB signature in another cohort, comprising 119 idiopathic
pulmonary fibrosis (IPF) patients and 50 healthy controls [12]. IPF patients and healthy
people have a distinct signature pattern (Figure 3A,B). Next, we examined whether patients’
symptoms (SGRQ) and lung function (FVC and DLCO) could be clearly visualized within
the two main PCs as well. DLCO and FVC show an increasing trend from the top left to
the bottom in the first two principal component dimensions (Figure 3C,D), suggesting that
patients with different IPF severity are dissimilar in terms of their signature. Although
not as clear as that in lung function, the SGRQ trend is also similar, where more severe
patients appeared in the top left, and less impaired patients appeared in the bottom right
(Figure 3E).
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Figure 3. Discovery of distinct expression of the signature in pulmonary fibrosis patients.
(A) Hierarchical clustering of samples based on the signature expression. Heatmap values are
the scaled gene expression. (B) Visualization of patients and controls in the two main principal
components. (C–E) Visualization of DLCO (C), FVC (D), and SGRQ (E) in the two main principal
components. DLCO: diffusing capacity for carbon monoxide; FVC: forced vital capacity; SGRQ: St.
George’s Respiratory Questionnaire.
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3.5. The Signature Can Be Used in the Diagnosis and Severity Assessment of Pulmonary Fibrosis

Current genetic tools for the diagnosis and assessment of pulmonary fibrosis are
limited. Therefore, we explored whether the signature can be applied to these clinical
challenges. We first revealed that FVC, DLCO, and SGRQ are significantly correlated with
the signature score (Figure 4A–C). Moreover, as a potential confounder of clinical traits,
age has a very weak correlation with SGRQ, FVC, and DLCO (Supplementary Figure S2).
Next, we compared signature scores between IPF patients and healthy people and found
IPF patients have significantly higher scores compared to the controls (Figure 4D).
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Figure 4. Investigating the association between signature expression and lung functions.
(A–C) Correlation analysis of signature score and DLCO (A), FVC (B), and SGRQ (C). The dashed line
represents the linear regression line. (D) Comparison of signature expression between IPF patients
and healthy controls. DLCO: diffusing capacity for carbon monoxide; FVC: forced vital capacity; IPF:
idiopathic pulmonary fibrosis; SGRQ: St. George’s Respiratory Questionnaire.

Considering the correlation between gene signature and traits, we next used the
signature to train machine learning models to predict clinical outcomes of pulmonary
fibrosis patients. We found that an SVM could perfectly differentiate pulmonary fibrosis
patients from healthy controls (Figure 5A,B) without adding extra clinical features. We
next explored whether the signature could predict patients’ lung function test results (% of
predicted DLCO and FVC). PC regression was used to fit the training data. The correlation
coefficients between the predicted and observed DLCO and FVC are 0.61 (p = 2.91 × 10−4)
and 0.77 (p = 2.52 × 10−6 respectively (Figure 5C,D).

Altogether, the signature has high confidence in classifying pulmonary fibrosis patients
and predicting lung function test results; this implies its potential applicability in clinical
diagnosis and severity assessment.
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Figure 5. Signature as a diagnosis and assessment tool for pulmonary fibrosis using machine learning
models. (A) The SVM scores for IPF patients and healthy controls. (B) Comparison of SVM decision
value between IPF patients and healthy controls. (C,D) Correlation analysis between observed and
predicted DLCO (C) and FVC (D). The dashed line represents the linear regression line. DLCO:
diffusing capacity for carbon monoxide; FVC: forced vital capacity; IPF: idiopathic pulmonary fibrosis;
SVM: support vector machine.

3.6. The Network-Based Proximity between Anti-Pulmonary Fibrosis Drugs and the Signature

Considering the roles of the signature in the diagnosis and assessment of pulmonary
fibrosis, we defined the top-20 genes in the signature as the disease-related genes. Since the
network proximity has been used to evaluate drugs for various diseases [3,4], we postulated
that this method could also prioritize and repurpose the anti-PCPF drugs. In this case,
anti-pulmonary fibrosis drugs should have closer proximity than the drugs with unknown
anti-pulmonary fibrosis effects.

We calculated the shortest proximity (ds) between drug targets and PCPF-related
proteins on the interactome (Figure 6A). Since our hypothesis is that shorter proximity is
associated with therapeutic effects, it is necessary to examine other factors that simultane-
ously affect proximity. In particular, node degree has been known to be anti-correlated with
proximity [3], defined here as degree effect. Degree effect can lead to a biased interpretation
of proximity in drug repurposing analyses. For instance, the cytotoxic agents typically have
lower proximity than other drug categories because anti-cancer drugs’ targets tend to have
higher node degrees [2]. In this study, we also observed this phenomenon (Supplementary
Figure S3A,B). We then calculated the relative proximity (Zds) by randomly selecting the
degree-stratifying nodes on the interactome (Figure 6B). It is clear that the degree effect is
less prominent in Zds (Supplementary Figure S3C,D). Next, to prove that the known-effect
(anti-pulmonary fibrosis) drugs have smaller proximity than the unknown-effect drugs,
we compared Zds between these two categories. We found that the known-effect drugs
have significantly lower proximity (Figure 6C), with predictive performance AUC equal
to 0.672 (Figure 6D). To further validate the results, we used another set of anti-fibrosis
drugs (not restricted to pulmonary fibrosis) [13] and found identical trends (Supplementary
Figure S4A,B). Based on the above results, Zds can be used as a predictor to assess anti-
pulmonary fibrosis effects. Therefore, we summarized the drugs with high repurposing
potential in Table 1. The full drug list and their proximity information can be found in
Supplementary Table S2.
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Figure 6. Characterizing the roles of proximity on drug repurposing for anti-pulmonary fibrosis
drugs. (A) Schematic representation of the method. (B) Distribution of different proximity measures.
(C) Comparison of proximity, Zds, between drugs with known and unknown anti-pulmonary fibrosis
effects. (D) Analysis of the predictive performance of Zds on anti-pulmonary fibrosis effects using
the ROC curve.
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Table 1. Cont.

Name Z-Shortest Proximity
(Zds)

Shortest Proximity
(ds) Structure Reference
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Table 1. Cont.

Name Z-Shortest Proximity
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Shortest Proximity
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4. Discussion

This study integrates various computational approaches to reveal a crucial theragnostic
signature in PCPF. We show that the signature is associated with viral infections, pulmonary
fibrosis, and clinical outcomes. Moreover, we demonstrate that the machine learning models
trained with the signature show decent performance in diagnosing pulmonary fibrosis and
predicting patients’ lung function. Lastly, we prove that drugs with known anti-pulmonary
fibrosis effects have closer proximity than those with unknown effects, suggesting that a
network-based framework can also be applied to prioritize and repurpose drugs in PCPF.

Considering the design of this study was for PCPF, we notice that the viral infection-
related GO term is the most enriched (Figure 2E). This phenomenon also appears in the
network-based analysis, where drugs with strong anti-COVID-19 effects have significantly
closer (smaller) proximity than drugs with weak or no-effect (Supplementary Figure S3D).
This observation suggests that the signature may be associated with two events: COVID-19
viral infection and pulmonary fibrosis. Although pulmonary fibroblasts are less well known
as target cells of the virus, recent studies revealed that alveolar fibroblasts could also be
infected by the virus due to their expression of ACE2 receptors [28]. Aloufi et al. found
that IPF fibroblasts have an even higher expression of ACE2 receptor, highlighting the roles
of pathological fibroblasts in COVID-19 infection [29].

We also observe some medical procedure-related terms (e.g., response to mechanical
stimulus). Although these terms are not significantly enriched (Figure 2E), they still imply
that patients may undergo specific medication therapies or receive mechanical ventilation
during hospital treatment.

One of the advantages of performing scRNA-seq on clinical samples is the high-
resolution mapping of each cell. However, a deeper inspection may imply a smaller patient
sample size because the number of patients enrolled can rarely be as large as that in bulk
RNA analysis. There are 26 cases in the scRNA-seq dataset; it is reasonable to challenge any
inference made from only 26 persons. Therefore, externally validating the results derived
from scRNA-seq in a broader population can generate more confidence in the results.
Nonetheless, it is undeniable that some facts exist such that the results from scRNA-seq
may not be fully in concordance with bulk RNA analysis. Zero inflation, for instance,
can lead to the underestimation of the low-expressed genes [30]. Another challenge is
that the result in one patient cohort may not be reproducible in another simply due to
numerous uncontrollable factors between the two cohorts. However, in our study, the
signature derived from scRNA-seq also play a vital role in another bulk-sample patient
cohort, suggesting that the signature is reproducible and can be externally validated.

There are limitations to this study. First, we applied the signature derived from PCPF
to IPF patients. It is undeniable that the etiologies of PCPF and IPF are less likely to
be identical. The causes of PCPF may include the viral infection and the host immune
response; on the other hand, the causes of IPF remain unclear, even though there are several
studies revealed the genetic predispositions or causal variants of IPF using genome-wide
association studies with fine-mapping [31] or polygenic risk score [32]. However, regardless
of the causes, PCPF and IPF are fibrogenesis and fibrosis in the lung tissue. Considering the
limited clinical information on PCPF, we used IPF as a surrogate to investigate the potential
impacts and clinical insights of this PCPF signature, in particular the application in drug
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repurposing. We understand that population structure and other bassline demographic
characteristics could influence the performance of the gene signature score, and thus the
signature score should be carefully interpreted when applying to other ethnic groups, such
as Asians. Another limitation is the lack of lung function test results in the single-cell cohort.
This makes it harder to compare the baseline characteristics of the IPF and PCPF patients.

The rationale for the network-based drug repurposing approach is that a drug may
still be effective when its target proteins are ‘close’ to the disease-related protein(s) in the
interactome [3,33,34]. If this argument is true, drugs with known effects on disease should
have closer proximity compared to the unknown-effect drugs. Accordingly, this requires
identifying a significant difference in proximity between known-effect and unknown-effect
drugs. However, in some diseases, medical treatment options are very limited, such as
IPF [35,36]. There are, in fact, only two FDA-approved drugs, nintedanib, and pirfenidone,
that seem to be associated with a slower progression of IPF [36]. Therefore, if we simply
assign drugs to either known or unknown effects based on current clinical knowledge,
hypothesis testing between the two drug categories (known vs. unknown effect) can hardly
be conducted due to highly unbalanced sample sizes. To address this problem, we searched
the published literature which conducted drug repurposing for pulmonary fibrosis [37]
and pan-fibrosis [13] and used the repurposed drugs as the known-effect drugs.

Previous studies have applied the network-based drug repurposing framework to var-
ious diseases [3,38]. Nonetheless, due to the complexity of disease mechanisms, validating
this method is necessary when dealing with different conditions. For instance, previously,
we found that, in lung adenocarcinoma, the closest proximity on the weighted interactome
shows the best performance in identifying promising drugs [2]. In this study, however, we
noticed that z-transformed shortest proximity, Zds, has better performance. This observa-
tion implies that the performance of proximity metrics may be context-dependent.

Although proximity may be associated with drug effectiveness, we urge caution when
interpreting the ranked drug list, as proximity is not the only factor contributing to drug
effectiveness. For instance, we found that nintedanib, one of the two currently approved
drugs for IPF, has small proximity (Zds = −3.22; rank = 798/5643). However, the other
approved anti-IPF agent, pirfenidone, has large proximity (Zds = 1.45; rank = 5115/5643).
Therefore, this observation suggests that drugs with distant proximity could still be effective,
as proximity may be only one of the many factors affecting drug effectiveness. Other crucial
factors, such as binding affinity, also matter.

Within the top-ranked repurposed drugs (top 3% of the drugs in Supplementary
Table S2), we found some drugs belonging to antibiotic or antiviral agent categories, which
may be related to pneumonia treatment [39], acute exacerbation of pulmonary fibrosis [40],
or other morbidities, such as pneumonitis, opportunistic infection, or tissue inflamma-
tion [41]. They may not truly show strong anti-fibrosis effects. On the other hand, we
noticed that many top-ranked candidates on this list show promising anti-pulmonary fibro-
sis effects. Artenimol (Zds = −14.18; rank = 28/5643) (also known as dihydroartemisinin),
for instance, can reduce lung fibrosis by suppressing the Notch signaling pathway [42] and
pro-fibrotic pathways [43]. Another example is dinoprostone (also known as prostaglandin
E2). It was reported that inhaling liposomal prostaglandin E2 can treat pulmonary fibrosis
by restricting inflammation and fibrotic injury in the lungs [21].

Another interesting drug category is statins, a well-known class of lipid-lowering
agents. A retrospective study surveying 323 IPF patients found that statin-users have
a slower annual decline in DLCO and FVC than non-users [20]. We then searched our
drug list for the types of the statin used in this study [20] and found that all of them
have very small Zds: atorvastatin (Zds = −10.5), fluvastatin (Zds = −10.03), rosuvastatin
(Zds = −8.37), pravastatin (Zds = −6.73), and simvastatin (Zds = −4.43).

5. Conclusions

We reveal a novel theragnostic signature for PCPF and provide a prioritized drug list
based on network-based proximity, Zds. Our study shows the applicability of integrat-
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ing various computational methods when analyzing biomedical data and, importantly,
provides useful information for diagnosing, assessing, and treating PCPF.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics14050971/s1, Figure S1: The expression of DEGs in PCPF patients and the
controls, Figure S2: The correlation analysis between age and other clinical features, Figure S3: The
degree effect on proximity, Figure S4: Characterizing the roles of proximity on the repurposing of
anti-fibrosis drugs, Table S1: The transcriptome signature of pathological fibroblasts in PCPF, Table S2:
The full list with 5644 drugs and their proximity (Zds).
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Abstract: P38α mitogen-activated protein kinase (p38α MAPK), one of the p38 MAPK isoforms
participating in a signaling cascade, has been identified for its pivotal role in the regulation of
physiological processes such as cell proliferation, differentiation, survival, and death. Herein, by
shedding light on docking- and 100-ns dynamic-based screening from 3210 FDA-approved drugs,
we found that lomitapide (a lipid-lowering agent) and nilotinib (a Bcr-Abl fusion protein inhibitor)
could alternatively inhibit phosphorylation of p38αMAPK at the allosteric site. All-atom molecular
dynamics simulations and free energy calculations including end-point and QM-based ONIOM
methods revealed that the binding affinity of the two screened drugs exhibited a comparable level
as the known p38αMAPK inhibitor (BIRB796), suggesting the high potential of being a novel p38α
MAPK inhibitor. In addition, noncovalent contacts and the number of hydrogen bonds were found
to be corresponding with the great binding recognition. Key influential amino acids were mostly
hydrophobic residues, while the two charged residues including E71 and D168 were considered
crucial ones due to their ability to form very strong H-bonds with the focused drugs. Altogether, our
contributions obtained here could be theoretical guidance for further conducting experimental-based
preclinical studies necessary for developing therapeutic agents targeting p38αMAPK.

Keywords: drug repositioning; p38αMAPK; molecular docking; MD simulation; allosteric inhibitors;
in silico screening; computer-aided drug discovery

1. Introduction

Mitogen-activated protein kinase (MAPK) signaling pathways are a cascade compris-
ing three kinases including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal
kinase (JNK), and p38, in which the upstream kinase (MAPKKK) responds to various extra-
and intracellular signals and activates the middle kinase (MAPKK) by direct phosphory-
lation [1]. Then, MAPKKs phosphorylate and activate a MAPK, resulting in cell-specific
physiological phenomena such as cell proliferation, differentiation, survival, and death [2].
MAPKs are known to be able to react with a wide range of input signals including hor-
mones, cytokines, and growth factors, as well as endogenous stress and environmental
factors. To this end, they were classified into two distinct responsive MAPKs; mitogen
activated (ERK) and stress activated kinases (JNK and p38) [3]. Substantial studies re-
vealed that the p38 pathway is a key player in response to environmental stress signals
and inflammatory stimuli as well as being responsible for the production of some inflam-
matory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β, interleukin-6,
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and interleukin-12 in response to proinflammatory signaling [4,5]. Furthermore, p38 can
be a restraint in cancer tumorigenesis (e.g., breast, lung, colon, and liver cancer), which
induces a p38-mediated proapoptotic mechanism and the killing of incipient tumor cells by
a mechanism involved in the production of reactive oxygen species (ROS) [6]. However,
p38 activity functions conversely once a tumor has already been established by supporting
its growth [7]. Experimental evidence indicates that tumor cells need to modulate the
level of p38 MAPK activity in order to perform metastases, and this signaling occurs in
a variety of diseases [8]. To this end, inhibition of the p38 pathway has attracted much
attention for the reason that it could be a promising strategy in the management of cancer,
neurodegeneration, inflammation, and even the newly emerged pandemic, COVID-19 [9].

Structurally, there are four homologues of p38 MAPK including p38α, p38β, p38γ, and
p38δ [3]. Among these, p38α is the best characterized and seems to be the most physiologi-
cally related protein involved in inflammatory responses [4,10]. According to the site of the
ligand modulation, there are two different generations of p38αMAPK inhibitors, including
type I and type II inhibitors, which modulate the activity of the enzyme at the ATP-binding
and the allosteric site, respectively. However, targeting an ATP-binding site has limited
the clinical use due to a high level of sequence and structural similarity among kinase en-
zymes [2], which could result in non- or low selective behavior and cause undesirable side
effects and toxicities [11]. In order to overcome this issue, recent research has been focusing
on utilizing a novel allosteric regulatory site, which is distinct from the ATP pocket at about
60◦ spatially, and there is no structural overlap between compounds bound to the allosteric
site and ATP [12]. The conserved residues Asp-Phe-Gly (DFG) motif in the active site were
conformationally altered, which is often known as DFG-out conformation and seems to
be more stable in protein Tyr kinases [12]. To date, even though a number of clinical p38
MAPK inhibitors have emerged for inflammatory disease indications such as rheumatoid
arthritis, there have been no approved agents [13,14] due to the lack of target modulation,
adverse events, toxicities, and poor pharmacokinetics [4,14]. Some toxicities reported by
clinical studies of well-known p38 MAPK inhibitors, BIRB796 (doramapimod), VX-745
(Vertex), and SCIO-469 (talmapimod) included hepatotoxic elevation of liver transaminases,
skin rash, and so forth [15–17]. Accordingly, searching for novel compounds capable of
impeding p38 MAPK has still been necessarily important to provide bottom-up preclin-
ical information, guiding the development of therapeutic agents disrupting the MAPK
signaling pathway.

Herein, by shedding light on the advancement of computational biology partly con-
tributed to a preclinical stage of drug discovery and development, we aimed to search for
novel agents capable of binding to p38αMAPK at the allosteric site by a drug repositioning
approach. Bioinformatic databases and in silico methods including docking-based virtual
screening, molecular dynamics (MD) simulations, and free energy calculations were em-
ployed to guide the discovery of hit compounds that may present a significant potential
for further optimization. All the results obtained here provide some useful information
and may outline the next steps governing experimental studies for drug discovery and
development against p38αMAPK.

2. Materials and Methods
2.1. Preparation of the 3D Structure of P38α MAPK and Ligands

The three-dimensional structure of p38αMAPK in complex with a known inhibitor,
BIRB796, was retrieved from the RCSB Protein Data Bank (PDB ID: 1KV2). The missing
residues (170–184) of p38αMAPK were constructed by means of the homology model imple-
mented in the SWISS-MODEL server [18]. The newly generated structure was consequently
validated by plotting the Ramachandran diagram (Figure S1), using PROCHECK [19]. The
protonation states of all ionizable amino acids were predicted based on their pKa value
by using the PROPKA 3.0 web interface [20], and were then set into the modeled complex
structure before performing molecular docking and MD simulations.
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Partial atomic charges of BIRB796 were calculated for their geometry and then assigned
for the electrostatic potential (ESP) charges via the Gaussian 09W program (G09) using the
Hartree–Fock method and 6-31G(d) level of theory [21]. Its structure was then assigned
for atom type, and we generated its topology file using the Antechamber program [22].
Converting from the ‘mol2’ file into a ‘pdbqt’ format was achieved by AutoDockTools
(ADT). For the virtual screening studies, all focused compounds were obtained from
the 3210 FDA-approved drugs available in the ZINC database (http://zinc.docking.org,
accessed on 12 November 2019). These ligands were also subsequently converted from the
‘mol2’ format into a ‘pdbqt’ format using ADT.

2.2. Molecular Docking and Visual Inspection

Docking calculations were carried out on a Linux operating system using AutoDock
VinaXB, which provides a new empirical halogen bond scoring function [23]. Three docking
parameters, including exhaustiveness, num_modes, and energy_range, were set to 20, 50,
and 5 kcal/mol, respectively. For system validation, the crystallized ligand was redocked
into the same binding site (Figure S2), and the verified grid box was then employed for
all ligands in virtual screening. Predicted binding affinity (Ebinding, kcal/mol) of the most
likely occurring conformation was a parameter used to rank the studied compounds, and
the structure coordinate was employed to be the initial structure for the MD run.

To reduce the chance of false-positive scoring, a visual inspection of the intermolecular
interactions between each ligand and amino-acid residues lining in the focused allosteric
site was carried out by specifically examining (i) hydrogen bonding with E71, M109, and
D168 as well as (ii) hydrophobic interactions with V38, A51, K53, R67, L75, I84, L104, L108,
A157, L167, and F169, which were derived from the binding mode observed in the inhibitor
prototype, BIRB796. For this purpose, compounds sharing features of intermolecular
interactions with BIRB796 greater than five interactions were then selected.

2.3. Molecular Dynamics (MD) Simulations

The protein-ligand complex coordinates of the two screened drugs and the inhibitor
prototype from molecular docking were dynamically modeled under the periodic boundary
condition with the isothermal-isobaric (NPT) scheme [24–28]. The AMBER ff14SB and
generalized AMBER force field version 2 (GAFF2) [29] were selected for a force field
governing bonded and nonbonded interaction parameters. Electrostatic interactions were
treated by the particle mesh Ewald summation method [30] with a cutoff distance for
nonbonded interactions of 10 Å. The SHAKE algorithm [31] was retrieved to constrain
hydrogen atoms. The temperature was controlled by the Langevin thermostat [32] and
set to 310 K by increasing from 10 to 310 K. Controlling the pressure was achieved by
the Berendsen barostat [33] with a relaxation time of 1 ps. Moreover, the TIP3P water
model [34] was used to solvate the system with minimum padding of 10.0 Å between the
protein surface and the solvation box edge. The overall charge of the molecular system
was neutralized by randomly adding either sodium or chloride ions. Minimization of the
added hydrogen atoms and water molecules was carried out using 500 steps of steepest
descent (SD) followed by 1500 steps of conjugated gradient (CG) methods before running
the MD simulations with constrained solvent molecules. The whole complex was then fully
minimized using the same procedure. For MD production, all systems were set to 100 ns (2-
fs increment). The root-mean-square displacement (RMSD), the numbers of hydrogen bond
(H-bond), and the contact atoms were calculated through the cpptraj module whilst the per-
residue decomposition energy (∆Gresidue

binding) was estimated by MM/PBSA.py implemented
in AMBER16.

2.4. End-Point Binding Energy Calculations

To observe the ligand-binding affinity, the end-point binding free energy (∆Gbind) of
each system was predicted by the solvated interaction energy (SIE) approach [35]. ∆Gbind
can be estimated by the summation of the van der Waals (EvdW), electrostatic (Eele), reaction
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field (GRF), cavity (γ∆SA(ρ)), and a constant (C) value. The mathematical equation can be
expressed as follow:

∆Gbind (ρ, Din, α, γ, C) = α[EvdW + Eele(Din) + ∆GRF(ρ,Din) + γ∆SA(ρ)] + C

where Din denotes the solute dielectric value. EvdW and Eele represent intermolecular van
der Waals and Coulombic interaction energies in the bound state, respectively. ∆GRF is the
alteration of the reaction field energy between the bound and free states, ∆Gcavity (γ∆SA)
denotes the change in the non-electrostatic solvation free energy between the bound and
free forms, and C is the constant value. The coefficients were set as α = 0.105, γ = 0.013,
and C = −2.89.

2.5. QM-Based ONIOM Binding Energy Calculations

A quantum mechanics (QM)-based Our Own N-layered Integrated Molecular Orbital
and Molecular mechanics (ONIOM) [36,37] was carried out to additionally observe the
binding strength between BIRB796 and the screened drug candidate(s). Before calculating
the binding energy, the constructed complexes were optimized using the Hartree−Fock
method and a mechanical parameter (HF/6-31G(d):UFF). After optimization, two-layered
ONIOM calculations (B3LYP/6-31G(d,):PM6) were applied to determine and compare the
binding energies of the three systems. The residues lining within the 5 Å from the ligand,
which include Y35, V38, A51, V52, K53, L55, R67, T68, R70, E71, L74, L75, I84, L86, L104,
V105, T106, H107, M109, H148, R149, L167, D168, F169, G107, and L171, were selected to
represent an allosteric site of p38αMAPK and separated into a low-level layer, while each
screened drug was set to a high-level layer. Then, the selected amino acid residues and the
ligand were again simulated individually with the B3LYP/6-31G(d) basis set and the PM6
method, respectively. The polarizable continuum model (PCM) was applied to observe the
effect of water solvent on the binding energy. All calculations were performed by using
the GAUSSIAN16 software package [38], and the binding energy was estimated using the
equation below [39].

Esolvation
binding = EPCM

complex − EPCM
residues − EPCM

ligand

where Esolvation
binding is the binding energy of the drug-receptor in the solvation system, EPCM

complex

is the extrapolated ONIOM energy of the complex, EPCM
residues is the potential energy of

residues lining within the 5 Å from the ligand, and EPCM
ligand is the potential energy of the

studied ligand.

3. Results and Discussion
3.1. Docking-Based Screening and Visual Inspection

Finding the existing drugs that can offer inhibition towards novel targets is a great
challenge. To this end, 3210 compounds retrieved from the FDA-approved drugs available
in the ZINC database were docked into the allosteric site of the p38α MAPK where its
3D-structure and the inhibitor binding site are illustrated in Figure 1. The compounds
were selected and ranked according to their binding affinity (Ebinding) predicted by the
scoring function of the Autodock XB software package. By considering their binding
affinity, it was found that, among the 3210 compounds, only ZINC27990463 exhibited
higher binding affinity (Ebinding = −12.10 kcal/mol) when compared to the ligand refer-
ence, BIRB796 (Ebinding = −11.9 kcal/mol). However, to reduce false-negative selection,
compounds exhibiting Ebinding lower than −10.00 kcal/mol were also clustered, which
were totally filtered into 22 compounds. Note that the in silico filtering scheme and the
plot of binding affinity of the selected first-round screened compounds were illustrated in
Figures 2 and 3, respectively. All these first-round screened compounds were then inspected
for intermolecular interactions inside the cleft of the allosteric site, which is commonly
known as “visual inspection”. This method has been widely used in the decision-making
step for a great number of drug discovery campaigns [40].
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ically examining (i) hydrogen bonding with E71, M109, and D168, as well as (ii) hydro-
phobic interactions with V38, A51, K53, R67, L75, I84, L104, L108, A157, L167, and F169, 
which were derived from the binding mode observed in the inhibitor prototype, BIRB796. 
For this purpose, compounds sharing features of intermolecular interactions with 
BIRB796 greater than five interactions were then selected, for which the detailed infor-
mation of all 22 compounds is listed in Figure 4. Thus, we could obtain 10 promising com-
pounds (Figure 2A), which are hereinafter referred to as “hit compounds”. These 10 hit 
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Figure 1. The ribbon representation of the 3D structure of p38αMAPK (PDB ID: 1KV2). The close-up
regions illustrate two common inhibitors including VX-745 (green) and BIBR796 (yellow), indicating
the ATP-binding site and allosteric pocket, which is distinct from each other at about 60◦ spatially.
An orientation of F169 exhibiting the unique DFG-out conformation is also shown. Additionally, the
hydrophobic nature (obtained via UCSF ChimeraX 1.4, Resource for Biocomputing, Visualization,
and Informatics (RBVI), San Francisco, CA, USA.) within the focused allosteric cleft is depicted in a
close-up view.
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obtained via this computational platform.
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Figure 3. Binding affinity in kcal/mol of selected first-round screened compounds that were suc-
cessfully docked into the focused allosteric site of p38αMAPK compared to BIRB796. Note that the
prediction was based upon the scoring function implemented in the Autodock VinaXB, Sirimulla
Research Group at the University of Texas at El Paso, TX, USA.

It is obviously known that noncovalent interactions are essentially responsible for
ligand binding. Compounds showing sufficient interactions in both qualitative and quan-
titative manners tend to exhibit greater binding capability and could form a more stable
complex. Thus, an inspection of intermolecular interactions between each ligand and
amino-acid residues lining in the focused allosteric site was visually carried out by specifi-
cally examining (i) hydrogen bonding with E71, M109, and D168, as well as (ii) hydrophobic
interactions with V38, A51, K53, R67, L75, I84, L104, L108, A157, L167, and F169, which
were derived from the binding mode observed in the inhibitor prototype, BIRB796. For
this purpose, compounds sharing features of intermolecular interactions with BIRB796
greater than five interactions were then selected, for which the detailed information of
all 22 compounds is listed in Figure 4. Thus, we could obtain 10 promising compounds
(Figure 2A), which are hereinafter referred to as “hit compounds”. These 10 hit compounds
were subsequently subjected to second-round screening by MD simulations, and the MD
output was used to compute SIE-based end-point free energy calculations.

3.2. Dynamic-Based Screening and End-Point Binding Free Energy Calculations

To observe and screen the hit compounds’ binding capability in a near-physiological
condition and dynamic system, the constructed protein-ligand complexes were performed
to run MD simulations for 100 ns. The trajectories in the last ten nanoseconds (90–100 ns)
was considered to have reached the equilibrated state (supported by the plot of root-mean-
square displacement (RMSD) for the backbone amino acids within 5 Å from the ligand as
shown in Figure S3) were used to calculate the binding free energy (∆Gbind). This parameter
was used to indicate the protein-ligand binding affinity and to employ a dynamics-based
screening tool for ranking the hit compounds in the aftermath of rigid docking.
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Figure 4. Map of intermolecular interactions of BIRB796 and all 22 screened compounds as well
as total features sharing interactions with BIRB796. Each type of noncovalent interaction was also
illustrated in different colors. It is worth noting that these occurred interactions were based upon
the best docked conformation and visualized by Accelrys Discovery Studio 2.5. * The compounds
selected to run MD simulations.

As listed in Table 1, the ∆Gbind values of all hit compounds were in the range of
−11.4 to −7.2 kcal/mol, whilst the ∆Gbind of BIRB796 is −11.95 kcal/mol. Importantly, the
predicted ∆Gbind of BIRB796 (−11.95 ± 0.04 kcal/mol) is close to the experimental-derived
∆Gbind value (−10.98 kcal/mol [41]), showing the verification of the predictive method and
the reliability of the results obtained. For screening purposes, only two hit compounds, lomi-
tapide (∆Gbind = −11.39 ± 0.05 kcal/mol) and nilotinib (∆Gbind = −11.21 ± 0.04 kcal/mol)
displaying a similar level of binding strength to the BIRB796, were selected for further
investigation and the chemical structures of these three drug candidates are illustrated
in Figure 2B. For nilotinib, it was previously reported that it could be a new off-target to
p38 MAPK in the myoblast cell line [42], which could support our theoretical findings.
In particular, the calculated energy terms shown in Table 1 could imply the influence of
specific types of noncovalent interactions responsible for drug recognition. In this case,
we found that all three drugs possessed a considerably higher contribution of van der
Waals interaction energies than other types of interaction energies, agreeing well with the
previous study that suggested the hydrophobicity of the binding pocket [43]. Additionally,
the higher contribution of vdW interaction energies might imply that the screened drugs
could preferentially target the hydrophobic regions within the focused binding site, which
was similarly observed in the previously reported potent inhibitors [11]. For the solvation
effect, the polar solvation energies expressed as the ∆GRF were in the range of 10.52 to
20.55 kcal/mol. Lomitapide showed a slightly higher ∆GRF (17.01 ± 0.24) than nilotinib
and BIRB796 (15.54 ± 0.19 and 15.60 ± 0.20, respectively), implying the relatively minute
higher polar solvation in the lomitapide complex system. For ∆Gcavity, it was found that the
nonpolar solvation energies were in the range of −7.13 to −14.43 kcal/mol. Among candi-
dates, lomitapide possessed the highest contribution of ∆Gcavity (−14.43 ± 0.04), showing
that the drug could be well-buried into the cleft of the binding site while nilotinib and
BIRB796 demonstrated a slight reduction in the nonpolar solvation effect (−12.35 ± 0.03
and −13.63 ± 0.04, respectively). By including the solvation free energy, the vdW term
(∆EvdW + ∆Gnonpolar

sol ) was the main contribution to the total binding free energies of both
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drug candidates as well as BIRB796 whilst the electrostatic term (∆Eele + ∆Gpolar
sol ) became

much less favorable to the binding (Figure S4).

Table 1. ∆Gbind values (kcal/mol) of the candidate compounds as well as BIRB796 in complex with
p38αMAPK calculated by the SIE-based end-point method using α, γ, and constant coefficients of
0.10, 0.01, and −2.89, respectively.

Drugs
(ZINC ID)

Energy Components (kcal/mol)

EVdW Ecoul ∆GRF ∆Gcavity ∆Gbind

BIRB796
experiment −10.98 *

−78.53 ± 0.29 −9.93 ± 0.15 15.60 ± 0.20 −13.63 ± 0.04 −11.95 ± 0.04

Lomitapide
(ZINC27990463) −77.77 ± 0.39 −5.95 ± 0.18 17.01 ± 0.24 −14.43 ± 0.04 −11.39 ± 0.05

Nebivolol
(ZINC1999441) −49.57 ± 0.29 −12.66 ± 0.26 12.78 ± 0.21 −10.19 ± 0.03 −9.14 ± 0.03

Nilotinib
(ZINC6716957) −69.53 ± 0.35 −13.04 ± 0.17 15.54 ± 0.19 −12.35 ± 0.03 −11.21 ± 0.04

Ibrutinib
(ZINC35328014) −61.87 ± 0.29 −4.07 ± 0.17 13.21 ± 0.23 −10.81 ± 0.04 −9.55 ± 0.04

Atovaquone
(ZINC116473771) −42.15 ± 0.27 −2.43 ± 0.39 10.94 ± 0.23 −7.90 ± 0.05 −7.24 ± 0.03

Dicumarol
(ZINC3869855) −39.68 ± 0.26 −13.87 ± 0.40 20.55 ± 0.32 −7.13 ± 0.03 −7.09 ± 0.03

Raloxifene
(ZINC538275) −51.19 ± 0.44 −12.45 ± 0.50 18.50 ± 0.25 −9.90 ± 0.05 −8.66 ± 0.07

Ponatinib
(ZINC36701290) −61.66 ± 0.25 −4.92 ± 0.14 16.99 ± 0.24 −12.08 ± 0.05 −9.35 ± 0.03

Eltrombopag
(ZINC11679756) −59.44 ± 0.33 −5.39 ± 0.17 10.52 ± 0.17 −10.97 ± 0.03 −9.73 ± 0.04

Samsca
(ZINC538658) −51.69 ± 0.26 −16.63 ± 0.21 19.86 ± 0.18 −10.38 ± 0.04 −9.05 ± 0.03

* The experimental binding free energy was derived from the IC50 of 0.018 µM [41] and was calculated by the
equation ∆Gbind = RTlnIC50.

3.3. Contact Atoms and Numbers of Hydrogen Bond Formation

Identifying the number of atoms surrounding a ligand is one of the crucial parameters
implying the ability of the drug recognition within the focused allosteric target. Herein,
noncovalent contacts of any atoms within the 5.0 Å from the ligand were computed, and
we found that the number of surrounding atoms averaged in the last 10 nanoseconds
of each focused complex was in the order of lomitapide (429 ± 17 atoms) > BIRB796
(424 ± 6 atoms) > nilotinib (405 ± 2 atoms) as illustrated in Figure 5. The number of
surrounding atoms of the lomitapide complex was slightly higher than that of the BIRB796
and nilotinib complexes, suggesting that the binding pocket residues are close-packed
during complexation.

Furthermore, the quantity of hydrogen bonds (H-bond), which was considered one
of the strong interactions responsible for drug-receptor binding, was analyzed during
90–100 ns with three independent replicates. As shown in Figure 5, the numbers of av-
eraged H-bond interactions in BIRB796 and nilotinib were in a vicinity of a similar level
(≈3–4 bonds), while the lomitapide displayed lower numbers of this kind of interaction
(≈2–3 bonds). For drug binding, this indicated that both BIRB796 and nilotinib could form
more H-bonds when compared to lomitapide. This is likely to occur since the intrinsic
structural characteristic of lomitapide consists of gradual lower numbers of hydrogen bond
donors and acceptors when compared to BIRB796 and nilotinib, (total numbers of H-bond
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donors and acceptors of BIRB796, nilotinib, and lomitapide are 7, 8, and 5, respectively
(analyzed by PharmaGist web interface [44] as listed in Table S1).
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Figure 5. (A) Numbers of surrounding atoms counted within the 5.0 Å from the ligand and number
of H-bonds within p38αMAPK-BIRB796 complex and two focused drugs at the last 10 nanoseconds
(90–100 ns). The results were shown in three independent runs. (B) Percentage of H-bond occurrence
during a complex formation of two screened drugs and the BIRB796 using two criteria as follows:
(1) the distance between the hydrogen bond donor (HD) and hydrogen acceptor (HA) of ≤3.5 Å
(2) the angle ≥120◦.

In addition, the intermolecular H-bond interactions were observed in terms of the
percentage of occupations (Figure 5B), which indicated how often the transient H-bonds
could occur during the whole simulated time. As expected, a few strong hydrogen bonds
could be seen in all focused drugs and even in BIRB796 since their inhibitory actions were
mainly driven by hydrophobic interactions (Table 1). Obviously, all three compounds were
found to have very strong H-bonds with D168 (99.7%, 92.7%, and 98.7% occupations for
BIRB796, lomitapide, and nilotinib, respectively). Additionally, the BIRB796 showed an
additional very strong H-bond with E71 (≈99%), while this bond was reduced to 70%
and 34.5% for nilotinib. The slight loss of this interaction in nilotinib might cause a slight
reduction in binding affinity when compared to BIRB796 (Table 1). Nonetheless, we could
not observe the H-bond with E71 for lomitapide binding since it lacks H-bond donors at
that oriented position. Hence, we hypothesized that adding functional groups containing
H-bond donors (e.g., -NH2) onto the carbon atom in the piperidine ring within its structure
might allow it to have more additional H-bond interactions with E71. Hence, we ran MD
simulations of the modified structure of lomitapide and subjected the MD output to analyze
the binding energy at the last 10 ns by using the end-point SIE-based method (as the same
protocol used previously with other compounds). As expected, the H-bond occupation with
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E71 could be formed at 82.45% during the whole simulated time. Moreover, the binding
energy was decreased from −11.39 ± 0.05 kcal/mol to −12.15 ± 0.06 kcal/mol (better
binding affinity, Table S3), and slightly lower than BIRB796 (−11.95 ± 0.04 kcal/mol). This
finding suggested that modification of a lomitapide’s structure by permitting it to interact
with E71 could improve its binding affinity, which encouraged us to investigate further.

3.4. Key Binding Residues

To elucidate the key binding amino acids responsible for the drug recognition within
the allosteric pocket of p38α MAPK, the decomposition of free energy (∆Gbind

residue) based on
the MM/GBSA method was computed. The negative and positive ∆Gbind

residue values indicate
the ligand stabilization and destabilization, respectively. The contribution of each amino
acid of the known inhibitor and two focused complexes is shown in Figure 6. Note that
among residues 5–352 of p38αMAPK, only residues 5–250 are shown.
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For the BIRB796, it was obviously seen that E71 and D168 played a pivotal role in
stabilizing the protein–ligand complex as its large ∆Gbind

residue value was observed (approxi-
mately −6 and −4 kcal/mol, respectively). In addition, four hydrophobic residues (L75,
I84, L108, and L107) and one polar uncharged amino acid (T106) were found to be involved
in a process of complex formation. This key-binding elucidation agreed well with the
previous reports of BIRB796’s binding mode analysis [11,41]. Apart from a reference ligand,
the amino acids largely contributing to the lomitapide binding (∆Gbind

residue < −1.5 kcal/mol)
include L74, L75, T106, L167, L171, and H174. Almost all were hydrophobic residues
(except H174, a polar positively charged residue), suggesting the ensembles of hydrophobic
interactions were dominant towards the binding (supported by per-residue vdW inter-
action energy as illustrated in Figure S4). Among these, the four residues L75, I84, T106,
and L167 shared binding features in common with BIRB796. Interestingly, unlike BIRB796,
lomitapide could bind to L171 and H174. Having interaction with the amino acids in the
region of 170–199 attracted considerable attention, as similarly observed in a new series of
benzooxadiazole-based p38 inhibitors which was granted a patent in 2014–2015 (Allinky
Biopharma. Co., Madrid, Spain) [11]. In the case of nilotinib, it was found that key amino
acids contributing to its binding were mostly the same residues responsible for BIRB796
binding (E71, L75, I84, L107, L108, and D168) since it belongs to the same type of inhibitor
(kinase inhibitor). Among these, E71 and D168 were essentially responsible for stabilizing
the complex via H-bond while the others relied on hydrophobic interactions (Figure S4).
Two additional residues, K53 and L74 were also observed. We noted that these results are
correlated well with the calculated SIE-based ∆Gbind and each energy component as listed
in Table 1.

3.5. QM-Based ONIOM Binding Energy

The analysis of the ONIOM binding energies was employed to additionally observe
the binding ability of the two screened drugs within the focused allosteric site of p38α
MAPK. The calculations were based on the QM method, which could provide a more
reliable prediction when compared to the end-point estimation [45]. As shown in Table 2,
the calculated binding energy (Esolvation

binding ) values ranged from approximately −41.0 to

−48.5 kcal/mol. The Esolvation
binding values displayed a similar trend to the SIE-based prediction

in which the binding affinity of BIRB7996 was slightly higher than that of lomitapide and
nilotinib. Even though the Esolvation

binding of the two screened drugs showed as slightly lower,
their predicted binding strength was still high and comparable to the reference inhibitor,
BIRB796. Accordingly, we believe that lomitapide and nilotinib could be able to inhibit the
phosphorylation of p38αMAPK, and the ONIOM-based method theoretically confirmed
their inhibitory capability towards p38α MAPK at the allosteric site. It is worth noting
that the prediction trend of binding affinity by ONIOM energy calculations was in good
agreement with the SIE-based end-point method.

Table 2. Calculated binding energy (Esolvation
binding ) in kcal/mol of two screened drugs and BIRB796 by

means of ONIOM at B3LYP/6-31G(d):PM6 level of theory.

Drugs

Energy Terms

EPCM
complex
(a.u.)

EPCM
residues
(a.u.)

EPCM
ligand

(a.u.)
Esolvation

binding
(kcal/mol)

BIRB796 −1706.396 −3.391 −1702.927 −48.536

Lomitapide −2425.571 −3.303 −2422.203 −41.159

Nilotinib −1841.536 −3.240 −1838.230 −41.048

4. Conclusions

Since there have been no drugs approved as therapeutic agents for p38αMAPK, our
research is considered one of the collective efforts to search for effective drugs targeting this
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target at the allosteric site by a drug repurposing approach. Verified docking- and dynamic-
based screening revealed that lomitapide and nilotinib could alternatively impede the p38α
MAPK’s function with a great binding affinity and characteristics. The binding affinity
estimated by both end-point and QM-based ONIOM methods revealed a comparable
level to the inhibitor prototype (BIRB796), supported by the calculated numbers of atoms
surrounded within the 5.0 Å from the ligand. Specifically, vdW interaction energies were
the main force driving the complex formation. Moreover, all drugs could form a few
H-bonds with the amino acids lining in the allosteric site, which could rank in the order of
BIRB796 ≈ nilotinib > lomitapide. The two residues (E71 and D168) played a pivotal role
in forming very strong H-bonds with the focused drugs. More importantly, we proposed
that modifying a lomitapide’s structure by allowing it to interact with E71 via H-bonds
could improve its binding affinity. Altogether, our in silico study not only presented the
potential inhibitors, but also provided useful information at the atomic level to shed light
on rationally designing more potent inhibitors disrupting the MAPK signaling pathway.
However, experiments determining the biological activities of these elucidated compounds
including enzyme- and cell-based assays should be further carried out.
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Abstract: Toxoplasma gondii is a protozoan that infects up to a third of the world’s population. This
parasite can cause serious problems, especially if a woman is infected during pregnancy, when toxo-
plasmosis can cause miscarriage, or serious complications to the baby, or in an immunocompromised
person, when the infection can possibly affect the patient’s eyes or brain. To identify potential drug
candidates that could counter toxoplasmosis, we selected 13 compounds which were pre-screened in
silico based on the proteome of T. gondii to be evaluated in vitro against the parasite in a cell-based
assay. Among the selected compounds, three demonstrated in vitro anti-T. gondii activity in the
nanomolar range (almitrine, bortezomib, and fludarabine), and ten compounds demonstrated anti-T.
gondii activity in the micromolar range (digitoxin, digoxin, doxorubicin, fusidic acid, levofloxacin,
lomefloxacin, mycophenolic acid, ribavirin, trimethoprim, and valproic acid). Almitrine demon-
strated a Selectivity Index (provided by the ratio between the Half Cytotoxic Concentration against
human foreskin fibroblasts and the Half Effective Concentration against T. gondii tachyzoites) that
was higher than 47, whilst being considered a lead compound against T. gondii. Almitrine showed
interactions with the Na+/K+ ATPase transporter for Homo sapiens and Mus musculus, indicating a
possible mechanism of action of this compound.

Keywords: bioinformatics; drug repurposing; toxoplasmosis; Toxoplasma gondii; in vitro screening;
drug targets; drug discovery

1. Introduction

Toxoplasma gondii is an obligate intracellular protozoan parasite that belongs to Api-
complexa Phylum and is the etiological agent of toxoplasmosis [1]. The parasite diverged
from closer species due to its ability to infect a wide range of hosts, re-enforced by flexible
transmission pathways [2]. Because of this, it is estimated that more than 60% of the popu-
lation throughout the world have been infected [3] and, in Brazil, the serologic prevalence
of T. gondii human infection ranges from 50% to 80% [4].

Despite the importance of toxoplasmosis to public health, considering its high preva-
lence in the human population and the serious clinical manifestations, mainly in immuno-
compromised patients and in cases of congenital infection [5], there are still very few
therapeutic options available, these being effective only against the acute form of the
disease [6].

Ideal drugs for toxoplasmosis treatments should be effective against the chronic form
of infection and be offered at an affordable price, and present low or zero toxicity [7].
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Ideally, they should also not present risks of congenital malformation, allowing pregnant
women to use them freely. However, several of these characteristics are not found in drugs
currently used in standard toxoplasmosis therapy, which has remained unchanged since
the beginning of the 1990s [7]. Since current chemotherapy is insufficiently effective, with
extended treatments that vary from weeks to over a year in duration, or show high toxicity [8],
alternative therapeutic options for toxoplasmosis treatment are of utmost importance.

The research and development of new drugs represent a slow and onerous process.
New techniques have been proposed to speed up this process, and one of these is called
‘drug repositioning’. It consists of a strategy that seeks new applications for an existing
drug, which have not been previously referenced and are not currently prescribed or
researched [9].

Aiming to find new uses for already known compounds, the international organization
Medicines for Malaria Venture (MMV) and the Drugs for Neglected Diseases initiative
(DNDi), together with researchers from the industrial and academic fields, created the
Pandemic Response Box and the COVID Box. Together, these collections consist of 560
structurally diverse active compounds, all set for trial against infectious and neglected
diseases. These compounds were selected from an extensive list of antibacterial, antifungal,
and antiviral compounds, all of which are already being commercialized or are in the
clinical development phase [10].

Malaria Box and Pathogen Box are two other collections created by MMV that gather
around 800 compounds with confirmed activity against the most socio-economic relevant
diseases all over the world, such as malaria, tuberculosis, sleeping sickness, leishmaniasis,
schistosomiases, ancylostomiasis, toxoplasmosis, cryptosporidiosis, and dengue. These
collections were used to identify new drug candidates for the treatment of many diseases,
including toxoplasmosis [2,11,12].

Databases of bioactivity, such as ChEMBL and DrugBank, provide information about
the interaction between compounds and proteins. Sarteriale et al. [13] have presented
an approach to pre-track the entire proteome of any organism with available genomic
data against known drug targets, using a combination of Ruby scripts and freely available
resources. This method was used to predict inhibitors for disease-causing protozoan para-
sites. The authors performed the in vitro validation of the in silico results obtained, using a
cell-based Cryptosporidium parvum growth assay, showing that the predicted inhibitors were
significantly more likely than those expected randomly by chance. However, the identified
compounds had not yet been evaluated against T. gondii in a cell-based assay until now.
Here, we tested some of the inhibitors identified by Sarteriale et al. 2014 [13], aiming to
confirm the in silico predicted activity against T. gondii in a cell-based assay.

Amongst the compounds that presented a T. gondii protein as their target in the virtual
screening, 13 were selected for evaluation against T. gondii in the present work. This
selection was based on the presence of these compounds in the MMV Pandemic Response
Box and COVID Box collections, aiming to evaluate in vitro the predicted activity against
T. gondii (Figure 1).

We crossed the in silico screening results achieved by Sarteriale et al. 2014 [13] with the
MMV libraries, aiming to build a small enriched compound collection for in vitro drug testing.

Our objective was to test only the in silico predicted T. gondii inhibitors available in
the Pandemic Response Box and COVID Box collections, enabling a more efficient use of
laboratory resources. We obtained 100% accuracy, since all these 13 compounds showed
anti-T. gondii activity in the micromolar or nanomolar range, this being the first report
about the in vitro anti-T. gondii activity of almitrine, bortezomib, and fludarabine.

Drug development is a lengthy, complex, and costly process, entrenched with a high
degree of uncertainty that a drug will succeed. In this context, drug repurposing—A strat-
egy for identifying new clinical uses for existing drugs—Becomes an interesting strategy
for drug discovery, as it involves potentially lower financial costs in drug development as
well as shorter timelines [14].
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Figure 1. Study design and workflow. Following the publication of predicted drugs for T. gondii
via DrugBank alignments by Sarteriale et al., (2014) [13], we selected 13 compounds from Pandemic
Response and COVID Boxes to be in vitro evaluated against T. gondii and for Molecular Docking and
Dinamics Simulations in the present work. Among the 13 selected compounds, three demonstrated
in vitro anti-T. gondii activity in the nanomolar range (almitrine, bortezomib, and fludarabine), and
ten compounds demonstrated anti-T. gondii activity in the micromolar range.

Because repurposing screens can be costly and time consuming, an in silico drug
screen with the ability to identify drugs with a high likelihood of activity improves the
chances of success by enabling the pre-selection of compounds to test in vitro.

Here we connected traditional drug discovery techniques with computer-based tools
to deliver robust drug repurposing hints. We used a target-based pre-screen that utilized
simple sequence alignment techniques to discover potential drugs [13]. Drugs’ structural
and physicochemical properties and the predicted drug-target interactions were explored
to select potential re-positioned compounds to treat toxoplasmosis. Therefore, the contribu-
tions of this manuscript are:

• To demonstrate the in vitro anti-T. gondii activity of the 13 pre-screened compounds:
almitrine, bortezomib, digitoxin, digoxin, doxorubicin, fludarabine, fusidic acid, lev-
ofloxacin, lomefloxacin, mycophenolic acid, ribavirin, trimethoprim, and valproic acid;

• To demonstrate the in vitro cytotoxic of almitrine, bortezomib and fludarabine against
human foreskin fibroblasts;

• To investigate the mechanism of action of the 13 compounds using Molecular Docking
through the binding affinity of the compound and the predicted molecular target;

• To carry out Molecular Dynamics simulations of almitrine to assess the flexibility of
the transporting ATPase alpha 1 and the stability of the enzyme interactions in the
presence of factors such as solvent, ions, pressure and temperature.

The goal of the present work is therefore to contribute to the discovery of new can-
didates for toxoplasmosis chemotherapy, using repositioned compounds. The strategy of
drug repositioning allows for efficient progress in the drug discovery process since many
of the compounds are clinically safe and have well established pharmacological action.
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2. Materials and Methods
2.1. Drugs and Chemicals

Pyrimethamine (PYR), dimethyl sulfoxide (DMSO), chlorophenol red-β-D-
galactop yranosidase (CPRG), phosphate buffer saline (PBS) and 3-[4,5-dimethylthiazol-2-
yl]-2,5-diphenyltetrazolium bromide (MTT) were purchased from Sigma-Aldrich Corpo-
ration. Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS), dithio-
threitol (DTT), HEPES and sodium dodecyl sulfate (SDS) were purchased from Thermo
Fisher Scientific. Pandemic Response Box (PRB) and COVID Box (CB) were kindly donated
by the Medicines for Malaria Venture (MMV) foundation. Other analytical reagents were
purchased from Sigma-Aldrich, unless otherwise stated.

2.2. Cell Culture and Parasite Propagation

Tachyzoites of the RH strain encoding a transgenic copy of β-galactosidase (type I, clone
2F1) [15] were continually passaged in confluent monolayers of human foreskin fibroblasts
(HFF), cultured in DMEM supplemented with 2% FBS (D2 medium), L-glutamine (2 mM) and
gentamycin (10 µg/mL) [16]. Fresh emerging tachyzoites were counted, diluted in a fresh
culture medium, and added to 96-well plates containing HFF monolayers as described below.
All HFF and parasite cultures were grown in a 37 ◦C incubator supplemented with 5% CO2.

2.3. β-Galactosidase-Based Growth Inhibition Assays

Firstly, 5 × 103 HFF cells/well (in 100 µL volume) were placed in 96-well plates and
incubated overnight to adhere. Afterwards, the wells were emptied and refilled with fresh
D2 medium containing 5 × 103 RH-2F1 parasites (in 100 µL volume) and incubated for 3 h
at 37 ◦C, 5% CO2. Subsequently, compounds were serially diluted in D2 medium and added
to the infected plates and incubated for 72 h at 37 ◦C, 5% CO2. Each drug concentration was
assessed in two replicate wells. Finally, β-galactosidase activity was evaluated as previously
described [17]. Infected cells were incubated with 100 µL of lysis buffer (100 mM HEPES,
1 mM MgSO4, 0.1% Triton X-100, 5 mM DTT) for 15 min. Afterwards, the lysates were mixed
with 160 µL of assay buffer (100 mM phospate buffer pH 7.3, 102 mM β-mercaptoethanol,
9 mM MgCl2) and, subsequently, with 40 µL of 6.25 mM CPRG. After incubating the
reaction mixtures for 30 min, the β-galactosidase activity was measured at 570 nm using
a microplate reader (Thermo Scientific™ Varioskan LUX). Pyrimethamine was used as a
reference drug (positive control) in all assays. Data presented are representative of the
results of two or more biological replicates. Dose-response inhibition curves (Log (inhibitor)
vs. normalized response—Variable slope) were obtained using Skanlt Software (Thermo
Scientific, Waltham, MA, USA).

2.4. Cytotoxicity in Mammalian Cells

HFF were seeded at 5 × 104 cells/well in 96-well microplates and incubated overnight
to adhere to the plate. After that, the cells were incubated in the presence of increasing
concentrations of the compounds for 72 h at 37 ◦C in a 5% CO2 humidified incubator. The
viability of the cells was determined by the MTT assay as previously described [18]. The
medium in each well was replaced by PBS (100 µL/well), MTT (5 mg/mL) was added
(20 µL/well), and the plate was incubated for 4 h at 37 ◦C. Formazan extraction was
performed using 10% SDS for 18 h (80 µL/well) at room temperature, and the optical
density was measured at 550 nm using a microplate reader (Thermo Scientific™ Varioskan
LUX). HFF incubated in D2 without drug treatment were used as viability control. Viability of
100% was expressed based on the optical density of untreated HFF cells, after normalization.
The Selectivity Index (SI) was provided by the ratio between the CC50 against HFF cells and
the EC50 against T. gondii tachyzoites. Data presented are representative of the results of two
or more biological replicates. Dose-response inhibition curves (Log (inhibitor) vs. normalized
response—Variable slope) were obtained using Skanlt Software (Thermo Scientific).
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2.5. Molecular Docking

Molecular Docking was used to investigate the mechanism of action of the 13 com-
pounds included in the study that contribute to the inhibitory effect of T. gondii through the
binding affinity of the compound and the predicted molecular target [19]. The 3D structure
of the enzyme was obtained from the Protein Data Bank (PDB) (https://www.rcsb.org/
pdb/home/home.do accessed on 14 March 2022) [20]. Initially, all water molecules were
removed from the crystalline structure and the root mean square deviation (RMSD) was
calculated from the postures, indicating the degree of reliability of the fit. RMSD provides
the connection mode close to the experimental structure and is considered successful if
the value is less than 2.0 Å [21]. We used two softwares—Molegro Virtual Docker v.6.0.1
(MVD) (CLC Bio Company, Aarhus, Denmark) and PYRX—Virtual Screening Tool, Source
Force, 2022, Slashdot Media. The complexed ligand was used to define the active site. The
compound was then imported to analyze the stability of the system through the interac-
tions identified with the active site of the enzyme, taking as a reference the energy value of
the MolDock Score [22]. The MolDock SE (Simplex Evolution) algorithm was used with
the following parameters: A total of 10 runs with a maximum of 1500 iterations, using
a population of 50 individuals, with 2000 minimization steps for each flexible residual
and 2000 global minimization steps per run. The MolDock score (GRID) scoring function
was used to calculate docking energy values. A GRID was set at 0.3 A and the search
sphere was set at 15 A in radius. For the analysis of ligand energy, internal electrostatic
interactions, internal hydrogen bonds and sp2-sp2 torsions were evaluated [23,24]. The
PYRX—Virtual Screening Tool, Source Force, 2022, Slashdot Media features two main pro-
grams, corresponding to: Auto Dock (version 4.2.6), (Center for Computational Structural
Biology, San Diego, CA, USA) which uses force fields such as AMBER in conjunction with
free energy scoring functions, plus affinity maps and pre-calculated electrostatic maps for
specific atoms [25,26]. The second program refers to Auto Dock Vina (version 1.2), (Center
for Computational Structural Biology, San Diego, CA, USA), which corresponds to a more
recent and improved version of the calculation platform. The software uses a semi-flexible
docking algorithm by default. The anchoring site of the receptor being defined within
the binding site of the co-crystallized ligand, identified through the coordinates of the
ligand after importing and labeling the macromolecule [27,28]. The program was used
with a default plug-in parameter. Furthermore, the hydrogen bonding distance (O-H) was
defined at <2.50 Å between the donor and acceptor atoms with a minimum hydrogen
donor-acceptor angle of 120◦. Grid size was adjusted to 25 Å in each dimension. The
proteins used in the study were, respectively: thymidyl synthase in complex with 2-amino-
5-(phenylsulfanyl)-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (PDB: 4KY4) [29], purine
nucleoside phosphorylase in complex with 1,4-dideoxy-4-aza-1-(s)-(9-deazahypoxanthine-
9-yl)-d-ribitol (PDB: 3MB8) [30], enoyl-acyl carrier protein reductase (ENR) in complex
with triclosan (PDB: 2O2S) [31], and calcium dependent protein kinase 1 in complex with
5-amino-1-tert-butyl-3-(quinolin-2-yl)-1H-pyrazole-4-carboxamide (PDB: 4M84) [32]. In
addition, to evaluate the specificity of the mechanism of action with Na+/K+-transporting
ATPase alpha 1, the construction of this macromolecule was carried out for the species
Homo sapiens and Mus musculus [32] with thapsigargin [33] as a positive control.

Docking Consensus

To increase the accuracy of the results obtained, a Docking consensus analysis was
performed in order to provide a better selection of the compounds under study. Regarding
the Molegro Virtual Docker v.6.0.1 (MVD) program (CLC Bio Company, Aarhus, Denmark),
the values of the Moldock Score and PlantScore algorithms were used. Regarding the PYRX
program—Virtual Screening Tool, Source Force, 2022, Slashdot Media, AutoDock Vina
(version 1.2) (Center for Computational Structural Biology, San Diego, CA, USA) was used.

The determination of the affinity of the 13 compounds under study for the targets of
T. gondii and the ATPase alpha 1 transporter was established by probability calculations.
The probability was calculated by dividing the score of the molecule under study by the
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lowest energy score (p = composite score/minor score) (Supplementary Tables S1–S5), for
each algorithm, and at the end an overall average was calculated between the algorithms to
generate the enzyme average ((p) Enzyme = ((p) Moldock Score + (p) Plants Score + (p) Vina
Score)/3) [33,34]. The sum of the enzyme mean and division by the number of information
originated the total probability (Total P).

2.6. Alignment of Protein Sequences

The sequences of the two proteins that do not contain 3D structures in the Protein Data
Bank [35] were obtained from the GenBank database [36]. These proteins were: Na+/K+-
transporting ATPase alpha 1—M. musculus (NP_659149.1) and Na+/K+-transporting ATPase
alpha 1—H. sapiens (NP_000695.2). A global alignment was then performed with the sequence of
a protein with a known three-dimensional structure, using the Clustal Omega web tool (WMBL-
EBI, 2022 https://www.ebi.ac.uk/Tools/msa/clustalo/ accessed on 14 March 2022) [37], which
aligns all protein sequences entered by a user. Alignment facilitated the investigation of the active
site and the determination of similarity and shared identity between proteins.

2.7. Modeling by Homology

Target sequences were obtained as amino acid sequences in FASTA format and were
imported from the SWISS-MODEL website (https://swissmodel.expasy.org/ accessed on
14 March 2022) [38]. For each identified mold, the quality was predicted from alignment
features such as ProMod3, QMEAN and GMQE. The stereochemical quality of the models
was evaluated by the PSVS (protein structure validation software suite) web server (http://
psvs-1_5-dev.nesg.org/ accessed on 14 March 2022), using PROCHECK [39]. PROCHECK
generates a Ramachandran chart [34,35], which determines the allowed and disallowed
regions of the amino acid backbone.

2.8. Molecular Dynamics Simulations

Molecular dynamics simulations were performed to estimate the flexibility of interactions
between proteins and ligands, using GROMACS 5.0 software (European Union Horizon 2020
Program, Uppsala, Sweden) [40,41]. The protein and ligand topologies were also prepared using
the GROMOS96 54a7 force field. The Molecular Dynamics simulation was performed using the
SPC water model of point load, extended in a cubic box [42]. The system was neutralized by
the addition of ions (Cl− and Na+) and minimized, to remove bad contacts between complex
molecules and the solvent. The system was also balanced at 300 K, using the 100 ps V-rescale
algorithm, represented by NVT (constant pressure particles and temperature), up to 100 ps.
DM simulations were performed in 5,000,000 steps, at 10 ns. To determine the flexibility of
the structure and whether the complex is stable close to the experimental structure, RMSD
values of all Cα atoms were calculated relative to the starting structures. RMSF values were
also analyzed to understand the roles played by residues near the receptor binding site. The
RMSD and RMSF graphs were generated using Grace software (Grace Development Team,
http://plasma-gate.weizmann.ac.il/Grace/ accessed on 23 June 2022) [43].

3. Results
3.1. In Vitro Anti-T. gondii Activity and Cytotoxicity against HFF

We tested 13 compounds that have been in silico selected against T. gondii from the
MMV foundation’s Pandemic Response Box and COVID Box. Table 1 and Figure 2 show
the structures and general characteristics of the tested compounds.

Table 1. General characteristics of the 13 compounds tested against T gondii in vitro.

MMV Code a Compound
(Trivial Name)

Molecular
Formula b Mol wt b aLogP b Rule of Five b

MMV1804175 Almitrine C26H29F2N7 477.5 6.09 3
MMV009415 Bortezomib C19H25BN4O4 384.2 2.14 4
MMV002436 Digitoxin C41H64O13 764.9 3.11 2
MMV002832 Digoxin C41H64O14 780.9 2 1
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Table 1. Cont.

MMV Code a Compound
(Trivial Name)

Molecular
Formula b Mol wt b aLogP b Rule of Five b

MMV004066 Doxorubicin C27H29NO11 543.5 −0.05 1
MMV003219 Mycophenolic acid C17H20O6 320.3 3.16 4
MMV001439 Ribavirin C8H12N4O5 244.2 −2.75 4
MMV003305 Valproic acid C8H16O2 144.2 2.75 4
MMV637413 Fludarabine C10H12FN5O4 285.2 −1.32 4

MMV1578575 Fusidic acid C31H48O6 516.7 5.1 2
MMV687798 Levofloxacin C18H20FN3O4 361.4 −1.38 4
MMV002350 Lomefloxacin C17H19F2N3O3 387.8 −0.83 4
MMV000028 Trimethoprim C14H18N4O3 290.3 1.55 4

a Compounds are named by their MMV identifier codes. b Molecular formula, molecular weight (Mol wt), aLogP
values, and information about rule of five were obtained from the Pandemic Response Box and COVID Box
supporting information.
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We used a 96-well plate assay based on β-galactosidase expression to estimate the T.
gondii tachyzoites’ viability. From the 13 tested compounds, three demonstrated anti-T. gondii
activity at nanomolar range, named almitrine (MMV1804175), bortezomib (MMV009415), and
fludarabine (MMV637413), with activity comparable to the reference drug pyrimethamine.
A total of ten compounds demonstrated EC50 at the micromolar range (digitoxin, digoxin,
doxorubicin, fusidic acid, levofloxacin, lomefloxacin, mycophenolic acid, ribavirin, trimetho-
prim, and valproic acid). The cytotoxicity against mammalian cells was evaluated for the
three most active compounds (almitrine, bortezomib, and fludarabine). Almitrine presented
the highest selectivity (SI > 47), with a CC50 value greater than 20 µM (the higher tested
concentration) against HFF. Results concerning the anti-T. gondii activity and mammalian
cytotoxicity are shown in Table 2.

Table 2. In vitro activity of the selected compounds against T. gondii, with pyrimethamine as the
reference drug.

Compound EC50 (µM) a CC50 (µM) b SI c

Almitrine 0.424 >20 >47
Bortezomib 0.223 0.079 0.35
Digitoxin 5.66 n.d. n.d.
Digoxin 42.59 n.d. n.d.
Doxorubicin 2.39 n.d. n.d.
Mycophenolic acid 8.06 n.d. n.d.
Ribavirin 83.31 n.d. n.d.
Valproic acid 99.61 n.d. n.d.
Fludarabine 0.75 2.140 2.85
Fusidic acid 16.70 n.d. n.d.
Levofloxacin 70.58 n.d. n.d.
Lomefloxacin 7.32 n.d. n.d.
Trimethoprim 7.36 n.d. n.d.
Pyrimethamine 0.121 n.d. n.d.

a Half Effective Concentration (EC50) against T. gondii tachyzoites. b Half Cytotoxic Concentration (CC50) against HFF
cells. c Selectivity indexes (SI) were calculated based on the CC50 HFF cells/EC50 T. gondii ratio. n.d.: not determined.

Based on these results, almitrine was considered a promising anti-T. gondii drug
candidate. The 13 compounds were subjected to Molecular Docking screening in four
proteins for T. gondii, and the compound almitrine was subjected to docking simulations
with the Na+/K+-ATPase alpha 1 transporter of H. sapiens and M. musculus.

3.2. In Silico Results

The in silico screening was carried out in two stages, the first corresponding to the
evaluation of the probabilities of the compounds against the specific targets for T. gondii and
the second referring to the screening of the compounds in the ATPase alpha 1 transporter
to the species H. sapiens and M. musculus. Prior to carrying out the Molecular Docking
simulations, redocking was performed, aiming to validate the enzymes used in the study.
The redocking results (Supplementary Table S1) showed that all targets obtained from the
PDB for the organism T. gondii had RMSDs below 2.0 Å, indicating that the generated poses
of the co-crystallized ligand are correctly positioned at the ligand’s active site.

Docking results were generated using three scoring functions (moldock score, plants
score and autodock vina). In addition, the probability of activity in each of the enzymes
was calculated. The obtained probability in each algorithm is shown for T. gondii enzymes
(Supplementary Tables S2–S5) and for the ATPase alpha 1 transporter (Supplementary
Tables S6 and S7). The total probability of the compound in the organism was also calculated
for T. gondii and for the transporter ATPase alpha 1 (Supplementary Tables S8 and S9,
respectively). The protein in which the compound obtained probability higher than, or close
to, the values obtained by the ligand in at least one scoring function was considered active.

208



Pharmaceutics 2022, 14, 1634

Therefore, the ligands selected in the study are co-crystallized in the structure obtained in
the PDB library and present experimental validation for the respective enzymes.

For T. gondii enzymes, the compound doxorubicin achieved the highest total proba-
bility, corresponding to 0.8816 (Supplementary Table S8). Furthermore, the compounds
almitrine (0.8461) and bortezomib (0.8383) presented probabilities greater than 0.80, which
are close to those obtained for the PDB ligands.

Almitrine presented a significant probability for the ATPase alpha 1 transporter (H.
sapiens) equivalent to 0.8362 (Supplementary Table S9). Furthermore, it was the most likely
compound for the ATPase transporter (M. musculus), with p = 0.9508, and presented the
highest total probability for the two enzymes under study (0.8935). This demonstrates a
potency and affinity of this compound for this macromolecule. The molecular coupling
of almitrine with transporters for the species M. musculus and H. sapiens can be seen in
Supplementary Tables S4 and S5. The molecular coupling study of almitrine indicated steric,
hydrophobic and hydrogen bonding interactions. In addition, it presented residues similar
to the positive control tapsigargin, involved the hydrogen interactions of the Arg 551 and
Asp 619 residues.

After the analysis of the potential activity of the 13 compounds under study against
important T. gondii enzymes, Molecular Dynamics simulations were carried out with the
compound almitrine to assess the flexibility of the transporting ATPase alpha 1 and the
stability of the enzyme interactions in the presence of factors such as solvent, ions, pressure
and temperature. This information is important since it complements the docking results
and allows one to evaluate whether the compound remains strongly linked to the studied
enzymes in the presence of factors that are found in the host organism. To evaluate the
stability with the ATPase alpha 1 transporter, the compound almitrine was selected, as
it presented the highest total probability for this transporter, taking into account the two
species under study: H. sapiens and M. musculus (Supplementary Table S9). The RMSD
was then calculated for the Cα atoms of the complexed enzyme and the structures of each
ligand, separately.

The RMSD analysis of the transporting ATPase alpha 1 of H. sapiens with the compound
almitrine showed conformations ranging from 0.12 to 0.15 nm in size for 10 ns, with high
stability (Figure 3). The stability of this protein is essential to keep compounds bound to
the active site. Furthermore, stability prevents the ligand from losing important contacts
with the enzyme’s active site.
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Figure 3. RMSD values of the Cα atoms of almitrine and the control (thapsigargine) with the
transporting ATPase aplha 1. Legend: Green: ATPase of H. sapiens complexed with thapsigargine;
and Red: ATPase of H. sapiens complexed with almitrine.
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Regarding the analysis of the flexibility of the ligands through the RMSD calculations
of the protein (Figure 4), the profile demonstrated by the isolated protein was similar to the
result observed by the control, remaining stable up to 0.4 ns. Almitrine maintained stability
up to a certain point, showing a peak in the period from 8.0 to 9.0 ns. Despite the small
variation in the protein structure by the peak demonstrated, there was no interference in the
structure of the ligands within the active site even if the protein changes its conformation.
Therefore, in the presence of solvents, ions and other factors, almitrine was able to establish
stronger bonds with the active site.
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To understand the flexibility of the residues and amino acids that contribute to the
conformational changes in the transporting ATPase alpha 1 of H. sapiens, the mean quadratic
fluctuation (RMSF) was calculated for each amino acid in each enzyme. High RMSF values
suggest greater flexibility. Since amino acids with fluctuations above 0.3 nm contribute to
the flexibility of the protein structure, we found that residues at positions 39, 41, 86, 122,
123, 124, 125, 275, 276, 277, 278, 497, 498, 499, 500, 564, 566, 567, 568, 570, 575, 649, 835,
1011, 1012, 1013 and 1016 contribute to conformational changes in the transporting ATPase
alpha 1 of H. sapiens (Figure 5). We also found that none of the amino acids that affect the
structural conformations identified in the transporting ATPase alpha 1 of H. sapiens are a
component of the active site. This helps almitrine to remain in the active site.
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4. Discussion

Sarteriale et al., 2014 [13] performed an in silico study based on the proteome of
T. gondii to identify potential drug candidates for toxoplasmosis therapy. Among the
inhibitors previously identified, we selected 13 compounds from the MMV collections to
be tested against the parasite in a cell-based assay. We found that the selected compounds
were in vitro active against the parasite, with EC50 values ranging from 0.22 to 99.69 µM.

The obtained results indicated that this method is valuable and can be used to build
enriched compound libraries for in vitro drug testing, which could enable a more efficient
use of laboratory resources, as suggested by Sarteriale et al. 2014 [13], bringing the advan-
tage of reduced speed and cost and extra broadness. We also confirmed that the compound
collections from MMV are promising sources of anti-T. gondii agents.

In our study, diverse antitoxoplasmic compounds were identified, representing the
first time that this combined set of compounds has been evaluated against T. gondii in vitro.

A total of three compounds showed EC50 values against T. gondii at the nanomolar
range. Two of them (MMV1804175 and MMV009415) belong to the COVID Box and one of
them is part of the Pandemic Response Box (MMV637413).

Compound MMV1804175, commercially named almitrine, was the most selective,
with an EC50 value of 0.424 µM against the parasite and a CC50 value higher than 20 µM,
the top concentration evaluated. The ratio between the CC50 against HFF and the EC50
against the parasite resulted in a selectivity index greater than 47. Almitrine is a selective
pulmonary vasoconstrictor, which has been proposed as an interesting therapeutic option
to manage severe hypoxemia in patients with the Coronavirus 2019 disease [44]. This is
the first report about the anti-T. gondii activity of almitrine. Previously published work
has demonstrated the in vitro activity of this drug against chloroquine-susceptible and
chloroquine-resistant P. falciparum, with EC50 values ranging from 2.6 to 19.8 µM [45]. When
almitrine bismesylate was administered to young subjects in single or multiple oral doses,
the physiological and blood parameters indicated that the drug was safe at all doses tested,
up to 400 mg per day, with symptoms of mild nausea and headache [46].

Bortezomib (MMV009415) is a proteasome inhibitor and antineoplastic agent that is
used in the treatment of refractory multiple myeloma and certain lymphomas [47]. The
compound was equally effective against drug-sensitive and -resistant P. falciparum, blocking
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its intraerythrocytic development prior to DNA synthesis [48]. Here, we report for the first
time the anti-T. gondii activity of bortezomib. This compound was the most active, with an
EC50 value of 0.223 µM against T. gondii. However, this compound presented low selectivity,
with a CC50 value of 0.079 against the mammalian lineage HFF, indicating the need to design
possible changes in the chemical structure, aimed at finding more selective analogues.

The purine analogue fludarabine (MMV637413) is an antineoplastic agent used in
the therapy of chronic lymphocytic leukemia and in immunosuppressive regimens in
preparation of hematopoietic cell transplantation. This small molecule is an analog of the
antiviral agent vidarabine and acts interrupting DNA synthesis and inhibiting tumor cell
growth. Fludarabine is associated with a low rate of transient serum enzyme elevations
during therapy and has only rarely been implicated in cases of clinically apparent acute
liver injury [49]. To the best of our knowledge, this is the first report about the anti-parasitic
activity of this compound.

Among the ten compounds presenting anti-T. gondii activity in the micromolar range,
we can highlight doxorubicin, an antibiotic isolated from Streptomyces peucetius var. caesius.
The compound triggers oxidative stress causing cardiotoxicity, which compromises its
clinical use as an antineoplastic agent [50]. This anti-T. gondii candidate also showed
activity against another three parasitic protozoan species, named C. parvum, Trichomonas
vaginalis and P. falciparum [51]. To the best of our knowledge, this is the first report about
the anti T. gondii activity of this compound.

Antibiotics have a history of repurposing success for Apicomplexan parasites and
are the conventional treatment for human toxoplasmosis, in the form of pyrimethamine +
sulphadiazine, trimethoprim + sulphamethoxazole and pyrimethamine + clindamycin [52].
Other antibiotics with anti-T. gondii activity identified in the present work were lome-
floxacin, mycophenolic acid, fusidic acid, levofloxacin, and trimethoprim. Mycophenolic
acid is an antineoplastic antibiotic derived from various Penicillium fungal species. It was
previously reported that this drug triggers T. gondii extracellular tachyzoites differentiation
into cyst-like structures [53]. Fusidic acid, an antibiotic that inhibits the growth of bacteria
by preventing the release of translation elongation factor G from the ribosome, has been
shown to be effective in tissue culture against P. falciparum and T. gondii [54]. Trimethoprim
is an antimicrobial used to treat and prevent toxoplasmosis and many bacterial infec-
tions [55]. Therefore, the in vitro activity of this drug against T. gondii is not a novelty.
Lomefloxacin is used to treat bacterial infections including bronchitis and urinary tract
infections [56]. Levofloxacin is an antibacterial drug with a broad spectrum of activity. This
drug diffuses through the bacterial cell wall and acts by inhibiting DNA gyrase (bacterial
topoisomerase II), leading to blockage of bacterial cell growth [57]. The in vitro anti-T.
gondii activity of lomefloxacin and levofloxacin is reported here for the first time.

Digitoxin is a lipid soluble cardiac glycoside that inhibits the plasma membrane
Na+/K+-ATPase, with anticancer effects when used at therapeutic concentrations [58]. In
addition, digoxin is a cardiac glycoside long used to treat congestive heart failure and
has been found more recently to show anticancer activity [59]. Ribavirin is an inhibitor
of the hepatitis C virus polymerase with a broad spectrum of activity against DNA and
RNA viruses [60]. To the best of our knowledge, the in vitro anti-T. gondii activity of
digitoxin, digoxin and ribavirin is first reported here. Valproic acid, a mood-stabilizing
and antipsychotic drug, presents efficacy against chronic T. gondii infection, as previously
demonstrated [61].

Among the three compounds presenting anti-T. gondii activity at nanomolar range, we
consider almitrine to be the most promising, since this compound showed in vitro selective
anti-T. gondii activity and presents good oral availability and low human toxicity. The
future evaluation of the efficacy of almitrine in T. gondii-infected animals is encouraging.

5. Conclusions

Promising anti-T. gondii candidates were identified and previously published in silico
data was confirmed, indicating that this is a useful tool in the search for active compounds in
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the target-based drug development process. In addition, we suggest that almitrine represents
a lead compound against T. gondii, which may be useful for antitoxoplasmic chemotherapy.

The 13 selected compounds showed interaction with specific enzymes of T. gondii,
whilst the compounds almitrine, bortezomib, digoxin, digitoxin, doxorubicin, mycopheno-
lic acid, ribavirin, fludarabine and fusidic acid presented greater affinity than the ligands
under study for the selected mechanisms. Almitrine showed a lower score than the posi-
tive control tapsigargin, regarding the Na+/K+ ATPase transporter of H. sapiens and M.
musculus referring to the Plantscore algorithm. In addition, almitrine showed interactions
such as the positive control tapsigargin, thus indicating a possible mechanism of action of
this compound.
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Abstract: Drug interactions with other drugs are a well-known phenomenon. Similarly, however,
pre-existing drug therapy can alter the course of diseases for which it has not been prescribed. We
performed network analysis on drugs and their respective targets to investigate whether there are
drugs or targets with protective effects in COVID-19, making them candidates for repurposing. These
networks of drug-disease interactions (DDSIs) and target-disease interactions (TDSIs) revealed a
greater share of patients with diabetes and cardiac co-morbidities in the non-severe cohort treated
with dipeptidyl peptidase-4 (DPP4) inhibitors. A possible protective effect of DPP4 inhibitors
is also plausible on pathophysiological grounds, and our results support repositioning efforts of
DPP4 inhibitors against SARS-CoV-2. At target level, we observed that the target location might
have an influence on disease progression. This could potentially be attributed to disruption of
functional membrane micro-domains (lipid rafts), which in turn could decrease viral entry and thus
disease severity.

Keywords: COVID-19; network analysis; drug-disease interaction; target-disease interaction; DPP4
inhibitors; lipid rafts; drug repurposing

1. Introduction

In Switzerland, patients seen by general practitioners have a median of two chronic
conditions, and receive a median of two prescribed drugs [1]. The most common condi-
tions are cardiovascular diseases, including arterial hypertension and lipid disorders, and
diabetes [2]. Not only do drug-drug interactions increase with pill burden, but also the risk
for drug-disease interactions (DDSIs), where drugs that are beneficial in one disease may
be harmful in another [3]. A drug’s action is brought about by its interaction with molecu-
lar targets. The relationship is asymmetric, meaning that a given drug can interact with
multiple targets, and one target with multiple drugs [4]. By consequence, the interaction
of drugs with specific molecular targets can also influence the progression or severity of a
disease, which could lead to a target-disease interaction (TDSI).

The current pandemic of coronavirus disease 2019 (COVID-19) is caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). By now, several risk factors
for severe COVID-19 progression are known, such as age [5,6], male sex [7,8], or obe-
sity [9–12]. Additionally, common co-morbidities such as diabetes [13–15], cardiac [16,17]
and pulmonary diseases [18,19], or dementia [20] can influence prognosis of COVID-19.
Furthermore, both the number and the combination of certain co-morbidities have been
found to be predictors of severity [21]. Several studies have already been conducted to
analyze the influence of specific co-medications on COVID-19 incidence and progression.
For example, hypertension is a common chronic condition and a risk factor for severe
COVID-19 progression [22]. Some researchers analyzed the influence of anti-hypertensive
drugs acting on the renin-angiotensin-aldosterone-system (RAAS)-system [23,24]. The
majority of these studies provided evidence that angiotensin converting enzyme (ACE)
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inhibitors and angiotensin-receptor blockers (ARBs) do not adversely affect the COVID-19
progression or may even be beneficial [22–28]. In general, studies showed that polyphar-
macy increases the risk for severe COVID-19 [29,30].

Network analysis is used to investigate a group of objects (e.g., friends, internet
servers, patients, enzymes, or proteins) and their connection with each other. The objects
are the nodes of the network, whereas the relationships are the edges connecting the nodes.
One famous example is Zachary’s “karate club” network, which displays the pattern of
friendships amongst the members of a university karate club [31]. In recent years, network
analysis has increasingly been applied in the context of pharmacology, e.g., to investigate
the relationships between drugs and their respective targets [4] or the relationship between
proteins and metabolites [32]. In addition, several network studies on the repurposing of
drugs against SARS-CoV-2 have been conducted, mainly as drug-target, target-human,
viral-human, or protein-protein-interactions, or combinations thereof [32–34]. In addition,
transcriptomes of COVID-19 patients, patients with related conditions and healthy controls
were compared to identify possible drugs candidates for repurposing [35].

However, none of these studies used clinical data to investigate the influence of
pre-existing drug treatment on patient outcomes as measure of disease severity.

The aim of this study was to analyze the impact of DDSIs and TDSIs on COVID-19
severity using network analysis as a tool to inform drug repurposing efforts and increase
drug safety. We compared drugs on admission (i.e., drugs patients were taking before
or on the day of admission) and their molecular targets in patients who tested positive
for SARS-CoV-2, and used severe (required critical care or died) or non-severe outcome
(outpatient or never requiring critical care) as endpoint.

2. Materials and Methods
2.1. Study Population

We carried out this retrospective study at the Insel Hospital Group (IHG), a tertiary
hospital network with six locations and about 860,000 patients treated per year, making it
the biggest health care provider in Switzerland. The Cantonal Ethics Committee of Bern
approved the protocol (2020-00973). We considered all patients who tested positive for
SARS-CoV-2 by reverse-transcriptase polymerase chain reaction (RT-PCR) assay on na-
sopharyngeal swabs at the IHG between 1 February through 16 November 2020—covering
the ‘first wave’ and most of the ‘second wave’ of COVID-19 in the region (Figure 1).
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For patients with no registered general research consent status, a waiver of consent
was granted by the ethics committee. Objection to the general research consent of the IHG
was an exclusion criterion for this study, whereas participation in other trials (including
COVID-19 related treatment studies) was not. Disease progression was classified as severe
if, for any reason, an intensive care unit (ICU) admission was required at any stage, or the
patient died during the stay. All other patients were classified as non-severe. We selected
only patients for whom drugs on admission had been recorded. Therefore, this study
included 115 severe and 390 non-severe COVID-19 patients. We identified pre-existing
conditions using Natural Language Processing from a previous study [36]. For a total of
28 patients (14 non-severe and 14 severe cases), we could not perform disease detection.
Characteristics of the study population are provided in Table 1.

Table 1. Characteristics of study population.

General Characteristics Non-Severe (n = 390) Severe (n = 115) p Value

Age (years)
Median (Q1, Q3) 67.00 (52.00, 77.00) 70.00 (60.50, 81.00) <0.001

Sex
Female (%) 155 (39.74%) 31 (26.96%) 0.017

BMI
Median (Q1, Q3) 26.05 (23.51, 29.43) 27.73 (24.74, 31.70) <0.006

Drugs on admission
Median (Q1, Q3) 7.00 (4.00, 12.00) 8.00 (4.00, 13.00) 0.403

Diseases

Arterial hypertension (%) 182 (48.40%) 64 (63.37%) 0.011
Chronic heart failure (%) 92 (24.47%) 37 (36.63%) 0.021

Atrial fibrillation (%) 57 (15.16%) 23 (22.77%) 0.095
Coronary heart disease (%) 52 (13.83%) 32 (31.68%) <0.002

Coronary sclerosis (%) 9 (2.39%) 6 (5.94%) 0.136
Diabetes (%) 105 (27.93%) 34 (33.66%) 0.316
Dementia (%) 39 (10.37%) 15 (14.85%) 0.278

To study the effects of co-morbidities, we created four sub-groups:

1. Cardiac conditions (chronic heart failure, atrial fibrillation, coronary heart disease,
and/or coronary sclerosis) (n = 184)

2. Arterial hypertension (n = 246)
3. Diabetes (including pre-diabetes, type 1 and 2 diabetes) (n = 139)
4. Dementia (n = 54)

Note: patients can be members of more than one group, e.g., 70 patients suffered from
diabetes as well as from cardiac conditions.

2.2. Network Analysis

Drugs on admission (drugs taken before admission to the IHG) were obtained from the
electronic health records (EHR). As this part of the EHR was not always complete, we also
considered drugs administered in-house on the day of admission. This also mitigates the
effect of patients transferred from other hospitals compared to patients who were initially
admitted to the IHG.

We evaluated different levels of detail in drug classification. First, we compared the
fourteen main groups of the Anatomical Therapeutic Chemical (ATC) classification sys-
tem [37]. Then we selected 90 pharmacological, chemical subgroups or substances, which
we categorized in 30 therapeutic groups. We identified drugs in the EHR by ATC codes.
By and large, the drug groups and subgroups are based on the categorization of the ATC
classification, but some minor deviations are present, e.g., acetylsalicylic acid was included
as antithrombotic agents, whereas in the ATC code, it is grouped with the analgesics, an
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uncommon indication in Switzerland. Considering the hyper-thrombotic state of COVID-19
patients [38], we considered its rheological effect to be more important than its analgesic
effect. Further information on our grouping is available in the Supplements, Table S1.

Lastly, we analyzed the molecular targets of the drugs on admission. We used Drug-
Bank [39] to map drugs to targets and their target locations.

As the two severity cohorts are imbalanced, we normalized the number of patients
for network analysis in each drug (sub-)group by dividing them through the total num-
ber of patients in the respective cohort. The obtained value was used as weight in the
network analysis.

A network consists of nodes connected by edges. A node’s weight is determined by
the number of patients receiving the drug, and an edge’s weight by the number of patients
receiving two drugs simultaneously. In our analysis, drugs, drug classes, and targets were
represented as nodes and concurrent use or interaction was represented by connecting
undirected edges. Therefore, the weights of nodes or edges are both positively correlated
with drug use or target engagement.

2.3. Software and Statistical Tests

Data wrangling, analysis, and visualization were performed in GNU R (version 4.0.2,
R Foundation for Statistical Computing, http://www.R-project). Statistical significance
levels were defined at a p value of <0.05, and determined with the Student’s t-test for
continuous parameters and Chi-square test for categorical parameters using the stats
package (version 4.0.2). Network analysis was performed using the igraph package (Version
1.2.6) [40]. For network visualization, we used Gephi (Version 0.9.2) [41].

3. Results
3.1. Network Metrics

The main network metrics are presented in the Supplements, Table S2. Main nodes
(hubs) and main edges are defined as those with the highest weight, i.e., largest share of
patients taking this drug or drug combination. All main nodes and edges are identical
between the severity cohorts, except for one edge in the drug subgroups (non-severe:
other analgesics and antipyretics—heparin; severe: other analgesics and antipyretics—antibiotics).
The diameter of the network (maximum distance between any two nodes; or the longest
shortest path), was in general larger in the severe cohort. Node betweenness centrality
(betweenness, indicating how often a node lies on the shortest path between two other
nodes) in the non-severe cohort was higher than in the severe cohort (43 and 24 drug
subgroups, respectively). More molecular targets had a higher betweenness in the non-
severe than in the severe cohort (418 and 124 molecular targets, respectively). In addition,
betweenness values in the non-severe cohort were higher (median: 150 vs. 48 and mean:
225 vs. 104, respectively). In Table S2, we show nodes with the greatest differences in the
betweenness between the cohorts.

3.2. DDSI Network

There are significant differences (p < 0.05) in all three networks (anatomical/pharmaco-
logical group, drug group, and drug subgroup) with regards to the drugs (nodes, Table 2)
and drug combinations (edges, Table 3) taken on admission. In all nodes and edges
with significant differences, the percentage of occurrence was higher in the cohort with
severe disease progression unless stated otherwise. As an example, visualization of the
anatomical/pharmacological group network is shown in Figure 2.
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Figure 2. Drug group networks for severe (A) and non-severe (B) COVID-19 (only nodes with three
or more edges are shown).

No differences can be observed in the anatomical/pharmacological group Alimentary
tract and metabolism or any of the corresponding (sub-)groups between the severity cohorts
considering all diseases. However, anti-hyperglycemics, specifically dipeptidyl peptidase-4
(DPP4) inhibitors and sodium glucose co-transporter 2 (SGLT2) inhibitors (only borderline
significant, p = 0.06), were taken more often by non-severe COVID-19 patients with cardio-
vascular conditions or cardiovascular conditions and diabetes (see Supplements, Table S3).

In the anatomical/pharmacological group Blood and blood forming organs, anti-hemorrh-
agics and anti-platelet agents (even though only borderline significant with p = 0.095), and
within these groups, especially Vitamin K and other hemostatics and acetylsalicylic acid (only
borderline significant, p = 0.085), respectively, were significantly different between the
severity cohorts.

In the anatomical/pharmacological group Cardiovascular system, which showed no
cohort difference, the drug group diuretics and cardiovascular drugs had a higher percentage
in severe COVID-19. In the former group, loop diuretics and in the latter, beta blockers are
significant differences over all patients regardless of co-morbidity.

Table 2. Significant nodes of the DDSI network.

Anatomical/Pharmacological Group Non-Severe COVID-19 [%] Severe COVID-19 [%] p Value

Blood and blood forming organs 85.64 94.78 0.014
Various 4.1 10.43 0.018

Musculo-skeletal system 21.79 13.91 0.085

Drug Groups

Anti-hemorrhagics 0.51 3.48 0.037
Diuretics 23.08 32.17 0.064

Cardiovascular drugs 36.67 46.09 0.087
Antiplatelet agents 23.08 31.3 0.095

Drug Subgroups

NSAID 12.56 4.35 0.020
Loop diuretics 1 14.87 24.35 0.025
Beta blockers 1 26.41 37.39 0.030

Vitamin K and other hemostatics 0.51 3.48 0.037
Opioids 1 10.51 17.39 0.068

Acetylsalicylic acid 21.28 29.57 0.085
1 Drug subgroups that were associated with death or severe COVID-19 by Iloanusi et al. and McKeigue et al. [29,30].
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Table 3. Significant edges of the DDSI network.

Anatomical/Pharmacological Group Combinations Non-Severe
COVID-19 [%] Severe COVID-19 [%] p Value

Various Alimentary tract and metabolism 3.85 10.43 0.012

Nervous system 3.33 9.57 0.012

Blood and blood forming organs 3.85 9.57 0.028

Drug Group Combinations Non-Severe
COVID-19 [%] Severe COVID-19 [%] p Value

Psycholeptics Anti-hemorrhagics 0.26 3.48 0.011

Antiplatelet agents Anti-infectives 7.44 15.65 0.013

Cardiovascular drugs Diuretics 16.92 26.09 0.004

Obstructive airway drugs 5.9 12.17 0.039

Drug Subgroup Combinations Non-Severe
COVID-19 [%] Severe COVID-19 [%] p Value

Antipsychotics 1 Loop diuretics 1 1.28 7.83 <0.001

Opioids 1 1.03 6.09 0.004

Adrenergic inhalants 0.51 4.35 0.008

Beta blockers 1 2.82 8.7 0.012

Proton pump inhibitors 1 3.59 8.7 0.044

Other analgesics 5.38 11.30 0.044

Heparin 1 Direct Xa inhibitors 1 0.51 4.35 0.008

Loop diuretics 1 4.62 10.43 0.036

Platelet inhibitors 1 Antibiotics 7.44 14.78 0.026

Loop diuretics 1 5.13 11.3 0.032

Beta blockers 1 11.03 19.13 0.034

Proton pump inhibitors 1 10.00 17.39 0.045

Potassium spare diuretics 1 1.03 4.35 0.049

Potassium spare
diuretics 1 Acetylsalicylic acid 0.77 4.35 0.023

Adrenergic inhalatives 0.51 3.48 0.037

Loop diuretics 1 Opioids 1 2.82 7.83 0.032

Vitamin K antagonists 1 Thyroid 0.51 3.48 0.037

NSAID Other analgesics 10.26 3.48 0.038

Beta blockers 1 Acetylsalicylic acid 10.77 18.26 0.048
1 Drug subgroups that were associated with death or severe COVID-19 by Iloanusi et al. and McKeigue et al. [29,30].

Additionally, non-steroidal anti-inflammatory drugs (NSAIDs) were more often taken
by patients with non-severe COVID-19, whereas the opposite was true for opioids (but
only borderline significant).

Considering all patients, there are differences in combinations of drugs from anatomi-
cal/pharmacological group, drug group combinations, and drug subgroup combinations,
but the weight of these edges (percentage of patients) is relatively low in most cases
(<15%) (Table 3).

However, the disease-specific analysis revealed that the combination of anti-hypergly-
cemics and anti-coagulants was more common in non-severe COVID-19 in patients with
cardiac conditions or cardiac conditions and diabetes. In the latter cohort, the combination
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of anti-hyperglycemics and statins had a higher percentage in non-severe COVID-19 (see
Supplements, Table S4).

3.3. TDSI Network

The main molecular targets and their relative frequency per cohort are shown in the
Supplements, Figure S1. Molecular targets with highly significant (p < 0.001) differences
are given in the Supplements, Figure S2.

Differences in molecular targets can be divided into two groups. The first group
comprises targets which interact with only one specific group of drugs, e.g., antithrombotic
agents mostly interact with coagulation factor X, P-selection, and antithrombin-III, whereas
diuretics may target members of the solute carrier family 12. The second group includes
targets that cannot be assigned to just one indication or drug group. Beta adrenergic receptors
are targets for anti-depressants, anti-hypertensives, and anti-arrhythmics. There are over
2690 significantly different edges in the molecular target network. In the Supplements, we
included the 30 most common edges in the network (Figure S3) and the highly significant
edges (p < 0.001) (Figure S2).

In Figure 3, we present a filtered version of molecular target networks of both severity
cohorts, where only nodes with three or more edges are shown.
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Figure 3. Molecular target networks for severe (A) and non-severe (B) COVID-19 (only nodes
with three or more edges are shown); ADRA1A/2A: Alpha-1A/2A adrenergic receptor; ADRB1/2:
Beta-1/2 adrenergic receptor; AGTR1: Type-1 angiotensin II receptor; AKR1C1: Aldo-keto re-
ductase family 1 member C1; ATP4A: Potassium-transporting ATPase alpha chain 1; CASP1/3:
Caspase-1/3; CCND1: G1/S-specific cyclin-D1; CHRM1/M2/M3: Muscarinic acetylcholine receptor
M1/M2/M3; CYCLA: Cyclin A; DDAH1: N(G),N(G)-dimethylarginine dimethylaminohydrolase 1;
DRD2: Dopamine D2 receptor; EDNRA: Endothelin-1 receptor; F10: Coagulation factor X; HDAC2: Hi-
stone deacetylase 2; HMGCR: 3-hydroxy-3-methylglutaryl-coenzyme A reductase; HRH1: Histamine
H1 receptor; HSPA5: 78 kDa glucose-regulated protein; HTR1A/2A/2C: 5-hydroxytryptamine receptor
1A/2A/2C; IKBKB: Inhibitor of nuclear factor kappa-B kinase subunit beta; MAPK1: Mitogen-
activated protein kinase 1; MYC: Myc proto-oncogene protein; NFKBIA: NF-kappa-B inhibitor alpha;
NR3C1: Glucocorticoid receptor; OPRD1: Delta-type opioid receptor; OPRK1: Kappa-type opioid
receptor; OPRM1: Mu-type opioid receptor; PCNA: Proliferating cell nuclear antigen; PRKAA1:
5′-AMP-activated protein kinase; PTGES3: Prostaglandin E synthase 3; PTGS1/2: Prostaglandin G/H
synthase 1/2; RSK: Ribosomal protein S6 kinase alpha-3; SERPINC1: Antithrombin-III; SLC12A1/2:
Solute carrier family 12 member 1/2; SLC6A4: Sodium-dependent serotonin transporter; TP53: Cellu-
lar tumor antigen p53; TRPV1: Transient receptor potential cation channel subfamily V member 1;
TSG-6: Tumor necrosis factor-inducible gene 6 protein.
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The color of the nodes indicates the location of the molecular target within the cell.
In the non-severe cohort, more molecular targets are located within the cell membrane,
whereas in the severe cohort more targets are located within the cytoplasm.

4. Discussion

The network analysis of drugs and their molecular targets revealed differences be-
tween the severity cohorts of COVID-19. Except for one edge, the main nodes (hubs) and
edges are identical, however the weights were often slightly higher in the severe cohort.
This suggests that the most important drugs and drug combinations are the same between
the cohorts, but still, slightly more drugs and drug combinations are taken by the severe
cohort. This may be indicative of a subpopulation with more co-morbidities. The larger
diameter of the severe network indicates that the drugs and drug combinations are more
heterogeneous in this cohort. This is supported by the generally lower betweenness of most
nodes in this cohort in absolute values, but also in comparison to the non-severe cohort.

However, co-morbidities and co-medications did not always result in a more severe
course. Noteworthy here is the higher percentage of patients with cardiac conditions, or
cardiac conditions and diabetes, using anti-hyperglycemics, especially DPP4 inhibitors, and
to a lower degree SGLT2 inhibitors in the non-severe COVID-19 cohort. These patients had
at least two co-morbidities, which are considered risk factors for a severe course [15,42,43],
but had a more favorable outcome under these treatment regimens. DPP4 inhibitors
have been shown to be reno- and cardio-protective through the suppression of oxidative
stress, inflammation, and improvement of endothelial function [44]. Furthermore, there
is evidence that SARS-CoV-2, like MERS-CoV (Middle East respiratory syndrome-related
coronavirus), also uses the membrane-bound DPP4 enzyme for viral entry. An inhibition
of this enzyme is speculated to reduce viral entry and replication [45,46]. In SARS-CoV-2, a
functional network analysis revealed that DPP4 is required in viral processes for viral entry
and infection. Furthermore, protein-chemical interaction networks revealed important
interactions between DPP4 and the DPP4 inhibitor sitagliptin [47]. Additionally, in animal
experiments, DPP4 inhibition resulted in a rise of soluble DPP4 [48,49] which could bind to
plasma SARS-CoV-2, reducing the amount of virus able to infect cells [50]. Mutations in
DPP4 genes, leading to reduced levels for soluble DPP4, were identified as risk factors for
increased susceptibility for MERS-CoV [51]. Within an infected cell, sitagliptin inhibited
the SARS-CoV-2 papain-like proteases (PLpro) in an in-cell protease assay [52]. Clinical
literature on DPP4 inhibitors in COVID-19 is ambiguous; several studies and meta-analyses
have showed favorable effects [53–56], while some have not [57–59]. A review of clinical
trials with the DPP4 inhibitor sitagliptin found that most studies showed a favorable effect
on COVID-19 progression [50]. Several potential modes of action are discussed apart from
the above-mentioned decrease in viral entry, increase in soluble DPP4, or inhibition of
viral proteases. It is hypothesized that DPP4 inhibitors might attenuate COVID-19-related
cardiovascular injury including arrhythmia, acute coronary syndrome and heart failure [60].
In addition, DPP4 inhibition has anti-inflammatory and immunomodulatory properties
by decreasing activation of nuclear factor kappa beta (NF-κB) activation and expression of
inflammatory cytokines [61,62]. These factors could also influence the progression.

A benefit of SGLT2 inhibitors is supported on pathophysiological grounds. SGLT2
inhibitors have been shown to downregulate systemic and adipose tissue inflammation
by decreasing the expression of pro-inflammatory cytokines, lessen oxidative stress, and
reduce sympathetic activity [63]. Furthermore, treatment with a SGLT2 inhibitors alleviated
myocardial and renal fibrosis in mice [64]. In a large randomized trial with COVID-19
patients, treatment with dapagliflozin, a SGLT2 inhibitors, did not result in a statistically
significant risk reduction in organ dysfunction and death, or speedier recovery [65].

Considering all patients, regardless of the diagnosed co-morbidities, there are some
noteworthy differences in the drugs (nodes of the network, Table 2) used within the
cohorts. Despite doubts early in the pandemic regarding the use of NSAIDs during
COVID-19 [66], a systematic review and meta-analysis was not able to confirm this the-
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oretical risk [67]. In human cell cultures and mice, NSAIDs reduced pro-inflammatory
cytokines, and dampened the humoral immune response to SARS-CoV-2 [68]. This pro-
tective effect might be explained by reversing the progressive inflammation in different
organs [69]. Even though this study included only few patients on NSAIDs, they were still
more common in non-severe patients and thus corroborated earlier studies. Comparisons
to other antipyretics with no anti-inflammatory action (e.g., acetaminophen) are necessary.

Some drugs with significant differences between cohorts might be more indicative
of the severity of the underlying condition and not interact with COVID-19 prognosis
directly. Loop diuretics, for instance are used in more advanced stages of renal failure [70].
As poor renal function is indicative of severe COVID-19 [71,72], this correlation might
be due to the severity of the pre-existing condition, not the drug itself. Beta blockers
were more often used in the severe cohort, but this might be explained by the higher
prevalence of cardiovascular co-morbidities in this cohort. However, loop diuretics, beta
blockers, and opioids are also associated with death or severe COVID-19 in a polypharmacy
setting [29,30].

Overall, a relatively small percentage of patients received antipsychotic drugs, and the
difference between cohorts was not significant (8% and 13% in the non-severe and severe
cohorts, respectively). However, combinations with other drugs such as loop diuretics,
opioids, beta-blockers, or proton pump inhibitors were more often seen in patients in
the severe cohort. The influence of antipsychotic drugs on COVID-19 infection risk and
prognosis is currently under discussion. A retrospective study in 698 patients using
antipsychotic drugs revealed a lower infection risk and a better prognosis compared to
non-users [73]. Comparable results were also reported from a study in patients with a
pre-existing diagnosis of schizophrenia, schizoaffective disorder, or bipolar disorder [74].
On the other hand, a systematic review and meta-analysis showed a correlation between
antipsychotics and COVID-19 mortality [75]. However, the reviewed studies included
patients on antipsychotics independently of diagnoses, considered antipsychotics as a
single homogenous pharmacological group, and did not test for adherence [76]. Our
results suggest that not the use of a specific drugs per se, but the combination with other
drugs influences the risk for severe COVID-19. Therefore, a detailed analysis of the most
significantly different drug combinations (edges of the network, Table 3) was performed.
Most drug combinations were taken by less than 15% of the patients, which makes a
detailed analysis of cause and effect difficult, but trends are visible. In all cases but one
(NSAIDs/other analgesics) a greater proportion was seen in the severe cohort. However,
this difference is not due to general polypharmacy, which is known to influence disease
severity in COVID-19 [29,30], as the number of drugs on admission was not significantly
different in both cohorts. Not only polypharmacy, but also specific drug classes influence
severity in COVID-19 [29,30]. Drug classes with an increased risk for severe COVID-19
are highlighted in red in Table 3. In seven and in eleven drug combinations, one or both
drugs, respectively, were considered high risk. All these combinations were more prevalent
in the severe cohort. Only in one combination (NSAIDs/other analgesics), neither drug
was considered high risk. Interestingly, a higher proportion of non-severe patients took
that combination.

In proton pump inhibitors (PPIs), the effect of combination with other drugs can
be seen. PPIs are taken to the same extent by the non-severe and severe cohort (32.6%
and 33.9%, respectively, p = 0.88, data not shown). However, combinations of PPIs with
antipsychotics or platelet inhibitors were more prevalent in severe patients. Several review
articles evaluating the effects of PPIs on COVID-19 progression and mortality revealed
high heterogeneity in the outcomes [77–80]. However, those studies did not control for
co-medication, except for one which looked at NSAIDs [80]. In summary, studies on drug
effects should also consider including and ideally control for co-medication.

In the molecular target network of the non-severe cohort, there are more targets located
in the cell membrane. Several hypotheses could help explain this finding. One hypothesis
is that interaction of drugs with cell membrane receptors might interfere with viral entry
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into the cell. The host protein angiotensin-converting enzyme 2 (ACE2) is considered the
main entry receptor for SARS-CoV-2 and the transmembrane serine protease 2 (TMPRSS2)
an important priming enzyme required during this process [81,82]. In addition, other
cell membrane receptors may be involved in cellular entry of SARS-CoV-2 [81,83,84], like
neurophilin-I [85,86], or DPP4 [45,46]. Interference may be direct if a drug targets a protein,
which is also important for viral entry. Studies on SARS-CoV-2–human protein-protein
interaction revealed hundreds of further possible targets [87–90], however there is only
minimal overlap with the target we identified. However, interference may also be indirect
due to changes in membrane organization that negatively impact any part of the viral
replication cycle. Functionally organized micro-domains (lipid rafts), characterized by
highly ordered and tightly packed lipid molecules, within the cell membrane may play a
pivotal role in different processes during the viral life-cycle, including coronaviruses [91].
Lipid raft involvement in viral entry was already shown for the murine hepatitis virus,
a betacoronavirus such as SARS-CoV-2 [92]. A further study used SARS-CoV-2 pseudo
viruses to demonstrate the importance of cholesterol-rich membrane lipid raft for infec-
tion [93]. Micro-domains may increase the efficiency of infection by clustering enzymes and
receptors in certain membrane area, thus allowing multivalent binding of virus particles,
but are not an absolute requirement for the entry process [94]. Several drugs acting on
specific the cell membrane targets were shown to disrupt lipid rafts [95]. These included
targets we identified in the non-severe cohort, such as alpha- and beta-adrenergic receptors,
and opioid receptors. As the network visualizations only include nodes with three or more
edges, one might conclude that the combination of several drugs, which interfere with the
integrity of the lipid rafts, have an influence on COVID-19 progression.

Our study has some limitations. The severity cohorts had some significant differences
in demographics and co-morbidities. The severe cohort was significantly older, had a
higher BMI, and a higher share of male patients, all factors which are known risk factors
for severe COVID-19 [5–12]. Even though the differences are significant, they are still
rather small (median age difference three years, median BMI difference 1.68 points), so that
a detailed analysis of these factors would require a larger sample size to obtain enough
power with an unknown effect size. Additionally, more patients in the severe cohort
suffered from arterial hypertension, chronic heart failure and/or coronary heart disease,
again established risk factors in COVID-19 [16,17,22]. However, the presence and even
the severity of co-morbidities were indirectly accounted for by the analysis of prescribed
drugs. The number of drugs on admission was not significantly different between the
cohorts. Even though we were able to include a total of 505 patients in our analysis, the
number of patients receiving one specific drug was still relatively low, especially in the
disease cohorts. Therefore, significant differences were in some cases only seen in the
high-level pooled groups. For this reason, we also reported borderline significant results
(0.05 < p < 0.1), which could be interpreted as a weak signal and should be investigated
in further research. Furthermore, we were mainly able to consider hospitalized patients
because of data availability issues. As the IHG is an important regional medical center, some
patients were transferred from smaller hospitals. Drugs given in these smaller hospitals are
recorded on the drugs on admission list.

The analysis only focused on dual combinations. While we did perform cluster
analyses to find more complex combinations, the data available did not support this.
Furthermore, even though there were significant differences between the severity cohort
with regards to age and sex, we did not control for that.

5. Conclusions

In summary, the use of a network approach allowed for studying the impact of drugs
from a novel vantage point. Most importantly, autonomic targets appear to be influential
on the course of disease in COVID-19, mostly in the form of off-target effects, possibly
by disrupting lipid rafts and impeding viral entry. This also holds for DPP4 inhibitors,
which are known to interact with adrenergic receptors [96]. The impact of interference with
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autonomic receptors merits further study into potential future treatments for infection with
SARS-CoV-2 and other viruses. Overall, our network analysis indicates that DPP4 inhibitors
are related to a better prognosis for COVID-19 and thus represent potential repositioning
drugs against SARS-CoV-2. Additionally, our study revealed (i) that drug-induced changes
in cell membrane architecture might influence disease progression and (ii) that the influence
of specific drugs on disease progression might be dependent on concurrent co-medication.
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Abstract: Chronic inflammation and dysregulated epithelial differentiation, especially of hair follicle
keratinocytes, have been suggested as the major pathogenetic pathways of hidradenitis suppura-
tiva/acne inversa (HS). On the other hand, obesity and metabolic syndrome have additionally been
considered as an important risk factor. With adalimumab, a drug has already been approved and
numerous other compounds are in advanced-stage clinical studies. A systematic review was con-
ducted to detect and corroborate HS pathogenetic mechanisms at the molecular level and identify HS
molecular markers. The obtained data were used to confirm studied and off-label administered drugs
and to identify additional compounds for drug repurposing. A robust, strongly associated group
of HS biomarkers was detected. The triad of HS pathogenesis, namely upregulated inflammation,
altered epithelial differentiation and dysregulated metabolism/hormone signaling was confirmed,
the molecular association of HS with certain comorbid disorders, such as inflammatory bowel disease,
arthritis, type I diabetes mellitus and lipids/atherosclerosis/adipogenesis was verified and common
biomarkers were identified. The molecular suitability of compounds in clinical studies was confirmed
and 31 potential HS repurposing drugs, among them 10 drugs already launched for other disorders,
were detected. This systematic review provides evidence for the importance of molecular studies to
advance the knowledge regarding pathogenesis, future treatment and biomarker-supported clinical
course follow-up in HS.

Keywords: hidradenitis suppurativa; acne inversa; transcriptome; proteome; comorbid disorder;
biomarker; drug repurposing; signaling pathway; druggable gene

1. Introduction

Hidradenitis suppurativa/acne inversa (HS) is a chronic, inflammatory, recurrent,
debilitating skin disease of the hair follicle that usually presents after puberty with painful,
deep-seated, inflamed lesions in the apocrine gland-bearing areas of the body, most com-
monly at the axillae, inguinal and anogenital regions [1]. A consistent finding, regardless
of disease duration, is follicular hyperkeratosis, leading to follicular rupture, inflamma-
tion and possible secondary bacterial colonization. The deep part of the follicle appears
to be involved. HS is further associated with an initial lymphohistiocytic inflammation,
granulomatous reaction, sinus tract formation and scarring [2].

Current own transcriptome and proteome studies highlighted a panel of immune-
related drivers in HS, which induce an innate immunity response in epithelial skin cells in
a targeted manner [3]. An inflammatory process coupled to impaired barrier function and
bacterial activity were detected at the follicular and epidermal keratinocyte and at a minor
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grade at the skin-gland level. In addition, the adipose tissue was shown to be involved in
HS at a real-world immune histochemical study [4].

Despite the beneficial therapeutic effectiveness of several compounds [5,6], treatment
of HS is still challenging, since most patients only respond partially with subsequent
recurrences. The large unmet need of new therapies requires the elucidation of disease-
driving mechanisms and the recognition of the skin compartment initially involved [7,8].
This need can be covered by the development of novel therapeutic regimens for HS [9,10]
or by drug repurposing through drug–gene interaction profiling [11,12].

New technology, including inverse virtual screening [13] and computational drug
repurposing screening approaches [14], are widely engaged in identifying existing com-
pounds as potential drugs for various diseases. The interaction level of disease and com-
pound molecular profile patterns defines the probability of therapeutic activity of a certain
drug. The aim of this study is to provide a wide and robust application of molecular phar-
macology in HS through a systematic review of the relevant literature and identification of
key molecular mediators in a real-world setting. Using the latter data, therapeutic agents
that are currently available or under development for other indications are identified and
potential paths for use in the medical management of HS are proposed.

2. Materials and Methods
2.1. Literature Search

This systematic review was conducted and narrated in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [15] utilizing
datasets from publicly available studies, as previously described [11]. A rigorous search of
academic databases including PubMed, Web of Science and Ovid databases through August
2021 was conducted. A search strategy predefined and adapted for each aforementioned
database included the following keywords: (transcriptome OR proteome OR biomarker(s)
OR repurposing OR repositioning OR reprogramming) AND (hidradenitis suppurativa
OR acne inversa OR Verneuil’s disease). Additional records were obtained through the
Gene Expression Omnibus, National Institutes of Health (Bethesda, MD, USA) [16] and the
citation search of the bibliographic records obtained from the academic databases. There
were no search filters pertaining to language or publication year.

2.2. Study Selection

First the duplicates among bibliographic records were removed. Titles and abstracts
were then scrutinized by two reviewers (V.A.Z. and K.C.Z.) working independently accord-
ing to predefined inclusion and exclusion criteria. This was followed by scrutiny of full
texts of eligible studies. Discrepancies were resolved by discussion with the senior investi-
gator (C.C.Z.). After eligible studies were identified, their bibliographies were screened for
studies judged suitable for inclusion. Original investigations of HS molecular signatures
and protein studies followed by the identification of molecular mediators were selected for
further analysis.

2.3. Data Extraction

Data pertaining to characteristics of publications under study and quantitative data
were extracted by two of the reviewers (V.A.Z. and K.C.Z.) working independently using a
predetermined customized extraction form. Characteristics of publications included publi-
cation year and affiliation of corresponding authors. Molecular characteristics included tran-
scriptome and/or proteome of HS, and drug repurposing/repositioning/reprogramming.

2.4. Data Analysis

Qualitative gene/protein data from the studies were pooled to detect HS signature
pathways. Gene nomenclature was verified through the HUGO Gene Nomenclature Com-
mittee, European Bioinformatics Institute (Cambridge, UK) public domain [17]. Gene
taxonomy was assessed through the biological DataBase network, National Cancer Insti-
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tute (Frederick, MD, USA) [18]. The molecular pathways were assessed according to the
g:Profiler, University of Tartu (Tartu, Estonia) [19], the Kyoto Encyclopedia of Genes and
Genomes [KEGG, gene ontology (GO); Kyoto, Japan] [20], the Reactome (REAC), Ontario
Institute for Cancer Research (Toronto, ON, Canada), New York University (New York, NY,
USA), Oregon Health and Science University (Portland, OR, USA) and the European Molec-
ular Biology Laboratory—European Bioinformatics Institute (Heidelberg, Germany) [21],
the WikiPathways (WP) [22] and the Human Phenotype Ontology (HP; The Jackson Labo-
ratory for Genomic Medicine, Farmington, CT, USA) [23] public domains. Random effects
were applied throughout the analysis due to expected clinical heterogeneity encountered
in different studies supported by g:Profiler [19]. This approach allows heterogeneity in the
data to be addressed by considering that differences between studies are random.

2.5. Drug Repurposing Sources

For drug repurposing, the detected overall HS molecular signature was compared
with the drugs’ molecular signatures of The Drug Repurposing Hub public domain, Eli
and Edy L. Broad Institute, MIT and Harvard University (Cambridge, MA, USA) [24] and
the Gene Cards, Weizmann Institute of Science (Rehovot, Israel) [25] public domains.

2.6. Statistics

Statistics were automatically performed by the applied public domains used [19–23].

3. Results
3.1. Study Selection Process

A total of 123 bibliographic records were identified after electronic database searches,
36 through other sources and six through bibliographic record citation search. Among
them, 61 records were removed as duplicates, leaving 104 titles and abstracts to be screened.
After careful screening and manual search, six records were excluded based on title and
abstract and 49 records due to inappropriate design and two records due to overlapping
data sets with another record, resulting in 47 studies that were included in the quantitative
synthesis [3,4,11,26–69] (Figure 1).

3.2. Differentially Expressed Genes and Proteins in HS

The comparison of lesional skin vs. non-lesional skin as well as of blood of patients
vs. controls at the mRNA and protein levels (cumulatively reported as “targets”) without
restrictions revealed 386 differentially expressed genes (DEGs) in HS (Table S1).

3.3. HS Biomarkers

DEGs and differentially expressed proteins in blood and involved skin of HS patients
in comparison to controls in at least two relevant articles or two targets were defined as HS
biomarkers. Among the 109 detected genes/proteins out of the 386 genes/proteins detected
without restrictions, which fulfilled this requirement, 43 DEGs (including the coding genes
of detected differentially expressed proteins) have been described in 2/4 targets in two
articles, seven in 3/4 targets (CXCL10, IL6, IL17A, IL36A, IL36G, S100A8, S100A9) and
none in all four targets (Table 1). Additional 10 DEGs have been described in 2/4 targets,
however, in a diversified direction (upregulated/downregulated). Among the 109 HS
biomarkers, 65 are druggable.
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flow diagram.

Table 1. HS biomarkers resulting from the DEGs after transcriptomic profiling and protein expression
studies between lesional HS and non-lesional skin biopsies and blood samples from HS patients
and healthy controls, respectively and reported in at least two relevant articles. Bold letters indicate
druggable genes. Background: white = similar results reported in one target (biological material)
in at least two independent studies; orange = similar results reported in two targets in at least two
independent studies; yellow = similar results reported in three targets in at least two independent
studies. Gray = diversified result reported in at least two independent studies; + = upregulation;
− = downregulation; +/− = diversified dysregulation in different studies; () = lower level of evidence.

Blood Skin

Gene +/− mRNA Protein +/− mRNA Protein Name Other Skin
Disorders

HS Comorbid
Disorders Drugs

ADAM12 + [3,27]
ADAM Metal-

lopeptidase
Domain 12

Down
syndrome

ADIPOQ − [28] − [27] Adiponectin

Glucose
intolerance,
metabolic
syndrome

Piogitazone

AR + [3,33,34] [35] Androgen
receptor

Polycystic
ovary

syndrome,
alopecia

Androgen
insensitivity
syndrome

Cyproterone
acetate, Flutamide,

Nilutamide,
Bicalutamide,

17α-Propionate,
AZD3514

BTK +/(−) [3,27,33,34] Betacellulin
Squamous

cell
carcinoma

Cetuximab

C3 − [27] + [30] Complement
C3 Zinc, Zinc acetate
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Table 1. Cont.

Blood Skin

Gene +/− mRNA Protein +/− mRNA Protein Name Other Skin
Disorders

HS Comorbid
Disorders Drugs

C5AR1 + [3,30] Complement
C5a Receptor 1

Hypersensitivity
reaction type

III disease

Compstatin, PMX
205, PMX 53, W

54011

CASP1 + [38,39] Caspase 1 Schnitzler
syndrome

Familial
Mediterranean

fever
Minocyclin

CCL18 + [27,30] [43]
C-C Motif

Chemokine
Ligand 18

Eczema

CCL26 + [41] + [30]
C-C Motif

Chemokine
Ligand 26

CCR4 + [45] + [30,45]
C-C Motif

Chemokine
Receptor 4

Mycosis
fungoides,
cutaneous

T cell
lymphoma,

allergic
contact

dermatitis

CD80 + [30,38] CD80 Molecule Abatacept,
Belatacept

CHI3L1 + [49] + [50] Chitinase
3-Like 1 Erysipelas

CSF1 + [3,33,34,40]
Colony-

Stimulating
Factor 1

Rheumatoid
arthritis

CXCL1 + [27,40,42,44,45] [40]
C-X-C Motif
Chemokine

Ligand 1

Kaposi
sarcoma Formic acid

CXCL8 + [30,42,44] [41]
C-X-C Motif
Chemokine

Ligand 8
Melanoma Simvastatin

CXCL10 - [41] + [30] [41]
C-X-C Motif
Chemokine
Ligand 10

Eldelumab

CXCL13 + [30,42,45] [26]
C-X-C Motif
Chemokine
Ligand 13

T cell
lymphoma

CXCR5 + [30] [26]
C-X-C Motif
Chemokine
Receptor 5

T cell
lymphoma

DCD − [27,32,33] [32] Dermcidin
Netherton
syndrome,
tinea pedis

Basiliximab, Zinc
sulfate

DEFB4A +/(−) [3,27,30,32,39,44–
46] [3,53] Defensin β 4A

Tinea
corporis, oral
candidiasis

DEFB103B + [46,52] Defensin β
103B

EGF + [3,33,34] Epidermal
Growth Factor

Cetuximab, AG
490, CGP 52411,

Genistein,
Zanubrutinib

(receptor
antagonist)

EPGN + [3,33,34] Epithelial
Mitogen

Seborrheic
dermatitis

ERBB4 − [27,32]
Erb-B2 Receptor
Tyrosine Kinase

4

Gefitinib, Afatinib,
Fostamatinib, AG
490, CGP 52411,

Genistein

EREG + [3,33,34] Epiregulin

GAS6 +/(−) [3,33,34] Growth Arrest
Specific 6

Lupus erythe-
matosus

GDNF + [3,33,34] [36]

Glial Cell
Derived

Neurotrophic
Factor

Chondroitin
sulphate

GJB2 + [3] [3] Gap Junction
Protein β2

Keratitis-
Ichthyosis-
Deafness

Syndrome

Carbenoxolone
disodium
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Table 1. Cont.

Blood Skin

Gene +/− mRNA Protein +/− mRNA Protein Name Other Skin
Disorders

HS Comorbid
Disorders Drugs

HBEGF + [3,33,34]

Heparin
Binding

EGF-Like
Growth Factor

HGF + [3,33,34] Hepatocyte
Growth Factor

Dexamethasone,
Neratinib,
Erlotinib

HRG + [3,33,34] Histidine-Rich
Glycoprotein Zinc sulfate

IFNA1 + [3,26,30,33,34] Interferon α1 Cryoblobulinemia

IFNG + [3,26,30,33,34,40,
44–46] Interferon γ

Oksalazine,
Emapalumab,
Glucosamine

IGF2 + [3,33,34] Insulin-Like
Growth Factor 2

IGHD + [27,30]
Immunoglobulin
Heavy Constant

δ

IGHG3 + [27,30]

Immunoglobulin
Heavy Constant

γ3 (G3m
Marker)

IGKV1D-
13 + [27,30]

Immunoglobulin
κ Variable

1D-13

IGLV + [27,30]
Immunoglobulin

λ Variable
Cluster

IL1A + [3,26,30,33,34,40] [39] Interleukin 1α Acne, Irritant
dermatitis Arthritis

Anakinra,
Rinolacept,
Olanzapine,
Pirfenidone,

Thalidomide,
AMG-108

IL1B + [26,30,38,40,42,46] [38,56] Interleukin 1β

Gingivitis,
Muckle–

Wells
syndrome,

Toxic shock
syndrome

Canakizumab,
Anakinra
(receptor

antagonist),
Rinolacept
(receptor

antagonist),
Minocycline

IL2 + [26,30] Interleukin 2
Graft-versus-
host disease,

Leprosy

Suplatast tosylate,
Daclizumab

(receptor
antagonist),
Basiliximab

(receptor
antagonist),
Rituxomab,

Thalidomide,
Cafazolin

IL2RA + [49,56] + [30]
Interleukin 2

Receptor
Subunit α

Type 1 diabetes
mellitus,
Juvenile
arthritis

Daclizumab,
Basiliximab,
Pirfenidone,
Thalidomide

IL4 + [3,30,33,34,40] Interleukin 4

Atopy,
Allergic

rhinitis, Food
allergy

Dupilumab
(receptor

antagonist),
Calcitriol

IL6 + [40] + [3,26,30,33,34,40,
42] [40,58] Interleukin 6

Siltuximab,
Tocilizumab

(receptor
antagonist),
Sarilumab
(receptor

antagonist),
Satralizumab

(receptor
antagonist),
Vitamin C,
Vitamin E
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Table 1. Cont.

Blood Skin

Gene +/− mRNA Protein +/− mRNA Protein Name Other Skin
Disorders

HS Comorbid
Disorders Drugs

IL10 + [30,38,44,46] [52,56] Interleukin 10

Nicotinamide,
Niacin,

Cyclosporine A,
Methotrexate,
Mycofenolate

mofetil

IL12A + [59] [41] Interleukin 12A
Adamantiades–

Behçet’s
disease

Primary biliary
cholangiitis

Mycophenolate
mofetil,

Ustekinumab
(IL-12/23),

Briakinumab
(IL-12/23)

IL12B + [30] [36] Interleukin 12B Psoriasis

Ustekinumab
(IL-12/23),

Briakinumab
(IL-12/23)

IL13 +/(−) [3,30,45] Interleukin 13

Allergic
rhinitis,

Penicillin
allergy

Suplatast tosylate,
Montelukast,
Omalizumab

IL16 + [30] [41] Interleukin 16 Allergic asthma

IL17A + [59] + [3,30,33,34,38–
40,42,44,46,60]

[4,36,
38,39,

41]
Interleukin 17A

Allergic
contact

dermatitis
Arthritis

Secukizumab,
Ixekizumab,

Bimekizumab
(IL-17A/F),
Brodalumab

(receptor
antagonist),

Vidofludimus

IL17F + [30,39,40,42,45] Interleukin 17F

Candidiasis,
Acute

generalized
exanthema-

tous
pustulosis,

Mail diseases

Bimekizumab
(IL-17A/F),
Brodaluman

(receptor
antagonist)

IL17R + [3] [4] Interleukin 17
Receptor Candidiasis Arthritis Brodalumab

IL18 +/− [26,30] [38] Interleukin 18
IAP antagonist,
Iboctadekin +

Doxil

IL19 + [3,30,40] Interleukin 19 Psoriasis
Inflammatory
bowel disease,

Arthritis
IL20 +/− [30,46] [46] Interleukin 20 Psoriasis

IL21 + [30,39] Interleukin 21
Dacryoadenitis,
Inflammatory
boel disease

IL22 +/(−) [3,30,40,42,46] [46] Interleukin 22 Candidiasis Inflammatory
bowel disease

IL22RA1 − [30] [46]
Interleukin 22

Receptor
Subunit α1

Spondyloarthropathy,
rheumatoid

arthritis,
autoimmune

uveitis

IL23A + [30,40,61] Interleukin 23
Subunit α

Autoimmune
disease

Inflammatory
bowel disease,

Arthritis

Guselkumab,
Risankinumab,
Tildrakizumab,
Ustekinumab

(IL-12/23),
Briakinumab

(IL-12/23)

IL24 + [30,42,46] Interleukin 24

Melanoma,
chronic

spontaneous
urticaria,
psoriasis

Spondylarthropathy

IL26 + [42,46] Interleukin 26 Psoriasis
Inflammatory
bowel disease,

Crohn’s disease

IL32 + [30,40,61] Interleukin 32 Cutaneous
diphtheria
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Table 1. Cont.

Blood Skin

Gene +/− mRNA Protein +/− mRNA Protein Name Other Skin
Disorders

HS Comorbid
Disorders Drugs

IL36A + [62] + [30,40,42,45,61] [39,61] Interleukin 36α Psoriasis
Spesolimab

(receptor
antagonist)

IL36B + [62] + [61] Interleukin 36β Periostitis
Spesolimab

(receptor
antagonist)

IL36G + [62] + [30,40,42,45] [61] Interleukin 36γ

Acute
generalized
exanthema-

tous
pustulosis,
Psoriasis

Spesolimab
(receptor

antagonist)

IL37 − [32,33,42] Interleukin 37 Still’s disease Inflammatory
bowel disease

Ustekinumab
(IL-12/23)

JAK3 + [3,30] Janus Kinase 3 NK cell
enteropathy

Decernatinib,
Tofacitinib
(JAK1/3),

Ruxolitinib
(JAK1/3),

PF-06651600,
AT-501, ATI-502,

Cerdulatinib
(JAK1/2/3, SYK),

Delgocitinib
(JAK1/2/3),
Peficitinib

(JAK1/2/3),
Zanubrutinib

(JAK3/ITR/EGFR),
Cercosporamide

JAK3/Mnk2)

KRT6A + [3,32] [3] Keratin 6A

Pachyonychia
congenita,

Lingua
plicata,

Cheilitis

Zinc, Zinc acetate

KRT16 + [3,27,30,32] [3] Keratin 16

Pachyonychia
congenita,

palmoplantar
keratoderma

KRT77 − [27,32,33] [32] Keratin 77

Epidermolytic
palmoplantar
keratoderma,

Buschke-
Ollendorff
syndrome

LCE3D + [32] [32] Late Cornified
Envelope 3D Psoriasis

LGR5 − [27,32]

Leucine Rich
Repeat

Containing G
Protein-
Coupled

Receptor 5

Type II diabetes
mellitus

LTA4H − [27,65] + [31] Leukotriene A4
Hydrolase

Captopril,
Dexamethasone,

Montelukast

MMP1 + [3,30] [3]
Matrix Metal-
lopeptidase

1

Epidermolysis
bullosa

atrophica,
Scleroderma

Zinc, Collagenase

MMP3 + [40] [40]
Matrix Metal-
lopeptidase

3

Coronary heart
disease,

Arthritis

Pravastatin,
Simvastatin,

Prothalidone,
Lisinopril

MMP9 + [3,30,40] [3]
Matrix Metal-
lopeptidase

9

Minocycline,
Capropril,

Simvastatin, Zinc,
Zinc acetate

MMP12 + [27,30]
Matrix Metal-
lopeptidase

12

Dermatitis
herpeti-
formis,

Middermal
elastolysis

Arthritis Acetohydroxamic
acid, Batimastat
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Table 1. Cont.

Blood Skin

Gene +/− mRNA Protein +/− mRNA Protein Name Other Skin
Disorders

HS Comorbid
Disorders Drugs

NAMPT + [28,63]
Nicotinamide

Phosphoribosyl
transferase

Skin aging,
pellagra,
diabetes

mellitus type
2, polycystic

ovary
syndrome

Nicotinamide,
Niacin

NGF + [3,33,34] [36] Nerve Growth
Factor Clenbuterol

OSM + [3,26] [36] Oncostatin M Kaposi
sarcoma

PI3 + [3,27,32,33] [3] Peptidase
Inhibitor 3

Pustular
psoriasis,

impetigo her-
petiformis,
erysipelas

PIP - [27,32] Prolactin
Induced Protein

PLIN1 +/− [27,48] Perilipin 1 Rosiglitazone

S100A7 + [3,30,33,39,42,44,
46] [32]

S100 Calcium-
Binding Protein

A7

Psoriasis,
Squamous

cell
carcinoma

Anal fistula

Ibuprofen,
Dexibuprofen,

Zinc, Zinc acetate,
Zinc chloride

S100A7A + [3,27,32] [3,32]
S100 Calcium-

Binding Protein
A7A

Psoriasis

S100A8 + [57] + [3,33,34,44] [3,32]
S100 Calcium-

Binding Protein
A8

Zinc, Zinc acetate,
Zinc chloride,

Copper

S100A9 + [57] + [3,27,32,33,42,44,
46] [3,32]

S100 Calcium-
Binding Protein

A9

Crohn’s disease,
Rheumatoid

arthritis

Zinc, Zinc acetate,
Zinc chloride,

Calcium

S100A12 + [3,30,32,42] [3,41]
S100 Calcium-

Binding Protein
A12

Kawasaki
disease

Psoriatic
arthritis

Amlexanox,
Olopatadine

SCGB1D2 - [27,32]
Secretoglobin

Family 1D
Member 2

SCGB2A2 - [27,32,33]
Secretoglobin

Family 2A
Member 2

SERPINB3 + [3,27,30] [3] Serpin Family B
Member 3

Squamous
cell

caecinoma
Phosphoserine

SERPINB4 + [3,27,30] [3] Serpin Family B
Member 4

Squamous
cell

carcinoma

SLAMF7 + [3,27] SLAM Family
Member 7

IgG4-related
disease Elotuzumab

SPRR2B + [32] [32] Small Proline
Rich Protein 2B

Photosensitive
trichothio-

dystrophy 1,
Autosomal
reces-sive
congenital
ichthyosis

SPRR2C
(pseudo-

gene)
+ [32] [32]

Small Proline
Rich Protein 2C
(Pseudogene)

SPRR3 + [3] [3] Small Proline
Rich Protein 3 Genodermatoses

STAT1 + [3,26,30,44] [36]

Signal
Transducer and

Activator of
Transcription 1

Methimazole,
Niclosamide,
Nifuroxazide,
Sulforaphane

TCN1 + [3,27,45] [3] Transcobalamin
1

Hydroxycobalamin,
Cyanocobalamin,

Cobalt

TLR2 + [3,68] Toll-Like
Receptor 2

Leprosy,
Borreliosis

Colorectal
cancer

Adapalene,
Cyproterone

acetate
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Blood Skin

Gene +/− mRNA Protein +/− mRNA Protein Name Other Skin
Disorders

HS Comorbid
Disorders Drugs

TLR4 +/− [26] [53] Toll-like
Receptor 4

Paclitaxel,
Tacrolimus,

Cyclobenzaprine

TMPRSS1D + [3] [3]
Transmembrane
Serine Protease

11D

TNF + [3,26,30,32,33,38,
40] [56] Tumor Necrosis

Factor

Psoriasis,
Toxic shock
syndrome

Inflammatory
bowel diseases,

Arthritis

Adalimumab,
Infliximab,

Golimumab,
Etanercept
(receptor

antagonist),
Certolizumab

pegol,
Thalidomide,
Lenalidomide,
Pomalidomide,
Calcitriol, Bay

11-7821, (R)-DOI,
Cannabidiol

TNFRSF4 + [45] + [45]
TNF Receptor
Superfamily
Member 4

Kaposi
sarcoma,

Graft-versus-
host disease,

Drug reaction
with

eosinophilia

OX-40 ligand

TNFSF11 + [30] [36]
TNF

Superfamily
Member 11

Letrozole,
Thiocolchicoside

TNFSF13
(APRIL) + [30] [26]

TNF
Superfamily
Member 13

Autoimmune
diseases

Rheumatoid
arthritis

Pomalidomide,
TACI-IG

TNFSF13B
(BAFF) + [30] [26]

TNF
Superfamily
Member 13b

Autoimmune
diseases,

Sialadenitis,
Sjogren

syndrome

Belimumab,
Blisibimod,
LY2127399,
TACI-IG

TNFSF14 + [30] [36]
TNF

Superfamily
Member 14

Herpes
simplex

Rheumatoid
arthritis

TNIP1 +/− [26,30]
TNFAIP3

Interacting
Protein 1

Systemic
lupus erythe-

matosus,
Psoriatic
arthritis

Rheumatoid
arthritis,
Arthritis

WIF1 - [27,32] WNT Inhibitory
Factor 1

3.4. Enrichment Analysis of HS-Associated Genes

The 386 detected HS-associated DEGs and the 109 HS biomarkers were enriched into
relevant signaling pathways, which were assessed according to the g:Profiler [19], the
KEGG GO, [20], the REAC [21], the WP [22] and the HP [23] public domains in order to
identify the major organismal and signal transduction pathways involved in HS. Gene
clustering in chromosome 2 and 4 was detected.

Among the 386 HS-associated DEGs, 101 genes were enriched in the cytokine–cytokine
(C–C) receptor interaction pathway (−log10 = 2.5 × 10−74), 51 in the JAK-STAT signaling
pathway (2.6 × 10−34), 39 in the chemokine signaling pathway (2.7 × 10−18), 32 in the IL-17
signaling pathway (1.8 × 10−22), 31 in the Th17 cell differentiation pathway (2.6 × 10−18),
28 in the Toll-like receptor (TLR) pathway (2.2 × 10−16) and 26 in the inflammatory bowel
disease pathway (3.6 × 10−26) (Figure S1).

Furthermore, 45 HS biomarkers were enriched in the C–C receptor interaction pathway
(5.6 × 10−43, Figure 2, 19 in the IL-17 signaling pathway (8.8 × 10−19, Figure 3), 19 in the
JAK-STAT signaling pathway (6.0 × 10−14, Figure 4), 18 in the inflammatory bowel disease
pathway (1.1 × 10−20), 18 in the rheumatoid arthritis pathway (1.2 × 10−17), 13 in the
Th17 cell differentiation pathway (1.5 × 10−9), 13 in the lipid and atherosclerosis pathway
(1.2 × 10−5), 10 in the TLR pathway (4.3 × 10−6), 9 in C-type leptin receptor signaling
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pathway (6.1 × 10−5), 8 in the tumor necrosis factor (TNF) signaling pathway (1.1 × 10−3)
and 7 in the type I diabetes mellitus pathway (8.5 × 10−6) (Figure 5).
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Concerning the individual cytokine signaling, IL-17, IL-4, IL-13, IL-10, IL-20 family,
IL-1 family, IL-18, IL-36, IL-2 family, IL-21 and IL-12 family signaling included DEGs in HS
(Figure 5).

Epithelial differentiation signaling dysregulation in HS was represented by the epider-
mal growth factor receptor (EGFR), IL-1, IL-1 receptor, formation of the cornified envelope,
TLRs and antimicrobial peptides (Figure 5).

Metabolic/obesity-associated dysregulation in HS was detected through type I dia-
betes mellitus signaling, lipid and atherosclerosis, C-type leptin receptor signaling, estrogen-
dependent nuclear events and extranuclear signaling, adipogenesis and resistin signaling
(Figure 5).

Interestingly, infection-indicating signaling pathways did not exhibit any major in-
volvement in our study (Figure 5).

At last, the REAC evaluation of globally involved pathways [70] revealed the innate
immune system, the cytokine signaling in immune system (major pathways: regulation of
IFNG signaling), signal transduction (nuclear receptor, GPCR and leptin pathways) and
developmental biology (formation of the cornified envelope pathway) pathways as the
mainly HS-associated ones (Figure S2).

The protein-based connectivity map occurring from an assumed gene biomarker trans-
lation (103 proteins our of 109 genes) resulted in 2465 interactions compared with the
expected 531 interactions (4.64-fold; p < 0.0001), a result that indicates a robust strong
protein–protein association in HS (Figure 6). On the other hand, the protein-based con-
nectivity map occurring from the 386 HS-associated DEGs (372 proteins out of 386 genes)
resulted in 19,823 interactions compared with the expected 6502 interactions (3.05-fold;
p < 0.0001), indicating that the biomarker selection procedure increased the HS/protein
association.
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3.5. Enrichment Analysis of HS Druggable Genes

Among the 386 HS-associated DEGs, 105 druggable genes were recognized. With the
11 additional druggable genes described by Zouboulis et al. [12], namely ABAT, ADRA1A,
CYP3A4, GRM4, HRH1, OPRD1, OPRM, PRKAB1, PTGS1, PTGS2 and SLC6A4, the overall
detected druggable genes in HS are 116.

The 116 druggable genes were enriched in relevant signaling pathways according to
the KEGG GO [20] and the Gene Cards [25] public domains to identify the major targeted
organismal and signal transduction pathways (Figure S3). Twenty-two druggable genes
were enriched in the lipid and atherosclerosis pathway (8.4 × 10−13), 19 in the JAK-STAT
signaling pathway (6.2 × 10−12), 17 in the Th17 cell differentiation pathway (5.2 × 10−13),
17 in the IL-17 signaling pathway (6.0 × 10−14), 16 in the inflammatory bowel disease
pathway (1.5 × 10−16), 14 in the TLR signaling pathway (6.0 × 10−14), 14 in the C-type
leptin receptor signaling pathway (2.4 × 10−9) and 13 in the TNF signaling pathway
(8.4 × 10−8).

3.6. Study Drugs and Drug Repurposing for HS

The majority of registered, studied or off-label administered drugs modify HS-associated
DEGs. On the other hand, the evaluation of the detected 105 HS-associated druggable
genes proposed 452 potentially therapeutic compounds, among them 120 launched drugs,
178 compounds in clinical studies and 154 in preclinical evaluation (Table S2). Among these
potentially therapeutic compounds, the 31 drugs, which regulate three or more genes with
all of them being HS-associated DEGs or at least four genes with 60% of them been DEGs
were classified as probable repurposing drugs for HS (Table 2).

Table 2. Probable HS repurposing drugs * and molecular profile of drugs registered ** or off-label
administered in HS.

Compound Function Gene Regulation Development Phase

Probable repurposing HS drugs

3,3’-Diindolylmethane
CHK inhibitor, cytochrome
P450 activator, indoleamine
2,3-dioxygenase inhibitor

AR, HIF1A, IFNG, PI3 3

AG-490 EGFR inhibitor, JAK inhibitor EGFR, JAK2, JAK3 preclinical

Andrographolide tumor necrosis factor
production inhibitor IL1B, IL6, NFKB1, NFKB2, TNF 2

Apratastat
matrix metalloprotease

inhibitor, tumor necrosis
factor production inhibitor

ADAM17, MMP1, MMP13, MMP9 2

Atractylenolide-I JAK inhibitor JAK1, JAK2, JAK3 preclinical
AZD1480 JAK inhibitor JAK1, JAK2, JAK3 1

Balsalazide cyclooxygenase inhibitor ALOX5, PPARG, PTGS1, PTGS2 launched
BMS-911543 JAK inhibitor JAK1, JAK2, JAK3 1/2
Ciglitazone PPARγ agonist GPD1, PPARG, TBXA2R 2
Curcumol JAK inhibitor JAK1, JAK2, JAK3 1

Cyt387 JAK inhibitor JAK1, JAK2, JAK3 3
Delgocitinib JAK inhibitor JAK1, JAK2, JAK3 2
Fedratinib FLT3 inhibitor, JAK inhibitor BRD4, JAK1, JAK2, JAK3, TYK2 launched
Filgotinib JAK inhibitor JAK1, JAK2, JAK3, TYK2 3

Ganoderic-acid-a JAK inhibitor JAK1, JAK2, JAK3 preclinical
JTE-607 cytokine production inhibitor IL10, IL1B, IL6, TNF 2

Compound Function Gene Regulation Development Phase

Latamoxef Cephalosporine DACB, MRCA, MRCB, PBPC launched
LXR-623 Liver X receptor agonist AR, NR1H2, NR1H3, NR1I2, NR3C1 1
NS-018 JAK inhibitor JAK1, JAK2, JAK3, TYK2 1/2

Pacritinib FLT3 inhibitor, JAK inhibitor FLT3, JAK1, JAK2, JAK3 3
Paracetamol cyclooxygenase inhibitor FAAH, PTGS1, PTGS2, TRPV1 launched
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Peficitinib JAK inhibitor JAK1, JAK2, JAK3 launched
PF-06651600 JAK inhibitor JAK1, JAK2, JAK3 2/3

Plerixafor CC chemokine receptor
antagonist ACKR3, CCR4, CXCR4, MMP1, PI3 launched

Ruxolitinib JAK inhibitor JAK1, JAK2, JAK3, TYK2 launched

Sirolimus mTOR inhibitor CFD1, FKBP1A, GPD1, MMP1, MTOR,
PI3, RPL38 launched

Tofacitinib JAK inhibitor JAK1, JAK2, JAK3 launched
Trofinetide cytokine production inhibitor IFNG, IL6, TNFA 2

Upadacitinib JAK inhibitor JAK1, JAK2, JAK3 launched
WHI-P154 JAK inhibitor EGFR, JAK1, JAK2, JAK3 preclinical

XL019 JAK inhibitor JAK1, JAK2, JAK3 1
Drugs with known molecular profile registered ** or off-label administered in HS

Acitretin retinoid receptor agonist KRT16, PI3, RARA, RARB, RARG, RBP1,
RXRA, RXRB, RXRG, STAT3 launched

Adalimumab ** TNF-α inhibitor TNF launched
Anakinra IL-1 receptor antagonist IL1R1 launched
Avacopan C5α receptor antagonist C5AR1 2

Bimekizumab IL-17A/F inhibitor IL17A, IL17F 3

Brodalumab IL-17 receptor inhibitor IL17R, KRT6A, S100A7A, S100A8,
S100A9 launched

Clindamycin Protein synthesis inhibitor launched
Cyproterone acetate AR antagonist ADORA1, AR launched

Doxycycline
bacterial 30S ribosomal

subunit inhibitor,
metalloproteinase inhibitor

MMP1, MMP8, PI3 launched

Etanercept TNF-α receptor antagonist TNFRSF1A launched
Golimumab TNF inhibitor TNF launched
INCB 54707 JAK1 inhibitor JAK1 2
Infliximab TNF inhibitor IL6, TNF launched
Metformin insulin sensitizer ACACB, PRKAB1 launched
Rifampicin RNA polymerase inhibitor NR1I2, SLCO1A2, SLCO1B1, SLCO1B3 launched

Secukinumab IL-17A inhibitor IL17A 3
Spesolimab IL-36R antagonist IL36RN 2

Ustekinumab IL12/IL23 inhibitor FSH, HCG, LH, LTA4H Launched
Vilobelimab C5α inhibitor C5 2

* The differentially regulated genes in HS are presented with bold letters.

4. Discussion
4.1. HS Pathogenesis

Inflammation doubtlessly plays a major role in the pathogenesis of HS [3,7,8]. Pro-
teome studies provide evidence that the innate immunity system and both IL-1 and IL-17
signaling pathways are activated in HS lesions and circulating neutrophils [27,40,45,71–73],
findings that have been confirmed in our systematic review. In addition, Th17 differ-
entiation of CD4+ lymphocytes is activated in HS [57]. Among others, Kelly et al. [38]
provided evidence that CD45+CD4+ T cells are responsible for IL-17 production and
CD11c+CD1a-CD14+ dendritic cells are the main producers of IL-1β in lesional HS skin.
The IL-17 cytokine family has been linked to the pathogenesis of diverse autoimmune
and inflammatory diseases and also plays an essential role in host defense against extra-
cellular microorganisms [2,74]. IL-17 has been shown to increase the expression of skin
antimicrobial peptides, including human β-defensin 2, psoriasin (S100A7) and calprotectin
(S100A8/9) in keratinocytes and of a number of cytokines attracting neutrophils [75]. Thus,
IL-17 may contribute to inflammation by increasing the influx of neutrophils, dendritic cells
and memory T cells into the lesions. On the other hand, the involvement of IL-1 signaling
pathway is also prominent in HS with upregulation of molecules causing immune cell infil-
tration and extracellular matrix degradation and could be reversed by application of IL-1
receptor antagonist [40,76]. IL1B signaling pathway-associated genes, such as IL1R1, IL1RN,
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IFNG, IL6, IL18, IL18R1, IL32, IL33, IL36A, IL36B, IL36G, IL36RN, IL37, TLR2, TLR3, TLR4,
S100A7, S100A7A, S100A8, S100A9 and S100A12 were HS-associated DEGs, as detected in
our systemic review.

The inflammatory process in HS seems to be coupled with impaired barrier function,
altered epidermal cell differentiation, formation of the cornified envelope, TLRs and an-
timicrobial peptides [3], the latter not being associated with any infection, as clearly shown
in the present study. These events have been observed at the follicular and epidermal
keratinocytes and at a minor grade at the skin glands [3]. Moreover, we could confirm a
dysregulated expression pattern of serpins, small proline-rich proteins and certain keratins,
which further support the involvement of the follicular infundibulum in the initiation of
the lesions, especially at the anatomic area of communication with the apocrine gland duct
and the ductus seboglandularis [3].

Although HS has well-documented associations with the metabolic syndrome, which
is characterized by systemic inflammation identified at a molecular level [77], the role of
adipose tissue in HS has barely been investigated. Obesity is currently shown to represent
the primary risk factor in HS at the molecular level [4,28]. A chronic low-grade subclinical
inflammatory response is strongly implicated in the pathogenesis of insulin resistance and
metabolic syndrome. The clinically relevant peroxisome proliferator-activated receptor
(PPAR) pathway was down-regulated in adipocytes of HS lesions [4]. In agreement with
these data, reduced serum levels of adiponectin were currently found in non-diabetic
patients with HS [28]. Since adiponectin inhibits the production of TNF-α, IL-6 and
chemokines of human macrophages the upregulation of ADIPOQ and PLIN1, shown in
this systematic review, might be beneficial in HS treatment. Indeed, thiazolidine deriva-
tives act as PPARγ agonists and effectively increase the adiponectin concentration and
adipogenic gene expression [28,78]. Unsaturated fatty acids, eicosanoids and non-steroidal
anti-inflammatory drugs function in a similar manner [79]. Further metabolic pathways,
e.g., the IGF transport and uptake of IGF-binding proteins pathway, type I diabetes mellitus
signaling, lipid and atherosclerosis, C-type leptin receptor signaling, estrogen-dependent
nuclear events and extranuclear signaling and RETN signaling, encoding resistin, are
dysregulated in HS, as shown in the present review.

In conclusion, inflammatory signaling, mainly innate immunity signaling pathways,
mostly that of IL-1 and IL-17, epithelial differentiation signaling pathways, primarily
of follicular keratinocytes and skin gland duct cells and metabolic signaling pathways,
especially that of obesity/adipogenesis, represent pathogenetic HS cascades, whose activity
may be targeted by future therapeutic means.

4.2. HS Comorbid Disorders

HS has been associated with a variety of comorbid disorders, such as inflammatory
bowel diseases, especially Crohn’s disease, axial spondylarthritis without or with follicular
occlusion, triad signs, genetic keratin disorders associated with follicular occlusion, such as
pachyonychia congenita, steatocystoma multiplex, Dowling-Degos disease without and
with arthritis, as well as other genetic disorders, such as keratitis–ichthyosis–deafness
syndrome and Down syndrome [80]. Moreover, HS has been associated with reduced
quality of life, metabolic syndrome, sexual dysfunction, working disability, depression and
anxiety. Like in psoriasis, HS patients have higher prevalence of cardiovascular disease
risk factors and suicide risk [81]. At last, the development of epithelial tumors on chronic
HS lesions at the anogenital region may be considered as the consequence of chronic severe
inflammatory skin disease. The current work has provided molecular evidence of HS
association with inflammatory bowel disease pathway, rheumatoid arthritis pathway, type
I diabetes mellitus signaling, lipid and atherosclerosis and adipogenesis signaling.

4.3. Study Drugs and Drug Repurposing for HS

In addition to the only registered drug in HS, namely adalimumab [9,82,83], the ma-
jority of studied and off-label administered drugs also regulate differentially expressed
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genes and their proteins in HS, as shown in the present review [10,65,76,81–95]. On the
other hand, the 452 HS-associated druggable genes proposed can mostly be classified
in receptor ligands, enzyme/protein inhibitors, JAK-STAT inhibitors, PI3K inhibitors,
sodium/potassium/calcium channel activators and MMP inhibitors. Additionally, Gen-
tamicin, Ibudilast, Spironolactone, Trastuzumab, Thalidomide, Apremilast, Glucosamine,
Interferon-a-2b, Binimetinib and Midostaurin have previously been reported as repur-
posing drugs for HS [11]. The majority of the 31 probable repurposing drugs shown in
Table 2 are JAK inhibitors, with cytokine inhibitors, such as anti-IL-17 compounds, tyro-
sine kinase receptor inhibitors, TNF inhibitors, cyclooxygenase inhibitors, EGF receptor
inhibitors, MMP inhibitors and PPARγ ligands—among others—being represented. Ten of
these drugs, which have not yet been administered in HS, are already launched for other
indications and 17 are in clinical studies, not including HS.

5. Conclusions

The current review provides robust molecular evidence on the pathogenetic triads
of HS, namely upregulated inflammation, dysregulated epithelial cell differentiation and
obesity signaling/hormone involvement. In addition, evidence of the negligible role
of infectious agents is included. Moreover, HS biomarkers with strong protein–protein
connectivity in HS are presented. While adalimumab, the only currently registered drug
in HS, and the majority of studied and off-label administered drugs regulate DEGs and
their proteins in HS, numerous compounds are eligible for HS repurposing due to their
molecular signaling. Among them, 31 compounds are designated probable, following our
classification, with 10 of them already being launched for other indications.
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Table S2. Drugs regulating HS-associated DEGs.
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62. Hayran, Y.; Allı, N.; Yücel, Ç.; Akdoğan, N.; Turhan, T. Serum IL-36alpha, IL-36beta, and IL-36gamma levels in patients with
hidradenitis suppurativa: Association with disease characteristics, smoking, obesity, and metabolic syndrome. Arch. Dermatol.
Res. 2020, 312, 187–196. [CrossRef]

63. Akdogan, N.; Alli, N.; Uysal, P.I.; Topcuoglu, C.; Candar, T.; Turhan, T. Visfatin and insulin levels and cigarette smoking are
independent risk factors for hidradenitis suppurativa: A case-control study. Arch. Dermatol. Res. 2018, 310, 785–793. [CrossRef]
[PubMed]

64. Wolk, K.; Witte, E.; Tsaousi, A.; Witte, K.; Volk, H.; Sterry, W.; Wenzel, J.; Schneider-Burrus, S.; Sabat, R. Lipocalin-2 as a novel
biomarker in acne inversa. J. Investig. Dermatol. 2016, 136, S235. [CrossRef]

65. Blok, J.L.; Li, K.; Brodmerkel, C.; Horvátovich, P.; Jonkman, M.F.; Horváth, B. Ustekinumab in hidradenitis suppurativa: Clin-ical
results and a search for potential biomarkers in serum. Br. J. Dermatol. 2016, 174, 839–846. [CrossRef] [PubMed]

66. Tsaousi, A.; Witte, E.; Witte, K.; Rowert-Huber, H.J.; Volk, H.D.; Sterry, W.; Wolk, K.; Schneider-Burrus, S.; Sabat, R. MMP8 is
increased in lesions and blood of acne inversa patients: A potential link to skin destruction and metabolic alterations. Mediators
Inflamm. 2016, 2016, 4097574. [CrossRef]

67. Wang, B.; Yang, W.; Wen, W.; Sun, J.; Su, B.; Liu, B.; Ma, D.; Lv, D.; Wen, Y.; Qu, T.; et al. Gamma-secretase gene mutations in
familial acne inversa. Science 2010, 330, 1065. [CrossRef]

68. Hunger, R.E.; Surovy, A.M.; Hassan, A.S.; Braathen, L.R.; Yawalkar, N. Toll-like receptor 2 is highly expressed in lesions of acne
inversa and colocalizes with C-type lectin receptor. Br. J. Dermatol. 2008, 158, 691–697. [CrossRef]

69. Sartorius, K.; Emtestam, L.; Lapins, J.; Johansson, O. Cutaneous PGP 9.5 distribution patterns in hidradenitis suppurativa. Arch.
Dermatol. Res. 2010, 302, 461–468. [CrossRef]

70. Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome
pathway analysis: A high-performance in-memory approach. BMC Bioinform. 2017, 18, 142. [CrossRef]

71. Frew, J.W.; Hawkes, J.E.; Krueger, J.G. A systematic review and critical evaluation of immunohistochemical associations in
hidradenitis suppurativa. F1000Research 2018, 7, 1923. [CrossRef] [PubMed]

72. Vossen, A.R.J.V.; van der Zee, H.H.; Prens, E.P. Hidradenitis suppurativa: A systematic review integrating inflammatory pathways
into a cohesive pathogenic model. Front. Immunol. 2018, 9, 2965. [CrossRef]

73. Jenei, A.; Dajnoki, Z.; Medgyesi, B.; Gáspár, K.; Béke, G.; Kinyó, Á.; Méhes, G.; Hendrik, Z.; Dinya, T.; Törőcsik, D.; et al. Apocrine
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Abstract: Despite advances in pharmacology and neuroscience, the path to new medications for
psychiatric disorders largely remains stagnated. Drug repurposing offers a more efficient pathway
compared with de novo drug discovery with lower cost and less risk. Various computational
approaches have been applied to mine the vast amount of biomedical data generated over recent
decades. Among these methods, network-based drug repurposing stands out as a potent tool for
the comprehension of multiple domains of knowledge considering the interactions or associations
of various factors. Aligned well with the poly-pharmacology paradigm shift in drug discovery,
network-based approaches offer great opportunities to discover repurposing candidates for complex
psychiatric disorders. In this review, we present the potential of network-based drug repurposing in
psychiatry focusing on the incentives for using network-centric repurposing, major network-based
repurposing strategies and data resources, applications in psychiatry and challenges of network-
based drug repurposing. This review aims to provide readers with an update on network-based
drug repurposing in psychiatry. We expect the repurposing approach to become a pivotal tool in the
coming years to battle debilitating psychiatric disorders.

Keywords: network analysis; drug repurposing; psychiatric disorders; medications; psychiatry; drug
discovery; mental disorders

1. Challenges of Drug Research for Psychiatric Disorders

Psychiatric disorders are leading causes of disability, with an increasing burden and
significant repercussions for health, society and the economy [1,2]. Despite some pharma-
cological advances, drug discovery for psychiatric disorders is particularly challenging and
remains virtually stagnant. Out of 101 new drugs approved by the FDA in 2019 and 2020,
only two were indicated for psychiatric disorders [3,4]. Such an outcome suggests that,
compared with other diseases, drug development for psychiatric disorders has intrinsic
bottlenecks that hinder the roadmap to new medications. In particular, there is a lack of
understanding of the pathological mechanisms of neuropsychiatric disorders, largely due
to their complex and ambiguous aetiology (genetics, environment, brain structure and
function) [5,6]. Therefore, these disorders pose great challenges to the identification and
characterization of biomarkers and molecular targets, as well as utilizing animal models
adequately representing the disease.

Drug development is an inherently laborious, expensive, and time-consuming pro-
cess, which becomes even more difficult for psychiatric disorders subserved by poorly
understood mechanisms. Conventional drug discovery has long been considered a costly
and risky journey (Figure 1a). The whole process usually takes approximately 13–15 years
from initial discovery to final regulatory approval, and costs USD 2–3 billion [7]. The
expenditure is predominated by failed candidates which are common given the low success
rate of <10% [8].
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which was repositioned from an anti-arrhythmia drug to an antipsychotic (currently en-
tering phase 3 clinical trials) [20]. The early success of these candidates may be a glimpse 
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Figure 1. The comparison between (a) conventional drug discovery and (b) drug repurposing.
(a) De novo drug discovery usually requires 13–15 years and may cost up to USD 3 billion from initial
experiments to final marketing approval. Moreover, the overall success rate is only ~10%. (b) Drug
repurposing typically bypasses several steps of the conventional approach, including not only early
discovery and preclinical stages but also Phase I clinical trials. Hence, time and cost can be optimized
to 5–11 years and USD 0.35 billion respectively, with an improved success rate of 30%.

In de novo drug discovery, a hypothesis related to the inhibition or activation of a
protein/pathway would form the basis for the first step (target discovery—as shown in
Figure 1a) [9]. However, psychiatric disorders are multi-faceted conditions, and it is still
unknown whether targeting a key factor/pathway could lead to successful treatments [10].
The lack of experimental models not only poses further hurdles to answering that key
mechanistic question but also prevents the next step of de novo drug discovery, i.e., lead
discovery and optimisation (Figure 1a). This step is generally based on high-throughput
compound screening or/and structure-based design but such approaches would require
credible models to measure expected phenotypic traits [9]. Furthermore, novel compounds
would undergo pharmacokinetics and pharmacodynamics testing including blood–brain
barrier (BBB) penetration—another unique challenge of drugs targeting central nervous
system (CNS) diseases such as psychiatric disorders [11].

2. Drug Repurposing—An Accelerated Framework for Psychiatric Drug Development

In recent years, drug repurposing or repositioning, i.e., finding new indications for
drugs previously developed and/or marketed for a different disease, has become an
attractive alternative to conventional drug discovery. Considering the high attrition rate
of de novo drug discovery, a plethora of abandoned candidate drugs, including some
that have passed safety assessment but failed due to lack of efficacy, can be recycled and
utilized for new therapeutic purposes. Given the known safety profiles and bioavailability,
as well as established manufacturing processes, drug repurposing can bypass some steps
of conventional drug discovery and hence shorten the timeline from bench to bedside with
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lower cost and less risk (Figure 1b) [12–14]. Drug repurposing is playing an increasingly
important role in the pharmaceutical industry. Out of 64 new drugs and biologics approved
by the FDA in 2018, only 8 were first-in-class agents (i.e., novel drugs with a unique
mechanism of action) [15]. As a shortcut to drug development, drug repurposing provides
more feasible paradigms for organizations and institutions with limited resources, and
potentially better financial incentives for companies to invest in rare, orphan diseases [16].
Importantly, governments and regulatory bodies are giving rigorous support including
funding programs and drug repurposing public databases [17].

In the field of neuropharmacology, there have been a substantial number of repur-
posed drugs approved or in development. A review by Caban et al. in 2017 reported a total
of 118 repurposed drugs for 203 cases in neurology and psychiatry (some drugs have been
repurposed for more than one neuropsychiatric disease) [18]. Although most approved
drug cases originated from the same discipline (i.e., neuropharmacology), the majority of
developing cases are from outside the field [18]. For example, there are recent investiga-
tional candidates with positive results, such as tamoxifen repurposed from oncology for
use as an antimanic agent (completed phase 3 clinical trials) [19], and quinidine which was
repositioned from an anti-arrhythmia drug to an antipsychotic (currently entering phase
3 clinical trials) [20]. The early success of these candidates may be a glimpse of the vast
untapped potential of recycling drugs from beyond the scope of neuropharmacology.

3. Why Networks Matter for Psychiatric Drug Research

Across the entire process of drug repurposing (Figure 1b), the first step of compound
identification is critical. Such repurposing compounds could be recognized from empirical
or even serendipitous observations, with the prominent examples of valproic acid for
bipolar disorder and ketamine for major depression [21,22]. While these empirical find-
ings have earned great success in psychiatric drug research, the advent of computational
techniques as well as high-throughput data from “omics” technologies have enabled us to
adopt a more systematic approach to discover new therapeutic agents. These approaches
also require the design of methodologies that integrate the high-dimensional but noisy
data efficiently to acquire useful insights for drug discovery, leading to the application
of network science in medical research. Network science is the use of multiple layers of
information to identify connections among biological components that are inherently and
physiologically relevant [23].

The fusion of network science and drug research was first conceptualized by Andrew
L. Hopkins based on the premise of poly-pharmacology—one drug, multiple targets [24].
This holistic view has been appreciated in psychiatry, in which many psychotropic drugs
have been shown to exhibit promiscuity as an intrinsic feature of their therapeutic ef-
fects [25]. Antipsychotics are prominent examples. Each antipsychotic drug typically
targets multiple receptors and they possess distinct pharmacological profiles [5]. Hence,
poly-pharmacological profiles demand consideration of multiple factors (e.g., interactions
with molecular targets, downstream affected pathways) to elucidate the mechanism(s)
of action of known drugs as well as to discover new therapeutic agents for psychiatric
disorders [6]. Network science enables the integration of various biological elements and
simultaneous consideration of their relationships in complex systems, making it a powerful
system for the poly-pharmacological paradigm.

Despite their pathological heterogeneity, psychiatric disorders have been suggested
to share overlapping molecular mechanisms especially at the genetics level [26–29]. Co-
morbidity is the norm rather than the exception for psychiatric disorders [30–33]. While
such commonality has posed challenges to the characterisation of distinct disorders, it also
offers opportunities for the utilisation of existing drugs in multiple mechanistic-related
disorders [34]. Therefore, network-based approaches can leverage the interconnection
between different disorders to find potential latent connections suggesting the recycling of
known targets of a disorder in another disorder.
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4. Network-Based Drug Repurposing in Psychiatry

Previous publications have offered comprehensive reviews on network science the-
ory [35] and capabilities in the context of medicine [36,37]. Herein, we will present major
terminologies, repurposing strategies, main data resources and applications in psychiatric
drug research.

Network-based interpretation comprises three major steps from understanding to
predicting and possible manipulating biological systems: (1) network inference (reconstruc-
tion of network relationships from biomedical data, mostly from high-throughput assays),
(2) network analysis (harnessing the topological relationships of networks), (3) network
modelling (dynamic representations of time-course perturbations of network elements
under different conditions) [38,39]. Most studies so far have utilised the first two steps for
static networks, but very few have advanced to dynamic network modelling [36].

A network inference approach involves “simplifying” complex systems by describing
them as a map of nodes connected by edges denoting their relationships or interactions [40]
(Figure 2). While networks can represent a wide range of biological processes, in the context
of drug discovery research, nodes are generally molecular targets (genes, proteins), com-
pounds (drugs) or diseases, with their relationships inferred from structural interactions
(e.g., protein–protein interactions), correlation (e.g., co-expression networks) or conditional
dependences (e.g., Bayesian networks) [41]. Many real-world networks including biological
networks, tend to exhibit scale-free properties, which means only a minority of nodes have
a greater number of neighbours than average (“hubs”), while most nodes only have a few
connections [42–44]. Selective targeting of hubs can therefore cause much greater impact
on the function of the networks than those modulations on peripheral nodes, making hubs
ideal drug targets [45].
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Figure 2. Main elements of a network. In the network, nodes (circles) are connected via edges (lines).
For biological networks, nodes are usually biological entities (genes, proteins) and edges denote
their relationships (interaction, association, similarity). From the networks, modules are clusters
of closely connected nodes. Degree is the number of direct connections a node has to other nodes.
Hubs are nodes with the highest degrees in the networks, meaning they have the highest number of
connections. The shortest distance between node A and B is the path with the minimum number of
edges from A to B. Created with BioRender.com (accessed on 2 June 2022).
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Network-based drug repurposing efforts are generally based on Swanson’s ABC
model to retrieve unknown latent knowledge from multiple sources of data incorporated
in the networks [46]. An assumption of this approach is that when term A is connected
to term B, and term B is connected to term C, we can assume that terms A and C are also
connected. For example, an indirect link between drug and disease can be inferred from a
direct drug-target connection and a direct target-disease connection. In the ABC model, A
and C must originate from different domains to yield new knowledge, and B can include
multiple steps to abridge from A to C (A → B1 → B2 . . . Bn → C) [47,48] (Figure 3).
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Figure 3. ABC model for network-based drug repurposing. Latent repurposing relationships can
be inferred from multiple layers of network-based knowledge such as disease-target (diseasome),
target–target (e.g., protein interactome), and drug–target interactions. As an example, disease A has
target B1 exhibiting direct interaction with target B2 which in turn is targeted by drug C, suggesting
drug C might be relevant for disease A (A → B1 → B2 → C). Created with BioRender.com (accessed
on 2 June 2022).

Another common approach is “guilt-by-association” (GBA), which uses similarity mea-
sures to suggest new disease indications for drugs [49]. There are two main assumptions of
GBA: (1) if two diseases share a significant number of characteristics (e.g., indications, med-
ical descriptions, mechanisms), a drug known to treat one of them may also treat the other
(Figure 4A); and (2) if a drug with unknown indications and another drug with known
indications share similar properties (e.g., chemical structures, transcriptional effects), they
may have the same indication profile (Figure 4B). The major challenge of this approach
would be how to define the robust similarity metric between drugs or diseases that concurs
with similarity in mechanisms of action.
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Figure 4. Guilt-by-association for network-based drug repurposing using (A) disease–disease or
(B) drug–drug similarity. (A) Disease–disease similarity is generally inferred from one or several
disease-related properties such as overlapping disease genes, symptoms or comorbidities. A weighted
disease network (diseasome) can be built based on the similarity metric; herein, modules of similar
nodes (diseases) can be identified. The module containing the disease of interest (highlighted in the
brown dashed circle) might suggest potential shared mechanism(s) for repurposing drugs. Within
this module, if multiple connected diseases have known drugs with similar mechanism X, such
drugs might be repurposed for the disease of interest. (B) Drug–drug similarity can be calculated
based on one or several properties such as chemical structures, targets, side effects or transcriptional
profiles. Using the similarity metric as the weight of edges for network construction, ones can identify
modules of highly similar nodes (drugs) suggesting similar mechanisms of action. When considering
in the context of a certain disease A, it would be of interest to focus on the module containing multiple
known drugs for disease A (highlighted as brown dashed square). Within such a module, a drug that
has yet to be used for disease A might be a potential repurposing candidate due to its high similarity
with other drugs used for disease A. Created with BioRender.com (accessed on 2 June 2022).
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Data for network construction can be sourced from experimental data (e.g., high
throughput screening), text mining or databases (e.g., phenotypic profiles, protein in-
teractions). Text mining is also the main strategy of literature-based drug repurposing,
which shares many integrative opportunities with network-centric approaches. Hence,
readers can refer to previous reviews in this domain for an in-depth methodological pre-
sentation [50,51]. The advantage of network-based approaches is the possible integration
of multiple data layers to complement the incompleteness of each domain’s knowledge.
Therefore, studies using network-based drug repurposing tend to utilise multiple data
sources rather than one. There are various ways of data incorporation to find repurposing
insights as shown in Figure 5. However, one should consider the relevance to the disease of
interest (e.g., data yielded from brain tissue versus muscle tissue) and the robustness of the
evidence supporting such a relationship (e.g., experimental evidence versus co-expression).
Multi-omics integration has been playing a major role in the current biological interpreta-
tion and readers can refer to previous reviews of specific updates and recommendations
for this approach [52]. Herein, we will focus on different types of biomedical database re-
sources and their utility in the context of psychiatric drug discovery research (summarised
in Table 1). A summary of studies using network-based drug repurposing in psychiatry is
given in Table 2.
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Figure 5. Different data sources for network-based drug repurposing. Curved arrows represent
the associations of entities within one type (e.g., drug–drug). Multiple data sources (coloured corre-
spondingly to their main domains such as transcriptome) can be applied to infer these associations,
usually for the creation of similarity or interacting networks. Straight arrows represent the relation-
ships between entities of different types (e.g., drug–target). For drug repurposing, the aim generally
is to find a latent drug–disease connection, which can be achieved by taking the inference route from
Drugs–Targets–Diseases (and vice- versa) as in the ABC model, or via Diseases–Diseases–Drugs
(or Drugs–Drugs–Diseases) as in the GBA model. Created with BioRender.com (accessed on 2
June 2022).
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Table 1. Summary of major data sources and their usage examples in psychiatry.

Type of Data Description and Resource Examples in Psychiatry

Structome Chemical structures:
ChemBL [53]
ChemSpider [54]
DrugBank [55]
PubChem [56]
Macromolecular structures:
Protein Data Bank [57]
AlphaFold Protein Structure Database [58]

Schizophrenia, sleep disorder [59]

Genome/Transcriptome GWAS (general):
GWAS ATLAS [60]
NCBI Database of Genotypes and Phenotypes (dbGaP) [61]
GWAS (psychiatry):
NIMH Repository and Genomics Resource (NRGR) [62]
Psychiatric Genomics Consortium (PGC) [63]
Autism Sequencing Consortium (ASC) [64]
Whole-Genome Sequencing Consortium for Psychiatric Disorders
(WGSPD) [65]
Human brain resources:
PsychENCODE [66]
Brain Somatic Mosaicism Network [67]
CommonMind Consortium [68]
Allen Brain Atlas [69]
Drug response:
Connectivity Map (CMap) [70]
Library of Integrated Network-Based Cellular Signatures (LINCS)
[71]
Drug Gene Budger (DGB) [72]

Depression [73]
Schizophrenia [74]
Substance use disorder [75]
Autism spectrum disorder [76]

Interactome Protein–protein interaction:
Search tool for retrieval of interacting genes/proteins (STRING)
[77]
Human Protein Reference Database (HPRD) [78]
Pathways:
Reactome [79]
Kyoto Encyclopedia of Genes and Genomes (KEGG) [80]
Regulome:
The Human Transcription Factors [81]
RegulomeDB [82]
Catalog of inferred sequence binding preferences [83]
JASPAR [84]
UniPROBE [85]
TRANSFAC [86]
Multiple collections:
OmniPath [87]

Schizophrenia [88,89]
Bipolar disorder [90,91]

Phenome Side effects:
SIDER [92]
Drug targets:
DrugBank [55]
PharmGKB [93]
Drug–Gene Interaction Database (DGIdb) [94]
DrugCentral [95]
canSARblack [96]
KEGG DRUG [97]
IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb) [98]
Search Tool for Interacting Chemicals (STITCH) [99,100]
Therapeutic Target Database (TTD) [101]
Drug Signatures Database (DSigDB) [102]
Pharos [103]
Binding assay profiles:
Psychoactive Drug Screening Program (PDSP) [104]
BindingDB [105]
Disease-associated targets:
Online Mendelian Inheritance in Man (OMIM) [106]
ClinVar [107]
MalaCards [108]
DisGeNET [109]
Human Phenotype Ontology (HPO) [110]
Monarch [111]
GPCards [112]
Disease symptoms:
Human symptoms–disease network [113]
Human Phenotype Ontology (HPO) [110]
DMPatternUMLS [114]
Clinical trials:
ClinicalTrials.gov [115]

Opioid use disorders [116]
Schizophrenia [117]
Schizophrenia, bipolar disorder, autism
spectrum disorder [118]

Network-based drug
discovery platforms

GRAND [119]
PharmOmics [100]
NeDRex [120]
IBM Watson for Drug Discovery [121]
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4.1. Structural Data (Structome)

Structural data from compounds and biological entities such as proteins and RNAs
have been extensively utilized in structure-based drug repurposing [123]. The conventional
structure-based approach usually requires a few predefined specific target molecules, which
is not suitable for psychiatric disorders with complex pathology as mentioned in Section 3.
However, network-centric approaches can incorporate the structome as a layer of informa-
tion in a non-biased way to find new indications for drugs. Tan et al. used descriptions of
3D chemical structures from PubChem to calculate the similarity profiles of 965 drugs [59].
The Tanimoto-based 3D similarity scores were then combined with gene semantic similarity
information and drug–target interactions to construct a drug similarity network. From this
GBA approach, Tan et al. predicted new indications for 143 drugs and missing indications
for 42 drugs without Anatomical Therapeutic Chemical (ATC) codes (indications not yet
listed in ATC database) (Table 2). Psychotropic drugs suggested for repurposing from
this study included raloxifene (from postmenopausal osteoporosis to schizophrenia) and
cyclobenzaprine (from muscle spasms to sleep disorders) [59]. Raloxifene has passed a
phase 4 clinical trial in participants with schizophrenia [124,125] while a phase 2 clinical
trial of cyclobenzaprine was terminated prematurely due to inadequate recruitment [126].

4.2. Genome

Using the phenotype-to-genotype concept, multiple large-scale genome-wide asso-
ciation studies (GWAS) have identified thousands of genetic variants across the genome
associated with psychiatric disorders [127,128]. Disease-associated genes located in risk
loci can be inferred from GWAS data and are usually used in network analysis as a filtering
layer to prioritise targets relevant to the disease. Ganapathiraju et al. used schizophrenia-
associated genes in combination with protein–protein interactions to create a schizophrenia
interactome [88]. Such a disease-specific network can be harnessed for target identifica-
tion and testing of repurposed agents [122]. However, a major limitation of using GWAS
data is the lack of directionality, making it difficult to determine whether a risk gene is
up- or down-regulated in the disease phenotype. Gaspar et al. partially addressed this
shortcoming via the incorporation of the GWAS summary statistics with gene expression to
predict expression levels in different tissues, which were incorporated with drug–target in-
teractions to build a bipartite tissue-specific drug–target network for major depression [73]
(Table 2).

4.3. Transcriptome

Among the wealth of “omics” data, transcriptomic profiling has emerged as an efficient
source for computational drug repurposing due to its standardized data format, multiple
comprehensive public databases, and possible implementation with network biology
approaches for complex diseases [12,129,130]. The expression patterns of gene products
that are connected by signalling cascades or protein complexes are expected to be more
similar than those of random gene products [40,131]. With this premise, co-expression
networks built upon multi-dimensional data such as transcriptomics have aided in the
identification of latent mechanistic patterns of psychiatric disorders and their medications,
which could be missed by conventional differential expression analysis [131,132].

Psychiatric disease-related transcriptional profiles, generally from post-mortem brain
samples, can be readily obtained from experiments, public databases, or psychiatric-centric
consortiums such as PsychENCODE and CommonMind [66,68]. The transcriptomic data
can be used on its own (gene expression levels) or incorporated with GWAS data to predict
genetically regulated gene expression. As an example of the former, Cabrera-Mendoza et al.
used transcriptional profiles from post-mortem brain samples of substance-use disorder
individuals with and without suicidal behaviour to build gene co-expression networks
associated with each phenotype (Table 2). The hub genes from these networks were then
subjected to drug–gene interaction testing using the DGIdb database [94] to identify drug
repurposing candidates [75]. Integration of transcriptomic profiles with GWAS data was
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adopted by Rodriguez-López et al. for finding druggable targets in schizophrenia. The au-
thors estimated polygenic scores based on predicted expression and associated these scores
with co-expression modules to find relevant hub target genes for early intervention [74].
Gaspar et al. also applied the genetically predicted gene expression approach [73].

Major sources of drug-induced transcriptional profiles are generated from cell lines
after treatment exposure, utilising seminal reference databases for drug responses such
as Connectivity Map (CMap) [133] and the Library of Integrated Network-based Cellular
Signatures (LINCS) [134]. While transcriptional profiles have been used extensively in
signature-based drug repurposing for the generation and comparison of selective genes
representing the phenotype of interest [129,135], their network-centric drug repurposing
application is still very limited in psychiatry. An emerging systems-level approach con-
structing gene-regulatory networks associated with each drug treatment-cell line pair using
CMap expression data can offer a comprehensive characterisation of the mechanism of
action of drugs. Such a systems-level approach includes information on complex interac-
tions between multiple entities, beyond the reductionist consideration of several signature
genes [119,136].

The major challenge of using drug-induced gene expression in psychiatry is the lack
of biological and pathological representation of the treated model systems. Transcriptional
perturbations are highly context-dependent; hence, the cancerous cells used commonly in
CMap and LINCS might not recapitulate the tissue-specific effects in neuronal or glial cells.
The advancement in stem cell technology has propelled the generation of patient-derived
induced pluripotent stem cells (iPSC), leading to the genesis of the NeuroLINCS center
of omics data generation for human iPSC response in neurological diseases [137]. Since
iPSCs carry the genetic information of the patients, they recapitulate the disease-related
mutations that would be more representative for diseases with significant genetic factors
such as psychiatric disorders [138].

4.4. Interactome

Interactomes encompass the functional interactions of biological components, which
might include physical contact between proteins (protein–protein interaction networks),
metabolites (metabolic networks), transcription factors and putative regulatory elements
(gene regulatory networks) or functional relationships only such as phenotypic profiling
networks (phenome networks) [40]. The interactome might be placed in specific biological
contexts such as signalling pathways or disease-related pathways [139]. The functional
interactome based on phenotypic profiles have been broadly applied for drug discovery
and will be discussed separately in the context of phenome-based networks. Interactome
networks tend to possess small world property: nodes are well connected with only a
few paths required for the shortest distance (Figure 2). This holds highly relevant for
functionally associated nodes, ensuring a quick flow of regulatory information passing
between them [140]. With the premise that risk genes tend to be more connected in
the network than a set of random genes, Kauppi et al. utilised the protein interactome
to map drug targets of antipsychotic drugs with networks of schizophrenia risk genes
(Table 2). Using network topological analysis of shortest distance, they found risk genes
were significantly localised into a distinct module and overlapped with antipsychotic drug
targets. Kauppi et al. then evaluated druggable risk genes without direct links to known
antipsychotic drug targets to find potential novel targets for schizophrenia such as nicotinic
acetylcholine receptor genes [89].

Given the key contribution of transcription factors in the modulation of gene ex-
pression and driving phenotypic perturbations, the transcriptional regulome has been
employed by De Bastiani et al. for drug repurposing in bipolar disorders [91]. Their study
inferred transcription factors–targets interactions via a reverse-engineering prediction algo-
rithm applied on human prefrontal cortex microarray data. The transcription factor-centric
network comprised of modules of gene targeted by each transcription factor, called “regu-
lons”. Based on case-control transcriptomics data, gene set enrichment analysis (GSEA)
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was applied on the regulons to find enriched regulons in bipolar disorder. These regulons
were used as gene expression signatures to query connectivity map for potential drug
candidates reverting disease-related regulon signatures. Several compounds with known
clinical relevance in bipolar disorders were identified such as antipsychotics (chlorpro-
mazine, haloperidol) and antidepressants (maprotiline, mianserin, and desipramine). The
study also found novel repurposing candidates including non-steroidal anti-inflammatory
agents (meclofenamic acid, ketorolac, acetylsalicylsalicylic acid and diflorasone) and an
antioxidant agent (trolox C) (Table 2) [91].

4.5. Phenome

The collection of phenotypic data collected from drug-induced (indications, side-
effects) or disease-associated phenotypes (symptoms, disease genes) has been extensively
used for drug repurposing with the availability of comprehensive public sources such as
DrugBank and PharmGKB [55,93]. Zhou et al. built a drug side effect–gene system com-
prising two networks: drug phenotypic network of side effect profiles from SIDER [92] and
protein interactome network from STRING [141]. The two networks were interconnected
via drug-target associations from DrugBank [55]. Zhou et al. then applied this phenome-
driven drug discovery system in finding repurposing agents for opioid use disorders.
Rather than finding drugs targeting the pathological mechanism of the disorder, which is
still mainly unknown, the system explored repurposing candidates sharing similar side
effects or common targets with drugs causing or indicated for opioid use disorders. Using a
network-based iterative algorithm, top-ranked repurposing candidates including tramadol,
olanzapine, mirtazapine, bupropion and atomoxetine were identified with supporting
clinical corroboration (Table 2) [116].

As presented in Section 3, psychiatric disorders tend to share mechanisms, such as
pleiotropic genes associated with multiple disorders. By incorporating disease phenome
and disease genome networks together, one can explore the common pathophysiology
between diseases and infer potential reusable targets of one disease in a different disease.
Such a disease-gene network was first proposed by Goh et al. as a “diseasome”—a bi-
partite graph including all known genetic disorders and disease genes connected by the
association of genetic mutations to disorders [142]. Such a network can be interpreted
for gene-gene similarity (connected if two genes share a disorder), or disease–disease
similarity (linked if two disorders share a gene). While the specific application of dis-
easome in psychiatric disorders is still limited, Lüscher Dias et al. built a diseasome
network considering multiple psychiatric and neurological disorders using text mining.
They found several clusters shared by multiple disorders and their enriched functional
annotations, e.g., depression with anxiety disorder (enriched for inflammatory response),
bipolar disorder with schizophrenia (enriched for long-term potentiation and circadian
entrainment). However, Lüscher Dias et al. did not consider common genes for their drug
repurposing steps but focused on unique genes associated with each disorder as potential
targets for the corresponding disorder (ABC model), shifting back to a single-disease con-
text [118]. To our knowledge, there have been no cases using disease–disease similarity
networks for drug repurposing in psychiatric disorders. An example outside of psychiatry
from Langhauser et al. demonstrated how the repurposing hypothesis can be generated
from a disease–disease similarity network of the diseasome, even from seemingly distinct
diseases [143]. They built diseasome networks for 132 diseases based on four different
relationships: shared genes, protein interactome, common symptoms and co-morbidity.
From the diseasome, Langhauser et al. found the cGMP signalling pathway was associated
with a cluster of disease phenotypes including neurological, cardiovascular, metabolic and
respiratory diseases. This GBA approach suggested cGMP modulators as treatments for
diseases belonging to this cluster. Based on this premise, the authors repurposed soluble
guanylate cyclase (sGC) activators—cGMP generation facilitators—from their exclusive
indications for cardiovascular diseases to neurological disorders and successfully validated
their neuroprotection effects in vivo [143].
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4.6. Network-Based Drug Repurposing Platforms

There are various approaches to yield network-based repurposing insights from
biomedical data if one would like to build networks from the ground up, which has been
comprehensively reviewed [36,37,41]. However, there are several platforms that can serve
as a “one-stop shop” for network repurposing with the incorporation of multiple biological
datasets, pre-constructed networks, pre-set analyses for easy access and queries of existing
or user-generated data: for example, GRAND, a web-based database of gene regulatory
networks specific for disease- or drug-related phenotypes inferred from prior experimental
data such as protein–protein interactions, transcriptional profiles, transcriptional factor
binding motifs and miRNAs predicted targets [119]. Using similarity scores based on
properties of inferred regulatory networks, the CLUEreg tool of GRAND allows users to
query a list of “high-targeted” and “low-targeted” genes or transcriptional factors of the
disease to identify single or combinations of compounds that might “reverse” aberrant
regulatory patterns [119]. Other examples of open-sourced platforms include PharmOmics
and NeDRex; the former is a knowledgebase supporting gene-network-based drug repur-
posing and the latter allows heterogeneous network construction to mine disease modules
for drug prioritization [100,120]. While these platforms would be easy to use with curated
networks, users are limited by the scope of the current platforms, and how regularly they
are updated. Reproducibility would be a challenge especially with commercial platforms
such as IBM Watson for Drug Discovery where detailed analysing workflows are not pub-
licly accessible [121]. Moreover, most datasets incorporated were yielded from different
domains such as oncology, weakening the robustness of interpretations in psychiatry.

5. Challenges of Network-Based Drug Repurposing in Psychiatry

Despite its great potential, there are major obstacles preventing network-based drug
repurposing from making substantial impact:

(1) While previous knowledge plays a major role in network construction, our current
understanding of psychiatric disorders remains inadequate and biased towards well-
studied mechanisms and biological entities. Even high-throughput screening data such
as for protein interactions can only capture 20% of all potential interactions, leaving us an
80% incomplete interactome network with a great deal of missing gaps and fragmented
clusters [144].

(2) Furthermore, the integration of heterogenous and high-dimensional datasets gen-
erally has to deal with disparate, incompatible or missing information [145]. To merge
multiple datasets into a homogenous network would compromise accuracy due to the
disregarding of biological and experimental variations affiliated with each dataset [146].

(3) Regardless of the scale of the network and data integrated, network representation
in drug repurposing so far has only recapitulated static snapshots of the biological systems
despite their dynamic nature. However, dynamic network modelling is still a major
challenge due to the limited knowledge of interaction kinetics [147].

(4) Whilst phenotypic profiles are important data for network-based drug repurpos-
ing, similar phenotypes are not necessarily the result of similar modes of action. Genes,
medication histories, and traits all play a significant role in the phenotypic outcomes of a
drug’s mode of action [148].

(5) Repurposing candidates have been implied from various network-based ap-
proaches, yet the preclinical validation of these candidates is limited. Even though bi-
ological follow-ups are the gold-standard, the lack of representative experimental models
for psychiatric disorders has posed a great obstacle to in vitro and in vivo validation of
drug efficacy [6]. Most studies in psychiatry resorted to in silico validation such as literature
cross-referencing, domain expert consultation and electronic health records (EHR) [149].
The literature-based validation is undertaken by mining clinical trials or PubMed articles to
find supportive evidence such as the work of Lüscher Dias et al. [118]. Expert consultation
is employed for a more credible evaluation of results and literature support, as done by
Tan et al. [59]. While these validations are dependent on the inference of prior knowledge,
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the EHR-based validation can provide a more observational corroboration based on real-
world clinical data. Zhou et al. employed EHR of nearly 73 million patients provided
by the IBM Watson Health platform to validate repurposing candidates for opioid use
disorders (OUD), using the odds of OUD remission as the outcome measure [116]. To
validate repurposing drug X, they identified a cohort of OUD patients diagnosed with
repurposing drug X’s original indication (disease A). This group was then split into an expo-
sure group (patients with OUD, disease A, using drug X) and a comparison group (patients
with OUD, disease A, not using drug X). The odds ratios of remission rates between these
groups were then measured. They reported patient cohorts using top-ranked repurposing
candidates had higher odds of OUD remission than corresponding groups without these
drugs, supporting their repurposing potential for OUD [116]. A list of EHR resources can
be referred from the collection of Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM) compliance databases [150]. Most of this list are commercial
and private databases whose utility is mostly hampered by the restrictive access policies.
However, recent initiatives such as “All of Us” have been collecting large-scale EHR data
and making data widely available for approved researchers, offering valuable resources for
biomedical research [151].

6. Conclusions and Future Perspectives

Drug repurposing has emerged as a promising alternative for de novo drug discovery
and has become a vital shift in the pharmaceutical industry. Taking advantage of the
expanding accumulation of biomedical data, various computational drug repurposing
approaches have been facilitating informed decisions for drug research. Among those,
network-based approaches offer a unique opportunity to integrate various domains of bio-
logical knowledge to discover latent repurposing candidates for complex diseases such as
psychiatric disorders. Given the virtually stagnant progress of drug discovery in psychiatry,
we have presented the incentives for using network-based drug repurposing for psychiatric
disorders: the efficiency of repurposing drugs with verified safety records and the compati-
bility of network science with the poly-pharmacology concept for complex disorders. We
then summarised major concepts and main strategies for network-based drug repurposing,
including the ABC model and GBA approaches. Data sources and current repurposing
applications for psychiatric disorders were then summarised to offer readers an update
with the progress of this approach in psychiatry. However, no methodology is without
limitations; thus, we presented common challenges of using network-centric approaches
for drug repurposing—mostly with the noisiness and insufficiency of data resources,
lack of appropriate models for follow-up validation and the dynamic representation of
complex systems.

Nevertheless, network-based repurposing holds great potential for expanding the
knowledge of drug research, especially for complex disorders. Emerging techniques
and resources will complement its capabilities for psychiatric research. Neuroimaging
techniques such as functional magnetic resonance imaging (fMRI) offer the detection of the
drug-induced perturbations of brain activity for predicting the efficacy of drug action [152].
A library of drug-related fMRI patterns might offer biomarker refences to compare the
similarity between repurposing drugs with existing ones [153,154]. Its unique ability
of non-evasively capturing functional differences at the brain systems level would be
beneficial for psychiatric drug research given the complex nature of these diseases and
inadequate experimental models. However, it is still an open challenge to incorporate the
human connectome, i.e., the map of neural connections mapped via brain imaging, into
the network-based drug repurposing given most biological data resources were measured
at the molecular level. The emerging application of more pathological-representative
preclinical models for psychiatric disorders such as iPSCs and organoids is also expected
to provide more phenotypic-relevant datasets for drug repurposing and validation. A
patient-derived stem cells library of drug response specifically for psychiatric disorders
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would offer a more accurate context-specific overview of drug action and therefore improve
the robustness of network-based drug repurposing.

To address the incompleteness of data, computational approaches are being developed
for the integration of multi-dimensional data with differences in statistical properties and
biological objectives. It is challenging to represent relationships between multitudinous
omics data solely with traditional linear modelling. Therefore, multi-omics tools employing
multivariate statistics, machine learning (ML) and deep learning (DL) approaches have
been proposed to extract and predict complex non-linear patterns [52,155]. While much
development and optimization are needed to generalize ML/DL models for systems-level
capture of dynamics and kinetics underlying phenotypes, ML/DL has been aiding network
inference and improving network coverage via the prediction of missing connections with
supervised and unsupervised analyses [52,156]. While data integration is a cornerstone
of network-based inference, most aggregation results in a single network endeavoring
to represent a population with a broad spectrum of phenotypic differences. Despite be-
ing informative in terms of finding shared characteristics of the inspected population,
aggregated networks generally ignore population heterogeneity. Emerging attention for
precision medicine has facilitated the development of personalized characterization of
biological perturbations. Several efforts have been made in network medicine to account
for individual-level estimations, e.g., via overlaying the sample-specific expression data on
the known biological networks, or interpolation of aggregated networks with and without
a sample to estimate network contribution of such sample [157,158].

Empowered by the ever-growing amount of biomedical data and new computational
analyses, the network-centric approach will keep proving itself as a powerful tool for
the comprehension of vast knowledge to shed light on new repurposing candidates for
psychiatric disorders.
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