
Edited by

Analytical, Numerical 
and Big-Data-Based 
Methods in Deep Rock 
Mechanics 

Shaofeng Wang, Xin Cai, Jian Zhou, Zhengyang Song and 
Xiaofeng Li

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics



Analytical, Numerical and
Big-Data-Based Methods in
Deep Rock Mechanics





Analytical, Numerical and
Big-Data-Based Methods in
Deep Rock Mechanics

Editors

Shaofeng Wang

Xin Cai

Jian Zhou

Zhengyang Song

Xiaofeng Li

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Shaofeng Wang

Central South University

China

Xin Cai

Central South University

China

Jian Zhou

Central South University

China

Zhengyang Song

University of Science and

Technology Beijing

China

Xiaofeng Li

University of Toronto

Canada

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special

issues/Analytical Numerical Methods Deep Rock Mechanics).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-5761-8 (Hbk)

ISBN 978-3-0365-5762-5 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

Shaofeng Wang, Xin Cai, Jian Zhou, Zhengyang Song and Xiaofeng Li

Analytical, Numerical and Big-Data-Based Methods in Deep Rock Mechanics
Reprinted from: Mathematics 2022, 10, 3403, doi:10.3390/math10183403 . . . . . . . . . . . . . . . 1

Jianguo Zhang, Peitao Li, Xin Yin, Sheng Wang and Yuanguang Zhu

Back Analysis of Surrounding Rock Parameters in Pingdingshan Mine Based on BP Neural
Network Integrated Mind Evolutionary Algorithm
Reprinted from: Mathematics 2022, 10, 1746, doi:10.3390/math10101746 . . . . . . . . . . . . . . . 7

Chong Li and Zhijun Xu

Numerical Modeling and Investigation of Fault-Induced Water Inrush Hazard under Different
Mining Advancing Directions
Reprinted from: Mathematics 2022, 10, 1561, doi:10.3390/math10091561 . . . . . . . . . . . . . . . 23

Yangchun Wu, Linqi Huang, Xibing Li, Yide Guo, Huilin Liu and Jiajun Wang

Effects of Strain Rate and Temperature on Physical Mechanical Properties and Energy
Dissipation Features of Granite
Reprinted from: Mathematics 2022, 10, 1521, doi:10.3390/math10091521 . . . . . . . . . . . . . . . 35

Laifu Song, Hao Ying, Wei Wang, Ning Fan and Xueming Du

Reliability Modelling of Pipeline Failure under the Impact of Submarine Slides-Copula Method
Reprinted from: Mathematics 2022, 10, 1382, doi:10.3390/math10091382 . . . . . . . . . . . . . . . 55

Minglei Zhai, Dan Ma and Haibo Bai

Diffusion Mechanism of Slurry during Grouting in a Fractured Aquifer: A Case Study in
Chensilou Coal Mine, China
Reprinted from: Mathematics 2022, 10, 1345, doi:10.3390/math10081345 . . . . . . . . . . . . . . . 81

Yuan Zhao, Guoyan Zhao, Jing Zhou, Xin Cai and Ju Ma

Mining Stress Evolution Law of Inclined Backfilled Stopes Considering the Brittle-Ductile
Transition in Deep Mining
Reprinted from: Mathematics 2022, 10, 1308, doi:10.3390/math10081308 . . . . . . . . . . . . . . . 95

Ying Chen, Shirui Chen, Zhengyu Wu, Bing Dai, Longhua Xv and Guicai Wu

Optimization of Genetic Algorithm through Use of Back Propagation Neural Network in
Forecasting Smooth Wall Blasting Parameters
Reprinted from: Mathematics 2022, 10, 1271, doi:10.3390/math10081271 . . . . . . . . . . . . . . . 117

Baoping Chen, Bin Gong, Shanyong Wang and Chun’an Tang

Research on Zonal Disintegration Characteristics and Failure Mechanisms of Deep Tunnel in
Jointed Rock Mass with Strength Reduction Method
Reprinted from: Mathematics 2022, 10, 922, doi:10.3390/math10060922 . . . . . . . . . . . . . . . . 139

Diyuan Li, Zida Liu, Danial Jahed Armaghani, Peng Xiao and Jian Zhou

Novel Ensemble Tree Solution for Rockburst Prediction Using Deep Forest
Reprinted from: Mathematics 2022, 10, 787, doi:10.3390/math10050787 . . . . . . . . . . . . . . . . 159

Kewei Liu, Shaobo Jin, Yichao Rui, Jin Huang and Zhanxing Zhou

Effect of Lithology on Mechanical and Damage Behaviors of Concrete in Concrete-Rock
Combined Specimen
Reprinted from: Mathematics 2022, 10, 727, doi:10.3390/math10050727 . . . . . . . . . . . . . . . . 183

v



Tong Zhang, Xiaodong Nie, Shuaibing Song, Xianjie Hao and Xin Yang

Modeling Uranium Transport in Rough-Walled Fractures with Stress-Dependent Non-Darcy
Fluid Flow
Reprinted from: Mathematics 2022, 10, 702, doi:10.3390/math10050702 . . . . . . . . . . . . . . . . 201

Shaofeng Wang, Yu Tang, Ruilang Cao, Zilong Zhou and Xin Cai

Regressive and Big-Data-Based Analyses of Rock Drillability Based on Drilling Process
Monitoring (DPM) Parameters
Reprinted from: Mathematics 2022, 10, 628, doi:10.3390/math10040628 . . . . . . . . . . . . . . . . 223

Longjun Dong, Lingyun Zhang, Huini Liu, Kun Du and Xiling Liu

Acoustic Emission b Value Characteristics of Granite under True Triaxial Stress
Reprinted from: Mathematics 2022, 10, 451, doi:10.3390/math10030451 . . . . . . . . . . . . . . . . 243

Barkat Ullah, Muhammad Kamran and Yichao Rui

Predictive Modeling of Short-Term Rockburst for the Stability of Subsurface Structures Using
Machine Learning Approaches: t-SNE, K-Means Clustering and XGBoost
Reprinted from: Mathematics 2022, 10, 449, doi:10.3390/math10030449 . . . . . . . . . . . . . . . . 259

Min Wang, Qifeng Guo, Yakun Tian and Bing Dai

Physical and Mechanical Properties Evolution of Coal Subjected to Salty Solution and a Damage
Constitutive Model under Uniaxial Compression
Reprinted from: Mathematics 2021, 9, 3264, doi:10.3390/math9243264 . . . . . . . . . . . . . . . . 279

Bo Sun, Zhiyu Zhang, Jiale Meng, Yonghui Huang, Hongchao Li and Jun Wang

Research on Deep-Hole Cutting Blasting Efficiency in Blind Shafting with High In-Situ Stress
Environment Using the Method of SPH
Reprinted from: Mathematics 2021, 9, 3242, doi:10.3390/math9243242 . . . . . . . . . . . . . . . . 299

Zhuo Rong, Xiang Yu, Bin Xu and Xueming Du

Reliability Analysis of High Concrete-Face Rockfill Dams and Study of Seismic Performance of
Earthquake-Resistant Measures Based on Stochastic Dynamic Analysis
Reprinted from: Mathematics 2021, 9, 3124, doi:10.3390/math9233124 . . . . . . . . . . . . . . . . 315

Yuantian Sun, Guichen Li and Sen Yang

Rockburst Interpretation by a Data-Driven Approach: A Comparative Study
Reprinted from: Mathematics 2021, 9, 2965, doi:10.3390/math9222965 . . . . . . . . . . . . . . . . 333

Jiasen Liang, Shaokun Ma and Xueming Du

Diffusion Model of Parallel Plate Crack Grouting Based on Foaming Expansion Characteristics
of Polymer Slurry
Reprinted from: Mathematics 2021, 9, 2907, doi:10.3390/math9222907 . . . . . . . . . . . . . . . . 347

Shan Yang, Zitong Xu and Kaijun Su

Variable Weight Matter–Element Extension Model for the Stability Classification of Slope Rock
Mass
Reprinted from: Mathematics 2021, 9, 2807, doi:10.3390/math9212807 . . . . . . . . . . . . . . . . 365

Kexin Yin, Lianghui Li and Eugenia Di Filippo

A Numerical Investigation to Determine the p–y Curves of Laterally Loaded Piles
Reprinted from: Mathematics 2021, 9, 2783, doi:10.3390/math9212783 . . . . . . . . . . . . . . . . 379

Lihai Tan, Ting Ren, Linming Dou, Xiaohan Yang, Gaofeng Wang and Huaide Peng

Analytical Stress Solution and Numerical Mechanical Behavior of Rock Mass Containing an
Opening under Different Confining Stress Conditions
Reprinted from: Mathematics 2021, 9, 2462, doi:10.3390/math9192462 . . . . . . . . . . . . . . . . 393

vi



Daoyuan Sun, Yifan Wu, Longjun Dong and Qiaomu Luo

Closed-Form Solutions for Locating Heat-Concentrated Sources Using Temperature Difference
Reprinted from: Mathematics 2022, 10, 2843, doi:10.3390/math10162843 . . . . . . . . . . . . . . . 411

vii





Citation: Wang, S.; Cai, X.; Zhou, J.;

Song, Z.; Li, X. Analytical, Numerical

and Big-Data-Based Methods in Deep

Rock Mechanics. Mathematics 2022,

10, 3403. https://doi.org/10.3390/

math10183403

Received: 3 August 2022

Accepted: 14 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Editorial

Analytical, Numerical and Big-Data-Based Methods in Deep
Rock Mechanics

Shaofeng Wang 1, Xin Cai 1,*, Jian Zhou 1, Zhengyang Song 2 and Xiaofeng Li 3
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2 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 Department of Civil & Mineral Engineering, University of Toronto, Toronto, ON M5T 2S8, Canada
* Correspondence: xincai@csu.edu.cn

With the increasing requirements for energy, resources and space, numerous rock
engineering projects (e.g., mining, tunnelling, underground storage, and geothermal and
petroleum engineering) are more often being constructed and operated in large-scale,
deep underground and complex geology environments. Meanwhile, more and more
unconventional rock failures and rock instabilities (e.g., rockbursts, large-scale collapses
and mine earthquakes) are occurring and severely threatening the safety of underground
operations. It is well-recognized that rocks have multi-scale structures from minerals,
particles, fractures, fissures, joints and stratification to faults and involve multi-scale fracture
processes. In the deep earth, rocks are commonly subjected to complex high-stress and
strong-dynamics disturbances simultaneously, providing a hotbed for the occurrence of
unconventional rock failures. In addition, there are many multi-physics coupling processes
in rock masses, such as the coupled thermo-hydromechanical interaction in fractured
porous rocks. It is still difficult to understand rock mechanics and to characterize rock
behaviors with complex stress conditions, multi-physics processes and multi-scale changes.
Therefore, the prevention and control of unconventional instability in deep rock engineering
remains a great challenge. The primary aim of this Special Issue “Analytical, Numerical and
Big-Data-Based Methods in Deep Rock Mechanics” is to bring together original research
discussing innovative efforts on analytical, numerical and big-data-based methods in rock
mechanics. It includes 22 manuscripts that illustrate the richness and challenging nature of
deep rock mechanics.

The article written by Zhang et al. [1] aims to address the difficulty in obtaining
the mechanical parameters of surrounding rocks and large experimental errors, and an
optimized BP neural network model is proposed in this paper. The optimized BP neural
network model (MEA-BP model) takes advantage of the mind evolutionary algorithm and
the neural network. It can not only avoid the local extreme value problem but also improve
the accuracy and reliability of the prediction results.

The article published by Li et al. [2] aims to explore the risk of fault-induced water
inrush under different mining advancing directions through numerical modeling and
investigation. The findings showed that, for a water-conducting fault, the waterproof coal
pillar size of mining advances from the hanging wall should be larger than that from the
foot wall.

The purpose of the study proposed by Wu et al. [3] was to determine the effects of
strain rate and temperature on the dynamic mechanical parameters, energy dissipation
features and failure modes of granite. Their study results indicate that the dynamic
compressive strength of granite increases exponentially with strain rate and decreases with
increasing temperature. The dynamic elastic modulus decreased obviously with increasing
temperature but did not have a clear correlation with the strain rate. Under the same
incident energy, as the temperature increased, the reflected energy increased notably and
the absorbed energy increased slightly, but the transmitted energy decreased. At the same
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temperature, the reflected and absorbed energies increased linearly as the incident energy
increased, whereas the transmitted energy increased logarithmically.

The article written by Song et al. [4] developed a reliability model to elucidate the trend
of impact-related pipeline damage due to submarine slides. A probability analysis method
of impact-related pipeline damage attributed to submarine slides based on the copula
function was proposed. Furthermore, the copula function could reasonably characterize
relevant the nonnormal distribution characteristics of risk variables and could simulate
samples conforming to the distribution pattern of the risk variables.

The article published by Zhai et al. [5] investigated the mechanism of slurry diffusion in
horizontal fractures of fractured aquifers; additionally, a one-dimensional seepage grouting
theoretical model considering the temporal and spatial variation in slurry viscosity under a
constant grouting rate was established. In this model, the grouting pressure required by
the predetermined slurry diffusion radius could be obtained by knowing the grouting hole
pressure and injection flow.

The article written by Zhao et al. [6] investigated the mining stress evolution law of
inclined backfilled stopes in deep mining. Their study demonstrated that mining-induced
stress will move to the upper stopes and the stratum below the deepest stope. The transfer
range and degree of influence of mining-induced stress will increase with an increase in
deep mining, resulting in the most dangerous backfilled stope occurring one or two layers
above the deepest stope and the apparent stress concentration area occurring below the
deepest stope.

The study by Chen et al. [7] proposed a genetic algorithm (GA) and back propagation
(BP) neural network-based computational model for SWB design parameter optimization.
This computational model can comprehensively reflect the relation among geological
conditions, design parameters and results. Moreover, it automatically searches for the
optimal blasting design parameters through the control of SWB targets.

The article published by Chen et al. [8] established a series of models to understand
the fracture features of zonal disintegration and to reveal the failure mechanisms of circle
tunnels excavated in deep jointed rock masses. The results demonstrate that the zonal
disintegration process is induced by the stress redistribution; the dip angle of the joint set
has a great influence on the stress buildup, stress shadow and stress transfer as well as on
the failure mode of the surrounding rock masses; the existence of parallel and random joints
lead the newly formed cracks near the tunnel surface to developing along their strikes; and
the random joints make the zonal disintegration pattern much more complex and affected
by the regional joint composition.

The article written by Li et al. [9] proposed a novel machine learning model, deep
forest, to predict rockburst risk. The deep forest model achieved 100% training accuracy
and 92.4% testing accuracy, and it has a more outstanding capability to forecast rockburst
disasters compared with other widely used models.

The paper published by Liu et al. [10] studied the effect of lithology on the mechanical
and damage behaviors of concrete in a concrete–rock combined specimen (CRCS). The
results show that the low-strength concrete part plays a major role in the fracture behavior
of CRCS. Furthermore, damage in the CRCS mainly formed in the concrete part, and the
extent of the damage in the concrete part was positively correlated with the strength of the
rock part.

In the paper published by Zhang et al. [11], the reactive transportation and distribution
morphology of a uranium-containing solution was described, a stress-dependent reactive
transport model was developed, and the simulator of FLAC3D-CFD was employed. The
results show that the uranium-containing solution transport and distribution are signif-
icantly dependent on the evolution of the connected channel in a rough-walled fracture,
which is significantly influenced by the confining stress and hydraulic pressure.

The article written by Wang et al. [12] proposed a method of rock drillability evaluation
based on drilling process monitoring (DPM) parameters. The two-dimensional regression
analysis was utilized to investigate the relationships between the drilling parameters, and
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the three-dimensional regression analysis was used to establish models of ROP and specific
energy (SE). Finally, a prediction model for the uniaxial compressive strength (UCS) was
established based on the SE and drillability index. The results show that both the regression
models and the prediction models have good performances, which can serve as important
guides and a source of data for field drilling and excavation processes.

The article published by Dong et al. [13] analyzed changes in the b value during a rock
failure and investigated the b value characteristics of acoustic emission events. The results
indicated a higher accuracy of the b value when calculated using the average amplitude
setting for an interval between acoustic emission events of 200 or greater, a stress magnitude
of 20 MPa or greater, and a stress proportion of 10% or greater.

The article published by Ullah et al. [14] used three approaches—t-distributed stochas-
tic neighbor embedding (t-SNE), K-means clustering, and extreme gradient boosting
(XGBoost)—to predict short-term rockburst risk. The classification accuracy of XGBoost
was checked using several performance indices. The results of the proposed model serve
as a great benchmark for future short-term rockburst level prediction with high accuracy.

The purpose of the article by Wang et al. [15] was to investigate the evolution of
the physical and mechanical properties of coal subjected to salty solutions. The results
show that the corrosion effect of a salty solution on coal samples becomes stronger with
increasing immersion time. The degree of deterioration in the longitudinal wave velocity
(vp) is positively correlated with the immersion time.

The article written by Sun et al. [16] investigated the criteria for determining the critical
damage of rocks in a constitutive RHT, and the mechanical parameters of metamorphic
sodium lava were substituted to obtain the critical damage threshold of rocks in a numerical
simulation. The results show that rock clip production has an inhibitory effect on the
development and propagation of blast-induced cracks. The fitting results serve as an
important reference value for the design of one-time completion blasting of an upward
blind shaft.

The article published by Rong et al. [17] evaluated the seismic performance of geosynthetic-
reinforced soil structures (GRSSs) of high concrete face rockfill dams (CFRDs) from a
stochastic perspective. The result shows that GRSSs can reduce mild damage on CFRDs
during earthquakes and can restrain moderate and severe damage. The influence of
vertical spacing and the length of GRSSs on the seismic performance was also obtained and
provides a reference for the seismic design and risk analysis of CFRDs.

The article written by Sun et al. [18] designed a new ensemble classifier combining
a random forest classifier (RF) and the beetle antennae search algorithm (BAS) that was
applied to improve the accuracy of rockburst classification. The results show that BAS
could tune the hyperparameters of RF efficiently, and the optimal model exhibited a high
performance on an independent test set of rockburst data and new engineering projects.

In order to study the diffusion mechanism of foamed polymer slurry in rock fissures,
the article published by Liang et al. [19] derived a radial diffusion model of polymer
single crack grouting in consideration of factors such as grouting volume, crack width and
expansion rate. The findings show that the results of the slurry diffusion radius, pressure
and velocity distribution at different times under different working conditions in the model
are in good agreement with the analytical solution.

In order to accurately classify the stability of the slope rock mass in an open-pit mine,
the article published by Yang et al. [20] established a new stability evaluation model of the
slope rock mass based on variable weight and matter–element extension theory. The results
show that the classification results of the proposed model are in line with engineering
practices and are more accurate than those of the hierarchical-extension model and the
multi-level unascertained measure-set pair analysis model.

The article written by Yin et al. [21] focused on a numerical approach to finding the
p–y curves for laterally loaded piles. The p–y curve results from this new approach were
compared with the typical design equations of API (American Petroleum Institute) and
Matlock. Finally, the influence of clay content on the p–y behavior was investigated using
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the implemented MATLAB code. When y < 0.15B, the same lateral capacity values resulted
in clay contents of 27.5% and 55%, and they were higher than the ones with 0% clay content.
The p–y curves showed a decreasing trend with increasing clay content after y > 0.15B.

The article published by Tan et al. [22] investigated the triangle interpolation method
for the calculation of the mapping functions of plates containing an opening with arbitrary
shapes with an improved method for point adjudgment during iterations. The results show
that the stability and failure pattern of the rock mass is correlated with stress around the
opening, which is affected by the opening shape. The existence of an opening also greatly
reduces the enhancing influence of confining stress on rock specimens.

The article published by Sun et al. [23] presented two-dimensional, closed-form solu-
tions for locating heat-concentrated sources using temperature differences for known and
unknown temperature gradient systems. These proposed analytical solutions can provide a
new approach to locating heat sources for more complicated conditions using temperature
differences, such as the localization of geothermal sources and nuclear waste leak points.

To sum up, the guest editors hope that the selected papers will help scholars and
researchers to push forward the progress in analytical, numerical and Big-Data-based
methods in deep rock mechanics.
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Back Analysis of Surrounding Rock Parameters in
Pingdingshan Mine Based on BP Neural Network Integrated
Mind Evolutionary Algorithm

Jianguo Zhang 1, Peitao Li 2, Xin Yin 2, Sheng Wang 3 and Yuanguang Zhu 3,*

1 State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,
China Pingmei Shenma Group, Pingdingshan 467000, China; zhangjg_z@126.com

2 School of Civil Engineering, Wuhan University, Wuhan 430072, China; tm_lpt@163.com (P.L.);
yinxin_engineering@163.com (X.Y.)

3 State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics,
Chinese Academy of Sciences, Wuhan 430072, China; 202082010032@sdust.edu.cn

* Correspondence: ygzhu@whrsm.ac.cn

Abstract: The mechanical parameters of surrounding rock are an essential basis for roadway ex-
cavation and support design. Aiming at the difficulty in obtaining the mechanical parameters of
surrounding rock and large experimental errors, the optimized BP neural network model is proposed
in this paper. The mind evolutionary algorithm can adequately search the optimal initial weights and
thresholds, while the neural network has the advantage of strong nonlinear prediction ability. So,
the optimized BP neural network model (MEA-BP model) takes advantage of the two models. It can
not only avoid the local extreme value problem but also improve the accuracy and reliability of the
prediction results. Based on the orthogonal test method and finite element analysis method, training
samples and test samples are established. The nonlinear relationship between rock mechanical pa-
rameters and roadway deformation is established by the BP model and MEA-BP model, respectively.
The importance analysis of the three input variables shows that the ΔD is the most important input
variable, while ΔBC has the smallest impact. The comparison of prediction performance between
the MEA-BP model and BP model demonstrates that the optimized initial weights and thresholds
can improve the accuracy of prediction value. Finally, the MEA-BP model has been well applied to
predicting the mechanical parameter for the surrounding rock in the Pingdingshan mine area, which
proves the accuracy and reliability of the optimized model.

Keywords: mind evolutionary algorithm; BP neural network; MEA-BP model; rock mechanical
parameters; orthogonal test method

MSC: 68T07

1. Introduction

The mechanical parameters of surrounding rock are the most important indexes in
underground engineering construction. The rock mass is a typical anisotropy and hetero-
geneity medium with fissures, fractures, joints, bedding planes, and faults [1]. Therefore,
the evaluation and prediction of rock mechanical parameters is still a challenge [2]. Re-
searchers and technicians have developed various methods for the determination of rock
mechanical parameters [3]. It includes direct measurement, indirect evaluation, laboratory
test, numerical analysis, etc. [2,4–8]. Due to the limitations of sample size, quantity and cost,
it cannot accurately reflect the variation of rock mass mechanical parameters via laboratory
tests. What is more, the surrounding rock and support structure will change slowly with
stress and time. It is difficult to dynamically evaluate the mechanical properties of sur-
rounding rock and supporting structures by the traditional method. With the application
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of computer technology, depth learning has become a new method to solve geotechnical
problems [9–11]. It can make full use of the data easily obtained but also the dynamic pre-
diction and evaluation. Neural networks, support vector machines, decision trees, Bayesian
classifiers, and other algorithms have been used in various rock mass engineering [9,12–14].

BP neural network has the advantage of strong nonlinear prediction ability, which
has been widely used [15,16]. For example, Suman et al. [17] evaluate the safety of slope
with functional networks, multivariate adaptive regression splines, and multigene genetic
programming. Based on the literature data, the multivariate adaptive regression splines
model has the best prediction performance in comparison with other models. To evaluate
the stability of a rock slope with interlayered rocks, Wu et al. [18] predict the peak shear
strength by a neural network approach. It also considers the effect of joint wall strength
combination, normal stress, and joint roughness. The results show a good prediction
precision when compared with the experimental data. Salsani et al. [19] reveal that the most
critical factor on the road headed performance is the unconfined compressive strength. The
nonlinear relation between the unconfined compressive strength, Brazilian tensile strength,
rock quality designation, alpha angle, and the road headed performance could be accurately
predicted by an artificial neural network. Based on the data of dynamic wave velocity,
point load index, slake durability index, and density, the rock strength can also be predicted
by an artificial neural network [20]. The hybrid model is proposed by Dai et al. [21], which
combines the improved artificial fish swarm algorithm of strong global searching ability
and the back propagation algorithm of strong local search ability. The preciseness of hybrid
model is better than the other models. An optimized probabilistic neural network (PNN)
model is proposed by Feng et al. [22], which makes full use of the mean impact value
algorithm (MIVA) and the modified firefly algorithm (MFA). Then, the proposed model
shows a good prediction ability in the evaluation of rock burst for the deep tunnels.

The above studies have confirmed the application of neural networks. However,
the different initial weights and thresholds of the BP neural network will lead to non-
convergence or local extreme value and even a large prediction error. The main reason is
that the initial weights and thresholds of BP neural network are randomly generated, which
affects the performance of the model. Therefore, selecting appropriate initial weights and
thresholds is very important for the accuracy of the prediction model. Mind evolutionary
algorithm (MEA) draws on the idea of population and evolution in genetic algorithms. It
introduces the process of convergence and alienation, which has a strong ability for global
optimization. In other words, the MEA model can search for the optimal initial weights
and thresholds. Therefore, some scholars use the MEA model to optimize the performance
of the BP neural network. Then an MEA-BP neural network is established and applied in
the prediction model, which achieves a good result [23–25]. However, the application of
the MEA-BP method in the prediction of surrounding rock parameters is still less.

Based on studying the prediction method of surrounding rock mechanical parameters,
the mind evolutionary algorithm and BP neural network are introduced and combined
firstly. Based on the Matlab program, the optimized BP model (MEA-BP model) is proposed
in this paper. Then, the important analysis and comparison for the MEA-BP method are
carried out, demonstrating the validity of proposed method. Finally, based on the observed
displacement of roadway in the Pingdingshan mining area, the mechanical parameters of
surrounding rock are predicted and evaluated, which is expected to provide a reference
and basis for the long-term stability analysis of deep surrounding rock.

2. Methodology

2.1. Prediction Method

According to the Mohr-Coulomb criterion, the mechanical parameters of surrounding
rock are major factors affecting the stability of roadway surrounding rock. It includes
elastic modulus (E), cohesion (c), and friction Angle (ϕ). On the other hand, surrounding
rock deformation is highly sensitive to these three parameters, which is difficult to obtain
accurately [26]. Therefore, the deformation of surrounding rock U (u1, u2, u3, . . . ) can
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be defined as a function of mechanical parameters (E, c, ϕ). The nonlinear relationship
between surrounding rock deformation and mechanical parameters can be expressed as:

U(u1, u2, u3, . . .) = f (E, c, ϕ) (1)

In engineering applications, the deformation of surrounding rock can be measured
easily, while it is contrary to the mechanical parameters of rock mass. Therefore, it is an
innovative method to evaluate the mechanical parameters based on surrounding rock
deformation. So, the relationship between surrounding rock deformation and mechanical
parameters is very significant for the accuracy of prediction results. Due to the nonlinear
relationship between surrounding rock mechanical parameters and deformation, it is very
difficult to solve in theory.

The neural network has the advantages of strong learning ability and good plasticity,
which has been widely used in nonlinear fitting and prediction. However, most neural
networks are based on gradient descent algorithms. The convergence speed is slow, and
the training time is too long. What is more, the selection of initial weights and thresholds
seriously affects the convergence and accuracy of the neural networks, which is prone
to local extreme value. Therefore, the mind evolutionary algorithm is adopted in this
paper, which is aimed at the optimized initial parameters of the BP neural network. Then,
the relationship between surrounding rock deformation and mechanical parameters is
established by the optimized BP model. This method can avoid the local extreme value
problem but also improve the accuracy and reliability of the prediction model.

2.2. The Optimized BP Model
2.2.1. BP Neural Network Model

The BP neural network model is the most intuitive and widely used among many
artificial neural network models. The BP neural network model is a feed-forward multilayer
perceptron neural network and error backpropagation learning algorithms. A representa-
tive BP neural network model consists of three layers: an input layer, a hidden layer, and
an output layer [27], as shown in Figure 1. The learning process can be divided into two
parts: model forward propagation and error back propagation. In the forward propagation,
the input sample enters the input layer and then propagates to the output layer after being
processed by the hidden layer. The computation process [15] between input and output
can be expressed as:

Y = foutput

H

∑
j=1

wkj( fhidden(
I

∑
i=1

wjiXi + bj) + bk) (2)

Then, the error is calculated by:

E =
1
N

N

∑
n=1

(Yn − Yn)
2n = 1, 2, 3, . . . , N (3)

where, i and H represent the numbers of the input sample and hidden sample; bj and
bk represent the basis of hidden and output layer; foutput and fhidden represent the transfer
functions for the hidden and output neurons; wji represents the weights connecting the
input layer and hidden layer; wkj represents the weights between the hidden layer and
output layer; Yn and Yn represent the predicted and actual output for the training sample.

If the error exceeds the tolerance, then the output error will be propagated back to the
input layer via the hidden layer. Repeated training and learning are carried out until it
meets the requirement [28].

9
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Figure 1. The structure of BP neural network.

2.2.2. Mind Evolutionary Algorithm

The mind evolutionary algorithm (MEA) inherits the concepts of “group” and “evo-
lution” from the genetic algorithm (GA). It also has important innovations. Inspired by
man’s mind action attributes under certain social environments, MEA comes up with
“similar-taxis” and “dissimulation” [29]. The population of MEA consists of several groups
surviving around the environment. Those groups are divided into superior groups and
temporary groups randomly. Each group includes some individuals according to their
uniform distribution (Figure 2).

 
Figure 2. The structure of mind evolutionary computing.

The strategy of MEA is searching for the individual which has the highest score
as a superior individual. Then, other individuals with the highest score as temporary
individuals. The MEA designs two stages to realize the optimization goal [24]. Through
the “similar-taxis”, the local information and local optimization are obtained. While the
“dissimilation” operation conducts a global search and makes “exploration” in the whole
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search space. Through the “similar-taxis” and “dissimilation” alternately, MEA can achieve
the balance of exploration and exploitation. The evolutionary process is described as
the follows:

(a) The population of MEA consists of several groups surviving around the environment.
Those groups are divided into superior groups and temporary groups randomly. Each
group includes several individuals according to their uniform distribution.

(b) MEA searches for the individual with the highest score as a superior individual. At the
same time, other individuals which have the highest score as temporary individuals.
Each superior individual and temporary individual as the center to generate the
superior subgroups and temporary subgroups.

(c) The “similar-taxis” process is completed within the subgroups. The population
maturity discriminant function is used to confirm whether the subgroup is mature. If
it is, the mature subgroup stops this process. Then, the score of the optimal individual
is regarded as the group score. The immature subgroup will produce subgroups with
new centers. The above process will be repeated until they mature.

(d) The disassimilation process is completed globally. If the score of the temporary
subgroup is higher than that of the optimal subgroup, this process is carried out.
Then, individuals in the temporary subgroup with a high score will replace those with
a low score. At the same time, the individuals in the optimal subgroup are released.
A new temporary subgroup is reconstructed in the global space.

(e) Repeating the above process until the score of the optimal group is so high that it
is impossible to increase. Then, the algorithm is convergent, and the winner of the
superior group is just the global optimization.

Obviously, MEA takes advantage of the similar-taxis and the dissimilation to make the
local search and global search alternately. Moreover, MEA designs billboards to record the
evolutionary information that will guide the evolution in turn. So, MEA can make use of
its directional search advantage, which is good for the search of optimal initial weights and
thresholds. Currently, MEA has successfully applied to many optimization problems [25].

2.3. Combined Prediction Method

The MEA can search for the best initial weights and thresholds quickly and accurately.
While the neural network has the advantages of high calculation precision and controllable
error. So, the combination of two models is proposed to predict rock parameters. In
other words, the optimal initial weights and thresholds value is obtained by the mind
evolutionary algorithm. Then, the optimized initial value is used in the BP neural network
model, which can improve the convergence speed and fitting accuracy of the BP neural
network. Finally, an MEA-BP model is established based on the Matlab program.

In addition to the prediction model, the data of training and verification for the
prediction model is another key point, which determined the accuracy of the predict value.
The common method for the establishment of training data and verification data is field
monitoring or numerical analysis [13,14,30,31]. Due to the complex engineering conditions,
the filed data cannot acquired easily. Numerical analysis is an efficient method for the
analysis of influence law of rock mechanical, which has been widely used in the back
analysis of surrounding rock [31]. At the same time, the orthogonal experimental design
method is also adopted in the establishment of training data. Orthogonal experimental
design method is a representative method for the study of multi factors and levels. It
can reflect the influence of all factors and levels, which is appropriate for the study of
rock engineering. Thus, both orthogonal experimental design method and finite element
method (FLAC3D) are adopted in the establishment of training sample and test sample.

Based on the training data and predicted model, the nonlinear relationship between
mechanical parameters and deformation of surrounding rock can be established. The steps
to develop a combined prediction model (MEA-BP model) are illustrated in Figures 3 and 4.

11



Mathematics 2022, 10, 1746

Figure 3. Flow chart of numerical analysis and sample establishment.

Figure 4. The flow chart of the MEA-BP prediction model.

Step 1: The establishment of a training sample. The orthogonal experimental design
method is used to determine the test scheme based on three rock mechanical parameters.
Then, the deformation results of surrounding rock under different mechanical parameters
are simulated by the finite element method (FLAC3D). The deformation results and me-
chanical parameters of surrounding rock are regarded as the input and output variable
values for the training sample, respectively (Figure 3).

Step 2: Determination of BP network. The parameters of the input layer, output layer,
and hidden layer were determined.
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Step 3: Setting MEA parameters. The number of iterations, initial population, superior
subpopulation, temporary subpopulation, network weights, and threshold are determined.

Step 4: Generation of random populations. The optimized weights and thresholds are
coded according to the MEA parameters. Then, the superior subgroups and temporary
subgroups are generated.

Step 5: The similar taxis operation is performed in each subgroup until the subgroup
is mature. The score of the optimal individual is used as the score of the subgroup.

Step 6: The dissimilation operation is performed between the superior and tempo-
rary subgroups.

Step 7: Output the superior individual when the iterations operations or the optimal
global individual is found. If the above conditions are not satisfied, return to step 3.

Step 8: The optimized initial weights and thresholds are assigned to the BP network.
The MEA-BP model trains the nonlinear relationship between the deformation and rock
mechanical parameters.

Step 9: Prediction and evaluation. The observed displacement value is used to predict
rock mechanical parameters by the MEA-BP model. Then, the predicted displacement
is obtained by finite element numerical analysis methods. Finally, the comparison and
evaluation between the predicted displacement and the observed value are carried out
(Figure 4).

3. Application of Prediction Model

3.1. Geological and Numerical Model

The study roadway is located in the No.10 mine of the Pingdingshan mining area. The
rock stratum of the roadway is a sandy mudstone layer. The overall geological structure is
stable, and no obvious fissure water is found. The roadway section is a straight-wall arch,
with a width of 5.6 m, a height of 4.5 m, and a radius of 1.7 m. According to the classification
of surrounding rock, the surrounding rock where the roadway is located belongs to class
III~V. The basic quality (BQ) rating system is most widely used as an empirical method for
rock mechanical parameters [32]. Then, the range of elastic modulus (E), cohesion (c), and
friction Angle (ϕ) is calculated by the BQ rating system. Other parameters are determined
by the laboratory test results, as shown in Table 1. The measurement of in-situ stress shows
that the σx = 30.81 MPa, σy = 28.78 MPa, σz = 27.04 MPa. To quantitatively analyze the
deformation of surrounding rock, the displacement of point A and point D (ΔA and ΔD) is
regarded as the vertical deformation value. At the same time, the relative displacement
of point B and point C (ΔBC) is selected as the horizontal deformation value, as shown
in Figure 5. The displacement of roadway surrounding rock is measured by a laser range
finder (Figure 6).

Table 1. Physical and mechanical parameters of surrounding rock.

Mechanical
Parameters

Density
ρ/Kg·m−3

Elasticity
Modulus

E/GPa

Poisson’s
Ratio/μ

Cohesion
c/MPa

Friction Angle
ϕ/(◦)

Dilation Angle
ψ/(◦)

Value 2450 3~13.5 0.21 0.5~4 15~32.5 10
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Figure 5. The monitoring points of roadway deformation.

 
Figure 6. Laser range finder.

The finite element analysis method (FLAC3D) is used to simulate the roadway defor-
mation with different rock mechanical parameters to establish the training samples. The
rock mechanical parameters are determined by Table 1. The Elasticity modulus, cohesion
and friction angle are regarded as the variable for the establishment of training data and
verification data. The other parameters are constant, which can refer to the Table 1. In
addition, the Mohr-Column criterion is adopted. The model range must be sufficiently
large to minimize the influence of boundary effects. Therefore, a 3D roadway numerical
model with a size of 67.2 m × 60 m × 36 m is established, as shown in Figure 7. The element
number of the numerical analysis model is 12,380. The upper part of the model is a free
boundary, and the other boundaries are fixed. The three principal stresses are applied in
the corresponding directions, and gravity is also considered. When the convergence value
(ratio = 1 × 10−5) is reached, the equilibrium state can be considered to be reached.

Figure 7. Three-dimensional numerical analysis model.
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3.2. Establishment of Training Sample

Orthogonal experimental design is an experimental method for studying multi-factor
and levels. According to the principle of orthogonal design, some representative points
are selected for the test, which has the characteristics of “uniform dispersion, neat and
comparable”. The orthogonal test method has high efficiency, which can quickly determine
the influence degree of relevant factors on deformation. So, the orthogonal experimental
design method is used to construct the training samples for the prediction model. The
rock mechanical parameter includes elastic modulus (E), cohesion (c), and friction angle
(ϕ), which has eight levels, as shown in Table 2. After roadway excavation and timely
support, the surrounding rock and support structure can be regarded as the overall struc-
ture. Therefore, the rock mechanical parameters described in this paper are the overall
mechanical parameters of surrounding rock and support structure, which is also the basis
for the analysis of surrounding rock after support.

Table 2. Rock mechanical parameters and levels for orthogonal experimental.

Level
Parameter

E/MPa c/MPa ϕ/◦

1 3 0.5 15
2 4.5 1.0 17.5
3 6.0 1.5 20
4 7.5 2.0 22.5
5 9.0 2.5 25
6 10.5 3.0 27.5
7 12.0 3.5 30
8 13.5 4.0 32.5

Based on Table 2 and the orthogonal test design method (L64), 64 training samples
are obtained by numerical analysis. Correspondingly, the deformation of roadway (ΔA,
ΔD, and ΔBC) with different rock mechanical properties is regarded as the input value for
the training sample (Figure 3). The mechanical parameters of orthogonal experiments are
regarded as the observed value. Then, the nonlinear relationship between the deformation
and rock mechanical parameters of surrounding rock is obtained by the training sample.
The nonlinear relationship obtained by the MEA-BP model can be used to predict of rock
mechanical parameters. Finally, the evaluation of the prediction model can be carried out
(Figure 4).

3.3. Importance Analysis of Input Variables

In addition to being interested in the prediction performance of the MEA-BP model,
the importance of different input variables on the prediction performance is concerned,
which increases the interpretability of the model. Permutation importance (PI) is a common
indicator to measure the importance of input variables [33]. It has the advantages of being
easy to understand and fast to calculate. The detailed procedure of importance analysis is
introduced as follows:

(1) Based on the BQ rating system, eight group mechanical parameters of test samples
are generated by the random method. Then, the deformation of surrounding rock is
obtained by the finite element numerical method. The data of test sample is shown in
Table 3. The surrounding rock deformation results and mechanical parameters are
regarded as the input value and observed value for the test samples.

(2) Train the MEA-BP model based on the original training samples (L64). Then, the
prediction of the test sample (Table 3) is obtained, and the RMSE is calculated by
Equation (4).

RMSE =

√√√√ 1
N

N

∑
t=1

(observedt − predictedt)
2 (4)
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where, observedt represents the observed value; predictedt represents the predicted
value; t represents the predicted variable, N represents the number of input variables.

(3) Shuffle the ith input variable of the training samples in reverse order, and the others
remain unchanged.

(4) Train the MEA-BP model on the shuffled training samples. The prediction of the test
sample and RMSE is calculated by Equation (4).

(5) Calculate PI of the ith input variable using Equation (5);

PIi = |RMSEi − RMSE∗| (5)

where, RMSEi and RMSE* are separately calculated on the shuffled training samples
and original training samples; i (i = 1, 2, 3) represents the input variable (ΔA, ΔD,
ΔBC).

(6) Repeat (3)~(4) until PI of all input variables (ΔA, ΔD, ΔBC) is obtained. To be more
intuitive, PI is standardized by Equation (6).

PI∗i =

(
PIi/

n

∑
i=1

PIi

)
× 100% (6)

Table 3. The rock mechanical parameter and deformation for test samples.

Group
Mechanical Parameters Displacement/mm

E/MPa c/MPa ϕ/◦ ΔA ΔD ΔBC

1 12.69 2.49 24.08 −19.3 16.9 −20.6
2 9.91 2.25 29.92 −18.3 21.0 15.0
3 3.01 1.86 25.28 −93.4 79.1 −126.0
4 3.84 0.78 32.10 −82.2 82.7 −115.8
5 7.25 2.24 16.40 −65.7 41.8 −110.7
6 4.01 0.63 31.15 −102.7 97.8 −143.0
7 6.76 1.82 36.40 −24.2 29.9 −14.7
8 6.34 2.54 17.38 −55.1 36.3 −87.5

Firstly, the RMSE of three input variables (ΔA, ΔD, ΔBC) for eight test samples is
obtained (Table 4). The larger RMSE means a greater adverse effect. The range of RMSE* is
0.24~1.20, with an average of 0.58. Except the group 5, the RMSEi for other groups is larger
than RMSE*. It indicates that the changes of the input value of training samples have a
significant impact on the prediction results. The average of RMSE2 is the largest, while
the RMSE1 is the second. The larger PI is, the more important the corresponding input
variable. It can be seen that the PI* for ΔD, ΔA, and ΔBC is 49.93%, 30.30%, and 19.77%,
respectively (Figure 8). In other words, the variation of PI* is consistent with the average of
RMSE. Especially, the RMSE2 is the biggest of six test groups. What is more, the maximum
value of RMSE is 10.62, which also belongs to RMSE2. So, it can be considered that the ΔD
is the most important input variable, while the influence of ΔBC is the least.

Table 4. The RMSE for three input variables.

No. RMSE1 RMSE2 RMSE3 RMSE*

1 6.04 7.60 3.67 0.93
2 4.66 1.49 5.13 1.20
3 1.71 8.25 1.63 0.31
4 6.41 10.62 1.35 0.49
5 0.35 1.65 0.58 0.48
6 5.16 10.07 4.60 0.24
7 2.67 2.09 2.88 0.40
8 2.01 3.45 0.86 0.57

Average 3.63 5.65 2.59 0.58
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Figure 8. Importance analysis results of input variables.

3.4. Model Analysis

To verify the effectiveness of the proposed model, the mechanical parameters are
predicted by the MEA-BP model and BP model, respectively. The data of test samples
are shown in Table 4. The parameters of the two models are shown in Table 5. The η
is the learning rate; S is population size; m is the maximal iterative number; Nt is the
number of the temporary subgroup; Ns is the number of superior subgroups; g is the
convergence error.

Table 5. Parameters of two prediction models.

Prediction Model The Initial Values

BP model η = 0.05; g = 0.001
MEA-BP model η = 0.05; S = 200; m = 10; Nt = 5; Ns = 5; g = 0.001

The nonlinear relationship between surrounding rock deformation and mechanical
parameters is established during the modeling process by 64 sets of the training samples
(L64). Based on the test sample (Table 3), the RMSE of three predicted mechanical param-
eters is calculated by Equation (4). The smaller RMSE means the more reliable accuracy.
All RMSE of the predicted mechanical parameters of the MEA-BP model are smaller than
that of the BP model (Figure 9). It indicates that selecting initial weights and thresholds can
improve the convergence and accuracy of neural networks but also avoid local extreme
value problems. Compared with the BP model, the declining ratio of RMSE for the MEA-BP
model was about 48.89~79.91%. In other words, the predicted performance of the MEA-BP
model is better than that of the BP model.
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Figure 9. The variation of RMSE for three predicted variables.

The relative error value (REV) is used for the detailed comparison of MEA-BP model
and BP model. The definition of relative error value is:

REVx =

∣∣∣∣ x∗ − x0

x0

∣∣∣∣× 100% (7)

where, REVx represents the relative error value of the parameter x; x represents the pa-
rameter variable (E, c, ϕ); x0 represents the initial value of a parameter; x* represents the
predicted value of a parameter.

The REV of three parameters for the MEA-BP model and BP model is summarized
in Figure 10. Compared with the BP model, the REV of three mechanical parameters is
smaller when the MEA-BP model is adopted. Specifically, the REV of elastic modulus (E) is
between 0.12~10.96% when the MEA-BP model is adopted. In contrast, it is 2.37~31.32%
for the BP model. The cohesion and friction angle also shows the same change trend. The
REV of cohesion and friction angle is less than 12.26% for the MEA-BP model, which is
smaller than those of BP model. What is more, the REV of cohesion and friction angle is
smaller than that of elastic modulus (Figure 10b,c).

Although, the nonlinear relationship between mechanical property and deformation
of surrounding rock is inherent. However, the importance of different variables is different.
So, the REV of some point is large. What is more, the different initial input value will lead
to non-convergence or local extreme value and even a large prediction error when the BP
neural network is adopted. Thus, the change of REV is irregular when the BP model is
adopted. It is not only the key point of the prediction model but also the advantage of
MEA-BP model. The sensitivity of input variables cannot be decreased, but the accuracy of
the prediction can be improved when the MEA-BP model is adopted. In other words, the
application of the mind evolutionary algorithm could improve prediction accuracy. The
MEA-BP model has a better prediction performance than the BP model.
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(a) (b) 

 
(c) 

Figure 10. Comparison between the BP model and MEA-BP model. (a) Elastic modulus. (b) Cohesion.
(c) Friction angle.

3.5. Application of MEA-BP Model

Based on Section 2, the MEA-BP model is used to predict mechanical parameters for
the roadway in the Pingdingshan mine area. Firstly, two adjacent roadways are selected as
monitoring roadways, and two sections are selected for each roadway. Then, the observed
displacement value of roadway is shown in Table 6.

Table 6. The deformation and predicted mechanical parameters of roadway.

Measuring Point
Roadway Deformation Value Predicted Mechanical Parameter

ΔA/mm ΔD/mm ΔBC/mm E/MPa c/MPa ϕ/◦

1-1 −60.9 41.4 −96.1 8.52 2.23 15.79
1-2 −64.8 41.2 −108.9 8.03 2.18 15.84
2-1 −90.7 78.5 −96.4 3.16 1.76 26.27
2-2 −83.9 75.5 −91.5 3.30 1.72 26.98

Based on the observed displacement value of roadway, the predicted rock mechanical
parameter is obtained by the MEA-BP model. Then, the predicted deformation value of
roadway is calculated via FLAC3D, which is used to compare the observed displacement
(Figure 11). It can be seen that the REV of ΔA and ΔD ranges between 1.43% and 5.70%. The
predicted value of ΔA and ΔD is basically consistent with the observed value. According to
the important analysis of input variables (Section 3.3), the prediction result has the lowest
sensitivity to ΔBC. So, it will result in a large error of ΔBC. What is more, the isotropic
assumptions are adopted during the finite element analysis. It also does not consider
the actual geological variation, such as fracture distribution. Therefore, the predicted
deformation results of ΔBC are less than the observed values, but the REV of ΔBC is less
than 9.1%. To sum up, the MEA-BP model can well predict the mechanical parameter.
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(a) (b) 

 
(c) 

Figure 11. Comparison of surrounding rock deformation results. (a) the displacement of ΔA. (b) the
displacement of ΔD. (c) the displacement of ΔBC.

4. Conclusions

To predict mechanical parameters for surrounding rock, an optimized BP prediction
model is proposed in this paper. It makes use of the great search capability of the MEA
model and the strong learning ability and plasticity of the BP model. Then, the orthogonal
experimental design method and finite element method (FLAC3D) are adopted in the
establishment of training sample and test sample. Thirdly, the nonlinear relationship
between mechanical parameters and deformation of surrounding rock is obtained by BP
model and MEA-BP model, respectively. Finally, the analysis show that the application of
the mind evolutionary algorithm could improve prediction accuracy. It also has a better
prediction performance in the application. The main conclusions are as follows:

(1) To avoid the local extreme value and improve the convergence speed of the BP
neural network model, the initial weights and thresholds are optimized by the mind
evolutionary algorithm. So, the combination of the mind evolutionary algorithm and
BP neural network is proposed in this paper, which is aimed at a good prediction of
rock mechanical parameters.

(2) Based on the orthogonal test method and finite element numerical method, training
samples and test samples are established. The rock mechanical parameters are the
observed value, while the deformation of surrounding rock (ΔA, ΔD, ΔBC) is the input
value. The nonlinear relationship between rock mechanical parameters and roadway
deformation is established by the BP model and MEA-BP model, respectively.

(3) The important analysis of different input variables for the MEA-BP model shows that
the RMSE of ΔD is the largest. While the RMSE and PI for ΔBC are the smallest. It
indicates that the ΔD is the most important input variable, while the influence of ΔBC
is the least.

(4) The comparison between the MEA-BP model and BP model shows that the RMSE
value for the MEA-BP model is reduced by about 48.89~79.91%. What is more, the
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REV of the MEA-BP model is also smaller than that of the BP model. The MEA-BP
model cannot decrease the sensitivity of input variables, but the accuracy of the
prediction is improved. So, the prediction performance of the MEA-BP model is better
than the BP model, which also demonstrates the advantages of the optimized initial
weights and thresholds.

(5) The MEA-BP model is used to predict mechanical parameters for roadways in the
Pingdingshan mine area. The predicted deformation results are consistent with the ob-
served value, which demonstrated the accuracy and reliability of the optimized model.
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Abstract: Evaluations of the risk of fault-induced water inrush hazard is an important issue for
mining engineering applications. According to the characteristics of the seam floor during mining
advancing, a mechanical model of fault activation is built to obtain the equations of normal stress and
shear stress on the surface of fault, as well as the mechanics criterion of fault activation. Furthermore,
using FLAC3D numerical software, the stress variation on the surface of fault under two different
mining advancing directions are numerically simulated, and the distribution characteristics of the
plastic failure zone of the roof and floor near the fault are obtained. The results show that: (1) When
mining advances from the hanging wall, the normal stress increases more greatly than that from the
foot wall, the shear stress distribution changes drastically with a large peak, and it is more likely to
cause fault activation. (2) When mining advances from the hanging wall and approaches the fault,
the normal stress and shear stress within the fault first increases, and then decreases suddenly. When
mining advances from the foot wall, the normal stress and shear stress increases constantly, and the
fault zone stays in the compaction state where the hanging wall and foot wall are squeezed together,
which is unfavorable for water inrush hazard. (3) When mining advances from the hanging wall, the
deep-seated fault under the floor is damaged first, and the plastic failure zone of the floor increases
obviously. When mining advances from the foot wall, the shallow fault under the floor is damaged
first, and the plastic failure zone of roof increases obviously. (4) For a water-conducting fault, the
waterproof coal pillar size of the mining advancing from the hanging wall should be larger than that
from the foot wall. (5) The in-situ monitoring results are in agreement with the simulation results,
which proves the effectiveness of the simulation.

Keywords: fault; water inrush; mechanical behavior; mining advancing direction

MSC: 86A60

1. Introduction

Mining-induced water inrush is one of the main kinds of mine water hazards in
China, especially in northern China where water inrush hazards from the floor frequently
occur [1,2]. According to the statistics, more than 55% of the mine water hazards are caused
from the floor, of which about 80% of the water inrush is related with a fault [3–8].

It is of importance to know how water inrush could develop during mining ad-
vances [1,5,9–13]. As shown in Figure 1a, intact rock mass has good mechanical properties
with smaller permeability, but small fractures in the floor are caused by mining [14–17].
However, fault not only changes the mechanical properties of rock mass [18–21], but also
reduces the intensity and modulus of deformation and seriously affects the permeabil-
ity properties of rock mass, as shown in Figure 1b. The water in the fault produces the
physical, chemical reaction with the rock mass, and the change of hydraulic stress will
cause the change of stress distribution in rock mass [22]; meanwhile, the stress change
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causes a change in the rock pores [23–27], which in turn affects the groundwater flow and
water pressure. In this way, the water in the fault and rock mass are mutually influenced.
If there is a fault in the practical project, we need to consider the influence that mining
pressure brings to fault activation, especially the inrush problems of fault, or it will cause
property loss and casualties [21,28,29]. Fault is an important water inrush channel due
to the crushed rocks in it. At present, the study on water inrush mechanism is mainly
concentrated on either damage of floor strata or reactivation of fault [30–36]. They did not
consider the mining advance direction on failure analysis of the surrounding rocks near
faults. In particular, the stress variation and failure characteristics with the formation of
water inrush channel adjacent to faults in floor strata are not completely understood.

 
(a) (b) 

Figure 1. Sketch of mining-induced crushed zone development. (a) Intact rock strata. (b) Floor
within fault.

This paper aims to analyze the stress variation and failure characteristics of the rock
surrounding the fault by advancing in different directions. It focuses on the variation
of normal stress and shear stress on the fault plane, as well as failure characteristics
of the roof and floor by mechanical model and numerical simulation in the process of
mining advancing. The influence that mining advance direction brings to fault activation is
obtained, and a certain theoretical basis is provided to the design of a waterproof coal pillar.
Finally, in-situ monitoring is conducted to verify the effectiveness of simulation results.

2. Mechanical Behavior of Mining Advancing Direction on Fault Activation

2.1. Mechanical Analysis of Fault Activation

As shown in Figure 2, before coal mining, the stress of the rock mass stays in the
original equilibrium, while the rock stress will redistribute after mining. According to
the theory of mining pressure control [37,38], in the mining advancing direction, the peak
abutment pressure of coal floor nγH appeared in the working face within a certain distance
to the coal wall. Because the floor of the gob is compacted by roof caving rocks, the
abutment pressure gradually recovers to the original stress γH, where γ is the bulk density
of the rock, H is the depth of the buried coal seam, and n is the stress concentration factor.

In order to study the influence that the mining advancing direction brings to fault
activation, according to the above-mentioned abutment pressure distribution law of mining
advance direction, we take the surrounding rock mass along the mining advancing direction
of the working face in the central field as the research object in longwall mining. Here it can
be treated as a plane strain problem. Assume that the floor rock mass is elastic; abutment
pressure applied on the floor is simplified as a linear distribution load; the original rock
stress as a uniform distribution load; the stress in stress-concentrated area as linear increase;
the stress in stress-relaxed area as linear decrease; and the stress concentration factor ahead
of the working face is n. Therefore, the mechanical model is established as Figure 3.
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Figure 2. Distribution of abutment pressure in floor.

Figure 3. Mechanical model of fault activation.

According to stress analysis of the boundary half plane applied by normal stress in
elastic mechanics theory [33], the stress equations of σx, σz and τxz of any point on the fault
are obtained as Equation (1).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx = 2γH
π

{∫ x1
−∞

z(x−ξ)2dξ

[z2+(x−ξ)2]
2 +
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2 +
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x2

n(x3−ξ)z(x−ξ)2dξ
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2
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2γH

π

{∫ x1
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τxz =
2γH

π

{∫ x1
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z2(x−ξ)dξ

[z2+(x−ξ)2]
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[(n−1)(ξ−x1)+S2]z2(x−ξ)dξ

S2[z2+(x−ξ)2]
2 +

∫ x3
x2

n(x3−ξ)z2(x−ξ)dξ

S3[z2+(x−ξ)2]
2 +

∫ x5
x4

(ξ−x4)z2(x−ξ)dξ

S5[z2+(x−ξ)2]
2 +

∫ x+∞
x5
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(1)

According to the stress equation on the oblique section in elastic mechanics, the
normal stress and shear stress equations on the fault planes under the abutment pressure
are obtained as Equation (2).

{
σN = σx sin2 θ + σz cos2 θ + 2τxz sin θ cos θ

τN = sin θ cos θ(σz − σx) +
(
sin2 θ − cos2 θ

)
τxz

(2)
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Considering the Mohr–Coulomb criterion, the shear strength of fault plane is available:

τf = c + σN tan ϕ (3)

and the condition of fault activation is:

τN ≥ τf (4)

Combined with Equation (3), the mechanics criterion of fault activation after mining is
obtained as:

τN ≥ c + σN tan ϕ (5)

where c is the cohesive force of the rock, and ϕ is the internal friction angle of the rock.

2.2. Effect of Mining Advancing Direction to Fault Activation

Due to the difficult simplification of Equation (1) substituted into Equation (2), nu-
merical analysis therefore is adopted to these equations. Considering the actual situation,
S1 = 20 m, S2 = 25 m, S3 = 5 m, S4 = 10 m, S5 = 100 m, n = 2.5, H = 400 m, γ = 2.5 × 104 N/m3,
the distance between the working face to the fault is 50 m. When the mining advances from
the hanging wall, then θ = 60◦; when the working face advances from the foot wall, then
θ = 120◦. The normal stress and shear stress distribution can be obtained by Equation (2)
when the distance between the working face to the fault is 50 m, as seen in Figures 4 and 5.

 
Figure 4. Distribution of normal stress on fault.

 
Figure 5. Distribution of shear stress on fault.

It can be seen from Figures 4 and 5 that when the working face is 50 m apart from the
fault, the normal stress on a fault below the floor range of 0~40 m has the largest change,
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which brings the largest disturbance to fault; when the depth is more than 40 m, the normal
stress on a fault keeps a certain value, the hanging wall advance stays around 6.5 MPa, and
the foot wall advance stays around 2.0 MPa. The normal stress on the fault advancing from
the hanging wall, which causes larger disturbance, is always greater than that from the foot
wall. The variation range of shear stress distribution on a fault advancing from the hanging
wall is larger than that from the foot wall, i.e., −0.35~0.36 MPa from the hanging wall, and
−0.17~0.09 MPa from the foot wall, respectively. With the increase of depth, the shear stress
appears to be stable from foot wall advance. Before the mining advances to a fault, hanging
wall advance is easier to cause the fault activation, because there are dramatic changes of
the shear stress distribution, large peak values, and wide ranges of influence on the fault.

3. Numerical Simulations

To understand the stress variation on faults and the distribution characteristics of floor
and roof plastic failure near the fault, the simulation software of FLAC3D is applied in
this study for further numerical work. FLAC3D is a finite difference numerical simulation
software. There are twelve elastic and plastic constitutive models and five calculation
modes built in the software, which can realize the coupling between different modes. In
addition, the built-in FISH program language can obtain the coordinates, displacement,
stress, strain and other parameters of nodes and units in the calculation process. It can well
simulate geological materials’ mechanical behaviors, such as plastic flow or damage, when
they reach the yield limit or strength limit. Besides, it can also analyze the gradual damage
and instability, and track the gradual failure of materials. Therefore, this software has been
widely used in the field of geotechnical engineering.

3.1. Engineering Background

Buliangou coal mine is located in the northeast of Zhungeer coalfield in Inner Mongo-
lia, China. The development of a fault in the minefield brings a great challenge to mining
safety. According to the preliminary exploration, a normal fault goes through the middle of
the F6210 working face. The F6210 is buried at a depth of 398–405 m, and the thickness of
the coal seam is about 4 m. The fault has a strike of N46◦E, a dip of N51◦W, a dip angle
of 55–65◦, a zone width of 2.2–3.5 m, and an average drop of 4.0 m. To reduce the risk of
water inrush hazard, as well as improve the mining efficiency, the mining advanced from
the hanging wall and foot wall of the fault, respectively, and advanced from far and near to
the fault fracture zone.

3.2. Numerical Calculation Model

Through the proper and effective simplification, the geometric model is built with
the size of 300 m × 200 m × 200 m (length × width × height), with 98,400 divided units
and 105,493 nodes. The coal seam is buried at a depth of 400 m and with a thickness of
4 m. A fault with a drop of 4 m, an inclination angle of 60◦, and a fault zone width of 3 m
is selected in this study. There is horizontal displacement constraint on the sides of the
model, vertical displacement constraints on the bottom, and the upper surface is treated
as free surface. Overlying rock applies about 10 MPa of uniform loading on the upper
surface. Mining advances from far and near, and gradually advances to the fault with an
advancing step of 10 m. At the advancing interval, artificial filling is made to simulate the
mining caving for the last advancing step. A numerical calculation model is established as
Figure 6, the meshing model as Figure 7, and the rock physical and mechanical parameters
are shown in Table 1.
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Figure 6. Mechanical model of the numerical simulation.

Figure 7. Sketch of the FLAC3D mesh of the fault.

Table 1. Physical and mechanical parameters of rock strata.

Rock Property
Thickness

h (m)

Bulk
Modulus K

(GPa)

Shear
Modulus G

(GPa)

Internal
Friction

Angle ϕ (◦)

Cohesion
c (MPa)

Tensile
Strength σc

(MPa)

Density
ρ (kg·m−3)

Sandstone 20 15.3 9.2 36 3.5 3.5 2550
Main roof 22 16.7 10.0 35 3.6 2.0 2500

Immediate roof 15 15.9 8.2 29 2.5 2.5 2450
Coal seam 3 9.2 3.7 25 1.5 1.1 1500

Immediate floor 14 17.4 9.0 32 2.9 2.4 2500
Main floor 16 12.3 8.1 35 3.3 2.3 2580
Mudstone 12 12.6 9.1 33 2.6 1.8 2500
Limestone 18 19.0 9.8 38 3.9 3.5 2550

Fault ~ 8.3 3.0 18 0.5 0.5 1900

3.3. Results and Analysis of Numerical Simulation
3.3.1. Stress Distribution Characteristics on the Fault

The monitoring points are put in the fault zone that lies about 5 m below the coal
seam, 10 m, 15 m, 20 m and 25 m, respectively, in this simulation displayed as the white
dots in Figure 7, which are listed as A, B, C, D and E, respectively. As the mining working
face approaches to the fault, the normal stress and shear stress change curves of monitoring
points are shown as Figures 8 and 9, respectively.
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Figure 8. Stress change curves of the fault when mining advances along the hanging wall: (a) normal
stress; (b) shear stress.

  

Figure 9. Stress change curves of the fault when mining advances along the foot wall: (a) normal
stress; (b) shear stress.

As is shown in Figures 8 and 9:
When mining advances from the hanging wall, the normal stress and shear stress

within the fault zone under the floor first increases and then decreases. When the working
face is more than 10 m apart to fault, the normal stress within the fault zone that is 5 m
under the floor always increases, from 5.2 MPa to 10.7 MPa, an increase of 5.5 MPa; as the
working face advances to the fault continuously, the normal stress starts to decrease, and
eventually reduces to 3.7 MPa. The change law of shear stress in the fault zone is similar to
that of normal stress. The shear stress in the fault zone that is 5 m below the floor increases
from 3.4 MPa to 5.4 MPa, an increase of 2.0 MPa, after which the shear stress decreases. The
increased range of the shear stress is less than that of normal stress, so the working face
advance brings a larger disturbance to normal stress in the fault zone. The normal stress
and shear stress on the fault that is 25 m below the floor starts to decrease when it is 50 m
away from the working face, which indicates that the fault under the floor and far away
from the mining layer is disturbed first.

When mining advances from the foot wall, the normal stress and shear stress within
the fault zone under the floor increases gradually. The normal stress within the fault zone
that is 5 m under the floor increases from 5.2 MPa to 11.3 MPa, while the shear stress
increases from 3.4 MPa to 5.6 MPa. When the mining working face is 0~20 m apart from
the fault, there is the largest increase and the largest disturbance to the fault. Comparing
the stress change of 5 m and 25 m below the floor within the fault zone, it can be seen that
the fault under the floor and closest to the mining layer is disturbed first when the working
face advances. Similarly, with the mining advance from the hanging wall, the change range
of shear stress is less than that of normal stress within the fault zone.
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Comparing the working face advance from the hanging wall and the foot wall, we
can find that there is an obvious difference in stress change within the fault zone. When
mining advances from the hanging wall, the stress first increases, after which it decreases;
the instantaneous release of stress tends to cause the fault activation. When the working
face advances from the foot wall, the fault zone stays in the compaction state where the
hanging wall and foot wall are squeezed together, which is unfavorable for water inrush.

3.3.2. Plastic Failure Characteristics of Roof and Floor

Affected by mining, plastic failure can occur in the surrounding rock of the working
face. When the plastic failure zone is linked with the plastic zone near the fault, there is a
hidden water inrush in the water-conductive fault. Figures 10 and 11, respectively, show
the plastic failure distribution zone that occurs when the working face advances from the
hanging wall and the foot wall.

 

Figure 10. Distribution of plastic zone with mining advance along the hanging wall. Distance
between working face and the fault: (a) 60 m; (b) 40 m; (c) 20 m; (d) 0 m.

 

Figure 11. Distribution of plastic zone with mining advance along the foot wall. Distance between
working face and the fault: (a) 60 m; (b) 40 m; (c) 20 m; (d) 0 m.

As is shown in Figures 10 and 11:
When mining advances in the initial stage, the plastic zone that is caused by mining is

relatively small and far from the fault; with the advance of the working face, the distance
between the plastic failure zone and the fault becomes small. As for the hanging wall, when
the working face is 60 m apart from the fault, the plastic failure zone caused by mining will
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be linked with the plastic zone near the fault; as for the foot wall, when the working face is
40 m away from the fault, the plastic failure zone caused by mining will be linked to the
plastic zone near the fault. If the fault is conducted with an aquifer, a water-conductive
canal is easily formed, which will lead to water inrush. Therefore, a waterproof coal pillar
should be reserved. In this simulation study, the size of the waterproof coal pillar for the
hanging wall is no less than 40 m, and for the foot wall it is no less than 20 m.

When mining advances from the hanging wall, the plastic failure zone caused by the
floor is linked with the plastic zone near the fault first; on the other hand, when mining
advances from the foot wall, the plastic failure zone caused by the roof is linked first.
Therefore, when the working face approaches to the fault, plastic failure in the floor is
largely affected by the hanging wall advance, and plastic failure in the roof is largely
affected by the foot wall advance.

3.4. Verification by In-Situ Monitoring

To verify the validity of simulation results, the water injection leak detection method [39]
is designed to observe the development of the plastic zone during the mining advancement.
In this method, a higher flow rate of leakage means more severe plastic damage to the
borehole, and the rapid increase in flow rate represents the connection of fractures near
the borehole. As shown in Figure 12, Points A, B, C and D are set to monitor the plastic
zone development in both roof and floor of the hanging wall and foot wall 60 m apart
from the fault. In each monitoring point, four boreholes for different minoring depths were
arranged, numbered 1#, 2#, 3# and 4#, respectively. The horizontal distance between the
boreholes was 2 m, and the vertical distance was 5 m.

 

Figure 12. Layout of plastic zone monitoring of working face F6210 in Buliangou coal mine.

As is shown in Figure 13, with the advancement of the working face in the hanging
wall, the size of the plastic zone increases gradually. As shown in Figure 13a, when the
working face is 120 m apart from the fault, the flow rate of the A-1# borehole increases
to 2.38 m3/h, while the data in A-2# stays at a low value, which means the height of the
plastic zone is 10–15 m. When the working face is 70 m apart from the fault, the height
of the plastic zone is more than 25 m. Similarly, as shown in Figure 13b, the flow rate of
the B-1# borehole increases to 2.49 m3/h when the working face is 130 m apart from the

31



Mathematics 2022, 10, 1561

fault, which proves that the plastic zone depth is 10–15 m. When the working face is 100 m
apart from the fault, the plastic zone depth is more than 25 m. By comparing Figure 13a,b,
the plasticas zone height in the floor is larger than the plastic zone depth in the roof at the
same advancing distance; that is, the advance in the hanging wall has a more significant
influence on the floor. This monitoring result is consistent with that of simulation.

  

  

Figure 13. In-situ monitoring results of mining-induced plastic zone in different monitoring points:
(a) Point A; (b) Point B; (c) Point C; (d) Point D.

As the working face advances in the foot wall, the size of the plastic zone in the roof
and floor also increases. As shown in Figure 13c, when the working face is 110 m apart
from the fault, the flow rate of the C-1# borehole increases to 1.18 m3/h, which indicates
that the height of the plastic zone in the roof is 10–15 m. When the working face is 80 m
apart from the fault, the height of the plastic zone is more than 25 m. Similarly, as shown in
Figure 13d, the plastic zone depth is 10–15 m when the working face advances 100 m apart
from the fault. When the working face is 70 m apart from the fault, the depth of the plastic
zone in the roof reaches 25 m. In the comparison of Figure 13c,d, the advance from the foot
wall had a greater impact on the roof, which corresponds with the simulation results.

Comparing Figure 13a,c, when the distance between the working face and fault is
−100 m, the height of the plastic zone in the hanging wall is 20–25 m, while that in the foot
wall is 15–20 m. In the comparison of Figure 13b,d, when the working face advances to
100 m away from the fault, the depth of the plastic zone in the hanging wall (more than
25 m) is much larger than that in the foot wall (5–10 m). It is concluded that, at the same
advancing distance, the height and depth of the plastic zone in the hanging wall is larger
than that in the foot wall, which is also in line with the simulation results.

To sum up, the in-situ monitoring results are in good agreement with the simulation
results, which verifies the validity of the numerical simulation.
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4. Conclusions

To analyze the effect of mining advancing direction of the working face on fault
activation, a mechanical model of fault activation is built, and FLAC3D numerical software
is used to simulate the stress variation on the surface of fault under two different mining
advancing directions, and the distribution characteristics of a plastic failure zone of the
roof and floor near the fault are obtained. According to the mechanical behavior analysis,
when the working face advances from the hanging wall, the normal stress has a large
increase in the fault zone, and the shear stress distribution changes drastically with a large
peak. Advancing from the foot wall more easily causes fault activation. Based on the
numerical results, as the working face gets close to the fault from the hanging wall, the
normal stress and shear stress increase first and then decrease, the instantaneous release of
stress easily increases the risk of fault activation; from the foot wall, the normal stress and
shear stress always increase, then the hanging wall and foot wall are squeezed together,
which is unfavorable for water inrush in the fault zone. When the working face advances
from the hanging wall, the floor is largely affected, while the roof is largely affected by
the foot wall advance. In this simulation study, the size of the waterproof coal pillar for
the hanging wall is no less than 40 m, and for the foot wall no less than 20 m. The size
of the waterproof coal pillar for the hanging wall should be larger than that of the foot
wall. The in-situ monitoring results in Buliangou coal mine show good consistency with
the simulation results.
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Abstract: Dynamic compression tests of granite after thermal shock were performed using the split
Hopkinson pressure bar system, to determine the effects of strain rate and temperature on the
dynamic mechanical parameters, energy dissipation features and failure modes of granite. The
results indicate that the dynamic compressive strength increased exponentially with strain rate and
decreased with increasing temperature. Temperature and incident energy can equivalently transform
for the same dynamic compressive strength. Dynamic elastic modulus of granite decreased obviously
with increasing temperature but did not have a clear correlation with strain rate. As the impact
gas pressure increased, the stress-strain curves changed from Class II to Class I behavior, and the
failure modes of specimens transformed from slightly split to completely pulverized. The critical
temperature at which the stress-strain curves changed from Class II to Class I was determined to be
300 ◦C, when the impact gas pressure is 0.6 MPa. As the applied temperature increased, density, wave
velocity and wave impedance all decreased, meanwhile, the degree of granite specimen crushing
was aggravated. Under the same incident energy, as the temperature increased, the reflected energy
increased notably and the absorbed energy increased slightly, but the transmitted energy decreased.
For the same temperature, the reflected and absorbed energies increased linearly as the incident
energy increased, whereas the transmitted energy increased logarithmically. The SEM images of the
thermal crack distribution on the granite specimen surface at different temperatures can well explain
the essence of mechanical parameters deterioration of granite after thermal shock. This work can
provide guidance for impact crushing design of high temperature rocks during excavations.

Keywords: strain rate; temperature effect; mechanical properties; energy dissipation features;
failure modes

MSC: 74R10; 74A15

1. Introduction

The crushing mechanism and stability control of a rock mass after thermal shock
have a widespread application in the engineering of geothermal drilling [1], nuclear waste
disposal [2], and tunnel repairs after a fire [3]. Therefore, the study of the dynamic mechan-
ical behavior and energy dissipation features of rocks after thermal shock is critical to the
solution of the engineering problems of high temperature rock mechanics.

Facilitating the exploitation of mineral resources deep within the earth, underground
engineering construction in high temperature and pressure conditions face many challenges.
For example, efficient drilling and wellbore stability control under high temperature and
pressure are the main challenges in geothermal drilling engineering. Given these challenges,
the effects of temperature and external loads on rock have been extensively studied. Results
have shown that the mechanical properties of high temperature rocks are different from
those of normal temperature rocks [4–7]. However, the mechanical responses of high
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temperature rock are not only related to temperature [8] but also heating method [9,10],
cooling method [11,12], heating rate [13,14] and loading method [15]. The influence of
heating rate on the mechanical properties of granite was studied by conducting uniaxial
compression tests [13] and the results indicated that 5 ◦C/min was the critical heating rate
for producing thermal cracking in Beishan granite. Therefore, the heat treatment applied
in this study was carried out at a heating rate of 2 ◦C/min. The physical mechanical
parameters (Cs, Es and UCS) of sandstone decreased when temperature increased, but the
mechanical parameters of sandstone cooling in liquid nitrogen were lower than that of
cooling in water [16].

Previous literature has classified three types of high-temperature rock mechanic be-
haviors [10]: real-time high temperature, high temperature thermal shock cooling (rapid
cooling in a liquid such as water or liquid nitrogen), and high temperature slow cooling
(air cooling). Under real-time high temperature and pressure, granite permeability was
observed to increase rapidly above the critical temperature (350 ◦C), but the critical tem-
perature of permeability decreased with increasing confining pressure [17]. And thermal
cracks have been found to appear in inter-granular and grow with the increasing of tem-
perature [18], especially above 500 ◦C, thermal cracks appeared in intra-granular [17,19].
Under slow cooling, the UCS and Cs of marble [20] and limestone [21] decreased with
increasing temperature. The mechanical properties deterioration of granite after rapid
cooling were observed to accelerate as the applied temperature increased [22], and UCS
decreases significantly with the cooling cycles increased [23]. The order of UCS and Es of
granite at the same temperature from high to low was real-time high temperature, slow
cooling, and rapid cooling [10,24,25].

As mechanical rock breaking devices typically use water to cool the frictional heat
generated by rock breaking, it is critical to study the mechanical behaviors of rock after
thermal shock. Indeed, as the dynamic mechanical properties of rock must be considered
during any engineering rock excavation, researchers have widely studied the dynamic
mechanical properties of rock using the SHPB system. Post-peak behaviors of stress strain
curves determine the macroscopic failure modes of the rock, so post-peak behavior is of
great significance for estimating engineering instability [26]. According to the value of
the post-peak elastic modulus, the dynamic stress-strain curves can be divided into Class
I (with a post-peak elastic modulus less than zero) and Class II (with a post-peak elastic
modulus greater than zero) [26,27]. Under the former behavior, stability failure occurs
under rigid conditions, whereas under the latter behavior, unavoidable spontaneous failure
occurs under rigid conditions. The dynamic mechanical behaviors and energy dissipation
features have been widely studied in terms of temperature [9], moisture content [28], pre-
existing cracks [29,30] and cyclic impact [31]. The dynamic compressive strength of shale
with different bedding dips after heat treatment was studied, the result found that dynamic
compressive strength of shale at 0◦and 30◦ bedding dips increased with the temperature
increasing, but the strength at 45◦, 60◦ and 90◦ bedding dips are opposite [32]. Both the
dynamic strength and dissipated energy density of rock specimens have been found to
increase significantly with increasing strain rate [29], but the relationship between the
elastic modulus and strain rate has not been determined [28,33,34]. Furthermore, though
the selection of a reasonable impact frequency can effectively reduce energy dissipation and
improve rock drilling efficiency [35], the corresponding strain rate response of rock after
thermal shock has been rarely studied. The mechanical properties and damage constitutive
model of granite under coupling of temperature and dynamic loading were studied [33],
and the damage model was found to accurately reflect the effects of the strain rate and
temperature on the dynamic strength. However, the relationships between reflected,
transmitted, absorbed and incident energies have been neglected to date. Furthermore, all
previous results were obtained under real-time high temperature conditions, though some
engineering excavations have instead been constructed in rock subjected to thermal shock.
Therefore, it is critical to study the strain rate effect and energy dissipation features of rock
after thermal shock.
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Dynamic compression tests of granite specimens after thermal shock were performed
using the SHPB system in this study. Firstly, the effects of strain rate and temperature
on strength, elastic modulus, energy dissipation, and failure modes of specimens were
analyzed. Secondly, effects of temperature and incident energy on the reflected, transmitted,
and absorbed energies were explained using the theory of elastic wave propagation at
the interface between different media. Finally, the essential reasons for the observed
deterioration of the physical and mechanical properties of granite were revealed by SEM
images of the surface cracks on the specimens after thermal shock. This work can provide
guidance for the design of high-temperature impact rock drilling procedures.

2. Experimental Methods

2.1. Specimen Preparation

The rock employed in this study was a gray–white, medium–coarse–grained biotite
granite block obtained from a quarry in Changsha, China. This block was processed into
two types of specimens (Figure 1)—a series of Φ 50 × 100 mm cylinders for the uniaxial
compression tests and a series of Φ 50 × 25 mm discs for the dynamic compression tests—
that met the ISRM requirements for processing accuracy [36]. Each of these tests was
conducted three times under the same conditions. The ρs of the specimen is about 2.64 to
2.65 g/cm3. The XRD spectrum (Figure 2) shows that the granite was mainly composed of
quartz (28.6%), feldspar (55.1%), mica (11.5%), and chlorite (4.8%) minerals.

 

Figure 1. Specimens photograph.

 

Figure 2. XRD spectrum of granite (20 ◦C).

2.2. Experiment Device

The dynamic compression test was performed using the SHPB system (Figure 3)
comprising a gas gun, a spindle-shaped striker, elastic bars (an incident, transmission, and
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absorption bar) and a damper [37]. The elastic bars and spindle-shaped striker were both
made of 40 Cr steel with a ρe and Ce of 7.810 g/cm3 and 5410 m/s, respectively. For other
technical parameters, please refer to the previous research from our group [38,39]. The
spindle-shaped striker produced a stable half-sine waveform to eliminate Pochhammer-
Chree (P-C) oscillations and reduce the wave dispersion effect [35,40].

 

 

Figure 3. SHPB device. (a) Schematic diagram; (b) Scene photo.

2.3. Experiment Principle

When the target system satisfies the three basic assumptions (one-dimensional stress
wave propagation, stress balance, and ignoring friction), the stress, strain rate and strain of
the specimen can be calculated using the incident, reflected and transmitted wave signals
as follows [41]: ⎧⎪⎪⎨

⎪⎪⎩
σ(t) = AeEe

2As
[ε I(t) + εR(t) + εT(t)]

ε(t) = Ce
Ls

∫ τ
0 [ε I(t)− εR(t)− εT(t)]dt

.
ε(t) = Ce

Ls
[ε I(t)− εR(t)− εT(t)]

(1)

where σ,
.
ε, ε are respectively the stress, strain rate and strain. Ae and As are respectively the

cross-section areas of the elastic bars and specimens. Ce is the wave velocity of the elastic
bars, Ls is the length of the specimen, and τ is the stress wave duration.

2.4. Testing Procedure

The mass, volume, and Cs of the granite specimens were measured before and after
thermal treatment, and mass divided by volume equals density. The specimen mass was
weighed by an electronic balance with an accuracy of 0.01 g, and the specimen volume
was measured using a vernier caliper. It is important to note that a suitable quantity of
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petroleum jelly was applied to the contact surfaces between the transducer and specimens
to reduce error when using the HS-YS4A rock ultrasonic testing analyzer measure the Cs.
The specimens were divided equally into six groups, each of which included fifteen discs
specimens and three cylinders specimens. Five specimen groups were heated to target
temperatures of 200 ◦C, 300 ◦C, 400 ◦C, 500 ◦C and 600 ◦C at a heating rate of 2 ◦C/min
using a muffle furnace. The target temperature was then held steady for 3 h to ensure
an even distribution of specimen temperature. Next, the specimen was quickly removed
from the muffle furnace and cooled in a water tank with a sufficient amount of water
at 20 ◦C to ensure that the water temperature did not change significantly during the
20 min cooling process, so that the specimen completely cooled. The post-thermal shock
specimens were kept in a cool and dry place until the mass of the sample tend to be stable.
Static and dynamic compression tests of granite specimens after thermal shock were then
conducted on a mechanical testing machine and SHPB device, respectively. In order to
maintain a constant incident energy under the same impact gas pressure, it was necessary to
ensure that the distance between the incident bar and the spindle-shaped striker remained
equal in each test. The impact gas pressure was also changed from 0.5 MPa to 0.9 MPa in
0.1 MPa increasements to study the effect of strain rate on the behaviors of granite after
thermal shock.

3. Static Physical and Mechanical Test Results

3.1. Physical Properties of Granite

Thermal shocking can induce many defects inside a rock specimen, and change its
physical and mechanical properties. The initial mass and volume of each specimen are
different due to the processing accuracy and heterogeneity, so the change rate of physical
parameters (mass, volume and density) at different temperatures can better quantify the
effect of heat treatment on physical parameters of the specimen. The change rate of physical
parameters of the specimen can be calculated as follow:

δ =
P2 − P1

P1
× 100 (2)

where P1 and P2 are respectively the physical parameters (such as mass, volume and
density) of the specimen before and after heat treatment. δ is the change rate.

It can be observed in Figure 4a that an increase in temperature resulted in negative
increases in the mass and density change rates, whereas the volume change rate exhibited
the opposite trend. This indicated that the specimen mass loss gradually increased, the
volume expanded, and the density decreased with increasing applied temperature. These
phenomena are consistent with the other people’s findings [42,43]. According to previous
literature [44], the reduction in specimen mass can be divided into two components: the
escape and evaporation of the attached water and strongly bound water below 400 ◦C and
the escape of internal weakly bound water and structural water above 400 ◦C. The volume
change rate was observed to increase significantly with increasing applied temperature.
Particularly at 573 ◦C, the angle of any two Si-O tetrahedron changed from 150◦ (α phase)
to 180◦ (β phase) in the quartz crystal [45]. Because the mass decreased and volume in-
creased with increasing temperature, the granite density gradually decreased. Furthermore,
Figure 4b shows that Cs gradually decreased from 4558.4 m/s at 20 ◦C to 950.9 m/s at
600 ◦C, a loss of 79.1%. The full results are reported in Table 1. A strong correlation was
noted between ρs and Cs indicating that both can reflect the degree of thermal damage to
the specimen to some extent [46].
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C
s

Figure 4. Relationship between physical properties and temperature. (a) Change rate of mass, volume
and density; (b) Wave velocity of specimen.

Table 1. Static physical and mechanical parameters of specimen after thermal shock.

Temperature (◦C)
Change Rate of Physical Parameters (%)

Cs (m/s) UCS (MPa) Peak Strain (%) Es (GPa)
Mass Volume Density

20 0 0 0 4558.4 103.5 1.73 9.30
200 −0.170 0.092 −0.261 3124.8 96.6 1.72 8.99
300 −0.144 0.312 −0.454 2840.9 85.2 1.75 8.13
400 −0.174 0.677 −0.844 1995.3 74.8 1.82 7.17
500 −0.272 1.726 −1.964 1202.7 66.5 2.07 5.95
600 −0.346 3.190 −3.427 950.9 55.1 2.49 4.30

3.2. Static Mechanical Properties of Granite

Figure 5 shows that the stress-strain curves of specimen exhibited obvious stages
of compaction, elastic and yield failure. The UCS of specimens gradually changed from
103.5 MPa at 20 ◦C to 55.1 MPa at 600 ◦C, a 46.8% decrease. Meanwhile, the peak strain
increased from 1.73% at 20 ◦C to 2.49% at 600 ◦C, a 43.9% increase. Notably, as the peak
strain increased sharply above 300 ◦C, the critical temperature at which granite transforms
from brittle to ductile behavior was determined to be 300 ◦C. Furthermore, the Es of granite
gradually decreased with increasing applied temperature. These phenomena indicate that
mechanical properties of granite will obviously deteriorate after thermal shock. The full
uniaxial compression test results are shown in Table 1.

 

Figure 5. Stress-strain curves of specimens after thermal shock.
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4. Dynamic Compression Test Results and Analysis

4.1. Investigation of Dynamic Stress Balance

The dynamic compression test cannot be initiated until the incident waveform is
completely transmitted (no reflected waveform) in the pre-impact test when the incident
bar and transmission bar are fully concentrically aligned. During the test, specimens were
clamped between incident and transmission bars, and a suitable quantity of petroleum jelly
was symmetrically applied to interfaces between the specimen and elastic bars to ensure
effective contact. Figure 6 shows that the sum of reflection stress and incident stress at
the incident interface was equal to the transmission stress at the transmitted interface, so
the stress was balanced at both ends of the specimen, and the test results were considered
effective. The reflected wave primarily reflects the strain rate history of the specimen, and
has a very long plateau that represents the constant strain rate loading, and the transmitted
wave primarily reflects the stress variation in the specimen. Note that all data that did not
meet the assumed stress balance were eliminated to ensure reliable results.

 
Figure 6. Dynamic stress balance checkout of specimen (20 ◦C, 0.8 MPa).

4.2. Dynamic Stress-Strain Curves

According to the theory of stress wave propagation, the dynamic mechanical parame-
ters (σd, Ed and

.
ε) of the specimens were calculated with the results listed in Table 2. Because

the speed with which the internal micro-cracks closed was much lower than the loading
rate, the dynamic stress-strain curves exhibited no obvious compaction stage compared
with the static stress-strain curves (Figure 7). On the one hand, the dynamic strain exhibited
a rebound phenomenon at the lower impact gas pressure, when the stress-strain curves
are defined as Class II (indicating that unloading occurred in the post-peak stage), and
the specimen exhibited a spontaneous failure. On the other hand, the strain increased
monotonically at higher impact gas pressure, and the stress-strain curves were defined as
Class I (indicating a strain softening process in the post-peak stage). Thus, at the same
temperature, the stress strain curves gradually transformed from Class II to Class I with
increasing impact gas pressure. When the impact gas pressure was 0.6 MPa, the post-peak
modulus of the stress-strain curve was greater than zero below 300 ◦C (Class II), but the
post-peak modulus was less than zero above 300 ◦C (Class I) [26]. Therefore, 300 ◦C can
be considered as the critical temperature at which stress-strain curves of granite transition
from Class II to Class I behavior at a 0.6 MPa impact gas pressure (Figure 7). Furthermore,
for the same applied temperature, the peak stress and peak strain of specimens have a
tendency to increase with increasing impact gas pressure.
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Figure 7. Dynamic stress-strain curves of granite at different temperature and impact gas pressure.
(a) 20 ◦C, (b) 200 ◦C, (c) 300 ◦C, (d) 400 ◦C, (e) 50 ◦C, (f) 600 ◦C.
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Table 2. Dynamic mechanical parameters of specimens at different temperature and gas pressure.

T
(◦C)

No.

Impact Gas Pressure (MPa)
0.5 0.6 0.7 0.8 0.9

.
εd Ed σd

.
εd Ed σd

.
εd Ed σd

.
εd Ed σd

.
εd Ed σd

20

1 25.0 32.8 110.1 31.8 47.4 136.5 45.1 39.8 150.8 52.5 43.5 162.9 70.5 46.7 174.5
2 26.5 33.4 118.4 30.5 46.1 138.5 46.2 41.3 155.5 50.6 42.8 158.1 72.4 45.6 178.6
3 23.9 32.5 102.6 31.6 47.5 136.6 45.0 39.0 146.6 53.7 43.1 167.2 67.2 46.9 170.7

Ave 25.1 32.7 110.4 31.3 47.0 137.2 45.3 40.0 151.0 52.3 43.1 162.7 70.0 46.4 174.6

200

1 27.1 30.0 109.5 45.3 36.1 138.5 58.3 32.7 148.1 71.4 33.9 163.8 80.7 28.6 169.2
2 28.5 33.7 111.2 46.3 35.5 140.1 60.1 33.2 150.3 73.8 34.8 167.5 78.3 29.1 167.3
3 26.6 32.1 106.3 44.1 35.0 136.0 57.6 33.5 146.4 69.4 34.5 157.6 81.1 30.9 171.1

Ave 27.4 31.9 109.0 45.2 35.5 138.2 58.7 33.1 148.3 71.5 34.4 163.0 80.0 29.5 169.2

300

1 32.2 34.5 114.3 46.3 36.9 130.6 56.7 34.4 146.1 74.5 34.9 157.4 87.6 39.7 166.8
2 33.4 33.1 116.7 47.9 36.1 132.9 55.3 35.1 145.6 76.2 35.9 158.9 89.4 37.2 169.1
3 31.7 34.7 113.1 45.9 35.9 129.2 54.6 32.9 144.4 73.8 34.1 156.7 87.3 38.4 165.1

Ave 32.4 34.1 114.7 46.7 36.3 130.9 55.5 34.1 145.4 74.8 35.0 157.7 88.1 38.4 167.0

400

1 47.1 25.4 108.5 52.1 26.1 126.7 70.1 24.4 144.9 81.3 29.5 154.0 94.8 27.4 169.1
2 48.9 25.9 110.8 51.4 27.3 125.3 72.1 25.6 147.1 80.6 32.1 150.4 97.4 29.1 174.2
3 46.1 24.4 107.4 54.6 26.8 129.1 67.8 25.3 142.0 83.0 28.7 156.4 95.5 27.9 171.9

Ave 47.4 24.8 108.9 52.7 26.7 127.0 70.0 25.1 144.7 81.6 30.1 153.6 95.9 28.1 171.7

500

1 52.1 22.0 99.6 60.0 21.0 125.1 82.0 22.2 138.1 99.3 21.7 147.9 104.3 21.5 153.4
2 53.7 22.0 103.4 62.9 22.3 128.6 83.9 24.0 141.6 96.9 23.4 146.5 103.1 23.4 150.2
3 50.3 20.1 97.3 58.8 20.4 122.9 81.0 21.3 135.8 102.5 21.0 150.3 107.6 20.8 157.5

Ave 52.0 21.7 100.1 60.6 21.2 125.5 82.3 22.5 138.5 99.0 22.0 148.2 105.0 21.9 153.7

600

1 71.3 10.3 70.5 84.2 13.4 98.5 110.5 15.4 110.6 130.9 13.9 117.1 142.1 13.2 133.2
2 72.9 12.1 73.5 86.4 13.1 100.4 114.3 16.0 114.1 133.1 14.2 120.4 144.5 14.4 135.5
3 68.1 9.7 68.3 83.2 11.9 96.1 109.2 14.1 109.3 127.1 13.6 115.3 140.8 12.9 128.9

Ave 70.8 10.7 70.8 84.6 12.8 98.3 111.3 15.2 111.3 130.4 13.6 117.6 142.5 13.5 132.5

Note: T (Temperature), NO. (Number),
.
εd (s−1), Ed (MPa), σd (GPa) and Ave (average value).

4.3. Strain Rate Effect on Granite after Thermal Shock

At the same temperature, the σd of the specimens exhibited an obvious strain rate
response as the impact gas pressure increased (Figure 8). Temperature was also observed
to play an important role in the σd under similar strain rates. For example, when the strain
rate was around 70 s−1, the σd decreased from 174.6 MPa at 20 ◦C to 70.8 MPa at 600 ◦C, a
103.8 MPa reduction. Therefore, the relationship between σd and strain rate must consider
the effect of temperature. The σd and strain rate can be great fitted into an exponential form
as follows: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σT1= 33.031
.
εT1

0.3948 R2 = 0.9316
σT2= 28.689

.
εT2

0.4062 R2 = 0.9929
σT3= 30.833

.
εT3

0.3797 R2 = 0.9859
σT4= 11.688

.
εT4

0.5894 R2 = 0.9754
σT5= 12.988

.
εT5

0.5344 R2 = 0.9191
σT6= 2.8098

.
εT6

0.7766 R2 = 0.9201

(3)

where T1, T2, T3, T4, T5 and T6 are 20 ◦C, 200 ◦C, 300 ◦C, 400 ◦C, 500 ◦C and 600 ◦C,
respectively.
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Figure 8. Relationship between strain rate and dynamic compressive strength of granite after
thermal shocking.

The DIF is generally used as an index for the evaluation of the relationship between
σd and strain rate, and is defined as follows [33]:

DIF = σd/σs (4)

where σs is static compressive strength and is equal to UCS, and σd is dynamic compres-
sive strength.

Figure 9 shows that the DIF exhibited a clear linear relation with the lg
( .
ε
)

at the
same temperature. Similarly, this result was found by Wang [33]. However, the curves
slopes clearly differ according to temperatures. On the one hand, thermally induced
cracks were not visible below 300 ◦C [19], so the slopes of the corresponding curves can
be observed to be approximately equal. On the other hand, the slopes of the curves are
significantly different above 300 ◦C. Because the thermally induced cracks on the surface of
the specimen grow rapidly above 300 ◦C [17], the deformation resistance capacity of the
specimen decreased. Therefore, lg

( .
ε
)

increased significantly with increasing temperature
under the same incident energy. The distribution of thermally induced surface cracks
observed in the granite specimens will be discussed in Section 5.

 ε

Figure 9. Relationship between DIF and lg
( .
ε
)

at different temperatures.
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To characterize the relationship between the DIF and lg
( .
ε
)
, most scholars have used

piecewise functions to fit the strain rate [47,48], and only a few consider the temperature
effect [33]. The relationships between the DIF and the lg

( .
ε
)

at different temperatures
were given: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DIFT=20◦C = 1.3213lg
( .
ε
)− 0.7224 R2 = 0.9554

DIFT=200◦C= 1.3229lg
( .
ε
)− 0.7738 R2 = 0.9947

DIFT=300◦C= 1.4257lg
( .
ε
)− 0.8129 R2 = 0.9913

DIFT=400◦C= 2.4966lg
( .
ε
)− 2.6745 R2 = 0.9742

DIFT=500◦C= 2.3362lg
( .
ε
)− 2.4034 R2 = 0.9344

DIFT=600◦C= 3.2006lg
( .
ε
)− 4.5351 R2 = 0.9366

(5)

4.4. Temperature Sensitivity of Granite Behaviors

Figure 10 shows that temperature had an obvious effect on dynamic stress-strain
curves of the granite specimens. Taking an impact gas pressure of 0.5 MPa as an example
(Figure 10a), as the temperature increased, the starting point of strain recovery gradually
moved away from the peak strain, causing the curves to exhibit Class II behavior. The strain
rates of specimens increased from 25.1 s−1 at 20 ◦C to 70.8 s−1 at 600 ◦C, rising 182.1%, but
σd decreased gradually from 109.0 MPa at 20 ◦C to 70.8 MPa at 600 ◦C, falling 35.0%. This
result indicates that under the same impact gas pressure, the strain rate increased with
increasing temperature, whereas the σd decreased.

  

Figure 10. Dynamic stress-strain curves of specimens at different temperature. (a) 0.5 MPa,
(b) 0.9 MPa.

Figure 10b shows that the dynamic stress-strain curves all exhibited Class I behavior
for an impact gas pressure of 0.9 MPa. The strain rate and σd exhibited similar laws to those
for an impact gas pressure of 0.5 MPa, but the plastic failure of rock was more obvious.
Meanwhile, the slopes of the elastic segment of the curves can be observed to decrease as
the temperature increases, this result is consistent with that of the static compression test.

4.5. Dynamic Elastic Modulus of Granite under Thermal Shocking

The dynamic elastic modulus equation is given as follows [49].

Ed =
σb − σa

εb − εa
(6)

where σb and σa are 60% and 40% of peak stress, respectively. εb and εa are strains corre-
sponding to σb and σa, respectively.

Figure 11 and Table 2 show that under the same applied temperature, the Ed changed
slightly with increasing impact gas pressure. Wang [33] et al. also found that strain rate
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has no significant effect on elastic modulus. Under the same impact gas pressure, the
Ed exhibited an obviously decreasing trend with increasing temperature. Indeed, the Ed
decreased from 32.7 GPa at 20 ◦C to 10.7 GPa at 600 ◦C when impact gas pressure was
0.5 MPa, a 67.3% reduction. Meanwhile, when impact gas pressure was 0.9 MPa, the Ed
decreased from 46.4 GPa at 20 ◦C to 13.5 GPa at 600 ◦C, a 70.9% reduction. These results
indicate that the attenuation of Ed value as the applied temperature increased from 20 ◦C
to 600 ◦C increased slightly with increasing impact gas pressure (Figure 11b).

  

Figure 11. Dynamic elastic modulus of specimens. (a) Impact gas pressure, (b) Temperature.

4.6. Energy Dissipation Features of Specimens under Thermal Shock

According to the elastic stress wave transmission theory, the expressions of the incident
energy EI, reflected energy ER and transmitted energy ET are as follows [31]:

⎧⎪⎪⎨
⎪⎪⎩

EI =
Ae

ρeCe

∫ τ
0 σ2

I (t)dt

ER = Ae
ρeCe

∫ τ
0 σ2

R(t)dt

ET = Ae
ρeCe

∫ τ
0 σ2

T(t)dt

(7)

where ρe is the density of the elastic bars.
According to the law of energy conservation, the absorbed energy EA can be calculated

as follows:
EA = EI − ER − ET (8)

At the same temperature, the ER will increase linearly with EI (Figure 12); under
the same EI, the higher the temperature, the greater the ER. These phenomena can be
explained by the laws of reflection and transmission of elastic waves at the interface
between different media (Figure 3a). The corresponding reflection (R) coefficient and
transmission (T) coefficient are presented as follows [50]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σR = RσI
σT = TσI
R = 1−n

1+n

T = 2
1+n

(9)

where n is the ratio of the wave impedance of two materials, n = ρ1C1/ρ2C2.
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Figure 12. Relationship between reflected and incident energy.

The following conclusions can be drawn according to the ratios of wave impedances
between the specimen and elastic bars at interfaces A1 and A2 shown in Figure 3a:

At interface A1, n = ρeCe/ρsCs > 1, R < 0, T < 1; At interface A2, n = ρsCs/ρeCe < 1, R > 0,
T > 1.

At the same temperature, the Cs and ρs of the samples can be considered to be constant
according to Table 1, so the wave impedance of granite was nearly the same regardless
of applied impact gas pressure. The R at the incident end was invariable, combining
Equations (7) and (9), it can well explain that the ER increased linearly with increasing
EI. Meanwhile, the Cs and ρs gradually decreased with increasing temperature, leading
to wave impedance of the specimen decrease. Therefore, n increased at the interface A1
(n > 1), and the corresponding |R| increased, essentially explaining that ER increased with
increasing temperature under the same EI.

A part of the ET at the interface A1 is consumed by the energy dissipation of the
rock fracture, and the other part of ET is transmitted and reflected as EI at the interface
A2 (Figure 3a). Figure 13 shows that the ET logarithmically increased with increasing EI,
indicating that the growth rate of ET slowed. Meanwhile, the ET decreased with increasing
temperature under the same EI. In a word, the magnitude of ET was related to transmission
coefficient of interface and energy absorption capacity of the specimen.

 
Figure 13. Relationship between transmitted and incident energy.

47



Mathematics 2022, 10, 1521

Figure 14 shows that the EA exhibited a linear increase with the EI for the same applied
temperature. The greater the value of the EI, the more broken the specimen owing to the
quantity of the energy absorbed. The curves slopes were all determined to be around
0.5, indicating that nearly half of the impact incident energy was reflected and harmlessly
transmitted in the form of elastic waves.

 

EA EI

EA EI

EA EI

EA EI

EA EI

EA EI

Figure 14. Relationship between absorbed and incident energy.

5. Discussion

5.1. Dynamic Failure Modes of Specimens after Thermal Shock

Macroscopic spontaneous destruction occurs in the post-peak failure stage, so any
stability analysis should pay careful attention to the post-peak failure properties of the rock.
As discussed in Section 4.2, the stress–strain curves obtained in this study were divided into
Class I and Class II behaviors according to previous literature [26,27]. Figure 15a shows that
for an impact gas pressure of 0.9 MPa, the strain rate reached a stable state before achieving
the peak stress, and there was an obvious plateau reflecting the constant strain rate loading.
The strain rate still increased for some time after the peak stress was achieved, and the
residual strain continued to increase until becoming stable. At this time, the specimen broke
rapidly and pulverized, and the stress-strain curve exhibited Class I behavior. Figure 15b
shows that the strain initially increased to a peak value before gradually decreasing, and
the strain recovery led to the post-peak unloading, indicating stored energy was not high
enough to fracture the sample in such a case. When the loading peak strain rate was 40.0 s−1,
the stress was about one-third of the peak stress. The unloading process enabled the elastic
recovery of the specimen, the unloading peak strain rate was −25.8 s−1, rapidly releasing
the stored elastic energy and leading to a small split in the specimen. This stress-strain
curve exhibited Class II behavior as it showed an obvious rebound.

  

ε .=ε

Figure 15. Variation curves of stress, strain rate and strain of specimens at 20◦C with time. (a) 0.9 MPa;
(b) 0.5 MPa.
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Figure 16 shows that the specimens exhibited increasingly severe destruction as the
impact gas pressure increased; the distribution ratios of small pieces and powder increased
while the average size of the fragment decreased. The specimens were slightly broken with
some debris for an impact gas pressure less than 0.7 MPa, but clearly absorbed more energy
for an impact gas pressure greater than 0.7 MPa, when the specimen fragments were mostly
debris and powder as the unit energy consumption increased. When the strain rate was
about 45.1 s−1 (for an impact gas pressure of 0.7 MPa), the average size of the specimen
fragment exhibited an obvious variation corresponding to the transition of the stress-strain
curve from Class II to Class I in Figure 7a. The spontaneous failure at a low strain rate
belongs to tensile spalling, and the fragments are comparatively intact. The specimen was
crushed by excessive incident energy at a high strain rate, causing the smaller fragments
to increase.

 

Figure 16. Relationship between fragment degree of specimens and impact gas pressure at 20 ◦C.
(a) 0.5 MPa; (b) 0.6 MPa; (c) 0.7 MPa; (d) 0.8 MPa; (e) 0.9 MPa.

Under the same impact gas pressure, the failure modes of the specimen (Figure 17)
changed significantly with increasing temperature, which transformed from a slight split
at 20 ◦C to pulverization at 600 ◦C. The failure modes of the specimens were in complete
agreement with the dynamic stress-strain curve transition from Class II to Class I behavior,
as shown in Figure 7. This indicates that the increase of temperature reduced the critical
impact gas pressure describing the stress-strain curves transition. Indeed, the rock failure
modes are very sensitive to temperature, so the temperature effect must be considered
in the design of structures to be constructed in rock mass. Furthermore, in addition to
controlling the stability of the surrounding rock, heat treatment can be considered to reduce
rock strength and thereby more effectively crush the rock. For example, the strain rate effect
of high temperature rocks can be considered to improve the geothermal drilling effect.

 

Figure 17. Relationship between fragment degree of specimens and temperature at 0.6 MPa. (a) 20 ◦C,
(b) 200 ◦C, (c) 300 ◦C, (d) 400 ◦C, (e) 500 ◦C, (f) 600 ◦C.
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The degree of specimen crushing was found to be aggravated by increases in incident
energy and temperature, but the σd decreased as temperature increased or EI decreased
(Figure 18). The relationship among the σd, temperature and EI are fitted as follows:

σ(T, EI) = 84.47 + 0.039T + 0.617EI − 0.000155T2 − 0.00098E2
I − 0.000083TEI R2 = 0.937 (10)

Figure 18. Relationship between temperature, incident energy and dynamic compressive strength
of granite.

Figure 18 and Equation (10) show that the same σd corresponded to multiple tem-
perature and EI composite states. In a sense, the temperature and EI could equivalently
transform for the same σd, but the degree of granite fragmentation in these states varied
considerably. Therefore, the EI can be appropriately adjusted to account for the large differ-
ences among the ground temperatures of the different strata encountered in the process of
rock drilling for deep excavations, thereby reducing the energy consumption required for
rock crushing and improving rock drilling efficiency.

5.2. Thermal Damage Assessment based on SEM

The heat-treated granite specimens were sprayed with gold using an ion sputterer,
then scanned by SEM to assess the thermal damage degrees of the specimen surface. Each
SEM image was magnified 60 times to ensure comparability. Figure 19 shows the SEM
images of the specimen surfaces after thermal shock. Firstly, it can be observed that the
surfaces of the specimen were complete without obvious cracks for applied temperatures
of less than 300 ◦C. Two intersecting intergranular cracks occurred on specimen surface
at 300 ◦C, which can be considered as the critical temperature for thermal shock crack
initiation. Finally, the surface cracks on the specimens developed quickly for applied
temperatures above 300 ◦C, and the extent of the crack network increased. Especially for
applied temperatures of 500 ◦C and 600 ◦C, obvious loose areas were present in addition
to a lot of intergranular and transgranular cracks. These phenomena essentially reflect
the decrease in ρs and Cs with increasing temperature. This is also why the higher the
temperature, the more easily broken the specimen under the same EI. Therefore, for the
same EA, the specimen subjected to higher temperatures before thermal shock were more
uniformly broken and the powder was finer, primarily because the internal cracks in the
granite were found to be more intensive after exposure to a high temperature. In other
words, the energy required for crack propagation is relatively smaller. Taken together,
these results indicate that thermal shock plays an important role in rock mass crushing and
stability control.
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Figure 19. SEM images of specimens at different temperatures. (a) 20 ◦C, (b) 200 ◦C, (c) 300 ◦C,
(d) 400 ◦C, (e) 500 ◦C, (f) 600 ◦C.

6. Conclusions

In this study, dynamic compression testing of granite specimens under six temper-
atures and five impact gas pressures were performed using the SHPB system. Then, the
effects of temperature and strain rate on the physical mechanical parameters, energy dissi-
pation features and failure modes of granite were analyzed. The specific conclusions are
summarized below:

(1) The physical and mechanical parameters (mass, ρs, Cs, UCS and Es) of granite speci-
men decreased with increasing temperature, except for volume increased.

(2) At the same temperature, the σd of granite specimens increased exponentially with
increasing strain rate, and the stress-strain curves gradually transformed from Class
II to Class I behavior. For the same strain rate or incident energy, the dynamic com-
pressive strength decreased with increasing temperature. Therefore, the temperature
and EI can equivalently transform for the same σd, but the degree of the granite
fragmentation in these states varied considerably.

(3) The DIF exhibited an obvious linear correlation with the lg
( .
ε
)

at the same temperature.
The Ed of granite was determined to be more sensitive to temperature than impact
gas pressure and decreased obviously as the temperature increased. Meanwhile, the
higher the temperature, the greater the strain rate and the more severe the specimen
failure, and the failure modes of the granite changed from brittle to ductile.

(4) When the impact gas pressure was 0.6 MPa, the critical temperature for the stress-
strain curve transition from Class II to Class I behavior was determined to be 300 ◦C.

(5) The critical temperature of the crack initiation of granite was determined to be 300 ◦C.
As the temperature increased, the initiation cracks in the granite specimen surface de-
veloped from intergranular cracks to transgranular cracks. Furthermore, a number of
loose areas were observed on the granite specimens subjected to higher temperatures,
especially those greater than 500 ◦C.

(6) The ER and ET were found to be only related to the ratio of the wave impedances of
the elastic bars and the specimen. For the same temperature, as the EI increased, the
ER and the EA increased linearly, whereas ET increased logarithmically. For a similar
EI, the ER increased but the ET decreased as the temperature increased.
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Nomenclature

σd, σs dynamic compressive strength, static compressive strength, MPa;
EI, ER, ET, EA incident, reflected, transmitted, absorbed energy, J;
ρs, ρe specimen density, elastic bar density, g/cm3;
Cs, Ce longitudinal wave velocity of the specimen, longitudinal wave

velocity of the elastic bar, m/s;
Es, Ed static elastic modulus of the specimen, dynamic elastic modulus of

the specimen, GPa;
UCS uniaxial compressive strength, MPa;
DIF dynamic increase factor;
SHPB split Hopkinson pressure bar;
SEM scanning electron microscope;
XRD X-ray diffraction;
lg
( .
ε
)

logarithm of strain rate, s−1;
R, T the reflection coefficient, the transmission coefficient;
n the ratio of wave impedance of two materials;
.
ε strain rate, s−1.
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Abstract: The instability of seabed slope sediments is the main factor influencing the safety of marine
resource development. Therefore, to ensure the safe operation of submarine pipelines under complex
and uncertain seabed rock and soil conditions, a reliability model was developed to elucidate the
trend of impact-related pipeline damage due to submarine slides. Then, a risk assessment of the
damage process of submarine slides impacting pipelines was conducted, which is of great significance
for the in-depth safety assessment of pipelines impacted by submarine slides. Based on the copula
function, a joint probability distribution model considering the correlation among risk variables was
established for rational correlation characterization. A probability analysis method of impact-related
pipeline damage attributed to submarine slides based on the copula function was proposed. The
Monte Carlo simulation (MCS) method was employed to simulate the random uncertainty in limited
observation values and accurately determine the reliability of safe pipeline operation under the
action of submarine slides. The conclusions were as follows: (1) Based on the copula function, a
joint probability distribution model of risk variables with any marginal distribution function and
related structure could be developed. (2) The copula function could reasonably characterize relevant
nonnormal distribution characteristics of risk variables and could simulate samples conforming to
the distribution pattern of the risk variables. (3) The failure probability calculated with the traditional
independent normal distribution model was very low, which could result in a notable overestimation
of the reliability of submarine pipelines.

Keywords: submarine slides; submarine pipelines; copula function; reliability; slide–pipeline interaction

MSC: 76-10

1. Introduction

With the continuous progress in development and exploration technology, the exploita-
tion of oil and natural gas has been increasingly promoted from land to sea. In recent years,
the number of submarine pipelines has significantly increased, and the exploitation of
offshore oil and gas resources has become a new field of oil and gas exploration worldwide.
However, offshore oil and gas development faces more risks and challenges than those
associated with onshore oil and gas development. Among these issues, the most important
problem affecting the safety of marine resource exploitation is the instability of submarine
slope sediments. Under the action of earthquakes and faults, gas hydrate disassociation,
waves and currents, rock and soil masses, and sediments are susceptible to sliding, thereby
forming submarine slides that could impact submarine pipelines [1,2]. Hance [3] noted that
a submarine slide can be characterized by a large volume, large distance, and high speed.
For example, the maximum value could reach approximately 20,331 km3, the maximum
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sliding distance could reach 850 km, and the maximum speed could reach 10,100 km/h.
Submarine slides could easily impact submarine pipelines, destroy oil and gas transporta-
tion pipelines and exploitation facilities, and threaten the safety of offshore oil and gas
development [4,5]. Therefore, to ensure the safe operation of submarine pipelines located
on the ocean floor under highly complex and uncertain rock–soil mass conditions, a relia-
bility model was constructed to elucidate the pattern of pipeline impact damage due to
submarine slides, after which a risk assessment of the damage process of submarine slides
impacting pipelines was conducted, which can provide an important theoretical basis for
an in-depth safety evaluation of the effect of submarine slides on pipelines.

Since the 1970s, many scholars in China and abroad have studied the impact force of
submarine slides exerted on pipelines, such as Demars [6], Randolph and Houlsby [7], and
Zakeri and Hawlader [8], and various bearing capacity calculation equations have been
proposed based on geotechnical mechanics theory. The impact force of a landslide was
effectively combined with the rock and soil mass strength. Pazwash and Robertson [9],
Chehata et al. [10], and Liu et al. [11] regarded the landslide mass as a fluid and analysed the
impact force of submarine slides based on classical cylindrical fluid flow theory. Randolph
and White [12], Dong [13], Dutta et al. [14], and Fan et al. [15] systematically analysed the
impact force of submarine slides on pipelines by combining the theory of rock and soil
mechanics with fluid mechanics theory. Although achievements have been made in recent
years, the attained progress has promoted the development of submarine landslide–pipeline
interaction research to a certain extent. However, the marine environment of submarine
slides is complex and changeable. Compared to landsides, many uncertain factors exist, and
the formation location is difficult to determine. In addition, field monitoring and sampling
are extremely difficult and costly operations, and the obtained test data are limited, which
further increases the uncertainty in seabed rock and soil mass parameters. Under the
condition of limited data and a large number of uncertain factors, it remains difficult to
apply the traditional analysis method to analyse the damage impact of submarine slides
exerted on pipelines. Reliability theory can quantitatively consider multiple uncertain
factors in a scientific and reasonable manner and can effectively overcome the limitation
of a single index for structural safety evaluation. This approach has received increasing
attention in the field of civil engineering and has been widely employed in structural safety
design and analysis in bridge, structural, and other engineering fields [16–19]. However, in
the marine engineering field, reliability research involving the impact of submarine slides
on pipelines remains lacking. Therefore, the combination of reliability analysis theory and
a method to evaluate the safety of pipelines under the damage impact of submarine slides
could provide an important theoretical and scientific basis for disaster prevention and a
mitigation design of marine energy exploitation systems.

The vertical force of submarine slides exerted on pipelines constitutes one of the im-
portant indexes used to evaluate the safety of submarine oil and gas pipelines. The vertical
force fluctuates, which could pose a potential resonance risk to a given pipeline. When
there exists a narrow gap between the pipeline and seabed, the load fluctuation magnitude
is large, which matches that of the horizontal load. Moreover, the vertical force compo-
nent could affect the pipeline vertical position, causing horizontal force fluctuations [20].
Fan et al. [21,22] found, through physical model tests and a large number of numerical
calculations, that the impact force of submarine slides exerted on pipelines can be divided
into two mechanical stages, including the instantaneous stage (the peak impact force is
considered to represent the destructive effect of submarine slides) and the stable stage (the
steady impact force is considered to represent the continuous effect of submarine slides
on pipelines), and there exists a certain correlation between these two types of destructive
forces. Through numerical analysis, a prediction model of the impact-related damage of
pipelines due to submarine slides could be established, which could provide a reference for
the safety and disaster prevention design of submarine pipelines.

However, the correlation between two or more risk factors has seldom been considered
in numerical analysis methods, and risk variables are not simple and isolated quantities
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in complex geological environments. Moreover, if the correlation among risk variables is
ignored and variables are assumed to follow independent normal distributions to simplify
the research problem, the obtained reliability analysis results cannot truly reflect the impact
of the correlation among the considered risk variables. Therefore, it is necessary to establish
a reasonable joint probability distribution model of the risk variables for reliability analysis
improvement. However, due to the high uncertainty in the submarine geological environ-
ment, there exists no unified opinion on the expression of the relationship between the
peak impact force of submarine slides on pipelines and the steady impact force. At present,
the primary task involves the urgent introduction of an accurate and reliable method to
characterize the relationship between risk variables and construct the optimal joint prob-
ability distribution function in a scientific, reasonable, and comprehensive manner. In
recent years, with the deepening of mathematical theory, the development of copula theory
has provided a new method to establish joint probability distribution models of relevant
nonnormal variables. The core idea of copula theory entails the separate construction of
the marginal distribution function and copula function. There exists an unlimited variety
of marginal distribution functions and corresponding structural types, and varied joint dis-
tribution models under arbitrary combinations can be established within the framework of
copula theory. Copula theory has been widely applied in finance [23,24], hydrology [25,26],
ecological sciences [27,28], reliability analysis [29,30], geotechnical engineering, and other
fields [31–36] due to its incomparable flexibility and applicability in the establishment
of a joint distribution model of variables. Currently, no study has fully considered the
correlation among risk variables or has proposed a framework to analyse the reliability of
safe pipeline operation under the action of submarine slides.

In summary, modelling was performed while considering the correlation among
risk variables under the condition of incomplete probability information, the reliability
of observations was evaluated through visualization methods, and the accuracy of the
obtained reliability evaluation results was ensured. This paper fully considered two risk
variables (peak and stable vertical force values) in evaluating the importance of submarine
slides to pipeline safety. Based on the copula function, a joint probability distribution model
considering the correlation among risk variables was established for reasonable correlation
characterization. A probability analysis method for pipeline impact-related damage due to
submarine slides based on the copula function was proposed. The Monte Carlo simulation
(MCS) method was used to simulate the random uncertainty in limited observation values,
and combined with big data analysis and visualization technology, the reliability of safe
pipeline operation under the action of submarine slides was accurately analysed.

2. Joint Distribution Model of the Risk Variables Based on the Copula Function

In 1959, Sklar [37] first proposed the copula function and suggested that any mul-
tidimensional joint distribution function could be divided into a copula function and a
corresponding number of marginal distribution functions. The copula function represents
the correlation among variables (including the correlation coefficient and correlation struc-
ture). Its essence is the bridge function connecting the marginal distribution function of the
variables with the joint distribution function and is often referred to as the combination
function, bond function, or connection function. For a detailed theoretical introduction to
copulas, please refer to Joe [38], Durante and Sempi [39], and Salvadori and De Michele [40].

The basic concept of the copula function is as follows: under N-dimensional conditions,
the copula function can be defined as an N-dimensional joint distribution function with
the marginal distribution function in [0,1]N space uniformly distributed in [0,1]. The Sklar
theorem [37] can be described as follows: let F(x1, x2, . . . , xN) be an N-dimensional joint
distribution function with N marginal distribution functions F1(x1), F2(x2), . . . , FN(xN).
Then, there exists a copula function C(u1, u2, . . . , uN) connecting the marginal distribu-
tion function F1(x1), F2(x2), . . . , FN(xN) and the joint probability distribution function
F(x1, x2, . . . , xN).
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Considering the Sklar theorem and a bivariate distribution [37], the joint distribution
function comprises two parts: the distribution function of the variables and the copula
function characterizing these variables. If H(x, y) is the joint distribution function with
marginal distribution functions G(x) and Q(y), a copula function must exist. For any
variables x and y, the copula function satisfies the following:

H(x, y) = C(G(x), Q(y); θ) (1)

where G(x) and Q(y) are the distribution functions of the risk variables, and θ denotes the
parameters of the copula function.

If the marginal distributions G(x) and Q(y) are continuous, the copula function C is
unique, and the joint probability density function can then be given as:

hX,Y(x, y) = D(G(x), Q(y); θ)gX(x)qY(y) (2)

where gX(x) and qY(y) are the density functions of G(x) and Q(y), respectively, and
D(G(x), Q(y); θ) is the density function of C(G(x), Q(y); θ).

The process of constructing a multivariate joint probability distribution function based
on the copula function can be divided into two steps: (1) the marginal distribution function
of the variables is determined based on the original data; and (2) the type of copula function
properly representing the correlation among the variables is selected. These two steps are
independent. Thus, the advantage of establishing a joint probability distribution model
based on the copula function is that a normal or nonnormal distribution separates the
marginal distribution from related structures, which can overcome the limitations of the
traditional model. Moreover, a joint probability distribution model can be constructed
with an arbitrary marginal distribution function and the related structure type of the joint
probability distribution function, which can reveal the internal regularity of the original
data.

3. Reliability Modelling Method of Pipeline Impact-Related Damage Due to
Submarine Slides

To solve the problem whereby the traditional numerical analysis approach based
on a single safety evaluation index cannot consider the limitations of various uncertain
factors, and to reasonably characterize the correlation among the risk variables of pipeline
impact-related damage due to submarine slides, a method based on the copula function
was proposed to determine the correlation between submarine slides and pipeline damage
risk variables and to evaluate the reliability of pipeline safety. Figure 1 shows a flowchart
of the proposed method, which comprises three main steps, as described below.

Step 1: Determination of the optimal marginal distribution function of the risk vari-

ables.

The marginal distribution function can accurately describe the probability distribution
of the variables. The primary task of the establishment of a joint probability distribution
model based on the copula function entails the determination of the optimal marginal
distribution function types of the variables. Since the destructive impact force of submarine
slides exerted on pipelines is positive, this paper selected five marginal distribution func-
tions commonly considered in engineering, namely, the normal distribution, log-normal
distribution, truncated extremum type I distribution, Weibull distribution, and gamma
distribution. Table 1 lists the various probability density functions and cumulative distribu-
tion functions of the different distribution types, where μ is the mean value and σ is the
standard deviation.
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Figure 1. Flowchart of the developed reliability analysis approach.

Table 1. Five alternative marginal distribution functions.

Distribution Type Probability Distribution Function Probability Density Function Note
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Notes: Φ() denotes the standard cumulative distribution function, φ() is the probability density function of the
normal distribution, and Γ() denotes the factorial.

In engineering, the Akaike information criterion (AIC) [41] and Bayesian information
criterion (BIC) [42] are commonly adopted to determine the optimal marginal distribution
function. These criteria require that the marginal distribution function with the lowest
calculated AIC or BIC value is the optimal marginal distribution function of the fitting
variable. The above two criteria are simple in principle, provide a suitable stability, can be
easily implemented in calculations, are widely applied in engineering, and can facilitate
accurate and reliable data fitting. Therefore, the optimal marginal distribution function of
the risk variables was identified and determined with the above method, and the specific
expressions are as follows:

AIC = −2
n

∑
i=1

ln f (x; p, q) + 2k1 (3)

59



Mathematics 2022, 10, 1382

BIC = −2
n

∑
i=1

ln f (x; p, q) + 2 ln n (4)

where p and q are distribution parameters associated with μ and σ, respectively, n is the total
number of data, and k1 denotes the number of parameters of the alternative distribution
types. Moreover, f (xi; p, q) is the probability density function of the alternative distribution
types. Table 1 indicates that all five distribution types contain two distribution parameters.
Therefore, k1 = 2, which is the minimum value considered in the calculation results,
determines the optimal distribution type.

Based on the above principles, the steps to determine the optimal marginal distribution
function of the risk variables are as follows: (1) the mean and variance in the original data
are calculated; (2) the parameters of the different types of marginal distribution functions
are determined; (3) according to Equations (3) and (4), the optimal marginal distribution
function of each risk variable is obtained based on the minimum calculated AIC or BIC
value. When the alternative distribution types consider the same parameter samples, the
identification results based on the AIC and BIC are the same. In this section, the AIC is used
to identify the optimal edge distribution types.

Step 2: Determination of the optimal copula function fitting the correlation among

the risk variables.

The correlation between parameters can be captured with the correlation coefficient
and correlation structure type. In terms of the correlation coefficient, the Pearson linear
correlation coefficient and Kendall rank correlation coefficient are mainly adopted. The
Pearson linear correlation coefficient is an index used to measure the degree of linear
correlation between the considered parameters. The Kendall rank correlation coefficient is
based on the rank of the original parameter data and can describe the correlation between
the parameters. The related structure types can be described according to the different
copula functions. The θ parameter is the key to copula function determination and can
be obtained based on the Pearson correlation coefficient and Kendall rank correlation
coefficient θ [43]. According to the definition of the correlation coefficient, the relationship
between parameter θ of the copula function and the Pearson correlation coefficient ρ is:

ρ =
∫ ∞

−∞

∫ ∞

−∞

(
x1 − μ1

σ1

)(
x2 − μ2

σ2

)
f1(x1) f2(x2)D(F1(x1), F2(x2); θ)dx1dx2 (5)

where μ1 and μ2 are the average values of the two variables x1 and x2, respectively, and σ1
and σ2, respectively, are the standard deviations of these two variables.

With the above equation, parameter θ of the copula function can be determined. How-
ever, except for the Gaussian copula function, most copula functions are difficult to solve
via integration. According to a previously reported method in the literature [44,45], param-
eter θ of the Gaussian copula function can be computed through the Pearson correlation
coefficient, as follows:

ρ =
∫ ∞

−∞

∫ ∞

−∞

(
u1 − μ1

σ1

)(
u2 − μ2

σ2

)
f1(u1) f2(u2)√

1 − θ2
exp

{
− ζ1

2θ2 − 2θζ1ζ2 + ζ2
2θ2

2(1 − θ2)

}
du1du2 (6)

where ζ1 = Φ−1(u1) and ζ2 = Φ−1(u2) are variables of the standard normal distribution.
Φ() is the standard normal distribution function, and Φ−1() is the inverse of the standard
normal distribution function.

After parameter θ of the Gaussian copula function has been obtained, the Kendall
rank correlation coefficient τ can be calculated with the following equation:

τ =
2arcsin(θ)

π
(7)
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Finally, the following equation can be employed to determine the parameter θ values
of the different copula functions:

τ = 4
∫ 1

0

∫ 1

0
C(u1, u2; θ)dC(u1, u2; θ)− 1 (8)

In copula theory, many copula functions are available [43] that can be employed to
describe variable correlation structure types, but most types can only facilitate simulations
within a limited range of correlation coefficient values [46], e.g., elliptic copula functions
such as the Gaussian copula function and t copula function, the Plackett copula function,
and Archimedean copula functions, such as the Frank, Clayton, CClayton, Gumble, No.
16 and No. 17 copula functions.

The copula function couples the marginal distribution function and joint distribution
function. After determination of the optimal marginal distribution function, the optimal
copula function can be obtained based on the AIC and BIC. The corresponding calculation
methods are expressed as Equations (9) and (10), respectively. Considering the above
principles, the process of optimal copula function fitting is as follows: (1) the Pearson
correlation coefficient and Kendall rank correlation coefficient are calculated; (2) parameter
θ of the copula function is determined according to Equation (8); (3) AIC and BIC values
can be computed with Equations (9) and (10), respectively, to determine the optimal copula
function.

AIC = −2
n

∑
i=1

ln D(ui, vi; θ) + 2k2 (9)

BIC = −2
n

∑
i=1

ln D(ui, vi; θ) + k2 ln n (10)

where (ui, vi), i = 1, 2, . . . , n denotes the test data of the parameters, n is the total number of
data, D(ui, vi; θ) is the probability density function of the alternative copula function, k2 is
the number of parameters of the alternative copula function, and the minimum value in the
calculation results determines the optimal copula function. The evaluation criterion is the
same as that in step 2, and the AIC can be used to determine the optimal copula function.

Step 3: Reliability analysis based on simulations.

In practical engineering, due to the limitations of engineering technology and eco-
nomic conditions, the available test and measurement data are very limited, and the
joint probability distribution function of variables, which requires complete probability
information, cannot be obtained. Only the marginal distribution function and correlation
coefficient of the considered variables can be determined under limited data conditions, i.e.,
incomplete probability information. Especially in ocean engineering, it is very difficult to
collect a large amount of high-quality test data. The MCS method can randomly generate
sufficient samples based on the characteristics of the original data and has become a robust
statistical tool [47]. This method is widely applied in probability analysis and provides an
important technical means for the reliability analysis of submarine slide-impacted pipelines.
Reliability analysis based on the MCS method directly calculates the failure probability
by combining random simulation and statistical tests, and the calculation equation is as
follows:

Pf =
n f

n
(11)

where n f is the number of samples in the failure domain and n is the total number of
samples. The method exhibits a clear concept, simple application, and few limitations.
With an increasing sample number, the calculation results become increasingly accurate
and reliable. Under the condition of extremely limited data, the joint probability model of
the considered risk variables was established based on the copula function, and relevant
variables were effectively simulated with the MCS method. The corresponding probability
was determined according to a large amount of simulation data. For example, Wang and
Kulhawy [48] analysed the reliability of the normal service state and limit state of a given
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structure based on the MCS method. Aladejare and Wang [49] adopted the MCS method to
generate a large amount of rock strength data and combined this method with correlation
analysis to evaluate the reliability of rock slope stability. Pan et al. [50] examined the
reliability of the tunnel driving face with the MCS method. Therefore, this study aimed
to establish a joint probability model of the relevant risk variables based on the copula
function and employed the MCS method to simulate a large amount of simulation data
to approximate the actual variable distribution characteristics and process the limited
available observation data.

4. Failure Probability Estimation under Submarine Slide-Induced Pipeline
Impact Damage

In the structural system of civil engineering, Equations (12) and (13) can be applied to
calculate the failure probability Pf . It can be considered that Y(Q) denotes the minimum
limit value, Y − Y(Q) < 0 is the failure condition, and the failure probability can be
calculated with Equation (12). Alternatively, Y(Q) denotes the maximum limit value, and
Y − Y(Q) > 0 is the failure condition. The failure probability can be calculated according
to Equation (13).

Pf = P[Y − Y(Q) < 0] (12)

where Y(Q) denotes the minimum limit value and Y is the actual observed value.

Pf = P[Y − Y(Q) > 0] (13)

where Y(Q) is the maximum limit value and Y denotes the actual observed value.
Compared to one-way flow through a cylinder, the process of submarine slide impact-

ing pipelines is more complicated, and there are many risk factors. Determination of the
risk level posed by submarine slides to pipelines enables the safety control of submarine
pipelines. In this study, the computational fluid dynamics (CFD) method was adopted to
simulate a series of multiphase flows, and peak and stable values of the vertical sliding
pipe forces were determined under different landslide velocity conditions. Considering
the peak and stable values of vertical forces, the failure probability of submarine slides
impacting pipelines can be expressed as:

Pf = P[G(X1) < 0 ∪ G(X2) < 0] (14)

where G(X1) = X1 − X1, G(X2) = X2 − X2, X1, and X2 are the actual peak and stable
values, respectively, and X1 and X2 are the maximum limits of the peak and stable values,
respectively. For G(X1) > 0 or G(X2) > 0, the submarine pipeline is considered to be
invalid. By establishing the joint probability distribution model of the peak and stable
values considering different related structure types, the varied failure probabilities of
pipelines under the impact of submarine slides can be determined.

5. Case Study

5.1. Numerical Model

Induced by earthquakes, sedimentation, hydrate decomposition, and waves, a given
submarine slope first becomes unstable, and the landslide mass begins to slide upon
detachment from the unstable area. Under the influence of the water environment, the
landslide mass gradually changes into a flow and continues to slide across a certain distance
before stopping. In the whole landslide flow process, the flow velocity of the landslide
mass gradually increases, reaching a maximum of up to 30 m/s [51]. Compared to the
trigger start-up stage, the strength of the landslide mass at the flow slide stage is lower and
the function rate is higher, which can significantly impact submarine pipelines. Therefore,
based on the flow slip stage of submarine slides, this study employed the commercial CFD
platform ANSYS-CFX to conduct numerical simulations of the impact of submarine slides
on pipelines. The pre- and postprocessing tools required for CFD simulations include a
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3D model, meshing scheme (ICEM-CFD), and a CFX solver based on the finite volume
(FV) method. The CFD numerical method is very useful in fluid–structure interaction
analysis. This study employed CFD software ANSYS 14.5 (CFX 2010a: CFX solver models;
CFX program (version 13.0) physical modelling documentation, Canonsburg, PA, USA;
ANSYS Inc. 2010b: CFX solver theory, CFX program (version 13.0) theory documentation,
Canonsburg, PA, USA), which is a general-purpose CFD program including a solver based
on the FV method for unstructured grids. A Euler–Euler multiphase flow model with
nonuniform two-phase separation was applied to simulate the interaction between the
submarine slide mass and seawater.

The established submarine slide–pipeline interaction numerical model is shown in
Figure 2. The numerical calculation domain exhibits dimensions of 15.5 m × 8 m × 0.5 m
(height × width × thickness), the pipeline diameter Dpipe is 0.5 m, and the distance from
the horizontal entrance is 2.5 m (5Dpipe). Moreover, the gap between the pipeline and
seabed is Hps, and the landslide mass enters from a height of 10.5 m. The pipeline was
considered fixed (or pipeline position variation could be ignored). The centre of the pipe
is 2.75 m away from the inlet. The grid adopts tetrahedral elements, and the maximum
mesh size depends on the pipe diameter. The maximum mesh size is 0.5Dpipe, and the
number of elements in numerical analysis exceeds 270,000. The grid in the area within a
radius of 0.5–0.75 m (1.5Dpipe) was refined, and five layers of refined grids (with a total
thickness of 0.05 m) were set up near the pipeline. The inlet was set as a velocity boundary,
and the outlet was defined as an open boundary. The top and upper boundaries of the
entrance were set as free-slip surfaces, and the surfaces of the pipeline and seabed were
rough, each with an equivalent roughness ks of 0.0015 mm. The submarine slide flow was
assumed to involve continuous free surface flow considering buoyancy and was simulated
as an incompressible two-phase flow. All high-speed water and slide flow motions were
determined based on the extended standard k-ε turbulence model. The landslide entrance
was defined as the velocity boundary, the exit was set as an open boundary, the top of
the computational domain was established as a free-slip boundary, the bottom and pipe
surface were defined as rough no-slip boundaries, and the surface equivalent roughness
ks values were 0.5 and 0.0015 mm, respectively. When the sliding distance reached 48 m
(96Dpipe), the simulation calculation was terminated, and the calculation process adopted
the second-order, high-precision upwind difference format. By varying the flow velocity
and Reynolds number, the peak and stable vertical force values of 67 groups of submarine
slides impacting pipelines were obtained.

Due to the complex marine environment and numerous factors influencing the stability
of submarine slopes, submarine slides have become high-frequency geological disasters
with a wide impact and potential threats. The highly notable impact produced seriously
threatens the stability and safety of submarine pipelines. Therefore, it is of great significance
to effectively simulate the impact of submarine slides on pipelines, reasonably determine
the impact force of submarine slides exerted on pipelines, especially the vertical impact
force must be improved, and study the correlation between the peak and stable vertical
force values of submarine pipelines to accomplish more convincing safety and reliability
evaluations of submarine pipeline projects.

63



Mathematics 2022, 10, 1382

Figure 2. Numerical computational model.

5.2. Joint Distribution Model of the Risk Variables

Through calculation, 67 sets of data samples of peak and stable vertical force values
were obtained (linear correlation coefficient R = 0.8004). Calculated peak and stable vertical
force values over time, considering a flow rate of V = 1.0 m/s and Reynolds number of
Renon-Newtonian = 8.7, are shown in Figure 3. Based on the original data scatter plot depicted
in Figure 4a, the peak and stable vertical force values exhibited a lower tail correlation
and were linearly positively correlated, but the linear relationship was not sufficiently
obvious. The original sample data could be converted into uniformly distributed data with
the semiparametric method based on maximum likelihood estimation, and the calculation
process is expressed in Equation (14).{

ui =
Rank(xi)

N+1

vi =
Rank(yi)

N+1

i = 1, 2, . . . , N (15)

where (xi, yi) is the original data sample value, Rank is a sorting function, which can be
used to arrange the original sample data in ascending order, and (ui, vi) is a standard
uniformly distributed random variable after transformation.

Figure 4b shows the standard uniformly distributed random variable after transforma-
tion. Compared to Figure 4a, Figure 4b reveals a more obvious linear positive correlation.
Therefore, the candidate copula function selected in this study should be symmetric and
must provide a good ability to describe the positive correlation structure of the random
variables.

Many types of two-dimensional copula functions exist. The common two-dimensional
copula functions can be divided into three types: (1) Gaussian copula functions; (2) two-
dimensional Plackett copula function; (3) two-dimensional Archimedean copula functions
(for example, the Frank, Clayton, CClayton, No. 16. and No. 17 copula functions). To
select the optimal copula function capturing the correlation among the risk variables, a
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copula function with a similar correlation structure to that of the measured data is usually
selected in advance as the alternative copula function. Therefore, the copula function
type selected in this paper can not only capture all copula function types, but can also
capture top- and bottom-tail correlations to comprehensively analyse the original data
and determine all possible correlation distribution types of the original data. The five
considered alternative copula functions, i.e., the Gaussian, Plackett, Frank, CClayton, and
No. 16 copula functions, are classic copula function families, and these functions can
suitably describe both positive and negative correlations among variables. The absolute
values of the correlation coefficients of these five copula functions all approached 1, which
can meet the requirements depicted in Figure 4. Details of these five copula functions are
summarized in Table 2.

Figure 3. Variation in the vertical slide–pipeline forces over time.

Table 2. Five types of 2D copula functions.

Copula
Function Type

Copula Distribution Function
C(u1,u2;θ)

Copula Density Function D(u1,u2;θ) ϕθ(t,θ)

Gaussian Φθ

(
Φ−1(u1), Φ−1(u2); θ

)
ϕ2(Φ−1(u1),Φ−1(u2);θ)
ϕ(Φ−1(u1))ϕ(Φ−1(u2))

/

Plackett
S−

√
S2−4u1u2θ(θ−1)

2(θ−1) ;
S = 1 + (θ − 1)(u1 + u2)

θ[1+(θ−1)(u1+u2−2u1u2)]{
[1+(θ−1)(u1+u2)]

2−4u1u2θ(θ−1)
}3/2

/

Frank − 1
θ ln

[
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

]
−θ(e−θ−1)e−θ(u1+u2)

[(e−θ−1)+(e−θu1−1)(e−θu2−1)]
2 − ln

[
e−θt−1
e−θ−1

]

CClayton

u1 + u2 − 1 +(
W−θ

1 + W−θ
2 − 1

)−1/θ
;

W−θ
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−θ−1
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2 − 1

)−2−1/θ
;
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1
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)
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Figure 4. Raw data scatter plot (a) and scatter plot of the uniformly distributed data (b).

In the third section, a method was introduced to determine the optimal marginal
distribution function and copula function. Data statistics constituted the basis for the
determination of the optimal marginal distribution function, and an important theoretical
basis was provided to analyse data distribution characteristics. Table 3 lists statistical
information on the peak and stable vertical force values of the 67 groups of submarine
slides impacting pipelines. As indicated in Table 3, the mean value of the peak forces
was 2.65 times that of the stable forces, and the standard deviation was 2.25 times that of
the stable forces. The fluctuation range was larger than that of the stable forces, and the
variation coefficient value of the peak forces was much lower than that of the stable forces.
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Therefore, the change in the stable forces was significantly greater than that in the peak
forces.

Table 3. Risk variable statistics (units: N).

Parameter Mean Standard Deviation Maximum Minimum Coefficient of Variability

Vertical forces (peak) 668.21 822.38 3894 6 1.23
Vertical forces (stable) 251.88 366.29 1539 2.7 1.45

Notes: Coefficient of variability = standard deviation/mean.

5.2.1. Optimal Marginal Distribution Function

The optimal marginal distribution function was determined by comparing five marginal
distribution functions (truncated normal, log-normal, truncated Gumbel, Weibull, and
gamma distribution functions). Equations (3) and (4) were applied to determine the opti-
mal marginal distribution function, and the results are provided in Table 4. Table 4 reveals
that the optimal marginal distribution function for both peak and stable variable fitting was
the Weibull distribution. To understand the fit between the original data sample and the
marginal distribution function more intuitively, Figure 5 shows a histogram of the original
data and the five considered marginal distribution functions. It is evident that the shape of
the optimal marginal distribution function was better than that of the other marginal distri-
bution functions, which indicates a better agreement with the distribution characteristics
of the risk variables. The results in Figure 6 are consistent with those provided in Table 4,
confirming the effectiveness of the AIC in determining the optimal marginal distribution
function via fitting.

Table 4. Calculation results for the optimal marginal distribution function of the risk variables.

Parameter Truncated Normal Log-Normal Truncated Gumbel Weibull Gamma

Vertical forces (peak) AIC 1231.44 1141.46 1180.91 1100.72 1117.02

Vertical forces (stable) AIC 1073.21 1016.71 1029.85 953.69 1117.15

To further verify the fitting effect of the marginal distribution function, the Kolmogorov–
Smirnov (K-S) method was implemented to assess the fitting degree of the alternative
marginal distribution function to the sample data. The K-S test is a probability distribution
type test method suitable for small sample data sizes. By measuring the distance D be-
tween the known hypothesis probability distribution and the empirical distribution of the
measured data, this method evaluates whether the distance occurs within the confidence
interval [52]. The specific process of the K-S test method can be summarized as follows:
let A1(x) denote the theoretical distribution function assumed in advance, while A2(x)
denotes the actual cumulative distribution function of sample group A. Moreover, D is
the maximum value of the gap between A1(x) and A2(x), i.e., D = max|A1(x)− A2(x)|.
For D ≥ Dn,α (Dn,α is the rejection threshold), the original hypothesis can be rejected, and,
conversely, the original hypothesis can be accepted.

Table 5 summarizes the K-S test results for the risk variables (the peak and stable
vertical force values). In regard to the risk variable of the peak vertical forces, the D value
of the Weibull distribution is 0.0168, and, compared to the other marginal distributions, the
D value is the smallest, i.e., the K-S distance is the smallest. According to the basic principle
of the K-S test method, when the D value is smaller, it indicates that the two distributions
are very similar and that the fitting degree is high, which further verifies the rationality of
the Weibull distribution for peak variable fitting. Similarly, the Weibull distribution can be
effectively used for stable variable fitting.
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Figure 5. Frequency histogram of the raw data and probability density function of the marginal
distribution: (a) Vertical forces (peak); (b)Vertical forces (stable).
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Figure 6. Frequency histogram of the raw data.

Table 5. K-S test results for the five marginal distributions.

Parameter Marginal Distribution D Value

Vertical forces (peak)

Truncated normal 0.0389
Log-normal 0.0263

Truncated Gumbel 0.0317
Weibull 0.0168
Gamma 0.0217

Vertical forces (stable)

Truncated normal 0.0156
Log-normal 0.0090

Truncated Gumbel 0.0135
Weibull 0.0078
Gamma 0.0291

5.2.2. Optimal Copula Function

Figure 4b shows that the risk variables exhibited a significant positive correlation. If
their correlation were ignored, a simple independent distribution could not represent the
real distribution characteristics of the original data. Therefore, it is necessary to characterize
the correlation among the risk variables based on the copula function and establish a
joint probability distribution model. First, Kendall rank correlation coefficient values were
calculated with Equation (8) to obtain the parameters of the copula functions with the
different structures.

Then, the AIC or BIC was considered to determine the optimal copula function. The
results are listed in Table 6. The table demonstrates that, among the five copula functions,
the Plackett copula function yielded the lowest AIC values. Hence, the Plackett copula
function could be effectively employed to fit the risk variable correlation structure.

Table 6. Identification of the optimal copula function.

Copula Function Gaussian Plackett Frank Clayton No. 16

AIC −88.1813 −92.9037 −92.7052 −56.7529 −48.0144
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To further verify that the Plackett copula function is the optimal copula function,
Figure 6 shows a frequency histogram of the original data sample, while Figure 7 shows a
probability density plot and corresponding contour plot of the Plackett copula function.
Figures 6 and 7a clearly exhibit the same shape overall. These two graphs indicate a trend of
high values at both ends and low values in the middle, and both graphs exhibit symmetrical
tails, suggesting that these graphs are sensitive to changes in the tail correlation between the
random variables and reveal a high correlation between the variables. Hence, the symmetric
tail correlation between the random variables can be better captured, thus confirming that
the Plackett copula function can reasonably represent the structure of the correlation among
the risk variables (peak and stable values). Moreover, Figure 7b shows that, in the contour
map of the Plackett copula function, the risk variables exhibited a significant symmetry and
a positive phase along the diagonal direction. Therefore, both Figures 6 and 7 verify that
the Plackett copula function could reasonably represent the correlation characteristics of
the original data and could be employed to establish a joint probability distribution model
of the risk variables, thereby laying a foundation for subsequent reliability analysis.

Figure 7. Cont.
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Figure 7. Probability density map (a) and contour map of the Plackett copula function (b).

5.3. Reliability Analysis

After determination of the optimal marginal distribution function and copula function,
the joint probability density function of the risk variables can be obtained with Equations (1)
and (2). To verify the superiority and importance of establishing a joint probability distribu-
tion model of the risk variables based on the copula function, the MCS-copula simulation
method was applied to evaluate the reliability of pipelines under impact damage due
to submarine slides. This method is helpful to accurately evaluate the safety status of
submarine pipelines under the influence of landslide impact processes and provides an
important theoretical basis for marine pipeline engineering design.

In this paper, a joint probability distribution model of the risk variables was estab-
lished based on the copula function, and 105 samples were randomly generated with
the MCS method, as shown in Figure 8. The figure shows that, without considering the
correlation among the variables, the risk variables obey a normal distribution, whereas the
simulated data exhibit a discrete uniform distribution, which is significantly different from
the distribution characteristics of the original data. Moreover, due to the high variance in
the original data sample and wide dispersion range, many negative values occur, which is
inconsistent with the actual simulated data. The samples generated based on the above
five alternative copula functions can describe the correlation among the variables. The
simulated data were roughly distributed along the 45◦ diagonal line, which is similar to the
distribution characteristics of the original data. The simulated data were matched to the
original data. Compared to the other four copula functions, the distribution characteristics
of the simulated data obtained with the Plackett copula function were the closest to those of
the original data, and this copula function could be adopted to accurately fit the distribution
characteristics of the original data. This confirms that the Plackett copula function is the
optimal copula function to fit the risk variables.

In this study, two risk variables (peak and stable vertical force values) were adopted
as evaluation objects, and a series system [53,54] was employed as a criterion to evaluate
the structural failure risk. In other words, when these two conditions were simultaneously
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satisfied, the structural system was considered to occur in the failure state. Figure 8 shows
that, under a safety standard of 2500 N for the vertical peak forces and a stable force safety
standard of 1000 N, the area simultaneously meeting these two risk standards is the safe
area, indicated as the shaded green area, and the failure point occurs outside the shaded
area. The failure probability is the ratio of the number of points in the failure area to the
total number of points, as expressed in Equation (14).

Figure 8. Cont.
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Figure 8. Cont.
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Figure 8. Scatter diagram of the different copula functions and security areas: (a) Independent normal
distribution; (b) Gaussian copula; (c) Plackett copula; (d) Frank copula; (e) Clayton copula; (f) No.
16 copula.

The selection of the copula function directly determines the joint probability distribu-
tion model of the risk variables and thus greatly influences the structural reliability analysis
results. Therefore, based on Section 5.2.2, and with the use of the Plackett copula function
as an analysis standard, Table 7 lists the relative errors of the failure probability calculated
with the different distribution models. Moreover, to analyse the change pattern of the risk
variables and failure probability, this study simplified the problem and only considered the
change in one variable. Figure 9 shows the change curve of the submarine pipeline failure
probability under the influence of the risk variables. The results revealed that (1) it is unrea-
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sonable to employ the traditional independent normal distribution model, which ignores
the correlation among the variables, and that the established joint probability distribution
model could not provide accurate and reliable simulation data for reliability analysis. This
could lead to inaccuracy of the calculated failure probability, and the error could even reach
82.54%. (2) The failure probability calculated based on the traditional independent normal
distribution model was very low, which could result in a serious overestimation of the
structural reliability and could bias the resultant structure design towards danger. The
model established based on the copula function could accurately describe the correlation
in the original data and could reasonably characterize the distribution characteristics of
the original data, which could provide an accurate analysis model for structural reliability
analysis and improve the calculation accuracy of the structural failure probability. (3) Due
to the different correlation structures of the various copula functions, the calculated failure
probability values notably differed. The failure probability error calculated with the No.
16 copula function was the largest, and the failure probability error calculated with the
Gaussian copula function was the smallest. As shown in Figure 7, the different types of
copula functions notably affected the distribution of the simulated data, which in turn
influenced the reliability analysis results. (4) With increasing risk variable value (peak and
stable vertical force values), the failure probability of submarine pipelines significantly
increased. The five copula functions basically exhibited the same variation trend, but there
occurred significant differences in the numerical values, among which the Gaussian copula
function yielded the smallest difference.

Table 7. Relative error of the failure probability calculated with the different copula functions.

Model Gaussian Plackett Frank Clayton No. 16 Independent

Failure probability 0.07419 0.07561 0.07124 0.06257 0.06038 0.0132
Relative error 1.88% 0.00 5.78% 17.25% 20.14% 82.54%

Note: The control conditions for the vertical force peak and stable values are 2000 and 1000 N, respectively.

Figure 9. Cont.
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Figure 9. Failure probability under the different safety standards: (a) Vertical peak forces; (b) Stable
value of vertical forces.

6. Conclusions

This paper proposed a probability analysis method of pipeline failure under impact
damage due to submarine slides based on the copula function. Under incomplete proba-
bility information, reasonable characterization of the correlation among the risk variables,
improvement in the calculation precision of the pipeline failure probability under impact
damage due to submarine slides, and the accurate assessment of the pipeline reliability un-
der impact damage due to submarine slides are of great importance. The main conclusions
were as follows:

(1) Based on the copula function, a joint probability distribution model of the risk vari-
ables could be established given any marginal distribution function and related
structure. The process of reliability analysis through a joint probability analysis model
is as follows: a. the optimal marginal distribution function and optimal copula func-
tion were determined, and a joint probability distribution model was established and
simulated in accordance with the distribution characteristics of the risk variables;
b. based on the established joint probability distribution model, the MCS method
was applied to generate a large number of random samples to calculate the failure
probability of the pipeline impact damage attributed to submarine slides;

(2) Under the condition of incomplete probability information, the copula function could
reasonably represent the relevant nonnormal distribution characteristics of the risk
variables, effectively establish a corresponding joint probability distribution model,
simulate data conforming to the distribution pattern of the risk variables, and pro-
vide reliable and statistically significant samples for the reliability evaluation of the
submarine slide effect on pipeline damage;

(3) The traditional independent normal distribution model ignores the nonnormal dis-
tribution characteristics of the risk variables, and the calculated failure probability
was very low, which could result in the serious overestimation of the reliability of
submarine pipelines. Therefore, the correlation and nonnormal distribution character-
istics of the risk variables should be comprehensively considered when evaluating
the reliability of submarine pipelines.

76



Mathematics 2022, 10, 1382

The method proposed in this paper integrated a variety of uncertain factors, left
the uncertain factors unrefined, established a joint probability distribution model of the
distribution characteristics of the risk variables, and analysed the reliability of pipelines
impacted by submarine slides. Based on existing research results, the first author will
conduct a large number of model tests, study the correlation among dual-risk variables,
and examine a large number of numerical simulations considering various uncertain factors
of submarine slides to supplement the research results obtained in this paper.
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Abstract: Grouting is one of the main technical means to prevent water inrush hazards in coal seam
floor aquifers. It is of great significance to elucidate the diffusion law of slurry in the process of
grouting in fractured aquifers for safe mining in coal mines. In this paper, the mechanism of slurry
diffusion in horizontal fractures of fractured aquifers was studied based on the Bingham slurry with
time-varying characteristics; additionally, a one-dimensional seepage grouting theoretical model
considering the temporal and spatial variation of slurry viscosity under constant grouting rate was
established. In this model, the grouting pressure required by the predetermined slurry diffusion
radius can be obtained by knowing the grouting hole pressure and injection flow. Slurry properties,
fracture parameters, grouting parameters, and water pressure were the parameters affecting the
slurry diffusion process. Looking at the problem of water disaster prevention of coal seam floor in
the Working Face 2509 of the Chensilou Coal Mine, according to the aquifer parameters and model
calculation results, a grouting scheme with a slurry diffusion radius of 20 m and grouting pressure of
12 MPa was proposed. Finally, with the comparative analysis of the transient electromagnetic method
(TEM) and water inflow before and after grouting, it was verified that the design grouting pressure
and the spacing of grouting holes were reasonable and the grouting effect was good.

Keywords: fractured aquifer; Bingham slurry; grout diffusion model; slurry diffusion distance;
grouting effect

1. Introduction

With the exploitation of coal resource extending deeper in China, the threat of mine
water disasters to coal mining safety is becoming more and more obvious [1–5]. In the mining
process of a Carboniferous–Permian coal seam in a North China coal field, the working face is
seriously threatened by a high pressure limestone aquifer [6,7] in the coal seam floor (Figure 1).
As a kind of coal mine geological guarantee technology, grouting technology is often applied
in mining to control for water disasters, and the analysis of slurry diffusion rules and grouting
effects in grouting engineering are urgent and difficult problems [8–11].

At present, many scientific researchers have been conducting significant research on
slurry diffusion rules, and fruitful research results have been achieved [12–16]. Grouting
theory is the basis for the study of slurry diffusion rules, which can provide guidance for
the design and implementation of grouting engineering [17–22]. The existing grouting
theories mainly include pore rock mass grouting theory [23], fractured rock mass grouting
theory [24], fracturing grouting theory [25], compaction grouting theory [26], and dynamic
water grouting theory [27]. Theoretical analysis is an effective means to study the rules of
slurry diffusion, in which the rule of slurry flow in a single fracture is the basis of the study
of slurry diffusion rules.
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Figure 1. Disaster caused by floor water inrush in a mine working face.

Some scholars simulated the grout diffusion rule in hydrostatic and hydrodynamic
conditions through artificial equipment, and put forward the flow equation of slurry in
a single fracture [28–31]. A quasi-three-dimensional fracture grouting test system was
developed for hydrodynamic conditions, the slurry diffusion rule was studied and the
grouting plugging method of water inrush in fractured rock mass was put forward [32].
The grouting plugging mechanism of rock mass was studied by using a seepage grouting
simulation test device with three-dimensional constant pressure [33].

The evaluation of grouting effect is an indispensable step in grouting engineer-
ing [34,35]. Liu et al., treated loess strata in the tunnel by curtain grouting and evaluated
the grouting effect through ground penetrating radar (GPR) and numerical simulation
method [36]. It was concluded that grouting can effectively block the inflow and seepage of
groundwater, and effectively control disasters such as water and mud inflow in the heading
face. Zhang et al., systematically classified the grouting effect evaluation methods and put
forward the inspection methods and standards of various grouting technologies, which
provided a reference for the grouting construction of similar projects [37]. In addition,
many scholars studied the diffusion law of cement slurry in planar fractures by numerical
simulation software and obtained the parameters such as diffusion radius and grouting
pressure of slurry [8,9,38–42].

The above research mainly focused on grouting simulation experiments in the labora-
tory, nevertheless, most of the grouting projects for mine water disaster control are carried
out in limestone or sandstone aquifers, and the parameters in the grouting process are often
determined based on experience and lack of corresponding theoretical basis [43]. More
importantly, as the most commonly used grouting in engineering, the viscosity of cement
slurry is time-varying; that is, the viscosity tends to increase with time, and the slurry diffu-
sion radius will be much smaller if time variability is considered. However, many grouting
diffusion theories ignored this property, and the viscosity used in the establishment of the
grouting diffusion model was fixed as the initial viscosity value [44]. The theoretical values
used in the model were obviously much larger than the actual values, and the grouting
hole distance designed was also unreasonable, which was difficult to ensure the grouting
effect when used to guide the construction. In the light of existing problems, this paper
aims to study the diffusion mechanism and grouting effect of slurry with time-dependent
behavior of viscosity, and then provides guidance for the design and implementation of
aquifer grouting engineering.

2. Methodology

2.1. Basic Assumptions of Slurry Flow Model

The following hypotheses are presented [32]:

1. The slurry is non-compressible and isotropic.
2. The influence of fracture roughness is not considered and the migration velocity of

grouting slurry on the fracture walls is constant at 0.
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3. Slurry does not enter the rock mass during the flow process and penetrate through
the fracture walls.

4. Constant pressure and uniform speed grouting are adopted in the grouting method.
5. The fractures are horizontally distributed and evenly distributed, and the influence of

gravity on the slurry diffusion process is not considered.
6. The right side of slurry under static water pressure is abrupt, and the additional stress

caused by slurry movement and groundwater displacement is ignored.

2.2. Basic Equations of the Slurry Flow Model

To study the diffusion law of slurry under fluid–solid coupling, it is necessary to
accurately describe all the details of slurry flow in fractures. Therefore, the Navier–Stokes
(N-S) equation is used as the motion equation of slurry diffusion, which is based on
momentum conservation, and its expression is [45]

ρ
∂v
∂t

+ ρ(v · ∇)v = ∇ ·
{
−p · I + μ

[
∇v + (∇v)T

]
− 2

3
μ(∇ · v)I

}
+ F (1)

where ρ is slurry density, ν is flow velocity, t is grouting time, ∇ is divergence operator, p is
grout pressure, I is identity tensor, μ is slurry viscosity, and F is volume force.

The flow law of slurry can be expressed by a continuity equation because the flow process
is continuous. The slurry is assumed incompressible in the flow process and the continuity
equation is based on mass conservation. The continuity equation is expressed as [45]

∂ρ

∂t
+∇ · (ρv) = 0 (2)

In the actual grouting process, the compressibility of the slurry is negligible [1], there-
fore, Equations (1) and (2) can be rewritten as

ρ
∂v
∂t

+ ρ(v · ∇)v = ∇ ·
{
−p · I + μ

[
∇v + (∇v)T

]}
+ F (3)

ρ∇ · v = 0 (4)

The inertia term in the equation can be ignored if the viscous deformation stress of
slurry is ignored, Equation (3) can be further simplified as [45]

ρ
∂v
∂t

= ∇ ·
{
−p · I + μ

[
∇v + (∇v)T

]}
+ F (5)

The constitutive relation of slurry flow is expressed the viscosity of slurry, the general
expressions is

τ = μ
.
γ − 2

3
μ(∇v)I (6)

Ignoring the compressibility of the slurry, Equation (6) can be simplified as

τ = μ
.
γ (7)

In Equation (7),
.
γ is the engineering strain rate tensor, and the expression is

.
γ =

[
∇v + (∇v)T

]
(8)

The viscosity of slurry has time-varying characteristics. The results show that slurry
with low water cement ratio (w/c) is a power-law fluid (w/c = 0.5~0.7), the w/c of Bingham
fluid slurry is 0.8–1.0, and slurry with w/c > 2.0 is Newtonian fluid [32]. The w/c used
for grouting the limestone aquifer in coal measures is generally 1.0, so it is considered as
Bingham fluid. The viscosity variation law is in the form of exponential function

μ(t) = μt0 ekt (9)

Therefore, the expression of Bingham fluid constitutive equation is
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τ = τ0 + μ
.
γ (10)

By substituting Equation (9) into Equation (10), the rheological equation of Bingham
fluid with the curve which not passing through the origin is usually given as [32]

τ = τ0 + μt0 ekt .
γ (11)

2.3. Detection Methods of Water Abundance of Working Face Floor

Due to the growing threat of water disasters, it has become particularly important to
detect water abundance within the seam floor before stoping. On the basis of The Detailed
Rules for Water Disaster Prevention and Control of Coal Mines (NCMSA 2018), geophysical and
drilling exploration methods should be applied simultaneously when a high-pressure karst
aquifer and good water abundance exist in the coal seam floor [46]. Therefore, the transient
electromagnetic method (TEM) and drilling exploration were used simultaneously to detect
the floor of working face to detect the water bearing properties of the limestone. TEM
is based on the time domain electromagnetic induction method. By manually supplying
current pulse square wave, the law of the secondary magnetic field is observed to determine
the characteristics of the geological structure. In the TEM detection results, the areas where
the attenuation rate of the secondary magnetic field slows down mainly indicate areas where
the rock stratum is broken, the water-abundance is strong, or a fracture has developed.

3. Mathematical Modeling of the Suspension Diffusion Process

The negligence of the influence of gravity on slurry diffusion in a single plate fracture
with equal opening makes it possible to simplify to a two-dimensional problem, and
therefore the slurry diffusion form is axisymmetric diffusion. The rectangular coordinate
system as shown in the Figure 2 with the symmetry axis and vertical direction of the
fracture as the coordinate axis. We analyze the forces in view of the micro element of slurry,
taking the fracture center as the symmetry axis.

Figure 2. Force analysis of slurry motion [32].

As shown in Figure 2, b is fracture width, p0 is hydrostatic pressure, dx is micro element
length, dp is slurry pressure increment per unit volume, h is half the height of the micro element.

According to the sectional shear force distribution formula at any position in the
fracture, the distribution law of shear stress along the fracture width direction can be
obtained based on the stress analysis of the micro element

τ = −y
dp
dx

(12)

The order of the pressure gradient in x direction is

A = −dp
dx

(13)

Besides, the flow core zone is in the symmetric region of the fracture center when
Bingham fluid flows in the fracture (see Figure 3).
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Figure 3. Sectional shear force distribution [32].

Assuming that the shear stress on the edge of the flow core zone is τ0, the distribution
of shear stress is [32]

τ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0,−r0 < y < r0

τ0, y = ±r0

Ay, r0 < |y| < b
2

Ab
2 , y = ± b

2

(14)

thus, we can obtain

τ0 = −r0
dp
dx

(15)

That is, the radius of the flow core area is

r0 = −τ0·A−1 (16)

In addition, the flow core area is not greater than the fracture width

r0 ≤ b
2

(17)

thus, we can obtain [47]

− dp
dx

≥ 2τ0

b
(18)

Equation (18) shows that there is a starting pressure gradient when unsteady Bingham
slurry flows

λ =
2τ0

b
(19)

Combining Equations (11) and (12) results in

dv
dy

=
τ0

μt0 ekt +
y

μt0 ekt ·
dp
dx

(20)

The boundary conditions can be written as⎧⎪⎨
⎪⎩

y = ± b
2 , v = 0

y ≤ r0, v = v
r0 ≤ b

2

(21)

Substituting Equation (21) into Equation (20), the benchmark solution of velocity can
be given as [47]

v =

⎧⎪⎨
⎪⎩

− b2−4y2

8μt0 ekt
dp
dx − τ0

μt0 ekt

(
b
2 − |y|

)
, r0 ≤ |y| ≤ b

2

− b2−4r0
2

8μt0 ekt
dp
dx − τ0

μt0 ekt

(
b
2 − r0

)
, |y| ≤ r0

(22)

By integrating and averaging the slurry velocity in the fracture width direction, the
average slurry velocity in the fracture can be obtained as [47]
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v =
−b2

12μt0 ekt

⎡
⎢⎣dp

dx
+

3τ0

b
+

4τ0
3
(

dp
dx

)−2

b3

⎤
⎥⎦ (23)

Assuming that the grouting flow is Q, then

Q = 2πxbv =
−b3πx
6μt0 ekt

⎡
⎢⎣dp

dx
+

3τ0

b
+

4τ0
3
(

dp
dx

)−2

b3

⎤
⎥⎦ (24)

Considering the pressure gradient of slurry is generally much greater than its own
shear yield stress in grouting engineering, the high-order minor term in Equation (24) can
be ignored and integrate x in Equation (24)

p = −3τ0

b
x − 6μt0 ektQ

πb3 · lnx + C (25)

The injection amount of slurry is equal to the diffusion amount of slurry in the fracture
according to the law of mass conservation, we have

Qt = bπ
(

rt
2 − rc

2
)

(26)

The radius of grouting hole, rc, can be ignored since the grouting hole size is very
small compared with the slurry diffusion area, Equation (26) can be written as

t =
Q

πbrt2 (27)

With the diffusion of slurry, the slurry pressure in the fracture gradually decreases. When
the farthest point of slurry diffusion is rt, the slurry stops diffusion. Then we can obtain{

x = rt, p = p0
x = rc, t = 0

(28)

By substituting Equation (28) into Equation (25), the relationship between grouting
pressure and slurry diffusion distance can be obtained

p = p0 +
3τ0

b
(rt − rc) +

6μt0 e
kQ

πbrt2 Q
πb3 ln

rt

rc
(29)

Equation (29) shows the grouting pressure required for predetermined slurry diffusion
radius can be obtained by known grouting hole pressure and injection flow. Slurry prop-
erties, fracture parameters, grouting parameters, and water pressure are the parameters
affecting the slurry diffusion process.

4. Validation with In Situ Engineering

4.1. Overview of the Chensilou Coal Mine

The Chensilou Coal Mine is located in the northeast of Yongcheng-Xiayi coal mining
area, Henan Province in China (Figure 4) [48]. It covers an area of 62 square kilometers
and has an annual production of 4.5 million metric tons. Working Face 2509 is mined in
22 coal seams, creating a complex structure and fold developed with an average thickness
of 2.34 m; 22 normal faults were actually exposed during roadway excavation. According to
the hydrogeological data collected during the roadway excavation, karst and fractures are
relatively developed, which belong to the aquifer with medium water abundance, and the
indirect water-filled source of Working Face 2509 is limestone water in the upper Taiyuan
formation (L11–L8). The 22 coal seam floors are 41.55 m, 60.16 m, 70.16 m, and 75.19 m away
from L11, L10, L9, and L8 limestone of upper Taiyuan formation, respectively (Figure 5).

According to observation data of water pressure, the floor of Working Face 2509 was
subject to the highest hydrostatic pressure of limestone aquifer in the upper Taiyuan
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formation is 5.34 MPa. The calculation formula of safe head pressure in working face floor
according to the NCMSA was [46]

P = Ts·M (30)

where P is the water pressure at the base of the floor aquitard (MPa), TS is the water inrush
coefficient (MPa/m), the NCMSA states that the water inrush coefficient should not exceed
0.06 MPa/m in an area where the coal seam floor has been fractured or 0.1 MPa/m in an
unfractured area, M is the thickness of the aquitard (m).

As the floor of Working Face 2509 was complex a structure and fold developed, so the
TS was selected according to the seam floor has been fractured to calculate the thickness of
the aquitard. Then [46]

M =
P

0.06
(31)

Figure 4. Location of the study area.

Therefore, to make the aquifuge thickness of Working Face 2509’s floor reach the
safety aquifuge (89 m) and realize the role of blocking water, it was finally determined to
transform L8 to an aquitard, thereby ensuring the safe mining of Working Face 2509.

4.2. Detection Results of Water Abundance of Working Face Floor

From Figure 6, we can see that 11 areas showed an attenuated secondary magnetic
field under TEM; i.e., zones A, B, . . . , K, were all located 50 m below the floor of Working
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Face 2509, and the water-rich areas were located 70 m below working face floor. It was
believed that L8 was rich in water in these zones.

Figure 5. Histogram of the floor strata.

As the most direct and accurate method, drilling was often used to determine the
distribution of water rich areas in the floor of working face. A total of 63 boreholes were
drilled in the L8 aquifer and the water inflow was analyzed to verify the abnormal areas
obtained by TEM. For the various boreholes, by water inflow group as shown in Figure 7,
the numbers with water inflow above 5 m3/h and exceeding 50 m3/h were 52 and 10,
respectively. The drilling results confirmed the existence of the water rich areas in the floor
detected by TEM in Working Face 2509.

4.3. Determination of Grouting Pressure

Equation (29) shows the relationship between slurry diffusion distance and the grout-
ing pump pressure. According to grouting material of the Chensilou Coal Mine, the
following parameters were applied: the hydrostatic pressure p0 was 5.34 MPa, the fracture
width b was 0.5 mm, the radius of grouting hole rc was 4.45 × 10−2 m2, and the slurry
injection flow Q was 150 L/min. According to the existing research results, and by taking
the effects of the viscosity, separated water ratio, and compressive strength of stone body of
slurry into account, the value of w/c of the slurry should be 0.8–1.0. The larger the w/c, the
easier the slurry settles and the higher the stone rate [49]. To ensure the filling and blocking
effect owing to the large water inflow of the floor of Working Face 2509, the w/c of slurry
selected was 1.0, and hence the slurry can be regarded as Bingham fluid.
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Figure 6. TEM results along the gate road of Working Face 2509 before grouting: (a) TEM detection
profile; (b) the upper gate road; (c) the lower gate road.

Figure 7. Number of boreholes with different water inflows (Q).

Substituting the above data into Equation (29), the relationship between the slurry
diffusion distance with grouting time under different grouting pressure is shown in Figure 8.
As can be seen from Figure 8, the grout diffusion distance has a prominent stage characteristic
with the change of grouting pump pressure. The slurry diffusion distance increases with
the increase in grouting time with different grouting pressure; however, the growth rate
decreases gradually and the change rate of slurry diffusion distance becomes smaller and
smaller. When the grouting time reaches a certain value, the slurry diffusion distance will
tend to a stable value. If the grouting was continued at this time, the slurry diffusion range
was limited and the grouting became more and more difficult.
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Figure 8. Variation of slurry diffusion distance with grouting time under different grouting pressures.

The general view was that the greater the grouting pressure, the greater the slurry
diffusion distance. However, higher grouting pressure will expand the fracture and widen
the flow channel, and the time required to reach the limit diffusion distance will also
increase, even leading to roadway floor and wall heave, and the slurry will diffuse to
the section that does not need reinforcement [1]. Therefore, the grouting pressure should
be reasonably determined. The research showed that, after high-pressure grouting, the
diffusion distance of Bingham slurry in the fracture development direction was designed
as 20–30 m [7], and the conservative value of 20 m was adopted in this paper. According to
these analysis results, the final pressure was 12 MPa when the designed slurry diffusion
radius rt was 20 m.

4.4. Testing the Effectiveness of Grouting Reinforcement

Grouting effectiveness test was carried out on floor limestone aquifers of Working
Face 2509. The results showed that the areas and size of the water rich areas detected by
TEM was significantly reduced, indicating that the grouting was effective (see Figure 9).

Figure 9. TEM results along the gate road of Working Face 2509 after grouting: (a) the upper gate
road; (b) the lower gate road.
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To determine the effectiveness of the grouting reinforcement, the water rich areas
detected by TEM named L, M, N, and O were drilled, two or three test holes in each drilling
site. As was already mentioned, it was considered as a safe condition if the water flow
of a single test hole was less than 5 m3/h. A total of nine testing holes were drilled and
the test results are shown in Table 1, which displays that the smallest water inflow was
0.5 m3/h (N1 hole), and the largest was 4.5 m3/h (L2 hole). Water inflows at all test holes
were under 5 m3/h and reduced clearly compared with those listed in Figure 7. It was
proved by practice that the grouting reinforcement was successful for no floor water inrush
occurred during production of Working Face 2509.

Table 1. Water inflow statistics of the drilling test.

Zone No. Hole No. Water Inflow (m3/h)

L
L1 3
L2 4.5

M
M1 2
M2 4
M3 2

N
N1 0.5
N2 3

O
O1 3.5
O2 4

5. Conclusions

To prevent water-bursting disasters from occurring in the floor of a mine in the North
China coalfield and to minimize deaths and economic loss, grouting transformation for
limestone aquifers in coal floor is an effective means.

In this paper, by regarding slurry as a Bingham liquid of time-dependent behavior, the
slurry diffusion mechanism in the horizontal fracture of a fractured aquifer was studied.
A theoretical model of one-dimensional permeation grouting considering the temporal and
spatial variation of slurry viscosity under constant grouting rate was developed. In this
model, the grouting pressure required for predetermined slurry diffusion radius can be
obtained by known grouting hole pressure and injection flow.

The mathematical modeling of the suspension diffusion process was verified in the
Chensilou Coal Mine. To ensure the safe mining of Working Face 2509, the floor of the
working face should be grouted to the bottom of the L8 limestone aquifer, according to
the geological conditions of Working Face 2509 and the water inrush coefficient, so as to
make the floor a safe water resisting layer of the working face that reaches 89 m. The
grouting areas of fractured aquifer were determined according to TEM and drilling results,
the grouting pressure with predetermined slurry diffusion distance was determined by
using the slurry diffusion theoretical model, and it was found that the final pressure was
12 MPa when the designed slurry diffusion radius was 20 m. To guarantee the grouting
quality under high water pressure, cement was regard as the main dry material of the
grouting slurry and the grouting method of repeated pipe fixation was used. Finally, it has
been proved by practice that the grouting reinforcement was successful in eliminating floor
water inrush during production of Working Face 2509.
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Abstract: To study the mining stress evolution law of inclined backfilled stope in deep mining, this
paper first proposes a method for determining the parameters of the brittle-ductile transition model
corresponding to the Hoek–Brown criterion and Mohr-Coulomb criterion under high geostress. Then,
a model composed of inclined backfilled stopes with different depths is established to simulate the
sequential mining process of ore bodies with varying depths from shallow to deep. The numerical
model’s stratum displacement, rock mass stress distribution, and risk factors show that the mining-
induced stress will move to the upper stopes and the stratum below the deepest stope. The transfer
range and influence degree of mining-induced stress will increase with the increase of the deep mining,
resulting in the most dangerous backfilled stope occurring one to two layers above the deepest stope
and the apparent stress concentration area occurring below the deepest stope. To prevent disasters
caused by mining stress, pillars in inclined deep stopes should have large safety factors. Replacing
low-strength backfills with high-strength backfills can reduce the stress concentration in the stratum
below the deepest stope.

Keywords: deep mining; mining disturbance; stress evolution; brittle-ductile transition; backfilled stopes

MSC: 74A10; 74L10; 74S20

1. Introduction

Backfill mining has become a standard mining method for deep metal mines [1–3].
With the increase of metal mines’ mining depth, the in situ stress of the formation in-
creases [4,5]. A large mining-induced stress field will form near the excavation area with
the high geostress environment, which will increase the risk of instability and rockburst
in backfilled stopes [6,7]. Studying the mining stress evolution law of surrounding rock
and backfill is helpful to better understand the stress state of deep backfilled stopes and to
prevent disasters [8,9]. However, due to the influence of factors such as the in situ stress
condition, orebody shape, stope size, and the mechanical properties of surrounding rock
and backfill, it is difficult to obtain a reasonable evolution law of mining stress in backfilled
stopes. Therefore, scholars have carried out a lot of research on this.

Li L. et al. studied the analytical solution of the stress state of vertical backfilled
stopes [10], and the nonuniform distribution of vertical stress in the horizontal direction
is considered [11]. Ting et al. proposed the analytical solution of the vertical stress of
the inclined mine stope with non-parallel walls [12]. Li L. et al. studied the stress state
of inclined backfilled stopes with FLAC2D [13]. They found that the cohesion, friction
angle, Poisson’s ratio, and expansion angle of backfills significantly impact the stress
distribution when the geometry of the stope remains unchanged. The vertical stress
decreases significantly along the hanging wall and central line of the stope when the
stope inclination angle is increased. Still, the horizontal stress along the footwall decreases
significantly with the rise in the stope inclination. Jahanbakhshzadeh et al. studied the stress
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distribution of the inclined backfilled stope with void space on the top by FLAC, obtained
conclusions similar to Li L. et al., and further proposed the new analytical solution for
the stress state in included backfilled mine stopes based on Marston-arch equation [14,15].
Yan et al. proposed a three-dimensional analytical solution for inclined backfilled stops
based on the limit equilibrium theory and verified it by the numerical simulation [16].
Based on the above research about the single stope, Falaknaz et al. simulated the stress
distribution of two adjacent vertical stopes. They found that the geometry and backfill
characteristics of the second stope will affect the stress distribution of the first backfilled
stope. The greater the buried depth of the two stopes, the higher the stress level of the
stope [17].

The backfill and surrounding rock’s mechanical properties determine the supporting
force that the backfill can provide to the surrounding rock and then affect the stress
distribution of them. Liu et al. studied the reasonable matches between and rock mass [18].
They found that the strength and stiffness of rock mass are the dominant factors determining
the instability of the surrounding rock and backfill system. When the elastic modulus of rock
mass is constant, the system’s stability declines with the decrease of the cement-tailing ratio.
To simulate the failure process of the surrounding rock and backfill system, some scholars
carried out the conventional triaxial test of rock-backfill composite specimens [19,20].
They found that multiple peaks will appear in the failure process of combined specimens.
Increasing the volume fraction of the backfill will reduce the peak stress of the combined
sample but increase the ductility of the post-peak deformation. To explain the mechanism
of long-term stress growth in the backed stope, Qi et al. carried out a numerical simulation
considering the creep behaviour of rock mass and the time-dependent characteristics
of backfill [21]. They found that the squeeze-induced stress effect is the reason for the
long-term stress growth in the backfilled stope [22].

The current research has revealed the mining stress distribution and the interaction
mechanism between surrounding rock and backfill to a certain extent. However, there are
still two shortcomings in the simulation research on the mining stress evolution law in
deep metal mines. On the one hand, the research on the mining stress evolution law mainly
focused on the horizontal or vertical orebody [23,24], and a few studies on the inclined
orebody only analysed the mining stress evolution law in a single stope. The ore body dips
in metal mines are different from those in coal mines. Specifically, the coal mine orebodies
are primarily horizontal, while most metal mine orebodies are inclined. The results of
the in situ stress measurements conducted at deep levels in metal mines show that the
growth rate of the horizontal stress is significantly larger than that of the vertical stress at
the post-mining stage, and the mining stress in the surrounding rock is transferred from
the top to bottom [25,26]. Therefore, the mining stress evolution law summarized from
horizontal orebodies is not entirely applicable to the metal mines.

On the other hand, most of these simulation studies used conventional plastic models
or strain-softening models [26], which are not affected by minimum principal stress, to
simulate the surrounding rock and backfill of stopes, which cannot sufficiently simulate
the deformation behaviour of the deep rock mass. Many triaxial compression tests of
rock materials have shown that the rock materials will have the characteristics of brittle-
ductile transition when their post-peak deformation is affected by the minimum principal
stress under triaxial stress [27,28]. Some triaxial compression tests with cemented backfill
samples show that the backfill also has a brittle-ductile transition behaviour similar to that
of rock materials [29,30]. Under the high geostress, mining-induced stress will make the
surrounding rock and backfill of the stope enter the post-peak stage. Therefore, the brittle-
ductile transition behaviour of the rock mass and backfill will also impact the evolution law
of the mining stress [31]. The in situ stress restoration test conducted by Heping Xie et al.
also shows that under the in situ stress, the post-peak deformation characteristics of deep
rock cores are more ductile than those of shallow rock cores [32].

To study the evolution law of mining stress in inclined backfilled stopes under high
geostress in deep mining, a strain-softening model considering the brittle-ductile transition
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behaviour of rock mass and backfill is proposed in this paper. The method is first proposed
for determining the parameters of the brittle-ductile transition model corresponding to
the H-B criterion and the M-C criterion to simulate rock mass and backfill, respectively.
Then the proposed model is verified with a conventional triaxial compression numerical
test in Section 2.1. In Section 2.2, based on the geological data and stope parameters of
the Sanshandao gold mine, a model composed of multiple inclined backfilled stopes with
different depths is established to simulate the process of sequential mining and filling ore
bodies in different depths from shallow to deep. Then, the simulation results of the strata
displacement, the stress distribution of rock mass, and risk factor distribution is described
in Section 3. Finally, the stress evolution law in the backfilled stope and the influence of
stope depth and backfill mechanical properties is discussed in Section 4.

2. Materials and Methods

2.1. Brittle-Ductile Transition Model
2.1.1. Simulation Theory

In the conventional triaxial test of rock materials, rock materials have the post-peak
deformation characteristics of changing from brittleness to ductility with the increase of the
confining pressure [27,33]. Wu X. et al. proposed a numerical model of the brittle-ductile
transition to calculate the stress distribution and deformation after tunnel excavation under
high geostress [34]. This numerical model adds the brittle-ductile transition formula related
to the confining pressure based on the strain-softening model, which can simulate the
transformation process of post-peak deformation characteristics of rock materials from
brittleness to ductility with the increase of confining pressure. According to the results of
the rock triaxial compression test, there is a nonlinear relationship between the confining
pressure, σ3, and residual strength, σ∗

1 [35], which can be expressed as:

σ∗
1 (σ3) = σc

1(σ3)− β·e−γ·σ3 (1)

where σc
1(σ3) is the principal yield stress corresponding to the confining pressure σ3; β is

the difference between peak and residual strength under the uniaxial compression test; γ is
an exponential parameter. The conventional triaxial test of rock materials can fit β and γ
through Equation (1).

To simulate the brittle-ductile transition, it is also necessary to establish the relationship
between the post-peak strength parameters and minimum principal stress according to
the strength criterion based on Equation (1). In the numerical simulation, the realization
method of the strain-softening model is to make the strength parameter of the model
element in the plastic stage decrease with the increase of plastic strain. The yield stress of
the model element finally drops to the residual stress level.

Based on the Mohr-Coulomb (M-C) strength criterion, the relationship between peak
strength, σc

1, and confining pressure, σ3, is shown as:

σc
1(σ3) = Npσ3 + 2c

√
Np (2)

where c is the cohesion of the material; Np is the confinement coefficient, which remains
unchanged within the plastic region. The relationship between Np and friction angle of the
rock is as follows:

NP =
1 + sin φ

1 − sin φ
(3)

where φ is the friction angle of the material.
According to the principle of the strain-softening model, the strain-softening model

based on the M-C criterion needs to gradually adjust the cohesion of the element from c to
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c* with the increase of plastic deformation after the element enters the plastic stage. Based
on Equations (1) and (2), the relationship between c and c* satisfies:

σ3Np + 2c∗
√

Np = σ3Np + 2c
√

Np − β·e−γ·σ3 (4)

After simplifying Equation (4), the following relationship can be obtained:

c∗ = c − β·e−γ·σ3

2
√

Np
(5)

Based on the Hoek–Brown (H–B) empirical strength criterion of rock [36,37], the
relationship between peak strength, σc

1, and confining pressure, σ3, can be obtained as
follows:

σc
1(σ3) = σ3 + σci

(
mb

σ3

σci
+ s

)a
(6)

where σci is the unconfined compressive strength. mb, s, and a are the rock mass material
constants obtained by fitting from the results of the conventional triaxial test of rock through
Equation (6). For intact rock, s = 1 and a = 0.5.

The strain-softening model based on the H–B criterion also needs to change the
mechanical parameters σci to σ∗

ci gradually with the increase of plastic deformation to
achieve the strain-softening effect. Based on Equations (1) and (6), the relationship between
σci and σ∗

ci can be expressed as follows:

σ∗
ci

(
mb

σ3

σ∗
ci
+ s

)a
= σci

(
mb

σ3

σci
+ s

)a
− β·e−γ·σ3 (7)

Equation (7) cannot be simplified to the same expression as Equation (5). Although
the numerical method can obtain the accurate value of σ∗

ci, the calculation speed of the
model will be affected. Therefore, it is necessary to deduce the approximate relationship to
calculate σ∗

ci with σ3. When σ3 is 0, Equation (7) can be expressed as follows:

σ∗
ci = σci − β

sa (8)

When σ3 is large enough, the post-peak deformation of the material will be ductility,
at this time σ∗

ci = σci. Then the equation is obtained as follows:

σ∗
ci = σci − β

sa e−γ′ ·σ3 (9)

where γ′ is the exponential parameter of the strain-softening model based on the H–B
criterion.

Before the simulation calculation, Equation (7) is used to calculate the corresponding
numerical solution of σ∗

ci under multiple σ3 and then use Equation (9) to fit γ′. During the
simulation, σ∗

ci is calculated directly by using Equation (9), and no numerical solution is
required. This way can reduce the calculation time significantly.

2.1.2. Verification Simulation

The brittle-ductile transition model is used it to simulate the conventional triaxial com-
pression test in FLAC3D software to verify its effectiveness. The mechanical parameters of
simulated rock material are determined according to the engineering geological exploration
report and the literature of the Sanshandao Gold Mine [38,39]. The Young’s modulus of the
simulated rock material is set to 8 GPa based on the modulus of the ore body. The peak
strength and residual strength of the simulated rock material under different confining
pressures are shown in Table 1. Referring to the latest triaxial rock test research conducted
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on the high-stiffness test machine [40], the residual strength of simulated rock material
under uniaxial compression is corrected to 0 to ensure the mining safety.

Table 1. The peak strength and residual strength of the simulated rock material.

Confining Pressure (MPa) Peak Strength (MPa) Residual Strength (MPa)

0.00 64.54 0.00
5.00 87.28 43.52
10.00 106.82 75.23
15.00 124.44 101.64
20.00 140.75 124.30
25.00 156.09 144.21
30.00 170.67 162.10

As shown in Table 1, the relationship between the peak strength of the simulated rock
material and the confining pressure is close to the Hoek–Brown failure criterion. Therefore,
the relevant parameters of the Brittle-ductile transition model can be calculated according
to Equations (6) and (9). The parameters of the Brittle-ductile transition model σci, mb, s, a,
β, γ, and γ′ for the simulated rock material are 72.16 MPa, 7.22, 0.8, 0.5, 60.62 MPa, 0.07,
and 0.08, respectively. The results of the conventional triaxial compression test simulated
by these parameters are shown in Figure 1.

Figure 1. Stress-strain curves of the simulated rock material under different confining pressures.

From Table 1 and Figure 1, it is clear that the proposed brittle-ductile transition model
can reasonably simulate the behaviour whereby the peak strength and residual strength of
rock materials increase with the increase in the confining pressure. Therefore, the Brittle-
ductile transition model can analyse inclined backfilled stopes’ mining stress evolution law
at different depths.

2.2. Simulation of Backfill Mining
2.2.1. Numerical Model of Stopes

The backfill mining process of orebody from −510 m to −960 m is simulated with
FLAC3D. As shown in Figure 2, the height (H) of the model is 960 m, the top elevation is
−300 m, the bottom elevation is −1260 m, the length (L1) along the orebody strike is 250 m,
and the length (L2) perpendicular to the orebody strike is 1000 m.
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Figure 2. The simulation model of backfilled stopes.

The orebody is in the centre of the model, with a thickness of 10 m and an inclination
of 40◦. The width (l) of the stope is 50 m and the height (h) is 45 m. The width of barrier
pillars and the height of bottom pillars are both 3 m. Five stopes at each depth in the model
are symmetrical, and there are 11 floors of stopes from top to bottom.

Grids of the simulation model are hex-dominant meshes created by Itasca’s automatic
grid generator, Griddle. In order to balance the calculation accuracy and speed, the grid
side length of the model boundary is set to 50 m, and the grid side length of stopes and
pillars is set to 2 m. The grids of the transition area are automatically generated by Griddle.

2.2.2. Model Parameters

1. Parameters of the in situ stress field

To truly simulate the mining stress transfer process caused by backfill mining, obtain-
ing the in situ stress in the case mine is necessary. The Sanshandao gold mine is located in
the northwest of Jiaozhou. According to the research of Peng Li et al. [41], the maximum
principal in situ stress in the northwest of Jiaozhou is the horizontal stress perpendicular
to the strike of the orebody σh max, the intermediate principal in situ stress is the vertical
stress σv, and the minimum principal in situ stress is the horizontal stress along the strike
of the orebody σh min. The variation law of each stress with depth H is as follows:

σh max = 0.0510H + 1.9045
σh min = 0.0276H − 0.2094

σv = 0.0303H − 0.4355
(10)

In the generation of the in situ stress model, vertical stress of 8.65 MPa and 37.74 MPa
were applied to the top (−300 m) and bottom (−1260 m) of the numerical model shown in
Figure 2 according to Equation (10). At the same time, σh max and σh min were calculated
according to Equation (10) and applied to the two sides of the model in the XX direction
and YY direction, respectively.

2. Parameters of rock masses

The Sanshandao gold mine, which mainly applies the backfill mining method, is a
super large metal mine with a mining depth of over 1 km. According to the engineering
geological survey reports and rock mechanical tests in the laboratory of the mine, the
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peak stress of rock masses from there applies to the H–B empirical strength criterion [38].
Thus, the physical and mechanical parameters of rock masses are determined, as shown in
Table 2.

Table 2. The physical and mechanical parameters of rock masses (E is the Young’s modulus; σci is the
unconfined compressive strength; mb, s, and a are the rock mass material constants of H–B empirical
strength criterion; β, γ, and γ′ are residual strength parameters.).

Name
Density
(kg/m3)

Poisson’s
Ratio

E
(GPa)

σci
(MPa)

mb s a β
(MPa)

γ γ′

Hanging wall 2700 0.2 11 110.40 8.60 0.8 0.5 96.27 0.04 0.048
Orebody 2700 0.2 8 71.89 7.24 0.8 0.5 63.53 0.07 0.081
Footwall 2700 0.25 16 160.71 11.28 0.8 0.5 139.15 0.03 0.038

Some studies have shown that the uniaxial compressive strength of rock increases
with the buried depth in the coal mine [42], but the similar laws did not appear in the
testing and research on the rock cores from the Sanshandao gold mine with the depth
of 1 km [39]. Therefore, this paper makes a conservative assumption that the uniaxial
compressive strength of the rock does not increase with the increase of depth.

3. Parameters of the backfill

Studies show that the mechanical parameters of the backfill will affect the stress
distribution of the backfilled stope, and changing the materials of the backfill and the
mixing proportion of the backfill can adjust these mechanical parameters. Therefore, it is
necessary to compare the effects of different strength backfills to improve the stope stress
state to determine the best filling scheme.

The common materials of the backfill in metal mines are non-cemented tailings, ce-
mented tailings, and cemented block stones. The non-cemented backfill generally needs
to be wrapped with cemented tailings to form a low-strength cemented backfill. There-
fore, three different backfill materials were designed to analyse the stress evolution law of
backfilled stope according to the mechanical parameters of the backfill commonly used
in metal mines. The three materials of the backfill are: low strength cemented tailings,
high strength cemented tailings, and cemented block stones. Their uniaxial compressive
strengths (UCS) are 1 MPa, 3 MPa, and 5 MPa, respectively The experiments showed that
the strength criterion of backfill is suitable for the M-C criterion [30]. The specific physical
and mechanical parameters are shown in Table 3.

Table 3. The physical and mechanical parameters of backfill (E is the Young’s modulus; c is the
cohesion of the backfill; φ is the friction angle of the backfill; β and γ are residual strength parameters.).

Name
Density
(kg/m3)

Poisson’s
Ratio

E
(GPa)

UCS (MPa)
c

(MPa)
φ
(◦)

β
(MPa)

γ

Low strength cemented tailings 2000 0.3 0.2 1 0.35 26 0.86 4.13
High strength cemented tailings 2000 0.3 0.3 3 0.90 30 2.58 3.74

Cemented block stones 2300 0.3 0.4 5 1.30 35 4.30 2.19

2.2.3. Numerical Simulation Procedure

To study the stress evolution law of backfilled stope, the numerical simulation was
divided into the following three steps:

Step 1: Establishing the model. The linear elastic numerical model was established
according to the model size in Figure 2 and the physical and mechanical parameters of rock
masses in Table 2. The parameters of the overlying strata were the same as those of the
hanging wall rock mass.

Step 2: Applying in situ stress. The boundary stress was applied to the model ac-
cording to the in situ stress field parameters in Section 2.2.2. After the calculation to the
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equilibrium state, the linear elastic model was modified to the plastic model with the H–B
criterion, and the displacement field was reset to 0.

Step 3: Mining the orebody within the stopes layer by layer. Starting from the −510 m,
the orebody within the five stopes in the current layer is modified to the null model and
one cycle is performed to update the model. Then, the null model within the stope was
modified to the M-C model according to the physical and mechanical parameters in Table 3
to simulate the backfill. A 1 m high null model was reserved between the backfill and
the bottom pillar at the top of the stope to simulate the effect of the backfill gap. Finally,
the stopes in the next layer would be excavated after the model was calculated to the
equilibrium state. Since the shallow part of the mine is generally filled with low-strength
cemented tailings, the −825 m and above stopes were filled with low-strength cemented
tailings. A comparative study of three backfilling methods of low-strength cemented
tailings, high-strength cemented tailings, and cemented block stones was carried out only
for the stopes in layers of −870 m, −915 m and −960 m.

2.2.4. Monitoring Method

To obtain the variation law of the deformation and stress of backfilled stopes with the
mining, 33 stress monitoring points are set to monitor the stress state of the barrier pillars,
bottom pillars, and backfilled stopes, as shown in Figure 3. Since the structure and stress
state of the model are symmetrical along the y-axis, the simulation program only records
the stress of the middle stope in each layer.

Figure 3. Schematic diagram of the location of stress monitoring points. (a) The view perpendicular
to the Y axis; (b) The view perpendicular to the ore body.

102



Mathematics 2022, 10, 1308

3. Numerical Simulation Results

3.1. Formation Displacement

Figures 4 and 5 are cloud diagrams of the horizontal and vertical displacements of the
ground, respectively. They are the model section at the middle position along the orebody
strike (y = 125 m), and the number in the upper left corner of each figure represents the
mining depth. The color ramps in the cloud diagrams of different mining depths adopt
different scales to clearly show the distribution of displacement field near the ore body.

Figure 4. Horizontal displacement of ground at different depths of mining.

Figure 5. Vertical displacement of ground at different depths of mining.
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After mining and filling the stopes, the horizontal displacement cloud diagram is
in the shape of a water droplet, like a water droplet flowing along the inclined orebody.
The horizontal displacement caused by cut and fill mining has two characteristics: the
large influence range and the lag of the maximum displacement. In terms of the influence
range, it can be seen from Figure 4 that even when mining the −960 m stope, the horizontal
displacement of the −510 m stratum is still at a relatively large level, indicating that the
−510 m stratum has been affected by deep mining. The specific performance of the lag
of maximum displacement is that the maximum horizontal displacement of the ground
always occurs in the upper stope during mining. As the mining depth increases, the stope
where the maximum horizontal displacement occurs is farther from the deepest stope.
The maximum horizontal displacement occurs in the −600 m and −645 m stopes when
mining the −690 m stope, and the maximum horizontal displacement occurs at −825 m
and −875 m stopes when mining the −960 m stope.

As shown in Figure 5, the vertical displacement cloud diagram formed by backfill
mining of the inclined orebody is smoky, like the smoke rising from the hanging wall of
the deepest stope. Compared with the horizontal displacement, the vertical displacement
caused by backfill mining has a smaller influence range, and the maximum displacement
of the surrounding rock in the hanging wall is always above the deepest stope. Starting
from the mining of the −780 m stope, the vertical displacement of the surrounding rock
in the hanging wall of the −510 m stope has been significantly smaller than the main
deformation area, indicating that the influence of deep mining on shallow stopes has been
weakened. In addition, the surrounding rock in the footwall of the shallow stope will
show vertical displacement upward, the vertical displacement of the centre position in the
vertical direction of each deep stope is more significant, and the vertical displacement near
the bottom pillar is smaller.

3.2. Stress Distribution of Rock Mass

Figure 6 shows the distribution of stratum stress along the midline section of the
stope (y = 125 m) when mining −600 m, −780 m, and −960 m stopes. The color ramps
in the cloud diagrams of different mining depths use different scales to clearly show the
stress concentration areas in the stratum. On the whole, there are low-stress areas in the
surrounding rocks of the hanging wall and footwall near the mined stope. As the depth
increases, the range of the low-stress areas decreases. The low-stress area appears in the
bottom pillar because the in situ stress initially acting on the mined stope is transferred to
the adjacent pillars.

Due to the impact of mining, a prominent high-stress area will appear below the deep-
est stope. The stress increase areas in the XX direction are symmetrically distributed along
the vertical direction, while the stress increase areas in the ZZ direction are concentrated in
the footwall.

After excavating the orebody in the stope, the in situ stress acting on the orebody will
transfer to the bottom and barrier pillars of the stope. Figure 7 is a diagram of the stratum
stress distribution along the centre line of the barrier pillar (y = 100 m). The X-X and Z-Z
stresses of barrier pillars in backfilled stopes and adjacent strata have increased noticeably,
forming a high-stress area. The area with the highest stress is not on the barrier pillar in the
deepest stope but rather on the barrier pillars one or two stopes above the deepest stope.
This phenomenon corresponds to Figure 4, where the maximum horizontal displacement
appears above the deepest stope.
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Figure 6. Stress distribution along the stope’s midline (y = 125 m) (tensile stress is positive). (a) Hori-
zontal stress distribution, σxx; (b) Vertical stress distribution, σzz.

3.3. Risk Factor

Since the maximum principal stress at the moment of rock failure will increase with
the minimum principal stress under the triaxial compression test, the critical maximum
principal stress, σc

1, is calculated by Equations (2) and (6) for filling and rock mass, respec-
tively. The ratio of the current principal stress, σ1, to the critical stress, σc

1, represents the
risk factor, f. The cloud diagram of risk factor, f, is shown in Figure 8.
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Figure 7. Stress distribution along the centre line of the barrier pillars (y = 100 m) (tensile stress is
positive). (a) Horizontal stress distribution, σxx; (b) Vertical stress distribution, σzz.

Figure 8 is a cloud diagram of the stratum risk factor along the stope’s midline
(y = 125 m) and along the barrier pillars’ midline (y = 100 m). Due to the low stress and
high strength parameters, the risk coefficient of rock mass in the footwall is generally lower
than that in the hanging wall. After backfill mining inclined ore bodies, mining stress
transfer results in low-risk areas in the rock mass around the middle of each stope, high-risk
areas in the bottom and barrier pillars, and the surrounding rock mass. As the mining
depth increases, the range of the low-risk areas caused by mining stress transfer is reduced,
and the range of the high-risk areas is increased.

From Figure 8, we can find that the location with the highest risk factor near the barrier
pillars is not at the deepest stope, but rather at the position of one or two stopes above. As
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the mining depth increases, the distance between the position of the maximum risk factor
and the deepest stope tends to increase. Therefore, it is necessary to discuss the influence
of mining stress generated by deep mining on the upper stope structure in detail.

Figure 8. Cloud diagram of risk factor (σ1/σc
1). (a) The risk factor along the stope’s midline

(y = 125 m); (b) The risk factor along the barrier pillars’ midline (y = 100 m).
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4. Discussion

4.1. Stress Evolution Law of Backfilled Stopes

From the results of Sections 3.2 and 3.3, it can be seen that after excavation of the
orebody in the stope, the in situ stress mainly transfers to barrier pillars and bottom pillars
around the stope. Thus, monitoring the stress changes at the midpoints of barrier pillars
and bottom pillars can reflect the stress evolution law of all backfilled stopes.

Due to different in situ stresses to varying depths of underground mines, using the
stress value to express the stress evolution law of stopes is not conducive to comparing
the effects of the mining depth. To make the obtained stress evolution law of stopes more
universal, the stress concentration ratio (SCR) is used to represent the stress growth of rock
mass under mining-induced stress. The expression of SCR is as follows:

SCR =
σi

σ0
i
(i = x, y, z) (11)

where, σ0
i is the in situ stress at the measuring point in the i direction before the orebody is

excavated; σi is the real-time stress at the measuring point in the i direction.
The stress evolution laws of barrier and bottom pillars are discussed separately below.

SCR-XX is the concentration of σxx perpendicular to the strike of the ore body, SCR-YY is the
concentration of σyy parallel to the strike of the orebody, and SCR-ZZ is the concentration
of σzz in the vertical direction.

4.1.1. Barrier Pillars

Figure 9 is the change of SCR of the barrier pillars at different depths. Figure 9a–c
displays SCR-XX, SCR-YY, and SCR-ZZ of the barrier pillars, respectively.

The X-direction perpendicular to the strike of the orebody is the same as the direction
of the maximum principal stress of the in situ stress. It is evident from Figure 9a that the
SCR-XX values of all barrier pillars are continuously increasing with mining activities.
When the orebody in the stope is excavated, the barrier pillars in the current stope will bear
more significant transfer stress. Still, the SCR-XX increment of the barrier pillars caused by
excavation decreases with the increase of stope depth. The mining stress transferred to the
barrier pillars in the −555 stope during the excavation of the −555 stope is 2.35 times the
in situ stress, and the SCR-XX increment of the barrier pillars in the −960 stope dropped to
about 1.2 during the excavation of the −960 stope. Since the mine room and pillar at each
depth are the same, the decrease in the SCR-XX increment is due to the change of mining
stress transfer mode, not the difference in the stope structure.

Figure 9a shows that the transfer range of mining stress expands with increasing
mining depth. After excavating the orebody, the increase of SCR-XX of the barrier pillars
in the current stope is most apparent. Some stress is transferred to the barrier pillar in the
upper stopes and the rock mass below the current stope, causing the increase of SCR-XX
of barrier pillars in the upper stopes and the rock mass below. Judging from the effect of
causing rock mass SCR-XX changes, the range of mining stress transferred to upper stopes
is much more extensive than that to the lower rock mass. For example, when the −825 stope
was excavated, the SCR-XX of the above stopes had varying degrees of growth, while the
SCR-XX of the rock mass within the range of two stopes below increased significantly.

After excavating the orebody, the midpoint of the barrier pillar in the YY direction
was in a temporary unloading state. After filling the stope, the stress of the midpoint of
the barrier pillar in the YY direction will gradually increase and exceed the in situ stress.
Therefore, in Figure 9b, the SCR-YY of each barrier pillar in the stope will first decrease to a
negative value and then gradually increases to above 0. With the increase of mining depth,
the SCR-YY of barrier pillars at different depths is all approaching 0.5, which indicates that
the transfer law of mining stress in the Y direction of the barrier pillars at different depths
is the same.
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Figure 9. The change law of the stress concentration ratio (SCR) of the barrier pillars at different depths:
(a) the SCR in the XX direction, (b) the SCR in the YY direction, and (c) the SCR in the ZZ direction.
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The transfer law of the vertical stress on the barrier pillars is different from that
of horizontal stress, showing a law of increasing first and then decreasing slightly (see
Figure 9c). This phenomenon indicates that after mining deep ore bodies, the vertical stress
had transferred to the shallow barrier pillars moved to the deep. The reason for this law
may be that the rock mass in the hanging wall of the shallow stope will warp upward after
mining the deep stope, as shown in Figure 5, thus reducing the vertical stress transferred
from the rock mass in the hanging wall to the barrier pillars in the shallow stope.

4.1.2. Bottom Pillars

Figure 10 is the variation of the SCR of the bottom pillar at each depth. Figure 10a–c
display SCR-XX, SCR-YY, and SCR-ZZ of the bottom pillars respectively.

As shown in Figure 10a, the SCR-XX of the bottom pillar will increase significantly
after mining the stope above the bottom pillar, but it will decrease after mining the stope
below the bottom pillar. As the depth increases, the increase of SCR-XX of the bottom pillar
caused by mining the stope above the bottom pillar is greater, and the decrease of SCR-XX
caused by the stope below the mining bottom pillar is also greater. When mining deep
stopes, SCR-XX of the bottom pillar of the upper stope will gradually stabilize. The stable
value of SCR-XX of the bottom pillars is between 1.0 and 2.0, which decreases as the depth
of the bottom pillar increases.

The variation rule of SCR-YY of the bottom pillar is the same as that of SCR-XX. There
is also a law that mining the stope above the bottom pillar causes the SCR-YY of the bottom
pillar to increase, and mining the stope below the bottom pillar causes the SCR-YY of the
bottom pillar to decrease, see Figure 10b. The final value of the SCR-YY of the bottom
pillar in the shallow −510 stope is the largest, about 1.69. As the depth of the bottom pillar
increases, its final value of SCR-YY gradually decreases to about 1.4.

Figure 10c shows that the SCR-ZZ of the bottom pillar decreases significantly after
mining stopes above and below the bottom pillar due to the unloading effect of mining, and
the SCR-ZZ increases slightly after filling the stope below the bottom pillar. The final value
of the SCR-ZZ of the bottom pillar also gradually decreases as the depth of the bottom
pillar increases. The SCR-ZZ of the bottom pillar at −510 m eventually drops 0.83, while
the SCR-ZZ of the bottom pillar at −870 m eventually drops to 0.40.

4.2. Influence of Stope Depth on Stress Evolution

Figure 11 is a graph showing the variation of SCR-XX with the depth of the stope
along the direction of maximum principal stress for all stopes. The curves of different
colors represent different mining depths. Figure 11a,b are the SCR-XX of barrier pillars
and bottom pillars. It can be seen from Figure 11 that the SCR curve of barrier pillars and
bottom pillars shows a downward trend as a whole. After mining, the SCR of barrier pillars
and bottom pillars in deeper stopes is smaller than that of the shallower stopes. Because all
stopes in the model have the same size, the differences in SCR between pillars in different
stopes is caused by the depth.

There are two reasons why the SCR of barrier pillars and bottom pillars in the deep
stopes is lower than that in shallow stopes. One is that mining activities cause the horizontal
principal stress to move to shallow stopes along the hanging wall and footwall. The other
is that the shallow orebody’s in situ stress is low, and its safety factor is large so that it
can bear more mining-induced stress. Since the barrier pillar is a continuous whole in
the vertical direction, it can reflect the process of transferring the mining-induced stress
to shallow parts. For example, after mining the −780 m stope, the SCR-XX of the barrier
pillar in the −555 m stope also increased significantly (see Figure 11a). Unlike the barrier
pillar, the bottom pillars are separated by backfilled stopes vertically. The mining-induced
stress generated by mining the deep stope is difficult to transfer to the bottom pillar in the
shallow stope. As a result, the SCR-XX of the bottom pillars will only increase slightly, as
shown in Figure 11b.
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Figure 10. Variation regularity of stress ratio of bottom columns at various depths. (a) Stress ratio in
XX direction, (b) Stress ratio in YY direction, and (c) Stress ratio in ZZ direction.
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Figure 11. SCR-XX curves of (a) barrier pillars and (b) bottom pillars at different depths after
excavation of stopes at different depths.

The SCR-XX of most barrier pillars in mined stopes is over 3.0, as shown in Figure 11,
because the backfill well encapsulates the barrier pillars. On the contrary, the bottom
pillar’s SCR rapidly increases from around 1.0 to above 2.0 after mining the stope above and
decreases significantly after mining the stope below. The main reason for this phenomenon
is that the bottom pillars are not fully contacted with the backfill below. Therefore, when
mining deep stopes, compared with the barrier pillars, the bottom pillars will have a
significant stress drop, and it is difficult to withstand more mining-induced stress.

As the mining depth increases, barrier pillars and bottom pillars’ SCR decrease after
mining the stopes. More mining stress is transferred to the strata under the excavation
stope, and a stress concentration area forms in the strata which will be excavated in the next
step. It can be seen from Figures 6 and 7 that there is a stress concentration area below the
deepest stope where the stress is greater than the in situ stress at the same level. The deeper
the mining depth, the more significant the stress concentration area is. This phenomenon
increases the risk of rockburst when excavating tunnels in deep strata.

The upper stopes need to bear more transfer loads to reduce the stress concentration
in the strata below the deepest stope. The methods suitable for engineering are increasing
the size and quantity of ore pillars and increasing the backfill strength. Increasing the size
and amount of barrier pillars and bottom pillars will reduce the resource recovery rate of
mining. Therefore, increasing the backfill strength is a more economical method to reduce
the stress concentration of the strata below.
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4.3. Influence of Mechanical Properties of the Backfill on the Stress Evolution

Studying the influence of mechanical properties on the stress evolution of the backfilled
stope can explain the effect of increasing the strength of the backfill to reduce the stress
concentration of the stratum below the deepest stope. In the numerical simulation for
comparison, the stopes below −870 m are filled with low strength cemented tailings, high
strength cemented tailings, and cemented block stones. These simulation models are used
to compare the effects of different filling bodies on the stress concentration of the underlying
stratum. The stress of the orebody in the next layer of the stope after filling the mining
stope was recorded. Then the stress was used to calculate the SCR. The SCR of the orebody
in the next layer of the excavated stope varies with the mining depth, as shown in Figure 12.

Figure 12. Variation of SCR with mining depth in the next layer of the excavated stope.

In the simulation, the stopes above −825 m are still filled with the low-strength
cemented tailings. From Figure 12, the SCR of the orebody below the mining stope gradually
rises with the increase of mining depth. Starting from mining −735 m, the SCR of the
orebody under the mining stope increases linearly. When mining the stope above −735 m,
the SCR of the orebody below the stope is lower because the overburden stratum can
withstand mining stress greater than the barrier pillars and bottom pillars of stopes. When
the mining depth exceeds −735 m, the vertical distance from the overlying stratum to the
bottom of the stope is more than 270 m. After that, the mining stress is mainly borne by
the pillars above the mining stope and the underlying stratum. Therefore, the SCR of the
orebody below the stope increases linearly with the mining depth.

High strength cemented tailings and cemented block stones are used to replace low
strength cemented tailings for filling from the −870 m. From the simulation results of
Figure 12, the SCR curve showed a significant drop, indicating that the high strength filling
method has indeed played a role in improving the stress of the orebody to be mined. The
strength and elastic modulus of the backfill is higher, and the SCR of the underlying stratum
is smaller.

5. Conclusions

Differences in mechanical properties between deep and shallow rock masses pose
challenges in analysing the evolution law of mining stress in inclined backfilled stopes in
deep mining. In this manuscript, a new method is proposed to determine the parameters
of the brittle-ductile transition model corresponding to the H-B criterion and the M-C
criterion, respectively. Next, the proposed method is verified with the conventional triaxial
compression numerical test. Then, the model composed of multiple backfilled stopes with
different depths is established. Finally, we discussed the formation displacement, the stress
distribution of rock mass, the risk factor, and the general law of stress evolution in the
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backfilled stope according to the variation laws of SCR. The primary conclusions can be
presented as follows:

(1) The mining-induced stress will transfer to the shallow stope after mining and filling
the inclined orebody. Therefore, the largest horizontal displacement of the formation,
the highest stress area of the stratum, and the largest risk factor area all appear in one
to two layers above the deepest stope. The most dangerous place is farther from the
deepest stope as the mining depth increases. The SCR-XX of the shallow barrier pillars
will continue to grow when mining and filling the deep stopes. Under the action of
new transfer stress, the backfilled stope subjected to higher stress may cause disasters
such as rockburst. The excavations closer to the orebody such as haulage drifts are
typically exhibiting varying degrees of squeezing [43]. Therefore, the strength design
of the pillars and the backfill should have a large safety factor when mining inclined
deep stopes.

(2) Barrier pillars and bottom pillars are the main support structures of the stope. Due
to the brittle-ductile transition behaviour of rock mass, the backfill can increase the
bearing capacity of pillars by increasing the minimum principal stress. After mining
the deep stopes, the transfer stress of the barrier pillars in shallow stopes can always
increase because the backfill wraps the barrier pillars nicely. On the contrary, the
transfer stress that bottom pillars can withstand will decrease significantly after
excavating the stope below because of the backfill gap.

(3) Mining deep ore bodies transfers more mining stress to shallow stopes and the
underlying stratum. The barrier pillars and bottom pillars’ SCR in the deep part is
lower than in the shallow part since the mining-induced stress in the deep part has
moved to the shallow part, which has a larger strength safety reserve. Similarly, more
mining stress is transferred to the underlying stratum as the mining depth increases
and forms a more obvious high-stress concentration area. The apparent stress of
seismic events at the deep metal mine shows that the stress of the orebody below the
excavated stope and the surrounding rock of the filled stope above will increase after
the stope is excavated [44].

(4) Part of the mining stress transferred to the underlying stratum after mining and filling
the inclined orebody will form a stress concentration area below the deepest stope.
The SCR monitoring results of the underlying stratum shows that the ratio of the
transfer stress to in situ stress of the underlying stratum increases as the mining depth
increases. Replacing low-strength backfill with high-strength backfill can reduce the
stress concentration of the underlying stratum and improve the stress environment in
the following mining operation.
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Abstract: With the continuous development in drilling and blasting technology, smooth wall blasting
(SWB) has been widely applied in tunnel construction to ensure the smoothness of tunnel profile,
diminish overbreak and underbreak, and preserve the tunnel’s interior design shape. However, the
complexity of the actual engineering environment and the deficiency of current optimization theories
have posed certain challenges to the optimization of SWB parameters under arbitrary geological
conditions, on the premise that certain control targets are satisfied. Against the above issue, a genetic
algorithm (GA) and back propagation (BP) neural network-based computational model for SWB
design parameter optimization is proposed. This computational model can comprehensively reflect
the relation among geological conditions, design parameters, and results by training and testing the
285 collected sets of test data samples at different conditions. Moreover, it automatically searches
optimal blasting design parameters through the control of SWB targets to acquire the optimal design
parameters based on specific geological conditions of surrounding rocks and under the specified
control targets. When the optimization algorithm is compared with other current optimization
algorithms, it is shown that this algorithm has certain computational superiority over the existing
models. When the optimized results are applied in practical engineering, it is shown that in overall
consideration of the geological conditions, control targets, and other influencing factors, the proposed
GA_BP-based model for SWB parameter optimization has high feasibility and reliability, and that its
usage can be generalized to analogous tunneling works.

Keywords: genetic algorithm; BP neural network; smooth wall blasting; parameter optimization

MSC: 00

1. Introduction

Drilling and blasting method is the main technique for tunnel construction [1]. With
the progress in construction techniques, the SWB technique has been widely accepted in
drilling and blasting operations. SWB can effectively control the blasting effect, and hence
diminish overbreak and underbreak, keep the tunnel’s rocky wall smooth, and further
maintain the stability of surrounding rocks, lessen the supporting workload, reduce the
support materials and engineering costs required, and shorten the construction period [2].
The core issue of SWB lies in the control of overbreak and underbreak [3]. Mahtab [4]
believes that the combination of traditional blasting methods with simulation technology
can assist in the further evaluation of overbreak and underbreak through the tunnel while
the tunnel is drilled and blasted forward; the research outcomes can predict the total
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overbreak and underbreak through the tunnel and further define the confidence interval
of the probability of the region where overbreak and underbreak appear. With further
development in computer technology, the machine learning method has been widely
accepted and used by more and more scholars to predict overbreak and underbreak in
surface blasting operations [5,6]. Likewise, the theoretical and experimental studies on
overbreak and underbreak have also achieved new breakthroughs [7–9] and explained
macroscopic and microscopic reasons for overbreak and underbreak [10–12].

According to research findings, numerous parameters are accountable for the SWB ef-
fect, including the physical and mechanical properties of mineral rocks (such as compressive
and tensile strengths, joint development degree, etc.), blasting design parameters (such as hole
pitch, array pitch, blast hole depth, charge concentration, etc.), and evaluation indexes of blasting
effect (such as average linear overbreak, average linear underbreak, etc.). Therefore, the selection
of influencing factors for SWB is a multilevel, multifactor, multigoal complex decision-
making process, with extremely convoluted uncertainty and nonlinear relations between
blasting parameters and results [13,14]. However, in the current stage, SWB parameters are
determined by the mere empirical method or in mere consideration of one or more simple
factors; thus, blasting design parameters are extremely subjective and random [15]. The
optimization of SWB parameters is always a challenge under any geological condition with
certain control targets (blasting construction targets) [16].

In practical engineering, especially underground engineering, field test data are typ-
ically finite and discrete due to a myriad of limits of the field environment [17]. A main-
stream solution to the global optimization problem with finite and discrete samples in
underground engineering is the support vector machine (SVM) [18,19] and artificial neural
network (ANN) [20,21]. The core of SVM is the minimum structural risk such that it
has small sample demand and low fitting precision. Therefore, it is more applicable in
parameter optimization problems with small numbers of parameters and samples. How-
ever, with the continuous development in blasting technology, more and more influencing
factors need to be taken into consideration, and higher and higher requirement is raised on
the precision of design parameters. Therefore, the minimum empirical risk-based neural
network technology has received more attention and is more commonly used [22,23].

This study proposes an improved neural network algorithm: the GA_BP neural net-
work algorithm, which has optimized the neural network’s initial weights and thresholds,
enhanced the fitting precision of BP neural network under small and medium sample
sizes, and collected the SWB parameters from other engineering projects under different
geological conditions. With the 145 sets of measured data of SWB including the above data
as the training samples, and with the 20 sets of field test data in the East Tianshan tunneling
project in Xinjiang as the test samples, the nonlinear mapping relation between blasting
design parameters and blasting results is obtained through GA_BP neural network fitting.
On this base, the blasting effect parameters and parts of the blasting design parameters
are controlled as per the practical engineering requirements, and the optimal solutions of
blasting design parameters under the control conditions are searched for automatically, so
as to achieve the optimization of the design parameters.

In the work of this paper, the coupling algorithm for the GA and BP neural network
has been described in Section 2. Section 3 introduces the computation flow of the GA_BP
neural network algorithm-based SWB parameter optimization model. Section 4 analyzes,
evaluates, and verifies the optimized results in combination with an engineering case.
Section 5 is the conclusion.

2. Methods

The traditional BP neural network is prone to parameter underfitting due to improper
selection of initial parameters while training with small and medium samples. To address
this problem, the genetic algorithm (GA) is combined with the BP neural network. The
preferable weights and thresholds of the initial network are obtained by GA, and thus the
fitting precision of the BP neural network is improved [24–27].
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2.1. Genetic Algorithm (GA)

The implementation of GA includes the following 5 steps: [28]

(a) Population initialization.

Individuals are encoded by the real coding method. Each individual is a real string
composed of 4 components: weight of connection between the input layer and the hidden
layer, threshold of the hidden layer, weight of connection between the hidden layer and
the output layer, and threshold of the output layer. The individuals comprise all weights
and thresholds of the neural network. Provided that the network structure is known, a
network with a definite mapping structure, number of nodes, weights, and thresholds can
be constructed.

(b) Fitness function.

According to the initial values of the BP neural network obtained by the individuals,
the system output is predicted after training the BP neural network using the training data,
and the absolute value of the error and the variance E between the predicted output and
the expected output as individual fitness F is taken, as calculated by the Equation (1):

F = k(
n

∑
i=1

abs(yi − oi)) (1)

where n is the number of the network’s output nodes; yi is the expected output of the ith
node of the BP neural network; oi is the predicted output of the ith node; k is the coefficient
for normalization; in this paper, k = 1.

(c) Selection operation.

The selection operation in GA is based on the selection strategy of fitness proportion.
The selection probability, pi, of each individual i is:

fi = k/Fi (2)

pi =
fi

N
∑

j=1
f j

(3)

where Fi is the fitness value of individual i. As it is preferred that fitness be as small as
possible, the fitness value shall be inverted prior to individual selection. k is the coefficient
with the same value as Formula (1); N is the number of individuals in the population.

(d) Crossover operation.

As individuals are encoded by real coding, the crossover operation is performed by a
real number crossover method. The crossover operation on the kth chromosome ak with
the lth chromosome al at position j is performed by the following method:

akj = akj(1 − b) + aljb
alj = aij(1 − b) + akjb

(4)

where: b is a random number within (0, 1).

(f) Mutation operation.

The jth gene of the ith individual, aij, is selected to undergo mutation, as operated by
the following method:

aij = aij +
(
aij − amax

)× f (g) r > 0.5
aij = aij +

(
amin − aij

)× f (g) r ≤ 0.5
(5)
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where amax is the upper bound to gene aij; amin is the lower bound to gene aij;
f (g) = r2(1 − g/Gmax)

2; r2 is a random number; g is the count up to the current itera-
tion; Gmax is the maximum evolution count; r is a random number used to judge the
mutation operation within (0, 1), which is automatically generated when selecting aij.

2.2. BP Neural Network

The BP neural network is a multilayer feedforward neural network that can be re-
garded as a nonlinear function, whose independent and dependent variables are the
network’s input value and predicted value, respectively. When the number of input nodes
is n and the number of output nodes is m, the BP neural network expresses the function
mapping relation from the n independent variables to the m dependent variables. The BP
neural network shall be trained prior to prediction so that it is endowed with associative
memory and predictive ability. The training process of BP neural network includes the
following 7 steps: [29]

(a) Network initialization.

According to the system’s input and output sequences (X, Y), determine the number
of nodes, n, at the network’s input layer, the number of nodes, l, at the hidden layer, the
number of nodes, m, at the output layer, initialize the weights wij and wjk of connections
between neurons at the input layer, hidden layer, and the output layer, respectively, and
the threshold, a, of the hidden layer and the threshold, b, of the output layer, and give the
learning rate and the neuron excitation function.

(b) Hidden layer output calculation.

According to the input variable X, weight wij of connection between the input layer and
the hidden layer, and threshold a of the hidden layer, calculate the hidden layer output H.

Hj = f

(
n

∑
i=1

wijxi − aj

)
j = 1, 2, . . . , l (6)

where l is the number of nodes at the hidden layer; f is the excitation function of the hidden
layer, which can be expressed in many ways. Here, the excitation function is selected as:

f (x) =
1

1 + e−x (7)

(c) Output layer output calculation.

According to the hidden layer output H and the weight of connection wij and threshold
b, calculate the predicted output O of the BP neural network.

Ok =
l

∑
j=1

Hjwjk − bk k = 1, 2, . . . , m (8)

(d) Error calculation.

According to the network’s predicted output O and expected output Y, calculate the
network’s predicted error e.

ek = Yk − Ok k = 1, 2, . . . , m (9)

(e) Weights update.

According to the network’s predicted error e, update the weights wij and wjk of network
connections.

wij = wij + ηHj
(
1 − Hj

)
x(i)

m

∑
k=1

wjkek i = 1, 2, . . . , n; j = 1, 2, . . . , l (10)
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wjk = wjk + ηHjek j = 1, 2, . . . , l; k = 1, 2, . . . , m (11)

where η is the learning rate.

(f) Thresholds update.

According to the network’s predicted error e, update the thresholds a and b of
network nodes.

aj = aj + ηHj
(
1 − Hj

)
x(i)

m

∑
k=1

wjkek j = 1, 2, . . . , l (12)

bk = bk + ek k = 1, 2, . . . , m (13)

(g) Judge whether the algorithm iterations come to an end; if not, return to Step (b).

2.3. GA_BP Neural Network

The parameter fitting calculation of the GA_BP neural network falls into two compo-
nents: the BP neural network and GA optimization. The calculation flowchart is shown in
Figure 1.

Figure 1. The algorithm structure of GA-BP neural network.

Where the BP neural network is composed of two parts: One is the part of the BP neural
network structure determination, namely to determine the results of the BP neural network,
and thereby the length of GA individuals, according to the number of input and output
parameters of the fitting function; the other is the part of the BP neural network parameter
fitting, which is responsible for fitting the neural network’s input and output parameters,
determining the nonlinear relations between parameters, and predicting the function
output after network training. The GA optimization component uses the weights and
thresholds of the genetic optimization algorithm of the BP neural network. Each individual
in the population comprises all weights and thresholds of a network. Individuals’ fitness is
calculated via the fitness function, in order for the genetic algorithm to find the individual
with the optimal fitness value through selection, crossover, and mutation operations, and
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thus to optimize the initial weights and thresholds of the BP neural network. The concrete
procedure of GA_BP neural network goes as follows:

(a) Determine the input and output parameters of GA_BP neural network; (b) initialize
the weights and thresholds between the initial parameters of the BP neural network;
(c) optimize the above weights and thresholds by GA and select the optimal ones; (d) fit
the input and output parameters of GA_BP neural network; (e) error test as to whether the
requirement is met, if yes end the calculation, or else return to Step (c).

3. Optimization Model

3.1. Parameter Optimization

The calculation for the SWB parameter optimization is to determine the nonlinear
relations between input parameters and output parameters by fitting all these parameters
via the GA_BP neural network, and to implement the prediction of the output results
under the condition of input parameters; next, through the control of the output results,
it automates the optimization model to search for the optimal solutions among the input
parameters. The calculation process falls into two parts: One is the fitting of GA_BP neural
network parameters, and the other is the calculation for parameter optimization. The
concrete calculation model is shown in Figure 2.

 

Figure 2. Schematic diagram of the calculation model for parameter optimization.

The concrete steps of calculation for the SWB parameter optimization go as follows:

• Initialize the GA_BP neural network and determine the optimal neural network parameters;
• Fit the input parameters and output parameters of SWB among the training samples

of the GA_BP neural network;
• After fitting the parameters of the GA_BP neural network, conduct an error analysis

into the GA_BP neural network using the test samples. If the requirement is met, go
to the next step, else return to the first step and modify the basic parameters of the
neural network;

• When the fitting results meet the requirement of test error, the nonlinear relations
between the input and output parameters are reflected, and thus the prediction of
results is implemented;

• According to the purpose of practical engineering and the parameter design require-
ment (input parameter control), determine the calculation parameters when the event
counter P = 1;

• Try figuring out the SWB calculation results under the feasible condition when the
event counter P = 1, using the nonlinear relations reflected in the GA_BP neural network.
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• After going through the case when the event counter P = 1, determine the calculation
parameters when the event counter P = 2, and return to the previous step for calculation
until covering all event counters for P = P + 1;

• Control the calculation results and thus automatically search for the optimal values
of them under this trial condition, so as to derive the optimal design parameters by
inversion and implement the optimization of SWB design parameters.

3.2. Parameters

In practical tunneling, SWB involves numerous data. Taking the parameters into
consideration of the calculation model for SWB parameter optimization is bound to the
problems of data redundancy and computational complexity. Therefore, it is necessary to
screen the important parameters in SWB and perform the corresponding simplification of
the concrete fitting parameters. In general, the SWB effect is subject mainly to geological
conditions and blasting parameters. Accordingly, the selected parameters should include
factors in three aspects: geological conditions, blasting design parameters, and blasting re-
sult parameters. Considering the practical engineering application, and for the convenience
of the uniform measurement of test data, the SWB parameters are simplified with overall
consideration of the blasting design standard and scholars’ research outcomes [8,30,31].
Figure 3 is a schematic diagram of the SWB design parameters. Figure 4 is a schematic
diagram for the calculation of average linear overbreak and underbreak.

 
Figure 3. SWB design parameters.

Figure 4. Schematic diagram for the calculation of average overbreak and underbreak.

Average overbreak and underbreak are calculated by the formulae:

Sc =
Sc1 + Sc2 + . . . + Scn

Ic1 + Ic2 + . . . + Icn

for average linear overbreak, and:

Sq =
Sq1 + Sq2 + . . . + Sqn

Iq1 + Iq2 + . . . + Iqn

for average linear underbreak, where Ic and Iq correspond, respectively, to the arclength
corresponding to each overbreak area and underbreak area.
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For optimization calculation, the input parameters are the ones that affect the blasting
results, whereas the output parameters are the blasting results. Moreover, in practical engi-
neering, due to the influences of geological conditions, boring equipment, and tunneling
purpose, the parameters already have fixed values or designed values and cannot or need
not be optimized further. Therefore, the core purpose of SWB parameter optimization is
to search for the optimal solutions of spacing between lines of least resistance W, auxiliary
hole pitch Eb, and ambient hole pitch Ea, under the condition of controlling the average linear
overbreak and average linear underbreak.

3.3. Determination of GA_BP Neural Network Topology and Basic Parameters

Through the above description, the number of input parameters of the GA_BP neural
network can be determined to be 11, whereas the number of output parameters is 2. The
neural network adopts a three-layer topological structure. The excitation function is selected
as a sigmoid function.

Generally, the number of nodes in the hidden layer is calculated by the following
empirical formulas [29]:

l <
√

mn (14)

l <
√
(m + n) + a (15)

l = log2 n (16)

where n is the number of input layer nodes, l is the number of hidden layer nodes, m is the
number of output layer nodes, and a is a constant between 0 and 10.

In this paper, the number of nodes in the input layer is n = 11 and the number of nodes
in the output layer is m = 2. Therefore, according to the above formula, it is considered that
the value range of l is between 4 and 20. Figures 5 and 6 show the convergence speed during
sample training and the error rate after sample fitting under different hidden layer nodes
during trial calculation. Considering the results of Figures 1 and 2, it is most reasonable to
set the number of nodes of the hidden layer as l = 13.

Figure 5. Relationship between sample convergence speed and the number of hidden layer nodes.
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Figure 6. Relationship between prediction error rate and number of hidden layer nodes.

Relevant references [32,33], are selected to determine the network’s initial basic pa-
rameters: The number of nodes at the hidden layer of GA_BP neural network is 13, with
11 × 13 + 2 × 13 = 169 weights and 13 + 2 = 15 thresholds; individual encoding length in
GA is 169 + 15 = 184, population size is 20, evolution count is 100, crossover probability is
0.94, and mutation probability is 0.2. The final GA_BP neural network topology is shown
in Figure 7.

 
Figure 7. Schematic diagram of GA_BP neural network topology.

3.4. Control Targets of SWB Parameter Optimization

The purpose of parameter optimization is to search for the optimal results. SWB
involves numerous parameters, and, without a unique evaluation index of the blasting
results, the evaluation is a multitask and multipurpose problem. At the current stage, the
multitask and multipurpose optimization using neural network is implemented mainly
by two methods: One is to figure out the multiple goals into mutually independent target

125



Mathematics 2022, 10, 1271

solutions by the method of Pareto solutions, and the other is to turn the multiple goals
into single goals by some calculation model. Combining the practical engineering, the
two target parameters, the average linear overbreak and average linear underbreak, are
difficult to become mutually independent target solutions. Therefore, the latter approach
can be more effective. Moreover, the optimal solutions for the results of SWB typically need
to meet two requirements: One is that the tunnel profile shall be as smooth as possible;
the other is that the contour line of the practically blasted tunnel shall be as designed as
possible. Therefore, reflected in the calculation model for optimization, the control targets
of the output parameters are:

• The minimum of “average linear overbreak Sc + average linear underbreak Sq”;
• The minimum of average linear overbreak Sc.

4. Engineering Case

4.1. Project Overview

This paper relies on the East Tianshan tunneling project for the Barkol-Hami (first-
class) highway G575, which is located in the area of Hami, Xinjiang. The two-way separated
superlong tunnel covers a full length of 11.767 km of the sinistral tunnel and a full length
of 11.776 km of the dextral tunnel; the maximum burial depth is 1225 m and the average
burial depth is 706 m. Near the tunnel, one can find the typical western mountainous area
with obvious underwater seepage. Affected by the burial depth and seepage, the overall
strength of the tunnel’s surrounding rocks is low, and some construction sections are even
vulnerable to the gushing of a large amount of underground water after being tunneled.
The schematic diagram of tunnel construction is shown in Figure 8, and the schematic
diagram of the project overview is shown in Figure 9.

 
Figure 8. Schematic diagram of the tunneling construction scheme.

 

Figure 9. Schematic diagram of the tunneling overview.
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4.2. Fitting Parameter Training of GA_BP Neural Network
4.2.1. Sample Collection

While 20 sets of SWB test data are collected from this project, 265 sets of the SWB
test data are also collected from other tunneling projects. Figure 10 provides the sources
of other SWB data. The input and output parameters of SWB are fitted with the 265 sets
of data from other projects as the training samples of the GA_BP neural network and the
20 sets of field test data as the test samples.

Figure 10. Tunneling sources of other SWB data.

According to the BQ method in the “Standard for Engineering Classification of Rock
Masses” (GB 50218-94) of China and the BQ-RMR relation in (17), the parameter surrounding
rock rank pertains to geological conditions among the sample data. Limited by space, this
paper only displays the surrounding rock mass ranks under preliminary investigation in
the Xinjiang-based project, as shown in Table 1.

RMR =(BQ − 80.786)/6.0943 (17)

Table 1. Surrounding rock mass ranks under preliminary investigation.

Surrounding rock
mass rank

BQ V IV

RMR V IV

Length
(km)/percentage (%)

Sinistral Tunnel 6.31/54 5.46/46
Dextral Tunnel 6.88/58 4.89/42

Still limited by space, only the 20 sets of blasting test sample data in the Xinjiang-based
project for testing the fitting precision of the GA_BP neural network are presented in Table 2,
where the average overbreak is expressed in positive values and the average underbreak is
expressed in negative values.
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Table 2. Test sample parameter list.

Order Input Parameters
Output

Parameters

No. R σc/MPa Ec/mm Ea/cm Eb/cm W/cm qb/kg K ql L/m D/mm Sc/cm Sq/cm

1 4 37.93 12 50.1 73.3 45.4 1.8 1.5 0.25 4 48 3.6 –1.2
2 4 41.22 14 54.2 85 57 1.8 1.5 0.25 4 48 2.1 –7.8
3 4 38.36 12 53.9 79.4 86.7 1.8 1.5 0.25 4 48 0.9 –3.9
4 4 48.2 17 46.3 84.2 90.5 1.8 1.5 0.25 4 48 1.1 –4.2
5 4 44.6 16 56.7 71 68.2 1.8 1.5 0.25 4 48 6.9 –1.2
6 4 36.7 21 54.2 102 73.1 1.8 1.5 0.25 4 48 6.3 –1
7 5 26.6 41 65.1 145.1 55.6 1.8 1.5 0.2 4 48 1.2 –25.7
8 5 38.54 17 54.9 132.4 48.1 1.8 1.5 0.2 4 48 15.1 –1.4
9 5 36.78 34 59.2 102.5 52.5 1.8 1.5 0.2 4 48 1.7 –9.6

10 5 33.25 14 44.5 75.5 43.2 1.8 1.5 0.2 4 48 4.65 –1
11 5 38.34 42 60.1 90.6 70.1 1.8 1.5 0.2 4 48 15.2 –1.4
12 5 30.24 18 56.4 76.3 49.4 1.8 1.5 0.2 4 48 16.7 –1.7
13 5 28.71 11 56.5 86.4 50.1 1.8 1.5 0.2 4 48 19.4 –2.3
14 5 29.95 30 42.4 94.5 50.7 1.8 1.5 0.2 4 48 1.5 –15.3
15 5 25.75 26 57.3 123.1 62.8 1.8 1.5 0.2 4 48 1.9 –16.7
16 4 30.6 24 60.2 122.7 51 1.8 1.5 0.25 4 48 2.6 –17.5
17 4 31.4 23 76.4 148.3 47.3 1.8 1.5 0.25 4 48 2.7 –22.8
18 4 33.1 36 77.1 117.4 43.6 1.8 1.5 0.25 4 48 4.6 –21.5
19 4 34.3 38 78.9 120.1 46.3 1.8 1.5 0.25 4 48 3.2 –20.6
20 4 33.7 30 83.3 114.7 50.2 1.8 1.5 0.25 4 48 1.8 –18.2

4.2.2. Sample Training Test

GA_BP neural network is used to train and test the above-collected samples. Figure 11
presents the fitness curves of the GA-optimized initial parameters of the BP neural net-
work. Figure 12 presents the overall prediction error curves at distinct iteration counts
when GA_BP neural network is fitting the input and output parameters of SWB. From
Figures 11 and 12, both the fitting precision and error can meet the practical requirements
when the GA_BP neural network is fitting the input and output parameters of SWB, with-
out the problem of underfitting or overfitting, and the nonlinear relations between input
and output parameters of SWB can be achieved satisfactorily, hence the prediction of SWB
results can be implemented.

Figure 11. GA optimized fitness curves.

128



Mathematics 2022, 10, 1271

Figure 12. Overall error of training samples in GA_BP neural network.

4.2.3. The Accuracy of the Prediction in Both Training and Testing Data

Tables 3 and 4 list the measured value, predicted value, and error rates for 20 sets of
training data and 20 sets of testing data. It can be considered that, whether it is training
data or test data, the error between the predicted value and the measured value is within
10%. Considering drilling work, this 10% error can be neglected. In general, the accuracy
of the prediction meets the actual engineering requirements.

Table 3. The accuracy of the prediction in training data.

No.

Overbreak/cm Underbreak/cm

Measured
Value

Predicted
Value

Error Rate
Measured

Value
Predicted

Value
Error Rate

1 7.8 7.752 0.62% –6.3 –6.115 2.94%
2 2.0 2.121 6.05% –7.3 –7.725 5.82%
3 6.7 6.862 2.42% –4.7 –4.823 2.62%
4 6.4 6.301 1.55% –5.1 –5.341 4.73%
5 5.1 5.005 1.86% –6.1 –6.198 1.61%
6 2.9 2.774 4.34% –6.7 –7.033 4.97%
7 3.4 3.331 2.03% –2.0 –1.887 5.65%
8 5.8 5.255 9.40% –4.5 –4.411 1.98%
9 8.7 8.543 1.80% –8.0 –8.431 5.39%

10 7.7 7.561 1.81% –9.9 –10.323 4.27%
11 5.2 5.011 3.63% –2.8 –2.704 3.43%
12 7.2 7.588 5.39% –5.6 –5.719 2.13%
13 9.9 9.562 3.41% –5.1 –5.373 5.35%
14 4.7 4.471 4.87% –2.8 –2.567 8.32%
15 8.2 8.658 5.59% –4.3 –4.511 4.91%
16 5.3 5.523 4.21% –7.2 –7.846 8.97%
17 3.9 3.658 6.21% –5.7 –5.246 7.96%
18 7.3 7.521 3.03% –4.2 –4.299 2.36%
19 3.8 3.93 3.42% –2.2 –2.353 6.95%
20 8.8 8.995 2.22% –6.1 –6.002 1.61%
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Table 4. The accuracy of the prediction in testing data.

No.

Overbreak/cm Underbreak/cm

Measured
Value

Predicted
Value

Error Rate
Measured

Value
Predicted

Value
Error Rate

1 3.6 3.727 3.53% –1.2 –1.265 5.42%
2 2.1 2.247 7.00% –7.8 –7.621 2.29%
3 0.9 0.891 1.00% –3.9 –3.844 1.44%
4 1.1 1.205 9.55% –4.2 –4.141 1.40%
5 6.9 6.841 0.86% –1.2 –1.114 7.17%
6 6.3 6.424 1.97% –1 –1.045 4.50%
7 1.2 1.147 4.42% –25.7 –24.876 3.21%
8 15.1 15.237 0.91% –1.4 –1.412 0.86%
9 1.7 1.553 8.65% –9.6 –9.613 0.14%

10 4.6 4.631 0.67% –1 –1.023 2.30%
11 15.2 15.041 1.05% –1.4 –1.404 0.29%
12 16.7 16.524 1.05% –1.7 –1.712 0.71%
13 19.4 19.502 0.53% –2.3 –2.323 1.00%
14 1.5 1.375 8.33% –15.3 –15.421 0.79%
15 1.9 1.854 2.42% –16.7 –16.521 1.07%
16 2.6 2.429 6.58% –17.5 –17.323 1.01%
17 2.7 2.601 3.67% –22.8 –22.651 0.65%
18 4.6 4.509 1.98% –21.5 –21.212 1.34%
19 3.2 3.331 4.09% –20.6 –20.412 0.91%
20 1.8 1.851 2.83% –18.2 –18.023 0.97%

4.3. Results and Analysis of SWB Parameter Optimization Calculation
4.3.1. Parameter Input for Optimization Calculation

After the prediction of blasting results is implemented using the GA_BP neural net-
work to complete SWB parameter fitting, the SWB design parameters can be optimized
by controlling the predicted blasting results. Relying on the practical engineering project,
this paper has designed five sets of different input parameters, among which the fixed
parameters are shown in Table 5, and the ranges of values of the parameters to be optimized
are shown in Table 6. As the values of W, Eb, and Ea are of little significance below the mm
level in practical engineering, the parameters are optimized only at the cm level.

Table 5. SWB involved fixed parameters in practical engineering.

No. R σc/MPa Ec/mm qb/kg K q1 L/m D/mm

1 4 42.34 20 1.8 1.5 0.25 4 48
2 4 55.27 20 1.8 1.5 0.25 4 48
3 4 48.45 20 1.8 1.5 0.25 4 48
4 5 38.12 20 1.8 1.5 0.2 4 48
5 5 36.94 20 1.8 1.5 0.2 4 48

Table 6. Ranges of the parameters to be optimized.

Parameter Ea/cm W/cm Eb/cm

Range 40~90 40~90 70~120

4.3.2. Optimization Calculation Results and Engineering Application

Table 7 displays the optimization calculation results at different design numbers and
the predicted overbreak and underbreak values at the corresponding optimal values.
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Table 7. Optimization calculation results.

No. Ea/cm W/cm Eb/cm
Predicted

Overbreak/cm
Predicted

Underbreak/cm

1 50 77 80 2.142 –0.964
2 51 78 82 3.512 –2.274
3 52 82 88 3.375 –1.731
4 54 77 84 1.972 –3.212
5 55 87 80 2.021 –1.397

The optimization calculation results in Table 6 are applied in the engineering practice,
and the overbreak and underbreak values in real blasting are compared with the predicted
overbreak and underbreak values with the results shown in Table 8. The actual effects of
engineering blasting are shown in Figures 13 and 14.

Table 8. Comparison between predicted values and actual values.

No.
Predicted

Overbreak/cm
Actual

Value/cm
Predicted

Underbreak/cm
Actual

Value/cm

1 2.142 2.2 –0.964 –0.9
2 3.512 3.4 –2.274 –2.1
3 3.375 3.3 –1.731 –1.8
4 1.972 3.5 –3.212 –4.1
5 2.021 2.0 –1.397 –1.2

 

Figure 13. Schematic diagram of practical SWB construction.

 

Figure 14. Schematic diagram of practical SWB effect.
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From the comparison between the predicted results of optimization calculation and
the practical engineering results in Table 8, it can be found that the relative errors between
the predicted overbreak/underbreak values and the actual values in engineering are small
and within 10%, demonstrating that the method of optimization calculation is scientific
and effective and that the predicted results of optimization are realistic and scientific. From
Figures 13 and 14, it can be found that applying the optimized results of parameters in
practical engineering can effectively enhance the accuracy of SWB during blasting tunneling
and further ensure the security and stability of the surrounding rocks.

The accomplishment in engineering application demonstrates that the GA_BP neural
network-based calculation model for SWB parameter optimization can be applied to not
only effectively implement the prediction of SWB effect but also upgrade the SWB effect
and the overall safety in tunnel construction.

5. Discussion

5.1. Discussion of the Superiority of GA_BP Neural Network Algorithm

To verify the superiority of the GA_BP neural network algorithm in data processing, a
comparison is made between the predicted results under the test samples after the fitting
calculation of its training samples and the actual values of blasting, the predicted values of
the BP neural network, and the predicted values by the GA_ISVR algorithm. The predicted
values of the three are shown in Table 9, and the algorithm average training errors are
shown in Figures 15 and 16.

Table 9. Comparison between actual overbreak/underbreak values and predicted values by
various algorithms.

No.
Measured
Overbreak
Value/cm

GA_BP
Neural

Net-
work/cm

BP Neural
Net-

work/cm

GA_ISVR
Algo-

rithm/cm

Measured
Under-
break

Value/cm

GA_BP
Neural

Net-
work/cm

BP Neural
Net-

work/cm

GA_ISVR
Algo-

rithm/cm

1 3.6 3.727 3.832 3.4 –1.2 –1.265 –1.321 –1.3
2 2.1 2.247 2.304 2.3 –7.8 –7.621 –7.934 –7.7
3 0.9 0.891 0.721 0.7 –3.9 –3.844 –4.021 –4.1
4 1.1 1.205 1.301 0.9 –4.2 –4.141 –4.052 –4
5 6.9 6.841 6.741 6.8 –1.2 –1.114 –1.105 –1.1
6 6.3 6.424 6.553 6.1 –1 –1.045 –0.848 –1.1
7 1.2 1.147 1.022 1.4 –25.7 –24.876 –24.125 –25.5
8 15.1 15.237 15.321 15.4 –1.4 –1.412 –1.501 –1.6
9 1.7 1.553 1.445 1.5 –9.6 –9.613 –9.501 –9.5

10 4.6 4.631 4.751 4.5 –1 –1.023 –0.826 –1.1
11 15.2 15.041 15.485 15.2 –1.4 –1.404 –1.297 –1.5
12 16.7 16.524 16.942 16.9 –1.7 –1.712 –1.622 –1.6
13 19.4 19.502 19.612 19.1 –2.3 –2.323 –2.145 –2.4
14 1.5 1.375 1.641 1.7 –15.3 –15.421 –15.997 –15.6
15 1.9 1.854 1.924 1.2 –16.7 –16.521 –15.981 –16.9
16 2.6 2.429 2.441 2.5 –17.5 –17.323 –16.248 –17.2
17 2.7 2.601 2.587 2.9 –22.8 –22.651 –23.684 –22.3
18 4.6 4.509 4.812 4.4 –21.5 –21.212 –20.014 –21.2
19 3.2 3.331 3.441 3.4 –20.6 –20.412 –22.121 –20.3
20 1.8 1.851 1.992 1.9 –18.2 –18.023 –19.01 –18.5
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Figure 15. Schematic diagram of comparison between overbreak errors.

 
Figure 16. Schematic diagram of comparison between underbreak errors.

From Figures 15 and 16 and Table 9, one can find that the GA_BP neural network has a
significant upgrade over the BP neural network in the accuracy of overbreak or underbreak
prediction after the GA is introduced, and that the error of SWB parameter fitting by
the GA_BP neural network is significantly smaller than by the GA_ISVR algorithm after
the sample size is enlarged. Evidently, the GA_BP neural network can be applied for
excellent fitting and prediction of SWB parameters. In practical engineering, the GA_BP
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neural network outperforms the BP neural network and GA_ISVR algorithm in predicting
SWB results.

In addition, when discussing the superiority of the GA-BP algorithm, there is still a key
problem, that is, the inaccuracy and uncertainty of the data. Therefore, it is also necessary
to verify and analyze the accuracy and certainty of the data, so as to avoid calculation errors
or analysis errors. In future work, based on References [34–36], the accuracy and certainty
of the data will be investigated through the “prediction system based on fuzzy logic”.

5.2. Discussion of Optimization Results of SWB Parameters

First, we define an indicator K called relative change rate:

K =

∣∣∣∣ a − b
a

∣∣∣∣× 100%

where a and b represent the upper and lower bounds of the change interval, respectively. K
represents a percentage.

According to Table 6, Scheme 1, Scheme 2 and Scheme 4 are selected. The sensitivity
calculation of the optimization parameter index is shown in Table 10, and the analysis
results are shown in Table 11.

Table 10. Sensitivity calculation of indices for optimization of SWB.

No. Index
Change In-
terval/cm

Relative
Change

Rate K (%)

Predicted Overbreak Predicted Underbreak

Change In-
terval/cm

Relative
Change
Rate K

Relative
Change Rate
K after Nor-
malization

(10%)

Change
Interval/cm

Relative
Change
Rate K

Relative
Change Rate
K after Nor-
malization

(10%)

1

Ea/cm
50→45 10% 2.142→1.721 19.65% 19.65% −0.964→−1.431 48.44% 48.44%
50→55 10% 2.142→3.005 40.29% 40.29% −0.964→−0.833 13.59% 13.59%

W/cm
77→69 10.4% 2.142→1.859 13.21% 12.70% −0.964→−1.343 39.32% 37.81%
77→85 10.4% 2.142→2.851 33.10% 31.83% −0.964→−0.854 11.41% 10.97%

Eb/cm 80→72 10% 2.142→1.863 13.03% 13.03% −0.964→−1.254 30.08% 30.08%
80→88 10% 2.142→2.893 35.06% 35.06% −0.964→−0.834 13.49% 13.49%

2

Ea/cm
51→46 9.8% 3.512→2.824 19.59% 19.99% −2.274→−3.002 32.01% 32.66%
51→56 9.8% 3.512→4.351 23.89% 24.38% −2.274→−1.954 14.07% 14.36%

W/cm
78→70 10.2% 3.512→3.031 13.70% 13.43% −2.274→−2.851 25.37% 24.87%
78→86 10.2% 3.512→4.012 14.24% 13.96% −2.274→−1.886 17.06% 16.73%

Eb/cm 82→74 9.7% 3.512→3.045 13.30% 13.71% −2.274→−2.905 27.75% 28.61%
82→90 9.7% 3.512→3.999 13.87% 14.30% −2.274→−1.907 16.14% 16.64%

4

Ea/cm
54→49 9.3% 1.972→1.683 14.66% 15.76% −3.212→−4.763 48.29% 51.92%
54→59 9.3% 1.972→3.134 58.92% 63.35% −3.212→−2.274 29.20% 31.40%

W/cm
77→69 10.3% 1.972→1.763 10.60% 10.29% −3.212→−4.554 41.78% 40.56%
77→85 10.3% 1.972→2.865 45.28% 43.96% −3.212→−2.587 19.46% 18.89%

Eb/cm 84→76 9.5% 1.972→1.702 13.69% 14.41% −3.212→−4.476 39.35% 41.42%
84→92 9.5% 1.972→2.789 41.43% 43.61% −3.212→−2.436 24.16% 25.43%

Table 11. Sensitivity analysis of indices for optimization of SWB.

No.

Relative Change Rate K
of Eb

Relative Change Rate K
of W

Relative Change Rate K
of Ea

Maximum Average Maximum Average Maximum Average

1 48.44% 30.49% 37.81% 23.33% 35.06% 22.92%
2 32.66% 22.85% 24.87% 17.25% 28.61% 18.32%
3 63.35% 40.61% 43.96% 28.43% 43.61% 31.22%

Total 63.35% 31.32% 43.96% 23.00% 43.61% 23.67%

After normalizing the optimization parameters “auxiliary hole pitch Eb, spacing between
lines of least resistance W and ambient hole pitch Ea” according to the “change rate of 10%”, it
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can be found that in each scheme, the relative change of over and underbreak caused by
the change of “auxiliary hole pitch Eb” is the largest, its maximum value reaches 63.35%, and
the average change rate of the three schemes is 31.32%. In contrast, the maximum relative
change rate of overbreak and underbreak caused by the change of “spacing between lines of
least resistance W” is 43.96%, and the average change rate of the three schemes is 23.00%.
The maximum relative change rate of overbreak and underbreak caused by the change of
“ambient hole pitch Ea” is 43.61%, and the average change rate of the three schemes is 23.67%.
It can be observed that for the optimization parameter index, “auxiliary hole pitch Eb” is the
most sensitive factor affecting the value of overbreak and underbreak.

In addition, according to Table 11, the overall relative change rate of Scheme 1 is
25.58%, that of Scheme 2 is 19.47%, and that of Scheme 4 is 33.42% when all optimization
parameters change by 10%. Referring to Table 6, the σc of rock in Scheme 2 is the largest
and its relative change rate is the smallest, while the σc of rock in Scheme 4 is the smallest
and its relative change rate is the largest. Therefore, it can be considered that this change
law may be related to rock properties, which need further study and analysis.

6. Conclusions

The combination of genetic algorithm and the BP neural network can improve the
generalization degree and calculation accuracy of the prediction model, so as to solve the
problem of insufficient accuracy caused by insufficient data quantity. Based on this, in this
work, a new algorithm based on the GA_BP neural network is proposed, which is applied
to the prediction and optimization of the tunnel SWB parameters. By training the input
data (geological conditions and SWB parameters) and output data (overbreak/underbreak),
the algorithm model builds the nonlinear relationship and realizes the prediction of the
SWB effect. Moreover, based on the control of the prediction, the optimization of the design
parameters of the SWB is realized.

In addition, through the analysis of the optimization of tunnel SWB parameters, it
is believed that the “Eb (auxiliary hole pitch)” has the greatest impact on overbreak and
underbreak. Therefore, this index should be given priority when determining parameters.

The application results demonstrate that the algorithm model is effective and feasible
to predict and optimize the parameters of SWB, and the results can meet the requirements
of practical engineering.
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Abstract: To understand the fracture features of zonal disintegration and reveal the failure mech-
anisms of circle tunnels excavated in deep jointed rock masses, a series of three-dimensional het-
erogeneous models considering varying joint dip angles are established. The strength reduction
method is embedded in the RFPA method to achieve the gradual fracture process, macro failure
mode and safety factor, and to reproduce the characteristic fracture phenomenon of deep rock masses,
i.e., zonal disintegration. The mechanical mechanisms and acoustic emission energy of surrounding
rocks during the different stages of the whole formation process of zonal disintegration affected
by different-dip-angle joints and randomly distributed joints are further discussed. The results
demonstrate that the zonal disintegration process is induced by the stress redistribution, which is
significantly different from the formation mechanism of traditional surrounding rock loose zone; the
dip angle of joint set has a great influence on the stress buildup, stress shadow and stress transfer as
well as the failure mode of surrounding rock mass; the existence of parallel and random joints lead the
newly formed cracks near the tunnel surface to developing along their strikes; the random joints make
the zonal disintegration pattern much more complex and affected by the regional joint composition.
These will greatly improve our understanding of the zonal disintegration in deep engineering.

Keywords: zonal disintegration; jointed rock mass; stress redistribution; strength reduction;
numerical simulation

MSC: 74L10; 74Rxx

1. Introduction

With the increasing development of global economy, the shallow resources and space
are getting harder and harder to satisfy the growing demands of human beings for a better
life. In recent decades, the deep-buried underground resources and transport infrastructure
in mountain areas, especially those that are difficult to excavate or construct in the past,
have become new growth points in energy exploitation, civil engineering and related fields.
For example, the maximum depth of several tunnels on the Sichuan-Tibet Railway, China
are over 1000 m, such as the Baxu Tunnel and Sangzhuling Tunnel [1,2], the maximum
depth of the diversion tunnel at Jinping II Hydropower Station, China is around 2500 m [3]
and the maximum depths of the Taimyrskii Mine in Russia [4] and Witwatersrand Mine
in South Africa [5] are over 1000 m and 2000 m, respectively. In deep engineering, the
complex geological conditions involving high ground temperature, high ground stress, high
permeability and strong excavation disturbance leads to many characteristic geological prob-
lems, which are quite different from shallow buried underground engineering [6–10]. As
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one unconventional fracture phenomenon, the zonal disintegration phenomenon of deep
surrounding rock has drawn a lot of experts’ attention [11–13]. In 1970, this phenomenon
was firstly discovered in the roof of a gold mine in South Africa [5], which is character-
ized by the interval distribution of fractured zone and intact zone of roof rocks. In 2008,
the zonal disintegration phenomenon in Dingji mine—910 m of Huainan mining area in
China [12,14,15] was monitored by the borehole TV imager, as shown in Figure 1.

 
Figure 1. Sketch of the zonal disintegration phenomena in Huainan mine of China (Reproduced with
permission from [12], Elsevier, 2017).

The formation mechanisms of this nonlinear deformation phenomenon are quite
different from the traditional loosened zone of surrounding rock, which results in the
difficulties of stability assessment and support design of deep tunnel. Therefore, it is
necessary to reveal the mechanical mechanism and fracture characteristics of the zonal
disintegration phenomenon. Through the theoretical analysis, numerical simulations and
laboratory tests, some researchers [12,16–19] have discussed the formation conditions
of zonal disintegration in deep engineering and suggested that when the tunnel axis
is parallel to the direction of the maximum principal stress, the zonal disintegration is
prone to occur. Based on this understanding, Zhang et al. [20] successfully reproduced
the formation process of zonal disintegration through laboratory test using a true three-
dimensional high-stress loading system, monitored the radial strain and displacement
development and summarized the alternation distribution law of their peaks and troughs.
Zhang et al. [21] conducted the zonal disintegration laboratory test using the soft-layered
joint model with different spacing distances, and pointed out that the zonal disintegration
is more obvious due to the weak interlayers considering the greater radial displacement
and strain. Simultaneously, when the spacing of interlayers is denser, a greater number of
fractured zones and larger damaged area will be observed. Pu and Xu [22] monitored the
three-dimensional geological model with different uniaxial compressive strengths using
the strain gauges and failure wires and found that during the loading process, both the
radial tensile strain and the tangential compressive strain increased. According to their
measurement results, the radius scale factor of the fracture area was also summarized.
Factually, as a unique phenomenon in deep engineering [23], the zonal disintegration
phenomenon generally appears in the complex environment of “high ground stress, high
ground temperature, high permeability” [6–8], which directly leads to many difficulties
in field and laboratorial tests, such as long-period, high-cost and hazardous operating
environment and so on. Fortunately, the numerical simulation technology can effectively
avoid these problems. By comparing the results of field monitoring, laboratory test and
numerical simulation, the feasibility of the numerical simulation technology in studying
zonal disintegration phenomenon has been verified [12]. For instance, Zhu et al. [24]
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used the finite element method to analyze the influence of rock physical and mechanical
parameters, including internal friction angle, cohesion and Poisson’s ratio, on the fracture
area and failure patterns of zonal disintegration phenomenon. Zhang et al. [25] studied
the effect of confining pressure on the crack occurrence order and final failure range by
computing the formation of zonal fractures using the 2D rock failure process analysis
(RFPA) method. Wu et al. [26] applied the particle flow code to simulate the zonal fracture
phenomenon of brittle rock mass, and carried out the sensitivity analysis of initial stress,
lateral pressure coefficient and joint friction coefficient.

However, the zonal disintegration is a 3D failure phenomenon involving the gradual
process of stress buildup, stress shadow and stress transfer in the 3D space and the initiation,
propagation and coalescence of 3D cracks. Currently, most of the simulated results are
obtained by 2D numerical methods and cannot effectively reflect the influence of mechanical
interaction of cracks in the 3D space on the formation of zonal disintegration by taking the
rock heterogeneity and discontinuity into account. Therefore, in this study, to reveal the
fracture characteristics and failure mechanisms of deep jointed rock masses, a series of 3D
heterogeneous numerical models considering varying joint dip angles and random spatial
distribution of joints are built up and the strength reduction method (SRM) is embedded to
reproduce the zonal disintegration phenomenon of deep rock masses. The discontinuous
deformation field, evolution rule of background stress field, alternate regional destructions
and safety factor are therefore discussed, which provides theoretical basis of stability
assessment, support design and safe construction in terms of zonal disintegration in
deep engineering.

2. Materials and Methods

2.1. Basic Principles

The current numerical methods applied in rock mechanics can be categorized into
three groups [27], i.e., continuum methods, discontinuum methods and hybrid contin-
uum/discontinuum methods. The finite difference method (FDM) [28], finite element
method (FEM) [29], boundary element method (BEM) [30], etc. are classical continuum
methods. However, they generally cannot satisfactorily deal with the discontinuities widely
existing in rock mass. The discrete element method (DEM) [31] and discontinuous defor-
mation analysis (DDA) [32] are two mainstream discontinuum methods. However, the
model block division for these methods often requires fine engineering geological survey
and has a great influence on simulated results; the divided blocks generally cannot be
broken during calculation and the much lower computing capacity and efficiency than
continuum methods put limitations on the application of this kind of methods. The hybrid
methods provide a feasible way of combining the strengths of both continuum methods
and discontinuum methods. However, they still cannot handle the interaction of multiple
joint sets in the 3D space. As a FEM-based method, RFPA is able to take the heterogeneity,
nonlinearity and anisotropy of rock materials into account. Simultaneously, to simulate
the evolution process of progressive failure of deep tunnels, the fundamental principles
of strength reduction method are embedded into the RFPA3D code. Namely, the failure
modes and safety factor can be gained without any assumption on the failure surface in a
complex rock mass model.

To establish a 3D heterogeneous numerical model, a rock sample or structure will be
discretized into hexahedral elements at first, which can be regarded as the basic mechanical
units of the rock medium in the process of numerical simulation depending on the premise
that the element size can reasonably reflect the characteristics of the rock medium.

In addition, with the aim of appropriately capturing the mechanical behaviors of rock
mass, the non-uniformity of rock mass cannot be ignored. To fully reflect the heterogeneity
of mesoscopic elements after discretization of rock mass model, the material properties of
these elements, such as uniaxial-compressive strength and elastic modulus, are assumed to
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obey a statistical distribution function. As a common probability density function used in
the field of rock mechanics, the Weibull distribution [33–35] is as shown in Equation (1).

φ(α) =
m
α0

·
(

α

α0

)m−1
· e−( α

α0
)m

(1)

where α is a mechanical parameter of rock medium, such as elastic modulus, strength,
Poisson’s ratio, weight, etc.; α0 is the mean value of the mechanical parameter; m is termed
the heterogeneity coefficient reflecting the uniformity degree of rock material.

The strength reduction method is introduced into the solution process. At each
reduction step after all loads are applied, the initial strength of one element will be reduced
according to the following criterion [36]:

f trial
s =

f0

f trial
0

(2)

where f trial
0 and f0 are the test strength and the initial strength, respectively; f trial

s is the
test safety factor.

When the number of failure elements reaches the maximum at a step, it means that
the model loses stability, and the corresponding test safety factor f trial

s is the safety factor
FS of the model. FS can be calculated using Equation (3):

FS =
1

1 − (k − 1)× Δ
(3)

where k is the number of calculation steps until model failure; Δ is the reduction coefficient
of material strength, which should be set before simulation. When the instability of model
occurs, f trial

0 = f0 − (k − 1)× Δ × f0.
According to the deformation and damage state, mesoscopic elements in RFPA can

be classified into three phases, i.e., the matrix phase, air phase and contact phase. The
RFPA code is able to model the crack initiation, propagation and coalescence through the
transformation of the three element phases. The Mohr-Coulomb criterion, with a tensile-
off [33], is used as the strength criterion, as shown in Equation (4). Clearly, the tension
failure mode is judged by the maximum tensile stress criterion and the shear failure mode
is judged by the Mohr-Coulomb criterion.⎧⎨

⎩
σ1 − (1+sin θ)

(1−sin θ)
σ3 ≥ σc, σ1 ≥ σc

(
1 − 1+sin θ

1−sin θ · 1
λ

)
σ3 ≤ −σt, σ1 ≤ σc

(
1 − 1+sin θ

1−sin θ · 1
λ

) (4)

where σc is the uniaxial-compressive strength, σt is the tensile strength, and θ is the internal
friction angle; λ is the ratio of the compressive strength to tensile strength; σ1 and σ3 are
the maximum and minimum principal stresses, respectively.

A matrix element represents the solid medium. Under uniaxial stress state, its me-
chanical behavior can be described by the constitutive relation of rock material shown in
Figure 2. When the deformation of the element exceeds the ultimate tensile strain εmax_t
under uniaxial tensile state, the matrix element will be converted into an air element and its
elastic modulus will decrease to a very low value so that it does not transfer stress any more.
Simultaneously, when the deformation of the element exceeds the ultimate compressive
strain εmax_c under uniaxial compression state, it will enter the extrusion phase and be
transformed into a contact element with a gradually increasing stiffness. Considering that
most of the failure of rock materials is in the tensile mode at the mesoscopic scale, the
priority is given to the maximum tensile stress criterion. Namely, it will be firstly judged
if the stress state of an element satisfies the maximum tensile stress criterion. If not, the
Mohr-Coulomb criterion will be checked next.
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Figure 2. Elastic-brittle constitutive relation of an element under uniaxial stress state.

The strength reduction method is introduced into the RFPA method to realize the
progressive failure progress simulation of the tunnel models. The uniaxial compressive
strength and tensile strength of the mesoscopic elements will be reduced linearly in a
certain proportion during calculation [36]. The stress, strain and failure states of mesoscopic
elements will be analyzed after each strength reduction until the external and internal forces
reach new equilibrium. Meanwhile, considering rock medium is a kind of quasi-brittle
material and the strain energy will be released in the form of acoustic emission when
new cracks occur, and the acoustic emissions caused by element failure will be monitored.
Actually, when the stress state of an element reaches the failure criteria, the failure of the
element will occur, and then the corresponding acoustic emission will be considered to
happen. Namely, if one element gets damaged, an acoustic emission event will be generated.
The location of the acoustic emission is the center of the element, and the energy magnitude
of acoustic emission is calculated according to the stress–strain curve at the moment of
failure. Therefore, it is reasonable to evaluate the stability of the model using the released
count and energy of acoustic emissions. The reduction step with the largest number of
acoustic emissions corresponds to the macro destruction of the numerical models [33,35].
Hence, it will be regarded as a criterion for judging model instability in this study, and the
safety factor of the models can be therefore determined for comparing the stability of the
tunnels with different joint sets.

2.2. Numerical Model Setting Up

In this paper, the feasibility and correctness of the combination of the strength reduction
method and RFPA in studying the mechanical mechanisms of zonal disintegration are verified
by comparing the simulated results with the experimental results of Gao et al. (2018) [37]. The
prototype of the indoor test is a 910 m deep roadway tunnel in Dingji Coal Mine, Huainan,
China. The similar materials are used to prefabricate a 0.6 m × 0.6 m × 0.6 m cube model
and a circular tunnel is excavated at the center with a diameter of 0.1 m. The physical model
is compressed along the tunnel axis with a load as high as 2.0 times of the material uniaxial
tensile strength. Simultaneously, 1.5 times of the in situ stress load is applied in the horizontal
direction, and 1.2 times of the material uniaxial compressive strength is applied in the vertical
direction. A series of three-dimensional heterogeneous models are built up, whose material
properties including elastic modulus, uniaxial compressive strength and tensile strength are
assumed to be subject to the Weibull distribution. At the same time, according to Cai and He
(2013) [38], the numerical models with the size of 8700 mm × 8700 mm × 4200 mm in the
X, Y and Z directions, respectively, are established, and a circular tunnel with a radius of
700 mm is excavated at the center. The models whose axial direction is parallel to the Z
axis are discretized into 2,500,000 hexahedron elements, as shown in Figure 3a. Besides, to
reduce the end effect caused by the stiffness mismatch between the loading end and the
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model specimen [39], a backing plate with a thickness of 400 mm is set on every loading
face of the tunnel models. Note that the elastic modulus of the backing plates is equal to the
tunnel models but is considered to be homogeneous. Meanwhile, their strength is much
greater than the tunnel models, as shown in the red parts of Figure 3b. The physical and
mechanical parameters of surrounding rocks, mainly composed of hard rock granite, are
listed in Table 1.

   
(a) (b) (c) 

Figure 3. Heterogeneous numerical model containing circular tunnel without joints: (a) Model size;
(b) layout of backing plates; (c) loading conditions.

Table 1. Physical and mechanical parameters of model material.

Parameter Value

Elastic modulus (E)/GPa 80

Compressive strength (σc)/MPa 150

Poisson ratio (μ) 0.25

Friction angle (φ)/◦ 25

C/T coefficient 10

Residual strength coefficient 0.1

Heterogeneity coefficient 4

Reduction coefficient for strength 0.01

For the boundary conditions, the surfaces of x = 0, y = 0 and z = 0 are fixed along the
normal direction and uniformly distributed loads are applied on the surfaces of x = 9.5 m,
y = 9.5 m and z = 5.0 m, respectively. According to the previous research [13], the stress
load along the axial direction of the tunnel is set as 2 times the confining pressure. Clearly,
the confining pressure of 5 MPa is loaded on the surfaces of x = 9.5 m and y = 9.5 m, and the
10 MPa stress is loaded on the surface of z = 5.0 m in five steps before strength reduction,
as shown in Figure 3c.

3. Results

3.1. Comparison of Numerical Simulation and Laboratory Test

In order to verify the correctness of the developed model in studying the zonal
disintegration phenomenon, the comparison of the indoor physical test [37] and numerical
simulation results of Model A is shown in Figure 4. For examining the numerical simulation
results accurately, the different colors represent the different damage states of the elements
in Figure 4a. Clearly, the elastic modulus of the elements corresponding to the red color
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is the smallest, which means the elastic modulus is reduced to the minimum value after
those elements get fully failed; meanwhile, the elastic modulus of green elements is about
80 GPa, which has little change compared with the initial value. Namely, no failure and
phase transformation occur to these elements.

 
(a) (b) 

Figure 4. Comparison of model fracture patterns: (a) Numerical simulation result; (b) laboratory
model test result (Gao et al. [37]).

The existence of scattered yellow and blue elements in the surrounding rock is caused
by the different degrees of damage and the discreteness of the strength parameters of
the elements in the heterogeneity model. Under the increasing external load, the stress
and damage states of each element are closely related to its own properties, such as
strength, elastic modulus, etc. Those elements with low phase transition threshold are
easily damaged under a low load, such as yellow elements, but they may not grow and
form cracks because of the unconnected distribution. However, the elements with high
phase transition threshold, such as blue elements, may not get damaged even under
high stress. From Figure 4a, it can be observed that the 3D RFPA method combined
with the strength reduction method can successfully reproduce the zonal disintegration
phenomenon characterized by the interval distribution of fractured zones and intact zones
in surrounding rock. Furthermore, it can be found that the fractured ring farther away
from the tunnel wall has thinner failure thickness, lower integrity and fuzzier boundary.

The elastic modulus evolution process of zonal disintegration obtained by RFPA
numerical simulation is shown in Figure 5. It can be observed from Figure 5a that when
the strength reduction is performed to the 94th step, the first fracture area appears near
the tunnel wall, and the peak value of maximum principal stress σ1 of surrounding rock is
about 15 MPa, as shown in Figure 6. The failure area can be regarded as the traditional loose
zone produced by the excavation of the tunnel. After that, when the model is calculated
to the 98-2nd reduction step, the stress redistributes, the mean value of σ1 rises up to
19.5 MPa, and the second complete circular fracture zone of surrounding rock is generated
in an interval way, as shown in Figure 5b. Similarly, with the further reduction of the
surrounding rock strength, the stress transfers to the deeper part of the surrounding rock
again, and the third circular fracture area appears. The maximum value of σ1 reaches
24.5 MPa now. In the same way, there are six fracture zones appearing in the surrounding
rock of the model. Finally, when the sixth fracture zone located 2 m away from the tunnel
wall is formed, the peak stress decreases to 27 MPa, and the stress caused by the excavation
of the tunnel is basically released, which cannot cause more damage.
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(a) (b) (c) 

  
(d) (e) (f) 

Figure 5. Distribution of elastic modulus during the zonal disintegration process of heterogeneous
model around a circular tunnel: (a) Step 94; (b) Step 98-2; (c) Step 98-8; (d) Step 98-16; (e) Step 98-28;
(f) Step 98-32.

Figure 6. The maximum principal stress-transfer process of surrounding rock during zonal disinte-
gration formation of Model A.
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3.2. Numerical Simulation of Zonal Disintegration Phenomenon in Jointed Rock Mass with
Different Inclinations

To discuss the zonal disintegration behavior of circular tunnel in jointed rock mass
with different dip angles, the related models are established as shown in Figure 7, including
three inclinations of 0◦, 30◦ and 45◦, respectively, i.e., Models B0, B30 and B45. The physical
and mechanical parameters of these joints, composed of soft sandstone and other materials,
are shown in Table 2. The size and boundary conditions of the models are the same as the
jointless model A.

   

(a) (b) (c) 

Figure 7. Numerical models and boundary conditions of surrounding rock with three kinds of dip
angle joints (0◦, 30◦ and 45◦): (a) Model B0; (b) Model B30; (c) Model B45.

Table 2. Physical and mechanical parameters of joint material.

Parameter Value

Elasticity modulus (E)/GPa 16

Compressive strength (σc)/MPa 30

Poisson ratio (μ) 0.25

Friction angle (φ)/◦ 25

C/T coefficient 10

Residual strength coefficient 0.1

Heterogeneity coefficient 200

The elastic modulus diagrams shown in Figures 8–10 depict the reduction steps corre-
sponding to the formation of each fracture ring in Models B0, B30 and B45, through which
we can intuitively understand the whole evolution process of the zonal disintegration phe-
nomenon of jointed rock mass with different dip angles, from crack initiation, propagation
to final coalescence.
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. Distribution of elastic modulus during zonal disintegration process of surrounding rock
with Model B0: (a) Step 96-0; (b) Step 97-7; (c) Step 97-15; (d) Step 97-19; (e) Step 97-21; (f) Step 97-23.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9. Distribution of elastic modulus during zonal disintegration process of surrounding rock
with Model B30:(a) Step 94-0; (b) Step 98-1; (c) Step 98-9; (d) Step 98-17; (e) Step 98-25; (f) Step 98-31.
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(a) (b) (c) 

  
(d) (e) (f) 

Figure 10. Distribution of elastic modulus during zonal disintegration process of surrounding rock
with Model B45: (a) Step 92-0; (b) Step 98-1; (c) Step 98-9; (d) Step 98-17; (e) Step 98-27; (f) Step 98-33.

Figure 8 shows the continuous damage evolution of the horizontal joint model B0
under the triaxial stress state, from which can be observed that with the rock mass strength
weakening, the first fractured zone adjacent to the tunnel wall appears at the 96th reduction
step. The elements in the corresponding region are damaged due to tensile failure and
their elastic moduli gradually decrease with the developing damage. When the compres-
sive/tensile strength continues reducing to the 97-7th step, the rock mass at a certain
distance away from the first fracture ring forms an intermittent second fracture ring. Then,
at the 97-15th step, a third fracture ring is observed at the interval of thicker intact rock
mass. However, it is obvious that the new fracture ring owns a lower degree of integrity
comparing with the two previous fracture rings. The rupture area of the fracture ring
located above the tunnel develops along the horizontal direction due to the existence of the
horizontal soft joint. After that, when the strength of the model drops to the 97-19th step,
the fourth fracture ring appears. However, this fracture ring shows a strong intermittent
feature and develops along the horizontal joint under the bottom of the tunnel. At the
97-21st and 97-23rd steps, the last two fracture rings with fuzzy boundary appears, and
some of the damaged elements are even disorderly connected with previous one.

As shown in Figures 9 and 10, compared with the horizontal joint circular tunnel
Model B0, the zonal fracture modes of Models B0, B30 and B45 show similarities to a
certain extent. For example, the number of fracture rings is the same, and the fracture rings
are not as complete as the jointless Model A with a lower degree of integrity and fuzzier
boundaries. Meanwhile, the differences between them are significant.

Clearly, the first fracture ring of Model B0 appears at the 96th reduction step, and the
last fracture ring forms at the 97-23rd step. Under the same boundary condition, the first
fracture ring of Model B30 advances to the 94-0th step, and the last fracture ring appearance
postpones to the 98-31st step. As for Model B45, its first fracture ring appears earliest, being
advanced to the 92nd step. However, its last failure ring is not complete until the 98-33rd
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step. Consequently, the simulated results demonstrate that the larger the angle between
the joints and the horizontal direction is, the earlier the fracture ring appears. However, the
last fracture ring displays the opposite formation rule, i.e., a model with larger joint dip
angle needs more reduction steps to form the final failure mode, meaning several fracture
rings distribute alternately, which also means that the corresponding surrounding rock is
more stable.

Figure 11 displays the contrast diagrams of the accumulated acoustic emission energy
and accumulated acoustic emission counts of each reduction step during the deformation
and failure process of the different jointed Models B0, B30 and B45, respectively. The model
with larger angle between the joints and the horizontal plane generally releases higher
acoustic emission energy and more accumulated acoustic emission counts, which means a
larger destruction area and more serious damage occurs before the final collapse. These
results indicate that the model with larger inclination between the joints and the horizontal
plane has higher ultimate load-bearing capacity and therefore higher stability, but the
intensity of failure is higher before the final collapse. This conclusion also agrees with the
above analysis of Figures 8–10 from the perspective of energy.

 
(a) 

 
(b) 

Figure 11. Comparison of acoustic emission in different models: (a) accumulated acoustic emission
energy; (b) accumulated acoustic emission counts.
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In order to further analyze the zonal disintegration law of the jointed circular tunnels
and reveal the influence of joints with different dip angles on the zonal disintegration
phenomenon, the maximum principal stresses σ1 of the elements on the x = 4750 mm and
z = 850 mm line on both sides of the tunnels related to the occurred fracture rings are
studied comprehensively. The detailed maximum principal stress σ1 distribution along the
broken line when the fracture rings occur in each model are shown in Figure 12. It can
be observed from Figure 12a that the peak values of σ1 in Model B0 are about 17~30 MPa.
As illustrated by the black broken line with rectangular dots, when the first fracture zone
is formed, the peak value is about 17.5 MPa. However, this value rises to 21 MPa at the
97-7th step when the second fracture ring is formed, and the spatial position of the peak
value moves to the inner rock mass along the radial direction. The subsequent peak values
related to each new fracture ring are 23.75 MPa, 25 MPa, 28 MPa and 28.75 MPa, respectively,
and the peak positions of each curve are distributed outward, in turn. With the continuous
process of stress buildup, stress shadow and stress transfer, the maximum principal stresses
of the surrounding rocks gradually become stable at a relatively low level in the far-field
rock masses, except for some slight fluctuations caused by the inhomogeneity of rock
mass. The corresponding far-field rock masses are basically undamaged under the low
excavation disturbance.

(a) 

(b) 

Figure 12. Cont.

151



Mathematics 2022, 10, 922

(c) 

Figure 12. The maximum principal stress transfer process of surrounding rock during zonal disinte-
gration formation in different models: (a) Model B0; (b) Model B30; (c) Model B45.

Obviously, the failure features of the zonal disintegration phenomenon show sig-
nificant differences from the traditional excavation loose zone around shallow tunnels.
The above analysis of the changes of surrounding rock stresses during the formation of
each fracture ring at the key reduction steps suggests that the continuous process of stress
buildup, stress shadow and stress transfer plays a critical role in promoting the surrounding
rock masses of the circular tunnel to fail in the pattern of alternate regional destructions.
Namely, the mechanical process of stress transferring and re-concentrating to the deeper
part of the surrounding rock masses keeps the integrity of the rocks between two fracture
rings and lead to zonal disintegration phenomenon in the view of mechanical mechanism.
Moreover, when comparing the stress distributions of Models B0, B30 and B45 along the
broken line, it can be concluded that the stress values show a downward tendency with
the increasing of dip angle. In addition, the radius of the outermost fracture ring expands
out gradually, i.e., 1.75 m, 1.9 m and 2.1 m away from the tunnel walls, respectively, which
means that the destroyed range of surrounding rock masses extend wider if the joint dip
angle increases.

3.3. Zonal Disintegration Evolution of Random Joint Model

The circular tunnel Model C with random joints distributed in surrounding rocks
is shown in Figure 13. The physical and mechanical parameters of these joints are listed
in Table 2 and the boundary conditions and strength reduction process are the same as
Model A. The random joint model generates zonal disintegration phenomenon as shown
in Figure 14, from which it can be observed that the basic fracture characteristics of Model
C are similar to the previous models, i.e., there are also several fracture rings distributed at
intervals near the tunnel wall. However, the fracture mode of the random joint model is
significantly affected by weak joints and shows specific characteristics.

As shown in Figure 14, the first fracture ring appears at the 92nd strength reduction
step, and then the second fracture ring is formed when the strength of the rock materials
is reduced to the 96th step. Note that the rupture area D are not damaged along the
radial direction as predicted, but forms a linear crack by connecting the upper end of the
joint A and the lower end of the joint B. Similarly, when the rock strength is reduced to
the 97-2nd step, the lower end of the joint B connects with the lower end of the joint C,
forming a straight crack. Then, as shown in Figure 14d, the third fracture ring with low
integrity degree is formed at the 97-8th step. After that, two new fracture rings with fuzzy
boundaries and discontinuous shape occur at the 97-16th and 97-18th steps, respectively,
as shown in Figure 14e,f. Furthermore, it can be observed from Figure 14 that during
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the failure process of the random joint Model C, the linear cracks formed by connecting
close joints have priority over the damage path along the radial direction because of the
stress concentration at joint ends and dense joint distribution. It means that the zonal
disintegration phenomenon affected by random joints in surrounding rock masses has a
low possibility to form the closed complete fracture rings because the existed joints may
break the integrity of the potential fracture ring.

Figure 13. Random jointed surrounding rock numerical Model C and boundary conditions.

 
(a) (b) (c) 

  
(d) (e) 

Figure 14. Elastic modulus distribution during zonal disintegration process of randomly jointed
surrounding rock: (a) Step 92; (b) Step 96; (c) Step 97-2; (d) Step 97-8; (e) Step 97-16.

153



Mathematics 2022, 10, 922

As shown in Figure 15, the maximum principal stresses of the randomly jointed rock
around the circular tunnel are approximately 15~20 MPa, which are lower than the previous
models. Additionally, the last fracture ring is located only 1.2 m away from the tunnel wall,
which indicates the overall damage area of the surrounding rock is obviously smaller than
the models discussed above.

Figure 15. The maximum principal stress-transfer process of surrounding rock during zonal disinte-
gration formation in Model C.

As shown in Figure 16, as many as 20,488 acoustic emission events occur before
macro instability, and there is a significant upward trend before fully researching the
overall failure of the tunnel, demonstrating a salient failure precursory characteristic of the
inhomogeneous surrounding rock. Besides, around 1.58 × 107 J, acoustic emission energy
is released by the damaged elements, which is also much lower than the above jointed rock
models and jointless model because of its smaller overall damage area.

Figure 16. Accumulated acoustic emission counts and energy.
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4. Discussion

Table 3 lists the values of strength reduction times, critical compressive and tensile
strengths and tunnel safety factors FS of the studied models obtained by the strength
reduction method. It can be observed that the FS of Model A, i.e., the jointless model, is
larger than the other models mainly because the jointless surrounding rock of the tunnel
is the most stable, and the relatively closed complete fracture rings are produced in this
model, showing the distinct zonal disintegration phenomenon. Moreover, after comparing
the accumulated acoustic emission energy and the FS values of the jointed Models B0, B30
and B45, it can be concluded that with the dip angle between the joint set and the horizontal
direction increasing, the surrounding rock of the tunnel will become more and more stable
under the boundary conditions and material parameters in this study.

Table 3. The safety factor of the circular tunnels with different surrounding rock masses.

Model Strength Reduction Step at Failure Critical Compressive/Tensile Strength (MPa) Safety Factor

A 100 7.5/0.75 20.00
B0 96 13.5/1.35 11.11

B30 97 12/1.20 12.50
B45 98 10.5/1.05 14.29
C 96 13.5/1.35 11.11

Furthermore, there is a positive correlation between the accumulated acoustic emission
energy before final collapse and the safety factor of the tunnel, as shown in Figure 17. It is
worth noting that the accumulated acoustic emission energy of each model compressed by
initial stresses is very small, and the accumulated acoustic emission counts are basically
negligible, as shown in Figures 11 and 16. Therefore, it can be proven that the rock masses
surrounding the tunnel are not damaged for the adopted parameters without reducing the
strength. Besides, the safety factor of the random joint Model B0 is coincidentally equal to
the horizontal joint Model C. However, the horizontal joints and randomly distributed joints
play a completely different role in forming the zonal disintegration in terms of background
stress evolution; i.e., the gradual process of stress buildup, stress shadow and stress transfer
induced by the existed joints would result in different fracture patterns. Further comparison
of the accumulated acoustic emission energy released in the two models demonstrates that
at the same reduction steps, the latter release more energy than the former because of its
highly fractured surrounding rock masses. Reasonably, Model B0 has a better stability than
Model C under the influence of the distributed joints. Hence, the acoustic emission events
provide more accurate evaluation information rather than the tunnel safety factor.

According to the above analysis, we know that in deep geological environments, the
fracture characteristics of the zonal disintegration of surrounding rocks are very different
from the traditional loose zone of surrounding rocks. Therefore, the support measures
adopted for the two phenomena should also be different. Firstly, in terms of the failure
mode, the traditional loose circle only produces fractures within a certain range away from
the tunnel wall, while the zonal disintegration produces spaced failure areas within the
interior of surrounding rocks, which leads to the different specific positions needing to be
supported. Secondly, the primary process of stress redistribution inducing the loose zone
of surrounding rocks can be finished immediately after tunnel excavation. However, the
surrounding rocks will go through several times of stress redistribution when forming zonal
disintegration. Hence, compared with the traditional support measures, the occurrence
sequence of fracture rings should be considered for handling zonal disintegration, and the
supporting schemes have to be determined. Finally, considering that the zonal fractures
of surrounding rocks generally happen in high-stress environments in deep engineering,
which may result in unimaginable accidents, it is necessary to further study more effective
support methods.
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Figure 17. Relationship between the accumulated acoustic emission energy and the safety factor of
the different tunnel models.

5. Conclusions

With the aim of understanding the zonal disintegration phenomenon and revealing the
intrinsic mechanical mechanisms, a series of 3D heterogeneous tunnel models considering
varying joint dip angles are built up and tested by the rock failure process analysis method
on the basis of the continuum mechanics, meso-damage mechanics and statistical strength
theory. The strength reduction method is embedded to achieve the gradual fracture process,
final failure mode and safety factor and to reproduce the characteristic fracture phenomenon
of deep tunnels under high geo-stress level, i.e., zonal disintegration. The following
conclusions can be reached:

The combined approach has been proven effective in capturing the zonal disintegra-
tion characteristics by the indoor physical test [37]. The detailed failure process of the
jointed rock models demonstrates that the zonal disintegration is induced by the stress re-
distribution of surrounding rock masses. Namely, the continuous process of stress buildup,
stress shadow and stress transfer play a critical role in promoting the surrounding rock
masses to fail in the pattern of alternate regional destructions. It is the mechanical process of
stress transferring and re-concentrating to the deeper part of the surrounding rock masses
to keep the integrity of the rocks between two fracture rings and lead to zonal disintegration
phenomenon in the view of mechanical mechanism, which is obviously different from the
formation mechanism of the traditional surrounding rock loose zone.

The dip angle of the existed joint set shows great influence on the stress evolution
and inner crack propagation of the surrounding rock mass. On the one hand, the fracture
ring of the 45◦ joint model first appears at the 92-0th step, but the last ring forms at the
98-33rd step. Actually, a model with larger joint dip angle needs more reduction steps to
generate the final failure mode. On the other hand, the acoustic emission energy released
by Model B45 is the most, up to 4.77 × 108 J, while Model B0 only releases 1.58 × 107 J
energy. This means that the model with larger inclination angle will be damaged more
seriously before the final collapse. Besides, as the joint inclination increases from 0◦ to 45◦,
the safety factor of the model rises from 11.11 to 14.29. In addition, the model with larger
joint inclination has higher ultimate load-bearing capacity and therefore higher stability.
However, the intensity of failure is also higher before the final collapse.
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Furthermore, the existence of random joints might significantly affect the integrity
and regularity of the zonal disintegration pattern because the high stress concentrations
at the ends of the existed joints could change the crack growth path and prevent the
damage development along the radial direction. Namely, the zonal disintegration affected
by randomly distributed joints has a low possibility to form the closed complete fracture
rings. Meanwhile, the upward trend of acoustic emission energy released before nearly
researching the overall failure of the tunnel could be regarded as a macro-failure precursor.
Models C and B0 have the same safety factor of 11.11. The acoustic emission count of
the former is 20,488, which is much higher than 12,801 of the latter. Hence, the acoustic
emission events are able to provide more accurate evaluation basis rather than the tunnel
safety factor.

These achievements will improve our understanding of the mechanical mechanism
of zonal disintegration formation, provide insights into the characteristic fracture phe-
nomenon of deep-buried tunnels, and establish the basis for design, construction and
treatment of tunnels in deep engineering.
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Abstract: The occurrence of rockburst can cause significant disasters in underground rock engineering.
It is crucial to predict and prevent rockburst in deep tunnels and mines. In this paper, the deficiencies
of ensemble learning algorithms in rockburst prediction were investigated. Aiming at these shortages,
a novel machine learning model, deep forest, was proposed to predict rockburst risk. The deep
forest combines the characteristics of deep learning and ensemble models, which can solve complex
problems. To develop the deep forest model for rockburst prediction, 329 real rockburst cases were
collected to build a comprehensive database for intelligent analysis. Bayesian optimization was
proposed to tune the hyperparameters of the deep forest. As a result, the deep forest model achieved
100% training accuracy and 92.4% testing accuracy, and it has more outstanding capability to forecast
rockburst disasters compared to other widely used models (i.e., random forest, boosting tree models,
neural network, support vector machine, etc.). The results of sensitivity analysis revealed the impact
of variables on rockburst levels and the applicability of deep forest with a few input parameters.
Eventually, real cases of rockburst in two gold mines, China, were used for validation purposes while
the needed data sets were prepared by field observations and laboratory tests. The promoting results
of the developed model during the validation phase confirm that it can be used with a high level of
accuracy by practicing engineers for predicting rockburst occurrences.

Keywords: rockburst prediction; deep forest; bayesian optimization; ensemble model

MSC: 68Txx

1. Introduction

Rockburst is a geological catastrophe induced by the sudden release of strain energy
stored in rock mass during or after the excavation of underground engineering in high
in-situ stress areas. Rockburst occurs in many countries around the world [1]. It is generally
believed that intensity and frequentness of rockburst increase as depth increases. The
occurrence of rockburst damages underground tunnels and facilities and poses a severe
threat to the safety of the operators on site. The gold mines in South Africa have greater
mining depths than those in other countries. Meanwhile, most rockburst disasters occur
in South African gold mines. In 1975, 73 laborers died due to 680 rockburst incidents
in 31 gold mines. From 1984 to 1993, 3275 laborers lost their lives in mining geological
disasters due to the lack of mining technology to cope with the rockburst below 2000 m [2].
Rockburst is a complicated problem restricting the progress of underground engineering.
It is necessary for researchers to study how to prevent and control rockburst.

Many scholars have taken various measures to evaluate rockburst risk. These meth-
ods contain empirical indicators, numerical modeling, rock mechanics tests, intelligent
techniques, etc. [1,3]. Xue et al. [4] adopted the empirical method to estimate the rockburst
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grade at the Jiangbian hydropower station, China. The empirical method is simple and easy
to implement, but its effectiveness is poor. Zhai et al. [5] carried out rockburst tests with six
hard brittle rocks subjected to one-free-face true triaxial mechanical tests. Their test results
revealed that strength, fracturing, fragmentation characteristics, and failure modes had a
remarkable impact on rockburst proneness. Due to scale effect considerations, experimental
methods are suitable for investigating the failure process and mechanism of rockburst
rather than predicting rockburst [6–8]. Moreover, the field condition is challenging to be
reproduced in the laboratory. Wang et al. [9] summarized the numerical simulations, in-
cluding the continuum, discontinued, and hybrid techniques for rockburst evaluation. The
numerical simulation is economical, secure, and time-saving [1,3,10]. Nevertheless, choos-
ing an appropriate constitutive model and simulation method is very important according
to specific problems. With the blossom of artificial intelligence and big data, intelligent
algorithms are increasingly used to predict rockbursts. Compared to empirical, numerical,
and experimental methods, the intelligent model has high efficiency, good practicability
and can foretell and prevent rockbursts in time. However, it requires high-quality data.

The machine learning (ML) algorithm is an essential part of the intelligent algo-
rithm [11,12]. The ML algorithms for rockburst classification mainly include linear models
(LM), decision trees (DT), artificial neural networks (ANN), k-nearest neighbor (KNN),
Bayes classifiers, support vector machines (SVM), ensemble models, etc. Each ML model
has its own supremacy and drawback, and no model can perform best for every practical
engineering based on the ‘No Free Lunch theorem’. Table 1 compiles the ML techniques for
rockburst estimation recently and compares their advantages and disadvantages.

Table 1. The superiority and drawback of ML techniques for rockburst estimation recently.

Algorithm Superiority Drawback

LDA [13] Fast training and prediction speed, and simple and easy
to interpret.

Unsuitable for high-dimensional data.
LR [14]

C5.0 DT [15] Suitable for data with missing values, and can process
continuous variables and discrete variables simultaneously.

Tend to produce an overly complex model to
reduce its generalization.DT [16]

KNN [13] Simple and easy to implement. Unsuitable for unbalanced samples.

Naïve Bayes [13] Simple and fast. Perform very well under the assumption
that distribution is independent.

The assumption of independent distribution
is difficult to meet in practical projects.BN [17]

ANN [13,18–20] Strong mapping ability and can deal with complex
nonlinear problems.

Many hyperparameters to turn and easy
to overfit.

SVM [13,21] Solid theoretical basis and can be applied to complex
nonlinear data.

Difficult to deal with multiple
classification problems.

RF [13,22] Suitable for high dimension data and good
generalization ability.

Overfitting appears when dealing with
classification with high noise.Bagging [23]

GBM [13] Suitable for continuous values and discrete values. Robust
to outliers using robust loss functions

Difficult to train data in parallel.
XGB [24]

Note: LDA = linear discriminant analysis; LR = logistic regression; BN = Bayesian network; GBM = gradient
boosting machines; RF = random forest; XGB = extreme gradient boosting;.

To overcome the limitations of single ML models, some researchers have combined
multiple intelligent techniques to develop an ensemble model for rockburst estimation
recently. Zhang et al. [25] combined seven extensively applied ML techniques using a voting
strategy to construct an ensemble model, which had better performance than individual
classifiers in rockburst prediction. Liang et al. [26] compared five ensemble models based
on DT for forecasting short-term rockburst. They found that the RF was the optimal model.
Liang et al. [27] utilized weighting voting to combine six intelligent techniques to forecast
short-term rockburst. The capacity of the comprehensive combined model was better than
that of the base classifiers. Yin et al. [28] used stacking to integrate KNN, SVM, deep neural
networks, and recurrent neural networks for rockburst prediction. The ensemble model

160



Mathematics 2022, 10, 787

that adopted KNN and RNN performed best in all ensemble models. Although these
ensemble models show a high level of prediction accuracy, some practical problems [27,28]
prevent them from being widely used.

(1) Ensemble models are easy to overfit. For obtaining higher prediction accuracy, ensem-
ble models, such as RF, become complex, which makes generalization of the model
poor [13].

(2) The selection of a base classifier and combination strategy is difficult [25,27–29].
Different problems require different combined strategies, there should be a difference
between the base classifiers, and it is necessary to choose the combination strategy
and base classifier. Otherwise, performance cannot improve.

(3) Many hyperparameters need to be tuned. The parameter setting of the ensemble
model has a significant effect on the capacity.

To address the above limitations, this study proposed a novel methodology, the
deep forest model, for rockburst prediction. Motivated by the theory behind deep neural
networks and ensemble models, Zhou et al. [30] proposed the deep forest (DF), which
combines the characteristics of deep learning models and ensemble models. DF can
deal with more complex problems such as deep learning models. However, it has fewer
parameters to work with than deep learning models. The DF model is easy to use, and
its complexity can be determined according to the data, which can effectively prevent
overfitting. The DF model is suitable for small data sets. Through validation by different
data in different fields, the DF model still performs better even if it adopts the default
parameter configuration. It is meaningful to build the more powerful and robust intelligent
model by DF model to predict and prevent rockburst.

Additionally, Bayesian optimization (BO) is applied for optimizing hyperparameters
of DF. BO has been widely used in hyperparametric optimization in different ML studies
(e.g., [31–33]). BO differs from other optimization algorithms, and it is a useful model
for problems that are expensive to conduct. BO constructs a probabilistic model of the
objective function to be optimized and then applies the probabilistic model to determine
the next point to be evaluated [34]. BO has been increasingly applied to geotechnical
engineering [31,35–37].

The structure of this study is as follows: the ‘Methodology’ section introduces the
theory and composition of DF and BO. The ‘Data’ section presents the source and statistical
description of the rockburst database. The ‘Simulation’ exhibits how to construct and
optimize the DF model for rockburst prediction. In the ‘Discussion’ section, the capability
of DF to predict rockburst is evaluated. Furthermore, the influence of variables on rockburst
intensities is analyzed by sensitivity analysis. Finally, the DF is applied to forecast the
rockburst in practical engineering.

2. Methodology

2.1. DF

Zhou et al. [38] presented the gcForest to build the DF model, which consists of the
cascade forest and multi-grained scanning. When the gcForest addresses sequence or
image-style data, it needs multi-grained scanning. The rockburst data does not have spatial
or sequential relationships in this study, so the multi-grained scanning structure in gcForest
is abandoned.

RF and complete random forest (CRF) are the base classifiers in the DF model. The
RF is an ensemble model composed of K decision trees {h(X, θk), k = 1, . . . , K}, where θk
is a random vector that satisfies independent identically distributed [39]. Figure 1 shows
flowchart to build RF.
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Figure 1. The flowchart to establish RF model.

Similarly, CRF randomly selects a feature for split, and the others are the same as the
process of RF. As shown in Figure 2, the RF and CRF are implemented to construct cascade
layers. The input features are input to the first cascade layer. After all this, the output of
the previous cascade layer and the input features are input to the next layer. At this step,
the training set is divided into a growing set and an estimating set. When the cascade
forest increases by one layer, the estimating set tests the whole generated DF model. If the
performance of the estimating set is lower than that of the previous layer, the DF model
stops growing, and the cascade layer does not increase. In the last layer, the average of all
the output probability vectors is calculated, and the label with the maximum probability is
output as the prediction result. When the cascade layer does not increase, the DF model is
retained based on the whole training set. The structure of the DF model is automatically
determined, which reduces the risk of overfitting.
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Figure 2. Schematic diagram of cascade forest.

2.2. BO

BO is appropriate for tasks with expensive evaluation costs [40]. BO consists of
two parts, the surrogate model and the acquisition function [41]. The Gaussian process
(GP) [42] is the most extensively applied surrogate model in BO due to its flexibility and
tractability [40]. BO has three basic acquisition functions (AF), which are the probability of
improvement [43], expected improvement [44,45], and upper/lower confidence bound. It
is vital to choose an appropriate acquisition function to match the surrogate model. GP-
Hedge is proposed to select an appropriate AF in each iteration, and detailed information
about GP-Hedge can be found in previous studies [46].

3. Data

3.1. Data Collection and Description

The database, including 329 real rockburst cases worldwide, was established, as shown
in Table 2. According to the criteria for the classification of rockburst in Table 3, rockburst
levels can be grouped into four categories: none (53 cases), light (101 cases), moderate
(119 cases), and strong (56 cases). In the collected database (Supplementary Materials), the
number of light and moderate rockbursts is greater than that of none and strong rockbursts.

Rockburst often occurs on the excavation face in deep underground construction, it
is induced by the sudden release of strain energy stored in the rock mass, and the most
common phenomenon is strain burst. Rockburst mechanisms are complicated [47], and it is
connected with stress in the earth’s crust, rock property, rock mass structure, groundwater,
and so on [48]. In this study, seven factors, including maximum tangential stress (σθ),
uniaxial compressive strength (σc), tensile strength (σt), elastic strain energy index (Wet),
stress concentration factor (SCF or σθ/σc), rock brittleness index B1 (B1 = σc/σt), and rock
brittleness index B2 (B2 = (σc − σt)/(σc + σt)), are adopted as the input variables in the DF
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model [13,28]. Table 4 displays the statistical description of the four rockburst intensities.
Pearson correlation coefficients (Equation (1)) between variables are calculated, as shown
in Figure 3. Figure 4 exhibits the boxplots and histograms of the seven input variables of
four rockburst intensities. The boxplots are not symmetrical, there are many points outside
the upper and lower whiskers of boxplots, and the collected database does not satisfy a
normal distribution.

r =

n
∑

i=1

(
Xi − X

)(
Yi − Y

)
√

n
∑

i=1

(
Xi − X

)2
√

n
∑

i=1

(
Yi − Y

)2
(1)

Table 2. The database source.

No. Number of Cases Reference

1 N (43 cases), L (78 cases), M (81 cases), S (44 cases) Zhou et al. [13]
2 L (1 case), M (11 cases) Pu et al. [49]
3 N (3 cases), L (4 cases), M (8 cases), S (1 case) Liu et al. [50]
4 N (3 cases), L (7 cases), M (7 cases), S (3 cases) Xue et al. [51]
5 L (1 case), M (5 cases), Strong (1 case) Wu et al. [52]
6 N (1 case), L (2 cases), S (4 cases) Du et al. [53]
7 L (3 cases), M (3 cases) Jia et al. [54]
8 N (3 cases), L (5 cases), M (4 cases), S (3 cases) Xue et al. [55]

Sum N (53 cases), L (101 cases), M (119 cases), S (56 cases) 329 cases

Table 3. Standard of c1assification for four intensities of rockburst [48].

Rockburst Label Failure Characteristics

None No sound of rockburst and rockburst activities.

Light The surrounding rock is spalled, cracked, or striped, and there is no
ejection phenomenon and a weak sound.

Moderate

The surrounding rock is deformed and fractured, and there is
aconsiderable number of rock chip ejection, loose and sudden
destruction, accompanied by crisp crackling, and often presented in the
local cavern of surrounding rock.

Strong

The surrounding rocks are severely bursted and suddenly thrown or shot
into the tunnel, accompanied by strong bursts and roaring sounds, air
jets, the continuity of storm phenomena, and the rapid expansion into
deep surrounding rocks.

Table 4. Statistical description of the input parameters.

Grade Statistical Indicators σθ σc σt SCF B1 B2 Wet

None

Mean value 25.27 101.96 5.98 0.30 21.08 0.87 2.78
Standard deviation 16.32 49.39 3.90 0.25 12.72 0.07 1.94

Min value 2.60 20.00 0.40 0.05 5.38 0.69 0.81
25th percentiles 12.30 67.40 3.00 0.13 10.75 0.83 1.50
50th percentiles 21.50 96.41 5.00 0.21 18.75 0.90 2.04
75th percentiles 31.20 123.60 7.60 0.31 29.40 0.93 3.60

Max value 77.69 241.00 17.66 1.05 47.93 1.00 7.80
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Table 4. Cont.

Grade Statistical Indicators σθ σc σt SCF B1 B2 Wet

Light

Mean value 44.42 116.64 6.68 0.41 21.53 0.89 3.72
Standard deviation 20.63 39.56 3.91 0.19 10.12 0.07 1.54

Min value 13.50 30.00 1.90 0.10 2.52 0.43 0.85
25th percentiles 29.70 88.00 3.60 0.26 12.70 0.85 2.53
50th percentiles 43.21 117.00 5.90 0.38 23.60 0.92 3.20
75th percentiles 57.97 142.00 8.95 0.56 28.10 0.93 4.61

Max value 126.72 263.00 22.60 0.90 69.69 0.97 9.00
Mean value 44.42 116.64 6.68 0.41 21.53 0.89 3.72

Moderate

Mean value 51.50 116.58 6.12 0.47 25.20 0.90 5.06
Standard deviation 22.91 43.03 3.80 0.20 16.34 0.05 2.69

Min value 13.02 30.00 1.30 0.10 0.15 0.69 1.20
25th percentiles 37.15 84.30 2.98 0.34 15.02 0.87 3.66
50th percentiles 51.50 112.50 5.26 0.47 21.69 0.91 5.00
75th percentiles 65.84 147.53 8.30 0.59 27.76 0.93 5.91

Max value 118.77 237.20 17.66 1.27 80.00 0.98 21.00

Strong

Mean value 119.65 129.08 10.34 1.18 14.12 0.85 8.91
Standard deviation 83.11 52.37 4.67 1.17 5.94 0.06 6.02

Min value 16.43 30.00 2.50 0.10 5.53 0.69 2.03
25th percentiles 61.98 91.30 7.04 0.53 11.16 0.84 5.86
50th percentiles 91.37 127.09 10.27 0.72 13.27 0.86 7.20
75th percentiles 126.71 158.60 13.86 0.97 16.84 0.89 9.03

Max value 297.80 304.20 22.60 4.87 32.20 0.94 30.00

Figure 3. The heatmap of correlations between different variables.
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Figure 4. Boxplots and histograms of the seven variables of four rockburst intensities.
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3.2. Step-by-Step Study Flowchart

The database is divided into a training set (Tr) and a testing set (Te) according to
three split ratios, Tr (75%)-Te (25%), Tr (80%)-Te (20%), and Tr (85%)-Te (15%). Z-score
(Equation (2)) is utilized to process the input parameters. As shown in Figure 5, the training
part is applied to build the DF model for rockburst estimation. BO is implemented to
tune the hyperparameters of the DF. 5 fold cross-validation is implemented to choose
the optimized DF model. The permutation feature importance algorithm and partial
dependence plots are introduced to interpret the DF model. A sensitivity analysis is
employed to analyze effective variables on rockburst intensities and the robustness of the DF
model. Finally, the intelligent model is applied to foretell rockburst in practical engineering.

X′ = X − X
σ

(2)

In Equation (2), X depicts the average value and σ represents the standard deviation.

Figure 5. The flowchart to develop DF model for rockburst prediction.

4. Simulation

4.1. Model Metrics

Accuracy is often used as the metric index in the ML classification problem. Equation (3)
shows the equation to calculate accuracy. According to the actual label and the predicted

167



Mathematics 2022, 10, 787

label, the sample can be divided into true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The sum of the samples = TP + FP + TN + FN. According
to these, the precision and recall can be calculated, as shown in Equations (4) and (5). In
precision and recall, usually, when one is higher, the other is lower. In order to integrate
precision and recall, their harmonically average value, i.e., f1, is usually taken (Equation (6)).
Additionally, a receiver operating characteristic (ROC) curve is introduced to evaluate the
capability of single rockburst types. The area under the ROC curve is between 0 and 1. A
larger area of the ROC curve indicates a better prediction effect of the model.

Accuracy =
n′

n
(3)

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

f1 =
2 × precision × recall

precision + recall
(6)

In Equation (3), n represents the number of all datasets, and n′ stands for the number
of instances of which the predicted labels are equal to actual labels.

4.2. Cross-Validation

When the hyperparameters of ML models are optimized, the generalization of the
model needs to be evaluated to select the optimal model. K fold cross-validation is often
adopted in model evaluation. In cross-validation, k is usually set to 10 or 5 [56]. In this
study, k was set to 5 by referring to a previous study [25] to reduce the running time. As
shown in Figure 6, the training set is divided into five pieces of data equal to each other,
four pieces of data are selected to train each time, and the remaining piece of data is used
for validation. The process is repeated five times, and finally, the average value of the five
validation scores is taken.

Figure 6. The steps to perform 5 fold CV.

4.3. DF Optimization

σθ , σc, σt, SCF, B1, B2, and Wet were input to the DF to develop a rockburst prediction
model. The cascade layers in the DF can be automatically determined according to the
training set. The number of forests, the trees in each forest, and the maximum number of
cascade layers are the key parameters that influence the performance of DF. Referring to
previous studies by Zhou et al. [30], the optimization range of these hyperparameters was
determined, as shown in Table 5.

Table 5. The optimization range of hyperparameters in the DF model.

Hyperparameters Optimization Range

The number of forests (1, 4)
The trees in the forest (10, 100)

The maximum number of cascade layers (10, 30)
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BO was implemented to optimize the hyperparameters of the DF to choose an optimal
model. Before performing BO, the objective function needed to be defined, and BO was
utilized to optimize this objective function. The cross-entropy loss function is commonly
used for classification problems in ML areas, as shown in Equation (7). The smaller the
value is, the better the capability of the model. To improve the generalization of the DF
model, the cross-entropy loss function in 5 fold cross-validation was chosen as the objective
function, as shown in Equation (8).

loss = − 1
n∑n

i=1 log pmodel [yi ∈ Cyi ] (7)

Objective_ f unction =
1
5∑5

1 lossi (8)

In Equation (7), pmodel [yi ∈ Cyi ] is the prediction probability in the actual label.
Equation (8) means that the training set is split into five folds, four folds are applied
to train the DF model, and the cross-entropy loss function of the DF on the remaining one
fold is calculated. Repeating the process five times, the average value of the cross-entropy
loss function is chosen as the objective function.

BO was performed using Scikit-Optimize, an open-source Python library [57]. The
parameters of BO utilized the default value of Scikit-Optimize. Table 6 lists the values of
hyperparameters in BO in this study. Gaussian process was chosen as the surrogate model,
and GP-Hedge was selected as the acquisition function. Figure 7 exhibits the flowchart
in which BO tunes the hyperparameters of the DF model. In the BO process, GP-Hedge
determines the following points that need to be evaluated. The DF model trains according
to the hyperparameter value recommended by the GP-Hedge. After the DF is built, the
objective function is calculated, and the GP model is updated. By repeating this process
N times, the optimal hyperparameters can be obtained. Figure 8 exhibits the convergence
of the objective function with the process of BO. BO can efficiently minimize the objective
function to find the optimal DF model. Table 7 shows the optimal hyperparameters of the
DF model with different training sets at the end of BO.

Table 6. The parameters of BO.

Surrogate Model Acquisition Function Surrogate Model Hyperparameters

GP GP-Hedge
1. Kernel function: Matern Kernel and
White Kernel
2. Noise: Gaussian distribution

Table 7. The optimal hyperparameters in the DF model.

Datasets Hyperparameters Value

Tr (75%)-Te (25%) The number of forests 4
The trees in the forest 36

The maximum number of cascade layers 30

Tr (80%)-Te (20%) The number of forests 4
The trees in the forest 18

The maximum number of cascade layers 19

Tr (85%)-Te (15%) The number of forests 4
The trees in the forest 25

The maximum number of cascade layers 25
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Figure 7. The flowchart of BO.
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Figure 8. Convergence of objective function during BO.

4.4. Results

The optimized DF models with different training sets were obtained according to
Table 7, and in three different training sets, the training accuracies of DF models were 100%.
The remaining three testing sets were adopted to evaluate the capability of DF models.
Tables 8–10 present the performances of DF models on the different testing sets. The three
DF models developed by different training datasets had the same capabilities in predicting
strong rockburst. In terms of testing accuracy, the DF model with Tr (80%)-Te (20%) has the
best capacity. Accordingly, it is appropriate to develop DF models to predict rockburst by
80% training set and 20% testing set.

Table 8. The testing performance of DF models with Tr (75%)-Te (25%).

Rockburst Type Precision Recall f1 Number

None 0.86 0.92 0.89 13
Light 0.95 0.76 0.84 25

Moderate 0.88 1.00 0.94 30
Strong 1.00 1.00 1.00 14

Accuracy 91.5% 82

Table 9. The testing performance of DF models with Tr (80%)-Te (20%).

Rockburst Type Precision Recall f1 Number

None 0.91 0.91 0.91 11
Light 0.94 0.80 0.86 20

Moderate 0.89 1.00 0.94 24
Strong 1.00 1.00 1.00 11

Accuracy 92.4% 66
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Table 10. The testing performance of DF models with Tr (85%)-Te (15%).

Rockburst Type Precision Recall f1 Number

None 1.00 0.88 0.93 8
Light 0.92 0.80 0.86 15

Moderate 0.86 1.00 0.92 18
Strong 1.00 1.00 1.00 8

Accuracy 91.8% 49

5. Discussion

5.1. Model Performance Comparison

DF model consists of RF and CRF, and to analyze the advantages of DF compared to its
base classifiers, RF and CRF are also independently built with the same hyperparameters
(Tr (80%)-Te (20%)) in Table 7. The training accuracy in RF and CRF was 100% and
99.6%, respectively, and Tables 11 and 12 display the testing performance of RF and CRF,
respectively. According to Table 9, the DF has higher testing accuracy than RF and CRF,
which reveals that model combination can improve the capability for predicting rockburst.
The ROC curve is introduced to compare the performance of each rockburst intensity in DF,
RF, and CRF. Figure 9 exhibits the ROC curves of the four rockburst intensities in DF, RF,
and CRF. The larger area of the ROC curve is associated with better model performance. DF,
RF, and CRF perform similarly in terms of strong rockburst prediction, but DF outperforms
RF and CRF in terms of none, light, and moderate rockburst prediction.

Table 11. The testing performance of the RF model.

Rockburst Type Precision Recall f1 Number

None 0.75 0.82 0.78 11
Light 0.74 0.85 0.79 20

Moderate 0.95 0.83 0.89 24
Strong 1.00 0.91 0.95 11

Accuracy 84.8% 66

Table 12. The testing performance of the CRF model.

Rockburst Type Precision Recall f1 Number

None 0.75 0.82 0.78 11
Light 0.75 0.75 0.75 20

Moderate 0.84 0.88 0.86 24
Strong 1.00 0.82 0.90 11

Accuracy 81.8% 66

Additionally, to explore the power of the DF model, widely used ML models were
also developed in this study, and they included LR, Naive Bayes, KNN, SVM, DT, adaptive
boosting (AdaBoost), ANN, XGB, and GBM. XGB was built using the default parameters
in XGBoost (a Python library) [51], and other models used the Scikit-learn [52] default
parameters. Training set (80%) was applied to develop these models, and testing set
(20%) was adopted to evaluate these models. Figure 10 displays the training and testing
accuracy of these models. The DT suffers from serious overfitting, and its performance
differs markedly between the training and testing sets. Many ensemble tree models, i.e.,
GBM, XGB, and RF, perform better than other ML models. Taylor diagrams [58,59] were
introduced to determine the strength of the DF model compared to other models. In this
study, Taylor diagrams combine the Matthews correlation coefficient (MCC), centered
root mean square error (green dotted lines in Figure 11), and standard deviation into a
polar diagram. Equation (9) shows the equation to calculate MCC. The reference points
with black star shapes depict the actual rockburst, and when other points are closer to
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the reference points, the corresponding models have better performance in predicting
rockburst. It is worth noting that the DF model outperforms other commonly used tree
models in the training and testing sets, according to Figure 11.

Figure 9. Model performance comparison in each rockburst by ROC curve.

Figure 10. Training and testing results of the developed models. (a) Training accuracy; (b) Testing accuracy.
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Figure 11. Taylor diagrams for comparing the performance of developed models. (a) Training results;
(b) Testing results.

Additionally, Table 13 compares the capabilities of DF and some intelligent models
proposed by other scholars in recent years, and the DF model has better performance than
other models during training and testing phases. The results reveal that the DF model is a
powerful technique to forecast and prevent rockburst.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

Table 13. Comparison of DF and other ML models proposed in recent years.

Algorithm/Model Input Parameters Data Size
Accuracy

Training Testing

Voting model [25] H, σθ , σc, σt, Wet 188 94% 80%
PSO-ELM [55] σθ , σc, σt, SCF, B1, Wet 344 98.99% 88.89%
Bagging [23] σθ , σc, σt, SCF, B1, Wet 102 100% 88.24%
Boosting [23] σθ , σc, σt, SCF, B1, Wet 102 100% 91.18%

Stacking model [28] σθ , σc, σt, SCF, B1, B2, Wet 246 88.52%
DF σθ , σc, σt, SCF, B1, B2, Wet 329 100% 92.40%

Note: Voting model is the combination of back propagation neural network, KNN, SVM, LR, linear model, DT,
and Naive Bayes; H = depth; POS = particle swarm optimization; ELM = extreme learning machine; stacking
model is the combination of KNN, SVM, deep neural network, and recurrent neural network.

5.2. Sensitivity Analysis

The permutation feature importance was implemented to determine crucial variables
that affected rockburst in the DF model. The permutation feature importance was bene-
ficial for analyzing the relative importance of input variables in nonlinear or opaque ML
models [60], and it is introduced to determine the importance score of input parameters.
Figure 12 shows the importance score of the input parameters in the DF model. According
to this Figure 12, σθ , Wet, and SCF are the vital parameters that influence the performance
of rockburst prediction.
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Figure 12. The relative importance of input variables in the DF model.

To determine the impact of parameters on the rockburst levels, partial dependence
plots (PDP) [61] were introduced to analyze the relationship between variables and pre-
dicted results of the DF model, as shown in Figure 13. The PDP displays the dependence
of the predicted probability of different rockburst levels on the variable of interest when
other variables are fixed. With the increase of σθ , Wet, and SCF, the predicted probability of
a strong rockburst increases, and the predicted probability of a none rockburst decreases.
There is no apparent relationship between the other variables and the predicted probability
of rockburst in the DF model. These results indicate that larger σθ , Wet, and SCF values are
accompanied by more serious rockburst. Accordingly, it is vital to reduce the σθ , Wet, and
SCF of surrounding rock in underground engineering to mitigate the rockburst risk. Some
measures, such as smooth blasting, pressure relief blasting, and deformable bolts and mesh,
can be applied to prevent rockburst on-site [62].

The key parameters affecting rockburst intensities are determined, which makes it
possible to analyze the performance variation of the DF model under different influential
variables. According to the relative importance of the input variables, seven models that
adopted different input parameters were developed, as shown in Table 14. These seven
models adopted the same hyperparameters (Tr (80%)-Te (20%)) in Table 7. Figure 14
displays the variations of training and testing accuracy with the input variable number
varying. With the decrease of input parameters, DF has low accuracy, which suggests that
considering more factors is beneficial to improving the generalization of DF and predicting
and preventing rockburst due to the complexity of rockburst. Additionally, with only three
input parameters, the testing accuracy of the DF model is still 81.82%, which indicates that
the DF model has good robustness and is suitable for fewer input parameters.
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Figure 13. PDP to analyze the influence of variables on the rockburst predicted probability. (a) σθ ;
(b) σc; (c) σt; (d) SCF; (e) B1; (f) B2; (g) Wet.

Table 14. Seven models and their input parameters.

Model Input Parameters Input Parameters Number

M 1 σθ , σc, σt, SCF, B1, B2, Wet 7
M 2 σθ , σc, SCF, B1, B2, Wet 6
M 3 σθ , SCF, B1, B2, Wet 5
M 4 σθ , SCF, B1, Wet 4
M 5 σθ , SCF, Wet 3
M 6 σθ , Wet 2
M 7 σθ 1
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Figure 14. Model performance variation with the input parameters variation.

5.3. Engineering Validation

Xincheng Gold Mine and Sanshangao Gold Mine are located in Yantai, Shandong,
China. Figure 15 presents their locations. After years of mining production, the two gold
mines have become mines with a mining depth of more than 1000 m in China. To meet
production needs, it is necessary to excavate ores in deeper strata. Due to the complexity of
deep high stress and geological conditions, many engineering problems are inevitably faced
in deep mining operations, among which rockburst poses a severe threat to the safety of
facilities and workers. A series of field investigations and rock mechanics tests were carried
out in the two gold mines to avoid the threat of rockburst to shaft construction. Seven rock
blocks were taken in different locations in the Xincheng Gold Mine, and five rock blocks
were taken in the Sanshandao Gold Mine. These rock blocks were processed into standard
specimens for rock mechanics tests and in-situ stress analysis [63]. Table 15 presents the
rock parameters used to foretell rockburst. According to the standard of c1assification for
intensities of rockburst in Table 3, the rockburst level of each site was determined. The DF
model was used to evaluate the rockburst, and Table 15 shows the predicted results. The
predicted results of the DF model are consistent with the actual rockburst situation. These
results suggest that the DF model has superior engineering practicability.

Table 15. Application of DF model in practical engineering.

No. Engineering σθ/MPa σc/MPa σt/MPa SCF B1 B2 Wet Actual Grade Predicted Grade

1 Xincheng 87.60 139.07 10.63 0.63 13.08 0.86 5.56 S S
2 Gold Mine 108.31 149.99 11.97 0.72 12.53 0.85 6.88 S S
3 89.46 155.45 12.05 0.58 12.90 0.86 3.98 S S
4 100.00 137.52 13.73 0.73 10.01 0.82 5.27 S S
5 107.25 182.67 12.11 0.59 15.08 0.88 5.48 S S
6 107.87 140.38 12.06 0.77 11.64 0.84 8.50 S S
7 109.57 174.34 12.07 0.63 14.44 0.87 7.69 S S

8 Sanshandao 94.64 160.94 9.74 0.59 16.52 0.89 4.94 M M
9 Gold Mine 32.45 138.25 9.04 0.23 15.29 0.88 3.73 L L
10 23.13 146.29 19.6 0.16 7.46 0.76 6.45 N N
11 34.12 154.28 13.98 0.22 11.04 0.83 4.61 L L
12 34.07 128.5 11.71 0.27 10.97 0.83 1.92 N N
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Figure 15. The location of Xincheng Gold Mine and Sanshandao Gold Mine.

6. Limitations and Future Studies

Rockburst is a complex geological disaster that is related to many factors, such as
geological structure, in-situ stress conditions, rock strength, excavation method, excavation
size, etc. However, in this study, only seven related parameters were considered to build
the intelligent model for rockburst prediction. Other parameters, such as rock quality index,
rock integrity coefficient, and the geometric size of the cross-section of the excavation, are
also essential to determine rockburst level. In the future, more influential factors should
be considered to add to the database. Additionally, increasing the size of the database
contributes to building a more powerful intelligent rockburst prediction model. As for
the DF model, to apply DF to predict rockburst in different engineering problems, it is
necessary to tune the hyperparameters of DF according to the size and complexity of data.

7. Conclusions

(1) Deep forest, a novel tree-based ensemble model, was proposed to build the rockburst
prediction model based on 329 collected real rockburst cases. Bayesian optimization
was used to turn the hyperparameters of the DF. The DF had 100% accuracy in the
training set and 92.4% accuracy in the testing set, and it performed better than other
ML models and can forecast massive rockburst disasters.

(2) σθ and Wet are the essential parameters that affect the performance of the DF model
for rockburst prediction. Sensitivity analysis reveals that more factors can be taken
into account to build a more accurate rockburst prediction model for the complexity
of rockburst. Moreover, it also confirms that the proposed DF model has good
performance with fewer input parameters.

(3) A field investigation was carried out in the Xincheng Gold Mine and Sanshandao Gold
mine, Shandong, China, and the collected rock blocks were tested in the laboratory.
The obtained parameters were input into the trained DF model, and the predicted
results matched the rockburst situation on site. The validation datasets from gold
mines can expand the rockburst database to establish more powerful models.

(4) The DF model is trained by the datasets from mines, tunnels, large underground
chambers, traffic tunnels, etc., and it is validated by the cases from two gold mines.
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Accordingly, it is worth noting that the proposed DF model is not only applied to
gold mines with a high level of accuracy but also is suitable for other deep mine and
underground excavation engineering.

Supplementary Materials: The collected rockburst database can be found be downloaded at: https:
//www.mdpi.com/article/10.3390/math10050787/s1, Table S1: Collected rockburst database.

Author Contributions: Conceptualization, D.L. and Z.L.; methodology, Z.L.; software, Z.L.; vali-
dation, P.X.; investigation, P.X.; resources, D.L.; writing—original draft preparation, Z.L. and D.L.;
writing—review and editing, D.L., D.J.A. and J.Z.; visualization, Z.L.; supervision, D.L.; project
administration, D.L.; funding acquisition, D.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (Grant
No.:52074349).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhou, J.; Li, X.; Mitri, H.S. Evaluation method of rockburst: State-of-the-art literature review. Tunn. Undergr. Space Technol. 2018,
81, 632–659. [CrossRef]

2. Cai, M. Prediction and prevention of rockburst in metal mines–A case study of Sanshandao gold mine. J. Rock Mech. Geotech. Eng.
2016, 8, 204–211. [CrossRef]

3. Afraei, S.; Shahriar, K.; Madani, S.H. Developing intelligent classification models for rock burst prediction after recognizing
significant predictor variables, Section 1: Literature review and data preprocessing procedure. Tunn. Undergr. Space Technol. 2019,
83, 324–353. [CrossRef]

4. Xue, Y.; Bai, C.; Kong, F.; Qiu, D.; Li, L.; Su, M.; Zhao, Y. A two-step comprehensive evaluation model for rockburst prediction
based on multiple empirical criteria. Eng. Geol. 2020, 268, 105515. [CrossRef]

5. Zhai, S.; Su, G.; Yin, S.; Zhao, B.; Yan, L. Rockburst characteristics of several hard brittle rocks: A true triaxial experimental study.
J. Rock Mech. Geotech. Eng. 2020, 12, 279–296. [CrossRef]

6. Khan, N.M.; Ahmad, M.; Cao, K.; Ali, I.; Liu, W.; Rehman, H.; Hussain, S.; Rehman, F.U.; Ahmed, T. Developing a new bursting
liability index based on energy evolution for coal under different loading rates. Sustainability 2022, 14, 1572. [CrossRef]

7. Wang, S.; Li, X.; Yao, J.; Gong, F.; Li, X.; Du, K.; Tao, M.; Huang, L.; Du, S. Experimental investigation of rock breakage by a conical
pick and its application to non-explosive mechanized mining in deep hard rock. Int. J. Rock Mech. Min. Sci. 2019, 122, 104063.
[CrossRef]

8. Wang, S.; Sun, L.; Li, X.; Wang, S.; Du, K.; Li, X.; Feng, F. Experimental investigation of cuttability improvement for hard rock
fragmentation using conical cutter. Int. J. Geomech. 2021, 21, 06020039. [CrossRef]

9. Wang, J.; Apel, D.B.; Pu, Y.; Hall, R.; Wei, C.; Sepehri, M. Numerical modeling for rockbursts: A state-of-the-art review. J. Rock
Mech. Geotech. Eng. 2021, 13, 457–478. [CrossRef]

10. Pu, Y.; Apel, D.B.; Liu, V.; Mitri, H. Machine learning methods for rockburst prediction-state-of-the-art review. Int. J. Min. Sci.
Technol. 2019, 29, 565–570. [CrossRef]

11. Ma, L.; Khan, N.M.; Cao, K.; Rehman, H.; Salman, S.; Rehman, F.U. Prediction of sandstone dilatancy point in different water
contents using infrared radiation characteristic: Experimental and machine learning approaches. Lithosphere 2022, 2021, 3243070.
[CrossRef]

12. Khan, N.M.; Ma, L.; Cao, K.; Hussain, S.; Liu, W.; Xu, Y.; Yuan, Q.; Gu, J. Prediction of an early failure point using infrared
radiation characteristics and energy evolution for sandstone with different water contents. Bull. Eng. Geol. Environ. 2021, 80,
6913–6936. [CrossRef]

13. Zhou, J.; Li, X.; Mitri, H.S. Classification of rockburst in underground projects: Comparison of ten supervised learning methods. J.
Comput. Civ. Eng. 2016, 30, 04016003. [CrossRef]

14. Li, N.; Jimenez, R. A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat. Hazards 2018, 90,
197–215. [CrossRef]

15. Ghasemi, E.; Gholizadeh, H.; Adoko, A.C. Evaluation of rockburst occurrence and intensity in underground structures using
decision tree approach. Eng. Comput. 2020, 36, 213–225. [CrossRef]

16. Pu, Y.; Apel, D.B.; Lingga, B. Rockburst prediction in kimberlite using decision tree with incomplete data. J. Sustain. Min. 2018,
17, 158–165. [CrossRef]

179



Mathematics 2022, 10, 787

17. Li, N.; Feng, X.; Jimenez, R. Predicting rock burst hazard with incomplete data using Bayesian networks. Tunn. Undergr. Space
Technol. 2017, 61, 61–70. [CrossRef]

18. Zhou, J.; Guo, H.; Koopialipoor, M.; Jahed Armaghani, D.; Tahir, M. Investigating the effective parameters on the risk levels of
rockburst phenomena by developing a hybrid heuristic algorithm. Eng. Comput. 2021, 37, 1679–1694. [CrossRef]

19. Zhou, J.; Koopialipoor, M.; Li, E.; Armaghani, D.J. Prediction of rockburst risk in underground projects developing a neuro-bee
intelligent system. Bull. Eng. Geol. Environ. 2020, 79, 4265–4279. [CrossRef]

20. Li, D.; Liu, Z.; Xiao, P.; Zhou, J.; Jahed Armaghani, D. Intelligent rockburst prediction model with sample category balance using
feedforward neural network and Bayesian optimization. Undergr. Space 2022, in press. [CrossRef]

21. Pu, Y.; Apel, D.B.; Wang, C.; Wilson, B. Evaluation of burst liability in kimberlite using support vector machine. Acta Geophys.
2018, 66, 973–982. [CrossRef]

22. Lin, Y.; Zhou, K.; Li, J. Application of Cloud Model in Rock Burst Prediction and Performance Comparison with Three Machine
Learning Algorithms. IEEE Access 2018, 6, 30958–30968. [CrossRef]

23. Wang, S.-M.; Zhou, J.; Li, C.-Q.; Armaghani, D.J.; Li, X.-B.; Mitri, H.S. Rockburst prediction in hard rock mines developing
bagging and boosting tree-based ensemble techniques. J. Cent. South Univ. 2021, 28, 527–542. [CrossRef]

24. Xie, X.; Jiang, W.; Guo, J. Research on rockburst prediction classification based on GA-XGB model. IEEE Access 2021, 6,
83993–84020. [CrossRef]

25. Zhang, J.; Wang, Y.; Sun, Y.; Li, G. Strength of ensemble learning in multiclass classification of rockburst intensity. Int. J. Numer.
Anal. Methods Geomech. 2020, 44, 1833–1853. [CrossRef]

26. Liang, W.; Sari, A.; Zhao, G.; McKinnon, S.D.; Wu, H. Short-term rockburst risk prediction using ensemble learning methods. Nat.
Hazards 2020, 104, 1923–1946. [CrossRef]

27. Liang, W.; Sari, Y.A.; Zhao, G.; McKinnon, S.D.; Wu, H. Probability estimates of short-term rockburst risk with ensemble classifiers.
Rock Mech. Rock Eng. 2021, 54, 1799–1814. [CrossRef]

28. Yin, X.; Liu, Q.; Pan, Y.; Huang, X.; Wu, J.; Wang, X. Strength of stacking technique of ensemble learning in rockburst prediction
with imbalanced data: Comparison of eight single and ensemble models. Nat. Resour. Res. 2021, 30, 1795–1815. [CrossRef]

29. Li, D.; Liu, Z.; Armaghani, D.J.; Xiao, P.; Zhou, J. Novel ensemble intelligence methodologies for rockburst assessment in complex
and variable environments. Sci. Rep. 2022, 12, 1844. [CrossRef]

30. Zhou, Z.-H.; Feng, J. Deep forest. arXiv 2017, arXiv:1702.08835. [CrossRef]
31. Zhou, J.; Qiu, Y.; Zhu, S.; Armaghani, D.J.; Khandelwal, M.; Mohamad, E.T. Estimation of the TBM advance rate under hard rock

conditions using XGBoost and Bayesian optimization. Undergr. Space 2021, 6, 506–515. [CrossRef]
32. Zhou, J.; Asteris, P.G.; Armaghani, D.J.; Pham, B.T. Prediction of ground vibration induced by blasting operations through the use

of the Bayesian Network and random forest models. Soil Dyn. Earthq. Eng. 2020, 139, 106390. [CrossRef]
33. Han, H.; Armaghani, D.J.; Tarinejad, R.; Zhou, J.; Tahir, M. Random forest and bayesian network techniques for probabilistic

prediction of flyrock induced by blasting in quarry sites. Nat. Resour. Res. 2020, 29, 655–667. [CrossRef]
34. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; Freitas, N.D. Taking the human out of the loop: A review of bayesian

optimization. Proc. IEEE 2015, 104, 148–175. [CrossRef]
35. Liang, X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian

optimization. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 415–430. [CrossRef]
36. Zhang, Q.; Hu, W.; Liu, Z.; Tan, J. TBM performance prediction with Bayesian optimization and automated machine learning.

Tunn. Undergr. Space Technol. 2020, 103, 103493. [CrossRef]
37. Sameen, M.I.; Pradhan, B.; Lee, S. Application of convolutional neural networks featuring Bayesian optimization for landslide

susceptibility assessment. Catena 2020, 186, 104249. [CrossRef]
38. Lu, X.; Duan, Z.; Qian, Y.; Zhou, W. A malicious code classification method based on deep forest. J. Softw. 2020, 31, 1454–1464.
39. Breiman, L. Random Forests. MLear 2001, 45, 5–32.
40. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Proceedings of the

Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.

41. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

42. Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst. 2008, 14, 69–106. [CrossRef] [PubMed]
43. Kushner, H.J. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng.

1964, 86, 97–106. [CrossRef]
44. Mockus, J.; Tiesis, V.; Zilinskas, A. The application of Bayesian methods for seeking the extremum. Towards Glob. Optim. 1978, 2, 2.
45. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 1998, 13,

455–492. [CrossRef]
46. Brochu, E.; Hoffman, M.W.; De Freitas, N. Portfolio allocation for bayesian optimization. arXiv 2010, arXiv:1009.5419.
47. He, M.; Ren, F.; Liu, D. Rockburst mechanism research and its control. Int. J. Min. Sci. Technol. 2018, 28, 829–837. [CrossRef]
48. Zhou, J.; Li, X.; Shi, X. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support

vector machines. Saf. Sci. 2012, 50, 629–644. [CrossRef]

180



Mathematics 2022, 10, 787

49. Pu, Y.; Apel, D.B.; Xu, H. Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier.
Tunn. Undergr. Space Technol. 2019, 90, 12–18. [CrossRef]

50. Ran, L.; Ye, Y.; Hu, N.; Hu, C.; Wang, X. Classified prediction model of rockburst using rough sets-normal cloud. Neural Comput.
Appl. 2019, 31, 8185–8193.

51. Xue, Y.; Li, Z.; Li, S.; Qiu, D.; Tao, Y.; Wang, L.; Yang, W.; Zhang, K. Prediction of rock burst in underground caverns based on
rough set and extensible comprehensive evaluation. Bull. Eng. Geol. Environ. 2019, 78, 417–429. [CrossRef]

52. Wu, S.; Wu, Z.; Zhang, C. Rock burst prediction probability model based on case analysis. Tunn. Undergr. Space Technol. 2019,
93, 103069. [CrossRef]

53. Du, Z.; Xu, M.; Liu, Z.; Xuan, W. Laboratory integrated evaluation method for engineering wall rock rock-burst. Gold 2006, 27,
26–30.

54. Jia, Q.; Wu, L.; Li, B.; Chen, C.; Peng, Y. The comprehensive prediction model of rockburst tendency in tunnel based on optimized
unascertained measure theory. Geotech. Geol. Eng. 2019, 37, 3399–3411. [CrossRef]

55. Xue, Y.; Bai, C.; Qiu, D.; Kong, F.; Li, Z. Predicting rockburst with database using particle swarm optimization and extreme
learning machine. Tunn. Undergr. Space Technol. 2020, 98, 103287. [CrossRef]

56. Zhou, J.; Li, E.; Wang, M.; Chen, X.; Shi, X.; Jiang, L. Feasibility of stochastic gradient boosting approach for evaluating seismic
liquefaction potential based on SPT and CPT case histories. J. Perform. Constr. Facil. 2019, 33, 04019024. [CrossRef]

57. Head, T.; MechCoder, G.L.; Shcherbatyi, I. Scikit-optimize/scikit-optimize: v0.5.2. Zenodo 2018, 1207017.
58. Taylor, K.E. Taylor Diagram Primer. Working Paper. 2005, pp. 1–4. Available online: http://www.atmos.albany.edu/daes/

atmclasses/atm401/spring_2016/ppts_pdfs/Taylor_diagram_primer.pdf (accessed on 8 February 2022).
59. Zhou, J.; Zhu, S.; Qiu, Y.; Armaghani, D.J.; Zhou, A.; Yong, W. Predicting tunnel squeezing using support vector machine

optimized by whale optimization algorithm. Acta Geotech. 2022. [CrossRef]
60. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.

Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
61. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
62. Xiao, P.; Li, D.; Zhao, G.; Liu, H. New criterion for the spalling failure of deep rock engineering based on energy release. Int. J.

Rock Mech. Min. Sci. 2021, 148, 104943. [CrossRef]
63. Xiao, P.; Li, D.; Zhao, G.; Liu, M. Experimental and Numerical Analysis of Mode I Fracture Process of Rock by Semi-Circular

Bend Specimen. Mathematics 2021, 9, 1769. [CrossRef]

181





Citation: Liu, K.; Jin, S.; Rui, Y.;

Huang, J.; Zhou, Z. Effect of

Lithology on Mechanical and

Damage Behaviors of Concrete in

Concrete-Rock Combined Specimen.

Mathematics 2022, 10, 727. https://

doi.org/10.3390/math10050727

Academic Editor: Rami

Ahmad El-Nabulsi

Received: 24 January 2022

Accepted: 22 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Effect of Lithology on Mechanical and Damage Behaviors of
Concrete in Concrete-Rock Combined Specimen

Kewei Liu, Shaobo Jin, Yichao Rui *, Jin Huang and Zhanxing Zhou

School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
kewei_liu@csu.edu.cn (K.L.); jinshaobo@csu.edu.cn (S.J.); hj_changsha@csu.edu.cn (J.H.);
zzx1230@csu.edu.cn (Z.Z.)
* Correspondence: ruiyichao@csu.edu.cn

Abstract: A concrete structure built on rock foundation works together with the connected rock mass,
which has a significant effect on the mechanical behaviors of the concrete structure. To study the
effect of lithology on the mechanical and damage behaviors of concrete in a concrete-rock combined
specimen (CRCS), first, a test method for measuring the concrete part (concrete in CRCS) is adopted,
then, uniaxial compression tests on seven types of specimens are performed and acoustic emission
(AE) events are simultaneously monitored. Test results show that the low-strength concrete part plays
a major role in the fracture behavior of CRCS. When the CRCS is failed, a sudden stress drop happens
in CRCS, and the rock part (rock in CRCS) experiences a rapid axial strain recovery and intensifies
the failure of the concrete part. The load-bearing and deformation capacities of the concrete part
increase with the strength of the rock part, but the rock part shows the opposite behaviors under the
influence of the concrete part. Furthermore, the damage of CRCS is mainly formed in the concrete
part, and the damage extent of the concrete part is positively correlated with the strength of the rock
part. Finally, a damage constitutive model of the concrete part is established and validated. This
model can be used to accurately describe the effect of lithology on the mechanical response of the
concrete part under uniaxial compression loading.

Keywords: lithology; concrete part; mechanical and damage behaviors; damage constitutive model

MSC: 74A45; 74A20; 74Q15; 74L10; 92F05

1. Introduction

Concrete structures are widely built on rock foundations in the fields of hydraulic,
civil and mining engineering, for instance, dams and retaining walls on a rock foundation,
concrete support in underground excavation and underground nuclear waste reposito-
ries [1–11]. In the past, extensive studies have been carried out on pure concrete materials,
and their deformation and failure evolution can be reasonably predicted. However, under
the action of loading, in situ stress or temperature variation, the concrete structure and the
connected rock foundation work and respond together. In this situation, the mechanical
behaviors of concrete structures are significantly different from those of pure concrete
structures, i.e., there are obvious shortcomings in revealing the mechanical performance
of concrete structures built on rock foundations based on the experimental results of pure
concrete specimens. In response to this situation, the concrete–rock structure should be con-
sidered as a combined body, and it is worthwhile to perform research on the concrete–rock
combined specimen and further forecast the mechanical behaviors of concrete structures in
practical applications.

In recent years, some efforts have been made to study the mechanical properties
of CRCS subjected to various types of loads, such as compressive [12–16], shear [17–20],
tensile [21–25], etc., in laboratory experiments. For example, Selçuk et al. [12] implemented
uniaxial compressive tests on the concrete–rock bi–materials and found that with the
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increase of interface inclination angle, the strength of the combined specimen first decreases
and then increases. Shen et al. [17] reported that the peak shear strength of the concrete–
rock interface increases with the joint roughness coefficient, but the increase rate gradually
decreases, and the peak strength tends to be stable. Chang et al. [21] observed that the load–
bearing capacity of concrete–rock bi–material discs increases with the interface inclination
angle, and the fracture pattern gradually changes from shear failure to a combined mode
of shear fracture and tensile fracture, and finally it turns into tensile failure. Dong et al. [26]
stated that under three–point bending, the failure of concrete–rock interface is mode I
dominated fracture, and under four–point shearing, the mode II component may increase
in the case of a small notched crack length–to–depth ratio. Although the above experimental
studies mainly focus on the interface fracture and the influence of interface conditions on
strength, it is implied that compared to pure concrete, the mechanical properties of CRCS
are significantly affected when the rock material is involved.

Besides experimental studies, theoretical and numerical works have also been under-
taken to analyze the mechanical behaviors of concrete–rock combined bodies. Javanmardi
et al. [27] propose a theoretical model for transient water pressure variation along the
concrete–rock crack during the earthquake, and the model is validated and further imple-
mented in a finite element program for dynamic stability analysis of a concrete gravity
dam resting on a rock foundation. Andjelkovic et al. [28] derived the mathematical mod-
els of shear deformability and shear strength for the contact of concrete and rock mass,
and these models can serve as a basis for the structural analysis of concrete dams in the
preliminary design. In addition, Tian et al. [29] developed a cohesive interface model
for cemented concrete–rock joints to simulate the whole shear stress–shear displacement
curve, including the elastic, bond failure and friction sliding stags. For seismic safety
evaluation, Chavez et al. [30] used the Coulomb friction model to quantify the relative
movement of earthquake–induced sliding at the interface between the concrete dam base
and rock foundation. Furthermore, through experimental investigation, Dong et al. [23]
propose an interfacial crack propagation criterion for the composite rock–concrete speci-
men, and by applying this criterion into the numerical simulation, the complete fracture
process of a gravity dam is numerically analyzed, and the potential crack propagation
paths are predicted.

Considering the difference between concrete and rock materials, these above–reviewed
works emphasize the importance of concrete–rock contact and interface conditions, and
some mechanical behaviors of the whole concrete–rock body under shear loads are also
investigated. However, under the conditions of response to loading together, especially
for compression, the concrete and rock in the combined body interact with each other
and the mechanical behaviors of concrete structure are significantly affected by the rock
mass. When designing and evaluating the concrete structure built on the rock foundation,
this issue needs to be essentially concerned, while by far, few papers can be found to
study the mechanical properties of concrete in the combined body. Moreover, in practical
engineering, the concrete structures are built on bedrock with different lithology, and the
mechanical performance of the concrete structures is closely related to the lithology of the
rock foundation. In this paper, firstly an experimental method to obtain the stress and
strain of concrete part in CRCS is adopted. Then uniaxial compression tests on seven types
of specimens, including three types of pure rock specimens with different lithology, one
type of pure concrete specimen and three types of CRCSs, are performed and acoustic
emission (AE) events happening in the specimen are simultaneously monitored. The effect
of rock lithology on the mechanical behaviors of the concrete part is analyzed. In addition,
a statistical damage constitutive model of the concrete part is established and validated.
Research in this study can provide fundamental insights into the mechanical and damage
behaviors of concrete structures built on rock foundations with different lithology.
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2. Specimen and Experiment Setup

2.1. Specimen

To study the effect of lithology on the mechanical and damage behaviors of the
concrete part, in the present study, three types of rock, i.e., red sandstone, purple sandstone
and granite, have been considered for the rock part. These three types of rock materials
are processed into cylinders of 75 mm in diameter, and the heights of the cylinders are
75 mm and 150 mm. For the concrete, alluvial sands from a natural deposit with a fineness
modulus of 2.9 have been used as fine aggregates. Clean gravels with a maximum size
of 7 mm are used as coarse aggregates. Portland 42.5R cement, which is often adopted in
practice, has been selected as cementitious material and the corresponding water/cement
ratio is 0.67. The detailed material composition of current concrete is listed in Table 1.

Table 1. Concrete mix proportions.

Constituent Amount (kg/m3)

Cement (Portland 42.5R) 336
Water 226

Fine aggregate 791
Coarse aggregate 1036

Before casting the pure concrete specimens and combined specimens, the internal
surfaces of designed cylindrical metal moulds with an inner diameter of 75 mm have
been fully smeared with lubricating oil to avoid adhesion. When casting the combined
specimens, 75 mm high rock parts are first placed at the bottom of the metal moulds.
Considering the practical engineering operation that the concrete structures are built on
a geological body, the cement–aggregate–water mixture is then directly poured onto the
upper surfaces of rock parts and compacted by placing the moulds on a vibrating machine.
For a combined specimen, the heights of concrete and rock part are both 75 mm, i.e., the
concrete–rock height ratio in combined specimens is equal to 1, and for a pure material
specimen, the height of cylindrical concrete or rock is 150 mm. The specimens are taken out
from the moulds 24 h after casting and then moist–cured in an environment of 20 ± 2 ◦C
and 100% relative humidity for 2 months. Before conducting the uniaxial compression
tests, the specimens are ground by using a polisher to make both ends of the cylindrical
specimens parallel and smooth, and the errors of specimen dimensions are within ± 1 mm.
Then the specimens are coated with grease to reduce the friction between the specimen and
the rigid loading platens. For the current study, one type of pure concrete specimen, three
types of pure rock specimens and three types of CRCSs are prepared as shown in Figure 1,
and at least five specimens for each type are processed for testing. The specimen labels and
combination forms are listed in Table 2.

Figure 1. Seven types of specimens.
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Table 2. Combination forms and concrete–rock height ratio.

Specimen Label Lithology Concrete–Rock Height Ratio

C Concrete 1:0
RR Red sandstone 0:1
PR Purple sandstone 0:1
GR Granite 0:1

CRR Concrete–Red sandstone 1:1
CPR Concrete–Purple sandstone 1:1
CGR Purple–Granite 1:1

2.2. Test Method

Liu et al. [31] proposed an experimental method to obtain the stress and strain of coal
in coal–rock combined specimens by gluing strain gauges on the rock surface. For the
present study, similarly, the same experimental method is adopted. In this method, when
the combined specimen is subjected to static uniaxial compression loading, the stresses
in the concrete part, rock part and the whole combined specimen are equal to each other
during the loading process which can be written as:

σC = σR = σW (1)

where σC is the stress in the concrete part, σR is the stress in the rock part and σW is the
stress of the whole combined specimen.

The total axial deformation of the combined specimen due to loading is equal to the
sum of axial deformations of the concrete and rock parts, which can be expressed as:

ΔLW = ΔLC + ΔLR (2)

where ΔLW is the axial deformation of the whole combined specimen, ΔLC is the axial
deformation of the concrete part, and ΔLR is the axial deformation of the rock part.

When a CRCS is loaded on a test device such as servo–controlled material testing
machine, the axial stress and strain of the combined specimen, σW and εW, can be measured
directly. According to Equation (1), the stresses in the concrete and rock parts, σC and σR,
can be easily obtained. For the CRCS, generally, its failure is initiated by the break of the
concrete part due to the fact that the strength and rigidity of rock are much higher than
those of concrete. However, since concrete contains a large number of coarse aggregates,
local deformations are significantly different at the positions of coarse aggregate and cement
during the loading process. As a result, the strain of the concrete part, εC, cannot be directly
and accurately measured by simply attaching strain gauges to the surface of the concrete
part. While on the other side, the rock part is much more homogeneous. Its deformation is
uniformly distributed along the height and its axial strain, εR, can be measured by gluing
strain gauges on its surface. Therefore, according to the relationship between deformation
and strain, and substituting the measured strains into Equation (2), the axial strain of the
concrete part can also be obtained as follows:

εC =
hWεW − hRεR

hC
(3)

where hW, hR and hC are the heights of the whole combined specimen, the rock and concrete
parts, respectively.

2.3. Equipment Setup

The whole experimental equipment mainly consists of three sub–systems, i.e., the
loading system, AE monitoring system and the strain testing system as shown in Figure 2.
The INSTRON 1346 servo–controlled material testing machine with a capacity of 2000 KN
is used as the uniaxial compression loading system. The specimens are performed uniaxial
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compression testing on this testing machine with a displacement–controlled loading mode,
and the loading rate is maintained at 0.15 mm/min. In current testing, the lower rigid
loading platen is loaded upwards to exert pressure on the specimen while the upper rigid
loading platen keeps stationary. A linear variable differential transformer (LVDT), which
is directly connected to Computer No. 1 for signal processing, is used to measure the
axial strain of the whole specimen. The PCI–2 AE detector, developed by PAC, is used to
monitor AE signals during the loading process. The AE sensor is attached to the bottom
surface of the upper rigid loading platen with a magnetic fixing device. To ensure the
signal reception, Vaseline taken as a coupling agent is smeared on the interfaces and the AE
sensor is placed as close as possible to the specimen. The AE signals are received and then
amplified and transmitted to Computer No. 2. The main parameters for the AE detector are
set as pre–amplifier gain 40 dB, threshold 40 dB and sampling rate 1 MHz, respectively. The
DH3817 static strain testing system, consisting of strain gauges, a data–collection device
and a computer, is used to measure the axial strain of the rock part. The strain gauges glued
on the cylindrical surface of the rock part are directly connected to the data–collection
device and the data–collection device is subsequently connected to Computer No. 3. To
ensure the accuracy of measured strain data, three strain gauges separated by 120◦ are
glued on the surface of the rock part for each combined specimen, as shown in Figure 2b.
During the experiment, three specimens for each type are first tested, and if sharp contrast
existed between the results, more specimens of this type are further tested until three
similar results are obtained.

Figure 2. Test system: (a) Uniaxial compression testing system; (b) Schematic diagram of strain gauge
sticking method.

3. Experimental Results and Analysis

3.1. Strength and Failure Pattern of Seven Types of Specimen

The uniaxial compressive strengths of the seven types of specimens are listed in Table 3.
During the experiment, further tests are aborted when three similar results are obtained for
one type of specimen, thus additional data for this type are not available and the average
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strength is determined based on the three similar values of all the obtained results for
this type to avoid scattering and get a representative strength. As can be seen from the
table, the average uniaxial compressive strengths of three types of pure rock specimens, i.e.,
red sandstone, purple sandstone and granite, are 76.50 MPa, 109.68 MPa and 166.27 MPa,
respectively. After 2 months of curing, the average uniaxial compressive strength of pure
concrete specimens is 33.71 MPa, and those of CRCSs are 36.99 MPa, 43.42 MPa, and
46.29 MPa, respectively. Herein, it can be noted that although the strengths of combined
specimens are much smaller than those of pure rock specimens, they are obviously higher
than that of pure concrete specimens, about 9.73–37.32% higher than the latter, and they
increase with the increment of the strength of the rock part, which means the load–bearing
capacity of the combined specimen is significantly affected by the lithology of rock part.

Table 3. Uniaxial compressive strength (MPa).

Specimen Label No. 1 No. 2 No. 3 No. 4 No. 5 Average

C 34.24 33.21 33.68 / / 33.71
RR 77.73 77.43 74.34 / / 76.50
PR 110.45 111.56 107.03 / / 109.68
GR 167.50 168.60 162.71 / / 166.27

CRR 37.35 30.52 35.51 38.11 / 36.99
CPR 43.21 42.73 33.58 37.29 44.31 43.42
CGR 44.71 46.87 30.78 47.28 / 46.29

Figure 3 shows the ultimate failure patterns of concrete, rock and combined specimens
in the testing. As can be observed, typical axial splitting fractures form in the pure concrete
specimen, while shear–induced fractures occur in the three types of pure rock specimens.
In the cases of CRCSs, although rock materials are also present, the specimens are all failed
by axial splitting fractures along the loading direction. The axial cracks initiate and mostly
propagate in the concrete parts and the crack density in concrete increases as the strength
of rock increases. This is mainly because the axial cracks in concrete generate horizontal
tensile stresses acting on the rock part, and higher strength rock needs more tension created
in this way to overcome its tensile strength. With the growth of new cracks, the higher
strength rock part is finally fractured in tension. From these observations, it can be found
that the low–strength concrete plays a major role in the fracture behavior of CRCSs under
uniaxial compression.

Figure 3. Failure patterns of different types of specimens.
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3.2. Stress–Strain Curve of Seven Types of Specimen

In the uniaxial compression testing, the axial stress and strain of the whole specimen
are directly measured and recorded by using the loading system. Figure 4 shows the
stress–strain curves of the whole specimens and these stress–strain responses are closely
related to the damage development of specimens. From the curves it can be seen that
the whole loading process of concrete–rock specimens generally can be subdivided into
five successive stages, i.e., compaction hardening, elastic deformation, plastic deformation,
post–peak strain softening and residual friction.

Figure 4. Stress−strain curves of the whole specimens.

The concrete usually contains lots of pores, and many micro cracks exist in the rock
as well. In the initial compaction hardening stage, these existing flaws in the combined
specimen are quickly crushed and closed under the pressure. Through self–adjustment,
the density and stiffness of the combined specimen gradually increase, thus a concave
curve is presented during this period. When the maximum compaction pressure is reached,
the materials of concrete and rock tend to be completely compact and even, and the
combined specimen begins to behave almost in a linear–elastic manner, that is to say, the
combined specimen enters into an elastic deformation stage. At this stage, the stiffness
of the specimen approximately keeps constant. Under the pressure, the concrete and
rock parts work together, and the stress increases rapidly. With the further increase of
stress, low–strength concrete first turns into a plastic state and the development of original
randomly distributed micro cracks in the rock is also initiated. The stiffness of the combined
specimen gradually decreases, and the plastic deformation increases nonlinearly. At the
end of this stage, the combined specimen reaches its ultimate compressive strength. After
that, the cracks in concrete quickly spread and converge, and the stress inside the specimen
redistributes and rapidly decreases. In this situation, the specimen exhibits strain-softening
behavior and undergoes a rapid decrease in load–bearing capacity. During this stage, the
concrete changes into failure, and the cracks in the concrete form some major axial fractures
and spread downwards to the interface. At the interface, the axial splitting fractures in
concrete generate horizontal tensile stresses on the rock part, and with the growth of new
cracks in concrete, the rock is finally fractured. The rock part is instantaneously fractured,
at the same time, a sudden and steep stress drop happens and this phenomenon will be
discussed in detail in Section 3.3 where the strain variation of the rock part is introduced.
At last, the entire specimen is destroyed, but due to the friction between crack and fracture
surfaces, it still maintains some residual resistance strength, and with the continuous
increase of deformation, the stress in the combined specimen slowly decreases.

The main difference between the stress–strain curves of pure rock, pure concrete and
combined specimens in the loading process is the post–peak strain–softening stage. Because
of the brittle nature, the stress–strain curves of pure rock specimens can only be recorded a
little later after the peaks. In contrast, due to being more ductile, the stress–strain curve
of pure concrete specimen has good continuity and its post–peak strain–softening stage
is relatively smooth. While in this regard, the CRCSs integrate both of the characteristics

189



Mathematics 2022, 10, 727

of the above two kinds of pure materials. Their stress–strain curves also present good
continuity, but sudden stress drops appear at the ends of the post–peak strain softening
stages when the rock in specimens are thoroughly fractured. Besides that, it is worth noting
here that, with the increasing of rock strength in the combined specimen, the corresponding
stress drop in the post–peak strain–softening stage delays. As mentioned in Section 3.1,
this is again because of the horizontal tensile stresses generated by the axial cracks in
concrete. When the higher strength rock is split, it needs more axial cracks of concrete
to create enough horizontal tension to overcome its tensile strength, which means the
corresponding combined specimen allows its concrete part to deform persistently along
the loading direction with more axial strain.

3.3. Strain Variation of Rock Part

The axial strain of the rock part in the combined specimen is directly measured by
using the strain testing system. Since the response behaviors of different rock parts in
combined specimens during the loading are similar, here the stress–strain data of the rock
part in CRR–1 (see Figure 5) is taken as an example for the analysis of strain variation of
rock part. As can be seen, the axial strain variation of the rock part is similar to the stress
variation of the corresponding combined specimen. Due to that, the strength and stiffness
of rock are much higher than those of concrete, the rock part is almost intact before the
fracture in concrete extends into it, during this period, according to the stress–strain curve
in Figure 4a, the axial strain of rock in CRR–1 is still in the elastic stage, and a large amount
of elastic energy is accumulated in rock part under the compressive loading. At the end
of the post–peak strain–softening stage, the rock part is instantaneously fractured and a
rapid axial strain recovery happens in the rock part. It is worth noting that the rapid axial
strain recovery of the rock part and the sudden stress drop of CRCS almost happen at
the same time. This phenomenon can be explained by the fact that when the rock part
experiences a rapid axial strain recovery, the elastic energy accumulated in the rock part
releases quickly and the rock part plays an axial loading role on the concrete part, which
intensifies the failure of the concrete part, and as a result, the sudden stress drop happens in
the CRCS. In addition, it can also be found from the figure that when the rapid axial strain
recovery happens, the axial strain in the rock part and the stress in CRCS do not recover
and decrease to zero, which indicates that the axial loading effect of the rock part cannot
completely crush the concrete part, and the concrete part still has some residual strength.

Figure 5. Strain variation of rock part in CRR–1.

Furthermore, it can be found that the strain of the rock part in the combined specimen
at peak stress is much smaller than that of the corresponding combined specimen. For
instance, the average strains of rock parts (rock in CRR–1, CPR–2 and CGR–2) at peak
stresses are 2.28 × 10−3, 1.90 × 10−3 and 1.47 × 10−3, respectively. The average strains
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of corresponding combined specimens at peak stresses are 3.91 × 10−3, 4.16 × 10−3 and
4.06 × 10−3, respectively. In other words, the axial deformations of rock parts at the peak
stresses account for 29.16%, 22.84% and 18.10% of the corresponding combined specimens,
respectively. Compared to the strains of pure rock specimens at the peak stresses (for
example, 6.92 × 10−3, 6.46 × 10−3 and 5.55 × 10−3 for RR–2, PR–1 and GR–3), the axial
strains of rock in combined specimens are only 32.95%, 29.41% and 26.49%. This is mainly
due to the fact that the failure pattern of rock in the combined specimen is different from
that of pure rock specimen under compressive loading. As mentioned in Section 3.1, the
failure pattern of rock changes from a shear–induced fracture in a pure rock specimen to
an axial tensile fracture in the combined specimen. Thus, it can be concluded that when
the concrete–rock combined body is subjected to ultimate load, the concrete structure has
a weakening effect on the axial load–bearing and deformation capacity of the connected
rock foundation, and the weakening effect becomes more obvious with the increase of
rock strength.

3.4. Stress–Strain Curve of Concrete Part

By substituting the strains of the rock part and corresponding combined specimen
into Equation (3), the strain of the concrete part can be obtained. The stress of the concrete
can be obtained by Equation (1). Because the whole combined specimen is near failed when
the sudden stress drop happens, we only calculate the stress and strain of the concrete
part before the stress drop happens. Figure 6 shows the stress–strain curve of the pure
concrete specimen (C–3) and the derived stress–strain curves of concrete parts (concrete in
CRR–1, CPR–2 and CGR–2). As can be seen, although the stress–strain curves of the pure
concrete specimen and concrete parts show a similar evolution trend, several apparent
differences can be observed from them. For instance, the strengths of concrete parts range
from 37.35 MPa to 46.87 Mpa, and they are obviously higher than that of the pure concrete
specimen (33.68 MPa). Moreover, the strains of concrete parts at peak stresses vary from
5.54 × 10−3 to 6.65 × 10−3, which are also much larger than that of the pure concrete
specimen (4.12 × 10−3). Therefore, compared with the pure concrete specimen, the load-
bearing and deformation capacities of the concrete part are both enhanced, and the strength
and strain at peak stress of concrete parts also increase with the strength of the rock part.
To illustrate these more clearly, the variations of the strength and the strain at peak stress of
concrete and concrete parts are shown in Figure 7.

Figure 6. Stress−strain curves of the pure concrete specimen and concrete parts.
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Figure 7. Variations of the strength and the strain at peak stress of concrete and concrete parts.

3.5. Damage Behaviors of Concrete Part

The AE signals (AE counts and cumulative AE counts) are monitored by using the
PCI–2 AE detector to investigate the damage behaviors of the tested specimen. The AE
detector runs simultaneously with the load–testing machine. Figure 8 shows AE counts
and cumulative AE counts versus the stress–strain curve of each tested specimen. As
can be seen from the figures, the variation of AE signals has a good correlation with the
stress–strain curve. For all the specimens, at the beginning of loading, i.e., at the compaction
hardening stage, due to the closure of micro pores and cracks, a small number of AE counts
appeared, and then the AE activity was relatively quiet at the elastic deformation stage.
When the plastic deformation stage is reached, the AE counts increase sharply, at the same
time, the cumulative AE counts increase exponentially. The main differences of AE signals
among these various types of specimens are that before the plastic deformation stage, the
AE activities of pure rock specimens can be neglected, while due to the fact that concrete
contains more pores, a number of AE events in pure concrete specimen and CRCSs are
recorded. Moreover, because of the brittle nature, the AE signals of pure rock specimens
can only be recorded a little later after the peaks, and due to being more ductile than rock,
the AE events in the pure concrete specimen and CRCSs are active throughout the whole
post–peak part. The peak values of AE counts of pure rock and concrete specimens appear
near the peak load, while those of the CRCSs appear at the end of the post–peak soften
stages where the sudden stress drop happens, and both mean the corresponding specimen
is close to failing or failed.

During the loading process, the crack propagation and extension cause damage to the
specimen, and the AE events happen in the specimen. According to the principle of AE
technology, the damage extent of the specimen after the test can be inferred by the final
cumulative AE counts. The final cumulative AE counts of pure rock specimens (RR–2,
PR–1 and GR–3) are 9.23 × 104, 9.45 × 104, and 3.67 × 104, respectively, and those of pure
concrete specimen (C–3) and CRCSs (CRR–1, CPR–2 and CGR–2) are 5.52 × 105, 7.61 × 105,
8.44 × 105, and 9.13 × 105, respectively. The values of pure concrete specimen and CRCSs
are much higher than those of pure rock specimens, and this indicates that the internal
damage of pure concrete and combined specimens are more severe than those of pure rock
specimens. Furthermore, by comparing the values of cumulative AE counts of pure rock
and concrete specimens, it can be concluded that the AE events of the CRCS mainly happen
in the concrete part, and this illustrates that the damage of the CRCS is mainly formed in
the concrete part. Furthermore, it can also be found that the final cumulative AE counts
increase with the rock strength in CRCS, and this means that the damage extent of the
concrete part has a positive correlation with the strength of the rock part.
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Figure 8. AE counts and cumulative AE counts of tested specimen versus strain.

4. Damage Constitutive Model of Concrete Part

4.1. Derivation of Constitutive Equation

There are a large number of defects in concrete in terms of micro pores and cracks,
and these defects gradually develop and extend under external load and eventually lead
to material damage. However, the properties of these micro defects, such as position,
dimension, strength and stiffness, etc., are impossible to be known exactly. For the sake
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of simplification, it is generally thought that the micro–unit strength of concrete obeys
some statistical distributions when trying to describe the mechanical behavior of concrete
mathematically. In the same manner, for the present study of a constitutive model for
the concrete part, it is assumed that the micro–unit strength of concrete satisfies Weibull
distribution, and the probability density function of micro–unit strength can be written in
the form of:

ϕ
(

f
)
=

m
a

(
f
a

)m−1

exp

[
−
(

f
a

)m]
(4)

where f is the micro–unit strength variable, and m and a are the shape parameter and the
scale parameter, respectively.

The quantity of failure unit in interval [0, f ] can be calculated as:

Nf

(
f
)
=
∫ f

0
Nϕ(x)dx = N

{
1 − exp

[
−
(

f
a

)m]}
(5)

The loading damage variable is defined as the ratio of the quantity of failure unit Nf to
that of total unit N:

D =
Nf

N
(6)

Substituting Equation (5) into Equation (6), then the loading damage variable is
obtained as:

D = 1 − exp

[
−
(

f
a

)m]
(7)

When further assuming that the micro–unit strength of concrete satisfies the maximum–
tensile strain yield criterion, the micro–unit strength variable can be written as:

f = f (ε) = ε (8)

where ε is the strain of the concrete part. By substituting Equation (8) into Equation (7), the
loading damage variable becomes:

D = 1 − exp
[
−
( ε

a

)m]
(9)

In 1971, Lemaitre [32] puts forward a strain equivalence hypothesis. According to
his hypothesis, the strain behavior of a damage material can be modified by damage only
through the effective stress and represented by constitutive equations of the virgin material
(without any damage) in which the stress is simply replaced by the effective stress. This
hypothesis has been widely used in the researches for concrete under various loading
conditions [33,34]. Based on this strain equivalence hypothesis, in 1985, Lemaitre [35]
develops a damage constitutive model under uniaxial loading as follows:

σ = (1 − D)ECε (10)

where EC is the average Young’s modulus of pure concrete specimens.
As mentioned in the foregoing analysis, the strength of concrete parts increases as the

rock part strength increases, and the mechanical response of concrete parts is quite different
from that of pure concrete. This is because rocks with different lithology have varying
degrees of influence on the mechanical response of concrete parts. From this point of
view, the above Equation (10), a traditional constitutive model for pure concrete, obviously
cannot be used to accurately describe the behavior of concrete parts under uniaxial loading,
and the influence of rocks with different lithology should be taken into consideration. At
the beginning of loading, the concrete and rock parts are both in the compaction hardening
process, but only a small amount of damage appeared in the rock, and the rock is almost

194



Mathematics 2022, 10, 727

in an elastic state before the sudden stress drop happens, thus the effect of rock part on
the mechanical behavior of concrete part can be regarded as a non–ideal elastic body. In
this way, the concrete in the combined specimen can be viewed as a cascade system of a
damage body and a non–ideal elastic body (as shown in Figure 9) before the stress drop
happens, and the constitutive equation for the non–ideal elastic body can be temporarily
written as Equation (11):

σ = ERε (11)

where σ and ε are the stress and strain of the non–ideal elastic body, respectively, and ER is
the average Young’s modulus of pure rock specimens.

Figure 9. Damage constitutive model for concrete part.

Since the stress of the damage body is equal to that of the non–ideal elastic body, and
the strain of the concrete part consists of those of the damage body and the non–ideal elastic
body, then they can be written as

{
σ = σD = σN
ε = εD + εN

(12)

where σD and εD are the stress and strain of damage body, respectively, and σN and εN are
the stress and strain of non–ideal elastic body, respectively.

By substituting Equations (10) and (11) into Equation (12), the statistical damage
constitutive equation of concrete part can be obtained as:

σ =
(1 − D)ECERε

(1 − D)EC + ER
(13)

However, in the above establishment of damage constitutive equation, the compaction
hardening process is not taken into account. As mentioned in Section 3.2, many micro
pores and cracks exist within the concrete and rock, in the early stage of loading, these
initial flaws in the combined specimen are rapidly compacted, and thus the stress–strain
curve first starts with an obvious concave increase. To accurately express the characteristic
of compaction hardening of the concrete part, a compaction hardening coefficient, α, is
proposed to quantify the extent of compaction hardening:

α =

{
logn

[
(n−1)ε

εe
+ 1

]
ε < εe

1 ε ≥ εe
(14)
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where n is a fitting constant obtained by fitting the experimental data, and εe is the strain of
the concrete part corresponding to the stress at the starting point of the elastic deforma-
tion stage.

This compaction hardening coefficient is defined as the ratio of the slope of stress–
strain curve to the Young’s modulus of concrete part and it increases logarithmically with
strain. By introducing this coefficient into Equation (14), the statistical damage constitutive
model is modified as:

σ =

⎧⎪⎨
⎪⎩

α(1−D)ECERε
(1−D)EC+ER

ε < εe

(1−D)ECERε
(1−D)EC+ER

ε ≥ εe

(15)

where m and a in “D” can be determined by fitting the experimental data.

4.2. Model Verification

Figure 10 shows the comparison of the stress–strain curves calculated using the above
derived statistical damage constitutive model and the corresponding experimental data of
concrete part under uniaxial compression loading. The curves are only calculated to the
point of stress drop since the whole combined specimens are failed when the sudden stress
drop happens. As can be seen, the calculated curves agree well with the experimental data,
which indicates that the established statistical damage constitutive model can accurately
describe the mechanical response of concrete parts under uniaxial compression loading.

Figure 10. Comparison of experimental data and calculated stress–strain curves by using established
statistical damage constitutive model.

Table 4 gives the fitting parameters and the related physical and mechanical parameters
for the established damage constitutive model, and by introducing the fitting parameters
a and m into Equation (9), the damage evolution curves (loading damage variable D
versus strain) of the concrete part in combined specimens with different rock lithology are
obtained as shown in Figure 11. As can be seen from the figure, the damage evolution
curve reflects the mechanical performance of the concrete part under uniaxial compressive
loading. When the concrete in different CRCSs suffers from the same damage at a higher
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level, the strain increases with the increment of the strength of the rock part. This indicates
that the deformation capacity of the concrete part enhances with the rock part strength,
and adds that the values of loading damage variable range from zero to one, they are
concordant with the foregoing experimental results, and indirectly means that the statistical
damage constitutive model and the corresponding fitting process are reliable.

Table 4. Fitting and related physical mechanical parameters for damage constitutive model.

Specimen (C in) n a m εe (10−3) EC (GPa)

C 34.24 33.21 33.68 / /
RR 77.73 77.43 74.34 / /
PR 110.45 111.56 107.03 / /
GR 167.50 168.60 162.71 / /

CRR 37.35 30.52 35.51 38.11 /
CPR 43.21 42.73 33.58 37.29 44.31
CGR 44.71 46.87 30.78 47.28 /

Figure 11. Variation of loading damage variable D of concrete parts versus strain.

5. Conclusions

In this study, the effect of lithology on the mechanical and damage behaviors of the
concrete part in CRCS is investigated, and a statistical damage constitutive model for the
concrete part is established and validated. The major conclusions are drawn as follows:

1. The low–strength concrete part plays a major role in the fracture behavior of CRCS
under uniaxial compression loading. When the CRCS is failed, a sudden stress drop
happens in CRCS and the rock part experiences a rapid strain recovery and plays an axial
loading role on the concrete part, which intensifies the failure of the concrete part.

2. Compared with the pure concrete specimen, the strength and the strain at peak stress
of the concrete part increase with the increment of rock part strength, which illustrates the
load–bearing and deformation capacities of the concrete part are both enhanced. However,
the load–bearing and deformation capacity of the rock part is weakened due to the influence
of the concrete part, and the weakening effect becomes more obvious with the increase of
rock strength.

3. Through the AE monitoring and signal analysis, it is found that the damage of
CRCS mainly happens in the concrete part, and the damage extent of the concrete part has
a positive correlation with the strength of the rock part.

4. A damage constitutive model of the concrete part is established by using a cascade
system, including a damage body and a non–ideal elastic body and validated against the
experimental data. This statistical damage constitutive model can be used to accurately
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describe the effect of lithology on the mechanical response of the concrete part under
uniaxial compression loading.
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Abstract: The reactive-transportation of radioactive elements in fractured rock mass is critical to the
storage of radioactive elements. To describe the reactive-transportation and distribution morphology
of a uranium-containing solution, a stress-dependent reactive transport model was developed, and
the simulator of FLAC3D-CFD was employed. The uranium transport experiment subjected to the
variation of confining stress of 5–19 MPa and hydraulic pressure of 0.5–3.5 MPa was conducted in
fractured rock mass. The results show that the uranium-containing solution transport and distribution
is significantly dependent on the evolution of the connected channel in rough-walled fracture, which
is significantly influenced by the confining stress and hydraulic pressure. In more detail, the increase
of confining stress resulted in the anisotropic of seepage channel in aperture, and corresponding
turbulence flow and uranium retention were presented at the fracture aperture of 2–5 μm. As the
increase of hydraulic pressure, flow regime evolved from the inertial flow to vortex flow, and the
transformation region is 16 MPa confining stress and 1.5 MPa hydraulic pressure. The evolution of
loading paths also dominates the flow and solute transport, and high seepage speed and strong solute
transport were presented at the k = 1 (ratio of vertical stress loading to horizontal stress unloading),
and a laminar flow and weak solute transport were presented at k = 0.

Keywords: fractured rock mass; uranium-containing solution; multifield coupling; reactive transport;
rough-walled fracture

MSC: 74L20; 74F10

1. Introduction

The nuclear energy provides 16% clear energy for human development, while aban-
doning radioactive resources threatens the environment safety and human health. Uranium
as a fundamental nuclear energy material attracts the attention of researchers and engi-
neers in the field of mining and contaminant disposal. During the uranium mining, the
original rock stress and flow state of the reservoir are destroyed, which is manifested by
the propagation of fractures and the migration of radioactive pollutants. Natural rock mass
is a multiphase medium in which solid, liquid, and gaseous phases co-exist. The geologic
structure influenced by the mining dominates the strength capability and uranium trans-
port behavior. Efforts are being made to study the structure change, uranium transport,
desorption, adsorption, and precipitation in fractured rock masses, which significantly
contributes to the mining of uranium and disposal of a uranium-containing solute [1–8].

The hydrogeological structure and interaction between the solid, gas, and fluid in the
resource deposits are crucial to the uranium exploration and pollution prevention [9–12].
When methods of in situ leaching are employed in the mining industry, the fracturing of the
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host rock dominates the behaviors of the orebody during the recovery of the mined uranium.
Specifically, the effect of fracture geometric properties, including the density, orientation,
aperture, and roughness, and the flow regime, mechanical degeneration, containment
transport, and retention, was investigated considering the external reactive activities on a
multi-scale [13–16]. By combining the latest technological achievements in equipment, such
as hydraulic pumping, computed tomography, three-dimensional (3D) profilers, materials
test systems, and rapid triaxial rock (RTR)-1000 [17–19], in the field of in situ measurement
and experimental study, novel discoveries were made, and empirical formulas were de-
rived [20–26]. Kim et al. studied the reactive transport of uranium with bacteria in fractured
rock and conducted a sensitivity analysis, based on a developed model [27]. Boissezon
et al. modelled the uranium and 226Ra mobility during and after an acidic in situ recovery
test [28]. Feng et al. developed a fractal discrete fracture network model to study the radon
migration in fractured media [29]. Wang et al. revealed that the concentration of HCO3

−
increased after CO2 injection, and CO2 was able to migrate toward the shallow aquifer
through existing leakage pathways, and availability of Fe3+ is the main factor that limits
mineralized uranium release [30,31]. Baghbanan developed a nonlinear algorithm for pre-
dicting the normal stress–normal displacement behavior of fractures [32]. Rong conducted
water flow tests through non-mated rough-walled fractures under normal stresses ranging
from 1.0 MPa to 5.0 MPa [33]. Zhang experimentally investigated the fluid flow regimes
through deformable rock fractures by conducting water flow tests through both mated and
non-mated sandstone fractures in triaxial cells [34].

On the other hand, the algorithms and mathematical model contribute to visualization
of the geochemical-physical coupling process [35–38]. Rutqvist presented a linked mul-
ticontinuum and crack tensor approach for modeling coupled geomechanics, fluid flow,
and solute transport in fractured rocks [39]. Lei reported a stress-induced variable aperture
model to characterize the effect of polyaxial stress conditions on the fluid flow in 3D persis-
tent fracture networks and performed the geomechanical modeling of the fractured rock by
the finite-discrete element method (FEMDEM) [40]. Zhao presented a closed-form solution
for modeling the coupled stress–flow–transport processes along a single fracture embedded
in a porous rock matrix [41]. Crandall related the macroscopic roughness parameters to the
effective flow through fractures, examining the relationship between wall roughness and
fluid flow in rock fractures [42]. Akhavan quantified the effects of crack width, tortuosity,
and roughness on the water permeability of cracked mortars [43].

The in situ leaching uranium and contaminants control is a complex geomechanical
and geochemical process, and the transport and retention of the uranium-containing
solution through a fractured rock mass significantly affects the underground environment
safety. The characterization of transport and retention of the in situ leaching uranium in
a fractured rock mass is important. In this study, a stress-dependent reactive transport
model, describing the coupling evolution of geofractures and uranium-containing solute
transport in fractured rock mass, was established. The transport and distribution of the
uranium-containing solution in a fractured rock mass, located at an overlying resource
reservoir of ordos basin, were studied, combined with the FLAC3D-CFD simulator. The
factors, including fracture morphology, confining stress, and loading path, that influence the
uranium-containing transport and distribution were analyzed. In the following section, the
mathematical model was described, the application of the established model was showed
in Section 3, the results and analysis were conducted in Section 4, and the conclusions were
made in Section 5.

2. Mathematical Model for Uranium Transport in Rough-Walled Fractures

The reactive transport of the in situ leaching uranium is a complex process of diffusion,
adsorption, desorption, and oxidation–reduction, which was deeply influenced by the
variation of component, structure, hydraulic gradient and in situ stress. The geomechanical,
geochemical, and hydro-mechanical effect on the transport of uranium should be taken
into account, as the reactive transport of uranium is modelled.
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2.1. Equivalent Hydromechanical Coupling Description

The flow regimes and morphology of the uranium-containing solute in fractured
rock mass is dominated by fluid kinematical viscosity and the fracture geometric property.
Changes in the fractured rock structure induced by normal stress and shear stress are
characterized by the normal displacement and shear dilation, as shown in Figure 1. The
fracture aperture, as a function of normal closure, dilatational strain and shear expansion,
is governed by the following equation:

b = hi − δ + Δbdil + ε + b0 (1)

where δ is the normal closure; hi, the maximum closure; ε, the dilation strain; Δbdil , the
shear expansion; and b0, is initial aperture.

Figure 1. Schematic diagram of the fracture aperture model.

Considering the fracture geometry of contact area and connecting void, the equivalent
mechanic aperture can be described as follows:

e = b(1 − 1.1w)4(1 +
2
D
)

3/5
(2)

w = w1 + ne−
σn
kn (3)

where b is the mechanical aperture; e, the equivalent fracture aperture; w, the contact
area; w1, the initial contact area; n, the normal direction; D, the fractal dimension of the
connecting void. In this work, the ultra-thin square plate (UTSP) covering method was
used to calculate the fractal dimension, as shown in (Figure 2) [44].

Figure 2. Schematic diagram of the UTSP covering method.
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The description of aperture closure in the normal direction was studied by Bandis [45]
in 1983 and progressively modified by Baghbanan and Jing [32], as shown below:

δ =
9σnhi

σnc + 10σn
(4)

where σn is the normal stress; σnc, the critical normal stress to end-closed fracture; and hi,
the maximum closure. Furthermore, the normal stiffness is expressed as follows:

kn =
(10σn + σnc)

2

6σncb0
(5)

where Kn is the normal stiffness. In addition, the effect of the shear stress on the fracture
dilation was studied by Chen [16], and the following specific expression was obtained:

Δbdil =
1
b0

{
ψpeak

r

[
1 − e−r(δ−δ0)

]
+

ψ3
peak

9r

[
1 − e−3r(δ−δ0)

]}
(6)

ψ
peak
f = JRClog10

JCS
−σ′

z f
(7)

where Δbdil is the fracture dilation caused by shear stress; JRC, the roughness coefficient of
the fracture; JCS, the wall compressive strength of fracture; ψ

peak
f , the peak dilatancy angle

of the fracture.
Furthermore, the dilation strain caused by the geochemical reaction is shown:

ε =

{
atb 0 < t < t0
at0 t > t0

(8)

where a and b are the fitting parameters related to the attribute of the rock mass; t0, the
threshold of dilatational strain; t, the experiment time.

On the other hand, structural changes in the fractured rock mass contribute to its
self-mechanical attribute. To express the anisotropic and heterogeneous rock mass strength,
the dynamic equivalent bulk modulus and shear modulus related to the fracture and matrix
strength are governed by the following equation in the work of Gan [46]:

K =
1

1
Kint act

+
f racnum

∑ 2Vratio
b

[(
1

Kn f
− 1

Ks f

)(
1 − n4

2
)
+ 1

Ks f
n2

1

] (9)

G =
1

1
Gint act

+
f racnum

∑ 2Vratio
b

[(
1

Kn f
− 1

Ks f

)(
n4

1 − n2
1n2

2
)
+ 1

Ks f
n2

1

] (10)

where Kintact is the bulk modulus of the intact rock; Gintact, the shear modulus of the intact
rock; and Vratio, the volumetric ratio of the truncated fracture over the element volume.

2.2. Flow Regime in Fractured Structures

In order to determine the flow state in a rough-walled fracture, the Darcy flow,
non-Darcy flow, and turbulent flow subjected to changes in hydraulic gradient and frac-
ture geometry were considered. The Forchheimer equation, given in the form shown in
Equation (11), has been widely used as the empiric and theoretic formula to describe the
flow behavior in porous media and rock fractures [15].

Forchheimer equation is described as:

− J = Av + Bv2, (11)
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where J is the pressure gradient in the flow direction, and v, the seepage velocity. Fur-
thermore, A and B are the coefficients describing energy losses due to viscous and inertial
dissipation mechanisms, respectively. A is calculated by μ

k , and B is expressed as βρ, where
μ is the dynamic viscosity of fluid; k, the intrinsic permeability; β, the non-Darcy coefficient;
and ρ, the fluid density. Taking the equivalent mechanic aperture into account, the intrinsic
permeability vector kij and non-Darcy coefficient vector βij are expressed as:

kij =
f racnum

∑
1

12
(

Pkkδij − Pij
)
=

f racnum

∑
1
12

(
Vratio
bini

e3n2
kδij − Vratio

bini
e3ninj

)
(12)

βij =
f racnum

∑ Aij pij/
(

2bij ebij+1
)

(13)

where Aij and bij are dimensionless regression coefficients; Pij represents the influence of
asperity height; bini is the initial aperture of fracture.

2.3. Reactive Transport in Fractured Rock Mass

For in situ leaching of uranium, chemical reactions between the alkaline leaching
solute and solid uranium can be described using the following expression:

UO2(S)
I

+
1
2O2(aq)

I I
+

CO3
2−(aq)
I I I

+
2HCO3

−(aq)
IV

→ UO2(CO)3
4−(aq)

V
+

H2O(l)
VI

(14)

Variations in the components of the reactive transport are expressed as follows:

∂tcI I +∇(cI IU) = −σ(cs)

ρϕ
RII (15)

∂tcI I I +∇(cI I IU) = −σ(cs)

ρϕ
RIII (16)

∂tcIV +∇(cIVU) = −σ(cs)

ρϕ
RIV (17)

∂tcV +∇(cVU) = −σ(cs)

ρϕ
RV (18)

∂tcI = − σ(cs)

ρs(1 − ϕ)
RI (19)

where CI is the uranium oxide grade; CII, CIII, CIV, and CV are the mass fractions of the
solute; U is the transport velocity; σ(cS) is the effective reaction area of the uranium ore; ϕ
is the porosity; RI is the source of uranium oxide; and RII, RIII, RIV, and RV are the solute
source terms.

The migration of multispecies in a fluid flow is governed by the following reactive
advection–dispersion equation:

∂αlρl ϕ
k
l

∂t
+∇ ·

(
αlρl

→
ul ϕ

k
l − αlΓ

k
l · ∇ · ϕk

l

)
= Sk

l k = 1, . . . , N (20)

where ϕl
k is the component of the scalar k, defined as the ratio of k component mass to

phase-l; αl is the volume fraction, defined as the ratio of phase-l volume to the solution
volume; ρl , and ul are the density, and velocity of the species-l, respectively; and Γl

k and
Sl

k are the diffusion coefficient and source item, respectively.

2.4. Transport Kinetic Equation

The governing equation of fluid flow in fractured rock followed Navier–Stokes (N-S)
equations.
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Continuity equation:
∂ρ f

∂t
+∇ ·

(
ρ f u

)
= 0 (21)

Momentum conservation equation:

∂
(

ρ f u
)

∂t
+∇ ·

(
ρ f u

)
u = −∇p +∇ ·

[
μ f

(
∇u +∇uT

)
− 2

3
μ f (∇ · u)I

]
(22)

where ρf is the fluid density, u is the fluid velocity, p is the fluid pressure, μf is the hydrody-
namic viscosity, I is the identity matrix.

2.5. Integrated Reactive Transport Model

Considering the structural change caused by physicomechanical effects, the transport
of the uranium-containing solute through a rough-walled fracture is given as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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)

.

2.6. Simulation Scheme

During the performance the developed model, the transformation script was edited
using the fish and C language to call the FLAC3D and CFD. The stress tensor, hydraulic
pressure, and fracture geometry were transferred between FLAC3D and CFD. The specific
procedure is as follows, and scheme is shown in Figure 3.

The mesh model was established in the FLAC3D and CFD firstly, according to the
simulation object. Then, the mechanical calculation was conducted in the FLAC3D, and a
corresponding strain tensor in each block was obtained based on the Mohr–Coulomb crite-
rion, and the convergence of the calculation is set as 10−5; The strain tensor was transferred
into the corresponding block in the CFD model based on the transformation script, and the
permeability was defined based on Equations (12) and (13), and the pressure differences
and fluid velocity were changed based on Equations (21) and (22). Simultaneously, the
diffusion of the uranium-containing solution was re-calculated, combining the source of
chemical solution. The calculation was conducted until the setting time. Finally, the fluid
pressure was transferred into the corresponding block in FLAC3D through the UDS and
fish script, and the effective stress was modified considering the fluid pressure. Then, the
strain tensor was modified based on the Mohr–Coulomb criterion, and the convergence
of the calculation was setup as 10−5. Then, the next cycle was conducted, based on the
above scheme.
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Figure 3. The simulation schematic.

2.7. Model Verification

To validate the application of the established model in the fractured rock mass, a
results comparison between the model calculation and experiment work of Chen et al. [1]
was conducted. In more detail, the sample is granite collected from a potential site for
China’s high-level radioactive waste disposal repository, with a density of 2.64–2.68 g/cm3,
porosity of 0.44–0.62%, uniaxial compressive strength of 97–161 MPa, and permeability
of 10−20 and 10−19 m2. The model with a diameter of 50 mm and length of 100 mm was
established, and the fractured rock samples with mean asperity height of 0.62 mm, 0.95 mm,
1.3 mm, 1.5 mm, and JRC of 6.0, 7.1, 8.8, 10.1 were collected. The seepage experiment
subjected to a series of hydraulic pressure ranging from 0.25 to 6.4 MPa was conducted
at a certain boundary stress, and the corresponding boundary stress increases from 5 to
25 MPa. The geometry parameter, including asperity, aperture, and JCR, was transferred
into the FLAC3D-CFD simulation. Detailed information about the relationship between the
seepage velocity and hydraulic pressure difference is presented in Figure 4. The curve is the
calculated result, and the point is the experimental result. Based on the results, it illustrates
that the stress-dependent fracture geometry and hydraulic pressure-dependent flow regime
can be well expressed. As boundary stress increased, the seepage channel decreased and
corresponding hydraulic pressure difference increased, while the increase of hydraulic
pressure promoted the flow transferred from Darcy flow to non-Darcy flow. As shown in
Figure 4, the theoretical prediction is almost consistent with the experiment data with the
R2 (The coefficient of determination R2 evaluates the accuracy of the match and represents
the degree to which the regression line fits the data. The agreement is best at R2 = 1.0) of
0.97–0.99. The seepage behavior and spatiotemporal coupling of stress–fracture–seepage in
fractured rock masses can be well described using the proposed model.
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Figure 4. Comparison of the fracture model calculating and the experimental results: (a) sample 1,
(b) sample 2, (c) sample 3, (d) sample 4.

3. Case Study

The Nalinggou uranium and Tarangaole coal mine is an overlay resources reservoir
of Ordos Basin, in which the uranium is located at 410 m depth with the grade of 0.5%,
and coal is located at a 600 m depth. The mathematical model was applied to simulate the
migration of the uranium from a uranium layer to coal seam. The specimens were collected
from the overlay resources reservoir, and artificial fractures were created. The fracture
geometry, including the roughness, asperity, and aperture, were captured by a 3D laser
scanner, as shown in Figure 5, and the geometry parameters of the experiment fracture
are listed in Table 1. The fluid and mechanical parameter was confirmed based on the in
situ leaching technology and uranium-containing layer. The model with dimensions of
100 mm length and 50 mm width was established in a FLAC3D-CFD simulator. Then, the
hydromechanical parameters were imported, and radioactive transport and morphology
were calculated. In more detail, the boundary was constrained by the confining stress of
16 MPa, and hydraulic pressure is set as 0.5–3.5 MPa, and the mass fraction of uranium-
containing solution UO2(CO3)3

4− is set as 5 × 10−4 at the fracture inlet. Additionally, the
preparation process is shown in Figure 6, and the mechanical and chemical parameters
used in the numerical calculation are listed in Table 2.

Table 1. The geometry parameters of the experiment fracture.

No. Fracture Length L (mm) Fracture Width w (mm) Contact Ratio (5 MPa) Fracture Aperture (μm) (5 MPa)

1 100 49 0.20 1.64 × 10−5

2 100 49 0.25 3.88 × 10−5

3 100 49 0.25 2.47 × 10−5

4 100 49 0.30 8.38 × 10−6

5 100 49 0.26 8.86 × 10−6

6 100 49 0.25 3.00 × 10−6

Contact ratio: the area ratio of contact zone to rough-walled fracture.
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Figure 5. Surface scanning image of the sandy mudstone fracture.

Figure 6. Transformation process of the fractured rock mass.

Table 2. The hydraulic and mechanic parameters of the fractured rock mass.

Stress Field

Density
d

(kg/m3)

Bulk Modulus
B

(GPa)

Shear Modulus
S

(GPa)

Cohesion
C

(MPa)

Tensile Strength
t

(MPa)

Internal Friction Angle
ψ

(◦)

Initial Permeability
K

(m2)

2660 33.94 22.4 4.0 22.52 35

Chemical
field

UO2(CO3)3
4− reaction rate (kg/m3s) Dispersion coefficient (m2/s)

5.0 × 10−4 10.5 0

Fracture field

Initial mean fracture width
(μm)

Initial permeability
(m2)

Initial non-darcy flow factor
β (m−1)

30 7.0 × 10−12 1.0 × 108

Transport and Distribution

The fractured rock mass with an asperity of 0.62 mm, JRC of 6.0, and dimensions
of 100 mm length × 500 mm diameter were collected. To analyze the effect of hydraulic
pressure on uranium-containing solute transport and distribution, the boundary stress
was fixed at 16 MPa, and the hydraulic pressure was set as 0.5, 1.5, 2.5, and 3.5 MPa,
respectively. The fracture morphology was formed by the sealed and connected voids and
contact areas, and variation of hydraulic pressure and uranium-containing solute occurred
in the connected channel, as shown in Figure 7. In more detail, the transport path of
uranium-containing solute was heterogenetically distributed, characterized by the regional
concentration and dissipation of the uranium-containing solute in a fracture area.
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Figure 7. Cont.
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Figure 7. Fracture solute transport condition under different hydraulic pressures: (a) hydraulic
pressure of 0.5 MPa, (b) hydraulic pressure of 1.5 MPa, (c) hydraulic pressure of 2.5 MPa, (d) hydraulic
pressure of 3.5 MPa.

The rapid and following slow decrease in the uranium-containing solute responds to
the continuing fluid flow in fracture. As the hydraulic pressure increased, the uranium-
containing solute transport was increased, and 2 days, 1.5 days, 1 day, and 0.5 days were

211



Mathematics 2022, 10, 702

required for the uranium-containing solute migration in the hydraulic pressure of 0.5, 1.5,
2.5, and 3.5 MPa, respectively. In addition, the local retention of the uranium-containing
solute presented in low-connected voids, combined with a fluid vortex phenomenon. The
hydraulic pressure promoted the improvement of the void connectivity in the fracture, and
corresponding seepage velocity and solute migration through the connected voids were
increased.

4. Sensitivity Analysis

4.1. Confining Stress

The effect of confining stress on the solution migration and distribution was conducted,
subjected to the boundary stress of 5–19 MPa and hydraulic pressure of 3.5 MPa. As shown
in Figure 8, as the confining stress increases, the fracture aperture decreases in a negative
exponential form, and the contact area ratio (the ratio of contact area in fracture to over
total areas of fracture) increases in a logarithmic form.

Figure 8. Correlation between confining stress, average aperture, and contact area ratio.

As the confining stress increases, the main seepage channels gradually decrease,
whereas small seepage channels propagated along the fracture. The increase of confining
stress triggered the decrease of the maximum average aperture from 5–40 μm to 1–35 μm,
and dynamic and slight decrease corresponds to the confining stress range of 5–13 MPa and
13–17 MPa. In addition, a void connectivity decrease and contact area increase, responding
to the increase of confining stress, were observed.

The different magnitude changes in contact area and fracture aperture occurred. In
more detail, the larger contact area is associated with a smaller aperture, and dynamic
fracture closure is presented in a larger initial aperture fracture.

4.2. Fracture Aperture

Figure 9a shows that the seepage velocity increases with the increase of fracture aper-
ture. For the same average aperture, the seepage velocity increases slightly corresponding
to an average aperture of 0–10 μm, and differences were observed in the seepage velocity
for average apertures of 5 to 40 μm.

In Figure 9a, high seepage was observed in fracture4 with an 8 μm aperture. Mean-
while, fracture2 has a larger average aperture for the same seepage velocity. Figure 9b
shows that the seepage velocity decreases with an increase in the fracture contact area
ratio, unlike the dynamic decrease of the seepage velocity subjected to the increase of the
contact area ratio from 0.2 to 0.35. In this case, a slight change in the seepage velocity
corresponding to an increase in the contact area ratio from 0.35 to 0.45 was observed. The
seepage velocity for the initial contact area ratio was 5–40 times that of the final state for a
contact area ratio of 0.43; this observation indicates that the influence of the contact area
ratio on the seepage velocity differs depending on the stages.
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(a) 

(b) 
Figure 9. Correlation of seepage velocity with average aperture and contact area ratio. (a) correlation
between average aperture and seepage velocity, (b) correlation between contact area ratio and
seepage velocity.

In addition, for a certain contact area ratio, the seepage velocities of fracture2 and
fracture3 were 5–8 times those of fracture1, fracture4, fracture5, and fracture6. On the other
hand, the contact area ratios were different for all fractures, and fracture1 had small initial
contact area ratio, and fracture4 had a large initial contact area ratio. The contact area ratio
and fracture tortuosity also influenced the distribution of the connected voids, leading to
differences between the seepage velocities of fracture1 and fracture2, thereby indicating
that the average aperture is not the only factor dominating fracture seepage.

Figure 10 shows that the solute concentration changes with an increase in the average
aperture, and an increment of 1 × 10−4 to 5 × 10−4 was observed for an increment of
2–5 μm in the average aperture; then, the solute concentration decreased by 1 × 10−4 to
10 × 10−4 in the following increment of 5–10 μm in the average aperture was observed.
These observations imply that there exists a threshold in the fracture for the transporta-
tion between the lower and higher solute concentrations. The dynamic migration of the
uranium-containing solute was presented in the early 12 h, and the migration seepage
generally slowed in the later 12 h.
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Figure 10. Relation between the solute concentration and time.
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Considering fracture2 as an example, the characteristic of the solute migration is shown
in Figure 11. The residual solute concentration varies spatiotemporally with changes in
the average aperture and time. The residual solute is anisotropically distributed and the
concentration decreased along the fracture. High and low solute concentrations were
distributed at the inlet and outlet of the fracture, respectively. Furthermore, solute concen-
tration decreased dynamically in the first 6 h, and slightly decreased during the following
6 h, and the morphology of the solute differed for different average apertures. This obser-
vation indicates that the transport of time-dependent uranium-containing solute is highly
sensitive to the changes in the average aperture.

Figure 11. Characteristics of solute transport under different stresses.

4.3. Cross Channel of the Fracture

The experiment of fluid seepage and uranium-containing solute transport in cross
channel of the fracture was conducted, based on the double-fracture model. Compared
with the single-fracture model, the dual-fracture model adds a fracture perpendicular to
the fracture mentioned above. The characteristics of seepage flow and uranium solute
transport were studied in the scenarios of k = 0, k = 0.5, and k = 1 (the ratio of vertical stress
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loading and horizontal stress unloading, the horizontal stress direction is the direction
perpendicular to the crack surface).

For the scenario of k = 0, the 18.3 MPa axial stress and 18.3 MPa, 14.3 MPa, 10.3 MPa,
7.3 MPa, and 6.3 MPa confining stresses were successively applied. As shown in Figure 12,
the maximum seepage velocity is negatively related to the confining stress in multi-
fractured rock masses, and that the maximum seepage velocities are 2.29 × 10−2, 4.42 × 10−2,
6.09 × 10−2, 9.66 × 10−2, and 1.11 × 10−1 corresponding to 18.3 MPa, 14.3 MPa, 10.3 MPa,
7.3 MPa, and 6.3 MPa confining stress, respectively. As the confining stress increases,
the number and width of the flow paths for solute migration anisotropically decreased,
and corresponding fracture permeability was decreased. The block and ribbon-shaped
uranium-containing solute areas gradually decreased in inclined and vertical fractures. The
local retention of the uranium-containing solute induced by the vortex and inertial flow
caused by high-speed percolation and heterogeneous fracture morphology occurred in a
short period; furthermore, slow solute release was observed under weak convection in a
low permeability region.

As the confining stress decreases, the width of the double-fracture increases, while
the solute concentration in the fracture decreases rapidly under the convection of higher-
velocity fluids, and nonuniformly distributed block and ribbon-shaped solute concentration
areas appeared in the fracture area. As the aperture increases, the influence of the asperity
and roughness on the fluid flow state gradually decreases, and the vortex and inertial flow
phenomena gradually evolved into laminar flow. Compared with the solute morphology
under high confining stress, the time factor dominated the solute distribution under lower
confining stress. With the increase of time, the number and area of solute-intensive areas
decreased rapidly.

In the fracture intersections region, low-concentration solutes present a concentrated
distribution, and the distribution area gradually increases as the confining stress decreases.
Compared with the rough fracture surfaces, low-concentration cross fracture areas are more
sensitive in smooth fractures.

4.4. Loading Path

Figure 13a–c show that the apertures of inclined fractures and vertical fractures exhibit
different responses to the increase in confining stress at the same k. When k = 0, the confining
pressure increases from 6.3 MPa to 18.3 MPa, the apertures of vertical fractures decrease
from 31.4 to 24.2 μm, and the apertures of inclined fractures remain unchanged. Similar
phenomena are also observed at k = 0.5 and k = 1, the confining pressure increases from
9.3 MPa to 18.3 MPa, the apertures of the vertical fractures decreased by 5.1 μm and 5.2 μm,
and the apertures of inclined fractures decreased by 0.51 μm and 0.54 μm, respectively.
As the confining stress increases, apertures of inclined fractures experienced an initial
increase and then a dynamic decrease, while apertures of vertical fractures maintained a
uniform decrease. This observation indicates that the k value affects different morphological
fractures differently. As k increases, the apertures of inclined fractures decrease, while
those of vertical fractures remain more or less unchanged. When the confining stress is
10.3 MPa and k increases from 0.5 to 1, the apertures of inclined fractures decrease by
7.3 μm, while those of vertical fractures only decrease by 0.7 μm. In addition, when k = 0,
the apertures fluctuation amplitude of inclined fractures is 2 μm, while the apertures
fluctuation amplitude of inclined fractures is 9.1 μm and 4.3 μm for k = 0.5 and k = 1,
respectively. While apertures fluctuation amplitude vertical fractures remain more or less
unchanged with the increases of k. This observation indicates that the inclined fractures are
more sensitive than vertical fractures to changes of k. Thus, changes in axial stress have a
more significant effect on inclined fractures than on vertical fractures.
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Figure 12. Seepage solute transfer characteristics under different horizontal vertical stress at k = 0
(a) confining stress 18.3 MPa, axial stress 18.3 MPa, (b) confining stress 14.3 MPa, axial stress 18.3 MPa,
(c) confining stress 10.3 MPa, axial stress 18.3 MPa, (d) confining stress 7.3 MPa, axial stress 18.3 MPa,
(e) confining stress 6.3 MPa, axial stress 18.3 MPa.
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Figure 13. Relationship of the confining stress, aperture, seepage velocity, and concentration in
different loading conditions. (a) confining stress for a k = 0, (b) confining stress for a k = 0.5,
(c) confining stress for a k = 1, (d) the seepage velocity for a k = 0, (e) the seepage velocity for a k = 0.5,
(f) the seepage velocity for a k = 1.

Figure 13d–f show that the seepage velocity of the double-fracture increases with
the decrease in confining stress for a certain k. A fluctuation of the solute concentration
induced by the increase of confining stress in solute concentration was observed at 3 h.
This indicates that local retention and accelerated regional migration occur as solute is
transported through nonuniform interconnected voids, resulting in the fluctuation of the
solute concentration subjected to changes of confining stress. As k increases, the seepage
velocity generally decreases, and the confining stress corresponding to the peak value of
the seepage velocity increases from 8 MPa for k = 0 to 12.5 MPa for k = 1. In addition, as
k increases, the fluctuation of the solute concentration responding to the change of confining
stress gradually decreases.
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5. Conclusions

Combined with the developed mathematical model and FLAC3D-CFD simulator,
the migration of uranium-containing solute in fractured rock masses was studied, and
the influence of the sensitive factor on the evolution of fracture and uranium-containing
solution was analyzed, and the main achievements are as follows:

(1) A mathematical model describing the stress-dependent fracture structure and uranium-
containing solute transport was established. The evolution of a connected channel in
fracture aperture is influenced by the increase of confining stress, and a dynamic and
slight decrease zone was confirmed for confining stress of 5–13 MPa and 13–17 MPa.
The concentration of uranium-containing solution is directly influenced by the frac-
ture aperture and hydraulic pressure, and a 2–5 μm fracture aperture was identified
as a width threshold from a lower to higher uranium-containing solute concentration.

(2) The number and size of a connected channel decreased with the increase of confining
stress in double-fractures. The turbulent flow was presented in a high fluid velocity
and confining stress condition, and retention of uranium-containing solution charac-
terized by block and ribbon-shaped solute concentration areas was observed in both
inclined and vertical fractures, and dynamic decrease of uranium-containing solution
was presented at the fracture intersections region. The dynamic decrease presented in
the initial 12 h, and a slight decrease presented in the following period.

(3) The loading and unloading direction and rate significantly influence the fracture
geometry and uranium-containing solute transportation. As the ration of vertical
stress loading and horizontal stress loading k increases, the decrease in fracture aper-
ture, seepage velocity, and uranium-containing solute concentration was observed.
In addition, high seepage velocity and strong solute transport capacity for k = 1, and
the laminar flow for k = 0 were observed.
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Abstract: Accurate, rapid and effective analysis of rock drillability is very important for mining,
civil and petroleum engineering. In this study, a method of rock drillability evaluation based on
drilling process monitoring (DPM) parameters is proposed by using the field drilling test data. The
revolutions per minute (N), thrust, torque and rate of penetration (ROP) were recorded in real time.
Then, the two-dimensional regression analysis was utilized to investigate the relationships between
the drilling parameters, and the three-dimensional regression analysis was used to establish models
of ROP and specific energy (SE), in which the N-F-ROP, N-T-ROP and the improved SE model were
obtained. In addition, the random forest (RF) and support vector machine combined with genetic
algorithm (GA-SVM) were applied to predict rock drillability. Finally, a prediction model of uniaxial
compressive strength (UCS) was established based on the SE and drillability index, Id. The results
show that both regression models and prediction models have good performance, which can provide
important guidance and a data source for field drilling and excavation processes.

Keywords: rock drillability; DPM parameters; regression analysis; RF; GA-SVM; UCS prediction model

1. Introduction

Rock drillability plays an important role in mining, civil and petroleum engineering.
The traditional rock drillability analysis requires the rock mechanics parameter. This
means that the procedures of site drilling, coring, sample processing and laboratory test
are needed, which will be time-consuming and costly and greatly affect the engineering
efficiency. Moreover, sometimes, the rock core is impossible to be obtained owing to the
fracture and fragmentation of the rock mass, which results in the rock mass properties
being unable to be analyzed. However, the drilling process monitoring (DPM), as a new
promising technology, can compensate for the above shortcomings, and it has been widely
applied in recent years. Rock drilling process refers to the rock drilling relying on the
bit’s thrust and rotary cutting force. The thrust is used to push the drill pipe and make it
in close contact with the rock mass so as to generate enough friction. The rotary cutting
force is mainly used to break the rock mass. Meanwhile, the parameters fed back in the
drilling process are closely related to the rock mass properties. Therefore, how to quickly
and accurately obtain the rock mass properties is very important for the parameter design
of rock breaking equipment.

The scholars in United States, Japan and France have been trying to find the relation-
ships between the rock mass quality of engineering and drilling parameters by instrument
measurement since 1970 [1–3]. However, it measures the speed based on the distance,
which indicates that the achievement of drilling speed has great randomness when the rock
formation is not uniform or the drilling rig is vibrating [4,5], Therefore, it is impossible
to accurately obtain the rock physical properties and the related rock formation division.
On this basis, Yue [6–9] developed the drilling process monitoring system (DPM), which
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effectively improved the accuracy of velocity measurement and was successfully applied to
stratum identification and rock strength classification. However, the DPM system cannot
measure torque, so He and Li et al. [10] improved it. The new drilling process monitoring
apparatus can achieve the measurement of torque. Up to now, the development of a while-
drilling system has been relatively mature, which can realize the real-time measurement
of thrust, torque, rate of penetration (ROP) and revolutions per minute (N), and has been
successfully applied to rock property analysis and formation analysis. Rodgers et al. [11–14]
used while-drilling parameters to assess field rock strength and optimize core recovery.
Karasawa [15,16] et al. conducted laboratory drilling tests, and they proposed the method
to estimate the unconfined compressive strength of rock. He [17] et al. performed a series
of drilling tests on sandstone, limestone, marble and granite in the field to predict the
cohesion, internal friction angle and uniaxial compressive strength of rock. Li [18] et al.
deduced the relationships between the drilling efficiency and drilling parameters based on
the method of force limit of equilibrium and energy equilibrium. Li [19] et al. analyzed the
influence of working parameters, such as impact power, propulsion force, rotating speed
and drill bit type, on drilling efficiency and obtained the relationships between the drilling
velocity and drilling parameters. Feng [20] et al. performed a field-drilling test to obtain
the optimal drilling efficiency, and they found the optimal drilling conditions and rock
drillability. Moreover, the combined thermo-mechanical drilling technology and acoustic
emission method were utilized to investigate the rock drillability [21–23]. However, the
fractured zones were not considered in the above studies. Therefore, Kalantari et al. [24,25]
established a stress limit equilibrium analysis model for a T-shaped drag bit, which con-
sidered influence factors such as bit geometry parameters, fractured zone and contact
friction during drilling. On this basis, the actual drilling data were used to estimate the rock
strength parameters, such as cohesion, internal friction angle and uniaxial compressive
strength. The results show that the borehole test results based on this model are in good
agreement with the standard test results.

Meanwhile, a large number of models have been established to evaluate rock drill-
ability. Hughes [26] and Mellor [27] et al. proposed the theoretical models of SE based
on the uniaxial compressive strength and secant modulus of rocks. An empirical formula
was put forward by Poane [28] et al. to evaluate the relationships between the drilling
parameters and specific energy (SE). Feng [20] et al. improved the SE model using the
controllable parameters (thrust and ROP). In addition, Zhang [29] et al. proposed a new
rock drillability index, Id, to evaluate rock classification, and it was applied to classify rock
types successfully as an in situ test. Yu [30] et al. compared the effect of SE and Id on rock
strength assessment. The results present that the assessment performance of Id is superior
to SE due to the smaller overall fluctuation during the modeling process. However, the
most widely used model by far is the SE model proposed by Teale [31]. The ROP is also an
important index to evaluate rock drilling efficiency. Kahraman [32,33] conducted rotary and
percussive drilling tests and obtained the prediction equation of ROP through regression
analysis. Ataei [34] et al. established an empirical formula of ROP combined with the rock
mass drillability index, and the results show that the model has a better prediction effect
compared with the previous model. In addition, artificial intelligence (AI) techniques have
been utilized to predict rock properties. Ocak [35] et al. used the multilayer perceptron
neural network (MLPNN) to predict the elastic module of intact rocks, and the prediction
results show that the MLPNN has good prediction capacity. Yesiloglu-Gultekin [36] et al.
employed the artificial neural network and adaptive neuro fuzzy inference system to
predict the uniaxial compressive strength of granite rocks, and the study indicates that
the developed models have a high prediction performance. Sarkar [37] et al. adopted the
feed-forward back-propagation neural network to estimate the strength parameters of rock,
and the results show that the performance of the AI techniques is better than regression
analysis. He [38] et al. utilized the deep convolutional neural network to predict the
cohesion, internal friction angle and uniaxial compressive strength and obtained good
prediction results. Therefore, the AI technique is a promising method to analyze rock
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properties. However, some explanations about the cutting actions of the drilling bits and
TBM disc-cutters explained in many papers are not referred to, e.g., the explanations given
by Roxborough and Phillips [39,40]. Some other researchers also used the concepts of thrust
and rolling forces and the specific energy to study the mechanism of rock fragmentation by
the cutters [41,42]. They used a higher order displacement discontinuity method for their
analyses. The finite element method and discrete element method have also been used to
analyze the drillability of the rock cutting heads.

Although many achievements have been obtained, the analysis of the relationships
between the rock drillability and DPM parameters is still rare, and the AI algorithm is rarely
used to analyze the relationships between them. Meanwhile, the relationships between the
DPM parameters and rock properties have not been fully established. Therefore, the drilling
test was conducted in this study, and the thrust (F), torque (T), rotating speed (N) and rate
of penetration (ROP) were recorded in real time. Then, the two-dimensional and three-
dimensional regression analyses were utilized to investigate the relationships between the
rock drillability and DPM parameters, in which two ROP models are obtained and the
SE model is improved. In addition, the random forest (RF) and support vector machine
combined with genetic algorithm (GA-SVM) were used to predict the rock drillability.
Finally, a model using SE and Id for estimating the uniaxial compressive strength based
on three drilling tools is established. The above efforts can achieve the accurate, rapid and
effective analysis of rock drillability, and the model has very important guiding significance
for field drilling and rock fragmentation.

2. Methodology

2.1. Drilling Process Monitoring (DPM) Parameters

In order to analyze the relationships between DPM parameters and rock drillability,
a new drilling-monitoring system was utilized to perform drilling test. The system, as
shown in Figure 1, can record the thrust (F), torque (T), rotating speed (N) and rate of
penetration (ROP) in real time at 1-s interval through the corresponding sensor. These
sensors mainly include pressure sensor, rotating speed sensor, torque sensor and laser
displacement sensor. Finally, the recorded data will be transformed to the data processing
system, where the data can be stored and processed. Meanwhile, the system can adjust the
thrust and rotating speed artificially during the process of drilling. Moreover, all sensors
are easily to be mounted and have high measurement precision, so it is convenient and
reliable to conduct drilling test in field.

Figure 1. Digital drilling system and in situ testing.
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Among the DPM parameters, the thrust refers to the force required to make the drill
bit in close contact with the rock mass; the rotating speed refers to the number of rotating
turns of drill bit per minute and the torque refers to the moment required to rotate the drill
bit, which is used to cut rock mass; the rate of penetration refers to the length of drilling
per unit time.

2.2. Drilling Conditions

Different thrust and rotating speed were applied to plain concrete with a 90 mm
diameter drill bit. The range of thrust is from 8.5 to 70 kN, and that of rotating speed
from 40 to 400 r/min. Through uniaxial compressive test and Brazilian tensile test, the
uniaxial compressive strength and tensile strength of the concrete are 14.70 ± 0.50 MPa and
1.57 ± 0.32 MPa, respectively.

2.3. DPM Data

After drilling test, the corresponding torque and rotating speed values under different
thrust and rotating speed drilling conditions were obtained, and the SE (energy required
to break unit rock) while drilling was calculated following the SE model proposed by
Teale [31], as shown in Equation (1). The average values of DPM parameters and SE are
presented in Table 1.

SE =
F
A

+
2πNT

AV
, (1)

where SE is specific energy of drilling, F is thrust, N is rotating speed, T is torque, V is rate
of penetration and A is drilling area.

Table 1. The average value of DPM parameters and SE.

N/r·min−1 F/kN ROP/cm·min−1 T/N·m SE/MJ·m−3

40

10 3.02 68.195 81.48
11.5 3.31 72.011 78.76
19 3.74 91.091 89.04
28 3.69 113.987 113.48
35 3.95 131.795 123.25
40 4.03 144.515 132.79
45 4.27 157.235 136.92
50 3.61 169.955 173.99
60 3.85 195.395 188.42
65 4.27 208.115 181.99
70 4.22 220.835 195.43

115

8.5 3.44 64.379 191.98
19 4.44 91.091 211.82

23.5 4.52 102.539 234.57
29 4.81 116.531 251.06

35.75 5.11 133.703 271.77
42 6.38 149.603 244.96

46.5 7.55 161.051 224.01
53 7.01 177.587 265.73

58.25 7.29 190.943 275.23
60.5 5.87 196.667 350..07
65 6.00 208.115 362.76
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Table 1. Cont.

N/r·min−1 F/kN ROP/cm·min−1 T/N·m SE/MJ·m−3

220

8.7 3.09 64.888 410.74
18.25 4.784 89.183 366.12

29 6.46 116.531 355.88
34.85 7.71 131.4134 337.31

40 6.68 144.515 427.54
46.7 7.60 161.560 421.15
51.5 7.83 173.771 440.06
57.5 7.53 189.035 497.68
60 7.21 195.395 536.97

400

8.5 4.36 64.399 525.06
11.5 5.24 72.031 490.54
18.8 6.55 90.602 492.93
25 7.23 106.375 530.47
30 8.09 119.095 551.47

35.5 8.91 133.087 534.99
42.5 13.31 150.895 435.13

48.75 11.72 166.795 530.57
53 10.61 177.607 584.46
58 12.86 190.327 584.19

3. Regression Analysis

Two-dimensional and three-dimensional regression analysis were adopted to investi-
gate the relationships between the DPM parameters and the influence of DPM parameters
on rock drillability. It is worth noting that the data used for the regression analysis are the
average values (Table 1) under their corresponding conditions.

3.1. Two-Dimensional Regression Analysis

The relationships between thrust, torque, ROP and SE were analyzed under different
rotating speeds. There is a good positive linear relationship between thrust and torque,
as shown in Figure 2, and the fitting functions are presented in Table 2. The relationship
between thrust and ROP is powerful, and their regression curves and fitting functions are
shown in Figure 3 and Table 2, respectively. Meanwhile, the relationship between torque
and rotating speed was obtained, as shown in Figure 4 and Table 2, respectively.

Figure 2. The relationship between thrust and torque under different rotating speed.
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Table 2. Relationships between parameters of DPM.

Model Type T-F V-F V-T SE-F SE-T

Fitting model T = aF + b R2 V = aF b R2 V = aT b R2 SE = aF + b R2 SE = aT + b R2

Rotating
speed

/r·min−1

40
a 2.544

1
2.386

0.7057
1.364

0.6666
2.049

0.967
0.8056

0.967b 42.75 0.1331 0.2096 55.2 20.75

115
a 2.544

1
1.584

0.7132
0.3744

0.6941
2.363

0.6803
0.9288

0.6803b 42.75 0.3536 0.5493 167.4 127.7

220
a 2.544

1
1.606

0.8447
0.3172

0.7830
2.659

0.5109
1.045

0.5109b 42.76 0.3934 0.6147 319.1 274.4

400
a 2.544

1
1.214

0.8803
0.09685

0.8749
1.108

0.1826
0.4354

0.1826b 42.77 0.5788 0.9337 489.3 470.6

where a and b are fitting parameters.

Figure 3. The relationship between thrust and ROP under different rotating speed.

Figure 4. The relationship between torque and ROP under different rotating speed.
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Similarly, the values reflecting the relationship between SE and thrust (or torque)
under different rotating speeds were obtained, as shown in Figures 5 and 6 and Table 2.
There is a good linear relationship when the rotating speed is 40 r/min. However, there is
no significant statistical relationship under other rotating speed conditions. This means
that the single variable is unable to reflect the SE of drilling effectively.

Figure 5. The relationship between thrust and SE under different rotating speed.

Figure 6. The relationship between torque and SE under different rotating speed.

3.2. Three-Dimensional Regression Analysis

The two-dimensional regression analysis results indicate that there is a significant
statistical relationship between thrust and torque. However, for the regression analyses of
ROP and SE, the fitting effects are incapable to meet the requirement of practical engineering.
Therefore, the three-dimensional regression analyses were utilized to establish models
based on DPM data.

The rotating speed, thrust and torque were selected to establish regression models of
ROP. We defined them as N-F-ROP and N-T-ROP models. The three parameters correspond
to the X-axis, Y-axis and Z-axis variables, respectively. Through regression analyses, the N-F-
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ROP and N-T-ROP models were obtained, and their corresponding three-dimensional fitting
curves and formulas are shown in Figures 7 and 8, and Equations (2) and (3), respectively.

Figure 7. Regressed model of N-F-ROP, where (a) is three-dimensional surface view and (b) is the
view of Y-Z direction.

Figure 8. Regressed model of N-T-ROP, where (a) is three-dimensional surface view and (b) is the
view of Y-Z direction.

Moreover, because there is a good linear relationship between thrust and torque, we
improved the SE model proposed by Teale. The thrust, rotating speed, ROP and drilling
area (A) were taken as independent variables to establish the regression model of SE.
The results show that the above parameters have a significant statistical relationship, as
presented in Figure 9 and Equation (4).

V = 3.258(1.561 × 10−4N · F · e−0.00393F + 1) (2)

V = 3.223(2.521 × 10−5N · T · e0.002374T + 1) (3)

SE = 0.2973
F
A

+ 236.4
N

V · A
+ 94.87

F
A

· N
V · A

(4)
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Figure 9. Regressed model of SE, where (a) is three-dimensional surface view and (b) is the view of
Y-Z direction.

3.3. Regression Model Evalution

The determination coefficient (R2) and root mean square error (RMSE) were utilized
to evaluate regression performance of two-dimensional and three-dimensional regression
models, and the corresponding calculation formulas are shown in Equations (5) and (6),
respectively. The ultimately calculation results are shown in Table 3.

R2 =
n

∑
i=1

(yp(i) − yt)
2/

n

∑
i=1

(yt(i) − yt)
2 (5)

RMSE =

√
1
n

n

∑
i=1

(yp(i) − yt(i))
2 (6)

where yt(i), yp(i), yt and n are the test value, predicted value, mean of all test values and the
total number of values, respectively.

Table 3. The R2 and RMSE values of regression models.

Regression Model
Rotating

Speed
/r·min−1

R2 RMSE

F-T F-V T-V F-SE T-SE F-T F-V (kN)
T-V

(N·m)
F-SE

(MJ·m−3)
T-SE

(MJ·m−3)

Two-dimensional

40 1 0.7057 0.6666 0.9670 0.9670 0.005 0.207 0.2198 7.547 40.841
115 1 0.7132 0.6941 0.6803 0.6803 0.005 0.675 0.6970 28.640 98.618
220 1 0.8447 0.7830 0.5109 0.5109 0.00496 0.591 0.7047 43.047 43.983
400 1 0.8803 0.8749 0.1826 0.1826 0.00498 1.032 1.0551 38.552 18.222

Three-dimensional
N-F-V N-T-V SE=f (F, N, V, A) N-F-V

(cm·min−1)
N-T-V

(cm·min−1)
SE=f (F, N, V, A)

(MJ·m−3)
0.903 0.879 0.996 0.794 0.890 10.11

4. Analyses Using Machine Learning Methods

The RF and GA-SVM were used to analyze the relationships between the SE and DPM
parameters. These two methods belong to the category of machine learning, and it has
been successfully applied in many fields [43–46].

4.1. Random Forest

RF is an ensemble algorithm based on a decision tree, and it was developed by
Breiman [47]. The RF model takes the bootstrap method to select a training set in the way
of sampling with the replacement method. Then, the selected training sets are utilized to
establish the classification or regression model based on a pre-designed number of decision
trees (ntree) and node value (mtry). Finally, the test sets are taken to evaluate the model. In
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the prediction process, the classification model uses the method of classification voting to
get the final result, while the prediction model adopts the method of regression mean.

A total of 11041 sets of real-time DPM data were used for training and testing in the
RF model. Because there is a good linear relationship between torque and thrust, and the
drilling area (A) is a constant, the rotating speed, thrust and ROP were taken as the input
variables, and the output variable was SE. It should be noted that the average speed was
used for the training and testing process in the RF model instead of the real-time speed
under different thrust conditions due to the real-time speed possibly being a negative value
caused by the slight rebound of the drill pipe during drilling. Of the DPM data, 70% were
were selected randomly to be the training set, and the remaining 30% of the data were
taken as the test set. The ntree and mtry were set to 150 and 2, respectively. The optimized
prediction model was obtained by training, and the ultimate result was obtained through
prediction. The architecture of RF is shown in Figure 10.

N F ROP A

SE

Figure 10. The architecture of random forest.

In order to evaluate the prediction accuracy of the established RF model, the R2

and RMSE were calculated, as shown in Table 4. Meanwhile, the comparison of the
original value and predicted value is shown in Figure 11. From the predicted results,
we can find the R2 and RMSE of the training set and test set are 0.9455 and 0.9591,
42.1341 and 48.7496, respectively, which indicates that the established RF model has a good
prediction performance.

Table 4. The R2 and RMSE of prediction models.

Prediction Models

Trian Set Test Set

R2 RMSE
(MJ·m−3)

R2 RMSE
(MJ·m−3)

GA-SVM 99.99% 0.2578 99.98% 2.5208
RF 94.55% 42.1341 95.91% 48.7496
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Figure 11. The comparison of original value and predicted value of RF model.

4.2. GA-SVM

The support vector machine (SVM) algorithm was invented by Cortes and Vapnik [48].
It is one of the machine learning methods based on statistical learning theory. The SVM
model mainly includes the input layer, kernel function layer and output layer. Among
them, the key function layer mainly includes radial basis function (RBF), polynomial and
linear functions, which are the key factors to affect the prediction performance. In this
paper, the genetic algorithm (GA) is combined with SVM to optimize the parameters.
The GA [49] is a new method to find the optimal solution through the natural evolution
process simulation, and the steps of GA mainly include population initialization, individual
evaluation, selection operation, crossover operation, mutation operation and termination
condition judgment. The SVM combined with GA can better optimize the parameter
selection and improve the prediction accuracy.

Similar to the analysis of RF, the rotating speed, thrust and ROP are taken as the input
variables, and SE as the output variable. Of the DPM data, 70% were randomly selected for
model training, and the remaining 30% of the data were used for the model verification,
as shown in Figure 12. In GA, the maximum evolutionary generation (ga_option.maxgen),
maximum population (ga_option.sizepop), crossover validation (ga_option.v) and crossover
probability (ga_option.ggap) were set as 100, 20, 10 and 0.9, respectively. By optimizing
the parameters, the optimal penalty coefficient (c) and kernel radius (g) were 6.5961 and
27.2206, respectively. Then, the above parameters were used to establish the prediction
model. Finally, the test sets were used to verify the model. The prediction results show the
established model has good performance.

The R2 and RMSE were used to evaluate the prediction accuracy of GA-SVM. By
calculation, the corresponding evaluation results and comparison picture are shown in
Table 4 and Figure 13, respectively. The results show that the prediction performance of
the GA-SVM model is superior to the RF model. It also shows that it is feasible to use the
thrust, rotating speed and ROP to evaluate the SE when the drilling area is a constant.
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Figure 12. The architecture of GA-SVM.

Figure 13. The comparison of original value and predicted value of GA-SVM model.

5. Relationships between Rock Properties and DPM Parameters

The rock properties and in situ stress conditions obviously affect rock cutting and
drilling [50–53]. The fast and accurate prediction of the rock properties is the key to
evaluating rock drillability and cuttability. Therefore, in order to find the relationships
between the rock properties with DPM parameters, the SE and drillability index, Id, were
utilized to establish the rock strength prediction model. The SE can be obtained according
to the improved model based on Teale’s model. The drillability index, Id, was proposed by
Zhang [29], and it can be calculated based on Equation (7). Both SE and Id can be calculated
by DPM parameters.

The data used to establish the prediction models are present in Table 5. According
to these data, the SE and Id were obtained. Then, the prediction models of uniaxial
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compression strength of rock based on SE and Id were established, which include the
univariate model and two-variable model.

Id = γπα
1 π

β
2 (7)

π1 =
DF
T

, π2 =
V

Dω
, ω = 2πN (8)

where D is drill bit diameter, F is thrust force, T is torque, V is rate of penetration, ω is
angular velocity, N is rotating speed and α, β, γ are fitting parameters. In this study, α, β, γ
are determined to be 0.5, 0.6 and 1, respectively.

Table 5. Data source, quantity and bit types of UCS prediction model.

References Bit Types
Bit Geometry

Parameter
Data Size

Wang [54]

Standard diamond
solid bit

 

Radius is 7.5 mm 34

He [55]

Impregnated
diamond bit

 

External diameter is
70mm, and external
diameter is 60 mm

17

Wang [56,57]

PDC bit

 

Cutting edge L1, L2
and L3 are 18, 18 and
27 mm, respectively,
and radius is 30 mm

42

5.1. Univariate Model of UCS

According to the calculated SE and Id, the relationship between them and uniaxial
compressive strength of rock under different cutting tools is established, respectively. When
the standard diamond solid bit was used, the relationship between SE (or Id) and UCS
is present in Figure 14a, and the corresponding regression model is shown in Table 6.
Similarly, the relationship between SE (or Id) and UCS is present in Figure 14b,c, in which
the impregnated diamond bit and PDC bit were performed to drilling. Their regression
models are also shown in Table 6. Finally, all the data under the three types of bits were
used to establish the relationship between the SE (or Id) and UCS of rock. The regression
model and fitting curve are shown in Table 6 and Figure 14d, respectively.

Table 6. Established UCS model based on SE and Id separately under different bits.

Bit Types
UCS Prediction Model

SE-UCS Id-UCS

Standard diamond solid bit SE = 0.5129UCS Id = 0.01519UCS−0.305

Impregnated diamond bit SE = 0.08552UCS Id = 0.0122UCS0.2208

PDC bit SE = 0.002172UCS Id = 0.03025UCS0.1704

Combine the above three bits SE = 0.4227UCS Id = 0.03247UCS−0.05269
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Figure 14. The relationship between SE (or Id) and UCS for different bits of (a) standard diamond
solid bit, (b) impregnated diamond bit, (c) PDC bit and (d) combine the above three bits.

From these univariate prediction models, we can find that there is a good relationship
between SE (or Id) and UCS for the standard diamond solid bit. The result indicates SE is
positively correlated with the UCS, while the Id is negatively correlated with UCS, which
is consistent with Yu’s [30] study. However, compared to the regression model for the
standard diamond solid bit, the relationship between Id and UCS presents an opposite law
for the impregnated diamond bit and PDC bit, and the relationship between UCS and SE is
obviously better than that between UCS and Id.

5.2. Two-Variate Model of UCS

The univariate models of UCS indicate that the performances of the UCS models based
on SE (or Id) under different bits are not very good, especially for the model based on Id.
Therefore, the UCS prediction model was established by combining the SE and Id. Similar to
the univariate modeling, the UCS prediction models under different bits were established,
respectively. The UCS prediction models under standard diamond solid bit, impregnated
diamond bit and PDC bit are shown in Figure 15a–c, respectively, and the corresponding
fitting equations are shown in Equations (9)–(11). Finally, all the data were combined to
produce an UCS prediction model, and the regression curve and fitting equation are shown
in Figure 15d and Equation (12). The results show that the performances of the established
models combining SE and Id are significantly superior to that of the univariate model.

UCS = 0.02973
(

19.96 · SE · e0.6472I−0.1
d + 1

)
(9)

UCS = 0.006402
(

1.081 × 104 · SE · e−1.285I−0.1
d + 1

)
(10)

UCS = 1.844
(

967.5 · SE · e−1.07I−0.1
d + 1

)
(11)

UCS = 16.93
(

0.08349 · SE · e0.06913I−0.1
d + 1

)
(12)
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Figure 15. Established UCS models combine SE and Id for different bits of (a) standard diamond
solid bit, (b) impregnated diamond bit, (c) PDC bit and (d) combine the above three bits.

5.3. Evaluation of UCS Prediction Models

The determination coefficient (R2) and root mean square error (RMSE) were used
to evaluate the performance of univariate and two-variate models of UCS, and it can be
calculated by Equations (5) and (6), respectively. The corresponding evaluation indexes
obtained through calculation are shown in Table 7. The results show that the performance
of the established UCS prediction model based on SE and Id is better than that based on a
single variable.

Table 7. The R2 and RMSE of UCS models.

UCS Models
Standard Diamond Solid Bit Impregnated Diamond Bit PDC Bit Combine the Above Three Bits

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Univariate model
SE-UCS 0.8845 9.6273

(103 MJ·m3) 0.8067 0.8927
(103 MJ·m3) 0.8916 0.0151

(103 MJ·m3) 0.7333 12.7979
(103 MJ·m3)

Id-UCS 0.8614 0.0041 0.3645 0.0064 0.1466 0.0240 0.0070 0.0260

Two-variate
model SE-Id-UCS 0.9051 18.3554

(MPa) 0.9218 7.9442
(MPa) 0.8981 6.5318

(MPa) 0.7506 22.8337
(MPa)

By substituting the drilling experiment data into the established UCS prediction model,
it can be obtained that the prediction UCS of concrete material is 17.49 MPa. Compared to
the tested UCS of concrete (14.7 MPa), the prediction accuracy is 81.02%.

6. Discussion

In order to investigate the relationships between the DPM parameters and rock drilla-
bility, the essential parameters, such as thrust, rotating speed, etc., needed to be collected
during drilling. Therefore, the feasibility for evaluating rock drillability with DPM parame-
ters is discussed in this chapter.
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6.1. The Key DPM Parameters

According to the formula of SE and Id, the thrust, rotating speed, torque and ROP are
essential during drilling. They can be divided into two categories that are controllable and
uncontrollable, respectively. Among these parameters, the thrust and rotating speed belong
to the former, while the torque and ROP belong to the latter. In the process of drilling, the
drilling performance can be improved by reasonably controlling the thrust and rotating
speed. However, the torque and ROP, as the characterization parameters while drilling,
change with the thrust and rotating speed, and they are also very sensitive to the mechanical
properties of the rock mass. Therefore, it is very important to accurately measure the thrust,
rotating speed, torque and ROP for the real-time analysis of rock drillability.

6.2. UCS Prediction Model

The established UCS prediction model by combining SE and Id under three kinds of
different drilling tools (standard diamond solid bit, impregnated diamond bit and PDC bit)
has better prediction performance, and its performance is better than the univariate model
established by SE or Id separately. It can well reflect the relationships between the UCS of
rock and DPM parameters. By substituting the drilling experimental data into the model,
the prediction accuracy is 81.02%, which can meet the requirement of field application.
However, the amount of data to establish the model is not very large, and the types of bits
are not very comprehensive, so it is impossible to accurately predict the rocks with low
UCS. Therefore, more DPM data in different rock layers and more kinds of drill bits should
be considered in future study.

7. Conclusions

In order to investigate the relationships between the DPM parameters and rock drill-
ability, drilling tests were performed. The rotating speed, thrust, torque and ROP were
recorded in real time. Then, these DPM parameters were utilized to carry out regression
analyses, and the RF and GA-SVM algorithms were applied to predict the SE for reflecting
the rock drillability. Finally, the UCS prediction model using three types of drilling bits
was established by combining the SE and Id. Based on the above analyses, the following
conclusions can be drawn:

(a) There is a good linear relationship between thrust and torque at a constant rotating
speed condition, and the relationships between thrust and ROP, and torque and ROP are
powerful, but their statistical relationship is not very significant. The relationships of the
SE with thrust and torque are linear at a lower rotating speed, while there is no significant
statistical relationship at medium and high rotating speeds.

(b) The established N-F-ROP and N-T-ROP regression models have better performance
than the two-dimensional regression models. Meanwhile, the SE model of Teale has been
improved based on the good relationship between thrust and torque. The new model has
good performance to predict the SE. However, the improved SE model is not applicable to
all the fields completely, and the general formula needs to be further studied.

(c) The prediction performance of the GA-SVM model is superior to the RF model, and
it can reach more than 99%. Therefore, machine learning based on GA-SVM is a promising
method to analyze the relationships between the DPM parameters and rock drillability.
Moreover, it is feasible to evaluate the SE of drilling based on thrust, rotating speed, ROP
and drilling area (A).

(d) The UCS prediction model was established by combining SE and Id. It can reflect the
relationships between the UCS and DPM parameters well for three types of bits (standard
diamond solid bit, impregnated diamond bit and PDC bit).
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Abstract: The acoustic emission b value is an important and widely used parameter for the early
prediction of rock fractures. In this study, five groups of true triaxial compression tests were con-
ducted on granite specimens to analyze changes in b value during the process of rock failure, and to
investigate the b value characteristics of acoustic emission events. First, the acoustic emission events
that simultaneously triggered at least four sensors were located using P-wave arrivals and sensor
coordinates. Then, considering various intervals of acoustic emission event counts, stress magnitude,
and stress proportion, b values were calculated using the values of the maximum amplitude, average
amplitude, maximum absolute energy, and average absolute energy of the acoustic emission events.
In addition, the goodness of the fitting curves was used to evaluate the fitting reliability of the b values.
The results indicated higher accuracy of b value when calculated using the average amplitude setting
for intervals of acoustic emission event counts of 200 or greater, stress magnitude of 20 MPa or greater,
and stress proportion of 10% or greater. Moreover, the interval of event counts of 200 is suggested as
a window parameter for b value calculations, and the b values are observed to exhibit a decreasing
trend before fracture for more than 80% of the specimens. Furthermore, the b value tends to decrease
with an increase in confining pressure. Thus, the b value can be used as an indicator for validating the
stress concentration area, including magnitudes and accumulative probability density distribution of
events, which is a beneficial complement to clarifying precursor information of rock mass instability.

Keywords: true triaxial compression test; acoustic emission; b value

1. Introduction

The concept of b value originated in the study of seismology. In 1944, Gutenberg
and Richter first proposed that b value reflects the relationship between the frequency
and magnitude of earthquakes, i.e., the number of earthquakes exponentially decreasing
with the increase of the magnitude [1], and the b value is an important scale parameter for
operational earthquake forecasting during earthquake sequences [2–8]. Several engineering
disasters and great earthquakes have shown that b value decreased before the time of
occurrence of higher magnitude events (e.g., main shocks, rock bursts and roof falls) [9–14].
The failure mechanism of brittle rocks is similar to that of earthquakes, so b value analysis
for the microseism and acoustic emission (AE) signals obtained from the failure process of
brittle rocks has become an important research issue [14–16].

In the past few decades, the b value has been widely used in rock failure prediction
and rock damage analysis [17–21]. In an attempt to reveal the onset precursors of rock
damage and failure, the uniaxial and conventional triaxial stress tests have been conducted
by several researchers on small-scale rock specimens, and the b value characteristics of the
process of rock failure have been investigated. For instance, Mogi first proposed that the
b value reflects the internal heterogeneity of rocks, and that more heterogeneous rocks have
a higher b value [22]. Scholz first observed that the b value is related to the stress state of
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the rocks, and decreases as the stress increases [23]. Weeks et al. reported that the b value is
negatively correlated with stress [12]. As the stress level increases beyond 93% and 100%,
the b value begins to decrease [7]. Moreover, the b value can capture the inception of severe
cracking in concrete [24]. However, studies on the b value characteristics for rocks under
different true triaxial stresses have been rarely reported thus far.

Because the b value is used as a warning index for earthquakes and rock damage,
it is important to capture the trend in its variations with the change of time and stress.
While the methods used by scholars for calculating the b value are different, the amplitude
and energy of AE hits are most commonly used to estimate b value [25]. At least four
methods for obtaining the magnitude of completeness (Mc) have been used to improve the
calculation precision of the b value [26–29]. Meanwhile, when a single AE sensor is used to
detect AE signals, it cannot use the location method to determine the AE events and the
noise signals from the testing machine and environment, which are used to analyze the
b value and other properties of the AE; this may result in a high AE hit rate (HR) and an
inaccurate b value.

In this study, five groups of true triaxial compressive tests were conducted on granite
specimens. The minimum principal stress (σ3) values used for the test were 10, 20, 30, 50,
and 100 MPa, and the intermediate principal stress (σ2) was varied from test to test at the
same σ3 value. Six sensors were attached to the loading mode to detect the AE signals
during the loading. AE localization without a premeasured velocity was applied [30].
Based on the location result of the AE signals, the AE events located inside the specimen
were selected, and the values of Amax, Aavg, Emax, and Eavg of the AE events were chosen for
analysis. A new b value estimation method which employs apparent frequency-amplitude
distribution was used to calculate various b values in this loading test, and the b value
characteristics of granite specimens under different true triaxial stresses were discussed.
The results of this paper are of great help for deeper understanding the relationship between
the b value and the differential stress, as well as the damage accumulation assessment
through temporal variation of b value in the true triaxial stress state.

2. Experimental Details

The true triaxial testing system (Model TRW-3000) used in this study was developed
by the Advanced Research Center at Central South University, China, and the detailed
parameters of the testing system have been described by several literatures [31–35]. The
test system can apply quasi-static loading along the direction of the three principal stresses
independently through hydraulically driven pistons, with a maximum load capacity of 3000,
2000, and 2000 kN along the vertical (z), and horizontal (x and y) directions, respectively.
The loading system is shown in Figure 1a,b. The plate has extremely high stiffness and
rigidity in order to transfer the load into the rock specimens. Five groups of tests for
σ3 values of 10, 20, 30, 50 and 100 MPa were conducted. In the test settings, σ1 was applied
along the z direction, σ2 was applied along the y direction, and σ3 was applied along the
x direction. The loading control mode was set to a loading speed of 0.3 MPa/s. The loading
paths of the tests, as shown in Figure 1c, are as follows:

a. σ1, σ2, and σ3 were loaded with 1 MPa to keep the rock specimens attached to the
plate; and subsequently the three loads (i.e., σ1, σ2, and σ3) were increased until σ3
reached its predefined value.

b. σ1 and σ2 were loaded until σ2 reached its predefined value, while σ3 was kept constant.
c. σ1 was loaded until the failure of the rock specimen, while σ2 and σ3 were kept constant.
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Figure 1. Illustration of the true triaxial test system: (a) an overview of the testing system; (b) image
of the true triaxial machine and the designed loading apparatus; and (c) representative loading path.
AE in the figure represents acoustic emission.

The granite specimens used in these experiments were obtained from a granite quarry
in the Hunan Province, China, the average uniaxial compressive strength was 113.7 MPa.
The main mineral composition of the granite includes feldspar, quartz, and black mica. The
rock blocks were cut into cubic specimens with a side length of 50 ± 0.02 mm.

A PCI-2 AE test system with the AE-win software was used to monitor the AE signals
of the granite specimens. The NANO-type resonant narrowband sensors with a center
response frequency of 125 (750) kHz and 2/4/6 preamplifiers were chosen for the tests.
Six AE sensors were uniformly fixed on six platens in six directions around the specimen.
During the tests, both the gain of the preamplifier and the threshold were set to 40 dB, the
sampling rate was set to 10 MHz, and the threshold was 40 dB.
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3. Analysis of b Value Characteristics

3.1. AE Localization

During the experiments, the triaxial stress applied to the rock specimens increased
gradually; accordingly, the velocity field inside the specimens changed with the change in
triaxial stress [36]. Many factors, such as sonic speed [37], temperature [38], abnormal ar-
rivals [39], have negative effect on the localization of AE events. As a result, the localization
results with large errors will significantly affect the event type discrimination [40], empty
region identification [41], and abnormal region tomography [42]. To eliminate the influence
of wave velocity error on localization results, a localization method without premeasured
wave velocity was proposed [30,43–45]. The advantage of analytical algorithm that it could
obtain the precious solution was properly applied to remove the influence of abnormal
arrivals in collaboration with the Iterative Solutions [39]. Furthermore, Dong et al. [46]
optimized the A* path search algorithm and proposed a velocity-free localization method
(VFH) for complex three-dimensional structures. The localization accuracy was greatly
improved using the proposed VFH localization method. In this study, six sensors were used
and their coordinates were assumed to be Si (xi, yi, zi) (i = 1, 2, 3, 4, 5, 6). The localization
method without premeasuring the wave velocity was used to obtain the location of AE
events during the experiments. For an AE event, assuming that the focal coordinate is
(x, y, z), the origin time is t0, and the P-wave arrival at sensor Si is ti (i = 1, 2, 3, 4, 5, 6), the
following equation is satisfied:

(xi − x)2 + (yi − y)2 + (zi − z)2 = v2(ti − t0)
2 (1)

where the symbol v represents the unknown velocity of the P-wave in the travel path. When
at least four sensors are triggered, the simultaneous Equation (1) can be used to determine
the solution; and the coordinates of the focus, i.e., (x, y, z) inside the specimen space is
filtered as a valid AE event.

3.2. AE Signals

Rock fracture is the initiation and propagation of microcracks until they form macroc-
racks, inducing rock fraction [44]. When a microcrack is formed, the AE sensor is triggered
multiple times to the vibration wave whose voltage exceeds the threshold. An AE hit is
a vibration wave detected by an AE sensor, as shown in Figure 2, in which the analog
signal is converted into a digital signal by the collector. A complete wave is an AE hit.
Theoretically, the number of AE hits is positively correlated with the degree of internal
damage of the rock.

Figure 2. Waveform of AE electrical acoustic emission signals. A represents the amplitude of the
signal. E represents the energy of the signal, which is the area enclosed by the blue envelope curve.

Figure 3a,b shows the relationship between the AE hit rate (HR), AE event rate (ER),
cumulative AE hit rate (CHR), cumulative AE event rate (CER), and the true triaxial stress of
the granite specimen G-10-10 (the specimen No. was designed as “G-digit1-digit2”, where
“G” represents Granite, “digit1” represents the applied stress value of σ3, and “digit2”
represents the applied stress value of σ2; here, “G-10-10” means that the applied stress
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value of σ3 and σ2 on this granite specimen are 10 MPa and 10 MPa, respectively). As the
same trends were found in all specimens, the testing results of specimen G-10-10 were
mostly used for variation analysis of AE parameters hereafter. HR is the total number of AE
hits of all sensors per second divided by the total number of sensors, and ER is the number
of located AE events per second. Clearly, HR and ER have roughly the same variation
trend—an initial increase, followed by oscillation, and finally a decrease. Initially, the value
of ER ranged between 40 and 80, while that of HR ranged between 100 and 200. When σ1
was 164.7 MPa at 263 s, the HR and ER values gradually decreased; and when σ1 is 76% of
its peak value (217.7 MPa), the ER and HR values decreased to less than 10 and less than
50, respectively. Furthermore, the slopes of CHR and CER are observed to decrease with
the increase in σ1, indicating a change in the trend of the HR and ER values; the ER value
remained at less than 10 until 356 s, when the specimen was fractured. The other specimens
were also observed to exhibit a trend similar to that of the granite specimen G-10-10.

Figure 3. AE parameters of G-10-10: (a) HR, ER, and stress vs. loading time; (b) CHR, CER, and stress
vs. loading time; (c) Emax of AE events; (d) Eavg of AE events; (e) Amax of AE events; and (f) Aavg of
AE events.

3.3. Quiet Period

The change trends of different parameters, i.e., the absolute energy (Emax, Eavg) and
amplitude (Amax, Aavg) values of AE events in specimen G10-10, are shown in Figure 3c–f.
Emax, Eavg, Amax and Aavg are only meaningful for one AE event. Emax and Amax are the
maximum value and selected among the AE sensors triggered by the same AE events, and
Eavg and Aavg are the average value of the AE sensors triggered by the same AE events. In
this study, Emax and Eavg have a similar change trend; Amax and Aavg also have a similar
change trend. The total AE process can be divided into “active period” and “quiet period”
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according to the distribution of ER and the E and A values. As σ1 approached its peak value,
and the values of HR and ER decreased to approximately 50 and less than 10, respectively
(which was the quiet period). The HR curve was observed to fluctuate slightly, while the
ER remained stable. Therefore, it is more scientific and reasonable to use ER to determine
the quiet period.

Figure 4 shows that the value of ER did not increase linearly with increasing σ1, and
some blanks were observed before the specimen fracture. However, the ER value increased
significantly after the stress state of the rock specimen changed. Furthermore, when σ3
reached its predefined value and σ1 and σ2 continued to increase, the value of ER was
observed to increase and then decrease gradually. Similarly, when σ2 reached its predefined
value and σ1 continued to increase, the value of ER increased and then decreased gradually.
Thus, the stress state can cause changes in ER. Therefore, ER is expected to reduce gradually
to finally disappear at the same stress station. To some extent, ER has a great relationship
with the stress state of the rock specimen.

Figure 4. ER, stress vs. time of all specimens in this study. The specimen No. was designed as
“G-digit1-digit2”, where “G” represents granite, “digit1” represents the applied stress value of σ3,
and “digit2” represents the applied stress value of σ2; for example, “G-10-50” means that the applied
stress value of σ3 and σ2 on this granite specimen are 10 MPa and 50 MPa, respectively.

The length of the quiet period is shown in Table 1. When σ1 reached between 50% and
93% of its peak value, the ER and HR values significantly declined, and AE entered the
quiet period. Figure 5 shows the length of the quiet period, and a large dispersion in the
distribution of the quiet period can be observed; the duration was from 93–452 s, the mean
was 239.79 s, and the variance was 114.81. The stress at the beginning of the quiescent
period was 27–91% of the maximum stress (mean is 69%). Because there is no obvious
rule between the length and start time of the quiet period under different stress states, it is
difficult to predict rock failure.
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Table 1. Relationship between AE and σ1 in the quiet period.

Specimen No. ST ET ST/ET DT σ1qp/MPa σ1max/MPa σ1qp/σ1max

G-10-10 226 356 0.37 130 142.35 217.90 0.65
G-10-50 334 575 0.42 241 186.21 323.00 0.58
G-10-100 583 966 0.40 383 231.51 351.00 0.66
G-10-175 450 727 0.38 277 213.91 370.00 0.58
G-20-20 224 633 0.65 409 75.12 293.20 0.26
G-20-50 470 692 0.32 222 242.90 348.40 0.70
G-20-150 571 669 0.15 98 325.16 390.00 0.83
G-20-300 699 837 0.16 138 344.18 399.03 0.86
G-30-30 455 705 0.35 250 236.66 353.39 0.67
G-30-50 387 669 0.42 282 197.17 340.69 0.58
G-30-100 510 636 0.20 126 281.73 357.33 0.79
G-30-150 427 879 0.51 452 224.36 455.17 0.49
G-30-200 586 952 0.38 366 307.85 500.21 0.62
G-30-300 808 901 0.10 93 437.32 474.57 0.92
G-50-200 773 982 0.21 209 409.69 535.07 0.77
G-50-300 767 873 0.12 106 439.68 503.08 0.87
G-50-400 764 921 0.17 157 458.77 532.66 0.86

G-100-260 919 1303 0.29 384 548.55 750.00 0.73
G-100-420 821 1054 0.22 233 538.00 815.00 0.66

Note: “ST” denotes the start time of the quiet period, “ET” means the end time of the quiet period, and “DT”
denotes the duration of the quiet period.

Figure 5. Quiet period under different true triaxial stresses.

3.4. b Value

The b value is defined as the log-linear slope of the cumulative frequency magnitude
distribution of the AE, and the mathematical equation for determining the b value is
as follows:

lg N = a − b M (2)

where M is the magnitude of the AE events, and N is the cumulative frequency of the AE
events with magnitude of M or greater; a is an empirical constant; and b is the gradient. This
equation is always recognized as the G–R relationship [1]. In the case of the AE technique,
the G–R relationship is modified as follows [3,25]:

lgN(A/20) = a − b ∗ (A/20) (3)

lgN(lg(E)) = a − b ∗ lg(E) (4)

where A is the peak amplitude of the AE hit, E is the absolute energy of the AE hit, and N is
the cumulative number of the AE hit with an amplitude greater than A or absolute energy
greater than E. The magnitude of the event is a logarithmic scale of the instrumentally
measured amplitude, while the value of A recorded in dB is divided by 20, and E is used
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in its logarithmic form; Δ(A/20) = Δ(lg E) = 0.1 is set for the calculation to produce the
same magnitude as that of an earthquake; a is an empirical constant; and b is the b value of
the AE. Because the amplitudes used for b value estimation in rock AE test are the apparent
amplitudes measured on the sample boundary by acoustic sensor which is attenuated
from the source, the corresponding apparent frequency-amplitude distribution does not
necessarily represent the underlying size distribution of the sources because attenuation
may modify the b value. Recently, attenuation effect on apparent amplitude-frequency
distribution and b value was investigated from a statistical point of view by Liu et al. [4]
and Chen et al. [47]; the authors theoretically proved that the b value is unchanged within a
specific interval before and after attenuation. This indicates that if the apparent frequency-
amplitude distribution after attenuation follows the G–R relationship in a certain interval
of amplitude, the b value inferred in that interval is the same as that of the true source
amplitude distribution, and the authors also proposed a new method named FGS for b value
estimation through apparent amplitude-frequency distribution in a rock AE test. The FGS is
a new b value estimation procedure which specify the minimum data volume, data counting
procedure, bin width and linear regression method, and employ the Fisher optimal split
and the global search algorithm to determine the logarithmic linear segment in the apparent
frequency-amplitude distribution. The use of the FGS method for b value estimation actually
means that once we obtain the located AE events, we can directly use the FGS method for log-
linear segment determination in the apparent frequency-amplitude distribution, and further
for b value estimation, without doing the work of attenuation compensation; moreover, the
b value estimated by FGS can represent the real source distribution characteristics. The FGS
is also used in this loading test for b value estimation.

While both the energy and amplitude of the AE event can indicate the magnitude of
an AE event, the b value estimated using the energy data should be taken into considera-
tion [48]. Figure 6 shows the b value estimated from different intervals of AE event counts
of the granite specimen G-10-10. The intervals were set at 60, 80, 100, 200, 300, 400, 500,
600, 700, 800, 900, and 1000 events, such that the start value of the next interval is the mean
value of the previous interval, as (0 60), (30 90), (90 150) et al. Furthermore, Figure 7 shows
that most b value curves exhibit the same trend: first decreasing, and then increasing or
continuing to decrease, which was distinctly observed for count intervals at 1000 events.
Similarly, the values of bEmax and bEavg of all specimens exhibited the same trend as bAmax
and bAavg. However, the values of REmax and REavg were significantly smaller than the
values of RAmax and RAavg, which exhibited a very similar behavior, and in most cases, the
latter values are greater than 0.95. In general, the b value ranged between 0.3 and 3, and
the value of R2 was greater than 0.8. When the intervals were 60, 80, and 100, the b value
was greater than 3 and R2 was less than 0.8, which indicates that the b value estimated
using a small number of AE events has poor applicability. With an increase in interval
(i.e., more than 200 events), almost all R2 values were in the range 0.8–1 and the b values
were in the range 0.5–3. The distribution of the b value was observed to be sparser with the
increase in the interval, and 200 is the lower limit of this interval. Therefore, to analyze the
damage development condition of the rock specimen during the loading process, it is better
to choose an interval with a small value. The fluctuating trend of the b value indicates the
damage growth in the rock specimen. Table 2 summarizes the mean of R2 at different AE
event count intervals of the specimen G-10-10. Apparently, the R2 value of bE (bEmax and
bEavg) is smaller than that of bA (bAmax and bAavg), which indicates that the b value calculated
using amplitude is better than that using energy. Moreover, the values of bAmax and bAavg

were nearly equal, and interestingly, the mean R2 value of bEmax increased as the interval of
the AE event count increased, while that of bEavg increased first and then slightly decreased.
When the interval of the AE event count was set at 200, the mean of the R2 of bEavg a bEmax
and bEavg were 0.968 and 0.971, respectively, and their standard deviations were all 0.020.
Thus, we conclude that the b value calculated using Eavg at an interval of an AE event count
of 200 takes both real-time and reliability into account.
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Figure 6. b value and its fitting goodness at different AE event count intervals for specimen G-10-10.
The range of bAmax values is between 0.63 to 2.17.

251



Mathematics 2022, 10, 451

Figure 7. b value and stress vs. time under different true triaxial stresses. The range of b values is
between 0.85 to 2.62.

Table 2. The mean of R2 at different AE event count intervals for specimen G-10-10.

AE Event Interval Mean of REmax Mean of REavg Mean of RAmax Mean of RAavg

60 0.890 0.902 0.945 0.945
80 0.883 0.900 0.955 0.954
100 0.879 0.892 0.959 0.960
200 0.881 0.895 0.968 0.971
300 0.888 0.910 0.973 0.977
400 0.897 0.917 0.974 0.978
500 0.905 0.917 0.974 0.980
600 0.916 0.923 0.976 0.980
700 0.920 0.929 0.979 0.979
800 0.923 0.935 0.979 0.978
900 0.926 0.939 0.980 0.976

1000 0.927 0.935 0.980 0.977

In order to distinguish the b value at each loading stage of the rock specimen, the
AE events contained in different intervals of stress proportion were used to estimate the
b value. Figure 8 shows the variation of b value at the chosen stress proportion intervals of
2%, 4%, 6%, 8%, 10% and 12% of the peak value of σ1 and a threshold at 200 for a minimum
number of AE events in a stress proportion interval was set to ensure the accuracy of the
b value. Figure 10 shows that there is a blank space on the right side of the b value curve,
and the trend of the b value is obvious when the stress proportion interval was less than
10%—it first decreased and then increased, which is, however, not consistent with Figure 8.
The portion of the b value curves falling in the final stage was missing, mainly because
the AE event count intervals were less than 200 in the quiet period. The mean of the R2 at
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different AE stress proportion intervals of G-10-10 is listed in Table 3; the value of bE (bEmax
and bEavg) was observed to be smaller than that of bA (bAmax and bAavg), and the mean R2 of
bEmax increased as the stress proportion interval increased, while that of bEavg first increased
and then slightly decreased. According to Table 3, calculating the b value using Amax and
setting the stress proportion interval at 10%, σ1 is better for distinguishing the b value at
each loading stage.

Figure 8. b value and its fitting goodness at different stress proportion intervals for the specimen
G-10-10. The range of bAmax values is between 0 to 2.21.

Table 3. The mean of R2 at different AE stress proportion intervals for the specimen G-10-10.

Stress Proportion Interval Mean of REmax Mean of REavg Mean of RAmax Mean of RAavg

2% 0.867 0.875 0.955 0.971
4% 0.883 0.896 0.970 0.973
6% 0.887 0.907 0.973 0.974
8% 0.904 0.909 0.977 0.973
10% 0.906 0.928 0.980 0.974
12% 0.914 0.919 0.982 0.971

In order to distinguish the changes in the b value with time when true triaxial stress
is loaded, the b value was estimated using the AE data during a certain stress proportion
interval. Because the stress had a positive relationship with time, the loading speed was
fixed at 0.3 KN/s. Figure 9 shows the result of the b value estimated according to the AE
data during a certain stress interval. The stress intervals of σ1 were 5, 10, 15, 20, 25, and
30 MPa, and a threshold for a minimum number of AE events was set at 200. The trend of
the b value is obvious: it first dropped and then increased, which is consistent with Figure 8.
Table 4 lists the mean of R2 at different AE stress proportion intervals for the specimen
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G-10-10, and the mean of R2 for both RAmax and RAavg perform well, such that both values
are greater than 0.95, and hence, difficult to choose. Combined with Figure 9, setting stress
intervals at 20 MPa takes both data size and reliability into account.

Figure 9. b value and its fitting goodness at different stress intervals for specimen G-10-10. The range
of bAmax values is between 1.01 to 1.99.

Table 4. The mean of R2 at different AE stress proportion intervals for specimen G-10-10.

Stress Interval/MPa Mean of REmax Mean of REavg Mean of RAmax Mean of RAavg

5 0.859 0.882 0.967 0.971
10 0.878 0.904 0.967 0.973
15 0.897 0.898 0.972 0.970
20 0.912 0.927 0.970 0.978
25 0.908 0.909 0.981 0.976
30 0.907 0.913 0.982 0.975

A comparison of the interval of the AE event count at 200, the stress proportion at
10% σ1, and stress magnitude at 20 MPa, showed that all their R2 values performed well;
while the interval of stress proportion at 10% σ1 required the acquisition of the maximum
value of σ1, the interval of stress magnitude at 20 MPa may be affected by the load speed,
and the values of σ2 and σ3. Therefore, the AE event count at 200 is considered to be better
for real-time monitoring of rock damage; hence, the AE event interval method is more
reliable than the stress interval and the stress proportion interval methods. Therefore, the
b value calculated using Aavg and setting the interval of the AE event count at 200 was
chosen for plotting all b value curves for the granite specimens, as shown in Figure 9. The
b value was observed to decrease first and then increase or oscillate, and finally decrease.
Moreover, the b value exhibited a decreasing trend before fracture in approximately 80% of
the specimens.

Figure 10 shows the b value for the whole process of five groups of granite specimens
under different true triaxial stresses, calculated using the average amplitude of the AE
event. Apparently, the b value ranged between 1 and 2, and generally decreased with
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increasing confining pressure, as observed in the aqua rectangle area shown in Figure 10.
Furthermore, in the specimen group σ3 at 10 MPa, the b value was observed to decrease
after an initial increase with increasing σ2. In the specimen group σ3 at 20, 30, 50, and
100 MPa, the b value tended to decrease with increasing σ2. In addition, when σ3 was 50
and 100 MPa, the b value was approximately 1.1, which is smaller than that of the other
groups (~1.4); this means that a small b value may associate with high confining pressures.
Since a large number of AE events with large amplitude will occur with the increase of
differential stress, especially in the final loading stage in rock AE tests, this will in turn
result in a decrease of b value. Therefore, temporal variation of the b value can be used for
damage accumulation assessment in rock AE tests, while spatial variation of the b value
can be used to determine the stress concentration area, and the temporal-spatial variation
of the b value is an important reference for precursory analysis of rock instability.

Figure 10. b value in different granite specimens under true triaxial stress.

4. Conclusions

This study conducted five groups of true triaxial compressive tests on granite speci-
mens, and detected and analyzed their AE behavior from loading to rock failure. A large
number of AE signals were observed to be generated at the moment of stress state change,
and the AE events were fewer at constant stress conditions, namely no loading stress,
steady loading stress, or steady increase in loading stress. Therefore, it is believed that a
change in the stress conditions can be judged by the sudden occurrence of a large number
of AE events. Meanwhile, a random disturbance that appears during machine loading may
affect the length of the quiet period; and the length of the quiet period may be affected by
the loading time because the specimen is directly broken when the loading stress reaches
the peak value. Consequently, future research should investigate the variations in the
length of the quiet period under different loading speed conditions, and to determine
the length of the quiet period in the critical state before rock failure at reduced loading
speed. In addition, when σ2 stress gradually increases, the rock transforms from brittle
deformation to ductile deformation, and the peak stress first increases and then decreases,
causing a significant change in AE parameters.

The b value is a critical parameter to describe spatial and temporal size distribution
characteristics in laboratory rock AE tests. Since the b value is negatively correlated with
the differential stress, therefore, temporal variation of the b value is an important indicator
for damage accumulation assessment, and the decrease trend of b value can be used
for precursory analysis of instability in rock AE tests. At the same time, rock samples
always have complex fault systems which display a scale-invariant hierarchy or a fractal
geometry, and the faults will form discontinuous branching structures distributed in a
three-dimensional volume of the rock sample. This geometrical distribution of faults is in
concert with stress heterogeneities and interactions, and influences the extent of the b value.
Therefore, a combination analysis of fault distribution and b value can better describe
the damage evolution, which in turn helps to understand the fracture mechanism of rock
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material. This requires a detailed detection of internal structure of rock samples before
loading, as well as the detection of damage evolution during the loading process through
various techniques, for example, non-destructive testing techniques, and such investigation
will be the focus of future rock AE research.
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Abbreviations
σ1 maximum principal stress (MPa)
σ2 intermediate principal stress (MPa)
σ3 minimum principal stress (MPa)
Amax maximum amplitude of an acoustic emission event (dB)
Aavg average amplitude of an acoustic emission event (dB)
Emax maximum absolute energy of an acoustic emission event (aJ)
Eavg average absolute energy of an acoustic emission event (aJ)
bA b value based on the amplitude
bE b value based on the energy
bAmax b value based on the maximum amplitude of multiple hits
bAavg b value based on the average amplitude of multiple hits
bEmax b value based on the maximum energy of multiple hits
bEavg b value based on the average energy of multiple hits
R2 goodness of fitting
RAmax fitting goodness of b value based on the maximum amplitude of multiple hits
RAavg fitting goodness of b value based on the average amplitude of multiple hits
REmax fitting goodness of b value based on the maximum energy of multiple hits
REavg fitting goodness of b value based on the average energy of multiple hits
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Abstract: Accurate prediction of short-term rockburst has a significant role in improving the safety
of workers in mining and geotechnical projects. The rockburst occurrence is nonlinearly correlated
with its influencing factors that guarantee imprecise predicting results by employing the traditional
methods. In this study, three approaches including including t-distributed stochastic neighbor
embedding (t-SNE), K-means clustering, and extreme gradient boosting (XGBoost) were employed to
predict the short-term rockburst risk. A total of 93 rockburst patterns with six influential features
from micro seismic monitoring events of the Jinping-II hydropower project in China were used to
create the database. The original data were randomly split into training and testing sets with a 70/30
splitting ratio. The prediction practice was followed in three steps. Firstly, a state-of-the-art data
reduction mechanism t-SNE was employed to reduce the exaggeration of the rockburst database.
Secondly, an unsupervised machine learning, i.e., K-means clustering, was adopted to categorize
the t-SNE dataset into various clusters. Thirdly, a supervised gradient boosting machine learning
method i.e., XGBoost was utilized to predict various levels of short-term rockburst database. The
classification accuracy of XGBoost was checked using several performance indices. The results of the
proposed model serve as a great benchmark for future short-term rockburst levels prediction with
high accuracy.

Keywords: rock burst; t-SNE; unsupervised learning; supervised learning; XGBoost

1. Introduction

Rockburst is an abrupt and violent failure of the rock mass that results in personnel
injury and economic loss in underground rock excavations [1,2]. It is generally believed
that because of the sudden release of stored elastic energy, rockburst causes an adverse
phenomenon of ejecting, spalling, slabbing, and bursting at a high speed in a very short
time, which greatly endangers worker safety and also damages field equipment and
established structures [3,4]. Rockburst has been a serious threat to many engineering
projects (i.e., mining and geotechnical) around the globe. In China, with the extensive depth
of underground coal mines and underground rock excavations [5], the rockburst hazard is
becoming more severe and frequent for rock engineering [3,4]. Rockburst has been widely
reported in several countries around the globe. Likewise, in Canada, rockburst cases are
reported in more than 15 mines [6]. From 1936 to 1993, the United States documented more
than 172 rockburst cases in which more than 78 fatalities and 158 injuries occurred [6,7].
Despite reducing the mining activities, Germany still documented rockbursts from 1983 to
2007, and some serious injuries and deaths were delineated in more than 40 cases [8]. China,
as the current world’s largest coal producer, is facing a linear increase in rockburst cases with
the increase of coal production from underground mining. According to Zhang et al. [9],
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over 100 Chinese coal mines have recorded rockburst disasters. Despite the fact that many
prevention and control exertions have been undertaken, the rockburst disaster still remains
an unsolved universal issue for underground rock excavations.

A large amount of experimental research is now being undertaken with the goal of
better understanding the mechanical behavior of rock mass under various engineering situ-
ations [10–12] The rockburst mechanism, types, and some useful control measures are also
proposed following theoretical analysis, field studies, and laboratory tests [13]. In addition,
some updated monitoring methods including microgravity, microseismic and geological
radar are implemented for monitoring and forecasting the rockburst danger [14]. These
methods can monitor and forecast the rockburst danger before it occurs. Nevertheless,
the accurate determination of rockburst prediction is still a strenuous challenge because
it has several influencing factors including rock properties, geological conditions, stress
levels, and energy accumulation [9]. Rockburst prediction is classified into two categories:
short-term rockburst prediction and long-term prediction [8]. Short-term rockburst pre-
diction is usually followed by installing on-site monitoring systems, i.e., electromagnetic
radiation, microseismic, infrared radiations, and microgravity methods [6]. By analyzing
and monitoring the microseismic wave released during rock fracturing, some precursory
features of rockbursts were discovered that were helpful for the prediction of rockburst.
The microseismic indicators that are commonly used for rockburst prediction are the energy
indicator [15], the events number [16], the b value which is defined as the slope of the
commutative hit with respect to the amplitude [17], and apparent volume [18]. Conversely,
the long-term rockburst prediction can be estimated by following rockburst potential and
field conditions. Various predictive indicators are recommended by the researchers for
the prediction of rockburst potential, e.g., strain energy storage index (Wet) proposed
by [19], defined as the ratio of stored strain energy (Wsp) to dissipated strain energy (Wst).
Wattimena et al. [20] considered an elastic strain energy density as a measuring indicator
of rockburst potential. Altindag [21] introduced the rock brittleness coefficient as a burst
liability index that is defined as the ratio of uniaxial compressive stress (UCS) to tensile
stress (σt). According to Wang and Park. [22], the tangential stress criterion defined as the
ratio between tangential stress (σθ), and UCS of rock mass (σc) is another useful index to
quantify the risk of rockburst. The rockburst occurrence is generally influenced by many
factors that may include rock properties, stress domination, groundwater conditions, exca-
vation methods, etc. The rockburst intensity is nonlinearly correlated with the influencing
factors [23] that guarantee imprecise predicting results by employing the traditional meth-
ods [24]. Hence, soft computing methods have been recently implemented in monitoring
and predicting the dynamic disaster of rockburst.

With the growth in the use of computers in applied sciences over the past few
years, machine learning methods are adopted for predicting the rockburst risk more effec-
tively. Researchers have recommended several machine learning methods. For example,
Wojtecki et al. [25] applied a variety of algorithms, i.e., decision tree (DT), random forest
(RF), gradient boosting (GB), and artificial neural network (ANN), to evaluate the rock-
burst in the upper Silesian coal basin, Poland. A convolutional neural network (CNN)
based data-driven model was built by Zhao et al. [26] and the performance of the model
was then compared with the traditional neural network. Zhao et al. [1] recommended a
model for rockburst prediction by implementing a DT model on microseismic monitoring
data. Various classification models were adopted to predict the occurrence and intensity of
rockburst in the form of distinct data-driven classification problems [27]. Zhou et al. [28]
classified a long-term rockburst by adopting support vector machine (SVM) model and
their results were recommended for underground rocks excavation. A study was conducted
on predicting the rockburst intensity by applying an extreme learning machine (ELM).
Furthermore, a particle swarm optimization (PSO) model was implemented to optimize
the hidden layer bias and input weight matrix [29]. Li et al. [30] established a hybrid
model (KPCA-APSO-SVM), that was based on three different models including kernel
principal component analysis (KPCA), the adaptive-PSO, and SVM. Several influencing
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parameters, i.e., the ratio of tangential stress (σθ) to UCS (σc), the ratio of UCS (σc) to the
tensile stress (σt) and strain energy storage index (Wet) were taken as input parameters and
the results depicted that the KPCA-APSO-SVM model has strong reliability in rock burst
prediction. In order to predict and categorize the sensitivity of rockburst, multivariate adap-
tive regression splines (MARS) and deep forest algorithms were applied [31]. Additionally,
the dimensional reduction and visualization of input features were carried out by t-SNE.
Zhou et al. [32] studied and compared the forecasting outcomes of 12 different machine
learning algorithms in long-term rockburst prediction. A C5.0 DT algorithm has been used
as the main classifier for rockburst classification and evaluation [33]. A locally weighted
C4.5 DT algorithm has also been introduced for predicting the risk of rockburst in coal
mines [34]. Ahmad et al. [35] investigated the potential of J48 and random tree algorithms
to predict the rockburst classification levels. Wang et al. [36] developed a bagging and
boosting tree-based ensemble technique to predict rockburst disasters in hard rock mines.
Pu et al. [37] adopted SVM to evaluate the rockburst liability in Kimberlite diamond mine.
Pu et al. [24] studied the long-term rockburst predictivity using an unsupervised learning
method and SVM at Kimberlite diamond mine. Sun et al. [3] has proposed a RF and firefly
algorithm (FA) based ensemble classifier to attain an optimal rockburst prediction model.

So far, the above-mentioned literature revealed that rockburst risk is investigated
using different supervised and DT approaches. Almost all studies have been conducted on
long-term rockburst prediction and classification, whereas few among them have focused
on investigating short-term rockburst. Liang et al. [38] evaluated the predictability of short-
term rockburst using microseismic data obtained from the tunnels of Jinping-II hydropower
project in China. Several ensemble learning algorithms including RF, adaptive boosting
(AdaBoost), gradient boosting decision tree (GBDT), XGBoost, and light gradient boosting
machine (LightGBM) have been evaluated and, among them, the RF and GBDT have
shown good performance. Zhou et al. [39] considered the predictive performance of the
stochastic gradient boosting (SGB) approach in the prediction of rockburst. Feng et al. [40]
employed an optimized probabilistic neural network (PNN) on microseismic monitoring
data to forecast the rockburst risk. The model was modified by combining the mean impact
value algorithm (MIVA), the modified firefly algorithm (MFA), and PNN (MIVA-MFA-
PNN model). Ji et al. [41] developed a genetic algorithm (GA) and SVM based model
(GA-SVM) to analyze microseismic data to predict rockburst occurrence. Table 1 depicts
the traditional supervised machine learning approaches proposed by the researchers for
predicting rockburst. The traditional supervised classification algorithms have major
limitations in complex phenomena such as rockburst potential due to the difficulty of
obtaining a large number of good quality labeled samples. One interesting contender for
overcoming this issue is a combination with an unsupervised technique to enhance the
results of a classification algorithm.

Table 1. Traditional supervised machine learning approaches proposed by the researchers for pre-
dicting rockburst.

S.No References Machine Learning Models Dataset Size Year

1 Zhou et al. [32] KNN 246 2016
2 Li et al. [42] LR 135 2017
3 Afraei et al. [43] LR 188 2018
4 Faradonbeh et al. [44] DT 134 2019
5 Pu et al. [45] DT 132 2018
6 Ghasemi et al. [33] DT 174 2020
7 Faradonbeh et al. [44] ANN 134 2019
8 Adoko et al. [46] ANFIS 174 2013
9 Zhou et al. [32] SVM 246 2016
10 Guo et al. [31] MARS 344 2021

Note: KNN, k-nearest neighbors; LR, Logistic regression; DT, Decision tree; ANFIS, adaptive neuron fuzzy
inference system; ANN, Artificial neural network; SVM, Support vector machines; multivariate adaptive regres-
sion splines.
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2. Significance of the Study

In reality, the predictive characteristics of rockburst levels are not constant through-
out many geotechnical and geomechanical engineering domains. Despite the fact that
numerous diverse results are attained in the broad anatomies of rockburst prediction,
the underlying influence of each uncertainty level remains unknown. There is currently
no accurate method for anticipating the complex phenomena, i.e., short-term rockburst
intensity levels. This paper provides a three-step mechanism for predicting the intensity
level of short-term rockburst as follows:

(1) To begin, a cutting-edge data depletion process called t-distributed stochastic neigh-
bor embedding (t-SNE) was developed to lessen the magnification of original rock-
burst database;

(2) Second, an unsupervised machine learning, namely K-means clustering, was used to
classify the t-SNE dataset in order to reduce the inconsequential spectral dissimilarity
effect in homogeneous localities;

(3) Finally, XGBoost, a supervised gradient boosting machine learning algorithm, has
been developed to forecast various levels of short-term rockburst database. Figure 1
depicts a flowchart of this work.

Figure 1. Flowchart of the study.

3. Material and Methods

3.1. Data Acquisition

In order to build the database of this work, a total of 93 short-term rockburst patterns
with six influential features were collected from genuine microseismic monitoring events
of the Jinping-II hydropower project in China [47]. The dataset used in this paper has been
taken from the work of Liang et al. [38] based on the dataset provided by Feng et al. [47].
The rockburst intensity has been classified into four levels, i.e., no rockburst level (0) depicts
that the rock specimens has no significant fracture on the free face, slight rockburst level (1)
elucidates small specimen with minor fragment displacement and kinetic energy release,
moderate rockburst level (2) shows the block spalling of the rock mass in the diverticulum
and roadway wall whereas violent rockburst level (3) represent massive rock mass spalling,
promptly distorting the surrounding rock mass. Figure 2 shows the distribution of various
rockburst levels in this study.
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Figure 2. Distribution of each rockburst level.

From Table 2, it is clear that six influential features are designated in this study. In
order to make the execution more appropriate, the values of X3, X4, X5 and X6 are selected
in logarithmic scale. The main aim of the log function is to respond to the skewness toward
large values in rockburst database.

Table 2. Statistical description of rockburst database.

Descriptive
Statistics

Cumulative
Number of
Events X1

(Unit)

Event Rate X2
(Unit/Day)

Logarithm of the
Cumulative

Release Energy
X3 (J)

Logarithm of
the Energy

Rate X4
(J/Day)

Logarithm of the
Cumulative

Apparent Volume
X5 (m3)

Logarithm of
the Apparent
Volume Rate
X6 (m3/Day)

Mean 13.011 1.735 4.389 3.562 4.150 3.334
Standard
deviation 13.690 1.738 1.441 1.332 0.660 0.558

Minimum 1 0.111 0.780 0.178 2.511 1.666
Maximum 70 12.250 7.094 5.890 5.168 4.393

The box plot of each feature for the four rockburst levels is shown in Figure 3. From
Figure 3, it is depicted that the rockburst is positively correlated with each feature. The
larger values of features indicate the higher level of rockburst. Moreover, some outliers
are present in the entire features of short-term rockburst dataset under each correspond-
ing rockburst level, which shows the complexity of rockburst phenomenon. Hence, the
effect of all the features is incorporated in this study to enhance the overall accuracy of
rockburst database.
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Figure 3. Boxplot of each influencing feature to corresponding rockburst level.

3.2. SNE Based t-SNE Algorithm

Hinton and Roweis [48] developed an enhanced stochastic neighbor embedding (SNE)
based t-SNE algorithm.

The SNE operates in the following two steps: (1) Firstly, the SNE permutes the dis-
tance between points (data points) to a conditional probability in high-dimensional space
attributing their resemblance. (2) Lastly, the SNE matches that conditional probability
(probability of points in high-dimensional space) to the conditional probability of other
points (map points) in low-dimensional space [49].

3.3. K-Means Clustering

Clustering analysis has been the best choice to avoid artificial division and supervision.
In clustering, a dataset is generally grouped by a similar number and keeps the higher
similarity in each group. The division of the dataset has happened according to the distance
between the data points. Furthermore, the similarity and dissimilarity criteria also have an
important role in the data division process. An unsupervised machine learning approach
called K-means clustering [50,51] has wide and significant applications in dividing n
observations into K clusters. Each observation in K-means clustering is related to the
cluster with the nearby mean. The working principle of the algorithm consists of two
dispersed phases. The first phase selects the K centers randomly with an already selected
value of K, while the second phase collects each data object in the vicinity of the nearest
center [52]. The most widely employed clustering criterion is known as the sum of the
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squared Euclidean distances. The main focus of this criterion is to measure the distance
between each data point and cluster center [53].

3.4. Extreme Gradient Boosting (XGBoost)

XGBoost is abbreviated as extreme gradient boosting, which is an ensemble learn-
ing algorithm of machine learning techniques [54]. It includes simple classification and
regression trees (CARTs) by integrating statistical boosting methods. Boosting improves
the estimation precision of the model by constructing multiple trees as an alternative
to constructing a single tree, and then combining them to build a consensus prediction
framework [55]. XGBoost generates the tree by consecutively employing the residuals
of past trees as contributions to the resultant tree. As such, the resulted tree develops
the overall prediction by showing the errors of the past trees. At the point when the loss
function is minimal, this consecutive model structure interaction can be articulated as a
kind of gradient descent that advances the prediction by emerging another tree at each
stage to ultimately decrease the fall [56]. The expansion of the new tree halts when the
pre-determined most extreme number of trees is reached, or when the training error cannot
be raised to a pre-indicated number of consecutive trees. Both the estimation precision
and execution promptness of gradient boosting can be greatly enhanced by including
random sampling; this comprehensive approach is designated probabilistic boosting [57].
In particular, for each tree in alignment, an irregular subsample of the training data is
taken from the complete set of training data, excluding substitution. This irregularly spec-
ified subsample is then applied instead of the complete sample to appropriate the tree
and determine the update of the model. XGBoost is an upgraded decentralized gradient
boosting that can accomplish state-of-the-art prediction exhibitions [54]. XGBoost employs
second-order estimation of the loss function, which is faster to combine than conventional
GBMs. XGBoost has been effectively applied to mine gene articulation data [58]. The
general architecture of XGBoost is depicted in Figure 4.

Figure 4. Level-wise tree model in XGBoost algorithm.

3.5. Hyperparameter Tunning

The hyperparameter in the machine learning algorithms need to be optimized. These
hyperparameters should be calibrated contingent on the data in reference to defining it
manually. As the short-term rock burst dataset is limited, we employed the cross-validation
method based on normalizing data. Several cross-validation methods are applied by the
researchers to optimize the hyperparameter.

Choubineh et al. [59] proposed the splitting of data into training, validation, and
testing datasets to authenticate the machine learning algorithm. The validation dataset is
employed to optimize the hyperparameters, whereas training on test datasets and training
datasets are applied to evaluate the final performance of the model [59]. Nevertheless, a
single contingent splitting of the data on various subsets is inadequate for ideal model
evaluation because of the non-linearity of the datasets. If other contingent splitting is
employed, it will compute the other values for performance indicators. The single splitting
of data is only logical in large data set circumstances.

Among the hyperparameter tunning methods, the other most common method is the
k-fold technique. In the k-fold method, the whole data is divided into k segments, then
the first segment is employed for testing the execution of machine learning algorithms
following training the data on the supplementary k-1 segment. Afterward, the second
segment is taken for testing and the remaining data is employed as a training dataset. In the
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last different values of performance metrics are computed for all the k-fold. Hence cross-
validation assists in attaining the average and standard deviation values of the metrics.

The random permutation method is also employed as hyperparameter optimization.
This method involves irregular splitting of the data into training and testing datasets,
after which the data is reorganized, and a new splitting of training and testing datasets
is attained. This technique is repeated for n number of times and at every turn metrics
are computed. Correspondingly, in the last, the average and standard deviation values
of the metrics are calculated. Hence cross-validation not only computes the performance
criteria for the testing dataset but accomplishes it multiple times by employing autonomous
data to divide it into training and testing datasets. As in our case, the data is limited, so
cross-validation was employed multiple times. The algorithm of 5-folds cross validation is
shown in Algorithm 1. The grid search CV has been used to build the model, evaluate its
performance, and make the short-term rockburst prediction level.

Algorithm 1: 5-folds XGBoost cross validation

Input

I(t), I(t1) ∈ I(t): Initial Dataset
Extreme Gradient Boosting (XGBoost): Decision Algorithm
L: Loss Function
5: Fold Number

Step 1
U1 ⊕ U2 ⊕ . . . .. T
U1 + U2 + . . . .. T
⇔ Ui ∩ . . . ..

Step 2 for I from 1 to 10 do

Step 3 Fi = XGBoost(T/Ui)
Step 4 for S(Ai) in Ui do

Step 5 ej = L(Fi, S(Ai)
Step 6 End for
Step 7 End for
Step 8 Returne

3.6. Grid Search CV

A comprehensive grid search was followed for hyperparameter tunning [60]. This
method authorizes search within specified hyperparameters range and describes the best
value which results in the optimum value of evaluation criterion. GridSearchCV() has been
implemented in scikit-learn python programing language in order to compute this method.
This technique purely computes the cross validation (CV) score for all hyperparameter
combinations in a specific range. The flowchart of algorithm’s parameters optimization
using grid search is shown in Figure 5. GridSearchCV() not only permits calculation of the
optimal hyperparameter but also estimates the metric to its best value. In our case, all the
other parameters of the python programing language were used as a default in order to
implement Grid Search CV.
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Figure 5. The flowchart of parameters optimization using grid search.

4. Result and Discussion

4.1. Rockburst Database Reduction Using t-SNE

Consider that the data points rp and rq in rockburst dataset select their corresponding
neighbors based on conditional probability, shown as Sq|p in Equation (1) [49,61]. The
Gaussian kernel is used to define conditional probability.

Sq|p =

⎧⎪⎨
⎪⎩

exp(−||rp−rq||2/2σp
2)

∑k �=p exp−
∣∣∣∣∣∣rp−rk

∣∣∣∣∣∣2/(2σp)
2

0 p = q

whereas p �= q (1)
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whereas
∣∣∣∣rq − rp

∣∣∣∣ represents the Euclidean distance between data points rp and rq while
σp shows the Gaussian distribution variance choosing rp as the center position, which is
established by binary search by employing the mechanism of perplexity. The perplexity is
given in Equation (2).

Perp
(
Sp
)
= 2E(Sp) (2)

where E(Sp) is the Shannon entropy of Sp computed in bits and Sp induces a probability
distribution for any value of σp. The E(Sp) is given in Equation (3).

E
(
Sp
)
= −∑ Sq|p log2 Sq|p (3)

Assume that bp and bq are allocated in a low dimension that are resembled to rp and rq
in the high dimension. It is possible to compute a similar conditional probability (Tq|p) for
the map points bp and bq in low-dimensional (corresponding to the datapoints rp and rq in
high-dimensional space). In this case, the Gaussian distribution is stated as 1√

2
. Succeeding

the resemblance of Sq|p of rq to rp is given in Equation (4).

Tq|p =

⎧⎪⎨
⎪⎩

exp(−||bp−bq||2)
∑k �=p exp(−||bp−bk||2)

0 p = q

p �= q (4)

If dimensionality depletion outcome is satisfactory, then the resemblance in high
dimensionality space is assumed to be identical to that in low dimensionality in Sq|p=
Tq|p. When the conditional uncertainty between rp and all other points are examined, the
conditional uncertainty distribution Sq can be established. Correspondingly, the identical
uncertainty distribution Tq is established as Sq low dimensionality space. To measure the
resemblance between two points, the Kullback–Leibler divergence is employed. Hence, a
cost function J is established as shown in Equation (5).

J = ∑
p

KL
(
Sp
∣∣∣∣Tp

)
= ∑

p
∑
q

Sq|p log
Sq|p
Tq|p

(5)

In Equation (5), the distribution of conditional probabilities of data point rp and map
point bp over other data points, and map points are represented as Sp and Tp, respectively.
The SNE is amended to t-SNE with the addition of two major improvements [62]. Firstly, for
pairwise estimation of likenesses in both low and high-dimensional spaces, the symmetric
version of SNE is introduced. The improved t-SNE for data points rp and rq is depicted in
Equation (6).

Spq =
Sq|p + Sp|q

2n
(6)

By employing the symmetric property (Spq = Sqp), the data point rp will have the
probability to pick the data point rq as its neighbor, where n shows total data points.
Secondly, the Gaussian kernel is replaced by the t-distribution to evaluate the likeliness
between the map points. More precisely, the t-SNE uses a heavy-tailed t-distribution for bp
and bq (map points) in low-dimensional space. This process takes place with 1 degree of
freedom, then the Tpq can be obtained by using Equation (7):

Tpq =
1 + (

∣∣∣∣rp − rq
∣∣∣∣2)−1

∑k �=l (1+||rk − rl||2)−1 (7)

To make it more precise, the comprehensive mechanism of t-SNE is given as:

Stage 1: Get data S = S1, S2, S3, . . . , Sn in high dimension region, and give the dimensionality
reduction consequences as B(T) = T1, T2, T3, . . . , Tn;
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Stage 2: Compute perplexity, and assign iteration times T, momentum of α(t) and learning
rate η;
Stage 3: Calculate Sp|q as given in Equation (1);
Stage 4: Estimate Spq as depicted in Equation (7);
Stage 5: Arbitrarily choose Y with N;
Stage 6: Compute Tpq as stated in Equation (7), estimate the gradient as stated in Equation (9);
Stage 7: Finally repeat the stage 6 so that the iteration number is remarkable than T.

The Jupyter notebook has been utilized using Scikit-learn module in order to accom-
plish the t-SNE. In the first stage, the rockburst database is visualized from high-resolution
amplitude to low-resolution amplitude. The initial rockburst dataset is tabulated into four
clusters. In this study, the event related features, i.e., the cumulative number of events
X1 (unit) and event rate X2 (unit/day) are considered in the first group (Dimension 1).
The energy associated features including the logarithm of the cumulative release energy
X3 (J) and the logarithm of the energy rate X4 (J/day) are categorized in the second group
(Dimension 2). The apparent volume related features, i.e., the logarithm of the cumulative
apparent volume X5 (m3) and the logarithm of the apparent volume rate X6 (m3/day) are
collected in the third group (Dimension 3). In order to reflect the initial rockburst dataset,
the learning rate = 100 is executed with the Matplotlib in the Python programming language
(all the other parameters are kept as a default). Following the rockburst data dimensionality
reduction technique, the feature established amplitude was formed in such a way that the
initial rockburst database may keep the originality to high scalability. The rockburst dataset
after the dimensionality reduction is depicted in Figure 6. After the adoption of the t-SNE
mechanism, the actual rockburst dataset (93 × 6 matrix) is renovated to a (93 × 3) matrix,
as revealed in Table 3. Figure 6 demonstrates a low-resolution amplitude visualization of
the rockburst dataset following the t-SNE data reduction mechanism.

Figure 6. 3D low-resolution amplitude of rockburst database.
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Table 3. Rockburst database after low-resolution amplitude with t-SNE.

Samples Dimension 1 Dimension 2 Dimension 3

1 −9.1895 1.876923 3.533078
2 −5.25797 1.386265 2.998773
3 −6.33402 0.83398 −0.95647
4 −6.6661 1.667999 1.523691
5 −3.36939 0.296317 1.838995

. . . .. . . . .. . . . ..
88 −8.27044 1.192174 2.389334
89 −8.87826 1.073105 −2.3535
91 −2.44182 −0.94443 1.698488
92 −5.97327 1.043975 −4.14844
93 −0.7725 −1.40264 1.910676

4.2. K-Means Clustering on t-SNE Based Rockburst Database

In K-means clustering, the completion of early rockburst level grouping occurs when
all the data objects are appended in some clusters and the average of the primitive clusters
is then recalculated. This iteration happens many times until the criterion function is
reduced to its minimum. Based on the target object r and average of cluster Ji that is ri, the
criterion function can be obtained using an Equation (8) [63]:

C =
k

∑
i=1

k

∑
r∈Ji

|r − ri|2 (8)

where C indicates the sum of squared error of all objects in the database. In this study,
to compute the adjacent distance between data points and cluster center, the Euclidean
distance is considered as a criterion function. The Euclidean distance between one vector
r = (r1, r2, rn) and another vector s = (s1, s2, . . . sn), the Euclidean distance D(ri, si) can be
obtained by the following Equation (9):

D(r, s) =

[
n

∑
i=1

(ri − si)

]1/2

(9)

The Jupyter notebook has been utilized using Scikit-learn module in order to accom-
plish the K-means clustering. Rousseeuw [64] have established the generalization of the
cluster monitoring. Silhouette mechanism is contingent on balancing the objects tightness
and separation. The silhouette coefficient can show that the t-SNE data is grouped in a
good manner reflecting that the objects are organized into the groups that they match. This
is an index to evaluate that the authentication of the clustering to be used for selecting
the optimal k in the cluster. Based on the four different rockburst levels, we assume the
number of clusters = 4 for K-means clustering. Several iterations stages were computed in
this study as shown in Figure 7. Various studies have shown that a silhouette coefficient
of more than 0.5 is an acceptable model for K-means clustering [65–68]. The silhouette
coefficient of 0.53 shows that the clusters was reliable following 10th iteration in the t-SNE
obtained short-term rockburst dataset.
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Figure 7. K-means clustering mechanism of low-resolution amplitude.

4.3. Extreme Gradient Boosting (XGBoost) Prediction Model

Consider vm as the forecasted rockburst prediction level result of the nth number of
data for which the characteristics vector is Un; P denotes the number of estimators, with
qs (s ranging from 1 to P) corresponding to individual tree anatomy; and v0

n denotes the
preliminary assumption that is the average of the measured characteristics in the learning
information. To forecast the results, Equation (10) uses a variety of expansion functions.

vm = v0
n + γ

P

∑
s=1

qs(Un) (10)

whereas γ is the learning rate, which is included to better model implementation, execute
rhythmically while connecting the most recent tree, and avoid overfitting.

In Equation (9), a character Sth is linked to the model at the Sth state, and the Sth

forecasted value v−s
n is implemented from the preceding state forecasted value v−(s−1)

n , and
the augmented qs of the character of the attached Sth character is illustrated in Equation (11).

v−s
n = v−(s−1)

n + γ qs (11)
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whereas qs represents the weight of leaves created by decreasing the objective function of
the Sth tree

obj = ηK +
K

∑
α=1

[Tαβα +
1
2
(Lα + μ)β2

α] (12)

wherein K indicates the leaves of the Sth tree and βα represents the weight of the leaves
from 1 to K, η and μ are the uniformity characteristics that are used to apply the coherence to
the anatomy in order to avoid the model overfitting. The parameters Lα and Tα represent
the sum of all data associated with a leaf of the previous and subsequent loss function
gradients, respectively.

A single leaf is divided into distinct numeration leaves in order to form the Sth tree. The
anatomy of using the gain settings is seen in Equation (13). Consider the interdependent
right leaf RC and BC and the interdependent left leaf RW and BW achieving the divergence.
The diverging benchmark is generally assumed when the gain parameter is close to zero.
The uniformity characteristics and are periphrastically susceptible on the gain attribute,
i.e., a greater regularization parameter will result in a lower gain parameter, which will
prevent the slope of the leaf from converging. However, it will reduce the framework’s
capacity to adapt to the rockburst training dataset.

gain =
1
2

[
R2

W
BW + μ

+
R2

C
BC + μ

+
(RW + RC)

2

BW + BC + μ

]
(13)

In order to forecast the rockburst intensity level, a gradient boosting machine learning
algorithm has been applied on the k-means clustering dataset. It was noted that employing
an entire dataset to train the XGBoost model may arise the over-fitting issues. More specifi-
cally, the framework may adjust magnificently in addition to the dataset that employed
for the training stage, but it is unable to predict new data. For the avoidance of doubt, the
rockburst dataset is split into training and testing sets with the relative size of 7:3, meaning
that 70% of the entire data is chosen for training and 30% of the entire data is selected
for testing the trained framework. The samples order in the dataset must be randomly
adjusted before the splitting to overcome the localization of the training set.

The XGBoost model was employed to predict the rockburst intensity level. For the
XGBoost model, the online Jupyter platform was executed in python. The python program
language 3.6.6 that was accessible on the Jupyter program was executed to accomplish the
XGBoost. A standard XGBoost model with default attributes that are developed in XGBoost
module: M = 100 estimators, the regularization attribute of γ = 0, λ = 1, a learning rate of
η = 0.3 was implemented in this study. We assumed a repeated 5-fold cross-validation setup
and ensured that the argument from the same essay is not distributed over the training
and testing datasets as shown in Figure 8. The cross-validation was repeated 3 times on
standard scalar normalized data, which yielded a total of 15 folds. For other parameters,
the default values of the XGBoost model are implemented in this study.

The classification accuracy of XGBoost was checked using precision, recall, and f1-
score measures. Precision can properly predict the datasets; recall interpret the capability of
accurately predicting the actual features to the maximum level, and f1-score demonstrates
a universal metric that implements the performance of both recall and precision. Therefore,
the aforementioned performance indicators are implemented in this study to estimate the
performance of the model. Assume the confusion matrix is defined by Equation (14). A
confusion matrix is usually implemented as a standard to demonstrate the performance of
a classification model on a testing dataset for which the true values are already defined.
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Figure 8. Five-fold cross-validation employed in the study.

S =

⎡
⎢⎢⎢⎣

s11 s12 · · · s1t
s21 s22 · · · s2t
...

...
. . . · · ·

st1 st2 · · · stt

⎤
⎥⎥⎥⎦ (14)

where t represents the number of rockburst levels, s11 is the number of features accurately
predicted for the class m, and Smn denotes the number of features of class that is categorized
to class n.

On the basis of the confusion matrix, the precision, recall, and f1-score measure for
each rockburst level are determined by Equations (15)–(17), respectively.

Pr =
smm

∑t
m=1 smn

(15)

Re =
smm

∑t
n=1 smn

(16)

f1 − score =
2∗Pr ∗ Re
Pr + Re

(17)

To further analyses the accuracy of XGboost, the accuracy is given by Equation (18)

Accuracy =
1

∑k
m=1 ∑k

n=1 Stt

k

∑
m=1

Smm (18)

macro − Pr =(
t

∑
n=1

Smm

∑E
n=1 Smn

)/E (19)

macro − Re =(
t

∑
n=1

smm

∑E
n=1 smn

)/E (20)

macro − f1 =
2∗macro − Pr∗macro − Re
macro − Pr + macro − Re

(21)

The prediction results of XGBoost algorithms were acquired on the testing dataset. In
order to forecast the results of the proposed XGBoost algorithm combined with t-SNE and
K-means clustering, three different performance indices have been employed in this study.
The classification report for the testing dataset was computed using python programing
language. The classification report gives a perspective of the proposed framework perfor-
mance on the rockburst dataset as shown in Table 4. The precision values were calculated
using Equation (15). The precision value for no rockburst level achieved better outcomes as
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compared to slight rockburst level, moderate rockburst level and violent rockburst level.
The precision value for no rockburst, slight rockburst, moderate rockburst and violent
rockburst were 100%, 60%, 100% and 88%, respectively. Equation (16) was employed
to measure the recall value for each rockburst level. The recall value of slight rockburst
performed better as compared to no rockburst level, moderate rockburst level and violent
rockburst level. No rockburst, modest rockburst, moderate rockburst, and strong rockburst
have recall values of 86 percent, 100%, 83%, and 88%, respectively. To measure f1-score for
each corresponding rockburst level, Equation (17) was employed in this study. The f1-score
for no rockburst level outperformed slight rockburst level, moderate rockburst level and
violent rockburst level. The f1-score for no rockburst, slight rockburst, moderate rockburst
and violent rockburst were 92%, 75%, 91% and 88%, respectively. In order to measure the
overall accuracy of the framework on the testing dataset, Equation (18) was utilized in
this study. The accuracy for the overall testing dataset was 88 percent, indicating that the
XGBoost combined with t-SNE and K-means clustering performed well in this study.

Table 4. Classification report of XGBoost algorithm.

Class

XGBoost Model

Precision
%

Recall
%

f1-Score
%

No rockburst 100 86 92
Slight rockburst 60 100 75

Moderate rockburst 100 83 91
Violent rockburst 88 88 88

Accuracy 88
macro avg 87 89 66

Weighted avg 91 88 88

The model’s accuracy is measured as a whole, while recall and precision are calculated
for each class separately. For the rockburst phenomenon, we employ macro average of
precision, recall, f1-score for our model as shown by Equations (19)–(21). The macro-average
scores are the simple mean of scores of all rockburst levels. Hence, macro- average precision
is the mean of the precision of four different levels of rockburst. The macro- average recall
depicts the mean of the recall of four different levels of rockburst. Whereas macro- average
f1-score represents the mean of the f1-score of four different levels of rockburst. So, the
mean of precision, recall and f1-score were 87, 89 and 66, respectively. The weighted
average scores are the sum of the scores of all levels after multiplying their respective levels
proportions. Hence, the weighted average of precision, recall and f1-score were 91, 88 and
88, respectively.

In addition, a confusion matrix of the XGBoost algorithm was established, as shown
in Figure 9. The values on the main diagonal show the samples number correctly predicted
by the XGBoost. It can be seen that most rockburst samples were accurately classified
using the XGBoost. Based on the confusion matrix (see Figure 9) only two rockburst levels
have been mis-predicted in the entire short-term rockburst dataset. More precisely, one
moderate rockburst (2) level is misclassified as violent rockburt (3) level, whereas one
violent rockburst (3) level is misclassified as slight rockburst (2) level. According to the
results, the XGBoost algorithm showed good performances in predicting the rockburst
intensity level.
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Figure 9. Confusion matrix of testing dataset.

5. Conclusions

This research work developed t-SNE+K-means clustering+XGBoost to predict the pre-
dict rockburst levels efficiently and accurately. The robustness of the obtained framework
was authenticated by analyzing the outcomes for the proposed framework using different
performance indices. As for predicting the rockburst level, three methods including t-SNE,
K-means clustering, and XGBoost model, which are broadly employed in geotechnical
engineering, were applied during the study. More precisely, the data employed in this
research work were obtained from genuine microseismic events. The short-term rockburst
level is evaluated by the statistical performance to approximate the robust framework
for the best effective model in connection with data prediction. The results of t-SNE+K-
means clustering+XGBoost model shows that it can estimate the return rockburst level
with high accuracy.

Hence, the t-SNE+K-means clustering+XGBoost model acquired in this study is rec-
ommended as an accurate and efficient model for the prediction of rockburst intensity
levels. It can be employed as a rockburst prevention and warning system, owing to the
fact that the proposed model will have reliable prediction performance in different rock
conditions. Therefore, the model can be generalized by maintaining some additional rock
mechanics data and geological information. This model can be merged into the initiation of
the rockburst level of the microseismical events that are continuously disseminated.

The range and number of trainings should be taken into consideration, which is has a
consequential effect on the logical reasoning of the data-driven models. The current research
will be further extended by establishing some cutting-edge machine learning algorithms
and comparing the outcome of those models with the outcome of the model acquired in
this research work. The state-of-the-art machine learning technique can comprise hybrid,
metaheuristic, and ensemble machine learning models.
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Abstract: Many underground reservoirs for storing water have been constructed in China’s western
coal mines to protect water resources. Coal pillars which work as dams are subjected to a long-term
soaking environment of concentrated salty water. Deterioration of the coal dam under the attack
of the salty solution poses challenges for the long-term stability and serviceability of underground
reservoirs. The evolution of the physical and mechanical properties of coal subjected to salty solutions
are investigated in this paper. Coal from a western China mine is made to standard cylinder samples.
The salty solution is prepared according to chemical tests of water in the mine. The coal samples
soaked in the salty solution for different periods are tested by scanning electron microscope, nuclear
magnetic resonance, and ultrasonic detector techniques. Further, uniaxial compression tests are
carried out on the coal specimens. The evolutions of porosity, mass, microstructures of coal, solution
pH values, and stress–strain curves are obtained for different soaking times. Moreover, a damage
constitutive model for the coal samples is developed by introducing a chemical-stress coupling
damage variable. The result shows that the corrosion effect of salty solution on coal samples becomes
stronger with increasing immersion time. The degree of deterioration of the longitudinal wave
velocity (vp) is positively correlated with the immersion time. With the increase in soaking times,
the porosity of coal gradually increases. The relative mass firstly displays an increasing trend and
then decreases with time. The peak strength and elastic modulus of coal decreases exponentially
with soaking times. The developed damage constitutive model can well describe the stress–strain
behavior of coal subjected to salty solution under the uniaxial compression.

Keywords: coal; deterioration characteristics; chemical-stress coupling factor; damage constitu-
tive model

1. Introduction

Coal mining is normally accompanied by discharge of a large amount of water. This
drained mine water with a high level of salt, in some cases, may damage ecosystem
balance. Some theories and techniques, including the adsorbent method, evaporation,
bioremediation, and irrigation of croplands, have been proposed and applied to treat the
sodic–salty associated water from coal seams [1]. The coal resources of China are mainly
distributed in western mining areas where the ecological environment is fragile and water
resources are scarce. Large-scale coal mining could result in environmental problems, such
as surface water waste and environmental pollution [2,3]. To protect and utilize water
resources, some underground mines [4] built underground reservoirs in the underground
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coal mines for water storage. However, mine water in some of these mines [4] has high
salinity level with K+, Na+, Cl−, and SO4

2−, etc. As the dams of underground reservoirs,
coal pillars are in a long-term soaking environment of concentrated saltwater that could
significantly change the microstructure of coal and affect the performance of coal dams.
The immersion of salty solutions poses a serious threat to the stability of the coal dams.
Therefore, it is crucial to understand the mechanical behavior of coal subjected to saltwater
for the design and management of underground coal dams.

In past decades, considerable research has been carried out on the water–rock in-
teraction. The chemical solutions mainly affect the rocks through hydro-physical and
hydro-chemical interactions. The physical effects of water on rocks include water lubri-
cation, water wedge, etc. The presence of water promotes the dissolution of soluble salts,
accelerates the hydrolysis of colloids, weakens the connection force between mineral parti-
cles, and finally reduces the strength of the rock. Scholars have conducted a lot of research
on the influence of water on the physical and mechanical properties of rock materials. Dyke
and Dobereiner [5] studied the influence of water content on the strength and deformation
characteristics of sandstone and found that small changes in water content can significantly
affect the mechanical response of the rock. The increase in water content promotes the
propagation of microcracks and the occurrence of dilatancy, which results in a decrease in
rock strength. Hawkins and McConnell [6] discussed the sensitivity of different types of
sandstone to water. It showed that the water sensitivity of sandstone increases with the
increase in the proportion of quartz and clay minerals, and the strength of sandstone is in
an exponential relationship with water content. Vásárhelyi [7] carried out experiments on
the physical and mechanical properties of dry and saturated limestone and found that the
porosity, elastic modulus, uniaxial compressive strength, and tensile strength of limestone
under saturated conditions are all 66% of the dry specimens. Erguler [8] conducted uniaxial
compression tests and Brazilian splitting tests on clay-bearing rocks with different water
content. With the increase in water content, the uniaxial compressive strength, elastic
modulus, and tensile strength of the rock were reduced by 90%, 93%, and 90%, respectively,
compared with the specimen in the dry state. Zhao [9] studied coal’s dynamic tensile
failure characteristics in dry and saturated states, and found that saturated coal samples
have higher tensile strength compared with dry coal samples. Gu [10,11] tested the static
and dynamic mechanical properties of coal samples under different water-bearing condi-
tions. The results showed that with the increase in water content, the static mechanical
parameters of coal samples deteriorated to a certain degree, while the dynamic mechanical
parameters increased first and then decreased.

The chemical effects of water on rocks include ion exchange, dissolution, and hydroly-
sis. The water and rock chemical action changes the mineral composition in the rock mass
and increases the pore structure, which leads to the change in macro-mechanical properties.
M. G. Karfakis and M. Akram [12] discussed the influence of water–rock interactions on
rock fracture toughness. Fencht et al. [13] carried out triaxial compression tests on fractured
quartz sandstones with different pH levels of NaCl and CaCl2, and studied the effects of
different solutions on the friction strength of sandstone fracture surfaces. Feng and Chen
et al. [14–16] carried out experiments on the mechanical properties of sandstone under dif-
ferent corrosion conditions, discussed the microscopic failure mechanism of the rock under
the action of corrosion, and carried out a quantitative analysis of the damage evolution
inside the rock. Han et al. [17] conducted mechanical tests on sandstone after soaking in
different chemical solutions and analyzed the corrosion effect of different solutions on the
rock. Hutchinson and Johnson [18] studied the corrosion and degradation of limestone
under the action of acid. Qiao [19] carried out uniaxial compression tests of sandstone
after soaking in aqueous solutions with different ion concentrations, and analyzed the
influence of water chemistry on the microstructure and macro-mechanical properties of
the rock. Lin [20] studied the evolution of mechanical damage of rocks under the coupled
chemical-stress conditions, and found that chemical corrosion increased the porosity of the
rocks, which led to the decline of mechanical properties. Xie [21] tested the influence of
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chemical degradation on the mechanical behavior of limestone and found that chemical
degradation enhanced the deformation of rock and significantly increased the permeability.
Li [22] employed the nuclear magnetic imaging technology and mechanical tests method
to study the effect of chemical solutions on the degradation of the microstructure and
mechanical properties of limestone.

However, most existing research on the effects of water and chemistry on rock mechan-
ical behaviors were focused on rock, e.g., limestone, granite, sandstone, etc. Some studies
on the influence of salty solution on coal have been carried out in surfactant absorption
and mineral flotation. Ozdemir et al. [23] used a series of experimental measurement
methods to study the influence of hypersaline on surface chemistry characteristics of coal
flotation. They found that the hypersaline reduced the surface tension between coal par-
ticles and air bubbles. Zhang et al. [24] studied the effect of different ions on interfacial
tension between water and kerosene and found that the surface tension decreased with
the increasing salt concentration. Ni et al. [25] studied the effect of NaCl–SDS compound
solution on the wetting performance of coal. It found that the addition of sodium salt
can efficiently decrease the surface tension of coal and improve the wettability. To date,
research on coal’s physical and mechanical properties subjected to salty solutions is rarely
reported. The physics and mechanisms behind coal damage affected by salty mine water
are unclear, bringing difficulties to design, management, and stability control of coal dams
in underground reservoirs.

This paper aims to study the evolution of the physical and mechanical properties
of coal subjected to salty solution. Firstly, coal samples from Ningdong mining area in
western China are prepared to standard cylinders. A salty solution is prepared based
on chemical test results of mine water. The scanning electron microscope and nuclear
magnetic resonance technology are employed to study the changes in porosity, mass, and
microstructure of coal samples for different soaking times. Then, uniaxial compression
tests are carried out to obtain the stress–strain curves of coal samples for different soaking
times. The effects of salty solution on the damage of coal samples are discussed. Moreover,
a damage constitutive model for the coal samples is developed by introducing a chemical-
stress coupling damage variable. The developed model is verified with the stress–strain
curves from uniaxial compression tests.

2. Experimental Materials and Methods

2.1. Preparation of Coal Samples

The coal used in the test is taken from Lingxin coal mine in Ningdong Mining Area,
China. The coal samples are drilled from the same coal block to ensure uniformity. Accord-
ing to the ISRM rock preparation standard [26], the coal samples are made into a standard
cylinder with a diameter of 50 mm and a height of 100 mm. The unevenness of the two
end faces should not exceed ±0.05 mm. The end face is perpendicular to the axis of the
rock sample, and the allowable deviation is ±0.25◦.

2.2. Salt Solution

Groundwater is a complex chemical solution containing various ionic components.
The cations in the mine water retrieved from the Lingxin mining area were determined by
using inductively coupled plasma atomic emission spectroscopy (ICP-OES 730, Agilent,
Santa Clara, CA, USA) and the anions were tested by using Chromatograph (LC-2010
PLUS, SHIMADZU, Kyoto, Japan). The chemical test results are presented in Table 1.
The main ion components of the mine water are Na+, SO4

2−, and Cl− and the calculated
concentration ratio is about 5:1:3. In this study, the mixed anions of SO4

2−-Cl− and the
cation Na+ are selected to study the degradation effect of the salty solution on coal samples.
Since the water–coal reaction is a long-term process, we used a higher ion concentration
in the configuration solution than that in mine water to shorten the experimental period.
The ratio of the cation (Na+) to mixed anions (SO4

2−-Cl−) is the same as the ratio in mine
water. In the final salty solution, the concentration of sulfate ions is 0.1 mol/L, and the
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solution pH is 9. The chemical reagents used in this study are sodium chloride (≥99.5%
purity), sodium sulfate (≥99% purity), and sodium hydroxide (≥96% purity) that are all
made by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). High-purity distilled
water is used throughout the experiment.

Table 1. Chemical test results of mine water.

PH
TDS K+ Na+ Ca2+ Cl− SO4

2−

mg/L mg/L mg/L mg/L mg/L mg/L

8.79 4720 10.7 1350 86 1230 1145

2.3. Experimental Procedure

After the coal samples were prepared, the longitudinal wave velocities of coal sam-
ples were measured to ensure uniformity of samples. The coal samples with close wave
velocities were divided into seven groups (US1-US6 and P) according to the immersion
time. Each group contained three samples, and a total of 21 samples were used for further
experiments. The sample group US1-US6 were used for mechanical tests and the sample
group P was used for physical tests. The coal samples were dried before immersion and
the original mass were weighed. The solution was regularly agitated during the soaking
process to make the coal and solution fully interact. During the soaking process, the pH
value of the solution, the mass, the longitudinal wave velocity, and the porosity of the coal
samples were measured, and the experimental temperature was 20 ◦C. The measurement
time interval was determined according to the change rate of pH value of the salty solution.
When the pH value of the solution becomes stable, it is considered that the water–coal
interaction has reached a steady state. An acidity meter PHS-3E from China Shanghai
INESA Scientific Instrument Co. Ltd. was used to measure the pH value of the solution.
The accuracy of the acidity meter is 0.01. The longitudinal wave velocity was tested by a
ZBL-U5200 non-metallic ultrasonic detector produced by China Beijing ZBL SCI & TECH
Co. Ltd. An electronic scale with accuracy of 0.01 g was used for the measurement of coal
mass. The sample group P was chosen for the mass and the longitudinal wave velocity test
throughout the whole immersion time.

The coal sample P-2 was selected for the porosity test, and the evolution law of
porosity throughout the immersion period was analyzed. The low-field nuclear magnetic
resonance analyzer produced by China Suzhou Newmarket analytical instrument company
was applied for porosity tests.

In order to understand the microscopic mechanism of the effect of salty solution on
coal’s pore feature, SEM technology was used to analyze the microstructure of coal. The
coal was cut into a 1 cm × 1 cm × 1 cm square piece to meet the requirements of the SEM
sample size. In this study, the SEM of ZEISS EVO 18 (Jena, Germany) was used for the
microscopy experiment. The related parameters are: acceleration voltage, 200 V–30 Kv;
magnification times, 5–106 times; focused working distance, 2–145 mm; and sample size,
diameter ≤ 250 mm, height ≤ 145 mm.

For the uniaxial compression tests, the MTS815 rock mechanics testing machine was
applied. The maximum axial load of the MTS815 testing machine is 2700 kN. The ranges of
the axial and circular extensometers are respectively 5 mm and 8 mm. A combination of
stress loading and hoop displacement loading was adopted in the test. The loading rate is
100 N/s. When the axial load increases to 30 KN, it converts to displacement loading with
a 0.01 mm/min loading rate. Figure 1 shows the detailed flow of experiments.
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Figure 1. Diagrammatic sketch showing the flow of experiments.

3. Results and Discussion

3.1. Changes in PH Values of Salt Solution

Figure 2 shows the relationship between the soaking times and pH value of the
solution. It can be seen that as the soaking time increasing, the pH value of the solution
gradually tends to be neutral, indicating that the PH value of the solution has the ability
of self-balancing during the process of the water–rock interaction. The pH value of the
solution first changed very obviously, and then the changing rate gradually decreased. This
indicates that the water–rock interaction is time dependent, i.e., the water–rock reaction will
gradually weaken with the increase in the soaking time, and eventually tend to be stable.

Figure 2. The relationship curve between soaking times and PH values of solution.

3.2. Variation Law of Longitudinal Wave Velocity of Coal Samples

Many studies have shown that the longitudinal wave velocity of rock samples is
sensitive to the development of microstructures such as internal pores and defects [27–32].
In order to eliminate the errors caused by the differences in samples, the longitudinal
wave velocity of the same sample was tested during the immersion period. Therefore, the
changes in longitudinal wave velocity can be used to characterize the influence of salty
solution on the damage to the internal microstructure of the coal samples.

The test results indicated that the longitudinal wave velocity of coal samples displays
different degrees of deterioration with the increasing soaking times. In this paper, the
change rate of longitudinal wave velocity (vcr) was used to characterize the damage law
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of vp caused by chemical corrosion. The larger the value of vcr, the higher the degree of
damage. The expression of the change rate of vcr is shown as follows:

vcr =

∣∣vpt − vp0
∣∣

vp0
× 100% (1)

In the above, vp0 and vpt are the longitudinal wave velocities of coal samples before
and after the different soaking times.

Figure 3 displays the relationship between soaking times and vcr of sample P-2. As
the soaking time increases, the longitudinal wave velocities of the coal sample exhibit a
deteriorating trend. At the beginning of the test, the longitudinal wave velocity of coal
samples deteriorated at a high rate and the water–coal reaction was violent, which caused
the increase in pores of the coal sample. Macroscopically, the longitudinal wave velocity
decreased to varying degrees. Table 2 displays the mass and vp of coal samples under
different soaking times.

Figure 3. The relationship curve between the soaking times and the change rate of longitudinal
wave velocities.

Table 2. The mass and longitudinal wave velocity (vp) of coal samples under different soaking times.

Soaking
Times/d

P-1 P-2 P-3

Mass/g vp/km·s−1 Mass/g vp/km·s−1 Mass/g vp/km·s−1

0 257.79 1.83 255.32 1.76 253.07 1.80
0.25 261.15 - 258.85 - 256.12 -
0.5 265.33 - 263.13 - 261.18 -
1 270.91 1.82 268.24 1.75 265.86 1.79
3 269.92 1.80 267.06 1.73 264.99 1.77
5 269.54 1.79 267.30 1.71 264.44 1.76
7 269.04 1.76 266.50 1.69 264.49 1.73

10 268.40 1.73 265.71 1.67 263.32 1.71
15 268.02 1.73 265.73 1.66 262.73 1.70
20 266.85 1.72 264.47 1.65 262.04 1.69
25 266.80 1.71 264.28 1.64 262.00 1.68
30 266.77 1.71 264.26 1.64 262.02 1.68

3.3. Mass Changes of Coal Samples

During the immersion process, the water–coal reaction dissolves the mineral com-
ponents in the coal samples and finally changes the mass of the coal sample. The mass
differences between the original dried samples and saturated samples with different soak-
ing times were analyzed, which can indirectly reflect the water–coal process’s degradation
law. The prepared coal samples were dried for 24 h with temperature of 50 ◦C and the
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original mass m0 were weighed. After different soaking times, the coal samples were taken
out from the salt water, the moisture on the surface of the samples was wiped off, and the
mass of the saturated samples (mt) were weighed. The relationship between the m0 and mt
is shown as follows: {

m0 + ml − mr = mt
Δm = mt − m0 = ml − mr

(2)

where ml represents the mass of pore water inside the coal sample; mr represents the mass
of the dissolved substance.

Figure 4 shows the relationship between soaking times and the relative mass difference
of sample P-2. It can be seen that the relative mass difference of the coal sample increases
rapidly at the beginning of the test, then gradually decreases. At the initial state of
immersion, the solution diffuses through the pores accompanied by the water–coal reaction,
but the mass of the immersed solution was obviously greater than that of the dissolved
substance, which led to a rapid increase in the relative mass difference. As the soaking
time increased, the coal sample reached a saturated state. The pore volume of the coal
sample gradually increased with the dissolution, and the immersed solution in the pores
continued to increase. However, the strong water–coal reaction made the mass of dissolved
substance greater than that of the added immersion solution, which decreased the relative
mass difference. After that, the interaction between solution and coal sample gradually
weakened, and the variation range of relative mass difference gradually reduced.

Figure 4. The relationship between Δm and soaking times.

3.4. Porosity of Coal Samples

The nuclear magnetic resonance (NMR) method was used to observe the change of
porosity and pore size distribution of coal samples under different soaking times. The
signal source in the NMR test is hydrogen ion. Based on the hydrogen ion signal detected
in the pores, the analysis software obtains the relaxation time (T2) and the initial magnetic
field vectors of pores with different sizes through a special sequence (CPMG). Finally, the
distribution of the relaxation time can be obtained through inversion. Different relaxation
times represent different sizes of pores and the larger relaxation times represent larger pore
sizes. The area of the relaxation peak in the T2 curves reflects the number of pores [33].
Equation (3) represents the relationship between T2 and parameters of pores [33].

1/T2 = ρ(S/V) = Fs(ρ/r) (3)

where T2 represents the inversion relaxation time, ms; ρ represents lateral relaxation
density, um/ms; S represents the surface area of pore, cm2; V represents pore volume, cm3;
r represents pore size, nm; and Fs represents shape factor of pore.

Figure 5 exhibits the T2 distribution of coal samples under different soaking times.
The pore structure of coal is divided into three regions: the adsorption pores with a pore
size of 1–100 nm (corresponding T2 smaller than 2.5 ms), seepage pores with a pore size of
100–10,000 nm (corresponding T2 larger than 2.5 ms and smaller than 50 ms), and fractures
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with a pore size larger than 10,000 nm (corresponding T2 larger than 50 ms) [34–37].
Figure 5 shows that the T2 distribution of coal under different soaking times has a bimodal
characteristic. After the immersion in salty solution, the T2 distribution curves of coal
move towards the right, indicating that the immersion effect increases the connectivity
of the micropores and results in the appearance of pores with larger sizes. The area of
T2 distribution curves corresponding to the relaxation times of 0–2.5 ms, 2.5–50 ms, and
50 ms–1000 ms were calculated and the values represent the number of pores. Table 3
displays the pore number of coal samples after different soaking times. It is obvious that
the number of seepage pores and fractures increased with the increase in soaking times.
While the number of adsorption pores exhibits a trend of rapid increase first and then a
slow decline. It is mainly because the small pores gradually connect to form larger pores in
the later stage of immersion.

T2

Figure 5. The T2 distribution curves of coal samples.

Table 3. Number of pores in coal samples after different soaking times.

Soaking Times/d Porosity/% Adsorption Pores Seepage Pores Fractures

0 21.28 9809 2570 213
3 21.91 9819 2765 354
5 22.96 10,041 2983 517

10 23.66 10,062 3172 688
15 24.88 10,385 3749 710
20 25.25 10,208 3982 807
30 25.58 9915 4210 1026

Under the effect of the water–coal interaction, the minerals in the coal sample dis-
solved, leading to increased porosity. Figure 6 shows the relationship curve between
soaking times and porosity of coal sample.

Figure 6. The change law of porosity as a function of soaking times.
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3.5. Microscopic Morphological Characteristics of Coal Samples

The structure of coal is very complex due to the many mineral components in the
coal. During the immersion process, the salty solution and the coal undergo a series of
water–rock reactions, which lead to the dissolution of minerals, changes in the microscopic
structure, and the increase in microcracks inside the samples.

It can be seen from Figure 7 that a large number of mineral particles are distributed
on the surface of the coal sample under the natural state. At the same time, it can be
observed that microfractures and micropores exist on the surface of coal. Most pores are
blocked by mineral components, resulting in poor connectivity between pores. After being
soaked for different times, the coal samples showed different degrees of corrosion, and the
microscopic morphology changed to a certain extent. As the immersion time increases,
the number of mineral particles on the surface of the coal samples decreases significantly.
The mineral particles originally embedded in the coal body were corroded into holes of
different sizes. Under the effect of the salty solution, microfractures gradually appeared
and connected with the internal structure. The number of pores and fractures in the coal
samples increased after being soaked with the salty solution. At the same time, the strength
of the coal samples will gradually decrease with the increasing number of pores and cracks.

  

Figure 7. Microscopic morphology of coal samples after soaking for different times: (a,b) represent
natural state; (c,d) soaking for 10 days; and (e,f) soaking for 30 days.
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3.6. Mechanical Properties of Coal Samples

In the mechanical test, the stress and the strain of coal samples during the failure
process were obtained. The stress–strain curves of coal samples for different soaking times
(i.e., ST) are illustrated as Figure 8. The mechanical parameters calculated according to the
stress–strain curve are shown in Table 4. It can be seen from Figure 8 that the compaction
stage of the coal samples after immersion is longer than that of the natural state. As the
soaking time increases, the compaction stage becomes longer. This is mainly because the
internal defects such as pores and microfractures increased with the soaking time and more
defects result in longer initial compaction stage of the stress–strain curve.

Figure 8. The stress–strain curve of coal samples.

Table 4. Mechanical parameters of coal samples.

Sample No. Soaking Time (d) Peak Strength (MPa) Elastic Modulus (GPa) Failure Strain (%)

US1-1 0 40.980 2.957 1.483
US1-2 0 38.974 2.865 1.519
US1-3 0 37.584 2.651 1.538
US2-1 5 29.269 2.172 1.609
US2-2 5 32.427 2.361 1.581
US2-3 5 27.985 1.886 1.664
US3-1 10 26.087 1.785 1.763
US3-2 10 27.953 1.603 1.709
US3-3 10 27.266 1.636 1.737
US4-1 15 23.758 1.508 1.874
US4-2 15 25.481 1.545 1.792
US4-3 15 24.663 1.475 1.804
US5-1 20 22.806 1.250 1.976
US5-2 20 23.469 1.347 1.895
US5-3 20 21.568 1.257 1.983
US6-1 30 21.357 1.166 2.113
US6-2 30 20.605 1.235 2.034
US6-3 30 18.624 1.013 2.164

Figure 9 displays the relationship between soaking times and several mechanical
parameters of coal samples. It appears that the peak strength and elastic modulus of the
coal samples gradually decrease with the soaking time, while the failure strain exhibits an
increasing trend with soaking time. The reduction in the peak strength of coal under the
salty solution immersion is related to the adsorption of ions or molecules in the solution
to the coal surface. The adsorbed ions or molecules on the coal surface reduce the surface
energy and its fracture strength. The result manifests that the immersion of salty solution
significantly influences the mechanical properties at the initial state, and the declining
amplitude becomes smaller with the increasing soaking time.
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Figure 9. The relationship between soaking times and mechanical parameters of coal: (a) peak strength; (b) elastic modulus;
and (c) failure strain.

4. Statistical Damage Constitutive Relationship of Coal Samples under the Coupling
Action of Salty Solution and Uniaxial Compression

4.1. Damage Constitutive Relationship and Damage Evolution Equation under Uniaxial
Compression

According to the principle of strain equivalence [38,39], the strain produced by the
damaged material under the stress σ is equivalent to the strain produced by the undamaged
material under the effective stress σ′.

ε =
σ

E′ =
σ′

E
=

σ

E0(1 − Ds)
(4)

In the above, σ and σ′ are nominal stress and effective stress, respectively; ε is strain;
E0 is the elastic modulus of the sample in the initial state; E′ is the elastic modulus of the
sample in a damaged state; and Ds is the damage variable under loading.

According to Equation (4), the damage constitutive model of coal samples during
uniaxial compression can be obtained as follows:

σ = Eε(1 − Ds) (5)

The rock material contains various defects, and the microstructure is nonuniform.
The random distribution of these defects in the rock causes the damage to distribute
randomly inside the rock during the compression process, resulting in great differences
in the mechanical properties of the rock [40,41]. It can be considered that the mechanical
properties of the rock are a random variable. The rock can be divided into micro-element
bodies containing several defects, and the relationship between the statistical distribution
density of material failure and the damage variable is assumed as in [41].

dDs = P(ε)dε (6)
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There, P(ε) is a measure of the damage rate of the micro-element body during the
loading process and F is the strength parameters of rock micro-element body.

Assuming that the strength of the micro-element body obeys the Weibull distribution
during the loading process, the probability density function can be expressed as in [41].

P(ε) =
m
ε0

(
ε

ε0

)m−1
exp

[
−
(

ε

ε0

)m]
(7)

In the above, ε0 is the average value of the strength of the micro-element body, and
m is the shape factor of the distribution function, representing the uniformity of the
rock material.

Substituting Equation (7) into Equation (6), the internal damage evolution equation
during compression can be obtained as:

dDs = P(ε)dε =
m
ε0

(
ε

ε0

)m−1
exp

[
−
(

ε

ε0

)m]
dε (8)

Ds =
∫ ε

0
m
ε0

(
ε

ε0

)m−1
exp

[
−
(

ε
ε0

)m]
dε

= 1 − exp
[
−
(

ε
ε0

)m] (9)

Substituting Equation (9) into Equation (5), the damage constitutive relation of rock
under uniaxial compression is:

σ = Eε(1 − Ds) = Eε exp
[
−
(

ε

ε0

)m]
(10)

The stress–strain relationship curve of the rock should meet the following boundary
conditions: ⎧⎪⎪⎨

⎪⎪⎩
ε = 0, σ= 0
Ds = 0, dσ/dε = 0
σ = σp, ε = εp
ε = εp, dσ/dε = 0

(11)

In the above, σp and εp are the peak stress and peak strain of the rock, respectively.
By combining Equations (10) and (11), the following Equation can be obtained:

⎧⎨
⎩

m = 1
ln
( Eε p

σp

)
ε0 =

εp

(1/m)1/m

(12)

Substituting Equation (12) into Equation (9), the damage evolution Equation of the
rock is obtained as:

Ds = 1 − exp
[
− 1

m

(
ε

εp

)m]
(13)

Substituting Equation (13) into Equation (10), the damage constitutive Equation of the
rock can be obtained:

σ = Eε(1 − Ds) = Eε exp
[
− 1

m

(
ε

εp

)m]
(14)

4.2. The Chemical Damage Variable under the Action of Salty Solution

The damage of the coal sample after immersion in salt solution includes not only the
load damage, but also the chemical damage caused by the immersion. According to the
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principle of strain equivalence, the constitutive relationship of the internal damage of the
coal sample after immersion in the salt solution is expressed as:

σ = (1 − Dc)E0ε (15)

There, E0 is the elastic modulus of a sample in the initial state and Dc is defined as the
chemical damage variable under salt solution immersion.

According to Equation (15), the expression of Dc can be obtained:

Ec = (1 − Dc)E0 (16)

Dc = 1 − Ec

E0
(17)

In the above, Ec is the elastic modulus of a coal sample after immersion in salty solution.
Figure 10 shows the relationship between the average values of chemical damage

variable and immersion time. With the increase in the immersion time, the chemical
damage variable of the coal sample firstly grows rapidly, and then the growth rate gradually
slows down. By fitting the test data of the damage variable, the relationship expression
between the chemical damage variable and the immersion time is obtained as shown in
Equation (18). Under the action of the salty solution, the chemical damage variable of the
coal sample is in an exponential relationship with the immersion time and the correlation
coefficient is 0.977. The increase in immersion time causes more accumulated damage inside
the coal sample, resulting in the deterioration of the coal sample’s compressive strength.

Dc = 0.582 − 0.712 × 0.862t R2 = 0.977 (18)

Figure 10. The relationship curve between average value of chemical damage variable and
soaking times.

4.3. The Damage Evolution Law under the Coupling Action of Uniaxial Compression and Salty
Solution Immersion

The failure of the salty solution immersed coal sample under the action of the uniaxial
load is caused by the mutual coupling and mutual influence of chemical damage and load
damage. For the coal sample after soaking in salty solution, the total damage consists of
two parts. The chemical damage caused by the salty solution immersion is considered as
the first type of damage, and the damage caused by the load is regarded as the second type
of damage.

σ = (1 − Ds)Ecε (19)

Substituting Equation (16) into Equation (19), the damage constitutive relationship of
the coal sample under the coupling effect of salty solution immersion and uniaxial load
can be obtained.

σ = (1 − Ds)(1 − Dc)E0ε (20)
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The total damage variable D under the coupling action of chemical and load is ex-
pressed as Equation (21):

D = Ds + Dc − DsDc (21)

Combing Equations (13), (17), and (21), the final form of total damage variable D is
shown as Equation (22):

D = 1 − Ec

E0
exp

[
− 1

m

(
ε

εp

)m]
(22)

The typical damage evolution curve under the coupling action of salty solution
corrosion and uniaxial compression is shown in Figure 11. The damage degree of the
specimen gradually increases with the increase in axial strain. The damage evolution of
the coal sample under the coupling action of salty solution corrosion and load has obvious
nonlinear characteristics. In the initial stage of compression, the internal microcracks and
pores of the specimen are compressed. The degree of damage in the compaction stage
is relatively small, resulting in a linear damage evolution curve. The continued action
of the external load leads to the expansion of the microcracks, and increases the damage
of the internal structure. Finally, crack penetration caused the specimen to be destroyed.
Comparing the length of the linear section of the damage evolution curve, it is found that
the length of the linear section of the curve gradually increases with the increase in the
immersion time. It indicates that the porosity inside the coal sample increases with the
increase in immersion time, resulting in the linear segment being more pronounced.

Figure 11. The typical damage evolution curve.

4.4. Damage Constitutive Model Considering Chemical-Stress Coupling Factor

Combining Equations (12) and (20)–(22), the damage constitutive equation of the
coal sample under the coupling action of chemical and uniaxial load can be expressed as
Equation (23): ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
σ = Ecε exp

[
− 1

m

(
ε

εp

)m]
m = 1

ln
Ecεp

σp

ε0 = εpm1/m

(23)

In order to verify the damage constitutive model of the coal sample under the coupling
effect of salty solution immersion and the uniaxial load, the stress–strain curve of the
uniaxial test was compared with the curve obtained by the damage constitutive which is
expressed as Equation (23). The damage constitutive curve is shown as the dotted line
in Figure 12. It is found that the unmodified damage constitutive relationship curve is in
poor agreement with the test curve. The characteristics of the stress–strain curve caused by
the corrosion of the salty solution are not well described by using the unmodified damage
constitutive (Equation (23)). Further, a chemical-stress coupling factor μ was proposed
to modify the damage constitutive. Literature [42] has introduced a thermal-mechanical
coupling factor in the damage constitutive model to display the damage process of rock
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under high temperatures. Like the rock treated with high temperature, the number of
pores and cracks in the coal sample increased under the effect of the corrosion of salty
solution. This leads to an increase in the length of the compaction stage. In this study,
the expression of chemical-stress coupling factor μ refers to that in literature [42]. The
expression of coupling factor μ and modified damage constitutive model are expressed
as follows:

μ = μ0 + A exp
[
−2

(
ε − εp

)2/ω2
]
/ω

√
π/2 (24)

σ = μ(1 − Ds)(1 − Dc)E0ε (25)

Figure 12. Comparison of stress–strain test curve and theoretical curve: (a) ST = 5 d, (b) ST = 10 d, (c) ST = 15 d, (d) ST = 20 d,
and (e) ST = 30 d.

In the above, εp is the peak strain, μ0 is the lower limit of the chemical-stress coupling
factor, A is the integrated area of the function curve above the baseline, and ω is the
standard deviation of the function, which indicate the concentration of the chemical-stress
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coupling effect. The related parameters (μ0, A, w) in coupling factor μ need to be determined
by fitting the experimental data. The fitting parameters of coupling factor μ are shown in
Table 5.

Table 5. Fitting parameters in coupling factor μ.

Sample εc/10−2 A/10−2 w/10−2 μ0 Correlation Coefficient

US2-1 1.609 0.28 0.56 0.60 0.93
US2-2 1.581 0.26 0.46 0.55 0.95
US2-3 1.664 0.28 0.55 0.59 0.96
US3-1 1.763 0.51 0.81 0.50 0.94
US3-2 1.709 0.42 0.82 0.60 0.98
US3-3 1.737 0.15 0.80 0.85 0.98
US4-1 1.874 0.32 0.78 0.68 0.97
US4-2 1.792 0.23 0.80 0.78 0.98
US4-3 1.804 0.25 0.85 0.76 0.98
US5-1 1.976 0.30 0.85 0.72 0.96
US5-2 1.895 0.35 0.83 0.68 0.94
US5-3 1.983 0.34 0.81 0.66 0.95
US6-1 2.113 0.41 0.81 0.60 0.93
US6-2 2.034 0.40 0.80 0.60 0.95
US6-3 2.164 0.21 0.85 0.82 0.99

As shown in Figure 12, the modified damage constitutive relationship (Equation (25)),
considering the chemical-stress coupling factor μ, is in good agreement with the test results
and the change of compaction stage can be well described. In addition, the experimental
data of Gu [10] were applied to verify the effectiveness of the modified damage constitutive
model. The mechanical response of coal under different soaking times was analyzed in
Gu’s study. Figure 13 displays the verification of the modified damage constitutive model
with the experimental data of Gu. It is obvious that the modified model is highly consistent
with the test curve. The modified model well described the stress–strain curves of coal
under the different soaking times.

Figure 13. Verification of modified damage constitutive model with experimental data of Gu [10].

5. Conclusions

In this paper, physical and mechanical tests were carried out on coal samples subjected
to a salty solution. The degradation mechanisms of the physical and mechanical properties
of the coal samples were studied. A damage constitutive model for coal subjected to the
salty solution under uniaxial compression was proposed by introducing the chemical-stress
coupling factor. The relevant results are summarized as follows:

(1) The physical characteristics of coal under the action of salty solution show varying
degrees of deterioration. Under the attack of salty solution, the relative mass difference
of the coal samples displays an increasing trend at the beginning of the test, then grad-
ually decreases. With the increase in immersion time, the pH value gradually tends to
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be neutral. The mineral particles of coal samples are dissolved by the salty solution, re-
sulting in aggravated chemical damage to the microstructure and an increase in the coal
sample’s porosity.

(2) The microstructure morphology of coal samples for different immersion times
were analyzed. With the effect of the salty solution, the microscopic morphology has
changed to a certain extent. As the immersion time increases, the number of mineral
particles on the surface of the coal decreases significantly and the connectivity of the
internal structure increases.

(3) The peak strength and elastic modulus of the coal samples changes exponentially
as a function of soaking time. The failure strain exhibits an increasing trend with soaking
time. As the soaking time increases, the initial damage of the coal sample increases
exponentially. According to the theory of damage mechanics, the chemical-stress coupling
damage variable was introduced, and the variation law of the coupled damage variable
with time was obtained. Under the effect of salty solution, the changes of the stress–strain
curve can be well described by modified damage constitutive model that considers the
coupling factor μ.

In the present study, the deterioration mechanism of coal under the action of salty
solution was studied and a damage model for coal subjected to the salty solution under
uniaxial compression was proposed. The modified damage model can well describe the
changes in the compaction stage of the stress–strain curve caused by the water–rock reaction.
The pre-peak behavior can also be well described by the modified model. However, the
post-peak behavior cannot be fully characterized. In order to fully describe the mechanical
behavior during rock failure, it is necessary to characterize the post-peak behavior. We will
focus on this issue in future work.
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Abstract: This article aiming at the lack of research on the influence of rock clamp production on
cutting blasting under high in-situ stress conditions and the lack of rock damage criteria for RHT
constitution in numerical simulation. Combined with the critical rock damage criterion and the
embedded function of RHT constitution, the criterion for determining the critical damage of rock in
RHT constitutive was studied, and the mechanical parameters of Metamorphic sodium lava were
substituted to obtain the critical damage threshold of rock in numerical simulation. The smooth
particle hydrodynamics (SPH) method was used to numerically simulate and analyze the influence
of different rock clamping coefficients on the rock damage range and the cavity area in the cutting
blasting. The stress state applied by the numerical simulation was inversely deduced by the field
test scanning results to simulate the rock clamping coefficient Kr at the corresponding depth. The
relationship between the cavity area Sc and the free surface distance Df is analyzed and established.
The results show that the rock clip production has an inhibitory effect on the development and
propagation of blast-induced cracks. The stress applied in the numerical simulation affects the
range and development degree of cracks, and the cracks generated by the explosion are mainly
circumferential cracks. The larger coefficient of rock clip production, the more obvious the inhibitory
effect on cut blasting, the less the blast-induced cracks and the smaller the rock damage circle. The
fitting results show that the curve fitting degree is about 0.94, which proves the accuracy of Sc-Df

curve, and provides important reference value for the design of one-time completion blasting of
upward blind shaft.

Keywords: numerical methods; deep rock mechanics; rock damage judgment criteria; SPH; blind
shaft cutting blasting

1. Introduction

The demand for metal materials in various industries is gradually increasing as science
and technology advance. After years of mining, the mineral endowment in the shallow
surface is diminishing, and the mine construction is gradually shifting towards the deep
part of the mine. Deep rock is frequently accompanied by high in-situ stress, and drilling
and blasting are currently the main methods of deep mining excavation. Scholars through
a large number of field tests concluded that deep rock blasting is the main source of mining.
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As a result, it is critical to investigate the impact of high in-situ stress on the construction
effects of rock crushing, blasting into shafts and roadway excavation.

Currently, many scholars have carried out a series of field tests and numerical sim-
ulations for rock blasting under high in-situ conditions [1–5]. Yan et al. [6] used wavelet
packet analysis to analyze the vibration signals during tunnel blasting excavation un-
der high in-situ stress conditions and obtained the energy distribution of the vibration
signals in different frequency bands. Wei et al. [7] analyzed the effect of in-situ stress
on the crack extension by simulating the tangential pack blasting under different in-situ
stress conditions based on a damage mechanics model. Yang et al. [8,9] established a
computational model for double-hole blasting of high in-situ stress rock masses based on
the SPH-FEM algorithm, and concluded that the hole spacing should be appropriately
shortened under high-stress conditions to facilitate crack expansion by analyzing the stress
field distribution as well as the dynamic evolution process. Liu et al. [10] used the hollow
core envelope method to measure the in-situ stress in the roadway and combined it with
FLAC3D software for stability analysis to derive the influence of the tectonic stress field on
the roadway. Dai [11] based on blasting funnel theory, the study of high-stress roadway
avalanche blasting, and concluded that the choice of high explosive velocity explosives
under high in-situ stress is more effective. Tang et al. [12] based on the decay of blasting
frequency in perimeter rock excavation to define the damage variables and derive the decay
law of blasting damage amount with the change of blast core distance. LI et al. [13–16]
investigated the effect between dynamic unloading effects of in-situ stress and high in-situ
stress conditions during blasting excavation using FLAC3D and PFC5.0 numerical software.
Yang et al. [17] investigated the relationship between the lateral pressure coefficient and
the effect of unloading rate and damage extent using the finite difference method, and
verified its accuracy by field testing. Luo et al. [18] proposed a blast damage simulation
method based on normal impact load to study the blast damage incubation mechanism
under different stress conditions, and concluded that a certain degree of in-situ stress
plays a suppressive role on blast damage. Lu et al. [19,20] used LS-DYNA finite element
simulation software to simulate the confining effect of rock tunnel to be excavated by
applying nodal reaction forces to analyze the damaging effect of blasting excavation on the
surrounding rock, and concluded that the damaged area was mainly caused by the initial
stress redistribution in the surrounding rock, and the blast load action increased its extent.
Li et al. [21] used numerical simulation methods to introduce damage state indicators and
proposed two indicators to reflect the effect of trenching blasting, and studied the effect
of stress wave loading rate and in-situ stress on cutting blasting. In the above-mentioned
analytical studies, for the study of rock mass blasting under high in-situ stress conditions,
the rock mass damage is mainly reflected by instrument measurement and numerical
simulation. However, there are different constitutive models such as TCK, HJC, Yang, RHT,
etc. in numerical simulations, and their damage assessment criteria for specific intrinsic
structures have not been studied much. In addition, there are few studies on the effect of
rock entrapment on cavity formation and damage patterns in trenching and blasting.

In summary, this paper will employ the rock critical damage parametric theory and
the RHT damage model to establish the RHT intrinsic critical damage assessment criteria
based on the embedded plastic strain and ultimate strain equations in the RHT constitution.
Furthermore, it is impossible to predict the results of the upward-oriented once-in-a-
whole cutting blasting into the cavity state and crack expansion under high in-situ stress
conditions. To study the characteristic law of rock damage and cutting cavity formation
under high in-situ stress in upward blind cutting blasting using the smooth hydrodynamic
method (SPH method), and the results were compared with the field cavity scanning results
to verify the accuracy of the numerical simulation, and the inverse extrapolation of the
rock clamping performance in the test area was performed based on the field test results to
investigate the influence law of rock clamping production.
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2. Establishment of RHT Constitutive Damage Criterion

2.1. Blast Damage Variable Definition

According to the research results of previous scholars [22], the damage of the rock
body under the blast load is the combined effect of the blast pressure, the expansion of the
blast-generated gas and the unloading stress, while taking into account the anisotropy of
the rock body, the expansion of primary cracks and the development of new cracks. The
commonly used rock damage variables are:

D = 1 − E
E

(1)

where: D is the rock damage variable; E is the equivalent modulus of elasticity of the
damaged rock after blasting; E is the modulus of elasticity of the intact rock before blasting.

According to the elastic stress wave theory, there is a certain relationship between
the elastic modulus of rock and the longitudinal wave velocity before and after blasting
excavation, as in Equations (2) and (3):

E = ρc2
p
(1 − μ)(1 − 2μ)

1 − μ
(2)

E = ρcp
2 (1 + μ)(1 − 2μ)

1 − μ
(3)

where: ρ, ρ represent the density of the rock before and after blasting excavation, kg/m3;
cp, cp are the longitudinal velocity of the rock before and after blasting, m/s; μ, μ are the
Poisson’s ratio of the rock before and after blasting excavation, respectively.

In this paper, it is assumed that the density and Poisson’s ratio of the rock before and
after blasting do not change, i.e.,: ρ = ρ, μ = μ. Therefore, the finishing of Equations (2) and
(3) into Equation (1) can be obtained as follows:

D = 1 −
(

cp

cp

)2
(4)

where the rate of change of the longitudinal wave velocity of the rock body before and after
blasting η can be expressed by Equation (5):

η =
cp − cp

cp
= 1 − cp

cp
(5)

Thus, the damage variable D can be integrated as:

D = 1 − (1 − η)2 (6)

Wu [23] investigated the damage failure behavior of rock materials based on the
existing research results for the rock damage variable D combined with the damage failure
criterion of rock materials, and the damage value corresponding to the peak strength
of the rock material is regarded as the rock critical damage parameter Dcr, while the
material damage is mainly caused by the plastic deformation of the material. Therefore,
the relationship between the plastic strain of the rock and the critical damage parameters
of the rock can be expressed by Equation (7):

Dcr =
εp

εmax
(7)

where: εmax, εp are the peak strain and plastic strain under uniaxial compression, respectively.
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2.2. Blast Damage Action Zoning

The primary rock mass has initial damage D0 due to the presence of joints, fissures
and structural surfaces, etc. Explosive blast generates shock waves to make the blast hole
wall around a certain range of rock crushing, the crushing area rock damage variable
D2 = 1, outside the crushing zone is considered as the rock fracture and damage zone (see
Figure 1), and its different zoning damage variables are listed in Table 1:

Figure 1. Damage Zoning of Rock Mass under Blasting Load.

Table 1. Damage Zone of Rock under Blasting Load.

Damage Zone Rock Damage Volume D Blasting Center Distance r/m

Crushing zone D = 1 r < r0
Partition threshold 1 r0

fracture and damage zone Dcr < D < 1 r0 < r < r1
Partition threshold Dcr r1

Primary rock stress zone D ≤ Dcr r > r1

2.3. RHT Constitutive Damage Criterion

The RHT damage constitution was chosen for this numerical simulation, which was
proposed by Riedel, Hiermaier, and Thoma in 1997 based on the HJC constitution, by
introducing the elastic limit surface, failure strength surface, and residual strength surface
to describe the relationship between the elastic limit strain, material failure strength, and
residual strength and hydrostatic pressure [24].

The RHT constitutive model is defined for the damage parameter D as:

D = ∑
(

Δεp/ε
f
p

)
(8)

Which:
Δεp = ε

f
p − εp (9)

ε
f
p =

⎧⎪⎨
⎪⎩

D1(p∗ − (1 − D)p∗t )
D2

ε
p
m

p∗ ≥ (1 − D)p∗t +
(

εm
p /D1

)1/D2

(1 − D)p∗t +
(

εm
p /D1

)1/D2
> p∗

(10)

In Equations (8)–(10): Δεp is the equivalent plastic strain increment; εp
f is the final

failure equivalent plastic strain; εp
m is the minimum equivalent plastic strain when the

material is damaged; D1, D2 are the initial damage parameters of the material and the
complete damage parameters of the material, respectively; p* is rock shear strength and pt

*

is failure cut-off pressure.
And for the material in the p*, pt

* is usually expressed using the Formulas (11) and (12):

p∗ = p
fc

(11)

p∗t =
FrQ2 f ∗s f ∗t

3(Q1 f ∗t − Q2 f ∗s )
(12)

302



Mathematics 2021, 9, 3242

Which:
Q1 = R3

(π

6
, 0
)

(13)

Q2 = Q(p∗) = Q0 + Bp∗ (14)

R3(θ, p∗) =
2
(
1 − Q2

2
)
cosθ + (2Q2 − 1)

√
4
(
1 − Q2

2
)
cos2θ + 5Q2

2 − 4Q
2

4
(
1 − Q2

2
)
cos2θ + (1 − 2Q2)

2 (15)

In Equations (11)–(15): p is the pressure on the material, MPa; fc is the uniaxial
compressive strength of the rock, MPa; Fr is the dynamic strain rate increment factor; Q0
is the initial tensile-compression radial ratio parameter; fs*, ft* are the tensile and shear
strength of the concrete relative to the compressive strength; B represents the Rhodes
angle-related parameter.

The dynamic strain rate increment factor is related to the material strain rate and shear
strength, and its expression is:

Fr =

⎧⎨
⎩

Fc
r

Fc
r − (3p∗ − Fc

r )
(

Ft
r − Fc

r
)
/Fc

r + Fc
t f ∗t

Ft
r

3p∗ ≥ Fc
r

Fc
r > 3p∗ ≥ −Ft

r f ∗t
−Ft

r f ∗t > 3p∗
(16)

Fr
c and Fr

t represent the dynamic compression strain rate enhancement factor and
dynamic tensile strain rate enhancement factor, respectively.

Where
.
ε

c
0 and

.
ε

t
0 are the compressive reference strain rate and tensile reference strain

rate, respectively, and the values are 3.0 × 10−5 s−1 and 3.0 × 10−6 s−1 for the given
parameters of the present structure, while the expressions of the compressive strain rate
index βc and tensile strain rate index βt are [19]:

βc =
4

20 + 3 fc
(17)

βt =
2

20 + fc
(18)

The elastic limit surface in the RHT structure is set by the equation of the elastic limit
surface and the “cap function” that constrains the overflow of the elastic limit stress in the
material under high hydrostatic conditions. Where the elastic limit surface equation is:

σ∗
el

(
p, θ,

·
ε
)
= σ∗

y × Fe × Fc(p∗) (19)

The elastic strength parameter used above is given by:

Fe =

⎧⎨
⎩

g∗c
g∗c − (3p∗ − Fc

r g∗c )(g∗t − g∗c )/Fc
r g∗c + Ft

r g∗t f ∗t
g∗t

3p∗ ≥ Fc
r g∗c

Fc
r g∗c > 3p∗ ≥ −Ft

r g∗t f ∗t
−Ft

r g∗t f ∗t ≤ 3p∗
(20)

Fc is the “cap function”, which is introduced to reduce the volume expansion caused
by shear and to limit the elastic limit stress of the material at high hydrostatic pressure,
while the cap of the yield surface is represented by:

Fc =

⎧⎪⎪⎨
⎪⎪⎩

1 p∗ ≥ p∗c√
1 −

(
p∗−p∗u
p∗c−p∗u

)2
p∗c > p∗ > p∗u

0 p∗u ≥ p∗
(21)

In Formulas (22) and (23): gc
* and gt

* are compression yield surface parameters and
tensile yield surface parameters, respectively.
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Which:
g∗c = fc,el/ fc (22)

g∗t = ft,el/ ft (23)

Form (24), (25): fc,el and ft,el are uniaxial compressive ultimate stress and uniaxial
tensile elastic ultimate stress, respectively.

According to the above RHT embedded formulas, it can be seen that the description
of the damage parameters in the present structure model only has the initial damage
value D1 and the complete damage value D2, and there is no criterion for determining the
critical damage of the rock. Therefore, to establish the mathematical relationship between
the rock critical damage parameters in the RHT constitution and the parameters in the
principal structure model, the RHT principal structure-function is organized according to
Equation (7), and the state of the rock at the beginning of crushing is selected as the rock
critical damage threshold judging criterion. The values of each of the above equations of
state taken at the start of crushing conditions are collated as follows: Fr = Fr

c, Fe = gc
*, Fc =

1, so the plastic strain and ultimate strain in Equation (7) can be collated as:

εp =
fc − fc × R3

(
π
6
)× Fr × g∗c

3Gζ
(24)

εmax = D1

[
p∗ − (1 − Dcr)

FrQ2 f ∗s f ∗t
3(Q1 f ∗t − Q2 f ∗s )

]
(25)

The lithology of the test area is mainly Metamorphic sodium lava, and the param-
eters of the RHT intrinsic model of metamorphic lava can be obtained through relevant
mechanical tests and theoretical calculations, see Table 2.

Table 2. RHT constitutive parameters.

Constitutive Parameters Parameter Values Access Approaches

ρ/kg/m3 2860 testing methods
fc/MPa 41.5 uniaxial compression test

fs* 0.09

theoretical calculation
ft* 0.02

G/GPa 3.8
βc 0.028
βt 0.033
gc

* 0.53

Constitutive self-contained

gt
* 0.70

Q0 0.681
B 0.011

D1 0.04
D2 1

The determined RHT constitutive parameters of the variable metamorphic lava were
substituted into Equations (7), (26) and (27) to obtain the critical parameter Dcr = 0.106 for
the RHT intrinsic damage of the variable metamorphic lava in this numerical simulation,
and this was used as the criterion for determining the rock damage in the subsequent
numerical simulation.

3. Field Cutting Blasting Test

The test area is located in Yunnan Dahongshan iron ore mine 400 m platform 8#
penetration. The roadway size is 4 m × 3 m, the site construction layout is shown in
Figure 2a. Furthermore, the DL421 cart was used for the preliminary small-diameter
precision drilling operation, with an empty hole depth of 9.5 m, a loaded hole depth of
10 m, a fill length of 0.5 m, and a hole diameter of 106 mm. The empty hole diameter
was expanded from 105 mm to 205 mm by using a T150 drilling rig with reaming bit.
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The explosive was injected into the charging hole through the charging device (Figure 2b)
by wind pressure, and the ANN-2 viscous ammonium nitrate explosive was adhered to
the charging hole due to its own characteristics. The charge method adopts the coupling
charge method, and the explosive is detonated by detonating cord and a millisecond delay
detonator. The field after charge is shown in Figure 2c. The blasting was carried out by
bottom detonation, and the blasting effect is shown in Figure 2d. After blasting, the broken
rock formed the blasting pile as shown in Figure 2e. Through observation, it can be seen
that the rock fragmentation in the blasting pile is small, indicating that the dosage is too
much. In further research, the dosage can be adjusted by realizing the interval charge,
whereas the overall slot cavity blasting effect is shown in Figure 2f after scanning of the
blasted slot cavity using the winged HM100 special UAV.

Figure 2. Blasting effect of trenching field test and UAV 3D scan. (a) Hole layout; (b) Charging device; (c) Field after charge;
(e) Blasting pile; (d) Cutting blasting effect; (f) Scanning effect.

Since there is only one free surface in the cutting blast, the rock clip production cost
has a great influence on the blasting effect, and the rock clip production cost increases
linearly with the depth of the cutting hole. In addition, under medium to high in-situ stress
conditions, due to the complexity of the coupling mechanism between blast load and rock
clamping mechanism, there is no effective means to measure rock clamping performance
at the test site. Therefore, the slot cavity area was scanned by using UAV for every 0.5 m
section of the slot cavity. To analyze the effect of rock clamping on the effect of cutting
blasting, numerical simulation was used to simulate rock clamping by changing the stress
state of the numerical model to approximate the field scan results, and the field section
scan results at different depths are shown in Figure 3.

It can be seen from Figure 3 that the rock clamping cost increases as the depth of the
slot cavity increases, and the area of the slot cavity at the wellhead is larger at 0–0.5 m
because it is close to the free surface. Then the area of the slot cavity decreases gradually at
1–8.5 m with the increase of the rock clamping cost and the coupling effect of the empty
hole compensation and the rock clamping cost, but the decay of the slot cavity area is not
large. However, because there are no effective and direct measurement methods for the
complex mechanism of rock clamping production, this paper will use numerical simulation
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to invert the rock clip production by changing the stress state, to study the impact law of
rock clip production on cutting blasting.

Figure 3. Scanned area of trenching cross-section at different depths.

4. Numerical Simulation Analysis for Rock Clip Production

Since rock clamping production cannot be measured directly, such as by indirect
methods (e.g., rock wave velocity, stress peak, etc.), the sensors buried near the blasting
area will be damaged and costly due to blasting impact and other factors. The measurement
points set at the distant end of the blasting area will lead to inaccurate data due to distance
attenuation, so this paper will use numerical simulation to model the rock clamping
production at different depths and also, numerical simulation to model the hollowing
section at different depths, and invert the rock clamping production at the corresponding
hollowing depth by changing the stress state, to study its influence on the rock damage
and cavity-forming law.

4.1. Numerical Model

The geometric model and numerical model are shown in Figure 4a,b. The numerical
model is designed by LS-DYNA finite element analysis software, which mainly consists of
rock and explosive. The numerical simulation mainly focuses on the analysis of the rock
clip production, the formation of the slot cavity and the rock damage in the hollowing
section at different depths. The numerical model is a quasi-3D model with the size of
5 m × 5 m × 0.01 m, the diameter of the charge hole Φ = 0.1 m, the diameter of the hollow
hole Φ = 0.2 m, and the six hollow holes in the form of barrel type hollowing with the hole
spacing d = 0.35 m.
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Figure 4. (a) Schematic diagram of geometric. (b) numerical models and stress application in
numerical simulation.

4.2. Stress Application Method

The method of applying stress on the model boundary in this simulation is shown in
Figure 5. In order to prevent the particles near the model boundary from being truncated
by the kernel function in the calculation process, it is necessary to set multi-layer virtual
particles outside the model boundary and generate five-layer virtual particles through the
keyword *BOUNDARY_SPH_SYMMETRY_PLANE in the boundary mirror. The density,
velocity and mass of virtual particles are the same as those of real particles. The stress is
linearly increased to the confining pressure p0 by using the relevant keywords, so that the
model is in a quasi-static dynamic load state. The stress expression of the virtual particle in
the stress loading process is:

σ(t) =

{
t
t0

p0, t ≤ t0

p0, t > t0
(26)

Figure 5. Diagram of stress application.

4.3. Stress Condition Analysis

Deep rock blasting is mainly achieved through the combined effect of explosive blast
load and high in-situ stress, so horizontal in-situ stress σh and vertical in-situ stress σv
need to be considered, and E.T. Brown et al. [25] summarized the fitting equation between
vertical stress σv and depth H:

σv = 0.027H (27)

While the lateral pressure coefficient K between horizontal in-situ stress and vertical
in-situ stress reveals a certain relationship with depth, Zhao et al. compiled the relationship
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between the lateral pressure coefficient K and depth H for magmatic rocks in China based
on a large amount of data as follows:

K =
200
H

+ 0.7 (28)

It is difficult to obtain accurate data due to high consumables, improper measurement
and instrument error in deep in-situ stress measurement. This paper will impose stress
based on previous scholars’ summaries of the macroscopic in-situ stress field distribution
law and invert the distribution law based on field data for rock clip production in the test
area. Once again, from the geological data provided by the mine geology department, the
test area is 400 m platform 8# penetration, the burial depth is about 640 m, and the vertical
in-situ stress σv = 17.28 MPa and horizontal in-situ stress σh = 17.5 MPa can be calculated
with Equations (29) and (30).

4.4. Explosive Constitution

Explosives provided by the mine ANN-2 viscous ammonium nitrate explosives, ex-
plosives parameters are shown in Table 3. The numerical simulation of explosives used
through the keyword *MAT_HIGH_EXPLOSIVE_BURN to achieve, while introducing the
JWL equation of state to describe the explosive process of volume, pressure and energy
change characteristics. The expression equation is given by Formula (29) as:

P = A
(

1 − ω

R1V

)
e−R1 + B

(
1 − ω

R2V

)
e−R2V +

ωE0

V
(29)

where: P is the explosive burst pressure, V represents the relative volume of explosives in
the burst process, E0 refers to the explosive initialized internal energy, A, B, R1, R2, ω for
the material gauge constants.

Table 3. ANN-2 Viscous ammonium nitrate explosive parameters.

Density/kg/m3 Detonation
Velocity/m/s

C-J
Pressure/GPa

Ferocity/mm Blasting
Force/mL

JWL State Equation Parameters

A/GPa B/GPa R1 R2 ω

950 2800 6.5 18 280 326 5.8 5.80 1.56 0.57

The explosive parameters and the parameters related to the JWL equation of state
can be determined by experimental fitting, and the explosive and JWL equation of state
parameters are shown in Table 3.

4.5. Clamping Factor Simulation Analysis

To investigate the effect of various rock clamping production methods on cavity
formation and rock damage in cutting blasting. Different rock clips production was
applied to the numerical model, and the rock damage circle after blasting was delineated
according to the previously determined critical damage parameters. Figure 6a–f show the
damage clouds of the cutting wellhead section under different applied stress conditions,
respectively.

Figure 6a–f can reveal that, when there is no rock clamping effect, the rock dam-
age range is larger, and the explosion-generated cracks are very visible. The explosion-
generated fissures are primarily circular, whiles the rock damage in the region of microfrac-
ture development expansion phenomenon is visible and the distribution is more uniform.
When the rock clamping is 0.5–2.0, the area of slot cavity and the range of rock damage
relative to no rock clamping effect is reduced, then the burst crack length gradually reduced,
and rock fracture development, expansion phenomenon is significantly weakened. When
the rock clip production is up to 2.5, burst cavity around the surrounding rock damage to a
small extent. Obvious explosive cracks are not observed, and mostly in the form of micro-
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fractures concentrated in the cutting hole near the rock damage range are significantly
reduced. Therefore, it can be concluded that as the rock clamping production increases,
the slot cavity area and rock damage range gradually decrease under the influence of rock
clamping production inhibition. The rock damage range and slot cavity area are then
measured and analyzed, and the changing trend is plotted as showed Figure 7.

Figure 6. The area of the slot cavity under the application of different rock clamping factors, and the rock damage circle is
determined by the critical damage parameters obtained above. (a) Kr = 0; (b) Kr = 0.5; (c) Kr = 1.0; (d) Kr = 1.5; (e) Kr = 2.0;
(f) Kr = 2.5.

Figure 7. Trend of rock damage range and slot cavity area with different rock clamping factor applied.

From the curves, it can be seen that the rock damage extent was reduced by 9.3%,
16.5%, 22.4%, 27.5% and 43.5%, respectively, and the slot cavity area was reduced by
4.4%, 8.0%, 16.9%, 21.3% and 30.1%, respectively, after the rock clamping mechanism was
applied. Due to the coupling effect of explosive load and rock clip production, the area
of the slot cavity is relatively less affected, while the rock damage is more affected. In
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addition, the larger the rock clip production, the greater effect on the blasting effect, and
the greater inhibition of rock fracture formation and expansion. The main reason is that
rock clip production has a certain inhibitory effect on the propagation of explosive stress
waves, so the impact of high rock clip production on rock damage is relatively small. The
blasting effect on rock damage under the influence of high rock clip production is relatively
small, while the rock clip production inhibits the expansion of primary cracks and the
development of new cracks in the rock-damaged area. The excavation unloading under
the action of blasting load coupling has consumed most of the energy in the process of
breaking the surrounding rock between the charge hole and the empty hole. The blasting
stress wave energy propagating to the outside of the cutting hole is not sufficient to achieve
the effect of crack expansion on the rock outside the empty hole.

The field scan results were compared with the numerical simulation results under
different stress conditions applied, and the rock clip production was inferred by varying
the stress applied in the numerical simulation to correspond to the depth of the slot cavity.
Figure 8 shows some of the numerical simulation comparison.

Figure 8. The area of the slot cavity under different stress conditions applied and compared with the field effect. (a) Df = 0
m; (b) Df = 0.5 m; (c) Df = 7.0 m; (d) Df = 10 m.

It can be seen from Figure 8 that the numerical simulation effect is similar to the field
test effect, and the simulation effect is more regular because the numerical simulation
cannot simulate this property of rock anisotropy. The area of the simulated slot cavity and
the area of the scanned slot cavity in the field are counted separately. The simulated area is
0.45, 0.39, 0.16, 0.09 m2, and the scanned area is 0.44, 0.38, 0.15, 0.08 m2, respectively. The
numerical simulation fit was 94.5%, which verified the accuracy of the RHT constitutive
parameters and the reliability of the numerical simulation.

5. Analysis of the Influence Law of Rock Clamping

To evaluate the effect of cutting blasting under high rock clip production, the effect
of rock clip production on the formation of slot cavity was analyzed from the perspective
of the law of rock clip production on the formation of slot cavity. Different stress states
were applied to the cavity at different depths to invert the rock clip production at the
corresponding depth, and the scanned area of slot cavity in the field at different depths was
circled and recorded with the numerical simulation area to draw the cavity-depth curve
(see Figure 9a). Here the blasting slot cavity changes are mainly divided into three stages,
the depth of hollowing in the 0–2.5 m due to the compensation of the free surface, the
slot cavity area is larger and the area decay rate is small; and then the depth of hollowing
in 3–7.5 m, as the distance away from the free surface becomes larger, the free surface to
provide a gradual reduction in the role of rock clamping becomes larger, so the area of
the blasting cavity decay rate increases. When the depth of hollowing is 8–9.5, there is no
empty hole around the compensation effect and far from the free surface so it cannot be
through the compensation effect. Where the blasting effect can be regarded as an infinite
media blasting, the rock clamping effect on the blasting effect is very large, so the slot cavity
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area decay phenomenon. The stresses applied by the numerical simulation at different
depths were counted to find the rock clamping factor Kr at the corresponding depths, and
the variation curve of slot area Sc of the hollowing section with the rock clamping factor Kr
was plotted (see Figure 9b). The variation law between Sc, Kr and Df was plotted based on
the inverse rock clamping stress coefficient Kr at different slot depths, combined with the
free surface distance Df (as shown in Figure 9c).

Figure 9. (a) Numerical simulation backpropagation effect compared with field effect; (b) 3 stages of variation of slot cavity
area with rock clamping production; (c) The variation pattern of slot cavity area with rock clamping factor and free surface
distance.

Regarding the Hawk-Brown world stress distribution law and the related analysis
method of Kr. Fuchs world stress map WSM2000 [26], the regression analysis of the rock
clamping production coefficient Kr with the variation law of the free surface distance Df
in this trenching and blasting test was further conducted. According to the change curve
of slot cavity area, the change law of 3 different stages is analyzed, and the relationship
between rock clamping production coefficient Kr and free surface distance Df is derived as:

Kr = F
(

Df

)
=

⎧⎪⎨
⎪⎩

1.06 + 0.002Df ,1
1.052D0.01

f ,2
1.036D0.019

f ,3

0.5 ≤ Df ,1 < 2.5
2.5 ≤ Df ,2 < 7.5
7.5 ≤ Df ,3 < 10

(30)

The regression analysis of the three influential stages of the change of Sc with Kr, and
its change law under different stages are:

Sc = F(Kr) =

⎧⎪⎨
⎪⎩

0.381 + 0.108/
[
1 + (Kr,1/1.06)1411.5

]
(0.161 − 0.148Kr,2)/1 − 0.942Kr,2
(0.264 − 0.245Kr,3)/(1 − 0.923Kr,3)

1.059 ≤ Kr,1 < 1.063
1.063 ≤ Kr.2 < 1.076
1.079 ≤ Kr,3 < 1.080

(31)

Combining Equation (31) with Equation (32), the relationship between Sc and Df can
be obtained as

Sc = F
(

Df

)
=

⎧⎪⎪⎨
⎪⎪⎩

0.392D−0.04
f ,1 0.5 ≤ Df ,1 < 2.5

5.45 − 5.12
(

1 − e−Df ,2/0.525
)
− 0.25

(
1 − e−Df ,2/6.96

)
2.5 ≤ Df ,2 < 7.5[

0.177/
(

1 + eDf ,3−8.97/0.44
)]

− 0.002 7.5 ≤ Df ,3 < 10

(32)

Therefore, Equation (32) reflects the relationship between Sc and Df. By substituting
the free surface distance Df into Equation (32), the regression area Sc

′ of the cavity at
different free surface distances is obtained and compared with the field test scan results.
According to the curve results (Figure 10), it can be seen that the Sc-Kr curve established in
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this paper has high accuracy in predicting the blasting cavity area values, and its actual
values are within 99% confidence interval of the theoretically predicted values, and the
goodness of fit of the theoretical curve is about 0.94, which fully proves that the Sc-Kr curve
constructed in this paper has high accuracy and provides an important judgment basis for
further prediction of blasting effect in trenching and blasting tests.

Figure 10. Comparison of actual and regression values.

6. Discussion

In this paper, aiming at the influence of high in-situ stress conditions on the cavity
state of the blasting cavity of the one-time well completion cutting in the upward blind
shaft, the rock clip production is analyzed. The cavity area measured by UAV scanning
after the field test is corrected for the stress state applied in the numerical simulation
to achieve the effect close to the field, so as to reverse the rock clip production under
different sections. This reverse method is rarely used in previous studies. According to
the investigation of the test site, the lithology of the test site is mainly sodium-altered
lava. Therefore, the RHT rock parameters used in this test are mainly obtained from the
rock parameters obtained from the basic mechanical test of sodium-altered lava and the
theoretical calculation. For the cutting effect under other lithology, it will be analyzed in
the further test after encountering other lithology and obtaining the corresponding rock
parameters in the subsequent test. The numerical model used in numerical simulation is a
plate model with unit thickness, which is used to simulate the section cavity in cut blasting.
In order to ensure the accuracy of the numerical simulation and be closer to the site, the
particle spacing is set to 0.01 m. Therefore, there are more particles in the plane model,
about 250,000 particles, so the calculation process is very longer. Due to the influence of
the cyclone in the slot cavity, the UAV is scanned at a height of about 0.5 m. Therefore, the
Sc-Kr curve is mainly fitted with 20 groups of data, The further experimental study is to
overcome the problem of scanning accuracy, improve the scanning accuracy to 0.1 m, and
further accurately fit the obtained curve.

7. Conclusions

In this paper, based on the lack of research under high in-situ stress conditions and
the lack of criteria for determining the rock damage of the model instantiation, the SPH
method and the RHT damage are used to numerically simulate the blasting section of the
once-in-a-whole, and to study the cavity formation and the damage law of the cutting
blasting under different rock clamping conditions by changing the applied stress state. The
following conclusions are drawn from the study:

(1) Through the calculation of blast breaking strain mechanism and rock damage theory,
combined with the embedded function in the RHT damage constitution, the connec-
tion between the critical parameters of rock blast damage and material plastic strain,
ultimate strain and ontological in the RHT constitution is obtained. The parameters
of sodic lava in the numerical simulation are derived based on the RHT constitution
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parameters of variable sodic lava obtained from mechanical tests and theoretical cal-
culations. The critical threshold of rock damage in the numerical simulation provides
a more practical evaluation tool for the damage assessment of RHT constitution in
numerical simulation.

(2) The simulation effect of cutting blasting under different rock clamping conditions
shows that: rock clamping production inhibits the development and expansion
of blast cracks, the stress applied in the numerical simulation affects the extent
of fracture generation and development, and the blast produces mainly circular
fractures, the larger the coefficient of rock clamping, the greater the blast inhibition
effect. Furthermore, the fewer blast cracks and the smaller the rock damage circle.

(3) The rock clamping production in the test area was simulated and compared and
inferred according to the field test scanning results to approach the rock clamping
production in the field test area. The regression analysis was performed for the rock
clamping production coefficient Kr for different depths of the slot cavity to obtain the
relationship between Kr and the free surface depth Df, and the relationship between
the slot cavity area Sc of the hollowing section and Kr, the mathematical relationship
between Sc and Df is obtained, and the goodness of fit of the curve is about 0.94,
which fully proves that the Sc-Df curve has high accuracy and provides a reference
basis for the relevant design of subsequent deep burial projects.

(4) According to the comparison between the 3D scan data of field trenching and blasting
and the numerical simulation results, the average fit of the numerical simulation
is 94.5%, which indicates that the RHT parameters have certain accuracy and the
numerical simulation has certain reliability.
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Abstract: The randomness of earthquake excitation has a significant impact on the seismic perfor-
mance of high earth-rock dams. In this paper, the seismic performance of geosynthetic-reinforced
soil structures (GRSS) of high concrete face rockfill dams (CFRDs) is evaluated from the stochastic
perspective. Multiple groups of seismic ground motions are generated based on spectral expression-
random function non-stationary model. Taking Gushui CFRD as an example, this study calculates
the failure probability of each damage level of non-reinforce slopes and reinforce slopes based on
generalized probability density evolution method (GPDEM) and reliability analysis is presented
though multiple evaluation indicators. The result shows that GRSS can reduce the mild damage of
CFRDs during earthquake and restrain the moderate and severe damage. The influence of vertical
spacing and length of GRSS on the seismic performance is obtained, which provides a reference for
the seismic design and risk analysis of CFRDs.

Keywords: high concrete face rockfill dam; geosynthetic-reinforced soil structures; generalized
probability density evolution method; seismic performance; reliability analysis

1. Introduction

In recent years, the high earth-rock dams under construction or proposed in China
are mainly distributed in the western regions, where earthquakes occur frequently. Once a
dam breaks, it could cause immeasurable losses. According to domestic and international
experimental results [1,2] and existing earthquake experiences [3,4] with earth-rock dams,
the safety of earth-rock dams is closely related to the stability of the dam slope downstream.

Geosynthetic-reinforced soil structures (GRSS) perform well during strong earthquakes,
in comparison with other earthquake-resistant measures, in maintaining the stability of slope
rockfill [5,6]; therefore, the study of GRSS should receive greater attention. Li et al. [7] used
the Newmark sliding block displacement method to evaluate the effect of reinforcement
technology on dam crest rockfill, and Noorzad and Omidvar [8] performed a parametric
analysis to study the effect of reinforcements on the seismic behavior of reinforced dams.
The results showed that reinforcement measures can reduce dam settlement and maximum
shear strain, but increase the maximum horizontal peak acceleration. Zhu et al. [9] analyzed
the influence of various parameters of GRSS on seismic performance, based on the Fast
Lagrangian Analysis of Continuum (FLAC) method. Yang [10] evaluated the seismic
stability of reinforced earth-rock dams, based on the upper-bound theorem of limit analysis,
and studied the influence of geogrid length on seismic performance. Glovatsky et al. [11]
developed the theoretical foundations for the modeling and design of test stands in the
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study of volumetric models of dams of large channels made of reinforced soil, and evaluated
the influence of reinforcement on the bearing capacity of earth-rock dams.

Indeed, variable associated seismic ground motions are filled with uncertainties and
threaten the dynamic stability of GRSS [12]. However, the aforementioned studies were based
on single ground motion, without considering the randomness of earthquake excitation, with
respect to which it is difficult to calculate the probability of failure accurately, and which may
even lead to calculation results that are significantly different from the facts. As reliability
analysis theory has advanced, scholars have paid more and more attention to the role of this
theory with respect to the seismic safety of dams. The Monte Carlo method, the generalized
probability density method, the response surface method, and other methods have been used
for risk analysis [13] and seismic safety evaluation [14,15] from the perspective of probability.
However, relatively few studies have targeted the earthquake-resistant measures of high
earth-rock dams from the perspective of random dynamics.

Based on the above, this paper adopted a seismic ground motion generation method
and the generalized probability density evolution theory for random dynamic analysis
of high concrete face rockfill dams (CFRDs), in considering the randomness of seismic
ground motions. First, the finite element model of CFRDs was established, followed by the
stochastic dynamic analysis of the dam non-reinforced slopes and reinforced slopes. Second,
the seismic performance of the proposed measure was evaluated from the perspective of
dynamic reliability. Third, the changes in the length and vertical spacing of GRSS were
analyzed to provide a reference for the actual engineering design.

2. Reliability Analysis Method Based on Stochastic Dynamics

The reliability analysis of engineering has made great progress in the field of earthquake-
resistant engineering research in recent years [16,17]. The system of reliability analysis of
earthquake-resistant measures has four main steps: (1) multiple groups of random ground
motion processes are generated, based on the non-stationary ground motion model; (2) the
finite element model and the input the generated groups of random ground motions are
utilized for batch computing; (3) the probability density function (PDF) and the cumulative
distribution function (CDF) are obtained for dam safety performance indices, combined
with the generalized probability density evolution theory; and (4) based on these steps, a
probability model is constructed to analyze the reliability of a dam before and after the
application of earthquake-resistant measures, so seismic performance may be evaluated.

2.1. Non-Stationary Ground Motion Model

In this paper, the spectral expression-random function non-stationary ground motion
model [18] was established, based on the improved Clough-Penzien power spectrum
model [19], and used for the generation of multiple groups of random ground motion.

The acceleration time series of the stochastic seismic ground motions are generated
based on the spectral representation of the random function method of non-stationary
stochastic processes [20]. This ground motion generation method has good applicability in
the calculation considering the randomness of ground motions [21]. The random process
of non-stationary ground motion acceleration with zero mean can be generated by the
following formula:

••
Xg(t) =

N

∑
k=1

√
2S••

X g
(t, ωk)Δω[cos(ωkt)Xk + sin(ωkt)Yk], (1)

where ωk = kΔω(Δω = ω/N). {Xk, Yk} (k = 1, 2, . . . , N) are the standard orthogonal
random variables with an interval frequency of Δω = 0.15 rad/s, N is the number of the
truncated items with N = 1600 here [18]. S ..

Xg
is the bilateral evolutionary power spectral

density function, and the expression is as follows [18]:

S ..
Xg
(t, ω) = A2(t)

ω4
g(t) + 4ξ2

g(t)ω2
g(t)ω2

[ω2 − ω2
g(t)]

2 + 4ξ2
g(t)ω2

g(t)ω2
• ω4

[ω2 − ω2
f (t)]

2
+ 4ξ2

f (t)ω
2
f (t)ω

2
•S0(t), (2)
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where A(t) is the intensity modulation function and calculated as:

A(t) =
[

t
c

exp
(

1 − t
c

)]d
, (3)

where c is the average time of peak ground acceleration (PGA) emergence, d is the shape
control index of A(t). In this paper, c is taken as 4 s and d is taken as 2, according to [18]. In
the evolutionary power spectral density function, the frequency modulation function can
be determined by the following parameters:

ωg(t) = ω0 − a
t
T

, ξg(t) = ξ0 + b
t
T

, (4)

ω f (t) = 0.1ωg(t), ξ f (t) = ξg(t), (5)

where ω0 and ξ0 are the initial angular frequency and the initial damping ratio of the site
soil; a and b are parameters determined on the basis of the field classification and seismic
design categories; and T is the duration of the ground motion acceleration time history,
which differs according to different sites. In this study, the site type used was I1, and the
parameter values ω0, ξ0, a, b, and T were 25 (rad/s), 0.45, 3.5, 0.3, and 15 (s), respectively,
in accordance with the China Hydraulic Seismic Design Code (NB 35047-2015).

The spectral parameters S0(t) in Equation (2) reflecting the spectral intensity can be
expressed as:

S0(t) =
a2

max
γ2πωg(t)[2ξg(t) + 1/(2ξg(t))]

, (6)

where amax is the mean value of PGA with amax = 0.340 g, which is the checking ground
motion of Gushui CFRD; and γ is the equivalent peak factor, depended on the sort of
seismic site, taken here to be 2.6 according to [18].

When ω = 0, the following equation should be satisfied:

S ..
Xg
(t, ω0) = S ..

Xg
(t, 0) = 0. (7)

In Equation (1), the variables {Xk, Yk} (k= 1, 2, . . . , N) are standard orthogonal ran-
dom variables, which are uniquely determined by the orthogonal basis function constructed
based on the idea of random function through mapping, and meet the following basic
conditions:

E[Xk] = E[Yk] = 0, (8)

E[XjYk] = 0, E
[
XjXk

]
= E

[
YjYk

]
= δjk, (9)

where E [•] represents mathematical expectation and δjk is the Kronecker delta.
The method of constructing standard orthogonal random variables is as follows:
Suppose Xn and Yn (n= 1, 2, . . . , N) are two independent random variables respec-

tively Θ1 and Θ2, then the random function can be recorded as:

Xn = cas(nΘ1), Yn = cas(nΘ2), (10)

where cas(x) = cos(x) + sin(x) is the Hartley orthogonal basis function [22], basic random
variables Θ1 and Θ2 are distributed uniformly and independent in the interval [0, 2π],
which can usually be obtained by number-theoretic method. After certain determinis-
tic mapping, they become the standard orthogonal random variables required by the
Equation (1).
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The mean square error of the above non-stationary ground motion acceleration process
simulation can be expressed as:

ε(N) = 1 −
∫ ωu

0

∫ T
0 S••

X g
(t, ω)dtdω∫ ∞

0

∫ T
0 S••

X g
(t, ω)dtdω

, (11)

where ωu = NΔω is the truncation frequency, and generally the mean square error of peak
acceleration is limited to far less than 1.0 [20].

2.2. Generalized Probability Density Evolution Theory

The generalized probability density evolution method (GPDEM) was proposed by Li
et al. [23]. Starting from random events, the theory combines the decouple system’s physical
equations, based on the principle of conservation of probability, to obtain the generalized
probability density evolution equation and to establish the relationship between each
physical quantity of interest in the project and in the dynamic system through constitutive
relations and deformation coordination relations. Thus, the theory is expressed as a function
of basic random variables, and then the probability density function of the studied physical
quantity is solved by combining the initial conditions and the boundary conditions. In
recent years, the theory has made good progress in the analysis of uncertainty reliability
and in the application of large-scale nonlinear structures [24,25].

The motion equation of n degree of freedom system can be expressed as:

M(Θ)
..
X + C(Θ)

.
X + G(Θ, X) = ΓF(Θ, t), (12)

where M, C are the n × n order mass and damping matrix, G (·) is the linear or nonlinear
restoring force vector,

..
X,

.
X and X are the acceleration, velocity and displacement vectors

of the structural response respectively, the Γ is n × r order excitation influence matrix and
the F(Θ, t) is r order excitation vector. And n is the number of degrees of freedom of the
system and r is the order of external excitation here.

For a general well posed dynamic system, the physical solution of Equation (12) exists,
uniquely and continuously depends on the basic parameters, so the solution of Equation
(12) can be expressed as:

X = H(Θ, t). (13)

The speed process can be expressed as:

.
X = h(Θ, t). (14)

The information of other physical quantities Z = (Z1, . . . , Zm)T in practical engineer-
ing can also be expressed as a function of basic random variables by establishing relations
with

..
X and

.
X through constitutive relations and deformation coordination relations:

Z = HZ(Θ, t). (15)

The time change rate (speed) can be expressed as:

.
Z = hZ(Θ, t). (16)

Since Equation (16) itself can be considered as a random dynamic process, the random-
ness comes entirely from Θ. The extended random process (Zt, Θ) is described according
to the random event of probability conservation in the whole evolution process. The gener-
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alized probability density evolution equation can be obtained, considering the arbitrariness
of ΩΘ [26]:

∂pZΘ(z, θ, t)
∂t

+
m

∑
l=1

.
Zl(θ, t)

∂pZΘ(z, θ, t)
∂zl

= 0, (17)

where pZΘ(z, θ, t) refers to the joint PDF of (Z, Θ), in which the source random factors are
completely described by Θ. Z refers to the physical quantity studied. The augmented
system composed of (Z, Θ) is a conservative probability system, which follows the law of
probability conservation.

It is worth pointing that the dimension m of this equation is the number of physical
quantities studied. When only a certain response physical quantity is considered, the
equation can further degenerate into a one-dimensional partial differential equation:

∂pZΘ(z, θ, t)
∂t

+
.
Z(θ, t)

∂pZΘ(z, θ, t)
∂z

= 0. (18)

Equation (18) has only partial differential for z and t, while θ is in the form of a
parametric equation. Therefore, a series of deterministic values can be obtained, that
is, for a given Θ = θq (q = 1, 2, . . . , nsel), where q represents different ground motion

processes, and nsel = 89 in this paper. Derivative (velocity)
•

Zj(θq, tm)(j = 1, 2, . . . , m) of
the required physical quantity and θq can be obtained by solving the physical equation.
When the random parameters are determined by selecting points in the probability space,
the partial differential equation of the random dynamic system is transformed into a set
of deterministic dynamic equations. The engineering structure can be solved by various
numerical simulation methods such as finite element method and finite difference method,
and Equation (18) becomes the following series of equations:

∂pZΘ(z, θq, t)
∂t

+
m

∑
j=1

.
Zl(θq, t)

∂pZΘ(z, θq, t)
∂zj

= 0, q = 1, 2, . . . , nsel . (19)

The initial condition of Equation (19) is:

∂pZΘ(z, θq, t)|t=t0 = δ(z − z0)Pq. (20)

The boundary conditions of Equation (19) are:

∂pZΘ(z, θq, t)
∣∣∣zj→±∞ = 0 , j = 1, 2, . . . , m. (21)

The discrete numerical solutions pZΘ(z, θq, t) can be obtained by bringing in the
initial conditions and boundary conditions. The solutions pZ(z, t) can be obtained by
accumulating all the above discrete numerical solutions, and the result when m = 1 is as
follows:

pZ(z, t) =
nsel

∑
q=1

pZΘ(z, θq, t). (22)

2.3. Reliability Calculation Based on GPDEM

The dynamic reliability of engineering structures usually includes two kinds of prob-
lems: first exceedance probability failure and cumulative damage failure reliability, which
can be obtained by constructing a virtual random process and solving the corresponding
generalized probability density evolution equation [27].

Taking a random process X(Θ, t) (random ground motions in this study) as an exam-
ple, its extreme value can be expressed as follows [28]:

YX = max(X(Θ, t), t ∈ [0, T]). (23)
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The extreme value or cumulative value depends on the source random vector Θ and
the random variables of the time period [0, T], so a virtual process can be constructed:

ZX(τ) = ψ[YX, τ] . (24)

Obviously, the condition Equation (25) can be met:

ZX(τ)|τ=0 = 0 , ZX(τ)|τ=1 = YX. (25)

For Equation (24), the derivative of τ is:

•
ZX =

∂ZX

∂τ
= WX(Θ, T). (26)

Since the randomness of the virtual random process ZX(τ) comes entirely from Θ,
(ZX(τ), Θ) constitutes a probabilistic conservative system. According to the GPDEM, the
joint PDF of (ZX(τ), Θ), that is pZΘ(z, θ, t), satisfies the following generalized probability
density evolution equation:

∂pZΘ(z, θ, t)
∂t

+ WX(θ, T)
∂pZΘ(z, θ, t)

∂z
= 0. (27)

The equation is solved to obtain the cumulative distribution curve of the studied phys-
ical quantity based on the solution method in Section 2.2, so as to obtain the transcendence
probability corresponding to each value.

2.4. Calculation Indexes of Reliability Analysis of Concrete Face Rockfill Dam

At present, the finite element dynamic time history analysis method is used for the
stability analysis of the dam body, and the indexes include cumulative time of Fs < 1.0 and
cumulative slip. In this paper, the two indexes are used to judge the damage grade of the
dam body.

2.4.1. Overall Stability Index

(1) Safety factor

The safety factor is the ratio of the maximum shear strength provided by the soil on the
potential sliding surface to the actual shear stress generated by the external load. The pre-
earthquake stress of the dam and the instantaneous dynamic stress during the earthquake are
calculated by the finite element method. The stability of the dam is calculated based to the
static and dynamic superposition results of the element based on Newmark method [29,30],
and the safety factor is calculated with the following formula:

Fs =

n
∑

i=1
(ci + σitanϕi)li

n
∑

i=1
τi li

, (28)

where ci and ϕi are the cohesion and internal friction angle of the soil in the ith cell
respectively; li is the length of the slip arc through the ith cell; σi and τi are the normal
stress and tangential stress on the slip arc surface of the ith cell, which are obtained by
superposition of pre-earthquake stress and dynamic stress.

(2) Cumulative time of Fs < 1.0

The time cumulative time of Fs < 1.0 in the whole earthquake process is obtained by
determining and judging the minimum safety factor at each time and cumulative addition.
In this paper, the criteria for classifying the damage level according to cumulative time is
taken as: it is considered that slight damage occurs when the cumulative time is greater
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than 0 s. The time of 0.5 s is the moderate failure limit, 1.5 s is the severe failure limit, and 2
s is the local non dam break limit according to [31].

2.4.2. Local Sliding Failure Index

In this paper, the cumulative slip is used as the index to evaluate the local slip failure
degree of the dam body. Based on the existing research [32,33] and the China Hydraulic
Seismic Design Code (NB 35047-2015), the evaluation criteria of the cumulative slip index
used in this paper are as follows: when the slip begins, it is judged as mild failure; 20 cm is
the moderate failure limit, 100 cm is the severe failure limit, and 150 cm is the local non
dam break limit.

For any sliding arc, the sliding angular velocity of the slider around the center of the
circle can be calculated by Equation (29) [30]:

α(t) =
M

I
, (29)

M = [
n

∑
i=1

τi li −
n

∑
i=1

(ci + σitanϕi)li]R, (30)

where, I is the moment of inertia of the sliding body; α(t) is the sliding angular velocity of
the sliding body after instantaneous instability; M is the rotational moment acting on the
sliding body, and R is the slip arc radius.

When an instantaneous slip occurs in a slip arc at a certain time, the slip amount of
the slip arc is:

Dk
i = Rk

�
αk

i dt. (31)

Multiple instantaneous sliding may occur in the whole time period, and the cumulative
sliding amount is:

Dk =
n

∑
i=1

Dk
i . (32)

Maximum slip of dam slope is the maximum cumulative slip of all possible slip arcs:

Dmax = max(D1, D2, . . . , Dk, . . . , Dm). (33)

2.5. Reliability Analysis

This paper mainly selects two characteristic physical quantities: safety factor cumula-
tive time of Fs < 1.0 and cumulative slip to determine the stability of the dam body, and
carries out reliability analysis by calculating the failure probability of different grades of
the dam body. The state function of the structure can be expressed as:

U = R − S = g(X1, X2, . . . , Xn), (34)

where U is the structural state function, which is used to represent the safe state of the
structure. At that time U = 0, it means that the structure reaches the failure limit state, when
U < 0, it means that the structure is damaged, when U > 0, it means that the structure is safe;
R indicates the comprehensive resistance of the structure (i.e., the allowable failure state
of the structure in this paper), and S indicates the bearing effect of the structure (i.e., the
calculated maximum value). If expressed as a function, R and S can be comprehensively
expressed as functions of basic random variables (such as strength parameters, seismic
load, displacement response, etc.).

The reliability analysis of the structures (i.e., the calculation formula of failure proba-
bility) is following:

Pf = P(Z < 0) =
0∫

−∞

f (Z)dZ, (35)
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where Pf is failure probability. In this paper, it represents the probability that the calculated
values of indicators exceed the allowable values for the specified failure level.

3. Example Analysis

3.1. Model Establishment

This paper has used the Gushui CFRD as an example [34]. The elevation of the dam
crest is 2287 m; the elevation of the dam bottom is 2042 m; the dam height is 242 m (the
wave wall is not considered); the upstream dam slope is 1:1.5; the downstream dam slope
above the path is 1:1.6; and the slope below the path is 1:1.5. The width of the dam crest is
20 m and the length of the dam crest is 437 m. The cushion zone and the transition zone
are set under the face slab. The width of the cushion zone is 4 m, the total thickness of the
transition zone is 8 m, and the face slab thickness is 0.4 m~1.24 m. The face slab was poured
in three phases to 2167 m, 2235 m, and 2285 m, respectively, and the water storage was
stored in two phases to 2267 m (the designed normal water level). The model was densified
at the upper part of the dam, where the vertical spacing was set at 1m, considering the
dam size, the research purpose, and existing studies [35,36], so the number of model nodes
was 8432 and the number of elements was 8277 (Figure 1) before the application of GRSS
for the dam slope. The setting of earthquake-resistant measures is shown in Figure 2.
The dam element was simulated by the quadrilateral isoparametric element, which is a
continuous medium block isoparametric element. The non-thickness Goodman element
was used for the indirect contact surface between the panel and the cushion zone, based on
the assumption that the two contact surfaces were connected by countless tiny tangential
and normal springs. The contact surface and adjacent contact surface elements only had
force connected at the node. The above two element types are often used in the field of
earth-rock dams [37], and the accuracy meets engineering needs. After filling and water
storage, static, dynamic, and two-dimensional stability calculations were carried out. The
hydrodynamic pressure on the panel was simulated by the added-mass method [38].

Figure 1. Finite element mesh of the dam.

Figure 2. GRSS setting.

3.2. Constitutive Model and Material Parameters

In this paper, the static calculation of rockfill is simulated by Duncan-Chang E-B
model [39]. Based on Duncan Chang E-μ, volume modulus B is used instead of Poisson’s
ratio νt as the calculation parameter in Duncan-Chang E-B model, solving the problem
which is quite different from the actual situation in the hyperbolic assumption. The dy-
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namic calculation is analyzed by equivalent linear analysis method based on equivalent
visco-elastic model [40]. In this paper, the static, dynamic and stability calculation are based
on GEODYNA, which has good performance in the calculation of large-scale nonlinear
structures [41]. Based on the dam site conditions and specifications, the static and dynamic
material parameters of dam rockfill are as show in Tables 1 and 2, comprehensively consid-
ering the existing studies [34,42–45]. The density of GRSS is taken as 2.6 × 103 kg/m3, and
the ultimate strength is 85 kN/m.

Table 1. Parameters of Duncan-Chang E~B model for static analysis.

Material
ρ

(kg/m3)
ϕ0 (◦) Δϕ (◦) n Rf Kb m K

Upstream
rockfill 2214 55.5 11.3 1350 0.28 0.80 780 0.18

Downstream
rockfill 2214 53.0 11.0 1000 0.26 0.79 700 0.16

Drainage zone 2214 55.0 12.2 1300 0.31 0.79 800 0.12

Transition
material 2222 53.5 10.7 1250 0.31 0.78 720 0.16

Cushion material 2258 54.4 10.6 1200 0.30 0.75 680 0.15

Table 2. Parameters of equivalent visco-elastic model for dynamic analysis.

Material K n

Upstream rockfill 2660 0.444

Downstream rockfill 4997 0.298

Drainage zone 3115 0.396

Transition material 3828 0.345

Cushion material 5297 0.33

3.3. Ground Motions Input

Viscoelastic artificial boundary and equivalent node load are used for wave input [46,47]
to realize ground motion input considering the radiation damping effect of infinite foundation
and the influence of traveling wave effect. The horizontal PGA is 0.340 g. The vertical PGA is
2/3 of the horizontal acceleration.

This chapter uses the aforementioned spectral expression-random function non-
stationary random ground motion model to generate the seismic input of 89 different
action processes due to the difference of ground motions in the magnitude of ground
motion frequency, the height of peak and valley value and the duration of fluctuation mode.
When 89 sample acceleration time histories are generated, the error between the mean
value of peak acceleration and the target value (zero) is 8.0%. The results show that the
characteristics of the sample set are consistent with the target in the second-order numerical
statistical sense [20]. Figure 3 shows the seismic acceleration time series information of the
generated ground motion samples. Figure 3b,c show the mean and standard deviation of
the generated ground motion samples. Figure 3e shows that the mean of response spectrum
of 89 samples coincides with the specification spectrum in China Hydraulic Seismic Design
Code (NB 35047-2015). It can be seen that the ground motions generated by the spectral
expression-random function non-stationary ground motion model fit well with the target
earthquake motion.
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(a) (b) 

 
(c) (d) 

β 
T

 
(e) 

Figure 3. Comparison of the seismic acceleration time series between the samples and target: (a) Typical non-stationary seis-
mic acceleration time series; (b) Mean acceleration time series; (c) Standard deviation acceleration time series; (d) Magnifying
view of the mean acceleration time series; (e) Response spectrum.

3.4. Seismic Response Analysis

In order to study the influence of GRSS on the stability of dam slope during earth-
quakes, based on the existing research [9–11] and with reference to the common parameter
settings in engineering [48], the vertical spacing of GRSS layers (Sv) was set at 4 m and the
length (Lmax) was set at 50 m, for comparison with the original dam slope as a typical work
condition. The random dynamic response of the dam slope was analyzed, and the seismic
performance of the proposed measure was evaluated from the perspective of reliability.

Eighty-nine groups of safety factor history curves were obtained by calculating the
dynamic response of the high CFRD under 89 groups of random ground motions. The
safety factor probability density surface (Figures 4b and 5b) was solved by the finite
difference method (FDM) in TVD format [26] to reflect the transmission information of
the safety factor in space and time, based on the GPDEM. The PDF of the safety factor
fluctuated in time and space, and the safety factor gradually concentrated with increases
in time. The comparison between the two figures showed that GRSS have no significant
impact on the shape of PDF as a dam safety factor.
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(a) (b) (c) 

Figure 4. Probability density evolution information of safety factor before reinforcement: (a) Probability density function at
typical time; (b) Probability density function evolution surface; (c) Probability density function contour.

  
(a) (b) (c) 

Figure 5. Probability density evolution information of safety factor after reinforcement: (a) Probability density function at
typical time; (b) Probability density function evolution surface; (c) Probability density function contour.

Figure 6 shows the probability density information of the minimum safety factor before
and after the application of earthquake-resistant measures, obtained by solving the equivalent
extreme-value event. Before GRSS measures were taken, the average value of the minimum
safety factor was 0.944 and the standard deviation was 0.131. After the measures were taken,
the average value of the minimum safety factor increased to 1.003 and the standard deviation
decreased to 0.105 (Figure 6a). The calculation results of the reinforced slopes showed that
the minimum safety factor not only improved in value, but also reduced in dispersion, which
indicated that GRSS can not only maintain the stability of a dam body when encountering
earthquakes, but also improve the stability of the overall response of the dam body when
encountering different ground motions. Similar conclusions were also reached in Figure 6b; that
is, GRSS are conducive to improving the reliability of a dam under random ground motions.

(a) (b) (c) 

Figure 6. Discrete point distribution and probability information of minimum safety factor: (a) Discrete point distribution;
(b) Probability density distribution function; (c) Exceedance probability.
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3.5. Reliability Analysis of Dam
3.5.1. Overall Stability Analysis of Dam Body

In this section, the probability density function of the cumulative time of Fs < 1.0 was
solved by constructing a virtual random process to analyze the stability of non-reinforced
slopes and reinforced slopes, based on the 89 groups of random ground motions referred
to in Section 3.3. Under different seismic ground motions, the maximum value of the
cumulative time of the original dam body was 1.43 s, which was quite different from the
minimum value of 0 s (Figure 7a); the seismic performance of the proposed measure in
reducing cumulative time was inconsistent, indicating the need to analyze the seismic
performance of earthquake-resistant measures from the stochastic perspective.

 
(a) (b) (c) 

Figure 7. Discrete point distribution and probability information of cumulative time: (a) Discrete point distribution;
(b) Probability density distribution function; (c) Exceedance probability.

According to the aforementioned standard, the probability of a mild failure of the
original dam slopes was large, up to more than 50%, while it was not easy to cause moderate
or severe damage, as GRSS have an obvious effect in maintaining the stability of the dam
slope (Table 3).

Table 3. Relationship table of cumulative time-exceedance probability.

Exceedance
Probability (%)

Non-Reinforce
Slopes

Reinforce
Slopes

Reduced
Value

Relative
Reduction Value

Cumulative
time (s)

0 50.11 37.96 12.15 24.25

0.2 24.92 16.55 8.37 33.59

0.5 6.86 3.77 3.09 45.04

1.0 1.36 0.94 0.42 30.88

1.5 0.47 0.16 0.31 65.96

2.0 0.06 - 0.06 100.00

3.5.2. Analysis of Local Sliding Failure of Dam Slope

Figure 8 and Table 4 show the probability information of cumulative slippage of dam
slopes under random ground motions. According to the calculated results, smaller parts
of ground motions will generate local sliding of a CFRD under proposed seismic ground
motions, and the failure probability of moderate or severe sliding of the dam slope is small.
From the perspective of reliability, the proposed measure has an obvious inhibitory effect
on the local sliding of the dam slope.
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(a) (b) (c) 

Figure 8. Discrete point distribution and probability information of cumulative slippage: (a) Discrete point distribution;
(b) Probability density distribution function; (c) Exceedance probability.

Table 4. Relationship table of cumulative slippage-exceedance probability.

Exceedance
Probability (%)

Non-Reinforce
Slopes

Reinforce
Slopes

Reduced
Value

Relative
Reduction Value

Cumulative
slippage

(m)

0 33.79 23.63 10.16 30.07

0.2 2.88 2.23 0.65 22.57

0.5 1.39 0.44 0.95 68.35

1.0 - - - -

1.5 - - - -

3.6. Analysis on Influenceing Factors of GRSS Performance

In this section, failure probability was calculated by adjusting the length and vertical
spacing of reinforcement based on the 89 groups of random ground motions as described in
Section 3.3. The influence of reinforcement-setting on the seismic performance of GRSS was
considered, to find the optimal GRSS setting from the perspective of reliability, which can
be used to provide a reference for the design of earthquake-resistant measures, considering
both project costs and effects.

3.6.1. Impact on Maintaining Overall Stability

In order to analyze the influence of the length and vertical spacing of reinforcement
on the stability of CFRD slopes, this section kept other factors unchanged, while different
characteristic lengths (Lmax = 40 m, 50 m, and 60 m) and characteristic vertical spacings
(Sv = 2 m, 4 m, and 6 m) of GRSS were selected according to previous engineering experi-
ence and the research of previous literature [11,12]. The equivalent extreme values were
calculated based on the GPDEM for the cumulative time of Fs < 1.0 (as shown in Figure 9).
The results showed that with other factors unchanged, the reliability of CFRD increased
with the increase in reinforcement length and decreased with the increase in reinforcement
vertical spacing. The probability of mild failure of dam slope followed an order of 40.10%,
37.96%, and 37.80%, with the increases in the length of reinforcement. It can be seen that
when the length increased to more than 50 m, the stability reliability of dam slope did not
increase significantly. With the increase in vertical spacing, the probability of mild failure
of dam slope was 30.73%, 37.96%, and 39.47%, respectively. Other failure conditions were
similar, proving that the stability of dam slope decreases significantly when reinforcement
spacing is expanded from 2 m to 4 m (Table 5).

Table 5 compares and analyzes the consistency risk of various working conditions
based on performance. Taking working condition 1 (with GRSS vertical spacing of 2 m and
length of 50 m) as an example, under random ground motion with a GPA of 0.340 g, the
probability of mild failure, moderate failure, and severe failure of the dam slope followed
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an order of 30.73%, 2.69%, and 0.06%, respectively. The probability basically did not reach
the situation of local dam-break, which implied that the overall stability reliability of the
dam slope was high when the vertical spacing of the geogrid reinforcement was 2 m and
the length was 50 m. Even if damage occurred, it was mild and easy to repair, and had little
economic or social impact under condition 1. The analysis of other working conditions
is similar. These findings can provide a reference for the reliability analysis of GRSS in
engineering.

 
(a) (b) 

Figure 9. Cumulative time-exceedance probability curve under various working conditions: (a) Change of reinforcement
length; (b) Change of reinforcement vertical spacing.

Table 5. Relationship table of cumulative time-exceedance probability under various working
conditions.

Exceedance
Probability (%)

Sv (m) Lmax (m)
Cumulative Time (s)

0 0.5 1.0 1.5 2.0

Condition 1 2 50 30.73 2.69 0.69 0.06 -

Condition 2 4 40 40.10 4.42 1.15 0.36 0.03

Condition 3 4 50 37.96 3.77 0.94 0.16 -

Condition 4 4 60 37.80 3.67 0.94 0.16 -

Condition 5 6 50 39.47 4.63 1.09 0.28 0.02

3.6.2. Influence on Restraining Local Sliding Failure

Similarly, in order to study the influence of adjusting the length and vertical spacing of
GRSS on the local sliding of concrete-face rockfill dams subjected to earthquakes, different
lengths and vertical spacings of geogrid reinforcement were adopted in this section, and
the cumulative sliding index was then calculated. Taking mild failure as an example, with
an increase in reinforcement length, the probability of mild failure of dam slope followed
an order of 25.41%, 23.63%, and 23.07% under the random ground motions with GPA
of 0.340 g. With increases in reinforcement vertical spacing, the probability was 18.05%,
23.63%, and 26.52%, respectively. Moderate failure was similar, indicating that the local
sliding failure probability of CFRD decreases with an increase in reinforcement length and
increases with an increase in reinforcement spacing (Figure 10 and Table 6).
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(a) (b) 

Figure 10. Cumulative slippage-exceedance probability curve under various working conditions: (a) Change of reinforce-
ment length; (b) Change of reinforcement vertical spacing.

Table 6. Relationship table of cumulative slippage-exceedance probability under various working
conditions.

Exceedance
Probability (%)

Sv (m) Lmax (m)
Cumulative Slippage (m)

0 0.2 0.5 1.0 1.5

Condition 1 2 50 18.05 2.01 0.12 - -

Condition 2 4 40 25.41 2.38 0.99 - -

Condition 3 4 50 23.63 2.23 0.44 - -

Condition 4 4 60 23.07 2.20 0.42 - -

Condition 5 6 50 26.52 2.37 0.71 - -

4. Conclusions

In this paper, the reliability of the seismic performance of GRSS was evaluated from
the perspective of probability and the influence of factors on performance. The conclusions
were as follows:

(1) A set of reliability analysis systems of high CFRDs was established by combining a
non-stationary ground motion model, a generalized probability density evolution
theory, and multi-evaluation indicators, providing a method for the evaluation of
seismic performance of earthquake-resistant measures.

(2) GRSS can not only maintain the stability of a dam body during an earthquake; it can
also improve the stability of the overall response of a dam under different ground
motions.

(3) The dam slope of the Gushui CFRD is more susceptible to slight damage under
random ground motions with a PGA of 0.340 g, with a certain probability of moderate
damage and a lower probability of severe damage. The calculation results showed
that the seismic performance of GRSS can inhibit mild damage of 20–30% of ground
motion samples and avoid severe damage with a high probability.

(4) With an increase in geogrid reinforcement length and a decrease in vertical spacing,
the seismic performance in maintaining dam slope stability increases due to strong
constraints. However, the increase in reinforcement length has little influence on the
performance of GRSS. When reinforcement vertical spacing is reduced from 4 m to
2 m, the reduction in the earthquake-resistant effect of GRSS is relatively obvious.
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This is conducive to actual engineering design, considering economics and seismic
performance.
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Abstract: Accurately evaluating rockburst intensity has attracted much attention in these recent
years, as it can guide the design of engineering in deep underground conditions and avoid injury to
people. In this study, a new ensemble classifier combining a random forest classifier (RF) and beetle
antennae search algorithm (BAS) has been designed and applied to improve the accuracy of rockburst
classification. A large dataset was collected from across the world to achieve a comprehensive
representation, in which five key influencing factors were selected as the input variables, and the
rockburst intensity was selected as the output. The proposed model BAS-RF was then validated
by the dataset. The results show that BAS could tune the hyperparameters of RF efficiently, and
the optimum model exhibited a high performance on an independent test set of rockburst data and
new engineering projects. According to the ensemble RF-BAS model, the feature importance was
calculated. Furthermore, the accuracy of the proposed model on rockburst prediction was higher than
the conventional machine learning models and empirical models, which means that the proposed
model is efficient and accurate.

Keywords: rockburst classification; data-driven approach; random forest; beetle antennae search
algorithm

1. Introduction

Rock stability in deep underground conditions is seriously affected by rockburst,
which still attracts a lot of attention nowadays [1,2]. In civil engineering and mining
engineering, rockburst events normally occur suddenly, causing a loss of money in working
facilities. Accurately evaluating the rockburst intensity has been a significant task as it can
be a guideline in this area and guide managers to design carefully [3,4].

Rockburst cases occur in different conditions, such as tunneling and mining [5–7].
For instance, in the deep traffic tunnel in China, there are different grades of rockburst,
which have caused different types of damage to the tunnel. Slight rockburst causes some
cracks in the concrete in the tunnel face, and moderate rockburst affects the arc cavity
pits, with depths of about 1 m, while intense rockburst affects the arc and wedge-shaped
pits with depths of about 2 m, and the extremely intense rockburst almost destroyed the
working condition, causing the depth of the pits to be about 3 m. Therefore, classifying
and predicting the rockburst intensity plays a significant role in working safety.

Nowadays, the mechanism of rockburst is still not clear, but the basic laws of it
are known as instantaneous slip and instantaneous fracturing. To control the rockburst,
different methods have been proposed, such as temporary and permanent rock support
systems; however, these approaches are not efficient as the rockburst intensity is difficult
to know properly. Thus, some monitoring methods, such as a microseismic monitoring
system, were applied to record and analyze the rockburst events [8]. The microseismic
monitoring system records the rockburst intensity after the rockburst events, and it cannot
predict the rockburst in advance. Hence, estimating and predicting rockburst intensity
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before its occurrence is of importance. Different models have been proposed, such as stress
criteria, including the Barton, Hoek and Brown, Hou, Russenes, and Turchaninov criteria.
Furthermore, the existing prediction approaches can be regarded as short-term and long-
term predictions. In short-term predictions, the rockburst occurrence is based on in-situ
site testes; however, the long-term prediction is basically according to the fundamental
methods, such as strength theory and energy theory, which are similar to simulation,
machine learning, and empirical knowledge methods [9].

Due to the uncertainties of rockburst and the unclear mechanism of occurrence, a
curtained model or method is not suitable for the accurate prediction of rockburst. The
method should consider more influencing factors related to rockburst occurrence, with
random, fuzzy, or even both mechanisms, and thus, the artificial intelligence method
can perfectly solve the problem [10,11]. For instance, there are various machine learning
methods for predicting long-term rockburst hazards, such as support vector machines,
artificial neural networks, and decision trees. The previous studies are summarized in
Table 1. It can be noted that the prediction accuracy of rockburst intensity is affected by
the number of data and different machine learning algorithms. Therefore, developing a
high-performance and less-time-consuming ensemble classifier for the larger dataset is
quite important.

Table 1. Previous studies on rockburst prediction with different machine learning methods.

Algorithms Accuracy (%) Data References

SVM
100 16 Zhao et al. [12]
93.8 45 Zhu et al. [13]

51.7–67.2 246 Zhou et al. [14]
ANFIS 66.5–95.6 174 Adoko et al. [15]

ANN

72.2 18 Chen et al. [16]
100 19 Xiao et al. [17]
100 10 Feng et al. [10]
85.2 134 Faradonbeh et al. [18]

CM
90–94.1 164 Liu et al. [19]
76.4–82 209 Zhou et al. [20]
71–76 246 Zhao et al. [14]

LR
80.2–90.9 135 Li et al. [21]

88.3 188 Afraei et al. [22]

BN
91.7 135 Li et al. [23]

53.9–65.8 246 Lin et al. [24]

KNN
53.2–67.2 246 Zhou et al. [14]
50–65.9 246 Lin et al. [24]

DT
81.5 134 Faradonbeh et al. [18]

73–93 132 Pu et al. [25]
89.2–90.2 174 Ghasemi al. [26]

Note: SVM, Support vector machines; ANFIS, adaptive neuron fuzzy inference system; ANN, Artificial neural
network; LR, Logistic regression; CM, Cloud model; BN, Bayesian network; KNN, k-nearest neighbors; DT,
Decision tree.

Random forest (RF) has been applied in rockburst classification [27]. However, the
relevant studies are fewer [14,24,28], by which their accuracy is limited by the hyperparam-
eters, i.e., the number of the trees and the minimum leaf node. To optimize the structure
of RF, there are some global optimization algorithms, such as the firefly algorithm (FA)
and particle swarm optimization (PSO). However, these algorithms are time-consuming,
and therefore, a new global algorithm should be proposed. Beetle Antennae Search (BAS),
is a biologically inspired, intelligent optimization algorithm, which is inspired by the
foraging principle of longicorn beetles. Furthermore, it has been used for tuning the
hyper-parameters of ML algorithms in recent years.

This research aims to develop a machine learning-based model to study rockburst
classification. The BAS algorithm was employed to tune the hyper-parameters of the RF
algorithm. The performance of the ensemble BAS-RF model has been compared with
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other machine learning algorithms: the support vector machine, k-nearest neighbors, and
decision tree algorithms. Furthermore, the BAS-RF has been tested against empirical
criteria as well as previously published RF models, which were developed to address the
rockburst problem.

2. Dataset Preparation

A total of 279 cases of rockburst events reported in the literature were collected to build
a dataset [14,26,29–32]. The dataset included five influencing variables, with the buried
depth of opening (H), the maximum tangential stress of the excavation boundary (σθ), the
uniaxial compressive strength of rock (σc), the tensile rock strength (σt), and the elastic
energy index (Wet) as input parameters and rockburst intensity as the output. These input
variables are commonly applied in rockburst classification and can provide fundamental
understandings about rockburst occurrence in underground conditions. According to rock
failure properties, the output parameter, i.e., rockburst intensity, contains four different
classes, namely none, light, moderate, and strong. The frequency of each input parameter
is depicted in Figure 1. The statistics of the input parameters are summarized in Table 2.

Figure 1. The statistics of input and output in the rockburst dataset.

335



Mathematics 2021, 9, 2965

Table 2. The collected input variables.

Parameters Min Max Mean Standard Deviation

H (m) 80 1251 682.2 291.4
σc (MPa) 3.6 306.6 118.9 69.8
σt (MPa) 0.2 21.2 8.6 6.1
σθ (MPa) 2.1 171.1 63.4 42.5

Wet 0.85 10.57 5.2 3.4

3. Algorithm Background and Ensemble Model

3.1. Algorithms Description
3.1.1. Decision Tree and Random Forest

The Decision Tree (DT) and Random Forest (RF) both have tree structures. In contrast
to the DT, the random forest uses the method of majority votes. The normal structure of
DT and RF is shown in Figure 2.

Figure 2. The structure of DT and RF.

The C 4.5 algorithm in this study was applied for the attribute selection process, which
can be expressed as follows:

GainRatio (S, A) =
Gain (S, A)

SplitIn f o (A)
(1)

where S is the training set; A is the attribute; SplitIn f o (A) is given by

SplitIn f o (A) = ∑
vεDomain (A)

∣∣SA
v
∣∣

|S| · log2

∣∣SA
v
∣∣

|S| (2)

The necessary steps are (1) selecting random K data points from the training set, (2)
building the decision trees associated with the selected data points, (3) choosing the number
of decision trees, (4) repeating steps 1 and 2, (5) finding the predictions of each decision
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tree for new data points, and assigning new data points to the category having the majority
of votes.

3.1.2. K-Nearest Neighbor

The K-Nearest Neighbor (KNN) is a non-parametric and lazy learning algorithm. K
is the number of nearest neighbors. The number of neighbors is the core deciding factor.
There are some basic steps, i.e., calculate the distance, find the closest neighbors, and vote
for labels. The structure of KNN is depicted in Figure 3.

 

Figure 3. The structure of KNN.

3.1.3. Support Vector Machines

Support Vector Machines (SVM) are considered to be a classification approach by
constructing a hyperplane in a multidimensional space to separate different classes. They
include the following steps: generate hyperplanes and select the right hyperplane with the
maximum segregation. The structure of SVM is shown in Figure 4.

Figure 4. The structure of SVM.

3.1.4. Beetle Antennae Search Algorithm

The Beetle Antennae Search algorithm (BAS) is an intelligent optimization algorithm,
proposed by Jiang et al. in 2017. Different from other bionic algorithms, the Beetle Antenna
Search algorithm is a monomer search algorithm with the advantages of a simple principle,
fewer parameters, and less computation. It has great advantages in dealing with low-
dimensional optimization objectives, such as low time complexity and strong searchability.
The flow chart of BAS is given in Figure 5. In this study, the iteration of BAS was set as 50,
and the step factor was set as 0.95. All algorithms were developed by Matlab software.
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Figure 5. The flowchart of BAS.

3.2. The Methodology of Ensemble RF-BAS Model

There are several procedures for constructing an ensemble model.
Step 1: Splitting the dataset into a train dataset and test dataset, and normally, the

proportion is 70% and 30%, respectively. It should be pointed out that due to the rockburst
intensity being classed into four classes, the train and test dataset should also be divided
into four subsets accordingly.

Step 2: Initialing the parameters of BAS, i.e., the beetle’s position in the space, in which
the dimension of the position vector is the number of hyperparameters of the algorithm.

Step 3: Training the model and calculating the fitness value on the remaining subset
of the training set.

Step 4: The BAS will tune the hyper-parameters by decreasing the fitness value. When
the iteration of 50 is reached, the optimal hyperparameters can be found.

Step 5: The above process is repeated five times, and it can be called a fivefold
cross-validation (CV) (shown in Figure 6). The full procedure is depicted in Figure 7.
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Figure 6. Fivefold cross-validation (CV).

 

Figure 7. The procedures of hyperparameter tuning of RF by BAS.
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3.3. Performance Evaluation Methods

In this study, we applied the classical methods for model evaluation. The receiver op-
erating characteristic (ROC) curve and the AUC curve (the area under the ROC) were used
in the evaluation of rockburst classification. The horizontal axis is the false positive rate
(FPR); however, the vertical axis represents the true positive rate (TPR) in the ROC curve.

4. Results

4.1. Hyper-Parameter Tuning

In this procedure, AUC was set as the objective function, and the hyper-parameters
of RF, i.e., (the number of the trees and the minimum required samples at a leaf node)
were tuned by BAS. Then, in the test process, four BAS-RF models were used to classify
the unknown samples. The AUC values and convergence showed different patterns with
different classes (given in Figure 8). With the increase of iteration, the average AUC values
increased sharply before five iterations, meaning that the BAS could tune the hyper-parameters
quickly and effectively. The hyper-parameters of RF were given in Table 3.

Figure 8. The evolution of AUC values with different dataset classes by BAS tuning.

Table 3. The optimum hyperparameters in each class.

Number of Input
Variables

Hyperparameter Definition Scope
Class

None Light Moderate Strong

5
tree_num The number of the trees 2–100 42 29 34 17

min_sample_leaf The minimum required
samples at a leaf node 1–10 1 1 2 1

4.2. Validation of BAS-RF

In the testing dataset, the proposed BAS-RF model was applied to validate the accuracy
on that dataset. The final results are given in Table 4. As can be seen, the accuracy was over
0.90, which means that the proposed model could be used for a new dataset.

Table 4. The confusion matrix of the proposed model on test validation.

Rockburst Actual
Predicted Percentage

Correct
Accuracy

None Light Moderate Strong

None 35 32 1 1 1 0.91

0.92
Light 20 1 19 0 0 0.95

Moderate 15 0 1 13 1 0.86
Strong 14 0 1 0 13 0.92
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4.3. The Rank of Influencing Variables

The ranking influence of each input variable on the rockburst is depicted in Figure 9. Wet
was the most important variable influencing rockburst intensity, followed by σθ , H, σc, and
σt. The results indicate that more attention should be given to Wet, σθ , and H in engineering
projects. Although some parameters, i.e., σc, and σt, have a lower influence on rockburst
intensity, they should still be taken into account when analyzing rockburst events.

 
Figure 9. The relative importance of variables.

5. Discussion

5.1. Comparison of the BAS-RF with Baseline Models

The performance of the BAS-RF model was evaluated with SVM, DT, and KNN
machine learning models. The BAS-RF model was the most accurate model, having an
accuracy of 0.92 (Table 5). The DT, SVM, and KNN models had accuracies of 0.84, 0.76, and
0.71, respectively. The comparison analysis confirmed that the proposed BAS-RF model
achieved a better performance than the other machine learning classifiers. Furthermore,
the conventional RF models on rockburst assessment in previous studies were compared
with BAS-RF; the accuracy performance of BAS-RF was higher than existing RF models.
Few studies have already applied the conventional RF model for rockburst assessment. In
this section, the proposed ensemble classifier BAS-RF was compared with the findings of
the previous studies. Zhou et al. (2016) compared the performance of 10 machine learning
algorithms to analyze rockburst events. They used 246 cases and considered seven input
variables. Lin et al. (2018) investigated rockburst events using machine learning models.
They investigated 246 rockburst cases, considering six input variables. The accuracy
performances of the RF model developed by Zhou et al. (2016) and Lin et al. (2018) were
0.73 and 0.61, respectively. The BAS-RF model performed much better compared to the
existing RF models. The model was developed using a larger dataset, and thus, it can be
applied over a wider range of conditions. Although both models developed by Zhou et al.
(2016) and Lin et al. (2018), respectively, considered seven and six input variables, they still
led to a lower prediction accuracy. Furthermore, we compared the results (summarized
in Table 5) with conventional empirical models, such as the rock brittleness coefficient
criterion, burst proneness index, and Russenes criterion. The BAS-RF model performed
better than the empirical models.
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Table 5. Classification accuracy of ensemble classifiers and baseline models.

ML Models Empirical Models

BAS-RF SVM DT KNN
Conventional

RF

Rock Brittleness
Coefficient
Criterion

Elastic Energy
Index

Russenes
Criterion

Burst
Proneness

Index

0.92 0.76 0.84 0.71

0.73, Zhou et al.
(2016) [14];

0.61, Lin et al.
(2018) [24]

0.32, Wang et al.
(1998) [33]

0.41,
Kidybinski
(1981) [34]

0.36,
Russenes

(1974) [35]

0.21, Singh
(1989) [36]

The TPR (True Positive Rate) and AUC values calculated for all classifiers shown
in Figure 10 indicate that the ensemble classifier BAS-RF provided the most accurate
classification. The ensemble BAS-RF led to an AUC value of 0.95, followed by DT, SVM,
and KNN. The AUC values of DT, SVM and KNN were 0.82, 0.81, and 0.7, respectively.

Figure 10. ROC curve of the proposed ensemble BAS-RF, SVM, DT, KNN.

5.2. Cases Application

Eight rockburst events in four different tunnel and mining projects were predicted
by the BAS-RF model. The field data were collected from available literature, including
the Calling tunnel, Dongguashan mine [37], Duoxiongla tunnel [38], and Daxiangling
tunnel [30]. The prediction outcomes are summarized in Table 6, which indicated that the
rockburst intensity for all cases was predicted correctly. The results of this study confirm
that the BAS-RF model is a robust alternative tool for the rockburst assessment, and it can
be successfully applied in various geotechnical engineering projects.
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Table 6. Engineering application of the proposed BAS-RF model.

No. H (m)
σθ

(MPa)
σc (MPa) σt (MPa) Wet Actual Predicted

1 [37] 768 32.8 160 6.6 4.6 Light Light
2 [37] 768 50.9 160 7.5 5.3 Moderate Moderate
3 [37] 730 105.5 190.3 17.1 4.0 Moderate Moderate
4 [38] 700 87.3 137.7 9.62 7.14 Strong Strong
5 [38] 700 87.3 94.4 9.16 3.57 Light Light
6 [30] 808 45.6 114 2.3 4.7 Moderate Moderate
7 [30] 362 25.6 59.7 1.3 1.7 None None
8 [30] 981 57.2 80.6 2.5 5.5 Strong Strong

6. Summary and Conclusions

A novel ensemble classifier combining the random forest (RF) and Beetle Anten-
nae search algorithm (BAS) was proposed to classify rockburst intensity in underground
projects. The BAS algorithm was applied to tune hyperparameters of the RF. The perfor-
mance of the proposed model (BAS-RF) was evaluated by its accuracy, precision, and recall
criteria. Additionally, the ROC curve and AUC values were used to assess the rockburst
intensity. The conclusions can be summarized as follows:

• The BAS algorithm could tune hyperparameters of the RF model effectively, leading
to a satisfactory performance of the BAS-RF model in rockburst classifications.

• The BAS-RF model performed much better compared to the other classifier. The
BAS-RF was the most accurate model, followed by DT, SVM, and KNN models.

• Analyzing the relative importance of input variables based on the BAS-RF model
demonstrated that Wet has a substantial influence on rockburst.

• The BAS-RF model provided the most accurate classification as compared to the
existing RF model as well as the empirical criteria.

• We successfully applied the BAS-RF model for predicting rockburst events in new
projects. The proposed model had a high generalization ability, which facilitates its
future application in rockburst intensity assessments.

• It should be pointed out that the generalization could have been improved if we had
used a large dataset to train the model.
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Abstract: Polymers as a new chemical grouting material have been widely used in fractured rock
mass; however, the understanding of polymer diffusion characteristics still needs to be further
improved. In order to study the diffusion mechanism of foamed polymer slurry in rock fissures, the
radial diffusion model of polymer single crack grouting is derived in consideration of the factors
such as grouting volume, crack width and expansion rate. The influence of different factors on
slurry diffusion radius, diffusion pressure and flow rate is analyzed, The diffusion model is verified
by finite element numerical simulation. The findings show that (1) The results of slurry diffusion
radius, pressure and velocity distribution at different times under different working conditions in
the present model are in good agreement with the analytical solution; (2) The diffusion pressure is
directly proportional to the grouting volume and expansion multiple, and inversely proportional to
the crack width. In addition, diffusion pressure decreases with the increase of diffusion distance, and
the pressure at the corresponding distance increases slowly with time, and finally tends to be stable;
(3) For the same section, the radial velocity decreases slowly with the increase of time; for different
sections, the flow velocity increases sharply with the increase of the distance between the section and
the central axis of the grouting hole.

Keywords: polymer; diffusion model; crack; expansion ratio; grouting amount

1. Introduction

In underground construction, grouting is one of the effective technical means to
improve rock mechanical properties and block groundwater [1–6]. Grouting refers to
injecting the slurry with cementitious capacity into the cracks, voids or cavities in the
rock layer (or soil layer) through grouting drilling holes or grouting pipes, which can
drive away the water and air in the cracks, voids or cavities, cement the original loose soil
particles or cracks into a whole, and form a “stone body” with new structure, high strength
and strong waterproof and impermeability, so as to improve the performance of the rock
(soil) layer [7]. In recent years, many new grouting materials and equipment have been
come into use, which greatly improves the effectiveness of grouting plugging. With the
advantages of safety and environmental protection, fast response, high expansion rate,
impermeability and durability, polymer materials have become grouting materials with
excellent comprehensive performance [8], and are widely used in foundation reinforcement,
dam seepage prevention, road maintenance, etc.

The diffusion mechanism of slurry in rock and soil fractures has always been the focus
of research. Many scholars have studied the migration law of slurry in fractured rock mass.
Generally, the fractured rock mass is simplified as a parallel plate model [9–12]. According
to different slurry constitutive equations, the diffusion of slurry in rock fractures is studied
by the analytical method, and the slurry flow and pressure distribution equations are estab-
lished to explore the flow law of slurry in fractured rock mass. Some scholars regard the
slurry as Newtonian fluid and deduce the fracture grouting diffusion model. For instance,
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Zhang et al. [13] established a two-dimensional slurry flow model in fractures considering
fracture roughness and groundwater viscous resistance, and Li et al. [14] deduced an ideal
self-expanding slurry single fracture diffusion model; Furthermore, other scholars regard
the slurry as Bingham fluid and deduce the crack grouting diffusion model. For example,
Gustafson et al. [15] proposed the analytical model for calculating the penetration length
of silica sol grouting. Liu et al. [16] proposed the grouting numerical model of water-rich
broken sandstone for ordinary portland cement 42.5 (PO. 42.5), aluminum sulfate cement
42.5 (sac. 42.5) and self-developed cement-based composite grouting material (CGM). And
a crack grouting diffusion model considering the time-varying viscosity of cement slurry
has been proposed [17].

In the diffusion of one-dimensional flow model, Amadei and Savage [18] proposed a
one-dimensional flow model of Bingham slurry in the channel between parallel walls, and
analyzed the influence of pressure gradients on slurry flow characteristics; Luo et al. [19]
deduced the flow equation of Bingham slurry in one-dimensional inclined single frac-
ture, and analyzed the effects of fracture inclination, viscosity and other factors on the
velocity of slurry. In the two-dimensional radial diffusion model, Tani et al. [9] studied
the radial diffusion law of cement slurry diffusing in the cracks between parallel plates;
while Zhan et al. [20,21] established a hydrodynamic grouting diffusion model of single
fracture and analyzed the influence of water flow velocity on the slurry diffusion range.
Zhang et al. [22] proposed a theoretical model of horizontal fracture grouting diffusion
considering the temporal and spatial variation of slurry viscosity under the condition of a
constant grouting rate.

In general, great progress has been made in the research on crack grouting mechanism
at home and abroad; however, the existing models take constant density slurry such as
sodium silicate, cement slurry and ordinary chemical slurry as the objects, and there is no
research on the crack grouting diffusion model of foamed polymer slurry. Two compo-
nent foamed polyurethane generally has faster reaction speeds and larger expansion rates.
According to the added foaming dose, it can expand 10–30 times in 6–30 s [8]. Due to the ex-
pansibility of polymer slurry and the void structure characteristics of injected medium, the
diffusion characteristics of polymers are more complex, which also brings great difficulties
to the selection of polymer grouting parameters in engineering practice [23].

In this paper, based on the foaming expansion characteristics of polymer slurry and
the theory of viscous hydrodynamics, the radial diffusion model of foaming polymer
in single crack considering the self-expansion characteristics of polymer is theoretically
deduced. In addition, the numerical simulation of grouting diffusion in parallel plate cracks
is established by using finite element software (Comsol Multiphysics), which verifies the
accuracy of the present analysis model. The diffusion model can fully consider the influence
of grouting volume, crack opening, radial distance, time, expansion ratio and other factors
on diffusion characteristics of slurry, and has a certain reference value for the theoretical
research of foam polymer slurry crack grouting.

2. Grout Diffusion Model

2.1. Density Model

Here, three kinds of polymer grouting materials (10 times expansion rate, 20 times
expansion rate and 30 times expansion rate) are taken as the research object. First, the ex-
factory expansion rate of the polymer is calibrated and verified. A self-made reaction vessel
for measuring the expansion rate of polymers was made according to the requirement
of the test (Figure 1), which is mainly composed of a plexiglass cylinder with a bottom.
Meanwhile, in order to observe the change of expansion volume, a scale is pasted on the
reaction cylinder, and a high-definition camera(HD) is used to capture the expansion rise
height of the polymer at different times. The two-component polymer grouting materials
are mixed according to the requirements of the same quality and poured into the reaction
vessel for reaction expansion at room temperature.
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Figure 1. Polymer consolidation after reaction.

Figures 1 and 2, respectively, show the morphology photos of the consolidated body
of three polymers in the reaction cylinder and the comparison diagram of slurry height
before and after the reaction. It can be seen from the figure that the three polymer grouting
materials have expanded to a certain extent after reaction. In particular, it can be clearly
seen from Figure 2 that the three polymers have expanded from the original height of
2.5 cm to 11.5 cm, 21 cm and 31.5 cm, respectively. In addition, the heights of consolidated
polymers with 20 and 30 times the expansion ratio are 1.83 and 2.74 times, respectively. It
can be proved that the ex-factory expansion ratio of the three polymers is reliable within
the allowable range of test error.

Figure 2. Comparison of slurry height before and after reaction.

The density integrity relationship is obtained by the nonlinear fitting of the experi-
mental results.

ρ = Ae−Bt + C (1)

where A = 1087.297, 1115.818, 1144.339, B = 1/4.87, 1/5.48, 1/5.92, C = 85.563, 57.042, 20.521
represent polymer grouting materials with 10, 20 and 30 times expansion rate respectively,
t is the time (s), ρ is a slurry density (kg/m3) for a certain hour.

2.2. Basic Hypothesis

Based on the existing derivation method of fracture diffusion model, the following
assumptions were made [24,25]: (1) the slurry is a homogeneous isotropic fluid; (2) There is
no slip boundary at the upper and lower surfaces of the crack, that is, the slurry velocity at
the contact with the wall is 0; (3) The slurry is in a laminar flow during the diffusion process;
(4) The slurry is a Newtonian fluid, and its viscosity and flow pattern remain unchanged in
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the grouting process; (5) The fracture wall is rigid, and there is no deformation under the
pressure of the slurry; (6) The groutability of the slurry is good, and there is no blockage,
and the movement of the slurry in the fracture model is a full plane radiation; (7) The
crack wall has no adsorption effect on the slurry, and there is no precipitation during the
movement of the slurry.

2.3. Diffusion Model Derived

The schematic diagram of single crack grouting [14] is shown in Figure 3, and its
opening of crack is h, and the radius of grouting hole is R0. It is assumed that the polymer
slurry will flow radially around the grouting hole between the upper and lower crack
surfaces; and ignoring the grouting pressure in the grouting hole, the slurry will flow in
the crack completely by virtue of the volume expansion mechanism.

 

Figure 3. Schematic diagram of self-expanded slurry diffusion in flat single fracture.

Taking any fluid unit from the basin (see Figure 4), the external force on the fluid
element are a normal stress p and the shear stressτ, and there is no shear resistance between
the radial planes perpendicular to the crack plane. If the influence of velocity change is
not considered, the sum of the respective force along the direction of the center radial axial
axis of the single element should be equal to zero [26].

prΔθΔz−
(

p +
dp
dr

Δr
)
(r + Δr)ΔθΔr+

(
p +

dp
dr

Δr
2

)
ΔθΔrΔz +

(
dτ
dz

Δz
)
(2r + Δr)Δθ

2
Δr = 0 (2)

Figure 4. Determination of slurry unit.
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High-order trace elements are omitted, it can be expressed by

dp
dr

− dτ
dz

= 0 (3)

According to Newton’s law of frictional resistance, the shear force can be expressed by

τ = η
du
dz

(4)

Integrating from Equations (3) and (4):

η
∂ur

∂z
=

∂p
∂r

(z + C1) (5)

By substituting the boundary condition ∂ur
∂z

∣∣∣
z=0

= 0 into the above formula, the
following is obtained:

η
∂ur

∂z
=

∂p
∂r

z (6)

Then we integrate Z and substitute the boundary conditions ∂ur
∂z

∣∣∣
z=0

= 0 into the
above formula:

ur =
∂p

2η∂r

(
z2 + C2

)
(7)

Substituting the boundary conditions ur|z=± h
2
= 0 into the above formula, it is

rewritten as [17]:

ur =
∂p

2η∂r

(
z2 − h2

4

)
(8)

where: ur is slurry viscosity.
Then the average flow velocity on the cross section of slurry crack is:

ur =
1
h

∫ h
2

− h
2

urdz = − h2

12η
∂p
∂r

(9)

Let the diffusion radius of slurry at time t be Rt. For any slurry within the range of
R ≤ Rt, let the increment of filling range after volume expansion within �t be �R. Due to
the low of conservation of mass, it can be expressed by [14]:

πr2hρ(t) = π(r + Δr)2hρ(t + Δt) (10)

where: ρ(t) = Ae−Bt + C
After sorting:

(r + Δr)2

r2 =
Ae−Bt + C

Ae−B(t+Δt) + C
(11)

Further, it can be obtained that:

1 +
Δr
r

=

√
1 +

A(1 − e−BΔt)

Ae−BΔt + CeBt (12)

when Δt → 0 ,
A(1−e−BΔt)
Ae−BΔt+CeBt → 0 .

Ordering x =
A(1−e−BΔt)
Ae−BΔt+CeBt ,

√
1 + x Taylor expansion is made for

√
1 + x when x0 = 0,

the first two terms are
√

1 + x ≈ 1 + 1
2 x
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√
1 +

A(1 − e−BΔt)

Ae−BΔt + C1eBt
≈ 1 +

A
(
1 − e−BΔt)

2
(

Ae−BΔt + CeBt
) (13)

Substituting Equation (13) into Equation (12), it can be obtained,

Δr
r

=
A
(
1 − e−BΔt)

2
(

Ae−BΔt + CeBt
) (14)

when Δt → 0 , 1 − e−BΔt → 0 , and 1 − e−BΔt → BΔt , then Δr
r = ABΔt

2(Ae−BΔt+CeBt)
.

1 − e−BΔt ∼ BΔt (15)

After sorting:
Δr
Δt

=
ABr

2
(

Ae−BΔt + CeBt
) (16)

when Δt → 0 , Δr → 0 , Equation (16) can be rewritten into differential form:

dr
dt

=
rAB

2
(

A + CeBt
) (17)

If the radial average velocity is equal to the change rate of radius with time, we have

ur =
dr
dt

=
rAB

2
(

A + CeBt
) (18)

Combining Equations (9) and (18), we have

dp
dr

= − 6rηAB

b2
(

A + CeBt
) (19)

Substituting Equation (19) into Equation (8), we have

ur = − 3r2AB

h2
(

A + CeBt
)( z2

h2 − 1
4

)
(20)

Integrating equation (19) with R, we have

p = − 3r2ηAB

h2
(

A + CeBt
) + C (21)

Assuming that the radius of the initially injected slurry is R0, since the total mass of
the slurry remains unchanged during the slurry diffusion process, it can be expressed at
the time t,

πR2
0hρ0 = πR2

t hρ(t) (22)

The diffusion radius of slurry at time t can be written as

Rt = R0

√
A + C

Ae−Bt + C
(23)
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Substituting Equation (23) into Equation (18), it can be obtained that the average
velocity at the interface between slurry and air at time t,

ur =
dr
dt

=
R0AB

2(A + C1eBt)

√
A + C

Ae−Bt + C
(24)

when t = 0 s, the slurry pressure is the same as the atmospheric pressure P0 at the interface
between slurry and air. According to Formula (21), we have

p0 = − 3R2
0ηAB

h2
(

A + CeB×0
) + C (25)

where, C = p0 +
3ηR2

0AB
h2(A+C)

= p0 +
3ηR2

0AB
h2(A+C)

Substituting it into Equation (21), we have

p = − 3r2ηAB

h2
(

A + CeBt
) + p0 +

3ηR2
0AB

h2(A + C)
(26)

where 0 ≤ r ≤ Rt.

3. Numerical Simulation of Polymer Slurry Diffusion in Parallel Plate Cracks

3.1. Governing Equations

In order to verify the correctness of the numerical method, the numerical simulation
of polymer slurry parallel plate crack grouting diffusion was carried out. Under the
assumption of ideal mixing and rapid reaction, the polymer is regarded as a continuum
with the characteristics of compressible Newtonian fluid. The growth of bubbles causes the
dependence of polymer density on time. The diffusion and flow of polymers in the crack
follow the mass conservation equation and momentum conservation equation. Ignoring
the tension of the surface, the diffusion velocity and pressure can be expressed as:

∂ρ

∂t
+∇ · (ρU) = 0 (27)

∂ρU
∂t

+∇ · (ρUU) = −∇p + η∇2U +
1
3
η∇(∇ · U) + ρgb (28)

where ρ is the mixing density; U is the velocity vector; t is the time; P is the pressure; η is
shear viscosity; G is the acceleration of gravity.

3.2. Level Set Method

The level set method tracks the interface position by solving the transport equation of
the level set function, that is, by tracking the level set function ϕ to determine the interface
of fluid. For convective transport, the velocity vector can be calculated by the Navier
Stokes equation.

∂ϕ

∂t
+ U · ∇ϕ = γ∇ ·

(
ε∇ϕ−ϕ(1 −ϕ)

∇ϕ

|∇ϕ|
)

(29)

where γ and ε is a reinitialization parameter. In this paper ε is taken as the maximum
element size in the domain. γ is equal to 1.

Within a given value range of level set function, the fluid characteristics transition
smoothly from liquid to gas. The level set function changes between 0 and 1, and it is
expressed as 0 or 1 in the two fluids. Specifically, it is 0 in the liquid phase and 1 in the gas
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phase. On the interface between liquid and gas, the corresponding level set function value
ϕ = 0.5. The density can be expressed by the level set function

ρ = ρ1 +ϕ(ρ2 − ρ1) (30)

The dynamic viscosity can be expressed by

η = η1 +ϕ(η2 − η1) (31)

where ρ1 = density of polymer; ρ2 = density of air; μ1 = viscosity of polymer; and
μ2 = viscosity of air.

3.3. Numerical Realization (Boundary and Initial Conditions)

The self-expansion of polymer in a single crack with a radius of 1.3 m and a crack
opening of 6mm is analyzed using a parallel plate model, as shown in Figure 5. It is
assumed that the static pressure grouting stage has been completed, so some parts of
the crack at t = 0 s will initially be filled with unexpanded polymer grouting. Taking the
circle with radius r0 as the initial shape of diffusion and assuming that the static pressure
grouting stage has been completed, the grouting amount is the quality required to diffuse
to the corresponding radius r0, and R0 is calculated by

R0 =

√
Q

πhρ0
(32)

 

Figure 5. Schematic diagram of numerical model of polymer grouting in crack.

In this paper, 3 types of polymer material are selected, and the grouting amount is
125 g, 250 g and 370 g. The initial density of slurry ρ0 is 1172.86 kg/m3. The initial radius
R0 calculated by Formula (32) is 0.11 m, 0.15 m and 0.18 m, respectively.

The UDFs function (user-defined functions) is used to edit the user-defined function
of the attribute change of slurry fluid, so as to realize the real-time adjustment of density
parameters in the process of slurry expansion.

3.4. Numerical Verification of Diffusion Model

The reliability of the grouting model is verified by comparing the numerical solution
with the analytical solution. Figure 6 shows the theoretical curve and simulation curve
of diffusion radius with time under different grouting quantities. It can be seen from the
figure that the curve obtained by the present model is consistent with that obtained by
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numerical simulation., and the diffusion range of slurry gradually increases with time and
tends to be stable at 30 s. In addition, it is observed that the time-consuming of slurry
expansion and the diffusion stage is not related to the grouting quantity. When the grouting
quantity is 125 g, 250 g and 170 g, the slurry stops diffusion at about 30 s. At this time, the
slurry stops expanding and reaches the maximum diffusion range, which is the effective
diffusion area of the slurry. It can also be seen from the figure that the effective diffusion
area of the slurry is directly proportional to the grouting volume.

 

Figure 6. Variation curve of diffusion radius with time under different grouting amounts.

Figure 7 shows the simulation results of the change of slurry volume fraction with
time. It can be seen from the figure that the slurry diffusion form of single crack grouting
is circular, and gradually diffuses outward in concentric circular form with time, finally
reaching the effective diffusion area of slurry, which is consistent with the diffusion form
assumed by the present theoretical model.

Table 1 shows the simulation results and analytical results of the pressure distribution
with time at 2 cm away from the grouting hole when the grouting amount is 250 g. It can be
seen from the Table 1 that the diffusion pressure gradually increases with time and finally
tends to be stable. The maximum relative error between the numerical solution and the
analytical solution is 0.9%, and the average relative error is 0.28%.

Table 1. Simulation results and analytical results of pressure distribution at different times.

Position r (cm) Time t (s)
Diffusion Pressure (KPa)

Relative Error
Numerical Solution Theoretical Solution

r = 2

0 0.3554 0.3589 0.9%
10 0.3591 0.3604 0.4%
20 0.3634 0.3636 0.1%
30 0.3652 0.3650 0.1%
40 0.36581 0.3653 0.1%
50 0.3662 0.3653 0.2%
60 0.3662 0.3653 0.2%
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Figure 7. Simulation results of slurry volume fraction varying with time at different times.

Table 2 shows the simulation results and analytical results of pressure radial distribu-
tion with distance when the grouting amount is 250 g and the time is 30 s. It can be seen in
Table 2 that the diffusion pressure gradually decreases with the increase of radial distance.
The maximum relative error between the numerical solution and the analytical solution is
1.4%, and the average relative error is 1%. It can be seen that the theoretical solutions in
Tables 1 and 2 are in good agreement with the numerical solutions.

Table 2. Simulation results and analytical results of radial pressure distribution at different positions.

Time t (s) Position r (cm)
Diffusion Pressure (KPa)

Relative Error
Numerical Solution Theoretical Solution

t = 30

2 0.3630 0.3651 0.5%
4 0.3592 0.3643 0.5%
6 0.3579 0.3629 1.3%
8 0.3560 0.3610 1.0%
10 0.3535 0.3585 1.3%
12 0.3506 0.3556 1.0%
14 0.3470 0.3520 1.4%

4. Analysis of Slurry Diffusion Characteristics

4.1. Analysis of Slurry Pressure Field

Figures 8 and 9 show the temporal and spatial distribution characteristics of the slurry
pressure field. Figure 8 shows the variation curve of pressure with diffusion distance at
different times. It can be seen from the figure that the farther away from the grouting hole,
the smaller the diffusion pressure. Figure 9 shows the variation curve of pressure with time
at different distances. It can be seen from the figure that the pressure at different positions
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increases slowly with time and finally ends up being stable, and the pressure values at
different positions are basically the same.

 

Figure 8. Variation curve of pressure with diffusion distance at different times.

 

Figure 9. Pressure versus time curves at different distances.

Figure 10 shows the variation curve of pressure with time under different grouting
quantities at the radius r = 2 cm. It can be seen from the figure that the pressure increases
slowly with time, and finally the pressure tends to be stable. Figure 11 shows the rela-
tionship curve between the maximum pressure and the grouting amount. It can be seen
from Figures 10 and 11 that the diffusion pressure is directly proportional to the grouting
amount. Figure 12 shows the change of pressure with time under different crack opening,
and Figure 13 shows the relationship curve between the maximum pressure and crack
opening. It can be seen from Figures 12 and 13 that the diffusion pressure is inversely
proportional to the grouting volume, and the diffusion pressure is very sensitive to the
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change in the crack opening. When the crack decreases from 4 mm to 2 mm, the pressure
increases rapidly, the crack opening decreases from 8 mm to 2 mm, and the maximum
pressure value increases by a factor of 20. Figure 14 shows the change curve of pressure
with time under different expansion ratios, and Figure 15 shows the relationship curve
between the maximum pressure and expansion ratio. It can be seen from Figures 14 and 15
that the diffusion pressure is directly proportional to the grouting amount. In general, the
grouting volume, the crack opening and the expansion ratio are three key factors affecting
the slurry pressure field.

 
Figure 10. Variation curve of pressure with time under different grouting amount.

 

Figure 11. Relation curve between maximum pressure and grouting volume.

4.2. Analysis of Slurry Diffusion Flow Field

Table 3 shows the flow velocity values at different positions on the fracture section
when t = 20 s, which can be described as an intuitive three-dimensional distribution of
flow velocity, as shown in Figure 16. It can be seen from Table 3 and Figure 16 that the
farther the fracture section is from the grouting hole and the fracture wall, the greater
the diffusion pressure is. Figures 17 and 18 show the velocity on temporal and spatial
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distribution characteristics of slurry. Figure 17 shows the velocity variation of slurry
with radial distance at different times. It can be seen from the Figure 17 that the slurry
velocity increases along the radial direction, and the velocity reaches the maximum at the
interface between slurry and air. Figure 18 shows the velocity variation curve of slurry
along the z-axis direction at different times. It can be seen from Figure 18 that the slurry
velocity presents a parabolic distribution in the z-axis direction, and the velocity reaches
the maximum at the midpoint of the fracture (z = 0) and reaches the minimum at the
fracture wall, and the velocity is zero. It can also be seen from Figures 17 and 18 that the
slurry flow rate gradually decreases with time and finally becomes zero. Figures 19 and 20
are the time-varying curves of flow velocity at the interface between slurry and air under
different grouting amounts and expansion ratios. It can be seen from Figures 19 and 20 that
the greater the grouting amount and expansion ratio, the greater the interface flow velocity;
the grouting amount and expansion ratio are the key factors affecting the flow velocity.

 

Figure 12. Variation curve of pressure with time under different fracture opening.

 
Figure 13. Relation curve between maximum pressure and fracture opening.
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Figure 14. Pressure versus time curves at different expansion ratios.

 

Figure 15. Relation curve between maximum pressure and expansion ratio.

Table 3. Velocity values at different positions on the fracture section.

Position(x)/m
z/m

−0.0030 −0.0020 −0.0010 0.0000 0.0010 0.0020 0.0030

0.1653 0 0.0158 0.0253 0.0285 0.0253 0.0158 0
0.1820 0 0.0192 0.0307 0.0345 0.0307 0.0192 0
0.2000 0 0.0232 0.0370 0.0417 0.0370 0.0232 0
0.2195 0 0.0279 0.0446 0.0502 0.0446 0.0279 0
0.2404 0 0.0334 0.0535 0.0602 0.0535 0.0334 0
0.2627 0 0.0399 0.0639 0.0719 0.0639 0.0399 0
0.2862 0 0.0474 0.0759 0.0854 0.0759 0.0474 0
0.3110 0 0.0560 0.0896 0.1008 0.0896 0.0560 0
0.3367 0 0.0656 0.1050 0.1181 0.1050 0.0656 0
0.3631 0 0.0763 0.1221 0.1373 0.1221 0.0763 0
0.3899 0 0.0880 0.1408 0.1584 0.1408 0.0880 0
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Table 3. Cont.

Position(x)/m
z/m

−0.0030 −0.0020 −0.0010 0.0000 0.0010 0.0020 0.0030

0.4167 0 0.1005 0.1608 0.1809 0.1608 0.1005 0
0.4432 0 0.1137 0.1819 0.2046 0.1819 0.1137 0
0.4689 0 0.1273 0.2037 0.2291 0.2037 0.1273 0
0.4936 0 0.1410 0.2256 0.2538 0.2256 0.1410 0
0.5168 0 0.1546 0.2474 0.2783 0.2474 0.1546 0
0.5384 0 0.1678 0.2684 0.3020 0.2684 0.1678 0
0.5581 0 0.1803 0.2884 0.3245 0.2884 0.1803 0
0.5758 0 0.1919 0.3071 0.3455 0.3071 0.1919 0
0.5916 0 0.2026 0.3241 0.3646 0.3241 0.2026 0

 

Figure 16. Three -dimensional velocity distribution.

 

Figure 17. Variation curve of slurry velocity with radial distance at different time.
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Figure 18. Variation curve of slurry velocity along z-axis at different times.

 

Figure 19. Variation curve of velocity at the interface between slurry and air with time under different
grouting amount.

 

Figure 20. Variation curve of velocity at the interface between slurry and air with time under different
expansion ratios.
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5. Conclusions

(1) In this paper, the effects of grouting volume, crack opening, radial distance, time,
expansion ratio and other factors were fully considered. The radial diffusion model of
polymer grouting in a single crack was theoretically deduced, and the theoretical model
was verified by the numerical simulation of slurry in parallel plate cracks. The variation
laws of slurry diffusion radius and pressure at different times are basically consistent with
the analytical solution,

(2) The amount of grouting, the expansion ratio and the crack opening have a great
influence on the diffusion law of polymer crack grouting. The diffusion pressure is directly
proportional to the grouting amount and expansion ratio, and inversely proportional to
the crack opening. In addition, the greater the grouting amount and expansion ratio, the
greater the interfacial velocity.

(3) The diffusion pressure is directly proportional to the grouting volume and expan-
sion multiple, and inversely proportional to the crack width. In addition, diffusion pressure
decreases with the increase of diffusion distance, and the pressure at the corresponding
distance increases slowly with time, eventually reaching stability.
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Abstract: The slope stability in an open-pit mine is closely related to the production safety and
economic benefit of the mine. As a result of the increase in the number and scale of mine slopes, slope
instability is frequently encountered in mines. Therefore, it is of scientific and social significance to
strengthen the study of the stability of the slope rock mass. To accurately classify the stability of
the slope rock mass in an open-pit mine, a new stability evaluation model of the slope rock mass
was established based on variable weight and matter–element extension theory. First, based on the
main evaluation indexes of geology, the environment, and engineering, the stability evaluation index
system of the slope rock mass was constructed using the corresponding classification criteria of the
evaluation index. Second, the constant weight of the evaluation index value was calculated using
extremum entropy theory, and variable weight theory was used to optimize the constant weight to
obtain the variable weight of the evaluation index value. Based on matter–element extension theory,
the comprehensive correlation between the upper and lower limit indexes in the classification criteria
and each classification was calculated, in addition to the comprehensive correlation between the
rock mass indexes and the stability grade of each slope. Finally, the grade variable method was used
to calculate the grade variable interval corresponding to the classification criteria of the evaluation
index and the grade variable value of each slope rock mass, so as to determine the stability grade of
the slope rock. The comparison results showed that the classification results of the proposed model
are in line with engineering practice, and more accurate than those of the hierarchical-extension
model and the multi-level unascertained measure-set pair analysis model.

Keywords: mine slope; stability classification of rock mass; extremum entropy; variable weight
theory; matter–element extension; grade variable

1. Introduction

In the mining of an open pit, the stability of the slope rock mass has a significant
impact on mining design, intensity, and safety. As a result of the gradual depletion of
surface mineral resources, underground mining has been employed instead of open-pit
mining in large mines [1,2]. Therefore, it is necessary to study the stability of open-pit
slopes. The slope rock mass of open-pit mines is significantly affected by many factors, such
as weathering, in situ stress, groundwater, and blasting vibration. There is an urgent need
for the accurate determination of the stability grade of the slope rock mass. As a result of
the progress of scientific theory and method, the evaluation of the stability of the slope rock
mass in open-pit mines has developed from empirical judgment, theoretical analysis, and
qualitative evaluation of a single index, to a comprehensive evaluation based on an index
system [3–5]. In general, three main methods are used to evaluate the stability of the slope
rock mass in open-pit mines: (1) solid modeling and numerical simulation methods. By
analyzing the influence of the distribution of structural planes (such as joints and fissures)
in the slope rock mass on rock anisotropy, Shi Wenhao, Yang Tianhong et al. [6] evaluated
the stability of the slope rock mass in an open-pit using a 3D solid modeling method. To
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determine the stability of the open-pit slope, Zhao Haijun, Ma Fengshan et al. [7] analyzed
the surrounding rock of the underground stope, the mechanical environment of the slope,
and the movement and deformation of the rock mass using a GPS monitoring network and
a 3D numerical simulation. (2) Geological survey and refined analysis. Through a detailed
geological survey of the quality components and size of the slope, Du Shigui [8] conducted
a refined statistical analysis of the survey results, and finally determined the stability of the
slope rock mass based on the cybernetics of the rock mass structure. Neil Bara, Michael
Kostadinovskia et al. [9] described the rapid and robust process utilized at BHP Limited for
appraising a slope failure at an iron ore mine site in the Pilbara region of Western Australia,
using a combination of UAV photogrammetry and 3D slope stability models in less than a
shift (i.e., less than 12 h). Fehmi Arikan, Fatih Yoleri et al. [10] conducted a geotechnical
assessment of slope stability and collected geological data from sources such as geologic
reconnaissance, core logging, topographical surveys, and geomechanical laboratory testing
data; in addition, kinematical and two-dimensional limit equilibrium back analyses were
performed. (3) Qualitative evaluation and analysis based on the evaluation index system.
Wang Xinmin, Kangqian et al. [11] evaluated the stability of the open-pit slope rock mass
via the construction of an analytic hierarchy process-extension model. Zhang Xu, Zhou
Shaowu et al. [12] evaluated the slope and excavation stability of the open-pit mines by
building an entropy weight-set evaluation model. Huangdan and Shi Xiuzhi et al. [13]
evaluated the stability of the slope rock mass by constructing a multi-level unascertained
measure-set pair analysis model. Liu Leilei, Zhang Shaohe et al. [14] evaluated the stability
of the slope rock mass by constructing an AHP-ideal point model. Bar N and Barton N. [15]
discussed the applicability of the Q-slope method to slopes ranging from less than 5 m
to more than 250 m in height, in both civil and mining engineering projects. Pastor, J.L.,
Riquelme, A.J., et al. [16] used SMRTool, an open-source software package, to derive a
complete and detailed definition of the angular relationship between discontinuity and
slope, and clarified the evaluation of SMR parameters.

Among the three methods mentioned above, the first is highly theoretical and accurate
for the stability classification of slope rock masses with less complex environmental condi-
tions. Although the second method yields accurate evaluation results, significant amounts
of manpower and material resources are required in the field survey. Hence, it is less used
in the classification of general slope rock stability. The third method, which is based on
a mathematical model and an evaluation index system, has good generality and can be
used in the stability classifications of various rock masses. However, the construction of
the mathematical model and the selection of an index system need to be further improved.
Based on the existing research, an evaluation index system for the stability classification of
the slope rock mass in open-pit mines was established in this study. First, the index weight
was calculated using variable weight theory to address the unreasonable index weighting
caused by ignoring the index change in single- or multi-method weighting. Second, based
on the matter–element extension model and the grade variable method, the stability of
the slope rock mass in the open-pit mine was evaluated, so as to improve the accuracy of
the matter–element extension model in the stability classification of the slope rock mass.
Finally, a new classification model of slope rock mass stability was constructed.

2. Basic Principles of the Matter–Element Extension Model

The matter–element extension model is a mathematical model based on matter–
element theory and extension mathematics. In this model, the matter element is taken
as the basic element to describe objects. The matter element is expressed as the ordered
triple R = (S,y,v), where S represents the objects; y represents the feature of objects; and v
represents quantities of S about y. S, y, and v are called the three elements of the matter
element [17]. Based on extension set theory and decision-making theory, matter–element
transformation and the correlation function are used as tools. The extension engineering
method can be used to solve the application problems in the fields of management, control,
and engineering [18].
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2.1. Matter Elements, Classical Domains, and Nodal Domains

If the evaluation object S contains a feature y expressed by v, then S, y, and v constitute
the ordered triple R = (S,y,v), and are called matter elements [19]. If the evaluation object S
has n features, the corresponding values of features y1, y2 . . . yn are v1, v2 . . . vn, respectively.
Matter elements describing the evaluation object S are recorded as R:

R = (S, yi, vi) =

⎡
⎢⎢⎣

S y1 v1
y2 v2
· · · · · ·
yn vn

⎤
⎥⎥⎦ (1)

The classical domain of evaluation object S about grade j is recorded as Rj:

Rj = (Sj, yi, Vji) =

⎡
⎢⎢⎣

Sj y1 [aj1, bj1]
y2 [aj2, bj2]
· · · · · ·
yn [ajn, bjn]

⎤
⎥⎥⎦ (2)

The feature section of the evaluation object S is recorded as R0:

R0 = (S0, yi, V0i) =

⎡
⎢⎢⎣

Sj y1 [a01, b01]
y2 [a02, b02]
· · · · · ·
yn [a0n, b0n]

⎤
⎥⎥⎦ (3)

where S is the evaluation object; vi is the eigenvalue of the evaluation object; Sj is the
evaluation object corresponding to the grade j, j = 1, 2, . . . , m; yi is the eigenvalue of
the evaluation object i, i = 1, 2, . . . , n; Vji is the eigenvalue range of Sj corresponding
to yi, Vij = [aij, bij]; S0 is the evaluation object corresponding to all levels; and V0i is the
eigenvalue range of S0 corresponding to yi, V0i = [a0i, b0i].

2.2. Extension Correlation Functions

According to the extension set theory and the definition of extension distance [20], the
extension distance equation of the feature yi of the evaluation object S with respect to the
stability grade j is expressed as follows:⎧⎨

⎩
ρ(vi, Vji) =

∣∣∣vi − aji+bji
2

∣∣∣− bji−aji
2

ρ(vi, V0i) =
∣∣∣vi − a0i+b0i

2

∣∣∣− b0i−a0i
2

(4)

where vi is the feature i of the object to be evaluated, i = 1, 2, . . . , n; Vji is the value range of
Sj for the feature yi, Vij = [aij, bij]; V0i is the value range of S0 for the feature yi, V0i = [a0i, b0i];
ρ(vi, Vji) is the extension distance of the feature yi for the j-level classical domain; and
ρ(vi, Vji) is the extension distance of the feature yi for node region; i = 1, 2, n; n = 1, 2, . . . m.

If vi ∈ V0i, the specified correlation function [21] is expressed as follows:

Sj(vi) =

⎧⎪⎨
⎪⎩

ρ(vi ,Vji)

ρ(vi ,V0i)−ρ(vi ,Vji)
ρ(vi, V0i)− ρ(vi, Vji) �= 0, vi ∈ V0i

−ρ(vi, Vji) + 1 ρ(vi, V0i)− ρ(vi, Vji) = 0, vi ∈ Vij
0 ρ(vi, V0i)− ρ(vi, Vji) = 0, vi /∈ Vij, vi ∈ V0i

(5)

where Sj (vi) is the single index correlation degree of the feature yi of the evaluation object
S with respect to the grade j, i = 1, 2, . . . n; j = 1, 2, . . . , m.
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Combining with the feature weight vector W of the evaluation object, the calculation
expression of the comprehensive correlation [22] of the evaluation object S with respect to
the grade j is as follows:

Sj(Vj) =
n

∑
i=1

wiSj(vi) (6)

where wi is the weight coefficient of the evaluation object feature yi; Sj (Vj) is the compre-
hensive correlation between the evaluation object S and the grade j; Sj (vi) is the single index
correlation of the evaluation object S feature yi with respect to the grade j; i = 1, 2, . . . , n.

2.3. Level Variable Method

According to the level variable method [23–25], the calculation expression of the level
variable k is obtained as follows:

Pj(Vj) =
Sj(Vj)− Bs

As − Bs
(7)

k =

m
∑

j=1
jPj(Vj)

m
∑

j=1
Pj(Vj)

(8)

where Sj (Vj) is the comprehensive correlation of the evaluation object S and the grade j; Pj
(Vj) is the standardized value of the comprehensive correlation; k is the eigenvalue of the
stability grade variable of the evaluation object S; Bs = min{Sj (Vj)}, As = max{Sj (Vj)}; and
j = 1, 2, . . . , m.

3. Extreme Entropy Weighting and Variable Weighting Theory

3.1. Principle of Extreme Entropy Weighting

Extremum entropy method can be performed by the following two steps: (1) process
the eigenvalues of the evaluation object without dimension to obtain the identical type of
eigenvalue, and (2) determine the feature weight of the evaluation object. The previous
research has proved that the extremum entropy method has the best performance compared
with other entropy methods, and is also called the optimal entropy method [26]. In this
study, extreme entropy is used to determine the feature weights of evaluation objects via
the following steps.

1. The eigenvalue xij of the evaluation object Xi is obtained by extremum method and
transformed into a dimensionless value vij. If the feature xij of the evaluation object xi
belongs to the positive type, it is processed by Equation (9). If the feature xij of the
evaluation object xi belongs to the reverse type, it is processed by Equation (10) [27]:

vij =

⎧⎪⎨
⎪⎩

1 xij ≥ mj
xij−mj
Mj−mj

xij ∈ (mj, Mj)

0 xij ≤ Mj

(9)

vij =

⎧⎪⎨
⎪⎩

1 xij ≤ mj
Mj−xij
Mj−mj

xij ∈ (mj, Mj)

0 xij ≥ Mj

(10)

where xij is the eigenvalue of Xi, Mj is the maximum value of xij; mj is the minimum
value of xij; vij is the dimensionless value of xij, i = 1, 2, . . . , n; j = 1, 2, . . . , m.
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2. The dimensionless vij of the evaluation object Xi is normalized:

rij =
vij

n
∑

i=1
vij

(11)

where vij is the dimensionless value of the feature xij; rij is the normalized value of
the feature xij; and n is the total number of objects to be evaluated.

3. The feature information entropy of evaluation object Xi is calculated as follows:

⎧⎪⎪⎨
⎪⎪⎩

pij = 0 rij = 0
pij = rij ln(rij) rij �= 0

ej = − 1
ln(n)

n
∑

i=1
pij

(12)

where ej is the feature information entropy of the object Xi to be evaluated; rij is the
normalized value of the feature xij, i = 1, 2, . . . , n; j = 1, 2, . . . , m; and ej ∈ [0,1].

4. The feature weight of evaluation object Xi is calculated as follows:

wj =
1 − ej

m − m
∑

j=1
ej

(13)

where w0j is the weight of the feature xij; ej is the feature information entropy of the
feature xij; and m is the total number of features to be evaluated.

The constant weight vector is W0 = (w01, w02, . . . , w0m).

3.2. Basic Theory of Variable Weight

As a result of the fixed weight value in the constant weight empowerment, the relative
importance of each feature of the evaluation object is only reflected, while the impact of the
eigenvalue change of the evaluation object on the feature weight is ignored [28]. For this
reason, Wang Peizhuang, Li Hongxing et al. proposed and improved the variable weight
theory [29]. According to variable weight theory, the constant weight of the evaluation
object can be optimized by constructing the variable weight vector to obtain the variable
weight of the evaluation object. According to the axiomatic system of the variable weight
vector, the variable weight vector is defined as follows [30]:

In the following mapping P: [0,1]m → [0,1]m; X → P(X) = (P1(X); and P2(X), . . . , Pm(X));
then P is called eigenvariable weight vector. If P is satisfied by (1) punitiality, xi ≥ xj ⇒
Pi(X) ≤ Pj(X); (2) continuity, Pi(X) is continuous for each variable (i = 1, 2, . . . , n) for any
constant weight vector; (3) for any constant weight vector, W0 = (w01, w02, . . . , w0m); then
Equation (14) is satisfied by 1© polarity, (w01 + w02 + . . . +w0m = 1); 2© continuity, w0j (x1,
x2, . . . , xm) is continuous with respect to each variable xj (j = 1, 2, . . . , m); 3© punitiveness,
w0j (x1, x2, . . . , xm) is reduced with respect to the variable xj (j = 1, 2, . . . ,m). Then, P is
called penalty contingency vector.

W(X) =
(w01 p1(X), w02 p2(X), · · · , w0m pm(X))

m
∑

j=1
(w0jPj(X))

=
W0P(X)

m
∑

j=1
(w0jPj(X))

(14)

where W0P(X) = (w01 p1(X) , w02 p2(X) , · · · , w0m pm(X)) is the Hardarmard product [31],
and W(X) is the variable weight vector of the evaluation object X.

Subsequently, the definition changes to the following: (1) punitiveness xi ≥ xj ⇒ Pi(X)
≤ Pj(X) is changed to incentive xi ≥ xj ⇒ Pi(X) ≥ Pj(X); (3) 3© punitiveness W0 = (w01, w02,
. . . , w0m) with a single reduction of (j = 1, 2, . . . , m). Regarding the variable xj, it is changed
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into incentive w0j(x1, x2, . . . , xm) with the single increase (j = 1, 2, . . . , m) regarding the
variable xj. Then, P is called incentive contingency vector.

The eigenvariable weight vector Pj(X) is essentially a gradient vector of the m-
dimensional real function B(x) (also known as equilibrium function) [32]. Its calculation
formula is as follows:

Pj(X) = Pj(x1, x2, · · · , xm) =
∂B(x)

∂xj
(15)

According to Equations (14) and (15), the variable weight vector W(X) of the evalua-
tion object X can be obtained.

4. Establishment of Variable Weight Matter–Element Extension Model for Slope Rock
Mass Stability Classification

There are many factors affecting the stability of slope rock masses. Establishing a
scientific and reasonable evaluation index system is the premise for the accurate evaluation
of the slope rock mass stability. The safety evaluation of the slope stability is a dynamic
system engineering. The establishment of an evaluation index system is the basic work
of evaluation, and the rationality of the evaluation index system directly affects the ac-
curacy of evaluation results. The principle of selecting evaluation indicators is to reflect
the most important and comprehensive information with least indicators. Referring to
the engineering rock mass classification standard [33,34], the hydroelectric engineering
geological survey standard [35], and other researches on the classification criteria of the
slope stability and safety evaluation indexes [11,13,36], the geological, environmental, and
engineering conditions of the slope rock mass are considered comprehensively in this study.
A classification evaluation index system of the slope rock mass stability is constructed by
evaluation indexes, such as uniaxial compressive strength; elastic modulus; Poisson’s ratio;
structural features; cohesion; internal friction angle; daily maximum rainfall; maximum in
situ stress; groundwater state; slope gradient; slope height; and rock acoustic velocity, as
shown in Figure 1.

Figure 1. Evaluation index system of the slope rock mass stability.

In this study, the classification criteria of the slope rock mass stability evaluation
indexes in references [11,13] are employed, as shown in Table 1. Equations (9) and (10) are
used to normalize the values in the classification criteria of evaluation indexes, and the
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classical domain Rj and the nodal domain R0 of the classification criteria of the slope rock
mass stability are obtained.

Table 1. Evaluation index classification criteria of the slope rock mass stability.

Grade
σc

y1/MPa
E1

y2/GPa
μ
y3

y4/%
c

y5/MPa
ϕ

y6/(◦)

Level I (extremely stable) [150,200] [33.0,60.0] [0,0.20] [90,100] [2.10,8.00] [60,90]
Level II (stable) [125,150) [20.0,33.0) [0.20,0.25) [75,90) [1.50,2.10) [50,60)

Level III (basically stable) [90,125) [6.0,20.0) [0.25,0.30) [50,75) [0.70,1.50) [39,50)
Level IV (unstable) [40,90) [1.3,6.0) [0.30,0.35) [30,50) [0.20,0.70) [27,39)

Level V (extremely unstable) [10,40) [0,1.3) [0.35,0.50) [0,30) [0.05,0.20) [0,27)

Grade
v

y7/km·s−1
rDmax

y8/mm
σZmax

y9/MPa
y10/L·(min.10m)−1 h

y11/m
1/k

y12/(◦)

Level I (extremely stable) [5.0,7.5] [0,20] [0,2] [0,25] [0,30] [0,10]
Level II (stable) [4.0,5.0) (20,40] (2,8] (25,50] (30,45] (10,20]

Level III (basically stable) [2.5,4.0) (40,60] (8,14] (50,100] (45,60] (20,40]
Level IV (unstable) [2.0,2.5) (60,100] (14,20] (100,125] (60,80] (40,60]

Level V (extremely unstable) [0,2.0) (100,150] (20,25] (125,150] (80,100] (60,80]

Rj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(5) S(4) S(3) S(2) S(1)
y1 [0, 0.16) [0.16, 0.42) [0.42, 0.61) [0.61, 0.74) [0.74, 1.00 ]
y2 [0, 0.02) [0.02, 0.10) [0.10, 0.33) [0.33, 0.55) [0.55, 1.00 ]
y3 [0, 0.30) [0.30, 0.40) [0.40, 0.50) [0.50, 0.60) [0.60, 1.00 ]
y4 [0, 0.30) [0.30, 0.50) [0.50, 0.75) [0.75, 0.90) [0.90, 1.00 ]
y5 [0, 0.02) [0.02, 0.08) [0.08, 0.18) [0.18, 0.26) [0.26,1.00 ]
y6 [0, 0.30) [0.30, 0.43) [0.43, 0.56) [0.56, 0.67) [0.67,1.00 ]
y7 [0, 0.27) [0.27, 0.33) [0.33, 0.53) [0.53, 0.67) [0.67,1.00 ]
y8 [0, 0.33) [0.33, 0.60) [0.60, 0.73) [0.73, 0.87) [0.87,1.00 ]
y9 [0, 0.20) [0.20, 0.44) [0.44, 0.68) [0.68, 0.92) [0.92,1.00 ]
y10 [0, 0.17) [0.17, 0.33) [0.33, 0.67) [0.67, 0.83) [0.83,1.00 ]
y11 [0, 0.20) [0.20, 0.40) [0.40, 0.55) [0.55, 0.70) [0.70,1.00 ]
y12 [0, 0.25) [0.25, 0.50) [0.50, 0.75) [0.75, 0.88) [0.88,1.00 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

R0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S y1 [0,1.00]
y2 [0,1.00]
y3 [0,1.00]
y4 [0,1.00]
y5 [0,1.00]
y6 [0,1.00]
y7 [0,1.00]
y8 [0,1.00]
y9 [0,1.00]
y10 [0,1.00]
y11 [0,1.00]
y12 [0,1.00]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

The classical domain Rj expresses the variation range of the standardized index values
of the slope rock mass stability evaluation index in each stability grade, and the joint
domain R0 expresses the entire range of the standardized index values of the slope rock
mass stability classification. Figure 2 shows the calculation process of the rock mass stability
classification evaluation using the variable weight matter–element extension model.
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Figure 2. Evaluation process of the variable weight matter–element extension model for the classification of the slope rock
mass stability.

5. Case Study in a Mining Project

According to the previous studies [13], the slope rock mass of an open-pit copper mine
was formed in 2008. To date, only a part of the slope has been maintained, and the entire
slope has remained stable. The evaluation indexes of the slope rock mass were measured
and presented in the first four groups of data in Table 2. The data in the fifth group of
Table 2 are the slope data of an open-pit mine, presented in previous studies [11]. The
actual situation of the slope rock mass was extremely stable. Based on the measured data of
slope rock masses in these two mines, the stability of the slope rock masses was evaluated
by the proposed model to verify its validity.

According to Equations (9) and (10), the dimensionless classification index of the slope
rock mass is processed. Table 3 presents the dimensionless unified classification indexes.
The indexes of five rock mass samples in Table 3 are compared with the evaluation indexes
in the classification criteria of the slope rock mass stability, as shown in
mboxfigfig:mathematics-1402239-f003. The solid broken line is connected by the upper limit
indexes of each stability grade in the standardized classification criteria of the slope rock
mass stability evaluation indexes, and the virtual broken line is connected by the indexes
of each rock mass sample after standardization. This method allows the stability of each
rock mass sample to be obtained intuitively using the single index from the distribution of
each turning point in the broken line. As shown in Figure 3, the distribution law of rock
mass sample indexes in (a), (b), (c), and (d) is essentially the same, while the distribution
law of the rock mass sample indexes in (e) is quite different. It indicates that there is a
great difference between the two slopes, which is helpful to verify the accuracy of the
proposed model.
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Table 2. Evaluation indexes of the slope rock mass stability.

Rock

Measured Values of Geological Indexes

σc
y1/MPa

E1
y2/GPa

μ
y3

y4/%
c

y5/MPa
ϕ

y6/◦
v

y7/km·s−1

X1 52.60 2.3 0.27 90 17.80 31.8 3.700
X2 53.00 2.0 0.21 85 17.80 35.6 3.789
X3 61.60 1.9 0.18 90 23.10 24.6 3.847
X4 60.04 1.9 0.19 92 23.10 24.6 3.896
X5 28.97 25.7 0.22 57 5.08 52.0 3.200

Rock

Measured Values of Environmental Indexes Measured Values of Engineering Indexes

rDmax
y8/mm

σZmax

y9/MPa
y10/L·(min·10 m)−1 h

y11/m
1/k

y12/◦

X1 6.06 6.18 10 48 60
X2 6.06 8.73 10 67 44
X3 6.06 9.05 9 76 38
X4 6.06 10.18 9.5 45 54
X5 12.00 15.32 35 12 36

Table 3. Normalized values of the evaluation indexes for the slope rock mass stability.

Rock Sample y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

X1 0.22 0.04 0.46 0.90 1.00 0.35 0.49 0.96 0.75 0.93 0.52 0.25
X2 0.23 0.03 0.58 0.85 1.00 0.40 0.51 0.96 0.65 0.93 0.33 0.45
X3 0.27 0.03 0.64 0.90 1.00 0.27 0.51 0.96 0.64 0.94 0.24 0.53
X4 0.26 0.03 0.62 0.92 1.00 0.27 0.52 0.96 0.59 0.94 0.55 0.33
X5 0.10 0.43 0.56 0.57 0.63 0.58 0.43 0.92 0.39 0.77 0.88 0.55

Figure 3. Distribution of the evaluation index values for each slope rock mass.
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In this study, the feature variable weight vector Pj(X) is constructed by using the full
excitation feature variable weight function [37]:

Pj(X) = x
1

mw0j
j (18)

where Pj(X) is the feature variable weight vector element; xj is the standardized evaluation
object index; m is the number of evaluation indicators, and m = 2; w0j is the constant weight
vector element.

Combining the theory of extreme entropy weighting and variable weight, the constant
weight of the slope rock mass stability evaluation index and the variable weight of rock
mass to be evaluated are calculated using Equations (9)–(15) and (18), as shown in Table 4.
As shown in Figure 4, the constant weight of the evaluation index reflects the relative
importance of each evaluation index and the overall trend of the index weight. The
influence of different index values on the weight is considered in the variable weight.
Therefore, when the value of the same index is different, the weight will change. The
variation law shows that when the index value is relatively good, the index weight will be
greater; when the index value is relatively poor, the index weight will be smaller.

Table 4. Evaluation index weights.

Index y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

Constant weight 0.107 0.254 0.048 0.048 0.129 0.063 0.053 0.045 0.057 0.060 0.070 0.066

Weighted
variable

X1 0.065 0.169 0.025 0.078 0.252 0.031 0.034 0.081 0.074 0.107 0.062 0.022
X2 0.066 0.164 0.037 0.072 0.255 0.037 0.036 0.082 0.060 0.108 0.036 0.047
X3 0.076 0.160 0.044 0.079 0.253 0.022 0.036 0.081 0.058 0.109 0.025 0.057
X4 0.073 0.158 0.041 0.081 0.251 0.022 0.037 0.080 0.052 0.107 0.066 0.031
X5 0.031 0.336 0.031 0.032 0.168 0.054 0.024 0.067 0.025 0.073 0.104 0.054

Figure 4. Comparison between the constant weights and variable weights of the evaluation index for
each slope rock mass (the quantity of X is associated with the slope rock mass).

According to Equations (1)–(5), (16), and (17), the single index correlation of the
slope rock mass sample X1 with respect to each stability grade is calculated, as shown in
Table 5. Similarly, the upper and lower limit index values of each grade in the classification
evaluation index standard of the slope rock mass stability are calculated, as well as the
single index correlation of the index values of the slope rock mass samples X2, X3, X4,
and X5, with respect to each stability grade. Subsequently, the comprehensive correlation
is calculated using Equation (6). Finally, the slope rock mass stability is calculated using
Equations (7) and (8), and the upper and lower limits of each grade and the eigenvalues of
the corresponding grade variables of the slope rock mass are also obtained, as is shown in
Tables 6 and 7. Based on Table 6, the corresponding stability grade of each slope rock mass
sample can be determined according to the variable eigenvalue.
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Table 5. Single index correlation of the slope rock mass X1.

Index
Single Index Correlation

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

I −0.696 −0.931 −0.233 0.000 1.000 −0.470 −0.260 1.040 −0.403 1.067 −0.273 −0.714
II −0.630 −0.886 −0.080 0.000 0.000 −0.364 −0.075 −0.699 0.420 −0.599 −0.059 −0.667
III −0.468 −0.620 0.095 −0.600 0.000 −0.185 0.088 −0.850 −0.228 −0.799 0.067 −0.500
IV 0.418 0.810 −0.115 −0.800 0.000 0.177 −0.245 −0.900 −0.559 −0.900 −0.200 0.000
V −0.228 −0.309 −0.258 −0.857 0.000 −0.131 −0.315 −0.940 −0.691 −0.920 −0.400 0.000

Table 6. Grade variable intervals and the slope rock mass stability grades.

Grade I II III IV V

Level
Variable k [1.00, 1.86) [1.86, 2.43) [2.43, 3.58) [3.58, 4.27) [4.27, 5]

Table 7. Evaluation results of the slope rock mass stability.

Sample

Comprehensive Correlation
Level

Variable
k

The
Proposed

Model

Hierarchical-
Extension
Model [5]

Multi-Level
Unascertained

Measure-Set Pair
Analysis Model [7]

Actual
SituationS(1) S(2) S(3) S(4) S(5)

X1 0.155 −0.315 −0.361 −0.127 −0.405 2.04 Level II Level II Level III Level II

X2 0.144 −0.323 −0.337 −0.123 −0.384 2.05 Level II Level I Level II
(near Level III) Level II

X3 0.172 −0.368 −0.359 −0.155 −0.392 1.93
Level II

(near
Level I)

Level II Level III Level II

X4 0.201 −0.364 −0.359 −0.165 −0.394 1.88
Level II

(near
Level I)

Level I Level II Level II

X5 0.289 −0.111 −0.312 −0.475 −0.508 1.62 Level I Level I Level II Level I

To prove the validity of the evaluation results, under the same evaluation index system,
the evaluation results are obtained by using the hierarchical extension model, the multi-
level unascertained measure-set pair analysis model, and the actual stability of the project,
as shown in Table 7. A comparison of the results shows that the classification results of the
slope rock mass obtained by the proposed model are consistent with the actual situation
of the mine slope. Moreover, the evaluation results of the proposed model are more
accurate than those of the hierarchical extension model and the multi-level unascertained
measure-set pair analysis model.

6. Conclusions

(1) The evaluation index dimension was unified using the extremum method, and the
objective constant weight of the evaluation index (namely, uniaxial compressive
strength; elastic modulus; Poisson’s ratio; structural features; cohesion force; internal
friction; and daily maximum rainfall) was calculated using the entropy weight method.
The constant weight reflects the relative importance of the evaluation indexes. On
this basis, the variable weight theory was introduced to fully consider the influence
of the value difference of the classification evaluation index on the index weight, and
the excitation feature variable weight function was used to calculate the weighting of
the evaluation index of each rock mass, so that the weighting of the evaluation index
was more reasonable.

(2) By applying the matter–element extension model and grade-variable method, the
variable interval corresponding to the evaluation index standard of the stability
grade of the slope rock mass and the variable value of the stability grade of each
rock mass were calculated, and the stability grade of each rock mass was obtained.
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The evaluation results presented in this study are consistent with the engineering
practice and are more accurate than those of the hierarchical extension model and the
multi-level unascertained measure-set pair analysis model.

(3) The variable value of the slope rock mass stability grade was obtained by the inte-
grated information of comprehensive correlation between the evaluation index value
of the slope rock mass stability and each stability grade. The accuracy of the extension
model, in the classification of the slope rock mass stability, can be improved by the
classification of the slope rock mass stability through the interval of the variable
values of the grades corresponding to the evaluation index standard and the variable
values for each slope rock mass stability grade.
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Abstract: This paper focuses on a numerical approach to finding the p–y curves for laterally loaded
piles. The Drucker–Prager plastic model is employed and implemented within a finite element
MATLAB code. The pre- and post-processing code for Gmsh and related numerical tools are
established as well. The p–y curve results from this new approach have been validated and compared
to the typical design equations of API (American Petroleum Institute) and Matlock. The validation
reveals that the code leads to lower p–y curves than the API and Matlock equations when the
horizontal displacement is less than 0.35 times the diameter of the pile (B). A sensitivity analysis
of the number of elements and the interface thickness is presented. The results indicate that the
obtained p–y curves are independent of the two factors. Finally, the influence of clay content on the
p–y behavior is investigated by the implemented MATLAB code. When y < 0.15B, the same lateral
capacity values are resulted at clay contents of 27.5% and 55%, and they are higher than the ones for
0% clay content. The p–y curves show a decreasing trend with increasing clay content after y > 0.15B.

Keywords: laterally loaded pile; p–y curve; soil-pile interface; Drucker–Prager model

1. Introduction

Pile foundation is one of the most commonly used foundation types in complicated
site conditions. Piles in port engineering, offshore oil platforms, and wind turbines are
highly subjected to lateral loads. At the engineering scale, one of the main aspects that
we want to focus on is the response of piles when they are subjected to lateral loading.
This problem can be typically investigated by tracing the so-called p–y curves, which
represent the relationship between the lateral displacement (y) and the lateral force (p) for
a generic transversal section of the pile. The p–y approach has been widely employed to
design laterally loaded piles [1–6]. The development of computer technology has made it
possible to study complicated engineering problems by using numerical methods [4–11].
It is more flexible and less time consuming to analyze the p–y characteristics by using the
finite element method than the full-scale in-situ tests.

This paper aims to construct p–y curves that take into account the properties of the
interface between the soil and the concrete pile as characterized via the experimental
campaign of interface direct shear test in the laboratory. To do this, the Drucker–Prager con-
stitutive model is adopted to describe irreversible (plastic) strains occurring at the interface
between the surrounding soil and the concrete pile. The Drucker–Prager constitutive law
is then implemented into a two-dimensional finite element (FE) code within a MATLAB
environment that was initially developed by Bonnet and Frangi [12] and Bonnet et al. [13].
A 2-D problem describing the effect of a transversal displacement applied to a pile section
has been simulated. The resultant transversal force acting on the pile is found to be a func-
tion of the applied displacement. The obtained p–y curves are validated and compared
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with those in the literature relative to different design methods. A sensitivity analysis with
respect to the number of elements and the thickness of the interface is also presented to
check whether they affect the p–y results. Finally, since there is a lack of literature on the
p–y response of piles in clay-rich soils, the p–y curves of a concrete pile in soil with different
percentages of clay are provided to see the effect of the varying amounts of clay present in
the soil.

2. p–y Method and Code Development

2.1. p–y Method

When a pile is subjected to horizontal loading, the lateral bearing capacity can be
expressed as [14–16]:

pu = NpsuB (1)

where pu is the lateral bearing capacity, Np is the lateral bearing capacity factor, su is the
undrained shear strength of the soil, and B is the pile diameter. The soil shear strength
su depends on soil properties, and Np is related to the failure mechanism of the soil–pile
interface. Equation (1) can be used to normalize the p–y curves in the next section.

The concept of the p–y curve was firstly proposed by McClelland and Focht [17], and
developed by others [18]. The p–y model, also known as the non-linear Winkler spring
model, is commonly used in the design of piles under lateral loading because of its sim-
plicity and low computational cost [5,6,19,20]. In the p–y model, the pile is simplified as
a beam while the soil–pile interface is treated as a set of 1-D, non-linear springs [2,19–22].
As mentioned above, p is the resistance force of the soil per unit of pile length, and y is the
local pile deflection caused by the horizontal loading [14,20,23]. Since the p–y concept was
introduced, several p–y curves were proposed based on different influence factors by previ-
ous researchers. For example, the Matlock p–y curve, API p–y curve, Jeanjean p–y curve,
and Zhang p–y curve [14,16,24,25]. Three typical p–y curves are presented in the following.

Matlock [16] proposed a p–y curve for a pile located in soft clay as a power relationship
between the lateral resistance and the normalized lateral displacement:

p = 0.5pu

(
y
yc

)0.33
(2)

yc can be computed by:
yc = 2.5ε50B (3)

where ε50 is the axial strain corresponding to the 50% maximum principal stress difference
in an undrained compression test and B is the diameter of the pile.

Jeanjean et al. [14] proposed a p–y curve function of the initial shear Gmax and the
undrained shear strength of the soil su:

p = putanh
[

Gmax

100su

( y
B

)0.5
]

(4)

The p–y method is also adopted by the American Petroleum Institute (i.e., API) for
a lateral loading pile design. According to API [25], the API p–y relationship is given as:

p = Fputanh
(

kHy
Fpu

)
(5)

where k is the initial modulus of subgrade reaction (kN/m3), H is the depth (m), and F is
a factor to account for cyclic or monotonic static loading conditions It can be evaluated by:

F = 0.9 for cyclic loading;
F =

(
3.0 − 0.8 H

B

)
≥ 0.9 for monotonic loading.
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In what follows, a finite element-based p–y curve deduction is presented, capable of
accounting for the plastic behavior of the soil and of the soil–concrete interface. The results
will be compared with the curves from the typical equations.

2.2. Drucker–Prager Model

The Drucker–Prager (DP) model [26] for the soil is implemented using the following
MATLAB code, which performs the numerical simulation for calculating the p–y curves.
The DP yield criterion is defined as [27]:

f =

√
2
3

q − (A − Bp1) = 0 (6)

where p1 is the mean normal stress, σ1 is the major principal stress, σ2 is the principal stress,
and σ3 is the minor principal stress. A and B are related to the cohesion c and friction
angle ϕ in the Mohr–Coulomb (MC) criterion; q is the second invariant of the deviatoric
stress [27]:

q =
√

3J2 =
1√
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
]

(7)

As the Drucker–Prager model is represented in the stress plane by a cone with a cir-
cular cross section, it is possible to relate it to the Mohr–Coulomb model considering the
section of the MC pyramid to be inscribed or circumscribed to the DP cone. If the circle of
the DP cone passes through the tensile corners of the MC yield surface (the MC criterion
is inscribed):

A =
2
√

6c cos ϕ

3 + sin ϕ
, B =

2
√

6 sin ϕ

3 + sin ϕ
(8)

the cohesion (c) and the friction angle (ϕ) can be obtained by direct shear tests [28–34].
If the circle of the DP cone passes through the compression corners of the MC yield surface
(MC criterion is circumscribed):

A =
2
√

6c cos ϕ

3 − sin ϕ
, B =

2
√

6 sin ϕ

3 − sin ϕ
(9)

Furthermore, we can assume a plastic potential function of the form [27]:

g =

√
2
3

q + bp1 (10)

where b is the constant plastic dilatancy parameter. Using a return-mapping algorithm in
the stress invariant space, the discrete plastic multiplier is given as:

Δλ =

√
2/3qtr − (A − Bptr

1 )

2μ + KBb
(11)

where K and μ are the elastic bulk and shear moduli, respectively.

2.3. MATLAB Code

The MATLAB FE code was originally developed by Bonnet and Frangi [12]. Fur-
ther improvements have been implemented in GeM (École Centrale de Nantes). The
Drucker–Prager constitutive model has been implemented within the MATLAB FE code
that considers the non-associate and associate flow rule. Although the code started from
the relatively simple DP model, more complicated constitutive laws can be developed
based on this primary work. The pre- and post-processing phases are performed with the
freely available code Gmsh [35]. The link between the MATLAB FE code and the pre- and
post-processing code for Gmsh, and several specific numerical tools, has been established
as well.
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3. 2-D p–y Curve Modeling

3.1. Geometry, Mesh, and Boundary Conditions

A 2-D circular geometry of the finite element model is presented in Figure 1. Due to the
symmetry, only half of the domain is considered; the geometry consists of the soil, the pile,
and the soil–pile interface. The pile is a rigid disc with diameter B = 1 m. The soil boundary
at the bottom is made up with two parts in the horizontal direction, each part having a
width W = 11.5B (11.5 m) from the pile surface point; therefore, the radius (the center of the
circle is the pile center) of the largest half circle is H = 12B = 12 m, see Figure 1. The size
of the circular domain is chosen to be large enough to avoid parasitic effects of the lateral
boundaries. The outer boundary of the soil is fixed both in the x and y directions (Figure 1),
while the bottom is fixed only in the vertical direction (i.e., y-axis in Figure 1). A horizontal
displacement is applied to the pile section in the x direction in Figure 1.

Figure 1. The circular geometry and boundary conditions.

The interface thickness in the geometry can be referred to as the typical experimental
value, e.g., 5 ~ 14d50. In previous modeling studies [36,37], it was set as 0.2 of the pile
diameter B. In the following, a sensitivity analysis with respect to the interface thickness is
provided, which ranges from 5 mm (which considers 20d50 the of Fontainebleau sand) to
5 cm. Constant-strain, three-node triangle elements (T3) are used in the mesh, while the
mesh is refined near the interface (see Figure 2).

3.2. Initial Stress State

This starting numerical study works on a monophasic continuum, so it does not
consider the presence of water, and this is the reason why effective stress is not introduced
in the following work. Obviously as there is no water considered, the earth pressure can be
expressed by total stresses rather than effective ones. The initial stress is generated with
the K0 condition according to the following relationship (Figure 3):

σv = σzz = γz
σn = σxx = σyy = K0σzz = K0γz

(12)

in which γ is the unit weight of the soil, z is the depth from the pile section to the ground
surface (Figure 3), and K0 is the earth pressure coefficient. For the p–y modeling, a depth
of 10 m and K0= 0.5 are considered; the initial stress-state parameters are summarized
in Table 1.
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Figure 2. Example of the mesh with T3 elements: (a) the whole domain and (b) a zoom near the
soil–pile interface zone.

Figure 3. Initial stress state.

Table 1. Initial stress-state parameters.

γ (kN/m3) z (m) K0 (-) σzz (kPa) σxx (kPa)

20 10 0.5 200 100

3.3. Validation

To validate the calculation of the p–y curves, interface test results of soil consisting
of 55% clay and concrete plate are selected as input parameters and the corresponding
p–y curves are traced and compared with different design methods (API and Matlock).
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A total of 11,390 T3 elements are used, and the interface width is equal to 5 mm. The
properties of the interface, the soil, and the pile are given in Table 2. The concrete pile
is considered a rigid material with a Young’s modulus of 33 GPa (Table 2). The pile is
loaded by stepwise loading (horizontal displacement) with increments of 0.002 m in the
MATLAB code. The lateral capacity (p) of the pile is calculated by integrating the normal
and tangential stresses along the circumference of the pile (or of the soil–pile interface).

Table 2. Parameters for validation that come from soil with 55% clay content.

- Young’s Modulus E (kPa) Poisson’s Ratio υ (-) Cohesion c (kPa) Friction Angle ϕ (◦)

Interface 6000 0.3 3.31 19.33

Soil 6000 0.3 10 21.81

Pile 33 × 106 0.2 - -

The results are presented in terms of normalized p–y curves (Figure 4) using the
shear strength of the soil and the pile diameter (see also [20,37]). More specifically, in this
study, the soil is isotropic normally consolidated and the interface behavior is characterized
by a direct shear test in drained condition, hence the critical drained interface shear
strength (sd) of the interface and the pile diameter B are used to normalize p so as to obtain
the lateral bearing capacity factor p/(sdB), i.e., the Np in Equation (1). The horizontal
displacement is normalized by the pile diameter B.

The p–y curves calculated by the MATLAB code with DP model on the circular
geometry are compared to the ones computed from the API and Matlock equations in
Figure 4. The p–y curves from the DP model are lower than the API curve when the
horizontal displacement is less than 0.35B (Figure 4). This indicates that at this horizontal
displacement range (y < 0.35B) a smaller reaction force is mobilized by the DP model than
the API model. The curve from the DP model is higher than that from the API when
horizontal displacement is larger than 0.35B. From 0 to 0.4B, the MATLAB curve presents a
similar shape to the Matlock curve, but with lower normalized p (Figure 4). The two curves
become closer with increasing horizontal displacement. At y = 0.4B, the normalized p
from the DP model in the MATLAB code stays between the API and Matlock values. The
normalized p calculated from the MATLAB code is 8.58, which is 0.5 higher than the one
of API (8.08) and 0.4 lower than the one from the Matlock empirical calculation (8.98),
see Figure 4. As the horizontal displacement goes up to 0.45B, the result of the MATLAB
code is equal to, then gradually becomes higher than that of Matlock. Finally, at 0.6B,
the normalized lateral capacity of the MATLAB code is 10.57, which is 104.6% of that of
Matlock (10.28).

In the MATLAB code, p is calculated by integrating the normal and tangential stresses
along the circumference of the pile or the soil–pile interface. The two results are compared
in Figure 5, which reveals that the p–y curves are the same before 0.4B and have a small
difference (1.38 ~ 2.23%) at 0.4 ~ 0.6B.
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Figure 4. p–y curves from the MATLAB code and the design methods.

Figure 5. p–y curves integrating the stresses along the pile and the soil–pile interface.

Even if the p–y curve obtained from the MATLAB code presents a shape which is not
identical to those from the API and Matlock empirical equations, the normalized horizontal
reaction force does not exceed the empirical values when y < 0.35B, then it is characterized
with smaller difference to the Matlock curve up until y/B = 0.6. Furthermore, the validation
procedure reveals that in engineering design, the DP model leads to lower p–y curves than
the API and Matlock equations at y < 0.35B (Figure 4). However, at horizontal displacement
larger than 0.35B, the MATLAB code generates lateral reaction force that is close to that of
the Matlock formulation. The integrated results from the pile and soil–pile interface are the
same. Both confirm that the p–y curves from the MATLAB code are reliable and consistent
with the Matlock design method.

4. Sensitivity Analysis

4.1. Number of Elements

In order to check the spatial discretization, the influence of the number of elements is
studied hereafter. The circular geometry with a 5 mm interface thickness is used for the
FE number sensitivity analysis. More specifically 3600, 6300, and 11,000 T3 elements are
considered. The input parameters of the simulations are listed in Table 2.
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The normalized p–y curves are similar when the number of elements is 3600, 6300,
and 11,000, see Figure 6. At 0.4B horizontal displacement, the normalized p values rank as
8.71, 8.69, and 8.58 for the three element numbers studied (3600, 6300, and 11,000). The
p–y curves are fitted and presented in Table 3, indicating that no significant difference
exists for the three element numbers. From a coarse mesh with 3600 elements to a dense
mesh with 11,000 elements, the final normalized p (at 40% of y/B) decreases by a small
percentage of 1.57%. Considering the necessary computational time, the element number
for the p–y modeling can be chosen as 6000 ~ 10,000, to insure both effective calculation
and enough elements on the interface zone.

Figure 6. Influence of the number of elements.

Table 3. Fitting formulations of the p–y curves for different numbers of elements.

Element Number (-) Fitting Formulation R2

3600 p
sd B = −0.0058

( y
B
)2

+ 0.4337
( y

B
)

0.9524

6300 p
sd B = −0.0058

( y
B
)2

+ 0.4335
( y

B
)

0.9520

11,000 p
sd B = −0.0058

( y
B
)2

+ 0.4280
( y

B
)

0.9510

4.2. Interface Thickness

To check the influence of the interface thickness on the numerical results, the following
different interface-thickness values are considered: 5 mm, 7 mm, 1 cm, 2.5 cm, 5 cm, and
10 cm. The input parameters of the simulations are listed in Table 2.

Figure 7 presents the effect of interface thickness on the soil reaction curves. All the
p–y curves are independent of the interface thickness at the horizontal displacement con-
sidered 0 ~ 0.4B (Figure 7). From 5 mm to 10 cm interface width, the resulting normalized
p–y curves have a close shape and almost the same value of the lateral bearing capacity
factor at y = 0.4B: 8.58, 8.69, 8.55, 8.75, 8.81, and 8.67. The difference between the final
normalized p of the six curves from the MATLAB code is 0.02 ~ 0.26. These values are
higher than the one calculated by the API method (8.08) and lower than the one calculated
by the Matlock equation (8.98), as shown in Figure 7.
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Figure 7. Influence of the interface thickness.

The obtained p–y curves are therefore independent of the interface thickness, from
thickness ranges from 5 mm to 10 cm. This is also confirmed by the fitting formulations of
the p–y curves as presented in Table 4.

Table 4. Fitting formulations of the p–y curves for different interface thickness.

Interface Thickness Fitting Formulation R2

5 mm p
sd B = −0.0058

( y
B
)2

+ 0.4280
( y

B
)

0.9510

7 mm p
sd B = −0.0058

( y
B
)2

+ 0.4338
( y

B
)

0.9525

1 cm p
sd B = −0.0056

( y
B
)2

+ 0.4227
( y

B
)

0.9508

2.5 cm p
sd B = −0.0059

( y
B
)2

+ 0.4393
( y

B
)

0.9360

5 cm p
sd B = −0.0057

( y
B
)2

+ 0.4335
( y

B
)

0.9528

10 cm p
sd B = −0.0058

( y
B
)2

+ 0.4316
( y

B
)

0.9481

In the following, a circular mesh with 6000 T3 elements and an interface thickness of 5
mm is considered. This thickness also corresponds to the experimental laboratory results.

5. Effect of Clay Fraction on p–y Curves

The adhesion and friction angles from the interface direct shear results are used as
input parameters for the p–y modeling to investigate how the clay fraction affects the
curves. The influence of the clay content on the p–y behavior of pile with lateral loading is
presented and discussed below.

The adhesion and friction angles from three clay fractions of 0%, 27.5%, and 55% are
chosen as the input parameters for the p–y calculation (Tables 5 and 6). The parameters of
the pile used are the same, as shown in Table 2. The horizontal loading is applied on the pile
section considering 200 steps of 0.002 m each (i.e., in total 0.4B horizontal displacement).
The residual drained shear strength, sd, from the interface tests under 100 kPa normal stress
and the pile diameter B are used to do the normalization.
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Table 5. Parameters of the interface.

Clay Fraction (%) Young’s Modulus E (kPa) Poisson’s Ratio υ (-) Cohesion c (kPa) Friction Angle δ (◦)

0 8000 0.3 0 26.40

27.5 7500 0.3 2.22 22.91

55 6000 0.3 3.31 19.33

Table 6. Parameters of the soil.

Clay Fraction (%) Young’s Modulus E (kPa) Poisson’s Ratio υ (-) Cohesion c (kPa) Friction Angle ϕ (◦)

0 8000 0.3 0 34.11

27.5 7500 0.3 2.22 25

55 6000 0.3 10 21.81

The effect of clay content in the soil on the p–y curves is illustrated in Figure 8 and
the reformulated functions are provided in Table 7. The curves show non-linearity shapes
due to the non-linearity characteristics of the soil–pile interface. The overall shapes of
the p–y curves in Figure 8 do not exhibit a strong asymptotic behavior in the horizontal
displacement range considered (0 ~ 40 cm), which agrees with the results calculated using
the Mohr–Coulomb model in [2] and [36]. When y < 0.15B, the same lateral capacity values
are resulted at clay contents of 27.5% and 55%, and they are higher than the curve of the
sand (Figure 8), but the differences are not significant. At the 0.15B, the p is about 5.22 for
the three clay contents presented. To conclude, clay content has nearly no effect on the p–y
results when y is smaller than 0.15B.

Figure 8. p–y curves as a function of clay content.

Table 7. Fitting formulations of the p–y curves at different clay contents.

Clay Content (%) Fitting Formulation R2

0 p
sd B = −0.0042

( y
B
)2

+ 0.4109
( y

B
)

0.9839

27.5 p
sd B = −0.0053

( y
B
)2

+ 0.4249
( y

B
)

0.9668

55 p
sd B = −0.0058

( y
B
)2

+ 0.4280
( y

B
)

0.9510
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It follows from Figure 8 that the normalized p after y > 0.15B is influenced by the clay
content. The curve for 0% clay content (i.e., sand) becomes higher than the one for 27.5%
clay content at each load step, see Figure 8. The curve of 27.5% clay content is also higher
than the one for 55% clay content but with a smaller p/(sdB) gap (0.35) at each loading
step compared to the one (0.46) for between 0% and 27.5% clay content. At a horizontal
displacement of 40 cm (0.4B), the normalized p attains 10.18, 9.23, 8.58 for 0%, 27.5%, and
55% clay contents, respectively (Figure 8); this is because the adhesion, friction angles, and
Young’s modulus vary with the increasing clay content (Tables 5 and 6). The p–y curves are
affected by the cohesion and friction angles, which are consistent with the literature [5,6,37].

6. Conclusions

This paper focuses on a numerical approach to finding the p–y curves for laterally
loaded piles. The Drucker–Prager plastic model has been employed and the approach
has been validated and compared to the API and Matlock design equations. A sensitivity
analysis in terms of the number of elements and interface thickness has been presented.
Finally, the influence of the clay content on the p–y behavior is presented and discussed.
The main conclusions of this paper are summarized as follows:

1. The p–y results agree with the empirical results of Matlock. The validation reveals
that the DP model leads to lower p–y curves with respect to those from Matlock and
API when the horizontal displacement is less than 0.35B.

2. The number of elements has no important effect on the p–y curves. Considering the
necessary computational time, the p–y modeling with the MATLAB code is effective
when 6000 ~ 10,000 elements are adopted for the spatial discretization.

3. The p–y curves are independent of interface thicknesses from 5 mm to 10 cm.
4. Clay content influences the p–y curve results. When y < 0.15B, the same lateral capacity

values are resulted at clay contents of 27.5% and 55%, and they are higher than the
curve of the sand. The normalized p–y curves show a decreasing trend with increasing
clay content after y > 0.15B.

The primary results in this paper shed light on the relationship between p–y curves and
interface parameters. However, the FE modeling of p–y curves in this study is performed
by an implemented code using only the DP model, and the input parameters concern just
three clay contents. Therefore, further numerical studies should involve more advanced
constitutive laws, water, 3-D conditions, and the possibility to have gaps between the pile
and the soil. A new function relating the lateral capacity and the horizontal displacement,
as well as the clay content, should be proposed.
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Abstract: In this study, the triangle interpolation method for the calculation of mapping functions
of plates containing an opening with arbitrary shapes is investigated with an improved method
for point adjudgment during iterations. Afterwards, four kinds of openings with typical shapes
are considered and the mapping functions for them are calculated, based on which the influence of
calculation parameters such as iteration time and the number of terms on the accuracy of mapping
function is discussed. Finally, the stress around an inverted U-shaped opening and around an arched
opening under different far-field stress conditions is calculated and the effect of opening shape and
lateral pressure coefficient on stress distribution and rock mechanical behaviors is further analyzed
combined with the discrete element method (DEM) numerical simulation. The result shows that
the stability and failure pattern of the rock mass is correlated with the stress around the opening,
which is affected by the opening shape. The existence of opening also greatly reduces the enhancing
influence of confining stress on rock specimen.

Keywords: complex variable method; conformal mapping; triangle interpolation; stress analytical
solution; DEM numerical simulation

1. Introduction

There are an extensive range of underground openings such as roadways, tunnels, gas
wells and so on in rock engineering. Stress distribution and failure characteristics around
underground openings are important references in terms of the engineering design and
stability assessment for such openings.

Currently, a great number of experimental studies have been conducted for the pur-
pose of improving the understanding of the mechanical behavior of rock mass under
different engineering conditions [1–5]. The mechanical behavior of underground engineer-
ing structures is usually studied via experiments on rock specimens containing one or
more openings or joints under different stress conditions [6–8]. With the employment of
the digital image correlation (DIC) technique, Zhou et al. [9] and Tan et al. [10] studied
the mechanical behavior and crack propagation of rock specimens containing rectangu-
lar openings under static and dynamic loading, respectively. Wu et al. [11] processed
rock specimens containing an opening with five presentive shapes and investigated the
influence of an opening shape on the mechanical properties and fracture characteristics
of rock specimens under uniaxial loading. These studies show that maniacal properties
and fracturing behavior of rock specimens are tightly correlated with the loading condi-
tion and opening shape. The existence of openings significantly degrades the strength of
specimens. The initial failure tends to appear at the top and bottom of the opening and
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dominated cracks always develop from opening corners. These influences of openings
may be attributed to stress distribution. The mechanical behavior of rock mass containing
defects also affects the confining stress. Wang et al. [12] reported that for rock specimens
containing two flaws under compression tests, crack propagation and failure pattern of
specimens are obviously affected by confining stress. The failure pattern of the specimen is
transformed from vertical failure to horizontal failure with the increase in confining stress
and is dominated by shear cracks under high confining stress conditions.

Experimental studies have significantly contributed to revealing the mechanical prop-
erties and failure behavior of rock mass containing defects. However, focusing on the
phenomena analysis is less able to reveal the stress characteristics within the rock mass,
which is essential for the prediction of potential risk [13]. Alternatively, with the devel-
opment of computing capability, analytical and numerical methods have been widely
employed for complex stress problems. Particularly, analytical studies promise high ac-
curacy solutions and allow efficient parametric investigation to the analysis influence of
engineering parameters on opening stability. With the employment of the complex variable
method, stress solution for elastic plates containing an opening has been studied in a large
amount of literature. Ukadgaonker and Awasare [14–17] conducted a series of studies on
the analytical solutions for circular, elliptical, triangular, and rectangular openings in an
infinite plane. Sharma [18] presented the general stress functions for determining the stress
concentration around circular, elliptical and triangular openings with different opening
orientation and far-field stress conditions. Wu et al. [19] calculated the stress concentration
factor on the periphery of the horseshoe-shaped opening based on the analytical stress
solution and analyzed the fracture response of specimens containing an opening with the
combination of an analytical solution and experimental results. Zhao et al. [20] presented
the analytical solution for rock stress around a square tunnel under different confining
stress conditions. They found that with the increasing pressure coefficient, the boundary
stress gradually converted from tensile stress to compressive stress for the two sidewalls
while the opposite situation occurred for the roof and floor. According to the boundary
conditions with the consideration of lining support force, Lv et al. [21] calculated the ana-
lytical solutions for a non-circular tunnel with closed support, which offers a perspective
on the stress solution for supported openings at great depth. Recently, Setiawan and Zim-
merman [22] revived a graphical approach proposed by Melentiev [23] and then proposed
a new method for the calculation of in-plane stress around a hole with arbitrary shapes in
isotropic or anisotropic materials.

In the above-mentioned analytical studies, the calculation of stress solution is based on
conformal mapping, which allows an opening in a domain to be mapped into a unit circle
in another domain via a mapping function. Therefore, the determination of the mapping
function is preliminary and essential for the analytical solution based on the complex
variable theory. The mapping function for a circular opening can be directly calculated
according to its radius. For openings with simple shapes such as regular polygons, their
mapping functions can also be easily calculated by given formulas [24,25]. However, for
openings with complex shapes, mapping functions are usually characterized by a great
number of terms and parameters, which makes it difficult to determine. Lv et al. [26]
developed a general optimization method to calculate the mapping function parameters
for plates containing an opening with arbitrary shapes, in which an objective function is
proposed to calculate the optimal parameters by reducing the coordinate error of mapping
points during iterations. Combined with Box’s optimization method [27], this method is
further improved by Tan et al. with a new objective function proposed for the optimization
calculation [28,29]. Another method for the calculation of mapping functions is the triangle
interpolation method. By repeating the mutual iteration of odd and even interpolation
points, Zhu et al. [30] solved the mapping functions for a series of engineering openings
with complex shapes based on the triangular interpolation theory. Compared with other
methods for the calculation of mapping functions, this method is of high efficiency and
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allows more terms with coefficients in the form of complex numbers to obtain a high
accurate solution for openings with complex shapes.

In this study, the procedure of calculating the mapping functions for openings with
complex shapes using the triangular interpolation method was introduced and improved.
The mapping functions of four openings with presentative shapes were calculated and
the factors affecting their accuracy were discussed. In addition, the inverted U-shaped
opening and arched opening were selected, and the stress solution around them with
different lateral pressure coefficients were calculated. The influence of the opening shape
and confining stress on the stress characteristics was studied. Furthermore, DEM numerical
simulations were conducted with the failure patterns of openings at different confining
stress levels presented. With the combination of analytical and numerical results, the
correlation between stress distribution and failure patterns around the openings was
discussed.

2. Determination of Mapping Function

2.1. Principles of Triangle Interpolation

Based on conformal mapping method, the plane containing an opening (z-plane) can
be mapped to the plane containing a unit circle (ζ-plane), which is realized by the mapping
function:

Z = ω(ζ) =
∞

∑
k = 1

Ckζ2−k (1)

Take the leading m Ck of ω(ζ), then it can be written as:

Z = ω(ζ) =
m

∑
k = 1

Ckζ2−k (2)

Usually, Ck are complex constants, which can be expressed as:

Ck = Ak + iBkk = 1, 2, 3, . . . , m (3)

where both Ak and Bk are real constants.
For any point σ at the boundary of the unit circle in ζ-plane whose polar coordinate is

(1, θ), it can be expressed as:
σ = cos θ + i sin θ (4)

Similarly, for the mapping point t of σ at the boundary of the opening in z-plane,
whose polar coordinate is (r, α), it can be expressed as:

t = r cos α + ir sin α (5)

By substituting Equations (3)–(5) into Equation (2), we can find:

r cos α + ir sin α =
m

∑
k = 1

{
Ak cos[(k − 2)θ] + Bk sin[(k − 2)θ]

−iAk sin[(k − 2)θ] + iBk cos[(k − 2)θ]

}
(6)

With the extraction of the real part and imaginary part, the following equation can be
obtained: ⎧⎪⎪⎨

⎪⎪⎩
r cos α =

m
∑

k = 1
{Ak cos[(k − 2)θ] + Bk sin[(k − 2)θ]}

r sin α =
m
∑

k = 1
{−Ak sin[(k − 2)θ] + Bk cos[(k − 2)θ]}

(7)
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For m points at the unit circle in ζ-plane with coordinates of (1, θj), their mapping
points in z-plane are (rj, αj). Based on the orthogonality of trigonometric functions, Ak and
Bk can be expressed as:

⎧⎪⎪⎨
⎪⎪⎩

Ak = 1
m

m
∑

j = 1

{
rj cos αj cos

[
(k − 2)θj

]− rj sin αj sin
[
(k − 2)θj

]}
Bk = 1

m

m
∑

j = 1

{
rj cos αj sin

[
(k − 2)θj

]
+ rj sin αj cos

[
(k − 2)θj

]} (8)

Then, 2n points are uniformly sampled at the unit circle in ζ-plane, which are divided
into two groups σe,j (1, θe,j) and σo,j (1, θo,j):{

θe,j = 2π j
n

θo,j = π(2j−1)
n

j = 1, 2, 3, . . . , n (9)

During the first iteration, n points tj (rj, αj) (j = 1, 2, 3, . . . , n) are randomly sampled at
the boundary of the opening in z-plane. By substituting σe,j and tj into Equation (8), the

initial solutions A(0)
k and B(0)

k can be obtained:

⎧⎪⎪⎨
⎪⎪⎩

A(0)
k = 1

m

m
∑

j = 1

{
rj cos αj cos

[
(k − 2)θe,j

]− rj sin αj sin
[
(k − 2)θe,j

]}
B(0)

k = 1
m

m
∑

j = 1

{
rj cos αj sin

[
(k − 2)θe,j

]
+ rj sin αj cos

[
(k − 2)θe,j

]} (10)

Then the initial mapping function ω(0)(ζ) is determined with the substitution of A(0)
k

and B(0)
k into Equation (2). Based on ω(0)(ζ), the mapping points to,j in z-plane of σo,j can

be calculated by:
to,j = ω(0)(σo,j

)
j = 1, 2, 3, . . . , n (11)

If the difference between tj and to,j is within tolerance, A(0)
k and B(0)

k are regarded as
the optimal Ak and Bk, respectively. Otherwise, to,j will be moved to the opening boundary
and replaced by the original tj. By substituting σo,j and tj into Equation (8), the solutions of
Ak and Bk in the first iteration can be determined by:

⎧⎪⎪⎨
⎪⎪⎩

A(1)
k = 1

m

m
∑

j = 1

{
rj cos αj cos

[
(k − 2)θo,j

]− rj sin αj sin
[
(k − 2)θo,j

]}
B(1)

k = 1
m

m
∑

j = 1

{
rj cos αj sin

[
(k − 2)θo,j

]
+ rj sin αj cos

[
(k − 2)θo,j

]} (12)

The mapping function ω(1)(ζ) in the first iteration can be determined by Equation (11)
with the substitution of A(1)

k and B(1)
k . Here the first iteration is completed. The accuracy of

ω(1)(ζ) can be assessed by comparing tj and the mapping points te,j of σe,j calculated by
ω(1)(ζ); ω(1)(ζ) is employed as the optimal mapping function if its accuracy is satisfying.
Otherwise, te,j will be moved to the opening boundary and then become the new tj. Then
the next iteration calculation will be conducted. With the increase in iteration times, the
solution accuracy will gradually increase and finally remain stable.

As for the movement of to,j and te,j into the opening boundary, the previous study [30]
has realized this process in the Cartesian coordinate system. As shown in Figure 1, for a
point z0 in z-plane, its Cartesian coordinate is (x0, y0). The line through z0 and the origin is
described by function g(z) and the opening boundary is described by function f (z). Then,
the corresponding point z1 at the opening boundary for z0 can be calculated by:

g(z1) = f (z1) (13)
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Figure 1. Schematic diagram of an opening in an infinite elastic plate.

Though it is feasible for openings with simple shapes, this method may be unavailable
when the function describing the opening boundary is difficult to determine. To address
this problem, reference points at opening boundary rather than the boundary function
were used to moving an outside-opening point into the opening boundary. As shown in
Figure 2, there are nref reference points uniformly distributed at the opening boundary in
the polar coordinate system. For an outside-opening point t0 (r0, α0), its corresponding
point at the opening boundary is tnew (rnew, α0). The reference points previous to and next
to point t0 are p1(r1,α1) and p2(r2,α2), respectively. Then rnew can be calculated by linear
interpolation:

rnew =
r1r2(cos α2 sin α1 − sin α1 cos α2)

(r2 sin α2 − r1 sin α1) cos α0 − (r2 cos α2 − r1 cos α1) sin α0
(14)

 

Figure 2. Schematic diagram of reference points at the opening boundary.

With Equation (14), the movement of to,j and te,j can be easily and accurately realized
during each iteration. In this study, nref in all calculations for mapping functions is set as
1 × 104 for a high accurate solution.
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2.2. The Determination of Mapping Functions

As shown in Figure 3, four openings with typical shapes were used to verify the
availability of the triangle interpolation. Among them the trapezoidal opening and irregular
inverted U-shaped opening are asymmetric openings while the inverted U-shaped opening
and the arched opening are symmetric openings. For the trapezoidal opening (Figure 3a),
H1 = 2.50 m, H2 = 3.70 m and L1 = 4.00 m. For the irregular inverted U-shaped opening
(Figure 3b), H1 = 2.50 m, H2 = 1.40 m, H3 = 1.90 m, L1 = 3.15 m and L2 = 1.05 m. For
the inverted U-shaped opening (Figure 3c), H1 = 2.50 m, H2 = 1.40 m, H3 = 1.90 m and
L1 = 4.20 m. For the arched opening (Figure 3d), R1 = 6.30 m, R2 = 8.80 m, R3 = 1.60 m,
R4 = 15.60 m, L1 = 12.25 m, L2 = 2.50 m, L3 = 4.64 m, and L4 = 0.96 m. The origin of all
planes containing a single opening is the centroid of the opening.

 

(a) Trapezoidal opening (b) Irregular inverted U-shaped opening 

 

 

(c) inverted U-shaped opening (d) Arched opening 

Figure 3. Four openings with typical shapes.

By uniformly sampling n points σj (1, θj) from σ1 (1, 0), the mapping point of σj is

(rσ, ασ) and its corresponding point at the opening boundary is (r(0)σ , ασ), the average
absolute relative error (average ARE) of the n points is defined as:

febre =
1
n

n

∑
j = 1

∣∣∣rσ − r(0)σ

∣∣∣
r(0)σ

(15)
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The change in the average ARE and the maximum absolute relative error (maximum
ARE) of the mapping functions for each opening with the increase in iteration time are
presented in Figure 4. In this study, n was set as 200 in all cases. It can be seen that both
average ARE and maximum ARE decrease exponentially with the increase in iteration
time. In all cases, average ARE decrease rapidly and then remains at a stable level close
to zero with the increase in iteration time, indicating that the mapping functions for all
openings are of high accuracy. However, the maximum ARE for all openings except the
arched opening fails to decrease to zero but remains at a stable level greater than zero when
the iteration time reaches a certain number. Especially for the irregular inverted U-shaped
opening (Figure 4b), the maximum ARE is as high as 0.019. In contrast, the maximum ARE
for the arched opening is almost closed to zero, showing little error of the mapping function.
From Figure 4, the accuracy improvement of mapping functions becomes insignificant once
iteration time reaches a certain value. In the following calculations, once error decrement,
which is the difference between average ARE in the current iteration and in the prior
iteration, is less than 1 × 10−6, the calculation result is determined to be convergent, and
the result of the last iteration is adopted.

 

(a) Trapezoidal opening (b) Irregular inverted U-shaped opening 

 

(c) inverted U-shaped opening (d) Arched opening 

Figure 4. The curves of average ARE and maximum ARE versus iteration time.

The increase in Ck number m contributes to the improvement of the accuracy of the
mapping function. However, too many Ck terms may lead to a time-consuming calculation
and high computational complexity. Therefore, the optimal Ck number is expected to
be determined to achieve the balance between accuracy and efficiency. Accordingly, the
relation curves between average ARE and m for the mapping functions of plates with the
four kinds of openings are presented in Figure 5. For the irregular inverted U-shaped
opening, the accuracy of mapping function remains a stable level when m is greater than 60.
For the others, mapping functions almost reach stable when m is greater than 20. Therefore,
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in this study, m was set as 60 for the irregular inverted U-shaped opening and 20 for the
other openings. Figure 6 presents the iteration time for convergency with the increase of m
for each opening. Overall, more iterations are required for the calculation convergency for
the asymmetric openings (trapezoidal opening and irregular inverted U-shaped opening)
than that for symmetric openings (inverted U-shaped opening and arched opening). This
may be because Ck are complex numbers in the mapping functions for the former openings
but are real number for the later openings, which makes the calculation for the former ones
more complex and accordingly more iteration times for them are required.

 
Figure 5. The relation curves between average ARE and m.

 
Figure 6. The relation curves between iteration time and m.

Figure 7 plots the comparisons between the mapping shape and original shape of all
openings. We can find that obvious differences between the mapping shape and original
shape exist at the lower right corners of the irregular inverted U-shaped opening though
the whole mapping shape agree well with the original one. Comparing Figures 4 and 7
shows that for the arched opening without corners, the mapping function is perfectly
accurate with little error. However, obvious error is more likely to happen at the corners of
the other openings especially for those with complex shapes.

The parameters of mapping functions for some openings are listed in Table 1. As the
mapping function of the plane containing the irregular inverted U-shaped opening has too
many terms of Ck, its parameters are not presented. For the inverted U-shaped opening and
the arched opening which are symmetrical about the x axis, Ck are real constants, namely
Bk = 0.
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Figure 7. Comparisons between the mapping shape and original shape for different openings (black
line indicates the original shape and red line indicates the mapping shape).

Table 1. Mapping function parameters of plates with different openings.

Trapezoidal Opening
Inverted U-Shaped

Opening
Arched

Opening

k Ak Bk Ck Ck
1 2.108 −0.016 2.252 5.689
2 0.022 −0.027 −0.061 −0.071
3 −0.190 −0.233 −0.105 −0.760
4 0.054 −0.209 0.147 0.421
5 −0.295 −0.102 −0.237 −0.152
6 0.026 −0.035 0.073 −0.003
7 0.022 0.009 0.032 0.049
8 −0.016 0.026 −0.022 −0.033
9 0.017 0.014 0.013 0.004

10 −0.007 0.003 −0.008 0.009
11 −0.004 −0.005 −0.003 −0.007
12 0.010 −0.007 0.008 0.001
13 −0.001 −0.001 −0.006 0.000
14 0.001 0.001 −0.001 0.001
15 0.000 0.001 0.002 0.000
16 −0.005 0.001 −0.002 −0.002
17 0.000 −0.001 0.003 0.003
18 0.001 0.000 0.000 −0.001
19 0.000 0.001 −0.002 −0.001
20 0.002 0.000 0.001 0.002
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3. Stress Solution of Plates Containing a Single Opening

3.1. Calculation Models

In practical engineering, the surrounding rock mass of the underground opening is
usually in complex stress conditions. The far-field stress may have a significant influence
on the stress distribution around the opening and thus may further affect the stability and
failure pattern of the opening. To improve the understanding of stress distribution around
the opening under different far-field stress conditions, the inverted U-shaped opening and
arched opening are selected and the analytical stress solutions for them are calculated,
based on which the effect of the opening shape and lateral pressure coefficient λ on stress
distribution is investigated. To make the calculation more effective, principal stresses
are suggested for the description the far-field stress condition, which can be realized by
adjusting the orientation of the opening. In practical underground engineering, as the
direction of vertical stress is usually close to or identical to that of a principal stress and
the tunnel orientation is usually designed to be parallel to a principal stress direction
to minimize the effect of antiplane stresses. The change in opening orientation is not
considered in the following examples. As shown in Figure 8, the far-field vertical stress σ∞

x
and the far-field horizontal stress σ∞

y are two principal stresses in the plate, which are set
as p and λp, respectively. λ is the lateral pressure coefficient. In this study, seven levels of λ
are considered, whose value is from 0 to 1.0 with an interval of 0.1. The detailed solution
procedure for a plate containing an opening has been elaborated by many studies [28,31].
Therefore, it is not presented in this study.

 

(a) Inverted U-shaped opening (b) Arched opening 

Figure 8. Schematic diagram of a plate containing an opening under far-field stress condition.

3.2. Stress Calculation for Plates

Figure 9 presents the analytical solutions of hoop stress σθ on the opening boundaries
with some typical λ. The negative σθ is tensile stress and the positive σθ is compressive
stress. Tensile stress appears in the roof and floor of the openings while compressive stress
appears in other locations for both kind of openings under uniaxial stress (λ = 0), but
the tensile stress gradually decreases and finally converts into compressive stress with
the increase in confining stress. However, despite their similarity, significant difference
is observed between the stress distribution around the inverted U-shaped opening and
around the inverted U-shaped opening. The compressive stress concentration level at the
corners of the inverted U-shaped opening is much higher than that at the corners of the
arched opening. For example, the maximum hoop stress at the corners is 7.69p for the
inverted U-shaped opening but is only 3.73p for the arched opening. In addition, the two
kinds of openings also show different stress response to the change in λ. Figure 10 presents
the change trend of the maximum hoop stress σθ ,max, the minimum hoop stress σθ ,min and
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the difference between them (σθ ,max − σθ ,min) with the increase in λ. For both openings,
σθ ,min is close to -p when λ = 0 and linearly increase with the increase in λ (Figure 10b).
When λ reaches a certain value, which is about 0.58 for the inverted U-shaped opening and
0.62 for the arched opening, σθ ,min begin to be positive, which means there is no tensile
stress appearing at the opening boundaries anymore. However, from Figure 10a we can
see that σθ ,max at the boundary of the inverted U-shaped opening increases linearly with
λ but σθ,max at the boundary of the arched opening almost remains constant. In addition,
Figure 10a shows that the gap between σθ ,max and σθ ,min is more and more greater for the
inverted U-shaped opening but keeps narrowing for the arched opening.

(a)  = 0 (b)  = 0.2 

(c)  = 0.4 (d)  = 0.6 

(e)  = 0.8 (f)  = 1.0 

Figure 9. Analytical solution of hoop stress around openings with different λ.
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(a) ,max (b) ,min 

 

 

(c) ,max  ,min  

Figure 10. Curves of σθ ,max, σθ ,min and (σθ ,max − σθ ,min) versus λ.

4. DEM Numerical Simulation

4.1. Numerical Modelling

The mechanical properties and failure patterns of rock mass containing an opening
under different stress conditions were further investigated by DEM numerical simulations
via the commercial DEM code PFC2D. The balls within the models were bonded by
contacts with the linear parallel bond model, which has been extensively used to study
the mechanical behavior of rock mass by Itasca and many studies [32–35]. As shown in
Figure 11, numerical specimens containing an inverted U-shaped opening and an arched
opening were established. Axial stress σv was produced by axial displacement-control
loading and confining stress σh was applied on both sides of the specimens. The meso-
parameters of the numerical specimens were calculated by a series of numerical standard
uniaxial compression tests based on a kind of sandstone with UCS of 49.5 MP and Young’s
Modulus of 7.2 GPa, respectively. To make the numerical results for them comparable, the
parameter Ck for both of their mapping functions were scaled down by 1: C1 respectively
to make sure the sizes of the two openings were at the same level. Then, the size of the
scaled-down openings was used in the numerical modelling.

4.2. Mechanical Properties

Some representative curves of axial stress versus axial strain for numerical specimens
are presented in Figure 12. The axial stress is computed by dividing sectional area of the
specimen into the force on the loading plate. The axial strain is the ratio of the initial
length of the specimen to the axial displacement of the loading plate. It should be noted
that the computed stress and strain are used to demonstrate the effect of a hole on the
mechanical behavior of surrounding rock mass rather than to quantify the stress and strain
conditions within specimens as they are not uniform within the specimens containing holes.
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For all intact specimens containing an opening, their stress-strain curves increase linearly
during the early loading stage until close to their peak points. All the curves drop sharply
during post-peak stage under uniaxial compressive loading (σh = 0 MPa), indicating strong
brittle behavior. However, the plastic behavior appears under confining stress conditions,
especially for the numerical specimens containing an inverted U-shaped opening where
stress curves tend to be flat close to the peak point.

 

(a) Numerical specimen containing an in-
verted U-shaped opening 

(b) Numerical specimen containing an 
arched opening 

Figure 11. Numerical modelling of rock specimens containing an opening.

(a) Intact specimens  (b) Specimens containing an inverted U-
shaped opening 

(c) Specimens containing an arched opening  

Figure 12. Axial stress-strain curves for specimens with different openings.
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The change trends of peak axial stress of numerical specimens with different confining
stress are shown in Figure 13. For intact specimens, a near linear relation between peak axial
stress and confining stress is observed. However, this relation is not linear for specimens
containing an opening. Moreover, the peak axial stress of specimens containing an opening
is much lower than that of intact specimens. Take the numerical specimen containing an
arched opening for example, its peak axial stress under uniaxial compression condition
is 30.94 MPa, which is 79.76% of that of the intact specimen. In comparison, when the
confining stress reaches 20 MPa, peak axial stress of the intact specimen sharply increases to
104.74 MPa while that of the specimen containing an arched opening only slightly increases
to 45.49 MPa, which is only 43.43% of the intact one, also indicates that the existence of the
opening significantly suppresses the positive influence of confining stress on strength of
specimens. In addition, the opening shape also has an influence on the specimen strength.
The specimen containing an arched opening is able to bear higher axial stress than that
containing an inverted U-shaped opening under the same confining stress condition.

 
Figure 13. Peak axial stress of numerical specimens under different confining stress conditions.

4.3. Failure Patterns

Figures 14 and 15 present the failure patterns of specimens in some representative
cases. The left part of each sub-figure plots the failure pattern of the specimen at the point
of 95% peak axial stress in the pre-peak stage and the right part plots the failure pattern at
the point of 70% peak axial stress in the post-peak stage, which is the end of the loading
test. As revealed by Figure 12, specimens are mainly under elastic deformation in the
pre-peak stage, therefore the failure that appears in this stage may tightly relate to the
stress distribution determined by the analytical solution of the elastic plate containing
the opening. For the specimen containing a single inverted U-shaped opening at the
point of 95% peak axial stress in the pre-peak stage, failure concentrates the corners and
the wall sides without confining stress. Meanwhile, a tensile crack parallel to the axial
loading direction from the middle part of the roof, where the maximum tensile stress in
the corresponding analytical stress solution, is observed. When there is confining stress,
the characteristics of failure around the sidewalls and corners remains the same, but the
tensile crack on the opening roof fails to appear anymore. It can be seen in all cases for the
inverted U-shaped opening, failure forming a “V-shaped” wedge around the sidewalls,
which are a compressive stress concentration area in corresponding cases. Similar failure
patterns happened to the specimen containing a single arched opening in the pre-peak
stage, where tensile cracks appear in the middle parts of the opening roof and floor under
uniaxial compressive loading but do not appear under confining stress conditions.
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(a) h = 0 MPa (b) h = 5 MPa 

(c) h = 10 MPa (d) h = 15 MPa 

Figure 14. Failure patterns of numerical specimens containing an inverted U-shaped opening.

(a) h = 0 MPa (b) h = 5 MPa 

(c) h = 10 MPa (d) h = 15 MPa 

Figure 15. Failure patterns of numerical specimens containing an arched opening.

Combining the analytical solution and numerical results shows that the failure patterns
around openings in the pre-peak stage are in accord with stress distribution characteristics
in the corresponding analytical cases. With the loading going on, the stress distribution
continuously changes with more and more cracks appearing. In the post-peak stage, the
specimens are broken with intensive failure, where the patterns are not only led by initial
cracks during elastic deformation but also affected by the interaction between the specimen
boundaries and the openings. For the specimen containing an inverted U-shaped opening
under uniaxial loading, two shear cracks appeared in the failure area around the opening
sidewalls and extends to the upper right corner and the lower left corner respectively,
which forms a diagonal failure area connected with the opening. When the confining stress
reached 5 MPa, the specimen was fractured by four shear cracks connecting the opening
and the specimen corners. Then, the shear cracks seem were suppressed with the confining
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stress increasing to 10 MPa. When the confining stress was 15 MPa, no shear cracks
connecting the opening and the specimen boundary appeared. The specimen instability is
dominated by intensive failure around both sidewall because of strong compressive stress
concentration. Similar response of failure patterns to confining stress are also happened to
the specimen containing an arched opening.

5. Discussion

5.1. Generality of the Improved Triangle Interpolation Method for the Determination of
Mapping Function

The accuracy of the mapping function depends on the iteration time and the number
of Ck. The optimal iteration time can be determined when the error decrement is less
than a given value, which is 1 × 10−6 in this study. Generally, the optimal number of Ck
depends on the complexity of the opening. The mapping function for an opening with
a more complex shape requires more terms of Ck for a satisfying accuracy, but this study
reveals that the accuracy will gradually converge on a constant value with the increase in
Ck number, showing an exponential decrease trend. As too many terms of Ck may increase
the difficulty of following the calculations for analytical stress solution, the minimum
number of Ck satisfying the desired is suggested according to the practical engineering
requirements.

The triangle interpolation method has been proved to be an efficient method to
calculate the mapping functions for openings with arbitrary shapes. In the previous
study, the adjustment of mapping points during iterations was conducted by means of the
boundary curve function of the opening. However, the boundary curve function may be
inaccurate and difficult to be determined for openings with complex shapes. Alternatively,
by sampling enough reference points uniformly at the boundary, the adjustment of mapping
points can be realized easily without an accuracy loss caused by the boundary curve
function.

5.2. Influence of Opening Shape and Confining Stress on the Mechanical Behaviour of Specimens

Based on the analytical and numerical results, it can be inferred that for openings
under low confining stress conditions, initial failure may always appear on the roof in the
form of tensile cracks. However, under high confining stress, the tensile concentration
will be reduced and even disappear. Fracturing, deformation and rock burst around the
sidewalls and corners, which are high compressive stress concentration areas, are more
likely to appear than a disaster led by tensile failure on the opening roof. Accordingly, the
stability of sidewalls and corners deserve more attention than that of roof. Based on the
stress variation laws revealed by the analytical solution, however, it is logical that the stress
around the sidewalls will convert into tensile stress and compressive stress concentration
will form in the roof and floor of the opening when the lateral pressure coefficient reaches a
certain level. In such a case, vulnerable areas and failure patterns around the opening may
be quite different and corresponding solutions and analyses should be further carried out.

Compared with the inverted U-shaped opening, the analytical stress solution shows
that the compressive stress concentration around the arched opening is much lower under
the same far-field stress condition. The stress distribution around the arched opening is
more uniform and the difference between the maximum hoop stress and the minimum hoop
stress reduces with the increase in lateral pressure coefficient, which is opposite to that for
the inverted U-shaped opening. Numerical results also show that the strength of specimens
contacting an arched opening is higher than that of specimens containing an inverted U-
shaped opening under all test conditions. These comparisons seem to indicate that opening
sections with corners are not suggested for long-term rock engineering underground.

6. Conclusions

In this study, the stress solution for plates containing an opening was studied based on
conformal mapping. The triangle interpolation method for the determination of mapping
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functions was discussed and improved. The stress distribution and failure patterns of
rock mass containing an opening under different confining stress conditions were further
analyzed with the combination of analytical stress solutions and numerical simulations.
The main conclusions of this paper include:

(1) Mapping function is essential for the stress solution of rock mass around underground
openings. By keeping even and odd interpolation points iterating each other repeat-
edly, the mapping function for a given opening can be effectively determined by the
triangle interpolation method. The key point of this method is to move the calculated
mapping points into the opening boundary during each iteration. Compared with
boundary curve function, the method of sampling reference points at the boundary
combined with linear interpolation is suggested for this adjustment as it is easy to
conduct and promise high accuracy.

(2) Stress distribution characteristics around the opening are significantly affected by the
opening shape, which further affects the stability and failure pattern of the rock mass.
The maximum hoop stress at the boundary of the inverted U-shaped opening is much
higher than that at the boundary of the arched opening under the same far-field stress
condition and shows a linear increasing trend with the increase in lateral pressure
coefficient. However, the sensitivity of the maximum hoop stress of the later one to
the lateral pressure coefficient is much less, remaining at a stable level despite of the
varying lateral pressure coefficient.

(3) Combining the analytical stress solution and DEM numerical tests shows that the
failure patterns of specimens in the pre-peak stage agree well with the analytical
elastic stress solution. Under uniaxial stress conditions, initial failure is characterized
by tensile cracks from the roof and floor of the openings, where there are tensile
stress concentration areas, then failure from the sidewalls and corners caused by
concentrated compressive stress is observed. Under biaxial stress conditions, the
analytical stress solution reveals that tensile stress around the openings gradually
decreases and finally coverts into compressive stress with the increase in the lateral
pressure coefficient. Accordingly, the tensile failure is suppressed in the corresponding
numerical cases.
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Abstract: The closed-form solution, one of the effective and sufficient optimization methods, is
usually less computationally burdensome than iterative and nonlinear minimization in optimization
problems of heat source localization. This work presents two-dimensional, closed-form solutions
for locating heat-concentrated sources using temperature differences for known and unknown tem-
perature gradient systems. The nonlinear location equations for heat-concentrated source location
are simplified to linear equations, and they are solved directly to obtain the analytical solution.
To validate the accuracy of the proposed analytical solutions, three numerical examples of heat
source localization were conducted. Results show that the proposed analytical solutions have a
higher accuracy than iterative results by Levenberg–Marquardt. The locating accuracy for the three
sources using AS-KTG improved by 94.82%, 90.40%, and 92.77%, while the locating accuracy for the
three sources using AS-UTG improved by 68.94%, 16.72%, and 46.86%, respectively. It is concluded
that the proposed method can locate the heat sources using temperatures and coordinates of sensors
without the need for a heat transfer coefficient, a heat transfer rate, and thermal conductivity. These
proposed analytical solutions can provide a new approach to locating heat sources for more compli-
cated conditions using temperature differences, such as the localization of geothermal sources and
nuclear waste leak points.

Keywords: heat-concentrated source; optimization of heat source location; temperature gradient;
closed-form solution; temperature difference

MSC: 65H10; 65J15; 65H04

1. Introduction

The demand for energy increases rapidly with the development of human society.
Geothermal resources, as a kind of clean energy, have attracted the attention of countries all
over the world. Exploring the distribution of geothermal resources for geothermal develop-
ment is an important topic [1]. Electrical resistivity tomography [2,3] and magnetotelluric
methods [4,5] are useful methods to investigate the geothermal reservoir and to predict
the storage of geothermal sources. Traveltime tomography [6,7], as an effective means to
understand underground structures, can also provide valuable information for geothermal
resource development. Moreover, the deep rockmass is under high stress conditions [8,9],
which will affect the safety and economy of geothermal resource exploitation. Identifica-
tion of the principal stress directions [10,11] and localization of the abnormal regions in
underground structures [12,13] is crucial to obtain the distribution of geothermal resources.
If the location of the heat-concentrated source can be obtained in advance, it will provide a
great convenience for geothermal reservoir exploration.

The solution to the problem of locating a heat source has a wide range of applications.
The stable temperature of a certain material is closely related to its properties [14]. A
high temperature will seriously affect the comfort and the work efficiency of workers,
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and further influence their health condition [15]. Nonlinear fitting methods [16,17], such
as the Levenberg–Marquardt method (LM), the Monte Carlo technique [18,19], Nelder
Mead’s simplex method [20], the Gauss–Newton method, the gradient descent method, and
dynamic programming, were widely used to determine solutions to the inverse problem.
Drag and Styczeń [21] transformed the temperature distribution control problem into a
nonlinear optimization problem and designed an interior-point algorithm to solve dynamic
optimization tasks. Similar works have been discussed with regard to the localization
of acoustic emission sources. The traditional localization methods usually applied the
time difference of arrival (TDOA) to solve the results of the sources [22–24]. Analytical
solutions and iterative solutions are innovatively combined for solving the microseismic
source coordinates in a complex mining environment [25]. The influence of premeasured
wave velocity errors and abnormal arrivals are eliminated, and the localization accuracy
is greatly improved. Moreover, the A* path search algorithm is improved to obtain the
real wave propagation paths, which are further applied to conduct source localization
in complex structures [26]. Additionally, the proposed A* based localization method is
applicated to the localization of autonomous driving vehicles in underground intelligent
mines [27]. This indicates that the localization method has great potential for applications.

Accuracy, efficiency, and economy are mainly considered factors in practical engi-
neering [28]. Compared with iterative solutions, analytical solutions have the advantage
of requiring fewer operations due to their high computational efficiency, and they could
achieve good accuracy [29]. Recently, nonlinear problems have been simplified into linear
equations, and they have achieved good results both in accuracy and in efficiency [22,30,31].
In this paper, nonlinear localization equations are simplified into linear equations, and
two-dimensional analytical solutions are developed for locating heat-concentrated sources.
This work is expected to provide beneficial information for the localization of geothermal
sources and nuclear waste leak points.

2. Iterative Method

Fourier’s law regulates the rate of heat transfer due to conduction [32,33]. Thermal
conductivity is a material-related property which indicates the ease of heat transfer through
a certain material. The general form of Fourier’s law can be written as Equation (1) [34,35]
because the heat flux is a vector quantity.

.
q = −k∇T = −k

(→
i

∂T
∂x

+
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k
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)
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where ∇, indicating the temperature gradient, is the three-dimensional del operator and T
is the scalar temperature field.

Under steady-state and isotropic heat transfer systems, there are three important
assumptions: (1) The thermal conductivity system consists of an isotropic homogeneous
material; (2) The thermal conductivity, density, and specific heat of the material are con-
stants; and (3) A heat source exists inside the thermal conductivity system. Therefore, the
simplified form of heat conduction is Equation (2) [34].
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Locating a heat-concentrated source, which is an inverted solution problem, is to
calculate the coordinated x0, y0, z0 of P, according to a point that meets the following
objective function as Equation (3).

minJ(xi, yi, zi) =
1
N

N

∑
1
(Ti(xi, yi, zi)− Tc(xc, yc, zc)) (3)
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where n is the number of measurement points, Ti(xi, yi, zi) is the coordinate of measure-
ment points, and Tc(xc, yc, zc) is the calculated coordinated, according to the inverted
location of the heat source.

The objective function is changing with the change of locations of heat sources. Thus,
the locations of heat sources can be calculated through boundary conditions, the tempera-
tures at measurement points, and interactive algorithms. However, the problems involved
in the existing method with iterative algorithms are: (1) The location accuracy is influenced by
initial values; and (2) The existence and the multiplicity of solutions are induced by iterative
calculations. To remove the above two defects and to improve locating accuracy, in this work,
two closed-form solutions were developed to locate the heat-concentrated sources.

3. Closed-Form Solution for Known Temperature Gradient

In a steady-state and isotropic heat transfer system of two-dimensional circular and
quadrate plates with adiabatic boundary and displacement components of 0, as shown
in Figure 1, the method to locate internal heat sources with a constant temperature is
discussed in this paper. A heat-concentrated source is located at S(x0, y0, T) and the four
receivers are located at R1(x1, y1), R2(x2, y2), R3(x3, y3), and R4(x4, y4).

Figure 1. Heat sources in circular and quadrate plates with the adiabatic boundary and displacement
components of 0: (a) the circular plate; and (b) the quadrate plate.

The temperature of the nearest receiver is the largest among the four receivers. After
identifying the nearest receiver and calculating the temperature difference between the
nearest receiver and other receivers, the four receivers are numbered. For record purposes,
the nearest receiver from the source is noted as receiver 1 (R1). According to Fourier’s Law
and the definition of the temperature gradient, the equations governing the position of
heat-concentrated sources and receivers are:

(x1 − x0)
2 + (y1 − y0)

2 =
(

1/∇2
)

T0
2 (4)

(x2 − x0)
2 + (y2 − y0)

2 =
(

1/∇2
)
(T0 + T12)

2 (5)

(x3 − x0)
2 + (y3 − y0)

2 =
(

1/∇2
)
(T0 + T13)

2 (6)

(x4 − x0)
2 + (y4 − y0)

2 =
(

1/∇2
)
(T0 + T14)

2 (7)

where T0 is the temperature difference between the heat-concentrated source and the
nearest receiver. T12, T13, and T14 are the temperature differences between receiver 1 and
receivers 2, 3, and 4, respectively; ∇ is a constant temperature gradient.

The receivers are located in the center of the circles determined by Equations (4)–(7).
These circles pass through the certain source. It is important to note that any two circles of
Equations (4)–(7) intersect, and the source is located on the intersecting line. The equation
of intersecting lines of Equations (4) and (5) is given in Equation (8) where li is a constant.

2(x2 − x1) x0 + 2(y2 − y1)y0 + 2
(

1/∇2
)

T12T0 = l1 (8)
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where l1 = x2
2 − x2

1 + y2
2 − y2

1 −
(
1/∇2)T2

12.
Similarly, the equations for the intersecting lines for circles (4) and (6) and for

circles (4) and (7) are obtained by taking the difference of Equations (4) and (6), as well as
(4) and (7), respectively. These equations are given in Equations (9), and (10), respectively.

2(x3 − x1) x0 + 2(y3 − y1)y0 + 2
(

1/∇2
)

T13T0 = l2 (9)

2(x4 − x1) x0 + 2(y4 − y1)y0 + 2
(

1/∇2
)

T14T0 = l3 (10)

where l2 = x2
3 − x2

1 + y2
3 − y2

1 −
(
1/∇2)T2

13, l3 = x2
4 − x2

1 + y2
4 − y2

1 −
(
1/∇2)T2

14.
Equations (8)–(10) constitute a set of linear equations, and they can be rewritten as:

l4x0 + l5y0 + l6T0 = l1 (11)

l7x0 + l8y0 + l9T0 = l2 (12)

l10x0 + l11y0 + l12T0 = l3 (13)

where l4 = 2(x2 − x1), l5 = 2(y2 − y1), l6 = 2T12
(
1/∇2), l7 = 2(x3 − x1), l8 = 2(y3 − y1),

l9 = 2T13
(
1/∇2), l10 = 2(x4 − x1), l11 = 2(y4 − y1), l12 = 2T14

(
1/∇2).

By solving the linear equations, the x0, y0 can be obtained and simplified as:

T0 =
l11l2l4 − l10l2l5 − l1l11l7 + l1l10l8 − l3l4l8 + l3l5l7

l9l11l4 − l9l10l5 − l12l4l8 + l12l5l7 − l11l6l7 + l10l6l8
(14)

x0 =
l1l9l11 + l12l2l5 − l9l3l5 − l11l2l6 − l1l12l8 + l3l6l8

l9l11l4 − l9l10l5 − l12l4l8 + l12l5l7 − l11l6l7 + l10l6l8
(15)

y0 = − (l1l9l10 + l12l2l4 − l9l3l4 − l10l2l6 − l1l12l7 + l3l6l7)
l9l11l4 − l9l10l5 − l12l4l8 + l12l5l7 − l11l6l7 + l10l6l8

(16)

The linear system defined by Equations (11)–(13) can be written as:

AS = B (17)

where A =

⎡
⎣ l4 l5 l6

l7 l8 l9
l10 l11 l12

⎤
⎦, S =

⎡
⎣x0

y0
t0

⎤
⎦ and B =

⎡
⎣l1

l2
l3

⎤
⎦.

Now, the x0, y0 and T0 can be solved. The method is named AS-KTG (Analytical
Solution-Known temperature gradients).

4. Closed-Form Solution for Unknown Temperature Gradient

A heat-concentrated source is also located at S(x0, y0, T), and the five receivers are
located at RA(xw1, yw1), RB(xw2, yw2), RC(xw3, yw3), RD(xw4, yw4), and RE(xw5, yw5). The
temperature of the nearest receiver is the largest among the five receivers. The processes
of identifying the receivers are similar, as introduced in AS-KTG. The nearest receiver
from the source is numbered as sensor RA. Tw12, Tw13, Tw14, and Tw15 are the temperature
differences between receiver 1 and receivers 2, 3, 4, and 5, respectively. The equations
governing the position of the heat source and receivers are:

(xw1 − x0)
2 + (yw1 − y0)

2 =
(

1/∇2
w

)
T2

w0 (18)
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2 =
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w

)
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2 =
(

1/∇2
w

)
(Tw0 + Tw13)

2 (20)

(xw4 − x0)
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w

)
(Tw0 + Tw14)

2 (21)
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(xw5 − x0)
2 + (yw5 − y0)

2 =
(

1/∇2
w

)
(Tw0 + Tw15)

2 (22)

where Tw0 is the temperature difference between the heat-concentrated source to the nearest
temperature sensor; ∇ is the unknown temperature gradient.

The intersecting line for the Equations (18) and (19) can be obtained by taking the
difference. This equation of the intersecting line is given in Equation (23). In the following
equations, li is a constant.

2(xw2 − xw1)x0 + 2(yw2 − yw1)y0 + 2Tw12

(
1/∇2

w

)
T0 +

(
1/∇2

w

)
T2

w12 = lw1 (23)

where lw1 = x2
w2 − x2

w1 + y2
w2 − y2

w1.
Similarly, the equations for the intersecting lines for circles (18) to (20), (18) to (21), and

(18) to (22) are obtained by taking the difference of Equation (18) and Equations (20)–(22),
respectively. These equations are given in Equations (24)–(26), respectively.

2(xw3 − xw1)x0 + 2(yw3 − yw1)y0 + 2Tw13

(
1/∇2

w

)
Tw0 +

(
1/∇2

w

)
T2

w13 = lw2 (24)

2(xw4 − xw1)x0 + 2(yw4 − yw1)y0 + 2Tw14

(
1/∇2

w

)
Tw0 +

(
1/∇2

w

)
T2

w14 = lw3 (25)

2(xw5 − xw1)x0 + 2(yw5 − yw1)y0 + 2Tw15

(
1/∇2

w

)
Tw0 +

(
1/∇2

w

)
T2

w15 = lw4 (26)

where lw2 = x2
w3 − x2

w1 + y2
w3 − y2

w1, lw3 = x2
w4 − x2

w1 + y2
w4 − y2

w1, lw4 = x2
w5 − x2

w1 +
y2

w5 − y2
w1.

Equations (23)–(26) constitute a set of linear equations, which can be rewritten
as follows:

lw5x0 + lw6y0 + lw7D + lw8V = lw1 (27)

lw9x0 + lw10y0 + lw11D + lw12V = lw2 (28)

lw13x0 + lw14y0 + lw15D + lw16V = lw3 (29)

lw17x0 + lw18y0 + lw19D + lw20V = lw4 (30)

where D = 2Tw0
(
1/∇2

w
)
, V = 1/∇2

w, lw5 = 2(xw2 − xw1), lw6 = 2(yw2 − yw1),
lw7 = 2Tw12, lw8 = T2

w12, lw9 = 2(xw3 − xw1), lw10 = 2(yw3 − yw1), lw11 = 2Tw13,
lw12 = T2

w13, lw13 = 2(xw4 − xw1), lw14 = 2(yw4 − yw1), lw15 = 2Tw14, lw16 = T2
w14,

lw17 = 2(xw5 − xw1), lw18 = 2(yw5 − yw1), lw19 = 2Tw15, and lw20 = T2
w15.

Therefore, the coordinates of x0 and y0, which can be obtained by solving the function
of Equations (27)–(30), are as follows:

x0 = [lw1 (lw10lw16lw19 − lw11lw16lw18 − lw12lw14lw19 + lw12lw15lw18 − lw10lw15lw20 + lw11lw14lw20)
+lw6(lw15lw2lw20 − lw16lw19lw2 + lw12lw19lw3 − lw11lw20lw3 + lw11lw16lw4 − lw12lw15lw4)
+lw7(lw16lw18lw2 − lw14lw2lw20 − lw12lw18lw3 − lw10lw20lw3 − lw10lw16lw4 + lw12lw14lw4)
+lw8 (lw14lw19lw2 − lw15lw18lw2 − lw10lw19lw3 + lw11lw18lw3 + lw10lw15lw4 − lw11lw14lw4)]/[lw5(lw10lw16lw19
−lw11lw16lw18 − lw12lw14lw19 + lw12lw15lw18 − lw10lw15lw20 + lw11lw14lw20)
+lw6(lw11lw16lw17 + lw12lw13lw19 − lw12lw15lw17 − lw11lw13lw20)
+lw7(lw10lw13lw20 − lw10lw16lw17 − lw12lw13lw18 + lw12lw14lw17)
+lw8

(
lw10lw15lw17 − lw10lw13lw19 + lw11lw13lw18 − lw11lw14lw17

)
+lw9 (lw15lw6lw20 − lw19lw16lw6 + lw7lw16lw18 − lw20lw14lw17 + lw19lw14lw8 − lw15lw18lw8)]

(31)
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y0 = [lw1 (lw11lw16lw17 − lw12lw13lw19 − lw12lw15lw17 + lw11lw13lw20 − lw16lw19lw9 + lw15lw19lw20)
+lw5(lw16lw2lw19 − lw5lw20lw2 + lw12lw19lw3 − lw11lw20lw3 + lw11lw16lw4 − lw12lw15lw4)
+lw7

(
lw16lw17lw2 − lw13lw2lw20 − lw12lw17lw3 − lw12lw13lw4

)
+lw9(lw20lw3lw7 − lw16lw4lw7 − lw19lw8lw3 − lw15lw14lw8)
+lw8 (lw13lw19lw2 − lw15lw17lw2 − lw11lw17lw3 + lw11lw13lw4)]/[lw5(lw10lw16lw19
−lw11lw16lw18 − lw12lw14lw19 + lw12lw15lw18 − lw10lw15lw20 + lw11lw14lw20)
+lw6(lw11lw16lw17 + lw12lw13lw19 − lw12lw15lw17 − lw11lw13lw20)
+lw7(lw10lw13lw20 − lw10lw16lw17 − lw12lw13lw18 + lw12lw14lw17)
+lw8

(
lw10lw15lw17 − lw10lw13lw19 + lw11lw13lw18 − lw11lw14lw17

)
+lw9 (lw15lw6lw20 − lw19lw16lw6 + lw7lw16lw18 − lw20lw14lw17 + lw19lw14lw8 − lw15lw18lw8)]

(32)

The method is defined as AS-UTG (Analytical Solution-Unknown temperature gradi-
ent). The linear system defined by Equations (27)–(30) can be written as:

AwS = Bw (33)

where Aw =

⎡
⎢⎢⎣

lw5 lw6
lw9 lw10

lw7 lw8
lw11 lw12

lw13 lw14
lw17 lw18

lw15 lw16
lw19 lw20

⎤
⎥⎥⎦, S =

⎡
⎢⎢⎣

x0
y0
D
V

⎤
⎥⎥⎦, and Bw =

⎡
⎢⎢⎣

lw1
lw2
lw3
lw4

⎤
⎥⎥⎦.

5. Validated Examples and Discussion

In practical engineering or laboratory experiment, thermocouple, thermal resistance,
infrared thermal imaging camera, and other temperature measuring devices can be em-
ployed to measure the temperature data. In this work, numerical examples are conducted to
validate the accuracy of the proposed methods. Three heat source location systems are used
to validate the localization accuracy of the proposed analytical solutions. Each system has
one heat source. The Cartesian coordinates of five temperature sensors are R1(110, 180),
R2(20, 30), R3(20, 160), R4(180, 20), and R5(170, 130) in the three systems. The unit is cm.
The three heat sources are S1(80, 60), S2(120, 90), and S3(110, 130), and the corresponding
temperature gradients are 10, 18, and 21 ◦C/m. The temperature data were numerically
calculated according to the distance between the three heat sources and the receivers R1
to R5 and the corresponding temperature gradients. The temperatures of heat sources
S1, S2, and S3, as well as their recording temperatures of five temperature sensors, are
listed in Table 1. The iterative results were also calculated using Levenberg–Marquardt to
compare the locating accuracy between the proposed analytical solutions and the iterative
method. The Levenberg–Marquardt algorithm [36,37], which combines the advantages of
the Gauss–Newton algorithm and the gradient descent method by modifying the param-
eters during computation, can provide a minimum numerical solution for a number of
nonlinear equations and improve the shortcomings of the Gauss–Newton algorithm and
the gradient descent method.

Table 1. Heat source locations and their recorded temperatures.

Source Recorded Temperatures (◦C)

No. T0 (◦C) X (cm) Y (cm) R1 R2 R3 R4 R5

S1 160.00 80 60 147.63 153.29 148.34 149.23 148.60
S2 180.00 120 90 163.70 159.01 158.03 163.40 168.47
S3 210.00 110 130 199.50 181.75 190.08 182.62 197.40

For known temperature gradient, the coordinates of the first four receivers, the
recorded corresponding temperatures, and the temperature gradients of the three heat
sources are known. The coordinates of three heat sources and corresponding temperatures
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are unknown. The problems are to locate the heat sources and to calculate the temperatures
at source points. The known data were utilized to validate the proposed AS-KTG. The
coordinates of receivers and their recorded temperatures as well as the temperature gradi-
ent were used to calculate li(i = 1, 2, . . . , 12). Then, the calculated li(i = 1, 2, . . . , 12) were
substituted into Equations (14)–(16) or Equation (17) to resolve the heat source location. The
calculation of the location results could be performed using Matlab, Python, and even Excel
since it involves only simple calculation processes. The calculated results are shown in
Figure 2. It can be seen from Figure 2 that the calculated results of AS-KTG are consistent
with the authentic results. The locating errors of the three sources using AS-KTG are
0.18 cm, 0.46 cm, and 0.52 cm, while the locating errors using Levenberg–Marquardt are
3.54 cm, 4.82 cm, and 7.17 cm, respectively. Compared to the localization results of
Levenberg–Marquardt, the locating accuracy for the three sources using AS-KTG is im-
proved by 94.82%, 90.40%, and 92.77%, respectively.

 

Figure 2. Locations of receivers and calculated results of AS-KTG and inverse results by
Levenberg–Marquardt.

For an unknown temperature gradient, the coordinates of five receivers, and the
recorded corresponding temperatures are known. The coordinates of three heat sources,
and corresponding temperatures, as well as temperature gradients of three heat sources,
are unknown. The problems are to locate the heat sources and to calculate the temperatures
at the source point. The known data were used to validate the proposed AS-UTG. The
coordinates of temperature sensors (TS) and their recorded temperatures were used to
calculate li(i = 1, 2, . . . , 20). Then, the calculated li(i = 1, 2, . . . , 20) were substituted into
Equations (31) and (32) or Equation (33) to resolve the heat source locations. The calculated
results are shown in Figure 3. It can be seen from Figure 3 that the locating errors of AS-
UTG are obviously smaller than the errors of Levenberg–Marquardt, which means that the
analytical solutions have a higher accuracy than iterative results by Levenberg–Marquardt.
The locating errors of the three sources using AS-UTG are 1.38 cm, 3.21 cm, and 3.89 cm, while
the locating errors using Levenberg–Marquardt are 4.44 cm, 3.85 cm, and 7.32 cm, respectively.
Compared to the localization results of Levenberg–Marquardt, the locating accuracy for the
three sources using AS-UTG is improved by 68.94%, 16.72%, and 46.86%, respectively.
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Figure 3. Locations of receivers and calculated results of AS-UTG and inverse results by
Levenberg–Marquardt.

By comparing the locating results of AS-KTG and ASUTG, it can be noticed that, for
the three sources, the locating accuracy of AS-KTG is 86.73%, 85.57%, and 86.67%, which
is better than the locating accuracy of Levenberg–Marquardt, respectively. It should be
noted that the high accuracy of the numerical examples for two-dimensional hat source
localization is obtained under steady-state and isotropic systems. The locating accuracy in
practical situations with complex conditions may be reduced.

6. Conclusions

The nonlinear location equations for heat sources were simplified to linear equations
in a steady-state and isotropic heat transfer system of circular or quadrate plates, with the
adiabatic boundary, as well as internal heat sources with a constant temperature. Based
on simplified linear equations, two-dimensional analytical solutions were obtained for
heat source locations using temperature differences. The problems of the existence and the
multiplicity induced by calculations of the iterative method were solved successfully.

The proposed method can locate the heat sources using only temperatures and coordi-
nates of sensors, without the need for coefficients of heat transfer, heat quantity, and thermal
conductivity. Numerical examples are conducted to study the algorithms’ performance and
compare them with the existing techniques. Results show that, compared to the localization
results of Levenberg–Marquardt, the locating accuracy for the three sources using AS-KTG
improved by 94.82%, 90.40%, and 92.77%, while the locating accuracy for the three sources
using AS-UTG improved by 68.94%, 16.72%, and 46.86%, respectively.

The proposed method can not only avoid the problems of initial values—the existence
and the multiplicity of solutions induced by iterative calculations in existing methods—but
also locate the source in unknown temperature gradient systems. It should be noted that
though this work presents two analytical solutions for two particular cases of heat source
localization, it can provide a new approach to locating heat sources for more complicated
conditions using temperature differences, such as the localization of geothermal sources
and nuclear waste leak points.
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Nomenclature

A area, m2

k thermal conductivity, W/m·K
N number of measurement points
Q heat transfer rate, W
Qx heat transfer rate of x coordinate, W
q′′

x heat flux of x coordinate, W/m2
.
q heat transfer rate per unit volume of the medium, W/m3

t12 temperature difference between the receivers 1 and 2 in known temperature
gradient systems, ◦C

t13 temperature difference between the receivers 1 and 3 in known temperature
gradient systems, ◦C

t14 temperature difference between the receivers 1 and 4 in known temperature
gradient systems, ◦C

tw0 temperature difference between the heat concentrated source to the nearest receiver
in unknown temperature gradient systems, ◦C

t0 temperature difference between the heat concentrated source to the nearest receiver
in known temperature gradient systems, ◦C

tw12 temperature difference between the receivers 1 and 2 in unknown temperature
gradient systems, ◦C

tw13 temperature difference between the receivers 1 and 3 in unknown temperature
gradient systems, ◦C

tw14 temperature difference between the receivers 1 and 4 in unknown temperature
gradient systems, ◦C

tw15 temperature difference between the receivers 1 and 5 in unknown temperature
gradient systems, ◦C

xi, yi coordinate of measurement points in known temperature gradient systems, m
xwi, ywi coordinate of measurement points in unknown temperature gradient systems, m
x0, y0 coordinate of heat sources in known temperature gradient systems, m
ΔT difference in temperature over which heat is transferred, K
Δx distance, m
∇ temperature gradient in known temperature gradient systems, ◦C/m
∇w temperature gradient in unknown temperature gradient systems, ◦C/m
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