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Preface to ”Modified Theories of Gravity and
Cosmological Applications”

The recent data release by the Planck satellite collaboration presents a renewed challenge for

modified theories of gravitation.

Modified gravity theories and their consequences in cosmology, motivated by rapid progress in

the field of observational cosmology, allow for precision tests which are of fundamental significance

for the development of new gravitational theories in the framework of the observational Universe.

The purpose of this book edition of this Special Issue is to provide some recent results of

investigations in the field of gravitation and cosmology with interesting published works in the

corresponding research areas.

Panayiotis Stavrinos and Emmanuel Saridakis

Editors
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Editorial

Editorial of Modified Theories of Gravity and
Cosmological Applications
Panayiotis Stavrinos 1,* and Emmanuel Saridakis 2,3,4

1 Department of Mathematics, National and Kapodistrian University of Athens, 15784 Athens, Greece
2 National Observatory of Athens, 11852 Athens, Greece
3 Department of Astronomy, School of Physical Sciences, University of Science and Technology of China,

Hefei 230026, China
4 CAS Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China,

Hefei 230026, China
* Correspondence: pstavrin@math.uoa.gr

General Relativity is a theory of gravity that describes some of the effects of gravity
with high accuracy, such as solar system tests, gravitational lensing, gravitational waves,
black holes, deflection angle, etc., in a definite framework of an homogeneous and isotropic
space–time.

However, taking into account the abundance and nature of dark energy and dark
matter, the nature of inflation, cosmological tensions such as the H0 and S8, the possible
values of local anisotropy in the evolution of the universe, as well as the theoretical problems
of the cosmological constant and of nonrenormalizability, the validity range of general
relativity might be restricted.

Modified theories of gravity extend the framework of general relativity through
various methods, leading to different field equations and thus to different cosmological
implications. They play an essential role in and contribute to modern cosmology, providing
a foundation for the current understanding of physical phenomena of the Universe.

We would like to thank all the valued authors, who contributed to the success of this
Special Issue, “Modified Theories of Gravity and Cosmological Applications”. Their research has
promoted the topics of Modified Theories of Gravity, General Relativity and Cosmology.
Here, we will briefly cite the main results of the contributors.

Yu-Peng Zhang, Shao-Wen Wei and Yu-Xiao Liu, in their paper “Spinning Test Particle
in Four-Dimensional Einstein-Gauss-Bonnet Black Holes” [1], investigated the motion of a
spinning test particle in a background of a spherically symmetric black hole based on
the novel four-dimensional Einstein–Gauss–Bonnet gravity. They successfully found an
interesting result: that the innermost stable circular orbit (ISCO) of the spinning test particle
has similar behavior as the case of a spinning test particle in GR.

Jianhui Qiu and Changjun Gao, in the paper “Constructing Higher-Dimensional Exact
Black Holes in Einstein-Maxwell-Scalar Theory [2], constructed higher-dimensional and exact
black holes in Einstein–Maxwell–scalar theory. They investigated black hole thermodynam-
ics in connection with the generalized Smarr formula and the first law of thermodynamics.
They also provided interesting results for the transition from small black holes to medium
and finally to large black holes, by using Hawking temperature.

Thomas Berry, Alex Simpson and Matt Visser, in their paper Photon Spheres, ISCOs,
and OSCOs: Astrophysical Observables for Regular Black Holes with Asymptotically Minkowski
Cores [3], calculated physically observable quantities for a recently proposed regular black
hole with an asymptotically Minkowski core. They studied the manner in which the
photon sphere and the extremal stable timelike circular orbit (ESCO) relate to the presence
(or absence) of horizons. The authors also investigated different situations of photon
spheres and ESCO, which is extended to horizonless compact massive objects providing
interesting results.

Universe 2022, 8, 415. https://doi.org/10.3390/universe8080415 https://www.mdpi.com/journal/universe1
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Panayiotis Stavrinos and Sergiu I. Vacaru, in the paper Broken Scale Invariance, Gravity
Mass, and Dark Energy in Modified Einstein Gravity with Two Measure Finsler-Like Variables [4],
studied new classes of generic off-diagonal and diagonal cosmological solutions for effective
Einstein equations in modified gravity theories (MGTs), with modified dispersion relations
(MDRs), and encoding possible violations of (local) Lorentz invariance (LIVs). Effective
potentials for the scalar field provide an interesting unified description of locally anisotropic
and/or isotropic early universe inflation related to acceleration cosmology and dark energy.
The authors also describe “emergent universes” by off-diagonal and diagonal solutions for
certain nonholonomic phases and parametric cosmological evolution resulting in various
inflationary phases.

Sergey Il’ich Kruglov, in his paper New Model of 4D Einstein-Gauss-Bonnet Gravity
Coupled with Nonlinear Electrodynamics [5], obtained an exact spherically symmetric and
magnetized Black Hole solution in 4D Einstein–Gauss–Bonnet gravity coupled with nonlin-
ear electrodynamics. He also investigated the black hole thermodynamics, entropy, shadow,
energy emission rate and quasinormal modes of black holes, providing interesting results.

Damianos Iosifidis, Nurgissa Myrzakulov and Ratbay Myrzakulov, in their paper
Metric-Affine Version of Myrzakulov F(R, T,Q, T ) Gravity and Cosmological Applications [6],
derived the full set of field equations of the class of theories whose gravitational part of the
Lagrangian is given by F(R, T,Q, T ,D). They generalized the family of theories to those
also including the divergence of the dilation current obtaining interesting results. In their
theory, they also derived the Friedmann equations and examined under what circumstances
the presence of torsion can have an accelerating affect on cosmological evolution.

Andronikos Paliathanasis, in his paper New Anisotropic Exact Solution in Multifield
Cosmology [7], investigated the existence of inflationary solutions on multifield cosmology
with a homogeneous locally rotational spacetimes (LRS) anisotropic background space.
He also provided an interesting exact solution to describe anisotropic inflation with a
Kantowski–Sachs geometry.

Felipe J. Llanes-Estrada, in the paper Elongated Gravity Sources as an Analytical Limit
for Flat Galaxy Rotation Curves [8], showed that galactic rotation curves are natural in the
analytic limit in which the gravitational source is cylindrical, receiving interesting results.

John W. Moffat and Viktor Toth, in the paper Scalar-Tensor-Vector Modified Gravity
in Light of the Planck 2018 Data [9], extended a calculation that was used previously to
demonstrate compatibility between the Scalar–Tensor–Vector–Gravity (STVG) theory. They
also found the very interesting result that within the limits of this approximation, the theory
accurately reproduces the features of the angular power spectrum.

Gabriele U. Varieschi in the paper Relativistic Fractional-Dimension Gravity [10], showed
that a relativistic version can be derived from the mathematical theory for spaces with
non-integer dimensions, the extended Euler–Lagrange equations for scalar fields, and the
existing methods for scalar–tensor models of gravity, multi-scale spacetimes and fractional
gravity theories with applications to the FLRW metric of standard cosmology. It was also
shown that it is straightforward to extend the standard Friedmann equations and to solve
them numerically for different choices of parameters.

Andronikos Paliathanasis, in the paper Dynamical Analysis and Cosmological Evolution
in Weyl Integrable Gravity [11], investigated the cosmological evolution for the physical pa-
rameters in Weyl integrable gravity in a Friedmann–Lemaître–Robertson–Walker universe
with zero spatial curvature. He calculated the stationary points for the field equations and
he studied their stability properties. He also successfully solved the inverse problem for
the case of an ideal gas and proved that the gravitational field equations can follow from
the variation of a Lagrangian function.

Joshua Baines, Thomas Berry, Alex Simpson and Matt Visser, in the paper Killing Tensor
and Carter Constant for Painlevé-Gullstrand Form of Lense-Thirring Spacetime [12], showed that
the Painlevé–Gullstrand variant of the Lense–Thirring spacetime possesses a nontrivial
Killing tensor, implying separability of the Hamilton–Jacobi equation. They also success-
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fully proved that the Klein–Gordon equation is also separable on this spacetime and they
extracted the Carter constant which allowed the geodesic equations to become integrable.

Sergey Paston and Taisiia Zaitseva, in the paper Nontrivial Isometric Embeddings for
Flat Spaces [13], used an interesting method of sequential surface deformations for the
construction of unfolded embeddings to successfully construct such embeddings of flat
Euclidean three-dimensional space and Minkowski space, which can be used to analyze
the equations of motion of embedding gravity. This method can also be used to build new
multidimensional embeddings based on already known embeddings with a small value of
the embedding class.

Hongxing Zhang, Naying Zhou, Wenfang Liu and Xin Wu in their paper, Charged Par-
ticle Motions near Non-Schwarzschild Black Holes with External Magnetic Fields in Modified The-
ories of Gravity [14], introduced a metric deformation to the Schwarzschild spacetime. They
also discussed orbital dynamical properties and successfully proved that the deformation
perturbation metric can be changed into a Kerr-like black hole metric via some appropriate
coordinate transformation. Finally, they used one of the obtained time-transformed explicit
symplectic integrators combined with the techniques of Poincaré sections and FLIs to show
how small changes of the parameters affect the dynamical transitions from order to chaos.

Stanislav Alexeyev, Daniil Krichevskiy and Boris Latosh, in the paper Gravity Models
with Nonlinear Symmetry Realization [15], studied three interesting models with particular
non-linear conformal symmetry realizations. Two models are found to be equivalent up to
a change of coset coordinates. It was found that models contain ghost degrees of freedom
that may be excluded by an introduction of an additional symmetry to the target space.
One model was also found to be safe in the early universe.

Aleksander Kozak and Aneta Wojnar, in their paper Interiors of Terrestrial Planets in
Metric-Affine Gravity [16], used modified gravity theory and showed that it affects the
internal properties of terrestrial planets, such as the physical characteristics of their core,
mantle and core–mantle boundary. They successfully applied these results for modeling a
two-layer exoplanet in Palatini f (R) gravity.

Alexei M. Frolov, in his paper On Maxwell Electrodynamics in Multi-Dimensional
Spaces [17], derived the equations of Maxwell electrodynamics in multi-dimensional spaces
from the variational principle of least action, which is applied to the action function
of the electromagnetic field, providing interesting results. He also successfully applied
methods of scalar electrodynamics to analyze Maxwell equations in the two- and one-
dimensional spaces.

Yuri Shtanov, in the paper On the Conformal Frames in f (R) Gravity [18], pointed out
that the effect of “running units” in the Einstein frame is related to the fact that the explicit
and implicit quantum parameters of the Standard Model, such as the Higgs vacuum
expectation value and the parameter ΛQCD, are modified by the conformal transformation
of the metric and matter fields and become scalaron-dependent. Considering the scalaron
of f (R) gravity describing dark matter, he showed that the effect of running units in this
case is extremely weak, making two frames practically equivalent. He also focused on the
interesting situation that arises in a late-time universe in which the oscillating scalaron
plays the role of dark matter.

Dusko Borka, Vesna Borka Jovanovic, Violeta N. Nikolic, Nenad D. Lazarov and Pre-
drag Jovanovic, in their paper Estimating the Parameters of the Hybrid Palatini Gravity Model
with the Schwarzschild Precession of S2, S38 and S55 Stars: Case of Bulk Mass Distribution [19],
estimated the parameters of the Hybrid Palatini gravity model with the Schwarzschild
precession of S-stars, specifically of the S2, S38 and S55 stars. They took into account the
case of bulk mass distribution near the Galactic Center. Based on this observational fact,
they successfully evaluated the parameters of the Hybrid Palatini Gravity model with the
Schwarzschild precession of the S2, S38 and S55 stars, and they estimated the range of
parameters of the Hybrid Palatini gravity model for which the orbital precession is as in
GR for all three stars. They also evaluated the parameters of the Hybrid Palatini Gravity
model in the case of different values of bulk mass density distribution of extended matter.

3
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Mahmoud AlHallak, Amer AlRakik, Nidal Chamoun and Moustafa Sayem El-Daher,
in their paper Palatini f (R) Gravity and Variants of k-/Constant Roll/Warm Inflation within
Variation of Strong Coupling Scenario [20], showed that upon applying Palatini f (R) method,
characterized by an αR2, one obtains a quadratic kinetic energy. They investigated in
Palatini formalism two extreme cases corresponding first to (α >> 1), which represents
a highly non-canonical k-inflation, and second to (α << 1), where they kept terms to
the first order and examined a specific type of the k-inflation, namely the constant-roll
inflation. They also successfully showed the viability of the model for some choices of the
free parameters in regards to the spectral parameters (ns, r) when compared to the results
of Planck 2018.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In this paper, we investigate the motion of a classical spinning test particle in a background
of a spherically symmetric black hole based on the novel four-dimensional Einstein–Gauss–Bonnet
gravity [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)]. We find that the effective potential
of a spinning test particle in this background could have two minima when the Gauss–Bonnet
coupling parameter α is nearly in a special range −8 < α/M2 < −2 (M is the mass of the black hole),
which means a particle can be in two separate orbits with the same spin-angular momentum and
orbital angular momentum, and the accretion disc could have discrete structures. We also investigate
the innermost stable circular orbits of the spinning test particle and find that the corresponding radius
could be smaller than the cases in general relativity.

Keywords: Gauss–Bonnet; innermost stable circular orbits; spinning test particle

1. Introduction

As the most successful gravitational theory, general relativity (GR) can explain the relation
between geometry and matter. One of the most impressive results derived from GR is black hole
solutions. As vacuum solutions of strong gravitational systems, black holes have lots of interesting
characters, for examples, a binary black hole system can produce gravitational waves [1–5], and a
black hole can act as an accelerator of particles [6,7]. However, we should note that, even though
GR is so powerful and can be used to explain many phenomena, there are still some problems that
cannot be interpreted by GR. Therefore, it is believed that there should be a more fundamental theory
beyond GR.

It is well-known that the existence of a singularity located inside a black hole leads to geodesics
incompleteness [8,9]. To overcome the problem of singularity, several quantum theories of gravity
have been proposed, like the superstring/M theory and the extension of such theories. With the help
of the perturbation approximation of these theories, the Gauss–Bonnet (GB) term was found as the
next leading order term [10–12], and this term has ghost-free combinations and does not add higher
derivative terms into the gravitational field equations [13]. The GB term appears in D-dimensional
spacetime as follows

S[GB][gµν] =
∫

dDx
√
−gαG, (1)

where D is the number of the spacetime dimensions, α is the GB coupling parameter with mass
dimension D− 4, and the GB invariant G is defined as

G = RµνρσRµνρσ − 4RµνRµν + R2. (2)

Universe 2020, 6, 103; doi:10.3390/universe6080103 www.mdpi.com/journal/universe5
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Many black hole solutions of GB gravity in D ≥ 5 have been derived, such as the vacuum case [14],
Einstein-Maxwell fields with a GB term [15,16], and anti-de Sitter (AdS) case [17]. In four-dimensional
spacetime, the GB term does not make contributions to the gravitational dynamics, which makes the
four-dimensional minimally coupled GB gravity is hard to obtain. However, very recently, D. Glavan
and C. Lin [18] proposed a novel four-dimensional Einstein–Gauss–Bonnet (EGB) gravity that bypasses
the Lovelock theorem by adopting an artful coupling constant α→ α

D−4 . It takes the contributions
from the Gauss–Bonnet term into the dynamics of the four-dimensional spcaetime. The same idea
about rescaling the coupling constant α has been already introduced in Ref. [19].

In this novel four-dimensional EGB gravity, the GB invariant term does not affect the properties
of the massless graviton and a four-dimensional static and spherically symmetric black hole solution
was obtained. The stability and shadow of this four-dimensional EGB black hole have been studied in
Ref. [20], where the quasinormal modes of a scalar, electromagnetic, and gravitational perturbations
were studied. The solutions of a charged black hole [21] and spinning black hole [22] have also
been obtained, and a constraint to the GB parameter α was first given in Ref. [22] in terms of the
shadow of the rotating black hole. Inspired by the novel four-dimensional EGB gravity, the novel
four-dimensional Einstein–Lovelock gravities are also proposed [23,24]. Note that the way of rescaling
coupling constant is based on the limit of D → 4 in a higher D-dimensional spacetime, where the
limit is not continuous due to the parameter D—the number of dimensions—a new way for the
dimensional-regularization is proposed [25]. Apart from the discontinuousness of the dimension,
there are also several works [26–36] pointing out that this novel four-dimensional EGB gravity [18] will
cause problems at the level of action and equation of motion and give the improved four-dimensional
EGB gravity. However, the Schwarzchild black hole solution in this novel four-dimensional EGB
gravity [18] is the same as the result in the improved four-dimensional EGB gravity, which means the
properties of the black hole still deserve to be investigated.

It is known that a massless or massive particle can orbit around a central black hole and the
motion depends on the geometry of the central black hole. The innermost stable circular orbit (ISCO)
of the test particle is the last stable circular orbit, and when a particle is in the location with a radius
less than the ISCO, it will plunge into the black hole. Therefore the information of the ISCO and the
motion of the test particle in the background black hole could give us some properties of the accretion
disc and the corresponding radiation spectrum [37]. In Ref. [38], the authors extended the range of
the GB coupling parameter for the black hole solution to −8 ≤ α/M2 ≤ 1 (M is the mass of the black
hole) and investigated the shadow and ISCO of a spinless test particle. They found that a positive (or
negative) GB coupling parameter α will reduce (or increase) the ISCO radius. It is shown that the spin
of a test particle can also reduce or increase the ISCO radius of a test particle in the background of a
black hole in GR [39]. Inspired by the effects of the four-dimensional GB term and the non-vanishing
spin on the motion of the test particle, it is necessary to investigate the motion of a spinning test particle
and the corresponding ISCO in this novel four-dimensional EGB black hole. In this paper, we will
investigate the motion of a spinning test particle in the background of the novel four-dimensional EGB
black hole and show how the ISCO of the spinning test particle is changed. For simplicity, we only
consider the motion of a spinning test particle in the equatorial plane.

This paper is organized as follows. In Section 2, we use the MPD equation to obtain the
four-momentum and four-velocity of a spinning test particle in the novel four-dimensional EGB
black hole background. In Section 2.2, we study the motion of the spinning test particle and give the
relations between the motion of the spinning test particle and the properties of the four-dimensional
EGB black hole. Finally, a brief summary and conclusion are given in Section 3.
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2. Motion of a Spinning Test Particle in a Four-Dimensional EGB Black Hole

2.1. Four-Momentum and Four-Velocity of the Spinning Test Particle

In this part, we will solve the equations of motion for a spinning test particle in the novel
four-dimensional EGB black hole background. Firstly, let us review the solution of the four-dimensional
EGB black hole. The action of the D-dimensional EGB gravity is described by

S =
∫

dDx
√
−g
[

1
2κ2 R + αG

]
, (3)

where κ is the gravitational constant and will be set as κ2 = 1/2 in this paper. The GB term does not
contribute to the dynamics of the four-dimensional spacetime because it is a total derivative. Recently,
by rescaling the coupling parameter as

α→ α

D− 4
, (4)

and taking the limit D → 4, Glaan and Lin [18] obtained the four-dimensional novel EGB gravity.
The four-dimensional static spherically symmetric black hole solution was found [18]

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dΩ2, (5)

f (r) = 1 +
r2

2α

(
1−

√
1 +

8αM
r3

)
, (6)

where M is the mass of the black hole and the coupling parameter −8 ≤ α
M2 ≤ 1 [38]. Solving f (r) = 0,

one can get two black hole horizons

r± = M±
√

M2 − α. (7)

In fact, the above solution (5)–(7) was also found in gravity with a conformal anomaly in Ref. [40]
and was extended to the case with a cosmological in Ref. [41].

For a spinning test particle, its motion will not follow the geodesics because of the spin-curvature
force − 1

2 Rµ
ναβuνSαβ. The equations of motion for the spinning test particle are described by the

Mathisson-Papapetrou-Dixon (MPD) equations [42–50] under the “pole–dipole” approximation, and
the four-velocity uµ and the four-momentum Pµ are not parallel [46,51] due to the spin-curvature force.
The MPD equations are

DPµ

Dλ
= −1

2
Rµ

ναβuνSαβ, (8)

DSµν

Dλ
= Pµuν − uµPν, (9)

where Pµ, Sµν, and uµ are the four-momentum, spin tensor, and tangent vector of the spinning test
particle along the trajectory, respectively. Note that the MPD equations are not uniquely specified and
we should use a spin-supplementary condition to determine them. This spin-supplementary condition
is related to the center of mass of the spinning test particle with different observers [52–56]. In this
paper, we choose the Tulczyjew spin-supplementary condition [57]

PµSµν = 0, (10)

and the four-momentum Pµ satisfies
PµPµ = −m2, (11)

which makes sure that the spinning test particle stays timelike along the trajectory, where m is the
mass of the test particle. On the contrary, the four-velocity would be superluminal [46,51] when the
spin of the test particle is too large. Actually, this superluminal behavior comes from the ignorance
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of the “multi-pole” effects. When such effects are considered, the superluminal problem can be
avoided [58–62]. For the properties of the spinning test particle in different black hole backgrounds,
see Refs. [39,55,63–84].

For the equatorial motion of the spinning test particle with spin-aligned or anti-aligned orbits,
the four-momentum and spin tensor should satisfy Pθ = 0 and Sθµ = 0. The non-vanishing
independent variables for the equatorial orbits are Pt, Pr, Pφ, and Srφ. After adopting the
spin-supplementary condition (10), we have [47]

Srt = −Srφ Pφ

Pt
, Sφt = Srφ Pr

Pt
. (12)

Substituting Equation (12) into the following equation

s2 =
1
2

SµνSµν = SφrSφr + StrStr + StφStφ, (13)

and using Equation (11), we get the r− φ component of spin tensor

Srφ = − s
r

Pt

m
. (14)

The non-vanishing components of the spin tensor Sµν in the four-dimensional EGB black hole
background are

Srφ = −Sφr = − s
r

Pt

m
,

Srt = −Str = −Srφ Pφ

Pt
=

s
r

Pφ

m
, (15)

Sφt = −Stφ = Srφ Pr

Pt
= − s

r
Pr

m
,

where the parameter s is the spin angular momentum of the test particle and the spin direction is
perpendicular to the equatorial plane.

Due to the existence of the spin-curvature coupling term, the conserved quantities of the spinning test
particle are modified. The relation between a killing vector field Kµ and the conserved quantity is [46,47]

C = KµPµ −
1
2

SµνKµ;ν, (16)

where the semicolon denotes the covariant derivative. For simplicity, we only consider the motion in
the equatorial plane. Then in the spherically-symmetric EGB black hole with the metric (5), we have the
conserved energy with a timelike killing vector ξµ = (∂t)µ and the conserved total angular momentum
with a spacelike killing vector ηµ = (∂φ)µ [47], they are

mē = −Ct = −ξµPµ +
1
2

Sµνξµ;ν = −Pt −
1
2

s̄
r

Pφ∂rgtt, (17)

mj̄ = Cφ = ηµPµ −
1
2

Sµνηµ;ν = Pφ −
1
2

s̄
r

Pt∂rgφφ. (18)

Here, the parameters are defined as ē = e
m , j̄ = j

Mm , and s̄ = s
Mm (we set M = 1), where e, m,

and j are the energy, mass, and total angular momentum of the spinning test particle, respectively.
Note that we have used the relations Sµνξµ;ν = Sµνξβ∂νgβµ and Sµνηµ;ν = Sµνηβ∂νgβµ for the two
Killing vectors.

8
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Solving Equations (11), (17) and (18), we get the non-vanishing components of the four-momentum:

Pt = −m2 (α
(
2ēr3∆ + 2 j̄s̄

)
− j̄r3 s̄ (∆− 1)

)

α (2r3∆ + 2s̄2)− r3 s̄2 (∆− 1)
, (19)

Pφ =
2αm2r3∆( j̄− ēs̄)

α (2r3∆ + 2s̄2)− r3 s̄2 (∆− 1)
, (20)

and

(Pr)2 = −
m2 + gφφP2

φ + gttP2
t

grr
, (21)

where the function ∆ =
√

1 + 8α
r3 . We can solve the four-velocity uµ by using the equations of motion

(8) and (9) and the components of Sµν in (15) [82,85]

DStr

Dλ
= Pt ṙ− Pr =

s̄
2r

gφµRµ
ναβuνSαβ +

s̄
r2 Pφ ṙ, (22)

DStφ

Dλ
= Ptφ̇− Pφ = − s̄

2r
grµRµ

ναβuνSαβ − s̄
r2 Pr ṙ. . (23)

Finally, the non-vanishing components of the four-velocity are

ṙ =
b2c1 − b1c2

a2b1 − a1b2
, (24)

φ̇ =
a2c1 − a1c2

a1b2 − a2b1
, (25)

where the functions a1, b1, c1, a2, b2, and c2 are defined as

a1 = Pt − s̄
r2 Pφ +

s̄
2r

RφrµνSνµ, (26)

b1 =
s̄

2r
RφφµνSνµ, (27)

c1 = −Pr +
s̄

2r
RφtµνSνµ, (28)

a2 =
s̄Pr

r2 −
s̄

2r
RrrµνSνµ, (29)

b2 = Pt − s̄
2r

RrφµνSνµ, (30)

c2 = −Pφ − s̄
2r

RrtµνSνµ. (31)

We can set the affine parameter λ as coordinate time and choose ut = 1 because the trajectories of
the test particle are independent of the affine parameter λ [45,56]. Then the orbital frequency parameter
Ω of the test particle is

Ω ≡ uφ

ut = φ̇, (32)

where the dot means ˙ = d/dt.

2.2. Circular Orbits of Spinning Test Particle

The motion of a test particle in a central field can be determined with the help of the effective
potential in the Newtonian dynamics [86,87]. We can use the same method to solve the motion of a
test particle in the black hole background in GR. We can prove that the radial velocity ur is parallel
to the radial momentum Pr [88], therefore the effective potential of the spinning test particle can be
solved by using the form of Pr (21) [79]. We decompose the (Pr)2 (21) as [68,79]

9
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(Pr)2

m2 =
(

Aē2 + Bē + C
)

∝

(
ē− −B +

√
B2 − 4AC

2A

)(
ē +

B +
√

B2 − 4AC
2A

)
, (33)

where the functions A, B, and C are

A = 2E−1αm2r
(

8α + r3
)(

r2 s̄2(∆− 1) + 2α
(

r2 − s̄2
))

, (34)

B = 8E−1α2 j̄m2rs̄
(
−3r2∆ + 8α + r3

)
, (35)

and

C = −2m2 (αE)−1

{
16α4r

(
j̄2 + r2

)
+ α3

[
2 j̄2
(
4r3(1− ∆)− s̄2 + r4)+ 4r3 s̄2 (∆− 4)

+r5 (8− 8∆) + 2s̄2
(

s̄2 − 8r2
)
+ 2r6

]
+ α2

[
j̄2r3
(

2s̄2 (∆− 3) + r3 (1− ∆)
)

−r2 s̄4 (∆− 9)− 2r3 s̄4 (∆− 3) + r8 (1− ∆) + 2r6 s̄2 (∆− 1) + 2r5 s̄2 (5∆− 9)
]

+αr5 s̄2
[

j̄2r (∆− 1) + rs̄2 (1− ∆)− 4s̄2 (∆− 2) + r3 (2∆− 2)
]
+ r8 s̄4 ((1− ∆))

}
, (36)

where the function E is
E =

[
r3 s̄2 (∆− 1)− 2α

(
r3∆ + s̄2

)]2
. (37)

The effective potential of the test particle is defined by the positive square root of Equation (33)

Vspin
eff =

−B +
√

B2 − 4AC
2A

. (38)

The positive square root corresponds to the four-momentum pointing toward future, while the negative
one corresponds to the past-pointing four-momentum [89]. When the spin of the test particle is zero,
it reduces to

Veff =

√√√√1 +
r2

2α

(
1−

√
1 +

8α

r3

)√

1 +
j̄2

r2 =

√
f (r)

(
1 +

j̄2

r2

)
. (39)

Note that for the four-dimensional Schwarzchild black hole in GR, the function f (r) = 1− 2M
r .

The properties of a test particle in a central field are mainly determined by the effective potential.
Thus, the effects on the motion of a spinning test particle can be derived based on how the effective
potential depends on the GB coupling parameter α and the spin angular momentum s̄. We plot some
shapes of the effective potential (38) in Figure 1. We can see that the radii of the extreme points
become smaller when the coupling parameter α > 0 and become larger when the parameter α < 0.
The extreme points of the effective potential mean a test particle could move in circular orbits, noting
that the orbit at the maximum (minimum) point is unstable (stable). These phenomena mean that a
positive GB coupling parameter induces the attractive effect and a negative one results in the repulsive
effect on the motion of the test particle.
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Figure 1. The effective potential for a spinning test particle in the four-dimensional
Einstein–Gauss–Bonnet (EGB) black hole background. The parameters are set as M = 1 and m = 1.

In addition to the attractive or repulsive effects on the motion of the test particle, some more
interesting results are found when we check the shapes of the effective potential in the parameter space
(s̄− j̄). We find that the effective potential has two minima when the GB coupling parameter α is in
a special range. When the test particle moves in stable circular orbits [79], the radial velocity should
be zero

dr
dλ

= 0, (40)

and the the radial acceleration vanishes

d2r
dλ2 = 0,

(
dVeff

dr
= 0 and

d2Veff

dr2 > 0
)

. (41)

The conditions dVeff
dr = 0 and d2Veff

dr2 > 0 mean that the energy of the particle should equal to the
minimum of the effective potential.

Therefore, when the effective potential of a spinning test particle has two minima, there will
be two stable circular orbits for the particle with a spin angular momentum and an orbital angular
momentum. This is a new feature for the motion of a spinning test particle in four-dimensional
EGB black hole background. We plot the effective potential with two minima in Figure 2, where the
corresponding two separate orbits of the spinning test particle with s̄ = 0.3 and j̄ = 5 are still given.
The case of a spinning test particle can posses two stable circular orbits only happens when α < 0 with
a special range for α. We give the numerical results in Figure 3 and find that the range of α/M2 is
nearly in (−8,−2).

Figure 2. Cont.
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Figure 2. Plots of the effective potential and orbits for a spinning test particle with s̄ = 0.3, j̄ = 5,
and α = −6. Here r2 = x2 + y2. Subfigures (b,c) are the two minima of the effective potential shown in
subfigure (a). Subfigures (e,f) are two separate orbits around the two minima of the effective potential
shown in subfigure (d), and they are related to the effective potential in subfigures (b,c). The values
of the red dashed line in subfigures (b,c) stand for the energy of the test particle. The range of the
red dashes in the radial direction stands for the radial range that the test particle can move in, see the
corresponding orbits in subfigures (e,f). The test particles on the two orbits have the same spin and
orbital angular momentum. The parameters are set as M = 1 and m = 1.

Figure 3. Plots of the parameter space (s̄− j̄) describing whether a spinning test particle have two
stable circular orbits with the same spin s̄ and the same total angular momentum j̄. The parameters
are set as M = 1 and m = 1. In the black and blue regions, the effective potential has two minima
corresponds two stable circular orbits. In the red region the effective potential has one minimum and
the test particle has one stable circular orbit. In the gray and yellow regions, the test particle has no
stable circular orbits.

We have mentioned that the MPD equations of the spinning test particle is obtained under the
“pole–dipole” approximation, which will lead the four-velocity transform from timelike to spacelike if
the particle spin is too large. In order to make sure the motion of the spinning test particle is timelike,
we adopt the superluminal constraint [68]

uµuµ

(ut)2 = gtt + grr ṙ2 + gφφφ̇2 < 0. (42)

By using the superluminal constraint and circular orbit conditions (40) and (41) of the spinning
test particle, we obtain the parameter space (s̄− l) in Figure 4, which describes whether the motion
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on a circular orbit is timelike or spacelike. By comparing the results in Figure 3 and in Figure 4,
we confirm that the motion of the particle in the two separate stable orbits is timelike. We know
that the effects from the GB term on the motion of the test particle can be attractive or repulsive,
where a positive (or negative) GB coupling parameter α leads to an attractive (or repulsive) force.
The spin–curvature force can also be attractive or repulsive. When the effects induced by the GB
term and the spin–curvature force exist simultaneously, the total attractive or negative force will be
enhanced or weakened. It will change the shapes of the regions in (l̄ − j̄).

Figure 4. Properties of circular orbits for the spinning test particle in the four-dimensional GB black
hole background. Here l̄ = j̄− s̄ is the orbital angular momentum. The parameters are set as M = 1
and m = 1. In the gray region, the test particle can have timelike circular orbits. In the red and yellow
regions, the test particle does not have stable timelike circular orbits. In the yellow region, the motion
of the test particle is spacelike and unphysical.

Next, we will investigate the ISCO of the spinning test particle. The ISCO of the test particle locates
at the position where the maximum and minimum of the effective potential merge. Thus, the effective
potential of the test particle at the ISCO should satisfy

d2Veff

dr2 = 0. (43)

By using Equations (40), (41) and (43), we can derive the ISCO of the test particle. In Ref. [38],
the authors showed that the radius of the ISCO for a spinless test particle varies in the form of

rISCO = 6− 11
18

α +O(α). (44)

This result was derived under the linear approach with a small α around 0. Obviously, the ISCO of a
spinless test particle can be larger or smaller due to the existence of the GB term. This phenomenon is
consistent with the behavior of the effective potential, see the subfigure (a) in Figure 1.

When the test particle possesses a non-vanishing spin, the contribution of the spin-curvature force
should affect the properties of the motion. The relation between the effective potential and the spin
of the test particle is still shown in Figure 1. We give the numerical results of the ISCO in Figure 5.
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Note that there is a jump behavior for the ISCO parameters in the subfigure (e) in Figure 5, which is
induced by the fact that the effective potential has two minima. Because we use the position where the
maximum and minimum of the effective potential merge to locate the ISCO and our step length of
spin is not small enough to cover the change of the ISCO parameters. We summarize how the ISCO of
the spinning test particle depends on the spin s̄ and GB coupling parameter α as follows:

• For the ISCO of the spinning test particle in four-dimensional EGB black hole, the corresponding
radius and angular momentum decrease with the spin s̄ when the GB coupling parameter α is
fixed. When the effect from the GB term is considered, the radius of the ISCO will be smaller than
the case of the Schwarzchild black hole in GR, and the Gauss–Bonnet term does not change the
laws of the ISCO with spin.

• When the spin of the test particle is fixed, the radius and angular momentum of the ISCO decrease
with the GB coupling parameter and this behavior is almost the same as the results of the spinless
case in Ref. [38].

Figure 5. The ISCO parameters of the spinning test particle with different values of α. The parameters
are set as M = 1 and m = 1.

3. Summary

In this paper, we investigated the motion of a spinning test particle in the equatorial plane of
the four-dimensional novel EGB black hole. We solved the four-momentum and four-velocity of the
spinning test particle and investigated the properties the ISCO. We found that the ISCO of the spinning
test particle has similar behavior as the case of a spinning test particle in GR. The GB term and spin
parameter s̄ can reduce or increase the radius of the ISCO. The new feature for the spinning test
particle in the four-dimensional EGB black hole is that the test particle could have two separate stable
orbits with the same spin s̄ and same total angular momentum j̄ when the GB coupling parameter α

is in a special range −8 < α/M2 < −2. Due to the fact that the motion of the spinning test particle
will be superluminal when the spinning is too large, we also gave the superluminal constraint on
the four-velocity of the spinning test particle in the circular orbits and confirmed that the motion
of the spinning test particle that can move at two seperate orbits is timelike. It means that there
will be a discrete gravitational radiation spectrum when a spinning test particle is inspiraling into a
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four-dimensional EGB black hole, and the corresponding accretion disc could have discrete structures,
which provides a possible way to test and constraint the four-dimensional EGB gravity.
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Abstract: We construct higher-dimensional and exact black holes in Einstein-Maxwell-scalar theory.
The strategy we adopted is to extend the known, static and spherically symmetric black holes
in the Einstein-Maxwell dilaton gravity and Einstein-Maxwell-scalar theory. Then we investigate
the black hole thermodynamics. Concretely, the generalized Smarr formula and the first law of
thermodynamics are derived.
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1. Introduction

According to the Lovelock [1,2] and the Ostrogradsky instability [3] theorems, it is uniquely the
Einstein gravity that consists of metric and its derivatives and with the equations of motion no more
than second order. Therefore, to extend the Einstein gravity, the easiest way is to couple it with a scalar
field. On the other hand, string theory is generally considered to be the most promising approach
to unify quantum theory and gravity in higher dimensions. The low energy limit of string theory
does lead to the Einstein gravity coupled non-minimally to a scalar dilaton field [4]. The dilaton field,
coupled in a nontrivial way to other fields such as gauge fields has aroused many interests and many
black hole solutions are found [5–8].

These solutions are all asymptotically flat. It has been proved [9,10] that in the presence of
one or two Liouville-type potential which is considered to be a generalization of the cosmological
constant, neither asymptotically flat nor (anti)-de Sitter solutions exist. However, by combining three
Liouville-type dilaton potential, one successfully constructs a higher-dimensional asymptotically
(anti)-de Sitter solutions [11]. Then the topological anti-de Sitter black branes with higher dimensions
in Einstein-Maxwell dilaton theory were constructed and their properties were investigated [12].
With the same dilaton potential in [11], Sheykhi [13] finds the metric for the n-dimensional charged
slowly rotating dilaton black hole in the background of asymptotically (anti)-de Sitter spacetime.

On the other hand, a remarkable phenomenon of spontaneous scalarization of charged black
holes is recently discovered [14,15] and vast studies on the scalarization of black holes in various
Einstein-Maxwell-scalar (EMS) models (see [16] and references therein) are carried out. Most of these
studies are based on numerical calculations. In view of this point, we will construct exact charged black
hole solutions in EMS theory. Our strategy is to extend the known, static and spherically symmetric
black holes in the Einstein-Maxwell dilaton gravity to EMS theory. Actually, using this method, we
have constructed the four-dimensional black holes in EMS in [17]. Thus, the purpose of this paper is to
extend it from four dimensions to higher dimensions.

The paper is organized as follows. In Section 2, we derive the equations of motion for the fields
and present the metric. In Section 3, we introduce the generalized Smarr formula for this solution
and verify the validity of the first law of black hole thermodynamics. In Section 4, we investigate the

Universe 2020, 6, 148; doi:10.3390/universe6090148 www.mdpi.com/journal/universe19
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thermodynamic stability problem and the phase transitions by using heat capacity and Gibbs free
energy. In Section 5 we summarize our results.

2. Action and the Equations Motion

We start from the action of Einstein-Maxwell-scalar theory

S =
∫

dnx
√
−g
[

R− 4
n− 2

∇µφ∇µφ−V(φ)− K(φ)F2
]

, (1)

where R is the Ricci scalar curvature, F2 ≡ FµνFµν comes from the Maxwell field, K (φ) is the coupling
function between scalar field and Maxwell field. V (φ) is the scalar potential.

Varying the action with respect to the metric, Maxwell and the scalar field, respectively, yields

Rµν =
4

n− 2
∇µφ∇νφ +

V
n− 2

gµν + 2KFµαFα
ν −

K
n− 2

F2gµν) , (2)

∂µ

(√
−gKFµν

)
= 0 , (3)

∇µ∇µφ− n− 2
8

(
∂V
∂φ

+
∂K
∂φ

F2
)
= 0 . (4)

We choose the most general form of the metric for static black hole as follows

ds2 = −U (x) dt2 +
1

U (x)
dx2 + f (x)2 dΩ2

n−2 , (5)

where x denotes the radial variable. Then the Maxwell Equation (3) can be integrated to give

F10 =
q

K f n−2 , (6)

where q is the constant of integration and it has the dimension of ln−3. Then the equations of motion (2)
to (4) reduce to three independent equations

1
f n−2

d
dx

(
f n−2U

dφ

dx

)
=

n− 2
8

[
∂V
∂φ
− 2q2∂φK

f 2n−4K2

]
, (7)

1
f

d2 f
dx2 = − 4

(n− 2)2

(
dφ

dx

)2
, (8)

1
f n−2

d
dx

(
U

d
dx

f n−2
)
=

(n− 2) (n− 3)
f 2 −V − 2q2

K f 2n−4 . (9)

There are five functions U, f , φ, V and K in these equations. However, we have only three equations.
Therefore, the system of equations is not closed. In general, one usually presumes V, K and then solve
for U, f , φ. For example, Reference [11] assumes

K (φ) = e
4αφ
n−2 , (10)

V (φ) =
λ

3 (n− 3 + α2)
2

[
−α2 (n− 2)

(
n2 − nα2 − 6n + α2 + 9

)
e

4(n−3)φ
(n−2)α

+ (n− 2) (n− 3)2
(

n− 1− α2
)

e−
4αφ
n−2 + 4α2 (n− 3) (n− 2)2 e

2φ(n−3−α2)
(n−2)α

]
. (11)
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Here V(φ) is the dilaton potential in higher dimensions. It combines three Liouville-type potential
which is considered to be a generalization of the cosmological constant. We have mentioned in the
introduction that it has been proved [9–11] that only by combining more than two such potential, can
the asymptotically (anti)-de Sitter solution exists.

Then Reference [11] gives the solution as follows

ds2 = −
{[

1−
(

b
r

)n−3
] [

1−
( a

r

)n−3
]1−γ(n−3)

− 1
3

λr2
[

1−
( a

r

)n−3
]γ
}

dt2

+

{[
1−

(
b
r

)n−3
] [

1−
( a

r

)n−3
]1−γ(n−3)

− 1
3

λr2
[

1−
( a

r

)n−3
]γ
}−1

·
[

1−
( a

r

)n−3
]−γ(n−4)

dr2 + r2
[

1−
( a

r

)n−3
]γ

dΩ2
n−2 , (12)

φ = − (n− 2)α
2 (α2 + n− 3)

ln
[

1−
( a

r

)n−3
]

. (13)

Here a, b are two integration constants which are related to the black hole mass and electric charge.
λ is the cosmological constant and α is the coupling constant. γ is given by [11]

γ ≡ 2α2

(n− 3) (n− 3 + α2)
. (14)

In contrast to the above example, here we shall presume U, f in advance and then solve for φ, V, K.
To find the desirable expressions for U and f , we observe Equation (12) and find that the λ term is

proportional to r2
[
1−

( a
r
)n−3

]γ
.

On the other hand, the four-dimensional black hole solution in EMS theory is [17]

U =

(
1− 2m

r

)(
1− Q2

mr

) 1−α2

1+α2

+
βQ2

f 2 −
1
3

λ f 2 , (15)

f = r
(

1− Q2

mr

) α2

1+α2

, (16)

K =
2e2αφ

2 + β + βα2e2αφ+2φ/α
, (17)

V =
2λ

3 (1 + α2)
2

[
α2
(

3α2 − 1
)

e2φ/α +
(

3− α2
)

e−2αφ

+8α2e−φα+φ/α
]

. (18)

Equation (18) is the expression of V(φ) in four dimensions. K(φ) is the extension of dilaton coupling
e2αφ. We [17] have shown that with this extension, the well-known Reissner-Nordstrom-de Sitter
solution can be included when γ = 0.

Therefore, motivated by Equations (12) and (15), we presume a new solution

ds2 = −Udt2 +
1
U
·
[

1−
( a

r

)n−3
]−γ(n−4)

dr2 + f 2dΩ2
n−2 , (19)
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with

U =

[
1−

(
b
r

)n−3
] [

1−
( a

r

)n−3
]1−γ(n−3)

− 1
3

λr2
[

1−
( a

r

)n−3
]γ

+β q2
{

r2
[

1−
( a

r

)n−3
]γ}3−n

,

f = r
[

1−
( a

r

)n−3
]γ/2

, (20)

where β is a constant. If we take the limit of r → ∞, we shall find Equation (19) reduces to the
metric describing (anti)-de Sitter metric. Therefore, the metric is asymptotically (anti)-de Sitter.
Compared with metric (12), this metric includes a new term of β which is related the charge squared.
With the introduction of this new term, the higher-dimensional Reissner-Nordstrom-de Sitter black
holes can be reduced provided that a→ 0 and β = 1. In fact, the metric is the higher-dimensional
extension of the metric found in [17]

U =
(
1− 2m

r
) (

1 + γQ2

mr

) 1−α2

1+α2
+ βQ2

f − 1
3 λ f ,

f = r2
(

1 + γQ2

mr

) 2α2

1+α2 .

(21)

When γ = 0, we find U and f reduce to the four-dimensional metric describing charged (Anti)-de-Sitter
black holes. Therefore, given the Einstein-Maxwell-scalar theory (the extension of dilaton coupling
Equation (27) and the dilaton potential Equation (11)), the metric Equation (19) is unique. Now a
new term of β is inserted in the expression of U. Since q has the dimension of ln−3, β is dimensionless.
Given the expressions of U, f , the expressions of φ, K, V are then worked out from the equations of
motion. To this end, we transform the equations of motion from (t, x) coordinates to (t, r) coordinates
via the following coordinates transformation

x =
∫

dr
[
1− (

a
r
)n−3

]−γ(n−4)/2
, or r′ =

[
1−

( a
r

)n−3
]γ(n−4)/2

. (22)

Then the equations of motion Equations (7)–(9) turn out to be

1
f n−2 r′

d
dr

(
f n−2Ur′

dφ

dr

)
=

n− 2
8

(
∂V
∂φ
− 2q2∂φK

f 2n−4K2

)
, (23)

1
f

d
dr

(r′
d f
dr

) = − 4
(n− 2)2

(
dφ

dr

)2
r′ , (24)

1
f n−2 r′

d
dr

(
Ur′

d
dr

f n−2
)
=

(n− 2)(n− 3)
f 2 −V − 2q2

K f 2n−4 . (25)

Substituting Equation (20) into above equations of motion, we obtain

φ = − (n− 2)α
2 (α2 + n− 3)

ln
[

1−
( a

r

)n−3
]

, (26)

K(φ) =
2
(
α2 + n− 3

)
e

4αφ
n−2

2 α2 + (n− 3) [2 + (n2 − 5 n + 6) β] + β α2 (n− 2) (n− 3) e
4(α2+n−3)φ

α (n−2)

, (27)

and
q2 = (n−2)(n−3)2

2(n−3+α2)
an−3bn−3 , (28)
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with V the exact form of Equation (11). When n = 4, K restores to Equation (17). Up to this point,
the n-dimensional and exact black hole solution is constructed in EMS theory.

In the next, we calculate the electric charge and mass of the black hole. The electric charge is

Q =
1

4π
lim

x→∞

∫
Ftr
√
−gK (φ) dn−2x =

Ωn−2

4π
q . (29)

The definition of variable “x” is given by Equation (22). x → ∞ means r → ∞. In other words, we
take the limit at spatial infinity. The quasilocal mass of the dilaton (anti)de Sitter black hole can be
calculated by using the subtraction method of Brown and York (BY) [18,19]. This is an extension of
ADM definition of the mass. For asymptotically flat or asymptotically AdS spacetimes, the ADM
mass at infinity coincides with the conserved mass in Brown York method. Therefore, following the
procedures of [20], we choose the method of Brown and York in this paper. The definition of conserved
mass is given by

M ≡ 1
8π

∫

B
d2 ϕ
√

σ
{
(Kab − Khab)−

(
K0

ab − K0h0
ab

)}
naξb , (30)

where B is the boundary surface of the spacetime, ξ a timelike Killing vector field on B, σ the
determinant of the metric of the boundary B, K0

ab the extrinsic curvature of the background metric
and na the timelike unit normal vector to the boundary B. In the context of counterterm method and
following the procedure of [20], we get, after a detailed calculation,

M =
Ωn−2

16π
(n− 2)

[
bn−3 + (1− (n− 3) γ) an−3

]
, (31)

which is the same as [20].

3. Thermodynamics

In this section, we explore the black hole thermodynamics. Concretely, we shall construct the
generalized Smarr formula and the first law of thermodynamics. To this end, we start from the
calculation of Hawking temperature which is defined as follows:

κ2 = −1
2
∇aχb∇aχb , (32)

where χµ is a Killing vector field which is null on the horizon. Since we are dealing with a static metric
and we can choose χµ = ∂

∂t . Then one can write the expression of temperature for black holes

T =
1

4π

U′(r+)√
U(r+)W(r+)

, (33)

with the metric
ds2 = −U(r)dt2 + W(r)dr2 + f (r)2dΩ2

n−2 . (34)

The coordinate system used here is singular on the black hole horizon. However, the divergence
of coordinate system on the black hole horizon does not mean the thermodynamic quantities are
divergent. This is because the thermodynamic quantities, for example, the mass, the temperature,
the entropy and so on, evaluated below are all defined and observed by the observers in spatial
infinity. Of course, for the observers resting on the horizon, these thermodynamic quantities
are all divergent. The technique we adopt in the paper is very traditional in the literature.
For example, the Schwarzschild coordinate system used in the Schwarzschild metric is singular
on the black hole horizon. However, the corresponding thermodynamic quantities are all regular
although they are evaluated in Schwarzschild coordinate system. As for the definition of the
temperature, it is divergent on the horizon at first glance. However, it is not the case. Actually,

since W(r) = 1
U ·
[
1−

( a
r
)n−3

]−γ(n−4)
, we conclude that there is no singularity in the temperature.
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After substituting the equation of event horizon U(r+) = 0, we get the formula for temperature

T =
1

12πr+

[
−3q2βr−2n+6

+ (n− 3)Γ−1+ (−n+2)γ
2 + (−9 + 3n)Γ1+ (−n+2)γ

2

+r2
+λ (−(n− 3) (γn− 2γ− 1)) Γ−1+ γ(−2+n)

2 + r2
+λΓ

γ(n−2)
2 (n− 2) (γn− 3γ− 2)

]
,

(35)

where Γ ≡ 1−
(

a
r+

)n−3
and r+ represents the radius of black hole event horizon.

The entropy of black holes generally satisfies the area law which states that the entropy is a
quarter of the area of black hole event horizon [21–23]. This nearly universal law applies to almost
all kinds of black holes, including Einstein-Maxwell-scalar black holes [24–26]. Therefore, we have
the entropy

S =
A
4

=
f (r+)n−2Ωn−2

4
. (36)

The electrical potential is defined by

Φ =
∫ ∞

x1

dA0

dx
dx =

∫ ∞

r+

dA0

dx
dx
dr

dr =
∫ ∞

r+
−F10

[
1−

( a
r

)n−3
]− γ(n−4)

2
dr

=
∫ ∞

r+

−q
f (r)n−2K(φ)

[
1−

( a
r

)n−3
]− γ(n−4)

2
dr

= η/
[
2(−3 + n)

(
α2 + n− 3

) (
a3rn

+ − anr3
+

)]
,

(37)

where η is defined by

η ≡ q
[
−an

(
n3β− 8n2β + (21β + 2)n + 2α2 − 18α− 6

)
r6−n
+

+a3r3
+

(
α2 + n− 3

) (
n2β− 5βn + 6β + 2

)]
.

(38)

When β = 0, Φ reduces to that in [20].
We define the thermal pressure P

P =
−1
8π

(n− 1)(n− 2)λ
6

. (39)

Given the equation of event horizon, λ can be expressed as the functions of a, b, r+. However, we do
not bother to give it here because it is too lengthy.

The conjugate thermal volume is

V ≡
(

∂M
∂P

)

S,Q
=

6Ωn−2

n− 1
r+−1+n

(
1−

(
a

r+

)−3+n
) 2α2(n−2)

(−3+n)(α2+n−3)

· 1
6 (α2 + n− 3)

[
−3 + n + α2 − (−3 + n)

(
a

r+

)−3+n
] [

1−
(

a
r+

)−3+n
]−1

.

(40)

Then we find that the generalized Smarr formula

(n− 3)M = (n− 2)TS + (n− 3)ΦQ− 2PV , (41)

is indeed satisfied. It is apparent the formula is related to dimension of spacetime.
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Choosing a, b, r+ as independent variables and making the differentiation M, S, Q, P with respect
to a, b, r+, we obtain

dM = ∂M
∂a da + ∂M

∂b db + ∂M
∂r+

dr+ ,
dS = ∂S

∂a da + ∂S
∂b db + ∂S

∂r+
dr+ ,

dQ = ∂Q
∂a da + ∂Q

∂b db + ∂Q
∂ri

dr+ ,
dP = ∂P

∂a da + ∂P
∂b db + ∂P

∂r+
dr+ .

(42)

After straightforward but complicated calculations, the first law of thermodynamics
dU = TdS + ΦdQ − VdP is indeed satisfied. In contrast to the Smarr formula, the first law
is not related to the dimension of spacetime.

4. Heat Capacity and Stability in Canonical Assemble

The local stability of a thermodynamic system in canonical ensemble depends on the sign of the
heat capacity. If the sign is positive, the system is thermodynamically stable. On the contrary, if the
sign is negative, the system would go under phase transition and then acquires stable state. This phase
transition could happen whenever heat capacity meets a root or has a divergency.

In Figure 1a,b, we plot the black hole temperature T and the heat capacity CQ with respect to the
black hole event horizon r+. We consider the parameters as follows n = 5, α = 2, a = 0.2, λ = −0.2
for different β. The negative λ means we are considering black hole in anti-Sitter universe. Figure 1a
shows that when β ≤ 0, there are two phases of black holes, the so-called small black holes and large
black holes, respectively. On the other hand, if β > 0, there would be three phases of black holes,
the so-called small, middle and large black holes, respectively. The case with positive β has generally
two event horizons, namely the inner horizon and the outer event horizon while the negative β has
only one outer event horizon. Figure 1b shows some points of divergence. According to the viewpoint
of Davies [27], the divergence of heat capacity means the second-order phase transition. Comparing
it with Figure 1a, we see, for negative β, the heat capacity of small black hole is negative while the
one of large black hole is positive. We conclude that the small black holes with one event horizon is
thermodynamically unstable while the large black holes with one event horizon are stable. For positive
β, the heat capacity of middle black hole is negative while the heat capacity of both small and large
black holes is positive. Thus, we conclude that the middle black hole with two horizons is unstable
while the small and large black holes with two horizons are stable.

We can also identify these phase transitions through the diagram of Gibbs energy with respect to
black hole temperature. In Figure 2, we plot the G(T) relations with running β. It shows that when
β < 0, the black holes make phases transition from small black holes to large black holes with the
increasing of Hawking temperature. As is known, the specific heat is CQ,P = −∂2G/∂T2. Therefore,
the thermodynamically stable and unstable phases have the concave downward and upward G(T)
curves, respectively. Then we conclude that the large black holes are thermodynamically stable
while the small black holes are unstable. Figure 2 also shows that when β > 0, the system makes
phase transitions from small black hole to middle black hole, and finally to large black holes with
the increasing of Hawking temperature. In this case, both the phase large and small black holes are
thermodynamically stable while the middle black holes are unstable.
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Figure 1. (a) The black hole temperature with respect to event horizon r+. (b) The black hole heat
capacity with respect to the event horizon r+. The parameters are n = 5, α = 2, a = 0.2, λ = −0.2.
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Figure 2. The black hole Gibbs free energy with respect to temperature. The parameters are n = 5,
α = 2, a = 0.2, λ = −0.2.

5. Conclusions and Discussion

In Section 2 2, starting from the n-dimensional black hole solution in Einstein dilaton gravity and
inspired by the four-dimensional black hole solution in Einstein-Maxwell-scalar theory, and the metric
is (19), we construct n-dimensional black hole in Einstein-Maxwell-scalar theory. A new coupling
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function K(φ)(27) between the scalar field and the Maxwell invariant is present. However, the scalar
potential V(φ)(11) remains the form in Einstein-Maxwell dilaton gravity.

The black hole is described by physical mass (31), electric charge (29), cosmological constant and
two dimensionless coupling constants α and β. However, in essence, the solution has three hairs,
namely the mass M, electric charge Q and cosmological constant λ. There are not any new hairs.
Therefore, the solution is not inconsistent with the no-hair theorem.

Then in Section 3, we explore the corresponding thermodynamics. The fundamental
thermodynamic functions, namely the enthalpy (31), the temperature (35), the entropy (36) and
the thermal volume (40) are derived. Then the generalized Smarr formula (41) which contains the
dimension of spacetime is found. By straightforward but complicated calculations, the first law of
thermodynamics (42) is satisfied.

Finally, in Section 4, we also study the thermodynamic stability problem and the phase transitions
in anti-de Sitter universe. We find, for negative β, there is generally one event horizon. In this case,
According to the figure of black hole temperature with respect to event horizon r+, we find there are
two phases of black holes, namely the small black hole phase and large black hole phase, respectively.
The small black hole is thermodynamically unstable while the large black hole is stable. With the
increasing of Hawking temperature, the system makes phase transitions from small black hole phase to
large black hole phase. For positive β, there are generally two horizons, namely the inner horizon and
outer event horizon. In this case, there are three phases corresponding to small, middle and large black
holes, respectively (See Figure 1a). The middle black hole is thermodynamically unstable while both
the small and large black holes are stable (See Figure 1b). With the increasing of Hawking temperature,
the system makes phase transitions from small black hole to middle black hole, and finally to large
black holes (See Figure 2).
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Abstract: Classical black holes contain a singularity at their core. This has prompted various
researchers to propose a multitude of modified spacetimes that mimic the physically observable
characteristics of classical black holes as best as possible, but that crucially do not contain singularities
at their cores. Due to recent advances in near-horizon astronomy, the ability to observationally distin-
guish between a classical black hole and a potential black hole mimicker is becoming increasingly
feasible. Herein, we calculate some physically observable quantities for a recently proposed regular
black hole with an asymptotically Minkowski core—the radius of the photon sphere and the extremal
stable timelike circular orbit (ESCO). The manner in which the photon sphere and ESCO relate to
the presence (or absence) of horizons is much more complex than for the Schwarzschild black hole.
We find situations in which photon spheres can approach arbitrarily close to (near extremal) horizons,
situations in which some photon spheres become stable, and situations in which the locations of both
photon spheres and ESCOs become multi-valued, with both ISCOs (innermost stable circular orbits)
and OSCOs (outermost stable circular orbits). This provides an extremely rich phenomenology of
potential astrophysical interest.

Keywords: regular black hole; Minkowski core; Lambert W function; black hole mimic.

1. Introduction

Karl Schwarzschild first derived the spacetime metric for the region exterior to a
static, spherically symmetric source in 1916 [1]; only some 50 years later was it properly
understood that this spacetime could be extrapolated inwards to describe a black hole.
Without any loss of generality, any static spherically symmetric spacetime can be described
by a metric of the form

ds2 = −e−2Φ(r)
(

1− 2m(r)
r

)
dt2 +

dr2

1− 2m(r)
r

+ r2
(

dθ2 + sin2 θ dφ2
)

. (1)

For the standard Schwarzschild metric, one sets Φ(r) = 0 and m(r) = m0. Over the
past century, a vast host of black hole spacetimes, qualitatively distinct from that of
Schwarzschild, have been investigated by multiple researchers [2–14].

Furthermore, the field has now grown to not only include classical black holes, but also
quantum-modified black holes [15–18], regular black holes [19–23], and various other exotic
spherically symmetric spacetimes that are fundamentally different from black holes but
mimic many of their observable phenomena (e.g., traversable wormholes [24–39], gravas-
tars [40–46], ultracompact objects [47,48], etc. [49–51]; see [52] for an in-depth discussion).
Herein, we investigate a specific model spacetime representing a regular black hole. That is,
a spacetime that has a well-defined horizon structure, but the curvature invariants are
everywhere finite.
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Investigating black hole mimickers is becoming increasingly relevant due to recent
advances in both observational and gravitational wave astronomy. Projects such as the
Event Horizon Telescope [53–58], LIGO [59,60], and the planned LISA [61] are and will be
continuously probing closer to the horizons of compact massive objects (CMOs), and so there
is hope that such projects will eventually be able to distinguish between the near-horizon
physics of classical black holes and possible astrophysical mimickers [52]. Herein, we focus
on photon rings, ISCOs and OSCOs. Modifications to photon rings would potentially affect
the images gathered by the EHT. Modifications to ISCOs would potentially affect both
accretion disks and the final inspiral and plunge events detected by LIGO. In contrast,
OSCOs (outermost stable circular orbits) do not exist for Schwarzschild or Kerr black holes—
so any evidence for the existence of an OSCO would be of immediate astrophysical interest.

The model spacetime investigated in this work is a specific regular black hole with
an asymptotically Minkowski core, as discussed in [62,63]. This is an example of a metric
with an exponential mass suppression, and is described by the line element

ds2 = −
(

1− 2m e−a/r

r

)
dt2 +

dr2

1− 2m e−a/r

r

+ r2
(

dθ2 + sin2 θ dφ2
)

. (2)

A rather different (extremal) version of this model spacetime, based on nonlinear electrody-
namics, was previously discussed by Culetu [64], with follow-up on some aspects of the
non-extremal case in [65–67] (see also [68,69]).

Most regular black holes have a core that is asymptotically de Sitter (with constant
positive curvature) [19–22]. However, the regular black hole described by the metric (2) has
an asymptotically Minkowski core (in the sense that the stress-energy tensor asymptotes to
zero). Such models have some attractive features compared to the more common de Sitter
core regular black holes: the stress–energy tensor vanishes at the core, greatly simplifying
the physics in this region; and many messy algebraic expressions are replaced by simpler
expressions involving the exponential and Lambert W functions, whilst still allowing
for explicit closed form expressions for quantities of physical interest [62]. Additionally,
the results obtained in this work reproduce the standard results for the Schwarzschild
metric by letting the parameter a→ 0. Thus, the value of the parameter a determines the
extent of the “deviation” from the Schwarzschild spacetime.

If 0 < a < 2m/e, then the spacetime described by the metric (2) has two horizons
located at

rH− = 2m eW−1(− a
2m ), and rH+ = 2m eW0(− a

2m ). (3)

Here, W−1(x) and W0(x) are the real-valued branches of Lambert W function. We could
also write

rH− =
a

|W−1
(
− a

2m
)
| , and rH+ =

a
|W0

(
− a

2m
)
| . (4)

Perturbatively, for small a, we have

rH+ = 2m− a +O(a2), (5)

nicely reproducing Schwarzschild in the a→ 0 limit. For the inner horizon, since rH− < 2m,

rH− =
a

ln
(
2m/rH−

) (6)

implies rH− < a, whence we have a strict upper bound given by the simple analytic expression:

rH− <
a

ln(2m/a)
. (7)
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Certainly, lima→0 rH−(m, a) = 0 as we would expect to recover Schwarzschild; how-
ever, the form of rH−(m, a) is not analytic. This bound can also be viewed as the first term
in an asymptotic expansion [70] based on (as x → 0+)

W−1(−x) = ln(x) +O(ln(− ln(x))) = − ln(1/x) +O(ln(ln(1/x))). (8)

This leads to

rH− =
a

ln(2m/a) +O(ln(ln(2m/a)))
=

a
ln(2m/a)

+O
(

a ln(ln(2m/a))
(ln(2m/a))2

)
. (9)

More specifically (as a/m→ 0 or m/a→ ∞),

rH−

a
=

1
ln(2m/a)

+O
(

ln(ln(2m/a))
(ln(2m/a))2

)
. (10)

If a = 2m/e, then the two horizons merge at rH = 2m/e = a and one has an extremal
black hole. If a > 2m/e, then there are no horizons, and one is dealing with a regular
horizonless extended but compact object (the energy density peaks at r = a/4).

This object could either be extended all the way down to r = 0, or alternatively be
truncated at some finite value of r, to be used as the exterior geometry for some static and
spherically symmetric mass source that is not a black hole. This is potentially useful as a
model for planets, stars, etc. Consequently, we also incorporate aspects of the analysis for
a > 2m/e as and when required to generate astrophysical observables in the case when
Equation (2) is modeling a compact object other than a black hole.

2. Geodesics and the Effective Potential

Continuing the analysis of [62], we now calculate the location of the photon sphere
and extremal stable circular orbit (ESCO) for the regular black hole with line element given
by equation (2). Photon spheres (or more precisely the closely related black hole silhouettes)
have been recently observed for the massive objects M87 and Sgr A* [53–58]. As such,
they are, along with the closely related ESCOs, practical and useful quantities to calculate
for black hole mimickers.

We begin by considering the affinely parameterized tangent vector to the worldline of
a massive or massless particle in our spacetime (2):

gµν
dxµ

dλ

dxν

dλ
= −

(
1− 2m e−a/r

r

)(
dt
dλ

)2
+

(
1

1− 2m e−a/r

r

)(
dr
dλ

)2

+r2

[(
dθ

dλ

)2
+ sin2 θ

(
dφ

dλ

)2
]
= ε, (11)

where ε ∈ {−1, 0}, with −1 corresponding to a massive (timelike) particle and 0 corre-
sponding to a massless (null) particle. (The case ε = +1 would correspond to tachyonic
particles following spacelike geodesics, a situation of no known physical applicability.)
Since we are working with a spherically symmetric spacetime, we can set θ = π/2 without
any loss of generality and reduce Equation (11) to

gµν
dxµ

dλ

dxν

dλ
= −

(
1− 2m e−a/r

r

)(
dt
dλ

)2
+

(
1

1− 2m e−a/r

r

)(
dr
dλ

)2
+ r2

(
dφ

dλ

)2
= ε. (12)

Due to the presence of time-translation and angular Killing vectors, we can now define
the conserved quantities

E =

(
1− 2m e−a/r

r

)(
dt
dλ

)
and L = r2

(
dφ

dλ

)
, (13)
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corresponding to the energy and angular momentum of the particle, respectively. Thus, Equa-
tion (12) implies

E2 =

(
dr
dλ

)2
+

(
1− 2m e−a/r

r

)(
L2

r2 − ε

)
. (14)

This defines an “effective potential” for geodesic orbits

Vε(r) =

(
1− 2m e−a/r

r

)(
L2

r2 − ε

)
, (15)

with the circular orbits corresponding to extrema of this potential.

3. Photon Spheres

We subdivide the discussion into two topics: First the existence of circular photon
orbits (photon spheres) and then the stability of circular photon orbits. The discussion is
considerably more complex than for the Schwarzschild spacetime, where there is only one
circular photon orbit, at r = 3m, and that circular photon orbit is unstable. Once the extra
parameter a is nonzero, and in particular sufficiently large, the set of photon orbits exhibits
more diversity.

3.1. Existence of Photon Spheres

For null trajectories, we have

V0(r) =

(
1− 2m e−a/r

r

)
L2

r2 . (16)

Thus, for circular photon orbits,

V′0(rc) =
2L2

r5
c

[
m e−a/rc(3rc − a)− r2

c

]
= 0. (17)

To be explicit about this, the location of a circular photon orbit, rc, is given implicitly
by the equation

r2
c = m e−a/rc(3rc − a), (18)

where a and m are fixed by the geometry of the spacetime. 1 The curve described by the
loci of these circular photon orbits is plotted in two distinct ways in Figure 1.

For clarity, defining w = rc/a and z = m/a, we can re-write the condition for circular
photon orbits as

w2 = z e−1/w(3w− 1); =⇒ z =
w2 e1/w

3w− 1
. (19)

In Figure 1, we also plot the locations of both inner and outer horizons.
The inner and outer horizons merge at a/m = 2/e = 0.7357588824 . . . , i.e., at m/a =

e/2 = 1.359140914 . . . . For a/m > 2/e, i.e., for m/a < e/2, one is dealing with a horizon-
less compact object and we see that there is a region where there are two circular photon
orbits. Note that the curve described by the loci of circular photon orbits terminates once
one hits a horizon, i.e., at w = 1. Sub-horizon curves of constant r are spacelike (tachyonic),
and cannot be lightlike, so they are explicitly excluded. That is, photon spheres can only
exist in the region w ∈ (1, ∞).

1 As a→ 0, we have rc → 3m, as expected for Schwarzschild spacetime.
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Figure 1. Location of the photon sphere, inner horizon, and outer horizon. Sub-figure (a) plots these quantities as a function
of the parameter a; sub-figure (b) plots these quantities as a function of the parameter m. The dashed blue line represents the
extension of the photon sphere to horizonless compact massive objects (CMOs), whilst the dashed red line is the asymptotic
solution for small values of the parameter a (Equation (21)). The dashed grey line is the asymptotic solution to the outer
horizon for small values of a (Equation (5)). The dashed green line is the simple analytic bound and asymptotic estimate for
the location of the inner horizon (Equations (7) and (10)).

Can we be more explicit about the key qualitative and quantitative features of this
plot? Specifically, let us now analyze stability versus instability and find the exact location
of the various turning points.

3.2. Stability versus Instability for Circular Photon Orbits

To check the stability of these circular photon orbits, we now need to investigate

V′′0 (rc) =
2L2

r7
c

[
3r3

c −m e−a/rc(6rc − a)(2rc − a)
]
. (20)

3.2.1. Perturbative Analysis (small a)

We note that determining rc(m, a) from Equation (18) is not analytically feasible,
but rc(m, a) can certainly be estimated perturbatively for small a. We have

rc(m, a) = 3m− 4ma
rc

+O(a2) =⇒ rc(m, a) = 3m− 4
3

a +O(a2). (21)

Thus, for small values of a, we recover the standard result for the location of the
photon sphere in Schwarzschild spacetime.

Estimating V′′0 (rc) by now substituting the approximate location of the photon sphere
as rc(m, a) = 3m− 4a/3 +O(a2), we find

V′′0 (rc(m, a)) = − 2L2

81m4

(
1 +

4
3

a
m

+O(a2)

)
. (22)

This quantity is manifestly negative for small a. That is, (within the limits of the current
small-a approximation), photons are in an unstable orbit at the small-a photon sphere.
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3.2.2. Non-Perturbative Analysis

However, if we rephrase the problem, then we can make some much more explicit
exact statements that are no longer perturbative in small a: Whereas determining rc(m, a)
is analytically infeasible, it should be noted that in contrast both a(m, rc) and m(rc, a) are
easily determined analytically:

a(m, rc) = rc(3−W(rce3/m)); m(rc, a) =
r2

c ea/rc

(3rc − a)
. (23)

Consequently, at the peak we can write

V0(rc, m) =
L2

r2
c

(
1− 2

W(rce3/m)

)
; V0(rc, a) =

L2

r2
c

rc − a
3rc − a

. (24)

Regarding stability, in the first case, substituting (23) (left) into (20), we have

V′′0 (rc, m) = −2L2(W(rce3/m)2 −W(rce3/m)− 3
)

r4
c W(rce3/m)

. (25)

Using properties of the Lambert W function, we quickly see that this is negative for
rc/m > 1

2 (1 +
√

13) e−5/2+
√

13/2 = 1.146702958 . . . , implying instability of the circular
photon orbits in this region, (and stability outside this region).

That is, on the curve of circular photon orbits, V′′(rc) = 0 at the point

(rc/m, a/m)∗ = (1.146702958 . . . , 0.7995092385 . . . ). (26)

In the second case, substituting (23) (right) into (20), we have

V′′0 (rc, a) = −2L2

r5
c

3r2
c − 5arc + a2

3rc − a
. (27)

This will certainly be negative for rc/a > (5 +
√

13)/6 = 1.434258546 . . . , implying
instability of the circular photon orbits in this region, (and stability outside this region).

That is, on the curve of circular photon orbits, V′′(rc) = 0 at the point

(rc/a, m/a)∗ = (1.434258546 . . . , 1.250767286 . . . ). (28)

Consequently, on the curve of circular photon orbits, we have existence and stability
in the region w ∈ (1, 1.434258546 . . . ) and existence and instability in the region w ∈
(1.434258546 . . . , ∞). Precisely at the point w = 1.434258546 . . . , the photon sphere exhibits
neutral stability.

3.3. Turning Points

To evaluate the exact location of the turning points on the curve described by the loci
of circular photon orbits, recall that using w = rc/a and z = m/a we can write this curve as

w2 = z e−1/w(3w− 1) =⇒ z =
w2e1/w

(3w− 1)
. (29)

This allows us to calculate

dz
dw

= e1/w 3w2 − 5w + 1
(3w− 1)2 , (30)

which has a zero located at w = (5 +
√

13)/6, where we have already seen that V′′0 (rc, a) =
V′′0 (w) = 0.
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At this point, z takes on its maximum value

z = e6/(5+
√

13) (5 +
√

13)2

18(3 +
√

13)
= e(5−

√
13)/2 (2 +

√
13)

9
. (31)

Consequently, no photon sphere can exist if

a
m

> e−(5−
√

13)/2 (
√

13− 2) = 0.7995092385...; (32)

or equivalently
m
a
< e(5−

√
13)/2 (2 +

√
13)

9
= 1.250767286.... (33)

Note that this happens when

rc

m
>

1
2
(1 +

√
13)e−(5−

√
13)/2;

rc

a
>

5 +
√

13
6

, (34)

which is where, as shown above, V′′0 (rc, m) = 0.
As can be seen, originally in Figure 1, and now in more detail in the zoomed-in plot

in Figure 2, for horizonless compact massive objects, there is a region where there are
two possible locations for the photon sphere for fixed values of m and a. Furthermore,
when this happens, it is the upper branch that corresponds to an unstable photon orbit,
while the lower branch is a stable photon orbit.
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Figure 2. Zoomed in plots of the location of the photon sphere, inner horizon, and outer horizon, focusing on the extremal
and merger regions. Sub-figure (a) plots these quantities as a function of the parameter a; sub-figure (b) plots these quantities
as a function of the parameter m. The dashed blue line represents the extension of the photon sphere to horizonless compact
massive objects (CMOs). Whenever the location of the photon sphere is double-valued, the upper branch corresponds to an
unstable photon orbit while the lower branch corresponds to a stable photon orbit.
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4. Timelike Circular Orbits

Let us first check the existence, and then the stability, of timelike circular orbits. Even in
Schwarzschild spacetime (a→ 0) this is not entirely trivial: Timelike circular orbits exist for
all rc ∈ (3m, ∞); they are unstable for rc ∈ (3m, 6m), exhibit neutral stability at rc = 6m,
and are stable for rc ∈ (6m, ∞). Once the parameter a is non-zero the situation is much
more complex.

4.1. Existence of Circular Timelike Orbits

For timelike trajectories, the effective potential is given by

V−1(r) =

(
1− 2m e−a/r

r

)(
1 +

L2

r2

)
, (35)

and so the locations of the circular orbits can be found from

V′−1(rc) = −
2
r5

c

{
L2r2

c + m e−a/rc [a(L2 + r2
c )− rc(3L2 + r2

c )]
}
= 0. (36)

That is, all timelike circular orbits (there will be infinitely many of them) must satisfy

L2r2
c + m e−a/rc [a(L2 + r2

c )− rc(3L2 + r2
c )] = 0. (37)

This is not analytically solvable for rc(L, m, a), however we can solve for the required
angular momentum Lc(rc, m, a) of these circular orbits:

Lc(rc, m, a)2 =
r2

c m(rc − a)
ma− 3mrc + r2

c ea/rc
. (38)

Physically, we must demand 0 ≤ L2
c < ∞, so the boundaries for the existence region of

circular orbits (whether stable or unstable) are given by

rc = a; ma− 3mrc + r2
c ea/rc = 0. (39)

The first of these conditions, rc = a, comes from the fact that in this spacetime gravity
is effectively repulsive for r < a. Remember that gtt = −(1− 2me−a/r/r), and that the
pseudo-force due to gravity depends on ∂rgtt. Specifically,

∂rgtt = −
2m
r2 e−a/r

(
1− a

r

)
, (40)

and this changes sign at r = a. Thus, for r > a, gravity attracts you to the center, but for
r < a gravity repels you from the center.

If gravity repels you, there is no way to counter-balance it with a centrifugal pseudo-
force, and so there is simply no way to get a circular orbit, regardless of whether it is stable
or unstable. Precisely at r = a, there are stable “orbits” where the test particle just sits
there, with zero angular momentum, no sideways motion required. Since by construction
rc > rH+ ≥ a, this constraint is relevant only for horizonless CMOs.

The second of these conditions is exactly the location of the photon orbits considered
in the previous sub-section. (Physically, what is going on is this: At large distances, it is
easy to put a massive particle into a circular orbit with Lc ∝

√
mrc. As one moves inwards

and approaches the photon orbit, the massive particle must move more and more rapidly,
and the angular momentum per unit mass must diverge when a particle with nonzero
invariant mass tries to orbit at the photon orbit.)

Thus, the existence region (rather than just its boundary) for timelike circular orbits is
(see Figure 3):

rc > a; ma− 3mrc + r2
c ea/rc > 0 (41)
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(a) (b)
Figure 3. Locations of the existence region for timelike circular orbits in terms of the circular null geodesics, outer horizon,
and inner horizon. Sub-figure (a) plots these quantities as a function of the parameter a; sub-figure (b) plots these quantities
as a function of the parameter m.

4.2. Stability versus Instability for Circular Timelike Orbits

Now, consider the general expression

V′′−1(r) =
6L2r3 − 2m(2r4 − 4ar3 + (12L2 + a2)r2 − 8L2ar + L2a2)e−a/r

r7 , (42)

and substitute the known value of L→ Lc(rc) for circular orbits (see (38)). Then,

V′′−1(rc) = −
2me−a/rc(2m(3r2

c − 3arc + a2)e−a/rc − rc(r2
c + arc − a2))

(r2
c −m(3rc − a)e−a/rc)r4 . (43)

Note that V′′−1(rc)→ ∞ at the photon orbit (where the denominator has a zero).
To locate the boundary of the region of stable circular orbits, the ESCO (extremal stable

circular orbit), we now need to set V′′−1(rc) = 0, leading to the equation

2m(3r2
c − 3arc + a2)e−a/rc = rc(r2

c + arc − a2). (44)

We note that locating this boundary is equivalent to extremizing Lc(rc). To see this,
consider the quantity [V′−1(L(r), r)] = 0 and differentiate:

d [V′−1(L(r), r)]
dr

=
∂V′−1(L, r)

∂L

∣∣∣∣∣
L=L(r)

× dL(r)
dr

+ V′′−1(L, r)
∣∣
L=L(r). (45)

This implies

0 =
∂V′−1(L, r)

∂L

∣∣∣∣∣
L=L(r)

× dL(r)
dr

+ V′′−1(L, r)
∣∣
L=L(r). (46)
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Thence,

V′′−1(L, r)
∣∣
L=L(r) = −

∂V′−1(L, r)
∂L

∣∣∣∣∣
L=L(r)

× dL(r)
dr

. (47)

However, it is easily checked that ∂V′−1(L, r)/∂L is non-zero outside the photon sphere
(that is, in the existence region for circular timelike geodesics). Thence,

V′′−1(L, r)
∣∣
L=L(r) = 0 ⇐⇒ dL(r)

dr
= 0. (48)

Thus, one might also extremize L2
c (rc), as in Equation (38), and once again find

Equation (44).
Defining w = rc/a and z = m/a, the curve describing the boundary of the region of

stable timelike circular orbits can be rewritten as

2z(3w2 − 3w + 1)e−1/w = w(w2 + w− 1). (49)

Plots of the boundary implied by Equation (44), or equivalently (49), can be seen
in Figure 4. As for the photon sphere, we have the interesting result that the extension
of the ESCO to horizonless compact massive objects results in up to two possible ESCO
locations for fixed values of a and m. Perhaps unexpectedly, the curve of ESCOs does
not terminate at the horizon—it terminates once it hits the curve of circular photon orbits
at a very special point. Let us now turn to the detailed analysis of both the qualitative
behavior and the various turning points presented in Figures 4 and 5. Note that where the
ESCO is single-valued, it is an ISCO (innermost stable circular orbit). Where the ESCO is
double-valued, the upper branch is an ISCO and the lower branch is an OSCO (outermost
stable circular orbit) [71].
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Figure 4. Locations of the ESCO, photon sphere, outer horizon, and inner horizon. Sub-figure (a) plots these quantities as a
function of the parameter a; sub-figure (b) plots these quantities as a function of the parameter m. The dashed blue line
represents the extension of the ESCO to CMOs. The dashed red curves in (a,b) are the asymptotic location of the ISCO for
small values of a (approaching the Schwarzschild solution).

(a) (b)
Figure 5. Locations of the ESCO, photon sphere, outer horizon, and inner horizon. Sub-figure (a) plots these quantities as a
function of the parameter a; sub-figure (b) plots these quantities as a function of the parameter m. The dashed blue line
represents the extension of the ESCO to CMOs. The dashed red line represents the extension of the photon sphere to CMOs.
The blue region denotes stable timelike circular orbits, while the red region denotes unstable timelike circular orbits, and the
green region denotes the non-existence of timelike circular orbits. Where the ESCO is single-valued, it is an ISCO. Where the
ESCO is double-valued, the upper branch is an ISCO and the lower branch is an OSCO (outermost stable circular orbit).
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4.2.1. Perturbative Analysis (Small a)

Let us first investigate the existence region perturbatively for small a. We have

Lc(rc, m, a)2 =
mr2

c
rc − 3m

− 2mrc(rc −m)

(rc − 3m)2 a +O(a2). (50)

Note that this approximation diverges at the Schwarzschild photon sphere r = 3m.
Thus, for small a the boundary for the region of existence of timelike circular orbits is still
r = 3m.

Now, we investigate the stability region perturbatively for small a. Rearranging
Equation (44), we see

rc =
6m(r2

c − arc + a2/3)e−a/rc

r2
c + arc − a2 = 6m

(
1− 3a

rc
+O(a2)

)
. (51)

Thence,
rc = 6m− 3a +O(a2), (52)

which sensibly reproduces the Schwarzschild ISCO to lowest order in a, and explains the
asymptote in Figure 4b.

Furthermore, for small a, substituting Lc(rc) into V′′−1(L, rc) and expanding

V′′−1(rc) =
2m(rc − 6m)

r3
c (rc − 3m)

+
4m2(7rc − 15m)

r4(rc − 3m)2 a +O(a2) (53)

Demanding that this quantity be zero self-consistently yields rc = 6m− 3a +O(a2).

4.2.2. Non-Perturbative Analysis

We show above that, defining w = rc/a and z = m/a, the curve describing the
boundary of the region of stable timelike circular orbits can be rewritten as

2z(3w2 − 3w + 1)e−1/w = w(w2 + w− 1). (54)

Thence,

z =
w(w2 + w− 1)e1/w

2(3w2 − 3w + 1)
. (55)

Let us look for the turning points of z(w). The derivative is

dz
dw

=
(w− 1)(3w4 − 6w3 − 3w2 + 4w− 1)e1/w

2w(3w2 − 3w + 1)2 . (56)

There is one obvious local extrema at w = 1, corresponding to z = e/2. Physically,
this corresponds to the point where inner and outer horizon merge and become extremal—
but from inspection of Figure 4, the descriptive plots of Figure 5, and the zoomed-in plots
of Figure 6, we see that the curve of ESCOs hits the photon orbit (and becomes unphysical)
before getting to this point. In terms of the variables used when plotting Figures 4–6,
this unphysical (from the point of view of ESCOs) point corresponds to

(rc/a, m/a)∗ = (1, e/2) (rc/m, a/m)∗ = (2/e, 2/e). (57)
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Figure 6. Zoomed in plot of the locations of the ESCO, outer horizon, and inner horizon for various values of the parameters
a and m, focusing on the turning points. Sub-figure (a) plots these quantities as a function of the parameter a; sub-figure (b)
plots these quantities as a function of the parameter m. The dashed blue line represents the extension of the ESCO to CMOs.
Where the ESCO is single-valued, it is an ISCO. Where the ESCO is double-valued, the upper branch is an ISCO and the
lower branch is an OSCO.

The other local extrema is located at the only physical root of the quartic polynomial

3w4 − 6w3 − 3w2 + 4w− 1 = 0. (58)

While this can be solved analytically, the results are too messy to be enlightening and
so we resort to numerics. Two roots are complex, one is negative, and the only physical
root is w = 2.210375896 . . . , corresponding to z = 1.173459017 . . . . Physically, this implies
that the ESCO curve should exhibit a non-trivial local extremum—and from inspection of
Figure 4 we see that the curve of ESCOs does indeed have a local extremum at this point.
In terms of the variables used when plotting Figure 4, this extremal point corresponds to

(rc/a, m/a)∗ = (2.210375896, 1.173459017), (59)

and
(rc/m, a/m)∗ = (1.883641323, 0.8521814444). (60)

4.3. Intersection of ESCO and Photon Sphere

We can rewrite the curve for the loci of the photon spheres (19) as

e−1/wz =
w2

(3w− 1)
. (61)

Similarly, for the loci of ESCOs, we rewrite (55) as

e−1/wz =
w(w2 + w− 1)

2(3w2 − 3w + 1)
. (62)
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These curves cross at

w
(3w− 1)

=
(w2 + w− 1)

2(3w2 − 3w + 1)
. (63)

That is, at
(w− 1)(3w2 − 5w + 1) = 0, (64)

with explicit roots at

1,
5±
√

13
6

. (65)

The physically relevant root is w = 5+
√

13
6 = 1.434258546..., which is where we

determine above that the photon sphere became stable and at the point where the curve of
photon spheres maximizes the value of z = m/a.

4.4. Explicit Result for the Angular Momentum

We can rewrite the curve for the angular momentum (38) as

L2
c = a2

(
e−1/wz w2(w− 1)

w2 − e−1/wz(3w− 1)

)
. (66)

Similarly, for the loci of ESCOs, we can rewrite (55) as

e−1/wz =
w(w2 + w− 1)

2(3w2 − 3w + 1)
. (67)

We then substitute this into back into Lc:

L2
c = a2 w2(w2 + w− 1)

3w2 − 5w + 1
. (68)

This has a pole at w = 5+
√

13
6 = 1.434258546..., and is then positive and finite for

all w > 5+
√

13
6 . (Of course, the point w = 5+

√
13

6 on the ESCO curve is exactly where the
ESCO curve hits the photon curve, so we would expect the angular momentum to go to
infinity there.) Asymptotically, for large r (large w = rc/a), we have L2

c ∼ a2w2/3 and
m/a = z ∼ w/6, so L2

c ∼ 2mrc as expected from the large-distance Newtonian limit.

4.5. Summary

Overall, we see that the boundary of the stability region for timelike circular orbits is
rather complicated. In terms of the variable w = rc/a:

• For w ∈ ( 5+
√

13
6 , ∞), we have an ESCO.

This ESCO then subdivides as follows:

– For w ∈ (2.210375896, ∞), we have an ISCO.

– For w ∈ ( 5+
√

13
6 , 2.210375896), we have an OSCO.

• For w ∈ (1, 5+
√

13
6 ), the stability region is bounded by a stable photon orbit.

• The line w = 1 bounds the stability and existence region for timelike circular orbits
from below.

This is considerably more complicated than might reasonably have been expected.

5. Conclusions

In this work, we investigate astrophysically observable quantities of a specific novel
regular black hole model based on an asymptotically Minkowski core [62,63]: Specifically,
we investigate the photon sphere and ESCO. The spacetime under consideration is an
example of a black hole mimicker. For the regular black hole model, both the photon
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sphere and the ESCO exist and are located outside of the outer horizon, and thus (at least
in theory) could be astrophysically observable. The analysis of the photon sphere and
ESCO is extended to horizonless compact massive objects, leading to the surprising results
that, for fixed values of m and a, up to two possible photon sphere and up to two possible
ESCO locations exist in our model spacetime; and that the very existence of the photon
sphere and ESCO depends explicitly on the ratio a/m. Somewhat unexpectedly, due to the
effectively repulsive nature of gravity in the region near the core, we find some situations
in which the photon orbits are stable and some situations where the ESCOs are OSCOs
rather than ISCOs. There is a rich phenomenology here that is significantly more complex
than for the Schwarzschild spacetime.
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Abstract: We study new classes of generic off-diagonal and diagonal cosmological solutions for
effective Einstein equations in modified gravity theories (MGTs), with modified dispersion relations
(MDRs), and encoding possible violations of (local) Lorentz invariance (LIVs). Such MGTs are
constructed for actions and Lagrange densities with two non-Riemannian volume forms (similar to
two measure theories (TMTs)) and associated bimetric and/or biconnection geometric structures.
For conventional nonholonomic 2 + 2 splitting, we can always describe such models in Finsler-like
variables, which is important for elaborating geometric methods of constructing exact and para-
metric solutions. Examples of such Finsler two-measure formulations of general relativity (GR)
and MGTs are considered for Lorentz manifolds and their (co) tangent bundles and abbreviated as
FTMT. Generic off-diagonal metrics solving gravitational field equations in FTMTs are determined by
generating functions, effective sources and integration constants, and characterized by nonholonomic
frame torsion effects. By restricting the class of integration functions, we can extract torsionless
and/or diagonal configurations and model emergent cosmological theories with square scalar curva-
ture, R2, when the global Weyl-scale symmetry is broken via nonlinear dynamical interactions with
nonholonomic constraints. In the physical Einstein–Finsler frame, the constructions involve: (i) non-
linear re-parametrization symmetries of the generating functions and effective sources; (ii) effective
potentials for the scalar field with possible two flat regions, which allows for a unified description of
locally anisotropic and/or isotropic early universe inflation related to acceleration cosmology and
dark energy; (iii) there are “emergent universes” described by off-diagonal and diagonal solutions for
certain nonholonomic phases and parametric cosmological evolution resulting in various inflationary
phases; (iv) we can reproduce massive gravity effects in two-measure theories. Finally, we study
a reconstructing procedure for reproducing off-diagonal FTMT and massive gravity cosmological
models as effective Einstein gravity or Einstein–Finsler theories.

Keywords: modified and massive gravity; two measure theories; Einstein and Finsler gravity;
off-diagonal cosmological solutions; nonholonomic dynamical Weyl-scale symmetry breaking;
(anisotropic) inflation; dark energy; reconstructing procedure

1. Introduction

Modern cosmology has the very important task of providing a theoretical descrip-
tion of many aspects of the observable universe with exponential expansion (inflation),
particle creation, and radiation. We cite books [1–5] on standard cosmology [6–8] and
further developments. Then, regarding acceleration cosmology [9,10] and related dark
energy and dark matter physics, one a series of works on modified gravity theories, MGTs,
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and cosmology [11–16] can be considered. Another direction of research is devoted to
nonholonomic and Finsler-like, locally anisotropic cosmological models [17–23]; see [24,25]
for an axiomatic approach to Finsler–Lagrange–Hamilton gravity theories. The physics
community almost accepted the idea that the Einstein gravity and standard particle physics
have to be modified in order to elaborate self-consistent quantum gravity theories and
describe existing experimental and observational data in modern cosmology. As a result,
a number of MGTs and cosmological scenarios have been elaborated in the last 20 years.

In a series of works [26–33]—see also references therein—a geometric approach (the
so-called anholonomic frame deformation method (AFDM)) was developed for the con-
struction of exact and parametric solutions in MGTs, general relativity (GR) and the theory
of nonholonomic geometric and classical/quantum information flows. Such solutions
use generic off-diagonal metrics (such metrics can not be diagonalized via coordinate
transforms in a finite spacetime region; the solutions, in general, have non zero torsion
configurations; the Levi-Civita connection can be extracted by imposing additional nonin-
tegrable constraints (in the physics and mathematical literature, two equivalent terms are
also used: nonholonomic and/or anholonomic conditions)) and generalized connections
when their coefficients depend on all spacetime coordinates via generating and integration
functions, for vacuum and non-vacuum configurations. Effective and matter field sources
can be considered for possible Killing and non-Killing symmetries, various types of com-
mutative and noncommutative parameters, etc. For Finsler-like modified-gravity theories
(FMGTs), the coefficients of geometric and physical objects depend, in general, on (co)fiber
velocity (momentum) type coordinates. Following the AFDM, the geometric construc-
tions and variational calculus are preformed with respect to certain classes of (adapted)
nonholonomic frames for a formal splitting of spacetime dimension in the form 2(3) + 2 +
. . . + and a well-defined, geometrically “auxiliary” linear connection which is convenient
for performing, for instance, a deformation quantization procedure, or for constructing
exact and/or parametric solutions. This allows for the gravitational field equations in
MGTs, FMGTs, and GR, and geometric/information flow equations to be decoupled. Such
nonholonomic deformations of fundamental geometric objects determined by distortions
of nonlinear and linear connection structures were not considered in other approaches
with vierbeins (tetrads), 2 + 2 and/or 3 + 1 splitting; see standard textbooks on general
relativity and exact solutions [34–38]. The methods elaborated by other authors were only
successful in the generation of exact solutions with two and three Killing symmetries, but
do not provide a geometric/analytic formalism for a general decoupling of gravitational
and matter field equations. The surprising result is that such a decoupling is possible for
various classes of effective/modified Einstein equations and matter fields, which can be
derived for certain physically motivated general assumptions in MGTs.

Let us summarize most of the important ideas and methods developed in
References [16,24–33]:

(a) The (modified) Einstein equations with some effective and/or matter field sources
consist of very sophisticated systems of nonlinear partial derivative equations (PDEs).
The bulk of most known and important physical applications (of black hole, cosmo-
logical and other type solutions) were elaborated for the ansatz of metrics which
can be diagonalized by certain frame/coordinate transforms, and when physically
important systems of nonlinear PDEs can be reduced to systems of decoupled non-
linear ordinary differential equations (ODEs). In such cases, the generated exact or
parametric solutions (i.e., integrals, with possible non-trivial topology, singularities,
of different smooth classes, etc.) depend on one space, or time, like the coordi-
nate, being determined by certain imposed symmetries (for instance, spherical/axial
ones, which are invariant on some rotations, with Lie algebras symmetries, etc).
The integration constants can be found in an explicit form by considering certain
symmetry/Cauchy/boundary/asymptotic conditions. In this way, tvarious classes
of black/worm hole and isotropic and anisotropic cosmological solutions were con-
structed;
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(b) The AFDM allows us to decouple and integrate physically important systems of
nonlinear PDEs in more general forms than (a) when the integral varieties are pa-
rameterized not only by integration constants but also by generating and integration
functions subjected to nonholonomic constraints and functional/nonlinear depen-
dence on sources and data for certain classes of “prime metrics and connections”.
The resulting “target” off-diagonal metrics and generalized connections depend,
in general, on all space–time coordinates. It is important to note that, at the end, we
can impose additional nonholonomic constraints and consider “smooth” limits or
various type non-trivial topology and/or parametric transitions to Levi–Civita config-
urations (with zero torsion) and/or diagonal metrics. In this way, we can reproduce
well-known black hole/cosmological solutions, which can have deformed horizons
(for instance, ellipsoid/toroid symmetries), anisotropic polarized physical constants,
for instance, imbedding into nontrivial gravitational vacuum configurations. These
new classes of solutions cannot be constructed if we impose particular types of ansatz
for diagonalizable metrics, frames of references and/or sources at the beginning, de-
pending on only one spacetime coordinate. This is an important property of nonlinear
parametric physical systems subjected to certain nonholonomic constraints. More gen-
eral solutions with geometric rich structure and various applications for a nonlinear
gravitational and matter field dynamics can be found if we succeed in directly solving
certain generic nonlinear systems of PDEs which are not transformed into systems
of ODEs. Having constructed such general classes of solutions, one might analyze
the limits to diagonal configurations and possible perturbative effects. We “loose”
the bulk of generic nonlinear solutions with multi-variables if we consider certain
“simplified” ansatz for “higher-symmetries”, resulting in ODEs, from the beginning.

Applying the AFDM as explained in paragraph (b), and choosing corresponding types
of generating functions and integration functions and constants, it is possible to model
various MGTs and accelerating cosmology effects by considering generic off-diagonal inter-
actions and re-parameterizations of generating functions and sources in effective Einstein
gravity. In the present paper, we shall elaborate on a unified cosmological scenario for
MGTs and GR with nonholonomic off-diagonal interactions when effective Finsler-like
variables can be considered for a 2 + 2 splitting. In such an approach, both inflation and
slowly accelerated universe models are reproduced by exact solutions constructed follow-
ing the AFDM. In general, such solutions are inhomogeneous and have local anisotropy.
For a corresponding class of generating and integration functions, and for necessary type of
effective sources, we can model effective scalar field potentials with anisotropy and limits
to two flat regions. We shall construct and study nonlinear parametric cosmological theo-
ries by generalizing the standard models based on Friedman–Lamaître–Robertson–Walker
(FLRW), with diagonalizable configurations derived for ODEs. The goal is to address the
initial singularity problem and to explain how two periods of exponential expansion with
widely different scales can be described via solutions to effective gravitational equations.

A well-known mechanism for generating accelerated expansion as a consequence of
vacuum energy can be performed in the context of the scalar field theory paradigm, which is
described by an effective potential e f U with flat regions. For such “slow roll” configurations
of the vacuum field, the kinetic energy terms are small and the resulting energy-momentum
tensor is of type Tµν ' gµν

e f U. If the potential e f U contains contributions of some modified
gravity terms (two measures, massive gravity, etc.), we can analyse the possible effects of
such terms in the inflationary phase. However, this is not enough to elaborate a theory
of modern cosmology with acceleration and dark energy and dark matter contributions.
Theoreticians developed different quintessential, k-essence and “variable gravity” inflation
scenarios [39–46] and f (R) modified models, with contributions from massive gravity,
Finsler-like theories, bi-metrics and bi-connections and/or generic off-diagonal interactions;
see [14,15,17,18,24,25,30,47,48] and references therein.

The solutions with anisotropies and flat regions can be used for speculations on the
phase that proceeds the inflation, and may explain both the non-singular origin of universe
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and the early universe evolution. This is similar to the concept of “emergent universe”,
which was considered with the aim of solving the problem of initial singularity, including
the singularity theorems for inflationary cosmology driven by scalar field [49–54]. In our
approach, with solutions constructed following the AFDM, the universe does not start as a
static Einstein universe but as a parametric effective one, when the scalar field rolls with an
almost constant speed for a non-singular configuration with small anisotropies.

Let us briefly explain the origins of and motivations for the present work. The main
ideas and methods for constructing generic off-diagonal solutions in MGTs come from
Refs. [26–31]. In articles [11–19], various examples were given of instances where the
gravitational and matter field equations in MGTs can be re-defined and solved as certain
effective/generalized Einstein equations or their Finsler-like modifications. A series of
papers [55–59] is devoted to a new class of modified-measure gravity-matter theories
containing different terms in the pertinent Lagrangian action, for instance, one with a
non-Riemannian integration measure and another with standard Riemannian integration
measure. We shall call such models two measure theories (TMTs) of gravity. In a more
general case, two non-metric densities [60] are considered. An important feature of such
theories is that the constructions are with global Weyl-scale invariance and further dynamic
breaking. In particular, the second action term is the standard Riemannian integration
measure containing a Weyl-scale symmetry, preserving R2, or more general f (R) terms,
which, in this work, may encode modifications from massive gravity, bi-metric and bi-
connection theories. The latter formalism and geometrization of such TMTs allows for the
representation of the corresponding gravitational field equations as certain effective Ein-
stein equations in nonholonomic variables; see various applications in modern cosmology,
(super) string/brane theories, non-Abelian confinement, etc. [61,62]. The main goal of this
article is to develop the AFDM for generating exact solutions in TMTs formulated in non-
holonomic and Einstein–Finsler variables—see also a partner work [63]—and analyze its
possible implications in modern cosmology and for dark energy and dark matter physics.

The work is organized as follows. Geometric preliminaries on nonholonomic Lorentz
manifolds and relativistic Lagrange–Finsler spaces are provided in Section 2. Then,
in Section 3, we formulate a geometric approach to MGT cosmology in the framework
of TMT with nonholonomic variables and effective Einstein–Finsler gravity theories. We
apply the AFDM for the construction of generic off-diagonal cosmological solutions in
various MGTs in Section 4. Cosmological models with locally anisotropic effective scalar
potentials and two flat regions are studied in Section 5. We devote Section 6 to the formu-
lation of certain conditions when modified massive gravity can be reproduced as TMTs
and effective GR theories, with nonholonomic Finsler-like variables, and speculate on a
potential reconstructing procedure for such massive gravity cosmological models. Finally,
we provide a discussion and conclusions in Section 7.

2. Nonholonomic Variables and (Modified) Einstein and Lagrange–Finsler Equations

In this section, we outline some necessary results from the geometry of four dimen-
sional (4D) Lorentz manifolds with so-called canonical nonholonomic variables, which
can be transformed into Finsler–Lagrange-like variables. The motivation for considering
canonical variables is that they can prove certain general decoupling and integration prop-
erties of gravitational field equations in MGTs and GR. However, Finsler–Lagrange-like
variables and the associated almost-symplectic structures can be used for deformation and
other types of quantization procedure in gravity theories. Proofs and details can be found,
for instance, in [24,25].

2.1. Geometric Objects and GR and MGTs in Nonholonomic Variables

Let us consider a 4D pseudo-Riemannian manifold V, defined by a metric structure

g = gαβ(uγ)duα ⊗ duβ (1)
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of signature (+,+,+−), with local coordinates u = {uγ}, where indices α, β, γ, . . . run
values 1, 2, 3 and (for the time-like coordinate) 4. The Einstein summation rule on up/low
repeating indices is applied if the contrary is not stated. For a corresponding causality
structure, the postulates of the special relativity theory, the principle of equivalence, etc, are
locally combined (see a review of axiomatic appraoches in GR- and Finsler-like modified
theories in [17,24,25]); such a curved space–time is called a Lorentz manifold. In this work,
we study generalizations of geometric and gravitational and cosmological models when
certain nonholonomic (nonintegrable, anholonomic) distributions and related bimeasure
structures, and Lagrangians for MGTs, are considered on V.

On a curved spacetime V, we can always introduce a nonholonomic 2 + 2 splitting,
which is determined by a non-integrable distribution

N : TV = hV⊕ vV,

where TV is the tangent bundle of V, the Withney sum ⊕ defines a conventional splitting
into horizontal (h), hV, and vertical (v), vV, subspaces. In local cooridnates

N =Na
i (xk, yb)dxi ⊗ ∂/∂ya, (2)

states a nonlinear connection, N–connection structure. For such a N–connection decompo-
sition, the indices and coordinates split in the form u = (x, y), or uα = (xi, ya), for x = {xi}
and y = {ya}, with i, j, k, · · · = 1, 2 and a, b, c, · · · = 3, 4, which is respectively adapted to
a nonholonomic 2 + 2 splitting. The data (V, N) define a nonholonomic manifold with a
prescribed fibered structure described locally by fiber-like coordinates ya.

In our works, “boldface” symbols are used to emphasize that certain geometric/physical
objects are defined for spaces enabled with a 2 + 2 splitting determined by an N-connection
structure. On pseudo-Riemannian manifolds, introducing an N-connection with a 2 +
2 splitting is equivalent to the convention that there are used certain subclasses of local
(N-adapted) bases eµ = (ei, ea) and their duals eν = (ej, eb), where

ei =
∂

∂xi − Nc
i

∂

∂yc , ea = ∂a =
∂

∂ya and ej = dxj, eb = dyb + Nb
k dxk. (3)

Such frames are called nonholonomic because they generally satisfy the relations

[eα, eβ] = eαeβ − eβeα = Wγ
αβeβ,

with nontrivial anholonomy coefficients Wb
ia = ∂aNb

i , Wb
ji = Ωb

ij = ej(Nb
i ) − ei(Nb

j ).
For zero W–coefficients, we obtain holonomic bases, which allow us to consider coor-
dinate transforms eα → ∂α and eβ → duβ.

On any manifold V and its tangent and cotangent bundle, there are also possible
general vierbein (tetradic) transformations eα = eα

α(u)∂/∂uα and eβ = eβ
β(u)duβ, where

the coordinate indices are underlined in order to distinguish them from arbitrary abstract
ones and the matrix eβ

β is inverse to eα
α for orthonormalized bases. We do not use boldface

symbols for such transformations because an arbitrary decomposition (we can consider
certain diadic 2 + 2 splitting as particular cases) is not adapted to an N-connection structure.

With respect to N-adapted bases, we shall say that a vector, a tensor and other geo-
metric objects are represented as a distinguished vector (d-vector), a distinguished tensor
(d-tensor) and distinguished objects (d–object), respectively. Using frame transforms

gαβ = eα′
αeβ′

βgα′β′ , any metric g (1) on V can be written in N-adapted form as a distinguished
metric (in brief, d-metric)

g = gαβeα ⊗ eβ = gij(u)dxi ⊗ dxj + gab(u)ea ⊗ eb. (4)
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In brief, such an h–v decomposition of a metric structure is parameterized in the form
g =

(
hg = {gij}, vg = {gab}

)
.

On nonholonomic manifolds, we can work with a subclass of linear connections
D = (hD, vD), called distinguished connections, d–connections, preservingm under par-
allelism, the N–connection splitting. A d-connection is determined by its coefficients
Γα

βγ = {Li
jk, Ĺa

bk, Ći
jc, Ca

bc}, computed with respect to an N-adapted base (3). Linear con-
nections structures which are not adapted to N-connections can also be considered, but
they are not preserved under parallelism (2), and satisfy other types of transformation law
under frame/coordinate transforms.

For any d-vectors X and Y,, we can define, in standard form, the torsion d–tensor, T ,
the nonmetricity d–tensor, Q, and the curvature d–tensor,R, of a D, respectively, which
generally do not depend on g and/or N. The formulas are

T (X, Y) := DXY−DYX− [X, Y],Q(X) := DXg,R(X, Y) := DXDY−DYDX−D[X,Y]. (5)

In N-adapted coefficients labeled by h- and v-indices, such geometric d-objects are
parameterized, respectively, as

T = {Tγ
αβ =

(
Ti

jk, Ti
ja, Ta

ji, Ta
bi, Ta

bc

)
},Q = {Qγ

αβ},

R = {Rα
βγδ =

(
Ri

hjk, Ra
bjk, Ri

hja, Rc
bja, Ri

hba, Rc
bea

)
}.

Such coefficients can be computed in explicit form by introducing X = eα and Y = eβ,
see (3), and coefficients of a D-connection D = {Γγ

αβ} into formulas (5).
The AFDM is easy to work with two “preferred” linear connections: the Levi–Civita

connection ∇ and the canonical d-connection D̂. Both connections are completely defined
by a metric structure g, following the conditions

g→
{ ∇ : ∇Q = 0 and ∇T = 0;

D̂ : Q̂ = 0 and hT̂ = 0, vT̂ = 0,
(6)

where the left label ∇ is used for the geometric objects determined by the Levi–Civita (LC)
connection. It should be noted here that the N-adapted coefficients of the torsion T̂ are
not zero for the case of mixed h- and v-coefficients computed with respect to N-adapted
frames (conventionally, we can write this as hvT̂ 6= 0, with some nontrivial N-adapted
coefficients from the subset {Ti

ja, Ta
ji, Ta

bi}). Such a torsion T̂ is completely determined by
the coefficients of N and g (in coordinate frames, such values determine certain generic
off-diagonal terms gαβ which cannot be diagonalized in a finite space–time region U ⊂ V
by coordinate transforms). We can consider a distortion relation

D̂ = ∇+ Ẑ,

when both linear connections and the distortion tensors Ẑ are completely defined by the
geometric data (g,∇), or (in nonholonomic variables) by (g, N, D̂).

Contracting the indices of a canonical Riemann d-tensor of D̂, R̂={R̂α
βγδ}, we con-

struct a respective canonical Ricci d-tensor, R̂ic = {R̂αβ := R̂γ
αβγ}. The corresponding

nontrivial N-adapted coefficients are

R̂αβ = {R̂ij := R̂k
ijk, R̂ia := −R̂k

ika, R̂ai := R̂b
aib, R̂ab := R̂c

abc}, (7)

when the scalar curvature is computed

R̂ := gαβR̂αβ = gijR̂ij + gabR̂ab.
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It should be noted that, generally, R̂αβ 6= R̂βα, even this type of tensor is symmetric to
the LC-connection, Rαβ = Rβα. This a nonholonomic deformation and nonholonomic
frame effect.

We can introduce the Einstein d-tensor

Êαβ := R̂αβ −
1
2

gαβ R̂

and consider an effective Lagrangian L̂, for which the stress–energy momentum tensor,
T̂αβ, is defined by an N-adapted (with respect to eβ and eα) variational calculus on a
nonholonomic manifold (g, N, D̂),

T̂αβ = − 2√
|gµν|

δ(
√
|gµν| L̂)
δgαβ

. (8)

Following geometric principles, we can postulate the Einstein equations in GR for the
data (g,D̂), and/or re-write them equivalently for the data (g,∇) if additional nonholo-
nomic constraints for zero torsion are imposed

R̂ βγ = Υ̂ βγ, (9)

and T̂ = 0, additional condition for ∇. (10)

In general, the condition D̂|T̂ =0 = ∇ may not have a smooth limit, and such an
equation can be considered as a nonholonomic or parametric constraint. Here, we note
that the source

Υ̂ βγ := κ(T̂αβ −
1
2

gαβT̂)

is computed with the trace T̂ := gαβT̂αβ, and κ should be determined by the Newton
constant NewG, as in GR, if we want to study the limits to the Einstein gravity the-
ory. In this work, we shall use the units when NewG = 1/16π and the Planck mass
Pl M = (8πNewG)−1/2 =

√
2. If we do not impose the LC-conditions (10), the system of

nonholonomic nonlinear PDEs (9), and similar higher dimension ones, for instance, those
with noncommutative and/or supersymmetric variables, can be considered in various
classes of MGTs, Finsler–Lagrange gravity, etc.

The values R̂, R̂ic and R̂ for the canonical d-connection D̂ are different from the
similar ones,R,Ric and R, computed for the LC-connection ∇. Nevertheless, both classes
of such fundamental geometric objects are related via distorting relations derived in a
unique form for a given metric structure and N-connection splitting. There are at least
two priorities that work with D̂, instead of ∇. The first one is ensuring that we can find
solutions for generalized gravity theories with nontrivial torsion. The second priority
is that the equations (9) decouple in very general forms with respect to certain classes
of N-adapted frames. The basic idea of the AFDM is to write the Lagrange densities
and the resulting fundamental gravitational and matter field equations in terms of such
nonholonomic variables, which allows us to decouple and solve nonlinear systems of
PDEs. This cannot be done if we use the LC-connection ∇ from the beginning. It is not a
d-connection, does not preserve the h- and v-splitting and the condition of zero torsion,
∇T = 0, under general transformations, and does not allow the equations in general forms
to be decoupled. Working with D̂, we introduce certain “flexibility” in order to apply
corresponding geometric techniques for integration PDEs. In such cases, we do not make
additional assumptions regarding particular cases for ansatz and connections transforming
the fundamental field equations into nonlinear systems of ODEs. Having defined a quite
general class of solutions, expressed via generating functions and integration functions
and constants, we can impose additional nonholonomic constraints (10), which allows the
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extraction of LC–configurations. In this way, we can construct an explicit form of new
classes of exact solutions in GR and MGTs, both in (g,∇) and (g, N, D̂) variables.

2.2. Finsler–Lagrange Variables in GR and MGTs

On a 4D/Lorentz manifold V, we can introduce Finsler-like variables considering a
conventional 2 + 2 splitting of coordinates uα = (xi, ya) for a nonholonmic fiber structure,
where y = {ya}, for a = 3, 4, are treated as effective fiber coordinates (which are analogous
to velocity ones in theories on tangent bundles). In this way, we elaborate a toy model
of relativistic Finsler–Lagrange geometry. Let us explain how such constructions provide
examples of the above-formulated nonholonomic models of (pseudo) Riemannian geometry.
A fundamental function (equivalently, generating function) V 3 (x, y) → L(x, y) ∈ R,
i.e., a real valued function (an effective Lagrangian, or a Lagrange density) which is
differentiable on Ṽ := V/{0}, with {0} being the null section of V, and continuous on the
null section of π : V → hV. A relativistic 4D model of a fibered effective Lagrange space
L3,1 = (V, L(x, y)) is determined by a prescribed regular Hessian metric (equivalently, the
v-metric)

g̃ab(x, y) :=
1
2

∂2L
∂ya∂yb (11)

is non-degenerate, i.e., det |g̃ab| 6= 0, and of constant signature. Non-regular configurations
can be studied as special cases.

The non-Riemannian total phase space geometries are characterized by nonlinear
quadratic line elements

ds2
L = L(x, y). (12)

We can elaborate on geometric and physical theories with a spacetime enabled with
a nonholonomic frame and metric, and (non)linear connection structures determined by
a nonlinear quadratic line element (12) and related v-metric (11). The geometric objects
on L3,1 will be labeled by a tilde “~” (for instance, g̃ab) if they are defined canonically
by an effective Lagrange generating function. We write L̃3,1 with tilde in order to em-
phasize that V is enabled with an effective relativistic Lagrange structure and respective
nondegenerate Hessian.

The dynamics of a probing point particle in L̃3,1 are described by Euler–Lagrange
equations,

d
dτ

∂L̃
∂yi −

∂L̃
∂xi = 0.

These equations are equivalent to the nonlinear geodesic (semi-spray) equations

d2xi

dτ2 + 2G̃i(x, y) = 0, (13)

for G̃i =
1
2

g̃ij(
∂2 L̃
∂yi yk − ∂L̃

∂xi ),

where g̃ij is inverse to g̃ab (11). In this way, we define a canonical Lagrange N-connection
structure

Ñ =

{
Ña

i :=
∂G̃
∂yi

}
, (14)

determining an effective Lagrange N-splitting Ñ : TV = hV ⊕ vV, similar to (2). Using Ña
i

from (14), we define effective Lagrange N-adapted (co)frames

ẽα = (ẽi =
∂

∂xi − Ña
i (x, y)

∂

∂ya , eb =
∂

∂yb ) and ẽα = (ẽi = dxi, ẽa = dya + Ña
i (x, y)dxi). (15)

Such Ñ-adapted frames can be considered as results of certain vierbein (frame, for 4D,
tetradic) transforms of type eα = eα

α(u)∂/∂uα and eβ = eβ
β(u)duβ. (We can underline the
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local coordinate indices in order to distinguish them from arbitrary abstract ones; the
matrix eβ

β is inverse to eα
α for orthonormalized bases.).

We can also consider frame transforms eα = eα′
α(u)eα′ , when g̃ij = ei′

ie
j′
k g̃i′ j′ and g̃ab =

ea′
aeb′

b g̃a′b′ for g̃i′ j′ and g̃a′b′ being of type (11), define the respective h- and v-components of
a d-metric of signature (+ ++−). As a result, we can construct a relativistic Sasaki type
d-metric structure

g̃ = g̃αβ(x, y)ẽα⊗ẽβ = g̃ij(x, y)ei ⊗ ej + g̃ab(x, y)ẽa ⊗ ẽa. (16)

Using respective frame transforms gα′β′ = eα
α′ e

β
β′ g̃αβ and gα′β′ = eα

α′ e
β

β′gαβ, such an
effective Lagrange–Sasaki can be represented as a general d-metric (4), or equivalently, as a
off-diagonal metric (1),

g = gα′β′(x, y)eα′⊗eβ′ = gαβ(x, y)duα⊗duβ,

where

gαβ =

[
gij(x) + gab(x, y)Na

i (x, y)Nb
j (x, y) gae(x, y)Ne

j (x, y)
gbe(x, y)Ne

i (x, y) gab(x, y)

]
. (17)

Parameterizations of type (17) for metrics are considered in Kaluza–Klein theories,
but, in our approach, the N-coefficients are determined by a general or Lagrange N-
connection structure.

The Lagrange N-connections Ñ define an almost complex structure J̃. Such a linear
operator J̃ acts on eα = ( ei, eb) using formulas J̃(ei) = −en+i and J̃(en+i) = ei, and globally
defines an almost complex structure J̃◦J̃ = − I, where I is the unity matrix. We note that J̃
is only a (pseudo) almost complex structure for a (pseudo) Euclidean signature. There are
omitted tildes written, for instance, J for arbitrary frame/coordinate transforms.

A Lagrange Neijenhuis tensor field is determined by a Lagrange-generating function
introduced as the curvatures of a respective N-connection,

Ω̃(X̃,Ỹ) := −[X̃,Ỹ] + [̃JX̃, J̃Ỹ]− J̃[̃JX̃, Ỹ]− J̃[X̃, J̃Ỹ], (18)

for any d–vectors X, Y. Such formulas can be written without tilde values if arbitrary
frame transforms are considered. In local form, an N-connection is characterized by such
coefficients of (18) (i.e., the coefficients of an N-connection curvature):

Ωa
ij =

∂Na
i

∂xj −
∂Na

j

∂xi + Nb
i

∂Na
j

∂yb − Nb
j

∂Na
i

∂yb . (19)

An almost complex structure J transforms into a standard complex structure for the Eu-
clidean signature if Ω = 0.

Using the Lagrange d-metric g̃ and d-operator J̃, we can define the almost symplectic
structure θ̃ := g̃(J̃·, ·). Then, we can construct canonical d-tensor fields defined by L(x, y)
and N-adapted, respectively, to Ña

i (14) and ẽα = (ẽi, eb) (15):

J̃ = −δa
i ea ⊗ ei + δi

aẽi ⊗ ẽa the almost complex structure; (20)

P̃ = ẽi ⊗ ei − ea ⊗ ẽa almost product structure;

θ̃ = g̃aj(x, y)ẽa ∧ ei almost symplectic structure.

We can define the Cartan–Lagrange d-connection D̃ = (hD̃, vD̃) which, by definition,
satisfies the conditions (compare with (6)),

D̃θ̃ = 0, Q̃ = 0 and hT̃ = 0, vT̃ = 0. (21)
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The geometric d-objects (16), (20) and (4) can be subjected to arbitrary frame transforms
on a Lorentz nonholonomic manifold V, when we can omit tilde on symbols, for instance,
by writing geometric data in the form (g, J, P,), but we have to preserve the notation D̃ in
all systems of frames/coordinates because such a d-connection is different, for instance,
from the LC-connection ∇.

We can elaborate a relativistic 4D model of Finsler space on a Lorentz manifold V,
as an example of Lagrange space when a regular L = F2 is defined by a fundamental
(generating) Finsler function F(x, y), also called a Finsler metric, when the nonlinear
quadratic element (12) is changed into

ds2
F = F2(x, y)

and when the following conditions are satisfied: (1) F is a real positive valued function
which is differential on T̃V and continuous on the null section of the projection π : TV → V;
(2) a homogeneity condition, F(x, λy) = |λ| F(x, y), is imposed for a nonzero real value λ;
(3) the Hessian (11) is defined by F2 in such a form that in any point (x(0), y(0)), the v-metric
is of signature (+−). The conditions (1)–(3) allow the construction of various types of geo-
metric models with homogenenous fiber coordinates, with local anisotropy distinguished
on directions. Nevertheless, to extend, for instance, the GR theory in a relativistic covariant
form, we need additional assumptions and physical motivations on the type of nonlinear
and linear connections we take consideration, as well as how to extract effective quadratic
elements, etc.; see details and references in [24,25]. In this work, we consider that we can
always prescribe a respective nonholonomic geometric modeling to a Lorentz manifold V a
Finsler, or Lagrange, type function using canonical data (L̃, Ñ; ẽα, ẽα; g̃jk, g̃ab), when certain
homogeneity conditions can be satisfied for Finsler configurations. For general frame
transforms and modified dispersion relations, we do not consider Lagrange- or Finsler-like
nonholonomic variables, but can preserve a conventional h- and v-splitting adapted to a
N-connection structure with geometric data (V, N; eα, eα; gjk, gab). To elaborate physically
realistic gravity models, we need further conventions on the type of linear connection
structure (covariant derivative) we shall use for our geometric constructions.

We can always consider distortion relations

D̂ = ∇+ Ẑ, D̃ = ∇+ Z̃, and D̂ = D̃ + Z, all determined by (g, N) ∼(g̃,Ñ), (22)

with distortion d-tensors Ẑ, Z̃, and Z, and postulate the (modified) Einstein Equations (9)
in various forms

R̃ βγ = Υ̃ βγ[Z̃, T̂αβ], or (23)

R βγ[∇] = Υ βγ[Ẑ, T̂αβ], (24)

where the (effective) matter sources are respective functionals on distortions and energy-
momentum tensors for matter fields. Such systems of nonlinear PDEs are different and
characterized by different types of Bianchi identities, local conservation laws and associated
symmetries. Nevertheless, we can establish such classes of nonholonomic frame and
distortion structures, with respective equivalence relations

(g, N,D̂) � (L : g̃, Ñ, D̃)↔ (θ̃, P̃, J̃, D̃)↔ [(g,∇)]

when the Equations (9), (23) and (24) describe equivalent gravitational and matter field
models. Different geometric data have their priorities in constructing explicit different
classes of exact/parametric/approximate solutions or for performing certain procedures of
quantization and further generalizations of physical theories. If we work with a respective
canonical d-connection structure D̂, we can prove a general decoupling property of (9)
and construct exact solutions with generic off-diagonal metrics gαβ(uγ) (17) represented as
d-metrics gα′β′(x, y) (4), when the coefficients of such metrics and associated nonlinear and

56



Universe 2021, 7, 89

linear connection structures depend, in principle, on all space–time coordinates uγ. We can
not decouple the systems of nonlinear PDEs (23), in Lagrange–Finsler variables in general
form, and (24), in local coordinates and for the LC-connection. In MGTs with modifications
of (23) or (24), even in GR, we are able to find exact solutions for some “special” ansatz of
metrics, which, for instance, are diagonalizable and depend only on a radial or time-like
coordinate (for instance, for black hole and/or cosmological solutions). In this work, we
shall apply the AFDM in order to construct cosmological locally anisotropic solutions in
MGTs with (in general, generic off-diagonal) metrics of type gα′β′(xi, y4 = t). In geometric
and analytic form, this is possible if we work with nontrivial N-connection structures
and certain variables which are similar to those in Lagrange–Finsler geometry but on
Lorentz manifolds. The almost symplectic Lagrange–Finsler variables (θ̃, P̃, J̃, D̃) allow
for the elaboration of deformation quantization and, together with (g, N,D̂), allow the
introduction of nonholonomic and Finsler-like spinors and, for instance, nonholonomic
Einstein–Finsler–Dirac systems. This is not possible if the so-called Berwald– or Chern–
Finsler connections are used, because they are not metric-compatible, and self-consistent
definitions of locally anisotropic versions of the Dirac equation are a problem.

3. TMTs and Other MGTs in Canonical Nonholonomic Variables

The goal of this section is to show how various classes of MGTs can be extracted from
certain effective Einstein gravity theories using nonholonomic or Finsler-like variables.
This allows to decouple the gravitational field equations and to generate exact solutions
in very general forms, with generic off-diagonal metrics and generalized connections,
and with constraints to zero-torsion configurations; see details in [26–33].

In [14–16,26–33,63], different possibilities for modelling different MGTs by imposing
corresponding nonholonomic constraints on the metric and canonical d-connection struc-
tures and source in (9) were considered. One of the main goals of this work is to prove that,
by using corresponding type parameterizations of the effective Lagrangian L̂ in (8), the
so-called modified massive gravity theories (in general, with bi-connection and bi-metric
structures) can be modeled at TMTs with effective Einstein equations for D̂ when additional
constraints D̂|T̂ =0 = ∇ have to be imposed in order to extract LC–configurations.

The actions for equivalent TMT, MGT and nonholonomically deformed Einstein
models are postulated

S = ( Pl M)2
∫

d4u
√
|ĝ|[R̂ + L̂] = (25)

ΦS + mS =
∫

d4u 1Φ(A)
[

R̂ + 1L
]
+ (26)

∫
d4u 2Φ(B)

[
2L + εf(R̃) + (

√
|g|)−1 Φ(H)

]
+
∫

d4u
√
|ĝ| mL =

F,µS + mS = ( Pl M)2
∫

d4u[
√
|ĝ| F,µL+

√
|ĝ| mL], (27)

where |ĝ| = det |ĝαβ| for a d-metric, ĝαβ, constructed effectively by a conformal transform
of a TMT reference one, gαβ, (see below, Formula (34)); ΦL defines a class of theories with
two independent non-Riemannian volume-forms 1Φ(A) and 2Φ(B) as in [61,62] but with
a more general functional for modification, of type εf(Ř), than εR2 if D̂→ ∇; the Lagrange
density functional f ,µL = F(R̃) is determined similarly to a modified massive gravity,
by a mass-deformed scalar curvature [14,15,64–66], (there are various ambiguities and
controversies in different approaches to massive gravity when modifications by mass terms
are postulated for different Lagrange densities; in this paper, we consider a “toy model”
when terms of type f(Ř, µ) and/or f(R) + µ . . . can modeled by the same MGT, but for
different classes of nonholonomic constraint and different classes of solution)

Ř := R̂ + 2 µ2(3− tr
√

g−1q− det
√

g−1q), (28)
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where µ is the graviton’s mass and q = {qαβ} is the so–called non-dynamical reference
metric; mL is the Lagrangian for matter fields.

3.1. Nonholonomic Ghost–Free Massive Configurations

The term εf(Ř) in (26) contains possible contributions from a nontrivial graviton
mass. Such a theory can be constructed to be ghost-free for very special conditions [14,15];
see explicit results and discussions on possible applications in modern cosmology in
Refs [64–66]. In this section, we show how prescribing necessary type nonholonomic
configurations such a theory can equivalently be realized as a TMT one (taking equal
actions (26) and (27)). For any (ĝ, N, D̂), we consider the d-tensor (

√
ĝ−1q)µ

ν computed as
the square root of ĝµρqρν, where

(
√

ĝ−1q)µ
ρ(
√

ĝ−1q)ρ
ν = ĝµρqρν, and

4

∑
k=0

kβ ek(
√

ĝ−1q) = 3− tr
√

ĝ−1q− det
√

ĝ−1q,

for some coefficients kβ. The values ek(Y) are defined for a d-tensor Yµ
ρ and Y = [Y] :=

tr(Y) = Yµ
µ, where

e0(Y) = 1, e1(Y) = Y, 2e2(Y) = Y2 − [Y2], 6e3(Y) = Y3 − 3Y[Y2] + 2[Y3],

24e4(Y) = Y4 − 6Y2[Y2] + 3[Y2]2 + 8Y[Y3]− 6[Y4]; ek(Y) = 0 for k > 4.

We chose the functional for Lagrange density in (27) in the form F,µL = F(R̃), where
the functional dependence F is different (in general) from f(R̃). For simplicity, we consider
Lagrange densities for matter, mL, which only depend on the coefficients of a metric
field and not on their derivatives. The energy–momentum d-tensor can be computed via
N-adapted variational calculus,

mT̂αβ := − 2√
|ĝµν|

δ(
√
|ĝµν| mL)
δĝαβ

= mLĝαβ + 2
δ( mL)

δĝαβ
. (29)

Applying such a calculus to F,µS+ mS , with 1F(Ř) := dF(Ř)/dŘ, see details
in [14,15,64–66], we obtain the modified gravitational field equations

R̂µν = F,µΥ̂µν, (30)

where F,µΥ̂µν = mΥ̂µν + f Υ̂µν + µΥ̂µν, for

mΥ̂µν =
1

2M2
P

mT̂αβ, f Υ̂µν = (
F

2 1F
− D̂2 1F

1F
)ĝµν +

D̂µD̂ν
1F

1F
, (31)

µΥ̂µν = −2µ2[(3− tr
√

ĝ−1q− det
√

ĝ−1q)− 1
2

det
√

ĝ−1q)]ĝµν +

µ2

2
{qµρ[(

√
ĝ−1q)−1]

ρ
ν + qνρ[(

√
ĝ−1q)−1]

ρ
µ}.

The field equations for massive gravity (30) are constructed as nonholonomic defor-
mations of the Einstein Equations (9) when the source Υ̂ βγ → F,µΥ̂µν.

3.2. Tmt Massive Configurations with (Broken) Global Scaling Invariance

Let us explain the notations and terms used in the above actions, chosen in such forms
that a TMT (26) is equivalent to a massive MGT model (27) when both classes of such
theories are encoded via corresponding nonholonomic structures into a nonholonomically
deformed Einstein gravity model (25). The non-Riemannian volume-forms (integration
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measures on nonholonomic manifold (g, N, D̂)) in (26) are determined by two auxiliary
3-index antisymmetric d-tensor fields Aαβγ and Bαβγ, when

1Φ(A) :=
1
3!

εµαβγeµAαβγ and 2Φ(B) :=
1
3!

εµαβγeµBαβγ.

Nevertheless, for non-triviality of the TMT model, the presence of the 3D auxiliary
antisymmetric d-tensor gauge field Hαβγ, when Φ(H) := 1

3! ε
µαβγeµHαβγ is crucial. In

order to model two flat regions for the inflationary and accelerating universe in some limits,
we consider two Lagrange densities for a scalar field

1L = −1
2

gµρ(eµ ϕ)(eρ ϕ)− 1U(ϕ), 1U(ϕ) = 1ae−qϕ; (32)

2L = −
2b
2

e−qϕgµρ(eµ ϕ)(eρ ϕ) + 2U(ϕ), 2U(ϕ) = 2ae−2qϕ,

with dimensional positive parameters q, 1a, 2a and a dimensionless one 2b. The action (26)
is invariant under global N-adapted Weyl-scale transforms with a positive scale parameter
λ, gαβ → λgαβ, ϕ→ ϕ + q−1 ln λ, Aαβγ → λAαβγ, Bαβγ → λ2Bαβγ and Hαβγ → Hαβγ. For
holonomic configurations and quadratic functionals on LC-scalar f(Ř)→ R2, such a theory
is equivalent to that elaborated in [55–57,61,62]. In a more general context, the develop-
ments in this work involve non-quadratic nonlinear and nonholonomic functionals and
mass gravity deformations via Ř (28), and generic off-diagonal interactions encoded in R̂.

A variational N-adapted calculus on form fields A, B, H and on d-metric g (with
respect to coordinate bases and for∇, being similar to that presented in Section 2 of [61,62]),
results in effective gravitational field equations

R̂µν[ĝαβ] =
e f Υ̂µν +

F,µΥ̂µν, (33)

where F,µΥ̂µν is determined by (31) and e f Υ̂ βγ := κ( e f T̂αβ− 1
2 ĝαβ

e f T̂) is computed using
Formulas (8) and (29) for gαβ → ĝαβ and L̂ → e fL, where

ĝαβ = Θgαβ, for Θ = 1χ− 2χε 1f( 1L + 1M, µ); (34)

e f L = Θ−1
{

1L + 1M + 2χΘ−1
[

2L + 1M + ε 1f( 1L + 1M, µ)
]}

,

when the conformal factor Θ for the Weyl re-scaling of d-metric is induced by the nonlinear
functional in the action

1f( 1L + 1M, µ) =
df(R̂, µ)

dR̂
|R̂= 1L+ 1 M (35)

and the two measure functionals 1χ = 1Φ(A)/
√
|ĝµν| and 2χ = 2Φ(B)/

√
|ĝµν|.

The variations in auxiliary anti-symmetric form fields impose certain constants

eµ(R̂ + 1L) = 0, eµ[
2L + εf(Ř) + Φ(H)/

√
|g|] = 0, eµ[

2Φ(B)/
√
|ĝµν|] = 0.

The nonconstant solutions of such nonholonomic constraints allow to preserve the
global Weyl-scale invariance for certain configurations. If we take constant values

R̂ + 1L = − 1M = const and 2L + εf(Ř) + Φ(H)/
√
|g| = − 2M = const (36)

we select configuration with a nonholonomic dynamical spontaneous breakdown of global
Weyl-scale invariance when the condition

2Φ(B)/
√
|ĝ| = 2χ = const (37)
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preserves the scale invariance. There are certain constraints on the scale factor
1χ = 1Φ(A)/

√
|ĝ|, which can be derived from variations in (26) on gµν in N-adapted form.

The conditions (36) relate 1χ and 2χ, i.e., the integration measures, to traces 1,2T := gαβ

1,2Tαβ of the energy momentum tensors

1,2Tαβ = gαβ
1,2L− 2∂( 1,2L)/∂gαβ

of Lagrangians for scalar fields (32). (For simplicity, we consider matter actions which only
depend on the coefficients of certain effective metric fields and not on their derivatives.)
This follows from the N-adapted variation on gαβ of the action (26), taken, for simplicity,
with zero mL., which results in

2 1χ
[
R̂µν(gαβ) + gµν

1L− 1Tµν

]
− 2χ

[
2Tµν + gµν

(
εf(R̃) + 2M

)
− 1f R̂µν(gαβ)

]
= 0. (38)

Taking the trace of these equations and using (36), we obtain the formula
1χ = 2χ

2T+2 2 M
2 1L− 2T−2 1 M , which does not depend on the type of f -modifications containing

possible µ-terms. We conclude that the non-Riemannian integration measures considered
above, and the interactions of scalar fields (32), can be modelled as additional distributions
on nonholonomic manifold (g, N, D̂). They modify the conformal factor Θ (34) and can
express the field Equations (38) in Einstein like form (33), where F,µΥ̂µν is added as an
additional effective matter contribution to the source of scalar fields 1,2Tαβ.

It should be noted that, using the canonical d-connection, we obtain D̂αTαβ = Qβ 6= 0,
when Qβ[g, N] is completely defined by the d-metric and chosen N-connection structure.
Considering nonholonomic distortions with ∇ = D̂− Ẑ, we obtain standard relations

∇α(Rαβ −
1
2

gαβR) = 0 and ∇αΥαβ = 0.

A similar property exists in Lagrange mechanics with non-integrable constraints when
the standard conservation laws do not hold true. A new class of effective variables and
new types of conservation laws can be introduced and, respectively, constructed using
Lagrange multiples.

The main conclusion of this section is that various MGTs with two integration mea-
sures, possible deformations by mass graviton terms, bi-connection and bi-metric structures
can be expressed as nonholonomic deformations of the Einstein equations in the form (9).
Different theories are characterized by respective sources (in explicit form, F,µΥ̂µν in (30),
or e f Υ̂µν + F,µΥ̂µν in (33)). Our next goal is to prove that such effective Einstein equations
can be integrated in certain general forms for D̂ and possible constraints (10) for LC-
configurations.

4. Cosmological Solutions in Effective Einstein Gravity and Fmgts

We can generate explicit integral varieties of systems of PDEs of type (9) for d-metrics
ĝ (34) and sources Υ̂ βγ = e f Υ̂µν + F,µΥ̂µν as in (33) which, via frame and coordinate
transforms,

ĝαβ = eα′
α(xi, ya)eβ′

β(xi, ya)ĝα′β′(xi, t) and Υ̂αβ = eα′
α(xi, ya)eβ′

β(xi, ya)Υ̂α′β′(xi, t),

for a time like coordinate y4 = t (i′, i, k, k′, · · · = 1, 2 and a, a′, b, b′, · · · = 3, 4), can be
parameterized in the form

ĝ = ĝα′β′e
α′ ⊗ eβ′ = gi(xk)dxi ⊗ dxj + ω2(xk, y3, t)ha(xk, t)ea ⊗ ea, (39)

e3 = dy3 + ni(xk, t)dxi, e4 = dt + wi(xk, t)dxi,
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for nontrivial

{gi′ j′} = diag[gi], g1 = g2 = eψ(xk); {ga′b′} = diag[ha], ha = ha(xk, t);

N3
i = ni(xk, t); N4

i = wi(xk, t);

and

Υ̂α′β′ = diag[Υi; Υa], for Υ1 = Υ2 = Υ̃(xk) = e f Υ̃(xk) + mΥ̃(xk) + f Υ̃(xk) + µΥ̃(xk),

Υ3 = Υ4 = Υ(xk, t) = e f Υ(xk, t) + mΥ(xk, t) + f Υ(xk, t) + µΥ(xk, t). (40)

These ansatz for the d-metric and sources are very general, but for an assumption
that there are N-adapted frames with respect to which the MGTs interactions have Killing
symmetry on ∂/∂y3 when geometric and physical values do not depend on coordinate
y3. (It should be noted that it is possible to construct very general classes of generic off-
diagonal solutions depending on all spacetime variables in arbitrary finite dimensions; see
details and examples in [26–29] for more “non-Killing” configurations. For simplicity, we
shall study nonhomogeneous and locally anisotropic cosmological solutions in this work,
depending on variables (xk, t), with smooth limits to cosmological diagonal configurations
depending only on t and very small off-diagonal contributions characterized by a small
parameter ε, 0 ≤ ε � 1.). We use parameterizations g1 = g2 = eψ(xi) and ha(xk, t)
for i, j, · · · = 1, 2 and a, b, · · · = 3, 4; and N-connection coefficients N3

i = ni(xk, t) and
N4

i = wi(xk, t). Introducing brief denotations for partial derivatives, like a• = ∂1a, b′ =

∂2b, h∗ = ∂4h = ∂th and defining the values αi = h∗3∂iv, β = h∗3 v∗, γ =
(

ln |h3|3/2/|h4|
)∗

for a generating function

v := ln |h∗3/
√
|h3h4||, we shall also use the value Ψ := ev, (41)

we transform (33) into a nonlinear system of PDEs with decoupling properties for the
unknown functions ψ(xi), ha(xk, t), wi(xk, t) and ni(xk, t),

ψ•• + ψ′′ = 2 Υ̃, v∗h∗3 = 2h3h4Υ, n∗∗i + γn∗i = 0, βwi − αi = 0. (42)

This system possesses another very important property, which allows us to redefine
the generating function, Ψ←→ Ψ̃, when Λ(Ψ2)∗ = |Υ|(Ψ̃2)∗ and

ΛΨ2 = Ψ̃2|Υ|+
∫

dtΨ̃2|Υ|∗ (43)

for Ψ̃ := exp ṽ and any prescribed values of effective (for different types of contribution
e f , m, f , µ) cosmological constants in Λ = e f Λ + mΛ + f Λ + µΛ associated, respec-
tively, with

Υ(xk, t) = e f Υ(xk, t) + mΥ(xk, t) + f Υ(xk, t) + µΥ(xk, t).

For generating off-diagonal cosmological solutions depending on t, we have to con-
sider generating functions, for which Ψ∗ 6= 0. The Equations (42) for ansatz (39) transform,
respectively, into a system of nonlinear PDEs

ψ•• + ψ′ = 2 Υ̃, ṽ∗h∗3 = 2h3h4Λ, n∗∗i + γn∗i = 0, v∗wi − ∂iv = 0 (44)

and v∗∂iω−ω∗∂iv = 0, for the vertical conformal factor.

We have to subject the d-metric and N-connection coefficients to additional constraints
(10) in order to satisfy the torsionless conditions, which for the ansatz (39) are written

w∗i = (∂i − wi∂4) ln
√
|h4|, (∂i − wi∂4) ln

√
|h3| = 0, ∂iwj = ∂jwi, n∗i = 0, ∂inj = ∂jni. (45)
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We can generate exact solutions in TMT, MGT and nonholonomically deformed
Einstein theories with respective actions (25), (26) and (27) using integral varieties (The
term “integral variety” is used in the theory of differential equations for certain “classes of
solutions”, determined by corresponding classes of parameters, generating and integration
functions, etc. In GR, we search for an integral variety of solutions of associated systems
of PDEs determining, for instance, Einstein spacetimes, black holes, and cosmological
solutions. In modified gravity theories, we can establish an analogy for GR if we consider
effective models.) of the system of PDEs (44), which can be found in very general forms.
Let us briefly explain this geometric formalism elaborated in the framework of the AFDM
(see details in [30–33]):

1. The first equation for ψ is the 2D Laplace/d’ Alambert equation which can be solved

for any given Υ̃, which allows us to find g1 = g2 = eψ(xk).
2. Using the second equation in (44) and (41), the coefficients ha can be expressed as

functionals on (Ψ, Υ). We redefine the generating function as in (43) and consider an
effective source

Ξ :=
∫

dtΥ(Ψ̃2)∗ = e f Ξ + mΞ + f Ξ + µΞ,

when e f Ξ :=
∫

dt e f Υ(Ψ̃2)∗, mΞ :=
∫

dt mΥ(Ψ̃2)∗, f Ξ :=
∫

dt f Υ(Ψ̃2)∗, and write

h3 =
Ψ̃2

4( e f Λ + mΛ + f Λ + µΛ)
and h4 =

(Ψ̃∗)2

( e f Ξ + mΞ + f Ξ + µΞ)
.

3. We have to integrate t twice in order to find it in the 3D subset of equations in (44)

ni = 1ni + 2ni

∫
dt

(Ψ̃∗)2

Ψ̃3( e f Ξ + mΞ + f Ξ + µΞ)

for some integration functions 1ni(xk) and 2ni(xk).
4. The 4th set of equations in (44) are algebraic ones, which allows us to compute

wi = [v∗]−1∂iv = [Ψ∗]−1∂iΨ = [(Ψ2)∗]−1∂i(Ψ)2 = [Ξ∗]−1∂iΞ.

5. We can satisfy the conditions for ω in the second line in (44) if we keep the Killing
symmetry on ∂i and take, for instance, ω2 = |h4|−1.
Different types of inhomogeneous cosmological solutions of the system (33) are
determined by corresponding classes of effective sources

generating functions: ψ(xk), Ψ̃(xk, t), ω(xk, y3, t)

effective sources: Υ̃(xk); e f Ξ(xk, t), mΞ(xk, t), f Ξ(xk, t), µΞ(xk, t),

or e f Υ(xk, t), mΥ(xk, t), f Υ(xk, t), µΥ(xk, t)

integration cosm. constants: e f Λ, mΛ, f Λ, µΛ

integration functions: 1ni(xk) and 2ni(xk)

We can generate solutions with any nontrivial e f Λ, mΛ, f Λ, µΛ even any, or all,
effective source e f Υ, mΥ, f Υ, µΥ can be zero.

4.1. Inhomogeneous FTMT and MGT Configurations with Induced Nonholonomic Torsion

The solutions with coefficients computed above in 1–5 can be parametrized to describe

nonholonomic deformations, ĝαβ = eα′
αeβ′

β g̊α′β′ , of the Friedman–Lemaître–Robertson–
Walker (FLRW) diagonal quadratic element (we can consider spherical symmetry coor-
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dinates uα′ = (x1′ = r, x2′ = θ, y3′ = ϕ, y4′ = t), or Cartesian ones, uα′ = (x1′ = x, x2′ =

y, y3′ = z, y4′ = t), for a scale factor å(t) determining the Hubble constant H := å∗/å.)

ds̊2 = g̊α′β′duα′duβ′ = å2(t)[dr2 + r2dθ2 + r2 sin2 θdϕ2]− dt2 (46)

into a generic off-diagonal inhomogeneous cosmological metric of type (39) with gi = ηieψ

and ha = ηa g̊a with effective polarization functions η1 = η2 = a−2eψ, η3 = å−2h3, η4 = 1
and ĥ3 = h3/a2|h4|, when

ds2 = a2(xk, t)[η1(xk, t)(dx1)2 + η2(xk, t)(dx2)2]

+a2(xk, t)ĥ3(xk, t)[dy3 + ( 1ni + 2ni

∫
dt

(Ψ̃∗)2

Ψ̃3( e f Ξ + mΞ + f Ξ + µΞ)
)dxi]2

−[dt +
∂i(

e f Ξ + mΞ + f Ξ + µΞ)
( e f Ξ + mΞ + f Ξ + µΞ)∗

dxi]2. (47)

The inhomogeneous scaling factor a(xk, t) in (47) is related to the generating function
Ψ̃ via formula

a2ĥ3 = ω2h3 =
h3

|h4|
=

Ψ̃2| e f Ξ + mΞ + f Ξ + µΞ|
4( e f Λ + mΛ + f Λ + µΛ)(Ψ̃∗)2

.

In general, such target metrics ĝαβ(xk, t) determine new classes of cosmological met-
rics with nontrivial nonholonomically induced torsion computed for D̂. Such modified
spacetimes cannot be diagonalized by coordinate transforms if the anholonomy coefficients
Wγ

αβ are not zero. For trivial gravitational polarizations, ηα = 1, trivial N-connection coeffi-

cients, N3
i = ni = 0 and N4

i = wi = 0, and for a(xk, t)→ å(t), we obtain torsionless FLRW
metrics. We emphasize that one could not have smooth limits ĝαβ → g̊αβ for the arbitrary
generating function Ψ̃ and any nontrivial effective cosmological constant e f Λ, mΛ, f Λ, or
µΛ, associated with respective mater fields.

We can generate off-diagonal cosmological configurations as “small” deformations
with ηα = 1+ εα, ni =

εni and wi =
εwi, with |εα|, | εni|, | εwi| � 1. In particular, we

can only study TMT models if mΞ = f Ξ = µΞ = 0 and mΛ = f Λ = µΛ = 0
but e f Υ(xk, t) 6= 0 and e f Λ 6= 0. off-diagonal cosmological scenarios in massive and
bi-metric gravity with nontrivial µΞ and µΛ were studied in our recent works [14,15].
Other classes of MGTs and cosmological models with off-diagonal configurations when
f -modified gravity effects, modelled in GR, were studied in [26–33]. The goal of Section 6
is to show how TMT gravity and cosmological models can be associated with certain
nonholonomic off-diagonal de Sitter configurations with nontrivial e f Λ for an effective
Einstein–Lagrange spacetime, and such constructions can be generalized to reproduce
MGTs and massive gravity.

4.2. Extracting Levi–Civita Cosmological Configurations

Let us show how we can generate, in explicit form, solutions to the system (45)
for nonholonomic, generic, off-diagonal configurations with zero torsion. We have to
consider certain special classes of generating and integration functions. By straightforward
computations, we can check that such conditions are satisfied if we state such conditions
for a metric (47) that

2ni = 0 and 1ni = ∂in(xk), for any n(xk) (48)

Ψ = Ψ̌, for (∂iΨ̌)∗ = ∂i(Ψ̌∗) and find a function Ǎ(xk, t) when

∂iwj = ∂jwi for wi = w̌i = ∂iΨ̌/Ψ̌∗ = ∂iΞ̂/Ξ̂∗ = ∂i Ǎ
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when
ΛΨ̌2 = Ψ̂2|Υ|+

∫
dtΨ̂2|Υ|∗ and Ξ̂ :=

∫
dtΥ(Ψ̂2)∗

are computed with the following formulas (43), except for Ψ(Ψ̃) → Ψ̌(Ψ̂) and Ψ̃ → Ψ̂.
For certain configurations, we can consider functional dependencies Ψ̂ = Ψ̂(ln

√
|h3|) and

invertible functional dependencies h3[Ψ̂[Ψ̌]]. In such cases, we take h3(xk, t) as a generating
function and consider necessary type functionals Ψ̌[h3] with the property (∂iΨ̌)∗ = ∂i(Ψ̌∗)
which are used for defining w̌i[h3] = ∂iΨ̌/Ψ̌∗ = ∂i Ǎ[h3].

Putting together the conditions (48), we generate nonhomogeneous cosmological
LC–configurations with quadratic linear elements

ds2 = ǎ2(xk, t)[η1(xk, t)(dx1)2 + η2(xk, t)(dx2)2] + ǎ2(xk, t)ĥ3(xk, t)[dy3 + (∂in)dxi]2

−[dt + (∂i Ǎ)dxi]2

= eψ(xk)[(dx1)2 + (dx2)2] +
Ψ̂2

4( e f Λ + mΛ + f Λ + µΛ)
[dy3 + (∂in)dxi]2

− (Ψ̂∗)2

Ξ̂
[dt + (∂i Ǎ)dxi]2. (49)

The inhomogeneous scaling factor ǎ(xk, t) is computed similarly to (47), but using the
generating function Ψ̂,

ǎ2ĥ3 =
Ψ̂2| Ξ̂|

4( e f Λ + mΛ + f Λ + µΛ)(Ψ̂∗)2
for Ψ̌ := ev̌.

Having constructed a class of generic off-diagonal solutions (49), we can impose
additional constraints on the generating/integration functions and constants and source in
order to explain certain observational cosmological data. For instance, we can fix subclasses
of functions Ψ̂ → Ψ̂(t), (∂i Ǎ) → wi(t) etc., describing small deformations of an FLRW
metric (46) in a nonlinear parametric way, as well as redefined generating functions (43)
and different types of effective source in TMT, MGT and/or massive gravity models.

5. Locally Anisotropic Effective Scalar Potentials and Flat Regions

We study three examples of off-diagonal cosmological solutions reproducing the TMT
model with two flat regions of the effective scalar potental studied in [60], than analyse
how massive gravity can be modelled as a TMT theory and effective GR, and (in the last
subsection) we speculate on non-singular emergent anisotropic universes. The solutions in
this section will be constructed to contain nontrivial nonholonomically induced torsion, as
for quadratic elements (47). For certain important limits, LC-configurations of type (49)
will also be examined.

5.1. Off-Diagonal Interactions and Associated Tmt Models with Two Flat Regions

We chose the nontrivial off-diagonal data in (47) for mΛ = f Λ = µΛ = 0 and
mΥ = f Υ = µΥ = 0 resulting in mΞ = f Ξ = µΞ = 0,, but considering nonzero e f Λ and
e f Υ is taken as a one-Killing configuration, not depending on y3 in

e f Υ̂ βγ := κ( e f T̂αβ −
1
2

ĝαβ
e f T̂)

64



Universe 2021, 7, 89

is computed using formula (8) and (29) for gαβ → ĝαβ and L̂ → e fL for two scalar
densities (32) as in (34). We generate solutions of R̂µν[ĝαβ] =

e f Υ̂µν (in a particular case of
(33)) for ĝαβ(xk, t) = Θ̂(xk, t)gαβ(xk, t), parameterized in the form

ds2 = ĝαβeαeβ = ã2(xk, t)[η1(xk, t)(dx1)2 + η2(xk, t)(dx2)2] (50)

+ã2(xk, t)ĥ3(xk, t)[dy3 + ( 1ni + 2ni

∫
dt

(Ψ̃∗)2

Ψ̃3 e f Ξ
)dxi]2 − [dt +

∂i(
e f Ξ)

( e f Ξ)∗
dxi]2.

The inhomogeneous scaling factor ã(xk, t) is related to the generating function Ψ̃ via
formula

ã2ĥ3 = ω2h3 =
h3

|h4|
=

Ψ̃2| e f Ξ|
4( e f Λ)(Ψ̃∗)2

. (51)

Choosing a function Ψ̃, we prescribe a corresponding dependence for Θ̂(xk, t) and,
respectively, ã(xk, t) as follows from the above formulas. Let us speculate on the structure
of Θ̂, which describes off-diagonal generalizations of the model given by Formulas (18)–(23)
in [60] on the assumption that the relation (35) for zero-graviton mass and quadratic Ricci
scalar curvature has the limit

1f( 1L + 1M, µ = 0)=
df(R̂, µ = 0)

dR̂
|R̂= 1L+ 1 M→ 1U − 1M.

In this subsection, we consider 1f ≈ 1U − 1M for a nonhomogeneous ϕ(xk, t)≈ϕ(t) in
order to construct cosmological TMT models with limits to diagonal two flat regions.

We consider Θ̂ as a conformal factor Θ in (34) not depending on y3, written in explicit
form for an Einstein N-adapted frame with effective scalar Lagrangian

e f L̂ = Θ̂−1{ 1 L̂ + 1M + 2χΘ̂−1[ 2 L̂ + 1M + ε( 1f)2]}
= A(ϕ)X + B(ϕ)X2 − e f U(ϕ), (52)

where we omit cumbersome formulas for A(ϕ) and B(ϕ) in the second line (see similar
ones given by Formulas (24) and (25) in [60]), but present

1 L̂ = Θ̂ X− 1U for 2 L̂ =
2b
1a

Θ̂ 1UX̂ + 2U for X̂ = −1
2

ĝαβeα ϕeβ ϕ,

e f U =
( 1f)2

4 2χ[ 2U + 2M + ε( 1f)2]
. (53)

For simplicity, we can construct off-diagonal configurations with ĥ3 ' 1 in (51),
prescribing a value e f Λ corresponding to observational data in the accelerating Universe,
and computing e f Ξ for e f L̂ using formulas

e f T̂αβ := e f L̂ĝαβ + 2
δ( e f L̂)

δĝαβ
and e f Υ̂ βγ := κ( e f T̂αβ −

1
2

ĝαβ
e f T̂)

and constraints of type (40),

e f Υ̂α′β′ = diag[Υ̂i; Υ̂a], for Υ̂1 = Υ̂2 = e f Υ̃(xk), Υ̂3 = Υ̂4 = e f Υ̂(xk, t).

Then, we can compute e f Ξ :=
∫

dt e f Υ̂(Ψ̃2)∗. Such a problem can be also solved in in-
verse form for a given ã(xk, t), when Ψ̃ has to be defined from an integro-differential

Equation (51), ã2 =
Ψ̃2|

∫
dt e f Υ̂(t)(Ψ̃2)∗ |

4( e f Λ)(Ψ̃∗)2 . For cosmological solutions, we can consider

ã(xk, t) ' ã(t) and Ψ̃(xk, t) ' Ψ̃(t), when the generation function Ψ̃(t) is prescribed
to depend only on time-like coordinate t. The observable effective scaling factor ã(t) is

65



Universe 2021, 7, 89

expressed as a functional on constant e f Λ, on TMT source e f Υ̂(t) and generating function
Ψ̃(t). For instance, variations in e f Υ̂(t) are determined by the variation in the second
auxiliary 3-index antisymmetric d-tensor field Bαβγ in 2Φ(B) in the Formula (37). We
adapt and write a similar formula with “tilde” values, in order to emphasize that the values
are computed for a prescribed value ã(t),

2Φ(B̃)/
√
|ĝ| = 2χ̃ = const. (54)

There are two options to fix a constant 2χ̃ : the first one is to choose a function Ψ̃
and/or to modify B̃ in the second measure. In general, this is a nonlinear effect of the re-
definition of generation functions (43), which holds for generic off-diagonal configurations.
We can finally prescribe some small off-diagonal corrections but the diagonal values will
be re-scaled (we shall maintain “tilde ” in order to distinguish such values from similar
ones computed from the very beginning, using diagonalized equations).

The main conclusion of this subsection is that by working with generic off-diagonal
solutions for effective Einstein Equations (33)—see equivalent Formulas (38)—we can
choose generating functions and effective sources that allow us to reproduce, in general-
ized forms, the properties of TMT gravity theories determined by action (26) and scalar
Lagrangians (32). In the next subsection, we prove that such models may be generated to
have limits to diagonal two flat regions reproducing accelerating cosmology scenarios.

5.2. Limits to Diagonal Two Flat Regions

Let us consider in e f L̂ (52) the approximation

1f( 1L + 1M, µ = 0)=
df(R̂, µ = 0)

dR̂
|R̂= 1L+ 1 M→ 1U − 1M (55)

with Ψ̃(t) and ã(t) resulting in diagonal cosmological solutions with effective FLRW
metrics. We approximate the effective potential e f U (53) for a prescribed constant 2χ̃ by a
relation (54),

e f U =
( 1U − 1M)2

4 2χ̃[ 2U + 2M + ( 1U − 1M)2]
'

e f Ũ =





[−]Ũ = ( 1a)2

4 2χ̃[ 2a+ε( 1a)2]
for ϕ→ −∞

[+]Ũ = ( 1 M)2

4 2χ̃[ 2 M+ε( 1 M)2]
for ϕ→ +∞

∣∣∣∣∣∣
.

For such diagonal approximations, the A– and B–functions can be computed in
explicit form

Ã '





[−] Ã =
2a+ 1

2
2b 1a

2a+ε( 1a)2

[+] Ã =
2 M

2 M+ε( 1 M)2

∣∣∣∣∣∣
and B̃ '





[−] B̃ = − 2χ̃
2b/4−ε( 2a+ 2b 1a)

2a+ε( 1a)2

[+] B̃ = ε 2χ̃
2 M

2 M+ε( 1 M)2

∣∣∣∣∣∣
.

Such values reproduce the results of Section 3 in [60] with two flat regions of the effective
potential e f Ũ, but in our approach, the effective diagonalized metric is of type (49) with
ǎ ' ã(t) for ηα ' 1. This class of diagonalized solutions determined by generating functions
contain explicit solutions with an effective scalar field, evolving on the first flat region for
large negative ϕ and describing non-singular “emergent universes” [49–54].

66



Universe 2021, 7, 89

6. Reproducing Modified Massive Gravity as TMTS and Effective GR

The goal of this section is to study solutions to effective Einstein Equations (33) when
the source (40) is taken for mΥ̃ = f Υ̃ = 0 and mΥ = f Υ = 0, i.e.,

Υ̂α′β′ = diag[Υi; Υa], for

Υ1 = Υ2 = eµΥ̃(xk) = e f Υ̃(xk) + µΥ̃(xk),

Υ3 = Υ4 = eµΥ(xk, t) = e f Υ(xk, t) + µΥ(xk, t),

with a left label “eµ′′ emphasizing that such sources are considered for TMT configurations
with a nontrivial mass term µ but zero-matter field configurations and for a possible
quadratic εR2 cosmological term. We shall chose such N-adapted frames of reference and
generating functions when the TMT gravity model describes modifications to µ2 terms for
nonholonomic ghost-free configurations and corrections to scalar curvature (28) of type
Ř ' R̂ + µ̃2, where

µ̃2 ' 2 µ2(3− tr
√

g−1q− det
√

g−1q)

is determined by the graviton’s mass µ and q = {qαβ} is the so-called non-dynamical
reference metric. For simplicity, we make the assumption that such values can be re-
defined as constant for certain choices of the generating functions, effective sources
e f Υ(xk, t), µΥ(xk, t) and respective nontrivial constants eµΛ = e f Λ + µΛ.

6.1. Massive Gravity Modifications of Flat Regions

We can integraten generic, off-diagonal forms of TMT systems that are subclasses of
solutions (47) when

ds2 = a2(xk, t)[η1(xk, t)(dx1)2 + η2(xk, t)(dx2)2] + (56)

a2(xk, t)ĥ3(xk, t)[dy3 + ( 1ni + 2ni

∫
dt

(Ψ̃∗)2

Ψ̃3( e f Ξ + µΞ)
)dxi]2 −

[dt +
∂i(

e f Ξ + µΞ)
( e f Ξ + µΞ)∗

dxi]2,

for
e f Ξ :=

∫
dt e f Υ(Ψ̃2)∗, µΞ :=

∫
dt µΥ(Ψ̃2)∗.

We write Ψ̃→ Ψ when the generating function is chosen to satisfy the conditions

a2ĥ3 = ω2h3 =
h3

|h4|
=

Ψ2| e f Ξ + µΞ|
4( eµΛ)(Ψ∗)2

.

In general, such nonhomogeneous locally anisotropic configurations contain nontriv-
ial, nonholonomically induced, canonical d-torsion, which can be constrained to zero for
corresponding subclasses of generating functions and sources.

We study off-cosmological solutions depending only on time-like coordinates when
ã(xk, t) ' ã(t) and Ψ̃(xk, t) ' Ψ̃(t) and the generation function Ψ̃(t). The formula relating
variations in eµΥ(t) to the variation in the second auxiliary 3-index antisymmetric d-tensor
field Bαβγ in 2Φ(B), a particular case of (37), is given by

2Φ(B)/
√
|ĝ| = 2χ = 2χ̃ + µχ = const,
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where the constant µχ is zero for µ = 0 and | µχ| � | 2χ̃|. Another assumption is that we
can formulate a TMT theory corresponding to “pure” µ–deformations of GR, even ε = 0.
The formula (55) has to be generalized for nontrivial µ when

1f( 1L + 1M + µ M, µ) =
df(R̂, µ)

dR̂
|R̂= 1L+ 1 M→ 1U − 1M− µ M

is a version of generalized Starobinsky relation (35), Formulas (36) and (28) and approxi-
mation of type R̃ ' R̂ + µ̃2.

The resulting formulas for effective potential (53) contain additional µ–terms

eµU =
( 1U − 1M− µ M)2

4 2χ̃[ 2U + 2M + ( 1U − 1M− µ M)2]

' eµU =





[−]U = ( 1a)2

4( 2χ̃+ µχ) [ 2a+ε( 1a)2]
for ϕ→ −∞

[+]U = ( 1 M+ µ M)2

4( 2χ̃+ µχ)[ 2 M+ε( 1 M)2]
for ϕ→ +∞

∣∣∣∣∣∣
.

The A– and B–functions can also contain contributions of µ–terms,

A '





[−]A =
2a+ 1

2
2b 1a

2a+ε( 1a)2

[+] Ã =
2 M

2 M+ε(1 M+ µ M)2

∣∣∣∣∣∣
and

B '





[−]B = − ( 2χ̃ + µχ)
2b/4−ε( 2a+ 2b 1a)

2a+ε( 1a)2

[+]B = ε ( 2χ̃ + µχ)
2 M

2 M+ε(1 M+ µ M)2

∣∣∣∣∣∣
,

when [−]A is not modified. We conclude that solutions with nontrivial generating functions
for nontrivial massive gravity terms modelled as effective TMT theories may also describe
non-singular “emergent universes” [49–54] with corresponding modifications.

6.2. Reconstructing Off-Diagonal Tmt and Massive Gravity Cosmological Models

For the class of solutions (56), we show how we can perform a reconstruction proce-
dure. We introduce a new time coordinate t̂ for t = t(xi, t̂) and

√
|h4|∂t/∂t̂, and redefined

the scale factor, a→ â(xi, t̂), representing the quadratic elements in the form

ds2 = â2(xi, t̂)[ηi(xk, t̂)(dxi)2 + ĥ3(xk, t̂)(e3)2 − (ê4)2], (57)

for ηi = â−2eψ, â2ĥ3 = h3, e3 = dy3 + ∂kn dxk, ê4 = dt̂ +
√
|h4|(∂it + wi).

To model small off-diagonal deformations, we use a small parameter ε, 0 ≤ ε < 1,
when

ηi ' 1 + εχi(xk, t̂), ∂kn ' εn̂i(xk),
√
|h4|(∂it + wi) ' εŵi(xk, t̂) (58)

and there are subclasses of generating functions and sources for which â(xi, t̂)→ â(t), ĥ3(xi, t̂)→
ĥ3(t̂) etc., see details for such a procedure from Section 5 of [67] (see references therein).
The analogous TMT massive gravity theory is taken with a source µΥ̂µν (31) and parametriza-
tion f(Ř) = R̂ + S( µT), for any N-adapted value

µT := T+2 µ2(3− tr
√

g−1q− det
√

g−1q).

Introducing values 1S := dS/d µT and Ĥ := â∗/â for a limit â(xi, t̂) → â(t) with
Na

i = {ni, wi(t)} and effective polarizations ηα(t).
In order to test cosmological scenarios, we consider a redshift 1 + z = â−1(t) for

µT = µT(z) by introducing a new “shift” derivative. For instance, for a function s(t))
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s∗ = −(1 + z)H∂z. We can derive TMT massive, modified, off-diagonal, deformed FLRW
equations using Formulas (63) and (64) in [67], when

3Ĥ2 +
1
2
[f(z) + S(z)]− κ2ρ(z) = 0,

−3Ĥ2 + (1 + z)Ĥ(∂z Ĥ)− 1
2
{f(z) + S(z) + 3(1 + z)Ĥ2 = 0, (59)

for ρ(z) ∂z f = 0. We can fix the condition ∂z
1S(z) = 0, and rescale the generating function

in order to satisfy the condition ∂z f = 0. We have nonzero densities in certain adapted
frames of reference. Here, we note that the functional S( µT) encodes effects of mass
gravity for the evolution of the energy-density when ρ = ρ0a−3(1+v) = ρ0(1 + z)a3(1+v),
when, for the dust matter approximation, v and ρ ∼ (1 + z)3. Any FLRW cosmology can
be realized in a corresponding class of f -gravity models, which can be re-encoded as a
TMT theories using actions of type (25)–(27). Let us introduce ζ := ln a/a0 = − ln(1 + z)
as the “e-folding” variable to be used instead of the cosmological time t, and consider

Υ̂(xi, ζ) = f Υ(xi, ζ) + µΥ(xi, ζ)

with dependencies on (xi, ζ) of generating functions ∂ζ = ∂/∂ζ with q∗ = Ĥ∂ζ q for any
function q.

Repeating all computations leading to Equations (2)–(7) in [68], in our approach for
f(Ř), we construct an FLRW-like cosmological model with nonholonomic field equation
corresponding to the first FLRW equation

f(Ř) = (Ĥ2 + Ĥ ∂ζ Ĥ)∂ζ [f(Ř)]− 36Ĥ2
[
4Ĥ + (∂ζ Ĥ)2 + Ĥ∂2

ζζ Ĥ
]
∂2

ζζf(Ř)]+κ2ρ.

We consider an effective quadratic Hubble rate, κ̃(ζ) := Ĥ2(ζ), where ζ = ζ(Ř), we
write this equation in the form

f = −18κ̃(ζ)[∂2
ζζ κ̃(ζ) + 4∂ζ κ̃(ζ)]

d2f
dŘ2

+ 6
[

κ̃(ζ) +
1
2

∂ζ κ̃(ζ)

]
df
dŘ

+ 2ρ0a−3(1+v)
0 a−3(1+v)ζ(R̂). (60)

For any off-diagonal cosmological models with quadratic metric elements of type (57)
for redefined t → ζ when a functional f(Ř) is used for computing Υ̂, the generating
function and respective d-metric and N-connection coefficients as solutions of certain
effective Einstein spaces for auxiliary connections and effective cosmological constant eµΛ.
The value df/dŘ and higher derivatives vanish for any functional dependence f( eµΛ)
because ∂ζ

eµΛ = 0. We conclude that the recovering procedure simplifies substantially,
even in TMT theories, by re-scaling the generating function and sources following formulas
of type (43).

Now, we speculate on how we can reproduce the ΛCDM era. Using values â(ζ) and
Ĥ(ζ) determined by an off-diagonal quadratic element (57) and writing analogs of the
FLRW equations for ΛCDM cosmology in the form

3κ−2Ĥ2 = 3κ−2H2
0 + ρ0 â−3 = 3κ−2H2

0 + ρ0a−3
0 e−3ζ ,

for fixed constant values H0 and ρ0. The second term in this formula describes an in-
homogeneous distribution of cold dark mater (CDM). This allows for computation of
the effective quadratic Hubble rate and the modified scalar curvature, Ř, in the forms
κ̃(ζ) := H2

0 + κ2ρ0a−3
0 e−3ζ and

Ř = 3∂ζ κ̃(ζ) + 12κ̃(ζ) = 12H2
0 + κ2ρ0a−3

0 e−3ζ .
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The solutions of (60) can be found by following [67,68] as Gauss hypergeometric
functions. We might denote f = F(X) := F(χ1, χ2, χ3; X), where, for some constants, A
and B,

F(X) = AF(χ1, χ2, χ3; X) + BX1−χ3 F(χ1 − χ3 + 1, χ2 − χ3 + 1, 2− χ3; X).

This is the proof that MGTs and various TMT models can indeed describe ΛCDM
scenarios without the need for an effective cosmological constant, because we have ef-
fective sources, and this follows from the re-scaling property (43) of generic off-diagonal
configurations. The Equation (60) transforms into

X(1− X)
d2f
dX2 + [χ3 − (χ1 + χ2 + 1)X]

df
dX
− χ1χ2f = 0, (61)

for certain constants, for which χ1 + χ2 = χ1χ2 = −1/6 and χ3 = −1/2 where 3ζ =
− ln[κ−2ρ−1

0 a3
0(Ř− 12H2

0)] and X := −3 + Ř/3H2
0 .

Finally, we note that the reconstruction procedure can be performed in a similar form
for any MGTs and TMT ones which can modeled, for well-defined conditions, by effective
nonholonomic Einstein spaces.

7. Results and Conclusions
7.1. Modified Gravity and Cosmology Theories with Metric Finsler Connections on (Co) Tangent
Lorentz Bundles or for Nonholonmic Einstein Manifolds

In the present paper and partner works [26–33], we follow an orthodox point of view
that inflation and accelerating cosmological models can be elaborated in the framework
of effective Einstein theories via off—diagonal and diagonal solutions for nonholonomic
vacuum and non–vacuum configurations determined by generating functions and inte-
gration functions and constants. Fixing respective classes of such functions and constants,
we can extract various types of modified gravity–matter theories defined in terms of non–
Riemannian volume–forms (for instance, in a manifestly globally Weyl-scale invariant
form) and with certain modified Lagrange densities of type f (Ř) including contributions
from the Einstein–Hilbert term R, its square R2, possible massive gravity µ parametric
terms, nonholonomic deformations etc. The principal results are as follows:

1. We defined nonholonomic geometric variables for which various classes of modi-
fied gravity theories (MGTs), (generally with nontrivial gravitational mass) can be
modelled equivalently as respective two-measure (TMT) [55–57,60–62], bi-connection
and/or bi-metric theories. For well-defined nonholonomic constraint conditions,
the corresponding gravitational and matter field equations are equivalent to certain
classes of generalized Einstein equations with nonminimal connection to effective
matter sources and nontrivial nonholonomic vacuum configurations;

2. We stated the conditions when nonholonomic TMT models encode ghost-free massive
configurations with (broken) scale invariance and such interactions can modelled by
generic off-diagonal metrics in effective general relativity (GR) and generalizations
with induced torsion. Such a nonholonomic geometric technique was elaborated in
Finsler geometry in gravity theories and, for a corresponding 2 + 2 splitting, we can
consider Finsler-like variables and work with so-called FTMT models;

3. We developed the anholonomic frame deformation method [30–33], AFDM, in order
to generate off-diagonal, generally inhomogeneous and locally anisotropic cosmologi-
cal solutions in TMT snd MGTs. It was proven that the effective Einstein equations for
such gravity and cosmological models can be decoupled in general form, which al-
lows for the construction of various classes of exact solution depending on generating
functions and integration functions and constants;

4. We analysed a very important re-scaling property of generating functions with associ-
ation of effective cosmological constants for different types of modified gravity and
matter field interactions, which allow for the definition of nonholonomic variables into
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which the associated systems of nonlinear partial differential equations (PDEs) can be
integrated in explicit form when the coefficients of generic off-diagonal metrics and
(generalized) nonlinear and linear connections depend on all space–time coordinates;

5. There were stated conditions for generating functions and effective sources when
zero-torsion (Levi–Civita, LC) configurations can be extracted in general form, with
possible nontrivial limits to diagonal configurations in ΛCDM cosmological scenarios,
encoding dark energy and dark matter effects, possible nontrivial zero mass contri-
butions, effective cosmological constants induced by off-diagonal interactions and
constrained nonholonomically, to result in nonlinear diagonal effects;

6. Special attention was devoted to subclasses of generic off-diagonal cosmological
solution with effective scalar potentials and two flat regions and limits to the diagonal
cosmological TMT scenarios investigated in [61,62] were studied;

7. We studied possible massive gravity modifications of flat regions and the possible re-
construction of off-diagonal TMT and massive gravity cosmological models. Through
corresponding frame transforms and the re-definition of generating functions and
nonholonomic variables, we proved that the same geometric techniques are applicable
in all such MGTs.

Let us explain why it is important to study exact solutions for off-diagonal and nonlin-
ear gravitational interactions in different MGTs, depending on 2–4 spacetime coordinates,
and consider possible the implications for modern cosmology. The gravitational and matter
field equations in such theories consist of very sophisticated systems of nonlinear PDEs. It
was possible to construct, for instance physically important black hole and cosmological
solutions to certain diagonal ansatz, depending on one space/time-like variable modelling
(generalized) Einstein spacetimes with two and three Killing symmetries or other types
of high-symmetry and asymptotic condition. There were two kinds of motivation for
such assumptions: the technical one was that, for diagonalizable ansatz, the systems of
nonlinear PDEs transform in “more simple” systems of nonlinear ordinary differential
equations (ODEs), which can be integrated in general form. The physical interpretation of
such solutions determined by integration constants is more intuitive and natural. Never-
theless, a series of problems arise in modern acceleration cosmology with dark energy and
dark matter effects. It became clear that standard diagonal cosmological solutions in GR,
together with standard scenarios from particle physics and former elaborated cosmological
models, cannot be appliedrto explain observational cosmological data. A number of MGTs
and new cosmological theories have been proposed and developed.

After mathematically selecting some special diagonalizable ansatz with prescribed
symmetries, we eliminate other, more general classes of solution, which seem to be im-
portant for explaining nonlinear parametric and nonholonomic off-diagonal interactions.
This could be related to a new nonlinear physics in gravity and particle field theory which
has not been yet investigated. In the past, there were a number of technical restrictions to
the construction of such solutions and study of their applications but, at present, there are
accessible, advanced numerical, analytic and geometric methods. In this work, we follow
a geometric approach developed in [14–16,26–33,63], which allows us to construct exact
solutions in different classes of gravity and cosmology theories. Even observational data in
modern cosmology can be explained by almost diagonal and homogeneous models; when
possible off-diagonal effects and anisotropies are very small, we are not constrained to
studying only the solutions to associated systems’ ODEs. For nonlinear gravitational and
matter field systems, a well-defined mathematical approach is to generate (if possible, exact)
solutions in the most general form, and then to impose additional constraints for diagonal
configurations. In result, a number of MGT effects and accelerating cosmology can be
explained as standard, except for off-diagonal nonlinear ones in effective GR. Alternative
interpretations in the framework of TMT and other type theories are also possible.
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7.2. Alternative Finsler Gravity Theories with Metric Non-Compatible Connections

The referee of this work requested “minimal modification” in order to cite and discuss
papers [69–74] where some alternative Finsler gravity and geometry models are considered.
This is a good opportunity for authors, which allows them to explain their approach,
geometric methods, and new results for the construction of new classes of generic, off-
diagonal cosmological solutions in more detail, as well as elaborating on applications
in non-standard particle physics and modified gravity. To comment on key ideas and
constructions in the authors’ works, and compare them to similar ones from the mentioned
alternative geometric and cosmological theories, we have to additionally cite [75–79],
and references therein. We note that readers should pay attention to reference [24], with
respective Introduction and Conclusion sections, and Appendix B (in that work), containing
historical remarks and a review of 20 directions on modern generalized Finsler geometry
and applications in modern particle physics, modified gravity, and cosmology, mechanics
and thermodynamics, information theory, etc. to [24] a number of historical remarks
and a review of the last 80 years of research activity are provided, as well as the main
achievements in Finsler–Lagrange–Hamilton geometry and its applications in modern
physics, gravity, cosmology, mechanics and information theory. The axiomatic part was
published in [25]. In the mentioned works, a study of evolution of main research groups on
“Finsler geometry and physics” in different countries, and the international collaborations
formed is included. The results and bibliography of the conventional 20 directions, and
more than 100 sub-directions of research and publications, were reviewed, by the present
and other authors, related to Finsler geometry and applications. We also cite the paper [76]
and the monograph [79], (for a collection of works on (non-)commutative metric-affine
generalized Finsler geometries and nonholonomic supergravity and string theories, locally
anisotropic kinetic and diffusion processes, Finsler spinors, etc.), and articles [77,78]. Here,
we summarize and discuss such issues:

1. In the abstract and introduction, as well as Section 2.2 of this article, it is emphasized
that we do not elaborate a typical work on Finsler gravity and cosmology, but rather
provide a cosmological work on Einstein gravity and MGTs, TMTs ones, with two
measures/two connections and/or bi-metrics, mass terms, etc., when the construc-
tions are modelled on a Lorentz manifold V of signature (+ + + −) with conventional
nonholonomic 2 + 2 splitting. For such theories, the spacetime metrics gαβ(xi, ya)
(with i, j, · · · = 1, 2 and a, b, · · · = 3, 4) are generic off-diagonal and, together with
the coefficients of other fundamental geometric objects, depend on all space–time
conventional fibred coordinates. Lagrange–Finsler-like variables are introduced to V
for “toy” models, when ya are treated similarly to (co) fiber coordinates on a (co) tan-
gent manifold (T∗V) TV, for a prescribed a fundamental Lagrange, L(x, y) (or Finsler,
for certain homogeneity conditions F(x, βy) = βF(x, y), x = {xi} etc., for a real con-
stant β > 0, when L = F2). This states, for V, a canonical Finsler-like N-connection
and nonholonomic (co-)frames structure, which can also be described in coordinate
bases, using additional constraints to extract the LC-connection or distorting it to other
linear connections determined by the same metric structures. In dual form, we can
consider momentum, like pa-dependencies in gαβ(xi, pa), for a conventional Hamilto-
nian H(x, p), which can be related to an L via corresponding Legendre transforms.
The reason for introducing Finsler-like and other types of nonholonomic variable to a
manifold V, or on a tangent bundle TV is that, in so-called nonholonomic canonical
variables (with hats on geometric objects), the modified Einstein Equation (9) can be
decoupled and integrated in vary general forms. We have to consider some additional
nonholonomic constraints (10) in order to extract LC-configurations. This is the main
idea of the AFDM [30–33], which was applied in a series of works for construct-
ing a locally anisotropic black hole and cosmological solutions defied by generic
off-diagonal metrics and (generalized) connections in Lagrange–Finsler–Hamilton
gravity in various limits of (non-)commutative/supersymmetric string/brain theories,
massive gravity, TMT models, etc., as we consider in partner works [26–33].
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2. One of the formal difficulties in modern Finsler geometry and gravity is that some
authors (usually mathematicians) use a different terminology compared to that elabo-
rated by physicists in GR, MGTs, TMTs etc. For instance, a theory of “standard static
Finsler spaces”, with a time like Killing field and/or for static solutions of a type
of filed equation in Finsler gravity is elaborated in [69–71]. Of course, it is possible
to prescribe a class of static and a corresponding smooth class of Finsler-generating
functions, F(x, y), when semi-spray, N-connections and d-connections, and certain
Finsler–Ricci generalized tensors, etc., can be computed for static configurations em-
bedded in locally anisotropic backgrounds. Such constructions can be chosen to have
spherical symmetry. However, by introducing and computing corresponding “stan-
dard static” Sasaki type metrics of type (16), and their off-diagonal coordinate base
equivalents, involving N-coefficients (see the total (phase) space–time metric (17)),
we can check that such geometric d-objects (and their corresponding canonical d-
connection, or LC-connection) do not solve the (modified) Einstein Equation (9) if the
data are the general ones considered in [69–71]. If the d-metric coefficients gαβ(xi, ya)
are generic off-diagonal with nontrivial N-connection coefficients, such metrics can
be only quasi-stationary following the standard terminology in mathematical rel-
ativity and MGTs (when coefficients do not depend on time-like variable, i.e., ∂t
is a Killing symmetry d-vector), but there are nontrivial off-diagonal metric terms
because of rotation, N-connections, etc. Stationary metrics of type (16) and/or (17)
can be prescribed to describe, for instance, black ellipsoids, which are different from
the solutions for Kerr black holes, BHs, because of their more general Finsler local
anisotropy. Static configurations with diagonal metrics of Schwarzschild type BHs
can be introduced for some trivial N-connection structures (but, in Finsler geometry,
this is a cornerstone geometric object). For Finsler-like gravity theories, there are no
proofs of BH uniqueness theorems, and it is not clear if such static configurations
(for instance, with spherical symmetry) can be stable. Such proofs are sketched for
black ellipsoids; see details in [26–33]. Therefore, the existing concepts, definitions,
and proofs of “standard” static/stationary/cosmological /stable/nonlinear evolution
models, etc., depend on the type of postulated principles for respective concepts and
theories of Finsler spacetime.

3. In [72,73,75], certain attempts to elaborate models of Finsler spacetime, geometry
and gravity are considered for some types of N-connection and chosen classes of
Finsler metric compatible and non-compatible d-connections. In many cases, the
Berwald–Finsler d-connection is considered, which is generally noncompatible but
can be subjected to certain metrization procedures. Different geometric constructions,
with a non-fixed signature for Hessians and sophisticate causality conditions via semi-
sprays and generalized nonlinear geodesic configurations, have been proposed and
analyzed. In such approaches, there are a series of fundamental unsolved physical
and geometric problems in the development of such Finsler theories in self-consistent
and viable physical forms. Here, we focus only on the most important issues (for
details, critiques, discussions, and motivation regarding Finsler gravity principles,
we cite [17,24,25,76,79]):

• For theories with metric noncompatible connections, for instance, of Chern or
Berwald type, there are no unique and simple possibilities to define spinors,
conservation laws of type DiT jk, elaborate on supersymmetric and/or non-
commutative/nonassociative generalizations, or to consider generalized type
classical and quantum symmetries, considering only Finsler type d-connections
proposed by some prominent geometers like E. Cartan, S. Chern, B. Berwald
etc., and physically un-motivated (effective) energy-momentum tensors with
local anisotropy;

• Physical principles and nonlinear causality schemes elaborated on a base man-
ifold with undetermined lifts, without geometric and physical motivations,
on total bundles, depend on the type of Finsler-generating function. Hessians
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and nonlinear and linear connections are chosen for elaborating geometric
and physical models. A Finsler geometry is not a (pseudo/semi-) Rieman-
nian geometry, where all constructions are determined by the metric and LC-
connection structures. For instance, certain constructions with cosmological
kinetic/statistical Finsler spacetime in [73,75] are subjected to very complex type
conservation laws and nonlinear kinetic/diffusion equations. Those authors
have not cited and or applied earlier, locally anisotropic, generalized Finsler
kinetic/diffusion/statistical constructions performed for the metric compatible
connections studied in [77–79] (N. Voicu was at S. Vacaru’s seminars in Brashov
in 2012, on Finsler kinetics, diffusion and applications in modern physics and
information theory; see also [33], but, together with her co-authors, do not
cite, discuss, or apply such locally anisotropic, metric, compatible and solvable
geometric flow, kinetic and geometric thermodynamic theories);

• Various variational principles and certain versions of Finsler modified Einstein
equations were proposed and developed in [72,73,75], but such theories have
been not elaborated on total bundle spaces, for certain metric compatible Finsler
connections. Usually, metric non-compatible Finsler connections were used,
when it is not possible to elaborate on certain general methods for the construc-
tion of exact and parametric solutions to nonlinear systems of PDEs; for instance,
describing locally anisortopic interactions of modified Finsler–Einstein–Dirac–
Yang–Mills–Higgs systems. In S. Vacaru and co-authors’ axiomatic approach to
relativistic Finsler–Lagrange–Hamilton theories [17,24,25,76], such generalized
systems can be studied—for instance, on (co) tangent Lorentz bundles (and
on Lorentz manifolds with conventional nonhlonomic fibred splitting)—when
the AFDM was applied to generate exact and parametric solutions, and certain
deformation quantization, gauge-like, etc., schemes were developed;

4. As a result, the authors of [74] concluded their work in a pessimistic fashion: “Finsler
geometry is a very natural generalisation of pseudo-Riemannian geometry and there
are good physical motivations for considering Finsler spacetime theories. We have
mentioned the Ehlers-Pirani-Schild axiomatic and also the fact that a Finsler modifica-
tion of GR might serve as an effective theory of gravity that captures some aspects
of a (yet unknown) theory of Quantum Gravity. We have addressed the somewhat
embarrassing fact that there is not yet a general consensus on fundamental Finsler
equations, in particular on Finslerian generalisations of the Dirac equation and of
the Einstein equation, and not even on the question of which precise mathematical
definition of a Finsler spacetime is most appropriate in view of physics. We have seen
that the observational bounds on Finsler deviations at the laboratory scale are quite
tight. By contrast, at the moment we do not have so strong limits on Finsler deviations
at astronomical or cosmological scales.” In that work, there was no discussion or
analysis of the approach developed for Lorentz–Finsler–Lagrange–Hamilton, and the
nonholonomic manifolds developed by authors of this paper, beginning in 1994 and
published in more than 150 papers in prestigious mathematical and physical journals,
as well as summarized in three monographs (for reviews, see [24,25,79]).

S. Vacaru’s research group was more optimistic regarding their obtained results and
perspectives of Finsler geometry in physics. Having obtained 10 NATO, CERN and
DAAD research grants, the group elaborated an axiomatic approach to Finsler–Lagrange–
Hamilton gravity theories, using constructions on nonholonomic (co-)tangent Lorentz
bundles and Lorentz manifolds, with an N-connection structure and Finsler-like metric
compatible connections. They began their activity almost 40 years ago—see the historical
remarks, summaries of results and discussions in [17,24,25,76,79], with recent developments
in [26–33]. P. Stavrinos (with more than 40 years research experience on Finsler geometry
and applications), and his co-authors also published a series of works on modified Finsler
gravity and cosmology theorise involving tangent Lorentz bundles [18,22,79]. For such
classes of modified Finsler geometric flow and gravity theories, a general geometric method
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can be used for constructing exact and parametric solutions: the AFDM, with self-consistent
extensions to noncommutative and nonassociative, supestring and supergravity, Clifford–
Finsler, etc., theories. Together with papers on deformation and other type quantum
Finsler–Einstein-gauge gravity theories, which were elaborated and developed in more
than 20 research directions for Finsler geometry and applications, this article belongs to
an axiomatized and self-consistent direction of mathematical and acceleration cosmology,
dark matter and dark energy physics, involving Finsler geometry methods.
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Abstract: New spherically symmetric solution in 4D Einstein–Gauss–Bonnet gravity coupled with
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1. Introduction

The heterotic string theory at the low energy limit gives the action including higher
order curvature terms [1–5]. Glavan and Lin proposed a new theory of gravity in four
dimensions, 4D Einstein–Gauss–Bonnet gravity (4D EGB) [6], with higher-order curvature
corrections. The action of the 4D EGB theory consists of the Einstein–Hilbert action and
the Gauss–Bonnet (GB) term, which is a case of the Lovelock theory. The Lovelock gravity
represents the generalization of Einstein’s general relativity in higher dimensions that leads to
covariant second-order field equations. The Einstein–Gauss–Bonnet gravity in 5D and higher
dimensions was studied in [7]. Recently, 4D EGB gravity has received much attention [8–27].
Glavan and Lin showed [6] that the GB term, which is a topological invariant before
regularization, while rescaling the coupling constant after regularization, contributes to the
equation of motion. The authors of [12,13] found a solution of the semiclassical Einstein
equations with conformal anomaly, which is also a solution in the 4D EGB gravity. The
approach of Glavan and Lin was recently debated in [28–33]. It was shown by [34,35]
that solutions in the 4D EGB theory are different from GR solutions as they are due to
extra infinitely strongly coupled scalars. The authors of [36–38] proposed a consistent
theory of 4D EGB gravity with two dynamical degrees of freedom that breaks the temporal
diffeomorphism invariance, in agreement with the Lovelock theorem. In accordance with
the Lovelock theorem [11], for a novel 4D theory with two degrees of freedom, the 4D
diffeomorphism invariance has to be broken. In the theory of [36–38], the invariance under
the 3D spatial diffeomorphism holds. The authors considered EGB gravity in arbitrary
D-dimensions with the Arnowitt–Deser–Misner decomposition. Then, they regularized
the Hamiltonian with counterterms, where D− 1 diffeomorphism invariance holds and
taking the limit D → 4. It should be noted that the theory of [36–38], in the spherically
symmetric metrics, represents the solution that is a solution in the scheme of [6] (see [39]).
In this work, we obtain a black hole (BH) solution in the 4D EGB gravity coupled with
nonlinear electrodynamics (NED) proposed in [40] in the framework of [36–38] theory.
Quasinormal modes, deflection angle, shadows of BHs, and Hawking radiation were
studied in [41–47]. The image of the M87* BH, observed by collaboration with the Event
Horizon Telescope [48], confirms the existence of BHs in the universe. The BH shadow is

Universe 2021, 7, 249. https://doi.org/10.3390/universe7070249 https://www.mdpi.com/journal/universe79
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the closed curve that separates capture orbits and scattering orbits. For a review on BH
shadows, see, for example, [49].

The paper is organized as follows. In Section 2, we find BH spherically symmetric
solution in the 4D EGB gravity. It is shown that at infinity, we have the Reissner–Nordström
behavior of the charged BH. We study the BH thermodynamics in Section 3. The Hawking
temperature and the heat capacity are calculated showing the possibility of second-order
phase transitions. The entropy of BHs is obtained, which includes the area law and the
logarithmic correction. In Section 4, the BH shadow is studied. The photon sphere radii,
the event horizon radii, and the shadow radii are calculated. We investigate the BH energy
emission rate in Section 5. In Section 6, quasinormal modes are studied, and we obtain the
complex frequencies. In Section 7, we draw our conclusions.

2. The Model

The action of the EGB gravity in D-dimensions coupled with nonlinear electrodynam-
ics (NED) is given by

I =
∫

dDx
√
−g
[

1
16πG

(R + αLGB) + LNED

]
, (1)

where α has the dimension of (length)2, and the Lagrangian of NED, proposed in [40], is

LNED = − F
cosh

(
4
√
|βF|

) , (2)

with the parameter β (β ≥ 0) having the dimension of (length)4, F = (1/4)FµνFµν =
(B2 − E2)/2, Fµν = ∂µ Aν − ∂ν Aµ is the field strength tensor. The GB Lagrangian reads

LGB = RµναβRµναβ − 4RµνRµν + R2. (3)

The variation of action (1) with respect to the metric results in field equations

Rµν −
1
2

gµνR + αHµν = −8πGTµν, (4)

where
Hµν = 2

(
RRµν − 2RµαRα

ν − 2RµανβRαβ − RµαβγRαβγ
ν

)
− 1

2
LGBgµν. (5)

In the following we consider a magnetic BH with the spherically symmetric field. The
static and spherically symmetric metric in D dimension is given by

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dΩ2

D−2, (6)

where dΩ2
D−2 is the line element of the unit (D− 2)-dimensional sphere. Equations (1) and

(3)–(5) are valid in D dimensions, and we will consider rescaled α as α→ α/(D− 4) and
then the limit D → 4. Taking into account that the electric charge qe = 0, F = q2/(2r4) (q
is a magnetic charge), one obtains the magnetic energy density [40]

ρ = T 0
0 = −L =

F
cosh

(
4
√
|βF|

) =
1

βx4 cosh(1/x)
, (7)

where we introduced the dimensionless variable x = 21/4r/(β1/4√q). We consider the
limit D → 4 and at µ = ν = t field Equation (4) gives

r(2α f (r)− r2 − 2α) f ′(r)− (r2 + α f (r)− 2α) f (r) + r2 − α = 2r4Gρ. (8)
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Making use of Equation (7), we obtain

∫ r

0
r2ρdr = mM −

21/4q3/2

β1/4 arctan

(
tanh

(
β1/4√q
25/4r

))
, (9)

where the magnetic mass of the black hole reads

mM =
∫ ∞

0
r2ρdr =

πq3/2

27/4β1/4 . (10)

Then, the solution to Equation (8) is

f (r) = 1 +
r2

2α

(
1±

√
1 +

8αG
r3 (m + h(r))

)
,

h(r) = mM −
21/4q3/2

β1/4 arctan

(
tanh

(
β1/4√q
25/4r

))
, (11)

where m is the Schwarzschild mass (the constant of integration), and M = m + mM is the
total mass of the BH. One can verify that the Weyl tensor for the D-dimensional spatial part of
the spherically symmetric D-dimensional line element (6) vanishes [39]. As a result, the new
solution (11) obtained in the framework of [6] is also a solution for the consistent theory [36–38].
For Maxwell electrodynamics, the energy density is ρ = q2/(2r4), and Equation (8) leads
to the metric function obtained in [15]. In the dimensionless form, Equation (11) becomes

f (x) = 1 + Cx2 ± C
√

x4 + x(A− Bg(x)), (12)

where

A =
215/4(m + mM)αG

β3/4q3/2 , B =
16αG

β
, C =

√
βq

2
√

2α
,

g(x) = arctan
(

tanh
(

1
2x

))
, (13)

We will use the sign minus of the square root in Equations (11) and (12) (the negative
branch) because, in this case, the BH is stable and without ghosts [8]. The asymptotic of the
metric function f (r) (11) for the negative branch is given by

f (r) = 1− 2MG
r

+
Gq2

r2 +O(r−3) r → ∞, (14)

where the total mass of the BH M = m + mM includes the Schwarzschild mass m and the
electromagnetic mass mM. According to Equation (14), the Reissner−Nordström behavior
of the charged BH holds at infinity. It is worth noting that the limit β → 0 has been in
Equation (8) before the integration. In this case, the solution to Equation (8) at β = 0 is
given by [15]. The plot of the function (12) is given in Figure 1.

In accordance with Figure 1,we have two horizons—one (the extreme) horizon and no
horizons—depending on the model parameters.
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Figure 1. The plot of the function f (x) for A = 7, C = 1.

3. The BH Thermodynamics

Consider the BH thermodynamics and the thermal stability of the BH. The Hawking
temperature is given by

TH(r+) =
f ′(r) |r=r+

4π
, (15)

where r+ is the event horizon radius defined by the biggest root of the equation f (rh) = 0.
Making use of Equations (12) and (15), with the variable x = 21/4r/ 4

√
βq2, we obtain the

Hawking temperature

TH(x+) =
21/4

4π 4
√

βq2

(
2cx2

+ − 1 + BC2x2
+g′(x+)

2x+(1 + cx2
+)

)
, (16)

g′(x+) = −
1

2x2
+ cosh2(1/(2x+))(tanh2(1/(2x+)) + 1)

,

where we substituted parameter A from equation f (x+) = 0. The plot of the dimensionless
function TH(x+) 4

√
βq2 versus x+ is depicted in Figure 2.

According to Figure 2, the Hawking temperature is positive in some range of x+. To
study the local stability of the BH, we calculate the heat capacity, making use of the expression

Cq(x+) = TH

(
∂S

∂TH

)

q
=

∂M(x+)
∂TH(x+)

=
∂M(x+)/∂x+
∂TH(x+)/∂x+

, (17)

where M(x+) is the BH gravitational mass depending on the event horizon radius. From
equation f (x+) = 0, one obtains the BH gravitational mass

M(x+) =
β3/4q3/2

215/4αG

(
1 + 2Cx2

+

C2x+
+ Bg(x+)

)
. (18)
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With the aid of Equations (16) and (18), we find

∂M(x+)
∂x+

=
β3/4q3/2

215/4αG

(
2Cx2

+ − 1
C2x2

+

+ Bg′(x+)

)
, (19)

∂TH(x+)
∂x+

=
1

4π23/4 4
√

βq2

(
5Cx2

+ − 2C2x4
+ + 1

x2
+(1 + Cx2

+)
2

+
BC2[g′(x+)(1− Cx2

+) + x+g′′(x+)(1 + Cx2
+)]

(1 + Cx2
+)

2

)
, (20)

g′′(x+) =
(tanh2(1/(2x+)) + 1)(2x+ − tanh(1/(2x+)))

2x4
+ cosh2(1/(2x+))(tanh2(1/(2x+)) + 1)2

− tanh(1/(2x+))
2x4

+ cosh4(1/(2x+))(tanh2(1/(2x+)) + 1)2
.
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Figure 2. The plot of the function TH(x+) 4
√

βq2 at C = 1.

According to Equation (17), the heat capacity possesses a singularity when the Hawking
temperature has an extremum, ∂TH(x+)/∂x+ = 0. It follows from Equations (16) and (17)
that at some point, x+ = x1, the Hawking temperature and heat capacity are zero where
a first-order phase transition occurs. In this point, x1, the BH remnant with nonzero BH
mass is formed, but the Hawking temperature and heat capacity become zero. In the point
x = x2, ∂TH(x+)/∂x+ = 0, the heat capacity has a discontinuity, and the second-order
phase transition occurs. In the interval x2 > x+ > x1, BHs are locally stable, and at x+ > x2,
the BH becomes unstable. By using Equations (17), (19), and (20), we represented the heat
capacity in Figure 3.
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Figure 3. The plot of the function Cq(x+)αG/(βq2) at C = 1.

In accordance with Figure 3, the BH is locally stable in the range x2 > x+ > x1 with a
positive Hawking temperature and heat capacity. The entropy S at the constant charge q
could be calculated from the first law of BH thermodynamics dM(x+) = TH(x+)dS + φdq,

S =
∫ dM(x+)

TH(x+)
=
∫ 1

TH(x+)
∂M(x+)

∂x+
dx+. (21)

It should be noted that the entropy in this expression is defined as a constant of
integration. Making use of Equations (16), (19) and (21), we obtain the entropy

S =
πβq2

8C2αG

∫ 1 + Cx2
+

x+
dx+ =

πr2
+

G
+

4πα

G
ln

(
4
√

2r+
4
√

βq2

)
+ Constant, (22)

where Constant is the integration constant. One can see the discussion of integration
constants in [50]. We choose the integration constant as

Constant =
2πα

G
ln

(
πq
√

β√
2G

)
. (23)

From Equations (22) and (23), we find the BH entropy

S = S0 +
2πα

G
ln(S0), (24)

where S0 = πr2
+/G is the Bekenstein–Hawking entropy. According to Equation (24), there

is a logarithmic correction to area law. The entropy (24) does not contain the NED parameter
β. The entropy (24) was obtained in 4D EGB gravity coupled with other NED models
in [51–53]. Thus, entropy (24) does not depend on NED, which is due to the GB term in
action, and the logarithmic correction vanishes when α = 0. At big r+ (event horizon
radii), the Bekenstein–Hawking entropy is dominant, and for small r+, the logarithmic
correction is important. It is worth noting that at some event horizon radius r0, the entropy
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vanishes, and when r+ < r0, the entropy becomes negative. The negative entropy of BHs
was discussed in [7].

4. The Shadow of Black Holes

The shadow of the BH is due to the light gravitational lensing and is a black circular
disk. The image of the super-massive M87* BH was observed by collaboration with the
Event Horizon Telescope [48]. The shadow of a neutral Schwarzschild BH was investigated
in [54]. The photons moving in the equatorial plane with ϑ = π/2 will be considered.
Making use of the Hamilton−Jacobi method, the photon motion in null curves is described
by the Equation (see, for example, [55])

H =
1
2

gµν pµ pν =
1
2

(
L2

r2 −
E2

f (r)
+

ṙ2

f (r)

)
= 0, (25)

where pµ is the photon momentum, ṙ = ∂H/∂pr, and the energy and angular momentum of
a photon, which are constants of motion, are defined by E = −pt and L = pφ . Equation (25)
can be represented in the form

V + ṙ2 = 0, V = f (r)
(

L2

r2 −
E2

f (r)

)
. (26)

The radius of the photon circular orbit rp obeys the equation V(rp) = V′(r)|r=rp = 0.
From Equation (26), one obtains

ξ ≡ L
E
=

rp√
f (rp)

, f ′(rp)rp − 2 f (rp) = 0, (27)

where ξ is the impact parameter. The shadow radius rs for a distant observer, r0 → ∞,

reads rs = rp/
√

f (rp). Note that the impact parameter is ξ = rs. The event horizon radius
r+ is the biggest root of the equation f (rh) = 0. Making use of Equation (12) and f (rh) = 0,
one finds the parameters A, B and C versus xh

A =
1 + 2Cx2

h + C2xhBg(xh))

C2xh
, B =

−1− 2Cx2
h + C2xh A

C2xhg(xh))
,

C =
x2

h +
√

x4
h + xh(A− Bg(xh))

xh(A− Bg(xh))
, (28)

where xh = rh/ 4
√

βq2. The plots of functions (28) are given in Figure 4.
According to Figure 4 (Subplot 1), if parameter A increases, the event horizon radius

x+ also increases. Figure 4 (Subplot 2) shows that when parameter B increases, the event
horizon radius decreases. According to Figure 4 (Subplot 3), if C increasing the event
horizon radius x+ also increasing.

In Table 1, we presents the photon sphere radii (xp), the event horizon radii (x+), and
the shadow radii (xs) for A = 7 and C = 1. The null geodesics radii xp belong to unstable
orbits and correspond to the maximum of the potential V(r) (V′′ ≤ 0).

According to Table 1, when the parameter B increasing the shadow radius xs decreases.
Because xs > x+, the BH shadow radius is given by the radius rs = xs

4
√

βq2/21/4.
It is worth noting that nonlinear interaction of fields in the framework of NED leads to

self-interaction, and photons propagate along null geodesics of the effective metric [56,57].
However, corrections in radii of photon spheres and impact parameters (due to the self-
interaction of electromagnetic fields) are small [58].
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Table 1. The event horizon, photon sphere and shadow dimensionless radii for A = 7, C = 1.

B 0.1 0.5 1 2 3 4 5 6

x+ 3.34 3.31 3.27 3.19 3.10 3.01 2.91 2.80

xp 5.11 5.07 5.02 4.91 4.80 4.68 4.55 4.42

xs 8.97 8.92 8.85 8.71 8.57 8.43 8.27 8.11

5. The Energy Emission Rate of Black Holes

For the observer at infinity, the BH shadow is linked with the high energy absorption
cross section [43,59]. The absorption cross section, at very high energies, oscillates around
the photon sphere σ ≈ πr2

s , and the BH energy emission rate is expressed as

d2E(ω)

dtdω
=

2π3ω3r2
s

exp(ω/TH(r+))− 1
, (29)

where ω is the emission frequency. From Equations (16) and (29), we obtain the BH energy
emission rate in terms of the dimensionless variable x+ = 21/4r+/ 4

√
βq2

β1/4√q
d2E(ω)

dtdω
=

2π3v3x2
s

exp(v/T̄H(x+))− 1
, (30)

where T̄H(x+) = β1/4√qTH(x+), and v = β1/4√qω. The radiation rate, as a function of
the dimensionless emission frequency ω̄ for C = 1, A = 7 and B = 0.1, 3, 6, is plotted in
Figure 5.

According to Figure 5, we have a peak of the BH energy emission rate. If the parameter
B increases, the peak of the energy emission rate becomes smaller and is in the low
frequency. At a bigger parameter B, the BH possesses a bigger lifetime.
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6. Quasinormal Modes

Information about the stability of BHs under small perturbations can be obtained by
studying quasinormal modes (QNMs), which are characterized by complex frequencies ω.
The mode is stable when Im ω < 0 otherwise it is unstable. In the eikonal limit Re, ω is
connected with the radius of the BH shadow [60,61]. The perturbations by a scalar massless
field around BHs are described by the effective potential barrier

V(r) = f (r)
(

f ′(r)
r

+
l(l + 1)

r2

)
, (31)

where l is the multipole number l = 0, 1, 2 . . .. Equation (27) can be represented as

V(x)
√

βq =
√

2 f (x)
(

f ′(x)
x

+
l(l + 1)

x2

)
. (32)

The dimensionless potential V(x)
√

βq is given in Figure 6 for A = 7, B = 1, C = 1
(Subplot 1), and l = 3, 4, 5 and for A = 7, C = 1, l = 5, and B = 1, 3, 6 (Subplot 2).

Figure 6, Subplot l, shows that the potential barriers of effective potentials have
the maxima. When the l increases, the height of the potential increases. According to
Figure 6, Subplot 2, if the parameter B increases, the height of the potential increases. The
quasinormal frequencies can be found by [60,61]

Re ω =
l
rs

=
l
√

f (rp)

rp
, Im ω = −2n + 1

2
√

2rs

√
2 f (rp)− r2

p f ′′(rp), (33)

where rs is the BH shadow radius, rp is the BH photon sphere radius, and n = 0, 1, 2, . . . is
the overtone number. The frequencies, depending on parameter B (at A = 7, C = 1, n = 1,
l = 5), are represented in Table 2.
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Table 2. The real and the imaginary parts of the frequencies vs. the parameter B at n = 1, l = 5,
A = 7, C = 1.

B 0.1 0.5 1 2 3 4 5 6
4
√

βq2Re ω 0.557 0.561 0.565 0.574 0.583 0.593 0.605 0.617

− 4
√

βq2Im ω 0.3212 0.3215 0.3221 0.3229 0.3234 0.3232 0.3230 0.3220

The modes are stable (the real part represents the frequency of oscillations) because
the imaginary parts of the frequencies in Table 2 are negative. Table 2 shows that when
parameter B increases the real part of the frequency 4

√
βq2Re, ω increases, and the absolute

value of the imaginary part of the frequency | 4
√

βq2Im ω | increases. Therefore, when
parameter B is increased, the scalar perturbations oscillate with greater frequency and
decay fast.

7. Conclusions

We obtained the exact spherically symmetric and magnetized BH solution in 4D EGB
gravity coupled with NED. The thermodynamics and the thermal stability of magnetically
charged BHs were studied by calculating the Hawking temperature and the heat capacity.
The phase transitions occur in the points where the Hawking temperature possesses the
extremum. It is shown that BHs are thermodynamically stable at some interval of event
horizon radii when the heat capacity and the Hawking temperature are positive. The
heat capacity possesses a singularity in some event horizon radii where the second-order
phase transitions occur. The entropy of BHs is calculated, including the Hawking entropy
and the logarithmic correction. The photon sphere radii, the event horizon radii, and the
shadow radii are calculated. We show that with increasing the model parameter B, the
BH energy emission rate decreases and, as a result, the BH has a longer lifetime. The
quasinormal modes are investigated and it is shown that increasing the parameter B the
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scalar perturbations oscillate with greater frequency and decay fast. It is worth noting
that other solutions in 4D EGB gravity coupled with some NED were obtained in [51–53].
It is of interest to study solutions of BHs in 4D EGB gravity coupled with different NED
because astrophysical characteristics depend on them.
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Abstract: We derive the full set of field equations for the metric-affine version of the Myrzakulov
gravity model and also extend this family of theories to a broader one. More specifically, we consider
theories whose gravitational Lagrangian is given by F(R, T, Q, T ,D) where T, Q are the torsion
and non-metricity scalars, T is the trace of the energy-momentum tensor and D the divergence of
the dilation current. We then consider the linear case of the aforementioned theory and, assuming
a cosmological setup, we obtain the modified Friedmann equations. In addition, focusing on the
vanishing non-metricity sector and considering matter coupled to torsion, we obtain the complete set
of equations describing the cosmological behavior of this model along with solutions.

Keywords: cosmology; torsion

1. Introduction

Even though general relativity (GR) is undeniably one of the most beautiful and
successful theories of physics, recent observational data have challenged its status [1].
Probably the most important observations that cannot be explained within the realm of
GR are the early time as well as the late time accelerated expansion of our universe. This
contradiction between theory and observations has lead to the development of a fairly
large number of alternative theories to GR which collectively go by the name of modified
gravity [2]. The search for a successful alternative has been proven to be both fruitful as
well as constructive in regard to our understanding of gravity.

Among this plethora of modified gravities, let us mention the metric f (R) theories,
the metric-affine (Palatini) f (R) gravity [3–5], the teleparallel f (T) gravities [6,7], the
symmetric teleparallel f (Q) [8,9], scalar–tensor theories [10,11], etc., and also certain
extensions of them (see discussion in Section IV). Of course, the kind of modifications
one chooses to adopt is a matter of personal taste. From our point of view, interesting and
well-motivated alternatives are those which extend the underlying geometry of spacetime
by allowing a connection that is more general than the usual Levi-Civita one. In generic
settings, when no a priori restriction is imposed on the connection and the latter is regarded
as another fundamental field on top of the metric, the space will be non-Riemannian [12]
and possess both torsion and non-metricity. These last geometric quantities can then
be computed once the affine connection is found. The theories formulated on this non-
Riemannian manifold are known as metric-affine theories of gravity [13,14].

In recent years, there has been an ever-increasing interest in the metric-affine ap-
proach [5,15–29] and especially in its cosmological applications [30–41]. This interest is
possibly due to the fact that the additional effects (compared to GR) that come into play
in this framework have a direct geometrical interpretation. That is, the modifications are
solely due to spacetime torsion and non-metricity. Furthermore, these geometric notions are
excited by matter that has intrinsic structure [32,42–45]. This inner structure-generalized
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geometry interrelation adds another positive characteristic to the MAG scheme. This is the
framework we consider in this study.

The paper is organized as follows. Firstly, we fix conventions and briefly review some
of the basic elements of non-Riemannian geometry and the physics of metric-affine gravity.
We then consider an extended version of the F(R, T, Q, T ,D) theory [46]. To be more spe-
cific, working in a metric-affine setup, we consider the class of theories with gravitational
Lagrangians of the form F(R, T, Q, T ,D), where D is the divergence of the dilation current,
the new add-on we are establishing here. Then, we obtain the field equations for this family
of theories by varying with respect to the metric and the independent affine connection.
Considering a linear function F we then present a cosmological application for this model
and, finally, switching off non-metricity and considering a scalar field coupled to torsion,
we obtain the modified Friedmann equations and also provide solutions for this simple
case.

2. Conventions/Notation

Let us now briefly go over the basic geometric as well as physical setup we are going
to use and also fix notation. We consider a 4-dim non-Riemannian manifold endowed with
a metric and an affine connection (M, g,∇). Our definition for the covariant derivative,
for example, of a vector, will be

∇αuλ = ∂αuλ + Γλ
βαuβ (1)

We also define the (Cartan) torsion tensor by

S λ
µν := Γλ

[µν] (2)

and the non-metricity tensor as
Qαµν := −∇αgαβ (3)

Contracting these with the metric tensor, we obtain the associated torsion and non-
metricity vectors

Sµ := S ν
µν (4)

Qµ := Qµαβgαβ , qµ := Qαβµgαβ, (5)

respectively. In addition, since we are in four dimensions, we can also form the torsion
pseudo-vector according to

tµ := εµαβγSαβγ (6)

Given the above definitions for torsion and non-metricity, one can easily show (see,
for instance, [14]) the affine connection decomposition 1

Γλ
µν = Nλ

µν + Γ̃λ
µν =

1
2

gαλ(Qµνα + Qναµ −Qαµν)− gαλ(Sαµν + Sανµ − Sµνα) + Γ̃λ
µν (7)

where Nλ
µν is known as the distortion tensor. Continuing, we define the curvature

tensor as usual
Rµ

ναβ := 2∂[αΓµ

|ν|β] + 2Γµ

ρ[α
Γρ

|ν|β] (8)

and by a double contraction of the latter, we get the Ricci scalar

R := Rµ
νµβgνβ (9)

Then, by using decomposition (7), we obtain the post-Riemannian expansion for the
Ricci scalar [14]

R = R̃ + T + Q + 2QαµνSαµν + 2Sµ(qµ −Qµ) + ∇̃µ(qµ −Qµ − 4Sµ) (10)
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where R̃ is the Riemannian Ricci tensor (i.e., computed with respect to the Levi-Civita
connection) and we have also defined the torsion and non-metricity scalars as 2

T := SµναSµνα − 2SµναSαµν − 4SµSµ (11)

and
Q :=

1
4

QαµνQαµν − 1
2

QαµνQµνα − 1
4

QµQµ +
1
2

Qµqµ, (12)

respectively. Note that with the introduction of the superpotentials 3

Ωαµν :=
1
4

Qαµν − 1
2

Qµνα − 1
4

gµνQα +
1
2

gαµQν (13)

Σαµν := Sαµν − 2Sµνα − 4gµνSα (14)

these can be expressed more compactly as

T = SαµνΣαµν (15)

Q = QαµνΩαµν (16)

Equation (8) is of key importance in teleparallel formulations. For instance, by impos-
ing vanishing curvature (which also implies R = 0) and metric compatibility (Qαµν = 0),
one obtains from (7)

R̃ = −T + 4∇̃µSµ (17)

which is the basis of the metric teleparallel formulation. In a similar manner, the symmetric
teleparallel (vanishing curvature and torsion) and also the generalized teleparallelism (only
vanishing curvature) are obtained [48].

Let us now turn our attention to the matter content. In metric-affine gravity, apart
from the energy-momentum tensor, which we define as usual,

Tµν := − 2√−g
δ(
√−gLM)

δgµν , (18)

one also has to vary the matter part with respect to the affine connection. This new object,
which is defined by

∆ µν
λ := − 2√−g

δ(
√−gLM)

δΓλ
µν

, (19)

is called hypermomentum [42] and encodes the microscopic characteristics of matter such
as spin, dilation and shear. In the same way that the energy-momentum tensor sources
spacetime curvature by means of the metric field equations, the hypermomentum is the
source of spacetime torsion and non-metricity (through the connection field equations).
Note that these energy-related tensors are not quite independent and are subject to the
conservation law

√
−g(2∇̃µTµ

α − ∆λµνRλµνα) + ∇̂µ∇̂ν(
√
−g∆ µν

α ) + 2S λ
µα ∇̂ν(

√
−g∆ µν

λ ) = 0 (20)

∇̂µ := 2Sµ −∇µ (21)

which comes from the diffeomorphism invariance of the matter sector of the action (see [32]).
In the above discussion, we have briefly developed the geometric and physical setup
needed for the rest of our study. Let us focus on the cosmological aspects of theories with
torsion and non-metricity (i.e., non-Riemannian extensions).
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3. Cosmology with Torsion and Non-Metricity

Let us consider a homogeneous flat FLRW cosmology, with the usual Robertson–
Walker line element

ds2 = −dt2 + a2(t)δijdxidxj (22)

where i, j = 1, 2, 3 and a(t) are as usual the scale factor of the universe. As usual, the
Hubble parameter is defined as H := ȧ/a. Now, let uµ be the normalized 4-velocity field
and

hµν := gµν + uµuν (23)

be the projection tensor projecting objects on the space orthogonal to uµ. The affine
connection of the non-Riemannian FLRW spacetime reads [32]

Γλ
µν = Γ̃λ

µν + X(t)uλhµν + Y(t)uµhλ
ν + Z(t)uνhλ

µ + V(t)uλuµuν + ελ
µνρuρW(t)δn,4 (24)

where the non-vanishing components of the Levi-Civita connection are, in this case,

Γ̃0
ij = Γ̃0

ji = ȧaδij = Hgij , Γ̃i
j0 = Γ̃i

0j =
ȧ
a

δi
j = Hδi

j (25)

Continuing with the rest of the geometric objects, in this highly symmetric spacetime,
the torsion and non-metricity tensors take the forms [32]

S(n)
µνα = 2u[µhν]αΦ(t) + εµναρuρP(t) (26)

Qαµν = A(t)uαhµν + B(t)hα(µuν) + C(t)uαuµuν, (27)

respectively. The five functions Φ, P, A, B, C describe the non-Riemannian cosmological
effects. These, along with the scale factor, give the cosmic evolution of non-Riemannian
geometries. Let us note that, using the relations of the torsion and non-metricity tensors
with the distortion tensor, it is trivial to show that the functions X(t), Y(t), Z(t), V(t), W(t)
are linearly related to Φ(t), P(t), A(t), B(t), C(t) as [32]

2(X + Y) = B , 2Z = A , 2V = C , 2Φ = Y− Z , P = W (28)

or inverting them
W = P , V = C/2 , Z = A/2 (29)

Y = 2Φ +
A
2

, X =
B
2
− 2Φ− A

2
. (30)

Now, using the Equations (11) and (12) for the torsion and non-metricity scalars and
the above cosmological forms for torsion and non-metricity, we find for the former

T = 24Φ2 − 6P2 (31)

Q =
3
4

[
2A2 + B(C− A)

]
, (32)

respectively. These are the expressions for the torsion and non-metricity scalars in a
homogeneous cosmological setup when no teleparallelism is imposed.

Finally, using the post-Riemannian decomposition of the Ricci scalar and the above
forms of the torsion and non-metricity scalars, we find

R = R̃ + 6
[

1
4

A2 + 4Φ2 + Φ(2A− B)
]
+

3
4

B(C− A)− 6P2

+3
(

Ḃ
2
− Ȧ− 4Φ̇

)
+ 9H

(
B
2
− A− 4Φ

)
(33)
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where

R̃ = 6

[
ä
a
+

(
ȧ
a

)2
]

(34)

is the usual Riemannian part. The last decomposition will be very useful in our subse-
quent discussion.

4. MG-VIII Model and Extension: The F(R, T , Q,T ,D) Theories

In this paper, we study the Myrzakulov gravity [46] VIII (MG-VIII) 4. Its action is
given by [46]

S[g, Γ, φ] = Sg + Sm =
1

2κ

∫ √
−gd4x[F(R, T, Q, T ) + 2κLm], (35)

where R stands for the Ricci scalar (curvature scalar), T is the torsion scalar, Q is the non-
metricity scalar and T is trace of the energy-momentum tensor of matter Lagrangian Lm. The
MG-VIII can be seen as some kind of unification of F(R), F(T), F(Q) or F(R, T ), F(T, T ),
F(Q, T ) theories (see [51–53], respectively). For instance, if one imposes flatness (i.e.,
Rλ

αµν ≡ 0) and metric compatibility (Qαµν ≡ 0), one arrives at the f (T) gravity [7,54].
Demanding flatness and a torsionless connection, we get symmetric teleparallel f (Q)
gravity [8,9]. More generally, imposing only teleparallelism, we arrive at the recently
developed generalized teleparallel scheme of f(G) [48,55] theories. If no restriction on
the connection is assumed, then (35) serves as a specific generalization of metric-affine
f (R) gravity where the energy-momentum trace T and certain quadratic combinations of
torsion and non-metricity are added as well. In fact, in this generalized metric-affine setup,
one could also consider the presence of the hypermomentum analogue of the (metrical)
energy-momentum trace. Giving it a little thought, we observe that the divergence of the
dilation current is similar to the trace T , as they appear in the trace of the canonical 5

energy-momentum tensor (see, for instance, [32])

t = T +
1

2
√−g

∂ν(
√
−g∆ν) , ∆ν := ∆ µν

µ . (36)

In this sense, T and the divergence of ∆ν are placed on equal footing as is obvious from
the above equation. Therefore, the scalar obtained by the divergence of the dilation current

D =
1√−g

∂ν(
√
−g∆ν) (37)

would be a trace analogue for the hypermomentum. With this inclusion, we may generalize
the class of theories (35) to

S[g, Γ, φ] = Sg + Sm =
1

2κ

∫ √
−gd4x[F(R, T, Q, T ,D) + 2κLm], (38)

The field equations of the family of theories given by the the above action read
as follows:

g-Variation:

−1
2

gµνF + FRR(µν) + FT

(
2SναβS αβ

µ − SαβµSαβ
ν + 2SναβS βα

µ − 4SµSν

)
+ FQL(µν)

+∇̂λ(FQ Jλ
(µν)) + gµν∇̂λ(FQζλ) + FT (Θµν + Tµν) + FD Mµν = κTµν (39)

where
∇̂λ :=

1√−g
(2Sλ −∇λ) (40)
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Ωαµν =
1
4

Qαµν − 1
2

Qµνα − 1
4

gµνQα +
1
2

gαµQν (41)

4Lµν = (Qµαβ − 2Qαβµ)Q
αβ

ν + (Qµ + 2qµ)Qν + (2Qµνα −Qαµν)Qα)

−4Ωαβ
νQαβµ − 4ΩαµβQαβ

ν (42)

Θµν := gαβ
δTαβ

δgµν (43)

Mµν :=
δD

δgµν (44)

and we also define the densities

Jλ
µν :=

√
−g
(1

4
Qλ

µν −
1
2

Q λ
µν + Ωλ

µν

)
(45)

ζλ =
√
−g
(
− 1

4
Qλ +

1
2

qλ
)

(46)

Γ-Variation:

P µν
λ (FR) + 2FT

(
Sµν

λ − 2S [µν]
λ − 4S[µδ

ν]
λ

)
−M µνα

λ ∂αFD

+FQ

(
2Q[νµ]

λ −Q µν
λ + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

)
= FT Θ µν

λ + κ∆ µν
λ (47)

where

P µν
λ (FR) = −

∇λ(
√−gFRgµν)√−g

+
∇α(
√−gFRgµαδν

λ)√−g
+ (48)

2FR(Sλgµν − Sµδν
λ − S µν

λ )

is the modified Palatini tensor and

Θ µν
λ := − δT

δΓλ
µν

, M µνα
λ :=

δ∆α

δΓλ
µν

. (49)

Note: if matter does not couple to the connection (e.g., classical perfect fluid with
no inner structure) we have that Θ µν

λ = 0 as well as ∆ µν
λ = 0 and M µνα

λ . The above
set of field equations constitutes an extended (with the divergence of dilation included)
metric-affine version of the Myrzakulov gravities [46]. Here, we derive the field equations
with no restriction on the connection and also for the extended case F(R, T, Q, T , D). In
the next section, we further analyze the linear case F = R + βT + γQ + µT + νD and also
touch upon cosmological applications.

5. Cosmological Applications
5.1. The Cosmology of F = R + βT + γQ + µT Theory

Let us now analyze in more detail the linear case F = R + βT + γQ + µT and also
obtain the associated cosmological equations. To start with, let us note that even if we
consider the theory F = R + βT + γQ + µT + νD, since

√−gD is a total divergence,
the dilation current would not contribute to the field equations when included linearly 6.

96



Universe 2021, 7, 262

Therefore we can safely set ν = 0 for the rest of our discussion. In addition, in this linear
case, the metric field equations take the form

−1
2

gµνF + R(µν) + β
(

2SναβS αβ
µ − SαβµSαβ

ν + 2SναβS βα
µ − 4SµSν

)
+ γL(µν)

+∇̂λ(γJλ
(µν)) + gµν∇̂λ(γζλ) + µ(Θµν + Tµν) = κTµν (50)

Taking the trace of the last equation, using the post-Riemannian expansion (33) and
also employing (26) along with (27) and after some long calculations, we finally arrive at

ä
a
+

(
ȧ
a

)2
+ (1 + β)(4Φ2 − P2) +

1
8

(
2A2 + B(C− A)

)
+ Φ(2A− B) + ḟ + 3H f = −µ(Θ + T ) + κT (51)

where

f :=
1
2

[
(1− γ)

(B
2
− A

)
− 4Φ

]
, Θ := Θµνgµν (52)

which is a variant of the modified Friedmann equation. As for the second Friedmann
(acceleration) equation, its general form was derived in [31] for general non-Riemannian
cosmological setups. It reads

ä
a
= −1

3
Rµνuµuν + 2

(
ȧ
a

)
Φ + 2Φ̇ +

(
ȧ
a

)(
A +

C
2

)
+

Ȧ
2
− A2

2
− 1

2
AC− 2AΦ− 2CΦ (53)

One could then proceed by contracting (50) with uµuν in order to eliminate the first
term (Rµνuµuν) and express everything in terms of the scale factor and the torsion and
non-metricity variables. This results in a fairly complicated expression which we refrain
from presenting here since it goes beyond the scope of the present study. As a final note,
let us mention that in order to analyze the above cosmological model in depth, one should
consider an appropriate form of matter for which both the metrical energy-momentum
and hypermomentum tensors respect the cosmological principle. The fluid with such
characteristics was constructed in [32] (also see, for a generalized version, [45]) and goes by
the name perfect cosmological hyperfluid. The hypermomentum part of this fluid will then
source the torsion and non-metricity variables Φ, P, A, . . ., etc. by virtue of the connection
field equations. We note that scalar fields coupled to the connection belong (are certain
subcases) to the aforementioned fluid description. For the sake of illustration, below we
present such an example with a scalar field non-minimally coupled to the connection in the
case of vanishing non-metricity and also study some of the cosmological implications of
this theory.

5.2. Scalar Field Coupled to Torsion

We now focus on the vanishing non-metricity sector and also set γ = 0 , that is, we
concentrate on the case F = R + βT. As for the matter part, let us consider a scalar field. In
the usual (i.e., purely Riemannian) case, one would have the usual Lagrangian

L(0)m = −1
2

gµν∇µφ∇νφ−V(φ), (54)

for the scalar field φ. However, in the presence of torsion, nothing prevents us from
considering direct couplings of the scalar field with torsion. The most straightforward
form of such a coupling is a torsion vector-scalar field derivative interaction of the form
λ0Sµ∇µφ, where λ0 is the coupling constant measuring the strength of the interaction.
Including this term, our full matter Lagrangian now reads

Lm = −1
2

gµν∇µφ∇νφ−V(φ) + λ0Sµ∇µφ (55)
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Then, substituting this into (35) and varying the latter with respect to the scalar field,
we obtain

1√−g
∂µ

[√
−g(∂µφ− λ0Sµ)

]
=

∂V
∂φ

(56)

which is the evolution equation for the scalar field under the influence of torsion. In
addition, the very presence of the interaction term λ0Sµ∇µφ produces a non-vanishing
hypermomentum which is trivially computed to be

∆ µν
λ = 2λ0δ

[µ
λ ∇ν]φ (57)

With this result, starting from the connection field Equation (47) which, in our
case, reads

P µν
λ + 2β

(
Sµν

λ − 2S [µν]
λ − 4S[µδ

ν]
λ

)
= κ∆ µν

λ (58)

and contracting in µ = λ, we find

Sµ =
3κλ0

8β
∂µφ (59)

that in the presence of a scalar field produces spacetime torsion 7. In addition, contract-
ing (58) with ελ

µνα, it follows that
tα = 0 (60)

Note that we can now plug back into (55) the above form of the torsion tensor to end
up with

Lm = −1
2

(
1− 3κλ2

0
4β

)
gµν∇µφ∇νφ−V(φ) (61)

Interestingly, from the last equation, we conclude that the scalar–torsion interaction
changes the factor of the kinetic term for the scalar field. We also see that this is a crucial

value for the coupling |λ0| = 2
√

β
3κ above which the kinetic term changes sign and, for

exactly this value, vanishes identically. Since this last case would require severe fine tuning,
we disregard it and we also assume that λ0 is under this bound so that the kinetic term
keeps its original sign.

Up to this point, the above considerations have been general. Let us now focus on
the homogeneous FLRW cosmology of this theory. In this case, Equation (60) implies that
p = 0 and, as a result, upon using (59), the full torsion tensor is given by

Sµνα = 2u[µhν]αΦ(t), (62a)

Φ = −κλ0

8β
φ̇ (62b)

In the case of a free scalar field (i.e., V(φ) = 0) 8 inserting (59) into (56), we obtain
(

1− 3κλ2
0

8β

)
∂µ

[√
−g∂µφ

]
= 0 (63)

which for |λ0| 6= 2
√

β
3κ implies that

φ̇ =
c0

a3 (64)

98



Universe 2021, 7, 262

On the other hand, the metric field equations in this case read

−1
2

gµνF + R(µν) + β
(

2SναβS αβ
µ − SαβµSαβ

ν + 2SναβS βα
µ − 4SµSν

)
= κTµν (65)

and by taking the trace, using the same procedure we outlined previously, we finally obtain

ä
a
+

(
ȧ
a

)2
=

[
−κ

6
+ (1− β)

(
κλ0

4β

)2
]

φ̇2 (66)

which is again a variant of the modified Friedmann equation. Let us now derive the
acceleration equation for this case. First, we contract the above field equations with uµuν

to obtain
Rµνuµuν = 24βΦ2 +

κ

2
(ρ + 3p) (67)

which when substituted in (53) for vanishing non-metricity and the given scalar matter
results in the acceleration equation

ä
a
= −8βΦ2 − κ

6
(ρ + 3p) + 2HΦ + 2Φ̇ (68)

where ρ and p are the density and pressure associated with the scalar field Lagrangian (61).
It is interesting to note that the first term on the right-hand side of the acceleration equation
has a fixed sign depending on the value of β. Intriguingly, for β < 0, the contribution from
this term always has a fixed positive sign producing an accelerated expansion regardless
of the sign of Φ (or equivalently φ̇). As for the last two terms, combining (62b) and
(64), we observe that Φ̇ = −3HΦ which, when substituted into the above acceleration
equation, yields

ä
a
= −8βΦ2 − κ

6
(ρ + 3p) +

4
3

Φ̇ (69)

We can conclude, therefore, that the last term aids acceleration when Φ̇ > 0 and slows
it down whenever Φ̇ < 0. From the above analysis, we see that the non-Riemannian degrees
of freedom play a crucial role in the cosmological evolution, providing new interesting
phenomena. Now, using the latter form of the acceleration equation, we can obtain the first
Friedmann equation from (66) by eliminating the double derivative of the scale factor. For
the simple case V(φ) = 0, we find

(
ȧ
a

)2
=

[
κ

6
+ (1 + β)

(
κλ0

4β

)2
]

φ̇2 − 4
3

Φ̇ (70)

as the modified first Friedmann equation. Note that on substituting (62b) in the above and
completing the square in the resulting expression, we easily find the power-law solution

a(t) ∝ t1/3 (71)

which is the stiff matter solution. We see that in the simplified case of a zero potential for
the scalar, we arrive at a known solution. However, we should remark that the situation
changes drastically when one considers a non-vanishing potential. Note also that the
torsion tensor in this case goes like 1/t and therefore its effect diminishes with time.

Needless to say, when non-metricity is also included, one obtains more complicated
expressions with a much richer phenomenology. It would be quite interesting to see
exactly to what degree the simultaneous presence of torsion and non-metricity alters the
cosmological evolution in such models. This will be the theme of a separate work.
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6. Conclusions

By working in a metric-affine approach (i.e., considering the metric and the connection
as independent variables) we have considered a generalized version of the theory proposed
in [46]. In particular, we derived the full set of field equations of the class of theories
whose gravitational part of the Lagrangian is given by F(R, T, Q, T ,D), where T, Q are the
torsion and non-metricity scalars, T is the trace of the energy-momentum tensor and D is
the divergence of the dilation current (one of the hypermomentum sources). The family
of theories contained in our Lagrangian is fairly large since all metric and Palatini f (R)
theories, teleparallel f (T), symmetric teleparallel f (Q) or even generalized teleparallel
f (G) and generalizations of them such as f (R, T ), f (T, T ), f (Q, T ) can be seen as special
cases of our theory.

Our contribution was two-fold. Firstly, we generalized the family of theories to those
also including the divergence of the dilation current (which is the analogue of the energy-
momentum trace for hypermomentum). Furthermore, as already mentioned above, we
worked in a metric-affine framework, considering an independent affine connection as
a fundamental variable along with the metric. This allows one not only to study the
aforementioned theories (by restricting the connection one way or another), but also to
analyze them in this general metric-affine scheme. Having derived the complete set of
metric-affine F(R, T, Q, T ,D) theories, we then concentrated our attention on the linear case
F = R + βT + γQ + µT + νD and obtained a variant version of the modified Friedmann
equation. Finally, we focused on the vanishing non-metricity sector and also considered a
scalar field coupled to torsion as our matter sector. In this case, we derived both the first
and second (acceleration) Friedmann equations and examined under what circumstances
the presence of torsion can have an accelerating affect on the cosmological evolution. For
this simple case, we were also able to provide an exact power-law solution for the scale
factor.

In closing, let us note some further applications and additional developments of
our study here. Firstly, it would be interesting to study in more detail the linear case,
especially in regard to its cosmological implications in the presence of the cosmological
hyperfluid [32,45]. In addition, as we have already mentioned, it would be worth elaborat-
ing more on the coupled scalar field we presented when both torsion and non-metricity
are allowed and direct couplings of the latter with the scalar field occur. Finally, it would
be quite interesting to go beyond linear functions F of the new dilation current term
we considered. In this way, we will be able to investigate what exactly is the effect of
this new addition/extension as well as its phenomenology, especially with regard to its
energy-momentum trace counterpart.
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Notes
1 From here onwards, we shall use the tilde notation in order to denote Riemannian objects, that is, objects computed with respect

to the Levi-Civita connection Γ̃λ
µν.
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2 Note that we define the combination of the torsion scalar in the usual way so as to obtain the usual teleparallel equivalent of GR.
As a generalization, one could consider an arbitrary linear combination of the three independent torsion scalars connected with
the three irreducible components of the torsion (see, for instance, [47]).

3 Here, we are using the conventions of [16].
4 See also [49,50] for some observational implications of this theory.
5 Here t = tµνgµν is the trace of the canonical energy-momentum tensor tµν.
6 If we considered a quadratic contribution νD2, we would have the additional terms − ν

2 D2gµν + 2ν
gµν√−g ∂α(

√−gD∆α) on the
right-hand side of the metric field equations. These terms would then have an interesting impact in the cosmological setup we
consider below, however, a detailed discussion goes beyond the purpose of this study and will be pursued elsewhere.

7 Of course, this is so because of the connection coupling which yields a non-vanishing hypermomentum. If no such coupling is
included, the scalar field can neither feel nor produce torsion.

8 One can investigate the case of a non-vanishing potential by making use of reconstruction techniques developed in [56] (see
also [57]).
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Abstract: In the case of two-scalar field cosmology, and specifically for the Chiral model, we de-
termine an exact solution for the field equations with an anisotropic background space. The exact
solution can describe anisotropic inflation with a Kantowski–Sachs geometry and can be seen as the
anisotropic analogue of the hyperbolic inflation. Finally, we investigate the stability conditions for
the exact solution.
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1. Introduction

The early acceleration epoch of the universe is the inflationary era [1], to which the
isotropy and homogeneity of the observed universe are due [2]. The origin of the inflation is
unknown. However, the introduction of a minimally coupled scalar field, the inflation, into
the cosmological dynamics of Einstein’s General Relativity provides an acceleration when
the scalar field potential dominates. Hence, the scalar field drives the spacetime towards
a locally isotropic and homogeneous space form that leaves only very small residual
anisotropies, which are left from the pre-inflationary era [3,4]. Therefore, anisotropies may
have been important for the evolution of the universe. Thus, the investigation of exact
solutions in anisotropic inflationary models is a subject of special interest.

Exact and analytic solutions are important for the study of the evolution and of the
viability of a given cosmological model. In one scalar field cosmology, exact and analytic
solutions in a homogeneous and isotropic background space can be found in [5–14]. On the
other hand, there are few known anisotropic exact solutions with one scalar field [15–21].

Multiscalar field models have been proposed as alternative models for the description
of the whole cosmological history [22,23]. In the multiscalar field model the additional de-
grees of freedom provide new dynamical behaviours in the cosmological dynamics [24–30].
Some anisotropic exact solutions in multifield cosmology can be found in [20,31,32].

A multiscalar field model that has drawn the attention of cosmologists in recent years
is the Chiral model. The Lagrangian function of the Chiral model is inspired by the σ-
model [33] and is composed of two scalar fields, and the kinetic energy is defined on a
two-dimensional hyperbolic space [34]. The Chiral model with an exponential potential
provides a new inflationary solution known as hyperbolic inflation [35,36]. Hyperinflation
solves various problems of inflationary physics. In hyperbolic inflation, the dynamics are
driven by all of the matter components of the field equations, that is, by the scalar field
potential and the kinetic parts of the two scalar fields. Moreover, the initial conditions in
the start and in the end of the inflation can be different in the Chiral model, which means
that the curvature perturbations depend upon the number of the e-fold [37]. Further-
more, detectable non-Gaussianities in the power spectrum are supported by the multifield
inflation [38].

In this study we investigate the existence of a new exact solution in Chiral cosmology
with an anisotropic background space. As far as isotropic and homogeneous models
are concerned, Chiral theory has been widely studied previously with many interesting
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results—see for instance [39–42]—while recently, extensions of Chiral cosmology were
considered by assuming one of the two scalar fields to be a phantom field [43]. In our
consideration for the background space we consider locally rotational spacetimes (LRS)
with two scale factors that belong to the family of Bianchi I, Bianchi III and Kantowski–
Sachs spacetimes. These anisotropic spacetimes have the property that they fall into the
spatially flat, closed and open Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime
when they reach isotropy. The plan of the paper is as follows.

In Section 2 we present the cosmological model of our consideration and we derive the
gravitational field equations. In Section 3 we present the new solution of our analysis, which
is that of anisotropic hyperbolic inflation. The analysis of homogeneous perturbations is
presented in Section 4, where we discuss the stability properties of the new exact solution.
Finally, in Section 5 we draw our conclusions.

2. Chiral Cosmology

We consider the gravitational Action Integral

S =
∫ √

−gdx4(R + LC
(
φ,∇µφ, ψ,∇µψ

))
(1)

in which R(xκ) is the Ricci scalar of the metric tensor gµν(xκ), and LC
(
φ,∇µφ, ψ,∇µψ

)
is

the Lagrangian function for the Chiral model, which describes the dynamics for the two
scalar fields φ(xκ) and ψ(xκ), that is:

LC
(
φ,∇µφ, ψ,∇µψ

)
= −1

2
gµν(xκ)

(
∇µφ(xκ)∇νφ(xκ) + e−2κφ(xκ)∇µψ(xκ)∇νψ(xκ)

)
+ V(φ(xκ)). (2)

From the kinetic term of Equation (2) we observe that the scalar field lies on two
geometries: The physical space with metric tensor gµν(xκ) and the two-dimensional space
of constant curvature with metric hAB = diag

(
1, e−2κφ

)
and curvature Rh ' −κ2, A, B =

1, 2. The parameter κ is assumed to be a nonzero constant, otherwise the line element
hAB reduces to the two-dimensional flat space and the Lagrangian Equation (2) is reduced
to that of multiquintessence theory. In general, the potential function (Equation (2)) has
been assumed to also be a function of the second field ψ

(
xk
)

. However, hyperbolic
inflation in the case of FLRW space follows for the exponential potential [35] V(φ(xκ)) =
V0 exp(−λφ(xκ)), which we shall consider in this analysis.

Anisotropic Spacetime

In this study for the physical space we consider the LRS anisotropic line element in
the Milne variables

ds2 = −dt2 + e2α(t)
(

e2β(t)dx2 + e−β(t)
(

dy2 + f 2(y)dz2
))

(3)

in which the function f (y) has one of the following forms, fA(y) = 1, and the line element
describes a Bianchi I spacetime, fB(y) = sinh

(√
|K|y

)
, where gµν(xκ) is that of Bianchi III

spacetime and fC(y) = sin
(√
|K|y

)
, where gµν takes the form of Kantowski–Sachs space.

Variable β(t) indicates the existence of anisotropy. When β̇(t) = 0, the background space is
that of the FLRW universe.

For the line element (Equation (3)) and the Action Integral (Equation (1)) it follows
that the equations of motions that drive the dynamics for the variables α(t), β(t), φ(t) and
ψ(t) are

e3α

(
3α̇2 − 3

4
β̇2 − 1

2

(
φ̇2 + e−2κφψ̇2

)
−V(φ)

)
− eα−βK = 0, (4)

2α̈ + 3α̇2 +
3
4

β̇2 +
1
2

(
φ̇2 + e−2κφψ̇

)
−V(φ)− 1

3
e−2α−βK = 0, (5)
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β̈ + 3α̇β̇ +
2
3

e−2α−βK = 0, (6)

φ̈ + κe−2κφψ̇2 + 3α̇φ̇ + V,φ = 0, (7)

ψ̈− 2κφ̇ψ̇ + 3α̇ψ̇ = 0, (8)

where K =
f (y),yy

f (y) is the spatial curvature of the three-dimensional hypersurface of
Equation (3). For Bianchi I spacetime, K = 0, for Bianchi III space, K > 0, and for
the Kantowski–Sachs spacetime, K < 0.

3. Exact Solution

We assume the exponential potential V(φ) = V0 exp(−λφ). Moreover, we observe
that Equation (8) is total derivative, i.e., d

dt
(
ψ̇e3α−2κφ

)
= 0. Hence, the conservation law for

the field equations is
I0 = ψ̇e3α−2κφ. (9)

Equation (5) can be seen as a second conservation law for the dynamical system. In
the case of a spatially flat FLRW universe, i.e., β̇ = 0 and K = 0, the analytic solution of the
field equation was presented recently in [28] using the Lie symmetry approach.

Hence, in order to investigate the existence of additional conservation laws, we apply
the theory of Lie symmetries. For a review on applications of the Lie symmetry analysis in
cosmology we refer the reader to [44]. We omit the presentation of the calculations and we
directly present the results.

The dynamical system consisting of the second-order differential Equations (5)–(8) for
the exponential potential admits the symmetry vectors

X1 = ∂ψ , X2 = 2t∂t +
2
3
(
∂α + ∂β

)
+

4
λ

(
∂φ + κψ∂ψ

)
, for λ 6= 0 (10)

with the corresponding conservation laws I0 and

I1 = e3α

(
β̇− 4α̇ +

4
λ

(
φ̇ + κe−2κφψ̇

))
. (11)

For λ = 0, that is V(φ) = V0, the admitted symmetry vectors are the elements of the
so(3) algebra for the metric tensor hAB. They are

Z1 = ∂ψ, Z2 =
(
∂φ + κψ∂ψ

)
, (12)

Z3 = ψ∂φ + κ

(
ψ2

2
+ ψ− 1

2κ
e2κφ

)
, (13)

with conservation laws I0 and
Ī2 =

(
φ̇ + κe−2κφψ̇

)
(14)

and

Ī3 = ψφ̇ + κ

((
ψ2

2
+ ψ

)
e−2κφ − 1

2κ

)
ψ̇. (15)

We focus on the case for which λ 6= 0. We observe that the two conservation laws I0, I1
are not in involution, that is, {I0, I1} 6= 0, where {, } is the Poisson Bracket. Consequently
we cannot infer the Liouville integrability of the field equations. However, the existence of
the symmetry vector X2 indicates the existence of invariant functions. We follow [44] and
we search for the exact solution of the form

a(t) = p1 ln t , β(t) = p2 ln t , φ(t) = p3 ln t. (16)
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We substitute into the conservation law I0, which gives I0 = t3p1−2κp3 ψ̇, that is,

ψ(t) =
I0

1− 3p1 + 2κp3
t1−3p1+2κp3 , 3p1 − 2κp3 6= 1 (17)

ψ(t) = I0 ln t , 3p1 − 2κp3 = 1. (18)

In addition, we assume that I0 6= 0, otherwise we reduce to the case of anisotropic
spaces with a quintessence field [15].

Let us assume now that 3p1 − 2κp3 6= 1, then by replacing Equations (16) and (17) in
the field Equations (4)–(7) we arrive at the exact solution

α(t) =
1
3

(
1 + 2

κ

λ

)
ln t , β(t) =

4
3

(
1− κ

λ

)
ln t , φ(t) =

2
λ

ln t , (19)

ψ(t) =
λI0

2κ
t2 κ

λ , V0 =
κ

λ

(
4 + I2

0 λ2
)

, K = 4
κ

λ

(
1− κ

λ

)
(20)

with the constraint equation
(

4(1− κλ) +
(

2 + I2
0

)
λ2
)
= 0. (21)

Hence, 3p1 − 2κp3 = 2κ
λ , which means that 2κ − λ 6= 0.

This is a new anisotropic exact solution with two scalar fields. For K = 0, it follows
that λ = κ. Thus, β(t) = 0, which means we end with the spatially flat FLRW spacetime.
The background spacetime is that of Bianchi III spacetime when κ(λ− κ) > 0, while the
Kantowski–Sachs metric is recovered when κ(λ− κ) < 0.

The anisotropic scale factor can be written as β(t) = λ
κ K ln t, which means that the

existence of a spatial curvature indicates the existence of anisotropy. Thus, the isotropic
open or closed FLRW spacetimes, similarly to Kasner-like universes, are not provided by
this exact solution.

Indeed, this solution is the analogue of the hyperbolic inflation in the anisotropic back-
ground space. The deceleration parameter is defined as q = −1− ä

ȧ2 , that is, q(t) = − 2(κ−λ)
2κ+λ .

Consequently, when the acceleration parameter is negative, q(t) < 0, the exact solution
describes an accelerated solution. Thus, when − 2(κ−λ)

2κ+λ < 0, we observe that K < 0. Hence
acceleration exists only for the Kantowski–Sachs background space. This inflationary
solution is an extension of the inflationary solution found before for the inflation field in
Kantowski–Sachs geometry [45].

Finally, for the case 3p1 − 2κp3 = 1, by replacing Equations (16) and (18) in the field
equations, from Equation (6) we find p2 = 2(1− p1) and K = −3

(
1− 4p1 + 3p2

1
)
. Thus,

from Equation (7) it follows that

2I2
0 κ2 + (1− 3p1)t−1+3p1 − 2t1+3p1+

λ−3p1λ
2κ V0κλ = 0. (22)

Because we are interested in solutions with two scalar fields, we study cases with
I0 6= 0 and p1 6= 1

3 . Thus, the polynomial Equation (22) can not be solved, which means
that there is no anisotropic solution of the form of Equation (16) for 2p1 − 2κp3 = 1.

4. Stability Analysis

We continue our analysis with the study of the stability properties for the new
anisotropic inflationary solution. We define the new variable H = ȧ, and we substitute into
Equations (4)–(7)

H =

(
1 + 2 κ

λ

)

3t
+ δH(t) , β(t) =

4
3

(
1− κ

λ

)
ln t + δβ(t) , (23)

φ(t) =
2
λ

ln t + δφ , ψ̇ = I0e−3α+2κφ , V0 =
κ

λ

(
4 + I2

0 λ2
)

, K = 4
κ

λ

(
1− κ

λ

)
(24)
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and we linearize. Moreover, we perform the new change of variable, this time for the
dependent variable t = es. Hence we obtain the system of two linear second-order
differential equations

0 = 3λ
(

λ(2κ + λ)δβ′′ +
(

8κ2 − 6κλ + 4λ2
)

δβ′ + 4(λ− κ)δφ′
)

(25)

− 8κ(5κ − 2λ)(κ − λ)δβ + 24κ(κ − λ)δφ

and

0 = λ
(
6(λ− κ)δβ′ + λ(2κ + λ)δφ′′ + 2(κ(2κ + λ) + 3)δφ′

)
(26)

+ 12κ(κ − λ)δβ + 2κ
(
(2κ + λ)

(
4κ2λ− 4κ − λ3

)
− 6
)

δφ

with the constraint

δH(s) =
e−s(λ((λ− κ)δβ′ + δφ′) + 2κ(κ − λ)δβ− 2κδφ)

λ(2κ + λ)
(27)

and δβ′ = dδβ
ds .

The solutions of the perturbations are expressed as

(δβ, δφ)T =

(
ζ1 ζ2
ζ3 ζ4

)
(exp(µ1(λ, κ)s), exp(µ2(λ, κ)s))T , (28)

where µ1(λ, κ), µ2(λ, κ) are the eigenvalues for the linearized system. The asymptotic
solution is stable, when Re(µ1 < 0) and Re(µ2 < 0).

In Figure 1 we present the region plots for the parameters µ1 and µ2 is the space (λ, κ),
where the perturbations decay.
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Solution is stable
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Figure 1. Region plot for the eigenvalues µ1(λ, κ), µ2(λ,κ), where the perturbations around the new anistropic solution
decay (left), and the perturbations around the new anistropic solution decay and the new anisotropic solution describes an
anisotopic inflationary universe (right).
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5. Conclusions

In this work we investigated the existence of inflationary solutions on multifield cos-
mology with a homogeneous LRS anisotropic background space. In the context of Chiral
cosmology and for the model that describes the hyperbolic inflation in an FLRW back-
ground space, we found an anisotropic exact solution that provides anisotropic inflation
when the background spacetime has a negative spatial curvature, that is, the physical space
is described by the Kantowski–Sachs spacetime.

For the exact solution, the anisotropic parameter and the spatial curvature are ana-
logues. Therefore, when the curvature term vanishes, the physical space becomes isotropic.
The method that we applied for the derivation of the exact solution is based upon the inves-
tigation of Lie invariant functions, by calculating the Lie symmetries for the cosmological
field equations. Finally, the stability properties for these exact solutions were studied. We
found that the inflationary anisotropic solution can be a stable solution.

In contrary to the slow-roll inflationary solution for the single scalar field [1], in which
ψ̇ = 0, and 3α̇φ̇ ' −V,φ, in the hyperinflation the following expressions are true [35]:

φ̇ ' 6
2κ + λ

α̇ , (29)

which means that the evolution of the scalar field is independent on the derivative of the
potential. Hence, by replacing the new anisotropic solution in Equation (29) we find that it
is true, while for the second field ψ(t) it holds that

e−2κφψ̇2 = 6
(

1− 6
2κ + λ

)
α̇2 − α̇− 3

2
β̇2 −−2V(φ)− 2e−2α−βK (30)

where we conclude that we have derived the analogue for the hyperinflation in an
anisotropic background space.

At this point it is important to mention that the exact solution that we found does
not provide the limit of the cosmological constant [46]. Indeed, the declaration parameter
is q(t) = − 2(κ−λ)

2κ+λ and the limit for the cosmological constant is recovered when q(t) = 1,
that is λ = 0. However, in our analysis we considered λ 6= 0. For other forms of the scalar
field potential, it is possible that there exist exact solutions that provide the limit of the
cosmological constant. Such an analysis is outside the scope of this work, since we focused
on the exponential potential. From this result we can infer that the Chiral model provides
inflationary anisotropic solutions that can be used as a toy model for the study of the very
early universe.

Let us assume now the new anisotropic exact solution in the limit where κ
λ ' 1 + ε,

then α(t) =
(
1 + 2

3 ε
)

ln t and β(t) = 4
3 ε ln t. Hence, for ε2 = 0 the anisotropies are small,

and inflation can be described by the Hubble slow roll parameters [47] εH = − Ḣ
H2 , ηH =

ε̇H
Hε̇H

, from where we calculate εH ' 1− 2
3 ε and ηH = 0. However, these slow-roll pa-

rameters are similar to those of the exponential potential for the inflation field. However,
because of the additional degrees of freedom, the solution may not be always stable, and
thus the actual solution will be different from the exact solution.

In a future study we plan to investigate the stability properties for the general model
and also to investigate the behaviour of the inflationary parameters with initial conditions
near the region of the exact solution.
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Abstract: The flattening of spiral-galaxy rotation curves is unnatural in view of the expectations
from Kepler’s third law and a central mass. It is interesting, however, that the radius-independence
velocity is what one expects in one less dimension. In our three-dimensional space, the rotation curve
is natural if, outside the galaxy’s center, the gravitational potential corresponds to that of a very
prolate ellipsoid, filament, string, or otherwise cylindrical structure perpendicular to the galactic
plane. While there is observational evidence (and numerical simulations) for filamentary structure at
large scales, this has not been discussed at scales commensurable with galactic sizes. If, nevertheless,
the hypothesis is tentatively adopted, the scaling exponent of the baryonic Tully–Fisher relation due
to accretion of visible matter by the halo comes out to reasonably be 4. At a minimum, this analytical
limit would suggest that simulations yielding prolate haloes would provide a better overall fit to
small-scale galaxy data.

Keywords: galactic rotation; nonspherical gravitational sources; modified gravity

1. Introduction

With decades of effort [1], it has been established that the rotation speed of spiral
galaxies is largely independent of the distance to their center, v ∼ constant, even well
beyond the end of the luminous matter distribution, whereas Kepler’s third law applied
to a point-like mass or spherical source yields v ∼ 1/

√
r. This unexpected result (see

Figure 1 for a small sample of the SPARC data) is usually interpreted by (a) there being
non-luminous matter spherically distributed with a very specific radial dependence, which
is actively searched for in the laboratory (Dark Matter), or (b) Newton’s law of gravitation
is failing for small centripetal acceleration (Modified Newtonian Dynamics), and the force
law is different, yielding to a modified Kepler’s first law.

Figure 1. Galactic rotation curves show a flat (distance-independent) rotation velocity at large
distances to the galactic center (data sample from Reference [2], SPARC collaboration).
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Investigations on the first possibility have concentrated on spherical galactic haloes.
However, much evidence of dark matter in present-day cosmology seems consistent with
it having filamentary structure at large scales. Thus, it is reasonable to ask oneself down to
what scale is that filamentary organization meaningful.

At least for scales commensurable with those galaxy-sized ones, statistical gravita-
tional lensing analysis (stacking galaxy pairs) [3] is an interesting indication that there
actually are matter filaments extending between galaxies, though no actual filament has
been individually resolved, to my knowledge.

Figure 2 sketches the point of this article that there may be merit in allowing dark
matter at the galactic scale (∼10–100 kpc) to be organized in a cylindrical or otherwise
elongated, rather than spherical, geometry. A difference between spherical and elongated
gravitational-source distributions is the local density of dark matter at a given point in the
galactic equator, where elongated sources would assign a smaller density, concentrating it
instead along the polar regions.

Dark matter halo

    Contains DM 
in equatorial region
outside the luminous disk

“Dark matter” 
    filament
  (cylindrical)

Nothing to be found
  outside the high
galactic latitudes

Figure 2. (Left): A spherical halo of dark matter extending much beyond the disk of spiral galaxies.
The radial dependence of that mass distribution that yields a flat rotation curve is the quite unique
ρDM ∝ r−2. This can be obtained from hydrostatic equilibrium with an isothermal distribution, but
requires that dark matter is thermalized, involving some heat transfer mechanism (at odds with
dark matter particles being very weakly interacting). (Right): A cylindrical distribution extending
from the galactic polar regions explains flat rotation curves without any fine tuning: they are the
natural consequence of such gravitational source independently of its nature (whether dark matter
or otherwise) without having to abandon Newtonian mechanics for MOND or other modifications.
An immediate consequence of such geometry is that dark matter searches (by lensing or otherwise)
at low galactic latitudes have less scope.

2. Most Common Explanations for Flat Rotation Curves
2.1. Kepler’s Problem

The solar system responds mostly to the concentration of mass at its center in the sun.
Circular orbit equilibrium, together with Newton’s gravitation law, demands that

m
v2

r
=

GM�m
r2 , (1)

that is the simplest illustration of Kepler’s third law (T2 ∝ r3). Solving for the rotation
velocity v, one finds a velocity falling with the square root of the distance to the center

v =

√
GM√

r
. (2)

This simple law works flawlessly in the solar system down to a precision of 10−3–10−4, at
which level perturbations, largely due to Jupiter and other planets, become important (see
Section 5.2 below).
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However, extrapolating the law to galactic rotation curves, as seen in Figure 1, becomes
a startling failure, which has been a driver of much research in astrophysics: rotation curves
reach a plateau with an approximately constant velocity v∞ ∼ 30–300 km/s for tens of
kiloparsec, very much unlike Equation (2). Sometimes, modifications of General Relativity
are invoked as an explanation of the discrepancy, but a nonrelativistic, Newtonian treatment
should suffice to a reasonable precision since

vgalaxy

c
=

(30− 300) km/s
(3× 105 km/s)

= O(10−3) (3)

or less. A much explored possibility is to modify Newton’s laws, as recalled later in
Section 2.3.

Alternatively, since luminous matter in galaxies stops being dense enough well before
that flatness sets in, a dark matter halo that produces no light is most often postulated, that
I briefly recall in the next section, Section 2.2.

Indeed, if the orbit is inside the mass distribution, the mass in Equation (2) refers to
that of the inner sphere with the orbit as equator (from Gauss’s law), M(r). For example, a
constant density cloud would yield M(r) = 4π

3 r3ρ and a linearly-growing velocity field

v =

√
4
3

πGρr, (4)

not unlike what is observed for small r in usual rotation curves, such as the example in
Figure 1.

To obtain a constant velocity v ' v∞, independent of r, the density in the square root
of Equation (4) needs to cancel the r outside and, therefore, behave as ρ ∝ 1

r2 .

2.2. Standard Isothermal, Spherical Dark Matter Halo

Hydrostatic, nonrelativistic, equilibrium in a standard spherical halo made of fluid-like
matter dictates

dP
dr

= −Gρ(r)
r2

∫ r

0
4πr

′2ρ(r′)dr′, (5)

so that inner layers of the halo, at a higher pressure, can support the weight of the
outer ones.

The ideal gas law is usually employed to eliminate the pressure, so that

P(r) =
kB
m

T(r)ρ(r) , (6)

with m the typical “particle” matter, and T(r) the temperature field.
Taking a derivative of Equation (5) with respect to r, to convert it into a pure differential

equation, one finds [4]

kB
m

d
dr

(
r2

ρ(r)
d
dr

(T(r)ρ(r))
)
= −4πGr2ρ(r) . (7)

Under the hypothesis that the dark matter halo has reached a uniform temperature
(and it is not known how this happens, as it depends on the dark matter interactions, but
requires some sort of heat conduction between different spherical shells), one finds easily
that the equation admits the power-law solution

ρ ∝
1
r2 . (8)

This behavior is exactly what is needed to produce the observed flat rotation curves.
On the contrary, experimental searches for particulate dark matter at colliders [5]

(through production of dark matter particles), at underground laboratories [6,7] (through

113



Universe 2021, 7, 346

direct detection by collisions with nuclei), or at gamma-ray or other particle observa-
tories [8] (through indirect detection of presumed decay products) have all come up
empty-handed.

Searches for macroscopic-sized dark matter constituents, such as Massive Compact
Halo Objects, by gravitational lensing and by binary star disruption [9], have yielded
stringent constraints that leave little space for the existence of large dark matter chunks in
the halo. An exception that is still standing is the possibility of O(100M�) black holes [10].

2.3. Modified Newtonian Dynamics

An alternative to dark matter that naturally explains galaxy rotation curves is Modified
Newtonian Dynamics (MOND) [11]. The basic idea is to postulate a new scale a0 ∼
1.2× 10−10 m/s2 such that the acceleration caused by a force depends on its size respective
to this scale,

a > a0 aNewton = MG
r2

a < a0 a =
√

a0aNewton

. (9)

This recipe was thereafter formulated as an Effective Field Theory in the gravitational
potential and given shape as a bimetric theory of gravity [12].

A key prediction of MOND that is observationally a reasonable success is that the ex-
ponent of the baryonic Tully–Fisher relation (discussed below in Section 5) is exactly equal
to 4, so that Mluminous ∝ v4

∞. The intensity of the second peak of the cosmic microwave
background was also successfully predicted.

Another modification of the theory of gravity has been applied to the explana-
tion of galactic data by Varieschi in a series of articles contemporary to the present
manuscript [13–15]. The idea is that of so-called “Newtonian Fractional-Dimension Gravity”
(NFDG). If the space dimension is generalized from the integer 3 to a real number D, while
demanding Gauss’s law, the Newtonian potential becomes

φ̃(r/l0) = − 2π1−D/2Γ(D/2)
l0(D−2)

∫
ΩD

dD(r′/l0)
ρ(r′)l3

0
|r/l0−r′/l0|D/2 D 6= 2

φ̃(r/l0) =
∫

Ω2
d2(r′/l0) 2G

l0
ρ(r′)l3

0 ln |r/l0 − r′/l0| D = 2 .
(10)

For D = 2, this modified-gravity theory achieves the asymptotic flatness that is
thoroughly compared with MOND predictions in those works (additionally, MOND can be
directly derived from fractional gravity [16,17]). Moreover, it can also reproduce a non-flat
behavior of the galactic rotation curves by being able to smoothly interpolating between
D = 3 (conventional gravity) and D = 2. In this aspect, the approach is akin to those with
dark matter distributions controlled by one parameter. It will be interesting to see what its
implications are for yet larger scales: if it stabilizes in D = 2 or it continues decreasing into
distances relevant for cosmology. Substituting the factor 3 in the Friedmann-Robertson-
Walker equations by D must lead to a very different cosmological model.

Problems with large scale data are already an issue for MOND: the intensity of the 3rd
peak in the cosmic microwave background, the galaxy power spectrum, the gravitational
lensing in galactic cumuli, and, generically, observables at scales much larger than the
100 kpc one for which MOND was conceived, have turned out to be disappointing [18]. To
bring MOND into broad agreement with data, various authors typically supplement it with
additional matter [11] (such as sterile neutrinos, vector fields as in the TeVeS formulation,
etc.). Its advantages over dark matter-based formulations are then blurred.

Even more so, the claimed evidence for galaxies without dark matter [19] and the
analysis of the bullet cluster [20], where dark and conventional matter would be separated,
plays against MOND as therein no effect beyond what luminous matter suggests is visible:
whereas dark matter is contingent on accretion, modified gravity cannot be taken away
from conventional matter.

Finally, adoption of MOND would force us to abandon the theoretically compelling
nonrelativistic Newtonian theory, in which the flux of the gravitational field is conserved,
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so that its spreading in our three-dimensional world dilutes it over a 4πr2 sphere yielding
the 1/r2 law of gravity, and translational invariance implies Newton’s second law with the
conventional acceleration. MOND is unconvincing for most theorists.

However, the working recipe of Equation (9) to obtain the right galaxy rotation curves
can be obtained in a different, simple way.

3. Cylindrical Symmetry of the Gravitational Source

What MOND achieves by taking the square root of a constant times the 1/r2 force is
to moderate its falloff to 1/r, the geometric mean.

However, Gauss’s law suggests that F ∝ 1/r is the natural one in a two-dimensional
world. This is achieved routinely in electrostatics with a cylindrical/filamentary source
running from −∞ to ∞, yielding translational invariance along the OZ axis and effectively
leaving a two-dimensional theory in the perpendicular directions. Thus, while, in three-
dimension, F ∝ 1/r2 implies v2 ∝ 1/r (Kepler’s law), in two-dimension, F ∝ 1/r brings
the desired v2 ∝ constant about.

To see it, recall that the gravitational acceleration around a cylindrical mass distri-
bution, in cylindrical coordinates (r, φ, z), takes the form ~g = g(r)r̂ by symmetry. Its flux
outwards of a pillbox of height a surrounding the cylinder is

Φ =
∫ a

0
dz
∫ 2π

0
rdφr̂ ·~g = (2πa)rg(r) (11)

through its side, and zero through its lids. Because of Gauss’s law, the flux is also

Φ = −2πa
∫ r

0
ρ∆V(ρ)dρ = −(4πG)m (12)

in terms of the gravitational potential, with ~g = −∇V and with m the mass contained by
the pillbox. If the linear mass density of the cylinder is

λ =
dm
dz

, (13)

combining Equations (11) and (12) yields

~g =
−2Gλr̂

r
, (14)

that, of course, stems from a potential

V(r) = 2Gλ ln
(

r
r0

)
. (15)

As it diverges at large r, its zero needs to be arbitrarily chosen at a certain r0.
This is a staple discussion of any textbook covering electrostatics, and the potential is

the natural one conserving the integrated flux out of the source in a reduced 2-dimensional
problem. However, it is not often discussed in the context of gravitational interactions
because of the scarcity of known large cylindrical sources of gravity.

The extraction of the rotation velocity mirroring that of Section 2.1 proceeds by again
equating the gravitational and centripetal forces for a circular orbit

mg =
2mGλ

r
. (16)

This indeed yields a distance-independent rotation velocity,

v2 = 2Gλ . (17)
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This formula contains one independent parameter, λ = m/L, the linear mass–density
of the cylindrical source, and notably absent is R, the radius of the cylinder in the transverse
direction to be discussed shortly.

Let me put some figures to Equation (17). Conveniently, take the velocity in terms of
a dimensionless parameter of order 1, v = v100 (100 km/s), and substitute Cavendish’s
constant G so that

λ = 1.16v2
100 × 1012M�/Mpc . (18)

For the Andromeda galaxy, v100 ' 2.2; therefore, λ = 5.6× 1012M�/ Mpc. To understand
this number, we need to think that a Megaparsec of such filament (the typical galaxy–galaxy
separation) contains about 7 times the stellar mass of Andromeda, Mstellar ' 8× 1011M�.
This means that such filamentary structure is compatible with the overall dark matter
fraction needed for the cosmic sum rule ΩΛ + ΩDM + Ωb = 1 in present day’s cosmology,
with Ωb ∼ 4% and ΩDM ∼ 23%.

3.1. Corrections to a Basic Filamentary Geometry

Next, let us relax the assumption of an infinitely long cylinder of unspecified radius
and see the corrections brought about by various geometrical modifications.

3.1.1. Finite-Length Cylinder

First, consider a finite cylinder that, instead of extending over the entire OZ axis
(−∞, ∞), does so only over the interval (−a, a).

Matter naturally accretes to the horizontal plane by the center of the cylinder where
the gravitational potential is minimum, and, there, Equation (17) is replaced by

vequator '
√

2Gλ(1− r2

2a2 ) . (19)

Thus, the end of the filament threading, the galaxy is reflected in the velocity field starting
to falloff at sufficient distance.

There is scarce data suggesting such fall for most galaxies in the SPARC catalogue.
However, it can be accommodated within the uncertainty bands of the velocity measured.
With typical error of 10 km/s in v = 200 km/s, we can propagate the error backwards
and find

a ≥ 1.6 rbreak, (20)

with rbreak being the point at which the constant velocity law might start breaking down.
Data for our neighboring Andromeda galaxy has been reported, suggesting that, at

100 kpc, the velocity field starts diminishing in modulus [21]. Taking that data at face
value, for Andromeda rbreak ∼ 0.1 Mpc) implies an elongated source out to at most a
similar length.

3.1.2. Finite-Width Cylinder

If the density of a finite-sized cylinder of radius R is uniform, ρ = constant, the linear
density becomes quadratic λ(r) = 2π

∫ r
0 r′dr′ρ(r′) ∝ r2, and the velocity field inside the

cylinder shows a linear rise,

v =
√

2Gλ
r
R

. (21)

Matching this to the flat rotation curve of Equation (17) yields a reasonable first-order
explanation of typical spiral rotation, as shown in Figure 3.
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Figure 3. A linear rise out to a radius R given by Equation (21), followed by a flat v∞ =
√

2Gλ,
is a reasonable first approximation to numerous spiral galaxy rotation curves, and follows from a
finite-sized cylinder of uniform density. Of course, edge effects or other density profiles could be
included in extensive studies.

With a power law density profile, one would obtain an additional factor of (1 −
2

α+2 (r/R)α) that I have not yet attempted to match to the data (An extended study of
the entire SPARC database with several different geometries is underway [22], and the
resulting χ2 distributions will be reported elsewhere.).

3.1.3. Rotation Curve Outside a Sphere + Filament Distribution Arrangement

One can combine the leading cylindrical mass distribution with a smaller spherical
one that can represent the visible matter bulge (and only very crudely, the monopole
contribution of the galactic disk).

In terms of the cylinder’s linear mass density and of the sphere’s mass, the velocity
field takes the form

v =

√
2Gλ +

GM
r

, (22)

that converges v → v∞ =
√

2Gλ at large radii. The SPARC data file offers examples of
rotation curves where this effect might be visible, and one of them is plotted in Figure 4.

    Constant v
     (filament)

r

    Kepler's 3rd law
     (disk, bulge)

Figure 4. Left: Scheme showing how the velocity falls towards the asymptotic limit given by the
filament alone, as the contribution of the sphere becomes smaller as per Kepler’s third law. Right:
An example galaxy curve extracted off the SPARC database where the effect might be visible.
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4. Classical Equations of Motion Outside the Filament

The cylindrical symmetry and the conservative gravitational potential provide us with
two constants of motion: the energy E0 and angular momentum along the cylinder’s axis
Lz. This means that, out of the three second-order differential equations for the cylindrical
coordinates (r, ϕ, z), two can be integrated once. If these are chosen to be that for ϕ and
that for r, Newton’s equations become

ϕ̇ =
Lz

mr2 (23)

z̈ =
−GMz

(z2 + r2)3/2

ṙ =

√
2E0

m
− L2

z
2m2r2 − ż2 +

2GM√
r2 + z2

− 4Gλ ln(r),

in which the potential due to the cylinder appears in the square root,

V(r) = 4Gλ ln(r) . (24)

The first two of Equation (23) are the same as in the planar Kepler problem. It is the third
one that shows a difference due to the presence of the cylinder. We next explore a few
consequences of these equations.

4.1. Helicoidal Motion along the Filament

The first kind of motion is helicoidal along a filament, sketched in Figure 5, with r
constant, ṙ = 0, ż, and ϕ̇ also constant.

Though, in late-time cosmology, the voids around the filaments have little matter to
accrete, matter can still hop from galaxy to galaxy along the cylinders in a helicoidal manner.
This costs only the gravitational energy needed to escape the field of the luminous matter
in the galaxy disk, while the displacement along the filament, because of Equation (23),
takes place with constant vz, or dvz

dt = 0 far from the galaxy.

Figure 5. At large distance from any galaxy, movement along cosmic web filaments is helicoidal.
This is well known from the movement along a B field in electrodynamics; the difference here is that
not only charged particles, but also neutral objects (whether gas or any sort of aggregate), by the
equivalence principle, follow the helix. The trajectory is stretched by the galaxy upon approaching it
when the acceleration due to the extra mass at the end is felt.

4.1.1. Cyclotron/Synchrotron Radiation

When charged particles follow such helicoidal trajectory, they radiate. The phe-
nomenon is analogous to circular trajectories in a magnetic field, but there are several
curious differences that I now expose.

Unlike in conventional magnetic synchrotrons, the rotation around the filament, by
construction (after all, that is what yields flat galaxy rotation curves) occurs with constant
perpendicular velocity

v2
⊥ =

2Gλ

γ
, (25)
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where, if the motion is relativistic, the Lorentz time-dilation factor γ > 1 has to be taken
into account. The gyration period then grows with distance, so that the angular frequency
falls with r,

ω =

√
2Gλ√
γr

(26)

(compare this with the equivalent (eB)/(γmec), an r-independent constant, in a B field).
The characteristic frequency can then be read off the conventional synchrotron theory

but substituting for the ω in Equation (26) as

νchar = 0.29
3
2

γ2.5
√

2Gλ

r
, (27)

and the total power emitted as

P =
2
3

e2

c3 γ4
(

2Gλ

γr

)2
. (28)

A first remarkable property of these expressions is the dependence in e2λ as opposed to the
e4 dependence of conventional radiation (the e2 from emitting photons is common to both,
but the force to turn the trajectory is ∝ e2 in the Lorentz force case, ∝ λ in the gravitational
one). A second difference is the inverse-r dependence that distinguishes it from radiation
in a uniform B-field. The integrated emission is dominated by the inner electrons in the
radial distribution, since

∫
R n(r)dr/r2 ' n/R diverges for small R.

These observables serve to distinguish between an infinitely thin filament (such as a
cosmic string) and a cylinder of more or less uniform density. In the first case, electrons
near the filament (R→ 0) strongly radiate synchrotron power, which should be observable.
In that case, additionally, a clear prediction is that this polar synchrotron radiation is
correlated with the galactic rotation parameter

√
2Gλ.

In the second case, a finite cylinder with λinside(r) ∝ r2, the maximum emission
happens at the filament’s edge; however, R being now of galactic ∼ 10 kpc scale, the
frequency and power are very suppressed, and the radiation is negligible.

It is known that numerous elliptical galaxies, for example, M87, radiate synchrotron-
like along a filament (likely due to jet emission). There seem to be only four known spiral
galaxies that radiate in the same way: J1352+3126, J1159+5820, J1649+2635, and J083+0532.
These sources are not found in the SPARC database, so that I cannot presently answer
whether their synchrotron radiation is or not correlated with their rotation velocity. We
really should not expect this, but that would be a fun observation.

4.1.2. Galactic Aurora

It is well known that matter being pushed in jets out of an active galactic nucleus, for
example, can heat up the medium and radiate. However, the situation is symmetric, and
there can be matter propagating along the filament that falls into a galaxy from the poles.
The produced radiation would be totally analogous to the phenomenon of the Aurora when
charged particles fall on Earth following its magnetic field. Except, once more, neutral gas
and matter chunks moving along the filament can now also cause it.

The effect could be similar to known axial structures, for example, the γ-ray bubbles
of Fermi/LAT (respectively, the X-ray emission of ROSAT) over the north and under the
south poles of the Milky Way [23].

4.2. Radial Motion towards the Filament

The purely radial motion towards the cylinder, far from the galaxy (large z) and with
vanishing angular momentum Lz = 0, is interesting by itself, to evaluate the time that it
takes for a filament to empty its environment by accreting all available matter.
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The resulting one-dimensional radial equation from Equation (23) yields a time for
moving a parcel of matter from distance d into the cylinder radius R given by

t =
∫ R

d

dr
√

4Gλ log1/2
(

d
r

) . (29)

Upon substituting a typical value for
√

4Gλ ' 10−3c ' 0.307 Mpc/Myr, one obtains

t = 3.26Gyr×
∫ R

d

dr(Mpc)

log1/2(d/r)
. (30)

To clean up a distance out to d = 1 Mpc, and bring the material into R = 0.1 Mpc, the value
of the integral (numerically evaluated) is 1.7, yielding t = 5.7 Gyr. This is, of course, the
standard formation of empty bubbles seen in SDSS, as well as computer simulations. All
matter has had time to accrete to nearby filaments during a Hubble time.

4.3. Precession of Orbits Outside but near the Galactic Plane

Motion in the disk of the galaxy, supposed nearly perpendicular to the dark filament,
is planar. However, perturbations above or below this plane put satellites in a precessing
motion whose instantaneous plane is rotating around the axis (see Figure 6).

Figure 6. The generic motion of a satellite bound to the galaxy but off its disk’s plane is not planar:
the instantaneous orbital plane precesses around the cylinder. It can be seen by noting that the
angular frequency of vertical motion ωz coincides with that of the Newtonian problem, consistently
with the translational invariance of the filament, but the oscillation angular frequency ω⊥ in the
orbital plane differs due to the part of the force caused by Gλ.

This comes about because vertical oscillation are unaffected by the cylinder and remain
as in the two-body Keplerian problem: around z = 0,

ωz =

√
GM
r3 (31)

(Kepler’s third law), as can be seen from the second of Equation (23) corresponding to
vertical motion.
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Horizontal motion, however, returns to the same position with an angular frequency

ω⊥ =

√
ω2

z +
2Gλ

r2

=

√

ω2
z +

v2
⊥∞
r2 . (32)

This is modified by the presence of the cylinder.
At certain radial distances, the resonance condition (that yields closed orbits) is met,

and the ratio ωz/ω⊥ is a rational number, a quotient of two integers. These rs may be
written as

r =
GM
v2
⊥∞

(( n
m

)2
− 1
)

. (33)

Such distances would yield less chaotic, less collisional orbits around the cylinder+galaxy
mass distribution. For integer n/m, the orbital times are too large [24]: with the Andromeda
numbers, GM/v2

∞ ' 166 kpc. The smallest integer n2 − 1 = 3 then yields about half a
Mpc, which amounts to a 10 M lightyear circumference. Because v⊥ ' 10−3c, the orbital
time is of order 1/H, commensurable with the entire lifetime of the universe. However, for
rational (smaller) n/m, perhaps some regularity in the satellite distribution can be found
which correlates with the galactic rotation velocity, as in Equation (33).

In truth, it is not strictly necessary to require dark matter structures perpendicular to
the galactic plane; if the angle between the disk and the cylinder- or cigar-like distribution
was notably less than 90 degrees, the movement on the plane of the disk itself would be
similar, except for a projection factor between the radius r on the disk and r⊥, its projection
over the plane perpendicular to the filament, now different enough to require different
variables. This projection factor being constant, it would not be directly measurable in the
disk motion but shifted to the linear mass density in Equation (17) through the velocity,

λ =
v2
⊥

2G
→ λapparent =

v2

2G
=

v2
⊥

2G cos2 θ
. (34)

However, what would be observable is the long-term precession of the galactic plane that
might give rise to interesting structures in stellar streams [25] or satellites.

5. The Tully–Fisher Relation

The renowned empirical Tully–Fisher relation [26] relates magnitude (light) and
linewidth (velocity dispersion, a proxy for mass) was originally applied to assist with the
cosmic distance ladder.

However, the striking feature is that the first depends on visible, ordinary, baryonic
matter, and the second, however, on the total matter, whether dark or not. This strongly
suggests that we should set the amount of dark matter to be proportional to that of
luminous matter, a feature that, from the point of view of dark matter theories, is a complex
dynamical effect without a very clear explanation. MOND, however, does predict this
effect, as it modifies the effect of matter respecting the proportionality a ∝ M, and it is the
distance-dependence that is modified.

This relation between was later extended to the “Baryonic Tully–Fisher relation” closer
to the discussion of this article, a power-law constraint between the rotation velocity v and
the luminous mass ML ∝ vα.

5.1. Luminous Matter Accretion on a Filamentary Overdensity

First, let us assume that the filaments or cylinders are simply overdensities of dark
matter. Then, if ordinary matter can fall towards any two nearby ones, it will do so towards
the one exerting the largest force (see Figure 7).
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Figure 7. A denser dark matter filament cleans of luminous matter a larger area around it, with
radius r ∝ λ. The baryonic matter so accreted forms ordinary galaxies, so a dynamical (not exact)
baryonic Tully–Fisher law follows, Mluminous ∝ v4.

The force is proportional to the filament linear density and inversely proportional to
the distance, F ∝ λ

r , as per Equation (14). Therefore, the point at which the forces from two
nearly parallel cylinders equilibrate is given by

r1

r2
=

λ1

λ2
. (35)

Thus, each dark filament cleans of gas an area extending out to r ∝ λ. That area, taking a
length h along the OZ axis, spans a volume πr2h; thus, it contains an amount of luminous
matter given by

Mluminous = πr2hρ̄luminous . (36)

Thus, Mluminous ∝ λ2 and, invoking Equation (17), that makes λ ∝ v2,

Mluminous ∝ v4 . (37)

Thus, the prediction of a cylindrically symmetric distribution of dark matter (or whatever
gravitational source) coincides with that of Modified Newtonian Dynamics, that also yields
an exponent of 4.

If we were to repeat the same reasoning for a spherical distribution, we would first
have to argue for a density distribution ρ ∝ 1/r2 to yield a constant galactic rotation
velocity (as in Equation (8)). A typical average density of dark matter ρ̄ would follow from
it, and M ∝ R3 would apply. Independently of that profile, taking v∞ beyond the end of the
spherical distribution, v∞ ∝

√
M/
√

R (Kepler’s third law), would then give v∞ ∝ M1/3.
This proportionality would apply for all matter, luminous or otherwise. To convert

it to a relation involving Mluminous, we would need to consider that the (larger) volume
cleaned in the accretion of luminous matter to the dark lump would have R2

accretion ∝ M
from the force law from Equation (1). Since Mluminous ∝ R2

accretion, we would conclude that
Mluminous ∝ M3/2. Taking this to v∞ would finally yield

Mluminous ∝ v9/2 (sphere). (38)

This is larger than and distinguishable from Equation (37). Obtaining other powers is
possible with different assumptions, but the bottom line is that the sphere’s relation has a
larger exponent than the cylindrical one due to the different force law.

As typical data gives an exponent somewhere between 3 and 4 [27], it would perhaps
suggest elongated geometry.

5.2. Scaling down to the Solar System

In this subsection, alone, I discuss a point of view that is disfavored by mounting evi-
dence from the bullet-cluster and galaxies devoid of dark matter, that the extra gravitation
might still be due to a phenomenon attaching to ordinary matter (such as strings coupling
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to either of mass or its proxies, baryon or lepton number). This assumption elevates the
Tully–Fisher relation from a dynamical effect to an actual law.

If that is the case, one could wonder how much would the effect be at solar system
scales: could it be possible that a dark matter filament extended out of the solar poles and
it had not been detected? This is actually not so easy to discard from planetary rotation
measurements alone.

First, let us observe that the precision in the measurement of planet’s distances r (a),
for example, Mercury, reaches 10−8 AU. Additionally, the measurement of their velocities
is precise to 10−2 km/s. This yields a sensitivity floor on the v(r) diagram below which no
new effect would be visible yet (shaded band in Figure 8).

Because, under the assumption that the Tully–Fisher relation is exact and not a dynam-
ical effect, λ ∝ M, the known linear density of the filament associated to the entire galaxy
can be rescaled to what would correspond to the solar system by means of v ∝

√
λ ∝ M, so

that, taking the ratio of the solar to the galactic mass,

vSS = vgalaxy

√
1M�

(25.7± 2.3)× 1010M�
. (39)

Taking the resulting (dashed line) “flat velocity” to the solar system graph in Figure 8,
we see that it comfortably lies two orders of magnitude below the precision achieved
(which is already good enough to require isolation of much larger effects from conventional
few-body classical mechanics).

Figure 8. If the Tully–Fisher relation was an exact law and dark matter filaments were somehow
attached to luminous matter, extrapolation of the flat rotation velocity (dashed line) from galaxy to
solar mass would make the resulting velocity contribution too small to be detected: it lies well below
Kepler’s curve and the achieved precision in measuring planet velocities.

Of course, in conventional dark matter scenarios, there is no reason to believe any par-
ticular concentration of such material near the solar system, and no effect is expected here.

5.3. Inference by Stellar Scattering

In this subsection, I turn to the detectability in our own galaxy via surveys, such as
GAIA [28,29]. The idea is that, should filamentary overdensities of dark matter exist, even
if they are not directly visible, unlike filamentary gas structures [30], they might still be
inferable by the behavior of nearby objects.

The theory for the scattering by a Newtonian 1/r2 force is well-known [31], and the
geometry is depicted in Figure 9.
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Distance  
 b / cos θ 

b:  Impact
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θ
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Figure 9. Geometry for the momentum transfer in a collision in the impact approximation [31]
of a star (2) on either a spherical or a perpendicular cylindrical source (1), in the latter’s reference
frame. The trajectory along v2 is practically straight and with constant velocity, with the transferred
momentum approximately perpendicular to it.

Therein, the impact parameter is b, and the perpendicular force at a visual angle θ is

F⊥ = cos θ
Gm1m2

(b/ cos θ)2 . (40)

If the scatterer is not a spherical body but, rather, a cylindrical one with linear mass density
λ1, the force law is modified to

F⊥ = cos2 θ
2m2λ1G

b
. (41)

The one less power of 1/r (see Equation (14)) entails here one less power of cos θ, that
yields an inconsequential numeric factor but, more importantly, one less power of b−1 in
the denominator.

The momentum transfer to the projectile can be obtained by integrating the instanta-
neous impulse,

∆p⊥ =
∫ +∞

−∞
dtF⊥ ; (42)

the integration time can be eliminated by the visual angle that is swiped along the (almost
straight) scattered trajectory by

v2dt = d(b tan θ) . (43)

Carrying the integration out with the 1/r2 or the 1/r forces just given yields

∆p⊥ =
2Gm1m2

bv2
(spherical scatterer), (44)

∆p⊥ =
2πGλ1m2

v2
(cylindrical scatterer) . (45)

The change from standard spherical scattering is the replacement of m1 by πλb. This
entails that Equation (45) is independent of the impact parameter! That provides an
interesting way of identifying such events: all stars in a small swarm or stellar stream
change their velocity in the same amount (which is a feature that can be triggered on by
Gaia’s radial velocity measurements) and the ensemble of star’s maintains its shape, as all
its members slightly turn their velocities by the same amount.

As for the smallest filament so-detectable, solving for λ and using v2⊥ = p2⊥
m , we have

λ =
v2∆v2⊥

2πG
; (46)
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the quantity v2∆v2⊥/π can be reasonably measured by GAIA down to 10 (km/s)2 (given
typical peculiar velocities of 30 km/s and a measurement precision of 1 km/s, that limits
the accessible ∆v2⊥).

Since this directly yields the (2Gλ) factor of the scatterer, that can be compared to a
galaxy’s (2Gλ) of order (250 km/s)2, we see that only scatterers by cylindrical overdensities
of order 1%− 0.1% of the galactic ones will be conceivably detectable.

This discussion is relevant to distinguish whether the galactic dark matter halo, be
it or not vertically elongated, can be composed of dark gas (WIMPS) or dark spherical
bodies (MACHOS), for example, in which case this peculiar b-independent scattering will
not be present, or whether there is a filamentary structure of dark matter at yet smaller
scales than the galactic one. The peculiar motion of stars arises from random influences
by stars and gas clouds (local overdensities above the average), so obviously it does
not help with the global dark matter halo properties, but it would help with subhaloes
or structures large enough, and in the context of this manuscript, with subfilaments or
generally elongated overdensities.

A second handle to such potential substructure comes from the bound state problem
instead of scattering. It falls off from the obvious observation that stars can orbit such
subfilaments in an epicyclical fashion, with a velocity around the galactic center of order√

2Gλ and a secondary velocity
√

2Gλ′. Such bound stars perform a secondary oscillation
that, crucially, is independent of the distance to the source. Thus, if such subfilaments exist,
they are characterizable.

5.4. Direct Imaging

Galaxy catalogues, such as the Sloan Digital Sky Survey [32], clearly show that galaxies
extend in filamentary structures forming a “cosmic web”. At a scale of 40 Mpc, computer
simulations do show a matching cosmic web of dark matter, where such linear structures
are very prominent [33]. Zooming into smaller scales, it would appear that the filaments
do extend, in the simulations, from galaxy to galaxy (see a beautiful illustration, last
accessed on 10 September 2021, in https://skymaps.horizon-simulation.org/html/hz_
AGN_lightcone.html).

It also appears that, looking back in time, one can also discern the filaments at a
relatively smaller scale, directly linking galaxies, from observational data [34].

Further, though gravitational lensing has not been yet used to claim a filament at a
galactic scale, a literature search reveals that a statistical stacking of galaxy pairs, with
a rescaling performed so that all pairs sit on top of each others, shows evidence for
dark matter filaments extending between neighboring galaxies [3], as mentioned above in
Section 1. In addition to the imaged filament, these authors report that up to 1.5× 1013 Solar
masses could be contained in such a filament, as per their lensing data. If this turns out to
be statistically robust, it would eventually account for most of the dark matter, not leaving
too much for spherical haloes. Further confirmation would entail that dark matter accretion
has not evolved as much as usually assumed (from a homogeneous medium, to flat sheets,
to filaments, to spherical structures: this last step would not be completed at today’s t0
cosmic time).

In the end, in spite of the many investigations addressing dark matter filaments,
neither do those authors (nor many others) seem to have remarked the importance of the
longitudinal structures that they were revealing for explaining galaxy rotation curves.

6. Further Consequences
6.1. Galaxy Plane—Galaxy Plane Correlations

If dark matter filaments extend between two or more galaxies, as revealed by both
simulations and statistical stacking of galaxies in lensing studies, as discussed in Section 5.4,
the two galaxy planes are correlated because both are preferentially perpendicular to the
filament, as illustrated in Figure 10.
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Figure 10. If a filament threads two or more galaxies before significantly bending, their rotation
planes (perpendicular to the dark matter rope tying them) are parallel. Since the filaments are not
visible in principle, one needs to correlate a distribution of galaxies. However, knowing that it is
perpendicular to the spiral rotation plane, noise-reduction strategy is to not include all the space
surrounding a given galaxy but, rather, to span only a cone given by a certain opening angle θ and
then tighten that angle to improve the correlation.

As a measure of that correlation, one can take a sample of galaxies in a given volume
and average the absolute value of their relative orientation cosine,

ξ = |〈n̂1 · n̂2〉| . (47)

In an infinite sample of randomly oriented galaxies, this number tends to zero. However,
the approach to zero is slower if a few galaxies have oriented planes of rotation. To illustrate
it, I have performed a simple calculation, shown in Figure 11. Spheres of increasing radius
up to 10 Mpc are taken around a given galaxy, containing 1 galaxy/Mpc3 with its plane
randomly oriented. The blue squares show that, indeed, the average over all pairs of their
relative orientation cosine quickly vanishes upon averaging over a sphere with the radius r
indicated in the OX axis.

A line of a few equidistant, parallel galaxies, is then added over the north pole and
under the south pole (red circles). Finally, the average is limited not to the whole sphere
out to r, but to a cone of polar angle

θ ∈ [0, θmax] ∪ [π − θmax, π], (48)

where the θmax varies between plots. The resulting correlation is significantly larger for
small r.

The observable so-constructed is clear, but its interpretation is more ambiguous, as
it can also be obtained by tidal effects of a different type. It has, indeed, been shown in
simulations, such as Illustris-1 [35] or Horizon [36]. Even observational evidence has been
claimed for a while now [37] and looks reminiscent of Figure 11.

6.2. Virial Theorem for Small Galaxy Clusters

A further comment that deserves attention is related to the virial, often used to extract
the mass of galaxy clusters. If the time scale characteristic of the motion, τ, allows for
filament-filament interaction to have virialized, because the filaments are extended, their
interaction is closer to a 2-dimensional gas instead of a three-dimensional gas of spheres.
In that case, the standard

〈T〉 = −1
2 ∑ Fkrk (49)

that yields, for Newtonian potentials,

〈T〉 = −1
2
〈V〉 (50)
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Figure 11. Toy simulations of a galaxy plane—galaxy plane correlation as function of the correlation
distance. From top to bottom, the polar angle cut is tightened around the filament axis, so that the
cone included features less random galaxies (but always the random ones along the filament). Blue
squares: just the random galaxies. Red circles: the filament is now posited to thread perfectly oriented
galaxies spaced at 1 Mpc, which are added to the sample from which the correlation is calculated.

is modified to its reduced-dimensional form with F ∝ 1/r ⇒,

〈T〉 ∼ constant, (51)

without a power dependence on the potential V. I have not studied whether τ is smaller
enough than 1/H to have allowed such large structures to virialize.

6.3. Gravitational Lensing

The dark matter distribution of galactic haloes can be assessed with gravitational
lensing, and, their shape is particularly amenable to study. The basic theory of lensing by
an arbitrarily distorted mass distribution has recently been put forward by Turyshev [38],
in terms of a spherical harmonic expansion. This allows studies of lensing with high
distortion; in the extreme case of cylindrical distributions, one can use the geodesics of
cylindrical solutions to Einstein’s equations [39].

For smaller distortions, limited to an ellipticity in the dark matter halo of a localized
population of galaxies, existing work has, indeed, extracted a significant deformation from
Hubble space telescope data on gravitational lensing [40]. No specific analysis for spiral
galaxies, where rotational curves have been measured, has been carried out.

This is an attractive venue for specialists in theoretical physics that will be revisited.

7. Discussion

Adopting the point of view that the source of the extra gravitational field driving
galactic rotation curves is cylindrically distributed, or very elongated, their flatness is
automatic (it is just Kepler’s third law in one less dimension). No fine tuning of the dark
matter distribution is needed; and the gravitational force remains the natural one in which
the flux of the gravitational field is the same across concentric surfaces and the gravitational
force just falls off because of its dilution (consistently with Gauss’s law and Newtonian
gravity). I believe this is a very educational exercise.

Whatever dark matter may fundamentally be, having it distributed with a spherical
geometry is not a necessity. In fact, a cylindrically-symmetric distribution explains galactic

127



Universe 2021, 7, 346

rotation curves just as well as a halo and allows for disposing of a hypothesis, such as
temperature equilibration across that halo.

There is ample evidence for a filamentary structure at large scales in the universe, so
the tenet is not in contradiction with most of the literature. The point of view, that those
filaments are relevant at the kpc galactic scale, has not been observed in the literature,
at least not widely enough to call for a solution of the galaxy rotation problem, though
investigations of “fuzzy dark matter” [41] seem to be favoring more filamentary structures.

The nature of such hypothetical filaments or elongated haloes remains, such as gen-
erally that of dark matter, unknown. Much work has been devoted to cosmic strings and
their networks [42]. Alternatively, more conventional dark matter, thought of as unspeci-
fied gravitating “stuff”, could be accreting and, still today, be organized in longitudinal
structure rather than more spherical haloes. In that case, these flat rotation curves are a
temporary effect: as accretion continues from cylinders into spherical haloes, they will look
more “Keplerian” in another few Gyr.

In any case, this fun work shows that galactic rotation curves are natural in the analytic
limit in which the gravitational source is cylindrical. Thus, simulations of dark matter
haloes would improve the rotational-data fit quality if the outcome distributions were much
more prolate [43] than usually considered in this context. Fuzzy dark matter simulations
may be a worthwhile endeavor.
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Abstract: The recent data release by the Planck satellite collaboration presents a renewed challenge for
modified theories of gravitation. Such theories must be capable of reproducing the observed angular
power spectrum of the cosmic microwave background radiation. For modified theories of gravity,
an added challenge lies in the fact that standard computational tools do not readily accommodate
the features of a theory with a variable gravitational coupling coefficient. An alternative is to use
less accurate but more easily modifiable semianalytical approximations to reproduce at least the
qualitative features of the angular power spectrum. We extend a calculation that was used previously
to demonstrate compatibility between the Scalar–Tensor–Vector–Gravity (STVG) theory, also known
by the acronym MOG, and data from the Wilkinson Microwave Anisotropy Probe (WMAP) to
show the consistency between the theory and the newly released Planck 2018 data. We find that
within the limits of this approximation, the theory accurately reproduces the features of the angular
power spectrum.

Keywords: cosmology:theory; large-scale structure of universe; gravitation

PACS: 04.20.Cv; 04.50.Kd; 04.80.Cc; 45.20.D-; 45.50.-j; 98.80.-k

1. Introduction

Though highly isotropic, the cosmic microwave background (CMB) shows small tem-
perature fluctuations as a function of the sky direction. The magnitude of these fluctuations
depends on the angular size. This location and size of these peaks is an important pre-
diction of the standard model of cosmology, which has been confirmed by increasingly
accurate experiments, such as the Boomerang experiment [1], the Wilkinson Microwave
Anisotropy Probe (WMAP, [2]), and the Planck satellite [3].

The angular power spectrum of the CMB can be calculated in a variety of ways. The
preferred method is to use numerical software, such as CMBFAST [4]. Unfortunately, such
software packages cannot be easily adapted for use with a variable-G theory of gravitation,
such as the Scalar–Tensor–Vector–Gravity (STVG [5]) theory, also known as MOdified
Gravity (MOG).

There are alternative methods of calculation, which, though somewhat less accurate,
nonetheless capture the essential qualitative features of the CMB angular power spectrum.
The advantage of such calculations is that the physics is transparent and not obscured by
“black box” computer code; additionally, the calculations can be adapted with relative ease
to accommodate a different theory. One such method is the semianalytical approximation
presented in Ref. [6].

We have, in fact, used this approximation in the past showing the agreement between
the predictions of the MOG theory and the WMAP results [7,8]. In light of the recently
published Planck 2018 results, it is important to revisit and refine this computation and
also extend it to high values of the multipole index `.

We begin in Section 2 with a brief introduction to the MOG theory and its accelera-
tion law, which gives rise to the theory’s effective gravitational coupling parameter. In
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Section 3, we introduce the angular power spectrum and its semianalytical approximation,
as presented in Ref. [6] (which the interested reader is advised to consult for details). We
adapt the calculation to the MOG theory and show the results. We conclude by presenting
our discussion and conclusions in Section 4.

2. The MOG Theory

Our MOG modified gravity theory, also known as Scalar–Tensor–Vector–Gravity
(STVG [5]), is a relativistic theory of gravitation based on an action principle. In addition
to the metrical field of gravitation, the theory introduces a repulsive vector field of finite
range. The gravitational constant and the vector field range (mass) parameter are promoted
to dynamical (massless) scalar fields. Within the range of the vector field, the theory
replicates Newtonian gravitation; outside this range, in the absence of the repulsive force,
gravitation is stronger. By this feature, the theory successfully accounts for galaxy rotation
curves [9–13], the matter power spectrum [8], and other cosmological observations [14]
while also remaining consistent with recent gravitational wave data [15].

In the weak field, low-velocity regime, the MOG theory yields a simple gravitational
acceleration law [16]. For a point source of gravitation characterized by mass M at the
origin, the gravitational acceleration at position r is given by

r̈ = −GeffM
r3 r, (1)

with

Geff = GN
[
1 + α− α(1 + µr)e−µr], (2)

where GN is Newton’s constant of gravitation, the dimensionless quantity α = (G −
GN)/GN (i.e., G = (1 + α)GN) characterizes the difference between the theory’s variable
gravitational coupling coefficient G and GN , and µ is the mass of the vector field.

In an approximately homogeneous and isotropic universe, α and µ can be taken as
constants. Consequently, at distance scales characterized by µr � 1, Geff ∼ GN(1 + α) can
be treated as constant as well.

The Friedmann equations that describe a homogeneous and isotropic universe re-
main valid in the MOG theory [7,8,17,18], with only trivial modifications, which is not
surprising given that these equations can also be heuristically derived from the Newtonian
theory [6,19]. The equations read (using c = 1):

ȧ2

a2 +
k
a2 =

8πGeffρ

3
+

Λ
3

, (3)

ä
a
= −4πGeff

3
(ρ + 3p) +

Λ
3

. (4)

The critical density, characterized by k = 0, Λ = 0, is given by

ρMOG
crit =

3H2

8πGeff
, (5)

where H = ȧ/a.
Note the presence of a factor of 1/(1 + α) in this definition of ρcrit. Consequently,

for a given baryon density ρb, the corresponding density parameter Ωb is inflated by this
same factor:

ΩMOG
b =

ρb

ρMOG
crit

= (1 + α)
8πGNρb

3H2 = (1 + α)Ωb. (6)

Often, in cosmological calculations, Ωb is used to represent the baryon density in
equations describing both gravitational and nongravitational interactions. Clearly, this
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convenience is lost in the case of modified gravity in the presence of the (1 + α) factor,
which only applies to gravitational interactions.

3. Modeling the Cosmic Microwave Background (CMB)

It is surprisingly difficult to analyze high-quality Cosmic Microwave Background
(CMB) data sets from the perspective of a modified gravity theory, such as MOG. The main
reason for this difficulty lies in the fact that, as we alluded to above, the dimensionless
density parameter Ωb is used to represent baryonic matter in calculations that involve
gravity as well as calculations that represent nongravitational physics.

Why is this a problem? Consider the definition:

Ωb =
ρb

ρcrit
=

8πGρb
3H2 . (7)

In the standard theory, this expression will suffice. However, what about a theory, such
as MOG, with a variable gravitational coefficient G = Geff = (1 + α)GN? Clearly, when the
context is gravitational, the product Gρb accurately reflects the gravitational contribution of
baryonic matter. However, when, e.g., the pressure of the medium is considered, Ωb is not
supposed to be scaled in this manner (pressure does not increase just because gravitation
is stronger).

Disentangling these issues in computer codes that have been in use for years or
decades, written or rewritten by multiple authors, perhaps even machine-translated from
one programming language to another (e.g., from FORTRAN to C) is a daunting task.

Without access to a standard suite of computer programs that can reliably and provably
deal with a variable-G modified theory of gravity, we opted for another approach: use a
semianalytical approximation that is sufficiently accurate to reproduce the key qualitative
features of the CMB angular power spectrum and perhaps even allow us to make some
cautious predictions.

Such an approximation method was published by Mukhanov [6]. We previously used
this approximation method in the context of WMAP results, showing that MOG indeed
fits the angular power spectrum well. In light of the recent release of Planck 2018 data,
we found it imperative to revisit and, if necessary, refine this calculation and compare the
Planck results against the MOG predictions.

3.1. Semi-Analytical Estimation of CMB Anisotropies

The general expression for the cosmic mean of the CMB temperature autocorrelation
function, expressed in terms of multipoles C` (with the monopole and dipole components,
` = 0, 1, excluded), can be written as (see Equation (9.38) in [6] and the discussion therein
for details):

C` =
2
π

∫ ∣∣∣∣∣

(
Φk(ηr) +

δk(ηr)

4

)
j`(kη0)−

3δ′k(ηr)

4k
dj`(kη0)

d(kη0)

∣∣∣∣∣

2

k2dk, (8)

where Φk is the Fourier-decomposition of the gravitational potential Φ with respect to
wavenumber k, ηr is the conformal time at recombination, and η0 corresponds to the
present time. The quantity δ is the fractional energy fluctuation of radiation, defined
using the 00-component of the radiation energy-momentum tensor before recombination
as T0

0 = ε(1 + δ), where ε is the radiation energy density, δ′ is the derivative with respect
to conformal time, and j` are the spherical Bessel functions.
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For kηr � 1, δk(ηr) ' − 8
3 Φk(ηr), δ′k(ηr) ' 0; hence, we find that for ` � 200,

`(`+ 1)C` ' const. This observation is valid both in the standard Λ-CDM cosmology and
the MOG theory, leaving us, for low `, with

Cl =
2
π

∫ ∣∣∣∣
1
3

Φk(ηr)jl(kη0)

∣∣∣∣
2
k2dk. (9)

If |Φk|2 = (9/10)2B/k3 (the extra factor 9/10 corresponding to a drop of the potential
on superhorizon scales after matter-radiation equality), we obtain

Cl =
18B

100π

∫
jl(kη0)

2k−1dk. (10)

Let s = kη0, ds/dk = η0, and then,

Cl =
18B

100π

∫
jl(s)2s−1ds =

9B
100πl(l + 1)

. (11)

For large `, still following Ref. [6], we can then write

`(`+ 1)C`

[`(`+ 1)C`]low `
=

100
9

(O + N), (12)

where we split the eventual solution into oscillatory (O) and non-oscillatory (N) parts.
Using the well-known trigonometric approximations of the spherical Bessel functions

j`(s) for large real arguments, as well as other suitable numerical representations (for details,
including the origin of the numerical factors in the equations that follow, consult [6]), we
find the following expression for the oscillatory part:

O =e−(l/ls)2
√

π

ρ̄l

[
A1 cos

(
ρ̄l +

π

4

)
+ A2 cos

(
2ρ̄l +

π

4

)]
, (13)

where

A1 = 0.1ξ
(P− 0.78)2 − 4.3

(1 + ξ)1/4 e
1
2 (l
−2
s −l−2

f )l2
, (14)

and

A2 = 0.14
(0.5 + 0.36P)2

(1 + ξ)1/2 . (15)

The non-oscillatory part, in turn, is split into a sum:

N = N1 + N2 + N3 , (16)

where

N1 = 0.063ξ2 [P− 0.22(l/l f )
0.3 − 2.6]2

1 + 0.65(l/l f )1.4 e−(l/l f )
2
, (17)

N2 =
0.037

(1 + ξ)1/2
[P− 0.22(l/ls)0.3 + 1.7]2

1 + 0.65(l/ls)1.4 e−(l/ls)2
, (18)

N3 =
0.033

(1 + ξ)3/2
[P− 0.5(l/ls)0.55 + 2.2]2

1 + 2(l/ls)2 e−(l/ls)2
. (19)
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The parameters that occur in these expressions are as follows. First, the baryon
density parameter:

ξ = 17
(

Ωbh2
75

)
, (20)

where Ωb ' 0.035 is the baryon content of the universe at present relative to the critical
density, and h75 = H0/(75 km/s/Mpc), with H0 being the Hubble parameter at the present
epoch. The growth term of the transfer function is represented by

P = ln
Ω−0.09

m l

200
√

Ωmh2
75

, (21)

where Ωm ' 0.3 is the total matter content (baryonic matter, neutrinos, and cold dark
matter). The free-streaming and Silk damping scales are determined, respectively, by

l f = 1600
[

1 + 7.8× 10−2
(

Ωmh2
75

)−1
]1/2

Ω0.09
m , (22)

ls =
0.7l f√√√√ 1+0.56ξ

1+ξ + 0.8
ξ(1+ξ)

(Ωmh2
75)

1/2

[
1+(1+ 100

7.8 Ωmh2
75)
−1/2]2

. (23)

Lastly, the location of the acoustic peaks is determined by the parameter1

ρ̄ = 0.015(1 + 0.13ξ)−1(Ωmh3.1
75 )

0.16. (24)

Finally, we note that the calculated result for C` assumes scale invariance. For small de-
viations from scale invariance characterized as usual by the parameter ns (with |ns − 1| � 1),
the result is scaled:

C` → `ns−1C`. (25)

The quality of this approximation is demonstrated in Figure 1 (top left), which shows
the estimated angular power spectrum using nominal parameters (H0 ∼ 67.4 km/s/Mpc,
h2Ωb = 0.0224, Ωm = 0.315, ns = 0.965 with spatially flat cosmology, ΩΛ = 1− Ωm)
against Planck 2018 data2 from http://pla.esac.esa.int/pla/#cosmology (accessed on
15 September 2021).

The quality of this fit improves significantly if we allow some of the parameters to
vary. For instance, using a simple least squares fit, we obtain h2Ωb = 0.0187, ns = 0.965
(see Figure 1 top right).

3.2. The MOG CMB Spectrum

What are the key differences between the MOG theory and standard cosmology?
In the standard ΛCDM model in the early universe, there are two main sources of

gravitation: baryonic matter and collisionless cold dark matter (CDM). The distribution of
matter in the universe is still largely homogeneous, and the gravitational field is determined
by the sum Ωm = Ωb + ΩDM.

In the MOG theory, ΩDM is, of course, absent. However, the gravitational coupling
parameter is no longer Newton’s constant. In the late time universe, we expect the gravita-
tional coupling parameter to vary from region to region (an essential feature of the MOG
theory that accounts for its ability to model phenomena, such as galaxy rotation curves
successfully.) In the early, mostly homogeneous universe, we expect little variation in the
value of G; however, G 6= GN .
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Figure 1. Mukhanov’s approximation of the angular power spectrum in light of Planck 2018 data.
Thick blue line: Mukhanov’s approximation as a sum of an oscillatory part (thin dotted red line) and
a nonoscillatory part (dashed green line). Planck 2018 data are shown in light blue with vertical error
bars. Top row: standard cosmology, with nominal parameters (left) and least squares fitted values for
Ωb and ns (right). Bottom row: The MOG theory, with Ωb, α and ns fitted (left) and with the same
3-parameter fit but setting H0 = 73 km/s/Mpc fitted (right).

This means that gravitational interactions are “enhanced” by the factor 1 + α, defined
by the relationship G = Geff = (1 + α)GN . When computing the results, such as the
angular power spectrum, this must be taken into account.

This actually leads to a fairly simple prescription. In the formulation presented in the
previous subsection, the density parameter for matter, Ωm, must be replaced by (1 + α)Ωb.

These changes are, of course, trivial. Ωb only appears in Equation (20). For otherwise
identical parameterization, we expect identical results.

Instead, we opted to relax the parameter space further as we investigate the MOG
solution. Figure 1, bottom left, was obtained by fitting the values of h2Ωb = 0.0197,
α = 5.27, and ns = 0.951.

As we explored the parameter space, it became evident that there is significant degen-
eracy with respect to the value of H0. Figure 1 (lower right) shows another fit, after setting
H0 = 73 km/s/Mpc, resulting in h2Ωb = 0.0199, α = 4.75, and ns = 0.949. We believe that
this degeneracy demonstrates the limit of the Mukhanov approximation.

4. Conclusions

Recently, the Planck collaboration released a data set characterizing the cosmic mi-
crowave background’s angular power spectrum in more detail than anything previously
published. This data release raises the bar for modified theories of gravitation that compete
with the standard ΛCDM model as potentially viable representations of the evolution and
structure formation in the universe.

We investigated, in particular, the behavior of Scalar–Tensor–Vector–Gravity, also
known by the acronym MOG, in light of these new data. A key feature of the MOG theory
is the presence of a variable gravitational coupling coefficient, which makes the task of
adapting existing numerical models of the CMB or structure formation difficult. Large
numerical code bases that are opaque and often use the dimensionless density parameters
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Ωb, Ωm, etc., to model both gravitational and nongravitational interactions cannot be
easily modified.

Instead, in this paper, we revived a model that we first employed in the wake of the
WMAP data release. Extending the calculations to higher multipoles (up to ` = 2500),
we were able to demonstrate that the MOG theory correctly reproduces the qualitative
features of the CMB and that within the limits of the approximation, it also produces good
quantitative fits. At the same time, we also saw the limitations of the method, notably
a degeneracy with respect to H0. This leads us to conclude that, for instance, to decide
whether or not the MOG theory can offer a better resolution to the Hubble tension (see [20]
for an up-to-date review), more sophisticated methods will be required.
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Notes
1 Note the slight changes in the coefficients in Equations (22) and (24) compared to the value published in [6]. We used best fit

values for these coefficients from Mukhanov’s approximation using the Planck collaboration’s best estimates for the parameters
of the standard ΛCDM cosmology.

2 For important explanations see https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_spectrum_%26_Likelihood_
Code (accessed on 15 September 2021).
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Abstract: This paper presents a relativistic version of Newtonian Fractional-Dimension Gravity
(NFDG), an alternative gravitational model recently introduced and based on the theory of fractional-
dimension spaces. This extended version—Relativistic Fractional-Dimension Gravity (RFDG)—
is based on other existing theories in the literature and might be useful for astrophysical and
cosmological applications. In particular, in this work, we review the mathematical theory for
spaces with non-integer dimensions and its connections with the non-relativistic NFDG. The Euler–
Lagrange equations for scalar fields can also be extended to spaces with fractional dimensions, by
adding an appropriate weight factor, and then can be used to generalize the Laplacian operator for
rectangular, spherical, and cylindrical coordinates. In addition, the same weight factor can be added
to the standard Hilbert action in order to obtain the field equations, following methods used for
scalar-tensor models of gravity, multi-scale spacetimes, and fractional gravity theories. We then apply
the field equations to standard cosmology and to the Friedmann-Lemaître-Robertson-Walker metric.
Using a suitable weight vt(t), depending on the synchronous time t and on a single time-dimension
parameter αt, we extend the Friedmann equations to the RFDG case. This allows for the computation
of the scale factor a(t) for different values of the fractional time-dimension αt and the comparison
with standard cosmology results. Future additional work on the subject, including studies of the
cosmological late-time acceleration, type Ia supernovae data, and related dark energy theory will be
needed to establish this model as a relativistic alternative theory of gravity.

Keywords: fractional-dimension gravity; modified gravity; dark matter; dark energy; cosmology

1. Introduction

This paper considers a possible relativistic generalization of Newtonian Fractional-
Dimension Gravity (NFDG), which was previously introduced as a non-relativistic alterna-
tive gravity model ([1–3], papers I, II, and III in the following). The main goal of NFDG
was to model galactic rotation curves without using the controversial Dark Matter (DM)
component (see also [4] for a general overview of NFDG). This was done by assuming that
galactic structures might behave like fractal media, with an effective spatial dimension
which could be lower than the standard value D = 3, including possible fractional, i.e.,
non-integer values. Each galaxy was then characterized by a particular form of this varying
dimension D = D(r), which can be a function of the radial distance from the galactic center.

In paper I [1], it was shown how NFDG is a natural extension of standard Newtonian
gravity to non-integer dimension spaces. Starting from a heuristic extension of Gauss’s law
for gravity to fractional-dimension spaces, we were able to generalize the gravitational field
and potential for extended mass sources, the Laplace and Poisson equations, the multipole
expansion, etc. Additionally, we modeled several types of spherically symmetric galactic
structures, such as Plummer models and others, showing that flat rotation curves can be
obtained in NFDG without resorting to DM.

In paper II [2], this analysis was extended to axially symmetric structures in order
to model real galactic data from the Spitzer Photometry and Accurate Rotation Curves
(SPARC) database [5]. In addition to exponential, Kuzmin, and other similar thin/thick
disk mass distributions, the case of the disk-dominated dwarf spiral galaxy NGC 6503 was
considered and it was shown that the rotation curve of this galaxy could be obtained by
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simply assuming D(r) ≈ 2 over most of the radial range. In other words, if this galaxy
were actually to behave like a fractal medium with (Hausdorff) dimension D(r) ≈ 2, its
dynamics would be fully explained by NFDG without any DM contribution.

In addition to NGC 6503, in paper III [3] we studied two additional galaxies with
our methods: NGC 7814 (bulge-dominated spiral) and NGC 3741 (gas-dominated dwarf).
Although these two galaxies seem to be characterized by different functions for the varying
dimension D = D(r), their rotation curves were also fully fitted with NFDG methods,
again without any DM. In paper III, the use of a variable dimension D(r) as a function of
the field point was also discussed and justified in terms of other similar existing studies.
In all these three papers, we pointed out that NFDG is only loosely based on the methods
of fractional calculus and fractional mechanics (see [6] and references therein), but is not
a fractional theory in the sense used by other gravitational models [7–20]. NFDG field
equations are of integer order, therefore local, as opposed to non-local field equations based
on fractional differential operators.

NFDG also shows possible connections with Modified Newtonian Dynamics
(MOND) [21–23], as discussed in detail in our previous papers [1–3]. In particular,
MOND phenomenology, including the recently reported Radial Acceleration Relation
(RAR) [24–26], might be explained by our varying dimension D = D(r), which provides
the link between the inherently non-linear MOND theory and the linear NFDG.

In this paper, we focus our efforts instead on a relativistic version of our model, which
will be called Relativistic Fractional-Dimension Gravity (RFDG). This extended version
of NFDG is very similar to Calcagni’s theory with ordinary derivatives [8,11], but uses
the weight factors introduced in our previous papers I–III. Other more limited analyses of
relativistic equations for non-integer dimension spaces are found in the literature [27,28],
but they do not fully explore the subject. These relativistic approaches to non-integer, lower-
dimension spaces should not be confused with past attempts to study General Relativity
(GR) in two or three-dimensional spacetimes [29–31]: in NFDG (or RFDG) the spacetime is
the usual 3 + 1, while we consider possible subsets X ⊂ R3 of the standard tri-dimensional
space, whose Hausdorff dimensions can be D 6= 3, and possibly also a fractional time
dimension in RFDG.

Our RFDG model follows the lines of the many existing modified gravity theories in
the literature (see [32] for a general review, or the more recent Ref. [33]) and their possible
cosmological consequences. As in standard GR [34], an alternative model of gravity should
be tested against experimental results of gravitational physics, or at least be consistent with
General Relativity at scales where Einstein’s theory is undisputed. For example, the MOND
model is well established as an alternative gravitational theory (for general reviews see
Refs. [35,36]) and its many implications for gravitation and cosmology have been studied
for decades, determining the strong and weak points of the model. On the contrary, our
NFDG and RFDG are very recent models with limited results and need to be analyzed in
more detail through future work, in order to become viable alternatives to standard GR.

In Section 2, we will describe the mathematical theory for spaces with fractional dimen-
sion and review the fundamental NFDG results from our previous papers. In Section 3, we
will review and expand the Euler–Lagrange equations for non-integer dimension spaces,
while in Section 4 we will detail the relativistic equations and apply them to standard
cosmology. Finally, in Section 5 conclusions are drawn and possible future work on the
subject is outlined.

2. Mathematical Theory for Spaces with Non-Integer Dimension and NFDG

The dimensions of space and spacetime play an important role in determining the
form of the physical laws and of the constants of nature. While we perceive space as
three-dimensional (and time as one-dimensional), discussions on a possible explanation of
the tri-dimensionality of space date back to Ptolemy and the early Greeks [37]. In modern
times, Ehrenfest’s famous article on the subject [38] explained how the tri-dimensionality
of space is inherently connected with fundamental physical laws, such as those of stable
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planetary orbits, atoms and molecules stability, and several others. More recent discussions
about the dimensionality of space can be found in the works by Barrow [37], Callender [39],
and references therein.

With more recent advances in mathematical theories and fractal geometries, it also be-
came possible to consider a continuous variation in the number of dimensions D for space,
i.e., not just positive integer dimensions, but any real (or even complex) spatial dimension
D. Although this possibility emerged in several areas of physics, it became popular in
dimensional regularization techniques commonly used in quantum field theory [40–42].
As part of these techniques (see also [43], page 249), the area of a unit hypersphere S in D
dimensions was evaluated as

∫
S dΩD = 2πD/2

Γ(D/2) , which yields familiar results for integer
values of D, such as 2 for D = 1, 2π for D = 2, 4π for D = 3, etc.

A more comprehensive theory for spaces with non-integer dimension was first intro-
duced by Stillinger in 1977 [44]. Starting from quantities depending explicitly on a variable
dimension D, such as the Gaussian integral

∫
dr exp

(
−αr2) = (π/α)D/2, or the radial

Laplace operator 1
rD−1

d
dr

(
rD−1 d

dr

)
= d2

dr2 +
(D−1)

r
d
dr , an axiomatic theory for metric spaces

of non-integer dimension was then introduced, based on weights, Wn(x1, . . . , xn|r1, . . . , rn),
for a fixed set of points x1, . . . , xn and distances r1, . . . , rn measured from them. The sim-
plest of these weights, W1, was computed as W1(r) = σ(D)rD−1 = 2πD/2

Γ(D/2) rD−1, with the
radial distance r measured from the origin.

This weight allows for the generalization of the integral of a spherically symmet-
ric function f = f (r) over a D-dimensional metric space as

∫ ∞
0 f (r)W1(r)dr = 2πD/2

Γ(D/2)∫ ∞
0 f (r)rD−1dr, and of the volume of the radius-R sphere as V(R, D) =

∫ R
0 W1(r)dr =

πD/2RD

Γ(1+D/2) .
In the same paper [44], Stillinger introduced a generalized Laplacian in polar coor-

dinates: ∇2g = [ 1
rD−1

∂
∂r (r

D−1 ∂
∂r ) +

1
r2 sinD−2 θ

∂
∂θ (sinD−2 θ ∂

∂θ )]g = [ ∂2

∂r2 +
(D−1)

r
∂
∂r +

1
r2 (

∂2

∂θ2 +
(D−2)
tan θ

∂
∂θ )]g, and applied it to the solution of the generalized two-dimensional Schrödinger’s

equation, with the angular solution expressed in terms of Gegenbauer polynomials.
As for the physical meaning of a non-integer dimension D, Stillinger roughly estimated

the possible uncertainty of the spatial dimension as D ' 3± 10−6 in our terrestrial locale
and also explored the possibility of the role of D as a field variable in geometric theories of
gravity. In particular, he stated [44]: “However a more general class of spaces can also be
generated within which D varies continuously from point to point (integration weights
Wn would exhibit the change explicitly)”. This seems to imply that the axiomatic bases
for non-integer dimension spaces would still be valid for the weight W1 generalized as
W1(r) = σ[D(r) ]rD(r)−1 = 2πD(r)/2

Γ[D(r)/2] r
D(r)−1, with D = D(r) an explicit function of the field

point. This assumption was used as the rationale for a varying fractional dimension D in
all our three NFDG papers.

A similar but different approach was later introduced by Svozil [45], within the frame-
work of the Hausdorff measure theory. This lead directly to the integral of a spherically
symmetric function f = f (r) over a D-dimensional metric space χ as follows:

∫

χ
f dµH =

2πD/2

Γ(D/2)

∫ ∞

0
f (r)rD−1dr, (1)

where µH denotes an appropriate Hausdorff measure over the space. This result is the same
obtained previously by Stillinger and was also connected by Svozil to the Weyl’s fractional
integral defined as W−D f (x) = 1

Γ(D)

∫ ∞
x (t − x)D−1 f (t)dt, so that Equation (1) can also

be written as
∫

χ f dµH = 2πD/2Γ(D)
Γ(D/2) W−D f (0), thus connecting the theory of non-integer

dimension spaces with fractional calculus.
In 2004, Palmer and Stavrinou [46] expanded the previous concepts into the theory of

the equations of motion in a non-integer-dimensional space using Svozil’s measure theory
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approach and multi-variable integration techniques. In particular, to integrate over a subset
X ⊂ R3 they assumed that X = X1 × X2 × X3, where each metric space Xi (i = 1, 2, 3) is
equipped with a Hausdorff measure µi(Xi) and a dimension αi. When αi = 1, the Hausdorff
measure simply becomes a Lebesgue measure. The Hausdorff measure for the product set
X can be defined as µH(X) = (µ1 × µ2 × µ3)(X1 × X2 × X3) = µ1(X1)µ2(X2)µ3(X3) and
the overall Hausdorff spatial dimension is then D = α1 + α2 + α3.

Applying Fubini’s theorem we have [46–50]:
∫

X
f (x1, x2, x3)dµH =

∫

X1

∫

X2

∫

X3

f (x1, x2, x3)dµ1(x1)dµ2(x2)dµ3(x3), (2)

dµi(xi) =
παi/2

Γ(αi/2)
|xi|αi−1dxi, i = 1, 2, 3

where the infinitesimal measures dµi in the second line of the previous equations follow
from the original Stillinger’s weight W1 described above, and used in the integral in
Equation (1). The factor of two in the weight W1 is now omitted, assuming integration
between −∞ and +∞ in each sub-space Xi.

As was noted in paper I, it is easy to check that the integral in Equation (2) when
applied to a function f (x1, x2, x3) = f (r) in spherical coordinates (r, θ, ϕ), yields the
expression in Equation (1). This follows from the standard relations between rectangular
and spherical coordinates and from the definitions for the differential measures in the
second line of Equation (2): dµ1dµ2dµ3 = πα1/2

Γ(α1/2)
πα2/2

Γ(α2/2)
πα3/2

Γ(α3/2) rα1+α2+α3−1dr| sin θ|α1+α2−1

|cos θ|α3−1dθ| sin ϕ|α2−1|cos ϕ|α1−1dϕ. Performing the angular integrations, simplifying the
results, and using D = α1 + α2 + α3, the result in Equation (1) is readily obtained.

While this result is independent of how the dimensions αi arrange themselves to
act on the orthogonal coordinates and depends only on the overall dimension D, Palmer
and Stavrinou [46] also noted that in more general cases it is not clear if the non-integer
dimension D distributes itself over the n space coordinates (example: α1 = α2 = · · · =
αn = D/n) or on only one coordinate (example: α1 = α2 = · · · = αn−1 = 1 and αn =
D− (n− 1)), eventually favoring the latter case in Ref. [46]. In these more general cases,
the results of the integrations in Equation (2) will depend on how this choice for the αi
dimensions is made.

With all these assumptions, NFDG was developed in papers I–III [1–3] by extending
Gauss’s law for gravitation to lower-dimensional spacetime D + 1, with non-integer space
dimension 0 < D ≤ 3. A scale length l0 was needed for dimensional correctness of all
expressions when D 6= 3, so that dimensionless coordinates were adopted in all formulas,
such as the rescaled radial distance wr ≡ r/l0 or, in general, the dimensionless coordinates
w ≡ x/l0 for the field point and w′ ≡ x′/l0 for the source point. A rescaled mass “density”
was also introduced: ρ̃(w′) = ρ(w′l0)l3

0 = ρ(x′)l3
0 , where ρ(x′) is the standard mass density

in kg m−3, and with dm̃(D) = ρ̃(w′)dDw′ representing the infinitesimal source mass in a

D-dimensional space1.
The NFDG gravitational potential φ̃(w) was then obtained as:

φ̃(w) = −2π1−D/2Γ(D/2)G
(D− 2)l0

∫

VD

ρ̃(w′)
|w−w′ |D−2 dDw′; D 6= 2 (3)

φ̃(w) =
2G
l0

∫

V2

ρ̃
(
w′
)

ln
∣∣w−w′ |d2w′; D = 2

where the physical dimensions for the NFDG gravitational potential φ̃ are the same as
those of the standard Newtonian potential (i.e., measured in m2 s−2).
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Assuming that φ̃(w) and the NFDG gravitational field g(w) are connected by g(w) =
−∇Dφ̃(w)/l0, where the D-dimensional gradient ∇D is equivalent to the standard one,
but derivatives are taken with respect to the rescaled coordinates w, we also obtained:

g(w) = −2π1−D/2Γ(D/2)G
l2
0

∫

VD

ρ̃(w′)
w−w′

|w−w′ |D dDw′. (4)

It is easy to check that the expressions in Equations (3) and (4) above correctly reduce
to the standard Newtonian ones for D = 3. The gravitational potential and field in the
last two equations were derived for a fixed value of the fractional dimension D, but it
was argued that they could also be applicable to the case of a variable dimension D(w),
assuming a slow change of this dimension with the field point coordinates.

The scale length l0 was related to the MOND acceleration constant a0 (sometimes also
denoted by g† [24,25]):

a0 ≡ g† = 1.20± 0.02 (random)± 0.24 (syst)× 10−10 m s−2, (5)

which represents the acceleration scale below which MOND corrections are needed. In
papers I–III, a possible connection between the scale length l0 and the MOND acceleration
a0 was proposed as:

a0 ≈
GM

l2
0

, (6)

where M is the mass of the system being studied (or a suitable reference mass). The main
consequences of the MOND theory (the flat rotation velocity Vf ≈ 4

√
GMa0, the “baryonic”

Tully–Fisher relation-BTFR Mbar ∼ V4
f , etc.) were recovered in NFDG by considering the

MOND limit to be equivalent to a space dimension D ≈ 2 [1].
The main NFDG Equations (3) and (4) were then adapted to spherically symmetric

and axially symmetric cases of interest, then leading to detailed fits of galactic rotation
curves for three notable cases (NGC 6503, NGC 7814, NGC 3741) as outlined in Section 1
above. It should be noted that the integrations over D-dimensional spaces were performed
following the techniques based on Equations (1) and (2) and for different choices of how
the individual dimensions α1, α2, α3 arrange themselves on the three spatial orthogonal
coordinates (see papers I–III for full details).

3. Euler-Lagrange Equations for Spaces with Non-Integer Dimension

In this section, we will expand the treatment of the Euler–Lagrange equations for
fields in non-integer-dimension spaces introduced by Palmer and Stavrinou [46], and use
it as a starting point for the relativistic equations of motion. This approach has the obvious
advantage of yielding the dynamics of the field for any number of degrees of freedom and
in any coordinate basis.

We assume a Lagrangian density in four spacetime coordinates, L = L
(
φ, ∂µφ

)
,

where the field φ and ∂µφ are functions of
(
t, x1, x2, x3) and with ∂µ = (∂t, ∂x1 , ∂x2 , ∂x3).

The generalized action S in a D + 1 spacetime is [46]2:

S =
∫

dtdDxL
(
φ, ∂µφ

)
=
∫

dt
∫

dµ1

(
x1
)

dµ2

(
x2
)

dµ3

(
x3
)
L
(
φ, ∂µφ

)
(7)

dµi

(
xi
)
= W1

(
xi, αi

)
dxi =

παi/2

Γ(αi/2)

∣∣∣xi
∣∣∣
αi−1

dxi, i = 1, 2, 3

where the measures dµi are those from Equation (2) and all the integrations now extend
from −∞ to +∞, so that the measure weights are W1

(
xi, αi

)
= παi/2

Γ(αi/2)

∣∣xi
∣∣αi−1 (the factor of

two in the original Stillinger’s weight is now omitted)3.
By taking variations and minimizing the action [46], it is straightforward to obtain the

following Euler–Lagrange equations:
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3

∏
i=1

W1

(
xi, αi

)∂L
(
φ, ∂µφ

)

∂φ
−

3

∏
i=1

W1

(
xi, αi

)
∂µ

∂L
(
φ, ∂µφ

)

∂
(
∂µφ

) − ∂L
(
φ, ∂µφ

)

∂
(
∂µφ

) ∂µ

3

∏
i=1

W1

(
xi, αi

)
(8)

=
3

∏
i=1

W1

(
xi, αi

)∂L
(
φ, ∂µφ

)

∂φ
− ∂µ

[
3

∏
i=1

W1

(
xi, αi

)∂L
(
φ, ∂µφ

)

∂
(
∂µφ

)
]
= 0,

with the measure weights W1
(

xi, αi
)

described above, or even for more general types

of measures. Since for D = 3, and α1 = α2 = α3 = 1, we have
3

∏
i=1

W1
(
xi, αi

)
= 1

and ∂µ

3
∏
i=1

W1
(
xi, αi

)
= 0, Equation (8) reduces to standard Euler–Lagrange equations in

3 + 1 spacetimes.

As noted in Ref. [46], the “flow” or “current” of the measure ∂µ

3
∏
i=1

W1
(

xi, αi
)
, mul-

tiplied by the momentum density of the field
∂L(φ,∂µφ)

∂(∂µφ)
in the third term of the first line

in Equation (8), will alter the dynamics of the field φ in a non-integer-dimensional space,
compared to the standard case. As a consequence, if the system is invariant under a
symmetry transformation φ(x)→ φ(x) + δφ(x), the related conserved current density and
conservation law in non-integer dimensions are [46]:

Jµ =
3

∏
i=1

W1

(
xi, αi

)∂L
(
φ, ∂µφ

)

∂
(
∂µφ

) δφ (9)

∂µ Jµ = 0.

This last equation, and the previous Equation (8), could have been also introduced

from the standard equations by substitutingL →
3

∏
i=1

W1
(
xi, αi

)
L and Jµ →

3
∏
i=1

W1
(

xi, αi
)

Jµ,

respectively. To conclude this general overview, we will outline in the following sub-
sections the specific cases of rectangular, spherical, and cylindrical coordinates and the
related D-dimensional Laplace operators.

3.1. Rectangular Coordinates

In rectangular coordinates, the generalized Euler–Lagrange equations can be obtained
directly from Equation (8) with the weights in Equation (7) [46]:

∂L
(
φ, ∂µφ

)

∂φ
− ∂µ

∂L
(
φ, ∂µφ

)

∂
(
∂µφ

) −
(
αµν − δµν

)(
x(−1)

)ν ∂L
(
φ, ∂µφ

)

∂
(
∂µφ

) = 0, (10)

where αµν = diag(1, α1, α2, α3), δµυ is the diagonal unit matrix, x(−1) = column(
t−1,

(
x1)−1,

(
x2)−1,

(
x3)−1

)
, with µ, ν = 0, 1, 2, 3. The total spacetime dimension is

Dt = 1 + D = 1 + α1 + α2 + α3 = Tr
(
αµν

)
, where the time dimension is assumed to

be integer.
As in the original treatment for the Schrödinger’s Equation [46,51], we can consider φ

and φ∗ as separate fields which can be varied independently and then use the Lagrangian
density L = ∇φ∗ · ∇φ = ∂iφ

∗∂iφ to obtain the generalized Laplace equation, using
Equation (10) for the “mirror” field φ∗. The Laplace equation becomes52

α1,α2,α3
φ(x, y, z) =

0, where the generalized Laplacian operator written in standard rectangular coordinates x,
y, z, is:
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52
α1,α2,α3

φ(x, y, z) =
[

1
xα1−1

∂

∂x

(
xα1−1 ∂

∂x

)
+

1
yα2−1

∂

∂y

(
yα2−1 ∂

∂y

)
+

1
zα3−1

∂

∂z

(
zα3−1 ∂

∂z

)]
φ (11)

=

[
∂2

∂x2 +
(α1 − 1)

x
∂

∂x
+

∂2

∂y2 +
(α2 − 1)

y
∂

∂y
+

∂2

∂z2 +
(α3 − 1)

z
∂

∂z

]
φ.

The non-integer dimension can then be assigned to just one of the three coordinates
(example: α1 = α2 = 1 and α3 = D− 2), or distributed over the three coordinates (example:
α1 = α2 = α3 = D/3).

3.2. Spherical Coordinates

To obtain similar results in spherical coordinates r, θ, ϕ, we could transform directly
Equations (10) and (11), or use the orthonormal basis ∂µ =

(
∂
∂t , ∂

∂r , 1
r

∂
∂θ , 1

r sin θ
∂

∂ϕ

)
. Following

this latter option and using again a Lagrangian density L = ∇φ∗ · ∇φ = ∂iφ
∗∂iφ in

Equation (8), we obtain:

∇2
α1,α2,α3

φ(r, θ, ϕ) =

[
∂2φ

∂r2 +
(α1 + α2 + α3 − 1)

r
∂φ

∂r

]
(12)

+
1
r2

[
∂2φ

∂θ2 +
(α1 + α2 − 1)

tan θ

∂φ

∂θ
+

(1− α3)

cot θ

∂φ

∂θ

]
+

1
r2 sin2 θ

[
∂2φ

∂ϕ2 +
(α2 − 1)

tan ϕ

∂φ

∂ϕ
+

(1− α1)

cot ϕ

∂φ

∂ϕ

]
.

The previous equation extends the results in Ref. [46], by providing the most general
spherical Laplacian for D = α1 + α2 + α3 (0 < α1, α2, α3 ≤ 1). For α1 = α2 = α3 = 1
(D = 3), the standard spherical Laplacian is recovered, while special cases are obtained if
the non-integer dimension is assigned to just one of the three parameters.

If the non-integer parameter is the first one, that is 0 < α1 < 1, α2 = α3 = 1,
D = α1 + 2, we have:

∇2
D−2,1,1φ(r, θ, ϕ) =

[
∂2φ

∂r2 +
(D− 1)

r
∂φ

∂r

]
(13)

+
1
r2

[
∂2φ

∂θ2 +
(D− 2)

tan θ

∂φ

∂θ

]
+

1
r2 sin2 θ

[
∂2φ

∂ϕ2 +
(3− D)

cot ϕ

∂φ

∂ϕ

]
.

If instead, 0 < α2 < 1, α1 = α3 = 1, D = α2 + 2, we have:

∇2
1,D−2,1φ(r, θ, ϕ) =

[
∂2φ

∂r2 +
(D− 1)

r
∂φ

∂r

]
(14)

+
1
r2

[
∂2φ

∂θ2 +
(D− 2)

tan θ

∂φ

∂θ

]
+

1
r2 sin2 θ

[
∂2φ

∂ϕ2 +
(D− 3)

tan ϕ

∂φ

∂ϕ

]
.

Finally, if 0 < α3 < 1, α1 = α2 = 1, D = α3 + 2, we obtain:

∇2
1,1,D−2φ(r, θ, ϕ) =

[
∂2φ

∂r2 +
(D− 1)

r
∂φ

∂r

]
(15)

+
1
r2

[
∂2φ

∂θ2 +
1

tan θ

∂φ

∂θ
+

(3− D)

cot θ

∂φ

∂θ

]
+

1
r2 sin2 θ

[
∂2φ

∂ϕ2

]
.

In Ref. [46], Palmer and Stavrinou introduced the non-integer spherical Laplacian as
the one in our Equation (14) above, but they stated that this form was obtained by assigning
the non-integer dimension to α3, while it is in fact assigned to α2. In our paper, I, we used
this same form of the spherical Laplacian to discuss the fractional-dimension solutions to
the Laplace equation and the related multipole expansion (see Appendix A of Ref. [1]),
but we could have used also the other forms of the Laplacian discussed in this section.
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However, our main NFDG results in Equations (3) and (4) are independent of the choice of
the fractional-dimension Laplace operator.

From the general Laplacian in Equation (12), other “mixed” forms of this operator are
possible. For example, the non-integer dimension could be equally distributed over the
three parameters by setting α1 = α2 = α3 = D/3, or in an unequal way, or over just two
parameters, etc. Therefore, there is a certain ambiguity in how the non-integer dimension
is acting over the three spatial coordinates, as we already remarked in Section 2 above.
We also note that the order of the parameters, α1, α2, α3, refers to the original weights
in Equation (2), which were related to rectangular coordinates and not to the spherical
coordinates used in this section.

3.3. Cylindrical Coordinates

In cylindrical coordinates R, ϕ, z, we can use the orthonormal basis ∂µ =
(

∂
∂t , ∂

∂R , 1
R

∂
∂ϕ , ∂

∂z

)

and the same Lagrangian density L = ∇φ∗ · ∇φ = ∂iφ
∗∂iφ in the main Equation (8). This

time, we obtain:

∇2
α1,α2,α3

φ(R, ϕ, z) =
[

∂2φ

∂R2 +
(α1 + α2 − 1)

R
∂φ

∂R

]
(16)

+
1

R2

[
∂2φ

∂ϕ2 +
(α2 − 1)

tan ϕ

∂φ

∂ϕ
+

(1− α1)

cot ϕ

∂φ

∂ϕ

]
+

[
∂2φ

∂z2 +
(α3 − 1)

z
∂φ

∂z

]
.

This is the most general cylindrical Laplacian for D = α1 + α2 + α3 (0 < α1, α2, α3 ≤ 1).
For α1 = α2 = α3 = 1 (D = 3), the standard cylindrical Laplacian is recovered, while
special cases are obtained if the non-integer dimension is assigned to just one of the three
parameters, as for the spherical case studied in the previous subsection.

If the non-integer parameter is the first one, that is 0 < α1 < 1, α2 = α3 = 1,
D = α1 + 2, we have:

∇2
D−2,1,1φ(R, ϕ, z) =

[
∂2φ

∂R2 +
(D− 2)

R
∂φ

∂R

]
(17)

+
1

R2

[
∂2φ

∂ϕ2 +
(3− D)

cot ϕ

∂φ

∂ϕ

]
+

[
∂2φ

∂z2

]
.

If instead, 0 < α2 < 1, α1 = α3 = 1, D = α2 + 2, we have:

∇2
1,D−2,1φ(R, ϕ, z) =

[
∂2φ

∂R2 +
(D− 2)

R
∂φ

∂R

]
(18)

+
1

R2

[
∂2φ

∂ϕ2 +
(D− 3)

tan ϕ

∂φ

∂ϕ

]
+

[
∂2φ

∂z2

]
.

Finally, if 0 < α3 < 1, α1 = α2 = 1, D = α3 + 2, we obtain:

∇2
1,1,D−2φ(R, ϕ, z) =

[
∂2φ

∂R2 +
1
R

∂φ

∂R

]
(19)

+
1

R2

[
∂2φ

∂ϕ2

]
+

[
∂2φ

∂z2 +
D− 3

z
∂φ

∂z

]
.

From the general cylindrical Laplacian in Equation (16), other “mixed” forms of this
operator are possible. Again, the non-integer dimension could be equally distributed over
the three parameters by setting α1 = α2 = α3 = D/3, or in an unequal way, or over just
two parameters, etc. In this cylindrical case, it is obvious that α3 refers directly to the z
coordinate, while it is not possible to assign α1 and α2 to the R, ϕ coordinates. Therefore, a
certain ambiguity remains in how to distribute the non-integer dimension over the three
spatial coordinates also in this case.
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4. Relativistic Equations for Spaces with Non-Integer Dimension

In Section 3, it was shown that the Euler–Lagrange equations for spaces with non-

integer dimensions can be obtained by substituting L →
3

∏
i=1

W1
(
xi, αi

)
L, i.e., simply by

multiplying the Lagrangian density by the product of the weights for the three spatial
coordinates. This immediately suggests a possible procedure for the relativistic extension

of NFDG: include the same weight factor
3

∏
i=1

W1
(
xi, αi

)
inside the standard Hilbert action

SH =
∫ √−g R d4x and then vary this modified action with respect to the inverse metric

gµν, as is usually done in standard GR.
This procedure is practically equivalent to the one used for scalar-tensor theories of

gravity (see Ref. [52] for a general overview) and it has been used extensively by Calcagni
in the context of multi-scale spacetimes and fractional gravity theories [7,8,10,11,15,17,18].
In the following subsections we will review these techniques and adapt them to our
particular case.

4.1. RFDG Field Equations

In this section, we will obtain the field equations by following closely the methods
used by Calcagni in their main paper on multi-scale gravity and cosmology [11] and the
general procedure for field equations in alternative theories of gravity (see Section 4.8 in

Ref. [52]). Following [8,11], the weight factor
3

∏
i=1

W1
(

xi, αi
)

introduced in Section 3, with

the NFDG weights from Equation (2), is consistent with the general form of the weight
v(x), assumed to be factorizable in the coordinates and positive semi-definite [11]:

v(x) =
3

∏
µ=0

vµ(xµ), vµ(xµ) ≥ 0 (20)

qµ(xµ) =
∫ xµ

dx′
µ
vµ

(
x′

µ
)

as shown in the first line of the previous equation4.
The action measure is assumed to be of the form d$(x) = d4x v(x) = d4q(x), where

“geometric coordinates” q(x), as defined in the second line of Equation (20), can be used
formally to re-express the measure in a standard Lebesgue form. In this way [11], a
multi-scale Minkowski spacetime is defined as the multipletM4 =

(
M4, $, ∂,K

)
based

on an ordinary 4-dimensional Minkowski spacetime M4, a Lebesgue-Stieltjes measure
$ for the action, a set of calculus rules with derivative operators ∂, and an appropriate
Laplace-Beltrami operator K.

Different multi-scale theories were then developed by Calcagni, with reference to the
possible derivative operators ∂ being used: theory T1 with ordinary derivatives, theory Tv
with weighted derivatives, and theory Tq with q-derivatives (see [11,17] for full details).
These models were then used in connection with the most general measure derived from
first principles [13] and then applied to quantum field theories, quantum gravity, and
cosmology [11,15–18].

For the purpose of deriving the RFDG field equations, we will consider the NFDG
weight v(x):

v(x) =
3

∏
µ=0

vµ(xµ) =
3

∏
i=1

παi/2

Γ(αi/2)

∣∣∣xi
∣∣∣
αi−1

, (21)

consistent with Equations (2) and (7) and with the time weight assumed to be unity, i.e.,
v0
(

x0) = 1, but more general expressions can be used, including non-trivial time weights.
As already noted in Appendix A of our paper III, using rescaled coordinates wi = xi/l0,

the NFDG weight παi/2

Γ(αi/2) |x
i

l0
|
αi−1

in Equation (21) is very similar to the binomial weight
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(
1 + |xi

l∗ |
αi−1

)
used by Calcagni [13]. However, in NFDG the transition from Newtonian to

non-Newtonian behavior is achieved by varying continuously the fractional dimension
parameters αi from αi = 1 (Newtonian case, vi

(
xi) = 1) to 0 < αi < 1 (non-Newtonian),

with l0 being an appropriate scale parameter linked to the MOND acceleration scale. In
multifractional theories, the scale lengths l∗ represent the observation scales at which the
spacetime dimension may change, with different behaviors for xi � l∗ and xi � l∗, and
with a binomial weight which does not simply reduce to unity for αi = 1.

Apart from the different choice of weights, the RFDG field equations are obtained
with the same procedure for the theory T1 with ordinary derivatives [11]. The action for
gravity can be taken as:

Sg =
1

16πG

∫
d4x

√
−gv(x)

[
R−ω∂µv∂µv−U(v)

]
, (22)

where G is Newton’s gravitational constant, v(x) is the weight being considered, g =
∣∣gµν

∣∣
is the determinant of the metric, R = Rµ

µ = gµνRµν is the Ricci scalar, defined in terms of
standard Ricci and Riemann tensors [52]. In scalar-tensor and multifractional theories, it is
customary to include in the gravitational action a “kinetic” term ω∂µv∂µv and a “potential”
term U(v) (which can be set to 2Λ, to include a cosmological constant Λ, or can be a
function of the weight v). In general, these terms are not needed in RFDG, and we will set
ω = 0 and U(v) = 0 later.

Including also a matter action Sm =
∫

d4x
√−gv(x)Lm, with Lm denoting an appro-

priate Lagrangian density, the energy-momentum tensor is now defined as:

Tµν = − 2√−g v(x)
δSm

δgµν , (23)

with the weight v(x) added at the denominator. One can then obtain the field equations
by varying the action with respect to the inverse metric gµν, where additional terms are
derived using the techniques used for scalar-tensor models [52]. The final result is [11]:

Rµν −
1
2

gµν[R−U(v)] + gµν
�v
v
− ∇µ∇νv

v
+ ω

(
1
2

gµν∂σv∂σv− ∂µv∂νv
)
= 8πGTµν (24)

where ∇µ indicates standard covariant differentiation, and the Laplace-Beltrami operator
is defined as � = ∇µ∇µ = gµν∇µ∇ν. It is easy to check that standard GR field equations
are recovered for ω = 0 and v(x) = 1, including a cosmological constant term by setting
U = 2Λ, or otherwise by simply setting U = 0.

The trace of Equation (24) yields:

− R + 2U(v) + 3
�v
v

+ ω∂µv∂µv = 8πGT µ
µ (25)

while variation of the total action S = Sg + Sm with respect to the weight v(x) gives:

R−U(v) = −16πGLm + v
dU
dv
−ω

(
2v�v + ∂µv∂µv

)
. (26)

Combining the last two equations, one can also obtain [11]:

R− 2v
dU
dv

+ 3
�v
v

+ ω
(
4v�v + 3∂µv∂µv

)
= 8πG

(
T µ

µ − 4Lm

)
(27)

which links directly the Ricci scalar R with the weight v(x).
An alternative version of the field Equation (24), can be obtained by taking the trace of

this equation and then combining the result with the same Equation (24). The final result is:
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Rµν = 8πG
(

Tµν −
1
2

gµνT
)
+

1
2

gµνU(v) +
1
2

gµν
�v
v

+
∇µ∇νv

v
+ ω ∂µv∂νv , (28)

where T = Tµ
µ is the trace of the energy-momentum tensor.

The RFDG equations can be obtained from the previous general Equations (22)–(28)
by setting ω = 0, U(v) = 0, and using the NFDG weight v(x) described in Equation (21),
or any other appropriate weight. In particular, the field equation becomes:

Rµν −
1
2

gµν R + gµν
�v
v
− ∇µ∇νv

v
= 8πGTµν (29)

where only the two additional terms gµν
�v
v −

∇µ∇νv
v in the left-hand side of this equation

need to be computed, in order to extend standard GR to RFDG. The alternative version,
corresponding to Equation (28), is instead:

Rµν = 8πG
(

Tµν −
1
2

gµνT
)
+

1
2

gµν
�v
v

+
∇µ∇νv

v
, (30)

which will be used in the next section to derive the Friedmann equations of cosmology.
Following the discussion in Section 3.1 of Ref. [11], we note that the weight v(x) can

be treated as a scalar field in the derivation of the field equations [32,52], but it should be
considered a “fixed coordinate profile” and not a Lorentz scalar. The derivation of the field
equations is essentially equivalent to the one typically used in scalar-tensor theories [32,52],
but the interpretation [11] of the scalar weight v(x) differs from the one of the fields φ(x)
used in modified gravity and in quintessence models of dark energy [53].

Although v(x) does not represent a dynamical field, it affects the dynamics through
the additional terms gµν

�v
v −

∇µ∇νv
v in Equation (29) above. Since our weight v(x) in

Equation (21) is determined directly by our NFDG theory, we do not feel necessary, at least
at this stage, to introduce kinetic and potential terms, ω∂µv∂µv and U(v), as was done in
multifractional gravitational theories [11].

Therefore, at least at this stage, RFDG is introduced in a phenomenological way by
fixing from the beginning the coordinate profile or weight v(x), which does not change
while the system is evolving dynamically. The choice of the weight is suggested by those
used in our previous NFDG papers, or by similar time-dependent weights which will
be used in the next sub-section. As already mentioned above, v(x) cannot be considered
a scalar field, although the derivation of the field equations is equivalent to the one for
scalar-tensor theories (see also Section 3.1 in Ref. [32]). The RFDG field Equations (29)
and (30) obviously reduce to standard GR for v(x) = 1, i.e., for gravitational systems which
do not possess any spatial or temporal fractional-dimension (for example, at the Solar
System level). Therefore, RFDG and GR are fully consistent for structures whose Hausdorff
dimension coincides with the topological one.

In the next subsection, we will apply the main field Equations (29) and (30) to the case
of standard cosmology and to the Friedmann-Lemaître-Robertson-Walker metric.

4.2. Cosmology and RFDG

In standard cosmology [52,54], the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric is usually expressed as (c = 1):

ds2 = −dt2 + a2(t)
[

dr2

1− κr2 + r2dΩ2
]

, (31)

where a(t) = R(t)/R0 is the dimensionless scale factor (R(t) is the scale factor, R0 = R(t0),
t0 current time), κ = k/R2

0 (k = −1 open universe; k = 0 flat universe; k = 1 closed
universe), and dΩ2 = dθ2 + sin2 θdϕ2. Following this choice for the FLRW metric, the
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Christoffel symbols, the non-zero components of the Ricci tensor, and the Ricci scalar are
readily computed [52] and are reported in Appendix A.

Matter and energy in the Universe are usually modeled as a perfect fluid with energy-
momentum tensor:

Tµν = (ρ + p)UµUν + pgµν (32)

with the fluid at rest in comoving coordinates, so that the four-velocity is Uµ = (1, 0, 0, 0)
and the energy-momentum tensor simply becomes

Tµν =




ρ 0 0 0
0
0 gij p
0


 (33)

in terms of the energy density ρ(t) and the pressure p(t). This can also be written as
Tµ

ν = diag(−ρ, p, p, p) and with the trace given by T = Tµ
µ = −ρ + 3p.

In order to compute the additional terms gµν
�v
v , ∇µ∇νv

v in Equations (29) and (30), we
should express the NFDG weight of Equation (21) in terms of spherical coordinates r, θ, ϕ.
Using standard coordinate transformations between rectangular and spherical coordinates
and assuming for example α1 = α2 = α3 = D/3, we obtain:

v(x) =
3

∏
i=1

παi/2

Γ(αi/2)

∣∣∣xi
∣∣∣
αi−1

=
πD/2

[Γ(D/6)]3
rD−3|sin θ|( 2

3 D−2)|cos θ|( D
3 −1)|sin ϕ|( D

3 −1)|cos ϕ|( D
3 −1) = vr(r)vθ(θ)vϕ(ϕ), (34)

but this weight does not yield isotropic results for the Friedmann equations. Assuming
instead a simpler radial weight vr(r) = π(D/2−1)

2Γ(D/2) rD−3 , which follows from the general

fractional-dimension integral in Equation (1), divided by the standard factor of 4πr2

pertaining to the D = 3 case, still does not seem to yield isotropic results due to the
presence of mixed (t, r) components in the field tensors, which can be avoided only by
adding a time weight vt(t) = a(t), equal to the scale factor5.

As discussed in Appendix A, it might be more appropriate for cosmological applica-
tions to assume a purely temporal weight, similar to the spatial one in Equation (21):

v(x) ≡ vt(t) =
παt/2

Γ(αt/2)
tαt−1, (35)

where t > 0 and 0 < αt ≤ 1 is a time fractional dimension. This assumption is similar
to the one used by Calcagni in their Ref. [8], but will yield different results in the context
of RFDG.

With the particular weight in Equation (35), all quantities in the generalized field
Equations (24) and (28) can be computed and the complete results are detailed in
Appendix A. Using these results, the modified Friedmann equations are:

( .
a
a

)2

+

.
a

.
v

av
− ω

.
v2

6
− U(v)

6
=

8πG
3

ρ− κ

a2 (36)

..
a
a
+

.
a

.
v

2av
+

..
v

2v
+

ω
.
v2

3
− U(v)

6
= −4πG

3
(ρ + 3p)

where we denoted the temporal weight simply as v = vt(t) and all time derivatives are
shown using the over-dot notation.

These equations can be further simplified by taking ω = 0 and by introducing a
possible cosmological constant Λ (setting U(v) = 2Λ), for comparison with standard
ΛCDM cosmology. Therefore, we obtain:
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( .
a
a

)2

+

.
a

.
v

av
=

8πG
3

ρ− κ

a2 +
Λ
3

(37)

..
a
a
+

.
a

.
v

2av
+

..
v

2v
= −4πG

3
(ρ + 3p) +

Λ
3

which can be compared directly with the standard Friedmann equations [52,54]. It is
evident that both Equations (36) and (37) reduce to the standard ones for v = 1 (

.
v =

..
v = 0).

The Hubble parameter H characterizes the rate of expansion, as usual:

H =

.
a
a

(38)

.
H =

..
a
a
−
( .

a
a

)2

=

..
a
a
− H2

with the present epoch value as the Hubble constant H0 = 100 h km s−1 Mpc−1 (h ≈ 0.7).
In a similar way, we can introduce a weight parameter V:

V =

.
v
v

(39)

.
V =

..
v
v
−
( .

v
v

)2

=

..
v
v
−V2

and rewrite the Friedmann Equations (37) in terms of the H and V parameters:

H2 + HV =
8πG

3
ρ− κ

a2 +
Λ
3

(40)

.
H + H2 +

1
2

(
HV + V2 +

.
V
)
= −4πG

3
(ρ + 3p) +

Λ
3

.

We will assume that the standard components of the Universe have energy densities
evolving as power laws, ρi(t) = ρi0a−ni (t); each component will have equation of state
pi(t) = wiρi(t), with parameters wi =

1
3 ni − 1. As in standard cosmology, we will include

matter (M, nM = 3, wM = 0), radiation (R, nR = 4, wR = 1
3 ), curvature (C, nC = 2,

wC = − 1
3 ), and vacuum (Λ, nΛ = 0, wΛ = −1) .

Generalizing the standard procedure used in ΛCDM cosmology [52,54], we will still
introduce the density parameter Ω and the critical density ρcrit as Ω = 8πG

3H2 ρ = ρ
ρcrit

and

ρcrit =
3H2

8πG , respectively. These two equations assume that for each component the density
parameter is defined as Ωi =

8πG
3H2 ρi =

ρi
ρcrit

, with the special cases for the curvature energy

density ρC ≡ − 3κ
8πGa2 and the vacuum energy density ρΛ ≡ Λ

8πG . While the curvature
density parameter ΩC = − κ

H2a2 is typically not included in the total Ω = ΩM + ΩR + ΩΛ
introduced above, it is still possible to modify the first Friedmann Equation (40) and obtain:

1 + β = Ω− κ

H2a2 = ΩM + ΩR + ΩΛ + ΩC = ∑
i

Ωi (41)

β ≡ V
H

which extends the standard relation Ω− 1 = κ
H2a2 and with the summation in the first line

applied to all four components6.
For the current time t0, Equation (41) can be written as ∑i Ωi0 = 1 + β0, with β0 = V0

H0
,

and used to rewrite the first line in Equation (40) as:
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H2 + HV =
8πG

3 ∑
i

ρi(t) =
8πG

3 ∑
i

ρi0a−ni (t) = H2
0 ∑

i
Ωi0a−ni (t) (42)

= H2
0{ΩM0a−3(t) + ΩR0a−4(t) + ΩΛ0 + [1 + β0 − (ΩM0 + ΩR0 + ΩΛ0)] a−2(t)},

where the summation symbols include all four components of the energy density, the
current-time curvature density parameter is expressed in terms of the other three,
ΩC0 = 1 + β0 − (ΩM0 + ΩR0 + ΩΛ0), and the explicit values of the integer parameters ni
have also been used in the last line.

It is customary to use a dimensionless time t = H0(t− t0) when solving the previous
differential equation, so we need to rewrite the RFDG weight in Equation (35) in terms of
t = t0 +

t
H0

and then rescale this variable for dimensional correctness, dividing by a scale
time tsc which can be simply taken as the current time, i.e., tsc ≈ t0. Then, we have:

t
tsc

=
t0

tsc
+

t
tscH0

≈ 1 +
t

t0H0
= 1 + δ0t (43)

v = vt
(
t
)
=

παt/2

Γ(αt/2)

(
t

tsc

)αt−1
≈ παt/2

Γ(αt/2)
(
1 + δ0t

)αt−1

and the final weight vt
(
t
)

in the second line can be used with free parameters αt > 0 and
δ0 = 1

t0 H0
∼ 1, since typically t0 ∼ H−1

0 . With these approximations, we also find β0 ≈
(αt − 1) and the only free parameter remaining in our equations is the time dimension αt.

Using the definitions for H and V from Equations (38) and (39), the dimensionless
time variable t = H0(t− t0) (with dt = H0dt), and with some additional algebra the main
Equation (42) can be recast as:

.
a = −1

2
a

.
v
v
± a

√{
ΩM0a−3

(
t
)
+ ΩR0a−4

(
t
)
+ ΩΛ0 + [1 + β0 − (ΩM0 + ΩR0 + ΩΛ0)] a−2

(
t
)}

+
1
4

( .
v
v

)2

, (44)

which becomes the RFDG differential equation for the scale factor a
(
t
)

with the initial
condition a(0) = 1 and time derivatives now taken with respect to t. For an expanding
universe at the current epoch, we will choose the positive sign in Equation (44), and
then solve it numerically for any assumed values of ΩM0, ΩR0, ΩΛ0 at the current time
and for any given temporal weight v = vt

(
t
)
. It should be noted that for αt = 1 and

β0 = 0 (v = 1,
.
v = 0,

..
v = 0), Equation (44) correctly reduces to the ΛCDM equivalent

differential equation:

.
a = a

√
{ΩM0a−3

(
t
)
+ ΩR0a−4

(
t
)
+ ΩΛ0 + [1− (ΩM0 + ΩR0 + ΩΛ0)] a−2

(
t
)
}, (45)

which is commonly used in standard cosmology to obtain a
(
t
)

from the initial Ωi0 val-
ues [52,54].

Using the RFDG Friedmann Equation (44), or the standard-cosmology equivalent (45)
above, we plot in Figure 1 some results for different values of the parameters, using the
temporal weight v = vt

(
t
)

as described in Equation (43) with 0 < αt ≤ 1 and δ0 = 1
t0 H0
∼ 1.

The results do not appear to depend much on the value of this second parameter, so we
simply set δ0 = 1 in the following.

In this figure, we plot three notable standard cosmology expansion histories, similar to
those presented in Figure 8.3 of Ref. [52], or Figure 2 in Ref. [54]. These were obtained using
Equation (45) above: the red-solid curve for ΩM0 = 0.3, ΩΛ0 = 0.7 (and αt = 1, i.e., v = 1)
represents the currently favored ΛCDM expansion history for a universe dominated by
about 70% of cosmological constant, Dark Energy (DE) component and only about 30% of
matter component (baryonic and dark matter). The green-solid curve corresponds instead
to a matter-dominated universe with ΩM0 = 1.0 and no cosmological constant, while
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the blue-solid curve corresponds to a 30% matter component, without any cosmological
constant. The radiation component at current epoch is assumed to be negligible (ΩR0 ≈ 0),
while the curvature component is fixed by ΩC0 = 1− (ΩM0 + ΩR0 + ΩΛ0).

ΩM0=0.3, ΩΛ0=0.7, αt=1.00

ΩM0=0.3, ΩΛ0=0.7, αt=0.50

ΩM0=0.3, ΩΛ0=0.7, αt=0.01

ΩM0=0.3, ΩΛ0=0.0, αt=1.00

ΩM0=0.3, ΩΛ0=0.0, αt=0.50

ΩM0=0.3, ΩΛ0=0.0, αt=0.01

ΩM0=1.0, ΩΛ0=0.0, αt=1.00

ΩM0=1.0, ΩΛ0=0.0, αt=0.50

ΩM0=1.0, ΩΛ0=0.0, αt=0.01

-1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

t = H0(t-t0)

a(
t
)

Figure 1. Expansion histories for different values of ΩM0, ΩΛ0, and of the RFDG parameter αt. Three
notable cases from standard cosmology (red, blue, and green solid curves) are compared with RFDG
results for similar ΩM0, ΩΛ0 parameters, but with variable αt > 0. RFDG curves for αt = 0.01, 0.50
(dotted and dashed curves) are only slightly different from their respective standard cosmology
solid curves.

Using Equation (44), we also plotted RFDG expansion histories for the same values of
the ΩM0, ΩΛ0 parameters (ΩR0 = 0), but for different values of the parameter αt = 0.01,
0.50 (dotted and dashed curves). This was done to show how the RFDG curves, with
αt ≈ 0− 1, can modify the standard-cosmology histories by adding the temporal weight
v = vt

(
t
)

from Equation (43). The goal of our original NFDG [1–3] was to show how
the effect of adding a possible spatial fractional-dimension D < 3 could replace the DM
component in astrophysical structures. Therefore, the goal of RFDG should be to show
that also the DE component in the Universe might be explained by a fractional-dimension
effect, possibly related to the temporal dimension parameter αt < 1.

However, as seen in the figure, the modified RFDG curves differ only slightly from the
standard-cosmology curves, for the range of the αt parameter being used. As a consequence,
it seems unlikely that a RFDG curve with no cosmological constant (ΩΛ0 = 0) and 0 < αt < 1
might be able to match the ΛCDM red-solid curve, i.e., replacing DE with a fractional-
dimension effect. Further analysis will be needed to check this possibility, by considering
an extended range for the αt parameter, using different approximations for tSC and δ0
in Equation (43), and possibly by also including the “kinetic” and “potential” terms in
Equation (36) (ω 6= 0 and U(v) 6= 0).

It is beyond the scope of this paper to expand these considerations any further, since
the goal of this current work was just to introduce the main equations of Relativistic
Fractional-Dimension Gravity, following the non-relativistic equations of our original
NFDG. At the moment, RFDG is just a tentative modified gravity model which needs to
be explored in more detail before it can be effectively applied to astrophysical objects or
cosmological investigations. In the near future, we are planning to analyze measurements
of the luminosity distance of type Ia supernovae with RFDG techniques, to see if our model
can interpret these data without resorting to the DE component as in standard ΛCDM
cosmology. This would be a necessary condition for the viability of RFDG as an alternative
model of gravity.
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5. Conclusions

In this work, we outlined a relativistic extension of our Newtonian Fractional-
Dimension Gravity, which was developed to model the dynamics of galaxies without
using any dark matter component. While the analysis of the NFDG model is still ongoing
with additional galaxies being studied with these methods, it was important to show
that NFDG admits a possible relativistic version, although at the moment it is not sure if
this Relativistic Fractional-Dimension Gravity will be useful to address astrophysical or
cosmological problems.

In this paper, we showed that a relativistic version can be derived from the mathemati-
cal theory for spaces with non-integer dimensions, the extended Euler–Lagrange equations
for scalar fields, and the existing methods for scalar-tensor models of gravity, multi-scale
spacetimes, and fractional gravity theories. The key element in all these methods is to
include an appropriate coordinate weight in the spacetime metric used in both NFDG and
RFDG. These weights will include the fractional-dimension parameters which characterize
these theories and should be considered to be different from the scalar functions used in
other models.

As a first, tentative application of RFDG, we applied it to the FLRW metric of standard
cosmology, using a simple time-dependent weight. We showed that it is straightforward
to extend the standard Friedmann equations and to solve them numerically for different
choices of the parameters. At this time, it is not possible to predict if these modified
cosmological equations will be of any physical significance, in relation to the DE problem,
or others.

Future work on the subject will be needed to test this model against the cosmological
paradigm, considering other possible weights which might be relevant in astrophysics
and cosmology, and also including the cosmic late-time acceleration, distance indicators,
type Ia supernovae data, etc., before RFDG can be considered a viable alternative theory
of gravity.
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Appendix A. RFDG Tensors for the FLRW Metric

In this section, we will detail the RFDG tensors used for the study of the FLRW
metric and related expansion histories discussed in Section 4.2. All these tensor quantities
were computed using Mathematica code7. These programs were tested by checking them
against results for known cases (standard GR and others) and then extended to include the
additional tensors described in Section 4.1.

The FLRW metric was defined in Equation (31), in terms of the dimensionless scale
factor a(t) and using standard spherical coordinates (r, θ, ϕ); the energy-momentum
tensor in Equations (32) and (33), where pressure p(t) and energy density ρ(t) depend
on the synchronous time t. The only additional input is the factorizable weight v(x) ≡
vt(t)vr(r)vθ(θ)vϕ(ϕ), which in general can be a function of the four spacetime coordinates.

As already mentioned in Section 4.2, this general form of the weight does not seem
to yield isotropic Friedmann equations, and even considering simplified weights, such as
v(x) ≡ vt(t)vr(r) or v(x) ≡ vr(r) does not seem to yield the required symmetry, although
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future studies might be needed to explore these weights in more detail. Therefore, we
opted to use a purely time dependent weight, v(x) ≡ vt(t) and we computed all the tensors
in terms of this general form for the weight, obtaining the following results.

Christoffel symbols, non-zero components of the Ricci tensor, and Ricci scalar (same
as standard GR results [52]):

Γ0
11 = a

.
a

1−κr2 Γ1
11 = κr

1−κr2

Γ0
22 = a

.
ar2 Γ0

33 = a
.
ar2 sin2 θ

Γ1
01 = Γ2

02 =
.
a
a Γ3

03 =
.
a
a

Γ1
22 = −r

(
1− κr2) Γ1

33 = −r
(
1− κr2) sin2 θ

Γ2
12 = 1

r Γ3
13 = 1

r
Γ2

33 = − sin θ cos θ Γ3
23 = cot θ

(A1)

R00 = −3
..
a
a

(A2)

R11 =
a

..
a + 2

.
a2

+ 2κ

1− κr2

R22 = r2
(

a
..
a + 2

.
a2

+ 2κ
)

R33 = r2
(

a
..
a + 2

.
a2

+ 2κ
)

sin2 θ

R = 6

[ ..
a
a
+

( .
a
a

)2

+
κ

a2

]

where time derivatives are indicated by the over-dot notation.
The additional tensors in Equations (24) and (28) are computed as follows. The

potential term Aµν ≡ 1
2 gµνU(v) is easily computed from the metric components:

A00 = −1
2

U(v) (A3)

A11 =
1
2

a2U(v)
(1− κr2)

A22 =
1
2

r2a2U(v)

A33 =
1
2

r2a2U(v) sin2 θ.

The components of the tensor Bµν ≡ gµν
�v
v , calculated using the Laplace-Beltrami

operator � = ∇µ∇µ = gµν∇µ∇ν, are as follows:

B00 =
3

.
a

.
v + a

..
v

av
(A4)

B11 = − a
(
3

.
a

.
v + a

..
v
)

v(1− κr2)

B22 = − r2a
(
3

.
a

.
v + a

..
v
)

v

B33 = − r2a
(
3

.
a

.
v + a

..
v
)

sin2 θ

v

where the weight vt(t) is simply denoted by v. The tensor Cµν ≡ ∇µ∇νv
v has components:
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C00 =

..
v
v

(A5)

C11 = − a
.
a

.
v

v(1− κr2)

C22 = − r2a
.
a

.
v

v

C33 = − r2a
.
a

.
v sin2 θ

v

The tensor Dµν ≡ ω
(

1
2 gµν∂σv∂σv− ∂µv∂νv

)
is computed as:

D00 = −1
2

ω
.
v2 (A6)

D11 = −1
2

ωa2 .
v2

(1− κr2)

D22 = −1
2

r2ωa2 .
v2

D33 = −1
2

r2ωa2 .
v2 sin2 θ

while the simpler tensor Eµν ≡ ω ∂µv∂νv has only one non-zero component:

E00 = ω
.
v2 (A7)

From Equations (32) and (33), the components of the energy-momentum tensor are:

T00 = ρ(t) (A8)

T11 =
a2 p(t)
1− κr2

T22 = r2a2 p(t)

T33 = r2a2 p(t) sin2 θ

with the trace given as T = Tµ
µ = −ρ(t) + 3p(t).

Using all the above tensor components, the field Equation (24) can be written as:

Rµν −
1
2

gµν R + Aµν + Bµν − Cµν + Dµν = 8πGTµν (A9)

while the alternative field Equation (28) can be computed as:

Rµν = 8πG
(

Tµν −
1
2

gµνT
)
+ Aµν +

1
2

Bµν + Cµν + Eµν (A10)

It is usually easier to use this alternative field equation to derive the Friedmann
equations. The µν = 00 equation from (A10), after some algebraic simplification, gives:

− 3
..
a
a
− 3

2

.
a

.
v

av
− 3

2

..
v
v
−ω

.
v2

+
1
2

U(v) = 4πG(ρ + 3p) (A11)

while the µν = ii equations (i = 1, 2, 3) from (A10) are all equivalent to each other and
yield:

..
a
a
+ 2
( .

a
a

)2

+ 2
κ

a2 +
5
2

.
a

.
v

av
+

1
2

..
v
v
− 1

2
U(v) = 4πG(ρ− p). (A12)
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Combining these last two equations together, after some simplifications, we obtain
the modified Friedmann Equation (36) introduced in Section 4.2.

Notes
1 SI units will be used throughout this paper, unless otherwise noted.
2 In Section 4, we will also include a possible time weight vt(t) = παt/2

Γ(αt/2) |t|
αt−1 into the action. Following the original analysis in

Ref. [46], we will not use this weight in this section.
3 Dimensionless coordinates, such as wi = xi/l0, wr = r/l0, etc., should be used in most equations in this section and in the

following ones. For simplicity’s sake, in this paper we left standard coordinates (xi, r, R, etc.) in most equations, without
transforming them into dimensionless, rescaled ones.

4 We prefer to indicate explicitly the spacetime dimension (i.e., Dspacetime = 4, µ = 0, 1, 2, 3), as opposed to using the symbol D as
in Ref. [11]. We will continue instead to denote with D the variable NFDG space dimension, as was done in Sections 1–3.

5 Even using a combined weight, vt(t)vr(r) = a(t)vr(r), does not seem to yield fully isotropic Friedmann equations for the
cosmological problem. A more detailed study of cosmological weights, including possible radial factors or even direct
modifications to the FLRW metric in terms of variable space-time dimensions, will be done in a future publication.

6 In RFDG, the connection with open (κ < 0), flat (κ = 0), and closed (κ > 0) universes is not simply related to the density
parameter Ω S 1 as in standard cosmology, due to the presence of the additional β term in Equation (41).

7 Mathematica, Version 12.2.0.0, Wolfram Research Inc.
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Abstract: We investigate the cosmological evolution for the physical parameters in Weyl integrable
gravity in a Friedmann–Lemaître–Robertson–Walker universe with zero spatial curvature. For the
matter component, we assume that it is an ideal gas, and of the Chaplygin gas, from the Weyl
integrable gravity a scalar field is introduced by a geometric approach which provides an interaction
with the matter component.We calculate the stationary points for the field equations and we study
their stability properties. Furthermore, we solve the inverse problem for the case of an ideal gas and
prove that the gravitational field equations can follow from the variation of a Lagrangian function.
Finally, variational symmetries are applied for the construction of analytic and exact solutions.

Keywords: cosmological dynamics; Weyl integrable theory; scalar field; interaction

1. Introduction

The cosmological constant component in the Einstein-Hilbert Action Integral is the
simplest dark energy candidate to describe of the recent acceleration phase of the universe,
as it is provided by the cosmological observations [1]. In the so-called ΛCDM cosmology
the universe is considered to be homogeneous and isotropic, described by the Friedmann–
Lemaître–Robertson–Walker (FLRW) geometry with spatially flat term, where the matter
component consists of the cosmological constant and a pressureless fluid source which
attributes the dark matter component of the universe. The gravitational field equations are
of second-order and can be integrated explicitly. Indeed, the field equations can be reduced
to that of the one-dimensional “hyperbolic oscillator”. However, as the cosmological
observations are improved, Λ-cosmology loses the important position in the “armoury” of
cosmologists. For an interesting discussion on the subject we refer the reader to the recent
review [2]. Furthermore, because of the simplicity of the field equations in Λ-cosmology,
the cosmological constant term cannot provide a solution for the description of the complete
cosmological evolution and history.

In order to solve these problems, cosmologists have introduced various solutions in
the literature by introducing new degrees of freedom in the field equations. Time-varying
Λ term, scalar fields and fluids with time-varying equation of state parameters, like the
Chaplygin gases have been proposed to modify the energy-momentum tensor of the field
equations [3–8]. On the other hand, a different approach is inspired by the modification
of the Einstein-Hilbert Action integral, and leads to the family of theories known as al-
ternative/modified theories of gravity [9–11]. Another interesting consideration is the
interaction between the various components of the energy momentum tensor [12]. Interac-
tion in the dark components of the cosmological model, that is, between, the dark energy
and the dark matter terms, is supported by cosmological observations [13–16].

For a given proposed dark energy mode model, there are systematic methods for
the investigation of the physical properties of the model. The derivation of exact and
analytic solutions is an essential approach because analytic techniques can be used for the
investigation of the cosmological viability of the model [17–20]. Furthermore, from the

Universe 2021, 7, 468. https://doi.org/10.3390/universe7120468 https://www.mdpi.com/journal/universe159
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analysis of the asymptotic dynamics, that is, of the determination of the stationary points,
the complete cosmological history can be constructed [21–23]. Indeed, constraints for the
free parameters of a given model can be constructed through the analysis of the stationary
points and the specific requirements for the stability of the stationary points [24–28].

In this piece of work, we study the evolution of the cosmological dynamics for the
theory known as Weyl integrable gravity (WIG) [29–35]. In WIG a scalar field is introduced
into the Einstein-Hilbert Action Integral by a geometric construction approach. Indeed,
in Riemannian geometry the basic geometric object is the covariant derivative ∇µ and
the metric tensor gµν, such that it has no metricity component, i.e., ∇κ gµν = 0 [36].
In Weyl geometry the fundamental geometric objects are the gauge vector field ωµ and
the the metric tensor gµν, such that ∇̃κ gµν = ωκ gµν, where now ∇̃µ notes the covariant
derivative with respect to the affine connection Γ̃κ

µν which is defined as Γ̃κ
µν = Γκ

µν −
ω(µδκ

ν)
+ 1

2 ωκ gµν. When ωµ is defined by a scalar field φ, Γ̃κ
µν describes the affine connection

for the conformal metric g̃µν = φgµν. The field equations of the WIG in the vacuum are
equivalent to that of General Relativity with a massless scalar field, with positive or
negative energy density. However, when a matter source is introduced, interaction terms
appear as a natural consequence of the geometry of the theory [36]. In geometric terms of
the interaction context, we investigate the dynamics of the cosmological field equations
so that we construct the cosmological history and investigate the viability of the theory.
Furthermore, the integrability property for the field equations is investigated by using the
method of variational symmetries for the determination of conservation laws.

In Section 2 we present the basic elements for the WIG theory. Furthermore, we
write the field equations for our cosmological model in a spatially flat FLRW background
space. In Section 3 we present the main results of our analysis in which we discuss the
asymptotic dynamics for the field equations in the cases for which the matter source is
an ideal gas, or a Chaplygin gas. Moreover, we investigate the dynamics in the presence
of the cosmological constant term. In Section 4 we show that the field equations have
a minisuperspace description when the matter source is an ideal gas. Specifically, we
solve the inverse problem and we construct a point-like Lagrangian which describes the
cosmological field equations. With the use of the variational symmetries we determine a
conservation law and we present the analytic solution for the field equations by using the
Hamilton-Jacobi approach. Our results are summarized in Section 5.

2. Weyl Integrable Gravity

Consider the two conformal related metric tensors gµν, g̃µν such that g̃µν = φgµν.
The Christoffel symbols of the two conformal related metrics are related as

Γ̃κ
µν = Γκ

µν − φ,(µδκ
ν) +

1
2

φ,κ gµν. (1)

In Weyl geometry the fundamental objects are the metric tensor gµν and the covari-
ant derivative ∇̃µ defined by the Christoffel symbols Γ̃κ

µν. Hence, the curvature tensor
is defined

∇̃ν

(
∇̃µuκ

)
− ∇̃µ

(
∇̃νuκ

)
= R̃κλµνuλ. (2)

Consequently, the Ricci tensors of the two conformal metrics are related as follows:

R̃µν = Rµν − ∇̃ν

(
∇̃µφ

)
− 1

2
(
∇̃µφ

)(
∇̃νφ

)
− 1

2
gµν

(
1√−g
∇̃ν∇̃µ

(
gµν
√
−gφ

)
− gµν

(
∇̃µφ

)(
∇̃νφ

))
, (3)

thus the Ricci scalar

R̃ = R− 3√−g
∇̃ν∇̃µ

(
gµν
√
−gφ

)
+

3
2
(
∇̃µφ

)(
∇̃νφ

)
. (4)
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In WIG the the fundamental Action Integral is defined by using the Weyl Ricci scalar
R̃ and the scalar field φ by the expression

SW =
∫

dx4√−g
(

R̃ + ξ
(
∇̃ν

(
∇̃µφ

))
gµν −Λ

)
, (5)

where ξ is a coupling constant. From (5) we observe that φ is a massless scalar field.
However, more generally, a potential function may be considered.

From the Action Integral (5) the Weyl-Einstein equations are as [36]

G̃µν + ∇̃ν

(
∇̃µφ

)
− (2ξ − 1)

(
∇̃µφ

)(
∇̃νφ

)
+ ξgµνgκλ

(
∇̃κφ

)(
∇̃λφ

)
−Λgµν = 0, (6)

where G̃µν is the Weyl Einstein tensor. By using the Riemannian Einstein tensor Gµν, the
Weyl-Einstein field Equations (6) become [36]

Gµν − λ

(
φ,µφ,ν −

1
2

gµνφ,κφ,κ

)
−Λgµν = 0, (7)

where λ is defined as 2λ ≡ 4ξ − 3. Equations (7) are nothing else than the field equations
of Einstein’s General Relativity with a massless scalar field. When λ > 0, the scalar field φ
is a quintessence while, when λ < 0, φ is a phantom field [36]

Moreover, for the equation of motion of the scalar field φ, the Klein-Gordon equation
is [36] (

∇̃ν

(
∇̃µφ

))
gµν + 2gµν

(
∇̃µφ

)(
∇̃νφ

)
= 0, (8)

or by using the Riemannian covariant derivative ∇µ, expression (8) is written in the usual
form gµν∇ν∇µφ = 0.

As it was found in [36], the introduction of a perfect fluid in the gravitational model
leads to the following set of gravitational field equations [36]

G̃µν + ∇̃ν

(
∇̃µφ

)
− (2ξ − 1)

(
∇̃µφ

)(
∇̃νφ

)
+ ξgµνgκλ

(
∇̃κφ

)(
∇̃λφ

)
−Λgµν = e−

φ
2 T(m)

µν , (9)

that is,

Gµν − λ

(
φ,µφ,ν −

1
2

gµνφ,κφ,κ

)
−Λgµν = e−

φ
2 T(m)

µν , (10)

where T(m)
µν = (ρm + pm)uµuν + pmgµν.

Moreover, the modified Klein-Gordon equation follows [36]

− gµν∇ν∇µφ =
1

2λ
e−

φ
2 ρm. (11)

Equation (11) follows from the identity Gµν
;ν = 0, which provides the conserve of the

effective energy-momentum tensor.

FLRW Spacetime

Following the cosmological principle, in very large scales the universe is considered
to be isotropic and homogeneous. Hence, the physical space is described by the FLRW
spacetime, where the three-dimensional surface is a maximally symmetric space and
admits six isometries. However, from cosmological observations the spatial curvature
is very small, which means that we can consider as background space the spatially flat
FLRW metric

ds2 = −dt2 + a2(t)
(

dr2 + r2
(

dθ2 + sin2 θdϕ2
))

. (12)
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Moreover, we assume the co-moving observer uµ = δt
µ, with expansion rate θ = 3 ȧ

a ,
for the line element (12) and for a scalar field φ = φ(t), the gravitational field equations are

θ2

3
− λ

2
φ̇2 −Λ− e−

φ
2 ρm = 0, (13)

θ̇ +
1
3

θ2 +
1
2

e−
φ
2 (ρm + 3pm) + λφ̇2 −Λ = 0, (14)

φ̈ + θφ̇ +
1

2λ
e−

φ
2 ρm = 0 (15)

and
ρ̇m + θ(ρm + pm)− ρmφ̇ = 0. (16)

From the modified Friedmann equations we observe the existence of a non-zero
interacting term for scalar field φ and the matter component ρm. When λ > 0, energy
decays from scalar field to the ρm, while for λ < 0 energy decays from ρm to the field φ.
Furthermore, the effective equation of state parameter for the effective cosmological matter
is defined as we f f = −1− 2 θ̇

θ2 .
Finally, for the nature of the matter source ρm in the following we consider that ρm is

an ideal gas, or a Chaplygin gas.

3. Cosmological Dynamics

We continue our analysis with the investigation of the stationary points for the cosmo-
logical field equations. In order to proceed with the study we define the new dimensionless
variables in the context of θ-normalization

x =

√
3
2

φ̇

θ
, ΩΛ =

3Λ
θ2 , Ωm =

3ρm

θ2 e−
φ
2 (17)

where for the equation of state parameter for the matter source we consider (i) ideal gas
pm = (γ− 1)ρm, 0 ≤ γ < 2, and (ii) Chaplygin gas pm = A0

ρα
m

, α ≥ 1. Moreover, we define

the new independent parameter to be τ = ln(a), such that x′ = dx
dτ .

At the stationary points the effective equation of the state parameter is defined as
we f f = we f f (x, ΩΛ, Ωm), so that the asymptotic solution is described by the scale factor

a(t) = a0t
2

3(1+we f f ) , we f f 6= −1 and a(t) = a0eH0t, when we f f = −1.

3.1. Ideal Gas with Λ = 0

Assume the equation of state of an ideal gas pm = (γ− 1)ρm, without the cosmological
constant term. Then in the new dimensionless variables (17) the field equations are

Ωm = 1− λx2 , (18)

x′ = −
(
1− λx2)(√6− 6(γ− 2)λx

)

12λ
. (19)

Moreover, Ωm is bounded as 0 ≤ Ωm ≤ 1, such that the solution is physically acceptable,
that is, from (18) it follows that there are physical stationary points only when λ > 0.

The stationary points of Equation (19) are

A±1 : x±1 =
1√
λ

, A2 : x2 =
1√

6(γ− 2)λ
. (20)

Points x±1 describe asymptotic solutions where only the scalar field contributes to the
cosmological fluid. The effective equation of state parameter is derived to be we f f

(
x±1
)
= 1,

from which we infer that the solution is that of a stiff fluid. On the other hand, the point x2
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is physically acceptable when λ ≥ 1
6(γ−2)2 , and the point describes a scaling solution with

we f f (x2) = −1 + γ + 1
6λ(γ−2) . For γ < 2

3 , λ > 1
8(1−2γ)+6γ2 it follows that we f f (x2) < − 1

3
which means that the asymptotic solution describes an accelerated universe, where in the
limit λ = 1

8(1−2γ)+6γ2 , the asymptotic solution is that of the de Sitter universe.
We proceed with the investigation of the stability properties for the stationary points.

We linearize Equation (19) and we find the eigenvalues e1
(

x±1
)
= 2− γ∓ 1√

6λ
, e1(x2) =

−1 + γ
2 + 1

12λ(2−γ)
. Thus, point x−1 is always a source, x+1 is an attractor when λ < 1

6(γ−2)2 ,

while x2 is the unique attractor when it exists.

3.2. Ideal Gas with Λ 6= 0

In the presence of the cosmological constant, that is, Λ 6= 0, and when the matter
term is that of the ideal gas, the field equations are written as follows

Ωm = 1− λx2 −ΩΛ , (21)

Ω′Λ = −ΩΛ

(
(γ− 2)λx2 + γ(ΩΛ − 1)

)
(22)

and
x′ =

1
12λ

((
λx2 − 1

)(√
6− 6(γ− 2)λx

)
+
(√

6− 6γλx
)

ΩΛ

)
. (23)

Furthermore, we assume that |ΩΛ| ≤ 1, from which we infer that x is also bounded,
and we do not have to study the dynamical system for the existence of stationary points
at infinity.

The stationary points of the dynamics system (22), (23) are defined in the plane
{x, ΩΛ}, that is B = (x(B), ΩΛ(B)). The points are

B±1 =

(
± 1√

λ
, 0
)

, B2 =

(
1√

6(γ− 2)λ
, 0

)
, (24)

B3 = (0, 1) , B4 =
(√

6γ, 1 + 6(2− γ)γλ
)

. (25)

Points B±1 , B2 are actually the stationary points A±1 and A2, respectively, for which
the cosmological constant component is zero. The physical properties are the same as
before. However, we should investigate the stability analysis.

For point B3 we derive we f f (B3) = −1, Ωm(B3) = 0. Thus point B3 describes a de
Sitter universe.

Furthermore, point B4 provides Ωm(B4) = −12γλ, we f f (B4) = −1. The point is phys-
ically acceptable when − 1

24 ≤ λ < 0, or λ < − 1
24 with γ ≤ − 1

12λ or γ = 0. The stationary
point describes the de Sitter universe in which all the fluid components contribute in the
cosmological solution.

We linearize the dynamical system (22), (23) around the stationary points and we derive
the eigenvalues. For points B±1 the eigenvalues are e1

(
B±1
)
= 2− γ∓ 1√

6λ
, e2
(

B±1
)
= 2 from

which we infer that B−1 is always a source, while B+
1 is a saddle point when λ < 1

6(γ−2)2 .

Otherwise it is a source.
For point B2 the two eigenvalues are e1(B2) = −1 + γ

2 + 1
12λ(2−γ)

, e2(B2) = γ +
1

6λ(2−γ)
. Thus, point is always a saddle point when it is physically acceptable because

e1(B2) is always negative while e2(B2) is always positive.
The eigenvalues of the linearized system around the de Sitter point B3 are calculated to

be e1(B3) = −1 and e2(B3) = −γ, from which we infer that the point is always an attractor.
Finally, for point B4 we find the eigenvalues e±(B4) = − 1

2 ±
√

1 + 4γ(1 + 6(2− γ)λ).
Consequently, point B4 is always a saddle point.
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3.3. Chaplygin Gas with Λ = 0

Consider now that the matter source satisfies the equation of the state parameter of a
Chaplygin gas, pm = A0

ρα
m

, for which α ≥ 1, A0 = (−1)α3−(1+α)A and ρm 6= 0. The field
equations are written as follows

Ωm = 1− λx2 , (26)

x′ =
1

12




(√
6 + 6λx

)(
λx2 − 1

)

λ
+ 6x

(
λx2 − 1

)−α
Y


 (27)

and

Y′ =
1 + α

6
Y
(

6−
√

6x + 6λx2 + 6
(

λx2 − 1
)−α

Y
)

, (28)

where the new variable Y is defined as Y = Ae−
1
2 (1+α)φθ−(2+α).

The stationary points C = (x(C), Y(C) )of the dynamical system (27), (28), with Ωm >
0 are

C1 =

(
− 1√

6λ
, 0
)

, (29)

C2 =



√

3
2
−
√

λ(1 + 3λ)√
2λ

,

(√
3λ(1 + 3λ) + 6λ

(
1 + 3λ−

√
3λ(1 + 3λ)

))(
− 1

2 − 3λ
√

3λ(1 + 3λ)
)α

6λ


 (30)

and

C3 =



√

3
2
+

√
λ(1 + 3λ)√

2λ
,

(√
3λ(1 + 3λ) + 6λ

(
1 + 3λ +

√
3λ(1 + 3λ)

))(
− 1

2 + 3λ
√

3λ(1 + 3λ)
)α

6λ


 . (31)

For point C1 we derive Ω(C1) = 1 − 6
λ , we f f (C1) = 1

6λ . The point is physically
acceptable when λ ≥ 1

6 while it always describes a universe without acceleration. For
λ = 1

6 , the asymptotic solution is that of dust, while for λ = 1
2 the asymptotic solution is

that of radiation. The eigenvalues of the linearized system around the stationary point are
calculated e1(C1) =

(1+α)(1+3λ)
3λ , e2(C1) =

1−6λ
12λ , from which we can easily conclude that

the stationary point is always a saddle point.
Point C2 describes a universe for which Ωm(C2) = 1

2 − 3λ +
√

3λ(1 + 3λ) and

we f f (C2) = λ(x(C2))
2 +

(
λ(x(C2))

2 − 1
)−α

Y(C2). The point is well defined when λ > 0,
while for large values of λ it follows that we f f (C2; λ >> 1) ' −1, which means that point
C2 can describe a solution near to the de Sitter point. On the other hand, point C3 is
physical acceptable for 0 < λ ≤ 1

24 , while we derive Ωm = −3λ +
√

3λ(1 + 3λ) and

we f f (C3) = λ(x(C3))
2 +

(
λ(x(C3))

2 − 1
)−α

Y(C3) in which we f f

(
C3; λ = 1

24

)
= 1. Thus

point C3 does not describe any acceleration.
The eigenvalues of the linearized system near to the stationary points C2 and C3 are

determined. Numerically we find that e1(C2), e2(C2) have always negative real parts for
λ > 0 and α ≥ 1; on the other hand Re(e1(C3)) > 0, Re(e2(C3)) > 0 for α ≥ 1, 0 < λ ≤ 1

24 .
Hence, point C2 is always an attractor while point C3 is always a source.

3.4. Chaplygin Gas with Λ 6= 0

In the presence of a non-zero cosmological constant term, the field equations are
reduced to the following dynamical system

Ωm = 1− λx2 −ΩΛ , (32)

Ω′Λ = ΩΛ

(
1 + λx2 −ΩΛ + Y

(
λx2 + ΩΛ − 1

)−α
)

, (33)
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x′ =
1
12

(
x2
(√

6 + 6λ
)
+

√
6

λ
(ΩΛ − 1) + 6x

(
Y
(

λx2 + ΩΛ − 1
)−α
− 1−ΩΛ

))
, (34)

Y′ =
1 + α

6
Y
(

6
(

1 + λx2 + ΩΛ + Y
(

λx2 + ΩΛ − 1
)−α

)
−
√

6λx
)

. (35)

The physically acceptable stationary points D = (x(D), Y(D), ΩΛ(D)) are

D1 = (x(C1), Y(C1), 0) , D2 = (x(C2), Y(C2), 0) , (36)

D3 = (x(C3), Y(C3), 0) , D4 =
(√

6, 1 + 6λ, 0
)

, (37)

where D1, D2 and D3 have the same physical properties as points C1, C2 and C3, respec-
tively.

For the point D4 we find Ωm(D4) = −12λ and we f f (D4) = −1, which means that the
asymptotic solution is physically acceptable when − 1

12 ≤ λ < 0, while the asymptotic
solution is that of the de Sitter universe.

The eigenvalues of the linearized system near D1 are e1(D1) =
(1+α)(1+3λ)

3λ , e2(D1) =
1−6λ
12λ and e3(D1) = 1+6λ

6λ , which means that point D1 is always a saddle point. For the
points D2 and D3 we find numerically that D2 is always an attractor while D3 is always a
source. Finally, for the point D4 we calculate e1(D4) = −(1 + α), e±2 = 1

2

(
−1±

√
5 + 24λ

)
,

from which it follows that the stationary point is always a saddle point.

4. Minisuperspace Description and Conservation Laws

For an ideal gas pm = (γ− 1)ρm, from Equation (16) it follows ρm(t) = ρm0a−3γeφ in
which ρm0 is a constant of integration.

We substitute this into the rest of the field equations and we end with the following
dynamical system

θ2

3
− λ

2
φ̇2 −Λ− ρm0e

φ
2 a−3γ = 0, (38)

θ̇ +
1
3

θ2 +
(3γ− 2)

2
ρm0e

φ
2 a−3γ + λφ̇2 −Λ = 0, (39)

φ̈ + θφ̇ +
ρm0

2λ
e

φ
2 a−3γ = 0. (40)

For the second-order differential Equations (39) and (40) in the space of variables
{a, φ}, the inverse problem for the determination of a Lagrangian function, provides that
the function

L(a, ȧ, φ, φ̇) = −3aȧ2 +
λ

2
a3φ̇2 − a3Λ− ρm0e

φ
2 a3−3γ (41)

is an autonomous Lagrangian function for the field equations, while Equation (38) is
conservation law of “energy”, i.e., the HamiltonianH, constraintH = 0.

In general, the field equations for the cosmological model in WIG theory with an ideal
gas, for the metric

ds2 = −N2(t) + a2(t)
(

dx2 + dy2 + dz2
)

, (42)

follow from the singular point-like Lagrangian

L(a, ȧ, φ, φ̇) =
1
N

(
−3aȧ2 +

λ

2
a3φ̇2

)
− N

(
a3Λ + ρm0e

φ
2 a3−3γ

)
. (43)

Integrability Property and Analytic Solution

Since the field equations admit a point-like Lagrangian various techniques inspired by
analytic mechanics be applied for the study of the dynamical system. Indeed, variational
symmetries and conservation laws can be determined by using Noether’s theorems [37].
That approach has been widely used in various gravitational systems. New integrable
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cosmological models as also new analytic and exact solutions were found through the use
of variational symmetries, see for instance [38].

We investigate for variational symmetries which have point transformations as gener-
ators and provide conservation laws linear in the velocities. Hence, for the Lagrangian
function (41) and for ρm0 6= 0, we find that the variational symmetry X = 2

3 a∂a + 4(γ− 2)∂φ

exists for Λ = 0, and the corresponding conservation law is

F(a, ȧ, φ, φ̇) = 4a2 ȧ− 4(γ− 2)λa3φ̇− F0. (44)

Function F(a, ȧ, φ, φ̇), dF
dt = 0, is the second-conservation law for the dynamical system,

which means that the field equations form an integrable dynamical system.
In order to reduce the field equations and determine exact solutions, we apply the

Hamilton-Jacobi approach. We define the momentum pa = −6aȧ, and pφ = λa3φ̇., thus
the Hamiltonian functionH

(
a, φ, pa, pφ

)
= 0, reads

− p2
a

6a
+

p2
φ

λa3 + 2
(

a3Λ + ρm0e
φ
2 a3−3γ

)
= 0 (45)

while the Hamilton-Jacobi equation is written in the following form

− 1
6a

(
∂

∂a
S(a, φ)

)2
+

1
λa3

(
∂

∂φ
S(a, φ)

)2
+ 2ρm0e

φ
2 a3−3γ = 0, (46)

where now pa =
∂S
∂a and pφ = ∂S

∂φ .
Moreover, the conservation law (44) provides the constraint equation for the Action

S(a, φ)
2a
3

(
∂

∂a
S(a, φ)

)
+ 4(γ− 2)

∂

∂φ
(S(a, φ))− F0 = 0. (47)

We define the new variable φ = 6(γ− 2) ln a + Φ, such that the constraint equation be-
comes

2
3

a
∂

∂a
(S(a, Φ))− F0 = 0. (48)

This new set of variables {a, Φ} are the normal coordinates for the dynamical system.
Consequently, in the normal variables the analytic expression for the Action as pro-

vided by the Hamilton-Jacobi equation is

S(a, Φ) =
3
2

F0 ln a +
∫
√

2λ

√
16ρm0e

Φ
2

(
6λ(γ− 2)2 − 1

)
+ 3F0 + 6λ(γ− 2)F0

4
(

6λ(γ− 2)2 − 1
) dΦ (49)

for
(

6λ(γ− 2)2 − 1
)
6= 0, or

S(a, Φ) =
3
2

F0 ln a +
3F2

0 Φ− 32ρ0e
Φ
2

24F0(γ− 2)
, (50)

when
(

6λ(γ− 2)2 − 1
)
= 0.

However, in the new coordinates the momentum are defined as

pa = −6a
((

6λ(γ− 2)2 − 1
)

ȧ + (γ− 2)λaΦ̇
)

, (51)

pΦ = −λa
(
6(γ− 2)ȧ + aΦ̇

)
, (52)
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which give the following expressions for the scale factor and the scalar field

6a2 ȧ = apa − 6(γ− 2)pΦ, (53)

λa3Φ̇ = −pΦ − λ(γ− 2)(ApA + 6(γ− 2)pΦ). (54)

Hence, by using the Action (49) and expressions (53), (54), the cosmological field
equations can be written into an equivalent system. We summarize the results in the
following proposition.

Proposition 1. The field equations in WIG for a FLRW background space with zero spatial
curvature and an ideal gas form a Liouville integrable system when there is no cosmological constant
term. The analytic solution for the Hamilton-Jacobi equation provides the Action (49), while the field
equations can be written into an equivalent set of two first-order ordinary differential Equations (53)
and (54).

Assume now the simple case for which γ = 1 and F0 = 0. Moreover, we define the

new variable T = T(t), such that dT =

√
(6λ−1)
A3 dt and λ 6= 1

6 .
Thus, the field equations are

ȧ
a
−
√

2λρm0e
Φ
4 = 0, (55)

Φ̇−
√

2
λ

ρm0(6λ + 1)e
Φ
4 = 0,

with exact solution

a(t) = a0t
4λ

1+6λ , Φ(t) = −2 ln
(
(6λ + 1)ρm0

8λ
t2
)

. (56)

For this exact solution the background space is

ds2 = − (6λ− 1)
a6

0
t−

24λ
1+6λ dT2 + a2

0t
8λ

1+6λ

(
dx2 + dy2 + dz2

)
. (57)

The later solution describes a universe dominated by a perfect fluid source with constant
equation of state parameter. This specific solution is described by the stationary points A2,
thus. the results are in agreement with the asymptotic analysis for the dynamics.

5. Conclusions

In this work we considered WIG to describe the cosmological evolution for the phys-
ical parameters in FLRW spacetime with zero spatial curvature. The gravitational field
equations in WIG are of second-order and Einstein’s theory, with the presence of the of
a scalar field, is recovered. Scalar field plays the role for conformal factor which relates
the connection of Weyl theory with the Levi-Civita connection of Riemannian geometry.
However, the field equations differ when matter is introduced in the gravitational model.
Indeed, in WIG the matter source interacts with the scalar field. The interaction term is
introduced naturally from the geometric character of the theory.

In our study we considered the matter source to be described by that of an ideal gas,
that is pm = (γ− 1)ρm, or by the Chaplygin gas pm = − A0

ρα
m

. We defined new dimensionless
variables based on the Hubble-normalization in order to write the field equations as a
system of first-order algebraic differential system. In each model, we determined the
stationary points for the latter system and we determined their dynamical properties as
also the physical properties of the asymptotic solutions. In our analysis we also considered
a non-zero cosmological constant.
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For the ideal gas, we found that there exists an attractor with an asymptotic solution
of an ideal gas, but with a different parameter for the equation of state. For instance, we
can consider the matter source to be that of radiation while the attractor to describe an
accelerated universe. In the presence of the cosmological constant, we find two asymptotic
solutions which can describe the past acceleration phase of the universe known as inflation,
as also the late time acceleration. The future attractor describes the de Sitter universe.
When the matter component is that of a Chaplygin gas the stationary points as also the
cosmological evolution are similar with the previous case.

Moreover, for the ideal gas case, we solved the inverse problem and determined a
Lagrangian function, and a minisuperspace description, which generates the cosmological
equations under a variation. We applied Noether’s theorems for point transformations
in order to construct a non-trivial conservation law when the cosmological constant term
is zero. Hence, the cosmological field equations form a Liouville integrable dynamical
system. The closed-form expression for the Hamilton-Jacobi equation derived. Finally, for
specific values for the free parameters, we were able to construct an exact solution which is
in agreement with the asymptotic analysis.

In a subsequent analysis we plan to investigate further the field equations as a Hamil-
ton system and understand how a non-zero cosmological constant affects the integrability
property of the field equations.
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Abstract: Recently, the authors have formulated and explored a novel Painlevé–Gullstrand variant
of the Lense–Thirring spacetime, which has some particularly elegant features, including unit-lapse,
intrinsically flat spatial 3-slices, and some particularly simple geodesics—the “rain” geodesics. At
the linear level in the rotation parameter, this spacetime is indistinguishable from the usual slow-
rotation expansion of Kerr. Herein, we shall show that this spacetime possesses a nontrivial Killing
tensor, implying separability of the Hamilton–Jacobi equation. Furthermore, we shall show that the
Klein–Gordon equation is also separable on this spacetime. However, while the Killing tensor has a
2-form square root, we shall see that this 2-form square root of the Killing tensor is not a Killing–Yano
tensor. Finally, the Killing-tensor-induced Carter constant is easily extracted, and now, with a fourth
constant of motion, the geodesics become (in principle) explicitly integrable.

Keywords: Painlevé–Gullstrand metrics; Lense–Thirring metric; Killing tensor; Killing–Yano tensor;
separability; Carter constant; geodesic integrability

1. Introduction

Recently, the current authors have introduced and explored a new variant of the
Lense–Thirring spacetime [1], specified by the line element

ds2 = −dt2 +

{
dr +

√
2m
r

dt

}2

+ r2

{
dθ2 + sin2 θ

(
dφ− 2J

r3 dt
)2
}

. (1)

The metric components are easily read off as

gab =




−1 + 2m
r + 4J2 sin2 θ

r4

√
2m
r 0 − 2J sin2 θ

r√
2m
r 1 0 0

0 0 r2 0

− 2J sin2 θ
r 0 0 r2 sin2 θ




ab

. (2)

It is easy to verify that det(gab) = −r4 sin2 θ, and that the inverse metric is:

gab =




−1
√

2m
r 0 − 2J

r3√
2m
r 1− 2m

r 0
√

2m
r

2J
r3

0 0 1
r2 0

− 2J
r3

√
2m
r

2J
r3 0 1

r2 sin2 θ
− 4J2

r6




ab

. (3)
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This variant of the Lense–Thirring spacetime is rather useful since the metric is recast into
the Painlevé–Gullstrand form [2–5]. Writing the metric in this form gives it two very useful
properties: the first is the property of unit-lapse, characterised by gtt = −1, and the second
is the possession of a flat spatial 3-metric, notably

gij dxi dxj −→ dr2 + r2(dθ2 + sin2 θ dφ2). (4)

A flat 3-metric allows for an almost trivial analysis of the constant-t spatial hypersur-
faces, while lapse unity permits straightforward calculation of particular geodesics of the
spacetime. Specifically, the “rain” geodesics become almost trivial to calculate [6]. At the
linear level in the rotation parameter, this spacetime is indistinguishable from the usual
slow-rotation expansion of Kerr.

We also note the advantages of using this variant of the Lense–Thirring spacetime, as
opposed to the exact Kerr solution, in some astrophysically interesting contexts. Firstly,
since there is no analogue of the Birkhoff theorem for axisymmetric spacetimes in (3 + 1)
dimensions [7–11], the Kerr solution need not (and typically will not) perfectly model
rotating horizonless astrophysical sources (such as stars, planets, etc.). This is due to the
nontrivial mass multipole moments that these objects typically possess. Instead, the Kerr
solution will model the gravitational field in the asymptotic regime, where Lense–Thirring
serves as a valid approximation to Kerr [12–29]. Secondly, the Lense–Thirring metric is
algebraically much simpler than the Kerr metric, making most calculations significantly
easier to conduct. Furthermore, the Lense–Thirring metric can be recast into Painlevé–
Gullstrand form, while the Kerr metric cannot [30–33].

Given that this variant of the Lense–Thirring metric is amenable to significantly more
tractable mathematical analysis and is a valid approximation for the gravitational fields of
rotating stars and planets in the same regime as the Kerr solution is appropriate, there is
a compelling argument to use the Painlevé–Gullstrand form of Lense–Thirring to model
various astrophysically interesting cases [34–36].

Supplementary to this, we will show below that this spacetime possesses a nontrivial
Killing tensor, and we shall also present the 2-form square root of this Killing tensor, an
object that acts as a “would-be” Killing–Yano tensor. We discuss precisely how this object
does and does not satisfy the desiderata for being a genuine Killing–Yano tensor. We
establish why this candidate spacetime does not possess the full Killing tower (consisting
of principal tensor, Killing–Yano tensor, and Killing tensor). We also check that the Klein–
Gordon equation is separable on this variant of Lense–Thirring spacetime.

Given only three constants of motion—the energy E, angular momentum L, and
particle mass parameter ε, the geodesic equations are not integrable. By finding a non-
trivial Killing tensor for the spacetime, we generate a fourth constant of the motion, a
generalization of the Carter constant C.

The existence of this additional constant of motion then implies complete separability
of the Hamilton–Jacobi equation, which makes the geodesic equations fully integrable, at
least in principle.

2. Killing Tensor

Nontrivial Killing tensors are incredibly useful mathematical objects that are present
in almost all (useful) candidate spacetimes and can be thought of as generalisations of
Killing vectors. A Killing tensor is a completely symmetric tensor of type (0, l) which
satisfies the following equation:

∇(bKa1...al)
= 0 . (5)

However, unlike Killing vectors, Killing tensors do not naturally arise from explicit sym-
metries present in the spacetime. Hence, finding nontrivial Killing tensors in a spacetime
can be difficult in the abstract. However, in two recent papers by Papadopoulos and
Kokkotas [37,38], which are in turn based on older results by Benenti and Francaviglia [39],
it has been explicitly shown that if the inverse metric of a spacetime can be written in a
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particular form, then a nontrivial (contravariant) Killing tensor of rank 2 exists and can be
easily calculated. (Here we make the distinction of requiring a nontrivial Killing tensor
since the metric itself is always a trivial Killing tensor.)

To use this method, we first coordinate-transformed our Lense–Thirring metric variant
into Boyer–Lindquist form [1]:

(ds2)BL = −(1− 2m/r)dt2 +
dr2

1− 2m/r
+ r2

{
dθ2 + sin2 θ

(
dφ− 2J

r3 dt
)2
}

. (6)

Here

(gab)BL =




−1 + 2m
r + 4J2 sin2 θ

r4 0 0 − 2J sin2 θ
r

0 1
1−2m/r 0 0

0 0 r2 0

− 2J sin2 θ
r 0 0 r2 sin2 θ




ab

, (7)

and

(gab)BL =




− 1
1−2m/r 0 0 − 2J

r3(1−2m/r)
0 1− 2m

r 0 0
0 0 1

r2 0

− 2J
r3(1−2m/r) 0 0 1

r2 sin2 θ
− 4J2

r6(1−2m/r)




ab

. (8)

We then applied the Papadopoulos–Kokkotas algorithm [37,38] by first inverting the
Boyer–Lindquist form of the metric (7) to obtain (8), then extracting the contravariant
Killing tensor in these coordinates, and finally converting the result back to Painlevé–
Gullstand coordinates.

After conversion back to Painlevé–Gullstand coordinates, where the line element is
again (1), the Papadopoulos–Kokkotas algorithm [37,38] yields the particularly simple
contravariant form of the Killing tensor:

Kab =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

sin2 θ




ab

. (9)

The corresponding covariant form of the Killing tensor, Kab = gac Kcd gdb, is then

Kab =




4J2 sin2 θ
r2 0 0 −2Jr sin2 θ

0 0 0 0
0 0 r4 0

−2Jr sin2 θ 0 0 r4 sin2 θ




ab

. (10)

One can easily explicitly check that∇(cKab) = K(ab;c) = 0; hence, Equation (10) does indeed
represent a Killing tensor. We can also compactly write:

Kab dxa dxb = r4

{
dθ2 + sin2 θ

(
dφ− 2J

r3 dt
)2
}

. (11)

We now adopt an orthonormal basis, using the co-tetrad and tetrad developed in reference [1].
For the co-tetrad, we take

et̂
a = (1; 0, 0, 0); er̂

a =

(√
2m
r

; 1, 0, 0

)
;

eθ̂
a = r(0; 0, 1, 0); eφ̂

a = r sin θ

(
−2J

r3 ; 0, 0, 1
)

. (12)
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The corresponding tetrad is then

et̂
a =

(
1;−

√
2m
r

, 0,
2J
r3

)
; er̂

a = (0; 1, 0, 0);

eθ̂
a =

1
r
(0; 0, 1, 0); eφ̂

a =
1

r sin θ
(0; 0, 0, 1). (13)

For the tetrad components of the Killing tensor, we find

Kâb̂ −→ r2




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




âb̂

. (14)

Since this is diagonal, and since we also know from reference [1] that the orthonormal
form of the Ricci tensor Râb̂ is diagonal, it follows that the Ricci tensor commutes with

the Killing tensor: Râ
b̂ Kb̂

ĉ = Kâ
b̂ Rb̂

ĉ. Indeed, even in a coordinate basis, it follows that
Ra

b Kb
c = Ka

b Rb
c. Note that the commutator [R, K]ab = RacgcdKdb − KacgcdRdb can be

viewed as a 2-form. It is also potentially useful to note that the trace of the Killing tensor is
particularly simple; K = Kabgab = Kabgab = 2r2.

If we now take the limit J → 0, then the Lense–Thirring spacetime reduces to the spher-
ically symmetric Schwarzschild spacetime. In this J → 0 limit, the nontrivial (covariant)
Killing tensor becomes

Kab −→




0 0 0 0
0 0 0 0
0 0 r4 0
0 0 0 r4 sin2 θ




ab

, (15)

so that
Kab dxa dxb −→ r4

{
dθ2 + sin2 θ dφ2

}
. (16)

Indeed, it is easily verified that this is the appropriate Killing tensor in any arbitrary
spherically symmetric spacetime, even if it is time-dependent. Furthermore, for any
arbitrary (possibly time-dependent) spherically symmetric spacetime, one can always
block-diagonalize the metric and Ricci tensors in the form

gab −→




∗ ∗ 0 0
∗ ∗ 0 0
0 0 r2 0
0 0 0 r2 sin2 θ




ab

; Rab −→




∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ 0
0 0 0 ∗




ab

. (17)

Hence, the Ricci tensor will algebraically commute with the Killing tensor via matrix
multiplication: Ra

bKb
c = Ka

bRb
c.

These observations further reinforce the fact that this variant of the Lense–Thirring
spacetime does indeed simplify to Schwarzschild spacetime in the appropriate limit. A
quick ansatz for understanding the genesis of our variant of the Lense–Thirring spacetime
is to simply take Schwarzschild spacetime and subject both the line element and Killing
tensor to the replacement (not a coordinate transformation):

dφ −→
(

dφ− 2J
r3 dt

)
. (18)

We shall soon use this Killing tensor to construct a Carter constant for our variant of the
Lense–Thirring spacetime, but we will first briefly digress to discuss Killing–Yano tensors.
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3. Two-Form Square Root of the Killing Tensor

Interestingly, it is not too difficult to find a 2-form “square root” of this Killing tensor,
in the sense of finding an antisymmetric tensor satisfying Kab = − fac gcd fdb. Explicitly,
one finds

fab = sin θ




0 0 2J 0
0 0 0 0
−2J 0 0 r3

0 0 −r3 0




ab

. (19)

We can also write this as

fab dxa ∧ dxb = r3 sin θ

{
dθ ∧

(
dφ− 2J

r3 dt
)}

. (20)

The contravariant components are even simpler:

f ab =
1

r sin θ




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0




ab

. (21)

In the orthonormal basis, one finds

f âb̂ = r




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0




âb̂

. (22)

Unfortunately, while the 2-form fab is indeed a square root of the Killing tensor Kab, it fails
to be a Killing–Yano tensor; it is at best a “would-be” Killing–Yano tensor. Specifically,
although the vector gbc fab;c = 0, which in form notation can be written as δ f = 0, the
3-index tensor fa(b;c) is nonzero:

fa(b;c) dxadxbdxc =
3J sin θ

2r
{dr⊗ (dt⊗ dθ + dθ ⊗ dt)− dt⊗ (dr⊗ dθ + dθ ⊗ dr)}. (23)

Unfortunately, there does not seem to be any way to further simplify this result.
It is also potentially worthwhile to note

f[ab;c] = εtabc; equivalently d f = 3 dr ∧ dθ ∧ dφ. (24)

Indeed, one sees δ d f ∝ ∗d ∗ d f = 3 ∗ d ∗ (dr ∧ dθ ∧ dφ) = 3 ∗ d(dt) = 0.
Consequently, since both δd f = 0 and δ f = 0, we see that the 2-form f is harmonic:

∆ f = (δd + dδ) f = 0. While the 2-form f is not a Killing–Yano tensor, it certainly satisfies
other interesting properties.

The non-existence of the Killing–Yano tensor in turn implies the non-existence of
the full Killing tower. When possible to do so, one defines a principal tensor hab as the
foundation of the Killing tower by demanding the existence of a 2-form h such that [40]
(see discussion near page 47):

∇ahbc =
1
3

[
gab∇dhdc − gac∇dhdb

]
. (25)

The existence of such an object is dependent upon the satisfaction of a specific integra-
bility condition, which directly implies the spacetime be of Petrov type D. However,
in reference [1], the current authors found that the Painlevé–Gullstrand form of Lense–
Thirring is Petrov type I, i.e., not algebraically special. It follows that no principal tensor
can exist for this candidate spacetime, and hence there is no associated Killing–Yano tensor.
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Similar oddities have also cropped up in other contexts. In references [41,42], those authors
found that rotating black bounce spacetimes possess a nontrivial Killing tensor, and a
2-form square root thereof, but that this 2-form square root failed to be a Killing–Yano
tensor.

One can also infer the non-existence of the Killing tower as a side effect of the fact
that the Painlevé–Gullstrand form of Lense–Thirring does not mathematically fall into
Carter’s “off shell” 2-free-function distortion of the Kerr spacetime [40] (see discussion
near page 42).

4. Separability of the Klein–Gordon Equation

Generally, the existence of a nontrivial Killing tensor is by itself not quite enough
to guarantee separability of the Klein–Gordon equation. An explicit check needs to be
carried out. There are two ways of proceeding—either via direct calculation, or indirectly
by studying the commutativity properties of certain differential operators. We find it most
illustrating to first perform a direct calculation, and then subsequently put the discussion
into a more abstract framework.

We are interested in the behaviour of the massive or massless minimally coupled
Klein–Gordon equation (wave equation with possibly a mass term):

1√−g
∂a

(√
−g gab ∂bΦ(t, r, θ, φ)

)
= µ2Φ(t, r, θ, φ). (26)

First, we note that
√−g = r2 sin θ. Second, in view of the explicit Killing symmetries in

the t and φ coordinates, we can immediately write Φ(t, r, θ, φ) −→ Φ(r, θ)e−iωteinφ.
Then we are reduced to considering

∂a

(
r2 sin θ gab ∂b[Φ(r, θ)e−iωteinφ]

)
= µ2 r2 sin θ Φ(r, θ)e−iωteinφ. (27)

Now, going from the Painlevé–Gullstrand form of the metric to Boyer–Lindquist form
involves a coordinate change: t←→ t + f (r). Under such a coordinate change, e−iωt ←→
e−iω[t+ f (r)] = e−iω f (r)e−iωt. Thence, separability of the wave equation is unaffected by this
coordinate transformation. Note also that the metric determinant,

√−g = r2 sin θ, is the
same in both coordinate systems.

Consequently, without loss of generality we may work in Boyer–Lindquist form,
and for our current purposes it is advantageous to do so. The inverse metric is given by
Equation (6):

(gab)BL =




− 1
1−2m/r 0 0 − 2J

r3(1−2m/r)
0 1− 2m

r 0 0
0 0 1

r2 0

− 2J
r3(1−2m/r) 0 0 1

r2 sin2 θ
− 4J2

r6(1−2m/r)




ab

. (28)

Then the Klein–Gordon Equation (27) reduces to

sin θ ∂r[r2(1− 2m/r)∂rΦ] + ∂θ [sin θ ∂θΦ]

+r2 sin θ

(
ω2

1− 2m/r
− 4Jnω

r3(1− 2m/r)
− n2

[
1

r2 sin2 θ
− 4J2

r6(1− 2m/r)

])
Φ

= µ2r2 sin θ Φ. (29)

176



Universe 2021, 7, 473

That is,

∂r[r2(1− 2m/r)∂rΦ] +
∂θ [sin θ ∂θΦ]

sin θ
− n2

sin2 θ
Φ + r2

(
(ω− 2Jn/r3)2

1− 2m/r

)
Φ

= µ2r2Φ. (30)

This is now manifestly separable:

∂r[r2(1− 2m/r) ∂rΦ] + r2 (ω− 2Jn/r3)2

1− 2m/r
Φ− µ2r2Φ

= −∂θ [sin θ ∂θΦ]

sin θ
+

n2

sin2 θ
Φ. (31)

To be even more explicit about this, let us write Φ(r, θ) = R(r)Θ(θ), then:

1
R(r)

{
∂r[r2(1− 2m/r) ∂rR(r)] + r2 (ω− 2Jn/r3)2

1− 2m/r
R(r)− µ2r2R(r)

}

=
1

Θ(θ)

{
−∂θ [sin θ ∂θΘ(θ)]

sin θ
+

n2

sin2 θ
Θ(θ)

}
. (32)

(The left-hand side depends only on r,R(r), and its derivatives; the right-hand-side de-
pends only on θ, Θ(θ), and its derivatives.) Thus, we have explicitly verified that the
massive Klein–Gordon equation (the wave equation) does in fact separate on our variant
of the Lense–Thirring spacetime.

A more abstract way of checking for separability of the wave equation is to consider
the commutativity properties of appropriate differential operators. Assume one has a
nontrivial Killing tensor Kab, and define the Carter differential operator K and wave
differential operator � by:

KΦ = ∇a(Kab∇bΦ); �Φ = ∇a(gab∇bΦ) . (33)

Then a brief (but somewhat messy) calculation yields:

[K,�]Φ =
2
3

(
∇d[R, K]db

)
∇bΦ . (34)

(See proposition 1.3 of the recent reference [43], as modified in Appendix A below. See also
the considerably older discussion presented in reference [44].)

Then a necessary and sufficient condition for the Carter operator to commute with the
wave operator is that

∇d[R, K]db = 0 . (35)

Since, as we have already noted, [R, K] can be viewed as 2-form, the condition∇d[R, K]db =
0 can be recast in the notation of differential forms as δ[R, K] = 0. This condition is certainly
satisfied for Ricci-flat and Einstein manifolds (such as Kerr and Kerr–de Sitter), but a
weaker (yet still sufficient) condition is the vanishing of the commutator [R, K]db = 0, and
we have already seen that this commutator vanishes for our variant of Lense–Thirring
spacetime.1 This is enough to imply separability of the wave equation on our variant of
Lense–Thirring spacetime.

5. Carter Constant and Other Conserved Quantities

Extraction of the (generalized) Carter constant is now straightforward:

C = Kab
dxa

dλ

dxb

dλ
= r4

[(
dθ

dλ

)2
+ sin2 θ

(
dφ

dλ
− 2J

r3
dt
dλ

)2
]

, (36)
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for any affine parameter λ. Without loss of generality, we may enforce that λ be future-
directed, as is conventional. Note that by construction, we have C ≥ 0.

In addition to the Carter constant, we have three other conserved quantities:

E = −ξa
dxa

dλ
=

(
1− 2m

r
− 4J2 sin2 θ

r4

)
dt
dλ
−
√

2m
r

dr
dλ

+
2J sin2 θ

r
dφ

dλ
; (37)

L = ψa
dxa

dλ
= r2 sin2 θ

dφ

dλ
− 2J sin2 θ

r
dt
dλ

; (38)

and

ε = gab
dxa

dλ

dxb

dλ
=−

(
dt
dλ

)2
+

(
dr
dλ

+

√
2m
r

dt
dλ

)2

+ r2

[(
dθ

dλ

)2
+ sin2 θ

(
dφ

dλ
− 2J

r3
dt
dλ

)2
]

.

(39)

The conserved quantities E and L arise from the time translation and azimuthal Killing
vectors, respectively given by ξa = (1; 0, 0, 0)a and ψa = (0, 0, 0, 1)a. In contrast, the
conserved quantity ε, with ε ∈ {0,−1} for null and timelike geodesics, respectively, arises
from the trivial Killing tensor gab.

Note that if ε = 0, then, without loss of generality, we can rescale the affine parameter
λ to set one of the constants {C, E, L} → 1. It is intuitive to set E → 1. In contrast, if
ε = −1, then λ = τ is the proper time and there is no further freedom to rescale the affine
parameter. E then has real physical meaning, and the qualitative behaviour is governed
by the sign of E2 + ε. Concretely: Is E < 1 (bound orbits), is E = 1 (marginal orbits), or is
E > 1 (unbound orbits)?

We can now greatly simplify these four conserved quantities by rewriting them
as follows:

L = r2 sin2 θ

(
dφ

dλ
− 2J

r3
dt
dλ

)
; (40)

C = r4
(

dθ

dλ

)2
+

L2

sin2 θ
; (41)

ε = −
(

dt
dλ

)2
+

(
dr
dλ

+

√
2m
r

dt
dλ

)2

+
C
r2 ; (42)

E =

(
1− 2m

r

)
dt
dλ
−
√

2m
r

dr
dλ

+
2J
r3 L . (43)

Notice that by construction, C ≥ L2. Furthermore, the form of the Carter constant,
Equation (41), gives a range of forbidden declination angles for any given non-zero values
of C and L.

We require that dθ/dλ be real, and from Equation (41), this implies the following
requirement: (

r2 dθ

dλ

)2
= C − L2

sin2 θ
≥ 0 =⇒ sin2 θ ≥ L2

C . (44)

Then provided C ≥ L2, which is automatic in view of (41), we can define θ∗ ∈ [0, π/2]
by setting

θ∗ = sin−1(|L|/
√
C) . (45)

Then the allowed range for θ is the equatorial band

θ ∈
[
θ∗, π − θ∗

]
. (46)
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For L2 = C, we have θ = π/2; the motion is restricted to the equatorial plane.
For L = 0 with C > 0, the range of θ is a priori unconstrained; θ ∈ [0, π].
For L = 0 with C = 0, the declination is fixed θ(λ) = θ0, and the motion is restricted to a
constant declination conical surface.

Using Equations (40)–(43), we can (at least in principle) analytically solve for the four
unknown functions dt/dλ, dr/dλ, dθ/dλ, and dφ/dλ as explicit functions of r and θ,
parameterized by the four conserved quantities C, E, L, and ε, as well as the quantities
m and J characterizing mass and angular momentum of the central object. The resulting
formulae are quite tedious and will be reported elsewhere.

6. Conclusions

From the discussion above, we have seen that it is relatively straightforward to find
a non-trivial Killing tensor for the Painlevé–Gullstrand version of the Lense–Thirring
spacetime. We have also demonstrated separability of the Klein–Gordon equation and the
non-existence of a Killing–Yano 2-form. Once we have found the non-trivial Killing tensor,
we can easily extract the Carter constant—the fourth constant of the motion. Then the
geodesic equations become integrable, which allows us (in principle) to solve for myriads
of general geodesics.
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Appendix A. Wave Operators

In the recent reference [43] (page 9, proposition 1.3), the author demonstrated that

[K,�]Φ =

{(
∇cR− 4

3
∇dRd

c

)
Kc

b

+
2
3

(
Rdc∇dKcb − Rc

b∇dKd
c − {∇cRd

b}Kc
d

)}
∇bΦ . (A1)

Now use the (twice contracted) Bianchi identity, in the opposite direction from what one
might expect, to temporarily make things more complicated:

∇cR = 2∇dRd
c . (A2)

Then proposition 1.3 becomes

[K,�]Φ =

{(
+

2
3
∇dRd

c

)
Kc

b +
2
3

(
Rd

c∇dKc
b − Rc

b∇dKd
c − {∇cRd

b}Kc
d

)}
∇bΦ . (A3)
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That is,

[K,�]Φ =
2
3

{
Rd

c∇dKc
b − Rc

b∇dKd
c − (∇cRd

b)Kc
d + (∇dRd

c)Kc
b

}
∇bΦ . (A4)

Relabelling some indices,

[K,�]Φ =
2
3

{
Rd

c∇dKc
b − Rc

b∇dKd
c − {∇dRc

b}Kd
c + {∇dRd

c}Kc
b

}
∇bΦ . (A5)

That is,

[K,�]Φ =
2
3
∇d

{
Rd

cKc
b − Kd

cRc
b

}
∇bΦ . (A6)

Finally, rewrite this as:

[K,�]Φ =
2
3

(
∇d[R, K]db

)
∇bΦ . (A7)

(See also the considerably older discussion in reference [44], using somewhat different
terminology.)

Notes
1 This tensor commutator also vanishes for Kerr–Newman spacetimes and for the black-bounce modifications of Kerr and

Kerr–Newman spacetimes studied in [41,42]. Thus, the wave equation is separable on all of these spacetimes.
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Abstract: Nontrivial isometric embeddings for flat metrics (i.e., those which are not just planes
in the ambient space) can serve as useful tools in the description of gravity in the embedding
gravity approach. Such embeddings can additionally be required to have the same symmetry as
the metric. On the other hand, it is possible to require the embedding to be unfolded so that the
surface in the ambient space would occupy the subspace of the maximum possible dimension. In
the weak gravitational field limit, such a requirement together with a large enough dimension of the
ambient space makes embedding gravity equivalent to general relativity, while at lower dimensions
it guarantees the linearizability of the equations of motion. We discuss symmetric embeddings for the
metrics of flat Euclidean three-dimensional space and Minkowski space. We propose the method of
sequential surface deformations for the construction of unfolded embeddings. We use it to construct
such embeddings of flat Euclidean three-dimensional space and Minkowski space, which can be
used to analyze the equations of motion of embedding gravity.

Keywords: isometric embeddings; symmetrical surfaces; free embedding; unfolded embedding;
Regge–Teitelboim gravity; embedding theory

1. Introduction

According to the Janet–Cartan–Friedman (JCF) theorem [1], an arbitrary n-dimensional
pseudo-Riemannian space can be locally isometrically embedded into the ambient flat
space of dimension N > n(n + 1)/2 with suitable signature. By isometric embedding we
mean the surface described by the embedding function ya(xµ) in the ambient space for
which the induced metric

gµν =
(
∂µya)(∂νyb)ηab (1)

coincides with the metric of the original pseudo-Riemannian space. Hereinafter, Greek
indices µ, ν, . . . run over n values; Latin indices a, b, . . . run over N values; ηab is the flat
metric of the ambient pseudo-Euclidean space. For specific pseudo-Riemannian spaces
the required dimension of the ambient space can decrease. In particular, this happens if a
space has a sufficiently large number of symmetries [2]. The difference N − n is called the
class of the embedding. We emphasize that the JCF theorem consider only local embeddings,
and when passing to global embeddings, the required dimension of the ambient space
increases sharply [3]. However, in specific cases, even for global embeddings, the class of
the embedding can be smaller, see, for example, [4,5].

The interest in explicit isometric embeddings of physically meaningful pseudo-Riemannian
spaces is due to several reasons. First of all, it provides an opportunity to understand the
geometric structure of space-time better since this structure manifests itself in the presence
of an explicit embedding. That is why a great interest in the construction of explicit
embeddings has been shown by researchers in the case of various black hole metrics.
For the Schwarzschild metric, the first embedding [6] was proposed just 5 years after its
discovery. The only global embedding [7] turns out to be closely related to the maximum
analytic extension of the Schwarzschild metric by the Kruskal–Shekeres coordinates (see
the note at the end of [7]). In general, a lot of works have been devoted to the construction
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of explicit embeddings of various black holes, including charged and rotating ones; see, for
example, the links in [5]. Other physically interesting metrics include various cosmological
models, e.g., Friedmann–Robertson–Walker metric that describe the expanding universe.
Explicit embedding of this metric [8] was also found a very long time ago. It should be
noted that the problem of finding an embedding for a given metric usually has more than
one solution since when solving differential equations, arbitrary parameters (numbers
or functions) arise. A smooth surface deformation that does not alter the induced metric
is called isometric bending; see, for example, the discussion of this question in [9] and
references therein.

Other motivations for considering isometric embeddings include their use in the
classification of exact solutions of the Einstein equations [2], as well as in the calculation of
Hawking temperature of spacetimes with a horizon (see, for example, references in [10]).
However, from the point of view of describing gravity, the main motivation is the possibility
of obtaining a modified theory of gravity by variable substitution (1) in General Relativity
(GR) action with matter contribution Lm

S =
∫

d4x
√
−g
(
− 1

2κ R + Lm

)
, (2)

where n = 4. After such a substitution the theory might change (additional solutions appear,
see [11] for a discussion of gravity modifications resulting from differential transformations
of field variables). It happens even if the number of new variables ya(x), which is equal to
the number of ambient space dimensions, corresponds to the JCF theorem value N = 10
and therefore does not differ from the number of the old metric variables gµν(x).

This string-inspired approach was first proposed in [12] and was subsequently studied
in a number of works [13–20] under the names like embedding theory, geodetic brane
gravity and embedding gravity. From variation of the action (2) with respect to the
independent variable ya(x) the Regge–Teitelboim (RT) equations [12] arise:

(Gµν −κ Tµν)ba
µν = 0. (3)

Here Gµν is the Einstein tensor, Tµν is the energy-momentum tensor of matter, and

ba
µν = Dµ∂νya, (4)

where Dµ is the covariant derivative, is called the second fundamental form of the surface
described by the embedding function ya(x) (for example, see [21]).

It is easy to see that the RT equations (3) are more general than the Einstein equations:
any solution to the Einstein equations is a solution to the RT equations, but not vice versa.
In addition to Einstein’s solutions, there are so-called “extra” solutions. As a result, the
theory is not equivalent to GR. In [12], this was regarded as a problem since the goal of
this paper was to obtain an equivalent reformulation of general relativity (mainly in the
hope of advancing in the quantization of the theory) and not a transition to a more general
theory. For this reason, additional conditions called Einstein constraints were imposed
in [12] and several subsequent papers. However, at present, in connection with the modern
cosmological mystery of dark matter and dark energy, the transition to modified theories
of gravity which are more general than GR becomes more attractive. Along this path one
can try to interpret extra solutions as effects associated with dark matter or dark energy
within the framework of GR. The mimetic gravity [22–24] is the most famous approach of
such kind, but the embedding theory approach is also possible [25–28].

In the analysis of solutions of the Equation (3) as the equation of modified gravity one
usually starts from weak field limit when the metric gµν is close to the flat metric ηµν. Such
a problem corresponds, for example, to the description of observations on the scale of the
solar system or a galaxy. Then one should determine the form of explicit embedding of the

flat metric which can serve as the background solution
(0)
y a(x) in order to look for solutions

of the Equation (3) corresponding to a weak gravitational field in the form:
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ya(x) =
(0)
y a(x) + δya(x). (5)

The simplest option is to select a plane as the background surface:

(0)
y a(x) = δa

µxµ. (6)

However, as noted in [13], when such a background is used, the equations of the
embedding theory (3) turn out to be non-linearizable (non-linear with respect to variation
δya). The easiest way to see it is to write down the Einstein tensor in the form (see, for
example, [17])

Gµν =
1
2

gξζ EµξαβEνζγδbb
αγηbcbc

βδ (7)

where Eµξαβ = εµξαβ/
√
|g| is the covariant unit antisymmetric tensor. Then the RT equa-

tions (3) takes the form:

gξζ EµξαβEνζγδbb
αγηbcbc

βδba
µν = 2κ Tµνba

µν (8)

where the left-hand side is cubic in ba
µν, which according to (4) is linear in the small variation

δya when using the background (6).
Since for a weak gravitational field the principle of superposition must be satisfied,

the non-linearity of the equation describing it seems unnatural. On the other hand, the
Formula (6) is far from the only possible choice of the background embedding function
for a weak gravitational field. As such, one can use any embedding of the flat metric ηµν

which can be quite nontrivial. This paper is devoted to the problem of constructing such
nontrivial embeddings.

In the next section we discuss possible additional requirements that can be imposed
on the sought nontrivial embeddings. The concept of “unfolded” embedding introduced
here turns out to be close to the concept of “free” embedding introduced in [29]; Section 3
is devoted to their comparison. In Section 4, we discuss the construction of symmetric
embeddings for flat metrics. We propose a nontrivial explicit symmetric embedding
for the Minkowski metric. It turns out to be non-unfolded. As a result, if it is used
as the background in the analysis of the RT equations solutions, linearization is only
partial. In Section 5, we propose a method for constructing unfolded embeddings for flat
metrics; we construct such explicit embeddings for flat 3-dimensional Euclidean space and
Minkowski space.

2. Symmetrical and Unfolded Embeddings

When looking for nontrivial embeddings of a flat metric, some additional requirements
can be imposed. It seems natural enough to assume that the surface resulting from the
embedding must have the same symmetry as the embedded metric. For example, the metric
ηµν of Minkowski spaceR1,3 is symmetric with respect to the Poincare group SO(1, 3)n T4,
and one can require the constructed surface to have the same symmetry. We say that a
surfaceM is symmetric with respect to the group G ifM transforms into itself under the
action of some subgroup of the group of motions P of the flat ambient space Rn+ ,n− when
this subgroup is isomorphic to G. In [30], a method for constructing explicit embeddings
with a given symmetry was proposed; it has recently been developed further in [31]. The
idea is to consider all possible N-dimensional representations for a given symmetry group
with the subsequent selection of those that have the form of transformations of group of
motions P of the flat ambient space and lead to the correct surface dimension; see details
in [30]. We discuss the construction of symmetric embeddings for flat metrics in Section 4.

Another interesting requirement that can be imposed when searching for a back-
ground embedding function for a weak gravitational field is, in a sense, the maximal
non-degeneracy for the second fundamental form (4). Note that this object is symmetric
with respect to the permutation of the indices µ and ν, so this pair of indices can be replaced
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with a multi-index running through n(n + 1)/2 values. On the other hand, for the second
fundamental form ba

µν the following identity holds (see, for example, [21]):

ba
µν∂βya = 0, (9)

which means that the index a of ba
µν is transverse. After the introduction of some basis in

the space orthogonal to the surface at a given point, it is possible to replace the index a of
the object ba

µν with a new index running through N − n values. As a result, this value can
be interpreted as a matrix of size n(n + 1)/2 by (N − n). By the maximal non-degeneracy
of ba

µν we mean that the rank of such a matrix is maximal, in other words, it coincides
with its minimal dimension. A surface is called unfolded if its second fundamental form
satisfies this requirement at all points except, perhaps, a set of zero measure. Violation of
this requirement at some point geometrically means that in the neighborhood of this point
the surface lies in some subspace of the ambient space the dimension of which is less than
possible, i.e., one can additionally “unfold” the surface.

If, for example, for a 4-dimensional surface (i.e., n = 4) we take the dimension of the
ambient space N = 14, then ba

µν turns out to be a square 10× 10 matrix in the indicated
sense. If, in this case, the unfolded embedding of the flat metric is chosen as the background
in the decomposition (5), then within the framework of the perturbation theory ba

µν (4)
can be removed from the RT equations (3) as a non-singular matrix that is a factor in a
homogeneous equation. As a result, in this case, the RT equations are completely equivalent
to the Einstein equations. Thus, for N = 14 and an unfolded embedding as a background
the embedding theory becomes exactly equivalent to GR in the weak field limit. This
creates relevance for the problem of constructing an explicit unfolded embedding of the
flat metric with N = 14. We propose a way to construct such an embedding in Section 5.

In the most frequently discussed N = 10 case (which corresponds to the minimal
dimension by the JCF theorem) ba

µν is a non-square matrix and it cannot be removed from
the equation, which means that the theory contains extra solutions. In this case, the RT
equations (3) can be rewritten [14] as the system of the equations:

Gµν = κ(Tµν + τµν), (10)

τµνba
µν = 0. (11)

The first of them is the Einstein equation with an additional contribution τµν of some
fictitious matter (the properties of which can be compared with the known properties
of dark matter or energy), and the second plays the role of equations of motion of this
matter, see details in [28]. This allows us to consider embedding theory as a possible way
to explain the mystery of dark matter. The latter turns out to be a purely gravitational
effect that arises when considering the solutions of the embedding theory equations from
the Einsteinian point of view. When analyzing the properties of such matter in the non-
relativistic limit, the embedding ya(xµ) in section x0 = const is an unfolded embedding
of the flat three-dimensional Euclidean metric into the 9-dimensional ambient space [28].

In general, the zeroth-order embedding function
(0)
y a(x) of a four-dimensional surface is

an unfolded embedding of the metric of the Minkowski space into the 10-dimensional
ambient space. To continue research in this direction, it is necessary to have an explicit
form of such embeddings, and in this paper we find examples of these embeddings in
Section 5.

3. The Relation between Unfolded and Free Embeddings

In the previous Section we introduced the notion of unfolded embedding, which is
convenient when discussing extra solutions of the RT equations. It is closely related to the
classification of embeddings introduced in [29], which includes so-called free embeddings,
q-free embeddings and spatially-free embeddings. Let us discuss their relation.
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Let us consider an embedding function of an n-dimensional surface ya(x). Let us
investigate how its small variation δya(x) affects the induced metric gµν in the lowest order.
An arbitrary variation δya(x) can be decomposed into longitudinal and transverse contri-
butions:

δya = ξµ∂µya + δya
⊥, δya

⊥∂µya = 0. (12)

Then from (1) we find that:

δgµν = (∂µya)(∂νδya) + (∂νya)(∂µδya) = Dνξµ + Dµξν − 2ba
µνδya⊥, (13)

where (4) is used, as well as the properties of the covariant derivative in the embedding
theory formalism, see details, for example, in [17].

In [29], an embedding for a n-dimensional metric is said to be “free” if the system of
n(n + 1)/2 equations (13) can be solved in the transverse variations δya

⊥ for any δgµν and
ξµ. Since δya

⊥ has N − n independent components, a free embedding satisfies the relation

N − n > n(n + 1)
2

⇒ N > n(n + 3)
2

. (14)

In turn, an embedding is “q-free” if q out of n(n + 1)/2 equations can be solved in
the transverse variations δya

⊥ for any ξµ, and the n(n + 1)/2− q remaining equations are
constraints on ξµ. It is easy to see that q is the rank of the matrix constructed from the
second fundamental form ba

µν in the manner described after (9). The definition of q-free
embedding implies that:

N − n > q, q 6 n(n + 1)
2

, n > n(n + 1)
2

− q. (15)

As a result, for a q-free embedding the following relations hold:

n(n− 1)
2

6 q 6 n(n + 1)
2

, N > q + n, (16)

moreover, for q = n(n + 1)/2 a q-free embedding is a free embedding.
From the inequalities (15) it follows that for q-free embeddings (and, in particular, for

free embeddings) N > n(n + 1)/2. This corresponds to the fact that within the statement
of the problem (13) we consider the perturbation of the metric δgµν to be arbitrary, and to
embed an arbitrary metric, according to the JCF theorem, this restriction on the number
of dimensions of the ambient space N must be satisfied. Note that for a four-dimensional
surface, i.e., for n = 4, q lies in the interval 6 6 q 6 10, and a free embedding is 10-free
with N > 14.

Additionally, in [29] the concept of “spatially-free” embedding is introduced. A four-
dimensional embedding is called spatially-free if one can choose a coordinate system (x0, xi)
such that 6 vector fields ba

ij (for i, j = 1, 2, 3) are linearly independent. Note that the type
of a 10-dimensional unfolded embedding of the 4-dimensional Minkowski space metric
described at the end of Section 2 (and used in the work [28]) is spatially free.

According to the definition (see after (9)) of an unfolded embedding introduced above,
the matrix constructed from the second fundamental form ba

µν has the maximal possible
rank. It is easy to see that for a free embedding, for which the requirement (14) is satisfied,
the rank must also be subject to this condition, therefore, for:

N > n(n + 3)/2 (17)

the concepts of unfolded embedding and free embedding coincide. For smaller values of
the dimensions of the ambient space N, namely, in the range n(n + 1)/2 6 N 6 n(n + 3)/2,
any unfolded embedding is a (N − n)-free embedding, but generally speaking, not vice
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versa. As mentioned above, for even smaller values of N < n(n + 1)/2 the concept of
q-free embedding is no longer applicable while the concept of unfolded embedding can
still be used.

The concept of unfolded embedding is very important in the perturbative analysis
of solutions of RT equations (3) based on the decomposition (5). If one takes an unfolded
embedding as a background, then the equations acquire interesting properties. For N >
n(n + 3)/2, when the embedding is also free, the factor ba

µν (4) can be removed since for
an unfolded embedding all vectors of the ambient space ba

µν are linearly independent for
µ > ν. As a result, the RT equations reduce to the Einstein equations, and there will be no
extra solutions in this case.

For smaller values of N, the usage of the unfolded embedding as a background
guarantees the linearizability of the RT equations in the weak field limit. To see this, note
that an arbitrary deformation of the surface can be defined by choosing the deformation
δya transverse to the surface in (5) so that an arbitrary deformation is defined by N − n
functions. In the case of a weak gravitational field in zeroth-order of perturbation theory

the metric must be flat, therefore
(0)

Gµν = 0. Thus, on the left-hand side of the RT Equation (8)
the factor ba

µν should be taken to a zeroth-order. Linearization of the equations means that
all N − n functions defining an arbitrary deformation are solutions of linear equations, and
for this the presence of N − n independent equations is necessary. This is exactly what
happens if there are N − n linearly independent vectors among the ambient space vectors
(0)

b a
µν for different µ, ν, which means that the embedding is unfolded for N < n(n + 3)/2.

4. Explicit Symmetric Embeddings of Flat Metrics

Firstly, we will consider the explicit symmetric embedding of the flat Euclidian 3-
dimensional (i.e., n = 3) metric which has the SO(3)n T3 symmetry. Such an embedding
can be constructed by the method proposed in [30] which was discussed at the beginning
of Section 2. This method is implemented in [32] for N = 5 as an illustration of its
application to the construction of embedding for a spatially flat FRW model since the
sections x0 = const of spatially flat FRW spacetime have a flat Euclidean 3-dimensional
metric. However, there is a simple alternative possibility of obtaining the same embedding.

Consider the 4-dimensional surface that is a hyperboloid of radius R in the space R1,4

of signature {−++++}:

y0 =
1
4t
(R2 − xixi)− t, y1 =

1
4t
(R2 − xixi) + t, yi = xi, (18)

where i = 1, 2, 3 and t, xi are the coordinates on the surface. It is easy to see that
yaybηab = R2, i.e., it is indeed a hyperboloid. Note that (18) is an embedding of de Sitter
space and the surface defined by this embedding is symmetric with respect to the group
SO(1, 4). If we take the section y0 = ȳ0 = const of the given surface at large values of
ȳ0, then the resulting 3-dimensional surface is a sphere of large radius which is locally
indistinguishable from the 3-dimensional plane. Thus, in the limit, the symmetry of the
section is the group SO(3)n T3. If we make a hyperbolic rotation in the plane y0, y1 (which
is an element of the group SO(1, 4)) simultaneously with increasing ȳ0, then in the limit
ȳ0 → ∞ the section y0 = ȳ0 turns into the section:

y1 − y0 = 2t̄, (19)

where t̄ is some constant, finite in the limit. Therefore we see that the 3-dimensional surface
resulting from Formula (19) has the desired symmetry SO(3)n T3. After an insignificant
general translation of this surface its embedding function can be written as:

y0 = y1 = − 1
4t0

xixi, yi = xi, (20)
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corresponding to the symmetric 5-dimensional embedding of the flat Euclidean 3-dimensional
metric (the fact that the resulting surface has the flat Euclidean induced metric can easily
be checked directly by the Formula (1)).

We will use an analogous method to construct an embedding of the 4-dimensional
Minkowski space metric with the Poincare group symmetry SO(1, 3)n T4, i.e., n = 4.
Consider the 5-dimensional surface that is a hyperboloid of radius R in the space R2,4 of
signature {+−−−−+}:

yµ = xµ, y4 =
1
4t
(R2 − xµxνηµν)− t, y5 =

1
4t
(R2 − xµxνηµν) + t, (21)

where µ = 0, 1, 2, 3; t, xi are the coordinates on the surface, and ηµν is the Minkowski metric
of signature {+−−−}. It is easy to check that:

yaybηab = R2, (22)

i.e., it is indeed a hyperboloid. Note that (21) is an embedding of 5-dimensional anti-de
Sitter space AdS5, and the surface is symmetric with respect to the group SO(2, 4). Take a
section of the hyperboloid (21) by the plane:

y4 = ȳ4 = const. (23)

The resulting 4-dimensional surface, according to (22), is described by the equation:

yµyµηab +
(
y5)2

= R2 +
(
ȳ4)2, (24)

hence, it is a 4-dimensional hyperboloid of radius
√

R2 + ȳ42. For ȳ4 → ∞ it is locally
indistinguishable from the 4-dimensional plane of signature {+−−−}, so that in the limit
the symmetry of section is the desired group SO(1, 3)n T4.

Let us find an explicit solution of Equation (23) (with y4 from (21)) with respect to the
coordinate t:

t =
1
2

(
−ȳ4 ±

√
ȳ42

+ R2 − xµxνηµν

)
. (25)

Each of the roots must be analysed separately. We will discuss the case of choosing
the minus sign, and it is easy to show that the alternative choice leads to the same answer.
When choosing the minus sign, at ȳ4 → ∞ the leading approximation is t = −ȳ4. For the
convenience of the analysis we pass to the light-like coordinates in the ambient space by
introducing the coordinates:

y+ =
y5 + y4

2
, y− =

y5 − y4

2
(26)

instead of the coordinates y4 and y5. Then the embedding (21) can be rewritten in a
simpler form:

yµ = xµ, y+ =
1
4t
(R2 − xµxνηµν), y− = t. (27)

Substituting the solution (23) found in the leading approximation for ȳ4 → ∞ we
obtain the embedding:

yµ = xµ, y+ = − 1
4ȳ4 (R2 − xµxνηµν), y− = −ȳ4. (28)

Now note that among the transformations SO(2, 4) from the symmetry group AdS5
there are hyperbolic rotations in the plane y4, y5 which are reduced to the transformation:

189



Universe 2021, 7, 477

y+ → ky+, y− → 1
k

y+ (29)

in terms of light-like coordinates y+, y−. Here k is an arbitrary transformation parameter.
Making such a transformation with k = ȳ4/R (note that the parameter k is dimensionless,
so we used the existing dimensional quantity R for dimensionlessness) we can exclude
the infinite value ȳ4 from the embedding function (28). As a result, after an insignificant
general translation of the surface we finally obtain the embedding function as:

yµ = xµ, y+ =
1

4R
xµxνηµν, y− = 0. (30)

By construction, it is symmetric with respect to the Poincare group SO(1, 3)n T4. The
fact that the resulting surface has the induced Minkowski metric is easy to check directly
by the Formula (1).

Symmetric embedding (30) of the Minkowski metric constructed by considering a
section, the use of which is justified by some transition to the limit, can be obtained directly
as a result of using the [30] method which was mentioned at the beginning of Section 2.
This approach was implemented by A. Trukhin in their bachelor’s thesis.

Unfortunately, the symmetric embeddings (20) and (30) of flat metrics discussed in this
section are not unfolded. This is easy to understand if we notice that both embeddings lie
in some codimension 1 plains of the ambient space. It means that among the ambient space
vectors ba

µν at µ > ν there is no linearly independent set of N− n vectors (in both considered
cases N − n = 2), which means that there is no unfoldness at N < n(n + 3)/2. In the next
section, a method is proposed that allows one to construct unfolded embeddings of the
Minkowski space, but this method does not provide embeddings with the Minkowski space
symmetry. The resulting embeddings will be unfolded, but not symmetric. The problem
of constructing a symmetric unfolded embedding of flat metrics is not yet amenable to
the solution. A possible way is to find all symmetric embeddings of the Minkowski
metric for a given dimension of the ambient space N by the method already mentioned
at the beginning of this section, proposed in [30], and then check unfoldness by direct
computation. However, for sufficiently large N (for example, for the interesting case
N = 10) this problem is very difficult and its solution is beyond the scope of this work.

In connection with the resulting embedding (30) it should be noted that it can be easily
generalized to the embedding:

yµ = xµ, y+ = B(xµ), y− = 0 (31)

with a completely arbitrary function B(xµ). It is easy to check that this embedding is also
an embedding of the Minkowski space metric; however, it does not inherit its symmetry,
and, like (30), it is not unfolded.

5. Explicit Unfolded Embeddings of Flat Metrics

We will look for embeddings of flat metrics (Euclidean and pseudo-Euclidean) which
are unfolded by the definition given in Section 2.

5.1. Using q-Free Embeddings

As it was said in Section 3, unfolded embeddings are also (N− n)-free embeddings in
the range of the ambient space dimension n(n + 1)/2 6 N 6 n(n + 3)/2, therefore in the
first place we will discuss the q-free embedding of the Minkowski metric proposed in [29].
Since the opposite is not true, one has to check whether this embedding is unfolded.

The q-free embeddings construction method which was proposed in [29] (authors
limit themselves to the case n = 4) consists of splitting the ambient space into the direct
sum of two flat subspaces:

1. the “base” ambient space of signature {− . . .−};
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2. the “extra” space of signature {+− . . .−}, i.e., it has one and only one time-like direc-
tion.

In the base ambient space base embedding is defined, with the embedding function
zA(xi) depending only on spatial coordinates and satisfying two requirements:

• the corresponding induced metric is the flat Euclidean metric;
• the set of the nine vectors {∂izA, ∂j∂kzA} is linearly independent (which means that

the base embedding is unfolded).

The authors of [29] propose the 11-dimensional base embedding, thus presenting an
11-dimensional unfolded embedding of the flat 3-dimensional Euclidean metric.

As for the extra space, it is proposed to construct an extra embedding wL(xµ). In
contrast to a base embedding, an extra embedding depends on the time variable x0. Con-
sequently, the resulting induced metric of the 4-dimensional surface decomposes into:

gµν = ηLM(∂µwL)(∂νwM)− δi
µδi

ν. (32)

In the construction of Minkowski metric embedding, the extra space is considered to
be one-dimensional and the extra embedding has the simple form:

w = x0. (33)

The resulting 12-dimensional embedding is a 6-free embedding, but it is not unfolded,
since the rank of the matrix constructed from ba

µν (in the manner described after (9)) is 6,
while the maximum possible rank is 11 + 1− 4 = 8.

The situation can be improved by taking a 9-dimensional base embedding instead
of an 11-dimensional one. Then the dimension of the transverse space, which in this
case defines the maximal possible rank of the matrix constructed from ba

µν would equal
9 + 1− 4 = 6, thus, the rank would be the highest possible, and the embedding would be
unfolded. We will implement this idea in Section 5.4.

5.2. Sequential Deformation Method

Consider the following method of unfolded embeddings construction for flat metrics
of arbitrary dimension n:

1. We start from a simple (2n)-dimensional embedding in the form of the direct product
of n circles (pseudoeuclidean circles); note that it will not be unfolded;

2. We construct a trivial (in the form of a multidimensional plane) N-dimensional (with
N > 2n) embedding for the resulting (2n)-dimensional flat space;

3. On this (2n)-dimensional plane we choose N − 2n mutually orthogonal straight lines;
4. Using N − 2n transverse directions, we sequentially deform each of the N − 2n

mentioned lines into a circle; such a deformation of the 2n-dimensional plane is an
isometric one;

5. We check whether the obtained embedding is unfolded.

5.3. 9-Dimensional Unfolded (and Free) Embedding of the Euclidean 3-Dimensional Metric

First, we will use the proposed method to construct an explicit unfolded embedding
of the 3-dimensional flat Euclidean metric into the Euclidean 9-dimensional space, so n = 3
and N = 9. To simplify the formulas, we will not introduce dimensional coefficients. Thus,
dimensional considerations will be inapplicable to the coordinates. In accordance with the
first step of Section 5.2, we start from the embedding:

z1(xi) = sin x1,
z2(xi) = cos x1,

z3(xi) = sin x2,
z4(xi) = cos x2,

z5(xi) = sin x3,
z6(xi) = cos x3.

(34)

It is easy to see that locally the metric induced by this embedding is the metric of
the Euclidean space (see the Conclusion for a discussion of its global structure). In order
to choose 3 straight lines in a nontrivial way in accordance with step 3 of Section 5.2, we
perform a SO(6) rotation:
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z′A(xi) = OABzB(xi), (35)

(where A, B = 1, . . . , 6), then we simply choose 3 coordinate axes z′4, z′5, z′6. It is clear that
the induced metric will not change after such a transformation. One can, for example,
choose the matrix:

O = exp




0 1 0 −1 0 0
−1 0 0 0 0 0
0 0 0 −1 0 −1
1 0 1 0 0 0
0 0 0 0 0 1
0 0 1 0 −1 0




(36)

as an orthogonal matrix O, since the matrix exponent of an antisymmetric matrix is an
orthogonal matrix. Depending on the choice of the matrix O, the embedding obtained
by this method can be either unfolded or not. For example, one can check that if we take
the identity matrix as the matrix O, then even after step 4 of Section 5.2 the resulting
embedding will not be unfolded.

Now, in accordance with step 2 of Section 5.2, we add 3 trivial directions of the ambient
space by introducing the 9-dimensional embedding function ỹa:

ỹA(xi) = z′A(xi), ỹ7(xi) = ỹ8(xi) = ỹ9(xi) = 0. (37)

Obviously, this 9-dimensional embedding is not unfolded. Furthermore, finally,
in accordance with step 4 of Section 5.2, we make an isometric deformation of the 6-
dimensional plane ỹ1, . . . , ỹ6 in three transverse directions ỹ7, ỹ8, ỹ9 so that three coordinate
lines ỹ4, ỹ5, ỹ6 turn into circles:

y1(xi) = z′1(xi), y4(xi) = cos z′4(xi),
y2(xi) = z′2(xi), y5(xi) = sin z′4(xi),
y3(xi) = z′3(xi), y6(xi) = cos z′5(xi),

y7(xi) = sin z′5(xi),
y8(xi) = cos z′6(xi),
y9(xi) = sin z′6(xi).

(38)

Since after such a deformation the metric of the 6-dimensional plane does not change,
the metric of the 3-surface defined by this embedding also remains flat. This can also be
checked directly by substituting the embedding (38) into the induced metric Formula (1)
considering (34)–(36). Further, following step 5 of Section 5.2, it is necessary to check
whether the obtained embedding is unfolded.

According to the definition (see Section 2), an embedding is unfolded if the rank of
the matrix composed from the second fundamental form ba

ik in the way described below (9)
is the maximum possible one. In the given case this matrix is a square 6× 6 matrix (the
pair of symmetric indices ik corresponds to the multi-index are running through 6 values,
and there are the same number of transverse directions). Therefore, for this matrix the
unfoldedness condition coincides with the non-singularity condition. Direct calculation
shows that for the embedding (38) this matrix is indeed non-singular, thus the constructed
embedding of the 3-dimensional flat Euclidean metric into the Euclidean 9-dimensional
space is unfolded. It is also free due to the fulfillment of the condition (17).

5.4. 10-Dimensional Unfolded Embedding of the Minkowski Metric

The embedding obtained in the previous subsection can be easily applied to construct
an unfolded embedding of the Minkowski metric. In terms of [29] for this one need to use
it as a base embedding (see Section 5.1) with a simple extra embedding (33). As a result,
we get the 10-dimensional embedding
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y0(xµ) = x0, y4(xµ) = cos z′4(xi),
y1(xµ) = z′1(xi), y5(xµ) = sin z′4(xi),
y2(xµ) = z′2(xi), y6(xµ) = cos z′5(xi),
y3(xµ) = z′3(xi), y7(xi) = sin z′5(xi),

y8(xµ) = cos z′6(xi),
y9(xµ) = sin z′6(xi)

(39)

into the ambient space of signature {+− . . .−}. Since for this embedding the 3-dimensional
components ba

ik of the second fundamental form ba
µν coincide with the ones corresponding

to the embedding (38), the rank of the corresponding matrix is equal to the maximum pos-
sible value 6 (the number of transverse directions), which means that the embedding (39)
is unfolded. Note that the condition (17) is not satisfied. Therefore, this embedding is not
free but only 6-free.

5.5. 14-Dimensional Unfolded (and Free) Embedding of the Minkowski Metric

Now we will apply the method described in Section 5.2 to the construction of an
explicit unfolded embedding of Minkowski metric into a 14-dimensional space so that
n = 4 and N = 14. Since the requirement (17) is satisfied, the resulting embedding will
also be free.

Following the first step of Section 5.2, we start from the embedding:

z0(xµ) = sinh x0, z4(xµ) = sin x2,
z1(xµ) = cosh x0, z5(xµ) = cos x2,
z2(xµ) = sin x1, z6(xµ) = sin x3,
z3(xµ) = cos x1, z7(xµ) = cos x3

(40)

into the ambient space of signature {+− . . .−}. Note that this embedding is the direct
product of the pseudoeuclidean circle z12 − z02

= 1 and three circles. It is easy to check
that the corresponding induced metric is the Minkowski metric. Next, we will proceed in
the same way as in Section 5.3.

In order to select 6 straight lines in a nontrivial way in accordance with the third step
of Section 5.2, we make a SO(1, 7) rotation:

z′A(xµ) = ΛA
BzB(xµ), (41)

(here A, B = 0, . . . , 7), for example, using the orthogonal matrix:

Λ = exp




0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0
0 −1 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0




, (42)

then we select 6 coordinate axes z′3, . . . z′8.
In accordance with the second step of Section 5.2, we add 6 trivial space-like directions

of the ambient space, introducing the 14-dimensional embedding function ỹa in which
ỹA(xi) = z′A(xi) while the other components with a = 8, . . . , 13 are equal to zero. Further,
in accordance with the fourth step of Section 5.2, we make an isometric deformation of the
8-dimensional plane corresponding to the directions ỹ0, . . . , ỹ7 in six transverse directions
ỹ8, . . . , ỹ13 with 6 coordinate lines ỹ2, . . . , ỹ7 turning into circles:

193



Universe 2021, 7, 477

y0(xµ) = z′0(xµ), y6(xµ) = sin z′4(xµ),
y1(xµ) = z′1(xµ), y7(xµ) = cos z′4(xµ),
y2(xµ) = sin z′2(xµ), y8(xµ) = sin z′5(xµ),
y3(xµ) = cos z′2(xµ), y9(xµ) = cos z′5(xµ),
y4(xµ) = sin z′3(xµ), y10(xµ) = sin z′6(xµ),
y5(xµ) = cos z′3(xµ), y11(xµ) = cos z′6(xµ),

y12(xµ) = sin z′7(xµ),
y13(xµ) = cos z′7(xµ).

(43)

By construction, for this embedding the induced metric (1) will locally coincide with
the Minkowski metric (see the Conclusion for a discussion of its global structure). One
can check that its second fundamental form ba

µν, interpreted as a 10× 10 matrix (see the
explanation below the Formula (9)), turns out to be non-degenerate, so this embedding
is unfolded.

6. Conclusions

Isometric embeddings of flat metrics can be nontrivial, i.e., different from a plane in
the ambient space. Such nontrivial embeddings are of interest from the point of view of
describing gravity within the framework of the embedding theory. We have discussed some
possible additional requirements that may apply when searching for these embeddings.
There is an obvious possibility to require the constructed surface to have the symmetry of
the original metric. However, there is also an alternative requirement that turns out to be
crucial from the point of view of the RT equations (3) analysis (in particular, when one tries
to linearize them). This is the requirement of unfoldness. We call an isometric embedding
of a given metric unfolded if the corresponding surface locally occupies a subspace of the
maximum possible dimension almost everywhere. The introduced concept of unfoldness
is closely related to the free embedding concept discussed in the work [29].

We have discussed symmetric embeddings of flat Euclidean three-dimensional space
and Minkowski space. We have proposed the method of sequential deformation of the
surface to construct unfolded (but not symmetric) embeddings, Using this method, we
succeeded to construct an unfolded embedding (38) of the metric R3 into the ambient
Euclidean space R9, as well as the unfolded embedding (43) of the Minkowski metric R1,3

into the ambient multidimensional Minkowski space R1,13. Based on the embedding (38)
an unfolded embedding (39) of the Minkowski metric into R1,9 was also obtained. Note
that the proposed method of sequential deformation can also be used to build new mul-
tidimensional embeddings based on already known embeddings with a small value of
the embedding class. For example, this method can be applied to the known (see [30])
6-dimensional black hole embeddings. However, whether it is possible to obtain unfolded
embeddings of black holes in this way is the question that requires a separate study.

It should be noted that for all proposed embeddings (38), (39) and (43) the embedding
functions are periodic in spatial coordinates by construction. This means that the surfaces
defined by these embeddings are compact, thus their topology differs from the topology of
the original metrics. From a physical point of view, within the framework of embedding

gravity such a property of the background embedding function
(0)
y a(x) does not agree well

with observations. Indeed, even if the universe is compact in spatial directions (as, for
example, within the framework of the closed FRW model), then the period has to be very
large, no less than the size of the visible part of the universe L. We can provide such
a value of the period by introducing the value L into the Formulas (34) and (40). If we
replace x1 with x1/L and so on, then the coordinates become dimensional values, and the
period becomes equal to 2πL. However, then the part of the surface with a size of the
order of the galaxy diameter will be practically indistinguishable from the plane, i.e., the
unfoldness of the embedding will no longer be visible. This corresponds to the fact that the
second fundamental form ba

µν will be of order 1/L, i.e., it will be very small. Therefore, it is
necessary to get rid of the periodic property of the embedding functions.
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It turns out that for unfolded embeddings for N = n(n + 3)/2 this can be easily done
by an infinitesimal non-periodic isometric deformation of the surface (a deformation that
does not change the metric locally). For this deformation, the left side of the Equation (13)
is zero. We can take an arbitrary non-periodic function ξµ(x) which defines the longi-
tudinal part of the deformation, and from the vanishing of the right-hand side of (13)
we find the transverse part of the deformation δya

⊥, which will also be non-periodic. For
N = n(n + 3)/2 for an unfolded embedding this can always be done easily by inverting the
value ba

µν interpreted as a matrix in the sense described below the Formula (9). This matrix
will be a square matrix of size n(n + 1)/2; its non-singularity follows from the definition of
an unfolded embedding. The described periodicity elimination of the embedding is easiest
to imagine by noting that it occurs in the same way as in the transition from a circle to a
spiral. This procedure can be directly applied to unfolded embeddings (38) and (43) for
which N = n(n + 3)/2 in order to break the periodicity of them. A non-periodic analogue
of the embedding (39) can be obtained by a procedure similar to the one described in
Section 5.4, but taking the deformed embedding (38) as the base embedding the periodicity
of which has already been eliminated. Note that the resulting non-periodic embeddings
turn out to be global embeddings for the considered non-compact flat spaces.

The resulting embeddings and their deformations with broken periodicity can be
used both in the analysis of the properties of extra matter in the non-relativistic limit of
embedding gravity [28] and as a background in the study of more general solutions of the
RT equations (3) in the limit of a weak gravitational field (5).
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Abstract: A small deformation to the Schwarzschild metric controlled by four free parameters could
be referred to as a nonspinning black hole solution in alternative theories of gravity. Since such a
non-Schwarzschild metric can be changed into a Kerr-like black hole metric via a complex coordinate
transformation, the recently proposed time-transformed, explicit symplectic integrators for the Kerr-
type spacetimes are suitable for a Hamiltonian system describing the motion of charged particles
around the non-Schwarzschild black hole surrounded with an external magnetic field. The obtained
explicit symplectic methods are based on a time-transformed Hamiltonian split into seven parts,
whose analytical solutions are explicit functions of new coordinate time. Numerical tests show
that such explicit symplectic integrators for intermediate time steps perform well long-term when
stabilizing Hamiltonian errors, regardless of regular or chaotic orbits. One of the explicit symplectic
integrators with the techniques of Poincaré sections and fast Lyapunov indicators is applied to
investigate the effects of the parameters, including the four free deformation parameters, on the
orbital dynamical behavior. From the global phase-space structure, chaotic properties are typically
strengthened under some circumstances, as the magnitude of the magnetic parameter or any one
of the negative deformation parameters increases. However, they are weakened when the angular
momentum or any one of the positive deformation parameters increases.

Keywords: modified gravity; black hole; magnetic field; chaos; symplectic integrator

1. Introduction

A Schwarzschild solution describing a nonrotating black hole and a Kerr solution
describing a rotating black hole are two exact solutions of Einstein’s field equations of
general relativity in a vacuum. According to the no-hair theorem, astrophysical (Kerr)
black holes have their masses and spins as their unique characteristics. The theoretical
prediction of the existence of black holes has been confirmed frequently by a wealth of
observational evidence, such as X-ray binaries [1,2], detections of gravitational waves [3,4]
and event-horizon-scale images of M87 [5,6].

Observational tests of strong-field gravity features cannot be based on an a priori
hypothesis about the correctness of general relativity. Instead, such tests must allow ansatz
metric solutions to deviate from the general relativistic black hole scenarios predicted by
the no-hair theorem. These metric solutions often come from perturbations of the usual
Schwarzschild (or Kerr) black hole or exact solutions in alternative (or modified) theories
of gravity. A small deformation to the Schwarzschild metric describing a nonspinning
black hole (i.e., a modified Schwarzschild metric) [7] could be required to satisfy the
modified field equations in dynamical Chern–Simons modified gravity [8,9]. By applying
the Newman–Janis algorithm and a complex coordinate transformation, Johannsen and
Psaltis [10] transformed such a Schwarzschild-like metric with several free deformation
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parameters into a Kerr-like metric, including a set of free deformation parameters and mass
and spin. This Kerr-like metric, which is a parametric deformation of the Kerr solution and
is not a vacuum solution, is regular everywhere outside of the event horizon. These metric
deformations away from the Schwarzschild or Kerr metric by one or more parameters
contain modified multipole structures. Although the γ metric (or Zipoy–Voorhees metric)
describing a static and axially symmetric field [11,12] is also a parameterizing deviation
from the Schwarzschild solution for γ 6= 1, it is an exact solution of Einstein’s equations
in a vacuum.

In addition to the above-mentioned simply modified theories of gravity, such as
scalar-tensor gravity, many other forms of modified theories of gravity can be found in the
literature. Some examples are scalar-tensor theories, such as the Brans–Dicke theory [13,14],
general scalar-tensor theories [15–19], Einstein-ther theories [20], Bimetric theories [21,22],
tensor-vector-scalar theories [23,24], Einstein–Cartan–Sciama–Kibble theory [25,26], scalar-
tensor-vector theory [27], f (R) theories [28–30], f (G) theory [31,32], Hořava-Lifschitz
gravity [33–35] and higher dimensional theories of gravity [36–38]. Researchers and stu-
dents in cosmology and gravitational physics should also see review articles [29,30,39–41]
for more information on these modified gravity theories. Black-hole solutions in modi-
fied theories of gravity are generally unlike those in general relativity, and include many
additional free parameters and the parameters predicted by the no-hair theorem in gen-
eral relativity. Although a solution in a modified gravity model can be mathematically
equivalent to a scalar field model, this mathematical correspondence does not always
mean physical equivalence. The two corresponding solutions may have different physical
behaviors. Corrections to the classical Einsteinian black hole entropy are necessary so as to
constrain the viability of modified gravity theories in the study of Schwarzschild–de Sitter
black holes by the use of the Noether charge method [42]. However, not all black-hole
solutions in modified theories of gravity must necessarily dissatisfy the Einstein field
equations. For example, a stationary black-hole solution of the Brans–Dicke field equations
must be that of the Einstein field equations [43]; this result is still present if no symmetries
apart from stationarity are assumed [44]. The Kerr metric also remains a solution of certain
f (R) theories [45].

A deep understanding of the relevant properties of the standard general relativistic
black hole solutions and particle motions in the vicinity of the black holes is important to
study accretion disk structure, gravitational lensing, cosmology and gravitational wave
theory. Observational data from the vicinity of the circular photon orbits or the innermost
stable circular orbits could be used as tests of the no-hair theorem. The properties of the
innermost stable circular orbits are useful for understanding the energetic processes of
a black hole. For this reason, radial effective potentials and (innermost) stable circular
orbits of charged particles in electromagnetic fields surrounding a black hole have been
extensively investigated in a large variety of papers (see, e.g., [46–51]). The motions of
charged particles in the equatorial plane sound simple, but off-equatorial motions of
charged particles in the magnetic fields become very complicated. In a stationary and
axisymmetric black hole solution, there are three conserved quantities, including the
energy, angular momentum and rest mass of a charged particle. The fourth invariable
quantity related to the azimuthal motion of the particle is destroyed in general when an
electromagnetic field is included around the black hole. Thus, the particle motion in the
spacetime background is not an integrable system. Chaos describing a dynamical system
with sensitive dependence on initial conditions can occur in some circumstances. Various
aspects of chaotic motions of charged particles around the standard general relativistic
black holes perturbed by weak external sources, such as magnetic fields, are discussed in
many references (see, e.g., [52–59]).

Thanks to the importance of the deformed (or modified) black hole solutions in tests
of strong-field gravity features of general relativity, the motions of charged particles in the
modified solutions with or without perturbations of weak external sources are naturally
taken into account by some authors. The authors of [10] focused on the question of how the
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radii of the innermost stable circular orbits and circular photon orbits vary with increasing
values of the spin and deviation parameters in a Kerr-like metric of a rapidly rotating
black hole. They demonstrated that their Kerr-like metric is suitable for strong-field tests of
the no-hair theorem in the electromagnetic spectrum. Charged particle motions around
non-Schwarzschild or non-Kerr black hole immersed in an external uniform magnetic
field were considered in [60–62]. The influence of a magnetic field on the radial motion
of a charged test particle around a black hole surrounded with an external magnetic field
in Hořava–Lifshitz gravity was investigated in [63–65]. The radial motions of charged
particles in the γ spacetime in the presence of an external magnetic field were studied
in [66]. In fact, the γ spacetime is nonintegrable and can allow for the onset of chaos if the
external magnetic field is not included [67]. The authors of [68] gave some insights into the
effect of one deformation parameter on the chaos of charged particles in the vicinity of a
non-Schwarzschild black hole with an external magnetic field.

Numerical integration methods are vital to detecting the chaotic behavior of charged
particles in the vicinity of the standard general-relativistic or modified black hole solutions
with or without perturbations from weak external sources. They should have good stability
and high precision so as to provide reliable results when detecting the chaotic behavior.
The most appropriate long-term integration solvers for Hamiltonian systems constitute
a class of symplectic integrators which respect the symplectic structures of Hamiltonian
dynamics [69,70]. The motions of charged particles near the black holes with or with-
out weak external sources can be described by Hamiltonian systems, and thus allow for
the applicability of symplectic methods. If the Hamiltonian systems are split into two
parts, explicit symplectic integration algorithms are not available in general. However,
implicit symplectic integrators, such as the implicit midpoint rule [71,72] and implicit
Gauss–Legendre Runge–Kutta symplectic schemes [54,73,74], are always suitable for their
applications to these Hamiltonian systems that do not need any separable forms. When the
Hamiltonians are separated into one group with explicit analytical solutions and another
group with implicit solutions, explicit and implicit combined symplectic methods can be
constructed [75–79]. The implicit algorithms are more computationally demanding than the
explicit ones in general; therefore, the explicit symplectic integrations should be developed
as much as possible. Recently, the authors of [80–82] successfully constructed the explicit
symplectic integrators for the Schwarzschild-type black holes with or without external
magnetic fields by splitting the corresponding Hamiltonians into several parts having ana-
lytical solutions as explicit functions of proper time. More recently, the time-transformed
explicit symplectic integrators were designed for the Kerr family spacetimes [83–85].

The idea for constructing the time-transformed explicit symplectic integrators and the
explicit symplectic integrators introduced in [80–83] allows for the applicability of many
standard general-relativistic or modified black hole solutions with or without perturbations
of weak external sources. In spite of this, there is no universal rule on how to construct
explicit symplectic integrators for Hamiltonians corresponding to the spacetimes. Specific
Hamiltonian problems have different separations, or different choices of time-transformed
Hamiltonians and their splitting forms. As is claimed above, the non-Schwarzschild metric
with four free deformation parameters could produce a Kerr-like metric through a complex
coordinate transformation [10]. Now, there is the question of whether the time-transformed
explicit symplectic integrators for the Kerr-type spacetimes [83] are applicable to such
a deformed non-Schwarzschild black hole immersed in an external magnetic field. We
address that question in this paper. In addition, we mainly pay attention to the effects of
the four free deformation parameters on the chaotic behavior. The present work is unlike
the study in [68], in which one deformation parameter is added to the non-Schwarzschild
metric and no explicit symplectic integrators are considered.

The remainder of this paper is organized as follows. A metric deformation to the
Schwarzschild spacetime is introduced in Section 2. Time-transformed explicit symplectic
integrators are described in Section 3. Orbital dynamical properties are discussed in
Section 4. Finally, the main results are presented in Section 5.
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2. Deformed Schwarzschild Metric

In Schwarzschild coordinates (t, r, θ, ϕ), a Schwarzschild-like metric ds2 = gαβdxαdxβ

is written in [7,10] as

ds2 = − f (1 + h)dt2 + f−1(1 + h)dr2 + r2dθ2 + r2 sin2 θdϕ2, (1)

f = 1− 2M
r

,

h = k0 +
k1M

r
+

k2M2

r2 +
k3M3

r3 . (2)

M denotes a mass of the black hole. The speed of light c and the gravitational constant
G are taken as geometric units; c = G = 1. Deformation function h is a perturbation to
the Schwarzschild metric, where k0, k1, k2 and k3 are deformation parameters. It comes
from modified multipole structures related to spherical deformations of the star. When the
action through algebraic, quadratic curvature invariants coupled to scalar fields is modified,
such small deformations in the Schwarzschild metric are obtained from the modified field
equations and the scalar field’s equation in dynamical theory. Clearly, Equation (1) with
h = 0 corresponds to the Schwarzschild metric. When h 6= 0, Equation (1) looks like the
Schwarzschild metric but can be transformed into a Kerr-like black-hole metric by the
Newman–Janis algorithm [86] and a complex coordinate transformation [10].

Suppose the black hole is immersed in an external electromagnetic field with a four-
vector potential:

Aµ =
1
2

δ
ϕ
µ Br2 sin2 θ, (3)

where B is a constant strength of the uniform magnetic field. The motion of a test particle
with mass m and charge q is described in the following Hamiltonian.

H =
1

2m
gµν(pµ − qAµ)(pv − qAν). (4)

where pµ is a generalized momentum, which is determined by

ẋµ =
∂H
∂pµ

=
1
m

gµν(pν − qAν), (5)

equivalently,

pµ = mẋνgµν + qAµ. (6)

The 4-velocity ẋµ is a derivative of the coordinate xµ with respect to proper time τ. As
the Hamiltonian equations satisfy Equation (5) and

ṗµ = − ∂H
∂xµ ; (7)

pt and pϕ are two constants of motion:

pt = mṫgtt = −mṫ f (1 + h) = −E, (8)

pϕ = mϕ̇gϕϕ + qAϕ = mr2 ϕ̇ sin2 θ +
1
2

qBr2 sin2 θ = L. (9)

E is an energy of the particle, and L is an angular momentum of the particle.
For simplicity, dimensionless operations are given to the related quantities as follows:

t → tM, τ → τM, r → rM, B → B/M, E → mE, pr → mpr, L → mML, pθ → mMpθ ,
q → mq and H → mH. In this way, M and m in Equations (1)–(9) are taken as geometric
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units; m = M = 1. The Hamiltonian (4) has two degrees of freedom (r, θ) in a four-
dimensional phase space (r, θ, pr, pθ), and can be rewritten as a dimensionless form:

H = − E2

2 f (1 + h)
+

1
2r2 sin2 θ

(L− 1
2

Qr2 sin2 θ)2 +
f p2

r
2(1 + h)

+
p2

θ

2r2 , (10)

where Q = Bq.
Besides the two constants (8) and (9), the conserved Hamiltonian quantity

H = −1
2

(11)

is a third constant of the system (10). The third constant of motion exists due to the
invariance of the 4-velocity or the rest mass of the particle in the time-like spacetime (1).
Given Q = 0, the system (10) holds a fourth constant of motion and therefore is integrable
and nonchaotic. When Q 6= 0, the system (10) has no fourth constant and then becomes
nonintegrable. In this case, analytical solutions cannot be given to the system (10), but
numerical solutions can.

3. Explicit Symplectic Integrations

First, time-transformed explicit symplectic methods for the system (10) is introduced.
Then, their performance is numerically evaluated.

3.1. Design of Algorithms

As is claimed above, the metric (1) seems to be the Schwarzschild metric, but the
system (10) is not suitable for the application of the explicit symplectic methods suggested
in [80–82] because the Hamiltonian (10) is unlike the Hamiltonians of the Schwarzschild-
type spacetimes (including the Reissner-Nordström metric, the Reissner-Nordström-(anti)–
de Sitter solution and these spacetimes perturbed by external magnetic fields), which can
be separated into several parts having analytical solutions as explicit functions of proper
time τ. Since the Schwarzschild-like metric (1) can correspond to a Kerr-like metric via
some coordinate transformation [12], the time-transformed explicit symplectic methods for
the Kerr-type spacetimes proposed in [73] are guessed to be applicable to the system (10).
The implementations of the algorithms are detailed below.

By extending the phase-space variables (pr, pθ ; r, θ) of the Hamiltonian (10) to (pr, pθ , p0;
r, θ, q0), where τ is viewed as a new coordinate q0 = τ and its corresponding momentum is
p0 with p0 = −H = 1/2 6= pt, we have an extended phase-space Hamiltonian:

J = H + p0. (12)

It is clear that J is always identical to zero, J = 0. By taking a time transformation

dτ = g(r)dw, (13)

g(r) = 1 + h, (14)

we get a new time transformation Hamiltonian:

H = g(r)J = −E2

2 f
+

(1 + h)(L− 1
2 Qr2 sin2 θ)2

2r2 sin2 θ
+

p2
r

2
− p2

r
r

+
(1 + k0)p2

θ

2r2 +
k1 p2

θ

2r3 +
k2 p2

θ

2r4 +
k3 p2

θ

2r5 + p0g(r). (15)

The HamiltonianH has new coordinate time variable w and the phase-space variables
(pr, pθ , p0; r, θ, q0). As J = 0,H = 0.
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Similarly to the Hamiltonians of the Schwarzschild-type spacetimes in
references [80–82], the time-transformed Hamiltonian H can be split in the following
way:

H = H1 +H2 +H3 +H4 +H5 +H6 +H7, (16)

where sub-Hamiltonians read

H1 = −E2

2 f
+

(1 + h)(L− 1
2 Qr2 sin2 θ)2

2r2 sin2 θ
+ p0(1 + h), (17)

H2 =
p2

r
2

, (18)

H3 = − p2
r

r
, (19)

H4 =
(1 + k0)p2

θ

2r2 , (20)

H5 =
k1 p2

θ

2r3 , (21)

H6 =
k2 p2

θ

2r4 , (22)

H7 =
k3 p2

θ

2r5 . (23)

Each of the seven sub-Hamiltonians is analytically solvable, and its solutions are
explicit functions of the new coordinate time w. A, B, C, D, E , F and G are differential
operators, which correspond to H1, H2, H3, H4, H5, H6 and H7, respectively. These
operators are written as

A = −∂H1

∂r
∂

∂pr
− ∂H1

∂θ

∂

∂pθ
+

∂H1

∂p0

∂

∂q0

= f1
∂

∂pr
+ f2

∂

∂pθ
+ (1 + h)

∂

∂q0
, (24)

f1 =
k1

2r2 +
k2

r3 +
3k3

2r4 −
E2

r2( 2
r − 1)2

+
(L− Qr2 sin2 θ

2 )2( k1
r2 + 2k2

r3 + 3k3
r4 )

2r2 sin2 θ

+(L− Qr2 sin2 θ

2
)[Q +

(L− Qr2 sin2 θ
2 )

r2 sin2 θ
]

·( k0 + 1
r

+
k1

r2 +
k2

r3 +
k3

r4 )− p0
∂h
∂r

,

f2 = (L− Qr2 sin2 θ

2
)[Q +

(L− Qr2 sin2 θ
2 )

r2 sin2 θ
]

·(k0 + 1 +
k1

r
+

k2

r2 +
k3

r3 ) cot θ,

B = pr
∂

∂pr
, (25)

C = −2
r

pr
∂

∂r
− p2

r
r2

∂

∂pr
, (26)
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D =
(1 + k0)pθ

r2
∂

∂θ
− (1 + k0)p2

θ

r3
∂

∂pr
, (27)

E =
k1 pθ

r3
∂

∂θ
− 3

2
k1 p2

θ

r4
∂

∂pr
, (28)

F =
k2 pθ

r4
∂

∂θ
− 2

k1 p2
θ

r5
∂

∂pr
, (29)

G =
k3 pθ

r5
∂

∂θ
− 5

2
k3 p2

θ

r6
∂

∂pr
. (30)

The solutions z = (r, θ, q0, pr, pθ)
T for the time-transformed HamiltonianH advancing

a new coordinate time step ∆w = σ from the initial solutions z(0) = (r0, θ0, q00, pr0, pθ0)
T

can be given by

z = SH2 (σ)z(0), (31)

where SH2 represents symmetric products of exponents of the seven operators and has the
expressional form

SH2 (σ) = e
σ
2 G × e

σ
2F × e

σ
2 E × e

σ
2D × e

σ
2 C × e

σ
2 B × eσA × e

σ
2 B

×e
σ
2 C × e

σ
2D × e

σ
2 E × e

σ
2F × e

σ
2 G . (32)

Such symmetric products are a component of symplectic operators of second or-
der. The symplectic method S2 is an extension to the works of [83–85] regarding the
time-transformed explicit symplectic methods for the Kerr spacetimes. Of course, such
symmetric products of order 2 easily yield a fourth-order construction of Yoshida [87]:

SH4 = SH2 (γσ)× SH2 (δσ)× SH2 (γσ), (33)

where γ = 1/(1− 3
√

2) and δ = 1− 2γ.

3.2. Numerical Evaluations

Let us choose parameters E = 0.9965, L = 4, Q = 6× 10−4, k0 = 10−3, k1 = 10−2,
k2 = 10−1 and k3 = 1. The initial conditions are pr = 0 and θ = π/2. The initial value
r = 15 for Orbit 1, and r = 50 for Orbit 2. The initial values pθ > 0 for the two orbits are
determined by Equation (11).

Given the time step σ = 1, the errors of the Hamiltonian J for the second-order method
S2 and the fourth-order method S4 solving Orbit 1 have no secular drifts. The errors are
three orders of magnitude smaller for S4 than for S2 before the integration time w = 107,
as shown in Figure 1a. With the integration spanning this time and tending to w = 108,
the errors still remain bounded for S2, but exhibit long-term growths for S4. The secular
drifts of the Hamiltonian errors for S4 are due to roundoff errors. When the number of
integration steps is small, the truncation errors are more important than the roundoff errors.
As the integration is long enough, the roundoff errors are dominant errors and cause the
Hamiltonian errors to grow with time. However, such error drifts for S4 lose when a larger
time step σ = 4 is adopted. If Orbit 1 is replaced with Orbit 2, the Hamiltonian errors for
each of the two methods are not explicitly altered.
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Figure 1. (a) Errors of the Hamiltonian J in Equation (12). S2 (σ = 1) represents the second-order method S2 with time step
σ = 1; S4 (σ = 1) means the fourth-order method S4 with new coordinate time step σ = 1, and S4 (σ = 4) stands for the
fourth-order method S4 with time step σ = 4. Orbit 1 with the initial separation r = 15 is tested. Orbit 1 has the other
initial conditions pr = 0, θ = π/2 and pθ > 0 determined by J = 0. The parameters are E = 0.9965, L = 4, Q = 6× 10−4,
k0 = 10−3, k1 = 10−2, k2 = 10−1 and k3 = 1. The error for S4 (σ = 1) is three orders of magnitude smaller than for S2
(σ = 1). The error remains bounded for S2 (σ = 1), but it has a secular drift for S4 (σ = 1) due to roundoff errors. The
secular drift in the error loses for S4 (σ = 4). (b) Relation between proper time τ and new coordinate time w. This shows
that τ and w are almost the same. (c) Poincaré sections at the plane θ = π/2 with pθ > 0. Orbit 1 is ordered, whereas Orbit
2 with the initial separation r = 50 is chaotic. Panels (b,c) come from the results provided by the algorithm S4 (σ = 4).

In what follows, S4 with the time step σ = 4 is used. Figure 1b describes the re-
lationship between the proper time τ and the new coordinate time w when Orbit 1 is
tested. Clearly, w is almost equal to τ. This result coincides with the theoretical result
g ≈ 1 + k0 ≈ 1 when r � 2 and k0 ≈ 0. Therefore, the time transformation function g in
Equation (14) mainly plays an important role in implementing the desired separable form
of the time-transformed HamiltonianH rather than adaptive control to time steps.

4. Regular and Chaotic Dynamics of Orbits

The regularity of Orbit 1 and the chaoticity of Orbit 2 are clearly shown through the
Poincaré section at the plane θ = π/2 with pθ > 0 in Figure 1c. The phase-space of Orbit
1 is a Kolmogorov–Arnold–Moser (KAM) torus, which belongs to the characteristic of a
regular quasi-periodic orbit. For Orbit 2, many discrete points are densely, randomly filled
with an area and are regarded as the characteristic of a chaotic orbit. The Hamiltonian
errors for S4 acting on Orbit 1 are approximately same as those for S4 acting on Orbit 2.
This fact indicates that the algorithmic performance for the Hamiltonian error behavior is
not related to the regularity or chaoticity of orbits.

Now, we continue to use the technique of Poincaré section to trace the orbital dy-
namical evolution. The parameters are the same as those in Figure 1; but Q = 8× 10−4,
k0 = 10−4 and different values E are given. When E = 0.991 in Figure 2a, the plotted seven
orbits are ordered. As the energy increases, e.g., E = 0.9925, three of the orbits are chaotic
in Figure 2b. For E = 0.9975 in Figure 2c, chaos is present almost elsewhere in the whole
phase space. These results indicate an increase in the energy enhances the strength of chaos
from the global phase-space structure. However, the chaotic properties are weakened as
the particle’s angular momentum L increasing, as shown in Figure 3.

204



Universe 2021, 7, 488

Figure 2. Poincaré sections. The parameters are the same as those in Figure 1c, but Q = 8× 10−4, k0 = 10−4 and the
energies E are different. The energies are (a) E = 0.991, (b) E = 0.9925 and (c) E = 0.9975. The three sub-figures show that
the chaoticity becomes strong as the energy increases.

Figure 3. Poincaré sections. The parameters are E = 0.9925, Q = 8× 10−4, k0 = 10−4, k1 = 10−2, k2 = 10−1 and k3 = 1.
The angular momenta are (a) L = 3.85, (b) L = 4 and (c) L = 4.4. It is clearly shown that chaos is gradually weakened as the
angular momentum increases.

Besides the technique of Poincaré section, Lyapunov exponents for measuring an
exponential rate of the separation between two nearby orbits with time are often used to
distinguish chaos from order. The largest Lyapunov exponent is defined in [88] by

λ = lim
w→∞

1
w

ln
d(w)

d0
, (34)

where d0 is the starting separation between the two nearby orbits and d(w) is the distance
between the two nearby orbits at time w. However, it takes long enough time to obtain
stabilizing values of the Lyapunov exponents. Instead, a fast Lyapunov indicator (FLI), as a
quicker method to distinguish between the ordered and chaotic two cases, is often used. It
comes from a slightly modified version of the largest Lyapunov exponent, and is calculated
in [88] by

FLI = log10
d(w)

d0
. (35)

An exponential growth of FLI with time log10 w means that the bounded orbit is chaotic,
whereas a power law growth of FLI shows the bounded orbit is regular. When the integra-
tion time arrives at 106, the FLIs in Figure 4a can clearly identify the regular and chaotic
properties of three energies corresponding to the orbits with the initial separation r = 15
in Figure 2. The regular and chaotic properties of three angular momenta corresponding
to the orbits with the initial separation r = 70 in Figure 3 are also described the FLIs in
Figure 4b. Clearly, the angular momentum L = 4.4 corresponds to the regularity, whereas
the angular momenta L = 3.85 and L = 4 correspond to chaos. Chaos is stronger for
L = 3.85 than for L = 4. As far as the Poincaré sections and FLIs are concerned, they are
two popular methods to distinguish chaos from order. The technique of Poincaré sections
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can clearly, intuitively describe the global phase-space structure, but is mainly applicable
to conservative systems with two degrees of freedom or four-dimensional phase spaces.
The method of FLIs is suitable for any dimensions.

Figure 4. Fast Lyapunov indicators (FLIs). (a) The initial separation is r = 15; the other initial
conditions and parameters are those of Figure 2. The FLIs for E = 0.991 and E = 0.9925 correspond to
the regular behavior, but the FLI for E = 0.9975 shows the chaotic behavior. (b) The initial separation
is r = 70; the other initial conditions and parameters are those of Figure 3. The FLI for L = 4.4
indicates the regularity. L = 3.85 corresponds to stronger chaos than L = 4.

Taking the parameters L = 4, k0 = 10−4, k1 = 10−2, k2 = 10−1 and k3 = 1, we employ
the technique of Poincaré sections to plot the global phase-space structures with E = 0.9915
for three positive values of the magnetic parameter Q in Figure 5a–c. When Q = 5× 10−4,
all orbits are regular KAM tori in Figure 5a. Given Q = 8× 10−4 in Figure 5b, many tori
are twisted and a few orbits can be chaotic. When Q = 10−3 in Figure 5c, the number of
chaotic orbits increases and the strength of chaos is enhanced. In other words, an increase
in the positive magnetic parameter is helpful to induce the occurrence of chaos. How does
a negative magnetic parameter affect the chaotic behavior as the magnitude of the negative
magnetic parameter increases? The key to this question can be found in Figure 5d–f with
E = 0.9975. No chaos exists for Q = −10−4 in Figure 5d. Three chaotic orbits are plotted
for Q = −8× 10−4 in Figure 5e. More orbits can be chaotic when Q = −10−3 in Figure 5f.
That is to say, the chaotic properties from the global phase-space structures are typically
strengthened as the absolute value of the negative magnetic parameter increases. In short,
chaos becomes stronger as the magnitude of the positive or negative magnetic parameter
(|Q|) varies from small to large. This result is also supported by the FLIs in Figure 6. Here,
the FLI for a given value of Q is obtained after the integration time w = 2× 106. All FLIs
that are not less than 6 correspond to the onset of chaos, and those that are less than this
value turn out to indicate the regularity of orbits. When Q > 8.5× 10−4 in Figure 6a or
Q < −7.5× 10−4 in Figure 6b, a dynamical transition from order to chaos occurs.
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Figure 5. Poincaré sections for different values of the magnetic parameter Q. The other parameters are L = 4, k0 = 10−4,
k1 = 10−2, k2 = 10−1 and k3 = 1. (a–c): E = 0.9915 and Q > 0; the strength of chaos is enhanced with increasing Q. (d–f):
E = 0.9975 and Q < 0; chaos is strong as |Q| increases.

Figure 6. (a): Dependence of FLI on the positive magnetic parameter Q in Figure 5a–c. The initial
separation is r = 70. The FLI for each value of Q is obtained after the integration time w = 2× 106.
The FLIs ≥ 6 mean chaos, and the FLIs < 6 show the regularity. When Q > 8.5× 10−4, chaos begins
to occur. (b): Dependence of FLI on the negative magnetic parameter Q in Figure 5d–f. The initial
radius is r = 50. When Q < −7.5× 10−4, there is a dynamical transition from order to chaos.

Now, let us focus on the dependence of chaos on the deformation parameters. Chaos
becomes weaker when the deformation parameter k0 is positive and increases in Figure 7a–c.
However, it gets stronger when the deformation parameter k0 is negative and its magnitude
increases in Figure 7d–f. The effects of the deformation parameter k0 on chaos described
by the technique of Poincaré sections are consistent with those described by the method
of FLIs in Figure 8. The effects of the other deformation parameters on chaos are shown
through the methods of Poincaré sections and FLIs in Figures 9–14. They are similar to the
effect of the deformation parameter k0 on chaos. Precisely speaking, an increase in any one
of the positive deformation parameters k1, k2 and k3 weakens the chaotic properties, and
an increase in any of the magnitudes of the negative deformation parameters k1, k2 and k3
strengthens the chaotic properties. The result regarding the effects of the four deformation
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parameters on the chaotic properties is similar to the result of [68] for describing the effect
of deformation parameter k3 on the chaotic properties.

Figure 7. Poincaré sections for different values of the deformation parameter k0. The parameters are L = 4.6, Q = 8× 10−4,
k1 = 10−2, k2 = 10−1 and k3 = 1. (a–c): E = 0.995 and k0 > 0. The strength of chaos is weakened with increasing k0. (d–f):
E = 0.994 and k0 < 0. Chaos is enhanced as |k0| increases.

Figure 8. (a): Dependence of FLI on the positive deformation parameter k0 in Figure 7a–c. The initial
separation is r = 50. When k0 > 4.2× 10−4, chaos begins to lose. (b): Dependence of FLI on the
negative deformation parameter k0 in Figure 7d–f. The initial radius is r = 30. When k0 < 1.7× 10−3,
the chaotic properties are strengthened.

The above demonstrations clearly show how small changes of these parameters affect
the dynamical transitions from order to chaos. The main result is that chaos in the global
phase space is strengthened the energy E, magnetic parameter |Q| or an absolute value of
one of the negative deformation parameters (|k0|, |k1|, |k2| and |k3|) increases, but weakened
when the angular momentum L or any one of the positive deformation parameters k0, k1,
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k2 and k3 increases. Here, an interpretation is given to the result. Expanding 1/ f in the
Taylor series, we rewrite Equation (17) at the equatorial plane θ = π/2 as

H1 ≈ 1
2
[(1 + k0)(1− LQ)− E2 +

k2

4
Q2]− E2

r
+

Q2

8
(1 + k0)r2

+
L2

2r2 (1 + k0) +
L2k1

2r3 +
1− LQ

2
(

k1

r
+

k2

r2 +
k3

r3 ) +
k3

2r
Q2. (36)

The second term corresponds to the black hole gravity acting on the particles. The
third term yields an attractive force from a contribution of the magnetic field regardless
of whether Q > 0 or Q < 0. The fourth term provides an inertial centrifugal force
due to the particle’s angular momentum. The fifth, sixth and seventh terms come from
coupled interactions among the metric deformation perturbations, angular momentum and
magnetic field. For 1− LQ ≈ 1, they have repulsive force effects on the charged particles
when k1 > 0, k2 > 0 and k3 > 0, but attractive force effects when k1 < 0, k2 < 0 and
k3 < 0. A small increase in the energy E or the magnetic field |Q| means enhancing the
attractive force effects, and therefore the motions of particles can become more chaotic in
some circumstances. As the angular momentum L increases, the repulsive force effects are
strengthened and chaos is weakened. With a minor increase in relatively small positive
deformation parameter k0, the magnetic field attractive force and the centrifugal force will
increase, but the centrifugal force has a larger increase than the magnetic field force for the
parameters chosen in Figure 7. This leads to weakening the strength of chaos. However,
as the absolute value |k0| with k0 < 0 increases, the centrifugal force has a larger decrease
than the magnetic field force, and chaos becomes stronger. Increases of the other positive
deformation parameters k1, k2 and k3 cause the repulsive forces to increase, and chaos to
get weaker. However, the attractive force effects are enhanced and chaos gets stronger as
the magnitudes of negative deformation parameters k1, k2 and k3 increase.

Figure 9. Same as Figure 7, but k0 in Figure 7 is replaced with k1. (a–c) : k0 = 5× 10−4. (d–f) : k0 = 10−4.

209



Universe 2021, 7, 488

Figure 10. Same as Figure 8, but k0 in Figure 8 is replaced with k1. (a): k0 = 5× 10−4 and the initial
radius is r = 10; chaos is ruled out as k1 > 0.042. (b): k0 = 10−4 and the initial radius is r = 50; chaos
is enhanced as k1 < −0.018.

Figure 11. Poincaré sections for different values of the deformation parameter k2. The parameters are L = 4.6, Q = 8× 10−4,
k0 = 5× 10−4, k1 = 5× 10−3 and k3 = 1. (a–c): E = 0.995 and k2 > 0. The strength of chaos is weakened with increasing k2.
(d–f): E = 0.994 and k2 < 0. Chaos is enhanced as |k2| increases.

Figure 12. (a): Dependence of FLI on the positive deformation parameter k2 in Figure 11a–c. The
initial separation is r = 10. When k2 > 0.46, chaos is absent. (b): Dependence of FLI on the negative
deformation parameter k2 in Figure 11d–f. The initial radius is r = 70. When k2 < −0.96, the chaotic
properties are strengthened.
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Figure 13. Similar to Figure 11, but k2 in Figure 11 is replaced with k3and energies E are different. Here, k2 = 0.5.
(a–c): E = 0.995 and k3 > 0. (d–f): E = 0.9945 and k3 < 0.

Figure 14. Dependence of FLI on the positive deformation parameter k3. The other parameters are
the same as those in Figure 13. (a): E = 0.995, k3 > 0 and the initial separation r = 70; when k3 > 6,
chaos begins to disappear. (b): E = 0.9945, k3 < 0 and the initial separation r = 50; when k3 < −3.2,
the chaotic properties are strengthened.

5. Conclusions

When a nonrotating compact object has spherical deformations, it has suffered from metric
deformation perturbations. Such small deformation perturbations in the Schwarzschild met-
ric could be regarded as a nonrotating black hole solution departure from the standard
Schwarzschild spacetime in modified theories of gravity. The non-Schwarzschild spacetime
with four free deformation parameters is integrable. However, the dynamics of charged
particles moving around the Schwarzschild-like black hole is nonintegrable when the in-
clusion of an external asymptotically uniform magnetic field destroys the fourth invariable
quantity related to the azimuthal motion of the particles.

Although the deformation perturbation metric looks like the Schwarzschild metric,
it can be changed into a Kerr-like black hole metric via some appropriate coordinate
transformation. Therefore, the time-transformed explicit symplectic integrators for the
Kerr-type spacetimes introduced in [83] should be similarly applicable to the deformed
Schwarzschild black hole surrounded with an external magnetic field. In fact, we can
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design explicit symplectic methods for a time-transformed Hamiltonian, which is split into
seven parts with analytical solutions as explicit functions of new coordinate time. A main
role for the time transformation function is the implementation of such desired separable
form of the time-transformed Hamiltonian rather than that of adaptive time-step control. It
was shown numerically that the obtained time-transformed explicit symplectic integrators
perform well long-term in terms of stable error behavior regardless of regular or chaotic
orbits when intermediate time steps are chosen.

One of the obtained time-transformed explicit symplectic integrators combined with
the techniques of Poincaré sections and FLIs was used to show how small changes of
the parameters affect the dynamical transitions from order to chaos. Chaos in the global
phase space can be strengthened under some circumstances, if the energy or the absolute
value of the (positive or negative) magnetic parameter or any of the negative deformation
parameters increases. However, it is weakened as the angular momentum or any one of
the positive deformation parameters increases.
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Abstract: Validity of three gravity models with non-linear realization of conformal symmetry previ-
ously discussed in literature is addressed. Two models are found to be equivalent up to a change of
coset coordinates. It was found that models contain ghost degrees of freedom that may be excluded
by an introduction of an additional symmetry to the target space. One model found to be safe in
early universe. The others found to lack spin-2 degrees of freedom and to have peculiar coupling to
matter degrees of freedom.
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1. Introduction

Conformal symmetry occupies a special place in gravity physics due to the well-known
Ogievetsky theorem [1]. The theorem states that any generator of the infinitely-dimensional
coordinate transformation group is presented as series of commutators of generators from
the conformal group C(1, 3) and the affine one A(4). Therefore, the conformal group is
strongly related with coordinate transformations and should have a certain influence on
the structure of a gravity theory.

Particular implementations of conformal symmetry for gravity models were studied
in multiple papers, so we only mention a few key results. In paper [2], it was shown that
any metric gravity theory can be viewed as a theory with a combined non-linear realization
of conformal and affine symmetry (see also [3–6]). Explicit non-linear realization of the
conformal symmetry within AdS/CFT correspondence was constructed in [7]. It also
should be mentioned that there are models with a linear realization of the conformal
symmetry [8,9], but their applicability is debatable [10–13].

There are a few physical reasons to study models with non-linear realizations of the
conformal symmetry. Early Universe is naturally associated with the conformal symmetry.
Firstly, it is reasonable to expect the early state of the Universe to have Planck scale
temperature. Because of this all conceivable particles can be considered as massless and the
conformal symmetry will emerge naturally. It is also possible to make a realistic case for a
scenario with a conformal fixed point reached in the early Universe [14–16]. An alternative
evidence supporting this reasoning comes from the inflation theory. If an inflation is driven
by a scalar field potential then the potential has an area where it is approximately flat to
be consistent with the slow-roll scenario. However, in this area the potential will admit
a scalar field shift symmetry φ → φ + c which, in turn, excludes relevant dimensional
parameters and enforces the conformal symmetry on the model.

During the universe evolution the conformal symmetry will inevitable be sponta-
neously broken down to the Poincare group. It is known that spontaneous symmetry

Universe 2021, 7, 501. https://doi.org/10.3390/universe7120501 https://www.mdpi.com/journal/universe217
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breaking and non-linear symmetry realization are the same thing (except for a few very
special cases that are irrelevant within the context of this paper). Therefore, it is natural
to study models with non-linear realizations of the conformal symmetry that they are
expected to appear natural in the context of a cosmological evolution originated from the
conformal phase.

This framework points on an interesting opportunity to obtain a united description
of both inflationary and post-inflationary expansion within a single model with a non-
linear realized conformal symmetry. In full accordance with the Goldstone theorem, if
the conformal symmetry is broken the corresponding model develops new massive and
massless degrees of freedom (DoF). If the conformal symmetry is broken down to the
Lorentz group of dimension ten one can try to associate ten corresponding massless
Goldstone modes with ten components of the metric tensor. The massive components, in
turn, can be associated with the inflation field. The corresponding mass, in turn, will define
the inflation scale.

This reasoning highlights two perspective research direction. The first one is to search
for models with a non-linear realization of the conformal symmetry which contain at least
one scalar DoF and to verify its possibility to drive inflation. The other direction is to check
if a given model with a non-linear symmetry realization has massless spin-2 degrees of
freedom that could be associated with gravitons.

The main goal of this paper is to examine three particular models with the non-linear
conformal symmetry realization presented in [17]. It must be noted that the manifold
of models with a non-linear conformal symmetry realization is extremely wide [7,18–20].
The discussed models are chosen, firstly, for their simplicity and, secondly, because their
scrutiny was already begun in [21].

In paper [17] three models were presented. The first one is defined by the Lagrangian:

LI =
1
2


1 +

σ2

ε2

{
f2

(
ψ

ε

)}2

 ηµν ∂µψ ∂νψ +

1
2

[
f1

(
ψ

ε

)]2

ηµν η(α)(β) ∂µσ(α) ∂νσ(β)

− 1
ε

f1

(
ψ

ε

)
f2

(
ψ

ε

)
ηµν ∂µψ σ(α)∂νσ(β) η(α)(β).

(1)

Here, ψ and σ(α) ((α) = 0, · · · , 4) are scalar fields associated with target space coor-
dinates on which the conformal symmetry acts non-linearly. Field indices σ(α) taken in
brackets should not be confused with Lorentz indices. All fields have the canonical mass
dimension and ε is a mass parameter corresponding to the conformal symmetry breaking
scale. Finally, functions fi(x) are

f1(x) =
ex − 1

x
,

f2(x) =
ex − x− 1

x2 .

(2)

Therefore, the model (1) describes five scalar fields propagating in a flat space-time.
Fields σ(α) have the Minkowski space as the target space so their indices are contracted
with the Minkowski target metric η(α)(β).

A comment of a derivation of this model is due. Conformal group admits the fol-
lowing generators L(µ)(ν), P(µ), R(µ)(ν), K(µ), and D. The first two correspond to Lorentz
transformations and coordinate shifts and constitute the Poincare algebra; the former three
operators extend the Poincare algebra. Dynamical variables of model (1) are subjected to
the following non-linear symmetry realization
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exp

[
i
2

θ(µ)(ν)L(µ)(ν) + i θD + iθ(µ)K(µ)

]
exp

[
iφD + iσ(α)K(α)

]
(3)

= exp
[
iφ′D + iσ′(α)K(α)

]
exp

[
i
2

u(µ)(ν)L(µ)(ν)

]
.

Here, φ is related with ψ as ψ = εφ; θ(µ)(ν), θ(µ), and θ are transformation parameters;
u(µ)(ν) = u(µ)(ν)(θ, θ(α), θ(α)(β)) are parameters of the associated Lorentz group transforma-
tions. In other words, this equitation defined a non-linear action of the conformal group
on variables ψ and σ while u(µ)(ν) is responsible for a non-linear action of the conformal
group on all objects subjected to the Lorentz group.

Let us put a special emphasis on the fact that the conformal symmetry acts on all objects
subjected to Lorentz transformations, but its action is indistinguishable from the standard
Lorentz group action. This allows one to include the regular matter in the model without
an explicit violation of the conformal symmetry. This fact also holds for gravity. One of
the cornerstones of gravitational theory is the equivalence between curved geometry and
physical force. Usually this equivalence is used to justify a usage of geometric quantities,
such as the Riemann tensor, for a description of gravity. However the equivalence works
in both directions, so we can righteously consider gravity as a theory of a physical field hµν

propagating about the flat spacetime. We will return to this issue in the next section and
discuss it in more details.

In summary, (1) provides a model of five scalar fields subjected to a non-linear real-
ization of the conformal symmetry. The model can be extended with the regular matter
including gravity in a way consistent with the non-linear symmetry realization. The present
scalar degrees of freedom serve as natural candidates for inflaton field and we will address
this opportunity further. At the same time the model has no DoF that can be associated
with gravitons, so we will discuss this model in the context of inflation only.

The second model has the following Lagrangian

L = ηµν∇µh(α)(β)∇νh(ρ)(σ) η(α)(ρ) η(β)(σ), (4)

where the covariant derivatives are

i
2
∇µh(α)(β) =

i
2

∂µh(α)(β) +
∞

∑
n=1

i
(2n + 1)!

(ad2n−1
h h∂µh)(α)(β) (5)

=
i
2

[
∂µh(α)(β) − η(ν)(σ)η(µ)(λ)

(
1
3

h(α)(ν) h(β)(λ)∂µh(σ)(µ) − 1
3

h(α)(ν) h(σ)(µ)∂µh(λ)(β)

)
(6)

+ O(h5)
]

.

Here, all repeated bracket indices are contracted with the Minkowski metric of the
target space and ad operator is defined as:

(
adh ∂µh

)(µ)(ν)
= [h, ∂µh](µ)(ν) = h(µ)(ρ)∂µh(σ)(ν)η(ρ)(σ) − ∂µh(µ)(ρ)h(σ)(ν)η(ρ)(σ). (7)

Degrees of freedom h(µ)(ν) are associated with the coset coordinates and their
transformation under the non-linear conformal symmetry action is defined by the fol-
lowing formula:
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exp

[
i
2

θ(µ)(ν)L(µ)(ν)

]
exp

[
i
2

h(µ)(ν)R(µ)(ν)

]
(8)

= exp

[
i
2

h′(µ)(ν)R(µ)(ν)

]
exp

[
i
2

u(µ)(ν)L(µ)(ν)

]
.

Here, θ(µ)(ν) are transformation parameters, and u(µ)(ν) realize a non-linear conformal
group action on the Lorentz group.

Unlike the previous case the model has no natural candidates for an inflaton field, but
h(µ)(ν) appear to be similar to small metric perturbations. In this paper, we consider such
an equivalence and argue that despite their similarity they cannot be directly associated
with gravitons.

Finally, the last model discussed in this paper in given by the following Lagrangian:

L = ηµν∇µh(α)(β)∇νh(ρ)(σ) η(α)(ρ) η(β)(σ) + ηµν∂µφ∂νφ. (9)

The same definition of covariant derivatives is used, and φ is a scalar. The model is
similar to the previous one as it is constructed on the following non-linear realization:

exp

[
i
2

θ(µ)(ν)L(µ)(ν)

]
exp

[
i
2

h(µ)(ν)R(µ)(ν) + i φD

]
(10)

= exp

[
i
2

h′(µ)(ν)R(µ)(ν) + i φ′D

]
exp

[
i
2

u(µ)(ν)L(µ)(ν)

]
.

The formula shows that model (9) use a wider coset than (4). Coset of model (4) is
founded on R(µ)(ν) operators while coset of (9) is founded on R(µ)(ν) and D operators. As
it was shown in the previous paper [17], the scalar φ has the trivial covariant derivative
∇µφ = ∂µφ so it does not require any coupling neither to the regular matter nor to h(µ)(ν).
Note that such a coupling can be introduced in the model manually, but this case lies
beyond the scope of this paper. In order to highlight the fact that φ does not require any
coupling we will call it as a sterile scalar.

Similarly to the previous case, the model has no obvious candidates for an inflaton
field. Therefore, we will only study an opportunity to associate h(µ)(ν) with the gravitational
DoF. However, as we will show further, models (4) and (9) are equivalent. Because of this
we will mainly focus on model (4).

The paper is split in two parts. In the first part we will discuss cosmological behavior
of model (1) as it is the only model with a suitable candidates for inflatons. In the second
part, we will study DoF of models (4) and (9) in order to establish if h(µ)(ν) can be associated
with gravitons. Following this logic the paper is organized as follows. In Section 2, we
discuss cosmological regimes described by the model (1) and show that scalar degrees
of freedom are decoupled. Therefore, they do not influence the cosmological behavior
in a meaningful way. We discuss a possible relation between this phenomenon and the
conformal symmetry together with implications for realistic cosmological scenarios. In
Section 3, we discuss the field content of models (4) and (9). It is shown that these models
actually equivalent up to a coordinate redefinition on the target space. At the same time
these models contain vector ghost degrees of freedom. We argue that these degrees of
freedom can be excluded via an introduction of an additional symmetry to the target
space. However, this symmetry should be agreed with the non-linear realization of the
conformal symmetry which may influence the used non-linear realization in a meaningful
way. Section 4 contains our conclusions which extend previous results [21]. Finally, in
Appendix A we briefly show that DoF of the second model is also coupled to matter
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degrees of freedom in a peculiar way. We provide an expression for a covariant derivative
of a vector field (A3) which defines such a coupling.

2. Cosmological Behavior

To study the cosmological behavior of the model (1) one has to introduce gravitational
degrees of freedom because the number of DoF in (1) is not enough to describe gravitons.
This can be consistently done because of the following.

Let us examine the non-linear realization of the conformal symmetry (3). The given
formula defines transformations of φ and σ(µ) under the non-linear symmetry action

φ→ φ′(φ, θ, θ(µ), θ(µ)(ν)), (11)

σ(α) → σ(α)(σ, θ(µ), θ(µ)(ν)) .

However, it also defines parameter of Lorentz transformations (i.e., linear action of
the Lorentz group) through which the conformal symmetry acts on all objects subjected to
the Lorentz transformations:

u(α)(β) = u(α)(β)(θ, θ(µ), θ(µ)(ν)) . (12)

This allows one to extend model (1) with arbitrary matter.
Gravity can be introduced this way and be consistent with the conformal symmetry.

Due to the equivalence principle gravity can be considered either as a force (acting in a
flat background spacetime) and as a geometry of a spacetime. This equivalence allows
one to treat gravity as a gauge theory of symmetric tensor hµν in a flat spacetime. The
gauge symmetry ensures that the corresponding action has an infinite number of terms
and they can be rearranged in geometrical quantities such as the scalar curvature R. Such
an approach to gravity description is more suitable for weak gravitational field when
spacetime perturbations are weak and one can only account for a few leading terms in
the action. However, it is also consistent with non-perturbative phenomena, such as the
cosmological expansion. In that case the gravitational field hµν should be considered
excited in all points of spacetime and one would be forced to deal with the whole infinite
number of terms of the action. The geometric approach to gravity simply provides a tool
to summarize this infinite series (to geometric quantities) and to obtain equations with a
finite number of terms.

These reasons provide us with the following opportunity to introduce gravity con-
sistent with the non-linear symmetry realization. One starts with general relativity given
in a perturbative framework. This means that we consider general relativity action as an
action with an infinite number of terms that describe gauge field hµν about a flat spacetime.
Because of the equivalence principle this action is viewed only as a particular parame-
terization of general relativity. The gauge field hµν is subjected to the standard Lorentz
transformations with parameters uµν. In order to subject the theory to the non-linear
conformal group action (3) one simply replace the standard Lorentz group parameters uµν

with those obtained from (3). Therefore, each element of the conformal group is mapped
on an element of the Lorentz group with the mapping given by (3). Hence, all quantities in-
variant with respect to the Lorentz group (including the scalar curvature R) are made to be
invariant under the non-linear action of the conformal group. Finally, let us highlight that
such a relation does take place only because the non-linear group action (3) also spawns a
linear Lorentz group action through which it can act on the regular matter.

Because of the discussed reasons one can use the following model to study the cosmo-
logical expansions:

221



Universe 2021, 7, 501

S =
∫

d4x
√
−g

{
− 2

κ2 R +
1
2


1 +

σ2

ε2

{
f2

(
ψ

ε

)}2

 gµν ∂µψ ∂νψ

+
1
2

[
f1

(
ψ

ε

)]2

gµν η(α)(β) ∂µσ(α) ∂νσ(β) − 1
ε

f1

(
ψ

ε

)
f2

(
ψ

ε

)
gµν ∂µψ σ(α)∂νσ(β) η(α)(β)

}
,

(13)

where κ is related with the Newton constant GN as κ2 = 32πGN . Fields ψ and σ(α)

transform under the non-linear conformal group action with the target space remaining flat.
Let us consider the cosmological behavior of (13) with the open Friedmann space-time:

ds2 = gµν dxµ dxν = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

. (14)

Here, a(t) is the scale factor. The corresponding Einstein equations read

Gµν =
κ2

4
Cµν

αβ


1

2


1 +

σ2

ε2

{
f2

(
ψ

ε

)}2

 ∂αψ ∂βψ +

1
2

[
f1

(
ψ

ε

)]2

η(µ)(ν) ∂ασ(µ) ∂βσ(ν)

−1
ε

f1

(
ψ

ε

)
f2

(
ψ

ε

)
∂αψ σ(µ)∂βσ(ν) η(µ)(ν)

] (15)

where

Cµν
αβ def

= δα
µδ

β
ν + δ

β
µδα

ν − gµνgαβ . (16)

These equations have two non-vanishing components which can be reduced to:

− 3
ä
a
=

1
4

κ2


1

2


1 +

σ2

ε2

{
f2

(
ψ

ε

)}2

ψ̇2 +

[
f1

(
ψ

ε

)]2

σ̇(α)σ̇(α) −
2
ε

f1

(
ψ

ε

)
f2

(
ψ

ε

)
ψ̇ σ̇(α)σ

(α)


 ,

2ȧ2 + aä = 0 .

(17)

The second equation from (17) does not contain scalar fields and describes the behavior
of the scalar factor by itself. It can be solved analytically with the result:

a(t) = c2(c1 + 3 t)
1
3 , (18)

where c1 and c2 are the integration constants defined by the boundary conditions.
Now, we analyze the result (18). First of all we note that here the universe has only a

decelerated expansion hence the model has no room for an inflationary phase.
Secondly, one can assume that the matter content of the model (i.e., the scalar fields) is

described by the standard equation of state (EoS) p = wρ. Here, p is a pressure of scalar
fields, ρ is an energy density of the matter, and w is the EoS parameter. Solutions with such
EoS are well known [22,23], so one can easily restore w from the form of asymptotic of (18).
At large values of time the scale factor is proportional to t

1
3 corresponding to EoS parameter

w = 1. That is why, despite the fact that scalar fields in this model admit vanishing masses,
their behavior do not correspond to a relativistic matter one with EoS parameter w = 1/3.
The reason is that the discussed scalar fields have a non-trivial interaction sector which
influence their EoS.
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Finally, the fact that the model admits a decelerating solution deserves a special
attention as it has ghost degrees of freedom. These ghost degrees of freedom appear due to
the metric on scalar field target space η(µ)(ν):

gµν η(α)(β) ∂µσ(α) ∂νσ(β) = ∂µσ(0) ∂µσ(0) −
3

∑
i=1

∂µσ(i) ∂µσ(i) . (19)

Note that these ghost degrees of freedom do not manifest themselves at the level of
cosmological solutions.

Despite the fact the analytical solution (18) can be obtained, there are no reasons to
believe that it is stable. Equations (17) take a simple form due to a cancellation of the
stress-energy tensor of scalar fields. This cancellation, in turn, is possible because both
metric and scalar fields depend only on the time variable. As soon as one considers metric
and scalar field perturbations propagating around the background a similar cancellation
becomes impossible.

The existence of ghost degrees of freedom obstructs possible implementations of
model (13). Let us discuss possible opportunities to exclude ghosts. The first opportunity is
to use the inverse Higgs mechanism [24]. Unfortunately, this procedure is not applicable in
the considered case because the discussed non-linear symmetry realization does no satisfy
the necessary criteria. Another opportunity to exclude ghosts is to introduce an additional
symmetry at the scalar field target space which would make σ(1) = σ(2) = σ(3) = 0.
Consequently, only a single massless sterile scalar field (i.e., it has neither self-interaction
nor potential) ψ remains and such a field can hardly be applied in realistic scenarios. The
best opportunity would be to find a mechanism excluding ghost degrees of freedom from
the model’s physical spectrum, but allowing them to propagate only in loops. As it was
shown in [25], for such a case the scalar field ψ develops non-trivial interaction at the loop
level. However, such a mechanism has yet to be found.

In summary, we conclude that the model (1) can be used for realistic scenarios after
ghost degrees of freedom being excluded. For the time being it is possible to find a
cosmological solutions (18) which shows that the scalar fields act as matter with EoS
parameter w = 1 and cannot drive an inflation. This makes the model safe in the early
Universe. It cannot drive inflation but it also cannot influence an inflationary scenario
driven by another inflation field. Therefore the model should be extended in order to tame
ghost degrees of freedom.

3. Field Content

Now we switch to a discussion of the field content of second (4) and third (9) mod-
els. Firstly, they have at least ten degrees of freedom from the symmetric matrix h(α)(β),
therefore they may describe spin-2 massless degrees of freedom associated with gravitons.
Let us explain this feature in detail. Within the model discussed in the previous section
there were non degrees of freedom that can be associated with gravitons (with small metric
perturbations of a background spacetime). Because of this, one has no choice but to intro-
duce gravity alongside the regular matter degrees of freedom. In turn, degrees of freedom
present in the model can only be considered as generic scalar field that, at best, can drive
an inflation. The models to be addressed in this sections, on the contrary, have degrees of
freedom h(α)(β) that do look like small metric perturbations. In order for them to actually
be spin-2 massless degrees of freedom they must describe the correct number of DoF and
be subjected to certain equations. Consequently, the main aim of this section is to examine
if h(α)(β) can in actuality be associated with gravity. Because of this we will not introduce
any additional degrees of freedom and will only focus on h(α)(β). The second issue we will
address is the fact that h(α)(β) may also contain two scalar degrees of freedom (associated
with its determinant and trace) which could serve as inflatons. Finally, the third model (9)
contains a sterile scalar appearing as a consequence of the properties of operator D of the
conformal group [17]. These issues are clarified further.
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First and foremost, we shall address the issue related with the sterile scalar of model (9).
In the original article [17] it was missed that the sterile scalar is related with the trace
of h(α)(β). The reason behind this is due to the relation between the conformal group
generators. Namely, as degrees of freedom h(α)(β) are associated with the coset coordinates
along R(α)(β) direction the sterile scalar φ is associated with the coset coordinates along D
direction also. However, operators R(α)(β) are dependent and coupled as [1,2,17]:

η(α)(β) R(α)(β) = 2D , (20)

which follows from definitions of generators R(α)(β) and D:

D = xµPµ,

R(µ)(ν) = xµPν + xνPµ,
(21)

where Pµ = i∂µ is the generator of translations.
Therefore, the corresponding coset coordinates are also dependent and the trace

η(α)(β)h(α)(β) should be associated with φ. Hence, the trace component of h(α)(β) acts as
a sterile massless scalar and, therefore, cannot drive the inflation. Moreover, one can
treat h(α)(β) as a traceless matrix with 9 independent components reducing the number of
valuable degrees of freedom in the model. On the other hand it guarantees the traceless of
h(α)(β) similar to GR degrees of freedom.

Finally, note that this result can be obtained independently via the direct verification.

The definition h(α)(β) =
1
4

η(α)(β) h with h = η(α)(β)h(α)(β) causes the covariant derivative (5)
to be completely reduced to the regular ones hence the Lagrangian (4) describes only a
single massless sterile scalar.

Now, we switch to h
(α)(β)

as the traceless part of h(α)(β) and start to study its La-
grangian. The corresponding covariant derivative (5) is:

i
2
∇µh

(α)(β)

=
i
2

[
∂µh

(α)(β) − η(ν)(σ)η(µ)(λ)

(
1
3

h
(α)(ν)

h
(β)(λ)

∂µh
(σ)(µ) − 1

3
h
(α)(ν)

h
(σ)(µ)

∂µh
(λ)(β)

)
+O(h5)

]
.

(22)

This derivative matches the expression (5) because the trace component is contained
only in ∂µh(α)(β). Therefore, the expression (4) determines the traceless part of h(α)(β)

without changing its form.
Further, as the target space metric is not positively defined the model may contain

ghosts. Let us demonstrate this explicitly. The Lagrangian density L of (4) given up to
O(h3) reads:

L =
1
2

η(α)(ρ)η(β)(σ) ∂µh
(α)(β)

∂µh
(ρ)(σ)

=
1
2

∂µh
(0)(0)

∂µh
(0)(0)

+
1
2

3

∑
a,b=1

∂µh
(a)(b)

∂µh
(a)(b) −

3

∑
s=1

∂µh
(0)(s)

∂µh
(0)(s)

.
(23)

It is clearly seen that h
(0)(s)

with s = 1, 2, 3 have the wrong sign kinetic term and
describe ghost degrees of freedom. Because of the off-diagonal elements h(0)(i) the model
cannot be considered realistic until these degrees of freedom are excluded. These ghosts
cannot be excluded via the inverse Higgs mechanism as the corresponding generators do
not satisfy the required conditions [24].
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One can introduce an additional symmetry in the target space. The choice of the target
space coordinates as ζ(α) causes the following form of the target space metric:

g = η(α)(β) dζ(α) ⊗ dζ(β) . (24)

If one demands a symmetry with respect to ζ(0) inversion (ζ(0) → −ζ(0)) then the
field h(α)(β) must have the vanishing component h(0)(i) to be consistent with the consider-
ing symmetry. This symmetry condition should be considered independently from the
particular choice of the non-linear conformal symmetry realization. However, it is unclear
what physical reason can justify the introduction of such a symmetry. Therefore, for the
time being we consider it as an ad hoc prescription.

With the discussed prescription the traceless part of h(α)(β) includes six independent
components which can fit one spin-2 degree of freedom and one spin-0 degree of freedom.
To obtain the vanishing trace we set

h
(0)(0)

=
3

∑
a=1

h
(a)(a)

. (25)

In such a presentation, the only non-vanishing components are h(a)(b) where a, b = 1, 2, 3.
Within such a setup the original Lagrangian (4) up to O(h4) order looks as:

L = ∂µh(1)(1) ∂µh(1)(1) + ∂µh(2)(2) ∂µh(2)(2) + ∂µh(3)(3) ∂µh(3)(3)

+ ∂µh(1)(2) ∂µh(1)(2) + ∂µh(2)(3) ∂µh(2)(3) + ∂µh(3)(1) ∂µh(3)(1)

∂µh(1)(1) ∂µh(2)(2) + ∂µh(2)(2) ∂µh(3)(3) + ∂µh(3)(3) ∂µh(1)(1) +O(h4) .

(26)

Generically this Lagrangian is non-diagonal. It could be made diagonal in the follow-
ing representation:

ζ1 =
1√
6

[
h(1)(1) + h(2)(2) + h(3)(3)

]
,

ζ2 = h(1)(1) − h(3)(3) ,

ζ3 = h(1)(1) − h(2)(2) ,

ζ4 = h(1)(2) ,

ζ5 = h(2)(3) ,

ζ6 = h(3)(1) .

(27)

The quadratic part of the diagonal Lagrangian reads

L =
6

∑
i=1

∂µζi ∂µζi (28)

so the corresponding field equations are reduced to the Klein–Gordon equation

� ζi = 0 . (29)

As a result the model describes massless degrees of freedom. However, one lacks a
condition which can fix their chirality.

Mass and chirality of a particle are fixed by eigenvalues of the Poincare group Casimir
operators [26,27]. The D’Alamber operator � defined to the mass operator which is one
of the two Poincare group Casimir operators. The second Casimir operator is the Pauli–
Lubanski vector

Wµ =
1
2

εµναβ Pν Mαβ (30)

where Mαβ are Lorentz generators building Lorentz group action on a given degree of
freedom. The degrees of freedom h(α)(β) should be mixed to diagonalize the Lagrangian,
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therefore, they can be only scalars of the trivial Lorenz group action. Hence, the model has
no room for spin-2 degrees of freedom.

This section could be summarized as follows: Both discussed models (4) and (9)
really are equal because of the relations between the conformal group generators with the
influence on the coset coordinates and the corresponding non-linear symmetry realization.
Secondly, the model (4) contains ghost degrees of freedom that can be excluded from the
model only with an ad hoc prescription of auxiliary symmetry of the model target space.
Such a prescription makes the model to be not natural. Nonetheless, the model with the
additional symmetry is healthy and describes massless degrees of freedom appearing to be
scalar ones. All these factors make the considered model not realistic.

4. Discussion and Summary

Three models with particular non-linear conformal symmetry realizations [17] were
studied. We extend the consideration started in [21] and demonstrate that the discussed
models could become realistic only after significant modifications.

The first model (1) seems not to be realistic. Firstly, the original model contains five
degrees of freedom propagating in a flat space-time. In [17], it was argued that an extension
to a curved space-time case may realize a viable inflationary scenario. Following [21] we
show that in this model a universe expands with a deceleration (EoS parameter w = 1) and,
therefore, there is no inflation in it. Secondly, the model contains ghost degrees of freedom.
Although they do not appear at the cosmological solution it is reasonable to expect that
they make the solution unstable. Therefore, the model is not applicable unless ghosts are
excluded from the perturbation spectrum.

Secondly, (4) and (9) were analyzed and found to be equivalent. This feature was
missed both in [17,21]. The models are equivalent up to a parameterization of dynamical
variables. As it is pointed in the previous section the trace component of coset coor-
dinates h(α)(β) present in model (4) is the coset coordinate φ present in model (9). The
coset coordinate φ is associated with operator D which is related with the trace of oper-
ators R(α)(β) which, in turn, are associated with coordinated h(α)(β) (see (20)). Therefore,
models (4) and (9) merely provide different parameterization of the same model.

Finally, we analyzed the field content of model (4). The trace component of h(α)(β)

acts as a sterile massless scalar which excludes its practical application. The traceless part

h(α)(β) contains nine degrees of freedom. They are three ghosts h
(0)(s)

with s = 1, 2, 3 which
cannot be excluded with the inverse Higgs mechanism [24]. An additional symmetry of
the target space may exclude the ghosts. Therefore, an opportunity to introduce such a
symmetry should be studied.
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Appendix A

Here, it is necessary to demonstrate some features of an interaction between h(µ)(ν)

and matter degrees of freedom within model (4). The issue provides an additional reason
to believe that the model can hardly be considered realistic.

For the sake of simplicity we consider a single massless vector field (which can
be associated with the electromagnetic field). Accordingly to [17] such a vector field is
described by the standard Lagrangian

Lvec = −
1
4

FµνFµν . (A1)

However, a definition of the field tensor contains covariant derivatives:

Fµν = ∇µ Aν −∇ν Aµ . (A2)

The covariant derivative, in turn, reads

∇µ Aν = ∂µ Aν +
∞

∑
n=0

i
(2n + 2)!

(ad2n
h h∂µh)(α)(β)(M(α)(β))

ν
σ Aσ

= ∂µ Aν +
i
2

η(γ)(σ)h
(α)(γ)∂µh(β)(σ)(M(α)(β))

ν
σ Aσ +O(h2) .

(A3)

Here,
(

M(α)(β)

)
µν

= i(η(α)µη(β)ν − η(α)νη(β)µ) is the vector representation of Lorentz

group generators.
The corresponding Lagrangian has a few peculiar features. First and foremost, at

the leading order the model describes interaction between two modes h(µ)(ν) and two
vectors Aµ. Within GR, in contrast, the leading order interaction between gravity and a
massless vector field is a cubic interaction describing an interaction between two vectors
and a graviton. Secondly, in contrast with GR the interaction can contain only odd powers
of h(µ)(ν).

Implications of these features lead to significant differences between GR and (4). The
most interesting one is related with 2 → 2 scattering. Within GR there are tree-level
amplitudes describing gravitational scattering of massless vectors. Within model (4) such a
scattering appears only at the one-loop level.

It is necessary to point out that to pinpoint the exact difference in such scattering
processes a more detailed analysis is required. However, even at the current level the
model (4) appears to be inconsistent with GR.
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Abstract: We show that upon applying Palatini f (R), characterized by an αR2 term, within a scenario
motivated by a temporal variation of strong coupling constant, then one obtains a quadratic kinetic
energy. We do not drop this term, but rather study two extreme cases: α << 1 and α >> 1. In both
cases, one can generate a kinematically-induced inflationary paradigm. In order to fit the Planck
2018 data, the α >> 1 case, called k-inflation, requires a fine tuning adjustment with nonvanishing
nonminimal coupling to gravity parameter ξ, whereas the α << 1 case, studied in the constant-roll
regime, can fit the data for vanishing ξ. The varying strong coupling inflation scenario remains viable
when implemented through a warm inflation scenario with or without f (R) gravity.

Keywords: variation of constants; inflation; f (R)-gravity; k-inflation

PACS: 98.80Cq; 98.80-k

1. Introduction

In [1], we adopted a model of variations of constants in order to generate an inflationary
scenario, where the strong coupling was assumed to vary in time encoded in a scalar field
representing this variation. Although current geophysical and astronomical data preclude
any variation of constants, be it strong coupling [2], or Higgs vev [3], or electric charge [4],
no data preclude variation in very early times. In [5], a connection between variation
of constants and inflation was suggested, whereas in [6], this idea was pursued further
into a concrete model shown to be able to accommodate data in some variants involving
multiple inflaton fields. Alternatively, the single inflaton model was shown in [1] to be
viable provided one changes the gravitational sector and assumes f (R) gravity.

Usually, any model of inflation is defined by the choice of the scalar fields involved,
their kinetic terms, mutual couplings and potentials, and couplings to gravity. However,
we likewise have to specify the gravitational action with the corresponding degrees of
freedom. One example of the latter is the choice between the metric and the Palatini
formulations. The simplest extended gravitational action is given by replacing the Einstein–
Hilbert action of general relativity (GR) by a function f (R) of the Ricci scalar. Whereas both
formalisms agree in GR, they do differ in f (R) gravity. f (R) with metric formulation was
studied extensively (see [7–10] and references therein), whereas f (R) in Palatini formalism
constitutes a current hot topic, studied, for example, in [11,12] and references therein.

In our inflationary model based on couplings time variation, the addition of an αR2

term in the pure gravity Lagrangian changed the potential into an effective one, but also led
to a quadratic kinetic energy term which was dropped in [1] on the grounds that it involved
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an α-coupling which could be argued to be small perturbatively, and this allowed us to
derive formulae for the spectral index ns and the scalar-to-tensor ratio r which contrasted
with Planck data 2018 [13] separately or combined with other experiments [14]. In actuality,
the model can be considered as a special case of [15] which treated the general case of an
arbitrary potential leading also to a quadratic kinetic energy term. However, in our model
the potential is not arbitrary but dictated from new physics linking the two concepts of
“inflation” and “variation of constants”. Thus, our setup models the variation of coupling by
a scalar field with, according to Bekenstein arguments [2,4], self coupling, and, furthermore,
we assume an additional conformal invariant nonminimal coupling of the scalar field to
gravity, which in turn is given by f (R) (classically equivalent to tensor-scalar model) and
not by GR.

The aim of this work is twofold. First, we study the effect of the quadratic kinetic
energy term. For this, we take two extreme cases. The first case corresponds to α >> 1,
which makes the scalar field noncanonical per excellence. Many studies were carried
out to refine the inflationary scenario within the framework of scalar fields possessing a
noncanonical kinetic term [16–23]. In actuality, such kinematically-induced inflationary
scenarios go back to the Starobinsky model [24,25] more than four decades ago, which
considered a geometrical modification to general relativity in order to explain inflation.
Nonetheless, the Starobinsky model, when considered in the framework of the Palatini
formalism, in contrast to the metric formulation, cannot represent a model for inflation,
due to the absence of a propagating scalar degree of freedom that can play the inflaton
role [26,27]. Here, we go beyond and consider a scalar field, motivated by a nongeometrical
origin suggested by variation of constants à la Bekenstein, minimally or nonminimally
coupled to gravity with a potential whose form is dictated by Bekenstein arguments [2,4].
We find that with a nonvanishing nonminimal coupling to gravity (non-MCtG), the model
can fit the data. However, one cannot obtain closed forms of the “canonical” potential
except in some cases which we illustrate in order to show the “plateau” form of the potential
in terms of the “canonical” field which rolls slowly during inflation.

The second case corresponds to the perturbative regime where we restrict the anal-
ysis to first order in α. Our model in this case parallels the well-known constant-roll
k-inflation [28], and we prove that within a given limit corresponding to vanishing non-
MCtG with α small and ` large, the model is viable, and we check this numerically for both
small and large constant-roll parameter β.

Inflationary scenarios by variation of constants generically suffer from appealing to
new physics for an exit scenario during reheating [6]. A solution to this problem is provided
by warm inflation paradigm [29–31]. In this paradigm, the radiation era is accompanying
the slow-roll regime, and no need for an exit scenario. For this, our second objective is to
add the warm inflation ingredient into our varying coupling inflation scenario. We find
that with no f (R) gravity the solution is hardly viable, but with Palatini f (R), which would
correspond to new degrees of freedom, accommodation of data is easily met.

The paper is organized as follows. In Section 2, we introduce the model and illustrate
how the quadratic kinetic energy appears. In Section 3, we study the case of large α
computing the spectral parameters to be contrasted with data. Section 4 is devoted to
the study of the “canonical” potential shape when α >> 1. In Section 5, we analyze
the perturbative regime where α is small, whereas in Section 6 we prove its viability. In
Section 7, we treat the case of warm inflation in a certain weak limit. We end up with a
summary and conclusion in Section 8.
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2. Analysis of the Basic Model

Our starting point is the general four dimensional action:

S = Sφ + Sg + Sgφ (1)

where Sφ is the varying strong coupling constant action given by [6]:

Sφ ≡
∫

d4x
√
−gLφ =

∫
d4x
√
−g{−1

2
f (φ)gµν∂µφ∂νφ−V(φ)} (2)

where f (φ) = 1
`2φ2 , and V(φ) = V0

φ2 with φ embodying the strong coupling constant

variation gst(x) = gst
0 φ(x); ` is the Bekenstein length scale, and V0 = 〈G2〉T

4 encodes the
gluon field strength vacuum expectation value (vev) at inflation temperature T, whereas Sg
is the pure gravity Lagrangian including the Einstein–Hilbert action to which is added an
f (R) gravity term, taken, in our case, as a quadratic function of the Ricci scalar αR2, and
we include also a coupling term Sgφ between gravity and the field φ. Adopting units where
the Planck mass Mpl is equal to one, we have:

Sg =
∫

d4x
√
−g
[

1
2

(
R + αR2

)]
(3)

Sgφ =
∫

d4x
√
−g
[
−ξRφ2

]
(4)

with R, the Ricci scalar, constructed from the metric gµν. Note that the form of the potential
in Equation (2) is not placed by hand, but rather is dictated by the physical assumption of a
varying strong coupling constant, where gauge and Lorentz invariance impose this form
originating from the gluon condensate [5,6].

We start by making a change of variable absorbing the function f in order to obtain a
“canonical” kinetic energy term. Thus, we introduce the field h defined as φ = exp(`h), so
that we obtain the action:

S =
∫

d4x
√
−g
[

1
2

F(R) +
1
2

G(h)R− 1
2

gαβ∂αh∂βh−V(h)
]

(5)

where

V(h) = V0 exp(−2`h), G(h) = −ξ exp(2`h), F(R) = R + αR2 (6)

Instead of using at this stage the first-order cosmological perturbation theory, by per-
turbing the metric (gµν → gµν + δgµν) and keeping terms of first order in the perturbations,
we anticipate that the αR2 would contribute involved terms upon this metric change, so we
follow [15,32] and introduce an auxiliary field ψ and an action:

S =
∫

d4x
√
−g
[

1
2

G(h)R +
1
2
{

F(ψ) + F′(ψ)(R− ψ)
}
− 1

2
gαβ∂αh∂βh−V(h)

]
(7)

The equation of motion of ψ gives R = ψ, provided F′′(ψ) 6= 0. We change variable
again ψ→ λ such that (λ = F′(ψ) = 1 + 2αψ), so we obtain

S =
∫

d4x
√
−g
[

1
2
{λ + G(h)}R− 1

2
{ψλ− F(ψ(λ))} − 1

2
gαβ∂αh∂βh−V(h)

]
(8)

We carry out a conformal transformation on the metric

gαβ → Υ2gαβ = g̃αβ : Υ2 = λ + G(h) (9)
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then we obtain, in the “Metric” formulation, where the Christoffel symbols are defined in
terms of the metric and thus are not independent, and the corresponding affine connection
is defined to be the Levi–Civita one, the following [33]:

S“Metric” =
∫

d4x
√
−g̃
[

1
2

R̃− 3
4

g̃µν

(λ + G(h))2∇µ(λ + G(h))∇ν(λ + G(h))

−1
2

1
λ + G(h)

g̃αβ∂αh∂βh− Ṽ(h, λ)

]
(10)

Ṽ(h, λ) =
V(h) + W(λ)

(λ + G(h))2 (11)

where

W(λ) =
1
2
[ψλ− F(ψ(λ))] =

(λ− 1)2

8α
(12)

We see that in the “Metric” formulation, we obtain a kinetic energy term for (λ+ G(h)),
and the field λ is dynamic, i.e., its equation of motion cannot be solved algebraically.

For simplicity, then, we restrict the study from now on to the “Palatini” formulation,
where the Christoffel symbols are considered independent and are to be determined
dynamically. Remembering here that the pure gravity is not represented by a simple R
term, the connection will be different from the Levi–Civita one. Under this formulation, we
obtain (noting that

√−g = Υ−4√−g̃, gαβ = Υ2 g̃αβ and R = Υ2R̃):

S“Palatini” =
∫

d4x
√
−g̃
[

1
2

R̃− 1
2

1
λ + G(h)

g̃αβ∂αh∂βh− Ṽ(h, λ)

]
(13)

where, again, Ṽ(h, λ) is given by Equation (11), and where Equation (12) is again valid.
The equation of motion of λ can be solved algebraically to give it in terms of the field

h and its derivatives, so λ is not a new degree of freedom:

λ =
1 + G(h) + 8αV(h) + 2αG(h)(∂h)2

1 + G(h)− 2α(∂h)2 (14)

Substituting (Equation (14)) into (Equation (13)), we obtain (dropping the “Palatini”
superscript and the ∼ over the metric):

S =
∫

d4x
√
−g
[

R
2
− 1

2
1

(1 + G(h))(1 + 8αŪ)
gαβ∂αh∂βh

+
α

2
1

(1 + G(h))2(1 + 8αŪ)
(∂αh∂αh)2 − Ū

1 + 8αŪ

]
(15)

where

Ū =
V(h)

(1 + G(h))2 =
V0 exp (−2`h)

(1− ξ exp (2`h))2 . (16)

In order to obtain a “canonical” kinetic energy term, we again make the change of
variable (h→ χ) by

dh
dχ

= ±
√
(1 + G(h))(1 + 8αŪ) (17)

to obtain finally

S =
∫

d4x
√
−g
[

R
2
− 1

2
gαβ∂αχ∂βχ +

α

2
(1 + 8αŪ)(∂αχ∂αχ)2 −U

]
(18)
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where

U =
Ū

(1 + 8αŪ)
=

V0

8αV0 +
(
e`h − ξe3`h

)2 (19)

We see here that the effect of the αR2 term is manifested in two ways. First, it helps
in obtaining a “flat” effective potential U. In actuality, regardless of the form of Ū, we see
that the αR2 term leads, say when Ū(V0) increases in modulus indefinitely, to an effective
potential with a flat portion (U ∼ (8α)−1). Second, the αR2 term leads to the appearance of
squared kinetic energy (∂αχ∂αχ)2.

In [1], α was taken to be small in such a way to neglect the quadratic kinetic energy
term. In fact, upon perturbing the metric, the (αδg) term would give higher-order terms,
whereas the α(∂βχ∂βχ)2 would give, in the slow-roll inflationary era, contributions of order
αχ̇4, which is subdominant compared to the α-correction in U. Thus, in [1], one could apply
the shortcut “potential method”, using U as an effective potential. We intend now to refine
this analysis, and consider the effect of the quadratic kinetic energy, keeping first order in α
when α is small, and studying, in addition, the case where α is large. We point out here that
although we do not explicitly present the Einstein/ f (R) field equations, we use known
formulae for the spectral observables (nS, r) in the different limits under consideration,
which were derived using first-order cosmological perturbation theory in solving the field
equations [1].

3. k-Inflation: Case α >> 1

Under the assumption

1 � α(1 + 8αŪ)(∂αχ∂αχ) (20)

our k-inflation model features a single scalar field with the action

S =
∫

d4x
√
−g
[

R
2
+

α

2
(1 + 8αŪ)(∂αχ∂αχ)2 −U

]
(21)

Introducing the “standard” field ϕ defined by

∂ϕ

∂χ
= [2α(1 + 8αŪ)]

1
4 (22)

we obtain a “standard” form for the k-inflation Lagrangian

L =
R
2
+ p(ϕ, X) : p(ϕ, X) = X2 −U(ϕ), X =

1
2

∂α ϕ∂α ϕ (23)

S =
∫

d4x
√
−g
[

R
2
+ (

1
2

∂α ϕ∂α ϕ)2 −U
]

(24)

The spectral index nS and the tensor-to-scalar ratio are given now by [34]:

ns − 1 =
1
3
(4η − 16ε) , r = 16csε (25)

where

ε =
1
2

3
1
5
(U,ϕ)

4
3

U
5
3

, η = 3
1
5

(U,ϕ),ϕ

U
2
3 (U,ϕ)

2
3

(26)

c2
s =

p,X
2X(p,X),X+p,X

= 1
3 (27)
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where the comma (,) means differentiation with respect to what follows it. However, one
should note that in order to compute the derivative with respect to the “standard” field ϕ,
one should differentiate U with respect to h, which is known from Equation (19) and using
Equations (17) and (22), to get

dh
dϕ

=

(
(1− ξe2`h)2 + 8αV0e−2`h

2α

) 1
4

(28)

U,ϕ =
dU
dh

dh
dϕ

, (29)

(U,ϕ),ϕ =
d2U
dh2 (

dh
dϕ

)2 + U,h
dh
dϕ

d
dh

(
dh
dϕ

) (30)

The input parameters are (V0, `, α, ξ) and the initial values of the “original” inflaton
field h at the start of inflation. However, one can show analytically that the model is able to
fit the data for some regions in the parameter space. In actuality, we obtain the following
analytic formulae:

1− ns =
4`4/3(3ξe4`h(44αV0ξ−7)+e2`h(2−112αV0ξ)+12αV0+21ξ4e10`h−59ξ3e8`h+57ξ2e6`h)

3√α 3√V0((3−3ξe2`h)(3ξe2`h−1))
2/3
(8αV0+ξ2e6`h−2ξe4`h+e2`h)

2/3 (31)

y ≡ ξe2`h

=
`4/3(12−112y+132y2)

((3−3ξe2`h)(3ξe2`h−1))
2/3 +O

(
1

αV0

)
(32)

ξ = 0
=

8`4/3(6αV0+e2`h)
32/3 3√α 3√V0(8αV0+e2`h)

2/3 (33)

r =
16`4/3e2`h(1−ξe2`h)

4/3
(3ξe2`h−1)

4/3

6√3 3√α 3√V0(8αV0+ξ2e6`h−2ξe4`h+e2`h)
2/3 (34)

ξ = 0
= 16`4/3e2`h

6√3 3√α 3√V0(8αV0+e2`h)
2/3 (35)

Thus, enforcing the Bekenstein hypothesis ` > 1, which means in our adopted units
the absence of any length scale shorter than Planck length, we see that for (ξ = 0) one
cannot accommodate the data requiring (0 < 1− ns << 1 and 0 < r << 1). However,
in the limit (αV0 >> 1), one can adjust the parameter (y = ξe2`h) around the roots of
(12− 112 + 132y2) and obtain the data fit. In actuality, the two roots (0.125792, 0.722693) of
the latter polynomial are less than one, which implies that h at the start of inflation was
negative. Physically, this means that the strong coupling gst was less than its current value
(φ < 1).

Figure 1, indeed, shows that there are acceptable points, colored in blue, for the
following scanning:

` ∈ [1, 3], α ∈ [10, 20], e2`h ∈ [0.723031, 0.723035], V0 ∈ [0.5, 2], ξ = 1. (36)
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Figure 1. Kinematically derived inflation, in a model of varying strong coupling constant
(gst(x) = gst

0 φ(x)), with f (R) gravity via αR2 term and non-MCtG −ξRφ2 term. The blue points
correspond to the limit where α >> 1, and we imposed ξ = 1. The red points correspond to the limit
α >> 1 and αŪ >> 1 with ξ 6= 0. The green (pink) points correspond to the limit α << 1 with ξ = 0
and a vanishing (nonvanishing) constant-roll parameter β. The yellow (sky blue) points correspond
to warm inflation scenario with (without) f (R) gravity. The models are contrasted to Planck 2018,
separately or combined with other experiments, contour levels of spectral parameters (ns, r). All
acceptable points correspond to ` > 1.

4. The “Plateau” Shape: Case α >> 1

From Equation (19), we see that in the limit where

1 << 8αŪ ⇔ (1− ξe2`h)2e2`h << 8αV0 (37)

the effective potential shows a “plateau” form (U(h) ∼ 1
8α ), and our objective in this section

is to study the shape of this plateau in terms of the “canonical” field ϕ, which is the field to
roll slowly along the effective potential.

In actuality, one would like, starting from the known potential U(h) given in Equa-
tion (19), to find an analytic expression of the potential in terms of the “canonical” field
ϕ. However, it is not possible in general to do this, as we cannot carry out analytically the
following integral, originating from Equations (17) and (22), let alone invert it to express h
in terms of ϕ:

ϕ = (2α)1/4
∫ dh
[
(1− ξe2`h)2 + 8αV0e2`h

]1/4 (38)

Even in the case of MCtG (ξ = 0), and although one can, in principle, carry out
the above integration, the resulting expression involving hypergeometric functions is
not invertible.

However, in the limit of Equation (37), one can carry out analytically the integration
and obtain

e`h =

√
V0

2
(`ϕ)2 (39)

and we see that the effective potential is given as

U(ϕ) =

[
8α +

`4 ϕ4

4

(
1− ξ

V0

4
`4 ϕ4

)2
]−1

(40)
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In the left part (A) of Figure 2, we plot the shape of effective potential, and find that it
has one local maximum (minimum) at ϕ0 = 4

√
4/(V0ξ)`−1 (ϕ0/ 4

√
3). We see that the limit

of Equation (37) is equivalent to

`2 ϕ2
∣∣∣1− (ϕ/ϕ0)

4
∣∣∣ <<

√
32α (41)

Thus, we see that as long as the field, during its slow rolling along the plateau from
ϕ = 0, does not meet the local minimum, then the slow-roll condition is satisfied and
the inflationary solution is consistent. In the right part (B) of Figure 2, we draw the same
plateau in the case of MCtG. However, the solution is not viable for ` > 1.

As a matter of fact, one can compute the observable parameters (ns, r) using the
effective potential expression in this limit (Equation (40)), and we find with the combination
(z = ξV0 ϕ4`4) the following

1− ns = `4/33−2/3 48− 112z + 33z2

(8− 8z + 3z2/2)2/3 (42)

r = 22/33−1/68`16/3 ϕ4 (16− 16z + 3z2)4/3

512α + `4 ϕ4(−4 + z)2 (43)

We see here that for ξ = 0, one cannot meet 0 < 1− ns ∼ (12/ 3
√

9)`4/3 << 1 for ` > 1,
whereas for z ∼ 4/33(14±

√
97 (roots of the numerator of (1− ns)) and having α quite

large, one can satisfy (0 < 1− ns << 1, 0 < r << 1). The red points in Figure 1 represent
acceptable points generated upon scanning the parameters as follows.

z ∈ [0.48, 0.52], ` ∈ [1, 2], ϕ ∈ [1, 20], α ∈ [400, 500]. (44)

(A) (B)

Figure 2. Plateau shape in the limit of Equation (37). Scenario (B) with ξ = 0 fits data provided ` < 1.
(A) max ≡ ϕ0 = ( 4

V0ξ )
1/4`−1. min ≡ ϕ03−1/4; (B). ξ = 0.

5. Constant-Roll k-Inflation. Case α << 1

In contrast to the preceding sections, we now take the perturbative limit α << 1,
and we work up to first order in α. We shall consider a specific type of k-inflation called
“constant-roll” inflation, where one slow-roll parameter (ε2) related to the time second
derivative of the inflation is assumed constant, equaling β. Following [28], our model,
which has the following action,

S =
∫

d4x
√
−g/2 f (R, χ, X) (45)

where

X =
1
2

∂µχ∂µχ =
χ̇2

2
, f (R, χ, X) =

(
R− 2X + 4αX2 − 2U

)
(46)
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will involve the slow-roll parameters defined as

ε1 ≡
Ḣ
H2 , ε2 = β ≡ χ̈

Hχ̇
, ε3 ≡

Ḟ
2HF

= 0, ε4 ≡
Ė

2HE
(47)

where

F = f,R = 1 , E ≡ − F
2X

(X f,X + 2X2 f,XX) = 1− 12αX (48)

At the horizon crossing time instance, we have

ε1 = −3
4

χ̇2 + αχ̇4

U(χ)
, ε4 =

6
√

3αχ̇χ̈√
U(1 + 6αχ̇2)

(49)

with real solutions given by

χ̇ =
6(β + 1)(β + 3)4αU − (81∆ + 9

√
S)2/3

311/6(β + 1)4α
√

U(81∆ + 9
√

S)1/3
, χ̈ = β

√
U
3

(50)

S = (β + 1)3(4α)3U2
[

81(β + 1)4αU2
,χ +

8
3
(β + 3)3U

]
, ∆ = 16(β + 1)2α2U,χU (51)

The spectral parameters are given as

ns = 1 + 2
2ε1 − ε2 + ε3 − ε4

1 + ε1
= 1 + 2

2ε1 − β− ε4

1 + ε1
(52)

r = 4

[
Γ(3/2)

Γ(3/2 + ε2)2ε2
c3/2+ε2

A

√
3χ̇
√

1 + 6αχ̇2
√

U

]2

(53)

c2
A =

f,X

f,X + 2X f,XX
=
−1 + 2αχ̇2

−1 + 6αχ̇2 (54)

The free input parameters here are (α, ξ, V0) and (`, h), which a priori determine χ, and
also β of order unity expressing the constant-roll condition. However, note that we need to
express U,χ using Equations (17) and (19).

U,χ =
dU
dh

dh
dχ

,
dh
dχ

= ±
√

1− ξe2`h +
8αV0e−2`h

1− ξe2`h (55)

and even in the case of MCtG (ξ = 0), where we obtain an analytic expression of χ in terms
of h:

χ =
∫ dh√

1 + 8αV0e−2`h
=

e−`h
√

8αV0 + e2`h log(e`h +
√

8αV0 + e2`h)

`
√

1 + 8αV0e−2`h
(56)

one cannot invert it, so U(χ) is not obtained in a closed form.

6. Viability of the Constant-Roll k-Inflation: Case α << 1

We show now the existence of viable points which fit the data. For this, we need a
search strategy to reduce the number of input parameters, since our objective is limited to a
proof of existence with no claim to exhaustive covering of all acceptable points; otherwise,
scanning over the formulae of Equations (49)–(54), which are far from simple analytical
formulae, is not a trivial task.

Let us take the case of MCtG (ξ = 0) which, with our limit case (α << 1), leads to

χ ' h, Ū = V ' U, U,χ ∼ `U (57)
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For the sake of showing the existence of acceptable solutions, if we assume that the
constant slow-roll parameter ε2 = β is quite small, to imply dropping of χ̈, then ε4 is
negligible as well. In order to meet the requirements (α << 1, ` > 1), we shall scan over
the one-dimensional sub-parameter space parameterized as

α = Λ−n, ` = Λm, V0 = Λ, χ ∼ h = `−1 = Λ−m (58)

with (n, m > 0). Noting that e`h is of order O(1), we obtain for Λ large

χ̇ =
O(Λ1−n)−

(
O(Λ−2n+m+2) +O(Λ1−3n/2)

√
O(Λ2+2m−n) +O(Λ)

)2/3

O(Λ1/2−n)
(
O(Λ2+m−2n) +O(Λ1−3n/2)

√
O(Λ2+2m−n) +O(Λ)

)1/3 (59)

Then, in order to obtain the following quantities small

1− ns ≈ −
4ε1

1 + ε1
, ε1 = − 3

4
χ̇2+αχ̇4

U , r ≈ 12χ̇2

U
(60)

we need to enforce

0 < n < 1 , 0 < m <
1− n

4
(61)

Numerically, we checked the viability of the model for vanishing and nonvanishing
β parameter. By taking the following six choices, the obtained points for the upper four
(lower two) choices corresponding to vanishing (nonvanishing) constant-roll parameters,
represented in Figure 1 by green (pink) dots, do fit the data:

β = 0, Λ = 106, n = 0.5, m = 0.1 ⇒ (1− ns, r) = (0.0280827, 0.112981), (62)

β = 0, Λ = 105.8, n = 0.5, m = 0.1 ⇒ (1− ns, r) = (0.032229, 0.12977), (63)

β = 0, Λ = 106.1, n = 0.5, m = 0.1 ⇒ (1− ns, r) = (0.0262134, 0.10542), (64)

β = 0, Λ = 104.44, n = 0.6, m = 0.001 ⇒ (1− ns, r) = (0.0298586, 0.120145) (65)

β = 1, Λ = 104.44, n = 0.6, m = 0.1 ⇒ (1− ns, r) = (0.0288759, 0.0566994) (66)

β = 10, Λ = 3× 104, n = 0.6, m = 0.1 ⇒ (1− ns, r) = (0.0288759, 0) (67)

which proves the viability of the model.

7. Warm Inflation Variant

As mentioned earlier, the varying coupling inflation variants generally call for new
physics in order to treat the reheating process and to provide for an exit scenario. This
problem can be addressed in the warm inflation paradigm where the perturbations are
generated thermally from a dissipative term characterized by a decay rate parameter Γ,
which is sufficiently strong compared to Hubble parameter H characterized by the ratio:

Q =
Γ

3H
(68)

Here, the radiation is close to thermal equilibrium, and both the particle production
rate and dissipation rate are controlled by Γ. The radiation takes place in parallel to the
slow-roll regime, and there is no need for a specific exit scenario.

We readdress our Bekenstein-like scenario within the warm inflation paradigm assum-
ing non-MCtG and f (R) gravity embodied in the potential of Equation (19), whereupon
placing α = 0 = ξ, we switch back to the original scenario of [6]. We shall also restrict our
study to the weak dissipative regime Q << 1, remembering that Q = 0 corresponds to the
cold inflation.

238



Universe 2022, 8, 126

The temperature during inflation is given by [35,36]

T =

(
Γ0U2

ϕ

36H3Cγ

)1/3

(69)

where

Γ = Γ0T , Cγ =
π2

30
g∗ (70)

with ϕ as the canonical inflaton field, and we shall always take g∗ = 228.75, representing
the number of relativistic degrees of freedom of radiation of created massless modes,
evaluated within minimal supersymmetric standard model at temperatures higher than
the electroweak phase transition. In order to compute the derivatives with respect to ϕ in
terms of the derivatives with respect to h, we, as usual, use Equation (28).

Using the approximation

H =

√
U
3

, (71)

we have the slow-roll parameters given by

εV =
1
2

(
Uϕ

U

)2
, βV =

(
ΓϕUϕ

ΓU

)
, ηV =

(
Uϕϕ

U

)
, (72)

Two parameters interfere to represent corrections due to the nontrivial occupation
number (n∗) and to thermal effects (ω) given by:

n∗ =
1

e
H
T − 1

, ω =
2πΓ0T2

3H2 (73)

and, finally, we obtain, in the limit ω << 1, the expressions for the observables:

ns − 1 = −6εV + 2ηV + ω

(
15εV − 2ηV − 9βV

4

)
, r =

16εV

(1 + Q)2(1 + 2n∗ + ω)
(74)

Numerically, we find that upon switching off modification of gravity (i.e., α = 0 = ξ),
the value of r is generically large, and one needs to fine-tune and adjust the parameters in
order to find acceptable points, whereas switching on α helps generically to reduce r and
one can fit the data easier. In Figure 1, we designate two points in yellow and the other two
ones in sky blue fitting the data corresponding to α = 0 and α 6= 0, respectively, with the
following choice of parameters.

α = 0, ξ = 0, Γ0 = 41.02× 1010−7
, V0 = 2, ` = 1.5, h = 11⇒ (ns, r) = (0.965929, 0.105719), (75)

α = 0, ξ = 0, Γ0 = 41.04× 1010−7
, V0 = 2, ` = 1.5, h = 11⇒ (ns, r) = (0.973216, 0.105702), (76)

α = 1000, ξ = 0, Γ0 = 1, V0 = 1, ` = 1, h = 1.05⇒ (ns, r) = (0.964472, 0.0202682), (77)

α = 1000, ξ = −0.002, Γ0 = 1, V0 = 1, ` = 1, h = 1⇒ (ns, r) = (0.963546, 0.0202916), (78)

8. Summary and Conclusions
We continued in this letter the work of [1] on the inflationary model generated by varying

strong coupling constant, and studied here the effect of the quadratic kinetic energy term which
appears upon introducing an f (R) gravity, represented by an αR2 term in the pure gravity Lagrangian.
We investigated in Palatini formalism two extreme cases corresponding first to (α >> 1), which
represents thus a highly noncanonical k-inflation, and second to (α << 1), where we kept terms to
first order in α and examined a specific type of the k-inflation, namely the constant-roll inflation. In
both cases, we showed the viability of the model for some choices of the free parameters in regards to
the spectral parameters (ns, r) when compared to the results of Planck 2018 separately and combined
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with other experiments. However, the k-inflation required a non-MCtG and fine-tuned adjustment in
order to accommodate data, whereas the constant-roll is able to accommodate data even in the MCtG
situation, irrespective of the value of the constant-roll parameter β. This amendment of inflationary
models, which were thought before not to fit the data, by assuming f (R) gravity and/or nonminimal
coupling to gravity, is a strong hint that this may be applicable to inflationary models other than the
one studied in this work.

Finally, we readdressed the same model, à la Bekenstein within warm inflation scenario, which
potentially is devoid of the exit scenario complications. In a specific limit, the weak limit corre-
sponding to small parameters Q and ω, the model is able to accommodate data especially when
supplemented with f (R) gravity.
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Abstract: Using a semiempirical approach, we show that modified gravity affects the internal properties
of terrestrial planets, such as their physical characteristics of a core, mantle, and core–mantle boundary. We
also apply these findings for modeling a two-layer exoplanet in Palatini f (R) gravity.

Keywords: modified gravity; Ricci-based gravity; Palatini gravity; exoplanets; planet’s interior

1. Introduction

Discoveries of exoplanets in the Milky Way Galaxy [1,2] and in the Whirlpool Galaxy [3], as
well as growing observational datasets of those objects provided by the current and future
missions [4–8], have increased the need for theoretical tools which allow us to describe the
planets’ interiors and eventual habitable properties on the basis of those data. A common
approach is to extrapolate the Preliminary Reference Earth Model (PREM) [9] and its later
improvements [10–12] (see more at [13]). Therefore, although an Earth-like planet should
have at least six differently composed layers, one usually considers two [14]: iron core and
silicate mantle, as they have the biggest impact on the observed properties, such as the
planet’s mass, radius, and polar moment of inertia. However, a very different composition
of the rocky planets may also be possible, as argued in [15], such as quartz-rich mantles, in
comparison to the Solar System ones, whose mantles are mainly made of silicates. Clearly,
such findings call for more research in planetary physics, not only from an observational
point of view, but also in theoretical modeling.

Regarding the planet’s modeling based on PREM, we are still improving our knowl-
edge on the deepest zones of the Earth, as well as the instrumentation and methods used
becoming ameliorated, allowing us to obtain more accurate data regarding the planet’s
interior. For instance, recent seismic observation [16] has revealed the existence of a liq-
uid/mushy region of the inner core instead of the solid one, as has been believed so far.
On the other hand, a new generation of the neutrino telescopes will be settled to provide
information on matter density inside the planet, and on characteristics and abundances
of light elements in the outer core [17–20]. In addition, in laboratories, with the use of
lasers [21], the high pressures and temperatures, that is, the extreme conditions of the
Earth’s core, are recreated in order to understand the properties and behavior of iron, which
is the main element of planets’ cores. All those revelations make the research regarding
planets’ modeling relevant, especially agreeing with the fact that various models of gravity
predict different layers’ structure in comparison to the Newtonian model [22], commonly
used in planetary science. Therefore, knowing the planet’s profile with high accuracy, that
is, the number of differently composed layers and their thicknesses, might be another tool
to test theories of gravity (see the details on the method in [23]).

As already mentioned, some extensions of Einstein’s theory of gravity may impact
the internal structure of the rocky planets, as well as their properties [22–24]. This is so, as
such theories modify the nonrelativistic hydrostatic equilibrium equations [25] and others,
crucial for stellar and planetary modeling. For instance, in the Schwarzschild criterion,
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which is used to constitute a type of the energy transport through an astrophysical object,
there appears an additional term making the star more or less stable with respect to
convective processes [26]; energy production in a stellar core is also affected [27–30], as
well as stars’ evolution [31], or cooling processes of substellar objects [32]. Therefore,
modified gravity theories proposed to provide some explanations of dark matter and
dark energy phenomena [33–38], spacetime singularities [39], extreme masses of compact
objects [40–45], or to unify all four interactions into a single theory [46,47], also impact
modeling of gravitational systems for which full relativistic description is not necessary.

One of such theories we are interested in is a subclass of the so-called Ricci-based
theories [48], that is, Palatini f (R) gravity. The main geometric property of these theories
is that the metric and connection are considered as independent objects in comparison
to most extensions of Einstein’s theory. In Ricci-based gravities, the connection is not
coupled to the matter fields, assuming that we are dealing with metric theories, that is,
the particles are moving along geodesics distinguished by the metric; moreover, in such a
formulation, the connection is not dynamical. However, their most important feature is
related to their vacuum dynamics, as it provides the same dynamical equations as general
relativity ones with a cosmological constant [49–51], providing that those proposals pass
the Solar System tests [52] and gravitational waves’ observations as the waves are moving
with the speed of light in those theories. However, the difference is clear when one deals
with matter fields—Ricci-based gravities then introduce terms which depend on energy
density, modifying the structural equations [53].

In this work, we focus on a gravitational model which introduces a quadratic Ricci
scalar term, and it is considered in the Palatini approach. Since those terms contribute to the
structural equations of spherical symmetric low-temperature spheres, such a modification
will have an influence on internal properties of the planet. Therefore, using an analytical
method allowing us to obtain the core and core–mantle boundary values of pressure from
given masses and radii of transiting exoplanets, we demonstrate that those values will
differ in modified gravity. Moreover, we also use them to model an exoplanet interior.

2. Simple Model of Small Rocky Planets in Palatini Gravity

In this section, we recall the hydrostatic equilibrium equations for a cold, low-mass
spherical symmetric object. Our terrestrial planets, with masses from the range
Mp ∈ (0.1− 10)M⊕, where M⊕ is the Earth’s mass, and core mass fraction (CMF), de-
fined as

CMF =
Mcore

Mp
, (1)

not exceeding ∼0.4 of the total planet’s mass1, will be modeled as a two-layer planet, that
is, consisting of an iron core and a silicate mantle. Then, using the semiempirical expression
relating the CMF with the radius and mass of a transiting exoplanet, we derive the planet’s
internal characteristics, such as core pressure and density, their boundary values between
the core and mantle, and the mantle’s ones.

2.1. Planets’ Structure Equations

Nonrelativistic hydrostatic equilibrium equations for the quadratic Starobinski model2

f (R) = R+ βR2 (2)

considered in the Palatini approach are given by [53,56]

p′(r) = −Gmρ

r2

(
1− βc2κ2(5ρ− 2rρ′)

)
, (3)

m(r) =
∫ r

0
4πr̃2ρ(r̃)dr̃, (4)
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where prime denotes the derivative with respect to the radial coordinate. The matter
part of the full relativistic field equation is described as a perfect fluid in this approach,
Tµν = (ρ + p)uµuν + pgµν, where p = p(r) and ρ = ρ(r) are pressure and energy density,
respectively, while uµ is a normalized 4-vector, representing an observer comoving with
the fluid. Let us notice that the different numerical factors appearing in the modification
term in Equation (3) are the results of the considered assumptions; for example, in [56], the
equations were obtained by assuming the conformal invariance of the standard polytropic
equation of state for the quadratic model demonstrated in [57], while the equations derived
in [53] are more general, without adopting any equation of state. In this work, we also use
some polytropic equations of state, however it differs slightly with respect to the common
one, as explained later in the text.

Our small rocky exoplanet is modeled as a cold sphere consisting of two different
layers. As already mentioned, the material they are made of is iron in the core and silicate
in the mantle, whose equations of state are given by the Birch equation of state [58,59],
working well when temperatures can be considered uniform but less than 2000 K, and
when pressure is below 200 GPa. However, in order to be able to consider more massive
objects than the terrestrial planets of the Solar System, one has to take into account the
electron degeneracy, as the internal pressure can be p & 104 GPa. The usual procedure
is to match this equation of state with the Thomas–Fermi–Dirac one [60–63], which also
qualifies to describe density-dependent correlation energy [64] which appears because
of the interactions between electrons when they obey the Pauli exclusion principle and
move in the Coulomb field of the nuclei. Such a hybrid equation of state is very well
approximated by a modified polytropic equation of state (SKHM) of the form [14]

ρ(p) = ρ0 + cpn, (5)

whose best-fit parameters ρ0, c, and n for iron and silicate (Mg, Fe)SiO3 are provided in
Table 1. Because solids and liquids are incompressible at the low-pressure regimes, the
additional term ρ0 is present to include this effect. Equation of state constructed in such a
way is valid up to p = 107 GPa, giving the maximal value of the central pressure possible
in our analysis.

Table 1. Best-fit parameters for the SKHM equation of state (Equation (5)) obtained in [14].

Material ρ0 (kg m−3) c (kg m−3 Pa−n) n

Fe(α) 8300 0.00349 0.528
(Mg, Fe)SiO3 4260 0.00127 0.549

Moreover, to explore the model with the described features, one needs to establish the
initial and boundary conditions. In previous works, we have used the shooting method
in order to find the initial values of the core’s densities as well as between the layers’
ones [22,23]. This demonstrated that modified gravity can have a significant impact on
those values, and this is a result of different physical assumptions to, for example, Newto-
nian physics. Therefore, even slight modification to the standard hydrostatic equilibrium
equation will have an effect on the internal structure. Keeping this in mind, we have
restudied a simple but reasonable method [65] used to obtain the internal characteristic of
a distant planet, whose mass and radius can be found by the use of the transit observation
techniques [66]. Therefore, for the given total mass of the planet and its radius, we derive
the central pressure, its value on the core–mantle boundary (CMB), and the mantle one.
This will show that modified gravity indeed affects them.

2.2. Internal Structure of Palatini Planets

There is only one planet whose interior structure and materials, that is, equations
of state, are known: Earth3. The many-layers structure, their thickness, and equations
of state are given by seismic data, that is, PREM [9]. Since some planets of our Solar
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System and exoplanets are alike dense and possess similar other characteristics, one usually
extrapolates the Earth’s model to describe them. Therefore, extrapolating the Earth’s model,
one may derive the semiempirical expression for the core mass fraction (CMF) which carries
the information on the core–mantle boundary, often used in numerical procedures and
simulations of very distant planets, whose mass Mp and radius Rp are given by the transit.
Such a relation between CMF and observed radius and mass was given in [68]:

CMF =
1

0.21

[
1.07−

(
Rp

R⊕

)
/
(

Mp

M⊕

)0.27
]

, (6)

where R⊕ and M⊕ are Earth’s radius and mass, respectively. Furthermore, CMF can be
also used to obtain the approximated value for the core radius fraction (CRF), defined as

CRF =
Rcore

Rp
, (7)

which is also suitable for numerical analysis [65]:

CRF ≈
√

CMF. (8)

Using these two values, that is, CMF and CRF, we derive the core’s and mantle’s pressure,
as well as its boundary value, for an exoplanet of the mass Mp and radius Rp.

Let us firstly use the definition of local gravity, usually defined as

g =
Gm(r)

r2 , (9)

to rewrite Equation (3) in a more suitable form for further purposes:

p′(r) = −gρ

(
1− α

[
14g + g′r− 2g′′r2

4πGr

])
, (10)

where we have defined a new parameter α = κ2c2β for the further convenience. Using the
mass equation (Equation (4)), together with the expression for the local gravity (9), it can be
transformed into

dp
dm

= − g2

4πG
d ln(m)

dm
σ, (11)

where σ = 1− α
[

14g+g′r−2g′′r2

4πGr

]
while ln(m) is the natural logarithm of m. Assuming that

the surface pressure is zero, we integrate the above equation from the surface inward,
such that ∫ interior

surface
dp = − 1

4πG

∫ mass enclosed inside

Mp
g2dln(m)σ. (12)

Before proceeding further, let us define the surface gravity gs as a local gravity on the
planet’s surface with mass Mp and radius Rp

gs :=
GMp

R2
p

, (13)

while the so-called typical pressure ptyp is defined as

ptyp :=
g2

s
4πG

=
GM2

p

4πR4
p

. (14)
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As the local gravity of the mantle can be assumed to be a constant [65], we may
integrate Equation (12) to obtain the pressure of the mantle:

pmantle = 2ptypln
(

Rp

r

)[
1 + α

7gs

πG
Mp

Rp

(
1√
Mp
− 1√

m

)]
, (15)

where we use the planet’s characteristics defined before. In particular, the pressure on
the core–mass boundary (CMB) can be obtained by inserting r → Rcore and m → Mcore
such that

pCMB = ptypln
(

1
CMF

)[
1 + α

7gs
√

Mp

πGRp

(
1− 1√

CMF

)]
, (16)

where we have used Equations (7) and (8).
On the other hand, since in our model the core density ρcore can be assumed to be a

constant value, the core mass is given as Mcore = 4
3 πR3

coreρcore. Therefore, the hydrostatic
equilibrium Equation (3) can be written with the use of Equation (4) as

dpcore

dr
= −gρcore

(
1− α

[
9m′

4πr2 −
m′′

2πr

])
= −3rptyp

R2
core

[
1− α

15gs

4πGRcore

]
. (17)

Integrating the above equation results in

pcore(r) = p0 −
3
2

ptyp

(
r

Rcore

)2(
1− 15α

gs

4πGRcore

)
, (18)

where p0 is the central pressure which can be determined by matching the above pcore at
CMB with the pressure on the boundary (Equation (16)):

p0 = pCMB +
3
2

ptyp

(
1− 15α

gs

4πGRcore

)
(19)

= ptyp

(
3
2

[
1− 15α

gs

4πGRcore

]
+ ln

(
1

CMF

)[
1 + α

7gs
√

Mp

πGRp

(
1− 1√

CMF

)])
.

The above result allows us to find an approximated value of the central pressure for a given
terrestrial exoplanet whose mass and radius are provided by the transit observations. The
effect of modified gravity is clearly present; therefore, in the next section, we numerically
solve the structural equations with the use of those findings.

3. Numerical Solutions

In order to compare models of different values of the Starobinsky parameter β, we
have introduced earlier a dimension-full parameter α = c2κ2β, which allows one to
write the formulas in a more convenient way. We chose four values of the parameter,
α ∈ {0, 10−15, 10−14, 10−13} ×m3/kg, that is, β ∈ {0, 1011, 1012, 1013} ×m2, neglecting the
possibility of negative values of the parameter4. Let us comment that with the current
experiments performed in the Solar System, one is not able to distinguish between Palatini
f (R) gravity and GR [52]. Upper bounds on the absolute value of the parameter β in
the Palatini approach have been determined to be β ∼ 1012 cm2, when one investigates
weak-field limit of the theory [69], or β ∼ 109 cm2, if gravitational forces become as strong
as electric forces [70]. It must be noted that the absolute bounds differ from the ones
obtained for metric counterpart of the theory [69]. Another issue concerns the critical value
of the parameter. It can be shown that, when β takes negative values, there also exists an
upper bound on the value of the parameter depending on the energy density of matter; any
values above the critical one lead to unphysical results [23].

Having established the range of the parameter, we focus on numerically solving
Equations (3) and (4), supplemented with the equation of state, Equation (5). In order to
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determine the exact density profile for a planet of given mass and radius, and chemical
composition, one needs to use the shooting method, i.e., find a value of internal density such
that, at the surface of the planet, the radius and the mass coincide with the desired values
(the surface, if defined by p(Rp) = 0). The fact that the masses and radii of the planets we
examine are fixed by the transit observations provides the possibility to determine the core
density and core size with its mass, as well as to plot the density profiles. As one can see
in Figure 1, all curves denoting solutions for different values of α end at the same point;
what changes is the size of the core. This allows us to compare CMFs and CRFs obtained
from the quasi-empirical Formula (6) (which is constant once the mass and the radius of
the planet are given) to the numerical findings.

As far as the pressure is concerned, we simply calculate it for one planet, Kepler-78 b5,
using Formulas (15) and (18), as well as the exact value of Rcore determined in the previous
numerical step. The results are shown in Figure 2, illustrating the effects of modified
gravity on pressure within the exoplanet. The analytical solutions are then compared with
numerical ones, to determine how good the approximations are. The results are shown in
Figure 3 for two values of α.

(a) K2-36 b, M = 3.9M⊕, R = 1.43R⊕ (b) Kepler-10 b, M = 4.6M⊕, R = 1.48R⊕

(c) Kepler-20 b, M = 9.7M⊕, R = 1.87R⊕ (d) Kepler-78 b, M = 1.97M⊕, R = 1.12R⊕

Figure 1. Density profiles for four different Earth-like exoplanets, for different values of the parameter
α = c2κ2β. The planets are assumed to be composed of two layers: iron core, and mantle made of (Fe,
Mg)SiO3.
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Figure 2. Relation between pressure and radius for Kepler-78 b exoplanet calculated analytically
using the formulas derived in this work. The curves are plotted for four different values of the
parameter α = c2κ2β. The planet is assumed to be composed of two layers.

Figure 3. Relation between pressure and radius for Kepler-78 b exoplanet calculated analytically and
numerically. The dashed line represents the numerical solution, whereas the solid line—analytical
one. The curves are plotted for two different values of the parameter α = c2κ2β.

4. Conclusions

Previous studies regarding terrestrial planets in modified gravity [22] revealed that
extensions of Einstein’s gravity alter the internal structure of those objects, providing a
possibility to test such theories with the use of seismic data [23]. Therefore, the physical
quantities, such as core pressure and energy density, as well as their boundary values
between layers, should also be affected, which would have an impact on the way we model
distant planets, where seismology cannot be applied. This fact forces us to look for methods
allowing us to find those values, when only the observed characteristics, such as mass and
radius of a transiting exoplanet, are available. In this work, we wanted to check if such
methods are model-independent.

As clearly demonstrated, the methods can indeed depend on the applied theory of
gravity. For this analysis, we considered quadratic modification to the general relativity’s
Lagrangian Equation (2), considered in the Palatini approach; however, our conclusions

249



Universe 2022, 8, 3

are valid for other theories of gravity which modify the nonrelativistic limits of their
field equations.

• Density profiles, as already noticed in our previous works, can significantly differ in
modified gravity with respect to the Newtonian model. We observe not only lower
values of central density and on the core–mantle boundary, but also the cores of the
given exoplanets are bigger; that is, the cores are less dense in the case of Palatini grav-
ity. Therefore, the observed transiting planets can have different structure for the same
masses and radii than the one predicted in the usual way, and can affect the planet’s
polar moment of inertia. The fact that internal structure of planets is affected by
modifications of gravitational interaction is to be expected, since Equations (3) and (4),
allowing one to compute the density profiles, change. This entails the fact that modifi-
cations of gravity introduce additional degeneracy when trying to determine planets’
internal composition by looking at the mass–radius relationship [23]. The values of
internal pressure and core radius, giving the same total mass and radius, depend on
the parameter α. Therefore, this fact alone does not allow us to constrain alternative
gravity models. What actually could help in distinguishing between different models
would be collecting seismic data from Solar System planets, and investigating their
density profiles. For example, Earth’s mass and radius are well known, as well as its
internal composition, so, after having developed a more realistic model taking into
account modifications of gravity, it will be possible to place a stringent constraint on
values of α.

• A similar situation happens when we plot the pressure curves obtained in this work:
its central values decrease in modified gravity; however, when we approach the
planet’s surface, the mantles do not differ much. This result derives from the fact that
the additional term in Equation (15) for the pressure in the mantle is small, and smaller
than the extra term appearing in the analogous equation for the core (Equation (18)).

• We also compared the numerical solutions for the pressure obtained from Equations (3)
and (4) to the ones resulting from the analytical approach (which are approximated
solutions). As one can see, the pressure drops roughly, similar to −r2 in the core,
and then changes in a linear way in the mantle in the case of both numerical and
analytical solution (although it is less pronounced for larger values of the parameter α).
One notices that in the case of Newtonian gravity (α = 0), analytical (approximated)
solution tends to provide smaller values than the numerical one. However, in the
case of modified gravity, the effect is the reverse—approximated analytical solution
provides larger values than the numerical one. This can be explained in the following
way: the analytical approximation does not take into account the effect of modification
of gravity in the CMF Formula (6), so it stays constant for various values of the
parameter α (as it depends of the mass and radius of the planet only, and these
values do not change). On the other hand, the numerical method suggests that the
size of the core and its mass grow in modified gravity, and hence the CMF must
change. This combined effect of change in α and CMF/CRF results in a bigger drop in
internal pressure.

• Moreover, as already mentioned in the previous point, our numerical analysis revealed
that the equation for the semiempirical CMF used in that work also depends on
modified gravity. This is not a surprise, remembering the fact that for finding that
relation, one uses the PREM model, which is based on Newtonian gravity.

Although our studies presented in this paper are based on crude methods and as-
sumptions, such as spherical symmetric, nonrotating planets, their two-layers structure,
and constant values for the mantle’s characteristics, it is evident that alternative theories of
gravity do impact the planets’ descriptions and modeling. Improving our analytical and
numerical methods, that is, taking into account the missing ingredients mainly related to
more realistic planet’s geometry, should also manifest similar results. The work along these
lines is currently underway.
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Notes
1 The exoplanets of Mercury’s type, having cores with masses ∼0.7 of the total mass [14], are excluded from such an analysis.
2 For full relativistic equations in Palatini gravity, see [54,55].
3 However, we will be equipped with the Mars ones, too, thanks to the Seismic Experiment for Interior Structure from NASA’s

MARS InSight Mission’s seismometer [67].
4 We do so in order to avoid reaching nonphysical solutions being a fact of the conformal transformation, for which there exists a

singular value of α < 0. To learn more about that feature, see [55,56].
5 But the results are similar for the other ones, too, with the more significant differences for larger planet’s masses with respect to

the Newtonian solutions.
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Abstract: The governing equations of Maxwell electrodynamics in multi-dimensional spaces are
derived from the variational principle of least action, which is applied to the action function of the
electromagnetic field. The Hamiltonian approach for the electromagnetic field in multi-dimensional
pseudo-Euclidean (flat) spaces has also been developed and investigated. Based on the two arising
first-class constraints, we have generalized to multi-dimensional spaces a number of different gauges
known for the three-dimensional electromagnetic field. For multi-dimensional spaces of non-zero
curvature the governing equations for the multi-dimensional electromagnetic field are written in
a manifestly covariant form. Multi-dimensional Einstein’s equations of metric gravity in the pres-
ence of an electromagnetic field have been re-written in the true tensor form. Methods of scalar
electrodynamics are applied to analyze Maxwell equations in the two and one-dimensional spaces.

Keywords: electromagnetic; covariant; field; constraints; curved space

1. Introduction

The main goal of this communication is to develop the logically closed and non-
contradictory version of electrodynamics in the multi-dimensional (or n-dimensional)
space. Right now, such a development can be considered as a pure theoretical (or model)
task, but originally, our plan was to include the multi-dimensional electromagnetic fields
in our Hamiltonian analysis of the metric gravity [1]. Note that all Hamiltonian approaches
that are based on the Γ− Γ Lagrangian (see, e.g., [1] and earlier references therein) have
been derived in the manifestly covariant form and can be applied to multi-dimensional
(or n-dimensional, where n (≥3) is an arbitrary integer) Riemannian spaces without any
modification. On the other hand, our current Maxwell theory of electromagnetic fields and
corresponding Hamiltonian approach can be used only for three-dimensional (geometrical)
spaces. This contradiction creates numerous problems for the development of any united
theory of the coupled electromagnetic and gravitational fields. Furthermore, it is hard to
believe that in reality one can smoothly combine two theories that have different properties
with respect to their extensions on multi-dimensional spaces.

After our investigations began, it did not take long to understand that such a theory of
the free electromagnetic fields in multi-dimensions simply does not exist even in the first-
order approximation (in contrast with metric gravity). There are quite a few reasons why
a similar generalization of the classical electrodynamics to multi-dimensional spaces has
not been developed earlier. For instance, the explicit expression for the action integral and
therefore for the Lagrangian of the electromagnetic field in multi-dimensions is unknown.
However, if we do not know the Lagrangian of the multi-dimensional electromagnetic field,
then it is impossible to construct any valuable Hamiltonian. There have been a number
of smaller problems which have substantially complicated any direct generalization of
Maxwell theory to n-dimensional spaces. One of them is the lack of a reliable and practically
valuable definition of a curl−operator (or rot-operator) in multi-dimensional spaces, where
n ≥ 4. In general, it is difficult to develop multi-dimensional electrodynamics without such
an operator. Finally, we have decided to investigate this problem and derive some useful
results which are of great interest for the Hamiltonian formulation of the metric gravity
combined with electromagnetic field(s) in multi-dimensional spaces.
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First, let us briefly discuss the classical Maxwell equations known for the three-
dimensional electromagnetic fields. The Maxwell equations were first written by J.C.
Maxwell in 1862 (published in 1865 [2] (see also [3,4])) for the intensities of electric E and
magnetic H fields (or for the electric and magnetic field strengths):

divE = 4πρ, curlE = −1
c

∂H
∂t

,

divH = 0, curlH =
1
c

∂E
∂t

+
4π

c
j, (1)

where ρ and j = ρv are the electric charge density (scalar) and electric current density
(vector), respectively. In this study, the charge density and current are defined exactly as
in $ 29 from [5]. Later, it was noticed by Hertz and others that these four equations from
Equation (1) can be re-written in a simple form if we can introduce the four-dimensional
potential Ā = (ϕ, A), where ϕ is the scalar potential and A is the vector potential of the
electromagnetic field. Note that the scalar potential ϕ can equally be considered as the
0-component (A0) of the four-dimensional vector potential Ā of the electromagnetic field.
The ϕ and A potentials are simply related to the intensities of electric E and magnetic H
fields: H = curlA and E = − ∂A

∂t − gradϕ. By using these relations between the potentials
(ϕ, A) and intensities (E, H) of electromagnetic field, one finds that the second equation in
the first line and first equation in the second line of Equation (1) hold identically. The two
remaining equations from Equation (1) lead to the following non-homogeneous equations:

1
c2

∂2A
∂t2 − ∆A + grad

(
divA +

1
c

∂ϕ

∂t

)
=

4π

c
j (2)

− ∆ϕ− 1
c

div
(∂A

∂t

)
= 4πρ (3)

where ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the three-dimensional Laplace operator. By applying the

“gauge condition” ∂ϕ
∂t + divA = 0 for the four-dimensional potential, one reduces the two

last equations to the form

1
c2

∂2A
∂t2 − ∆A =

4π

c
ρv, (4)

1
c2

∂2 ϕ

∂t2 − ∆ϕ = 4πρ, (5)

where the operator 1
c2

∂2

∂t2 −∆ is the four-dimensional Laplace operator in pseudo-Euclidean
space, which is often called the d’Alembertian operator.

It is interesting that all equations mentioned above can be derived by varying the
action functional S which is written for a system of particles and electromagnetic fields
interacting with these particles. In Gauss units, the explicit form of this action function (or
action, for short) S is

S = Sp + S f p + S f = −∑
k

∫
mkcdsk −∑

k

∫ ek
c

Aα(k)dxα − 1
16π

∫
FαβFαβdΩ, (6)

where the two sums are taken over particles, s =
√

xµxµ =
√

gµνxµxµ is the interval, Sp is
the action for the particles (k = 1, 2, . . .), and S f p is the action which describes the interaction
between particles and electromagnetic field, while S f is the action for the electromagnetic
field itself. The notation ek stands for the electric charge of the k-th particle, while mk means
the mass of the same particle, and Aα is the covariant component of the four-dimensional
vector potential Ā of the electromagnetic field. This formula, Equation (6), is written for the
four-dimensional pseudo-Euclidean (flat) space-time. This fact drastically simplifies the
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analysis and derivation of the Maxwell and other equations in classical three-dimensional
electrodynamics.

In this study, we discuss a possibility to generalize the usual (or three-dimensional)
Maxwell equations to spaces of larger dimensions. In respect to this, below, we shall
consider n-dimensional, pure geometrical spaces and (n + 1)-dimensional space-time man-
ifolds. Our main goal is to derive the correct form of multi-dimensional Maxwell equations
and investigate their basic properties. In particular, we want to understand how many
and what kind of changes we can expect in the multi-dimensional Hamiltonian of the free
electromagnetic field and in a number of arising first-class constraints. A separate but
closely related problem is the gauge invariance of the free electromagnetic field. Another
interesting problem is to investigate the explicit form of multi-dimensional Maxwell equa-
tions in the presence of multi-dimensional gravitational fields. A brief discussion of scalar
electrodynamics can be found in Appendix A. All new results obtained in the course of our
current analysis will be used later to develop the modern united theory of electromagnetic
and gravitational fields.

2. Scalar and Vector Potentials of the Electromagnetic Field

Let us derive the closed system of Maxwell equations for the n-dimensional (geomet-
rical) space, where n ≥ 3. The time t is always considered as an independent scalar and
special (n + 1)-st variable. This means that we are dealing with manifolds of variables
defined in (n + 1)-dimensional space-time. First, we need to define the vector potential
Ā in this (n + 1)-dimensional space-time. Based on experimental facts known for actual
electromagnetic systems considered in one, two, and three dimensions, below, we assume
that the interaction of a point particle with the electromagnetic field is determined by a
single, scalar parameter e, which is the electric charge of this particle. The parameter e
can be positive, negative, or equal to zero. The properties of the electromagnetic field
are described by the (n + 1)-dimensional vector potential Ā. The notation Aµ (or Āµ)
stands for the covariant µ−component of this (n + 1)-dimensional vector potential Ā. In
this study, we also deal with the n-dimensional space-like vector potential A. Co- and
contravariant components of this vector are designated by Latin indexes; e.g., Ak and Ak,
where k = 1, 2, . . . , n. The same rule is applied to all vectors and tensors mentioned in this
study: components of (n + 1)-vectors are labeled by Greek indices (each of which varies
between 0 and n), while spatial components of these n-dimensional vectors (each varying
between 1 and n) are denoted by Latin indices. The generalization of this rule to the tensors
of arbitrary ranks is straightforward and simple. Note also that in all formulas below, the
following “summation rule” is applied: a repeated suffix (or index) in any formula means
summations over all values of this suffix (or index).

In general, the vector potential Ā can be written in the form Ā = (ϕ, A), which includes
the scalar potential ϕ(= A0) and n-dimensional vector potential A = (A1, A2, . . . , An). For
arbitrary scalar Φ and vector V functions in n-dimensional space, we can determine the
first-order differential operators: the (a) gradient operator ∇ (or grad) and (b) divergence
operator div. They are defined as follows:

∇Φ = grad Φ =
( ∂Φ

∂x1
,

∂Φ
∂x2

, . . . ,
∂Φ
∂xn

)
and div V =

∂V1

∂x1
+

∂V2

∂x2
+ . . . +

∂Vn

∂x1
(7)

Analogous definitions of these two operators can easily be generalized and applied
to the scalar and vector functions defined in (n + 1)-dimensional space. By using these
definitions, we can discuss the gradient of the scalar potential ∇ϕ(= ∇A0) (vector) and
divergence of vector potential divA (scalar) in the n-dimensional space.
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The (n + 1)-dimensional vector potential Ā = (A0, A1, . . . , An) allows us to define the
truly antisymmetric (n + 1)× (n + 1) electromagnetic field tensor Fαβ(= −Fβα) by using
the relation

Fαβ =
∂Aβ

∂xα
− ∂Aα

∂xβ
= −Fβα, and Fαβ =

∂Aβ

∂xα
− ∂Aα

∂xβ
= −Fβα, (8)

which formally coincides with the analogous definition of this tensor known in the four-
dimensional space-time. For the (n + 1)-dimensional space-time manifold, this tensor has
zero-diagonal matrix elements (or components); i.e., Fαα = 0. Therefore, in n-dimensional
space, each of the antisymmetric Fαβ and Fαβ tensors have n(n−1)

2 different and independent
components. The double sum FαβFαβ is the first (or main) invariant of the electromagnetic
field defined in the (n + 1)-dimensional space. Now, let us write the following explicit
formula for the action S for the system, which includes the particles and electromagnetic
field itself. This action takes the following form (see, e.g., [5]):

S = Sp + S f p + S f = −∑
k

∫
mkcds−∑

k

∫ ek
c

Aα(k)dxα − a
∫

FαβFαβdΩ, (9)

where s =
√

xµxµ =
√

gµνxµxµ is the interval, Sp is the action function for the particles,
S f p is the action function which describes the interaction between particles and the elec-
tromagnetic field, and S f is the action function for the electromagnetic field itself. In this
equation, the summation is performed over all particles (index k). The notation Aα(k)
shows that the α−component of the vector potential must be determined at the point of
location of k−th particle. Note that the formula, Equation (9), is applicable in the flat
pseudo-Euclidean and/or Euclidean spaces only. Its generalization to multi-dimensional
Riemannian spaces (spaces of non-zero curvature) is considered below. In the next step,
we need to determine the constant a in Equation (9). This can be achieved by considering
Coulomb’s law in multi-dimensions (see the next section).

As a conclusion of this section, we want to emphasize the fact that our action function,
which is chosen in the form of Equation (9), allows one to derive the equations of motion
for a system of electrically charged, point particles which move in the electromagnetic field.
For instance, for one electrically charged particle, by varying the coordinates of this particle
(i.e., the xµ and xα variables) in the action function, Equation (9), one finds the following
equation of motion for one electrically charged, point particle which moves in the non-flat
multi-dimensional space:

d2xα

ds2 + Γα
βγ

dxβ

ds
dxγ

ds
− e

c
Fαβgβγ

dxγ

ds
= 0, or

d2xα

ds2 + Γα
βγ

dxβ

ds
dxγ

ds
− e

mc2 Fα
β

dxβ

ds
= 0, (10)

where Γα
βγ are the Cristoffel symbols of the second kind [6,7] which equal zero identically

in any flat space. It is clear that the last term in the action function S is not varied, and we
do not know the exact numerical value of the constant a in Equation (9). In addition, for
the non-flat spaces, in the last term, we have to replace dΩ→ √−gdΩ.

3. Coulomb’s Law in Multi-Dimensions

The explicit form of the Coulomb interaction between two point, electrically charged
particles is of crucial importance for our present purposes. In Gauss units, which are
used almost everywhere in this study, the Coulomb’s law for three-dimensional space
has a very simple form: V(r21) = q1q2

r21
, where V(r21) is the Coulomb potential, q1 and

q2 are the electric charges of the two point particles (1 and 2), and r21 is the interparticle
distance, which equals r =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, where (x1, y1, z1) and

(x2, y2, z2) are the Cartesian coordinates of the two interacting particles. Note that the
Coulomb interaction potential does not contain the factor 4π. Furthermore, the Coulomb
potential essentially coincides with the singular part of the Green’s function for the three-
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dimensional Laplace operator; i.e., V(r21) = q1q2G(r1, r2) = q1q2G(| r1− r2 |) = q1q2
|r2−r1| and

∆
(

1
|r2−r1|

)
= ∇2

(
1

|r2−r1|
)
= ∇

(
r1−r2
|r2−r1|3

)
= −4πδ(r2 − r1). The last equation can also be

re-written for the intensity of electric field E, which is the negative gradient of the potential

ϕ. This equation takes the familiar form divE = −∇
[(

q1q2
r21

)]
= q1q2∇

(
r21
r3

21

)
= 4πρ(r21),

where ρ(x) is a continuous charge density. The derived expression coincides with the well-
known differential form of Gauss’s law of electrostatic and one of the Maxwell equations.
These two properties (or two criteria) of three-dimensional Coulomb potential plays a
crucial role in our definition of the multi-dimensional Coulomb potential (see below).

Now, we need to define the Coulomb potential in multi-dimensional (or n-dimensional)
space. This is a crucial moment for the Maxwell electrodynamics in multi-dimensional
spaces which we try to develop in this study. Any mistake in such a definition will cost too
much for our present purposes. In this sense, this section was the most difficult part of our
analysis and it was re-written quite a few times. Indeed, we cannot send someone to the
four-dimensional (geometrical) space to repeat the well known Coulomb and Cavendish
experiments; therefore, we need to find a way to make an analytical generalization of the
Coulomb potential to multi-dimensional spaces. In respect to our first criterion formulated
above, the Coulomb potential in the n-dimensional space must coincide with the singular
part of the Green’s function defined for the multi-dimensional (or n-dimensional) Laplace
operator ∆ = ∆n = ∂2

∂x2
1
+ ∂2

∂x2
2
+ . . . + ∂2

∂x2
n

. This leads [8] to the following general expression

for the Coulomb potential in n-dimensional space: V(r) = b q1q2
rn−2

21
= b q1q2

rn−2 , where b is some

numerical factor, n ≥ 3, and the explicit expression for the interparticle distance r21 = r

takes the multi-dimensional form r =
√
[x(1)2 − x(1)1 ]2 + [x(2)2 − x(2)1 ]2 + . . . + [x(n)2 − x(n)1 ]2.

Here (x(1)1 , x(2)1 , . . . , x(n)1 ) and (x(1)2 , x(2)2 , . . . , x(n)2 ) are the Cartesian coordinates of the two
interacting particles in n-dimensional Euclidean space. The n-dimensional radius r =√
[x(1)]2 + [x(2)]2 + . . . + [x(n)]2 is, in fact, the hyper-radius of this point particle. To derive

the explicit formula for the Coulomb potential in n-dimensional space, we have applied
the method developed by A. Sokolov (see, e.g., [8,9] and earlier references therein) which
allows one to determine the Green’s functions for an arbitrary linear differential operator.

In order to determine the factor b(n), we apply the second criterion (see above),
which states that Gauss’s law must be written in the form ∇E = f (n)q1q2, where f (n) is
a pure angular (or hyper-angular for n ≥ 4) factor. From here, one finds that b = 1

n−2
and the explicit formula for Coulomb’s law in n-dimensional space takes the final form
V(r) = q1q2

(n−2)rn−2
21

. Now, let us consider a slightly different problem. Suppose that we have

to determine the static multi-dimensional Coulomb potential ϕ(r) and the corresponding
intensity of electric field E, which are generated by a point particle with the electric charge
Q. For this problem, we write the following formulas for the potential ϕ and for the field
strength E: ϕ = Q

(n−2)rn−2 and E = −∇ϕ = Qnr
rn−1 , where nr is the unit vector nr =

r
r which

is directed from the electric charge Q to an observation point. To write Gauss’s law in
multi-dimensional space, let us assume that a point electrical charge Q is located inside
(and outside) of a closed (n− 1) dimensional hyper-surface. In this case, r is the distance
from the charge to a point on the hyper-surface, n is outwardly directed normal n = r

r to
the surface at that point, and da is the element of the surface area. Then, for the normal
component of E times the area element, we can write

(E · n)da = Q
cosΘ
rn−1 da = Q

rn−1dΩ
rn−1 = QdΩ, (11)

where dΩ is the element of the solid hyper-angle (in n-dimensional space) subtended by da
at the position of the charge. It is important here that the E is directed along the line from
the hyper-surface element to the charge Q. This means that we have found no contradiction
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here between out two criteria and and Equation (11), since the following hyper-angular
integration over Ω produces only an additional pure hyper-angular factor f (n).

Now, by integrating the normal component of E over the whole hyper-surface, it is
easy to find that

∮
(E · n)da = Q

∮
dΩ = Q

nπ

(
n
2

)

Γ
(

1 + n
2

) = f (n)Q, (12)

where f (n) = nπ

(
n
2

)

Γ
(

1+ n
2

) is the geometrical (or hyper-angular) factor. In this equation, the

symbol Γ(x) stands for the Euler’s gamma function (or Euler’s integral of the second

kind). It can be shown (see, e.g., [10]) that Γ(1 + x) = xΓ(x) and Γ
(

1
2

)
=
√

π. The
formula, Equation (12), is true if the charge Q lies inside of the n-dimensional hyper-surface.
However, if this charge lies outside of this hyper-surface, the expression on the right-hand
side of Equation (12) equals zero identically. Thus, we have reproduced Gauss’s law in
multi-dimensional spaces for a single point charge Q. For a discrete set of point charges
and for a continuous charge density ρ(r), Gauss’s law becomes

∮
(E · n)da =

nπ

(
n
2

)

Γ
(

1 + n
2

)
K

∑
k=1

Qk = f (n)
K

∑
k=1

Qk (13)

and
∮
(E · n)da =

nπ

(
n
2

)

Γ
(

1 + n
2

)
∫

V
ρ(r)dnr = f (n)

∫

V
ρ(r)dnr (14)

respectively. In Equation (13), the sum is over only those charges inside of the hyper-surface
S, while in Equation (14), the sum is over the volume (or hyper-volume) enclosed by S.

The differential form of these equations in n-dimensional Euclidean space is

divE = −div
(

grad ϕ
)
= −∆ϕ =

nπ

(
n
2

)

Γ
(

1 + n
2

) ρ(r) = f (n)ρ(r), (15)

where f (n) = nπ

(
n
2

)

Γ
(

1+ n
2

) is the geometrical (or hyper-angular) factor, which is the volume

Vn of the n-dimensional unit ball times the dimension n of geometrical space. In other
words, the factor f (n) is the surface area Sn of the n-dimensional unit ball, since the equality
Sn = nVn is always obeyed for the n-dimensional unit ball [11] and n is an integer positive
number. The physical sense of this factor f (n) is simple: it is the total hyper-angle defined
for a single point (central) particle located in the n-dimensional space. For a system of a
few discrete charges, one has to replace ρ(r)→ ∑K

k=1 Qk, etc.
The n-dimensional hyper-angular factor f (n) from Equation (12) plays a central role

in our development of Maxwell electrodynamics in multi-dimensional spaces. In particular,
the knowledge of this factor allows one to write the explicit formula for the action function
(or action integral) of the electrically charged particles that move in the multi-dimensional
(or n-dimensional) electromagnetic field. This problem is considered below.
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4. Action Function and Maxwell Equations in Multi-Dimensional Flat Spaces

In this section, we consider Maxwell’s equation in multi-dimensional flat spaces; e.g.,
in pseudo-Euclidean spaces. The results derived below are extensively used in the following
sections of this study. First of all, by using the factor f (n) obtained in Equation (12), we
can write the final expression for the action function S in Gauss units:

S = Sp + S f p + S f = −∑
k

∫
mkcds− 1

c2

∫
Aα jαdxα − 1

4c f (n)

∫
FαβFαβdΩ, (16)

where 1
4 (or − 1

4 ) is the Heaviside constant, c is the speed of light in a vacuum, while jα

is the electric current (or simply, current) in (n + 1)-dimensional space. By varying all
components of the Ā vector in this action integral, Equation (16), we derive the second
group of Maxwell’s equations, Equation (19), which contains, in the general case, the
non-homogeneous differential equations. By omitting some obvious details, we can write
the complete set of Maxwell’s equations in the following tensor form:

∂Fγλ

∂xβ
+

∂Fλβ

∂xγ
+

∂Fβγ

∂xλ
= 0 (17)

and

∂Fαβ

∂xβ
= − nπ

(
n
2

)

cΓ
(

1 + n
2

) jα = − f (n)
c

jα, (18)

where jα is the (n + 1)-dimensional current-vector (or current, for short) defined above. All
equations from the both groups of these equations, Equations (17)–(19), are the first-order
differential equations upon spatial coordinates and time t (or temporal coordinate). From
Equation (17) one finds the following condition for the current:

∂2Fαβ

∂xα∂xβ
= − f (n)

c
∂jα

∂xα
= 0 . (19)

This result is obvious, since the application of any symmetric operator (upon α↔ β

permutation)—e.g., the ∂2

∂xα∂xβ operator—to the truly antisymmetric Fαβ tensor always

gives zero. Thus, the equality ∂jα
∂xα = 0 derived here is a necessary condition for any actual

electric current. Note also that this equation is written in the form of (n + 1)-dimensional
divergence. In respect to Noether’s second theorem, this equation ∂jα

∂xα = 0 means some
conservation law. It is easy to understand that this law describes the conservation of the
total electric charge.

A very close similarity between the Maxwell equations derived for multi-dimensional
spaces, where n ≥ 3, and analogous Maxwell equations known in three-dimensional space
is obvious. However, in some cases, this leads to fundamental mistakes, and most of such
mistakes originate from Equation (17). Note here that in n-dimensional geometrical space,
we have exactly n components of the intensity of electric field E and n(n+1)

2 intensities of
magnetic field H. For n = 3 (and only in this case), we have equal numbers of components
in both E and H vectors. This leads to the well-known vector form of Maxwell electro-
dynamics. However, even for n = 4, the electric field has four components, while the
magnetic field has six components. When n increases, then the total number of components
of the magnetic field grows rapidly (quadratically) and significantly exceeds the analogous
number of components of the electric field. This fact substantially complicates the deriva-
tion of Maxwell equations written in terms of the intensities of electric and magnetic fields
in multi-dimensional spaces. Plus, we have a certain problem with the general definition of
the curl (or rot) operator in such cases.
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Another interesting result follows from the analysis of tensor equations, Equation (17).
If one of the indexes in this equation equals zero, then this group of equations gives
us Faraday’s law in multi-dimensional space, which describes the time-evolution of the
magnetic field and is written in the form of n equations. This is good, but what about other
n(n−1)(n−2)

6 equations that are also included in tensor equations Equation (17)? After some
transformations, one finds that these additional equations are written in a form whereby
three-dimensional divergences of some three-dimensional pure-magnetic vectors equal zero.
By pure magnetic vectors, we mean vectors assembled from the space-like components of
the field tensor Fpq (or Fpq) only (for flat spaces, it is always possible). Based on ideas by
Dirac [12], we can formulate this result in the following form: the magnetic field can have
sources neither in our three-dimensional space nor in any three-dimensional subspace of multi-
dimensional spaces. This fundamental statement is directly and very closely related to the
discrete nature of electric charge. Furthermore, the correctness of Maxwell electrodynamics
(in any space) is essentially based on this statement. By taking into account arguments
from [13], we can re-formulate our statement in the followingform: the existence of magnetic
monopoles in our three-dimensional space and, in general, in any three-dimensional subspace of
multi-dimensional spaces is strictly prohibited. Otherwise, the Maxwell electrodynamics will
not be correct and must be replaced by a different approach.

To conclude this section, let us present the explicit formula for the energy momentum
tensor in multi-dimensional space. The definition of this tensor and all details of its
calculations are well described in [5]. Therefore, we can only present a few basic formulas
here, which will be used below in Section 6. The explicit formula for the non-symmetrized
energy momentum tensor is

Tβ
α =

1
f (n)

(∂Aγ

∂xα
Fγβ +

1
4

gβ
α FγρFγρ

)
, (20)

where the factor f (n) is the hyper-angular (or geometrical) factor mentioned above. After
symmetrization, this tensor takes the form

Tβ
α =

1
f (n)

(
FαγFβγ +

1
4

gβ
α FγρFγρ

)
, (21)

where gβ
α = δ

β
α is the substitution tensor [6]. The corresponding co- and contravariant

tensors are

Tαβ =
1

f (n)

(
FαγFγ

β +
1
4

gαβFγρFγρ
)

and Tαβ =
1

f (n)

(
gα

γFβγFβγ +
1
4

gαβFγρFγρ
)

, (22)

where f (n) = nπ
n
2

Γ
(

1+ n
2

) is the geometrical (or hyper-angular) factor.

5. Hamiltonian of the Electromagnetic Field in Multi-Dimensional Flat Spaces

The second goal of this study is to develop the Hamiltonian formulation of the multi-
dimensional electrodynamics. First, let us obtain the explicit formula for the Hamiltonian
H of the free electromagnetic field in multi-dimensional flat spaces. By using the for-
mula, Equation (16), for the action integral, we can write the Lagrangian L of the free
electromagnetic field in multi-dimensional pseudo-Euclidean space (in Heaviside units)

L = −1
4

∫
FαβFαβ dnx = −1

4

∫
FαβFαβ dnx , (23)
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where Fµν = Aν,µ − Aµ,ν is the electromagnetic field tensor which is antisymmetric Fµν =
−Fνµ. From here, one finds the following equality Aµ,ν = −Fµν + Aν,µ = Fνµ + Aν,µ.
Variations of this Lagrangian are written in the following general form:

δL = −1
2

∫
FαβδFαβdnx = −1

2

∫
FαβδFαβdnx, (24)

where dnx means dx1dx2 . . . dxn and the integration is over n-dimensional space. Note that
all integrals considered in this section are the spatial integrals that contain no integration
over the temporal (or time) variable. Furthermore, in this section, we shall apply only the
Heaviside units. The use of Gauss units complicates all formulas below, including the
expressions for the momenta.

In order to develop the Hamiltonian approach for the electromagnetic field, we need
to consider all variations of the velocities for each component of the (n + 1)-dimensional
vector potential Ā. In other words, below, we deal with variations of the Aµ,0 derivatives
only, where µ = 0, 1, . . . , n. In other words, in our Hamiltonian formulation, all components
of the (n + 1)-dimensional vector potential Ā—i.e., A0, A1, . . . , An components—are the
generalized coordinates of our problem. For variations of the velocities Aµ,0, our formula,
Equation (24), for δL is written in the form

δL =
∫

Fα0δAα,0 dnx =
∫

BαδAα,0 dnx, (25)

where Bα = Fα0 are the contravariant components of the (n + 1)-dimensional vector
momenta B̄. In fact, this equation must be considered as the explicit definition of momenta.
However, from this definition and the antisymmetry of the electromagnetic field tensor, one
finds B0 = F00 = 0. This means that the 0-component of momenta B̄ of the electromagnetic
field—i.e., B0—must be equal to zero at all times. According to Dirac [14], all similar
equations derived at this stage of the Hamiltonian procedure are the primary constraints.
In our current case, this constraint is better to write in the form of a weak identity B0 ≈ 0.

By using our momenta Bα, we can introduce the Hamiltonian of the free electromag-
netic field in multi-dimensional pseudo-Euclidean (flat) space:

H =
∫

Bα Aα,0 dnx− L =
∫ (

Fq0 Aq,0 +
1
4

FpqFpq +
1
4

Fp0Fp0 +
1
4

F0pF0p

)
dnx

=
∫ (

Fq0 Aq,0 +
1
4

FpqFpq +
1
2

Fp0Fp0

)
dnx =

∫
Hdnx, (26)

whereH is the Hamiltonian space-like density (scalar), which is

H = Fq0 Aq,0 +
1
4

FpqFpq +
1
2

Fp0Fp0 (27)

For the Aq,0 derivative, we substitute its equivalent expression Aq,0 = −Fq0 + A0,q
(see above) and obtain

H =
∫ (1

4
FpqFpq −

1
2

Fp0Fp0 + Fq0 A0,q

)
dnx =

∫ (1
4

FpqFpq +
1
2

BpBp + Bq A0,q

)
dnx. (28)

In the last term of this Hamiltonian, we can perform a partial integration, which
actually leads to the following replacement: Fq0 A0,q → −A0

∂Fq0

∂xq
= −A0(Bq)q = −A0Bp

,p.
This reduces our Hamiltonian, Equation (28), to the form

H =
∫ (1

4
FpqFpq −

1
2

Fp0Fp0 + Fq0 A0,q

)
dnx =

∫ (1
4

FpqFpq +
1
2

BpBp − A0Bp
,p

)
dnx . (29)
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This is the Hamiltonian of the free electromagnetic field written in the closed analytical
form. The corresponding Hamiltonian space-like density takes the form

H =
1
4

FpqFpq +
1
2

BpBp − A0Bp
,p. (30)

Note that by performing these transformations and deriving the Hamiltonian, Equation (29),
we have gained even more than we wanted at the beginning of our procedure. In fact, the
development of any Hamiltonian approach means that we have a simplectic structure, which
is defined by the Poisson brackets between basic dynamical (Hamiltonian) variables: (n + 1)
coordinates Aµ and (n + 1) momenta Bµ. These Poisson brackets are defined as follows:

[Aµ(x̄1), Bν(x̄2)] = gν
µδ(n)(x1 − x2), [Aµ(x1), Aν(x2)] = 0, [Bµ(x1), Bν(x2)] = 0, (31)

where gν
µ = δν

µ is the Kronecker delta-function, while µ = 0, 1, . . . , n, and ν = 0, 1, . . . , n.
In general, the Poisson brackets are used as the main working tool in any Hamiltonian

approach developed for a given physical system. Moreover, these brackets allow one to
introduce a simplectic (2n + 2)-dimensional phase space of the Hamiltonian variables
{Aα, Bβ} which are defined in each point x̄ of the (n + 1)-dimensional space-time manifold.
The original configuration space of this problem is the direct sum of the (n+ 1)-dimensional
subspace of Aµ−coordinates and (n + 1)-dimensional subspace of Aµ,0−velocities. In turn,
this allows one to consider and apply various canonical transformations of the Hamiltonian
canonical variables. Furthermore, by using the Poisson brackets in Equation (31), we can
complete our Hamiltonian approach for the classical electrodynamics and perform its
quantization.

To illustrate this fact, let us go back to the primary constraint B0 ≈ 0 mentioned above.
This constraint must remain satisfied at all times. This means that its time derivative dB0

dt ,
which in our Hamiltonian approach equals the Poisson bracket [B0, H], must be zero at all
times. This Poisson bracket is easily determined, since in the Hamiltonian, Equation (29),
there is only one term (the last term) that does not commute with the momentum (or
primary constraint) B0:

[B0,
1
4

FpqFpq −
1
2

Fp0Fp0 − A0Bq
q ] = −[B0, A0]B

p
,p = [A0, B0]Bp

,p = Bp
,p (32)

In other words, we have found another weak equality Bp
,p ≈ 0 that must be obeyed

at all times. According to Dirac [14,15], this condition is the secondary constraint of our
Hamiltonian formulation of the multi-dimensional Maxwell theory of radiation. The next
Poisson bracket [Bp

,p, H] (or [Bp
,p,H]) equals zero identically, which indicates clearly that the

chain of first-class constraints is closed, and our Hamiltonian formulation does not lead
to any tertiary and/or other constraints of higher order. Briefly, this means the complete
closure (or Dirac closure) of the Hamiltonian procedure for the free electromagnetic field in
multi-dimensional space.

5.1. Further Transformations of the Hamiltonian

The first term in the Hamiltonian of the free electromagnetic field in multi-dimensional
space, Equation (29), includes a number of different terms, but it does not contain any of the
canonical variables. It is difficult to use such a Hamiltonian for the analysis and solution
of actual problems in classical and/or quantum electrodynamics. Therefore, we have to
transform this Hamiltonian to a form that explicitly contains canonical variables in each
term. Then, our newly derived Hamiltonian H and/or the corresponding Hamiltonian
densityH can be applied for the solution of many actual problems. For convenience, below,
we shall deal with the Hamiltonian density H. The partial integration of the first term
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in the Hamiltonian, Equation (29), leads to the following expression for the Hamiltonian
density Equation (30):

H =
(

Fqp
)

q
Ap +

1
2

BpBp − A0Bp
,p =

( ∂2 Ap

∂xq∂xq −
∂2 Aq

∂xq∂xp

)
Ap +

1
2

BpBp − A0Bp
,p, (33)

where p = 1, 2, . . . , n and q = 1, 2, . . . , n. For this Hamiltonian density, we can write the
following system of canonical equations:

dAp

dt
= [Ap,H] =

1
2
(2Bp) = Bp (34)

and

dBp

dt
= [Bp,H] = −

( ∂2 Ap

∂xq∂xq −
∂2 Aq

∂xq∂xp

)
=

∂2 Ap

∂xq∂xq −
∂2 Aq

∂xq∂xp
. (35)

Combining these two equations, one finds

d2 Ap

dt2 =
∂2 Ap

∂xq∂xq −
∂2 Aq

∂xq∂xp
. (36)

Taking into account the gauge condition ∂Aq
∂xq

= 0 (see below), we reduce the last
equation to the form

∂2 Ap

∂t2 −
∂2 Ap

∂xq∂xq = 0, or
∂2A
∂t2 − ∆A = 0, (37)

which is the wave equations written in the (n + 1)-dimensional space-time. The n-dimensional
Laplace operator ∆ in this equation is

∆ =
∂2

∂xq∂xq = gqr ∂2

∂xq∂xr = gqr
∂2

∂xq∂xr
. (38)

Thus, in our Hamiltonian approach, the multi-dimensional wave equation for the free
electromagnetic field is derived as a direct consequence of the canonical Hamilton equations
obtained for this field. Such a derivation of the wave equation for a free electromagnetic field
described here is, probably, the most direct, fast, and logically clear of all known (alternative)
methods. In addition to this, we have rigorously derived the two additional conditions for
the momenta of the free electromagnetic filed: B0 ≈ 0 and Bp

,p ≈ 0. In our Hamiltonian
formulation, these two weak equations are called the primary and secondary constraints,
respectively. It is easy to show that these two constraints are first-class [14]. In the four-
dimensional case, Dirac has suggested [14] that these two constraints are the generators (or
generating functions) for infinitesimal contact transformations which do not change the actual
physical state of the free electromagnetic field; i.e., they are two independent generators
of internal symmetry. Twenty years later, this statement has rigorously been proven by
L. Castellani [16]. All these results are the great and obvious advantages of the Dirac’s
(Hamiltonian) formulation of the Maxwell theory. Now, by using all first-class constraints
that have been derived during the Hamiltonian formulation, one can determine the true
symmetry of any given physical field. For the free electromagnetic field, such a symmetry
group coincides with the Lorentz SO(3, 1)-group. In general, by operating with the first-class
constraints only, it is impossible to restore the so-called hidden (or additional) symmetries of
the free electromagnetic field. For instance, for the free electromagnetic field considered in
three-dimensional space, the complete group of point symmetry is the SO(4, 2)-group, which
has 15 generators [17], while the Lorentz SO(3, 1)-group has only 6 generators. The powerful
method of Bessel–Hagen [17] is based on applications of Noether’s second theorem, which
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is applied to the Lagrangian of the free electromagnetic field. In this short paper, we cannot
discuss all details of this interesting problem.

5.2. First-Class Constraints and Gauge Invariance

In this section, we consider a different symmetry (or invariance) of Maxwell equations
that is directly and closely related to the primary and secondary first-class constraints. This
invariance is the well-known gauge invariance (or symmetry) of the Maxwell equations.
The gauge invariance of three-dimensional Maxwell equations has been studied by many
famous authors, including Heitler [18], Jackson [19,20], Gelfand and Fomin [21], and others
(see, e.g., [22]). Briefly, the gauge invariance means that we can impose some additional
conditions upon the physical fields, or some of their components, and these additional
conditions do not change solutions of the original problem (but they can change equations).
The gauge conditions are often used to simplify the Hamiltonian equations of motion,
either by reducing the total number of variable fields or by vanishing some terms (or
combinations of terms) in these equations. Let us discuss the gauge invariance of the free
electromagnetic field (or “pure radiation field” [18]) by using the two first-class constraints
which we have derived above: B0 ≈ 0 and Bp

,p ≈ 0. By re-writing these two constraints in
terms of the components of the (d + 1)-dimensional vector potential Ā = (ϕ, A) and their
temporal derivatives, one finds

B0 ≈ 0⇒ ∂ϕ

∂t
= 0 and Bp

,p ≈ 0⇒ ∂

∂t

(
divA

)
= 0 (39)

where we gave used the traditional sign of actual equality “=” instead of the weak equality
“≈”, which has been used above in the Dirac’s Hamiltonian approach. The two equalities in
the right-hand side of Equation (39) lead us to the two following equations: ϕ = ϕ(r) and
divA = C(r), where the scalars ϕ(r) and C(r) are the functions of n spatial coordinates only,
and they do not change with time; i.e., they are time-independent scalar functions. It is
clear that these two time-independent scalars are not related in any way to the Hamiltonian
formulation of the Maxwell theory of electromagnetic fields. Indeed, the Hamiltonian
approaches describe only the time-evolution of the Hamiltonian dynamical variables. For
static problems, there are other different methods. Therefore, without loss of generality, we
can assume that these time-independent scalars ϕ(r) and C(r) equal zero identically at all
times.

Based on these arguments, we can write the four following equations for the field
dynamical variables (or Hamiltonian variables):

ϕ = 0,
∂ϕ

∂t
= 0, divA = 0 and

∂

∂t

(
divA

)
= 0, (40)

which can be considered as the four independent “basis vectors”. In general, the set of Ng
gauge conditions ψi is represented as a linear combination of the four basis vectors from
Equation (40):

ψi = αi ϕ + βi
∂ϕ

∂t
+ γi divA + δi

∂

∂t

(
divA

)
= 0, (41)

where i = 1, 2, 3, 4, while αi, βi, γi, and δi are some numerical constants. Let us discuss the
principal question about the number Ng, which is the number of sufficient (or essential)
gauge equations. For the free electromagnetic field, Ng equals two, since exactly this
number of conditions has been found in the Hamiltonian formulation of electrodynamics

developed by Dirac (see above). The two equations ∂ϕ
∂t = 0 and ∂

∂t

(
divA

)
= 0 define the

so-called Dirac gauge, which is discussed above. Formally, for the Dirac gauge, we can
introduce the third gauge condition ϕ = 0 and completely exclude the pair of variables

(ϕ, ∂ϕ
∂t

)
from the list of our dynamical variables. However, this follows not from some

general principle but from the explicit form of Dirac’s Hamiltonian density, Equation (30),
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for the pure radiation field (see above), where the only term that includes the scalar potential
ϕ is written as a product of ϕ (or A0) and secondary constraint Bp

,p. This term equals zero
on the shell of the first-class constraints.

An alternative choice of two gauge equations ∂ϕ
∂t = 0 and divA = 0 corresponds to the

famous Coulomb gauge, which provides the best choice for many three-dimensional QED
problems in atomic and molecular physics. In the Coulomb gauge, the scalar potential
ϕ(= A0) is always a static potential, while the n-dimensional vector potential A is always
transverse. The Coulomb gauge and other gauges discussed here are easily generalized
for n-dimensional spaces. Another choice of the basic gauge equations defines the Lorentz
gauge. Formally, this gauge is defined by one (Fermi’s) equation ∂ϕ

∂t + divA = 0. In
respect to the Dirac theory, this set of gauge conditions is not complete and a second
gauge equation can be added. For instance, one can choose the second condition in the
form ∂ϕ

∂t − divA = 0, which is a relativistic invariant for the electromagnetic wave that
propagates from the present to the past. A different choice of the second equation for
the Lorentz gauge corresponds to the so-called Heitler’s gauge, which is based on the

two equations ∂ϕ
∂t + divA = 0 and ∂

∂t

(
divA

)
= 0 for the free electromagnetic field [18].

The advantage of this useful gauge is obvious: if these equations hold at t = 0, then the
equation ∂ϕ

∂t + divA = 0 is always satisfied. These simple examples of different gauges are
mentioned here only to illustrate the ultimate power of Dirac’s approach, which simplifies
the internal analysis of various gauges.

Let us discuss the general source of gauges which often arise in different field theories;
e.g., in Maxwell theory of radiation, metric gravity, tetrad gravity, etc. Here, we want to
investigate this problem from the Hamiltonian point of view. First, let us assume that we
have imposed all four conditions from Equation (40) on our dynamical variables. What
does this mean for these variables? The first two equations ϕ = 0 and ∂ϕ

∂t = 0 mean that the

variable ϕ and corresponding momentum B0 (or velocity ∂ϕ
∂t ) are not dynamic (Lagrange)

variables of our problem. In other words, we have to exclude these two variables before
the application of our Hamiltonian procedure. The same statement is true for the two

equations divA = 0 and ∂
∂t

(
divA

)
= 0, but divA is not a regular dynamic variable of

the original problem. In reality, the function divA appears in the secondary constraint in
Dirac’s Hamiltonian formulation developed for the pure radiation filed. This function is
a linear combination of the first-order derivatives of covariant components of the multi-
dimensional vector potential A. The Hamiltonian canonical variables do not include any
sum of the space-like derivatives of this potential. Therefore, it is not clear how we can
exclude the scalar divA and its time-derivative from the list of our canonical variables.
However, the main obstacle to the exclusion of the four variables, Equation (40), follows
from the fact that we have only two gauge equations (not four). This means that we cannot
correctly exclude all four variables and have to keep them in our procedure. These “extra”
variables survive our Hamiltonian procedure only in the form of additional equations
for the Hamiltonian dynamical variables. In other words, the gauge conditions are the
integral parts of any Hamiltonian approach developed for an arbitrary physical field. This
is the general principle that explains why different field theories with first-class constraints
always have some number of non-trivial gauge conditions (or equations).

However, this is not the end of the story. Let us look at the constraints in multi-
dimensional electrodynamics from a different point of view. Consider the following
two-parametric (α, β)-family of the Hamiltonian densities:

H(α, β) =
1
4

FpqFpq +
1
2

BpBp − A0Bp
,p +

(
αB0 + βBp

,p

)2
. (42)

where B0 and Bp
,p are the functions of the canonical variables of the problem. At this

moment, we cannot assume that there are some restrictions on these two quantities. In
other words, for now, the B0 and Bp

,p values are not yet constraints.
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In general, to operate with the two-parametric family of Hamiltonian densitiesH(α, β)
in some constructive way, we have to formulate the following variational principle: the
actual (or true) Hamiltonian density coincides with the minimal Hamiltonian density
H(α, β), Equation (42), in respect to possible variations of the two numerical parameters α
and β. This principle immediately leads to the two following weak identities:

(
αB0 + βBp

,p

)
B0 ≈ 0 and

(
αB0 + βBp

,p

)
Bp

,p ≈ 0. (43)

One obvious solution of this system gives us the two Dirac’s constraints B0 ≈ 0 and
Bp

,p ≈ 0 which have been derived above. In general, there are other solutions of the system
Equation (43), and one of them can be written in the form

α1B0 + β1Bp
,p ≈ 0 and α2B0 + β2Bp

,p ≈ 0. (44)

where the coefficients α1, β1, α2 and β2 form a regular (i.e., invertible) 2× 2 matrix. The
principle formulated above is called the optimal principle for the constrained motions,
since in actual physical systems, the motion along first-class constraints is optimal, or it can
be considered as optimal.

6. Multi-Dimensional Maxwell Equations in Non-Flat Spaces

The Maxwell equations can be written in the covariant form, which is more appropriate
in applications to the metric gravity (or general relativity) in multi-dimensional Riemannian
spaces. In this and the next sections, we deal with the multi-dimensional Riemannian spaces
only. These spaces are not flat, and they are often called the spaces of non-zero curvature.
Indeed, the corresponding equations, Equations (17) and (19), for the flat multi-dimensional
spaces have already been written in the tensor (or covariant) form. Furthermore, the
electromagnetic field tensor Fαβ, which has been defined by Equation (8), is truly skew-
symmetric with respect to permutations of its indexes; i.e., Fαβ = −Fβα and Fαβ = −Fβα.
These two facts simplify the process of derivation of the Maxwell equations in the covariant
form. In fact, to derive the covariant form of Maxwell equations, one needs to replace all
usual derivatives written in Cartesian coordinates by the tensor derivatives. After such a
replacement, the first group of Maxwell equations in multi-dimensional Riemannian spaces
takes the form

∇βFγλ +∇λFβγ +∇γFλβ = 0 (or ∇βFγλ = ∇γFβλ −∇λFβγ), (45)

where ∇β is the tensor (or covariant) derivative; i.e.,

∇βFγλ =
∂Fγλ

∂xβ
− Γµ

γβFµλ − Γµ
λβFγµ (46)

where Γγ
αβ = 1

2

(
∂gγβ

∂xα +
∂gαγ

∂xγ − ∂gαβ

∂xγ

)
= Γγ

βα are the Cristoffel symbols of the second kind.
It is interesting to note that the form of Equation (45) does not depend explicitly upon
the parameter n, which defines the dimension of Riemann space. By performing a few
simple transformations, we can reduce the formula, Equation (46), to a form that exactly
coincides with Equation (17). This has been noticed in many textbooks on three-dimensional
electrodynamics (see, e.g., [5]).

The second group of Maxwell equations for multi-dimensional spaces of non-zero
curvature is written in the form (in Gauss units)

∇βFαβ =
1√−g

(
∂
√−gFαβ

)

∂xβ
= − nπ

(
n
2

)

cΓ
(

1 + n
2

) jα = − f (n)
c

jα, (47)
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since the tensor Fαβ is antisymmetric. In this equation, g is the determinant of the funda-
mental tensor, which is always negative in the metric gravity. By applying the operator ∇α

to the last formula, one finds

∇α∇βFαβ = − f (n)
c
∇α jα =⇒ − f (n)

c
∇β jβ = ∇β∇αFβα = −∇β∇αFαβ. (48)

In other words, the expression on the left-hand side of these equations can be re-written
in the following form:

1
2

(
∇α∇β +∇β∇α

)
Fαβ. (49)

which equals zero identically, since here the truly symmetric tensor operator (upon α↔ β
permutation) is applied to an antisymmetric tensor (upon the same permutations). Finally,
one finds that ∇α jα = 0; i.e., the conservation law for electric charge written in the (n + 1)-
dimensional Riemannian space.

In many books and textbooks, the electrodynamic derivation of Maxwell equations
in the manifestly covariant form is traditionally considered as the final step. A similar
approach, however, ignores an additional group of governing equations that is obeyed for
the electromagnetic field in the presence of actual gravitational fields. These additional
equations determine the general properties, time evolution, and propagation of electromag-
netic fields in the metric gravitational fields. The explicit derivation of these additional
governing equations for the electromagnetic field tensor is straightforward. Indeed, if
the electromagnetic field tensor Fαβ is considered in the metric gravity, then the following
equations must be obeyed:

∇λ∇σFβ
α −∇σ∇λFβ

α = Fµ
α Rβ

σλµ − Fβ
µ Rµ

σλα, (50)

or in a slightly different form:

∇λ∇σFαβ −∇σ∇λFαβ = −FµβRµ
σλα − FαµRµ

σλβ = FαµRµ
λσβ + FµβRµ

λσα, (51)

where the notation Rσ
αβγ = gσµRαβγµ is the Riemann-.Cristoffel tensor of the fourth rank,

which is three times covariant and once contravariant (see, e.g., [6,7]). In turn, the Rαβγσ is
the Riemann curvature tensor (or Riemann–Cristoffel tensor):

Rαβγσ =
1
2

[ ∂2gασ

∂xβ∂xγ
+

∂2gβγ

∂xα∂xσ
− ∂2gαγ

∂xβ∂xσ
− ∂2gβσ

∂xα∂xγ

]
+ Γρ,ασΓρ

βγ − Γρ,βσΓρ
αγ , (52)

where Γγ,µν = 1
2

(
∂gγα

∂xβ +
∂gγβ

∂xα − ∂gαβ

∂xγ

)
are the Cristoffel symbols of the first kind. The

Riemann–Cristoffel tensor defined in Equation (52) is a covariant tensor of the fourth rank.
Note that similar problems have been extensively studied since the 1920s in numerous
papers and books on General Relativity (see, e.g., [23,24] and references therein). As follows
from these equations, Equations (50) and (51), the propagation and other properties of the
“free” electromagnetic fields in multi-dimensional spaces of non-zero curvature (or in non-
flat spaces) are always affected by the gravitational fields. For relatively small gravitational
fields, Equations (50) and (51) can be considered as small perturbations to the Maxwell

equations. However, in strong gravitational fields, where some of the | ∂gαβ

∂xγ | derivatives are
very large, the laws of propagation and other properties of the electromagnetic fields can
significantly be changed by the gravity. Briefly, we can say say that in similar non-flat spaces,
the actual properties of electromagnetic fields cannot be described by the Maxwell equations
only. Furthermore, in more complex “combined” theories of gravity and radiation—e.g.,
in the well known Born–Infeld theory (see, e.g., [25])—the total fundamental tensor is
represented as a function—e.g., as a sum—of the gravitational gαβ and electromagnetic Fαβ
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tensors, while the time-evolution and propagation of electromagnetic fields is described by
the non-linear, well-coupled equations.

6.1. Multi-Dimensional Electromagnetic Field in Metric Gravity

Now, we are ready to vary the sum of action integrals for the gravitational Sg and
electromagnetic S f fields; i.e., to vary the δ(Sg + S f ) action. The both fields are considered
as free; i.e., there are no masses, no free electric charges and no electric currents in the
area of our interest. Our goal in this section is to derive (variationally) the governing
Einstein equations (in multi-dimensions) in the presence of electromagnetic fields. To
achieve this goal, we have to vary the gravitational field only; i.e., the components of the
metric tensor gαβ (or gαβ). The variation of the gravitational action Sg is written in the form
(see, e.g., [5,24]):

δSg = − c
f (n)K

∫ (
Rαβ −

1
2

gαβR
)

δgαβ
√
−gdΩ, (53)

where Rαβ is the Ricci tensor. In older works [6], authors used the the Einstein tensor, which
is Gαβ = −Rαβ. The explicit form of the Ricci tensor is

Rαβ =
∂Γγ

αβ

∂xγ
− ∂Γγ

αγ

∂xβ
+ Γγ

αβΓλ
γλ − Γλ

αγΓγ
βλ, or Rαβ = gµνRµαβν = gνµRνβαµ = Rβα (54)

and R = gαβRαβ is the scalar (or Gauss) curvature of space. In addition, in this equation,
the notation K = k

c2 = 7.4259155× 10−29 cm · s−1 denotes the universal (or n-independent)
gravitational constant. A similar variation of the electromagnetic action S f is

δS f =
2
c

∫
Tαβδgαβ

√
−gdΩ =

2
c f (n)

∫ (
FαγFγ

β +
1
4

gαβFγρFγρ
)

δgαβ
√
−gdΩ. (55)

Therefore, for the variation of the sum of these two actions, we can write

δ(Sg + S f ) =
c

f (n)K
∫ (
−Rαβ +

1
2

gαβR +
2 f (n)K

c2 Tαβ

)
δgαβ

√
−gdΩ. (56)

Since variations of the gravitational field are arbitrary, then from this equation, one
finds

Rαβ −
1
2

gαβR =
2K
c2

(
FαγFγ

β +
1
4

gαβFγρFγρ
)
=

2K
c2 T̃αβ, (57)

where T̃αβ = FαγFγ
β + 1

4 gαβFγρFγρ is the reduced (or universal) energy–momentum tensor
of the electromagnetic field, which does not include the hyper-angular f (n) factor. The
last equation, Equation (57), is the well known Einstein equation for the gravitational
and electromagnetic field. This equation is a true tensor equation, since both parts of this
equation do not include the geometrical (or hyper-angular) factor f (n). In other words, by
looking at this equation, one cannot say what the actual dimension of our working space
is. For this reason, Flanders [11] and others have criticized classical tensor analysis: “In
classical tensor analysis, one never knows what the range of applicability is simply because
one is never told what the space is”. However, for the purposes of this study, this fact
is an obvious advantage. Any of the true tensor equations that appear in fundamental
physics cannot include factors that explicitly depend upon the dimension n (or n + 1)
of the working Riemann space. Moreover, this is a simple criterion that can be used to
separate the true (also universal, or absolute) tensor equations from similar tensor-like
equations that can be correct only for some selected Riemannian spaces. As follows from
the arguments presented above, both Einstein equations of the metric gravity for the free
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gravitational field, when T̃αβ = 0 in Equation (57), and Einstein equations of metric gravity
in the presence of electromagnetic field, Equation (57), are the true tensor equations.

6.2. Radiation from a Rapidly Moving Electric Charge

As is well known (see, e.g., [5,19]), any electric charge that accelerates in the electro-
magnetic field always emits EM radiation. Nowadays, this statement is repeated so often
that a large number of students and researchers sincerely believe that EM radiation can only
be emitted in the presence of an electromagnetic field. In general, this is not an absolute
truth, and the emission of EM radiation is also possible in the presence of a strong (or rapidly
varying) gravitational field. Below, we want to prove this statement and, for simplicity, here
we restrict our analysis to the three-dimensional space only. However, all our formulas are
written in the explicitly covariant form. This means that all these formulas can be generalized
to describe the actual situation in multi-dimensional spaces as well. In General Relativity, the
formula for the radiated four-momentum dPκ is written in the form (see, e.g., [5]):

dPκ = −2e2

3c
gαµ

(d2xα

ds2

)(d2xµ

ds2

)
dxκ = −2e2

3c
gαµ

(duα

ds

)(duµ

ds

)
uκds, (58)

where uβ = dxβ

ds is the corresponding “velocity”. Now, by taking the expression for the
acceleration from Equation (10), one finds

dPκ = −2e2

3c
gαµ

(
Γα

βγuβuγ − e
mc2 Fα

β uβ
)(

Γµ
λσuλuσ − e

mc2 Fµ
σ uσ

)
uκds = −2e2

3c
×

(
gαµΓα

βγΓµ
λσuβuγuλuσuκ − 2e

mc2 gαµΓα
βγFµ

σ uβuγuσuκ +
e2

m2c4 gαµFα
β Fµ

σ uβuσuκ
)

(59)

= Tκ
2 + Tκ

2 + Tκ
3 = −2e2

3c
Γα

βγΓα,λσuβuγuλuσuκ +
4e3

3mc3 Γα
βγFασuβuγuσuκ

− 2e4

3m2c5 Fα
β Fασuβuσuκ ,

where the last term (vector) Tκ
3 = − 2e4

3m2c5 Fα
β Fασuβuσuκ . This term describes the emission of

EM radiation by a single electrical charge that is rapidly moving in some electromagnetic
field. This was extensively discussed in numerous books on classical electrodynamics
(see, e.g., [5,19]), and we do not want to repeat these discussions below. The first term in
Equation (59) Tκ

1 = − 2e2

3c Γα
βγΓα,λσuβuγuλuσuκ is also a vector. This vector represents the

emission of EM radiation by a point electric charge that rapidly moves in the gravitational
field. The second term (vector) in Equation (59) describes the interference between gravita-
tional and electromagnetic emissions of the EM field. The explicit formula for this term is
Tκ

2 = 4e3

3mc3 Γα
βγFασuβuγuσuκ .

There are a number of interesting observations that directly follow from the three for-
mulas for the Tκ

1 , Tκ
2 , and Tκ

3 terms in Equation (59). First, let us note that the Tκ
1 term does

not contain any particle mass. This means that one fast electron and/or one fast proton,
which move with the equal velocities in a pure gravitational field, will always emit an equal
amount of radiation. This the main distinguishing feature of the gravitation emission of
EM radiation. Second, this term is a fifth-order power function of the velocities. Therefore,
it is clear that overall contribution of this term will rapidly increase for relativistic particles
that move with velocities close to the speed of light in a vacuum c. It is also clear that
usually in Equation (59), the third term Tκ

3 is substantially larger than two other terms.
In other words, the gravitational emission of EM radiation is hard to observe at “normal”
gravitational conditions. However, in strong gravitational fields, where the absolute values

of Cristoffel symbols are very large (or the | ∂gαβ

∂xγ | derivatives are very large), the situation
can be different. The second condition is simple: the rapidly moving particle must be truly
relativistic; i.e., it must move with a velocity which is close to the speed of light v ≥ 0.9 c
with respect to the system where the rapidly changing gravitational field originated. If these
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two conditions are obeyed, then one can see a relatively intense gravitational EM radiation
which is emitted by a single relativistic particle which has non-zero electric charge e.

7. Conclusions

We have generalized the three-dimensional Maxwell theory of radiation to multi-
dimensional flat and curved spaces. Some equations derived in three-dimensional Maxwell
electrodynamics do not change their form in multi-dimensional space. In other equations,
we have to make a number of changes. In fact, all properties of the electromagnetic field
are described by the (n + 1)-dimensional vector potential Ā = (φ, A), while the interaction
between any particle and electromagnetic field is described by one experimental parameter,
which is the electric charge e of this particle. The governing Maxwell equations for the multi-
dimensional electromagnetic field have been derived and written in the covariant (or tensor)

form. These equations include the geometrical (or hyper-angular) factor f (n) = nπ
n
2

Γ
(

1+ n
2

) ,

which explicitly depend upon the dimension of space n.
The Hamiltonian formulation of the Maxwell radiation field in multi-dimensional

spaces is developed and investigated. We have found that the total number of first-class
constraints in this Hamiltonian formulation equals two (one primary and one secondary
constraints). This number exactly coincides with the number of first-class constraints in the
analogous Hamiltonian formulation developed earlier by Dirac [14] for the pure radiation
field in three-dimensional space. In other words, the total number of first-class constraints
in any Hamiltonian formulation developed for the free radiation field does not depend
upon the dimension of space n. To understand how lucky we are with the Hamiltonian
formulations of electrodynamics, let us note that in the (n + 1)-dimensional metric gravity,
we always have (n + 1) primary and (n + 1) secondary first-class constraints. In addition
to this, in many sets of canonical variables, the explicit form of all arising secondary
constraints are very cumbersome (see, e.g., [26–29]), and this substantially complicates all
operations with these values. By using these primary and secondary first-class constraints,
we have investigated the gauge conditions in multi-dimensional electrodynamics.

In addition, in the last section, the Maxwell equations in multi-dimensional non-flat
spaces are written in the manifestly covariant form. It is shown that any gravitation field
changes the actual properties, time-evolution and space-time propagation of electromag-
netic fields. For gravitation fields with large and very large connectivity coefficients Γα

βγ,
the “pure” radiation field cannot be described by the Maxwell equations only. Additional
equations for the antisymmetric tensor of the electromagnetic field Fαβ (and Fβ

α ) have been
derived in this study (see Equations (50) and (51)). An analogous equation for the reduced
energy-momentum tensor of electromagnetic field is now written in the true tensor form
(see Equation (57)), which does not contain any n-dependent factor.

In conclusion, we wish to note that the investigation of multi-dimensional Maxwell
equations is not a purely academic problem. In fact, there are a number of advantages
that one can gain by performing such an investigation. First, it helps to clarify additional
and interesting features of Maxwell’s equations in the usual three-dimensional space (or
in four-dimensional space-time). By working only with the three-dimensional Maxwell
equations in our everyday life, we simply do not pay attention to some fundamental
and amazing facts. Second, if we have a complete and correct formulation for Maxwell’s
electrodynamics in multi-dimensional spaces, then it possible to develop the so-called
unified theories of various fields, which include the electromagnetic field. In particular, the
correct unified theory of the gravitational and electromagnetic fields in multi-dimensional
spaces is of great interest in modern theoretical physics. Third, in experiments in high-
energy physics, it has recently been noted that at very high collision energies, many results
can be represented to very good numerical accuracy and with higher symmetry if we
introduce multi-dimensional spaces at the intermediate stages of calculations. This fact
is not completely unexpected, but we need to understand the internal nature of such a
phenomenon. If multi-dimensional spaces do play a significant role during such processes,
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then this can change a great deal in modern physics and natural philosophy. Note that some
of the problems mentioned in this study have been considered earlier (see, e.g., [30–33]).
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Appendix A. Scalar Electrodynamics

In this study, our analysis of electrodynamics in multi-dimensional spaces was re-
stricted to spaces which have geometrical dimension n ≥ 3. For the sake of completeness,
we now want to consider the one and two-dimensional spaces. To investigate these small-
dimensional cases, we shall apply one effective method which is based on the so-called
scalar electrodynamics. This “pre-Maxwell” method was described and briefly discussed
in [4]. Scalar electrodynamics can be introduced in three-dimensional space, where one can
compare the arising equations with the usual Maxwell equations. The foundation of scalar
electrodynamics is the well-known theorem from vector calculus (see, e.g., [6]) which states
that an arbitrary vector B in three-dimensional space can be represented in the following
two− gradient form:

B = Ψ1∇Ψ2 +∇Ψ3, (A1)

where Ψ1, Ψ2, and Ψ3 are three arbitrary analytical functions of three spatial coordinates
and one temporal coordinate. In general, each of these functions can be real or complex.
This formula can directly be applied to the vector potential of the electromagnetic field A.
The four-dimensional vector potential (ϕ, A) and intensities of electric E and magnetic H
field are also represented in terms of the four Ψ1, Ψ2, Ψ3, and ϕ scalar functions. For two
and one-dimensional (geometrical) spaces, the total numbers of such scalar functions equal
three and two, respectively.

To derive the explicit expressions and obtain the governing equations of electrody-
namics, one needs to use the two following formulas which play a central role in scalar
electrodynamics:

curlA = ∇Ψ1 ×∇Ψ2 and divA = Ψ1∆Ψ2 +∇Ψ1 · ∇Ψ2 + ∆Ψ3 (A2)

As follows from Equation (A2), in scalar electrodynamics, there are a number of
advantages to choose some of the Ψ1, Ψ2 and Ψ3 functions (where it is possible) as harmonic
functions for which ∆Ψk = 0, where k = 1, 2, 3. Such a choice of functions reduces the
total number of terms in Maxwell equations and gauge conditions. In turn, this simplifies
the analysis and solutions of many problems in scalar electrodynamics. In fact, in three-
dimensional spaces, the scalar electrodynamics cannot compete with the traditional vector
approach. The main reason is obvious, since the regular Maxwell equations are linear for
all components of the electromagnetic field. However, some selected three-dimensional
problems can be solved (completely and accurately) if we apply the method of scalar
electrodynamics.

The equation for two-dimensional spaces, Equation (A1), takes the form A = Ψ1∇Ψ2,
since in this case we can assume that Ψ3 = 0. The equality A · curlA = 0 is a necessary and
sufficient condition to represent the vector A in such a form [6] (it does obey in this case).
This leads to the following equations:

H = curlA = ∇Ψ1 ×∇Ψ2 and divA = Ψ1∆Ψ2 +∇Ψ1 · ∇Ψ2. (A3)
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We also need the explicit expression for the curlH

curlH = ∇Ψ1∆Ψ2 −∇Ψ2∆Ψ1 + (∇Ψ1 · ∇)Ψ2 − (∇Ψ2 · ∇)Ψ1 = ∇Ψ1∆Ψ2 −∇Ψ2∆Ψ1

One should also note that if Ψ2 is chosen as a harmonic function—i.e., ∆Ψ2 = 0,
and ∇Ψ1 ⊥ ∇Ψ2—then the gauge condition is obeyed automatically, and solutions of
a large number of problems known in two-dimensional electrodynamics are simplified
significantly. In general, it can be shown that the both two-dimensional electrodynamics
and two-dimensional electrostatics include a number of operations with the harmonic
functions (see, e.g., [34–36]. In turn, this leads to numerous successful applications of
conformal mapping methods to describe the two-dimensional electromagnetic waves and
determine solutions of numerous problems in two-dimensional electrostatics.

In the equation for the one-dimensional case, Equation (A1), one finds A = ∇Ψ2 =
∇Ψ. Therefore, the curl of the vector potential equals zero identically. This means that
there is no classical magnetic field in one-dimensional space. Moreover, any time-variations
of the electric field cannot generate any magnetic field; i.e., we have no Faraday’s law in
one-dimensional (geometrical) space. In other words, the one-dimensional electrodynamics
does not exist. On the other hand, many one-dimensional electrostatic problems that
include the potential and intensity of the electric field only can still be formulated and
solved correctly.
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Abstract: We discuss gravitational physics in the Jordan and Einstein frames of f (R) gravity coupled
to the Standard Model. We elucidate the way in which the observed gravitational coupling arises in
the Einstein frame for generic f (R). We point out that the effect of “running units” in the Einstein
frame is related to the fact that the explicit and implicit quantum parameters of the Standard Model,
such as the Higgs vacuum expectation value and the parameter ΛQCD, are modified by the conformal
transformation of the metric and matter fields and become scalaron-dependent. Considering the
scalaron of f (R) gravity describing dark matter, we show that the effect of running units in this case
is extremely weak, making two frames practically equivalent.

Keyword: modified gravity

1. Introduction

Modification of the general relativity theory by considering the Lagrangian in the
form of a nonlinear function f (R) of the scalar curvature R is, perhaps, the simplest one
and has long been the subject of numerous studies and applications (see [1–3] for reviews).
Compared to the general relativity theory, such f (R) gravity contains one extra degree
of freedom, which can be used for modelling a wide variety of phenomena, from the
inflationary regime in the early universe [4] to dark matter at later epochs [5–11].

The extra degree of freedom is most conveniently identified in the so-called Einstein
frame of fields, where it becomes a separate scalar field, called the scalaron, while the
remaining gravitational degrees of freedom are described by the general-relativistic action.
The existence of different conformal frames has long ago raised the issue of their physical
equivalence [12]. After some debates, this question, in principle, appears to have been
resolved (see [13]). The conformal frames are physically equivalent and describe the same
observable phenomena if one carefully takes into account conformal transformation of all
masses. Thus, in the Einstein frame, one then deals with so-called “running units”, with all
physical masses becoming scalaron-dependent in a universal way.

Although the relation between the conformal frames has been understood in general, it
is, perhaps, worth giving it a closer look in the concrete theory of fundamental interactions
we are working with. This is the main subject of the present paper, in which we consider
the Standard Model minimally coupled to f (R) theory of gravity. In addition, working in
the Einstein frame, we are going to estimate potential observable effects of f (R) gravity in
a late-time universe in which the oscillating scalaron plays the role of dark matter [6,11].

The Lagrangian of the Standard Model explicitly contains only one dimensionful
parameter (in the units h̄ = c = 1), the vacuum expectation value η0 of the Higgs field.
However, according to our current understanding, this Lagrangian is to be regarded as
an asymptotic local limit of the renormalisation-group flow. The physics that this theory
describes at finite energy scales is characterised also by physical constants arising from
the phenomenon known as dimensional transmutation. Most important of these is the
parameter ΛQCD, which enters the law of renormalisation of the coupling constant of
strong interactions. Simplifying things by disregarding other gauge groups, we may take
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that ΛQCD and η0 determine the masses of all observable particles: hadrons, leptons, and
gauge bosons.

We will see that the scalaron in the Einstein frame couples to the Higgs field, in
particular, through the scalaron-dependence of the new vacuum expectation value η̃(φ).
In this sense, the Einstein frame becomes the frame with transformed, or running mass
units (in the terminology of [12,13]) for all bare masses of elementary particles, which arise
due to the Higgs mechanism. As regards the masses of bound states such as hadrons,
they depend in a non-trivial way also on the implicit dimensionful quantum parameters
such as ΛQCD. This opens up two possibilities of interpreting the theory in the Einstein
frame: as a theory with running implicit parameters (which then becomes the frame with
running mass units), equivalent to the theory in the original Jordan frame, or as a theory
with fixed implicit parameters. Although the two interpretations, in general, differ in their
observable predictions, they become equivalent in situations with a completely stabilised
or weakly excited scalaron. The last situation arises in a late-time universe in which the
excited scalaron plays the role of dark matter [6,11], and we will show that the difference
between these interpretations is practically negligible in this case.

2. Gravitational Constant in the Einstein Frame

In this section, we review the well-known transition from the Jordan frame to the
Einstein frame in the gravity sector. Our attention will be focused on the origin of the
gravitational constant (Planck mass) in this frame.

Adopting the metric signature (−,+,+,+), we write the gravitational action in
the form:

Sg =
∫

d4x
√
−g f (R) . (1)

Note that the function f (R) of the scalar curvature has mass dimension four in the
unit system h̄ = c = 1. In general relativity, we have:

fGR(R) =
M2

P
3

(R− 2Λ) , (2)

where MP =
√

3/16πG ≈ 3× 1018 GeV is a conveniently normalised Planck mass (the
reason for our choice of this normalisation will become clear below). It is customary to
explicitly introduce the factor M2

P/3 in f (R). This can be done without loss of generality,
but we will not do this here for better clarity. The point is that any other constant of the
same dimension can be factored out here, while our aim is to trace the origin of the physical
Planck mass in the Einstein frame.

Proceeding to the Einstein frame, as a first step, one writes action (1) in the form

Sg =
∫

d4x
√
−g
[
ΩR− h(Ω)

]
, (3)

where Ω is a new field with mass dimension two, and h(Ω) is the Legendre transform of
f (R). It is defined by the following equations:

f ′(R) = Ω ⇒ R = R(Ω) , (4)

h(Ω) =
[
ΩR− f (R)

]
R=R(Ω)

. (5)

The inverse transform allows one to calculate f (R) given h(Ω); it is obtained by
variation of (3) with respect to Ω:

h′(Ω) = R ⇒ Ω = Ω(R) , (6)

f (R) =
[
ΩR− h(Ω)

]
Ω=Ω(R) . (7)
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These transformations may involve subtleties as to which solution is to be chosen in (4)
and (6). Solutions of these equations are unique for convex functions, e.g., if f ′′(R) > 0
everywhere in the domain of validity. In what follows, we will assume Ω to be positive;
therefore, in view of (4), we also require1 f ′(R) > 0.

Our next step is to transform action (3) so that its linear term in R takes the Einstein
form. For this purpose, we perform a conformal transformation of the metric:

gµν =
M2

3Ω
g̃µν . (8)

Here, we explicitly introduced an arbitrary mass parameter M, compensating for the
dimension of Ω so that the conformal transformation parameter is dimensionless (leaving
the dimension of the metric intact). With this transformation, we have:

√
−g ΩR =

M2

3
√
−g

3Ω
M2 R =

M2

3

√
−g̃
[

R̃− 3
2

(
∇̃ ln Ω

)2
+ 3 �̃ ln Ω

]
, (9)

in which all objects related to the new metric g̃µν are denoted by tildes. The last term is the
total derivative and can be dropped. The transformed action (3) then becomes:

Sg =
∫

d4x
√
−g̃
[

M2

3
R̃− M2

2

(
∇̃ ln Ω

)2
−W(Ω)

]
, (10)

where

W(Ω) =
M4

9
h(Ω)

Ω2 . (11)

We have obtained an Einstein theory of gravity with a minimally coupled scalar field
and with a Planck mass M. The theory is stable only if the potential W(Ω) has a minimum
at Ω = Ω0. In view of system (4)–(7), this condition is equivalent to the existence of R0,
such that:

R0 f ′(R0) = 2 f (R0) ,
1

f ′′(R0)
− R2

0
2 f (R0)

> 0 . (12)

Then, Ω0 = f ′(R0). From these relations, it is clear that the values of Ω0 and R0 are
independent of M introduced in (8). This is also evident from the fact that the parameter
M enters only as an overall scaling in potential (11).

We then introduce a scalar field (scalaron) φ with a canonical kinetic term and with a
minimum of potential at φ = 0 by setting:2

Ω = Ω(φ) = Ω0eφ/M . (13)

Action (10), eventually, becomes:

Sg =
∫

d4x
√
−g̃
[

M2

3
R̃− 1

2

(
∇̃φ
)2
−V(φ)

]
, (14)

where the scalaron potential V(φ) is calculated by using (5), (11) and (13):

V(φ) ≡W(Ω(φ)) =
M4

9

[
R
Ω
− f (R)

Ω2

]

R=R(Ω)
Ω=Ω(φ)

. (15)

We note that the mass parameter M has appeared as the Planck mass in action (14),
and as an overall scaling in potential (15).3 However, this parameter was introduced in (8)
quite arbitrarily. This might appear paradoxical, as if f (R) gravity does not predict a
specific value for the gravitational constant in the Einstein frame. This paradox is resolved
by examining the matter part of the action, which is done in the following section.
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3. Coupling of Gravity to Matter

As regards the matter action in the Jordan frame, we take it to be that of the Standard
Model minimally coupled to gravity. Proceeding to the Einstein frame via (8) affects
this action as well. Note, however, that most of the Standard Model action is classically
conformally invariant (with proper conformal transformation of the matter fields), and,
therefore, will retain its original form after transformation (8). The only part that breaks
conformal invariance is the Higgs sector, with the action:

SH = −
∫

d4x
√
−g


gµν

(
DµΦ

)†DνΦ + λ

(
Φ†Φ− η2

0
2

)2

 . (16)

Here, Dµ is the gauge covariant derivative involving the SU(2) and U(1) electroweak
gauge fields and acting on the Higgs doublet Φ, and η0 is the symmetry-breaking parameter
in the Jordan frame. After the conformal transformation (8), (13) is accompanied by the
transformation of the Higgs scalar field:

Φ =

√
3Ω
M

Φ̃ , (17)

and this action becomes:4

SH = −
∫

d4x
√
−g̃ g̃µν

[(
DµΦ̃

)†
DνΦ̃ +

1
2M
∇̃µ

(
Φ̃†Φ̃

)
∇̃νφ +

1
4M2 Φ̃†Φ̃ ∇̃µφ∇̃νφ

]

−λ
∫

d4x
√
−g̃

(
Φ̃†Φ̃− βe−φ/M η2

0
2

)2

, (18)

where

β =
M2

3Ω0
> 0 (19)

is a dimensionless constant. We observe the appearance of non-renormalisable interactions
of the scalaron φ with the Higgs field in (18), which, however, are all suppressed by inverse
powers of the Planck mass M.

From (18), one observes that the Higgs vacuum expectation value in the Einstein
frame is:

η̃(φ) =
√

β e−φ/2Mη0 . (20)

It is this parameter that will determine the bare masses of all fermions and gauge
bosons in the model, which are all proportional to it. Now, in the scalaron vacuum φ = 0,
the ratio of η̃0 = η̃(0) =

√
βη0 to the Planck mass M in (14) is:

η̃0

M
=

η0√
3 Ω0

. (21)

This ratio is independent of the chosen scale M in (8), and is uniquely determined
by the original Jordan-frame actions (1) and (16). Only this ratio makes sense and is
physically measurable. This explains the freedom of choosing M arbitrarily in (8). As-
signing the observed value η̃0 ≈ 246 GeV, we should then equate M to the Planck mass
MP =

√
3/16πG ≈ 3× 1018 GeV.

The same reasoning applies to the issue of cosmological constant in the Einstein
frame. We observe that its purely gravitational contribution Λ̃ in this frame is given by the
minimum of the scalaron potential (15):

Λ̃ =
M2

24
R2

0
f (R0)

, (22)
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where we have used equation (12). We see that the observed ratio Λ̃/M2 is also independent
of the chosen scale M in (8). The mass hierarchy problem of modern cosmology can be
expressed as:

Λ̃
M2 �

η̃2
0

M2 � 1 ⇒ R2
0

f (R0)
� R0η2

0
f (R0)

� 1 , (23)

where, we remember, R0 is a solution of (12). The last set of inequalities are written in terms
of the action in the original Jordan frame.

This analysis would be the whole story for a world described by classical fields.
However, the fields in the Standard Model Lagrangian are quantum, and their quantum
dynamics are non-trivial.

The Lagrangian of the Standard Model in the Jordan frame contains only one explicit
dimensionful parameter, the vacuum expectation value η0 of the Higgs field. However,
according to modern understanding, this Lagrangian is to be regarded as the relevant part
of the low-energy (or large-scale) action of some renormalisation-group flow (see, e.g., [18]).
The physics that this theory describes at finite energy scales is also characterised by implicit
dimensionful parameters arising in what is known as dimensional transmutation. Such is
the QCD parameter ΛQCD that enters the law of renormalisation-group flow of the coupling
constant of strong interactions and determines the masses of hadrons (see, e.g., [19,20]).
Simplifying the situation by disregarding other gauge interactions, we may take that two
dimensionful parameters, ΛQCD and η0, control the masses of all particles and bound states,
including hadrons, in the Jordan frame. With this simplification, we will have, for the ith
particle mass:

mi = ΛQCD fi

(
η0

ΛQCD

)
, (24)

where fi(x) are some dimensionless functions.
This consideration opens up two possibilities of interpreting the theory in the Ein-

stein frame.

3.1. Einstein Frame with Running Implicit Parameters

In the matter Lagrangian density, we can proceed to the Einstein frame by the con-
formal transformation (8) of the metric, scaling the Higgs field and the fermionic fields
ψ accordingly:

L = L
(

βe−φ/M g̃µν, β−1/2eφ/2MΦ̃, β−3/4e3φ/4Mψ̃
)
≡ L̃

(
g̃µν, Φ̃, ψ̃, φ

)
. (25)

Here, by virtue of an almost perfect conformal invariance of the action, the last
expression differs from the Lagrangian density L

(
g̃µν, Φ̃, ψ̃

)
only in the Higgs part (18).

However, the scalaron-dependent scaling of quantum fields, together with (8), lead us to a
quantum theory with accordingly scaled, implicit quantum dimensionful parameters. In
particular, the QCD parameter in the Einstein frame is locally scaled as:

Λ̃QCD(φ) =
M√
3Ω

ΛQCD =
√

β e−φ/2MΛQCD , (26)

similarly to the scaling (20) of the parameter η0 in (18). Replacing ΛQCD and η0 in (24) with
their scaled values Λ̃QCD(φ) and η̃(φ) in the Einstein frame, we observe that all masses are
scaled in the same way:

m̃i =
√

β e−φ/2Mmi . (27)

Their ratios to the Planck mass M at the scalaron vacuum φ = 0 are, again, independent
of our choice of M in (8).

Scaling (27) describes the situation of an Einstein frame with running units, an option
first discussed in [12] and further elucidated in [13]. Here, the scalaron, in addition to
the interaction with the Higgs field through the explicit mass parameter η̃(φ) in (18),
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also interacts with matter implicitly via (26) and, therefore, (27). One can arrive at the
same picture by considering the matter Lagrangian density in the Einstein frame with
transformed metric field only, i.e.,

L = L
(

βe−φ/M g̃µν, Φ, ψ
)

, (28)

and treating ΛQCD and related quantum condensates of the ψ fields as quantities coinciding
with their values in the Jordan frame. In this case, one obtains the usual relation between
the stress–energy tensors in two frames:

T̃µν = βe−φ/MTµν . (29)

An expression for the mass of a static localised object is:

mi =
∫

Σ
TµνnµξνdµΣ , (30)

where the integral is taken over a hypersurface Σ, with nµ being the vector field of unit
normal to this hypersurface; ξµ is the timelike killing vector field such that ξµξµ = −1
at spatial infinity, and dµΣ is the volume measure determined by the induced metric on
Σ. Using the conformal transformation laws of these quantities, we again arrive at the
transformation law (27) for the mass.

The two (Jordan and Einstein) frames in this interpretation are equivalent; it is a matter
of convenience in regards to which frame one chooses to work with, as long as one keeps
track of scaling (26) and (27). In particular, all objects (massive as well as massless) move
along the geodesics of the Jordan-frame metric gµν = βe−φ/M g̃µν, which is the “observable”
metric in all respects [12,13].5

3.2. Einstein Frame with Fixed Implicit Parameters

Treating the fields in the Lagrangian L̃
(

g̃µν, Φ̃, ψ̃, φ
)

of (25) as given, and “forgetting”
about their Jordan-frame origin, one can specify their quantum theory by a φ-independent
implicit quantum parameter ΛQCD in the Einstein frame. This will create a situation quite
different from that of Section 3.1, since now, the bare masses of quarks, leptons, and
gauge fields will depend on the scalaron, as before, through the Higgs expectation-value
parameter (20), while the hadron masses will be given by:

m̃i = ΛQCD fi

(
η̃(φ)

ΛQCD

)
, (31)

depending on the scalaron in a way that is more complicated than (27). We see that, in our
framework and strictly speaking, there is no conformal frame with completely fixed units.
Particle masses in this frame depend on the scalaron field in a different manner.

For the scalaron in the vacuum, this difference between frames will not be revealed,
but it will exist in situations where the scalaron is dynamically excited. One such situation
is considered in Section 4.

3.3. Conformal Anomaly

The quantum loop corrections to the classical action lead to the effect that the extra
degree of freedom present in f (R) gravity couples to matter also due to the conformal
anomaly. This is most easily seen in the Einstein frame, in which couplings between
the scalaron and gauge fields with strength tensor Fµν, for small values of |φ|/M, are
proportional to [6,8]:

αg
φ

M
tr FµνFµν , (32)

where αg = e2
g/4π, and eg is the relevant gauge-coupling parameter.
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4. Light Scalaron as Dark Matter

Since the original value of M can be fixed arbitrarily (as was shown Section 3), we fix
it in what follows so that β = 1 (this constant is defined in (19)).

The φ-dependence of the particle masses, such as (27) or (31), might be potentially
interesting in the case of a classically evolving scalaron. This may lead to important
phenomena in the early universe, where the scalaron can be highly excited. For example, if
the scalaron plays the role of an inflaton, when proceeding to the Einstein frame, it may be
necessary to take into account the dependence (27) of the masses of fundamental particles
on the scalaron field during inflation. The same dependence is responsible for particle
creation during preheating in such an inflationary theory [14,23].

In this paper, however, we will focus on the situation that arises in a late-time universe
in which the oscillating scalaron plays the role of dark matter [6,11]. In this case, the scalaron
oscillations might lead to potentially observable effects. Such effects are determined by the
small ratio:6

|φ|
M
'
√

2ρs

M2
M
m
' 10−33

(
ρs

ρs

)1/2

(1 + z)3/2 eV
m

, (33)

where z is the cosmological redshift, ρs is the local scalaron energy density, ρs is its spatial
average in the universe, and m is the scalaron mass. The effects are very small because the
scalaron mass in the interpretation of the Einstein frame with running units is bounded
from below by non-observation [25,26] of the additional Yukawa forces [27] between non-
relativistic masses (see also [6,28]):

m ≥ 2.7× 10−3 eV at 95% C.L. (34)

As regards the Einstein frame with constant implicit parameter ΛQCD, the φ-dependence
in (31) will have additional smallness because the contribution of the bare quark masses to
the masses of hadrons constitute only a tiny fraction of the total mass [19].

Let us examine this in more detail for the late-time universe. The effect is most promi-
nent in the interpretation of the Einstein frame with running units, where the observable
metric will be that of the Jordan frame. Then, in the Einstein frame, all masses scale with
the scalaron as (27). This produces second-order effects in the small gravitational potential
because of the smallness of the ratio (33). However, in the observable metric, this gives
an effect of the first order because of the scaling gµν = e−φ/M g̃µν. This will not affect null
geodesics apart from additional redshift, but will produce an effective Newtonian potential,

ϕeff = ϕ− φ

2M
, (35)

for non-relativistic matter. Here, ϕ is the Newtonian potential in the Einstein-frame metric
g̃µν, which is determined by the distribution of the usual matter and dark matter in the
form of scalaron. In the Newtonian approximation to gravity, which is of relevance here, it
is described by the Poisson equation ∇2 ϕ = 3ρ/4M2, where ρ is the total energy density
of matter, including the scalaron field.

The scalaron field φ of mass m is oscillating in time with the following period:

t =
2π

m
≈ 4.1× 10−15

(
eV
m

)
s . (36)

Therefore, the last term in the effective Newtonian potential (35) is rapidly oscillating in
time with space-dependent amplitude. Since one is interested in the motion of astrophysical
bodies on time scales much longer than (36), one should perform time averaging of their
dynamics in such a rapidly oscillating potential. The solution to this classical problem is
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well known (see §30 in [29]). The average long-term effective potential acting on test bodies
is given by:

ϕeff = ϕ +
(∇φ)2

8m2M2 = ϕ +
(∇φ0)

2

16m2M2 , (37)

where overline denotes averaging over a period of oscillations of φ, and φ0 is the space-
dependent amplitude of its oscillations. Since the scalaron energy density ρs = 1

2 m2φ2
0,

we have:

ϕeff = ϕ +
(∇ρs)

2

32m4M2ρs
= ϕ +

(
∇∇2 ϕs

)2

24m4∇2 ϕs
, (38)

where we have used the Poisson equation ρs =
4
3 M2∇2 ϕs for the scalaron contribution ϕs

to the total gravitational potential ϕ.
The scalaron energy density, and the gravitational potential ϕs, hence, varies on the

spatial scale of the de Broglie wavelength (see [30] for a review on such wave dark matter):

λdB '
2π

mv
= 124

(
10−3 eV

m

) (
10−3

v

)
cm , (39)

where v is the velocity dispersion in a virialised dark-matter halo (in units of the speed of
light). For the last term in (38), this gives an estimate:

(
∇∇2 ϕs

)2

24m4∇2 ϕs
∼ |ϕs|

24m4λ4
dB
∼ 10−4v4|ϕs| . (40)

Here, we have replaced all spatial gradients by the characteristic inverse length λ−1
dB .

For typical velocity dispersions v ∼ 10−2−10−3, this is many orders of magnitude smaller
than |ϕs|. The de Broglie wavelength scale (39) and time scale tdB = λdB/v themselves
are rather small for masses m & 10−3 eV allowable in this theory. The direct effects of the
scalaron oscillations are, thus, quite negligible, and the Jordan and Einstein conformal
frames are practically indistinguishable in this case.

Couplings (32) due to the conformal anomaly lead to the scalaron decay into pho-
tons, with lifetime τ ∼ M2/α2m3 ∼ 1036 (eV/m)3 yr, exceeding the age of the universe
(1.4× 1010 yr) for m � 108 eV. (Here, α is the fine-structure constant.) For the scalaron
masses of order m ∼ 10−3 eV, as in the scenario of [11], such a light scalaron dark matter
appears to be quite “sterile” and hard to detect by means other than gravitationally. The
smallness of the specific gravitational manifestations in the scenario under consideration
would make it very difficult to establish that we are dealing with f (R) gravity. Perhaps,
this could be done only by detecting a specific Yukawa contribution to gravitational forces
at submillimetre spatial scales [25–28].

5. Discussion

A generic gravity theory with action (1) has a stable point if there exists a solution
to (12). In this case, it is conformally transformed by (8) to a general-relativistic theory (14)
with a minimally coupled scalar field with potential (15) that has minimum at φ = 0. The
gravitational coupling at this stage is introduced arbitrarily in (8). However, its physical
value in the Einstein frame is uniquely determined by the function f (R), together with
the matter action in the Jordan frame. This was demonstrated in Section 3, where we
considered the action of the Standard Model minimally coupled to gravity in the Jordan
frame.

We reviewed and further elucidated two possible interpretations of this model in the
Einstein frame, namely, as the frame with either running or constant implicit quantum
parameters. The Standard Model contains at least one such implicit parameter ΛQCD, which
transforms under conformal transformation of the metric. The difference between these
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two interpretations, however, is practically insignificant in situations where the scalaron
field is weakly excited. We verified this for the case of cosmology in which a light scalaron
plays the role of dark matter. In such a scenario, the fact that we are dealing with f (R)
gravity could be observationally verified, perhaps, only by detecting a specific Yukawa
contribution to gravitational forces at submillimetre spatial scales [25–28].
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The following abbreviations are used in this manuscript:

C.L. Confidence Level
GR General Relativity
QCD Quantum Chromodynamics

Notes
1 This requirement ensures that the effective gravitational coupling is positive in the Jordan frame, see [1–3] for reviews.
2 If W(Ω) does not have a minimum, we still can write (13) by choosing Ω0 arbitrarily. In this case, however, the theory will not

have a stable point.
3 The appearance of a simple expression φ/M (without numerical factor) in the exponent (13) and in all subsequent exponents of

this type is the reason why we have chosen the particular normalisation constant in (8) and in (2).
4 A similar result of the conformal transformation of fields was under consideration, e.g., in [14–16]. In passing, we note that

conformal transformation, in our theory, where the Higgs scalar field is minimally coupled to gravity, looks much simpler
compared to the case of its non-minimal coupling, as is the case, e.g., in the model of Higgs inflation [17].

5 In the context of scalar-tensor theories, such an equivalence between frames on the tree level was recently demonstrated in [16].
On the one-loop level, on-shell equivalence between conformal frames was demonstrated previously in [21,22].

6 For the solar neighbourhood, the dark-matter density is ρdm ' 10−2 M�/pc3 [24], which gives
(
ρs/ρs

)1/2 ' 500.
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Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522,
11001 Belgrade, Serbia; vborka@vinca.rs (V.B.J.); violeta@vinca.rs (V.N.N.); lazarov@vinca.rs (N.Ð.L.)

2 Astronomical Observatory, Volgina 7, P.O. Box 74, 11060 Belgrade, Serbia; pjovanovic@aob.rs
* Correspondence: dusborka@vinca.rs

Abstract: We estimate the parameters of the Hybrid Palatini gravity model with the Schwarzschild
precession of S-stars, specifically of the S2, S38 and S55 stars. We also take into account the case of bulk
mass distribution near the Galactic Center. We assume that the Schwarzschild orbital precession of
mentioned S-stars is the same as in General Relativity (GR) in all studied cases. In 2020, the GRAVITY
Collaboration detected the orbital precession of the S2 star around the supermassive black hole
(SMBH) at the Galactic Center and showed that it is close to the GR prediction. The astronomical data
analysis of S38 and S55 orbits showed that, also in these cases, the orbital precession is close to the
GR prediction. Based on this observational fact, we evaluated the parameters of the Hybrid Palatini
Gravity model with the Schwarzschild precession of the S2, S38 and S55 stars, and we estimated the
range of parameters of the Hybrid Palatini gravity model for which the orbital precession is as in GR
for all three stars. We also evaluated the parameters of the Hybrid Palatini Gravity model in the case
of different values of bulk mass density distribution of extended matter. We believe that proposed
method is a useful tool to evaluate parameters of the gravitational potential at the Galactic Center.

Keywords: alternative theories of gravity; supermassive black hole; stellar dynamics

1. Introduction

In recent decades, various modified gravity theories have appeared as potential exten-
sions of Einstein’s gravity theory [1]. One of the reasons for a postulation of the mentioned
theories is the possibility to exclude the concept of dark energy and dark matter and to
explain cosmological and astrophysical data collected at different scales considering further
degrees of freedom of the gravitational field. This occurs as a consequence of geometric
corrections [2]. Modified gravity theories have to resolve different observations concerning,
starting from the Solar system, neutron stars, binary pulsars, spiral and elliptical galaxies
and clusters of galaxies, up to the large-scale structure of the Universe [3–7]. In Ref. [3] a
cosmological reconstruction (characterized by a very general character) of various modified
gravity is given, and, in [4] various formalisms of representatives (F(R), F(G), F(T)) of
standard modified gravity are presented, as well as alternative theoretical approaches.
Ref. [5] described stars and cluster of galaxies (spiral and elliptical galaxies), beyond the
scope of dark matter, by extending the Hilbert–Einstein action to f (R) gravity, and, in [6],
the authors discussed observations and experiments, which depicted the fact that GR and
the standard model of elementary particles are unable to explain the phenomena behind
the dark matter concept. In [7], the chosen cosmological parameters were determined
(as accurate cosmological solutions) within the framework of the represented nonlocal
gravitational model, which showed satisfactory agreement with experimental observations.

Universe 2022, 70, 915. https://doi.org/10.3390/universe8020070 https://www.mdpi.com/journal/universe287



Universe 2022, 70, 915

Some Alternative Theories of Gravity.

Let us recall that numerous alternative gravity theories have been proposed (see,
e.g., [8–18]). For example, the alternative theories of gravity are discussed in [8]. In [9],
the authors introduced extension of the post-Newtonian relativistic theory by additionally
considering all relativistic effects, which originated from the presumable existence of a scalar
field. Ref. [10] presents a review article, in which the authors discussed specific aspects of
4D massive gravities. In Ref. [11] a numerical solution of the nonlinear Pauli–Fierz theory
is given. The proposed solution represents an improvement of the existing solution of GR,
which was achieved by including the Vainshtein mechanism. In [12], extended theories
of gravity were discussed by taking into account f (R) and scalar-tensor gravity in metric
and Palatini approaches; the issues, such as inflation, large scale structure, dark energy,
dark matter and quantum gravity, were discussed also. Ref. [13] is a review of modified
theories of gravity and models of extra dimensions, such as Scalar-Tensor, Einstein–Aether,
Bimetric theories, TeVeS, F(R), Horava–Lifschitz gravity, Galileons, Ghost Condensates,
Kaluza–Klein, Randall–Sundrum, DGP, higher co-dimension braneworlds as well as the
construction of the Parametrized Post-Friedmannian formalism. In the paper [14], the Dvali–
Gabadadze–Porrati model (DGP), cascading gravity, ghost-free massive gravity, new mass
gravity, Lorentz-violating massive gravity and non-local massive gravity are discussed.
The f (R) modifications of general relativity, considering galaxy clusters, cosmological
perturbations, and N-body simulations, are discussed in [15]. A few observational mass
bounds have been established, and among them, the mass bounds from the effects of the
Yukawa potential in Ref. [16]. Ref. [17] presents monograph in which the mathematical
background is given (for example, conservation laws and symmetries for different theories
of gravity), necessary for comparison of methods of perturbations in general relativity; this
mathematical introduction enables the building of different modified-gravity theories. In
the paper [18], the method for the evaluation of the parameters of the gravitational potential
at the Galactic Center, based on the extended gravity models (power-law f (R), general
Yukawa-like corrections, scalar-tensor gravity and non-local gravity theories formulated in
both metric and Palatini formalism) is given.

Some Alternative Approaches for the Weak Field Limit of Theories of Gravity.

Noteworthy, different alternative approaches for the weak field limit (starting from
fourth-order theories of gravity, such as f (R)), have been proposed and considered [19–32].
For example, in Ref. [19] the gravitational microlensing is discussed, considered from the
aspect of the weak field limit of fourth-order gravity theory, and, in [20], determination
of the mass and the size of dark matter sphere is discussed, based on the γ-ray emission
from the Galactic Center region. Ref. [21] examined the consequences of modified f (R)
gravity (power-law f (R)) on galactic scales, by performing an analysis of rotational curves.
In Ref. [22], the authors discuss the search for general relativistic periastronic shifts, which
is limited by the existence of clusters around black hole, which could modify orbits due to
classical effects that mask the general relativistic effect. Ref. [23] represents a discussion of
solving the problem of dark matter and dark energy (which could be done by considering
changing the fundamental law of gravity). Ref. [24] showed that the metric approach
of any analytic f (R)-gravity model presents a weak field limit (the standard Newtonian
potential is corrected by a Yukawa-like term), and [25] considered the limitations of the
range parameters λ that are described by modifications of Newton’s inverse square law of
the gravity similar to Yukawa; the results of this study could affect all modified theories
of gravity, which include Yukawa-type terms (which are characterized by a range of
parameters much larger than the size of the solar system). In [26], a Yukawa-like long-
range modified model of gravity (MOG) is discussed. Ref. [27] considered the Modified
Newtonian Dynamics, introducing the integration of the equations of motion of Magellanic
clouds in a numerical manner. In the paper [28], the limitation of the Rn gravity at Galactic
scales, based on the simulation of the S2-like stars orbits, is discussed; it was shown that Rn

gravity impacts the simulated orbits in a qualitatively similar way as a bulk distribution of
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matter in Newton’s gravity. In Ref. [29], an analytic fourth-order theory of gravity (which
is non-minimally coupled with a massive scalar field) is applied, to explain deviations of
S2 star orbit, by using gravitational potentials derived from modified gravity models in the
absence of dark matter. Refs. [30,31] considered an analytical expression for the precession
angle (with assumption of a power-law profile of the dark matter density); they calculated
the mass of the dark matter in the vicinity of a SMBH at the galaxy center, based on the
observations of nonrelativistic precession of the orbits of S0 stars. While, in [32], the authors
discuss the physical processes that occurred at the center of the galaxy; the results of this
study revealed the mass of the SMBH Sgr A∗.

Experimental Limits Related to Extended Theories of Gravity.

Also, literature review revealed the presence of some experimental limits related to
extended theories of gravity [33–41]. In Ref. [33], the authors used cosmography to examine
the kinematics of the Universe by a combination of theoretical derivation of cosmological
distances and numerical data fitting, while in [34], the authors investigated whether cos-
mography could be used to ensure information on the cosmological expansion history and
discussed the limits of experimentally probing of cosmographic expansion. In Ref. [35], the
authors performed cosmographic analyses and discussed the cosmological consequences
of f (R) and f (T) gravities as well as their influence on the cosmography framework. They
depicted to the unfavorable degeneracy problem (cosmographic constraints on f (R) and
f (T) cannot be distinguished by theories of GR extensions and dark energy models). In [36],
the differences between the Newtonian and relativistic approaches are described, and it is
revealed that the relativistic approach presents a more suitable strategy for further probing
of modified theories of gravity. In Ref. [37] the generalization of the gravitational action to
a function f (R) is investigated, as an alternative to the dark matter and dark energy, and
the weak field limit of the f (R)-gravity is discussed. In [38], the analytical f (R)-gravity
model is considered, which is characterized by a Yukawa-like modification of the New-
tonian potential, and this leads to a modification of particle dynamics. In the paper [39],
the authors performed a comparison between the ΛCDM cosmological model and f (R)
and f (T) models; they presented a new approach to breaking degeneration among dark
energy models, which was introduced to overcome the limits of standard cosmography.
The reference [40] discussed the usage of S-stars observations to constrain a Yukawa-like
gravitational potential and considered the fact that deviations from GR are parametrized by
the strength of the potential, δ, and its length scale, λ. In [41], it is shown that the observing
stars orbiting closer to the central gravitational source could allow distinguishing between
the black hole and wormhole nature of this object (by observing S2 and S62 stars).

Gravitational Potentials and the Stellar Dynamics.

In this study, the gravitational potentials of self-gravitating structures were investi-
gated by considering the stellar dynamics. Recall that S-stars are the bright stars that move
around the Galactic Center [42–57] where Sgr A∗ (which presents a compact massive object)
is located. The conventional model, used to describe the Galactic Center, considers the
SMBH with mass around 4.3× 106M� and an extended mass distribution formed with
stellar cluster and dark matter. A spherical shell, where trajectories of bright stars are
located, should be characterized by a total mass of bulk distribution, which is significantly
smaller compared to the black hole mass. In Ref. [42] measurements of the accelerations
for three stars located ∼0.005 pc from the central radio source Sgr A∗ are discussed; the
obtained data revealed the localization of the dark mass to within 0.05± 0.04 arcsec of
the nominal position of Sgr A∗. In [43], astrometric and radial velocity measurements,
performed by the Keck telescopes, are discussed, as well as the estimated distance (R0) and
the galaxy’s local rotation speed. They noticed that increased black hole mass depicted
a longer period for the innermost stable orbit and longer resonant relaxation timescales
for stars in the vicinity of the black hole. The authors of paper [44] discussed a moderate
improvement of the statistical errors of mass and distance to Sgr A∗, and, in [45], the
orbits of 38 stars (among them, the orbit of the S2 star) were determined; all stellar orbits
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were fitted satisfactorily by a single point mass potential. In Ref. [46], the high resolution
astrometric imaging is discussed, which is used to investigate two thirds of the orbit of the
star currently closest to the massive black hole candidate SgrA∗; they authors found that the
star was on a bound, highly elliptical Keplerian orbit around SgrA∗, with an orbital period
of 15.2 years and a pericentre distance of only 17 light hours. The authors in [47] considered
a massive black hole in the Galactic Center and a nuclear star cluster, by analyzing the size
and motion measurements of the radio source Sgr A∗, which is understood as a massive
black hole surrounded by a dense nuclear star cluster. In Ref. [48], the authors examined
the behavior of a SMBH by investigating stars with short orbital periods at the center of
our galaxy; measurements from the Keck Observatory discovered the star S0-102 orbiting a
black hole with a period of less than 15 years. Ref. [49] represents an update of the main
conclusions regarding the measurement of mass and distance to Sgr A∗, derived from
data obtained by monitoring stellar orbits in the Galactic Center. In Ref. [50], it is shown
that short-period stars orbiting around the SMBH in our Galactic Center can successfully
be used to probe the gravitational theory in a strong regime. In [51], the behavior of the
star S2, which orbits a SMBH in a short period of time (less than 20 years) is considered;
the authors reported on the first binarity limits of S0-2, observed from radial velocity
monitoring. The GRAVITY Collaboration [52] discussed the orbit of the S2 star around
the massive black hole Sgr A∗, which is used as probe of the gravitational field in the
center of the galaxy; by using different statistical analysis methods, the authors detected the
combined gravitational redshift and relativistic transverse Doppler effect for the S2 star and
found that the S2 data were not consistent with pure Newtonian dynamics. In [53], they
presented the results of the measurement of the R0 (the geometric distance to the Galactic
Center), by probing the S2 star, which is orbiting around the SMBH Sgr A∗. In Ref. [54], the
authors examined the prediction of GR (that a star passing near a SMBH shows a relativistic
redshift), by using observations of the Galactic Center star S2; a combination of special
relativistic- and gravitational-redshift was discovered, which confirms the model of GR
and excludes Newtonian’s model. Ref. [55] considered the assumption of the presence of a
scalar field structure associated with a black hole at the center of our galaxy. The authors
used the results of the orbital perturbation theory to compute the extent to which the orbital
parameters of the S2 star change during the orbital period. Ref. [56] introduced a new
ways of probing fundamental physics, tracking stars in the Galactic Center; a new way of
looking for changes in the fine structure constant was proposed, by using measurements of
late-type evolved giant stars from the S-star cluster orbiting a SMBH in our Galactic Center.
Ref. [57] reported the first detection of the GR Schwarzschild precession in S2’s orbit.

Ruffini, Argüelles & Rueda [58] discussed a dark matter distribution and proposed that
it consists of a dense core and a diluted halo. The dark matter distribution was named as
the RAR-model. In 2021, Becerra-Vergara et al. [59] commented this model and concluded
that the mentioned model ensures a better fit of bright star trajectories compared to the
SMBH model. The properties of bright star trajectories in the gravitational field of a dense
core, described by the RAR-model, were discussed in [60]. In such a case, trajectories of
stars are ellipses as in Kepler’s two-body problem but with one big difference: instead of
their foci, the centers of the ellipses coincide with a Galactic Center, and their orbital periods
do not depend on their semi-major axes. Therefore, these properties are not consistent
with existing observational data [60]. The orbital precession occurs as a consequence of
relativistic effects, as well as due to extended mass distribution, because both effects could
cause perturbation of the Newtonian potential. In the first case, the precession induces a
prograde pericentre shift, while, in the second case, retrograde shift occurs [61]. In both
cases, as a final result, rosette-shaped orbits are obtained [62,63].

In addition to Schwarzschild precession, relativistic frame-dragging due to the spin
of SMBH, also known as the Lense-Thirring (LT) effect, could cause orbital precession.
The LT precession in the case of several S-stars was studied in references [18,64–67], and
it was found that it is much smaller than Schwarzschild precession [18,65]. The spin of
Sgr A∗ was estimated to χg < 0.1 by the observed distribution of the orbital planes of the
S-stars [68]. In this paper, we considered only the solutions of the Hybrid Palatini gravity
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model for a spherically symmetric and stationary gravitational field, which do not include
the SMBH spin. Having this in mind, we did not take into account the LT precession in our
calculations for S-stars precession.

In our previous studies, we considered various extended gravity theories and com-
pared theoretical models with astronomical data for different astrophysical scales: the S2
star orbit [28,69–77], fundamental plane of elliptical galaxies [78–80] and barionic Tully–
Fischer relation of spiral galaxies [81]. In this study, as a continuation of our previous
paper [18], the parameters of the Hybrid Palatini gravity model will be evaluated by
Schwarzschild precession of the S2, S38 and S55 stars. Here, we will also take into account
the bulk mass density distribution of extended matter in the Galactic Center and assume
that the orbital precession of the S2, S38 and S55 stars are equal to the corresponding GR
predictions of 0◦.18, 0◦.11 and 0◦.10 per orbital period, respectively. We use this assumption
because the GRAVITY Collaboration detected the orbital precession of the S2 star around
the SMBH [57] and showed that it is close to the corresponding prediction of GR. According
to data analysis in the framework of Yukawa gravity model in the paper [40], the orbital
precessions of the S38 and S55 stars are close to the corresponding prediction of GR for
these stars.

The paper is organized in the following way. In Section 2, we present the basics of the
Hybrid Palatini theoretical model as well as the model for bulk mass density distribution of
extended matter. In Section 3, we evaluate the parameters of the Hybrid Palatini theoretical
model by Schwarzschild precession of the S2, S38 and S55 stars and discuss the obtained
results. Our concluding remarks are given in Section 4, while Appendix A contains the
detailed derivation of gravitational potential in the weak field limit for this gravity model.

2. Theory

In this article, we found constraints on the parameters of the Hybrid Palatini gravity
model with request that the obtained values of orbital precession angles are the same
as in GR but for different values of mass density of matter. We used a weak field limit
for the Hybrid Palatini gravitation potential. A straightforward extension of GR is f (R)
gravity, which, instead of the Einstein–Hilbert action (linear in the Ricci scalar R), considers
a generic function of R [19–21,82–85].

2.1. Modified Hybrid Palatini Gravity Model

There are two variational principles that one can apply to the Einstein–Hilbert action
in order to derive Einstein’s equations: the standard metric variation and the Palatini
variation [85–87]. The choice of the variational principle is usually referred to as a formalism,
and thus one can use the terms metric or second-order formalism and Palatini or first-
order formalism. In the Palatini variation, the metric and the connection are assumed to
be independent variables, and one varies the action with respect to both of them. This
variation leads to Einstein’s equations, under the important assumption that the matter
action does not depend on the connection. Both variational principles lead to the same field
equation for an action whose Lagrangian is linear in R, for example in the context of GR,
but not for a more general action, for example in extended gravities. f (R) gravity in the
metric formalism is called metric f (R) gravity, and f (R) gravity in the Palatini formalism
is called Palatini f (R) gravity. The Palatini variational approach leads to second-order
differential field equations, while the resulting field equations in the metric approach are
fourth-order coupled differential equations [85–87]. There is also a novel approach, the
hybrid variation of these theories. It consists of adding, to the metric Einstein–Hilbert
Lagrangian, an f (R) term constructed within the framework of the Palatini formalism, i.e.,
purely metric Einstein–Hilbert action is supplemented with metric-affine correction terms
constructed as Palatini [88–91]. The f (R) theories are the special limits of the one-parameter
class of theories where the scalar field depends solely on the stress energy trace T (Palatini
version) or solely on the Ricci curvature R (metric version). Here, we consider the hybrid
metric-Palatini gravitational theory. In the general case, the field equations are fourth-order
both in the matter and in the metric derivatives. Hybrid metric-Palatini theory provides a
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unique interpolation between the two a priori completely distinct classes of gravity theories.
The aim of this formulation has two-fold benefits: from one side, one wants to describe
the extra gravitational budget in a metric-affine formalism; on the other side, one wants to
cure the shortcomings emerging in f (R) gravity both in metric and Palatini formulations.
In particular, hybrid gravity allows to disentangle the metric and the geodesic structures
pointing out that further degrees of freedom coming from f (R) can be recast as an auxiliary
scalar field. An interesting aspect of metric-Palatini theories is the possibility to generate
long-range forces without entering into conflict with local tests of gravity. The possibility of
expressing these hybrid f (R) metric-Palatini theories using a scalar-tensor representation
simplifies the analysis of the field equations and the construction of solutions. To obtain
deeper insights, see [86,88–93].

The Palatini formalism and the metric one are completely different both from a qual-
itative and from a quantitative viewpoint. In the Palatini formalism, field equations are
easily solvable [94]. In this sense, the Palatini formalism is easier to handle and simpler to
analyze compared with the corresponding metric formalism. It is clear that any reasonable
model of gravity should satisfy the standard solar system tests. It has been shown that, in
principle, the Palatini formalism provides a good Newtonian approximation. It is known
that on-shell formulation of Palatini gravity coincides with that of same metric gravity [94].
In the paper [95], a class of scalar-tensor theories was proposed including a non-metricity
that unifies the metric, Palatini and hybrid metric-Palatini gravitational actions with non-
minimal interaction. The authors presented a new approach to scalar-tensor theories of
gravity that unifies metric, Palatini and hybrid. Such an approach will encompass, within
one family of theories, not only metric but also Palatini scalar-tensor theories of gravity and
will be a natural extension of the hybrid metric-Palatini gravity. It is shown that every such
theory can be represented on-shell by a purely metric scalar-tensor theories possessing the
same solutions for a metric and a scalar field.

Recall that, in the weak field limit (see the Appendix A for detailed explanation), the

scalar field behaves as φ(r) ≈ φ0 +
2Gφ0M

3rc2 e−mφr, where M is the mass of the system and r
is the interaction length. The leading parameters for Hybrid Palatini gravity are mφ and
φ0. The aim of this study was to evaluate these parameters. We can write the modified
gravitational potential in the following form [71,89]:

Φ(r) = − G
1 + φ0

[
1− (φ0/3)e−mφr]M/r. (1)

The parameter mφ represents a scaling parameter for gravity interaction and [mφ] =
[Length]−1. We measured the parameter in AU−1 (AU is the astronomical unit). The
parameter φ0 represents the amplitude of the background value of the scalar field φ and it
is dimensionless. Non-zero values of these two parameters, if obtained, would indicate a
potential deviation from GR.

2.2. Orbital Precession in Case of Bulk Mass Distribution

In this study, we investigated S2, S38 and S55 stars. Orbital precession of investigated
stars is influenced by other stars, gas and dark matter. It is expected that the stars represent
the dominant component of the extended galactic mass distribution near the central SMBH.
To investigate orbital precession of S-stars, we made two assumptions. First, we suppose
the presence of the Hybrid Palatini gravitational potential [71]. The second assumption is a
bulk distribution of mass around SMBH in the central regions of our galaxy [77]:

M(r) = MSMBH + Mext(r). (2)

A bulk mass distribution M(r) consists of the central black hole of mass MSMBH =
4.3× 106M� [44] and extended mass distribution Mext(r) enclosed within some radius r.
Mext(r) is the total mass, including the stellar cluster, interstellar gas and dark matter. To
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describe the mass density distribution of extended matter, we adopted a double power-law
mass density profile [55,96,97]:

ρ(r) = ρ0

(
r
r0

)−α

, α =

{
2.0± 0.1, r ≥ r0
1.4± 0.1, r < r0

(3)

where ρ0 is varied from 2 to 8 ×108 M� · pc−3 and r0 = 10′′.
In the case of S-stars throughout the whole region, which we investigated, we can

choose only one value of power-law exponent: α = 1.4.
A combination of the above mentioned formulas enabled us to obtain the following

expression for the extended mass distribution:

Mext(r) =
4πρ0rα

0
3− α

r3−α. (4)

Note that, in [30,31], the authors used a similar method for estimation of the total dark
matter mass near the SMBH at the Galactic Center based on observations of orbital preces-
sion of S-stars and derived an analytical expression for the precession angle in the case of a
power-law profile of the dark matter density.

The gravitational potential for the extended mass model can be evaluated as [20]:

Φext(r) = −G
r∞∫

r

Mext(r′)
r′2

dr′ =

=
−4πρ0rα

0 G
(3− α)(2− α)

(
r∞

2−α − r2−α
)
,

(5)

where r∞ is the outer radius for an extended mass distribution of matter. The total gravita-
tional potential is obtained as a sum of the Hybrid Palatini potential for SMBH with mass
MSMBH and potential for extended matter with mass Mext(r):

Φtotal(r) = Φ(r) + Φext(r). (6)

Modified gravity potential, similarly to GR, gives precession around SMBH. At the
center of the galaxy, around the SMBH, there are invisible sources of mass (clouds of gas,
stars and their remnants and a distributed mass in the form of the diffuse dark matter).
This additional invisible sources of mass would cause deviation of the total Newtonian
gravitational potential [30–32]. As a result of both effects, the orbits of S-stars would be
unclosed and would precess. If it is assumed that the total potential Φtotal(r) does not differ
significantly from the Newtonian potential, the perturbed potential has the following form:

Vp(r) = Φtotal(r)−ΦN(r) ; ΦN(r) = −
GM

r
. (7)

3. Results and Discussion

In this section, we give the estimation of parameters of the Hybrid Palatini gravity
model by Schwarzschild precession of the S2, S38 and S55 stars, with and without taking
into account the bulk mass density distribution of extended matter in the Galactic Center.
We assume that the orbital precession of the S2, S38 and S55 stars is equal to the GR value.
The main reason is that the GRAVITY Collaboration detected the orbital precession of the
S2 star and showed that it is close to the GR prediction and that the direction is the same
as in GR [57]. The second reason is that, according to astronomical data fitting in Yukawa
gravity model, which are presented in the paper [40], the orbital precessions of the S38 and
S55 stars are also close to the corresponding prediction of GR for these stars.
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Calculation of Orbital Precession of S-Stars

A general expression for apocenter shifts for Newtonian potential and small perturbing
potential is given as a solution (in Section III Integration of the equations of motion, Chapter
15 Kepler’s problem) of problem 3, page 40, Equation (1) in the Landau and Lifshitz
book [98]. Assuming that a particle moves in slightly perturbed Newtonian potential,
Adkins and McDonnell [62] derived an expression that is equivalent to the above mentioned
relation from the Landau and Lifshitz book [98] but in an alternative way. It was shown
that the expressions are equivalent, and, after that, they calculated apocenter shifts for
several examples of perturbing functions.

According to [62], the orbital precession ∆θ per orbital period, induced by small pertur-

bations to the Newtonian gravitational potential ΦN(r) = −
GM

r
could be evaluated as:

∆θ =
−2L

GMe2

1∫

−1

z · dz√
1− z2

dVp(z)
dz

, (8)

while, in the textbook [98], it was given in the form

∆θ =
2

GMe

π∫

0

cos ϕr2 ∂Vp(r)
∂r

dϕ, (9)

where Vp(z) is the perturbing potential, r is related to z via: r =
L

1 + ez
in Equation (8) (and

r =
L

1 + e cos ϕ
in Equation (9)), and L is the semilatus rectum of the orbital ellipse with

semi-major axis a and eccentricity e:

L = a
(

1− e2
)

. (10)

Equations (8) and (9) are equivalent, i.e., Equation (8) can be obtained from Equation (9)
after substitution: z = cosϕ.

Dokuchaev and Eroshenko [30–32] evaluated relativistic precessions around SMBH in
the case of an additional potential due to the presence of dark matter. The precession angle
per orbital period is expressed analytically using the hypergeometric function [30–32]:

δθ = − 4π2ρ0rα
0 L3−α

(1− e)4−α MSMBH
2F1

(
4− α,

3
2

; 3;− 2e
1− e

)
, (11)

where 2F1 is the hypergeometric function. This expression is in good agreement with the
corresponding expression given in the Landau and Lifshitz book [98]. More details are
given in the references [30–32]. If one takes the expressions for precession from the books
by Danby [99] (Chapter 11 equation 11.5.13) and by Murray and Dermott [100] (Chapter 2,
equation 2.165.), one can obtain the same equations as the above Equation (8).

To calculate the precession of the S2, S38 and S55 stars in Hybrid Palatini modified
gravity, we assumed that the perturbed potential is of the form:

Vp(r) = Φ(r) + Φext(r)−ΦN(r); ΦN(r) = −
GM

r
, (12)

and it can be used to calculate the precession angle according to Equation (8):
In order to investigate the parameters of the Hybrid Palatini gravity, which, in the case

of the extended mass distribution, give the same orbital precession as GR, we graphically
presented Equation (8) by adopting different values of the extended mass density ρ0 and
for three different S-stars. In that way, we created the below Figures 1–6 showing the
dependence of orbital precession angle ∆θ on the gravity parameters φ0 and mφ for several
extended mass densities ρ0 and for the following three S-stars: S2, S38 and S55. The
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observed quantities that are used in this paper are the parameters of the central SMBH in
our galaxy as well as the orbital elements for the mentioned stars.

For our calculations, we used the results presented in [49], according to which, the
mass of the SMBH of the Milky Way is MSMBH = 4.3× 106 M�; the semi-major axis of the
S2 star orbit is a = 0.′′1255, and its eccentricity is e = 0.8839; the semi-major axis of the S38
star orbit is a = 0.′′1416, and its eccentricity is e = 0.8201; and the semi-major axis of the
S55 star orbit is a = 0.′′1078, and its eccentricity is e = 0.7209.

Figure 1 shows the precession per orbital period for the φ0 - mφ parameter space in the
case of the Hybrid Palatini gravity potential with extended mass distribution in the case of
the S2 star. The mass density distribution of extended matter is ρ0 = 2× 108M�pc−3. The
white dashed line depicts the locations in the parameter space where the precession angle
has the same value as in GR for the S2 star (0◦.18). It can be shown that precession of the
orbit in the Hybrid Palatini potential is in the same direction as in GR [71], but extended
mass distribution produces a contribution to precession in the opposite direction [77].

According to Figure 1 and the formulas for potential in Modified Hybrid Palatini
gravity (see denominator in Equation (1)), parameter φ0 is between −1 (vertical asymptote)
and 0. If φ0 = 0 the Hybrid Palatini potential reduces to the Newtonian one. The maximal
value for mφ is about 0.075 AU−1 and for mφ near 0.005 AU−1, a maximal value for φ0 is
obtained, and it is around −0.1 (see left panel). We can see from the right panel that mφ

can also take negative values, but when mφ become less than −0.0001, the AU−1 parameter
φ0 becomes very near 0, and the Hybrid Palatini potential reduces to the Newtonian one.
Figure 2 represents the same as Figure 1 but for the values of the mass density distribution
of extended matter ρ0 = 4× 108M�pc−3. We notice a similar tendency as in previous cases
regarding dependence of shape of dashed curve with respect to the values of parameters
mφ and φ0. The maximal value for mφ is about 0.065 AU−1, and for mφ near 0.005 AU−1, a
maximal value for φ0 is obtained, and it is around −0.17. If we compare Figures 1 and 2
with the corresponding Figure 4 from paper [18] where we did not take into account the
extended mass distribution (maximal value for mφ is about 0.10 AU−1 and for mφ near
0.005 AU−1, a maximal value for φ0 is obtained, and it is around −0.01), then we can
conclude that the mass density distribution of extended matter ρ0 has a strong influence on
the gravity parameter mφ and value of the precession angle per orbital period for S2 star. If
we increase the value of ρ0, we obtain a decrease of the corresponding values of parameters
mφ and φ0.

Figure 3 shows the precession per orbital period for the φ0 - mφ parameter space in the
case of the Hybrid Palatini gravity potential without extended mass distribution in the case
of the S38 star. The white dashed line depicts the locations in the parameter space where
the precession angle has the same value as in GR for the S38 star (0◦.11). The maximal
value for mφ is about 0.06 AU−1, and for mφ near 0.005 AU−1, a maximal value for φ0 is
obtained, and it is around −0.01. According to the right panel, we can see that mφ can also
take negative values. Figure 4 represent sthe same as Figure 3 but for the mass density
distribution ρ0 = 4× 108M�pc−3. The maximal value for mφ is less than 0.04 AU−1, and
for mφ near 0.005 AU−1, a maximal value for φ0 is obtained, and it is less than −0.2.

Figures 5 and 6 represent the same as Figures 3 and 4 but for the S55 star (precession
angle in GR is 0◦.10). If we compare the the estimated parameters of the Hybrid Palatini
gravity model of the S2 star with the S38 and S55 stars for the same value of ρ0, it can be
seen that results are slightly different, i.e., the obtained values for the parameters φ0 and mφ

are not the same, but they are very close. It appears that parameters of the Hybrid Palatini
gravity depend on the scale (the values of the semi-major axes).

According to Figures 1–6, the mass density distribution of extended matter has sig-
nificant influence on the values of the precession angle and of the parameters φ0 and mφ.
We notice that it is not possible to evaluate φ0 and mφ in a unique way, if we consider only
following two conditions: (1) the orbital precession is prograde as in GR and (2) the value
of the precession angle is as in GR. We obtained lines in the φ0 - mφ parameter space, and
the points of these lines have the coordinates φ0 and mφ, which fulfill the above mentioned
two requests. If we want to obtain only one unique value of parameters φ0 and mφ, we
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need an additional independent set of observations to combine with these obtained sets of
points (φ0, mφ).
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Figure 1. The precession per orbital period for the φ0 - mφ parameter space in the case of the Hybrid
Palatini gravity potential with extended mass distribution in the case of the S2 star. The mass density
distribution of extended matter is ρ0 = 2× 108 M�pc−3. With a decreasing value of the precession
angle, the colors are darker. Parameter mφ is expressed in AU−1. The white dashed line depicts the
locations in the parameter space where the precession angle has the same value as in GR (0◦.18). The
right panel represents the same as the left panel but for smaller values of the mφ parameter.
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Figure 2. The same as in Figure 1 but for the values of the mass density distribution of extended
matter ρ0 = 4× 108 M�pc−3. The right panel represents the same as the left panel but for smaller
values of the mφ parameter.
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Figure 3. The precession per orbital period for the φ0 - mφ parameter space in the case of the Hybrid
Palatini gravity potential without extended mass distribution in the case of the S38 star. With a
decreasing value of the precession angle, the colors are darker. Parameter mφ is expressed in AU−1.
The white dashed line depicts the locations in the parameter space where the precession angle has
the same value as in GR (0◦.11). The right panel represents the same as the left panel but for smaller
values of the mφ parameter.
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Figure 4. The same as in Figure 3, but for the mass density distribution ρ0 = 4× 108 M�pc−3. The
right panel represents the same as the left panel but for smaller values of the mφ parameter.
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Figure 5. The precession per orbital period for the φ0 - mφ parameter space in the case of the Hybrid
Palatini gravity potential without extended mass distribution in the case of the S55 star. With a
decreasing value of the precession angle, the colors are darker. Parameter mφ is expressed in AU−1.
The white dashed line depicts the locations in the parameter space where the precession angle has
the same value as in GR (0◦.10). The right panel represents the same as the left panel but for smaller
values of the mφ parameter.
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Figure 6. The same as in Figure 5, but for the mass density distribution ρ0 = 4× 108 M�pc−3. The
right panel represents the same as the left panel but for smaller values of the mφ parameter.

This paper is a continuation of our previous research [80], but we extended our
research on the following points:
(i) In this study, we estimated the parameters of the Hybrid Palatini gravity model

with the Schwarzschild precession of S-stars. In addition to the S2 star, here, for
the first time, we took into account the S38 and S55 stars also. If we compare the
estimated parameters of the Hybrid Palatini gravity model of the S2 star with the
S38 and S55 stars, it can be seen that the parameters of the Hybrid Palatini gravity
depend on the scale of a gravitational system, which, in this case, is the semi-major
axis of a stellar orbit.

(ii) In this paper, we considered the orbital precession of the mentioned stars due to
additional contributions to the gravitational potential from a bulk distribution of
matter. We took into account the different values of bulk mass density distribution
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of extended matter in the Galactic Center and analyzed their influence on values
of parameters mφ and φ0 of the Hybrid Palatini gravity model. We concluded
that the mass density distribution of extended matter had significant influence
on the values of precession angle and of modified gravity parameters. For higher
values of ρ0, we obtained lower values of gravity parameters mφ and φ0. This
paper is also an extension of our previous paper where we investigated the gravity
parameters of Yukawa theory and how they change under different values of bulk
mass density distribution of extended matter [77]. In this paper, we applied the
same procedure but for parameters of the Hybrid Palatini gravity model and we
extended it to the S38 and S55 stars.

(iii) We believe that in addition to the most often used S2 star, the S38 and S55 stars
are also excellent candidates for probing the gravitational potential around central
SMBH and could be also very useful for evaluating accurate parameters of different
alternative gravity models.

(iv) In our previous paper [71], where we constrained the parameters of Hybrid Palatini
gravity, we used observational data from the VLT and Keck collaborations. The
results were obtained by fitting the simulated orbits of S2 star to its observed
astrometric positions. Observational data were obtained with relatively large
errors, especially at the first stage of monitoring (data were collected for decades).
In this paper, we did not fit the observational data but instead we only assumed
that the orbital precession of S2 star is equal to the corresponding value predicted
by GR because recently the GRAVITY Collaboration claimed that they detected the
orbital precession of the S2 star and showed that it is close to the GR prediction [57].
We extended our analysis to the stars S38 and S55 stars because astronomical data
analysis of their orbits showed that, also in these cases, orbital precession is close
to the GR prediction [40].

4. Conclusions

In this study, we estimated the parameters of the Hybrid Palatini gravity model with
the Schwarzschild precession of the S2, S38 and S55 stars. We estimated the parameters with
and without taking into account case of bulk mass distribution near Galactic Center. In this
study, we were not fitting observation data, but instead we assumed that the Schwarzschild
orbital precessions of the S2, S38 and S55 stars are the same as in of GR, i.e., 0◦.18, 0◦.11
and 0◦.10 per orbital period, respectively. We introduced this approximation, since the
observed precession angle of S2 star is very close to the GR prediction [57] and according
the paper [40] where the authors analyzed observation data in the framework of Yukawa
gravity and concluded that the orbital precessions of the S38 and S55 stars were in good
agreement to the corresponding prediction of GR for these stars. We had a second reason,
i.e., that we should recover the prograde orbital precession of S-stars, as in GR. Our findings
indicate that:

1. The Modified Hybrid Palatini gravity parameter φ0 is between−1 (vertical asymptote)
and 0. If φ0 = 0, the Hybrid Palatini gravity potential reduces to the Newtonian one.

2. For the Hybrid Palatini gravity model (described with two parameters), it is not possi-
ble to evaluate both parameters in a unique way, if we consider only the conditions
that orbital precession is prograde as in GR and that the value of the precession angle
is as in GR. Instead of that, we obtained lines in the φ0 - mφ parameter space. The
points of these lines have the coordinates φ0 and mφ, which fulfilled our two requests
(the value of precession as in GR and the precession is prograde as in GR). The white
dashed line depicts the locations in the parameter space of these points. If we want to
obtain only one value of the parameters φ0 and mφ, we need to combine the obtained
sets of (φ0, mφ) with an additional independent set of observations.

3. The mass density distribution of extended matter has a significant influence on the
values of precession angle and of the modified gravity parameters. Higher values of
ρ0 decrease the corresponding values of parameters mφ and φ0.
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4. Our analysis shows that the precession of orbit in Hybrid Palatini potential is in the
same direction as in GR, but the extended mass distribution produces a contribution
to precession in the opposite direction. This means that, for higher mass densities, in
order to obtain the same orbital precession as in GR, one has to take the significantly
different values of the Hybrid Palatini gravity parameters. In the case when φ0 = 0,
the Hybrid Palatini gravitational potential reduces to the Newtonian one. However,
in order to compensate the effects of extended mass distribution on orbital precession
and to obtain the same precession as in GR, φ0 has to be larger by an absolute value,
thus, causing the larger deviation of the Hybrid Palatini gravitational potential with
respect to the Newtonian one.

5. If we compare the estimated parameters of the Hybrid Palatini gravity model of the S2
star with the S38 and S55 stars, it can be seen that results are slightly different, i.e., the
obtained values for the parameters of the gravity models are not the same, but they
are very close. It appears that the parameters of the Hybrid Palatini gravity depend
on the scale of a gravitational system, which, in this case, is the semi-major axis of
a stellar orbit, in contrast to GR, which is the scale-invariant theory of gravitation.
Therefore, we believe that this behavior originates from the deviation of modified
gravity from GR.

It is crucial to investigate gravity in the vicinity of very massive compact objects, such
as Sgr A∗, because the environment around these objects is drastically different from that in
the Solar System framework or at extragalactic and cosmological scales. The precession of
the S stars is a unique opportunity to test gravity at the sub-parsec scale of a few thousand
AU because these stars are bright stars and the periods of these stars are relatively short.
We believe that it is useful to evaluate the parameters of different alternative modified
gravity theories in the vicinity of SMBH with and without extended mass distribution in
the metric and Palatini approach. There are various approaches to the construction of the
modified gravity theories. In general, one can classify most efforts as modified gravity or
introducing exotic matter, such as dark matter and dark energy. The truth, as usual, may
lie in between [94].

We hope that using this method and more precise astronomical data will help to eval-
uate accurate parameters of different alternative gravity models and to obtain gravitational
potentials at the Galactic Center.
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Appendix A. Hybrid Palatini Gravity Model

It is important to note that theoretical studies in this field commonly assume c = G
= 1 units. However, for practical purposes, i.e., for comparisons with the astronomical
observations, it is necessary to recast gravitation potential in appropriate units. Thus, here
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we derive gravitation potential in weak field limit of the Hybrid Palatini gravity in a form
convenient for this purpose.

The action, proposed in the papers by Capozziello et al. (2012,2013) [89,93], Harko et al.
(2012) [88] and Borka et al. (2016) [71], is given by:

S =
1

2κ

∫
d4x
√
−g[R + φR−V(φ) + 2κLm], (A1)

where κ =
8πG

c4 , R is the Ricci scalar,R = gµνRµν presents the Palatini curvature with the

independent connection Γ̃λ
µν, Lm is the density Lagrangian, and g is the determinant of gµν.

The Palatini curvature is given by the following equations, with the scalar field φ and
potential V(φ):

Rµν ≡ Γ̃α
µν,α − Γ̃α

µα,ν + Γ̃α
αλΓ̃λ

µν − Γ̃α
µλΓ̃λ

αν (A2)

Γ̃λ
µν =

1
2

g̃λσ(g̃µσ,ν + g̃νσ,µ − g̃µν,σ) (A3)

g̃λσ = gλσF(R). (A4)

Combination of the Equations (A2)–(A4) resulted in the equation:

Γ̃λ
µν =

gλσ

2F(R)
(

gµσ,νF(R) + gνσ,µF(R)− gµν,σF(R)+

+gµσF(R),ν + gνσF(R),µ − gµνF(R),σ

)
.

(A5)

Substitution of Equation (A5) into Equation (A2) enabled obtaining the expression for
Palatini curvature:

Rµν = Rµν +
3∇µF(R)∇νF(R)

2F(R)2 − ∇µ∇νF(R)
F(R) − gµν

2
�F(R)
F(R) . (A6)

The action is varied respectively to the metric gµν, scalar field φ and connection Γ̃λ
µν,

which leads to the following equations:

Rµν + φRµν −
1
2

gµν[R + φR−V(φ)] = κTµν (A7)

R−V′(φ) = 0 (A8)

∇̃α(
√
−gφgµν) = 0. (A9)

The Palatini connection is represented by Equation (A9) [101], which is obtained
by varied action with respect to the relation Γ̃λ

µν, by keeping the metric constant gµν.
Equation (A9) implied that the function F(R) = φ, and thus the Palatini Tensor and Palatini
scalars are given by the following equations:

Rµν = Rµν +
3∂µφ∂νφ

2φ2 − ∇µ∇νφ

φ
− gµν

2
�φ

φ
, (A10)

R = R +
3∂µφ∂µφ

2φ2 − 3 �φ

φ
. (A11)

The trace of Equation (A7) is given in the next relation:

R + κT = 2V(φ)− φVφ, V′(φ) = Vφ. (A12)
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Combination of Equations (A7), (A8), (A10) and (A12), enabled obtaining the metric
field equations:

(1 + φ)Rµν = κ(Tµν −
1
2

gµνT) +
1
2

gµν(V(φ) +�φ) +∇µ∇νφ− 3∂µφ∂νφ

2φ
. (A13)

and the trace of Equation (A13) is:

(1 + φ)R = −κT + 2(V(φ) +�φ) +�φ− 3∂µφ∂µφ

2φ
. (A14)

The scalar field equation is obtained by combination of the Equations (A12) and (A14):

−�φ +
∂µφ∂µφ

2φ
+

φ

3
(2V(φ)− (1 + φ)Vφ) =

φκT
3

. (A15)

We can see that scalar field is governed by the second-order evolution equation, which
is an effective Klein–Gordon equation.

Equations for Newtonian Limit

In order to derive the Newtonian limit, it is common to write metric gµν as a sum of
Minkowski metric ηµν and perturbation metric hµν: gµν = ηµν + hµν, |hµν| � 1, T00 = −ρc2,
Tij = 0, η00 = −1 [87,101], where c is the speed of light. The paper [87] reviewed the
formulation of hybrid metric-Palatini approach and its main achievements in passing the
local tests and in applications to astrophysics and cosmology, and, in [101], the gravitational
field equations for the modified gravity f (R, T) theory are considered in the framework of
the Palatini formalism.

The basic properties of Newtonian limit are: φ = φ0 + ψ, φ � ψ,
3∂µφ∂νφ

2φ
=

3∂µψ∂νψ

2φ
� 1. We denote the asymptotic of φ as φ0 and the local perturbation as ψ.

Accordingly, Equation (A15) obtained the following shape of linear order:

−�ψ +
(
2V(φ)− (1 + φ)Vφ

)ψ

3
=

φ0κT
3

(A16)

We neglected the time derivatives of ψ, and thus Equation (A16) can be written in the
following way:

∆ψ−m2
φψ = −φ0κMδ(r)c2

3
, (A17)

where m2
φ =

1
3
(
2V(φ)− (1 + φ)Vφ

)∣∣
φ=φ0

and T = ρc2 = Mc2δ(r). It can be shown that

the effective mass can be expressed in the form: m2
φ = (2V − Vφ − φ(1 + φ)Vφφ)

∣∣
φ=φ0

,
where V, Vφ and Vφφ are the potential and its first and second derivatives with respect to φ,
respectively. Solving the equation (A17), we obtained:

φ = φ0 + ψ = φ0 +
2Gφ0M

3c2
e−mφr

r
. (A18)

Since the background is Minkowskian, the perturbed Ricci tensor is given by δRµν =

1
2
(∂σ∂µhσ

ν + ∂σ∂νhσ
µ − ∂µ∂νh − �hµν) ≈ −

1
2

∆hµν and
∂2h
∂t2 ≈ 0,

∂2ψ

∂t2 ≈ 0 (slow mo-

tion) [87,101]. Using the following gauge conditions: ∂λ h̃λ
µ −

1
1 + φ0

∂µψ = 0, where

h̃λ
ν ≡ hλ

ν −
1
2

δλ
ν hα

α [87], Equation (A13) becomes:

− 1
2

∆hµν(1 + φ0) = κ(Tµν −
1
2

ηµνT) +
1
2

ηµν(V(φ) + ∆φ), (A19)
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and from this, we obtain:

∆h00 = − 2κ

1 + φ0
(T00 −

1
2

η00T) +
−2η00

2(1 + φ0)
(V0 + ∆ψ), (A20)

where V0 is the minimum of potential V [71], and then

h00 = − κMc2

1 + φ0

1
4πr

+
V0

1 + φ0

r2

6l2
c
+

ψ

1 + φ0
, (A21)

where lc is a characteristic length scale, corresponding to the cosmological background.
By equating 2Φ(r)/c2 = h00, we have:

2Φ(r)/c2 = − 2GM
1 + φ0

1
c2r

+
V0

1 + φ0

r2

6l2
c
+

2Gφ0M
3(1 + φ0)c2

e−mφr

r

= −
2Ge f f M

c2r
+

V0

1 + φ0

r2

6l2
c

,
(A22)

with an effective potential introduced Ge f f =
G

1 + φ0

(
1− φ0

3
e−mφr

)
. The term in

Equation (A22) proportional to r2 corresponds to the cosmological background, and
it can be neglected on a galactic level [87].

The modified gravitation potential of the Newtonian limit is:

Φ(r) ≈ −
Ge f f M

r
= − G

1 + φ0

(
1− φ0

3
e−mφr

)
M
r

. (A23)
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