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1. Introduction

Sound and music computing is a young and highly multidisciplinary research field. It combines
scientific, technological, and artistic methods to produce, model, and understand audio and sonic
arts with the help of computers. Sound and music computing borrows methods, for example, from
computer science, electrical engineering, mathematics, musicology, and psychology.

For this special issue, 44 manuscripts were submitted and were carefully reviewed. Finally,
29 high-quality articles were published, and we are very pleased with the outcome. Some of the articles
are revised and extended versions of papers published earlier in related international conferences,
such as in the 14th Sound and Music Computing Conference SMC-17 (Espoo, Finland), the 18th
International Society for Music Information Retrieval Conference ISMIR-17 (Suzhou, China), or the
2017 New Interfaces for Musical Expression Conference NIME-17 (Copenhagen, Denmark).

This editorial briefly summarizes the published articles and guides you to read them in detail.
The articles could be categorized in many ways, as such multidisciplinary field has a wide variety of
topics. Here, we have organized the articles based on their application areas or special techniques
applied in research. We hope that these articles will inspire researchers in sound and music computing
to conduct more excellent research and spread the word about this vibrant, multidisciplinary field.

2. Sound and Music Computing Techniques

2.1. Audio Signal Processing

Cecchi et al. [1] have written the only review article for this special issue. Their long paper gives a
complete overview of audio signal processing methods for the equalization of the loudspeaker-room
response, which is a fundamental problem in sound reproduction. The increasing popularity of small
mobile speakers having non-ideal properties makes this topic ever more important.

Necciari et al. [2] propose an improved auditory filter bank called Audlet, which allows perfect
reconstruction. The new filter bank is compared with the gammatone filter bank, and its used in a
single-channel audio source separation task is demonstrated.

Brandtsegg et al. [3] discuss approaches to real-time convolution with time-varying filters,
which extends the convolution reverberation concept. For example, the sounds produced by two
players can be convolved with each other to obtain exciting audio effects.

Damskägg and Välimäki [4] address a problem known as time-scale modification in which the
objective is to temporally stretch or compress a given audio signal while preserving properties like
pitch and timbre. To handle different signal characteristics, the main idea of the paper is to modify
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the phase of the signal’s time-frequency bins in an adaptive fashion using an implicit bin-wise fuzzy
classification based on three classes (sinusoid, noise, transient).

Esqueda et al. [5] present virtual analogue models of the Lockhart and Serge wavefolders.
The input–output relationship of both circuits was digitally modeled using the Lambert-W function.
Aliasing distortion is ameliorated using a first-order antiderivative method. An earlier version of this
paper received a best paper award at the SMC-17 conference.

2.2. Machine and Deep Learning

Deep learning is a hot topic also in sound and music computing. In this special issue, there are
several articles applying deep learning techniques to various problems. The article by Wang et al. [6]
describes an automatic music transcription algorithm combining deep learning and spectrogram
factorization techniques. It is applied to a specific piano, and the results outperform the earlier
methods in note-level polyphonic piano music transcription. Blaauw and Bonada [7] describe a singing
synthesizer based on deep neural networks called the Neural Parametric Singing Synthesizer (NPSS),
which can generate high-quality singing when a musical score and lyrics are given as the input.
The NPSS can learn the timbre and expressive features of a singer from a small set of recordings.
Lee et al. [8] discuss a learning approach based on convolutional neural networks (CNNs) to derive
meaningful feature representations directly from the waveform of an audio signals (rather than using
frame-based input representations such as the short-time Fourier transform). Such approaches are
interesting in view of end-to-end music classifications tasks including genre classification and auto
tagging. As one main contribution, the authors discuss the properties of the learned sample-level
filters and show how their CNN-based learning approach behaves under certain downsampling and
normalization effects.

Machine learning is also traditionally applied by many researchers. Green and Murphy [9] report
on spatial analysis of binaural room impulse responses. The results of this article indicate that neural
networks are able to detect the direction of the direct sound, but are less accurate at predicting the
direction of arrival of the reflections, even in quite simple cases. More work on this topic is needed,
to be able to study room acoustics with machine learning. Lovedee-Turner and Murphy [10] have
collected a database of spatial sound recordings for the purpose of classification of acoustic scenes as
well as the material for machine learning algorithms. To validate the database they also introduce a
classifier that performs better than a traditional Mel-frequency-cepstral-coefficient classifier. The article
by Pesek et al. [11] introduces algorithmic concepts for modeling and detecting recurrent patterns
in symbolically encoded music. Given a monophonic symbolic representation of a piece of music,
the algorithm outputs a hierarchical representation of melodic patterns using an unsupervised learning
procedure without the need of hard-coded rules from music theory. Also the comprehensive article by
Bountouridis [12] is concerned with pattern analysis of symbolic music representations. Inspired by
multiple sequence alignment techniques that are well known in bioinformatics, the authors show
how such methods can be adapted to symbolic music analysis. In particular, sequence alignment and
retrieval techniques are used for measuring melodic similarities and for detecting musically interesting
relations within song families. Carabez et al. [13] study a brain-computer interface, which consists
of headphones and an electroencephalography- or EEG-based measurement system, which registers
the user’s brain activity. Using machine learning techniques, they demonstrate promising results on
reading from the user’s mind the direction of arrival of sound stimuli.

2.3. Automatic Transcription and Programming

Mcleod et al. [14] address a central problem in music information retrieval known as music
transcription: given an audio recording of a piece of music, the goal is to extract symbolic note
parameters such as note onsets and pitches. In this article, the authors focus on a-cappella music
recordings with four singers (bass, tenor, alto, soprano). Combining an acoustic model based on
probabilistic latent component analysis (PLCA) and a music language model based on Hidden Markov
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Models (HMM), the authors present an approach for jointly tackling the problems of multi-pitch
transcription as well as voice assignment.

Lazzarini [15] presents a new framework for unit generator development for the computer music
language Csound, introducing the concept of unit generators and opcodes, and its centrality with
regards to music programming languages in general, and Csound in specific.

3. Sound and Music Computing Applications

3.1. Sound Synthesis and User Control

Sound synthesis and control of novel and computer-based instruments are one of the main areas in
sound and music computing. In Selfridge et al. [16] several physical models of objects swinging through
air are presented. Listening tests showed that the models were rated as plausible as recordings. Such
models are particularly interesting when used in real-time audio-visual simulations. This is a revised
and extended version of a paper winning a best paper award at SMC-17 Conference. Michon et al. [17]
present two original concepts: mobile device augmentation and hybrid instruments. Several tools,
techniques, as well as thoughtful considerations and useful advices on how to design such instruments
are presented. This paper is an extension of a paper that won the best paper award at the NIME-17
conference. The paper by MacRitchie and Milne [18] investigates four different pitch layouts on the
computer screen, and finds how easy or difficult it is to play melodies on each of them. Their results
lead to novel design rules for such musical instruments. Kelkar and Jensenius [19] asked people to
listen to short melodies and move their hands as if their movement was creating the sound. The
authors found that people tend to use one of six different mapping strategies. They also observed an
interesting gender difference, as one of the strategies was more often used by women than by men.

3.2. Audio Mixing and Audio Coding

Wilson and Fazenda [20] present a method to generate automatic audio mixes. The study concerns
three audio processing activities: level-balancing, stereo-panning, and equalization. The presented
work will pave the way to automatize the work of audio engineers, especially in object-based audio
broadcasting.

Jia et al. [21] propose an efficient, psychoacoustic coding method for multiple sound objects in
a spatial audio scene. This technology can be applied to 3-D movies, spatial audio communication
systems, and virtual classrooms.

3.3. Games and Virtual Reality

Hansen and Hiraga [22] introduce and evaluate Music Puzzle, which is an audio-based game.
Interestingly, they tested the game with different user groups. People with hearing loss had problems
in a game that used speech, but less with a game based on music. In contrast, people with low
engagement in music performed worse in a music game. Based on this study the authors could explain
the impact of hearing acuity and musical experience on focused listening of different sounds.

Schaerlaeken et al. [23] investigate the impact of playing for a virtual audience, both from
the perspective of the player and the audience. The study highlights the use of immersive virtual
environments as a research tool and a training assistant for musicians who are eager to learn how to
cope with their anxiety in front of an audience.

Yiyu et al. [24] discuss an audio processor architecture, which is suitable for rendering a virtual
acoustic environment using a finite-difference approach. Such a system can be useful for providing
realistic acoustic experiences for gaming or virtual reality.

Puomio et al. [25] present a perceptual study on the effect of virtual sound source positions
in spatial audio rendering using headphones with head-tracking. A listening test was conducted
comparing optimized and non-optimized virtual loudspeaker setups in the simulations of a small
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room and a concert hall. Their results suggest that the simulation of a small room benefits more from
the optimization of virtual source positions than a large room.

3.4. Sonic Interaction, Musicology, and New Hardware

Verde et al. [26] investigate computational musicology for the study of tape music works,
and existing computer vision techniques are applied to the analysis of such tracks.

Hayes and Stein [27] present an approach to incorporate environmental factors within the field of
site-responsive sonic art using embedded audio and data processing techniques. The main focus is on
the role of such systems within an ecosystemic framework, both in terms of incorporating systems of
living organisms, as well as sonic interaction design.

In Yağanoğlu and Köse [28] a wearable vibration communication system for the deaf is presented.
The wearable device proved to have a high success rate in localization tasks, which are problematic for
deaf people.

Quintana-Suárez et al. [29] authored an article on a sensor device that enables to remotely monitor
the activity and health of elderly people. Such technology is generally called Ambient Assisted Living,
and this article in particular presents a low-cost acoustic sensor.

4. Conclusions

Overall the special issue shows the variety of topics researched by the sound and music community,
ranging from spatial sound, sound processing, sonic interaction design, and music information retrieval
to new interfaces for musical expression with applications in art, culture, gaming, and virtual and
augmented reality.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This work investigates computational musicology for the study of tape music works
tackling the problems concerning stemmatics. These philological problems have been analyzed
with an innovative approach considering the peculiarities of audio tape recordings. The paper
presents a phylogenetic reconstruction strategy that relies on digitizing the analyzed tapes and then
converting each audio track into a two-dimensional spectrogram. This conversion allows adopting
a set of computer vision tools to align and equalize different tracks in order to infer the most
likely transformation that converts one track into another. In the presented approach, the main
editing techniques, intentional and unintentional alterations and different configurations of a tape
recorded are estimated in phylogeny analysis. The proposed solution presents a satisfying robustness
to the adoption of the wrong reading setup together with a good reconstruction accuracy of the
phylogenetic tree. The reconstructed dependencies proved to be correct or plausible in 90% of the
experimental cases.

Keywords: tape music analysis; audio philology; digitized audio recordings; digital phylogeny;
computational musicology; spectrogram alignment; audio forensics

1. Introduction

The interesting field of computational musicology is given in relation to the study of tape
music, which represents a particular case of recorded sound art with important implications with
respect to the preservation side, as well as the musicological analysis side. Tape music consists of
the (processed) fragments, samples and speed manipulation of pre-recorded sounds used in modern
composition. Since the 1950s, its peculiar working method was made popular by composers of the
Columbia-Princeton Electronic Music Center and, in Europe, of the Studio di Fonologia Musicale of
RAI Milan [1]. This music cannot be set in conventional notation: the musical text is non-existent,
incomplete, insufficiently precise and transmitted in a non-traditional format. The performance of
these music works is no longer the traditional one, in which one or more musicians are used to
perform a score: the composer becomes also the luthier and the performer of the completed product,
recorded on magnetic tape configured as a unicum. The uniqueness of the tape music works tackles
a well-known problem in the visual arts field, such as the attribution and the generation of different
versions (called witnesses, in the philology field).

In order to achieve scholarly analysis of the musical works, the audio signal, stored in analogue
tapes, must be digitized, along with all ancillary information (e.g., text on the box, accompanying
material, etc.). The output of this process is the preservation master, the bibliographic equivalent of
which is the facsimile or the diplomaticcopy [2–7].
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The production of a preservation master requires competences from engineering, archivistics
and philology. The engineering side of the work consists of, but is obviously not limited to, the development
of ad hoc tools that provide solutions both to problems of managerial and philological-documental
characters. Van Huis [8] criticizes the general inertia of archival institutions in the face of new technologies,
which ignores the potential to reach users familiar with the use of a Google-like search engine and/or
a peer-to-peer network (simple, but not authoritative).

This work applied computational musicology to the study of tape music works tackling the
problems concerning stemmatics (or the Latin, stemmata):

1. constructing the stemma codicum (recension, or the Latin recensio) starting with a set of the
sources (all the different witnesses of that musical work);

2. selection (or selectio), where the original source is determined by examining variants, selecting
the best ones [9].

These studies often use a general-purpose audio editor in order to compare sonograms or
wave forms. This paper presents an innovative approach to this problem integrating methodologies
typically used in the field of forensic science.

Recent years have witnessed a significant leap forward in sound trace analysis thanks to new
processing tools derived from this research field. More precisely, multimedia forensics researchers have
been investigating new accurate phylogenetic reconstruction strategies to be applied on unordered sets
of similar digital audio/image/video contents [10–12]. Such availability, which has been fostered by the
recent disposal of versatile acquisition, editing and sharing tools, poses the problem of discriminating
the original file, identifying the owner or reconstructing the processing history of each copy. To these
purposes, forensic researchers have been borrowing some of the analysis strategies from phylogenetic
biology. The underlying idea is that multimedia contents can “mutate” as organisms evolve: a digital
image or an image can change over time to slightly different versions of itself, which can generate other
versions, as well [13]. These different versions are referred to as near-duplicates (ND). The generation
process of sets of ND images or video sequences can be well described by means of a structure called
an image or video phylogeny tree (IPT or VPT), and several algorithms have been recently proposed
in the literature to reconstruct it [14–16]. Most of the proposed solutions analyze the relations between
similar contents and infer the subset of links that correctly represents the chains of dependencies and
transformations. Although, in the last few years, several works have been targeting the analysis of
images and video contents, little effort has been put toward audio phylogenetic approaches. To the best
of our knowledge, the only algorithms proposed in the literature are represented by [12,17]. Moreover,
the phylogenetic analysis problems have been extensively investigated for digital multimedia contents
since online material offers the largest datasets of near-duplicate contents. The investigation of
phylogenetic approaches involving audio-visual contents stored on magnetic carriers is still at its
earliest stages. In the end, multimedia phylogenetic strategies have been employed for copyright
infringement detection and fake material identification; their use in cultural heritage and multimedia
restoration is one of the novelty aspects presented by this paper.

The authors propose in the following sections an automated approach to stemmatics, applying
a phylogenetic evolutionary framework to music digital philology. Different witnesses (audio files)
are analyzed by software developed by the authors and then grouped according to their shared
characteristics, listed in a tree in order to derive relationships between them (Figure 1). The current
paper presents a novel methodology that automatizes the creation of such a dependency tree and
proves to be sufficiently robust to acquisition errors (wrong reading speed or setup). The proposed
solution relies on collecting the tapes to be analyzed into a set of digital audio tracks and representing
them by means of two-dimensional spectrograms. After aligning them using computer vision strategies,
it is possible to infer the most likely transformation interlying between them and to characterize it via
a dissimilarity metric. Such dissimilarity metrics are then used to characterize the edge weights of
a complete graph where nodes correspond to the acquired audio tracks. By running a minimum spanning
tree (MST) algorithm, it is possible to estimate the phylogenetic tree that links the different contents.
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(a) Original tape. (b) Modified version of the original tape.

(c) Spectrogram of the original tape. (d) Spectrogram of the modified version of the tape.

Figure 1. Example of near-duplicates (witnesses). In the middle of the tape (a) has been added a piece
of leader-tape obtaining the modified version (b); The difference between the two versions can be
clearly observed comparing the corresponding spectrograms (c,d).

Experimental data show that the proposed solution permits reconstructing the underlying story
of each tape with good accuracy; moreover, the reconstruction process is not affected by digitization
errors such as a different reading speed, wrong equalization and filtering. The results achieved show
that this methodology gives a precise answer to the questions about the reliability of audio recordings
as document witnesses, clarifying the concept of fidelity to the original.

In the following, the paper is organized as follows. Section 2 overviews some of the related
works in the literature, while Section 3 describes how the phylogenetic reconstruction problem can
be applied to magnetic tapes. Then, the full methodology is presented in Section 4, together with the
reconstruction algorithm that permits estimating the audio phylogenetic tree (APT). This strategy
is then evaluated on an experimental dataset (described in Section 5), and the obtained results are
reported and discussed in Section 6. Section 7 draws the final conclusions.

2. Related Works

Many scholars ([18]; for an overview, see [19]) in the musicology field tackle the problems
concerning stemmatics in their study of tape music works. As briefly outlined in the Introduction,
these studies often use a general-purpose audio editor and are based on the comparison of sonograms
or wave forms. However, other works based on computational musicology exist: Nicola Orio and
co-workers [20–22] presented a tool to analyze the similarities and the differences of two witnesses of
a music work. A graphical representation of the alignment curve, which matches pairs of points in the
two signals in a bi-dimensional representation, gives a direct view of the main differences between
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two witnesses: by matching individual musical events, it is possible to compare the lengths of the
events, the amplitude envelopes and the two spectral representations.

On the other hand, the audio phylogenetic field has been limitedly explored. Although several
phylogenetic approaches for images and videos have been recently proposed, thus far, digital audio
phylogeny research is taking the firsts steps.

A first approach was proposed by Nucci et al. in [12], where the authors designed a strategy
to reconstruct the processing history of a set of near-duplicate (ND) audio tracks. According to
the formulation given in [23], a near-duplicate is a transformed version of an object that remains
recognizable; the audio tracks in [12] were generated via trim, fade and perceptual audio coding with
a closed set of parameter values. A different set of values is then used in the analysis phase to compute
the dissimilarity metric between couples of tracks. The proposed solution permits obtaining a good
accuracy, but requires a significant computational effort; moreover, its efficiency is limited by the
assumption of knowing the set of applied transformations.

A more flexible and computationally-efficient approach was proposed in [17]; in this latter approach,
audio tracks are time- and frequency-aligned by representing each audio file with a spectrogram and
using image registration techniques investigated in the field of computer vision. Moreover, the set of
possible transformations includes time-frequency operations, as well. By employing highly-optimized
computer vision libraries, the proposed algorithm requires a significantly lower computational load
while not being constrained by a closed set of transformations. Such versatility suggested adopting that
approach in this work, as well. The following sections will provide further details.

3. Problem Description

Tape music is a genre of electroacoustic music in which the artwork coincides with the tape
on which the audio signal is recorded [6]. In some cases, the composer did not provide a score;
hence, the tape could be considered the final product of the creative process. The carrier has therefore
a prominent role and must be considered in the philological analysis [18,24]. The peculiarity of this
type of analogue carrier is the possibility of editing the tape with several techniques. The main ones
are introduced in [25], where the described techniques vary from straight recording to superimposition.
Some of the main alterations considered in this paper are presented below.

The editing consists on the physical alterations of the tape that is cut in pieces and then recomposed to
obtain the desired sound or effect. Every piece is joined with the rest of the tape in a splice by using a strip
of plastic coated with a thermal or pressure-sensitive adhesive called splicing tape [26]. As recommended
in [27], the tape has to be cut at an angle of 45◦ to 60◦, measured with respect to the tape edge in order to
avoid electrical disturbance. Without this disturbance, it is very difficult to find the slice by analyzing the
audio track, and it could only be hypothesized if the audio content suddenly changes.

In some cases, the splice does not join two pieces of magnetic tape, but one side consists of
a leader-tape. It is a flexible plastic or paper strip that usually is spliced to either end of a roll of
recording material [26]. In this case, the leader-tape extends the tape length in order to fasten the
extremities of the tape to the hub of the flange and avoid wasting the magnetic tape that can be read
entirely. In the creative process, the leader-tape is also important because it could be used inside the
tape with several purposes, such as adding pauses or signaling new events or units.

Silence parts could be also obtained by erasing previous recordings. The erasing head could be
used to clean the tape before recording a new audio signal. Furthermore, as described in [25], a new
signal could be recorded over the old one using superimposition. The result of these techniques is the
sum of the two signals. In this paper, these techniques are generally referred to as overdubbing.

All these alterations are irreversible and create new versions of the opera, which in philology
are called witnesses. As outlined in the Introduction, this paper presents an innovative approach to
the musicological analysis using phylogenetic techniques, typically adopted in forensics, in order to
reconstruct the stemma codicum, which can be considered as an audio phylogenetic tree (APT) [17].
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Nevertheless, the analysis is performed in the digital domain and not in the analogue one.
This introduces a variable to the phylogenetic problem described in [17]: the digitization. An analogue
tape can be read and digitized several times, creating similar digital versions of a unique document.
These versions can differ from each other in the configuration of the tape recorder, in the quality of the
Analog-to-Digital (A/D) converters and in the digital format on which the signal is saved. This study
considers recorder configuration only, as the other options are not connected to the analogue carrier
and thus not necessary in order to create a suitable model that takes into account the audio tape
peculiarities.

The most important parameter to be configured in the tape recorder during the listening and
the digitization process is the replay speed. Six standard speeds are used: 30 ips (76.2 cm/s), 15 ips
(38.1 cm/s), 7.5 ips (19.05 cm/s), 3.75 ips (9.525 cm/s), 15/8 ips (4.76 cm/s) and 15/16 ips (2.38 cm/s) [28].
The wrong choice of this parameter implies a time stretch and a pitch change that heavily distort the
signal. To be thorough, this effect was used in electroacoustic music as a technique for altering the signal
on purpose [25], but this aspect goes beyond the analysis of this work.

Another important parameter to be set in the tape recorder is the equalization: a post-equalization
curve is applied during the reading, in order to compensate the pre-equalization curve applied during
the recording, essentially acting as the integrator to make the overall transfer function nearly flat [29].
Several standards exist, and they are commonly called using the name of the association that proposed
the standard. For 30 ips, the most diffused is the standard AES derived by Audio Engineering Society,
whereas for 15 ips and 7.5 ips the most used standards are CCIR and NAB, from International Radio
Consultative Committee (in French) and National Association of Broadcasters, respectively [30–32].

Applying the wrong post-equalization curve implicates the wrong frequency response and, thus,
a non-flat overall transfer function.

Furthermore, the recording may be encoded with a noise reduction system. The most common are
Dolby A and Dolby SR (professional), Dolby B and Dolby C (domestic) and dbxTypes I (professional)
and II (domestic) [28]. When reading the tape, the same noise reduction system must be used in order
to compensate the one adopted in the recording phase. Again, the lack of compensation or the wrong
system choice deeply changes the signal. In this paper, only the former problem is tackled, together
with the opposite case: the use of a noise reduction system in the decoding phase when the original
system was not encoded.

Considering the combination of all these configurations, it is evident how many different digitized
versions of the same tape could be obtained. The approach proposed in this work handles this aspect
considering all the versions of the same tape as a single node in the phylogenetic tree.

The problem could be further extended considering multiple copies recorded and digitized with
different tape recorders and the possibility of finding some audio documents obtained by pieces
of tape recorded by different machines (professional or not). In this case, the analogue filters and
characteristics of tape recorders could lead to differences in digitized copies. The same could happen
with machines that were not correctly calibrated. A further variable that could be considered in the
analysis is the possibility of having different copies of the same tape and the presence of damage
and/or syndrome (such as SSS [7]) that impact the digitization results, creating dissimilarities and
artifacts despite the original tape being the same. This extension has been provided to better explain
the overall complexity of the problem, but it goes far beyond the scope of this article, which seeks to
prove the effectiveness of this new approach with respect to the problem with a simplified model that
nonetheless includes the main alterations.

4. Algorithms

In this work, we propose an innovative approach to tape music phylogeny, based on the
application of computer vision techniques to the time-frequency representation of audio tracks.
The core idea consists of mapping the digital audio signals obtained from the tapes into bi-dimensional
images. Consequently, the employment of a robust feature extraction algorithm permits gathering
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a set of local spectral fingerprints, which can be exploited in order to align pairs of spectrogram images.
This alignment makes it possible to compare different tracks and estimate which tape editing operation
(if any) interlies between them.

A similar strategy has been adopted in [33,34] to identify and retrieve different digital copies
of the same audio tracks. In these cases, spectrogram-based features are used to determine whether
the track matches or not. The phylogenetic approach departs from such a problem since its aim is to
parameterize the similarity between two audio tracks, i.e., how much they differ. As a matter of fact,
it is necessary to design a correct and effective registration algorithm for the two analyzed signals,
as well as accurate equalization techniques that permit compensating the dissimilarity associated with
reading/writing operations. The wrong equalization leads to noisy dissimilarity values, implying the
wrong reconstruction of the dependencies.

Given a set of N audio tracks, the core idea of the proposed algorithm is to characterize the
dissimilarity between each couple of digital audio tracks. This procedure yields the creation of a N×N
dissimilarity matrix D = [di,j], where di,j denotes the dissimilarity between the i-th and the j-th tracks.
As a consequence, dissimilarity computation is repeated for each one of the N · (N − 1) possible
ordered pairs (i, j). Then, the algorithm builds a complete directed graph where nodes correspond to
the analyzed set of tracks and edge weights are the computed dissimilarity values.

The description of the proposed strategy can be divided into the following steps or units (Figure 2):
(i) pre-processing; (ii) leader-tape detection; (iii) spectrogram registration; (iv) overdub detection;
(v) estimation of the phylogenetic tree.

The following paragraphs present a detailed description of each step.

Figure 2. Block diagram of the proposed algorithm. The input consists of the digitalized audio tracks
xi, i = 1, . . . , N, and the output is the estimated audio phylogeny tree (APT).

4.1. Audio Pre-Processing

At first, each audio track xi(n) is converted into the related spectrogram by computing the
short-time Fourier transform:

Xi( f , m) =
+∞

∑
n=−∞

xi(n) w(n−mL) e−j2π f n (1)

where w(·) is a windowing function and L is the stride parameter. Coefficients Xi( f , m) are computed
for a finite set of Nf frequencies f and a finite set of M windows (m = 0, . . . , M− 1). In our experiments,
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we adopted Hamming-windowed frames of 4096 samples, with an overlap rate of 0.75, and a set of
Nf = 512 linearly-spaced frequencies, ranging from 0 to 6 kHz. This latter choice allows one to reduce
the computational burden (by reducing the size of images to process by a factor of four) without
affecting the system performance, given that most of the spectral information is usually found at
a low frequency.

By associating each spectrogram coefficient to the pixel of a grayscale image Pi(u, v), we obtain
a Nf ×M gray level image, where the pixel intensity is obtained by converting the value |Xi( f , m)|2
into an 8-bit integer. In order to remove part of the background noise, if |Xi( f , m)|2 < δ, the pixel
Pi(u, v) is set to zero.

From the obtained spectrogram image Pi(u, v), a set of keypoints Ki = {(uk, vk)} with the related
descriptors is computed by using the speeded-up robust features (SURF) algorithm [35].

After the pre-processing step, each image pair (Pi, Pj), i = 1, . . . , N, j = 1, . . . , N, i �= j, is passed
to the next modules.

4.2. Leader Tape Detection

Considering two spectrograms, (Pi, Pj), this step aims at detecting the presence of a leader-tape
inserted into one of the two tapes. This detector relies on the fact that, whether or not a leader is
present, there is not a single affine transformation that maps the keypoints found on Pi onto those of Pj.
The reason is that keypoints lying in the portion of the spectrogram after a leader-tape insertion will
carry an offset in their time coordinates with respect to those found on a spectrogram that does not
contain such insertion.

The algorithm proceeds as follows.

1. From two sets of keypoints (Ki,Kj), find a subset of matched pairs by comparing the related
descriptors. Given the matched pairs

(
(uk, vk), (u′h, v′h)

)
, estimate the optimum geometric

transform mapping Pi onto Pj with the RANSAC algorithm [36]. If a leader-tape is present,
the set of inlier points returned by the algorithm will converge to a subset of keypoints belonging
to only one of the two portions of the spectrogram separated by the leader (Figure 3).

(a) SURF keypoints. (b) Inlier SURF keypoints after RANSAC.

Figure 3. Spectrogram image Pi(u, v) of an audio track xi(n), with green asterisks representing the
detected SURF keypoints. Subfigures show the SURF keypoints (a) and inlier keypoints after RANSAC
(b). Note that the remaining inlier points are located to the right of the leader-tape.

2. Define a function gi(v) counting the number of keypoints detected in Pi(u, v) for each image
column v (in order to avoid strong oscillations, g(v) is processed with a moving-average low-pass
filter). Then, define g′i(v) as the number of inlier points left on Pi(u, v) after the RANSAC
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algorithm. In the presence of a leader insertion, distance |gi(v)− g′i(v)| shows an evident step
that can be detected by looking for gradient peaks.

3. Let vl be the coordinate associated with the detected step. Define the following sets:

K(L)
i = {(uk, vk) ∈ Ki|vk < vl} ,

K(R)
i = {(uk, vk) ∈ Ki|vk > vl} ,

(2)

i.e., the subsets of keypoints found on the left side (L) and on the right side (R) of the spectrogram
with respect to the candidate leader location. Similarly, define K(L)

j and K(R)
j .

4. Perform a new geometric transform estimation, on the left and right portion of the images
separately, according to the subdivision defined in (2). The estimated models come in the form of
3× 3 homography matrices, H(L) and H(R), from which it is possible to extract the translation
components along the v direction, t(L) and t(R). The length of the candidate leader is then
given by:

wl = |t(L) − t(R)|. (3)

If wl �= 0, the algorithm concludes that a leader-tape is present within the current spectrogram pair.

Finally, the algorithm tries to infer the correct phylogenetic relation that links Pi and Pj, namely
whether Pj was derived from Pi by inserting a leader-tape or vice versa. This can be achieved by
measuring the average spectral energy around the detected location, knowing that leader insertions
are characterized by a very low-energy region in the related spectrogram. If we find a significant
difference between the average energies measured in the two images (with respect to a suitable
tolerance threshold), it is possible to conclude that the phylogenetic ancestor is the the one related to
the highest energy content. Specifically, the algorithm distinguishes the two following cases.

If ∑u Pj(u, vl)� ∑u Pi(u, vl), then Pj is assumed to be the phylogenetic ancestor. The dissimilarity
matrix is updated with di,j = +∞, indicating that a phylogenetic relation from i to j is not possible.
The algorithm stops the analysis of the current image pair and switches to the next one.

Otherwise, if ∑u Pi(u, vl) � ∑u Pj(u, vl) or ∑u Pi(u, vl) 	 ∑u Pj(u, vl), the algorithm proceeds
with the next steps.

4.3. Spectrogram Registration

Spectrogram registration consists of warping Pi towards Pj according to the geometric transform
estimated through their matched keypoints.

1. If a leader-tape has been detected in Pj, compensate it on Pi by adding a band of black pixels
centered in vl and with length wl .

2. Estimate the global geometric transform H by running RANSAC on all keypoints.
3. Warp Pi towards Pj according to H, obtaining P′i .
4. Compute the dissimilarity value di,j as the MSE of P′i and Pj:

di,j =
1

U ·V ∑
u,v
|Pj(u, v)− P′i (u, v)|2, (4)

where U and V are the spectrograms’ height and width in pixels.

4.4. Overdub Detection

This second detection step deals with the identification of an overdub in the analyzed tapes.
It is positioned after the registration module, as it requires the spectrogram pair to be already aligned.

1. Compute the residual spectrogram as the pixel-wise absolute difference of P′i and Pj (Figure 4a).

Pr(u, v) = |P′i (u, v)− Pj(u, v)| (5)
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2. Define the function e(v) representing the energy content of the residual spectrogram over time.

e(v) = ∑
u

Pr(u, v), v = 1, . . . , V (6)

3. Look for strong variations in the residual energy by computing the first derivative e′(v) and
applying an outlier detector (three scaled MAD from the median, where MAD denotes the median
absolute deviation), obtaining a set of points O = {vk} (Figure 4b).

4. Process the points vk ∈ O in order to obtain the interval [v1, v2] corresponding to the candidate
overdub. The employed criterion is that of selecting the couple of points which maximizes the
average energy ratio between the regions inside and outside those points.

(v1, v2) = arg max
(va ,vb)∈O2

E [e(v)]va<v<vb

E [e(v)]v<va∨v>vb

(7)

where E [e(v)]I denotes the expectation of e(v) for v ∈ I .

(a) Residual spectrogram. (b) Energy over time.

Figure 4. Residual spectrogram and related energy-over-time associated with a track pair (i, j)
containing an overdub, which appears in (a) as a bright region with clean edges. The red circles
in (b) represent the detected outliers vk ∈ O, and the two points marked with green asterisks are the
selected edges (v1, v2).

Given a detected overdub spanning from v1 to v2, the algorithm tries to infer the phylogenetic
relation. Again, we compare energy statistics inside and outside the overdub region, but in this
case, we consider P′i and Pj, instead of Pr.

5. Scan through the spectrogram rows u = 1, . . . , U. For each u, compute:

ci(u) =
∣∣E [Pi (u, v)]v1<v<v2

−E [Pi (u, v)]v<v1∨v>v2

∣∣
cj(u) =

∣∣E [Pj(u, v)
]

v1<v<v2
−E

[
Pj(u, v)

]
v<v1∨v>v2

∣∣ (8)

which represent the discrepancies between average spectral energy inside and outside the
overdubbed region, in Pi and Pj, for each frequency sub-band (row), u. The spectrogram
presenting a higher c(u) for the majority of rows u is assumed to be the overdubbed one, i.e., the
phylogenetic descendant.

In a similar way to what is done in the leader detection step, if j is chosen as the ancestor of i,
the algorithm sets di,j = +∞. Otherwise, the dissimilarity value computed in (4) is kept.
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4.5. Tree Estimation

Once the dissimilarity value di,j has been computed for every (i, j), the algorithm analyzes the
resulting dissimilarity matrix D in order to estimate the phylogenetic tree.

1. Starting from the matrix D, build an undirected graph G = {V , E} with N nodes, where the i-th
node is associated with the audio track xi(n) and each edge (i, j) exists if and only if di,j < +∞
and dj,i < +∞.

2. Run a maximal clique algorithm on G, obtaining C1, . . . , CK ⊆ V .
3. Compute the K× K clique-dissimilarity matrix DC as:

DC(p, q) =
1

|Cp||Cq| ∑
i∈Cp ,j∈Cq

di,j (9)

where | · | denotes the cardinality of a clique.
4. Starting from the matrix DC , build a complete directed graph GC = {VC , EC}, with K nodes,

where every node is a clique of the undirected graph G and each edge (p, q) has a weight equal to
DC , corresponding to the average dissimilarity between the audio tracks belonging to the p-th
and the q-th cliques.

5. Compute the phylogenetic tree as the minimum spanning arborescence ĜC = {VC , ÊC}, i.e.,
the directed rooted spanning tree with minimum weight.

ÊC = arg min
E s⊂EC

∑
(p,q)∈E s

DC(p, q) (10)

In our implementation, ĜC is found via the Chu-Liu/Edmonds optimum branching
algorithm [37,38].

5. Dataset

The experiment used to assess the algorithm described in the previous section is based on 10 tests,
where the most significant sequences of transformations (with respect to the tape music case) were
applied to a set of 10 different tracks. For each track, a set of seven audio samples was created applying
different acquisition setups and different tape editings, which will be described in the following
paragraphs. We have selected the most representative case study operation in the tape music field in
order to provide an accurate evaluation of the proposed method. The sequence of transformations can
be characterized by a phylogenetic tree where each edge corresponds to a physical editing of the tape
(a cut, the insertion of leader-tape) and each node can include several recording and reading settings.
In the latter case, the tape was not modified, and therefore, it cannot be considered as a child in the
phylogenetic sense. In the following, we will describe both the adopted reading/writing parameters,
together with the tape editing settings.

The original digital audio track was generated recording a 2-min track on a virgin magnetic
tape using a professional open reel-to-reel tape recorder: Studer A810. This machine provides
four recording/replay speeds: 30 ips, 15 ips, 7.5 ips and 3.75 ips. The Studer A810 provides also
a switchable knob to change the equalization. Table 1 shows the time constants of the equalizations
for each speed; it is possible to notice that, at 30 ips, the only standard equalization is AES, whereas
for other speeds, the CCIR or NAB standards can be applied. Furthermore, at 3.75 ips, only one
equalization curve is available. During the recording phase, an external noise reduction system
DBXType I was used.

Table 2 shows the original tracks from which the two-minute samples were extracted and the
configuration of the machine during the recording phase.
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Table 1. Equalization standards supported by the Studer A810 described by their time constants. Source: [39].

30 ips 15 ips 7.5 ips 3.75 ips

AES: 17.5/∞ CCIR: 35/∞ 70/∞ 90/3180
AES: 17.5/∞ NAB: 50/3180 50/3180 90/3180

Table 2. Samples of electroacoustic music recorded on experimental tapes with the related configuration.

Samples Recording Parameters

# Composer Title Year(s) Speed Equation DBX

1 Luciano Berio Differences 1958–1959 7.5 CCIR yes
2 Pierre Boulez Dialogue de l’ombre double 1985 7.5 CCIR yes
3 Brian Ferneyhough Mnemosyne 1986 7.5 CCIR no
4 Brian Ferneyhough Mnemosyne 1986 15 CCIR yes
5 Bruno Maderna Continuo 1958 15 CCIR no
6 Bruno Maderna Dimensioni II—invenzione su una voce 1960 7.5 NAB yes
7 Bruno Maderna Notturno 1956 7.5 NAB no
8 Luigi Nono ...sofferte onde serene... 1976 15 NAB yes
9 Gruppo NPS Interferenze II 1965–1968 15 NAB yes
10 Gruppo NPS Ricerca 4 1965–1968 15 NAB no

The first samples created for each tree consist of the digitization of the recorded samples, without
any alteration, read with the correct parameter setting. These represent the roots for the respective
trees. All the other samples differ from the roots for at least one alteration of the tape or different
parameter in the configuration of the machine. The alterations tested in the experiments are:

• addition of a leader-tape within the tape;
• overdub with silence or with another track;
• addition of a splice within the tape.

The latter is obtained cutting the tape at 90◦ and then joining together the two sides with
a splicing tape. Every alteration is chosen randomly and implicates a node in the lower levels of the tree.

Since the writing parameters are unknown to the analyst, the reading setup at the digitization
must be guessed. As a matter of fact, our datasets include multiple digitizations of the same tape
where the parameters were selected randomly. This choice leads to the availability of multiple digital
copies of the same content, which need to be acknowledged as one and fused into one node in the
reconstructed phylogenetic tree.

6. Results and Discussion

The proposed methodology was validated by considering three different metrics: (i) accuracy
of the leader-tape detector; (ii) accuracy of the overdub detector; (iii) comparison of the estimated
phylogenetic tree with the ground-truth.

The performance of the two detection modules are measured and presented here in terms of the
probabilities of correct-detection and false-positive, as obtained from the employed dataset. Results are
shown in Table 3, where p(A|A) denotes the correct-detection probability for alteration A and p(A|¬A)

denotes the false-positive probability.

Table 3. Correct-detection and false-positive probabilities for leader-tapes and overdubs.

Leader Overdub

p(L|L) p(L|¬L) p(O|O) p(O|¬O)
90.0% 0.0% 75.0% 3.3%
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Leader-tape detection turns out to be highly reliable, with a solid 90% rate of correct-detection
and no false-positives at all. Overdub detection represents a more complex problem. On the one hand,
in some cases, the detector is not able to correctly identify the presence of an overdub, as its spectral
fingerprint does not appear sufficiently visible with respect to the background noise or the overdub
interval limits are not sufficiently sharp in the difference of the spectrograms. On the other hand, it was
observed that cases might occur in which different kinds of tape alterations (e.g., presence/absence
of DBX or different equalizations) may produce artifacts that might be confused with those left by
an overdub (false-positive).

However, the estimation of the phylogenetic tree does not strictly require 100% accuracy of
the detectors. In fact, the tree reconstruction process involves the dissimilarity matrix as a whole,
which means that it is usually robust to local noise and errors, as long as the algorithm has gathered
enough information.

Since the validation dataset consisted of relatively small trees, results were obtained by
qualitatively inspecting the estimated structures in comparison to the ground-truth. Three possible
outcomes were observed.

1. In 50% of the cases, the estimated tree perfectly reproduces the ground-truth. Specifically, all the
tracks sharing the same tape modifications (leader-tape and/or overdub) are collected in the
same clique, and the resulting cliques are correctly ordered in the phylogeny sense.

2. In 40% of the cases, the estimated tree is not identical to the ground-truth, but still makes sense in
phylogeny terms. For instance, in some cases, it is possible to observe that certain cliques result
in being over-clustered: tracks that should belong to the same meta-node are split into more
nodes, which can be siblings or in a parent-child relationship. However, the relative depths in the
tree structure are maintained, and the overall phylogenetic sense is preserved. Figure 5 reports
a couple of examples of this scenario.

3. In 10% of the cases, the estimated tree shows some wrong phylogenetic relations
(ancestor-descendant swaps) with respect to the ground-truth.

(a) (b)

Figure 5. Examples of tree reconstruction with over-clustering errors. Datasets consist of seven audio
tracks, {a, b, . . . , g}. In (a), cluster {b, e, g} is split into the parent-child pair ({e}, {b, g}); in (b), cluster
{d, e, f, g} is split into the sibling pair ({d, e, g}, {f}).

Finally, it is important to underline that this result assessment does not take into account
alterations due to the addition of splices. The performed experiments, in fact, showed that these
alterations are barely visible in the spectrogram images, or at least easily confused with other
regular spectral features, making their detection problematic within a computer-vision framework.
Therefore, ground-truth trees were re-designed by merging the clusters of nodes induced by a splice
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with their phylogenetic parents, and consequently, the algorithm was expected to reconstruct the
trees accordingly.

7. Conclusions

Phylogenetic analysis of tape music is a new emerging branch of computational musicology,
which requires new automatized and accurate tools to reconstruct the generation history of
different copies of the same audio content. The paper has presented a phylogenetic reconstruction
strategy, which relies on digitizing the analyzed tapes and then converting each audio track into
a two-dimensional spectrogram. This conversion allows adopting a set of computer vision tools to
align and equalize different tracks in order to infer the most likely transformation that converts one
track into another. In the presented approach, overdubs, cuts and the insertion of a leader-tape were
considered, as these are among the most likely transformations to be estimated in tape phylogeny.
The proposed solution presents a satisfying robustness to the adoption of the wrong reading setup
(i.e., with speed, equalization and filtering different from those adopted in the creation of the tape),
together with a good reconstruction accuracy of the phylogenetic tree. The reconstructed dependencies
proved to be correct or plausible (i.e., the temporal order of the audio content is respected in the
estimated phylogenetic tree) in 90% of the experimental cases.

Future research work will be devoted to extending the proposed approach to a widened set of
editing techniques, intentional and unintentional alterations, and configurations, as well as different
tape recorders and syndromes. Moreover, the investigation activity has also highlighted the need for
designing new objective evaluation metrics that permit measuring the accuracy of tree reconstruction
in the tape music phylogeny context. Machine learning algorithms, such as the ones described in [40],
could be used to enhance the phylogenetic algorithms. The same analysis can be applied to a more
heterogeneous set of analogue physical support (including vinyl records, phonograph cylinders, etc.)
with the final aim of a complete tool for musicological analysis of digitized analogue recordings.
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Abstract: Convolutional Neural Networks (CNN) have been applied to diverse machine learning
tasks for different modalities of raw data in an end-to-end fashion. In the audio domain,
a raw waveform-based approach has been explored to directly learn hierarchical characteristics
of audio. However, the majority of previous studies have limited their model capacity by taking
a frame-level structure similar to short-time Fourier transforms. We previously proposed a CNN
architecture which learns representations using sample-level filters beyond typical frame-level
input representations. The architecture showed comparable performance to the spectrogram-based
CNN model in music auto-tagging. In this paper, we extend the previous work in three
ways. First, considering the sample-level model requires much longer training time, we progressively
downsample the input signals and examine how it affects the performance. Second, we extend the
model using multi-level and multi-scale feature aggregation technique and subsequently conduct
transfer learning for several music classification tasks. Finally, we visualize filters learned by the
sample-level CNN in each layer to identify hierarchically learned features and show that they are
sensitive to log-scaled frequency.

Keywords: convolutional neural networks; music classification; raw waveforms; sample-level filters;
downsampling; filter visualization; transfer learning

1. Introduction

Convolutional Neural Networks (CNN) have been applied to diverse machine learning
tasks. The benefit of using CNN is that the model can learn hierarchical levels of features from
high-dimensional raw data. This end-to-end hierarchical learning has been mainly explored in the
image domain since the break-through in image classification [1]. However, the approach has been
recently attempted in other domains as well.

In the text domain, a language model is typically built in two steps, first by embedding
words into low-dimensional vectors and then by learning a model on top of the word-level vectors.
While the word-level embedding plays a vital role in language processing [2], it has limitations in
that the embedding space is learned separately from the word-level model. To handle this problem,
character-level language models that learn from the bottom-level raw data (e.g., alphabet characters) were
proposed and showed that they can yield comparable results to the word-level learning models [3,4].

In the audio domain, raw waveforms are typically converted to time-frequency representations
that better capture patterns in complex sound sources. For example, spectrogram and more concise
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representations such as mel-filterbank are widely used. These spectral representations have served
a similar role to the word embedding in the language model in that the mid-level representation
are computed separately from the learning model and they are not particularly optimized for the
target task. This issue has been addressed by taking raw waveforms directly as input in different
audio tasks, for example, speech recognition [5–7], music classification [8–10] and acoustic scene
classification [11,12].

However, the majority of previous work have focused on replacing the frame-level time-frequency
transforms with a convolutional layer, expecting that the layer can learn parameters comparable to
the filter banks. The limitation of this approach was pointed out by Dieleman and Schrauwen [8].
They conducted an experiment of music classification using a simple CNN that takes raw waveforms or
mel-spectrogram. Unexpectedly, their CNN models with the raw waveform as input did not produce
better results than those with the spectral data as input. The authors attributed this unexpected
outcome to three possible causes. First, their CNN models were too simple (e.g., a small number of
layers and filters) to learn the complex structure of polyphonic music. Second, the end-to-end models
need an appropriate non-linearity function that can replace the log-based amplitude compression in
the spectrogram. Third, the first 1D convolutional layer takes raw waveforms in a frame-level which is
typically several hundred samples long. The filters in the first 1D convolutional layer should learn all
possible phase variations of periodic waveforms within the length. In spectrogram, the phase variation
is removed.

We recently tackled the issues by stacking 1D convolutional layers using very small filters instead
of a 1D convolutional layer with the frame-level filters, inspired by the VGG networks in image
classification that is built with deep stack of 3×3 convolutional layers [13,14]. The sample-level CNN
model has filters with very small granularity (e.g., 3 samples) in time for all convolutional layers.
The results were comparable to those using mel-spectrogram in music auto-tagging. In this paper,
we term the sample-level CNN architecture as SampleCNN and extend the previous work in three ways.
First, we should note that SampleCNN takes four times longer training time than a comparable CNN
model that takes mel-spectrogram. In order to reduce the training time, we progressively downsample
the waveforms and report the effect on performance. By reducing the band-width of music audio
this way, we will be able to find the cut-off frequency where the performance starts to become
degraded. Second, we extended SampleCNN using multi-level and multi-scale feature aggregation [15].
The technique proved to be highly effective in music classification tasks. We additionally evaluate the
extended model in transfer learning settings where the features extracted from SampleCNN can be
used for three different datasets in music genre classification and music auto-tagging. We show that
the proposed model achieves state-of-the-art results. Third, we visualize learned intermediate layers
of SampleCNN to observe how the filters with small granularity process music signals in a hierarchical
manner. In particular, we visualize them for each of sampling rates.

2. Related Work

There are a decent number of CNN models that take raw waveforms as input. The majority
of them used large-sized filters in the first convolutional layer with various size of strides to
capture frequency-selective responses which were carefully designed to handle their target problems.
We termed this approach as frame-level raw waveform model because the filter and stride sizes of the
first convolutional layer were chosen to be comparable to the window and the hop sizes of short-time
Fourier transformation, respectively [5–11].

There are a few work that used small filter and stride sizes in the first convolution layer
(8 samples-sized filter [16] and 10 samples-sized filter [17,18] at 16 kHz). However, the CNN models
have only two or three convolution layers, which are not sufficient to learn the complex structure of
the acoustic signals. In SampleCNN, we deepen the layers even more, thereby reducing the filter and
stride sizes of the first convolution layer down to two or three samples.
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3. Learning Models

Figure 1 illustrates three CNN models in music auto-tagging that we compare in our experiments.
Note that they are actually general architectures and so can be applied to any audio classification tasks.
In this section, we describe the three models in detail.

Figure 1. Comparison of (a) frame-level model using mel-spectrogram; (b) frame-level model using raw
waveforms and (c) sample-level model using raw waveforms.

3.1. Frame-Level Mel-Spectrogram Model

This is the most common CNN model used in music classification. The time-frequency
representation is usually regarded as either two-dimensional images [19,20] or one-dimensional
sequence of vectors [8,21]. We only used one-dimensional(1D) CNN model for experimental
comparisons because the performance gap between 1D and 2D models is not significant and the
1D model is directly comparable to models using raw waveforms.

3.2. Frame-Level Raw Waveform Model

In this model, a strided convolution layer is added beneath the bottom layer of the frame-level
mel-spectrogram model. The strided convolution layer is expected to learn a filter-bank that returns
a time-frequency representation. In this model, once the first strided convolution layer slides over
the raw waveforms, the output feature map has the same dimensions as the mel-spectrogram.
This is because the stride size, filter size, and the number of filters in the first convolution layer
correspond to the hop size, window size, and the number of mel-bands in the mel-spectrogram,
respectively. This configuration was used for the music auto-tagging task in [8,9] and thus we used it
as a baseline model.

3.3. Sample-Level Raw Waveform Model: SampleCNN

As described in Section 1, the approach using raw waveforms should be able to address log-scale
amplitude compression and phase-invariance. Simply adding a strided convolution layer is not
sufficient to overcome the issues. To improve this, we add multiple layers beneath the frame-level
such that the first convolution layer can handle much smaller size of samples. For example, if the
stride of the first convolution layer is reduced from 729 (=36) to 243 (=35), 3-size convolution layer
and max-pooling layer are added to keep the output dimensions in the subsequent convolution layers
unchanged. If we repeatedly reduce the stride of the first convolution layer this way, six convolution
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layers (five pairs of 3-size convolution and max-pooling layer following one 3-size strided convolution
layer) will be added (we assume that the temporal dimensionality reduction occurs only through
max-pooling and striding while zero-padding is used in convolution to preserve the size).

We generalized the configuration as mn-SampleCNN where m refers to the filter size
(or the pooling size) of intermediate convolution layer modules and n refers to the number of the
modules. The first convolutional layer is different from the intermediate convolutional layers in that
the stride size is equal to the filter size. An example of mn-SampleCNN is shown in Table 1 where m is
3 and n is 9. Note that the network is composed of convolution layers and max-pooling only, and so
the input size is determined to be stride size of the first convolutional layer ×mn. In Table 1, as the stride
size of the first convolution layer is 3, the input size is set to be 59049 (=3 × 39).

Table 1. SampleCNN configuration. In the first column (Layer), “conv 3-128” indicates that the filter
size is 3 and the number of filters is 128.

39-SampleCNN Model

59,049 Samples (2678 ms) as Input

Layer Stride Output # of Params

conv 3-128 3 19,683 × 128 512

conv 3-128
maxpool 3

1
3

19,683 ×128
6561× 128 49,280

conv 3-128
maxpool 3

1
3

6561× 128
2187× 128 49,280

conv 3-256
maxpool 3

1
3

2187× 256
729× 256 98,560

conv 3-256
maxpool 3

1
3

729× 256
243× 256 196,864

conv 3-256
maxpool 3

1
3

243× 256
81× 256 196,864

conv 3-256
maxpool 3

1
3

81× 256
27× 256 196,864

conv 3-256
maxpool 3

1
3

27× 256
9× 256 196,864

conv 3-512
maxpool 3

1
3

9× 512
3× 512 393,728

conv 3-512
maxpool 3

1
3

3× 512
1× 512 786,944

conv 1-512
dropout 0.5

1
−

1× 512
1× 512 262,656

sigmoid − 50 25,650

Total params 2.46× 106

4. Extension of SampleCNN

4.1. Multi-Level and Multi-Scale Feature Aggregation

Music classification tasks, particularly music auto-tagging among others, have a wide variety
of labels in terms of genre, mood, instruments and other song characteristics. Especially, they are
positioned in different hierarchical levels and time-scales. For example, some words related to
instrument ones, such as guitar and saxophone, describe objective sound sources which are usually
local and repetitive within a song, whereas other labels related to genre or mood, such as rock and
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happy, are dependent on a larger context of music and are more complicated. In order to address this
issue, we recently proposed multi-level and multi-scale feature aggregation technique [15].

The technique is conducted by combining multiple CNN models. This assumes that the hidden
layers of each CNN model represent different levels of features and the models with different input
sizes provide even richer feature representations by capturing both local and global characteristics of
the music. In [15], they showed that different level and time-scale features have different performance
sensitivity to individual tags and thus combining them all together is the best strategy to improve
performance. In this work, we replace the simple CNN architectures that take mel-spectrogram as
input in [15] with SampleCNNs, taking different input sizes (e.g., 700 ms to 3.5 s). Once we train the
SampleCNNs as supervised feature extractors, we slide each of them over a song clip (e.g., about 30 s)
and obtain features from the last three hidden layers. We then summarize them by a combination of
max-pooling and average-pooling. Finally, we concatenate the multi-level and multi-scale features and
feed them to a simple neural networks with two fully-connected layers to make a final prediction.

4.2. Transfer Learning

The multi-level and multi-scale feature aggregation approach can be used in a transfer learning
setting by using different datasets or target tasks for the final classification after training the
SampleCNNs. Especially, when the target dataset size is comparably small to the model capacity,
transferred parameters can yield better performance on the target task rather than parameters trained
from the innate target dataset. The applicability of transfer learning using a frame-level raw waveform
model has been explored in the speech domain [17]. Here, we examine it using the sample-level raw
waveform model for music genre classification and music auto-tagging with different datasets.

5. Experimental Setup

5.1. Datasets

We validate the effectiveness of the proposed method on different sizes of datasets for music
genre classification and auto-tagging. All dataset splits are available on the link [22]. The details of
each dataset are as follows. The numbers in the parenthesis indicate the split of training, validation
and test sets.

• GTZAN [23]: 930 songs (443/197/290) (This is a fault-filtered split designed to avoid the repetition
of artists across the training, validation and test sets [24]), genre classification (10 genres).

• MagnaTAgaTune (MTAT) [25]: 21,105 songs (15,244/1529/4332), auto-tagging (50 tags)
• Million Song Dataset with Tagtraum genre annotations (TAGTRAUM): 189,189 songs

(141,372/10,000/37,817) (This is a stratified split with 80% training data of the CD2C version [26]),
genre classification (15 genres)

• Million Song Dataset with Last.FM tag annotations (MSD) [27]: 241,889 songs (201,680/11,774/28,435),
auto-tagging (50 tags)

We primarily examined the proposed model on MTAT and then verified the effectiveness of our
model on MSD which is much larger than MTAT (MTAT contains 170 h long audio and MSD contains
1955 h long audio in total). We filtered out the tags and used most frequently labeled 50 tags in both
datasets, following the previous work [8,19,20]. Also, all songs in the two datasets were trimmed to
29.1 s long. For transfer learning experiments, the model is first trained with the largest dataset, MSD,
and the pre-trained networks are transferred to other three datasets. The evaluation is conducted with
area under receiver operating characteristic (AUC) for auto-tagging datasets and accuracy for genre
classification datasets.
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5.2. Training Details

We used sigmoid activation for the output layer and binary cross entropy loss as the objective
function to optimize. For every convolution layer, we used batch normalization [28] and ReLU
activation. We should note that, in our experiments, batch normalization plays a vital role in training the
deep models that take raw waveforms. We applied dropout of 0.5 to the output of the last convolution
layer and minimized the objective function using stochastic gradient descent with 0.9 Nesterov
momentum. The learning rate was initially set to 0.01 and decreased by a factor of 5 when the
validation loss did not decrease more than 3 epochs. A total decrease of 4 times, the learning rate of
the last training was 0.000016. Also, we used batch size of 23 for MTAT and 50 for MSD, respectively.

5.3. Mel-Spectrogram and Raw Waveforms

In the mel-spectrogram experiments, window sizes of 36, 35 and 34 are used to match up to the
filter sizes in the first convolution layer of the raw waveform model as shown in Table 2. FFT size
was set to 729 (=36) in all experiments. When the window is less than the FFT size, we zero-padded
the windowed frame. The linear frequency in the magnitude spectrum is mapped to 128 mel-bands
and the magnitude compression is applied with a nonlinear curve, log(1 + C|A|) where A is the
magnitude and C is set to 10. Also, we conducted the input normalization simply by dividing the
standard deviation after subtracting mean value of entire input data. On the other hand, we did not
perform the input normalization for raw waveforms.

Table 2. Comparison of three CNN models with different window size (filter size) and hop size
(stride size). n represents the number of intermediate convolution and max-pooling layer modules,
thus 3n times hop (stride) size of each model is equal to the number of input samples.

3n Models,
59,049 Samples

as Input
n Window Size

(Filter Size)
Hop Size

(Stride Size)
AUC

Frame-level
(mel-spectrogram)

4 729 729 0.9000
5 729 243 0.9005
5 243 243 0.9047
6 243 81 0.9059
6 81 81 0.9025

Frame-level
(raw waveforms)

4 729 729 0.8655
5 729 243 0.8742
5 243 243 0.8823
6 243 81 0.8906
6 81 81 0.8936

Sample-level
(raw waveforms)

7 27 27 0.9002
8 9 9 0.9030
9 3 3 0.9055

As described in Section 3.3, m refers to the filter size (which can be compared to a window size
of FFT in the spectrogram) or pooling size (which also can be compared to a hop size of FFT in the
spectrogram) of the intermediate convolution layer modules, and n refers to the number of the modules.
In our previous work, we adjusted m from 2 to 5 and increased n according to the configuration of
mn-SampleCNN [13]. Among them, 39-SampleCNN model with 59049 samples as input worked best
and thus we fix our baseline model to it. In this configuration, we can increase the filter size and stride
size in the first layer by decreasing the layer depth to conduct comparison experiments between the
frame-level models and the sample-level model. For example, if the hop size or the stride size of the
first convolutional layer is 729 in either the frame-level mel-spectrogram model or the frame-level
raw waveform model, 4 convolutional modules with 3-sized filters are added when the input size is
59,049 samples.
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5.4. Downsampling

The downsampling experiments are performed using the MTAT dataset. 39-SampleCNN model
is used with audio input sampled at 22,050 Hz. For other sampling rate experiments, we slightly
modified the model configuration so that the models used for different sampling rate can have
similar architecture and similar input seconds to those used in 22,050 Hz. In our previous work [13],
we found that the filter size did not significantly affect performance once it reaches the sample-level
(e.g., 2 to 5 samples), while the input size of the network and total layer depth are important.
Thus, we configured the models as described in Table 3. For example, if the sampling rate is 2000 Hz,
the first four modules use 3-sized filters and the rest 6 modules use 2-sized filters to make the total
layer depth similar to the 39-SampleCNN. Also, 3-sized filters are used for the first four modules in all
models for fairly visualizing learned filters.

Table 3. Models, input sizes and number of parameters used in the downsampling experiment.
In the third column (Models), each digit from left to right stands for the filter size (or the pooling size)
of the convolutional module of SampleCNN from bottom to top. Thus, the number of digits represents
the layer depth of each model.

Sampling Rate Input (in Milliseconds) Models # of Parameters

2000 Hz 5184 samples (2592 ms) 3-3-3-3-2-2-2-2-2-2 1.80× 106

4000 Hz 10,368 samples (2592 ms) 3-3-3-3-2-2-2-4-2-2 1.93× 106

8000 Hz 20,736 samples (2592 ms) 3-3-3-3-2-2-4-4-2-2 2.06× 106

12,000 Hz 31,104 samples (2592 ms) 3-3-3-3-3-2-4-4-2-2 2.13× 106

16,000 Hz 43,740 samples (2733 ms) 3-3-3-3-3-3-3-5-2-2 2.19× 106

20,000 Hz 52,488 samples (2624 ms) 3-3-3-3-3-3-3-3-4-2 2.32× 106

22,050 Hz 59,049 samples (2678 ms) 3-3-3-3-3-3-3-3-3-3 2.46× 106

5.5. Combining Multi-Level and Multi-Scale Features

For the multi-level and multi-scale experiments described in Table 4, we used total 8 models
including 213, 214, 38, 39, 46, 47, 55 and 56-SampleCNNs. Also, two fully connected layers with
4096 neurons in each layer are used as classifier.

Table 4. Comparison of various multi-scale feature combinations. Only the MTAT dataset was used.

Features from SampleCNNs
Last 3 Layers

(Pre-trained with MTAT)
MTAT

39 model 0.9046
38 and 39 models 0.9061

213, 214, 38 and 39 models 0.9061
213, 214, 38, 39, 46, 47, 55 and 56 models 0.9064

5.6. Transfer Learning

The source task for the transfer learning is fixed to music auto-tagging using MSD because the
dataset contains the largest set of music. In this experiment, 39-SampleCNN was used. We examined the
proposed model on three target datasets for genre classification and auto-tagging. We also examined
the performance differences when using features from multiple levels of the pre-trained CNNs and
also their combinations.
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6. Results and Discussion

6.1. Mel-Spectrogram and Raw Waveforms

Table 2 shows that the sample-level raw waveform model achieves results comparable to
the frame-level mel-spectrogram model. Specifically, we found that using a smaller hop size
(81 samples ≈ 4 ms) worked better than those of conventional approaches (about 20 ms) in the
frame-level mel-spectrogram model. However, if the hop size is less than 4 ms, the performance
degraded. An interesting finding from the result of the frame-level raw waveform model is that when
the filter length is larger than the stride, the accuracy is slightly lower than the models with the same
filter length and stride. We interpret that this result is due to the learning ability of the phase variance.
As the filter size decreases, the extent of phase variance that the filters should learn is reduced.

6.2. Effect of Downsampling

During the experiments, we observed that the training time of the proposed SampleCNN is
about four times longer than the frame-level mel-spectrogram model because the proposed model has
more network parameters with deeper layers. In order to reduce the training time, we downsampled
the audio with a set of lower sampling rates including 2000, 4000, 8000, 12,000, 16,000, 20,000 Hz.
This can be regarded as a time-domain counterpart of in linear-to-mel mapping in that both reduce
the dimensionality of input and preserve low-frequency content. The results in Table 5 show that
the performance is maintained down to 8000 Hz but it starts to be degraded from 4000 Hz. This may
indicate that the relevant information to the task is concentrated below 4000 Hz (the Nyquist frequency
of 8000 Hz). Also, we report the training time ratio of the models taking re-sampled audio to the model
using 22,050 Hz signal as input. At the expence of the accuracy, the training time can be reduced to
about half.

Table 5. Effect of downsampling on the performance and training time. MTAT is used in the
experiments. We matched the depth of the models taking different sampling rate to the 39-SampleCNN.
For example, if the sampling rate is 2000 Hz, the first four convolutional modules use 3-sized filters
and the rest 6 modules use 2-sized filters to make the total layer depth similar to the 39-SampleCNN.

Sampling Rate Training Time (Ratio to 22,050 Hz) AUC

2000 Hz 0.23 0.8700
4000 Hz 0.41 0.8838
8000 Hz 0.55 0.9031

12,000 Hz 0.69 0.9033
16,000 Hz 0.79 0.9033
20,000 Hz 0.86 0.9055
22,050 Hz 1.00 0.9055

6.3. Effect of Multi-Level and Multi-Scale Features

To measure the effect of multi-level and multi-scale feature combination, we experimented with
several settings in Table 4. The SampleCNN models are first trained on MTAT dataset, then this
pre-trained networks are used as feature extractors for the MTAT dataset again. The results show that
as more features are fusioned, the performance increases. This can be viewed similar to an ensemble
method, however our approach is distinguished from it in that the feature aggregation is performed
on activations of the hidden layers, not on the prediction values.

6.4. Transfer Learning and Comparison to State-of-the-Arts

In Table 6, we show the performance of the SampleCNN model and the transfer learning
experiments (the bottom four lines). The results achieved state-of-the-art results on three datasets
except for MSD. However, when considering that the model used in [15] utilized both multi-level
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and multi-scale features, the AUC score (0.8842) obtained from multi-level features only seems to be
reasonable. Also, we can see that the multi-level and multi-scale aggregation technique generally
improves the performance, particularly in GTZAN.

Table 6. Comparison with previous work. We report SampleCNN results on MagnaTAgaTune (MTAT)
and Million Song Dataset (MSD). Furthermore, the result acquired from multi-level and multi-scale
feature aggregation technique is also reported at the bottom 4 lines. “-n LAYER” indicates features of n
layers below from the output are used for the transfer learning setting.

MODEL
GTZAN

(Acc.)
MTAT
(AUC)

TAGTRUM
(Acc.)

MSD
(AUC)

Bag of multi-scaled features [29] - 0.898 - -
End-to-end [8] - 0.8815 - -

Transfer learning [30] - 0.8800 - -
Persistent CNN [31] - 0.9013 - -

Time-frequency CNN [32] - 0.9007 - -
Timbre CNN [33] - 0.8930 - -

2-D CNN [19] - 0.8940 - 0.851
CRNN [20] - - - 0.862

2-D CNN [24] 0.632 - - -
Temporal features [34] 0.659 - - -

CNN using artist-labels [35] 0.7821 0.8888 - -
multi-level and multi-scale features

(pre-trained with MSD) [15] 0.720 0.9021 0.766 0.8878

SampleCNN (39 model) [13] - 0.9055 - 0.8812

−3 layer (pre-trained with MSD) 0.778 0.8988 0.760 0.8831
−2 layer (pre-trained with MSD) 0.811 0.8998 0.768 0.8838
−1 layer (pre-trained with MSD) 0.821 0.8976 0.768 0.8842

last 3 layers (pre-trained with MSD) 0.805 0.9018 0.768 0.8842

7. Visualization

In this section, we investigate two visualization techniques that can broaden our understanding
of the learned hierarchical features in SampleCNN.

7.1. Learned Filters

Previous work in the music domain is limited to visualizing learned filters only on the first
convolution layer [8,9,36] or visualizing responses after a filter is applied on a specific input [37,38].
The gradient ascent method has been proposed for directly seeing what is learned at a filter [39] and
this technique has provided deeper understanding of what convolutional neural networks learn from
images [40,41]. We applied the technique to our SampleCNN to observe how each filter in a layer
processes the raw waveforms. The gradient ascent method is as follows. First, we generate random
noise and back-propagate the errors in the network. The loss is set to the target filter activation.
Then, we add the bottom gradients to the input with gradient normalization. By repeating this process
several times, we can obtain the accumulated gradients-based waveform like signal at the input which
is optimized to maximize the target filter activation. Examples of learned filters at each layer are in
Figure 2. Although we can find the patterns that low-frequency filters are more visible along the layer,
the estimated filters are still noisy. To show the patterns more clearly, we visualized them as spectrum
in the frequency domain and sorted them by the frequency of the peak magnitude in Figure 3.
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Figure 2. Examples of learned filters at each layer.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Figure 3. Spectrum of the estimated filters in the intermediate layers of SampleCNN which are sorted
by the frequency of the peak magnitude. The x-axis represents the index of the filter, and the y-axis
represents the frequency ranged from 0 to 11 kHz. The model used for visualization is 39-SampleCNN
with 59,049 samples as input. Visualization was performed using the gradient ascent method to obtain
the accumulated gradient-based input waveform like signal that maximizes the activation of a filter in
the layers. To effectively find the filter characteristics, we set the input size to 729 samples which is
close to a typical frame size.

Note that we set the input waveform estimate to 729 samples in length because, if we initialize
and back-propagate to the whole input size of the networks, the estimated filters will have large
dimensions such as 59,049 samples in computing spectrum. Thus, the results are equivalent to spectra
from a typical frame size. The layer 1 shows the three distinctive filter bands which are possible with
the filter size with 3 samples (say, a DFT size of 3). The center frequency of the filter banks increases
linearly in low frequency filter banks but, as the layer goes up, it progressively becomes steeper in high
frequency filter banks. This nonlinearity was found in learned filters with a frame-level end-to-end
learning [8] and also in perceptual pitch scales such as mel or bark.

Finally, we visualized spectrum of the learned filter for each sampling rate up to 4th layers.
In Figure 4, we can observe that all SampleCNN models focus (or zoom in) on the important
low-frequency bands. We can also find that they show similar non-linear patterns to those in Figure 3.
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Layer 1 Layer 2 Layer 3 Layer 4Layer 1 Layer 2 Layer 3 Layer 4

2000 Hz

4000 Hz

8000 Hz

12000 Hz

16000 Hz

20000 Hz

Figure 4. Spectrum visualization of learned filters for different sampling rates. The x-axis represents
the index of the filter, and the y-axis represents the frequency ranged from 0 to half the sampling rate.
3-sized filters are used for the first four modules in all models for fairly visualizing learned filters.

7.2. Song-Level Similarity Using t-SNE

We extracted features from SampleCNN and aggregated them at different hierarchical levels
of layer for each audio clip. We then embedded the song-level features into 2-D vectors using
t-Distributed Stochastic Neighbor Embedding (t-SNE). Figure 5 visualizes the 2-D embedded features
at different layer levels for selected tags to examine how multi-level feature aggregation technique
enhances the performance. Songs with genre tag (Techno) are more closely clustered in the higher
layer (−1 layer). On the other hand, songs with instrument tag (Piano) are more closely clustered in
the lower layer (−3 layer). This may indicate that the optimal layer of feature representations can be
different depending on the type of labels. Thus, combining different levels of features can improve
the performance.

Figure 5. Feature visualization on songs with Piano tag and songs with Techno tag on MTAT using t-SNE.
Features are extracted from (a) -3 LAYER and (b) -1 LAYER of the 39-SampleCNN model pre-trained
with MSD.
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8. Conclusions

In this article, we extend our previously proposed SampleCNN for music classification.
Through the experiments, we found that downsampling music audio down to 8000 Hz does not
significantly degrade performance but it saves training time. Second, transfer learning experiments
with multi-level and multi-scale technique showed state-of-the-art results on most of the datasets
we tested. Finally, we visualized the spectrum of the learned filters for each sampling rate and
found that the SampleCNN model is actively focusing on (or zoom in on) important low-frequency
bands. As future work, we will analyze why the sample-level architecture works well without input
normalization and nonlinear function that compresses the amplitude, which are important when we
use spectrogram as input. Also, we will investigate different filter visualization techniques to interpret
the hierarchically-learned filters better.
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Abstract: In this paper, we report on a free-hand motion capture study in which 32 participants
‘traced’ 16 melodic vocal phrases with their hands in the air in two experimental conditions.
Melodic contours are often thought of as correlated with vertical movement (up and down) in time,
and this was also our initial expectation. We did find an arch shape for most of the tracings,
although this did not correspond directly to the melodic contours. Furthermore, representation
of pitch in the vertical dimension was but one of a diverse range of movement strategies used to
trace the melodies. Six different mapping strategies were observed, and these strategies have been
quantified and statistically tested. The conclusion is that metaphorical representation is much more
common than a ‘graph-like’ rendering for such a melodic sound-tracing task. Other findings include
a clear gender difference for some of the tracing strategies and an unexpected representation of
melodies in terms of a small object for some of the Hindustani music examples. The data also show
a tendency of participants moving within a shared ‘social box’.

Keywords: motion; melody; shape; sound-tracing; multi-modality

1. Introduction

How do people think about melodies as shapes? This question comes out of the authors’ general
interest in understanding more about how spatiotemporal elements influence the cognition of music.
When it comes to the topic of melody and shape, these terms often seem to be interwoven. In fact,
the Concise Oxford Dictionary of Music defines melody as: “A succession of notes, varying in pitch,
which has an organized and recognizable shape.” [1]. Here, shape is embedded as a component in
the very definition of melody. However, what is meant by the term ‘melodic shape’, and how can we
study such melodic shapes and their typologies?

Some researchers have argued for thinking of free-hand movements to music (or ‘air instrument
performance’ [2]) as visible utterances similar to co-speech gestures [3–5]. From the first author’s
experience as an improvisational singer, a critical part of learning a new singing culture was the
physical representation of melodic content. This physical representation includes bodily posture,
gestural vocabulary and the use of the body to communicate sung phrases. In improvised music,
this also includes the way in which one uses the hands to guide the music and the expectation of
a familiar audience from the performing body. These body movements may refer to spatiotemporal
metaphors, quite like the ones used in co-speech gestures.

In their theory of cognitive metaphors, Lakoff and Johnson point out how the metaphors
in everyday life represent the structure through which we conceptualize one domain with the
representation of another [6]. Zbikowski uses this theory to elaborate how words used to describe
pitches in different languages are mapped onto the metaphorical space of the ‘vertical dimension’ [7].
Descriptions of melodies often use words related to height, for example: a ‘high’- or ‘low’-pitched
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voice, melodies going ‘up’ and ‘down’. Shayan et al. suggest that this mapping might be more
strongly present in Western cultures, while the use of other metaphors in other languages, such as thick
and thin pitch, might explain pitch using other non-vertical one-dimensional mapping schemata [8].
The vertical metaphor, when tested with longer melodic lines, shows that we respond non-linearly
to the vertical metaphors of static and dynamic pitch stimuli [9]. Research in music psychology has
investigated both the richness of this vocabulary and its perceptual and metaphorical allusions [10].
However, the idea that the vertical dimension is the most important schema of melodic motion is
very persistent [11]. Experimentally, pitch-height correspondences are often elicited by comparing
two or three notes at a time. However, when stimuli become more complex, resembling real melodies,
the persistence of pitch verticality is less clear. For ‘real’ melodies, shape descriptions are often used,
such as arches, curves and slides [12].

In this paper, we investigate shape descriptions through a sound-tracing approach. This was done
by asking people to listen to melodic excerpts and then move their body as if their movement was
creating the sound. The aim is to answer the following research questions:

1. How do people present melodic contour as shape?
2. How important is vertical movement in the representation of melodic contour in sound-tracing?
3. Are there any differences in sound-tracings between genders, age groups and levels of musical

experience?
4. How can we understand the metaphors in sound-tracings and quantify them from the data obtained?

The paper starts with an overview of related research, before the experiment and various analyses
are presented and discussed.

2. Background

Drawing melodies as lines has seemed intuitive across different geographies and time periods,
from the Medieval neumes to contemporary graphical scores. Even the description of melodies as
lines enumerates some of their key properties: continuity, connectedness and appearance as a shape.
Most musical cultures in the world are predominantly melodic, which means that the central melodic
line is important for memorability. Melodies display several integral patterns of organization and
time-scales, including melodic ornaments, motifs, repeating patterns, themes and variations. These are
all devices for organizing melodic patterns and can be found in most musical cultures.

2.1. Melody, Prosody and Memory

Musical melodies may be thought of as closely related to language. For example, prosody,
which can also be described as ‘speech melody,’ is essential for understanding affect in spoken
language. Musical and linguistic experiences with melody can often influence one another [13]. Speech
melodies and musical melodies are differentiated on the basis of variance of intervals, delineation and
discrete pitches as scales [14]. While speech melodies show more diversity in intonation, there is lesser
diversity in prosodic contours internally within a language. Analysis of these contours is used for
recognition of languages, speakers and dialects in computation [15].

It has been argued that tonality makes musical melodies more memorable than speech melodies [16],
while contour makes them more recognizable, especially in unfamiliar musical styles [17]. Dowling et al.
suggest that adults use contour to recognize unfamiliar melodies, even when they have been transposed
or when intervals are changed [16]. There is also neurological evidence supporting the idea that
contour memory is independent of absolute pitch location [18]. Early research in contour memory
and recognition demonstrated that acquisition of memory for melodic contour in infants and children
precedes memory for intonation [17,19–22]. Melodic contour is also described as a ‘coarse-grained’
schema that lacks the detail from musical intervals [14].
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2.2. Melodic Contour

Contour is often used to refer to sequences of up-down movement in melodies, but there are
also several other terms that in different ways touch upon the same idea. Shape, for example, is more
generally used for referring to overall melodic phrases. Adams uses the terms contour and shape
interchangeably [23] and also adds melodic configuration and outline to the mix of descriptors.
Tierney et al. discuss the biological origins and commonalities of melodic shape [24]. They also note
the predominance of arch-shaped melodies in music, the long duration of the final notes of phrases,
and the biases towards smooth pitch contours. The idea of shapes has also been used to analyze
melodies of infants crying [25]. Motif, on the other hand, is often used to refer to a unit of melody that
can be operated upon to create melodic variation, such as transposition, inversion, etc. Yet another
term is that of melodic chunk, which is sometimes used to refer to the mnemonic properties of melodic
units, while museme is used to indicate instantaneous perception. Of all these terms, we will stick
with contour for the remainder of this paper.

2.3. Analyzing Melodic Contour

There are numerous analysis methods that can be used to study melodic contour, and they may
be briefly divided into two main categories: signal-based or symbolic representations. When the
contour analysis uses a signal-based representation, a recording of the audio is analyzed with
computational methods to extract the melodic line, as well as other temporal and spectral features
of the sound. The symbolic representations may start from notated or transcribed music scores
and use the symbolic note representations for analysis. Similar to how we might whistle a short
melodic excerpt to refer to a larger musical piece, melodic dictionaries have been created to index
musical pieces [26]. Such indexes merit a thorough analysis of contour typologies, and several contour
typologies were created to this end [23,27,28]. Contour typology methods are often developed from
symbolic representations and notated as discrete pitch items. Adam’s method for contour typology
analysis, for example, codes the initial and final pitches of the melodies as numbers [23]. Parson’s
typology, on the other hand, uses note directions and their intervals as the units of analysis [26].
There are also examples of matrix comparison methods that code pitch patterns [27]. A comparison of
these methods to perception and memory is carried out in [29,30], suggesting that the information-rich
models do better than more simplistic ones. Perceptual responses to melodic contour changes have
also been studied systematically [30–32], revealing differences between typologies and which ones
come closest to resembling models of human contour perception.

The use of symbolic representations makes it easier to perform systematic analysis and
modification of melodic music. While such systematic analysis works well for some types of
pre-notated music, it is more challenging for non-notated or non-Western music. For such non-notated
musics, the signal-based representations may be a better solution, particularly when it comes to
providing representations that more accurately describe continuous contour features. Such continuous
representations (as opposed to more discrete, note-based representations) allow the extraction of
information from the actual sound signal, giving a generally richer dataset from which to work.
The downside, of course, is that signal-based representations tend to be much more complex, and hence
more difficult to generalize from.

In the field of music perception and cognition, the use of symbolic music representations,
and computer-synthesized melodic stimuli, has been most common. This is the case even though
the ecological validity of such stimuli may be questioned. Much of the previous research into the
perception of melodic contour also suffers from a lack of representation of non-Western and also
non-classical musical styles, with some notable exceptions such as [33–35].

Much of the recent research into melodic representations is found within the music information
retrieval community. Here, the extraction of melodic contour and contour patterns directly from the
signal is an active research topic, and efficient algorithms for extraction of the primary melody have been
tested and compared in the MIREX (Music Information Retrieval Evaluation Exchange) competitions
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for several years. Melodic contour is also used to describe the instrumentation of music from audio
signals, for example in [36,37]. It is also interesting to note that melodic contour is used as the first step
to identify musical structure in styles such as in Indian Classical music [38], and Flamenco [39].

2.4. Pitch and the Vertical Dimension

As described in Section 1, the vertical dimension (up-down) is a common way to describe
pitch contours. This cross-modal correspondence has been demonstrated in infants [40], showing
preferences for concurrence of auditory pitch ‘rising,’ visuospatial height, as well as visual ‘sharpness’.
The association with visuospatial height is elaborated further with the SMARC (Spatial-Musical
Association of Response Codes) effect [11]. Here, participants show a shorter response time for lower
pitches co-occurring with left or bottom response codes, while higher pitches strongly correlated with
response codes for right or top. A large body of work tries to tease apart the nuances of the suggested
effect. Some of the suggestions include the general setting of the instruments and the bias of reading
and writing being from left to right in most of the participants [41], as contributing factors to the
manifestation of this effect.

The concepts of contour rely upon pitch height being a key feature of our melodic multimodal
experience. Even the enumeration of pitch in graphical formats plays on this persistent metaphor.
Eitan brings out the variety of metaphors for pitch quality descriptions, suggesting that up and down
might only be one of the ways in which cross-modal correspondence with pitch appears in different
languages [9,10]. Many of the tendencies suggested in the SMARC effect are less pronounced when
more, and more complex, stimuli appear. These have been tested in memory or matching tasks,
rather than asking people to elicit the perceived contours. The SMARC effect may here be seen in
combination with the STEARC (Spatial-Temporal Association of Response Codes) effect, stating that
timelines are more often perceived as horizontally-moving objects. In combination, these two effects
may explain the overwhelming representation of vertical pitch on timelines. The end result is that we
now tend to think of melodic representation mostly in line-graph-based terms, along the lines of what
Adams ([23], p. 183) suggested:

There is a problem of the musical referents of the terms. As metaphoric depictions, most
of these terms are more closely related to the visual and graphic representations of music
than to its acoustical and auditory characteristics. Indeed, word-list typologies of melodic
contour are frequently accompanied by ‘explanatory’ graphics.

This ‘problem’ of visual metaphors, however, may actually be seen as an opportunity to explore
multimodal perception that was not possible to understand at the time.

2.5. Embodiment and Music

The accompaniment of movement to music is understood now as an important phenomenon
in music perception and cognition [42]. Research studying the close relationship between sound
and movement has shed light on the mechanism to understand action as sound [43] and sound as
action [44,45]. Cross-modal correspondence is a phenomenon with a tight interactive loop with the
body as a mediator for perceptual, as well as performative roles [46,47]. Some of these interactions
show themselves in the form of motor cortex activation when only listening to music [48]. This has
further led to empirical studies of how music and body movement share a common structure that
affords equivalent and universal emotional expression [49]. Mazzola et al. have also worked on
a topological understanding of musical space and the topological dynamics of musical gesture [50].

Studies of Hindustani music show that singers use a wide variety of movements and gestures that
accompany spontaneous improvisation [4,51,52]. These movements are culturally codified; they appear
in the performance space to aid improvisation and musical thought, and they also convey this
information to the listener. The performers also demonstrate a variety of imaginary ‘objects’ with
various physical properties to illustrate their musical thought.
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Some other examples of research on body movement and melody include Huron’s studies
of how eyebrow height accompany singing as a cue response to melodic height [53], and studies
suggesting that especially arch-shaped melodies have common biological origins that are related to
motor constraints [24,54].

2.6. Sound-Tracings

Sound-tracing studies aim at analyzing spontaneous rendering of melodies to movement,
capturing instantaneous multimodal associations of the participants. Typically, subjects are asked to
draw (or trace) a sound example or short musical excerpt as they are listening. Several of these
studies have been carried out with digital tablets as the transducer or the medium [2,44,55–59].
One restriction of using tablets is that the canvas of the rendering space is very restrictive.
Furthermore, the dimensionality does not evolve over time and represents a narrow bandwidth
of possible movements.

An alternative to tablet-based sound-tracing setups is that of using full-body motion capture.
This may be seen as a variation of ‘air performance’ studies, in which participants try to imitate the
sound-producing actions of the music to which they listen [2]. Nymoen et al. carried out a series of
sound-tracing studies focusing on movements of the hands [60,61], elaborating on several feature
extraction methods to be used for sound-tracing as a methodology. The current paper is inspired by
these studies, but extending the methodology to full-body motion capture.

3. Sound-Tracing of Melodic Phrases

3.1. Stimuli

Based on the above considerations and motivations, we designed a sound-tracing study of
melodic phrases. We decided to use melodic phrases from vocal genres that have a tradition of singing
without words. Vocal phrases without words were chosen so as to not introduce lexical meaning as
a confounding variable. Leaving out instruments also avoids the problem of subjects having to choose
between different musical layers in their sound-tracing.

The final stimulus set consists of four different musical genres and four stimuli for each genre.
The musical genres selected are: (1) Hindustani (North Indian) music, (2) Sami joik, (3) scat singing,
(4) Western classical vocalize. The melodic fragments are phrases taken from real recordings, to retain
melodies within their original musical context. As can be seen in the pitch plots in Figure 1,
the melodies are of varying durations with an average of 4.5 s (SD = 1.5 s). The Hindustani and joik
phrases are sung by male vocalists, whereas the scat and vocalize phrases are sung by female vocalists.
This is represented in the pitch range of each phrase as seen in Figure 1. The Hindustani and joik
melodies are mainly sung in a strong chest voice in this stimulus set. Scat vocals are sung with
a transition voice from chest to head. The Vocalizes in this set are sung by a soprano, predominantly in
the head register. Hindustani and vocalize samples have one dominant vowel that is used throughout
the phrase. The Scat singing examples use traditional ‘shoobi-doo-wop’ syllables, and joik examples
in this set predominantly contain syllables such as ‘la-la-lo’.

To investigate the effects of timbre, we decided to create a ‘clean’ melody representation of each
fragment. This was done by running the sound files through an autocorrelation algorithm to create
phrases that accurately resemble the pitch content, but without the vocal, timbral and vowel content of
the melodic stimulus. These 16 re-synthesized sounds were added to the stimulus set, thus obtaining
a total of 32 sound stimuli (summarized in Table 1).
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Figure 1. Pitch plots of all the 16 melodic phrases used as experiment stimuli, from each genre.
The x axis represents time in seconds, and the y axis represents notes. The extracted pitches were
re-synthesized to create a total of 32 melodic phrases used in the experiment.

Table 1. An overview of the 32 different stimuli: four phrases from each musical genre, all of which
were presented in both normal and re-synthesized versions.

Type Hindustani Joik Scat Vocalize

Normal 4 4 4 4
Re-synthesized 4 4 4 4

3.2. Subjects

A total of 32 subjects (17 female, 15 male) was recruited, with a mean age of 31 years
(SD = 9 years). The participants were mainly university students and employees, both with and
without musical training. Their musical experience was quantized using the OMSI (Ollen Musical
Sophistication Index) questionnaire [62], and they were also asked about the familiarity with the
musical genres, and their experience with dancing. The mean of the OMSI score was 694 (SD = 292),
indicating that the general musical proficiency in this dataset was on the higher side. The average
familiarity with Western classical music was 4.03 out of a possible 5 points, 3.25 for jazz music, 1.87 with
joik, and 1.71 with Indian classical music. Thus, two genres (vocalize and scat) were more familiar than
the two others (Hindustani and joik). All participants provided their written consent for inclusion
before they participated in the study, and they were free to withdraw during the experiment. The study
obtained ethical approval from the Norwegian Centre for Research Data (NSD), with the project code
49258 (approved on 22 August 2016).

3.3. Procedure

Each subject performed the experiment alone, and the total duration was around 10 min.
They were instructed to move their hands as if their movement was creating the melody. The use of
the term creating, instead of representing, is purposeful, as in earlier studies [60,63], to avoid the act of
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playing or singing. The subjects could freely stand anywhere in the room and face whichever direction
they liked, although nearly all of them faced the speakers and chose to stand in the center of the lab.
The room lighting was dimmed to help the subjects feel more comfortable to move as they pleased.

The sounds were played at a comfortable listening level through a Genelec 8020 speaker, placed
3 m in front of the subjects. Each session consisted of an introduction, two example sequences, 32 trials
and a conclusion, as sketched in Figure 2. Each melody was played twice with a 2-s pause in between.
During the first presentation, the participants were asked to listen to the stimuli, while during the
second presentation, they were asked to trace the melody. A long beep indicated the first presentation
of a stimulus, while a short beep indicated the repetition of a stimuli. All the instructions and required
guidelines were recorded and played back through the speaker to not interrupt the flow of the
experiment.

.

Figure 2. The experiment flow, with an approximate total duration of 10 min

The subjects’ motion was recorded using an infrared marker-based motion capture system
from Qualisys AB (Gothenburg, Sweden), with 8 Oqus 300 cameras surrounding the space (Figure 3a)
and one regular video camera (Canon XF105 (manufactured in Tokyo, Japan)), for reference.
Each subject wore a motion capture suit with 21 reflective markers on each joint (Figure 3b). The system
captured at a rate of 200 Hz. The data were post-processed in the Qualisys Track Manager software
(QTM, v2.16, Qualisys AB, Gothenburg, Sweden), which included labeling of markers and removal of
ghost-markers (Figure 3c). We used polynomial interpolation to gap-fill the marker data, where needed.
The post-processed data was exported to Python (v2.7.12 and MATLAB (R2013b, MathWorks, Natick,
MA, USA) for further analysis. Here, all of the 10-min recordings were segmented using automatic
windowing, and each of the segments were manually annotated for further analysis in Section 6.

(a) (b) (c)

Figure 3. (a) The motion capture lab used for the experiments. (b) The subjects wore a motion capture
suit with 21 reflective markers. (c) Screenshot of a stick-figure after post-processing in Qualisys Track
Manager software (QTM).
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4. Analysis

Even though full-body motion capture was performed, we will in the following analysis only
consider data from the right and left hand markers. Marker occlusions from six of the subjects were
difficult to account for in the manual annotation process, so only data from 26 participants were used
in the analysis that will be presented in Section 5. This analysis is done using comparisons of means
and distribution patterns. The occlusion problems were easier to tackle with the automatic analysis,
so the analysis that will be presented in Section 6 was performed on data from all 32 participants.

4.1. Feature Selection from Motion Capture Data

Table 2 shows a summary of the features extracted from the motion capture data. Vertical velocity
is calculated as the first derivative of the z-axis (vertical motion) for each tracing over time. ‘Quantity
of motion’ is a dimensionless quantity representing the overall amount of motion in any direction from
frame to frame. Hand distance is calculated as the euclidean distance between the x,y,z coordinates for
each marker for each hand. We also calculate the sample-wise distance traveled for each hand marker.

Table 2. The features extracted from the motion capture data.

Motion Features Description

1 VerticalMotion z-axis coordinates at each instant of each hand
2 Range (Min, Max) tuple for each hand
3 HandDistance The euclidean distance between the 2d coordinates of each hand
4 QuantityofMotion The sum of absolute velocities of all the markers
5 DistanceTraveled Cumulative euclidean distance traveled by each hand per sample
6 AbsoluteVelocity Uniform linear velocity of all dimensions
7 AbsoluteAcceleration The derivative of the absolute velocity
8 Smoothness The number of knots of a quadratic spline interpolation fitted to each tracing
9 VerticalVelocity The first derivative of the z-axis in each participant’s tracing
10 CubicSpline10Knots 10 knots fitted to a quadratic spline for each tracing

4.2. Feature Selection from Melodic Phrases.

Pitch curves from the melodic phrases were calculated using the autocorrelation algorithm in
Praat (v6.0.30, University of Amsterdam, The Netherlands), eliminating octave jumps. These pitch
curves were then exported for further analysis together with the motion capture features in Python.
Based on contour analysis from the literature [23,30,64], we extracted three different melodic features,
as summarized in Table 3.

Table 3. The features extracted from the melodic phrases.

Melodic Features Description

1 SignedIntervalDirection Interval directions (up/down) calculated for each note
2 InitialFinalHighestLowest Four essential notes of a melody: initial, final, highest, lowest
3 SignedRelativeDistances Feature 1 combined with relative distances of each successive note

from the next, only considering the number of semitones for each
successive change.

5. Analysis of Overall Trends

5.1. General Motion Contours

One global finding from the sound-tracing data is that of a clear arch shape when looking at
the vertical motion component over time. Figure 4 shows the average contours calculated from the
z-values of the motion capture data of all subjects for each of the melodic phrases. It is interesting
to note a clear arch-like shape for all of the graphs. This fits with suggestions of a motor constraint
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hypothesis suggesting that melodic phrases in general have arch-like shapes [24,54]. In our study,
however, the melodies have several different types of shapes (Figure 1), so this may not be the best
explanation for the arch-like motion shapes. A better explanation may be that the subjects would
start and end their tracing from a resting position in which the hands would be lower than during
the tracing, thus leading to the arch shapes seen in Figure 4.

Figure 4. Average contours plotted from the vertical motion capture data in mm (z-axis) for each of
the melodies (red for the original and blue for the re-synthesized versions of the melodies). The x-axis
represents normalized time, and the y-axis represents aggregated tracing height for all participants.

5.2. Relationship between Vertical Movement and Melodic Pitch Distribution

To investigate more closely the relationship between vertical movement and the distribution of
the pitches in the melodic fragments, we may start by considering the genre differences. Figure 5
presents the distribution of pitches in each genre in the stimulus set. These are plotted on a logarithmic
frequency scale to represent the perceptual relationships between them. In the plot, each of the
four genres are represented by their individual distributions. The color distinction is on the basis of
whether the melodic phrase has one direction or many. Phrases closer to being ascending, descending,
or stationary are coded as not changing direction. We see that in all of these conditions, the vocalize
phrases in the dataset have the highest pitch profiles and the Hindustani phrases have the lowest.

If we then turn to look at the vertical dimension of the tracing data, we would expect to see
a similar distribution between genres as that for the pitch heights of the melodies. Figure 6 shows the
distribution of motion capture data for all tracings, sorted in the four genres. Here, the distribution of
maximum z-values of the motion capture data shows a quite even distribution between genres.

43



Appl. Sci. 2018, 8, 135

Figure 5. Pitch distribution for each genre based on mean pitches in each phrase. If movement tracings
were an accurate representation of absolute pitch height, movement plots should resemble this plot.

Figure 6. Plots of the maximum height of either hand for each genre. The left/pink distributions
are from female subjects, while the right/blue distributions are from the male subjects. Each half of
each section of the violin plot represents the probability distribution of the samples. The black lines
represent each individual data point.

5.3. Direction Differences

The direction differences in the tracings can be studied by calculating the coefficients of variation
of movement in all three axes for both the left (LH) and right (RH) hands. These coefficients are
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found to be LHvar (x,y,z) = (63.7,45.7,26.6); RHvar (x,y,z) = (56.6,87.8,23.1), suggesting that the amount
of dispersion on the z-axis (the vertical) is the most consistent. This suggests that a wide array of
representations in the x and y-axes are used.

The average standard deviations for the different dimensions were found to be LHstd = (99 mm,
89 mm, 185 mm); RHstd = (110 mm, 102 mm, 257 mm). This means that most variation is found in the
vertical movement of the right hand, indicating an effect of right-handedness among the subjects.

5.4. Individual Subject Differences

Plots of the distributions of the quantitiy of motion (QoM) for each subject for all stimuli show
a large degree of variation (Figure 7). Subjects 4 and 12, for example, have very small diversity in
the average QoM for all of their tracings, whereas Subjects 2 and 5 show a large spread. There are
also other participants, such as 22, who move very little on average for all their tracings. Out of the
two types of representations (original and re-synthesized stimuli), we see that there is in general
a larger diversity of movement for the regular melodies as opposed to the synthesized ones. However,
the statistical difference between synthesized and original melodies was not significant.

Figure 7. Distribution of the average quantity of motion for each participant. Left/red distributions
are of the synthesized stimuli, while the right/green distributions are of the normal recordings.

5.5. Social Box

Another general finding from the data that is not directly related to the question at hand, but that
is still relevant for understanding the distribution of data, is what we call a shared ‘social box’ among
the subjects. Figure 6 shows that the maximum tracing height of the male subjects were higher
than those of the female subjects. This is as expected, but a plot of the ‘tracing volume’ (the spatial
distribution in all dimensions) reveals that a comparably small volume was used to represent most of
the melodies (Figure 8). Qualitative observation of the recordings reveal that shorter subjects were
more comfortable about stretching their hands out, while taller participants tended to use a more
restrictive space relative to their height. This happened without there being any physical constraints of
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their movements, and no instructions that had pointed in the direction of the volume to be covered by
the tracings.

Figure 8. A three-dimensional plot of all sound-tracings for all participants reveal a fairly constrained
tracing volume, a kind of ‘social box’ defined by the subjects. Each color represents the tracings of
a single participant, and numbers along each axis are milimetres.

It is almost as if the participants wanted to fill up an invisible ‘social box,’ serving as the collective
canvas on which everything can be represented. This may be explained by the fact that we share
a world together that has the same dimensions: doors, cars, ceilings, and walls are common to us
all, making us understand our body as a part of the world in a particular way. In the data from this
experiment, we explore this by analyzing the range of motion relative to the heights of the participants
through linear regression. The scaled movement range in the horizontal plane is represented in
Figure 9. and shows that the scaled range reduces steadily over time as the height of the participants
increases. Shorter participants occupy a larger area in the horizontal plane, while taller participants
occupy a relatively smaller area. The R2 coefficient of regression is found to be 0.993, meaning that this
effect is significant.
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Figure 9. Regression plot of the heights of the participants against scaled (x, y) ranges. There is a clearly
decreasing trend for the scaled range of movements in the horizontal plane. The taller a participant,
the lower is their scaled range.

5.6. An Imagined Canvas

In a two-dimensional tracing task, such as with pen on paper, the ‘canvas’ of the tracing is both
finite and visible all the time. Such a canvas is experienced also for tasks performed with a graphical
tablet, even if the line of the tracing is not visible. In the current experiment, however, the canvas is
three-dimensional and invisible, and it has to be imagined by the participant. Participants who trace
by just moving one hand at a time seem to be using the metaphor of a needle sketching on a moving
paper, much like an analogue ECG (Electro CardioGram) machine. Depending on the size of the
tracing, the participants would have to rotate or translate their bodies to move within this imagined
canvas. We observe different strategies when it comes to how they reach beyond the constraints of
their kinesphere, the maximum volume you can reach without moving to a new location. They may
step sideways, representing a flat canvas placed before them, or may rotate, representing a cylindrical
canvas around their bodies.

6. Mapping Strategies

Through visual inspection of the recordings, we identify a limited number of strategies used in
the sound-tracings. We therefore propose six schemes of representation that encompass most of the
variation seen in the hands’ movement, as illustrated in Figure 10 and summarized as:

1. One outstretched hand, changing the height of the palm
2. Two hands stretching or compressing an “object”
3. Two hands symmetrically moving away from the center of the body in the horizontal plane
4. Two hands moving together to represent holding and manipulating an object
5. Two hands drawing arcs along an imaginary circle
6. Two hands following each other in a percussive pattern
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(1) Dominant hand (2) Changing inter-palm distance (3) Hands as mirror images

(4) Manipulating small objects (5) Drawing arcs along circles (6) Asymmetric percussive action

Figure 10. Motion history images exemplifying the six dominant sound-tracing strategies. The black
lines from the hands of the stick figures indicate the motion traces of each tracing.

These qualitatively derived strategies were the starting point for setting up an automatic extraction
of features from the motion capture data. The pipeline for this quantitative analysis consists of the
following steps:

1. Feature selection: Segment the motion capture data into a six-column feature vector containing
the (x,y,z) coordinates of the right palm and the left palm, respectively.

2. Calculate quantity of motion (QoM): Calculate the average of the vector magnitude for
each sample.

3. Segmentation: Trim data using a sliding window of 1100 samples in size. This corresponds to
5.5 s, to accommodate the average duration of 4.5 s of the melodic phrases. The hop size for the
windows is 10 samples, to obtain a large set of windowed segments. The segments that have the
maximum mean values are then separated out to get a set of sound-tracings.

4. Feature analysis: Calculate features from Table 4 for each segment.
5. Thresholding: Minimize the six numerical criteria by thresholding the segments based on

two-times the standard deviation for each of the computed features.
6. Labeling and separation: Obtain tracings that can be classified as dominantly belonging to one of

the six strategy types.
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Table 4. Quantitative motion capture features that match the qualitatively selected strategies. QoM,
quantities of motion.

# Strategy Distinguishing Features Description Mean SD

1 Dominant hand as needle Right hand QoM much greater than left QoM QoM(LHY) »
∨

«QoM(RHY) 0.50 0.06
2 Changing inter-palm distance Root mean squared difference of left, right hands in x RMS(LHX) − RMS(RHX) 0.64 0.12
3 Lateral symmetry between hands Nearly constant difference between left and right hands RHX − LHX = C 0.34 0.11
4 Manipulating a small object Right and left hands follow similar trajectories in x RH(x,y,z) = LH(x,y,z) + C 0.72 0.07
5 Drawing arcs along circles Fit of (x,y,z) for left and right hands to a sphere x2 + y2 + z2 0.17 0.04
6 Percussive asymmetry Dynamic time warp of (x,y,z) of Left, Right Hands dtw(RH(xyz), LH(xyz)) 0.56 0.07

After running the segmentation and labeling on the complete data set, we performed a t-test to
determine whether there is a significant difference between the labeled samples and the other samples.
The results, summarized in Table 5 show that the selected features demonstrate the dominance of
one particular strategy for many tracings. All except Feature 4 (manipulating a small ‘object’) show
significant results compared to all other tracing samples for automatic annotation of hand strategies.
While this feature cannot be extracted from the aforementioned heuristic, the simple feature for
euclidean distance between two hands proves effective to be able to explain this strategy.

Table 5. Significance testing for each feature against the rest of the features.

Strategy # p-Value

Strategy 1 vs. rest 0.003
Strategy 2 vs. rest 0.011
Strategy 3 vs. rest 0.005
Strategy 4 vs. rest 0.487
Strategy 5 vs. rest 0.003
Strategy 6 vs. rest 0.006

In Figure 11, we see that hand distance might be an effective way to compare different hand
strategies. Strategy 2 performs the best on testing for separability. The hand distance for Strategy 4,
for example is significantly lower than the rest. This is because this tracing style represents people who
use the metaphor of an imaginary object to represent music. This imaginary object seldom changes its
physical properties—its length and breadth and general size is usually maintained.

Taking demographics into account, we see that the distribution of the female subjects’ tracings for
vocalizes have a much wider peak than the rest of the genres. In the use of hand strategies, we observe
that women use a wider range of hand strategies as compared to men (Figure 11). Furthermore,
Strategy 5 (drawing arcs) is done entirely by women. The representation of music as objects is also
seen to be more prominent in women, as is the use of asymmetrical percussive motion. Comparing the
same distribution of genders for genres, we do not find a difference in overall movement or general
body use between the genders. If anything, the ‘social box effect’ makes the height differences of
genres smaller than they are.

In Figure 12, we visualize the use of these hand strategies for every melody by all the participants.
Strategy 2 is used in 206 tracings, whereas Strategy 5 is used for only 8 tracings. Strategies 1, 3, 4 and 5
are used 182, 180, 161 and 57 times,respectively. Through this heat map in 12, we also can find some
outliers for the strategies that are more infrequently used. For example, we see that Melodies 4, 13 and
16 show specially dominant use of some hand strategies.
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Figure 11. Hand distance as a feature to discriminate between tracing strategies.

Figure 12. Heat map of representation of hand strategy per melody.

7. Discussion

In this study, we have analyzed people’s tracings to melodies from four musical genres. Although
much of the literature points to correlations between melodic pitch and vertical movement, our findings
show a much more complex picture. For example, relative pitch height appears to be much more
important than absolute pitch height. People seem to think about vocal melodies as actions, rather than
interpreting the pitches purely in one dimension (vertical) over time. The analysis of contour features
from the literature shows that while tracing melodies through an allocentric representation of the
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listening body, the notions of pitch height representations matter much less than previously thought.
Therefore contour features cannot be extracted merely by cross-modal comparisons of two data sets.
We propose that other strategies can be used for contour representations, but this is something that
will have to be developed more in future research.

According to the gestural affordances of musical sound theory [65], several gestural representations
can exist for the same sound, but there is a limit to how much they can be manipulated. Our data support
this idea of a number of possible and overlapping action strategies. Several spatial and visual metaphors
are used by a wide range of people. One interesting finding is that there are gender differences between
the representations of the different sound-tracing strategies. Women seem to show a greater diversity
of strategies in general, and they also use object-like representations more often than men.

We expected musical genre to have some impact on the results. For example, given that Western
vocalizes are sung with a pitch range higher than the rest of the genres in this dataset (Figure 5), it is
interesting to note that, on average, people do represent vocalize tracings spatially higher than the
rest of the genres. We also found that the melodies with the maximum amount of vibrato (melodies
14 and 16 in Figure 5) are represented with the largest changes of acceleration in the motion capture
data. This implies that although the pitch deviation in this case is not so significant, the perception
of a moving melody is much stronger by comparison to other melodies that have larger changes in
pitch. It could be argued that both melody 4 and 16 contain motivic repetition that cause this pattern.
However, repeating motifs are as much parts of melodies 6 and 8 (joik). The values represented by these
melodies are applicable to their tracings as original as well as synthesized phrases. The effect of the
vowels used in these melodies can also thus be negated. As seen in Figure 12, there are some melodies
that stand out for some hand strategies. Melody 4 (Hindustani) is curiously highly represented as
a small object. Melody 12 is overwhelmingly represented by symmetrical movements of both hands,
while Melodies 8 and 9 are overwhelmingly represented by using 1 hand as the tracing needle.

We find it particularly interesting that subjects picked up on the idea of using small objects as
a representation technique in their tracings. The use of small objects to represent melodies is well
documented in Hindustani music [52,66–68]. However, the subjects’ familiarity score with Hindustani
music was quite low, so familiarity can not explain this interesting choice of representation in our study.
Looking at the melodic features of melody 4, for example, it is steadily descending in intervals until
it ascends again and comes down the same intervals. This may be argued to resemble an object that
smoothly slips on a slope, and could be a probable reason for the overwhelming object representation
of this particular melody. In future studies, it would be interesting to see whether we can recreate this
mapping in other melodies, or model melodies in terms of naturally occurring melodic shapes born
out of physical forces interacting with each other.

It is worth noting that there are several limitations with the current experimental methodology
and analysis. Any laboratory study of this kind would present subjects with an unfamiliar and
non-ecological environment. The results would also to a large extent be influenced by the habitus of
body use in general. Experience in dance, sign language, or musical traditions with simultaneous
musical gestures (such as conducting), all play a part in the interpretation of music as motion. Despite
these limitations, we do see a considerable amount of consistency between subjects.

8. Conclusions

The present study shows that there are consistencies in people’s sound-tracing to the melodic
phrases used in the experiment. Our main findings can be summarized as:

• There is a clear arch shape when looking at the averages of the motion capture data, regardless of
the general shape of the melody itself. This may support the idea of a motor constraint hypothesis
that has been used to explain the similar arch-like shape of sung melodies.

• The subjects chose between different strategies in their sound-tracings. We have qualitatively
identified six such strategies and have created a set of heuristics to quantify and test
their reliability.
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• There is a clear gender difference for some of the strategies. This was most evident for Strategy 4
(representing small objects), which women performed more than men.

• The ‘obscure’ strategy of representing melodies in terms of a small object, as is typical in Hindustani
music, was also found in participants who had no or little exposure to this musical genre.

• The data show a tendency of moving within a shared ‘social box’. This may be thought of as
an invisible space that people constrain their movements to, even without any exposure to the
other participants’ tracings. In future studies, it would be interesting to explore how constant such
a space is, for example by comparing multiple recordings of the same participants over a period
of time.

In future studies, we want to investigate all of these findings in greater detail. We are particularly
interested in taking the rest of the body’s motion into account. It would also be relevant to use
the results from such studies in the creation of interactive systems, ‘reversing’ the process, that is,
using tracing in the air as a method to retrieve melodies from a database. This could open up some
exciting end-user applications and also be used as a tool for music performance.

Supplementary Materials: The following are available online at Available online: http://www.mdpi.com/2076-
3417/8/1/135/s1, supplementary archive consists of data files of the following nature: segmented motion tracings
of 26 participants annotated with participant number, melody traced, and hand strategy used. The melodies are
from 1 to 16, and the pitch data and sound stimuli are separately provided as well. More information about the
same and code can be provided upon request.
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Abstract: Advancements in embedded computer platforms have allowed data to be collected and
shared between objects—or smart devices—in a network. While this has resulted in highly functional
outcomes in fields such as automation and monitoring, there are also implications for artistic and
expressive systems. In this paper we present a pluralistic approach to incorporating environmental
factors within the field of site-responsive sonic art using embedded audio and data processing
techniques. In particular, we focus on the role of such systems within an ecosystemic framework,
both in terms of incorporating systems of living organisms, as well as sonic interaction design.
We describe the implementation of such a system within a large-scale site-responsive sonic art
installation that took place in the subtropical desert climate of Arizona in 2017.

Keywords: sonic interaction design; audio signal processing; music technology; ecosystems

1. Introduction

In this paper we discuss an approach to incorporating both acoustic and environmental factors
within a large-scale multichannel sound installation. This research makes use of developments in
portable, embeddable sensor, and microcomputer technologies. Sounding Out Spaces is an ongoing
project that concerns context-based live electronic music and sonic art. Specifically, it aims to develop
performances and installations that occur in response to a particular location or space. The sites
involved range from retired industrial structures and visually stimulating landscapes, to architecture
with unique acoustic properties, natural environments, and places of cultural or historical significance.
Common to the collection of practices that has been developed is the theme that sound is produced
in response to certain perceived or measured attributes of a particular site. These features may be
acoustic, environmental, historic, and, perhaps, even imagined.

Sounding Out Spaces explores how we can use digital means to participate directly in our
environment, leading to novel and inclusive experiences. These ideas are developed through iterative
practice. The series began in 2014 with a focus on guerrilla performance using portable analogue
technologies, and has evolved to involve, most recently, large-scale public installations. While the
theoretical framework of this creative practice has been thoroughly discussed elsewhere (see [1]),
the most recent work in this series, which will be addressed in what follows, focuses on developing
transferable techniques and methodologies for both spontaneous and planned works. In this latest
iteration we explore the implications of an ecosystemic approach. We describe a methodology where
the resulting sound is contingent not only on all agents involved and their organizational relationships,
but also the environment and the effects of its perturbations [2] on such a system.
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Overview of Garden Ecologies

In April 2017, the latest iteration of the series was developed as a mutlichannel sonic art installation.
Sounding Out Spaces: Garden Ecologies involved numerous audio and sensor processing platforms that
were embedded throughout a community garden. These programmable digital–physical interfaces took
readings from plants, vegetation, and the environment. Several new systems were developed in order
to analyze and process biophysical information from the plants, soil, wind, water, and light. Along with
the acoustic information from the site picked up by microphones, this data was used to affect various
musical parameters of the digital signal processing (DSP) on the embedded microcomputers. The audio
output of these was sent to multiple loudspeakers placed throughout the garden (see Figures 1 and 2)
bringing forth an emergent, continuously evolving musical world.

Figure 1. A bird’s eye view of the installation site.

Figure 2. A loudspeaker embedded in a raised bed in which lettuce is being grown.

Various community groups were invited to take part in the project through a series of
sound-based workshops based at the Clark Park Community Garden, Tempe, and the Children
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First Leadership Academy, Phoenix, Arizona. In these workshops, children from one of our partner
organizations, Free Arts for Abused Children of Arizona, learned about listening to the environment,
sound recording, and using biophysical properties of organic matter, such as plants and vegetation,
along with simple electronic circuits to create new musical instruments. This culminated in a public
site-responsive performance. The material produced by the children was also incorporated into the
sound installation, weaving together the acoustic characteristics of the site with environmental and
biophysical information from the garden and plants into an evolving and dynamic sonic ecosystem.
The installation ran over two consecutive days and included an evening preview, in addition to the
daytime presentations.

2. Background

In this section we outline several areas of research within the field of sound and music computing
that have informed this work.

2.1. Sound and the Environment

Over the last few decades there has been a growing body of work being undertaken within
the areas of soundscape composition [3], environmental sound art [4,5], and acoustic ecology [6,7].
The latter of these associated areas of research is an interdisciplinary field that “studies the social,
cultural, and ecological aspects of our environment through sound” [8]. Currently, the majority of this
research makes extensive use of field recordings, and collects, analyzes, and archives large amounts
of sound material from the environment. Using the concept of acoustic indices [9], researchers can
evaluate the long-term changes in the biodiversity of both terrestrial and marine ecosystems. Such
estimations, which may include amplitude or intensity data, are important because of the volume
of audio recordings that can accumulate over time, this often being more than can be reviewed and
interpreted by human labor alone. On the other hand, much can be garnered about the conditions of
a place simply by listening. Through its unfolding, sound can reveal complex, dynamic, and often
otherwise hidden activity. The ambiances of a place can meander through the mundane repetitive
processes of movement and growth, interrupted by sudden punctuations which disrupt the passing of
time. With portable recording technology, we are able to make high-quality audio recordings of the
soundscapes (see [10] for a critique of the notion of soundscape in its objectification of sound) of natural
environments. Later in the studio, these sounds can be “humanly organized” [11] into elaborate
arrangements for reception via loudspeakers within a concert setting, or through headphones when
on the move. However, by bringing the outside in, through the careful capturing of the sounds that
are sampled, we may lose a crucial element within the process of sensemaking [12] as these recordings
are severed from their original contexts. Sound is always situated socially, culturally, and perceived
within a particular space.

2.2. Ecological Systems in Sound

Concurrently, the environment has featured heavily within discussions of live electronic music
in its role within the co-constitution of the body–instrument world that takes place during musical
performance (see [13] for a detailed discussion of this). Out of this has grown a steadily increasing
collection of theoretical developments and practices examining the ways in which ecological
systems can be used to understand how musicians and audiences make sense of musical activity
(see, for example, [14,15]). Additionally, this paradigm can be used to design new technological
frameworks. Of these, Agostino Di Scipio’s work is notable in his proposition that emergent
and dynamic behavior can arise out of the structural coupling of digital processes with the space
in which they are situated [16]. For Di Scipio, “Eco-systems are systems whose structure and
development cannot exist (let alone be observed or modeled) except in its permanent contact with a
medium” [16] (p. 271). Ecological systems—or ecosystems—typically comprise biological communities,
yet the paradigm can be extended to include human society or cultural networks. It can also be used
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to describe the very nature of the structural relationships within certain computational compositional
domains. This particular application is the focus of project that will be discussed in this paper.

Di Scipio’s work challenges the often unquestioning adherence to the commonly used model
of interactivity, where a musician can create, manipulate, or organize sound in time. In the
digital–physical domain, this is facilitated through a digital musical instrument (DMI). DMIs are
technologies which, in general, comprise a control interface (hardware) and a sound generator
(software) [17]. In the ubiquitous interactivity model, which often views engagement with DMIs
through the lens of human–computer interaction (HCI), the performer is in fact necessary in order to
initiate—through some sort of physical or gestural manipulation—some changes of state within the
instrument’s DSP. Rather, Di Scipio proposes an ecosystemic model in which an evolving, self-regulating
sonic entity is brought forth by “composing interactions” [16] (p. 270). In this approach, the role of the
environment is integral to—and inseparable from—this process. He suggests that such ecosystems “are
autonomous (i.e., literally, self-regulating) as their process reflects their own peculiar internal structure.
Yet they cannot be isolated from the external world, and cannot achieve their own autonomous function
except in close conjunction with a source of information (or energy). To isolate them from the medium
is to kill them” [16] (p. 271). While this does not preclude a performer from being part of the ongoing
negotiations and adjustments that take place within the system, in this model their presence is not
required for musical activity.

One key approach behind Di Scipio’s work involves setting up the potential for acoustic feedback
to manifest from within systems of microphones and loudspeakers, which are often digitally mediated.
This establishes sonic entities which self-regulate rather than ones which are the result of human
organization of sound into particular aesthetic or systematic arrangements [18]. In collaboration with
Dario Sanfilippo, some of the most recent work in this area focuses on techniques for incorporating the
environment within these systems [19]. The environment in this work refers to the sonic ambiance
of the space in which sound is being produced, along with any significant structural characteristics,
and the effect that these may have on the audible feedback loops. Explicitly, the environment here is
the “performance space” [19] (p. 23).

In their work, feedback occurs due to resonances both within instruments—which may comprise
computers, loudspeakers, software, and other technology—as well as spaces. The instrument is said
to be coupled with the environment because “they operate in a condition where they mutually affect
each other” [20] (p. 31). However, in an open space it can be more difficult to find resonances, such as
those formed by a the tube of an acoustic instrument such as a flute, or the four walls of a small
room. An example of a solution to this problem can be found in Chris Kallmyer’s piece This Distance
Makes Us Feel Closer (2013), which uses sound to create echo and resonance where there are neither
any structures nor land features to do this naturally. These are orchestrated by the artist who creates
autonomous desert fog horns, which suggests the presence of reflected sound waves—despite being
positioned one mile apart—in the expanse of the New Mexico desert [21]. Nevertheless, in both
these examples, the sonic result is uniquely dependent upon the situatedness of the work itself—it is
necessarily site-specific.

2.3. Responsiveness to Site

The term site-specific—its origins grounded within the visual arts and minimalist sculpture [22]
has become ambiguous through its usage as an umbrella term for describing art works that are
either held outdoors (hosted outside of cultural institutions) [23], or works that would no longer
make sense if moved to a new location [24]. In this broad view, site-specificity could be said to
describe works which are constructed through a relational process, where the artist works with certain
properties of a particular site. However, Miwon Kwon has noted that even the definition of site can be
interpreted in multiple ways: as “phenomenological” [24] (p. 3), concerning the experienced physical
qualities of a space; as addressing “social/institutional” [24] (p. 3) power structures; or as a site for
“discursive” [24] (p. 3) activity surrounding political or economic issues.
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A site-responsive practice [1] might be a more helpful way of describing the types of creative
activities that engage with the environmental, sonic, cultural, or historical identities of a particular
location—or the communities connected to that site—with careful reflection and sensitivity. It sidesteps
the contradictions that arise from notions of site-specificity and focuses instead on developing a new
set of methodologies to address its goals. These types of works connect “people with the space
they occupy by bringing awareness to how their presence affects their environment” [25] (p. 231).
Previous iterations of Sounding Out Spaces have addressed notions of multimodal participation that
a site-responsive practice can foster [1]. In such cases, the audience is not directed to experience the
work in a particular way, but is invited to explore their own trajectory through a variety of access
points. Such approaches can result is unexpected behaviors. Daichi Misawa, while reflecting on
his piece Transparent Sculpture (2012) which followed this embodied approach and premiered at Ars
Electronica in 2012, observed that this can be affective “to such an extent that [the] audience started to
walk, dance and scream” [26] (p. 390). This has implications not only for the accessibility of the work,
but also moves away from musical experiences that Bennett Hogg describes as relying on a “framing
of sounds within a stereo frame to be listened to under concert conditions [which] seems something of
a betrayal of sound’s potentially ecosystemic properties” [27].

3. Methodology

In this section we describe our methodology for realizing this project. We do this both by
outlining the design of the technological and biological ecosystems, as well as detailing the artistic and
compositional decisions that informed the use of the site. We also discuss the choice of sonic material,
sensors, and the relationships between these elements. While the resulting installation was very much
site-responsive, it should be noted that the aim of this work was to develop a set of techniques that
could be implemented in different locations, and respond effectively and uniquely in each scenario.

3.1. Surveying the Site

The selected community garden was favorable as the location for the installation both due to the
authors’ familiarity with the site—a local farmers’ market is hosted there each week—and its close
proximity to the university area. After establishing initial links with the grassroots organization that
stewards and develops the site, we discovered that the Tempe Community Action Agency (TCAA)
not only facilitates opportunities for locals to build community through their gardens, but also works
to serve the underprivileged by providing food and shelter [28]. In addition to pragmatic factors,
such as the site being a desirable size for the scale of this iteration, the diverse range of communities
involved with the garden would enable us to utilize multiple perspectives as input and feedback
during development. As Christabel Stirling has observed, this is crucial in order to determine the
actual social impact of public sonic art beyond the implications reported by the artists themselves [29].
Furthermore, having regular interactions with volunteers and those who were growing produce at the
site provided us with knowledge about the types of vegetation and wildlife that inhabited the garden.

The project began with a survey of the location through repeated visits. This involved spending a
significant amount of time listening at different parts of the site to learn about, and become familiar
with, its sonic characteristics. In addition to focused, selective listening techniques [30], we also
recorded on-site audio from static points around the site, and as moving trajectories. The microphone
was employed as a way to amplify, or examine in detail, potentially interesting sonorities that might
remain otherwise unheard. As Diane Willow—a media artist and researcher working with technology
and materials—asks, “What happens when we amplify and make tangible our perception of the subtle,
the ephemeral and the seemingly silent?” [31] (p. 333). This initial sampled sound was not used
in the final installation itself, but was analyzed and inspected off-site. This provided a quantitative
measurement of the audible frequencies and characteristics of sounds within the various regions of the
site, which complemented the observations made through repeated visits. We considered:

• which aspects of the environment could be used structurally or compositionally?
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• what in the environment is moving, could make sound through movement, or is already audible?
• which elements of the environment are static, and which are dynamic/changing?
• which aspects are consistent/inconsistent?

After this process of surveying, observation, listening, and analysis, the site was divided up into
four regions that would each be used to experiment with a different approach to site-responsiveness.

3.2. Re-Sounding Material

While the main thrust of this project involved autonomous, self-organizing systems, we were keen
to incorporate some established HCI models within the site, particularly to engage the children that we
were hosting through our workshops at the garden. Building on prior research examining embodied
approaches to sound and technology education [32–34], these workshops involved developing listening
practices and exploring the garden in order to discover potentially interesting sounds through
field recording techniques using hand-held audio recorders (https://www.zoom-na.com/products/
field-video-recording/field-recording/zoom-h1-handy-recorder). We appropriated an existing art
installation comprising five colorfully-painted bicycles mounted vertically on one of the walls of a
structure in the garden (see Figure 3).

Figure 3. Children from Free Arts recording sounds from the site using portable sound recorders.

Our work in the garden utilized several Bela [35]-embedded microcomputing systems. Bela is
a low-latency audio and sensor platform developed by Augmented Instruments Laboratory at the
Centre for Digital Music (C4DM) at Queen Mary University of London. Its ability to run software
built in Pure Data (Pd), a commonly used programming environment for sound synthesis and design,
allowed for the rapid prototyping, development, and composition of sonic interactions to be done
on-site and in the surrounding environment. Comprising low-power processors, these systems were
powered using portable Universal Serial Bus (USB) battery packs. Given the the subtropical desert
climate, we also experimented with solar power banks. These certainly would have been a sensible
option had we run the installation over a longer period of time.
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By attaching reed sensors to the bicycle forks, and a magnet on one of the spokes of each bicycle
wheel, the children were able to perform the sounds that they had recorded from the garden back into
the site itself. For this section of the installation, a single Bela was used to run Pd. Within the software,
the speed of the rotation of each of the wheels was calculated from the time intervals detected by
the reed sensors. The speed of the freewheeling was mapped in a nonlinear manner to the speed
of playback of the samples. The recorded audio samples were stored in lookup tables and played
back using both the digital sample position and low-frequency sawtooth waveforms. In the first case,
which was audible when the wheels were spun quickly—taken as when the sensor was triggered
at a frequency >1 Hz—a timbral effect was produced. The latter case—spin rate <1 Hz—allowed
the samples to loop rhythmically, and then eventually slow down, and cease to sound. The children
explored ways to play and manipulate their samples through the physical interfaces of the bicycles,
using gestures similar to scratching records with the wheels, as well as using physical objects pushed
against the spokes to give audible added resistance to the spin.

We also worked with MakeyMakey [36]—a low-cost electronics invention kit—connected to
various plants and vegetation in the garden. By building simple connections, the plants and humans
became part of a circuit. The MakeyMakey was connected to a laptop running software which,
again, triggered various samples recorded by the children when the human–plant circuit was closed
(see Figure 4). Through an exploratory approach, the children often connected different areas of
vegetation in the garden and played these new instruments collaboratively. In some cases, more than
one person had to be involved in order to complete the circuit. Sounds from the site were used
by participants as improvisational material, and they were able to work sounds taken from the
garden back into the space. In this way, the garden became a reconfigurable and constantly evolving
digital–physical instrument.

Figure 4. Children from Free Arts creating human–plant instruments using MakeyMakeys.

3.3. Ecological Garden-Raised Beds

3.3.1. Environmental Sensing

As discussed in Section 2.2, within Di Scipio and Sanfilippo’s approach, the environment is
generally considered in terms of its ability to disturb and affect actual—or potential—acoustic
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phenomena. We build on their work by expanding the role of the environment in its ability to
perturb aspects of the various autonomous systems that function within it by collecting data that is
not restricted to the sonic domain. This was explored in the most technically challenging part of the
installation: an ecosystemic network of 18 loudspeakers, each positioned in 18 raised garden beds
among vegetables and plants. The beds were separated into three groups, each outfitted with its own
system of microphones, speakers, and environmental sensors. In total, three Belas were used to run a
variety of sensors in this area of the garden (see Table 1 and Figure 5 for details).

Figure 5. Layout of installations, Clark Park Community Garden, Tempe, AZ.

In addition to some high-quality portable loudspeakers (http://www.mightydwarf.com/
product/blueii) (https://minirigs.co.uk/portable-speaker), it was possible to use low-cost
loudspeakers (https://www.cnet.com/products/x-mini-uno-speaker-for-portable-use-xam14pu/
specs/) for the majority of the beds due to the fact that they were battery powered and powerful
enough to create a significant sonic impact when sounding simultaneously. In fact, it was crucial that
the electronic sound did not overpower the sonic activity of the space, which was different depending
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on the time of day and what was happening at the site. Instead, the system was designed to fold any
detectable sound into itself, and weave its own output back into the present sonic state.

Table 1. Placement of sensors, microphones, and loudspeakers within the raised beds.

Equipment Description Bed Location

Mighty Dwarf portable 10 W speaker A1, B1
Minirig portable 15 W speaker C1, B5
X-Mini low-cost 2.5 W portable speaker all remaining beds

Zoom H1 audio recorder used for powered X-Y stereo microphones A1, B1, C1
LOLLETTE anemometer wind speed sensor B1
Adafruit accelerometer used to detect movement B1

cadmium sulphide (CdS) photoresistor used to detect movement via fluctuations in light A1
Sonbest temperature/humidity sensor used to detect slow changes in soil state C1

Using custom software written in Pd and loosely based on Di Scipio’s work on autonomous
feedback systems and emergent sonic structures [18], self-adaptive feedback loops were created
between the microphones and nearby loudspeakers. Essentially, these comprised a dynamic bandpass
filter which would allow more or less frequencies to pass through depending on the amplitude of
sound being received through the microphones. Importantly, no sound other than what was picked up
by the microphones was used as source material.

The Larsen effect [20] was induced by placing the microphones proximally to the loudspeakers.
Tamed by the adaptive filter, this sound was further processed using delay lines, granular synthesis,
comb filters, and bandpass filters. In additional to the audible processed feedback, sounds from both
humans and animals entered into the network, including significant activity from birds and crickets.
The environmental sensors, which included measures for soil, wind, movement, and light, were used
to inject additional disturbances into the feedback computation (see Figure 6). The resulting sound
was the result of several self-organizing systems coexisting within the same environment.

Figure 6. Signal flow of the garden bed installation.
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3.3.2. Composed Relations

Being the result of the coupling of autonomous systems, the work itself was not composed,
though compositional decisions could be said to reside in the mappings and relationships between
sensor input and computational processes. Following several visits to and observations in the gardens,
sensors were placed within the beds primarily on the basis of which sensor was the best fit for the
bed’s conditions. This might depend on the location of the bed within the site, or the density and type
of vegetation within it. The data from the environmental sensors was then analyzed in real-time and
normalized, scaled, and mapped to control various parameters of DSP on the Belas. The result was a
curated collection of simple relationships between organic matter, computational processes, and the
environment, combined to produce complex emergent behaviors. The aesthetic and experiential
considerations were determined through repeated and ongoing listening and observing within the site
on multiples days, and at different times. Below are a few examples of such composed relations:

Wind: Along with the sea, wind is arguably one of the only naturally continuous excitations [37].
Its continuous nature made it a useful resource to harness within this work. Wind speed readings
from an anemometer (https://www.adafruit.com/product/1733) were used to control how quickly
sounds were spatialized throughout the garden, creating a poetic connection between the movement
of the wind, and the diffusion of sound within space. Minimum and maximum wind speeds were
calculated continuously over the duration of the installation. When a new input value rose above
a previous maximum (or below a minimum), the respective input parameter was adjusted, and the
wind speed was calibrated accordingly. Due to the design of the anemometer—comprising three
hemispherical cups mounted via arms onto a vertical shaft—wind speed is always measured as an
average. This provided sufficiently useful wind-related data, which did not require further smoothing.

The relationship between the wind speed and sound spatialization was directly correlated:
the faster the speed of the wind, the faster and more chaotic the movement of sounds. Slower wind
speeds resulted in a stillness in sound content and diffusion. The spatialization was implemented using
constant power panning, which was controlled by the wind speed. Timbral changes were achieved by
mapping the rate of change of the scaled wind speed value to the density parameter of the granulator.
This varied the number of grains of sound being played back within the software, leading to changes
in perceived sound density.

Movement: In the same bed, an accelerometer (https://www.adafruit.com/product/163) was
used to measure the movement of a swaying burlap sunshade. The three-dimensional data was
normalized based on the minimum and maximum of values received over a sliding time-window.
The method of rescaling the data was again used to account for the changing environmental conditions.
In this case, the movement data was used to vary timbral aspects of the sound by modulating the
speed of certain control waveforms within the granulator. The audible result was almost gestural,
visually linked to the movements of the cloth, which allowed spectators to gain some insight into the
processes at work.

Temperature: In another portion of the system, a soil sensor (https://cdn-shop.adafruit.com/
datasheets/SLHT5.pdf) was used to measure the temperature and humidity of the soil. The initial soil
state was read at the launch of the system, and subsequent fluctuations in these values modulated
the overall tuning of several bandpass filters within the feedback system. The center frequencies of
these bandpass filters were initially tuned to another audible source within the garden (see Section 3.4).
The soil sensor values were scaled and mapping to these center frequencies. As they slowly
changed over time, the resulting shifts in harmonicity led to an almost indiscernible process of
detuning and retuning. Of course, in a climate more susceptible to rain—or if the bed had been
watered—these changes would become more immediately perceptible to observers.

Ambient Light: Located in number 19 of the raised garden beds, a further system was developed,
which involved several sunflowers. These were embedded with photoresistors (https://www.adafruit.
com/product/161) to measure levels of ambient light (see Figure 7). The photoresistors were used
as an affordable, lightweight solution to measure the amount of movement of individual flowers.
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This was accomplished by measuring the change in light over each subsequent frame. The sensor
inputs of the Bela are sampled at audio rates, which allows for smooth alignment with audio data
[38]. To avoid encumbering the movement of the plants, the photoresistors were strewn together using
conductive thread.

Figure 7. Sunflower embedded with photoresistor and conductive thread.

Following the movement of each flower, fluctuations in light gathered by the photoresistors were
mapped to the amplitude of several subtractive synthesis engines. These comprised white noise passed
through eight resonant bandpass audio filters. Each filter was tuned to a different harmonic (positive
integer multiple) of the audible drone of a nearby dairy factory (see Section 3.4 for details). As with
the nonlinear nature of audible feedback systems, the movement of each flower is also complex,
being influenced by environmental forces and its physical structure, as well the movements of adjacent
branches. By giving several flowers their own voice, this imitation [39] allows for further insight into
the complexity of their movements, bringing attention to subtleties of the environment by emphasizing
the collective rhythm of moving plants.

3.4. Highlighting Acoustic Phenomena-Tires

As mentioned above, one feature of the site that we wanted to work with was the audible
drone from a local dairy factory that could be heard for several kilometers within the surrounding
neighborhood. The drone was always present in the garden, although its intensity varied sporadically
at different times of day.

We mimicked this drone by using three sinewave oscillators tuned to 237 Hz, 284 Hz, and 363 Hz,
at amplitudes of 0.5, 0.25, and 0.4 respectively. We played this synthesized chord back through
large scrap tires that had been abandoned in the space (see Figure 8). In this way, the sound of the
site was reinforced, and a found acoustic phenomenon was appropriated as a key sonic element
within the sound design. We were able to play on the disparity between what was included in the
site—both sonically and materially—and what was omitted.

As with the more complex ecological systems described above, this part of the installation was
also semi-autonomous and emerged over time through a very simple negative feedback system.
Minirig speakers were placed inside the tires, along with a single omnidirectional condenser
lavalier microphone (http://www.audio-technica.com/cms/wired_mics/9c6eca17168eef6f/index.
html), and a Bela microcomputer. In this case, the amplitude values of the sound picked up by the
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microphone were fed into an accumulator with a leak value. This was fixed at a rate that would allow
the most audible dynamic behavior to arise from the system, based on both self-generating feedback
within the tires, as well as sounds picked up from the garden. Again, this was controlled using an
adaptive filter.

Figure 8. Four abandoned tires being used as resonators.

3.5. Historical Narratives

While visiting the garden, we met many volunteers and community members who rented the
raised beds in order to grow produce. Through these relationships we learned more about the history
of the site. The garden was created in 2014 at the location of a former municipal pool. While this
pool had recently been filled with soil and was used as a growing area, parts of its existence were still
visible. We amplified the sound of water filtration systems in the garden using two omnidirectional
microphones set up as boundary microphones (http://www.dpamicrophones.com/microphones/
dscreet/stereo-microphone-kit-with-sc4060), and spatialized this over four high-quality loudspeakers
(https://www.genelec.com/8010) to transform the seated gathering area into an auditory water bath.

This was the only part of the installation that did not use battery-powered equipment, although all
elements could have been powered by a small stand-alone power source, such as a generator. As with
the other self-adapting parts of the installation, this system changed over time, responding and
adjusting to the level of measured sound. The sound of water picked up by the microphones was
processed through a spectral filter, two different live sampling audio engines, and delay effects.
These processes would become more or less audible depending on the density of the captured
sound—this was again calculated using a leaky accumulator.

4. Conclusions and Future Work

As a site-responsive installation, Garden Ecologies aimed to engage with the sonic, cultural,
historical, and environmental factors of the Clark Park Community Garden. The work involved the
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development of an ecosystemic framework, which included several autonomous systems coexisting in
the same place, unique in output, yet responding to perturbations from the same environmental cues,
and each other. We built upon prior research into musical systems that are structurally coupled to the
environment by incorporating environmental information that is extra-sonic. We have developed some
techniques for working with organic vegetation and changes in weather states. While this post-digital
approach successfully bridges the physical and digital worlds, in future iterations we hope to explore
in more depth techniques that have been established within the bio art communities, such as Laura
Cinti’s radical work on plant neurobiology, which engages with the perceptual and cognitive capacities
of plants [40].

Technologically, this work has made significant progress in the design and creation of a portable,
low-cost toolkit for site-responsive projects that can be implemented at and will be responsive to
a range of locations. For example, at the time of writing, the technology had just been used in the
sub-arctic tundra during the 2017 Ars Bioarctica Residency in Kilpisjärvi, Finland, a location with a
drastically different environmental profile to the Sonoran Desert of Arizona.

The synchronicity between audio and sensor input afforded by the Bela platform, along with its
ease of use, has certainly opened up the possibilities of working out “in the field” rather than in a
studio, or gallery space. Nevertheless, despite the calibration and adaptation techniques described in
this paper, significant time at the site was required to evaluate the efficacy of a particular approach or
algorithm. Differences in hardware used, such as microphone type, would have a drastic impact on the
sonic outcomes, as with the placement of such devices. Care was also required to select sensors that
would provide meaningful data in various conditions. For example, we had to test photocells with
different resistance ranges to determine which would be most useful both in bright daylight, as well as
under the floodlights which lit the garden in the evenings.

We have designed the software systems as a modular framework, including tools for the scaling
and mapping of data, as well as instruments for sound synthesis and feedback control. We plan to
adopt a similar modular approach to the hardware, with the design of custom, robust boards that can
facilitate the addition of a variety of sensors quickly and easily, and which can also powered by solar
energy. Through further iterations at multiple sites we hope to begin to understand the efficacy of such
an approach as an alternative to the sampling and analysis techniques that are used within acoustic
ecology, as well as offering a more dynamic approach to sonification through nonlinear techniques.
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The following abbreviations are used in this manuscript:

DSP digital signal processing
DMI digital musical instrument
HCI human–computer interaction
TCAA Tempe Community Action Agency
USB Universal Serial Bus
C4DM Centre for Digital Music
Pd Pure Data
CdS cadmium sulphide
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Abstract: Spatial impulse response analysis techniques are commonly used in the field of acoustics,
as they help to characterise the interaction of sound with an enclosed environment. This paper
presents a novel approach for spatial analyses of binaural impulse responses, using a binaural
model fronted neural network. The proposed method uses binaural cues utilised by the human
auditory system, which are mapped by the neural network to the azimuth direction of arrival
classes. A cascade-correlation neural network was trained using a multi-conditional training dataset
of head-related impulse responses with added noise. The neural network is tested using a set of
binaural impulse responses captured using two dummy head microphones in an anechoic chamber,
with a reflective boundary positioned to produce a reflection with a known direction of arrival.
Results showed that the neural network was generalisable for the direct sound of the binaural room
impulse responses for both dummy head microphones. However, it was found to be less accurate
at predicting the direction of arrival of the reflections. The work indicates the potential of using
such an algorithm for the spatial analysis of binaural impulse responses, while indicating where the
method applied needs to be made more robust for more general application.

Keywords: machine-hearing; machine-learning; binaural room impulse response; spatial analysis;
direction of arrival

1. Introduction

A Binaural room impulse response (BRIR) is a measurement of the response of a room to
an excitation from an (ideally) impulsive sound. The BRIR is comprised of the superposition of
the direct source-to-receiver sound component, discrete reflections produced from interactions with
a limited number of boundary surfaces, together with the densely-distributed, exponentially-decaying
reverberant tail that results from repeated surface interactions. In particular, a BRIR is characterised
by the receiver having the properties of a typical human head, that is two independent channels of
information separated appropriately, and subject to spatial variation imparted by the pinnae and head.
Therefore, the BRIR is uniquely defined by the location, shape and acoustic properties of reflective
surfaces, together with the source and receiver position and orientation.

The BRIR is therefore a representation of the reverberant characteristics of an environment
and is commonly used throughout the fields of acoustics and signal processing. Through the use of
convolution, the reverberant characteristics of the room, as captured within the BRIR, can be imparted
onto other audio signals, giving the perception of listening to that audio signal as if it were recorded in
the BRIR measurement position. This technique for producing artificial reverberation has numerous
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applications, including: music production, game sound design, alongside other audio-visual media.
In acoustics, the spatiotemporal characteristics of reflections arising from sound propagation and
interaction within a given bounded space can be captured through measuring the room impulse
response for a given source/receiver pair. One problem associated with this form of analysis is
obtaining a prediction for the direction of arrival (DoA) of these reflections. Understanding the DoA
of reflections can allow for the formulation of reflection backpropagation and geometric inference
algorithms, amongst other features, that reveal the properties of the given acoustic environment for
which the impulse response was obtained. This has applications in robot audition, sound source
localisation tasks, as well as room acoustic analysis, treatment and simulation. These algorithms can
be used to develop an understanding of signal propagation in a room, allowing the point of origin for
acoustic events arriving at the receiver to be found. This knowledge of the signal propagation in the
environment can then be used to acoustically treat the environment, improving the perceptibility of
signals produced within the environment. Conversely, the inferred geometry can be used to simulate
the acoustic response of the room to a different source and receiver through the use of computational
acoustic simulation techniques.

Existing methods [1–3] have approached reflection DoA estimation using four or more channels,
while methods looking at localising the components in two-channel BRIRs have generally shown poor
accuracy for predicting the DoA of the reflections in these BRIRs [4]. This paper investigates a novel
approach to using neural networks for DoA estimation for the direct and reflected sound components
in BRIRs. The reduction in the number of channels available for analyses significantly adds to the
complexity of extracting highly accurate direction of arrival predictions.

The human auditory system is a complex, but robust system, capable of undertaking sound
localisation tasks under varying conditions with relative ease [5]. The binaural nature of the auditory
system leads to two main interaural localisation cues: interaural time difference (ITD), the time of
arrival difference between the signals arriving at the two ears, and interaural level difference (ILD),
the frequency-dependent difference in signal loudness at the two ears due to the difference in
propagation path and acoustic shadowing produced by the head [5,6]. In addition to these interaural
cues, it has been shown that the auditory system makes use of self-motion [7] and the spectral filtering
produced by the pinnae to improve localisation accuracy, particularly with regards to elevation and
front-back confusion [5,8].

Given the robustness of the auditory system at performing localisation tasks [5], it should be
possible to produce a computational approach using the same auditory cues. Due to the nature
of the human auditory system, machine-hearing approaches are often implemented in binaural
localisation algorithms, typically using either Gaussian mixture models (GMMs) [9–11] or neural
networks (NNs) [12–15]. In most cases, the data presented to the machine-hearing algorithm fit
into one of two categories: binaural cues (ITD and ILD) or spectral cues. Previous machine-hearing
approaches to binaural localisation have shown good results across the training data and, in some
cases, good generalisability across unknown data from different datasets [9–15].

In [14], a cochlear model was used to pre-process head-related impulse responses (HRIRs),
the output of which was then used to calculate the ITD and ILD. Two different cochlear models for ITD
and ILD calculation were used, as well as feeding the cochlear model output to the NN. The results
presented showed that the NN was able to build up a spatial map from raw output of the cochlear
model, which performed better under test conditions than using the binaural cues calculated from the
output of the cochlea model.

Backman et al. [13] used a feature vector comprised of the cross-correlation function and ILD
to train their NNs, which were able to produce highly accurate results within the training data.
However, upon presenting the NN with unknown data, it was found to have poor generalisation.

In [12], Palomäki et al. presented approaches using a self-organising map and a multi-layer
perceptron trained using the ITD and ILD values calculated from a binaural model. They found that
both were capable of producing accurate results within the training data, with the self-organising
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map requiring the addition of head rotation to help disambiguate cue similarity between the front
and back hemispheres [12]. Their findings suggested that a much larger dataset is required to achieve
generalisation with the multi-layer perceptron.

In [9–11], GMMs trained using the ITD and ILD were used to classify the DoA. In both cases,
the GMMs were found to produce accurate azimuthal DoA estimates. Their findings showed that the
GMM’s ability to accurately predict azimuth DoA was affected by the source and receiver distance
and the reverberation time, with larger source-receiver distances and reverberation times generally
reducing the accuracy of the model [9,10]. The results presented in [9] showed that a GMM trained with
a multi-conditional training (MCT) dataset was able to localise a signal using two different binaural
dummy heads with high accuracy.

Ding et al. [16] used the supervised binaural mapping technique, to map binaural features to
2D directions, which were then used to localise a sound source’s azimuth and elevation position.
They presented results displaying the effect of reverberation on prediction accuracy, showing that
prediction accuracy decreased as reverberation times increased. They additionally showed that the
use of a binaural dereverberation technique improved prediction accuracy across all reverberation
times [16].

Recent work by Ma et al. [15] compared the use of GMM and deep NNs (DNNs) for the
azimuthal DoA estimation task. The DNN made use of head rotation produced by a KEMAR unit
(KEMAR: Knowles Electronics Manikin for Acoustic Research) is a head and torso simulator designed
specifically for, and commonly used in, binaural acoustic research) [17] fitted with a motorised head.
It was found that the addition of head rotation reduced the ambiguity between front and back and
that DNNs outperformed GMMs, with DNNs proving better at discerning between the front and back
hemispheres.

Work presented by Vesa et al. [4] investigated the problem of DoA analysis of the component parts
of a BRIR. They used the continuous-wavelet transform to create a frequency domain representation
of the signal, which is used to compute the ILD and ITD across frequency bands. The DoA is then
computed by iterating over a database of reference HRIRs and finding the reference HRIR with the
closest matching ILD and ITD values to the component of the BRIR being analysed; the DoA is then
assumed to be the same as the reference HRIR. They reported mean angular errors between 28.7◦ and
54.4◦ for the component parts of the measured BRIRs.

This paper presents a novel approach for the spatial analysis of two-channel BRIRs, using
a binaural model fronted NN to estimate the azimuthal direction of arrival for the direct sound
and reflected components (direct sound is used to refer to the signal emitted by a loudspeaker arriving
at the receiver, and the reflected component refers to a reflected copy of the emitted signal arriving
at the receiver after incidence with a reflective surface) of the BRIRs. It develops and extends the
approach adopted in [15] in terms of the processing used by the binaural model to extract the interaural
cues, the use of a cascade-correlation neural network as opposed to the multi-layer perceptron to
map the binaural cues to the direction of arrival classes, the nature of the sound components being
analysed—short pulses relating to the direct sound and reflected components of a BRIR as opposed to
continuous speech signals—and the method by which measurement orientations are implemented and
analysed by the NN. In this paper, multiple measurement orientations are presented simultaneously to
the NN, whereas in [15], multiple orientations are presented as rotations produced by a motorised
head with the signals being analysed separately by the NN, which allowed for active sound source
localisation in an environment.

The following sections are organised as follows; in Section 2, the implementation of the binaural
model and NN, the data model used and the methodology used to generate a test dataset are discussed;
Section 3 presents the test results; Section 4 discusses the findings; and Section 5 concludes the paper.
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2. Materials and Methods

The proposed method uses a binaural model to produce representations of the time of arrival
and frequency-dependent level differences between the signals arriving at the left and right ear of
a dummy head microphone. This binaural model is used to produce a set of interaural cues for the
direct sound and each detectable reflection within a BRIR. These cues alone are not sufficient to provide
accurate localisation of sound sources, due to interaural cue similarities observed at mirrored source
positions in the front/rear hemispheres. To distinguish between sounds arriving from either the front
or rear of the head, an additional set of binaural cues is generated for the corresponding direct sound
and reflected component of a BRIR captured with the dummy head having been rotated by ±90◦.
Presenting the NN with both the original measurement and one captured after rotating the receiver
helps reduce front-back confusions, arising due to similarities in binaural cues for positions mirrored
in the front and back hemispheres. The use of a rotation of ±90◦ was used in this study based on tests
run with different rotation angles, which are presented in Section 2.2. These sets of interaural cues are
then interpreted by a cascade-correlation NN, producing a prediction of the DoA for the direct sound
and each detected reflection in the BRIR. The NN is trained with an MCT dataset of interaural cues
extracted from HRIRs measured with a KEMAR 45BC binaural dummy head microphone, with added
simulated spatially white noise at different signal-to-noise ratios. The NN is trained using mini-batches
of the training dataset, and optimised using the adaptive moment (ADAM) optimiser; with the order
of the training data randomised at the end of the training iteration.

2.1. Binaural Model

A binaural model inspired by the work presented in [18,19] is used to compute the temporal
and frequency-dependent level differences between the signals arriving at the left and right ears
of a listener. Both the temporal and spectral feature spaces provide directionally-dependent cues,
produced by path differences between ears and acoustic shadowing produced by the presence of the
head, which allow the human auditory system to localise a sound source in an environment [6,20].
These directionally-dependent feature spaces are used in this study to produce a feature vector that
can be analysed by an NN to estimate the direction of arrival.

Prior to running the analysis of the binaural signals, the signal vectors being analysed are
zero-padded by 2000 samples accounting for signal delay introduced by the application of a gammatone
filter bank. This ensures that no part of the signal is lost when dealing with small windows of sound,
where the filter delay would push the signal outside of the represented sample range. The zero-padded
signals are then passed through a bank of 64 gammatone filters spaced equally from 80 Hz to 22 kHz
using the equivalent rectangular bandwidth scale. The gammatone filter implementation in Malcolm
Slaney’s ‘Auditory Toolbox’ [21] was used in this study. The output of the cochlea is then approximated
using the cochleagram function in [22] with a window size of six samples and an overlap of one sample;
this produces an F× N map of auditory nerve firing rates across time-frequency units, where N is the
number of time samples and F is the number of gammatone filters. The cochleagram is calculated as:

xl( f , n) = yl( f , τ) ∗ yl( f , τ)� (1)

where xl( f , n) is the cochleagram output for the left channel for gammatone filter f at frame number
n, yl( f , τ) is the filtered left channel of audio at gammatone filter f and time frame τ, which is six
samples in length and (.)� signifies vector transposition [22]. The cochleagram was used to extract the
features as opposed to extracting directly from the gammatone filters, as it was found to produce more
accurate results when passed to the NN.

The interaural cues are then computed across the whole cochleagram producing a single set of
interaural cues for each binaural signal being analysed. The first of these interaural cues is the interaural
cross-correlation (IACC) function, which is computed for each frequency band as the cross-correlation
between the whole approximated cochlea output xl and xr for the left and right channel, respectively,
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with a maximum lag of ±1.1 ms. The maximum lag of ±1.1 ms was chosen based on the maximum
time delays suggested by Pulkki et al. for their binaural model proposed in [18]. The cross-correlation
function is then normalised by,

IACC =
xc f

xl, f x�l, f xr, f x�r, f
(2)

where xc f is the cross-correlation between the left and right approximated cochlea outputs for
gammatone filter f . The IACC is then averaged across the 64 gammatone filters, producing the
temporal feature space for the analysed signal. The maximum peak in the IACC function represents
the signal delay between the left and right ear. The decision to use the entire IACC function as opposed
to the ITD was based on the findings presented in [15], which suggested that features within the IACC
function, such as the relationship between the main peak and any side bands, varied with azimuthal
direction of arrival.

The ILD is then calculated from the cochleagram output in decibels as the loudness ratio between
the two ears for each gammatone filter f such that,

ILDf = 10 ∗ log10

⎛⎝∑T
t=1 xl f ,t

∑T
t=1 xr f ,t

⎞⎠dB (3)

where xl f ,t and xr f ,t are the approximated cochlea output for gammatone filter f for signal x, for the
left (l) and right (r) ear at time window t, and T is the total number of time windows. An example of
the IACC and ILD feature vector for a HRIR at azimuth = 90◦ and elevation = 0◦ can be seen in Figure 1.

Figure 1. Example of the interaural cross-correlation function (top) and interaural level difference
(bottom) for a HRIR with a source positioned at azimuth = 90 ◦ and elevation = 0◦.

In this study, the binaural model is used to analyse binaural signals with a sampling rate of
44.1 kHz; the output of the binaural model is then an IACC function vector of length 99 and an ILD
vector of length 64. This produces a feature space for a single binaural signal of length 163.
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2.2. Neural Network Data Model

The binaural model presented in Section 2.1 is used to generate a training feature matrix using the
un-compensated ‘raw’ SADIE KEMAR dataset [23]. This dataset contains an HRIR grid of 1550 points:
5◦ increments across the azimuth in steps of 10◦ elevation. To train the NN, only the HRIRs relating
to 0◦ elevation were used, providing a dataset of 104 HRIRs. A multi-conditional training (MCT)
dataset is created by adding spatially white noise to the HRIRs at 0 dB, 10 dB and 20 dB signal-to-noise
ratios. This spatially white noise is generated by convolving Gaussian white noise with all 1550 HRIRs
in the SADIE KEMAR dataset and averaging the resulting localised noise across the 1550 positions;
producing a spatially white noise signal matrix [15]. This addition of spatially white noise is based on
the findings in [9,10,15], which found that training the NN with data under different noise conditions
improved generalisation. These HRIRs with added spatially white noise are then analysed by the
binaural model and the output used to create the feature vector. The neural network is only trained
using these HRIRs with noise mixtures, and no reflected components of BRIRs are included as part of
the training data

Two training matrices are created by concatenating the feature vector of one HRIR with the feature
vector produced by an HRIR corresponding to either a +90◦ or−90◦ rotation of KEMAR with the same
signal-to-noise ratio. This produces two 416× 326 feature matrices with which two neural networks
can be trained with, one for each rotation. The use of an NN for each fixed rotation angle was found to
produce more accurate results than having one NN trained for both.

The use of ‘head rotation’ has a biological precedence, in that humans use head rotation to focus on
the location of a sound source; disambiguating front-back confusions that occur due to interaural cue
similarities between signals arriving from opposing locations in the front and back hemispheres [6,20].
In this study, the equivalent effect of implementing a head rotation is realised by taking the impulse
response measurements at two additional fixed measurement orientations (at ±90◦). The use of fixed
rotations reduces the number of additional signals needed to train the NN and reduces the number
of additional measurements that need to be recorded. The use of additional measurement positions
corresponding to receiver rotations of ±90◦ was found to produce lower maximum errors when
compared to rotations of ±15◦, ±30◦ and ±60◦ (Table 1). The two training matrices are used to train
two NN, one for each rotation, and the network trained with the−90◦ rotation dataset is used to predict
the DoA for signals that originate on the left hemisphere, while the +90◦ NN is used to predict the
DoA for signals on the right hemisphere. Each of these NNs is trained with the full azimuth range to
allow the NNs to predict the DoA for signals with ambiguous feature vectors that may be classified as
originating from the wrong hemisphere. When testing the NN, the additional measurement positions
are assigned to the signals based on the location of the maximum peak in the IACC feature vector. If the
peak index in the IACC is less than 50 (signal originated in the left hemisphere), a receiver rotation
of −90◦ is applied; otherwise, a receiver rotation of +90◦ is used. To normalise the numeric values,
the training data were Gaussian-normalised to ensure each feature had zero mean and unit variance.
The processing workflow for the training data can be seen in Figure 2.

Table 1. Direction of arrival accuracy comparison for the reflected component measured with the
KEMAR 45BC for different fixed receiver rotation angles.

Rotation Within ±5◦ Front-Back Confusions Max Error

KEMAR Reflections

±15◦ 29.86% 15.28% 173
±30◦ 34.03% 6.25% 54
±60◦ 29.17% 9.72% 50
±90◦ 32.64% 9.03% 30
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Figure 2. Signal processing chain used to generate the training data used to train the neural network.

2.3. Neural Network

TensorFlow [24], a commonly-used python library designed for the development and execution
of machine learning algorithms, is used to implement a cascade-correlation NN, the topology of
which connects the input feature vector to every layer within the NN. Additionally, all layers’ outputs
are connected to subsequent layers in the NN, as in Figure 3 [25]. The use of NN over GMM was
chosen based on findings in [15], which suggested that DNN outperformed GMM for binaural
localisation tasks. The decision to use the cascade-correlation NN was based on comparisons between
the cascade-correlation NN architecture and the MLP, which showed that the cascade-correlation NN
arrived at a more accurate solution with less training required compared to the MLP (Table 2).

Table 2. Comparison of prediction accuracy for the reflected component measured with the KEMAR
45BC using additional measurements at receiver rotations of ±90◦ using a multi-layer perceptron
and cascade-correlation neural network. Both the multi-layer perceptron and the cascade-correlation
neural network had one hidden layer with 128 neurons and an output layer with 360 neurons and were
trained using the procedure discussed in Section 2.3.

Neural Network Within ±5◦ Run Time

KEMAR Reflections (Test Data)

multi-layer perceptron 26.39% 390 Epochs 40 s
cascade-correlation 32.64% 244 Epochs 28 s

Input
Vector

Hidden
Layer 1

Output
Layer

Key

= Weighted
Connection

= Data
Flow

Figure 3. Cascade-correlation neural network topology used, where triangles signify the data flow and
squares are weighted connections between the hidden layers and the incoming data.

The NN consists of an input layer, one hidden layer and an output layer. The input layer contains
one node for each feature in the training data; the hidden layer contains 128 neurons each with
a hyperbolic tangent activation function; and the output layer contains 360 neurons, one for each
azimuth direction from 0◦ to 359◦. Using 360 output neurons as opposed to 104 (one for each angle
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of the training dataset) allows the NN to make attempts at predicting the DoA for both known and
unknown source positions. A softmax activation function is then applied to the output layer of the
NN, producing a probability vector predicting the likelihood of the analysed signal having arrived
from each of the 360 possible DoAs.

Each data point, whether it be a feature in the input feature vector or the output of a previous
layer, is connected to a neuron via a weighted connection. The summed response of all the weighted
connections linked to a neuron defines that neuron’s level of activation when presented with a specific
data configuration, a bias is then applied to this activation level. These weights and biases for each
layer of the NN are initialised with random values, with the weights distributed such that they will be
zero mean and have a standard deviation (σ) defined as:

σi = m−1/2 (4)

where m is the number of inputs to hidden layer i [26].
The NN is trained over a maximum of 600 epochs, with the training terminating once the

NN reached 100% accuracy or improvement saturation. Improvement saturation is defined as no
improvement over a training period equal to 5% of the total number of epochs. Mini-batches are used to
train the NN with sizes equal to 25% of the training data. The order of the training data is randomised
after each epoch, so the NN never receives the same batch of data twice. The adaptive moment
estimation (ADAM) optimiser [27] is used for training, using a learning rate of 0.001, a β1 value of 0.9,
a β2 value of 0.99 and an ε value of 1−7. The β values define the exponential decay for the moment
estimates, and ε is the numerical stability constant [27].

The NN’s targets are defined as a vector of size 360, with a one in the index relating to the DoA
and all other entries equal to zero. The DoA is therefore extracted from the probability vector produced
by the NN as the angle with the highest probability such that,

θ = argmax P(θ|x) (5)

where P(θ|x) represents the probability of azimuth angle θ given the feature vector x. The probability
is calculated as,

P(θ|x) = so f tmax(((x× wout1) + (x̃1 × wout2)) + bout) (6)

where w denotes a set of weights, bout is the output biases and x̃1 is the output from the hidden layer
calculated as,

x̃1 = tanh((x× w1) + b1) (7)

2.4. Testing Methodology

A key measure of the success of an NN is its ability to generalise across different datasets other
than that with which it was trained. To test the generalisability of the proposed NN, a dataset was
produced in an anechoic chamber for both a KEMAR 45BC [17] and Neumann KU100 [28] binaural
dummy head, using an Equator D5 coaxial loudspeaker [29]. The exponential sine sweep method [30]
was used to generate the BRIRs, with a swept frequency range of 20 Hz to 22 kHz over ten seconds.
To be able to test the NN’s performance at predicting the DoA of reflections, a flat wooden reflective
surface mounted on a stand was placed in the anechoic chamber, such that a reflection with a known
DoA would be produced (Figure 4). This allows for the accuracy of the NN at predicting the DoA
for a reflected signal to be tested, without the presence of overlapping reflections that could occur
in non-controlled environments. To approximate an omnidirectional sound source, the BRIRs were
averaged over four speaker rotations (0◦, 90◦, 180◦ and 270◦); omnidirectional sources are often desired
in impulse response measurements for acoustic analysis [31], as they produce approximately equal
acoustic excitation throughout the room. The extent to which this averaged loudspeaker response will
be omnidirectional will vary across different loudspeakers, particularly at higher frequencies where
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loudspeakers tend to be more directional. Averaging the response of the room over speaker rotations
does result in some spectral variation, particularly with noisier signals; however, this workflow is
similar to that employed when measuring the impulse response of a room.

Figure 4. Measurement setup showing the reflective surface (A), KEMAR 45BC (B) and Equator D5
Coaxial Loudspeaker (C).

To calculate the required location of the reflective surface such that a known DoA would be
produced, a simple MATLAB image source model based on [32] was used to calculate a point of
incidence on a wall that would produce a first order reflection in a 3 m × 3 m × 3 m room with the
receiver positioned in the centre of the room. The reflective surface was then placed in the anechoic
chamber based on the angle of arrival and distance between the receiver and calculated point of
incidence. Although care was taken to ensure accurate positioning of the individual parts of the system,
it is prone to misalignments due to the floating floor in the anechoic chamber, which can lead to DoAs
that differ from that which is expected.

With these BRIRs only having two sources of impulsive sounds, the direct sound and first
reflection, a simple method for separating these signals was employed. Firstly, the maximum absolute
peak in the signal is detected and assumed to belong to the direct sound. A 170 sample frame around
the peak location indexed at [peakIndex− 45 : peakIndex + 124] was used to separate the direct sound
from the signal. It was ensured that all segmented audio samples only contained audio pertaining to
the direct sound. The process was then run again to detect the location of the reflected component, and
each segment was checked to ensure only audio pertaining to the reflected component was present
(see Figure 5 for an example BRIR with window locations). When dealing with BRIRs measured in
less controlled environments, a method for systematically detecting discrete reflections in the BRIR is
required, and various methods have been proposed in the literature to detect reflections in impulse
responses, including [4,33–35].

The separated signals were then analysed using the binaural model and a test data matrix
generated by combining the segmented direct or reflected component with the corresponding rotated
signal (as described in Section 2.2). The positively and negatively rotated test feature vectors were
stored in separate matrices and used to test the NN trained with the corresponding rotation dataset
(as described in Section 2.2). The data was then Gaussian normalised across each feature in the feature
vector, using the mean and standard deviations calculated from the training data.
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Figure 5. Example binaural room impulse response generated with source at azimuth = 0◦ and reflector
at azimuth = 71◦; the solid line is the left channel of the impulse response; the dotted line is the right
channel of the impulse response; and the windowed area denotes the segmented regions using the
technique discussed in Section 2.4.

The generated test data consisted of 144 of these BRIRs, with source positions from 0◦ to 357.5◦

and reflections from 1◦ to 358.5◦ using a turntable to rotate the binaural dummy head in steps of
2.5◦ (with the angles rounded for comparison with the NN’s output). This provided 288 angles with
which to test the NN: 144 direct sounds and 144 reflections. The turntable was covered in acoustic
foam to attempt to eliminate any reflections that it would produce.

3. Results

The two NNs trained with the SADIE HRIR dataset (as described in Sections 2.1 and 2.2) were
tested with the components of the measured test BRIRs (as described in Section 2.4), with the outputs
concatenated to produce the resulting direction of arrival for the direct and reflected components.
The angular error was then computed as the difference between the NN predictions and the
target values. The training of the neural network generally terminated due to saturation in output
performance within 122 epochs, with an accuracy of 95% and a maximum error of 5◦. Statistical analysis
of the prediction errors was performed using MATLAB’s one-way analysis of variance (ANOVA)
function [36] and is reported in the format: ANOVA(F(between group degrees of freedom, within
groups degree of freedom) = F value, p = significance), all of these values are returned by the anova1
function [36].

A baseline method used as a reference to compare results obtained from the NN can be derived
from the ITD equation (Equation (8) taken from [37]) rearranged for calculating the DoA,

ITD =
d sin(θre f )

c
(8)

where d is the distance between the two ears, θre f is the DoA, and c is the speed of sound [37]. The ITD
value used for the baseline DoA predictions was measured by locating the maximum peak in the IACC
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feature vector, as calculated using the binaural model proposed in Section 2.1. The index for this peak
in the IACC feature vector relates to one of 99 ITD values linearly spaced from −1.1 ms to 1.1 ms.

In Table 3, the neural network accuracy across the test data is presented. The results show
that for the direct sound, the neural network predicted 64.58% and 68.06% of the DoAs within 5◦

for the KEMAR and KU100 dummy head, respectively. Although when analysing direct sound
captured with the KU100, a greater percentage of predictions are within ±5◦ of the target value, the
neural network makes a greater number of exact predictions and has lower relative error for KEMAR.
This observation is expected given the different morpho-acoustic properties of each head and their
ears, which could lead to differences in the observed interaural cues, particularly those dependent
on spectral information. The results show that the neural network performs worse when analysing
the reflected components. In this case, the reflected component measured with the KU100 is more
accurately localised, with lower maximum error, relative error, root mean squared error and number of
front-back confusions. Comparisons between the accuracy of the proposed method with the baseline
shows that the NN is capable of reaching a higher degree of accuracy, with lower angular error and
fewer front-back confusions.

Table 3. Direction of arrival accuracy comparison for the direct sound and reflected components
measured with the KEMAR and KU100 binaural dummy heads, for both the cascade-correlation neural
network and the baseline method.

Head Exact Within ±1◦ Within ±5◦ Front-Back Average Root Mean
Confusions Relative Error Squared Error

Cascade-Correlation Neural Network

Direct Component

KEMAR 17.36% 21.53% 64.58% 1.39% 7.10% 5.18◦

KU100 13.19% 17.36% 68.06% 0% 6.90% 6.86◦

Reflected Component

KEMAR 2.08% 11.11% 32.64% 9.03% 23.61% 13.59◦

KU100 0% 9.03% 37.50% 2.78% 15.43% 8.85◦

Baseline Method

Direct Component

KEMAR 1.39% 2.78% 11.81% 49.31% 38.78% 66.37◦

KU100 1.39% 3.47% 13.19% 50% 36.01% 65.66◦

Reflected Component

KEMAR 0% 2.78% 11.11% 49.31% 38.85% 67.31◦

KU100 0% 4.86% 21.53% 49.31% 36.81% 70.23◦

In Figure 6, comparisons between the direct sound and reflected component for BRIRs captured
with the KEMAR 45BC are presented. The boxplots show that for the direct sound, a maximum error of
12◦ and median error of 5◦ (mean error of 4.20◦) were observed, while the reflected component
has a maximum error of 30◦ and median of 8.5◦ (mean error of 10.87◦). There is a significant
difference in the neural network performance between the direct sound and reflected component,
ANOVA(F(1,286) = 83.99, p < 0.01). This observed difference could result from the difference in
signal path distance, which was found to reduce prediction accuracy in [9,10]. May et al. reported
that as source-receiver distances increased, and therefore the signal level relative to the noise floor
or room reverberation decreased, the accuracy of the GMM predictions decreased. They reported
that, averaged over seven reverb times, the number of anomalous predictions made by the GMM
increased by ∼9% between a source-receiver distance of 2 m compared to a source-receiver distance of
1 m. Further causes of error could be due to system misalignment at point of measurement or lower
signal-to-noise ratios (SNR) occurring due to signal absorption at the reflector and larger propagation
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path (source-reflector-receiver); an average SNR of approximately 22.40 dB and 13.14 dB was observed
across the direct and reflected component, respectively.

Figure 6. Comparison of angular errors in the neural network direction of arrival predictions for
measurements with the KEMAR 45BC. The top image is a boxplot comparison of the angular error
in the neural network predictions for the direct sound and reflected components. The bottom left is
a histogram showing the error distribution for the direction of arrival predictions of the direct sound,
and the bottom right is the error distribution for the direction of arrival predictions of the reflected
components. The black line on the histograms depicts the median angular error.

In Figure 7, the comparison between direct sound and reflected component for BRIRs captured
using the KU100 are presented. The boxplots show that for the direct sound, a maximum error of 23◦ is
observed and a median error of 5◦ (mean error of 5.15◦), and the reflected component had a maximum
error of 19◦ and median of 7◦ (mean error of 7.51◦). Although the maximum and median errors are
not too dissimilar between the predictions for the direct sound and reflected component, there is
a significant difference in the distribution of the angular errors, ANOVA(F(1,286) = 18.85, p < 0.01).
The direct sound DoA predictions are generally more accurate than those for the reflected component.
As with the findings for the KEMAR, this could be due to the difference in signal paths between
the direct sound and reflected component, system misalignment or lower SNR; an average SNR of
approximately 22.41 dB and 10.91 dB was observed across direct sound and reflected components,
respectively.

In Figure 8, the comparison between the two binaural dummy heads is presented for both the
direct sound and reflected components of the BRIRs. The box plots show that there is no significant
difference between the medians for the direct sound, and while the maximum error observed for
DoA predictions with the KU100 is higher than that of the KEMAR, there is no significant difference
in the angular errors between the two binaural dummy heads, ANOVA(F(1,286) = 4.29, p = 0.04).
This would suggest that for at least the direct sound, the NN is generalisable to new data, including
those which are produced using a different binaural dummy head microphone from those which
were used to train the NN. However, comparing the angular errors observed in the output of the NN
for the reflected component shows that the KU100 has a significantly lower median angular error
and performs significantly better overall when analysing the reflected components captured with the
KU100, ANOVA(F(1,286) = 18.23, p < 0.01). This observation does not match what would be expected
given that the NN was trained with HRIRs captured using a KEMAR unit, suggesting that the NN
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should perform better or comparably when predicting the DoA for reflected signals captured using
another KEMAR over the results obtained with the KU100.

Figure 7. Comparison of angular errors in the neural network direction of arrival predictions for
measurements with the KU100. The top image is a boxplot comparison of the angular error in the
neural network predictions for the direct sound and reflected components; the bottom left is a histogram
showing the error distribution for the direction of arrival predictions of the direct sound; and the
bottom right is the error distribution for the direction of arrival predictions of the reflected components.
The black line on the histograms depicts the median angular error.

Figure 8. Boxplot comparison of angular errors in the neural network direction of arrival predictions
between the KEMAR and KU100 dummy heads for direct sound (top) and reflected (bottom)
components.

Figures 6 and 7 compare the accuracy of the NN predictions for direct and reflected components
for each head. The difference between the direct sound and reflected component is more dissimilar
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for BRIRs captured with the KEMAR than the KU100, possibly suggesting the presence of an external
factor that is creating ambiguity in the measured binaural cues for the reflected components captured
using the KEMAR. Furthermore, comparing the interaural cues (Figures 9 and 10) between the direct
sound and reflected components of the BRIR for the KEMAR and KU100 measurements shows a more
distinct blurring for the reflected components measured with the KEMAR when compared to those
measured with the KU100. This could suggest that a source of interference is present in the KEMAR
measurements that is producing ambiguity in the measured signals’ interaural cues. This could be due
to noise present within the system and environment or misalignment in the measurement system for
the KEMAR measurements; leading to the production of erroneous reflected signals.

Figure 9. Comparison of interaural cross correlation across the direction of arrival for the KEMAR
measured direct sound (top left), KEMAR measured reflection (bottom left), KU100 measured direct
sound (top right) and KU100 measured reflection (bottom right).

By investigating the neural networks’ predicted direction of arrival compared against the expected,
insight can be gained into any patterns occurring in the NN output predictions. Additionally, it will
show how capable the NN is at predicting the DoA for signals with a DoA not represented within the
training data. In Figure 11, the predicted direction of arrival by the neural network (dashed line) is
compared against the expected direction of arrival (solid line), and the plot shows the comparison
for the KEMAR direct sound measurement predictions (top left), KEMAR reflection measurement
predictions (bottom left), KU100 direct sound measurement predictions (top right) and KU100 reflection
measurement predictions (bottom right). Generally, the direct sound measurement predictions are
mapped to the closest matching DoA represented in the training database, suggesting that the NN
is incapable of making predictions for untrained directions of arrival. In the case of the reflections,
the NN predictions tend to plateau over a larger range of expected azimuth DoA. This observation
further shows the impact of the blurring of the interaural cues (Figures 9 and 10) producing regions
of ambiguous cues in the reflection measurements, causing the NN to produces regions of the same
DoA prediction.
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Figure 10. Comparison of interaural level difference across the direction of arrival for the KEMAR
measured direct sound (top left), KEMAR measured reflection (bottom left), KU100 measured direct
sound (top right) and KU100 measured reflection (bottom right).

Figure 11. Plots of neural network predicted direction of arrival (dotted black line) vs. expected
direction of arrival (solid line). The top left plot is for the KEMAR direct sound; the top right plot is for
the KU100 direct sound; the bottom left is for the KEMAR reflection; and the bottom right is for the
KU100 reflections.

4. Discussion

The results presented in Section 3 show that there is no significant difference in the accuracy of the
NN when analysing the direct sound of BRIRs captured with both the KEMAR 45BC and the KU100.
However, the accuracy of the NN is significantly reduced when analysing the reflected component of
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the BRIRs, with the NN performing better at predicting the DoA of reflected components measured
with the KU100. A reduction in performance would be expected between the direct sound and reflected
component, due to the lower signal-to-noise ratio that would be observed for the reflected component.
It is of interest that reflections measured with the KU100 are more accurately localised than those
measured with the KEMAR 45BC; this could be due to a greater degree of system misalignment in
the KEMAR 45BC measurements that was not present in the KU100 measurements. An additional
difference that could lead to more accurate predictions being made for the KU100 could be the
diffuse-field flat frequency response of the KU100, which could produce more consistent spectral
cues for the reflected component (as seen in Figure 10), leading to more accurate direction of arrival
predictions by the neural network.

Analysis over different degrees of measurement orientation rotations (Table 1) showed that while
the number of predictions within ±5◦ varies little between degrees of rotation, the maximum error
in the neural networks’ prediction decreases as the angle of rotation increases. Larger degrees of
rotation would produce greater differences in interaural cues between the rotated and original signal,
allowing the neural network to produce more accurate predictions under noisier conditions where the
interaural cues become blurred. The use of additional measurement orientations decreases the number
of front-back confusions, with generally larger degrees of receiver rotations producing fewer front-back
hemisphere errors, except when using ±30◦. Using larger degrees of rotation has the additional benefit
of reducing the maximum predictions errors made by the neural network; this could be due to the
greater rotational mobility allowing signals at the rear of the listener to be focused more in the frontal
hemisphere; producing more accurate direction of arrival predictions. It is interesting that there is
a greater percentage of front-back confusions for the KEMAR 45BC compared to the KU100; this could
be due to differences in system alignment causing positions close to 90◦ and 270◦ (source facing the
left or right ear) to originate from the opposite hemisphere.

The lack of significant difference between the direct sounds measured with the two binaural
dummy heads agrees with the findings of May et al. [11], who found that a GMM trained with an MCT
dataset was able to localise sounds captured with two different binaural dummy heads. The notable
difference between the KEMAR 45BC and KU100 include: morphological differences of the head
and ears between binaural dummy head microphones; the KEMAR 45BC has a torso; the KU100’s
microphones have a flat diffuse-field frequency response; and the material used for the dummy head
microphones.

The overall accuracy of the method presented in this paper is, however, lower than that
found in [11]. This could be a result of the type of signals being analysed, which, in this study,
are 3.8 ms-long impulsive signals as opposed to longer speech samples. Compared to more recent
NN-based algorithms [15], the proposed algorithm under performs compared to reported findings
of 83.8% to 100% accuracy across different test scenarios. However, their analyses only considered
signals in the frontal hemisphere around the head and considered longer audio samples for the
localisation problem.

Comparing the proposed method to that presented in [12] shows that the proposed method
achieves lower relative errors for the direct sound and reflections measured with both binaural
dummy head microphones, compared to the 24.0% reported for real test sources using a multi-layered
perceptron in [12].

The average errors reported in this paper are lower than that presented in [4], which reported
average errors in the range of 28.7◦ and 54.4◦ when analysing the components of measured BRIRs.
However, the results presented in [4] considered reflections with reflection orders greater than first,
and therefore, further analyses of the proposed NNs’ performance with full BRIRs is required for more
direct comparisons to be made.

Future work will focus on improving the accuracy of the model for azimuth DoA estimation,
using measured binaural room impulse responses to assess the accuracy of the neural network as
reflection order and propagation path distance increases. The proposed model will then be extended
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on to consider estimation of elevation DoA, providing complete directional analysis of the binaural
room impulse responses; the aim being for the final method to be integrated within a geometry
inference and reflection backpropagation algorithm, allowing for in-depth analysis of the acoustics
of a room. However, this will require higher accuracy in the DoA predictions for the reflections.
Further avenues of research to improve the robustness of the algorithm could include: the use of noise
reduction techniques to ideally reduce the ambiguity in the binaural cues, increasing the size of the
training database used to train the neural network, investigation into using different representations
of interaural cues and how they are extracted from the signals, using reflections to train the NN in
addition to the HRIRs or the use of a different machine learning classifier.

5. Conclusions

The aim of this study was to investigate the application of neural networks in the spatial analysis
of binaural room impulse responses. The neural network was tested using binaural room impulse
responses captured using two different binaural dummy heads. The neural network was shown to have
no significant difference in accuracy when analysing the direct sound of the binaural room impulse
response across the two binaural dummy heads, with 64.58% and 68.06% of the predictions being
within ±5◦ of the expected values for KEMAR and the KU100, respectively. However, upon presenting
the NN with reflected components for analysis, the accuracy of the predictions was significantly
reduced. The NN also generally produces more accurate results for reflected components of the
binaural room impulse response captured with the KU100. Comparisons of the interaural cues for the
direct sound and reflected components show a distinct blurring in the cues for the reflected components
measured with KEMAR, which is present to a lesser extent for the KU100. This blurring could be
a product of lower signal-to-noise ratios or misalignment in the measurement systems, leading to
greater ambiguity in the measurements. The results presented in this paper show the potential of using
this technique as a tool for analysing binaural room impulse responses, while indicating that further
work is required to improve the robustness of the algorithm for analysing reflections and signals with
lower signal-to-noise ratios. Further development of this algorithm will investigate the application
of the neural network for elevation direction of arrival analysis and integration of the method with
geometry inference and reflection back-propagation algorithms, allowing for analysis of a room’s
geometry and its affect on sounds played within it.
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Abbreviations

The following abbreviations are used in this manuscript:

DoA Direction of arrival
ITD Interaural time difference
ILD Interaural level difference
HRIR Head-related impulse responses
NN Neural network
DNN Deep neural networks
GMM Gaussian mixture model
IACC Interaural cross-correlation
FFT Fast Fourier transform
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MCT Multi-conditional training
ADAM Adaptive moment estimation
BRIR Binaural room impulse responses
SNR Signal-to-noise ratio
ANOVA Analysis of variance
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Abstract: The paper presents two new approaches to artefact-free real-time updates of the impulse
response in convolution. Both approaches are based on incremental updates of the filter. This can
be useful for several applications within digital audio processing: parametrisation of convolution
reverbs, dynamic filters, and live convolution. The development of these techniques has been done
within the framework of a research project on crossadaptive audio processing methods for live
performance. Our main motivation has thus been live convolution, where the signals from two
music performers are convolved with each other, allowing the musicians to “play through each
other’s sound”.

Keywords: convolution; reverberation; audio effect; live processing; morphing; cross synthesis

1. Introduction

Convolution has been used for filtering, reverberation, spatialisation, and as a creative tool for
cross-synthesis in a variety of contexts [1–5]. Common to most of them is that one of the inputs is
a time-invariant impulse response (characterising a filter, an acoustic space or similar), allocated,
and preprocessed prior to the convolution operation. Although developments have been made
to make the process latency free (using a combination of partitioned and direct convolution [6]),
the time-invariant nature of the impulse response (IR) has inhibited a parametric modulation of the
process. Modifying the IR traditionally has implied the need to stop the audio processing, load the
new IR, and then re-start processing using the updated IR. The methods presented in this paper
represents two new approaches to allow real-time modifications of the IR without interrupting the
audio processing. The IR updates can be done without introducing artefacts in the audio output.
Research on these methods were initiated within the project “Cross-adaptive processing as musical
intervention” [7] investigating various kinds of signal interaction between audio signals from two or
more live music performers. Convolution as a method for signal interaction was found desirable in
the context of this research, but methods of facilitating the convolution of two live signals were needed
to enable the performers to flexibly interact with the process. One of the methods presented here have
been discussed by two of the authors in an earlier conference paper [8], where artefact-free updates of
the filter allowed live sampling of the impulse response. The current paper expands on this work by
adding another method for time-varying filter coefficients. Both methods for filter updates are based
on a similar concept, where coefficients are replaced at audio rate, enabling artefact free transition
from old to new filter coefficients, even with arbitrary different coefficients. Software tools from the
conference paper have also been expanded to include both filter methods. A number of practical
experiments in studio and live sessions have been done during the time since the conference paper
was written. Reflections on these artistic explorations have been included in the present article.
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1.1. Time-Varying Filters

Time-varying convolution has been explored in continuous-time systems [9], and in discrete-time
systems, both finite impulse response (FIR) and infinite impulse response (IIR) coefficient-modulated
filters have been extensively discussed in [10]. Applications are numerous and include, for instance,
speech processing [11,12], equalization of audio signals [13–15], binaural processing [16,17],
and reverberation [6,18].

Digital time-varying filters in music are typically composed of recursive filter structures of
lower order and proposed approaches are particularly concerned with stabilization and transient
suppression [13,19]. Strategies reported include intermediate sets of filter coefficients [15,20,21],
state variable updates [11,19], and input-switching [12].

The present paper is concerned with impulse responses live sampled from audio signals. The filter
order is also substantially higher than in the approaches listed above, since the audio samples
involved may possibly last several seconds. Hence, we are specifically looking at time-varying
FIR filters that can be dynamically updated without perceptual artefacts. Virtual acoustic reality
is another application area where convolution with time-varying FIR filters find use [16,17,22].
One possible approach to avoid perceptual artefacts is to cross-fade between the outputs of several
simultaneous convolution processes [23]. However, this gets prohibitively expensive for audio-rate
filter updates. Jot, Larchel, and Warusfel [17] suggests incremental filter switching at high update
rates (referred to as commutation) for binaural processing, while Lee et al. [18] suggests a similar
approach for artificial late-field reverberation where the rate of change may adapt to characteristics
of the input. These strategies minimize the artefacts, but at the cost of computing intermediate
filters. Vickers [24] presents a number of frequency-domain strategies for time-varying FIR filters.
In general, the solutions either violate the constraints of linear convolution and produce artefacts,
or they demand extra processing power: typically more than twice the number of real multiplications
per output sample compared to the common convolution implementation overlap-add short-time
Fourier Transform (OLA STFT).

Instead, we will present two different techniques that perform dynamic, low-latency convolution
of live-sampled impulse responses with negligible computational overhead.

1.2. Convolution and Other Sound Transformations, Live Use

Techniques for signal interaction in creative sound design have been widely used. Among these,
we find Ring modulation (an early example of artistic use is Stockhausen’s “Mixtur” from 1964,
and an example from popular music is Black Sabbath’s “Paranoid” from 1970), Vocoder (popularized by
Wendy Carlos in the music for Stanley Kubrick’s “A Clockwork Orange” from 1971, another popular
example is Laurie Anderson’s “O Superman” from 1981), Talk box (an early use by Joe Walsh in
“Rocky Mountain Way”, and popularized by Peter Frampton in various contexts), and Auto-Wah
(popularized by Stevie Wonder on songs like “Superstition” and “Higher Ground” from the early 1970s).
Contemporary electronic dance music also make extensive use of signal interaction by means of
sidechain compression to create “pumping” effects (a classic example is Eric Prydz’ “Call On Me” from
2004). Common to all of these methods is the immediate use of a feature from one sound to control
some modulation of another (or the same) sound. The same can be said about other feature-based
modulation methods used in our crossadaptive research project. Convolution has the added feature
that preserves the full spectrotemporal structure of the modulation sound. Not only is it using the
spectrum of one sound to filter another sound, but the temporal evolution of the modulating sound’s
spectrum is preserved in the filtering. Realtime spectral transformations and cross synthesis (Dynamic
filtering of one signal, using the spectral envelope of another signal) has been explored during the last
30 years or so together with convolution [1,25]. Creative uses of convolution as a timbral transformative
device in composition has been explored by [3–5,26,27], and the more performative aspects of real-time
convolution by [28–30]. Common to all of these has been that the impulse response of the convolution
process was static, and that any updates or dynamic replacement of the impulse response required
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some variation of a crossfading scheme between parallel convolution processes. With our currently
described methods, we can update the impulse response with audio content captured from a live
performance. This can be seen as a form of live sampling:

“Live sampling during performance.... uses the Now as its subject” [31].

Live sampling has been used as a method for creating temporal dynamism and a heightened
sense of the Now. Perhaps the earliest occurence is in Mauricio Kagel’s composition “Transición II”
from 1958 [32], and the idea was further developed during the following decades amongst others by
Kaffe Mathews and by Michael Waisvisz [33]. Live looping by means of improvisation instruments
with long delay lines has been explored by Lawrence Casserley [34] in the Evan Parker Electroacoustic
Ensemble, while utilisation in pop music have been done by artists Ed Sheeran, Boxwood, and others.
In our current research project, we wanted to investigate the potential of live sampling the impulse
response, to enable an even more intimate interaction between live sources than previously had been
possible within real-time convolution and live sampling as separate domains. The recontextualisation
of an audio sample recorded during the same performance, used as the acoustic environment in which
the other musician can perform.

2. Time-Varying Finite Impulse Response Filters

A digital finite impulse response filter (FIR) of length N is defined by the following difference
equation [35]:

y(n) = a0x(n) + a1x(n− 1) + ... + aN−1x(n− [N − 1])

=
N−1

∑
k=0

akx(n− k),
(1)

where x(n) and y(n) are the input and output signals, respectively, at time n, and a0 to aN−1 are the
scaling coefficients of each copy of the input signal delayed by 0 to N − 1 samples (in this text, we will
use the convention that a filter with length N has order N− 1). When these coefficients are unchanging,
the filter is a linear time-invariant filter.

For an FIR filter, its set of coefficients also make up the filter impulse response h(n), which is the
output of the filter when fed with a unit sample signal u(n), which is 1 for n = 0 and 0 elsewhere:

h(n) =
N−1

∑
k=0

aku(n− k) = an. (2)

The output signal y(n) can then be expressed as the convolution of input signal x(n) and impulse
response h(n) (convolution is a commutative operation):

y(n) =
N−1

∑
k=0

h(n− k)x(k) =
N−1

∑
k=0

h(k)x(n− k). (3)

The spectrum of the filter impulse response defines its frequency response, which determines how
the filter modifies the input signal amplitudes and phases at different frequencies. A generalised form
of this, called the filter transfer function can be obtained via the z-transform,

H(z) =
∞

∑
n=−∞

h(n)z−n, (4)

which is a function of the complex variable z. In the usual case that the filter is of finite length N,
we have:

H(z) =
N−1

∑
n=0

h(n)z−n =
N−1

∑
n=0

anz−n. (5)
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By setting z = ejω and ω = 2πk/N, we can compute the filter spectrum via the discrete Fourier
transform (DFT). This is called the filter frequency response. The effect of a filter in the spectral domain
is defined by the following expression:

Y(z) = H(z)X(z), (6)

and thus it is possible to implement the filter either in time domain as a convolution operation
(Equation (3)) or in the frequency domain as a product of two spectra.

We would like to examine the cases where these coefficients in Equation (1) are not fixed, which
characterizes the filter as time-varying (TV). The most general expression for a TVFIR is defined as
follows [10]:

y(n) = a0(n)x(n) + a1(n)x(n− 1) + ... + aN−1(n)x(n− [N − 1])

=
N−1

∑
k=0

ak(n)x(n− k),
(7)

where we assume that the filter coefficients are drawn each from a digital signal ak(n). In this case,
the impulse response will vary over time and thus becomes a function of two time variables, m and n,
representing time of input signal application and time of observation, respectively:

h(m, n) =
N−1

∑
k=0

ak(n)u(n−m− k). (8)

The output of this filter is defined by the expression

y(n) =
∞

∑
m=−∞

h(m, n)x(m). (9)

Since the output can only appear after the input is applied (x(n) = 0 for n < 0), the impulse
response h(m, n) = 0 for n < 0 and n < m. If we then substitute l = n−m, we get the convolution

y(n) =
n

∑
l=0

h(n− l, n)x(n− l). (10)

The transfer function also becomes a function of two variables, z and n, and assuming causality
we get:

H(z, n) =
n

∑
m=0

h(m, n)zm−n =
N−1

∑
k=0

ak(n)z−k. (11)

The next two sections present two different approaches to time-varying filtering: Dynamic
replacement of impulse responses and convolution with continuously varying filters.

3. Dynamic Replacement of Impulse Responses

We first examine filter impulse responses where the coefficients are not continuously changing,
but are replaced at given points in time. This approach was first presented in [8], but is given
a more detailed explanation here. It is related to the superposition strategy suggested by Verhelst
and Nilens [12]: when a filter change is called for, the signal input is disconnected from the currently
running filter and applied to the new one. The old filter is left free-running, i.e., the old input samples
propagate through the filter, and will eventually die out (for FIR filters after a time period equivalent
to the filter length). The outputs of the two filters are added together. The next change adds another
filter, and so on. To make this work, a number of filter processes must run in parallel.
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Our approach differs from Verhelst and Nilens in that we propose to run all filters in the same filter
process, simply by switching the new filter, coefficient by coefficient, into the same filter buffer as the
old one. We claim that, for FIR filters, the results produced by the two approaches are equal, but that
our approach avoids the added computational cost of computing two or more parallel convolution
processes. By exploiting inherent properties of convolution, we also show that we may start convolving
with the new filter impulse response in parallel with the generation/recording of it.

As an initial step consider a simple filter of length N that is switched on at a given time index ns:

hE(m, n) =

{
0, m < ns,

en−m, m ≥ ns,
(12)

It should be obvious that inputs x(n) for n < ns will not contribute to the output. If we apply
Equation (10) and once again let l = n−m, the first N samples of convolution output starting at time
index ns can be written as:

y(n) =
n−ns

∑
l=0

el x(n− l) (ns ≤ n ≤ ns + N − 1). (13)

After n = ns + N − 1 the sum will be upper limited by l = N − 1. The first output sample, y(ns),
depends on the first coefficient, e0 only. The second sample, y(ns + 1), depends on the first two, e0 and
e1. In general, y(ns + k) depends on coefficient el only if l ≤ k. Hence, the filter coefficients can be
switched in one by one in parallel with the running convolution process.

Now consider the counterpart, a filter of length N that is switched off at the same time index ns

(and for simplicity assume that ns > N, the filter length):

hC(m, n) =

{
cn−m, m < ns,

0, m ≥ ns.
(14)

Inputs x(n) for n ≥ ns will not contribute to the output. The first N samples of convolution
output starting at ns can be written as:

y(n) =
N−1

∑
l=n−ns+1

cl x(n− l) (ns ≤ n ≤ ns + N − 1). (15)

The first output sample, y(ns), does not depend on the first coefficient, c0. The second sample,
y(ns + 1), does not depend on the first two, c0 and c1. In general, y(ns + k) does not depend on
coefficient cl if l ≤ k.

The natural extension of these two filters is the combined filter hC+E where the coefficients are
replaced at time index ns:

hC+E(m, n) =

{
cn−m, m < ns,

en−m, m ≥ ns.
(16)

The first N samples of convolution output starting at ns must be equal to the sum of the two filters
discussed above:

y(n) =
n−ns

∑
l=0

el x(n− l) +
N−1

∑
l=n−ns+1

cl x(n− l) (ns ≤ n ≤ ns + N − 1). (17)

A closer scrutiny reveals that coefficients el and cl do not contribute to the same output sample
y(n) for any l, n. In fact, the filter coefficients cl may be replaced with el one by one during the
transition interval [ns, ns + N − 1], while the convolution is running. The replacement itself will not
introduce output artefacts as long as the coefficients are replaced just in time and in the correct order.
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For completeness, we will examine a third filter of length N where the coefficients are replaced at
two different times, ns1 < ns2:

hC+D+E(τ, t) =

⎧⎪⎪⎨⎪⎪⎩
cm−n, m < ns1,

dm−n, ns1 ≤ m < ns2,

em−n, m ≥ ns2.

(18)

If the time interval ns2 − ns1 > N, then the two transition regions [ns1, ns1 + N − 1] and
[ns2, ns2 + N − 1] each behave as in Equation (17). If not, we get a subinterval [ns2, ns1 + N − 1]
of the transition region where all three filters contribute to the output:

y(n) =
n−ns2

∑
l=0

el x(n− l)+
n−ns1

∑
l=n−ns2+1

dl x(n− l)+
N−1

∑
l=n−ns1+1

cl x(n− l) (ns2 ≤ n ≤ ns1 + N− 1). (19)

Similar to the above, the coefficients el , dl , and cl do not contribute to the same output sample
y(n) for any l, n. Hence, several filter replacements may be carried out simultaneously without
artefacts. However, the number of coefficients involved in the convolution sum will be limited by the
interval [n− ns2 + 1, n− ns1] as seen in the middle term above, for a total of (ns2 − ns1) summands.
An alternative view of this filter replacement scheme is that the input signal x(n) is split in segments
[0, ns1 − 1], [ns1, ns2 − 1], and [ns2, ∞) each convolved with just one set of coefficients, cl , dl , and el ,
respectively. The output is the sum of contributions from all three filters.

Convolution has by nature a ramp characteristic as exemplified in Figure 1 where a simple
sinusoidal signal time-limited by a rectangular window is convolved with itself (x(n) = h(n)).
When doing a gradual replacement of filter coefficients, this inherent ramp characteristic ensures
a smoothly overlapping transition region between the filters hC and hE.

Figure 1. Convolving a time-limited sine sequence with itself.

This technique of stepwise filter replacement outperforms other methods of dynamic filter updates:
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• It avoids the discontinuities and artefacts caused by instantaneous switching between filters.
It makes no assumptions on similarity between filters as in the commutation [17] or on input
signal properties as for the switched convolution reverberator [18].

• It saves the computational effort necessary to superpose or cross-fade parallel convolution
processes [12,22].

• It provides the minimum possible latency for a filter update and even allows convolution with
a filter to start in parallel with the generation/recording of the filter impulse response itself.

When filter length increases direct convolution in the time-domain is normally replaced with
computationally more efficient methods in the frequency domain. A popular approach is partitioned
convolution [6,36] where the filter impulse response and the input signal are broken into partitions
and the convolution computed as multiplication of these partitions in the frequency domain (more on
implementation in Section 5). The method of stepwise filter replacement still works, but now the
partition is the unit of replacement. Replacement must be initiated at a time index ns equal to
an integer multiple of the partition length NP: ns = kNP. A latency equal to the partition length
NP is also introduced.

Example

In order to illustrate the behavior of dynamic replacement of filter impulse responses, we present
a simple example. Figure 2 shows the input signals to a convolution process. On top are the two
impulse responses hA(n) and hB(n). They are both sinusoidal signals of duration 1.5 s sampled at
44,100 Hz and with a frequency of 60 and 10 Hz, respectively. At the bottom is the input signal x(n),
which is an impulse train with pulses at 0.3 s interval, also sampled at 44,100 Hz.

These signals are convolved using partitioned convolution (overlap-add STFT) with partition
length NP = 256 and FFT block size NB = 512. At time index ns = 1 s, a switch between the two impulse
response filters is performed.

Figure 3 shows the results. At the top is the output from convolving the input signal x(n) with
impulse response hA(n), but only up to the time index ns. Notice the convolution tail between 1.0 and
2.5 s, equal to the filter length. In the middle is the output from convolving the input signal x(n) with
impulse response hB(n) starting after the time index ns. Finally, at the bottom, we show the output
from convolving the input signal x(n) with both filters, such that hA(n) is stepwise replaced by hB(n)
starting at time index ns, following the scheme introduced in the previous section. The important thing
to note here is that an identical result is achieved if we instead add together the two partial outputs
(top and middle).

The convolution process is working on a single impulse response buffer. During the filter
transition, the buffer will contain parts of both the filters hA(n) and hB(n). Figure 4 illustrates the
content of the buffer at four different points in time. Just before transition (ns = 1 s), the buffer is
entirely filled with impulse response hA(n). During the transition (1.5 and 2.0 s), we notice how the
buffer is gradually filled with impulse response hB(n), starting from sample 0. After the transition
(ns + N − 1 = 2.5 s), the buffer is entirely filled with impulse response hB(n).

There are noticeable discontinuities in the buffer content during transition, but it is important to
realize that each of these buffer snapshots will be multiplied with the input x(n) to produce a single
output sample. They are not temporal objects per se. As mentioned earlier, the method is equivalent to
segmenting the input signal at the time ns: any input x(n), n < ns convolves with filter hA(n) only.
Any input x(n), n ≥ ns convolves with filter hB(n) only.
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Figure 2. Demonstration of dynamic filter replacement: Top: The two filter impulse responses hA(n)
and hB(n). Bottom: The input signal x(n).

Figure 3. Demonstration of dynamic filter replacement. Top: The output from convolving the input
x(n) with impulse response hA(n) before ns = 1 s Middle: The output from convolving the input
x(n) with impulse response hB(n) after ns = 1 s Bottom: the output from convolving the input x(n)
with hA(n) and its stepwise with hB(n) starting at ns = 1 s The vertical lines mark the time indices ns,
ns + N/3, ns + 2N/3, and ns + N in the transition region.
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Figure 4. Demonstration of dynamic filter replacement: The content of the filter impulse response
buffer at four different points in time: Before transition (1.0 s), 1/3 into the transition (1.5 s), 2/3 into
the transition (2.0 s) and after the transition (2.5 s). These time indices are marked with vertical lines in
Figure 3.

4. Time-Varying Convolution

Time-varying filters whose coefficients are changing at audio rates, as is the case here, have
many applications in music [13,37,38]. In particular, some significant attention has been dedicated to
infinite impulse response types that whose coefficients are modulated by a periodic signals [39–42].
These filters tend to be of lower order (first or second order), which have equivalent longer forms
made up of two sections arranged in series, a TVFIR and a fixed-coefficient IIR [41]. It has also been
shown that the most significant part of the effect of these filters is contained in the TVFIR component.

The case we will examine here presents a TVFIR whose coefficients are taken from an arbitrary
input waveform, segmented by the filter length N. This is formally defined by employing the sequence
w(n) as the set of N filter coefficients starting at a given time index n:

ak(n) = w(n + k) (0 < k < N − 1). (20)

This expression involves future values of w(n) and needs to be adapted so that we can calculate
the signal y(n) based solely on the current and past values of the inputs. Furthermore, if we are to
calculate successive values of ak(n), the following expression should apply:

ak(n + 1) = ak+1(n), (21)

from which we should note that the complete set of N filter coefficients will differ only by one value as
the current time index n increments by one. If we compare the first N samples of w(n) and w(n + 1),
we will observe that they share N − 1 values. To get the N coefficients ak(n + 1), we only need to
discard a0(n), shift all samples by one position to the left, and replace the last sample of the sequence
by a new value w(n + N). We can do this efficiently by applying a circular shift in the coefficients
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based on the filter size and current time. In this scenario, a set of N coefficient functions ck(n) can be
defined as

ck(n) =

{
w(n), k = n mod N,

ck(n− 1), otherwise,
(22)

where each one of the coefficients will change only once every N samples, as the signal w(n) is taken
in by the filter. They will hold their values until a their update time is due. Using this set of coefficients
ck(n) as defined in Equation (22), the TVFIR filter expression becomes (assuming that ck(n) = 0,
w(n) = 0, and x(n) = 0 for n < 0)

y(n) = c0(n)x(n) + c1(n)x(n− 1) + ... + cN−1(n)x(n− N − 1)

=
N−1

∑
k=0

ck(n)x(n− k),
(23)

which defines what in this paper we call time-varying convolution (to distinguish it from the more general
forms of TVFIR filters, even though in the other cases the convolution is actually also time varying).
In this scenario, we are interpreting an arbitrary input signal of length N as an impulse response,
and allow it to vary on a sample-by-sample basis. The resulting set of coefficients ck, derived from
w(n), is completely replaced every N samples. There is, in fact, no particular distinction between the
two inputs to the system (x(n) and w(n)), and we may wish to view either as the “filtered” signal or
the “impulse response”. Taking one of these, e.g., w(n), as the filter coefficients, we can determine the
filter frequency response for an input x(n) from the filter transfer function, which has to be determined
at every sample. This becomes then a function of two variables, frequency k and time n, and can be
evaluated by taking its DFT at every N samples:

W(n, k) =
2N−1

∑
m=0

wn(m)e−jωk, (24)

where wn(m) is the result of applying a rectangular window of length N to w(n), localised at time index
n = lN, with l a non-negative integer, and ω = 2πm/N. Equally, we can take the input signal DFT,

X(n, k) =
2N−1

∑
m=0

xn(m)e−jωk, (25)

with xn(m) similarly defined. The time-varying spectrum of the output of this filter is defined by

Y(n, k) = W(n, k)X(n, k). (26)

The resulting spectrum is therefore a sample-by-sample multiplication of the short-time
input spectra. The convolution waveform can be obtained by applying an inverse DFT of size 2N.
Therefore, as in the time invariant case, the filter can be implemented either in the time domain with
a tapped delay line or in the frequency domain using the fast Fourier transform (FFT).

The time-varying convolution effect is a type of cross-synthesis of two input signals. It tends to
emphasise their common components and suppress the ones that are absent in one of them. The size
of the filter will have an important role in the extent of this cross-synthesis effect and the amount
of time smearing that results. As with this class of spectral processes, there is a trade-off between
precise localisation in time and frequency. With shorter filter sizes, the filtering effect is not as distinct,
but there is a better time definition in the output. With longer lengths, we observe more of the typical
cross-synthesis aspects, but the filter will react more slowly to changes in the input signals.
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4.1. Fixing Coefficients

A variation on the time-varying convolution method can be developed by allowing coefficients
to be fixed for a certain amount of time. Since there is no particular distinction between the two
input signals, it is possible for either of these two to be kept static at any given time. More formally,
under these conditions, a given ck(n) coefficient update can be described by

cn mod N = w(n− dN), (27)

where d is a non-negative integer that depends on how long w(n) is being kept static. If the input
signal is varying, we can take that d = 0. Generally, we can assume that the if signal is held
for one full filter period (defined as N samples), then d = 1. Under these conditions, d would
be determined by how many periods the set of coefficients has been static. However, in practice,
we can have a more complex sample-by-sample switching that could hold certain coefficients static,
while allow others to be updated. In this case, the analysis is not so simple. In an extreme modulation
example, we can have coefficients that alternate between delays of cN and dN samples (c and d integer
and >0). Again, since there is no distinction between w(n) and x(n) in terms of their function in
the cross-synthesis process, similar observations apply to the updating of the input signal samples.
If we implement sample-by-sample update switches to each input, then we allow a whole range of
signal “freezing” effects. Of course, depending on the size of the filter, different results might apply.
For example, if we have a long filter, freezing one of the signals will create a short loop that will be
applied over and over again to the other input. If the frozen signal is a genuine impulse response,
say of a given space, this will work as an ordinary linear time-invariant (LTI) convolution operation.
Thus, the TVFIR principles might be applied as a means of switching between different impulse
responses. Smooth cross-fading can be implemented as a way of moving from one fixed FIR filter to
another using the ideas developed here.

4.2. Test Signals

To illustrate some characteristics of time-varying convolution, we look at some cases of
time-varying convolution using test signals as inputs. In the first example, we use a pulse train
with a frequency of fs/1024 Hz and a sine wave with frequency of 100 Hz using a filter size equal
to 1024 samples. This is shown in Figure 5, where we can see that with a pulse at the start of each
new filter, the waveform is reconstructed perfectly. This is of course equivalent to having a fixed IR
consisting of a unit sample at the start.

In the second example (Figure 6), we decrease the pulse train frequency to fs/1124 Hz and now
the impulses are spaced by 100 more samples than one filter length. The output then contains zeros at
these samples, and the sine wave is shifted in time by 100 samples, as the impulse localises the start of
the sinusoid at its corresponding time. We can see how the result is that a gap is inserted in the signal.

The final example in Figure 7 shows the converse of this. If we increase the frequency to fs/924 Hz,
now a new sinusoid is added to the signal before the previous one has completed its N samples. The
effect is to distort the waveform shape at the points where there is an overlap. The distortion appears
because the impulses do not coincide with the beginning of the waveform and the waveform itself
does not complete full cycles in one filter length.
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Figure 5. Time-varying convolution using a pulse train with frequency fs/1024 Hz and a sine wave of
100 Hz as inputs, with filter size N = 1024 and sampling rate fs = 44,100.

Figure 6. Time-varying convolution using a pulse train with frequency fs/1124 Hz and a sine wave of
100 Hz as inputs, with filter size N = 1024 and sampling rate fs = 44,100.

Note that these examples are somewhat contrived. They are used to illustrate the process of
time-varying convolution in a simple way, and are unlikely to arise in practical musical applications of
the process. Thus, we need not infer that the quality of cross-synthesis results will be impaired due
to the obvious discontinuities seen in the some of the outputs in these examples. However, they are
indicative of the fact that the result of the process is very much dependent on the types of inputs as
well as the filter lengths employed.
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Figure 7. Time-varying convolution using a pulse train with frequency fs/924 Hz and a sine wave of
100 Hz as inputs, with filter size N = 1024 and sampling rate fs = 44,100.

5. Implementation

As noted above, convolution in general can be programmed employing time-domain and/or
frequency-domain operations. The trade-off between the two methods are latency between input
and output, and efficiency of computation. With an implementation solely using time-domain
processing, which we call direct convolution, there is no extra latency imposed by the operation,
but we have O(N2) complexity. If we implement it in the spectral domain, we can use a radix-2 FFT
and reduce the computation demands to O(N log N), but since we need to wait for all of the N samples
of input to be received, we will impose a latency between input and output. This can be compensated
for in offline processing but not in real time. However, this latency can be reduced by moving some of
the spectral operations to the time domain and reducing the transform size to a fraction of the filter
size. This approach is known as partitioned convolution. These ideas are discussed in the remainder of
this section.

5.1. Direct Convolution

A time-domain implementation of TVFIR convolution follows closely Equation (23). It employs
two delay lines, one for each signal. The rotation in one of the input signals (e.g., w(n) in Figure 8) to
obtain the various coefficients can be simply implemented by looking up the corresponding delay line
from end to beginning as if it were a static impulse response. Note that this means that the samples
of this signal will always go into the delay line in reverse order. This is conceptually straightforward
and the implementation very similar to a standard FIR, except for the fact that we are replacing each
sample of the impulse response (as well as feeding a new sample to the delay line holding the other
input signal).

�input1

�input2

x(n − 7) x(n − 6) x(n − 5) x(n − 4) x(n − 3) x(n − 2) x(n − 1) x(n)

× × × × × × × ×
w(7) w(6) w(5) w(4) w(3) w(2) w(1) w(0)

�

�
output

Figure 8. Direct convolution.
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5.2. Fast Convolution

Fast convolution employs the fast Fourier transform (FFT) to calculate the DFT, working on
blocks of N input samples, with N generally a highly composite number (such as a power-of-two).
Two algorithms are more commonly used in frequency domain implementations:

• Overlap-add algorithm (OLA): N samples of each input are collected padded with zeros to make
a 2N block to which the transforms are applied and their product taken. The output is obtained
by taking the inverse FFT of the convolution spectra every N samples. Since this is a 2N block of
samples, we will need to overlap each output block by N samples (the convolution size is actually
2N − 1 samples, but we expect the last sample of the block to be zero). In a streaming process,
this can be achieved by saving the last N samples of the previous output and mixing these with
the first N samples from the current one. In this case, we will save the final N samples of the
current output as we produce the final overlapped mix. This process is demonstrated in Figure 9.

input1 x(n + lN)

�
xl(n) zeros

DFT � Xl(k)

�
�×

�

input2 w(n + lN)

�
wl(n) zeros

DFT � Wl(k)

�

Yl(k)

�
IDFT

�
yl(n)output

Figure 9. Fast overlap-add convolution, in this case using two arbitrary time-varying signals.

• Overlap-save algorithm (OLS): 2N samples are collected from one of the inputs, and N samples
are collected from the other, padded to the filter length. The signals are aligned in such a way
that the second half of the first input block corresponds to the start of the second. The products of
their spectra is taken and then converted back to the time-domain. The first N samples of this
block are discarded, and the second half is output. In a streaming implementation, each iteration
will have saved the second half of the last input block (N samples) to use as the first block of the
next input to the DFT. A flowchart for this algorithm is shown in Figure 10.

Since this algorithm depends on the circular property of the DFT, which cannot be guaranteed
with a fully time-varying impulse response, it cannot be used in a practical implementation of
the TVFIR described by Equations (24)–(26), This is because the OLS algorithm expects that the
impulse response data will not vary over the duration of the convolution, which is not the case if
both signals are continuously varying. Even in the more restricted scheme of stepwise replacement
of impulse responses, the OLS algorithm does not appear to be applicable. With overlapping
input blocks, we can no longer assume that the coefficients of the old and new filter are convolved
with separate segments of the input signal.
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input1 x(n + lN)

�
xl(n)

DFT � Xl(k)

�
�×

�

input2 (impulse) wl(n) zeros

DFT � W (k)

�

discard

�

IDFT

�

yl(n)output

Figure 10. Fast overlap-save convolution.

As we noted before, although for longer filter lengths this is the fastest method, we will introduce
a latency between input and output that might be objectionable in real-time processing. To mitigate
this, the practical solution is to partition the filter size in shorter blocks and apply the process to these,
as discussed in the next section.

5.3. Partitioned Convolution

Partitioned convolution attempts to balance computational load and input-output latency.
The principle is based on the idea of breaking the filter down into a set of partitions and working in the
frequency domain. In the case of time-varying convolution, each input signal is thus segmented and
the partitions are converted to the spectral domain and placed in a separate delay line. The products of
pairs of partitions (from each input) in the delay line are summed together to produce the spectrum of
the convolution (Figure 11). This is converted back to the time domain and overlapped into the output
stream, if we are using an overlap-add algorithm, or just output, if using overlap-save.

Conceptually, we can think that direct convolution uses a partition size of one sample, since the
DFT of a single sample is an identity operation. As we saw in Section 5.1, this also involves two delay
lines, with one of the signals taken in reverse order. The difference here is that to employ partitions
bigger than one sample, the operations are performed in the spectral domain. Equally, we can think of
fast convolution having partitions of N samples, the filter size, i.e., a single-partition.

input1
�DFT�

input2
�DFT�

Xn−7(k) Xn−6(k) Xn−5(k) Xn−4(k) Xn−3(k) Xn−2(k) Xn−1(k) Xn(k)

× × × × × × × ×
W7(k) W6(k) W5(k) W4(k) W3(k) W2(k) W1(k) W0(k)

�

�
IDFT

�
output

Figure 11. Partitioned time-varying convolution.

104



Appl. Sci. 2018, 8, 103

5.4. Csound Opcodes

Time-varying convolution has been implemented in Csound [43] in two separate ways,
which nevertheless are based on the approaches described in Section 5. The first of these is liveconv,
which is an extensive modification of an existing ftconv unit generator. It implements partitioned
convolution employing an external function table as a means of sourcing one of the two input signals
(nominally the impulse response). The second is tvconv, which takes two audio signal inputs
and applies the process for a given filter and partitioned length. In this section, we examine these
two implementations in some detail.

5.4.1. liveconv

The liveconv opcode implements dynamic replacement of impulse responses (see Section 3).
It employs partitioned convolution with the overlap-add (OLA) scheme. The opcode takes one input
signal and a table for holding the impulse response (IR) data:

ares liveconv ain, ift, iplen, kupdate, kclear,

where its parameters are as follows:

• ares: Output signal.
• ain: Input signal.
• ift: Table number for storing the impulse response (IR) for convolution. The table may be filled

with new data at any time while the convolution is running.
• iplen: Length of impulse response partition in samples; must be an integer power of two.

Lower settings allow for shorter output delay but will increase CPU usage.
• kupdate: Flag indicating whether the IR table should be updated. If kupdate = 1, the IR table ift

is loaded partition by partition, starting with the next partition. If kupdate = −1, the IR table ift is
unloaded (cleared to zero) partition by partition, starting with the next partition. Other values
have no effect.

• kclear: Flag for clearing all internal buffers. If kclear has any value ! = zero, the internal buffers
are cleared immediately. This operation is not free of artefacts.

The opcode makes a clear distinction between the input signal x1(n) and the IR table. However,
if the IR table is updated regularly at filter length: tRn = n ∗ N and the IR table continuously filled
with data from another audio stream x2(n), then the inputs x1(n) and x2(n) will be treated on equal
terms, and the opcode behave similar to tvconv without freezing.

The opcode is programmed in C and is available as part of Csound source code [44]. See Algorithm 1
below for pseudocode that highlights the most important parts. For more details, the reader is encouraged
to inspect the source code at Github.

105



Appl. Sci. 2018, 8, 103

Algorithm 1: Liveconv opcode implementation. IR loading marked with blue color.
Input : Audio input, IR table, partition size and update flag
Output : Convolved audio output
/* Check if the IR buffer should be updated */

if update flag is set then
Initialize process to load IR from table position 0

end

forall samples in input audio buffer do

Read sample into an internal ring buffer;
if One complete partition is read then

/* This is where the stepwise loading of an IR is handled */

forall loading IR processes do

/* Read from IR table into internal IR buffer */

/* The internal buffers are accessed in reverse order */

forall samples in current IR table partition do

Read into first half of internal IR buffer;
end

Pad second half of internal IR buffer with zeros;
Compute FFT on internal IR buffer (replace in buffer);
IR table position += partition length;
if IR table position ≥ filter length then // The entire filter is loaded

Terminate this loading process;
end

end

/* Start processing the audio input partition */

Pad second half of internal ring buffer with zeros;
Compute FFT on internal ring buffer (replace in buffer);
Update ring buffer position (wrap around if necessary);
forall partitions of the filter do

Pairwise multiply internal IR and ring buffers;
Accumulate sum in temporary output buffer;

end

Compute inverse FFT of temporary buffer;
/* Overlap Add (OLA) current and previous output block */

for i = 0 to Partition length −1 do

output[i] = first part of temporary[i] + saved output[i];
saved output[i] = second part of temporary[i];

end

end

end

5.4.2. tvconv

The tvconv opcode takes two input signals and implements time-varying convolution. We can
nominally take one of these signals as the impulse response and the other as the input signal, but,
in practice, no such distinction is made. The opcode takes the length of the filter and its partitions as
parameters, and includes switches to optionally fix coefficients instead of updating them continuously:

asig tvconv ain1, ain2, xupdate1, xupdate2, ipartsize, ifilsize,

where its parameters are as follows:
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• ain1, ain2: input signals.
• xupdate1, xupdate2: update switches u for each input signal. If u = 0, there is no update from

the respective input signal, thus fixing the filter coefficients. If u > 0, the input signal updates
the filter as normal. This parameter can be driven from an audio signal, which would work
on a sample-by-sample basis, from a control signal, which would work on a block of samples
at a time (depending on the ksmps system parameter, the block size), or it can be a constant.
Each input signal can be independently frozen using this parameter.

• ipartsize: partition size, an integer P, 0 < P ≤ N, where N is the filter size. For values P > 1,
the actual partition size will be quantised to Q = 2k, k ∈ Z, Q ≤ P.

• ifilsize: filter size, an integer N, N ≥ P, where P is the partition size. For partition size values
P > 1, the actual filter size will be quantised to O = 2k, k ∈ Z, O ≤ N.

This opcode is programmed in C++ using the Csound Plugin Opcode Framework (CPOF) [45,46],
as the TVConv class. In this code, there are, in fact, two implementations of the process, which are
employed according to the partition size:

1. For partition size = 1: direct convolution in the time domain is used, and any filter size is allowed.
The following method in TVConv implements this (listing 1. The vectors in and ir hold the two
delay lines, which take their inputs from the signals in inp and irp. The variables frz1 and
frz2 are signals that control the freezing/updating operation for each input.

Listing 1: Direct convolution implementation.

int dconv() {

csnd::AudioSig insig(this, inargs(0));

csnd::AudioSig irsig(this, inargs(1));

csnd::AudioSig outsig(this, outargs(0));

auto irp = irsig.begin();

auto inp = insig.begin();

auto frz1 = inargs(2);

auto frz2 = inargs(3);

auto inc1 = csound->is_asig(frz1);

auto inc2 = csound->is_asig(frz2);

for (auto &s : outsig) {

if(*frz1 > 0) *itn = *inp;

if(*frz2 > 0) *itr = *irp;

itn++, itr++;

if(itn == in.end()) {

itn = in.begin();

itr = ir.begin();

}

s = 0.;

for (csnd::AuxMem<MYFLT>::iterator it1 = itn,

it2 = ir.end() - 1; it2 >= ir.begin();

it1++, it2--) {

if(it1 == in.end()) it1 = in.begin();

s += *it1 * *it2;

}

frz1 += inc1, frz2 += inc2;

inp++, irp++;

}
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return OK;

}

2. For partition size > 1, partitioned convolution is used (listing 2), through an overlap-add
algorithm. In this case, the process is implemented in the spectral domain, and in order to
make it as efficient as possible, power-of-two partition and filter sizes are enforced internally.

Listing 2: Partitioned convolution implementation.

int pconv() {

csnd::AudioSig insig(this, inargs(0));

csnd::AudioSig irsig(this, inargs(1));

csnd::AudioSig outsig(this, outargs(0));

auto irp = irsig.begin();

auto inp = insig.begin();

auto *frz1 = inargs(2);

auto *frz2 = inargs(3);

auto inc1 = csound->is_asig(frz1);

auto inc2 = csound->is_asig(frz2);

for (auto &s : outsig) {

if(*frz1 > 0) itn[n] = *inp;

if(*frz2 > 0) itr[n] = *irp;

s = out[n] + saved[n];

saved[n] = out[n + pars];

if (++n == pars) {

cmplx *ins, *irs, *ous = to_cmplx(out.data());

std::copy(itn, itn + ffts, itnsp);

std::copy(itr, itr + ffts, itrsp);

std::fill(out.begin(), out.end(), 0.);

// FFT

csound->rfft(fwd, itnsp);

csound->rfft(fwd, itrsp);

// increment iterators

itnsp += ffts, itrsp += ffts;

itn += ffts, itr += ffts;

if (itnsp == insp.end()) {

itnsp = insp.begin();

itrsp = irsp.begin();

itn = in.begin();

itr = ir.begin();

}

// spectral delay line

for (csnd::AuxMem<MYFLT>::iterator it1 = itnsp,

it2 = irsp.end() - ffts; it2 >= irsp.begin();

it1 += ffts, it2 -= ffts) {

if (it1 == insp.end()) it1 = insp.begin();

ins = to_cmplx(it1);

irs = to_cmplx(it2);

// spectral product

for (uint32_t i = 1; i < pars; i++)
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ous[i] += ins[i] * irs[i];

ous[0] += real_prod(ins[0], irs[0]);

}

// IFFT

csound->rfft(inv, out.data());

n = 0;

}

frz1 += inc1, frz2 += inc2;

irp++, inp++;

}

return OK;

}

6. Applications and Use Cases

The two different convolution techniques described above has been used as the basis for two
live processing instruments. The instruments are software based and designed to be used with live
performers, convolving the sound produced by one musician with the sound produced by another. The
instruments are packaged in the form of software plugins in the VST (Virtual Studio Technology (VST)
is a software interface that integrates software audio synthesizer and effect plugins with audio editors
and recording systems.) plugin format, compiled using the Cabbage [47] framework. Source code for
the plugins is available at [48]). This work has been done in the context of a larger research project on
crossadaptive audio processing [7], wherein these convolution techniques can be said to form a subset
of a larger collection of techniques investigated. The aims of the crossadaptive research forms the
motivation for the design of the instruments, and thus it is appropriate to describe these briefly before
we move on. It is noteworthy that the work with the application has been done in the context of artistic
research, following methods of artistic exploration rather than scientific methods. This means that there
have been more of a focus on exploring the unknown potential for creative use of these techniques
than there has been on testing explicit hypotheses. Thus, there is not a quantifiable verification of
test results, but rather an investigation of some application examples expected to prove useful in our
artistic work. Intervention into regular and habitual interaction patterns between musicians is one
of the core aspects of the research. More specifically, the project aims to develop and explore various
techniques of signal interaction between musical performers, such that the actions of one can influence
the sound of the other. This is expected to stir up the habitual interaction patterns between experienced
musicians, and thus facilitating novel ways of playing together, enabling new forms of music to emerge.
Some of the crossadaptive methods will be intuitive and immediately engaging, others might pose
significant challenges for the performers. In many cases, the musical output will not be immediately
appealing, as the performers are given an unfamiliar context and unfamiliar tools and instruments. We
do still very much rely on their performative experience to solve these challenges, and the instruments
are designed to be as playable as possible within the scope and aims outlined. The crossadaptive
project includes a wide range of signal interaction models, many based on feature extraction (signal
analysis) and mapping the extracted features onto parametric controls of sonic manipulation by means
of digital effects processing [49]. Those models of signal interaction has the advantage that any feature
can be mapped to any sonic modulation; however, all mappings between features and modulations
are also artificial. It is not straightforward to create a set of mappings that is as rich and intuitive to the
performer as, for example, the relationship between physical gestures and sonic output of an acoustic
instrument.

The convolution techniques that are the focus of this article provide a special case in this
regard, as the features of the sound itself contains all aspects of modulation over the other sound.
The nuances of the sound to be convolved can be multidimensional and immensely expressive in its
features. Still, the performer can use his or her experience in relating the instrumental gestures to the
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nuances of this sound, which in turn constitute the filter coefficients. Thus, there is a high degree of
control intimacy, it is intuitive for the performer to relate performative gestures to sonic output, and,
with convolution, the sonic output itself is what modulates the other sound. Relating to the recording
of an impulse response is as easy and intuitive for the musician as it is to relate to other kinds of live
sampling. These are features of the convolution technique that makes it especially interesting in the
context of the crossadaptive performance research. At the same time, the direct and performative live
use of convolution techniques also opens the way for a faster and more intuitive exploration of the
creative potential of convolution as an expressive sound design tool.

6.1. Liveconvolver

This instrument is designed for convolution of two live signals, but we have retained the concept
of viewing one of the signals as an impulse response. This also allows us to retain an analogy with
live sampling techniques, as the recording of the impulse response is indeed a form of live capture.
The instrument is based on the liveconv opcode as described in Section 5.4.1. The overall signal
flow is shown in Figure 12. The audio on the IR record input channel is continuously written to
a circular buffer. When we want to replace the current IR, we read from this buffer and replace the IR
partition by partition as described under Section 3. The main reason for the circular buffer is to enable
transformation (for example time reversal or pitch modification) of the audio before making the IR.
If the pitch and direction of the input is not modified, then the extra buffering layer does not impose
any extra latency to the process.

Figure 12. Liveconvolver instrument flowchart.

The single most important control of this processing instrument is the trigger for when to replace the
IR. This can be done manually via the GUI (Graphical User Interface), see Figure 13, but, for practical
reasons, we commonly use an external physical controller or pedal trigger mapped to this switch.
One of the musicians then has control over when the IR is updated and how long the new IR will be. In
addition to the manual control, this function can also be automatically controlled by means of transient
detection or simply set to a periodic update triggered by a metronome. The manual trigger method
controlled by an external pedal has been by far the most common use in our experiments.

In addition to the IR record trigger, we have added controls for highpass and lowpass filtering to
enable quick adjustments to the spectral profile. When convolving two live signals, the output sound
will have a tremendous dynamic range (due to the multiplication of the dynamics of each input sound)
and also it will often have a quite unbalanced spectrum (spectral overlap in the two input sounds
will be amplified while everything else will be highly attenuated). For this reason, some very coarse
and effective controls are needed to shape the output spectrum in a live setting. The described filter
controls allows such containment in a convenient manner. Due to the inherent danger of excessive
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resonances when recording the IR in the same room as the convolver effect is being used, we utilize
a simple audio feedback prevention technique (shifting the output spectrum by a few Hz [50] by means
of single sideband modulation). This helps in avoiding feedback, but can also be perceived as a subtle
detuning. The amount of frequency shift can be adjusted, and, as such, there is a way to minimize the
detuning amount for a given performance situation.

Figure 13. Liveconvolver instrument user interface. As an attempt to visualize when the impulse
response is taken from, we use a circular colouring scheme to display the circular input buffer
(thin coloured band labeled “input” in the image). We also represent the IR (broader coloured band
at the bottom of the image) using the same colours. Time (of the input buffer) is thus represented
by colour.

Performative Roles with Liveconv

One can distinguish two different performative roles in this kind of interplay: One performer is
recording an impulse response (IR), and the other musician plays through the filter created by this
IR. It is noteworthy that the two signals are mathematically equivalent in convolution, it does not
matter if one convolves sound A with sound B or vice versa, the output sound will be the same (A*B).
Still, the two roles facilitates quite different modes of performance, different ways of having control
over the output sound. The performer recording the IR will have significant control over the spectral
and temporal texture generated, while the musician playing through the filter will have control over
the timing and energy flow.

Before starting the practical experimentation, the clarity and implications of these roles were not
clear to us. Even so, it was clear that the two musicians would have different roles. The practical
sessions would always start with a description of the convolution process and an explanation of
how it would affect the sound. Then, each of the musicians would be allowed to perform in
both roles, with discussions and reflections in between each take. In the vast majority of experiments,
the musical performance was freely improvised, and the musicians was told to just play on the
sound coming back to them. The aim was simply to see how they would respond to this new sonic
environment and the interaction possibilities presented. The spontaneous and intuitive reaction
of skilled performers to this unfamiliar performance scenario was expected to produce something
interesting. As artistic exploration, we wanted to keep the possible outcomes as open as possible.
There are many variables not explicitly controlled in these experiments. First of all, each musician
has a different vocabulary of sounds, phrases, musical reaction patterns and such. Then, the sonic
potential and performative affordances of the acoustic instrument being played. Since the resulting
sound is a combination of two instruments (and usually two performers), the combinations of above
variables affects the output greatly—likewise, the degree to which the musicians knew each other
musically before the experiment. The performance conditions in terms of acoustic space, microphone
selection and placement, how the processed sound is monitored (speakers, headphones, balance
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between acoustic and processed sound, etc.), and other external conditions would also potentially
affect the output in different ways. If the aim had been to do a scientific investigation of particular
aspects (of performance, interaction, timbral modulation, other), these variables would need to be
controlled. However, as an artistic exploration of a hitherto unavailable technique, we have opted to
keep these things open. The explorative process would thus be open to allow building on preliminary
results iteratively, and allow creative input from the participants to affect the course of exploration.
The most interesting products of the experiments are the audio recording themselves, as non-exhaustive
examples of possible musical uses.

Even if we here identify two distinct performative roles, these were not preconceived but became
apparent from noticing similarities between experiments with different musicians. Some musicians
in our experiments would prefer the role of playing through the filter, perhaps since it can closely
resemble the situation where one is playing through any electronic effect (e.g., an artificial reverb).
Others would prefer the role of recording the IR, since this allows the real-time design of the
spectrotemporal environment for the other musician to play in. This divide has been apparent
in all our practical experiments thus far—for more detail, see, for example, project blog notes about
sessions in San Diego [51]). If one, for example, records a single long note as the IR, there is not much to
do for the performer playing through the effect other than recreating this tone at different amplitudes.
Then, if the impulse response is a series of broadband clicks, this will create a delay pattern and the
other musician will have to perform within the musical setting thus constituted.

In spite of the slight imbalance of power, with carefully chosen audio material, both performers
can have mutual effect on the output, and the techniques facilitates a closely knitted interplay.
In addition, varying the duration of the IR is also an effective way of creating distinctly different
sections in an improvisation, and thus can be used to shape formal aspect of the music. Varying the
length of the IR also directly affect the power balance between the performative roles: a short IR
generally creates a more transparent environment for the other performer to act within. Changing
between sustained and percussive sonic material in the IR also has a similar effect, while also retaining
a richer image of the temporal activity in the IR recording signal.

We have experimented with the live convolver technique in studio sessions and concerts since
early 2017. There have been sessions in San Diego and Los Angeles (see link in [51] and Figure 14),
Oslo (see link in [52], and Trondheim (see link in [53] and Figure 15).

In addition to the creative potential of spectrotemporal morphing, there are also some clear pitfalls.
As mentioned, convolution is a multiplicative process, and thus the dynamic range is very large.
In addition, it naturally amplifies common frequencies between the two signals, and attenuates
everything else. This leads to an unnaturally loud output when the two musicians play melodic
phrases where they happen to use common tones. Many musicians will gravitate towards each
other’s sound, as a natural aesthetic impulse, trying to create a sonic weave that unites the two sounds.
Doing this with live convolution is often counterproductive, as it creates a spectrum with a few
extremely high peaks and little other information.

Figure 14. Kjell Nordeson and Øyvind Brandtsegg discussing live convolver performance.
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Figure 15. Session with singers from Trondheim Voices.

Another danger with live convolution when played over a P.A. in concert is the feedback potential.
In this situation, the room (and the sound system) where the performance happens is convolved with
itself, effectively multiplying the feedback potential of the system. The performers can also affect
the feedback potential, by developing a sensitivity and understanding of which spectral material is
most likely to cause feedback problems. Producing material that plays on the resonances of the room
generally will increase the danger of feedback. This is another example of a counterintuitive measure
for a music performer, as one would normally try to utilize the affordances of the acoustic environment
and play things that resonate well in the performance space.

6.2. TV Convolver

This instrument is designed for convolution of two live signals in a streaming fashion, that is, both
signals are treated equally and are continually updated. It is based on the tvconv opcode, as described
in Section 5.4.2. It has controls for freezing each of the signals (see Figure 16), that is, bypassing
the continuous update of the input buffers. Like the liveconvolver instrument, it also has controls
for frequency shift amount (for reduction of feedback potential), highpass and lowpass filtering
(for quick adjustment to the output spectrum, see Section 6.1 for details). In addition, it has controls
for adjusting the filter length and fade time. The fade time is used in connection with freezing the filter.
Even though tvconv allows freezing the filter at any time, we have opted to only allow freezing at filter
boundaries, and also to facilitate a fade out of the coefficients towards the boundary when freezing
is activated. These measures are done to avoid artefacts due to discontinuities in the filter coefficients.
When used with relatively long filter lengths (typically 65,536 samples in our experiments, 1.4 s at a
sampling rate of 44.1 kHz), discontinuities due to freezing could be clearly audible as clicks in the
audio output. Furthermore, freezing the filter at any arbitrary point would potentially reorder the
temporal structure of the live signal used for filter coefficients (see Figures 17 and 18).

Figure 16. TV convolver GUI.
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Figure 17. Example of tvconv buffer content when freezing is allowed only at filter boundaries.
One contiguous block of audio remains in the filter when frozen.O e co g o s oc o o e s e e e o eOne contiguous block of audio remains in the filter when frozen.

Figure 18. Example of tvconv buffer content if freezing is allowed at an arbitrary point. Old content
remains in the latter part of the buffer while the first part has been written with new content.

Practical Experiments with Tvconv

The streaming nature of this variant of live convolution allows for a constantly changing effect
where both of the signals are treated equally. None of them is considered the impulse response for
the other to be filtered through; they are simply convolved with each other, where the time window
of the convolution is set by the filter length. This instrument has been used in a studio session in
Trondheim in August 2017 ([53] and Figure 15), and in several live performances in the weeks and
months following the initial studio exploration. Since the two signals are treated equally, there are no
technical grounds for assuming different roles for the two performers playing into the effect. This also
conforms with our experience.

The effect of tvconv is usually harder to grasp for the performers, compared with the
liveconvolver instrument. The interaction between the two signals can be musically counterintuitive.
In an improvised musical dialogue, performers will sometimes use a call and response strategy, making
a musical statement followed by a pause where other musicians are allowed to respond. With streaming
convolution, this is not so productive, since there will be no output unless both input signals are
sounding at the same time. Thus, it requires a special performative approach where phrases are
interwoven and contrapuntal, with quicker interactions. This manner of simultaneous initiatives could
be perceived as aggressive and almost disrespectful in some musical settings, as it might appear as one
is trampling all over the other musician’s statements. Negotiating this space of common phrasing very
clearly affects the manner in which the musicians can interact, which was one of the objectives of the
crossadaptive research project.

Due to the manner in which the filter is updated (see Section 5.4.2), one may perceive a variable
latency when performing with tvconv. The technical latency is not variable, but the perceived latency is.
This occurs when the first part of the filter contains low amplitude sounds (or sound that is otherwise
low in perceptually distinct features), such that the perceived “attack” of the sound is positioned later in
the filter (see Figure 19). In this case, one might perceive the filter’s response as having a longer latency
than the strictly technical latency of the signal processing. As the filter coefficients are continuously
updated in a circular buffer, there is no explicit way of ensuring that perceptually prominent features
of the input sound is written to the beginning of the filter. Admittedly, one could argue that a circular
buffer does not have a beginning as such, but the way it is used in the convolution process means that
it matters where in this buffer salient features of the input sound is positioned. Thus, the perceptual
latency can vary within a maximum period set by the size of the filter.
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Figure 19. Impulse response with initial section low on perceptual features, transient occuring later in
the filter.

In addition to the immediate interaction of the streaming convolution, another manner of
interaction is enabled by giving each of the performers a physical controller (midi pedal) to freeze each
of the two filter buffers. If one buffer is frozen, the other performer can play in a more uninterrupted
manner, being convolved through the (now static) filter. They can freely switch between freezing one
or the other of the inputs and this enables a playful interaction. If both input buffers are frozen, the
convolver will output a steady audio loop of length equal to the filter length. In that case, no input is
updated, so the filter output is maintained even if both performers fall silent.

We also have a perceptual latency issue when freezing the filter. Since we in our instrument
design have allowed freezing only at filter boundaries (see Section 6.2), a signal to freeze the filter does
not always freeze the last N seconds (where N is the filter length). Rather, it will continue updating
until the write index reaches the filter boundary and then freeze. The time relation between input
sounds and the filter buffer is determinate, but since the filter boundaries are not visible or audible
to the performers, the relationship will be perceived as somewhat random. In spite of these slight
inconveniences, we have focused on the musical use of the filter in performance.

6.3. Demo Sounds

The main application of our convolution techniques has been for live performance. To allow for
additional insight into how the processing techniques affect a given source material, we have made
some simple demo sounds. These are available online at [54]. The same source have been used for
both liveconv and tvconv, and one example output created for each of these two convolution methods.
Due to the parametric nature of the methods, a large number of variations on output sounds could be
conceived. These two examples simply aim at showing the techniques in their simplest form.

6.4. Future Work

There are some typical problems in using convolution for creative sound design that are even
more emphasized when using it for live performance. These relate to the fact that convolution is
a multiplicative process, and as such has a tremendous dynamic range. Moreover, if spectral peaks
in the two signals overlap, the output sound will tend to have extreme peaks at corresponding
frequencies. One possible solution to this might be utilizing a spectral whitening process as suggested
by Donahue [55], although this has not yet been fully solved for the case of real-time convolution with
time-varying impulse responses. Another approach might be to analyze the two input spectra and
selectively reduce the amplitude of overlapping peaks, allowing control over resonant peaks without
other spectral modifications. Furthermore, the impulse response update methods described in this
article could be applied in more traditional manners, like parametric control of convolution reverbs
and so on.

7. Conclusions

The paper has described two new approaches and implementations of time-varying convolution
filters. These have been developed in the context of live convolution within improvised electroacoustic
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performance, as a method of crossmodulation between two audio signals. The implementations has
been done in the form of opcodes for the audio programming language Csound. Software instruments
for live performance with these opcodes has been built in the form of VST plugins. We have shown
some usage examples from studio sessions done within the artistic research project “Cross-adaptive
processing as musical intervention”. These practical sessions have also revealed some performative
issues and a significant creative potential for further exploration.
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Featured Application: The proposed framework is highly suitable for audio applications that

require analysis–synthesis systems with the following properties: stability, perfect reconstruction,

and a flexible choice of redundancy.

Abstract: Many audio applications rely on filter banks (FBs) to analyze, process, and re-synthesize
sounds. For these applications, an important property of the analysis–synthesis system is the
reconstruction error; it has to be minimized to avoid audible artifacts. Other advantageous properties
include stability and low redundancy. To exploit some aspects of auditory perception in the signal
chain, some applications rely on FBs that approximate the frequency analysis performed in the
auditory periphery, the gammatone FB being a popular example. However, current gammatone FBs
only allow partial reconstruction and stability at high redundancies. In this article, we construct
an analysis–synthesis system for audio applications. The proposed system, referred to as Audlet,
is an oversampled FB with filters distributed on auditory frequency scales. It allows perfect
reconstruction for a wide range of FB settings (e.g., the shape and density of filters), efficient FB design,
and adaptable redundancy. In particular, we show how to construct a gammatone FB with perfect
reconstruction. Experiments demonstrate performance improvements of the proposed gammatone
FB when compared to current gammatone FBs in terms of reconstruction error and stability, especially
at low redundancies. An application of the framework to audio source separation illustrates its utility
for audio processing.

Keywords: audio signal processing; analysis–synthesis; filter bank; time-frequency transform; frames;
hearing; gammatone; equivalent rectangular bandwidth (ERB); Bark scale; Mel scale

1. Introduction

Time-frequency (TF) transforms like the short-time Fourier or wavelet transforms play a major
role in audio signal processing. They allow any signal to be decomposed into a set of elementary
functions with good TF localization and perfect reconstruction is achieved if the transform parameters
are chosen appropriately (e.g., [1,2]). The result of a signal analysis is a set of TF coefficients, sometimes
called sub-band components, that quantifies the degree of similarity between the input signal and the
elementary functions. In applications, TF transforms are used to perform sub-band processing, that is,
to modify the sub-band components and synthesize an output signal. De-noising techniques [3,4],
for instance, analyze the noisy signal, estimate the TF coefficients associated with noise, delete
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them from the set of TF coefficients, and synthesize a clean signal from the set of remaining TF
coefficients. Lossy audio codecs like MPEG-2 Layer III, known as MP3 [5], or advanced audio coding
(AAC) [6,7] quantize the sub-bands with a variable precision in order to reduce the digital size of
audio files. In audio transformations like time-stretching or pitch-shifting [8,9], the phases of sub-band
components are processed to ensure a proper phase coherence. As a last example, applications of audio
source separation [10–12] or polyphonic transcriptions of music [13] rely on the non-negative matrix
factorization scheme: the set of TF coefficients is factorized into several matrices that correspond to
various sources present in the original signal. Each source can then be synthesized from its matrix
representation. In these applications, the short-time Fourier transform (STFT) is mostly used, although
modified discrete cosine transforms (MDCTs) are usually preferred in audio codecs.

Because sub-band processing may introduce audible distortions in the reconstructed signal,
important properties of the analysis–synthesis system include stability (i.e., the coefficients are bounded
if and only if the input signal is bounded), perfect reconstruction (i.e., the reconstruction error is only
limited by numerical precision when no sub-channel processing is performed), resistance to noise,
and aliasing suppression in each sub-band (e.g., [14,15] Chap. 10). Furthermore, in all applications,
a low redundancy (i.e., a redundancy between 1 and 2) lowers the computational costs.

TF transforms are usually implemented as filter banks (FBs) where the set of analysis filters
defines the elementary functions and the set of synthesis filters allows signal reconstruction. The TF
concentration of the filters together with the downsampling factors in the sub-bands define the TF
resolution and redundancy of the transform. FBs come in various flavors and have been extensively
treated in the literature (e.g., [16–19]). The mathematical theory of frames constitutes an interesting
alternative background for the interpretation and implementation of FBs (e.g., [20–22]). Gabor frames
(sampled STFT [2,23]), for instance, are widespread in audio signal processing.

For certain applications, such as audio coding [5–7], audio equalizers [24], speech processing [25],
perceptual sparsity [26,27], or source separation [11,12,28,29], exploiting some aspects of human
auditory perception in the signal chain constitutes an advantage. One of the most exploited aspects
of the auditory system is the auditory frequency scale, which is a simple means to approximate
the frequency analysis performed in the auditory system [30]. Generally, the auditory system is
a complex and in many aspects nonlinear system (for a review see, e.g., [31]). Its description ranges
from simple collections of linear symmetric bandpass filters [32] through collections of asymmetric
and compressive filters [33] to sophisticated models of nonlinear wave propagation in the cochlea [34].
Because nonlinear systems may complicate the inversion of the signal processing chain (e.g., [35,36]),
linear approximations of the auditory system are often preferred in audio applications. In particular,
gammatone filters approximate well the auditory periphery at low to moderate sound pressure
levels [37,38] and are easy to implement as FIR or IIR filters [32,39–43].

Various analysis–synthesis systems based on gammatone FBs have been proposed for the purpose
of audio applications (e.g., [35,39,40,44]). However, these systems do not satisfy all requirements of
audio applications as, even at high redundancies, they only achieve a reconstruction error described
as “barely audible”. This error becomes clearly audible at low redundancies. In other words, these
systems do not achieve perfect reconstruction. To our knowledge, a general recipe for constructing
a gammatone FB with perfect reconstruction at redundancies close to and higher than one has not
been published yet.

In this article, we describe a general recipe for constructing an analysis–synthesis system
using a non-uniform oversampled FB with filters distributed on an arbitrary auditory frequency
scale, enabling perfect reconstruction at arbitrary redundancies. The resulting framework is named
“Audlet” for audio processing and auditory motivation. The proposed approach follows the theoretical
foundation of non-stationary Gabor frames [20,45] and their application to TF transforms with
a variable TF resolution [46–48]. This report extends the work reported in [20] (Section 5.1) by providing
a full theoretical and practical development of the Audlet.
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The manuscript is organized as follows. The next section briefly recalls the basics of non-uniform
FBs, frames, and auditory frequency scales. Section 3 describes the theoretical construction of the
Audlet framework. The practical implementation issues are discussed in Section 4 and Section 5
evaluates important properties and capabilities of the framework.

2. Preliminaries

2.1. Notations and Definition

In the following, we consider signals in �2(Z) as samples of a continuous signal with sampling
frequency fs, with the Nyquist frequency of fN = fs/2. We denote the normalized frequency by ξ = f / fs,
i.e., the interval [0, fN] corresponds to [0, 1/2]. The inner product of two signals x, y is 〈x, y〉 = ∑n x[n] · y[n]
and the energy of a signal is defined from the inner product as ||x|| = 〈x, x〉. The floor, ceiling, and
rounding operators are �·�, �·�, and �·�, respectively. We denote the z-transform by Z : x[n] �→ X(z).
By setting z = e2iπξ for ξ ∈ (−1/2, 1/2], the z-transform equals the discrete-time Fourier transform
(DTFT). Note that the frequency domain associated to the DTFT is circular and therefore, the interval
(−1/2, 1/2] is considered circularly, i.e., ξ ∈ R is identified with ξ − �ξ� ∈ (−1/2, 1/2]. The same
applies for (− fN , fN ]. Since we exclusively consider real-valued signals we deal with symmetric
DTFTs, which allows us to process only the positive-frequency range. Finally, we denote the complex
conjugation by an overbar, e.g., H.

2.2. Filter Banks and Frames

The general structure of a non-uniform analysis FB is presented in Figure 1 (e.g., [17]).
It is a collection of K + 1 analysis filters Hk(z), where Hk(z) is the z-transform of the impulse response
hk[n] of the filter, and downsampling factors dk, k ∈ {0 . . . K}, that divides a signal x into a set of K + 1
sub-band components yk, where

yk[n] = ↓dk {hk ∗ x} [n] . (1)

The special case where all downsampling factors are identical, i.e., dk = D ∀ k ∈ {0 . . . K},
is referred to as a uniform FB.

Figure 1. General structure of a non-uniform analysis filter bank (FB) (Hk, dk)k with Hk being the
z-transform of the impulse response hk[n] of the filter, also denoted as A(·, (Hk, dk)k).

By analogy, a synthesis FB is a collection of K + 1 upsampling factors dk and synthesis filters
Gk(z) (see Figure 2) that recombines the sub-band components yk into an output signal x̃ according to

x̃[n] = 2�
(

K

∑
k=0

(
gk∗ ↑dk {yk}

)
[n]

)
, (2)

where �, denoting the real part, and the factor of 2 are a consequence of considering the positive
frequency range only.

A synthesis FB can be generalized to a synthesis system (shown in Figure 3), which is a linear
operator S that takes as an input sub-band components yk and yields an output sequence x̃. For the
synthesis operation, we use the notation S̃(·, (Gk, dk)k), where (Gk, dk)k is the synthesis FB. An analysis

121



Appl. Sci. 2018, 8, 96

FB is invertible or allows for perfect reconstruction if there exists a synthesis system S that recovers
x from the sub-band components yk without error, i.e., x̃ = x for all x ∈ �2(Z). In other terms,
the analysis–synthesis system ((Hk, dk)k,S) has the perfect reconstruction property. In practice,
the implementation of that operation might introduce errors of the order of numerical precision.

Figure 2. General structure of a non-uniform synthesis FB (Gk, dk)k, also denoted by S̃(·, (Gk, dk)k).

Figure 3. General structure of a synthesis system. S is a linear operator that maps the sub-band
components yk to an output signal x̃.

We use the mathematical theory of frames in order to analyze and design perfect reconstruction
FBs (e.g., [20–22]). A frame over the space of finite energy signals �2(Z) is a set of functions spanning
the space in a stable fashion. Consider a signal x and an analysis FB (Hk, dk)k yielding yk. Then, an FB
constitutes a frame if and only if 0 < A ≤ B < ∞ exist such that

A‖x‖2 ≤∑
k
‖yk‖2 ≤ B‖x‖2, ∀x ∈ �2(Z) (3)

where A and B are called the lower and upper frame bounds of the system, respectively. The existence
of A and B guarantees the invertibility of the FB. Several numerical properties of an FB can be derived
from the frame bounds. In particular, the ratio

√
B/A corresponds to the condition number [49] of

the FB, i.e., it determines the stability and reconstruction error of the system. Furthermore, the ratio
B/A characterizes the overall frequency response of the FB. A ratio B/A = 1, for instance, means
a perfectly flat frequency response. This is often desired in signal processing because, in that particular
case, the analysis and synthesis FB are the same. Specifically, the synthesis filters are obtained by
time-reversing the analysis filters, i.e., Gk(z) = Hk(z).

The frame bounds A and B correspond to the infinimum and supremum, respectively,
of the eigenvalues of the operator S̃(A(·, (Hk, dk)k), (Hk, dk)k) associated with the system (Hk, dk)k.
In practice, these eigenvalues can be computed using iterative methods (see Sections 3.2 and 3.3).

2.3. Auditory Frequency Scales

An important aspect of the auditory system to consider in auditory-motivated analysis is the
frequency-to-place transformation that occurs in the cochlea. Briefly, when a sound reaches the ear
it produces a vibration pattern on the basilar membrane. The position and width of this pattern
along the membrane depend on the spectral content of the sound; high-frequency sounds produce
maximum excitation at the base of the membrane, while low-frequency sounds produce maximum
excitation at the apex of the membrane. This property of the auditory system can be modeled in
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a first approximation as a bank of bandpass filters, named “critical bands” or “auditory filters”, whose
center frequencies and bandwidths respectively approximate the place and width of excitation on
the basilar membrane. The frequency and bandwidth of the auditory filters are nonlinear functions
of frequency. These functions, called auditory frequency scales, are derived from psychoacoustic
experiments (see e.g., [50], Chapter 3 for a review). The Bark, the equivalent rectangular bandwidth
(ERB), and Mel scales are commonly used in hearing science and audio signal processing [30]. To refer
to the different frequency mappings we introduce the function F: f → Scale where f is frequency in
Hz and Scale is an auditory unit that depends on the scale. The ERB rate, for instance, is [30]

FERB( f ) = 9.265 ln
(

1 +
f

228.8455

)
(4)

and its inverse is
f = F−1

ERB(FERB) = 228.8455
(

eFERB/9.265 − 1
)

. (5)

The ERB (in Hz) of the auditory filter centered at frequency f is

BERB( f ) = 24.7 +
f

9.265
. (6)

Expressions for the Bark and Mel scales are respectively provided in [51,52]. For scales that
do not specify a bandwidth function, like the Mel scale, we propose the following function:

Bscale( f ) =
∂(F−1

scale)
∂ f (Fscale( f )). This ensures a proper overlap between the filters’ passband.

3. The Proposed Approach

This section describes the analysis FB and synthesis stage of the Audlet FB. The FB is entirely
designed in the frequency domain, which simplifies the assessment of properties such as invertibility
and the amount of aliasing. Note that the purpose of this section is to provide a mathematical
framework for general FB regardless of the practical implications. The implementation of the Audlet
framework is addressed separately in Section 4.

3.1. Analysis Filter Bank

The analysis FB consists of Audlet filters Hk, k ∈ {1, . . . , K − 1}, a low-pass filter H0,
and a high-pass filter HK. In total, it consists of K + 1 filters. The Audlet filters are defined by

Hk(e2iπξ) = d
1
2
k w

(
fs · ξ − fk

Γk

)
k ∈ {1, . . . , K− 1} (7)

where w(ξ) is a prototype filter’s shape centered at frequency 0. Any symmetric or asymmetric window
is an eligible w. The main condition on w is that its frequency response must decay away from 0 on both
sides. The parameters Γk = βBscale( fk) and fk control the bandwidth and center frequency, respectively,
of the filter Hk. The parameter β allows for the filter bandwidths to be compressed/expanded. Note that
when β �= 1, the bandwidth of the filters Hk deviates from the human auditory filters’ bandwidth.

To determine K and construct the sets { fk} and {Γk}, the first step consists in choosing an essential
frequency range [ fmin, fmax] ⊆ [0, fN ], a frequency mapping FScale, and a filter density V ∈ R+ of filters
per Scale unit. The set {dk} is considered arbitrary for now. An optimal choice of downsampling
factors dk is provided in Section 3.1.3.

3.1.1. Construction of the Set { fk}
The center frequency f1 is given by

f1 = max{ fmin, F−1
Scale(1/V)} (8)
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and the subsequent fk’s are obtained iteratively by

fk = F−1
Scale(FScale( f1) + (k− 1)/V). (9)

The iteration is processed as long as fk ≤ fmax and fk < fN , resulting in K − 1 filters,
with K determined by

K = min
{

argmax
k∈N

(
k− 1

V
≤ FScale( fmax)− FScale( f1)

)
,

argmax
k∈N

(
k− 1

V
< FScale( fN)− FScale( f1)

)}
.

Note that fmax should be slightly higher than the highest frequency of interest in the analyzed
signals. Finally, f0 = 0 and fK = fN . At this stage, the “restricted” frequency response of the FB
(i.e, restricted to the filters H1, . . . , HK−1) is given by

H(r)
0 (ξ) = H̃0

(r)
(ξ) + H̃0

(r)
(−ξ), with

H̃0
(r)
(ξ) :=

K−1

∑
k=1

d−1/2
k |Hk(e2πiξ)|2, for all ξ ∈ (−1/2, 1/2].

To obtain a perfect reconstruction system, the frequency response of the system should optimally

cover the frequency range [0, fN ]. However, this may not be the case for H̃0
(r)
(ξ) because the amplitude

of the filter H1 (and/or HK−1) may vanish at frequencies between 0 and f1 (resp., between fK−1 and fN).
To circumvent this problem, a low-pass filter H0 and high-pass filter HK are included.

3.1.2. Construction of H0 and HK

The purpose of the filters H0 and HK is to stabilize the FB response H0 by compensating for
the potentially low amplitude of H(r)

0 (ξ) in the range [0, f1[ ∪ ] fK−1, fN ]. While the content in the
frequency bands 0 and K might carry some perceptually relevant information, most applications will
not modify the corresponding coefficients. Consequently, it is crucial that H0 and HK are mostly
concentrated outside [ f1, fK−1], but their time domain behavior is only of secondary importance.
Nonetheless, we propose a construction that retains some smoothness in frequency and thus, by Fourier
duality, h0 and hK have appropriate decay.

There is no canonical method that provides optimal compensation and time localization for any
valid set of Audlet parameters. In [46], for instance, plateau functions with raised cosine flanks were
proposed. This method might result in additional ripples in H0 if w is not a raised-cosine window.
Alternatively, in [47], H0 and HK were constructed from a set of virtual filters extending the FB
beyond [ f1, fK−1]. An adaptation of this method to the Audlet framework is unnecessarily complex
and unintuitive. Instead, we propose the following. We define

M = max
ξ∈[0,1/2]

H(r)
0 (ξ) and H(r)

inv =

√
(M−H(r)

0 )+.

The functionH(r)
inv is nonnegative and has at least the same differentiability as w (taking the positive

part (·)+ is only necessary in the special cases considered in the remark below). However, any ripples
in H(r)

0 replicate in H(r)
inv. To reduce this rippling effect and introduce strict band-limitation of H0

and HK, we multiply H(r)
inv with appropriately localized plateau functions P0 and PK. Assume that

f−p,s, f−p,e, f+p,s, f+p,e ∈ (0, fN) are chosen such that f1 < f−p,s < f−p,e < f+p,s < fN and f1 < f−p,s < f+p,e <

f+p,s < fN and let
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P0(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/
√

2 if ξ fs ∈ (− f−p,s, f−p,s)

cos
(

π
|ξ| fs− f−p,s

f−p,e− f−p,s

)
/
√

2 if |ξ| fs ∈ [ f−p,s, f−p,e]

0 elsewhere,

and

PK(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/
√

2 if ξ fs ∈ (− fN ,− f+p,s] ∪ ( f+p,s, fN ]

1/
√

2− cos
(

π
|ξ| fs− f+p,s

f+p,s− f+p,e

)
/
√

2 if |ξ| fs ∈ [ f+p,e, f+p,s]

0 elsewhere.

The frequency f−p,s (resp. f+p,s) defines the width of the plateau in P0 (resp. PK). The region [ f−p,s, f−p,e]

([ f+p,e, f+p,s]) defines the transition area of P0 (PK) (see Figure 4). The filters H0 and HK are finally defined
by their DTFTs as

H0(e2πi(·)) = P0 · H(r)
inv, and HK(e2πi(·)) = PK · H(r)

inv. (10)

We propose selecting 0 < κ1 < κ2, such that FScale( fK−1)− FScale( f1) ≥ κ1 + κ2 and fix

f−p,s = F−1
Scale(FScale( f1) + κ1), f−p,e = F−1

Scale(FScale( f1) + κ2),

f+p,s = F−1
Scale(FScale( fK−1)− κ1), f+p,e = F−1

Scale(FScale( fK−1)− κ2).

This choice ensures that P2
0 + P2

K ≤ 1, preventing overcompensation, and is properly adapted to the
scale used. By default, we set κ1 = 3/V, κ2 = 4/V, such that f−p,s = f4, f−p,e = f5, f+p,s = fK−4, f+p,e = fK−5.

The intuition here is that from f4 (resp. fK−4) onward, the restricted FB responseH(r)
0 is expected to be

stable already, and that the size of the transition area ensures a sufficiently smooth roll-off. It should be
noted that, although the filters proposed above are chosen to be strictly band-limited, a similar
construction with time-limited, but only approximately band-limited, filters is also conceivable,
by smoothly truncating h0, hK instead of H0, HK.

Remark 1. The choice of raised cosine transition areas provides continuously differentiable P0, PK. If additional
decay of h0, hK is desired, the construction of a compactly supported plateau function of arbitrary differentiability
is standard, e.g., through convolution of a characteristic function with a smooth function. There are
some corner cases in which one or both of the compensation filters h0, hK are unnecessary, namely
if f1 is very close to 0 (resp. fK−1 to fN). In that case the maximum M should be computed over
the interval [ f1/ fs, 1/2] (resp. [0, fK−1/ fs]) and we set H0 = 0 (HK = 0). A rule of thumb is
if minξ∈[0, f1/ fs ]H

(r)
0 (ξ) ≥ (1− ε)minξ∈[ f1/ fs , fK−1/ fs ]H

(r)
0 (ξ), for some ε � 1, then the low-pass filter H0 is

not required. An analogous argument is valid for HK.

The total frequency response of the analysis FB (i.e., including the K + 1 filters) is then

H0(ξ) := H̃0(ξ) + H̃0(−ξ), with (11)

H̃0(ξ) :=
K

∑
k=0

d−1
k |Hk(e2πiξ)|2, for all ξ ∈ (−1/2, 1/2].

and the redundancy of the FB is

R = d−1
0 + 2

K−1

∑
k=1

d−1
k + d−1

K . (12)

The factor of 2 stems from the fact that coefficients in the 1-st to (K − 1)-th sub-bands may be
complex valued.
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Figure 4. Illustration of the frequency allocations of the filters H0 (red line) and HK (green line) given

the restricted frequency responseH(r)
0 (ξ) (dashed line) of an FB.

3.1.3. Construction of the Set {dk}
Downsampling the filters’ outputs, i.e., using dk > 1 for some or all k ∈ {0, . . . , K}, has the

advantage of reducing R but introduces aliasing. The amount of aliasing can be determined from the
frequency domain representation of the output signal X̃(z) = ∑k Z

(
gk∗ ↑dk {yk}

)
[n], also called the

alias domain representation [16,17]. For ξ ∈ (−1/2; 1/2], X̃(z) reduces to the following ([20] Section 4)

X̃(e2iπξ) =
1
D
[X(e2iπ(ξ+0/D)) · · ·X(e2iπ(ξ+(D−1)/D))]Hj(ξ) (13)

where D = lcm({dk}k) and
Hj(ξ) := H̃j(ξ) + H̃j(−ξ) with (14)

H̃j(ξ) = ∑
k∈{0,...,K},
s.t. j∈ D

dk
Z

d−1
k Hk(e2πiξ)Hk(e2πi(ξ+j/D)),

for all j ∈ {0, . . . , D− 1}. The termH0 in (14) represents the frequency response of the FB, while the
terms Hj, j �= 0, represent the alias components. Thus, an alias-free system is obtained when
H0 = C > 0 and Hj = 0, ∀j �= 0. While this is not always achievable, choosing dk’s to be inversely
proportional to the filters’ bandwidth yields a close-to-optimal solution [19], i.e.,

dk =

⌊
cbw fs

Γk

⌋
for k = 1, . . . , K− 1. (15)

For a targeted redundancy Rt, combining (15) and (12) while disregarding the floor operator �·�
leads to

cbw =
2

Rt fs

K−1

∑
k=1

βBscale( fk). (16)

Since the Hk values are strictly decaying away from fk with a bandwidth of Γk, choosing dk’s
according to (15) ensures an even distribution of the overall aliasing across channels.
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Using (15) to derive d0 and dK may result in a large amount of aliasing because H0 and HK may
feature large plateaus depending on fmin and fmax. We propose instead choosing d0 and dK according to

d0 =

⎢⎢⎢⎣ fs

2 f−p,s +
βBscale( f−p,s)

cbw

⎥⎥⎥⎦ (17)

dK =

⎢⎢⎢⎣ fs

2( fN − f+p,s) +
βBscale( f+p,s)

cbw

⎥⎥⎥⎦ . (18)

Note that Rt controls the dk only for k = 1, . . . , K− 1, while the actual redundancy R depends on
all dk, i.e., including d0 and dK. As a result, the value of R is slightly larger than Rt.

3.2. Invertibility Test

Overall, the design of an Audlet analysis FB involves a set of seven parameters: the perceptual
scale, frequency range [ fmin, fmax], filter shape w, filter density V and bandwidth factor β, and a target
redundancy Rt. To check that a given parameter set results in a stable and invertible system,
three methods exist:

1. An eigenvalue analysis of the linear operator corresponding to analysis with (Hk, dk)k followed
by FB synthesis with (Hk, dk)k. The frame bounds A and B correspond to the smallest (infinimum)
and largest (supremum) eigenvalues of the resulting operator, respectively. The largest eigenvalue
can be estimated by numerical methods with reasonable efficiency but estimating the smallest
eigenvalue directly is highly computationally expensive. In the next section we discuss
an alternative method that consists in approximating the inverse operator and estimating its
largest eigenvalue, the reciprocal of which is the desired lower frame bound A (see also Section 5
for an example frame bounds analysis).

2. Computation of A and B directly from the overall FB response, i.e., verification that 0 < A ≤
H0(ξ) ≤ B < ∞ for some constants A, B and almost every ξ ∈ (−1/2, 1/2].

3. Checking of whether the overall aliasing is dominated byH0, i.e., if there exist 0 < A0 ≤ B0 < ∞
that satisfy

A0 ≤ H0(ξ)±
D−1

∑
j=1
|Hj(ξ)| ≤ B0, (19)

for almost every ξ ∈ [−1/2, 1/2]. This method is a straightforward application of [20] (Proposition 5).
The inner term in (19) can be computed or, at least, estimated by direct computation.

While method 1 above can always be applied, the applicability of methods 2 and 3 depends on w.
If w is compactly supported in the interval [a, b] and 0 < b−a

ΓK−1
≤ fs, dk ≤ fs

(b−a)Γk
∀k ∈ {1, . . . , K− 1}

(i.e., cbw ≤ (b− a)−1), d0 ≤ fs
2 f−p,e

, and d−1
K ≤ fs

fs−2 f+p,e
, then the alias terms Hj, j ∈ {1, . . . , D− 1} = 0.

This setting corresponds to the painless case [53]. This is the only case when method 2 can be applied.
If w has no compact support but is mostly concentrated on [a, b] and decays outside, the alias terms
Hj, j ∈ {1, . . . , D− 1} exist but may be small compared toH0. In that case, method 3 can be applied.

In terms of computational costs, method 1 is by far the most demanding of the three.
Still, if a certain parameters set is used over a large number of analyses, this one-time investment
to determine invertibility easily pays off. However, the user must still be aware of the potential
inaccuracies induced by numerical eigenvalue computation.

3.3. Synthesis Stage

The synthesis stage consists of a linear operator S((yk)k) mapping the sub-band signals yk to
the output signal x̃ (see Figure 3) such that the input signal x is recovered. For uniform analysis FBs,
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i.e., dk = D∀k, the operator S can be structured as in Figure 2. In that case, exact dual filter Gk’s can be
computed [54] with a factorization algorithm that generalizes [23]. The synthesis is then performed by
computing S̃((yk)k, (Gk, D)k).

For non-uniform analysis FBs, we implement S using a conjugate gradient (CG) iteration [49,55,56].
This is a very efficient iterative algorithm that is guaranteed to converge when (Hk, dk)k forms
a frame, i.e., whenever stable perfect reconstruction is possible. Given the Hermitian operator
S̃(A(x, (Hk, dk)k), (Hk, dk)k), the CG approximates the action of the inverse operator. For Hermitian
operators, the CG converges monotonously to 0. In addition, for problems of size P, the CG
is guaranteed to converge within P steps. In practice, convergence speed depends solely on
the (potentially unknown) condition number of the linear problem at hand, which, in this case,
equals

√
B/A. Often, it is beneficial to use a preconditioning step to improve the condition

number. We propose the operator F−1 diag(1/H0)F as preconditioner (see also [48,57,58]). A robust
implementation of the appropriate preconditioned CG (PCG) algorithm is conceptually straightforward
and was provided in [48].

In the following, we describe a heuristic variant of this PCG algorithm with asymmetric
preconditioning, that enables efficient implementation even if the intermediate solutions (denoted by xj
below) are only given in the time domain. Experimentally, Algorithm 1 was observed to converge in the
same number of iterations as the robust implementation from [48] (divergence was observed only if the
filters Hk were set to uniformly distributed random noise). We denote the analysis of x with respect to
the analysis FB (Hk, dk)k by (yk)k = A(x, (Hk, dk)k). We denote the synthesis from (yk)k with respect to
the synthesis FB (Gk, dk)k by x̃ = S̃((yk)k, (Gk, dk)k). The composition x̃ = S̃(A(x, (Hk, dk)k), (Gk, dk)k)

thus represents analysis followed by synthesis.

Algorithm 1 Synthesis by means of conjugate gradients

Initialize (Hk, dk)k, (yk)k
x0 ∈ �2(Z) (arbitrary)
j = 0 and ε > 0 (error tolerance)

H0 ← ∑k d−1
k Hk

for k = 0, . . . , K + 1 do
Gk ← Hk/H0

end for
b ← S̃((yk)k, (Gk, dk)k)

r0 ← b− S̃(A(x0, (Hk, dk)k), (Gk, dk)k)
p0 ← r0
while rj > ε do

qj ← S̃(A(pj, (Hk, dk)k), (Gk, dk)k)

aj ← |rj|2/〈pj, qj〉
xj+1 ← xj + aj pj
rj+1 ← rj − ajqj

bj ← |rj+1/rj|2
pj+1 ← rj+1 + bj pj
j ← j + 1

end while

To speed up convergence we use approximate dual filters as an initial choice for Gk’s,

Gk(e2iπξ) :=
Hk(e2iπξ)

H0(ξ)
. (20)

We interpret Gk’s as approximate dual filters because in the absence of aliasing
(i.e., ifHj = 0, ∀j �= 0), the application of Gk exactly cancels all ripples in the frequency responseH0.
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Hence, the analysis-synthesis system S̃(A(x, (Hk, dk)k), (Gk, dk)k) can be interpreted as a preconditioned
variant of S̃(A(x, (Hk, dk)k), (Hk, dk)k) [48,57,58].

Note that in the painless case, evoked in Section 3.2, the operator
S̃(A(x, (Hk, dk)k),(Gk, dk)k) equals the identity and thus, synthesis is performed simply by
applying S̃((yk)k, (Gk, dk)k) once.

Although this is not apparent from the iterative inversion scheme described above, the proposed
synthesis stage acts in a similar fashion to an FB. More specifically, if D = lcm({dk}k) and (H̃j, D)j
is the equivalent uniform FB associated with (Hk, dk)k [16,20], then iterating the CG algorithm until
convergence is equivalent to computing the FB synthesis with respect to the canonical dual FB of
(H̃j, D)j, which is of the form (G̃j, D)j, for some sequences of filters (G̃j)j (see [21]). Since convergence
is achieved within numerical precision in a small number of CG steps we can assume that the proposed
synthesis system is characterized by the properties of the filters (G̃j)j. We cannot easily compute those
filters, but it is well known that the ratio of the optimal frame bounds B/A (see Section 3.2) is closely
related to the similarity of a system and its canonical dual [59]. If B/A ≈ 1, then we can expect
G̃j ≈ H̃j, for all j. Since each H̃j is just a delayed version of some Hk, the time- and frequency-domain
localization of the synthesis system matches that of the analysis system.

For larger values of B/A, the duality of (H̃j, D)j and (G̃j, D)j implies that (G̃j, D)j has to account
for the discrepancies of (H̃j, D)j [59]. These considerations apply to any dual FB pair, Audlet or not.
The Audlet FB is constructed in such a way that, given the prototype filter w and filter density V,
the frequency response of (Hk, dk)k is as flat as possible, such that the B/A depends mostly on the
presence of aliasing. The required aliasing compensation often implies a widening of the dual filters’
essential support and essential passband, proportional to the amount of aliasing present.

4. Implementation

4.1. Practical Issues

The general mathematical framework described in the previous section is valid for band-limited
filters and more classical FIR filters. Although the impulse responses of band-limited filters are
theoretically infinite, their decay can be controlled by design such that they can be truncated with
a minor loss of precision. In our implementation, we instead choose an alternative approach similar
to “fast Fourier transform (FFT) filter banks” proposed by Smith [60]. We start by considering the
input signal as a finite-length vector in RL, L ∈ N. In an overlap-add block-processing scheme like the
one proposed in [46,60], such a sequence would be a single windowed block possibly zero-padded on
both ends. In the offline setting assumed in this paper, the sequence represents the entire input signal.
We discretize the continuous frequency ξ by assuming the sequence is one period of an L-periodic
signal. This introduces circular boundary effects that can be diminished by zero padding (increasing L),
provided the filters’ impulse responses decay rapidly. Increasing L preserves the perfect reconstruction
property. Such assumptions allow implementing the filtering, downsampling, and upsampling directly
in the frequency domain using sampled frequency responses of analysis and synthesis filters Hk and
Gk, respectively. The filtering with an analysis filter followed by downsampling is done using the
standard point-wise product of the L-point FFT of the signal with a sampled frequency response,
while the downsampling is achieved by folding the result to a sequence of length L/dk (manual
aliasing) and performing L/dk-point inverse FFT (IFFT). Performing downsampling this way is exactly
equivalent to time-domain downsampling by a factor of dk. Upsampling and filtering is achieved by
taking a L/dk-point FFT of the sub-band, periodizing the result to length L followed by a point-wise
product with the sampled frequency response of a synthesis filter. A final L-point IFFT brings the
result back to the time domain. In this framework, working with strictly band-limited filters is even
advantageous for two reasons. First, the frequency domain point-wise product can be restricted to
the filter bandwidth and second, for band-limited filters, the parameters can be chosen such that the
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system is painless [53] (no aliasing is introduced by downsampling), for which the approximate dual
filters from (20) are exact and thus achieve perfect reconstruction.

4.2. Code

We provide code for performing an Audlet analysis/synthesis as part of the Matlab/Octave
“large time-frequency analysis toolbox (LTFAT)” toolbox [61,62] available at http://ltfat.github.io/.
The analysis filters are generated by the function audfilters. The function allows to construct at
will uniform or non-uniform Audlet FBs with integer or rational downsampling factors, thus offering
flexibility in FB design. Rational downsampling factors can be achieved in the time domain by properly
combining upsamplers and downsamplers (e.g., [19]). In LTFAT the sampling rate changes are directly
performed in the frequency domain by periodizing and folding the Yk(z)’s, then performing an inverse
DFT [63]. This technique allows to achieve rational downsampling factors at low computational costs.
The desired number of channels in the frequency range [ fmin, fmax] can be set by specifying either K
or V. The function audfilters also accepts parameters Scale, β, w, and Rt. Currently, three scales
(ERB—the default—as well as Bark and Mel) are available. Possible choices of w include (but are
not limited to) Hann (default), Blackman, Nuttall, gammatone, or Gaussian. If Rt is specified, cbw is
inferred from Rt according to (15)–(18). Otherwise cbw = 1. The analysis of a signal is performed by
filterbank. The synthesis is performed by ifilterbankiter that implements Algorithm 1. In the
painless case, the more computationally efficient synthesis can be achieved by first computing the exact
synthesis FB with filterbankdual and then synthesizing the signal with ifilterbank. The function
filterbankdual can also be used to check whether a given analysis FB qualifies for the painless case.

Example scripts to perform Audlet analyses/syntheses in various FB settings are provided
as Supplementary Material (see Archive S1). The supplementary material also demonstrates the
realization of iterative reconstruction.

Note that for real-time implementations using macro blocks like in [46], the overall redundancy
depends also on the overlap between the blocks. For analysis or processing purposes, the sub-bands
can be combined in an overlap-add manner closely approximating the true non-blocked sub-bands.
The perfect reconstruction property within the blocks is preserved.

4.3. Computational Complexity

In [45,64] it was shown that the frequency-domain computation of an FB analysis (Hk, dk)

is O(L log L), obtained as the sum of: (1) an L-point FFT (O(L log L)); (2) point-wise multiplication
with the filter frequency responses (∑k Lk); and (3) an L/dk-point IFFT (O(∑k L/dk log L/dk)) for each
filter, and similarly for FB synthesis with respect to (Hk, dk). Here, Lk denotes the bandwidth of Hk
in samples.

In the painless case, the same analysis applies to the dual FB (Gk, dk)k. In general, every iteration
of the CG has the complexity of FB analysis with (Hk, dk) followed by FB synthesis with (Gk, dk).
For a given analysis system (Hk, dk), the number of iterations required for numerical convergence
relies only on the frame bound ratio B/A and is completely independent of the signal under scrutiny
(see also [48] for a visualization of convergence in various settings).

5. Evaluation

In this section we evaluate three important properties of the Audlet, namely its simple and
versatile FB design, perfect reconstruction, and utility for audio applications that perform sub-channel
processing. This evaluation comprises two parts:

1. The construction of uniform and non-uniform gammatone FBs and examination of their stability
and reconstruction property at low and high redundancies. For this purpose we replicated the
simulations described in [44] (Section IV), which we consider as state of the art.
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2. The construction of various analysis–synthesis systems and use to perform sub-band processing.
For this purpose we considered the example application of audio source separation because
it is intuitive, clear, and it easily demonstrates the behavior of the system when attempting
modification of an audio signal. In this application we assess the effects of perfect reconstruction,
bandwidth and shape of the filters, and auditory scale on the quality of sub-channel processing.

Scripts to reproduce the results of these evaluations are provided as Supplementary Material
(see Archive S1).

5.1. Construction of Perfect-Reconstruction Gammatone FBs

5.1.1. Method

To construct a gammatone FB we use the prototype filter shape in the frequency domain of
a complex gammatone filter of order γ centered at zero [42,43]

HGT,γ,α(e2iπξ) =
(

1 + iα−1ξ
)−γ

. (21)

An order γ = 4 and bandwidth factor α = 1.019 are usually chosen for emulating the human
auditory filters [38]. Because HGT,γ,α has an infinite support in the frequency domain, it can be
truncated to become a compactly-supported gammatone filter shape by

wcsGT,γ,α(ξ) =

{
HGT,γ,α(e2iπξ) if |HGT,γ,α(e2iπξ)| ≥ ε,

0 otherwise.
(22)

where ε is a threshold that allows to trade accuracy for computational efficiency. Once an essential
frequency range and a filter density are chosen, the set of gammatone filters is generated according
to (7) using w(ξ) = HGT,γ,α(e2iπξ) (or w = wcsGT,γ,α if a painless system is desired) and
β = 1. In Figure S2 in supplementary material, the frequency response and impulse response of
two gammatone filters computed using (7) and (21) with center frequencies fk = 258 and 4000 Hz
are displayed.

To examine the stability and reconstruction property of the proposed gammatone construction,
we replicated the two simulations described in [44] (Section IV). The first simulation considers
uniform FBs and the second simulation considers non-uniform FBs. The uniform FBs were evaluated
by two measures: the ratio B/A and reconstruction error in terms of signal-to-noise ratio (SNR).
The non-uniform FBs were evaluated only by the SNR. We compared our results to those from Strahl
and Mertins (S–M) [44] where available.

The FB settings were as follows. The sampling rate was fs = 44.1 kHz, the essential frequency
range was [ fmin = 20 Hz, fmax = 20000 Hz], and the scale was ERB. The gammatone filters in [44]
were implemented as FIR filters, that is, the Hk’s had an infinite frequency response. Thus, in the
following simulations we used w(ξ) = HGT,4,1.019(e2iπξ). In the uniform case, the downsampling
factors dk’s, k ∈ {1, . . . , K − 1}, were set to a constant D; d0 and dK were chosen according to (17)
and (18), respectively. The evaluation was performed for all combinations of D ∈ {1, 2, 4, 6, 8} and
K ∈ {51, 76, 101, 151} (our K corresponds to M + 1 in [44]). For the synthesis stage, Algorithm 1 was
used with an error tolerance ε = 10−9. The ratio B/A was calculated for the full frequency range
(i.e., from 0 to fN) by iteratively computing the eigenvalues of the operator S associated with the
system (Hk, dk)k [65]. The SNR was calculated as ||x||2/||x− x̃||2 in dB for x being a Gaussian white
noise with a length of 30,000 samples.

In the non-uniform case, K was fixed to 51 and the FBs were evaluated for various values of
R. We considered the oversampling factors O ∈ {1, 2, 4, 6, 8} used in [44]. The relationship between
O and R is O = R/2− 1

2 (d
−1
0 + d−1

K ) because in [44], O was ∑K−1
k=1 d−1

k , which considers only the real
part of the coefficients, and h0 and hK were not included. For simplicity, our FBs were designed for
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Rt ∈ {2, 4, 8, 12, 16}. Similar to [44], two sets of dk were used to achieve the various Rt’s. The first set
consisted of dk’s that were inversely proportional to the filters’ bandwidth according to (15). The second
set was exactly that mentioned in [44] (Appendix B). For each set, d0 and dk were chosen according
to (17) and (18), respectively. All other FB and signal parameters were as in the uniform case.

5.1.2. Results and Discussion

The ratios B/A computed for the uniform gammatone FBs for various combinations of D and
K and those reported in [44] (Figure 5) are listed in Table 1. For K = 51–101, our ratios B/A decreased
with increasing K. This is a consequence of the increasing overlap between filters with increasing K,
which in turn yields a flatter FB response. Increasing K to 151 did not result in smaller ratios. This can
be attributed to the steep flank of HK in that setting. This can be counteracted by increasing the values
of κ1 and κ2 when very small filter spacing V (equivalently, large K) is used. Our framework generally
achieved comparable or smaller ratios than those from [44]. Note that in [44], B/A was calculated for
the frequency range from 0.06 to 17 kHz. These ratios, when calculated for the full frequency range,
might have been larger than those listed in Table 1. Consequently, the actual difference between Audlet
and S–M ratios might be larger than that reflected in Table 1.

Table 1. Ratios B/A for various combinations of D and K obtained for the proposed Audlet framework
and reported in [44] (S–M).

K Framework D = 1 D = 2 D = 4 D = 6 D = 8

51 Audlet 1.124 1.124 1.125 1.134 1.157
S–M 1.100 > 10 > 10 > 10 > 10

76 Audlet 1.007 1.007 1.009 1.021 1.073
S–M 1.100 2 2 3 6

101 Audlet 1.003 1.003 1.005 1.017 1.068
S–M 1.003 1.003 1.003 2 4

151 Audlet 1.015 1.015 1.016 1.025 1.066
S–M 1.003 1.003 1.003 1.100 2

The SNRs achieved with our framework were 180 dB (or larger) for all tested combinations of
D and K. The limit of 180 dB is the consequence of the error tolerance of 10−9 in the PCG algorithm.
In comparison, SNRs reported in [44] for D = 1 ranged between 30 and 72 dB and increased with
increasing K (SNRs for other D’s were not reported).

The SNRs computed for the non-uniform gammatone FBs for various R are listed in Table 2
together with those reported in [44]. In all conditions, our framework achieved SNRs of at least 170 dB.
In contrast, the system from [44] offered decent reconstruction (SNR ≥ 15 dB) only in configurations
involving small downsampling factors (i.e., at large R).

Table 2. Signal-to-noise ratios (SNRs; in dB) obtained for the Audlet framework and reported in [44]
(Figure 10) (S–M).

dk Based on (15)–(18) dk from [44]

Rt R Audlet S–M R Audlet S–M

2 2.40 > 180 5 2.38 > 170 10
4 4.46 > 180 7 4.38 > 190 13
8 8.60 > 180 10 8.38 > 200 17
12 12.73 > 220 9 12.38 > 210 18
16 16.87 > 260 15 16.38 > 200 19

Overall, we conclude that the reconstruction quality of currently available gammatone FB
implementations deteriorates at low redundancies. This may hinder the quality of sub-channel
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processing in audio applications but, as it seems, the reconstruction quality can be improved by
using the Audlet framework.

It might appear intriguing that we obtained larger SNRs than in [44] even in conditions with
similar ratios B/A (compare the condition with K = 151 and D = 1 in Table 1). The good performance
achieved by our framework can mostly be explained by the design of our synthesis stage. In contrast,
most analysis–synthesis systems based on gammatone filters, such as [44], use synthesis filters
that are time-reversed versions of the analysis filters, i.e., Gk(e2iπξ) = Hk(e2iπξ) that translates to
gk[n] = hk[−n] in the discrete-time domain (e.g., [35,39,40]). Such a synthesis stage provides perfect
reconstruction if and only if the frame bound ratio is equal to one [20].

5.2. Utility for Audio Applications

5.2.1. Method

This experiment is an example application of the Audlet framework to audio source separation.
Given a mixture of instrumental music and voice, we constructed various analysis–synthesis systems
and separated the voice from the music. The systems were designed so as to assess the effects of perfect
reconstruction, shape and bandwidth of the filter, and auditory scale on the quality of sub-channel
processing at low, mid, and high redundancies. Four systems were implemented:

trev_gfb: a state-of-the-art gammatone FB with approximate reconstruction (the acronym trev stands
for “time reversal”). The Hk’s followed (7) with w(ξ) = wcsGT,4,1.019(ξ) (22) with a threshold
ε = 10−5. The synthesis filters Gk(e2iπξ) = Hk(e2iπξ). This corresponds to the baseline system
used in audio applications like [11,28,29].

Audlet_gfb: an Audlet FB with a gammatone prototype. The Hk’s were computed as in trev_gfb but
the synthesis stage was Algorithm 1. This system aims to compare to the baseline system and
assess the effect of perfect reconstruction.

Audlet_hann: an Audlet FB with a Hann prototype. This system aims to assess the effect of filter shape.
STFT_hann: an STFT using a 1024-point Hann window. Synthesis was achieved by the dual window [2].

The time step was then adapted to match the desired redundancy Rt. This corresponds to the
baseline system used in most audio applications (e.g., [10,66]). This system aims to assess the
use of an auditory frequency scale.

The effect of filter bandwidth was assessed by varying parameter β. Specifically, two values were
tested: β ∈ {1, 1/6}. Using a value of β �= 1 means a clear departure from auditory perception but may
help better resolve spectral components, particularly at high frequencies where the auditory filters
become really broad (see (6)). Accordingly, many audio applications that rely on constant-Q or wavelet
transforms use 12 or more bins per octave (e.g., [46,63]).

The performance of all systems were evaluated at three redundancies: Rt ∈ {1.1, 1.5, 4}. To this
end, (15) was used with cbw adjusted such that Rt was achieved. The quality of the separation was
assessed by computing energy ratio- and perceptually-based objective measures according to [67].
Energy ratio measures include the signal-to-distortion ratio (SDR) and signal-to-artifact ratio (SAR).
Perceptual measures include the overall perceptual score (OPS) and target perceptual score (TPS).
OPS assesses the general audio quality of the separation, while TPS assesses the preservation of the
target. All measures were computed using the PEASS toolbox [67].

The following parameters were fixed for systems trev_gfb, Audlet_gfb and Audlet_hann:
fs = 22.05 kHz, [ fmin, fmax] = [20, 10, 000], Scale = ERB, and K = 209 filters corresponding to
V = 6 filters/ERB.

The signal mixture, shown in Figure 5a, was created by adding an instrumental music signal to
a singing voice signal (target), shown in Figure 5b. The separation was performed by analyzing the
mixture with the analysis FB, applying a binary TF mask to the sub-band components by point-wise
multiplication, and computing the output signal from the modified sub-band components using
the synthesis stage. This operation corresponds to the application of a frame multiplier in signal
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processing [9,68]. In order to create the binary masks, the target signal was analyzed by the FB and
the magnitude of the coefficients was hard thresholded with a threshold of –25 dB. The threshold
value was varied between −40 and −20 dB in 5-dB steps. While the threshold value did affect the
separation performance, all configurations were affected equally. The value of –25 dB was selected
because it yielded good separation results for both the gammatone and Hann prototypes. Four masks
were created in total, one for each analysis filter’s shape and each β. The two masks for β = 1/6 are
displayed in Figure 5c,d. Because the frequency resolution of the STFT does not match those of other
FBs, an additional mask was computed for the STFT.
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Figure 5. Source separation for Rt = 4 and β = 1/6 displayed as time-frequency (TF) plots: the magnitude
of each sub-band component (in dB) as a function of time (in s). (a) Shows the mixture analyzed by
a gammatone FB; (b) Shows the target (voice) analyzed by a gammatone FB; (c) Shows the binary mask
obtained for Audlet_hann; (d) Shows the binary mask obtained for trev_gfb and Audlet_gfb—the black
and white dots in the masks represent ‘1’ and ‘0’ entries, respectively; (e,f) Show the target separated
by Audlet_hann and Audlet_gfb, respectively.
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5.2.2. Results and Discussion

Figure 5e,f show the voice signal separated using Audlet_hann and Audlet_gfb, respectively,
for Rt = 4 and β = 1/6. The objective quality measures are listed in Table 3. Audio files are available on
the companion webpage: http://www.kfs.oeaw.ac.at/audletFB. The following observations can be made.

First, system Audlet_gfb outperformed trev_gfb in most conditions. This demonstrates the role
of perfect reconstruction in the quality of sub-channel processing. In other words, using the Audlet
framework can improve the reconstruction quality. Note that for β = 1/6, the performance of trev_gfb
improved with increasing Rt and tended towards the performance of Audlet_gfb. This is due to the
decrease in the amount of aliasing with increasing Rt. For trev_gfb and Rt = 4, very little aliasing was
present and a good performance was achieved despite the approximate reconstruction of trev_gfb.

Second, the performance of Audlet_hann was comparable to that of Audlet_gfb in almost every
measure. Although the filter shape did not play a major role in this particular example, it may have
a larger impact in other applications.

Third, for all configurations, reducing β from 1 to 1/6 generally improved all quality measures.
This suggests that, depending on the application, a departure from the human auditory perception
may improve signal processing performance. In the present application, for instance, finely tuned
filters are required to resolve all harmonics and therefore properly separate the signals.

Finally, while STFT_hann performed comparably to Audlet_hann at the highest R, the performance
of STFT_hann dropped at mid and low redundancies. This suggests that using an auditory frequency
scale may improve signal processing performance at low redundancies.

Table 3. Objective quality measures for the separated voice signal. The signal-to-distortion ratio (SDR)
and signal-to-artifact ratio (SAR) are in dB; the larger the ratio, the better the separation result. Overall
perceptual score (OPS) and target perceptual score (TPS) are without unit; they indicate scores between
0 (bad quality) and 1 (excellent quality). The corresponding audio files are available on the companion
webpage. STFT: short-time Fourier transform.

System Rt

SDR SAR OPS TPS

β = 1 1/6 1 1/6 1 1/6 1 1/6

trev_gfb

1.1

0.1 5.8 3.2 9.2 0.26 0.26 0.06 0.12
Audlet_gfb 4.7 10.7 8.5 19.0 0.25 0.31 0.11 0.20

Audlet_hann 4.7 11.8 7.6 18.3 0.26 0.34 0.05 0.26
STFT_hann −1.7 0.5 0.46 0.02

trev_gfb

1.5

2.4 8.5 5.7 13.5 0.24 0.30 0.11 0.17
Audlet_gfb 6.9 11.1 12.5 20.5 0.24 0.35 0.13 0.29

Audlet_hann 7.0 12.8 11.1 20.1 0.22 0.36 0.07 0.35
STFT_hann 2.4 9.2 0.22 0.04

trev_gfb

4

7.0 10.7 12.0 18.9 0.24 0.37 0.24 0.34
Audlet_gfb 9.0 11.4 18.3 21.6 0.27 0.38 0.32 0.39

Audlet_hann 11.1 13.1 19.4 21.7 0.25 0.37 0.21 0.32
STFT_hann 11.4 20.5 0.38 0.34

6. Conclusions

A framework for the construction of oversampled perfect-reconstruction FBs with filters
distributed on auditory frequency scales has been presented. This framework was motivated by
auditory perception and targeted at audio signal processing; it has thus been named “Audlet”.
The proposed approach has its foundation in the mathematical theory of frames. The analysis
FB design is directly performed in the frequency domain and allows for various filter shapes,
and uniform or non-uniform settings with low redundancies. The synthesis is achieved using
a (heuristic) preconditioned conjugate-gradient iterative algorithm. The convergence of the algorithm
has been observed for Audlet FBs that constitute a frame. This is possible even for redundancies close
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to 1. For higher redundancies and filters with a compact support in the frequency domain, a so-called
“painless” system can be achieved. In this case the exact dual FB can be calculated, which in turn
results in a computationally more efficient synthesis.

We showed how to construct a gammatone FB with perfect reconstruction. The proposed
gammatone FB was compared to widely used state-of-the-art implementations of gammatone FB
with approximate reconstruction. The results showed the better performance of the proposed approach
in terms of reconstruction error and stability, especially at low redundancies. An example application
of the framework to the task of audio source separation demonstrated its utility for audio processing.

Overall, the Audlet framework provides a versatile and efficient FB design that is highly suitable
for audio applications requiring stability, perfect reconstruction, and a flexible choice of redundancy.
The framework is implemented in the free Matlab/Octave toolbox LTFAT [61,62].

Supplementary Materials: Supplementary material available online at www.mdpi.com/2076-3417/8/1/96/s1 is
provided by the authors. Archive S1: Matlab functions and test audio files to perform Audlet analyses/syntheses
in various FB settings and reproduce all results presented in the manuscript. The archive, about 2.6 MB in size,
also includes a brief documentation. Figure S2: Frequency response and impulse response of two gammatone
filters computed using the proposed framework.
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Abstract: Real-time sound field renderings are computationally intensive and memory-intensive.
Traditional rendering systems based on computer simulations suffer from memory bandwidth and
arithmetic units. The computation is time-consuming, and the sample rate of the output sound is
low because of the long computation time at each time step. In this work, a processor with a hybrid
architecture is proposed to speed up computation and improve the sample rate of the output sound,
and an interface is developed for system scalability through simply cascading many chips to enlarge
the simulated area. To render a three-minute Beethoven wave sound in a small shoe-box room with
dimensions of 1.28 m × 1.28 m × 0.64 m, the field programming gate array (FPGA)-based prototype
machine with the proposed architecture carries out the sound rendering at run-time while the software
simulation with the OpenMP parallelization takes about 12.70 min on a personal computer (PC) with
32 GB random access memory (RAM) and an Intel i7-6800K six-core processor running at 3.4 GHz.
The throughput in the software simulation is about 194 M grids/s while it is 51.2 G grids/s in the
prototype machine even if the clock frequency of the prototype machine is much lower than that
of the PC. The rendering processor with a processing element (PE) and interfaces consumes about
238,515 gates after fabricated by the 0.18 μm processing technology from the ROHM semiconductor
Co., Ltd. (Kyoto Japan), and the power consumption is about 143.8 mW.

Keywords: sound field rendering; FPGA; FDTD

1. Introduction

Sound field rendering exhibits numerical methods to model sound propagation behavior in
spatial and time domains, and is fundamental to numerous scientific and engineering applications,
which vary widely from interactive computer games and virtual reality to highly accurate computations
for offline applications like architecture design. To date, many analysis algorithms, including geometric
methods and wave-based methods, have already been proposed to analyze sound wave propagations.
In particular, wave-based methods are popularly applied because of their high accuracy, in which
a sound space is discretized into small grids, and an analysis algorithm is applied on each grid to
model sound behavior at discrete time steps. Among wave-based methods, the finite difference time
domain (FDTD) method has been widely applied and has become an essential algorithm in room
acoustics owing to its ease of implementation and parallelization. FDTD was introduced to analyze
acoustical behavior by O. Chiba et al., and D. Botteldooren et al. [1–3]. However, numerical dispersion
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is an inherent problem constraining the valid bandwidth in the FDTD method. To reduce numerical
dispersion, L. Savioja et al., G.R. Campos et al., and D.T. Murphy et al. applied digital waveguide mesh
topologies [4–6]; K. Kowalczyk and M. van Walstijn proposed a second-order accurate FDTD scheme,
and the 27-point compact explicit FDTD scheme was introduced [7]. J. van Mourik and D. Murphy
investigated a set of high-order explicit “large-star” stencils, which could obtain less dispersiveness
at low frequencies and provide high valid bandwidth [8]. H. Brian and B. Stefan proposed the
fourth-order accurate explicit and implicit FDTD schemes for 2D and 3D wave equations [9,10],
respectively. They recently presented a set of two-step explicit FDTD schemes with high-order accuracy
in both space and time for 3D wave equations [11].

On the other hand, since spatial grids are usually oversampled to suppress the numerical
dispersion errors in the FDTD method [10], the memory usage and computing power required
is significant. Generally, the computing power of solving such wave equations increases as the
fourth power of frequency [12], and it is increased proportionally with the volume of sound spaces.
For example, every doubling of the frequency band induces a 16-fold increase in the computational
load [2]. Given the auditory range of humans (20 Hz–20 kHz), analyzing sound wave propagation
in a space corresponding to a concert hall or a cathedral (e.g., volume of 10,000–15,000 m3) for the
maximum simulation frequency of 20 kHz requires petaflops of computing power and terabytes
of memory. As a result, the traditional sound rendering systems based on computer simulations
demand huge computation power, especially for broadband simulations extending into the kilohertz
range. They require a PC cluster or supercomputer for computations because of constraints of memory
bandwidth and the performance of arithmetic units in a single PC. Although the performance of
the arithmetic units can be enhanced through increasing the clock frequency of processors or using
multicores, it is constrained by the power wall and dark silicon problems.

In recent years, general-purpose graphic processing units (GPGPUs) and FPGAs have been
applied to speed up the arithmetic operations in sound rendering systems [13–22]. Although
GPGPU-based solutions achieve high computation performance through increasing system threads,
the input and output interfaces are more difficult to customize according to applications. Therefore,
it is very hard to directly input the live signals and output the rendered results in such sound rendering
systems in interactive and real-time applications. In some solutions, to apply GPGPUs in real-time
sound rendering, the rendered results are sent to a buffer, and then the audio cards in the host machine
are driven to output the rendered results through calling their application program interfaces (APIs).
The constraint of these solutions is system scalability because the number of audio cards is limited
by the number of peripheral component interconnect (PCI) slots inside the host machine. Especially
in multi-channel applications, such as 128 channels, it is impossible to output using the audio cards
inserted in the host machine, instead, the external professional equipment is required. Then, how to
output the run-time rendered results from the GPGPU to the output equipment is a problem because
no interfaces are provided to the external devices. In contrast, the input/output (I/O) interfaces can be
customized in accordance to applications in FPGA. For multi-channel applications, the I/O interfaces
may be designed according to applications to output the rendered results directly or output them to
the external professional devices at run-time.

Different than the software-based solutions in computer simulations and GPGPUs, FPGA-based
sound rendering solutions implement sound analysis equations by the configurable logic blocks
directly, and hundreds of arithmetic units are coordinated to work in parallel to improve computation
performance [17–22]. Furthermore, the input and output interfaces are easily tailored according to
applications in FPGA. From the point of view of real-time processing, FPGA seems a promising
solution to real-time sound rendering applications. In our previous work, a FPGA-based accelerator
for real-time sound rendering was developed to enlarge the simulated space at the expense of the
computation speed [19]. However, the sample rate of the output sound was low and sound quality
was not good.
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On the other hand, multiple chips are generally needed to perform rendering tasks for a large
sound space because of the limited hardware resources inside a single chip. The connection interfaces
between chips, therefore, become important, which affect data exchange and system reliability. In this
research, a real-time sound rendering processor based on the hardware-oriented FDTD (HO-FDTD)
was investigated to address the problems we met in previous work. To verify our proposal, a prototype
machine was implemented using FPGA, and a trial chip including a PE and interfaces was fabricated
by using the 0.18 μm processing technology from the ROHM semiconductor Co., Ltd. The processor
has the hybrid architecture to improve the sampling rate of the output sound, and it provides simple
interfaces for system scalability. The main contributions of this work are shown as follows.

(1) The hybrid architecture to speed up computation and improve the sampling rate of the output
sound. The system architecture and function modules are introduced.

(2) Simple interface for system scalability. The data transceiver, receiver, and decoder are introduced,
and the related operation flows are described.

(3) Design and implementation of the FPGA-based prototype machine and application specific
integrated circuit (ASIC), which achieve significant performance gain over multi-core based
software simulation.

(4) Evaluation and analysis of system performance based on the prototype machine and ASIC,
including rendering time, sample rate of the output sound, and throughput.

The rest of this paper is organized as follows. The rendering algorithm is introduced in Section 2,
including the updated equations for general grids and grids on a reflective boundary. In Section 3,
the system architecture and design are described, as well as the design issues and the functions of
modules in hardware systems. System performance of the FPGA-based prototype machine and ASIC
are estimated in Section 4, followed by conclusions drawn in Section 5.

2. HO-FDTD Algorithm

The HO-FDTD algorithm, a hardware-oriented FDTD algorithm proposed for real-time sound
field rendering in our previous work [18], was applied as the rendering algorithm in this research.
In the HO-FDTD algorithm, different formulas are applied to calculate the sound pressures of grids.

2.1. General Grids

Within an enclosure, the dynamics of an acoustic field is governed by the following two basic
equations [23].

∇P + ρ
∂u
∂t

= 0 (1)

∂P
∂t

+ ρc2∇•u = 0 (2)

Here, P and u are the pressure and particle velocity, respectively; both are functions of time
and a spatial coordinate. The physical constants ρ and c are the air density and wave speed in air,
respectively, ∇ and ∇• are the three-dimensional gradient and divergence operations. The differential
wave equation (Equation (3)) may be derived by inserting Equation (2) into Equation (1) and
eliminating the particle velocity.

∂2P
∂t2 + c2∇2P = 0 (3)

where ∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is the Laplacian operator in 3D sound spaces. Then, the wave equation in
a 3D sound space can be described by the time domain formulation in Equation (4)

∂2P
∂t2 = c2(

∂2P
∂x2 +

∂2P
∂y2 +

∂2P
∂z2 ) (4)
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By applying the center differential method in Equation (4), and letting Δx = Δy = Δz = Δl,
the discretion of Equation (4) yields Equation (5).

Pn+1(i, j, k) = χ2[Pn(i + 1, j, k) + Pn(i− 1, j, k) + Pn(i, j + 1, k) + Pn(i, j− 1, k)
+Pn(i, j, k + 1) + Pn(i, j, k− 1)] + (2− 6χ2)Pn(i, j, k)− Pn−1(i, j, k)

(5)

where χ = cΔt/Δl represents the Courant number, and n is a discretized time step. In general,
χ ≤ 1/

√
3 for a three-dimensional sound space. Equation (5) indicates that three multiplications,

six additions, and one subtraction are needed to calculate sound pressure of a grid. When it is
implemented by hardware, at least two multipliers, six adders, and one subtractor are required.
In order to reduce the multiplication operations, which need more clock cycles and hardware resources,
χ is assumed to be 1/2, and Equation (5) is rewritten as [18]

Pn+1(i, j, k) = 1
4 [P

n(i + 1, j, k) + Pn(i− 1, j, k) + Pn(i, j + 1, k) + Pn(i, j− 1, k)
+Pn(i, j, k + 1) + Pn(i, j, k− 1) + 2Pn(i, j, k)]− Pn−1(i, j, k)

(6)

In Equation (6), multipliers are replaced by right and left shifters in hardware to save hardware
resources and improve system timing performance. In principle, Equation (6) is a seven-point stencil
wave equation in which to calculate sound pressure of a grid needs the sound pressures of its six
neighbors at previous time step.

2.2. Boundary Condition

A reflective boundary can be modeled as a locally reacting surface by assuming that a wave
does not propagate along with the boundary surface, and the acoustical behavior is affected by the
sound pressure and particle velocity perpendicular to the boundary surface. If a sound wave travels in
a positive axis (x, y, z) direction, the boundary impedance Z is represented by the sound pressure and
the particle vibration through Equation (7) [23,24].

Z =
P
U

(7)

Here, U is the particle velocity component perpendicular to the boundary. Differentiating both
sides of Equation (7) and substituting U by the momentum conservation equation of wave propagation,
the boundary conditions are obtained in terms of sound pressure [25].

∂P
∂t

= −cξ∇P (8)

where ξ = Z/ρc is the normalized boundary impedance. For a rectangular sound space, boundary
grids are classified into interior grids of a boundary, edges, and corners according to their position.
Different formulas are applied to update sound pressures of different types of boundary grids because
their conditions are different. For example, for the interior grids of right boundary, Equation (9) is
derived by applying the centered finite difference method on Equation (8) and assuming the normalized
boundary impedances of all boundaries are ξ.

Pn+1(i, j, k)− Pn−1(i, j, k)
2Δt

= −cξ
Pn(i + 1, j, k)− Pn(i− 1, j, k)

2Δx
(9)

By rearranging the terms in Equation (9) and introducing the parameter χ, Equation (10) is derived
to express a virtual point Pn(i + 1, j, k), which lies outside of the sound space [25].

Pn(i + 1, j, k) = Pn(i− 1, j, k) +
1

χξ
(Pn−1(i, j, k)− Pn+1(i, j, k) (10)
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Substituting the related items in Equation (5) by Equation (10), then

Pn+1(i, j, k) = [χ2(2Pn
i−1,j,k(i− 1, j, k) + Pn(i, j + 1, k) + Pn(i, j− 1, k) + Pn(i, j, k + 1)

+Pn(i, j, k− 1)) + 2(1− 3χ2)Pn(i, j, k) + ( χ
ξ − 1)Pn−1

i,j,k (i, j, k)]/( χ
ξ + 1)

(11)

If the reflection factor R is defined as (ξ − 1)/(ξ + 1) and χ is assumed to be 1/2, Equation (11) is
changed to

Pn+1(i, j, k) = 1+R
2(3+R) [2Pn(i− 1, j, k) + Pn(i, j + 1, k) + Pn(i, j− 1, k)

+Pn(i, j, k + 1) + Pn(i, j, k− 1) + 2Pn(i, j, k)]− 3R+1
3+R Pn−1(i, j, k)

(12)

Equation (12) consists of two parts, one is the sum associated with the sound pressures of a grid
and its neighbor grids at the time step n, and another corresponds to the sound pressure of a grid
at the time step n − 1. Compared with Equation (6), except the multiplicands, Equation (12) only
replaces the sound pressure of the virtual grid Pn(i + 1, j, k) by the sound pressure of the neighbor grid
Pn(i− 1, j, k) in the sum part. Moreover, for the interior grids on other boundaries, the multiplicands
of two parts are the same while just substituting the sound pressure of the virtual grid by the sound
pressure of the related neighbor grid in the summation. For example, when a grid is on the interior of
the left boundary, the updated equation is achieved through substituting the sound pressure of the
virtual grid Pn(i− 1, j, k) with the sound pressure of the neighbor grid Pn(i + 1, j, k) in Equation (12).
The sum part is, therefore, changed from (2Pn(i− 1, j, k)+ Pn(i, j+ 1, k)+ Pn(i, j− 1, k)+ Pn(i,j,k + 1)+
Pn(i,j,k - 1) + 2Pn(i, j, k)) to (2Pn(i + 1, j, k) + Pn(i,j + 1,k) + Pn(i,j - 1,k) + Pn(i,j,k + 1) + Pn(i,j,k - 1) +
2Pn(i, j, k)). The similar derivation procedure can be applied to edges and corners by using different
boundary conditions. For example, when grids are on edges, which are intersections of two boundary
planes, two boundary conditions are satisfied simultaneously. Expressions for two virtual points are
consequently required to be derived.

Equations (6) and (12) indicate that the sound pressures of grids are calculated by the sound
pressure of their neighbors at previous time steps, and no data dependency exists during computation.
Hence, the equation may be implemented through pipelining to improve performance in hardware.
We observe that Equations (6) and (12) consist of the sum of the sound pressures of a grid and its
neighbors at the time step n, and the sound pressure of a grid at the time step n− 1. For different types
of grids, the updated equations have similar formats except for the multiplicands for the sum and
Pn−1(i, j, k). Thus, a uniform updated Equation (13) can be derived.

P(n+1)(i, j, k) = D1 ∗ [Pn(i− 1, j, k) + Pn(i + 1, j, k) + Pn(i, j− 1, k) + Pn(i, j + 1, k)
+Pn(i, j, k− 1) + Pn(i, j, k + 1) + 2Pn(i, j, k)]− D2 ∗ P(n−1)(i, j, k)

(13)

The D1 and D2 are shown in Table 1. It is worth noting that the part of summing in Equation (13)
is changed according to grid positions. For grids on boundaries, the sound pressures of the virtual
grids are replaced by those of the related neighbor grids.

Table 1. Parameters.

Grid Position D1 D2

General 1
4 1

Interior
R+1

2(R+3)
3R+1
R+3

Edge R+1
8 R

Corner
R+1

2(5−R)
5R−1
5−R

3. System Architecture

Since a sound space is divided into small grids, the simple architecture is to apply a computing
unit at each grid to analyze the sound behavior. At a time step, computing units read data from
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their neighbors, carry out a computation, and output the calculation results to their neighbors.
The temporary data are kept by computing units for further calculation. The whole system is fully
parallel architecture, and the sample rate of the output sound is affected by the clock frequency of the
computing units and the cycle count taken by the computing unit to complete computation in a time
step. The computing units usually run at more than 100 MHz and complete computation in a time step
less than 10 cycles. The rendering systems with the parallel architecture, therefore, achieve high sample
rate in the output sound. However, the consumed hardware resources are increased exponentially as
the number of grids is increased. The simulated area by a chip is hence small. To extend the simulated
area, the rendering system with the time-sharing architecture was proposed [19], in which all data
were stored in the block random access memories (RAMs) inside FPGA and sound pressures were
calculated grid by grid through a computing unit. Although the simulated sound area by a single
FPGA was enlarged by 37 times, the sample rate of the output sound was just 12.5 kHz, which would
be further reduced as the number of grids was increased. To address these problems, a real-time sound
rendering processor with the hybrid architecture was proposed in this research. The whole system
is shown in Figure 1, and consists of the Computing Engine, in/out buffers, and the interfaces at six
directions for data exchange when multiple chips are cascaded to perform sound rendering in a large
sound space. The functions of components are shown as follows in detail.

• Computing Engine. The Computing Engine calculates the sound pressures of grids, and it is
the core of the system. In the current solution, a sound space is divided into small sub-spaces,
for example, a sound space with 8 × 8 × 8 grids can be divided into 8 small sub-spaces with each
having 4 × 4 × 4 grids. A PE is used to analyze sound behavior in each small sub-space, and all
PEs are cascaded to work in parallel to perform rendering in the whole sound space. The sound
pressures of the grids on the boundaries between neighboring small sound spaces are written
into the relevant buffers for further use by the neighbor PEs. Therefore, two buffers are required
between two neighboring PEs. They are applied to keep the input data from and output data for
the neighbor PE.

• INTERFACEs. The INTERFACEs provide the possibility for system scalability to extend the
simulated sound area. From Equation (6), when multiple processors are cascaded, one chip
exchanges data with neighbor chips in six directions, namely top, down, right, left, front, and back.
Thus, a processor provides six interfaces for data communication.

• IN_BUFs and OUT_BUFs. The IN_BUFs and OUT_BUFs are utilized to store the sound pressures
of grids on the boundaries between the neighboring small sound spaces when multiple processors
are cascaded to perform rendering in a much larger sound space. The data from the neighbor
processors are stored in the IN_BUFS and the data for the neighbor chips are kept by the OUT_BUFs.

Figure 1. System diagram. Processing element (PE), receiving/transmission (RTX).
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3.1. Processing Elements

The PE should be as simple as possible to reduce hardware resource consumption and improve
system clock frequency. As shown in Figure 2, a PE consists of the computing unit, the grid position
controller, system controller, five buffers, three multiplexers, and two block RAMs: RAM_1 and
RAM_2. The PE is based on the time-sharing architecture [19] to extend the rendered area. At a time
step, the computing unit reads data from the relevant buffers (buffer 1–5) or the IN_BUFs in accordance
with the grid position, carries out computation, and writes the results to the RAM or the OUT_BUFs.
After the calculation at a grid is completed, the computation is then shifted to the next grid until sound
pressures of all grids are calculated. The modules in a PE are introduced as follows:

• Computing Unit. The computing unit calculates the sound pressure of a grid according
to the input sound pressures at previous time steps, location indicators, and incident data.
Based on Equation (13), a uniform computing unit was designed, which consists of a 7-input
adder, a subtractor, two 32-bit fixed-point multipliers, and four multiplexers [19]. In Figure 3,
the multipliers are for boundary grids while they are replaced by the right and left shifters for
grids outside boundaries. The multiplicands are selected by the multiplexers according to the
location indicator of a grid.

• Grid Position Controller. The grid position controller generates the grid position by using
a counter, which is updated at every clock cycle.

• System Controller. The system controller maintains the computation flow and generates control
signals, such as grid location flag (loc_indicator), read/write enable signal (we) of the RAMs,
reading/writing addresses of the RAMs (raddr_RAM and waddr_RAM), and RAM selection
signal (ram_we_sel).

• RAM_1 and RAM_2. The sound pressures of grids at previous one and two time steps,
namely Pn−1(i, j, k) and Pn−2(i, j, k), are stored in the RAM_1 and RAM_2. During computation,
sound pressures at different time steps are stored in and read out from the RAM_1 and RAM_2
alternatively, and the calculation results at current time step are kept by the same RAM as that
in which the sound pressures of grids at the previous two time steps are stored. For example,
at a time step, Pn−1(i, j, k) and Pn−2(i, j, k) are stored in RAM_1 and RAM_2, respectively. Then,
the calculation results at the current time step are written into the RAM_2. At the next time step,
the reading and writing operations for the RAMs are switched; Pn−2(i, j, k) is read out from the
RAM_1 while others are taken from the RAM_2. In addition, the calculation results are stored in
the RAM_2. Such switching for RAM operations is repeated until all calculated time steps are over.
The writing-enable signals of the RAMs are controlled by the signals ram_we_sel and data_dvld
output by the system controller and the computing unit, respectively. When computations at
a time step are finished, the signal ram_we_sel is reversed to invert the writing-enable signals of
the RAMs. The size of RAMs is determined by the number of grids and data width. If data are
32-bit, and a sound space has N ×M × L grids, each RAM is 4 NML bytes.

• Buffer 1–5. Data are read out from the RAMs and written in the five buffers in advance to reduce
data access latency during calculation. The buffers are updated along with the computation.
If data width is 32-bit, and a sound space has N ×M × L grids, each buffer is 4 NM bytes in size.

• Multiplexers. Three multiplexers are used to select data for the computing unit. In the system,
the input data of the computing unit may be from the local buffers within the same PE or the
external input buffer, in which the data from the neighbor PE are stored.
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Figure 2. System diagram of the PE.

Figure 3. Computing unit.

3.2. INTERFACEs

The INTERFACEs are provided for system scalability. When multiple processors are cascaded,
control instructions and temporary data during computation need to exchange with the neighbor
processors. Through the INTERFACEs, multiple processors are easily connected to each other to
extend the rendered sound space. As shown in Figure 4, the INTERFACE consists of receiver, decoder,
and transmitter. And they are introduced more detail as follows.

• Receiver. The receiver receives serial data from the neighbor processors, checks the data type
(data or control instructions), and stores data to the first in first out (FIFO) buffer or buffer
according to the data type. The receiver is composed of a data type detector (RX_FHD) and a state
machine (RX_STATE) to control the receiving flow. As shown in Figure 5, the system firstly detects
the 8-bit type flag, which is AB and 54 in hexadecimal for pure data and the control instructions,
respectively. After the type flag is received, system then receives the data length, which is 8-bit
and denotes the data length in byte. Finally, data are received and stored in the RX_FIFO for the
control instructions or IN_BUF for the pure data.
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• Decoder. The DECODER decodes and executes the control instructions. Eleven control
instructions are defined for system configuration and data communication. Furthermore,
an automatic instruction forwarding mechanism is provided to forward the control instructions
to other processors when multiple processors are cascaded.

• Transmitter. The transmitter (TX_STATE) transmits the control instructions or pure data to the
neighbor processors. Data are transmitted in the manner of data frame, which consists of type
flag, data length, chip ID, and the relevant pure data or instructions. Before data transmission,
the bus is checked. If it is free, transmission is started; otherwise, the system waits for some clock
cycles and checks again until the bus is free. Three types of data are transmitted, which are pure
data, forwarded instructions, and the acknowledgement instruction. To transmit the pure data or
the forwarded instructions, the data valid instruction is firstly sent out. Then, the system waits for
the acknowledgment signal from the receiver. After the signal is received, the related data frame
is transmitted serially. When the system receives the data valid instruction from the neighbor
processors, it responds the data communication request by sending back the acknowledgement
instruction. The whole procedure is shown in Figure 6 and is controlled by a state machine.
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4. Performance Estimation

To verify and estimate system performance, the register transfer level (RTL) model and
cycle-accurate simulator of the processor were developed using VHDL and C programming language.
Furthermore, the prototype machine was investigated and implemented using a processor-based FPGA
machine TD-SPP3000 from Tokyo Electron Device Ltd., and sound propagation in a small shoe-box type
room was examined. In the defined room, both length and width were 1.28 m, and height was 0.64 m;
the cube grid size Δl was 4 × 10−2 m; the reflection factor of the boundaries was 0.95; and the incident
and observation points were at the middle of the room. Therefore, the small room was discretized into
a mesh with 32 × 32 × 16 grids. The hardware development environment was a 64-bit Windows 7
platform with FPGA tools Xilinx ISE 14.3 and ModelSim SE 10.1d. For comparison, the counterpart
system was also developed by C++ programming language, and executed on a personal computer
(PC) with 32 GB RAM and an Intel i7-6800K six-core processor running at 3.4 GHz. The software
environment of the PC was 64-bit CentOS 7.0 with gcc 4.9.4. The reference C++ codes were compiled
and optimized by using the command g++ with the option -O3, mcmodel = large, and -fopenmp to use
all six cores in the PC. Data were 32-bit fixed-point in the prototype machine while they were integer
in the software simulations.

The prototype machine consisted of two FPGA boards, and each board contained two
XC5VLX330T-FF1738 FPGA chips from Xilinx. A high-speed A/D board (ADS5474) was attached to
the FPGA1 on the board 1 to sample the incident signals. Then, the sampled data were processed
by the rendering processor implemented by the FPGA1 on the board 1. The sound pressures at the
observation point were transferred to the D/A board (DAC5682Z) on the board 2 through the advanced
telecommunication computing architecture (ATCA) bus and output to drive the speakers directly.
The rendering processor and the A/D and D/A boards all ran at 200 MHz. In the rendering processor,
each PE processed the sound rendering in a sound space with 4 × 4 × 4 grids, and all PEs worked in
parallel to carry out rendering at the whole sound space. Thus, computation at each time step took
64 cycles, and each cycle was 5 (1/(200 × 106)) ns.
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4.1. Performance of the Prototype Machine

4.1.1. Rendering Time

Table 2 shows the rendering time taken by the prototype machine and the software simulation on
the PC using six cores to render a three-minute Beethoven wave sound in the defined small shoe-box
type room.

Table 2. Rendering time (s).

Grid Prototype PC

32 × 32 × 16 run-time 762.25

PC: personal computer.

As shown in Table 2, the rendering task consumes about 12.70 min (762.25/60) in the offline
software simulation on the PC, while it is handled at run-time on the prototype machine. Figure 7 shows
the computation flow in the software simulation. In the software simulation, all the incident data
were firstly read from an incident wave file and stored in a buffer. At each time step, an incident
datum is read and sound pressures of all grids are calculated, the sound pressure of the observation
point is updated, and the sound pressures of grids at current time step and previous time steps are
swapped. This procedure is iterated until all time steps are completed. Since the swap operation must
be operated after the sound pressures of all grids are obtained, the outer loop cannot be parallelized
while the computation and data swap modules (shown in yellow in Figure 7) are parallelized by
using OpenMP. Figures 8 and 9 present parts of the source code of the computation and data swap
modules in which the directives of OpenMP are shown by the bold words. The three loops in the
computation and data swap modules are parallelized through being collapsed into one large iteration
space and then divided according to the valid threads. Figure 10 depicts the computation time in
the case of different numbers of cores being applied in the software simulation. As the number of
cores is increased, the computation time is decreased due to system parallelization using OpenMP.
When six cores are all used for computation, the computation time is 762.25 s, which is about 18% of
the computation time when a single core is applied in calculation.

Figure 7. Computation flow of the software simulation.

In the prototype machine, the incident wave sound is played by a media player and sampled by
the A/D board as incidences at each time step; then rendering is carried out and, finally, the rendered
results are output through the D/A board to drive the speakers directly. Therefore, the rendering
is carried out at run-time, and the rendered results at each time step are output by the D/A board
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directly. When the input incident wave is finished, the rendering is also completed after the operations
when the final time step is over. Consequently, the whole rendering procedure lasts the same period
as the length of the incident sound plus the time taken by the computation at the final time step,
namely 3 min plus 64 cycles (3 s + 320 ns). In the computer-based software simulation, data are stored
in the external main memory, the rendered results are temporarily kept by an array at each time step,
and finally written to a wave file. During computation, main memory is accessed frequently to read
data out or write data back, which is time-consuming. In contrast, data are stored in the on-chip
memory (block RAMs inside FPGA) in the prototype machine, and they are accessed in one or two
cycles. Furthermore, five buffers are applied to read data out in advance to reduce data access overhead
in the PE. On the other hand, the rendering processor is the hybrid architecture, and many PEs work
in parallel to speed up computation. Because each PE is applied to analyze sound behavior at a sound
space with 4 × 4 × 4 grids, the prototype machine contains 256 ((32 × 32 × 16)/(4 × 4 × 4)) PEs to
work in parallel, and speeds up computation by 256 times in comparison with the rendering system
with the time-sharing architecture, in which only one PE is applied to carry out rendering.

 

Figure 8. Snapshot of the computation module.

 

Figure 9. Snapshot of the data swap module.
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Figure 10. Computation time by using the OpenMP in software simulation.

The rendering processor is designed through pipelining, and the rendered results are consecutively
output by the D/A board after a one-cycle delay. To investigate the effect of such a small delay on
the output and system stability, a pulse with amplitude of 16,384 Pa was launched into the prototype
system, and the impulse response of the defined shoe-box room is presented in Figure 11. As shown in
Figure 11, the output was just delayed one-cycle, and the system became stable after 400 time steps.
Thus, the small delay almost has no effect on the system.

Figure 11. Impulse response of the defined room.

4.1.2. Sample Rate of the Output Sound

Although the prototype machine carries out sound rendering at run-time, the output sound
quality is worse than that output by the offline computer-based software simulation. In the software
simulation, incident data are read from a sound wave file directly at each time step, and the rendering
results are written into another sound wave file after the computation is finished. The output sound
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wave, therefore, has same sample rate and bitrate as the incidence. However, in the prototype machine,
the sample rate of the output sound is calculated through Equation (14).

fsampe =
fclk
M

(14)

fclk is the system clock frequency, and M denotes the number of grids processed by a PE. In the current
prototype machine, since each PE performs sound rendering in a sound space with 4 × 4 × 4 grids,
and the system clock frequency is 200 MHz, the sample rate of the output sound is about 3.125 MHz
(200 MHz/64). Compared with the rendering system with the time-sharing architecture, in which
the sample rate of the output sound is about 12.5 kHz [19], the prototype achieves about 256 times
gain in sample rate of the output sound. In the rendering system with the time-sharing architecture,
only a computing unit is applied to calculate the sound pressure grid by grid. Hence, as the number
of grids is increased, the computation time at a time step will become longer, which results in a low
sample rate of the output sound. However, the proposed rendering processor is the hybrid architecture,
in which the top level is the parallel architecture, and the PE is based on the time-sharing architecture.
Therefore, the computation is speeded up, and high sample rate is obtained in the output sound.

On the other hand, the incidence is input through an A/D converter and the rendered results
are output through a D/A converter in the prototype machine. Because the A/D converter is 14-bit,
each incident datum is 14-bit, but it is 16-bit in the software simulation. This long data width of
the incidence results in high accuracy in computation in the software simulation. Furthermore,
each PE performs sound rendering in a sound space with 4 × 4 × 4 grids, if the computation at a grid
is completed at one cycle through a pipelining technique, calculation at a time step takes 64 cycles.
In other words, the incidence will be input in the system every 64 cycles from the A/D converter.
This may result in the information loss in the incident wave sound, and reduce the computation
accuracy. Another factor to affect the output sound quality comes from the electronic noise of the
A/D and D/A boards. When the prototype machine has no input at the A/D converter, the electronic
noise can be heard at the output of the D/A converter. Compared with professional audio devices,
current A/D and D/A converters provides worse performance in suppressing electronic noise.

4.1.3. Throughput

The throughput denotes the number of grids updated per second, and is calculated by
Equation (15).

Dthroughput =
Ngrid

Ttotal
∗ Ntime_step (15)

Here, Ngrid is the number of grids, Ntime_step is the number of time steps, and Ttotal is the
calculation time. In the software simulation, the incident sound wave has 9,022,848 data, and each
datum will be input into the system as an incidence. Nevertheless, the time steps are 9,022,848.
From Table 2 and Figure 10, when six processor cores are applied, the throughput in the software
simulation is about 194 (32 × 32 × 16/(762.25/9,022,848)) M grids/s. In the prototype machine,
the computations at each time step are completed in 64 (4 × 4 × 4) cycles. Thus, the throughput
is about 51.2 (32 × 32 × 16/(64 × 1/0.2) G grids/s. Even if the clock frequency of the prototype is
much lower than the PC, the throughput is much higher. Compared with the PC-based simulation,
the prototype machine achieves about 263.9 times gain in throughput.

4.2. System Implementation by ASIC

A trial processor with a PE and interfaces was developed and taped out by using the 0.18 μm
processing technology from the ROHM semiconductor Co. Ltd. through the fabrication service
provided by the VLSI design and education center at University of Tokyo. When the PE is utilized
to process 4 × 4 × 4 grids, the layouts of the processor and the whole chip are shown in Figure 12a,b,
respectively. The chip is 2.5 mm × 5.0 mm in size, and contains 89 pins [26]. The whole system
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consumes 238,515 gates, and the power consumption is about 143.8 mW. The system clock frequency
is 200 MHz.

(a) (b) 

Figure 12. (a) Layout of the processor (b) Layout of the chip.

5. Conclusions

Real-time sound rendering is computation-intensive. The output sound quality and system
scalability are two concerning issues in the design of a real-time sound rendering system by hardware.
In this research, a real-time sound rendering processor with the hybrid architecture was investigated
and implemented to speed up computation and improve the sample rate of the output sound.
While rendering sound in a small shoe-box room with dimensions of 1.28 m × 1.28 m × 0.64 m,
the proposed processor performs sound rendering at real-time, while the offline computer-based
software simulation takes about 12.70 min. Compared with the FPGA-based sound rendering system
with the time-sharing architecture, our processor achieves 256 times increase in computation speed
and improvement in the sample rate of the output sound.

Furthermore, owing to the limited hardware resources inside a single chip, multiple chips
are usually required to carry out rendering for a large sound space. To make the system easily
extendable, interfaces were provided in the proposed sound rendering processor for system scalability.
Through the interfaces, multiple processors are easily connected to each other to extend the rendered
sound space. Although the current interface achieves good performance in data transmission and
system scalability, the data transmission speed is limited due to data width. In future work, the serial
advanced technology attachment (SATA) interface will be investigated and applied in the processor to
enhance the data transfer speed.
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Featured Application: The numerical methods described in this paper can be used in the automatic

creation of artificial datasets of audio mixes, as real-world mixes are both scarce and costly to

produce. Such datasets can be used for a variety of applications, such as material for signal

analysis, audio stimuli in psychoacoustic testing or as a population of solutions to be optimised,

thus forming the basis of an automatic mixing system. Within this paper, the application of

interest is testing the robustness of tempo estimation to re-mixing.

Abstract: The creation of multitrack mixes by audio engineers is a time-consuming activity and
creating high-quality mixes requires a great deal of knowledge and experience. Previous studies on
the perception of music mixes have been limited by the relatively small number of human-made
mixes analysed. This paper describes a novel “mix-space”, a parameter space which contains all
possible mixes using a finite set of tools, as well as methods for the parametric generation of artificial
mixes in this space. Mixes that use track gain, panning and equalisation are considered. This allows
statistical methods to be used in the study of music mixing practice, such as Monte Carlo simulations
or population-based optimisation methods. Two applications are described: an investigation into the
robustness and accuracy of tempo-estimation algorithms and an experiment to estimate distributions
of spectral centroid values within sets of mixes. The potential for further work is also described.

Keywords: intelligent music production; music information retrieval; multitrack mixing; stereo panning;
audio equalisation; tempo estimation; spectral centroid

1. Introduction

The mixing of audio signals is a complicated optimisation problem, in which an audio engineer
must consider a vast number of technical and aesthetic considerations in order to achieve the desired
result. Traditionally, many tasks in audio mixing are performed on a mixing console. Typically,
such a device consists of a series of channel strips, one representing each audio track, on which
various operations can be performed such as adjustments in equalisation, panning and overall level.
While this format is useful for allowing a hands-on interaction with the audio content, it is not the
most direct or efficient way of exploring these parameters and discovering mixes in the process.

One legacy of this console design philosophy is that, in the literature, it has become commonplace
to define a mix as the sum of the input tracks, subject to control vectors for gain, panning,
equalisation etc., [1–3]. Subsequently, a number of publications [4–6] have referred to a mix of n tracks
as a point in an n-dimensional vector space, with each axis as the gain of a given track. While effective
in certain cases, and certainly straightforward to visualise, this definition produces a solution space
which is sub-optimal when searching for mixes.
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The following are equations used to define a mix, according to various previous works. Note that
the nomenclature has not been changed from the original texts. Equation (1) was used by [1], stating
simply that a mix is the sum of all individual channels.

mix =
N

∑
n=1

Chn[t] (1)

This definition seems logical and even trivial, if inspired by a summing mixer, and has become
the foundation for a series of more elaborate definitions, such as adding a gain vector, a to each track,
allowing for time-dependent changes to the track gains, simulating the movement of individual
faders [2].

y[n] =
K

∑
k=1

ak[n]× xk[n] (2)

In a review paper from 2011 [3], Equation (3) was used, adding generic control vectors c which
modulate the input signals x. These control vectors allow for a variety of results, such as polarity
correction, delay correction, panning and source separation, depending on their implementation.

mixl(n) =
M−1

∑
m=0

K−1

∑
k=0

ck,m,l(n)× xm(n) (3)

Each of these equations considers the mix as the sum of the input tracks, although there is little
agreement on terminology or nomenclature in this general definition. What is important to realise
here is that these expressions characterise not strictly the mix itself but the output of a summing mixer,
or conventional fader-based mixing console. As will be shown in Section 2, the set of unique mixes is
a subset of this set, as illustrated by Equation (4). We refer to this subset as the mix-space, introduced
in [7]. It is this space that a mixing console should directly explore, rather than the gain-space. Section 2
presents an updated definition of the term mix, which produces concise solution spaces by exploring
only the parameter space φ, avoiding the redundancies in g, which represents the gain vector of
the system. (

g1, g2, g3, . . . , gn︸ ︷︷ ︸
gain-space

)
=
(

r︸︷︷︸
master volume

, φ1, φ2, . . . , φn−1︸ ︷︷ ︸
mix-space

)
(4)

The primary contributions of this work are as follows: (a) the mix-space as a theoretical framework
in which existing audio mixes can be examined, in contrast to the gain-space, and (b) methods for the
generation of audio mixes in the mix-space. These contributions are described in Section 2.

The creation of artificial datasets relating to music mixing practice helps to overcome one of
the main obstacles in the field of mix analysis, which is the lack of available data and the cost
associated with gathering new data from mix engineers. Thus far, it has been difficult to make
statistical inference about music mixing practice as available studies have only had access to small
datasets of user-generated audio mixes, with few exceptions [8].

Thus far, the numerical methods in this paper have been applied in creating an initial population
for evolutionary algorithms [9,10]. Further applications are explored in Section 3 and discussed
in Section 4.

2. Theoretical Framework

Adjustment of track level, pan position and equalisation are common in audio processing.
While level and pan are fundamental operations in multichannel mixing, equalisation is one of
the most commonly used processors. Together, these three operations form a basic channel strip.
As such, the scope of this paper considers these three operations.
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2.1. Track Gains

Consider the trivial case where two audio signals are to be mixed, where only the absolute
levels of each signal can be adjusted. In Figure 1, the gains of two signals are represented by x and y,
where both are positive-bound. Consider the point p as a configuration of the signal gains, i.e., (px, py).
From this point, the values of x and y are both increased in equal proportion, arriving at the point p′.
The magnitude of p is less than that of p′ (‖p‖ < ‖p′‖) yet since the ratio of x to y is identical, the angles
subtended by the vectors from the y-axis are equal ( � p = � p′). In the context of a mix of two tracks,
what this means is that the volume of p′ is greater than p, yet the blend of input tracks is the same.

(0,0)

(0,1)

(1,0)

(1,1)

x

y

p

p′
|Δy|

q = (px, py + Δy)

|� q| < |� p|

|� p| = |� p′|

Figure 1. Points p, p′ and r, in 2-track gain space. Note that the audio output at points p and p′ is the
same ‘mix’.

As an alternate to Equation (1), a mix can be thought of as the relative balance of audio signals.
From this definition, the points p and p′ are the same mix, only p′ is being presented at a greater
volume. If the listener has control over the master volume of the system, then any difference between
p and p′ becomes ambiguous.

Definition 1. Mix: an audio stream constructed by the superposition of others in accordance with a specific
blend, balance or ratio.

From p, the level of fader y can be increased by Δy, arriving at q. In this particular example,
the value of Δy was chosen such that ‖q‖ = ‖p′‖. However, for any |Δy| > 0, � q �= � p′.
Therefore, q clearly represents a different mix to either p or p′. Consequently, the definition of a mix is
clarified by what it is not: when two audio streams contain the same blend of input tracks but the result
is at different overall amplitude levels, these two outputs can be considered the same mix. For this
mixing example, where there are n = 2 signals, represented by n gain values, the mix is dependant on
n− 1 variables; in this case, the angle to the vector. The �2 norm of the vector is simply proportional to
the overall loudness of the mix.

Figure 2a shows a similar structure, with n = 3. Here, the point p′ is also an extension of p.
As in Figure 1, q is located by increasing the value of y from the point p and ‖q‖ = ‖p′‖. Here, the values
of each angle are explicitly determined and displayed. All three vectors share the equatorial angle
of 60◦. The polar angle of p and p′ is 50◦, while the polar angle of q is less than this, at ≈37◦. As in the
two-dimensional case, it is the angles which determine the parameters of the mix and the norm of the
vector is related to the overall loudness.
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Figure 2. Graphical representation of three mixes in mix-space. While shown for three tracks, this is
generalisable to any number of tracks n, using hyperspherical coordinates. (a) Mix at a point in 3-track
gain space. Note that the audio output at points p and p′ is the same ‘mix’, despite the vectors having
different lengths in this space; (b) For a 3-track mixture, while the cube (R3) represents all outputs of
a summing mixer, the surface of the sphere (S2) represents all possible mixes.

While Figures 1 and 2a show a space of track gains, there is clearly a redundancy of mixes in this
space. What is ultimately desired is a space of mixes.

Definition 2. Mix-space: a parameter space containing all the possible audio mixes that can be achieved using
a defined set of processes.

It becomes apparent that a Euclidean space with track gains as basis vectors is not an efficient
way to represent a space of mixes, according to Definition 2. This explains why Equation (1) would
not be appropriate when searching for mixes. If, in Figure 2a, a set of m points randomly selected on
R3 were chosen, the number of mixes could be less than m, as the same mix could be chosen multiple
times at different overall volumes. A set of m randomly selected points on a sphere of any radius (S2)
would result in a number of mixes equal to m. This surface is represented in Figure 2b, which shows the
portion of a unit-sphere in positively-unbounded R3, upon which exist all possible mixes of three tracks.

While both the 2-content of S2 (surface area) and the 3-content of the enclosing R3, (volume) both,
strictly, contain an infinite amount of points, the reduced dimensionality of S2 makes it a more attractive
content to use in optimisation, as S2 is a subset of R3 (in this context, content can be considered as
“hypervolume”. See http://mathworld.wolfram.com/Content.html). As a consequence, the mix-space,
φ, is a more compact representation of audio mixes than the gain-space, g.

While the examples so far have used polar and spherical coordinates, for n = 2 and n = 3
respectively, to extend the concept to any n dimensions, hyperspherical coordinates are used.
The conversion from Cartesian to hyperspherical coordinates is given below in Equation (5).
The inverse operation, from hyperspherical to Cartesian, is provided in Equation (6), based on [11].
Here, gj is the gain of the jth track out of a total of n tracks. The angles are represented by φi.
By convention, φn−1 is the equatorial angle, over the range [0, 2π) radians, while all other angles range
over [0, π] radians.
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r =
√

gn2 + gn−1
2 + · · ·+ g22 + g1

2

φi = arccos gi√
gn2+gn−1

2+···+gi
2

, where i = [1, 2, . . . , n− 3], i ∈ Z

...
φn−2 = arccos gn−2√

g2
n+gn−1

2+gn−2
2

φn−1 =

⎧⎪⎨⎪⎩
arccos gn−1√

g2
n+gn−1

2
gn ≥ 0

2π − arccos gn−1√
g2

n+gn−1
2

gn < 0

(5)

g1 = r cos φ1

gj = r cos φj ∏
j−1
i=1 sin φi , where j = [2, 3, . . . n− 2], j ∈ Z

gn = r ∏n−1
i=1 sin φi

(6)

Figure 3 represents a comparable 4-track mixing exercise, as described in [7]. The four audio
sources were specifically chosen for this example (vocals, guitar, bass and drums) and assigned to
g1, g2, g3 and g4 respectively. Consequently, the set of mixes is represented by a 3-sphere of radius r.
Due to the deliberate assignment of tracks in this example, the parameters φ1, φ2 and φ3 represent a set
of inter-channel balances which, due to the specific relationships of instruments, have importance to
musicians and audio engineers: φ3 determines the balance of bass to drums, the rhythm section in
this case; φ2 describes the projection of this balance onto the g2 axis, i.e., the blend of guitar to rhythm
section, and finally, φ1 describes the balance of the vocal to this backing track.

Figure 3. Schematic representation of a four-track mixing task, with track gains g1, g2, g3, g4, and the
semantic description of the three φ terms, when adjusted from 0 to π/2. Figure taken from [7].

From here, the parameter space comprising the n− 1 angular components of the hyperspherical
coordinates of a (n− 1)-sphere in a n-dimensional gain-space, is referred to as a (n− 1)-dimensional
mix-space. More simply, this can be stated by saying the mix-space is the surface of a hypersphere
in gain-space. In the case of music mixing, only the positive values of g are of interest. Subsequently,
the interesting region of the mix-space is only a small proportion of the total hypersurface. This fraction
is 1/2n.

As each point in φ represents a unique mix, the process of mixing can be represented as
a path through the space. In Figure 4a, a random walk begins at the point marked ‘◦’ in the
2D mix-space (the origin [0,0], which corresponds to a gain vector of [1,0,0]). The model for the
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walk is a simple Brownian motion (http://people.sc.fsu.edu/~jburkardt/m_src/brownian_motion_
simulation/brownian_motion_simulation.html). After 30 s, the walk is stopped and the final point
reached is marked ‘×’. The gain values for each of the three tracks are shown in Figure 4b and it is
clear that the random walk is on a 2-sphere, as anticipated. The time-series of gain values is shown in
Figure 4c. Note that g ∈ [−1, 1], so for positive g the region explored is as represented in Figure 2b.
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Figure 4. A time-varying mix can be considered as a path in the mix-space. Here, a random time-varying
mix is generated by means of a random walk. (a) Random walk in mix-space; Brownian motion, halted
after 30 s; (b) Random walk from Figure 4a converted to gain-space; (c) Time series of gain values for
each of the three tracks.

When presented in isolation, such a random mix, whether static or time-varying, may be
unrealistic. It is hypothesised that real mix engineers do not carry out a random walk but a guided
and informed walk, from some starting point (“source”) to their ideal final mix (“sink”). For further
discussion of these terms, see [7], which uses the mix-space as a framework for the analysis of a simple
4-track mixing experiment. The power in these methods comes from generating a large number
of mixes, more so than realistically could be obtained from real-world examples, and estimating
parameters using statistical methods. Further generation and statistical analysis of time-varying mixes
is left to further work.

2.2. Generating Gain Vectors by Sampling the Mix-Space

A set of mixes can be generated by choosing points in the mix-space. In selecting a suitable
parametric distribution, it is important to note that linear distributions, such as the normal distribution,
are not appropriate as the domain in question is not linear but a spherical surface. The statistics of
such distributions are described by a number of equivalent terms in the literature, such as circular,
spherical or directional statistics. In order to generate points close to a desired position on the
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(n− 1)-sphere, points are generated from a von-Mises–Fisher (vMF) distribution. The probability
density function of the vMF distribution for a random n-dimensional unit vector x is given by

fn(x; μ, κ) = Cn(κ)eκμTx

where κ ≥ 0, ||μ|| = 1, n ≥ 2 and the normalisation constant Cn(κ) is given by

Cn(κ) =
κn/2−1

(2π)n/2 In/2−1(κ).

Here, Iv is the modified Bessel function of the first kind at order v. The parameters μ and κ are
called the mean direction and concentration parameter, respectively. The greater the value of κ,
the higher the concentration of the distribution around the mean direction μ, resulting in lower
variance. The distribution is unimodal for κ > 0 and is uniform on Sn−1 for κ = 0. Further details
can be found in [12,13]. The SphericalDistributionsRand (https://github.com/yuhuichen1015/
SphericalDistributionsRand) code, based on the work of [14], was used to generate points according to
a vMF distribution. In the context of audio mixes, μ (where |μ| = 1) represents the mix about which
others are distributed, akin to the mean in a normal distribution. The κ term represents the diversity of
mixes generated, analogous (but inversely proportional) to variance. An example is shown in Figure 5,
where three distributions are drawn from a 2-sphere.

−1

0

1

−1

0

1
−1

0

1

g3
g2

g 1

μ = [0 0 1], κ = 1
μ = [0 − 1 0], κ = 100
μ = [−1√

2
−1√

2
0], κ = 10

Figure 5. Three sets of mixes, drawn from the mix-space. This shows the effect of varying the
concentration parameter κ, that a larger value results in less diversity.

2.2.1. Simple Mixing Model

From here, the example mixing session described is an 8-track session, containing vocals, guitars,
bass and drums [15]. For n = 8 tracks, the gains required for the equal-loudness mix (once all audio
tracks have been normalised in perceived loudness) are distributed around the following μ—each
track gain is equal to n−2, such that |μ| = 1.

μ = [0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536]

Previous studies have indicated that, while a good initial guess, presenting each track at equal
loudness is not an ideal final mix. As suggested by three recent PhD theses on the topic [15–17],
vocals are often the loudest element in a mix. To this equal loudness configuration, a vocal boost is
added according to p.157 of [16], i.e., a boost of 6.54 dB. This addition of 6.54 dB to the vocal track
produces the following vector, where track 8 is vocals.

μ = [0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.7507]
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If the previous vector was, then it is clear that this point is no longer on the unit 7-sphere. To project
the point back onto the unit 7-sphere, the vector is normalised by dividing by the �2 (Euclidean) norm,
resulting in the following.

μ = [0.2948 0.2948 0.2948 0.2948 0.2948 0.2948 0.2948 0.6259] (7)

This vector is the new μ on the unit 7-sphere about which a set of mixes will be generated.
The result is shown in Figure 6a. Each mix generated draws a gain value for each track such that the
�2 norm is equal to 1. Note that the median values closely match the vector μ, as expected. Of course,
there may not exist a mix which has these median values. This specific value of κ was chosen to avoid
generating negative gains, achieved through trial and error. For a distribution which produces negative
gains, the absolute value could be taken to avoid inverting the phase of the tracks. Ignoring phase,
a gain of g is perceptually equal to −g, meaning that the shape of the distribution would be altered if
negative gains were included.
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Figure 6. Boxplots of track gains for two generated datasets of mixes, drawn from separate distributions.
(a) μ = Equation (7), κ = 200; (b) μ = Equation (8), κ = 200

2.2.2. Perceptual Mixing Model

Rather than a simple vocal boost, what is required is a more informed choice of instrument
levels. In [7], a simple 4-track mixing exercise was reported, where participants created mixes of
vocals, guitars, bass and drums using only volume faders. This experiment was expanded to an 8-track
format, as in this paper, and is reported in [15]. Participants were asked the same task, only this time
stereo-panning and a basic 3-band EQ was added. The median instrument levels obtained from this
experiment are shown in Equation (8). Since participants had the ability to pan sources; the median
levels were available for left and right channels separately, which are shown in Equations (10) and (11).
Figure 6b shows the mixes obtained when the target vector is based on these median track levels,
known as μinformed. It can be seen that the levels of bass guitar and kick drum are higher than average,
while drum overheads have been attenuated. Vocals are set high in the mix, as seen in the mono
experiment [7,15] and other previous studies [16,17]. Matlab code for generating sets of mixes, as in
Figure 6, is available for download (https://github.com/alexwilson101/PopulateMixSpace).

μinformed = [0.2254 0.2282 0.3221 0.2679 0.4437 0.3616 0.3221 0.5387] (8)

2.3. Track Panning

Thus far, only mono mixes have been considered, where all audio tracks are summed to
one channel. In creative music production, it is rare that mono mixes are encountered. The same
mathematical formulations of the mix-space can be used to represent panning. Consider Figure 4,
which shows track gains in the range [−1, 1]. Should these be replaced with track pan positions
pn (with −1 and 1 corresponding to extreme left and right pan positions, for example) then the
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mix-space (or “pan-space”) can be used to generate a position for each track in the stereo field.
To avoid confusion with the earlier use of φ, the pan-space is denoted by θ, although the formalism
is identical. (

p1, p2, p3, . . . , pn︸ ︷︷ ︸
absolute panning

)
=
(

rpan︸︷︷︸
width-scaling

, θ1, θ2, . . . , θn−1︸ ︷︷ ︸
pan-space

)
(9)

However, the mix-space for gains (φ) takes advantage of the fact that a mix (in terms of track
gains only) is comprised of a series of inter-channel gain ratios, meaning that the radius r is arbitrary
and represents a master volume. In terms of track panning, one obtains a series of inter-channel
panning ratios, the precise meaning of which is not intuitive. Additionally, the radius rpan would still
be required to determine the exact pan position of the individual tracks. Therefore, the pan-space
describes the relative pan positions of audio tracks to one another.

For a simple example with only two tracks, the meaning of rpan and θ is relatively simple to
understand. Consider the unit circle in a plane where the Cartesian coordinates (x, y) represent the
pan positions of two tracks, as shown in Figure 7. Mix A is at the point ( 1√

2
, 1√

2
): both tracks are

panned at the same position. As this is a circle with arbitrary radius, rpan, then the radius controls how
far positive (right) the two tracks are panned, from 0 (centre) to +1 (far right). Mix B does the same
but towards the left channel. One may ask whether A and B are identical “panning-mixes”, as p and
p′ in Figure 1 were identical “level-mixes”?

Now consider mix C, where one track is panned left and the other right. Mix D is simply the mirror
image of this. Are these to be considered as the same mix, or as different mixes? Here, rpan adjusts
the distance between the two tracks, from both centre when rpan = 0, to (−1, 1) when rpan =

√
2

(as indicated by mix C′). Does a change in rpan change the mix, or is it simply the same mix only
wider/narrower? Overall, the angle θ adjusts the panning mix and rpan is used to obtain absolute
positions in the stereo field, at a particular width-scale (i.e., to zoom in or zoom out).

Figure 7. Panning of two tracks, represented as a 1-sphere. The panning mix is determined by the
angle θ with rpan acting as a scaling variable, adjusting the overall width of the mix. For example, C′ is
a wider version of C.

2.3.1. Method 1—Separate Left and Right Gain Vectors

The method for random gains (see Section 2.2) was used to create separate mixes for the left
and right channels of a stereo mix. In absolute terms, hard-panning only exists when the gain in one
channel is 0 (perceptually, the impression of hard-panning can be achieved when the difference between
one channel and the other is sufficiently large [18]). Since the vocal boost prevents any vocal gain of
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zero, the panning of the vocals is much less wide than the other tracks. Additionally, since κ = 200
was chosen to prevent any negative gains, there are few zero-gain instances; therefore, there is a lack
of hard-panning. Figure 8a,b show the gain settings produced and a boxplot of the resulting pan
positions is shown in Figure 8c, where the inter-quartile range extends to ±0.4 for the seven instrument
tracks and about ±0.2 for the vocals. The estimated density of pan positions for each track is shown,
illustrating the relatively narrow vocal panning. As expected, these estimated density functions are
Gaussian, to a good approximation.
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Figure 8. Panning method 1—separate vMF distributions for gainL and gainR, both using Equation (7).
(a) Boxplot of track gains for left channel, using Equation (7); (b) Boxplot of track gains for right channel,
using Equation (7); (c) Boxplot of pan positions for each track; (d) Probability density of pan positions
for each track.

Rather than using the same μ for both left and right channels, a unique choice of μL and μR can
be made, as described in Section 2.2.2. The vectors used are shown in Equations (10) and (11).
When summed to mono, this is equivalent to Equation (8).
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μL = [0.2741 0.1354 0.3361 0.2657 0.4401 0.3796 0.2566 0.5651] (10)

μR = [0.1189 0.2597 0.3162 0.2612 0.4683 0.2935 0.3727 0.5531] (11)

Figure 9 shows the difference in gains produced for left and right channels. There were some
negative track gains produced: when generating audio mixes, the absolute magnitude of the gain
was used to avoid phase inversions which would alter spatial perception of the stereo overhead pair.
It is clear that the similarity of vocals gains in left and right channels produces a limited variety of pan
positions close to the central position, as shown in Figure 9c,d. Other instruments are panned with
mean position and variance in accordance with the experimental results [15].
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Figure 9. Panning method 1b—separate vMF distributions for left and right channels but using
unique μ vectors, shown in Equations (10) and (11). (a) Boxplot of track gains for left channel, using
Equation (10); (b) Boxplot of track gains for right channel, using Equation (11); (c) Boxplot of pan
positions for each track. Where |P| > 1, this is caused by negative track gains; (d) Probability density
of pan positions for each track.
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2.3.2. Method 2—Separate Gain and Panning

This method involved generating random mono mixes as Section 2.2 (using Equation (7) and then
generating pan positions separately. A μpan was created for a vMF distribution. This vector was based
on experimental results reported in [15], which showed that, generally, overheads and guitars were
widely panned while kick, snare, bass and vocals were positioned centrally.

μpan = [−0.5 0.5 0 0 0 − 0.4 0.4 0] (12)

This then needs to be a unit vector for it to be used in creating vMF-distributed points.
Consequently, the precise values are not critically important, as it is the relative pan positions that
are reflected in the normalised vector and rpan which would be used to adjust the scaling of these
relative positions.

μpan = [−0.5522 0.5522 0 0 0 − 0.4417 0.4417 0] (13)

Three different values for κ were used, which illustrates how this parameter controls the
distribution of panning. The results are shown in Figure 10, where the influence of κ is clear.
When κ → 0, the distribution of pan positions approaches uniform over the sphere, and so the
median pan positions are close to 0 (central position in the stereo field) for all tracks, regardless of μpan.
As κ increases, the distribution of pan positions is narrower, more concentrated on the specific pan
positions specified in μpan.
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Figure 10. Panning method 2—generating vMF distributions in panning space. As expected, increasing
κ (concentration parameter) results in a narrower range of pan positions for each track, around the
target vector Equation (13).
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Figure 11 shows an example of two mixes created using this method. The gains and pan positions
of each track are displayed. It is clear that the instruments are typically panned close to the positions
specified in the pan vector (Equation (13). In this example, rpan = 1; increasing this parameter would
produce wider mixes, while a decrease would produce a less wide mix.
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Figure 11. Two random mixes generated using panning method 2, shown as squares and circles. Each mix
has a different gain vector (based on Equation (7) and different pan vector (based on Equation (13).

2.4. Track Equalisation

Similarly to how the mix can be considered as a series of inter-channel gain ratios, when the
frequency-response of a single audio track is split into a fixed number of bands, the inter-band gain
ratios can be used to construct a tone-space using the same formulae. For three bands, with gain of low,
middle and high bands in the filter being glow, gmid and ghigh respectively, the problem is comparable
to the 3-track mixing problem shown in Figure 2a. Again, one can convert this to spherical coordinates
(by Equations (5) and obtain [rEQ, ψ1, ψ2], yet, in this case, the values of ψn control the EQ filter applied,
and rEQ is the total amplitude change produced by equalisation (to avoid confusion, ψ is used in place
of φ when referring to equalisation). As before, if all three bands are increased or decreased by the
same proportion, then the tone of the instrument does not change apart from an overall change in
presented amplitude, rEQ. Analogous to its use in track gains, the value of ψ2 adjusts the balance
between gmid and ghigh, while ψ1 adjusts the balance of glow to the previous balance.(

g1, g2, g3, . . . , gnbands︸ ︷︷ ︸
gains of filter bands

)
=
(

rEQ︸︷︷︸
scaling

, ψ1, ψ2, . . . , ψn−1︸ ︷︷ ︸
tone-space

)
(14)

In Figure 12, five points are randomly chosen in the tone-space. These co-ordinates are converted
to three band gains as before, except that, in order to centre on a gain vector of [1, 1, 1], rEQ =

√
nbands,

which is
√

3 in this example. Of course, this method can be used for any number of bands.
With this method, one must assume that an audio track has equal amplitude in each band, which is

rarely the case. When gL is increased on a hi-hat track, there may be little effect, compared to a bass
guitar. Therefore, the loudness change is a function of rEQ and the spectral envelope of the track,
prior to equalisation. This is not considered here and is left to further work.
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Figure 12. Five randomly-chosen examples of 3-band equalisation, chosen from the tone-space.
As ψ2 → 0, the gain of the high band decreases. As ψ1 → 0, the gain of the low band increases
at the expense of the other two bands; their balance is determined by ψ2.

3. Applications

Being able to generate artificial datasets of audio mixtures in the mix-space has a variety of
applications. Two such applications are described here. The procedure is similar for both experiments:
an audio mix is created using a generated gain vector and raw multitrack audio, resulting in a generated
mix from which audio signal features may be determined. Feature extraction used the MIRtoolbox [19],
version 1.6.1. Equations (7) and (8) were used to create two sets of mixes. These experiments use sets
of 500 mixes, rather than 1000 as outlined in earlier sections. It can be shown that the distributions of
audio signal features do not change much beyond 500 mixes [15]. The reduced computation time is
advantageous in these examples.

The test audio in these experiments is 30-second segments of the songs “Burning Bridges”,
“I’m Alright” and “What I Want” as used in previous studies [8,15], available from the Mixing Secrets
free multitrack download library (http://www.cambridge-mt.com/ms-mtk.htm). The raw multitrack
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audio was reduced to the required eight tracks and each track was normalised in perceived loudness
according to a modified form of ITU BS.1770 [20]. The songs “I’m Alright” and “What I Want” feature
a track of piano as track #7, in place of ‘Gtr 2’.

3.1. Testing the Robustness of Tempo Estimation Algorithms to Changes in the Mix

In the absence of any time-stretching processes, the tempo of each mix should be identical for
a given song. As a result, if the tempo of alternate mixes is estimated and any disagreement is found,
this suggests limitations in the tempo-estimation algorithm. In this section, the process of estimating
tempo across a large set of artificial mixes is presented as a means of assessing the performance of
tempo-estimation algorithms. Two such algorithms are tested herein: the classic and metre-based [21]
implementations of mirtempo in the MIRtoolbox. In short, the classic tempo estimation algorithm
performs onset detection based on the amplitude envelope of the audio. Periodicities in the detected
onsets are determined by finding peaks in the autocorrelation function. The metre method additionally
takes into account the metrical hierarchy of the audio, allowing for a more consistent tempo-tracking.
Whichever tempo-estimation is used, the resultant tempo is the mean value over the 30-second
audio segment. Panning and equalisation were not considered here as tempo was estimated from
a mono signal.

Figures 13a and 14a show the results for “Burning Bridges”, where it is clear that the classic
method performs poorly. The correct tempo of 100 bpm is estimated for only a small percentage of
the mixes while all others are estimated close to 133 bpm (see Figure 14a). This leads to a high mean
squared error (MSE) as shown in Table 1. A similar flaw is evident for “I’m Alright” where the tempo is
again overestimated by roughly 33% for both mix distributions (see Figures 13b and 14b). This indicates
a consistent error in the tempo-estimation routine, which is being revealed by these mix distributions.
The metre-based method performs much better, estimating the correct tempo in almost all cases and
exhibiting a lower MSE, with only a small amount of absolute error (0.1–0.2 bpm). The performance of
the classic tempo-estimation method is improved for “What I Want”, where both methods are found to
have a high level of accuracy, as shown in Figures 13c and 14c. For both distributions, the metre-based
version produces clusters of solutions for “What I Want”, although the tempo represented by largest
cluster is consistent.

It is conceivable that no tempo-estimation algorithm is able to obtain the correct result in all cases.
What this experiment reveals is that there is also variation within the mixes of a given song, with some
mixes providing the correct tempo and other mixes yielding error, with different estimation methods
showing varying levels of robustness to mixing practice.

Table 1. Summary of tempo estimation accuracy results. Shown is the mean squared error (MSE) in
each set of 500 mixes.

Audio BPM Mixes Mirtempo (Classic) Mirtempo (Metre)

Burning Bridges 100 Equation (7) 998.54 13.05
Equation (8) 1082 0.0147

I’m Alright 96 Equation (7) 738.4297 16.4854
Equation (8) 742.37 16.7442

What I Want 99 Equation (7) 1.5110 0.3803
Equation (8) 0.8394 0.4251
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Figure 13. Estimated tempo for three songs, 500 mixes each using Equation (7). In each histogram,
the data is split into 100 bins. Overall, performance is better for the metre-based method, as it
demonstrates greater accuracy and improved robustness to changes in the mix. (a) “Burning
Bridges”—The correct tempo is ≈100 bpm; (b) “I’m Alright”—The correct tempo is ≈96 bpm;
(c) “What I Want”—The correct tempo is ≈99 bpm.
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Figure 14. Estimated tempo for three songs, 500 mixes each using Equation (8). In each histogram,
the data is split into 100 bins. Overall, performance is better for the metre-based method,
as it demonstrates greater accuracy and improved robustness to changes in the mix; (a) “Burning
Bridges”—The correct tempo is ≈100 bpm; (b) “I’m Alright”—The correct tempo is ≈96 bpm;
(c) “What I Want”—The correct tempo is ≈99 bpm.

3.2. Estimation of Spectral Centroid in Sets of Mixes

It is common to use the spectral centroid as a feature to describe the timbre of an audio signal,
specifically as an approximation to perceptual brightness [22–24]. However, where the spectral centroid
of a mixed recording is evaluated, it is not clear that the value obtained is typical of the recording as
a whole, or if it simply relates to that specific mix of the recording. This is especially problematic in
an object-based audio broadcast, where no reference mix exists. This applies to any signal feature,
not just the spectral centroid. As studies of features across multiple alternate mixes are still rare in the
literature [8,25,26], this issue has not been adequately investigated.

A previous work by the authors [8] reports on the spectral centroid of 1501 user-generated mixes of
10 songs. The number of mixes per song ranges from 97 to 373. The estimated probability distributions
of spectral centroid are shown (among other signal features relating to amplitude, timbre and spatial
properties), indicating that the median spectral centroid can vary by song, although it is still possible
for significant overlap in distributions to exist.

The work in this section investigates the distributions of the spectral centroid that occur for
artificial mixes drawn from different mix-space distributions. Equation (7) describes a simple model
for mixes while Equation (8) shows the result of a perceptual level-balancing experiment. What is it
about the mix that changes when these levels are adjusted? In this section, an estimation of the median
spectral centroid produced by these two sets of mixes is made using Monte Carlo methods.

The experiment was conducted as follows. Using μ = Equation (7) and κ = 200, a set of 500 gain
vectors was generated. For each of these vectors, a mix was created and the spectral centroid was
measured. This resulted in 500 measurements of spectral centroid, the density of which was estimated
using Kernel Density Estimation (KDE). This procedure was repeated for a second set of 500 mixes,
generated using μ = Equation (8) and κ = 200. The estimated density distribution of both is plotted in
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Figure 15. These distributions were compared using a Wilcoxon rank sum test, which tests the null
hypothesis that the distributions of both samples are equal. This null hypothesis was rejected in each
case, as shown by the p-values in each subplot of Figure 15 (p < 0.05 in each case).

Figure 15. Probability distribution of spectral centroid as a function of mix-space parameters;
(a) “Burning Bridges”; (b) “I’m Alright”; (c) “What I Want”.

The significant difference between the medians of the two groups illustrates that there is a coarse
perceptual difference in timbre, generally, between mixes drawn from the two distributions. This is
true for all three songs considered. Of course, whether or not there is a significant difference between
the medians of the two groups depends on the chosen parameters: the μ vectors must be perceptually
different but if κ is low enough, then the distributions will overlap, regardless of the choice of μ (recall that
as κ → 0, the distribution approaches uniformity). The choice of κ depends on the application.
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The higher spectral centroid in the simple equal-gain-with-vocal-boost approach (Equation (7)) is
caused by an overestimation in the level of the drum overheads and vocal, and an underestimation of
the level of bass and kick drum, when compared to the results of the perceptual test (Equation (8)).
The distributions of the spectral centroid for these artificially-generated mixes were compared to the
distributions of the spectral centroid for user-generated mixes, as were reported in previous work
by the authors [8]. For “Burning Bridges” and “What I Want”, the peak of the μinformed distribution
compares well to the user-generated mixes (approx 3.8 kHz and 3.2 kHz respectively). In the case
of “I’m Alright”, μ = Equation (7) yields a better match to real mixes (approx 4.2 kHz); however,
the 373 user-generated mixes of this song from [8] did contain a large proportion of highly amateur,
potentially low-quality, mixes. For further comparison of artificial mixes and user-generated mixes,
see [15].

This experiment shows that a set of mixes can be obtained by sampling the mix-space but that
perceptually-relevant mixes are more likely to be obtained if some level of human guidance is fed into
the system. The parametric mixing model for this experiment did not feature panning or equalisation.
It has been shown that the addition of equalisation broadens the distribution of spectral centroid
values, as would be expected given the wider variety of instrument tone [15].

4. Discussion

4.1. Artificial Datasets for Testing of Processes

The theoretical framework presented in this paper provides for a space of mixes that can
be explored, using evolutionary computing, machine learning or similar computational methods.
Applications of this include the creation of an initial population of solutions to be used in the
search of balance-mixes [9] and electric guitar tones [10], both using interactive genetic algorithms.
These approaches have yielded positive results, as the user is able to search the space effectively and
find the desired solution.

For subjective testing, the methods presented in this paper have the advantage that each mix
is generated at a constant perceived loudness, as the magnitude of the gain vector can be set to
a constant (such as r = 1 in Equation (4). In both [9,10], which used an interactive genetic algorithm,
test participants were asked to rate subjectively the solutions presented. Being generated at a consistent
loudness level allowed for fair evaluations, while avoiding the additional computational time required
for specific loudness-normalisation to be applied to each generated mix. This allows a more free
exploration of the solution space, since audio stimuli can be generated in real-time using this method.

Currently, newly-developed algorithms for tempo estimation, key estimation etc., are evaluated
during specific challenges, such as the MIREX audio tempo estimation challenge (http://www.music-
ir.org/mirex/wiki/2017:Audio_Tempo_Estimation), using standard datasets of audio recordings.
We propose that sets of artificially generated mixes be considered as a standard test, in order to
examine the level of robustness to mixing practice, as in Section 3.1.

4.2. Signal Analysis of Audio Mixing Practices

Of course, more conventional experiments can be analysed in this framework. In a level-balancing
task, where participants were asked to set track gains to their desired levels, the resulting gains
can be converted to the mix-space and analysed therein [7]. This allows differences in cohorts to be
investigated: thus far, the different mixes produced by headphone or loudspeaker users has been
investigated [15] in addition to checking if changing the initially presented rough mix influences the
mixing-decisions [7], a hypothesis also supported by later work [6].

A recent work analysed the audio mixes of broadcast audio stems (dialogue, foreground
sound effects, background sound effects and music) as produced by hearing-impaired listeners [27].
This 4-track mixing scenario is equivalent to that represented by Figure 3. The changes in level
made to each mix stem were reported in a bar chart, showing an increase in dialogue level and
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a decrease in the level of the other three stems. From a mix-space perspective, we know that these
two strategies are equivalent. The mixes created from such an experiment can be more effectively
analysed in a 3-dimensional mix-space, in which it could be more clear how different cohorts (such as
hearing-impaired listeners) would balance the four tracks in different ways. If the needs of the user
demand a change to the audio mix, as in the case of increasing speech intelligibility, then the path from
the current mix to the desired mix may be more easily determined in the mix-space.

As object-based audio broadcast becomes commonplace, audio signal feature extraction algorithms
will need to be robust to changes in the audio object, be it changes in amplitude, panning, equalisation,
or other parameters. It has been shown that the measured value of pulse clarity (a measure of how easy
it is to pick out the underlying rhythm of a mix [28]) varies with object loudness, typically decreasing as
the mix moves into regions of the mix-space where the relative level of vocals is increased [15].

5. Conclusions

A method for the creation of artificial audio mixes has been presented. This has been achieved by
the parametric generation of points in a novel “mix-space”, a concise representation of three audio
processing activities: level-balancing, stereo-panning and equalisation.

This method has been used for a number of application thus far: in creating an initial population
for evolutionary algorithms [9,10] and two simple experiments estimating the values of audio signal
features using Monte Carlo techniques. This has revealed limitations in tempo-estimation algorithms.
This paper suggests that, in the future, such algorithms need to be robust to changes in instrument level
and other mixing practices. This will allow such routines to be applied to an object-based paradigm of
audio broadcast, where no reference mix may exist on which to determine the value of the feature.

Future work is required to further generalise the presented models to audio mixing practices,
such as dynamic range processing, as well as implementing a fully-parametric model of time-varying
mixes and the related statistical analysis.
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Abstract: Wavefolders are a particular class of nonlinear waveshaping circuits, and a staple of the
“West Coast” tradition of analog sound synthesis. In this paper, we present analyses of two popular
wavefolding circuits—the Lockhart and Serge wavefolders—and show that they achieve a very
similar audio effect. We digitally model the input–output relationship of both circuits using the
Lambert-W function, and examine their time- and frequency-domain behavior. To ameliorate the
issue of aliasing distortion introduced by the nonlinear nature of wavefolding, we propose the use
of the first-order antiderivative method. This method allows us to implement the proposed digital
models in real-time without having to resort to high oversampling factors. The practical synthesis
usage of both circuits is discussed by considering the case of multiple wavefolder stages arranged
in series.

Keywords: acoustic signal processing; circuit modeling; nonlinear waveshaping; antialiasing;
synthesis; music

1. Introduction

Nonlinear waveshaping is a technique used in sound synthesis to generate complex harmonic
spectra. It consists of processing a signal with low harmonic content (typically a sinusoid) using
a nonlinear mapping function designed to introduce harmonic overtones to the output signal [1].
The first documented use of waveshaping in the digital domain can be traced back to 1969, when
Jean-Claude Risset emulated the sound of a clarinet by distorting a sinusoid with a clipping function [2].
Waveshaping techniques were extensively researched within the context of computer music in the
1970s, with several authors exploring the use of Chebyshev polynomials in particular, as an accurate
and computationally cheap alternative to additive synthesis [1,3–5]. The underlying principles behind
waveshaping synthesis are closely related to other well-known synthesis techniques, such as frequency
modulation (FM) and phase distortion (PD) synthesis [6,7]. These two techniques rely on distorting
the frequency and phase, respectively, of sinusoidal oscillators. Recent research on the topic of
distortion-based synthesis has explored the use of logic operators in lieu of traditional polynomial
waveshapers [8], and proposed extensions to both FM and PD synthesis [9,10].

The use of waveshaping in the analog domain began in the 1950s, when guitar players started
deliberately overdriving their tube amplifiers to alter the timbre of their instrument [11]. In 1961,
Gibson released the “Maestro FZ-1 Fuzz Tone”, the first commercially available fuzz distortion pedal,
which exploited the saturating behavior of transistors to introduce harmonic distortion [12]. Most guitar
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distortion pedals, including popular designs such as the Ibanez Tube Screamer and Electro-Harmonix
Big Muff Pi, operate under this same basic principle [13,14].

In analog synthesizers, the use of distortion-based methods is one of the cornerstones of
“West Coast” synthesis, a paradigm pioneered by California-native Don Buchla during the 1960s.
Buchla’s instruments focused on timbre manipulation at oscillator level by employing a variety of
techniques such as nonlinear waveshaping, oscillator synchronization and pitch modulation [15–17].
This approach to sound synthesis contrasts that of traditional subtractive synthesis, where timbre
is typically controlled by filtering harmonically-rich oscillator waveforms, like sawtooth and square
waves, using resonant filters [18]. In recent years, West Coast synthesis has become increasingly
popular, with contemporary manufacturers such as Make Noise and Verbos Electronics releasing their
own takes on classic Buchla circuits.

This study presents virtual analog (VA) models for two analog synthesizer circuits: the Lockhart
wavefolder and the wavefolder used in the middle section of the Serge Wave Multipliers. Wavefolding
is a type of nonlinear waveshaping common in West Coast synthesis where portions of the input signal
that exceed certain threshold are inverted or “folded back”, hence the name of the effect. The two
circuits considered in this study were chosen because of the strong similarities between their general
behavior. In a similar way to guitar distortion pedals, both wavefolders exploit the saturating behavior
of semiconductor p–n junctions (i.e., transistors/diodes) to implement a folding function.

Wavefolders are amongst the most emblematic building blocks of West Coast synthesis. In spite
of that, they have been mostly overlooked by both VA and digital waveshaping research. We have
recently begun to fill this research gap in [17], which presents a VA model of the wavefolder circuit
in the seminal Buchla 259 module. Previous work on circuit-based VA modeling has researched
the filters found in vintage synthesizers such as those produced by Moog [19–22], Electronic Music
Studios (EMS) [23,24], Korg [25,26] and Buchla [16]. Extensive work has also been done on modeling
guitar distortion pedals [13,27], tube amplifiers [11,28,29], modulation effects [30–33] and the Roland
TR-808 drum machine [34,35]. Measurement-based VA modeling, commonly known as “black-box
modeling”, has also been thoroughly studied within the context of guitar amplifiers and pedals [36–38].
This approach is particularly useful when the original circuit schematics are not available.

A major challenge in VA modeling of nonlinear circuits, and digital waveshaping in general, is
aliasing suppression. Early research on waveshaping synthesis addressed this issue by using low-order
polynomial transfer functions, which not only allowed full parametric control of the produced spectrum
but also ensured that the output waveform was bandlimited [4]. In VA modeling, high oversampling
factors are usually necessary to prevent harmonics introduced by nonlinearities from reflecting into
the baseband as aliases [13]. Oversampling increases the computational requirements of the model, by
introducing additional filtering stages and scaling the number operations required to compute each
output sample. For VA models that require evaluating transcendental functions, as is the case with
the proposed Lockhart and Serge models, these added costs could compromise the integration of the
system within a larger, real-time computer music system.

A sizable portion of VA research has concentrated on designing efficient algorithms to generate
alias-free geometric waveforms like those used in analog subtractive synthesizers, the so-called classic
analog waveforms. Well-known techniques include the bandlimited impulse train (BLIT) family of
methods, which involves the use of bandlimited basis functions and their integrated forms [39–41],
and the use of differentiated polynomial waveforms (DPW) [42–44]. Moreover, Välimäki and Franck
have applied the antialiasing principle behind the DPW algorithm to tackle aliasing in wavetable
oscillators [45]. Recent work on antialiasing techniques has extended the use of the bandlimited ramp
(BLAMP) method, originally proposed to antialias triangular oscillators in [25,41], to special cases of
linear piecewise nonlinearities such as signal rectification, and inverse/hard clipping [17,46,47].

In this work, we propose the use of the antiderivative antialiasing method introduced in [48,49].
This approach can be used to reduce the aliasing caused by arbitrary nonlinear waveshaping functions
and is applicable to the proposed wavefolder models. In its first-order form, the method can be
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derived by analytically convolving a linear continuous-time representation of the input signal with a
rectangular lowpass kernel [48]. As shown in this work, the use of the antiderivative method reduces
the oversampling requirements of the proposed wavefolder models.

A VA model of the Lockhart wavefolder was originally presented in [50]. This paper extends that
work by introducing a second wavefolding circuit and studying the similarities between both systems.
Additionally, we present a different treatment of the required Lambert-W function and an extended
evaluation of the proposed antialiasing method in terms of computational costs.

This paper is organized as follows. Sections 2 and 3 describe the model derivation of the Lockhart
and Serge wavefolders, respectively. Time-domain simulations of the circuits are also presented in these
two sections. Section 4 deals with two implications of VA wavefolding in the digital domain, namely
aliasing suppression and evaluation of the Lambert-W function. Section 5 presents frequency-domain
results of the Lockhart and Serge wavefolders, as well as an evaluation of the proposed antialiasing
method in terms of perceived sound quality and computational costs. Section 6 discusses the practical
synthesis usage of both circuits and compares the behavior of the middle Serge Wave Multiplier with a
recommended four-stage topology built around the Lockhart wavefolder. Concluding remarks and
perspectives appear in Section 7.

2. The Lockhart Wavefolder

Figure 1a shows a simplified circuit diagram of the Lockhart wavefolder. This circuit was designed
in 1973 by R. Lockhart Jr., who intended it to be used as a general-purpose frequency tripler [51].
Following its publication in Bernie Hutchin’s Electronotes [52], Lockhart’s design was repurposed as
a wavefolder by Ken Stone, who realized its potential as a simple yet interesting waveshaper [53,54].
The Lockhart wavefolder has become ubiquitous in the music synthesizer do-it-yourself (DIY)
community. For example, it is the core processor in Yves Usson’s “Metalizer” module [55].
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Figure 1. (a) Simplified schematic of the Lockhart wavefolder circuit (adapted from [53]); and (b) its
Ebers–Moll large-signal equivalent model.
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The main modifications made by Stone to Lockhart’s original design were the addition of an
input potentiometer to attenuate the amplitude of the input waveform, and an inverting amplifier
at the output of the circuit [54]. For the sake of simplifying the analysis, these are not shown in
Figure 1a. The inverting stage at the output is reintroduced in Section 2.3. In our treatment of the
circuit, we introduce the load resistance RL as an additional parameter which can be used to further
control the timbre of the folded waveform.

2.1. Circuit Analysis

The Lockhart wavefolder consists of an NPN and a PNP bipolar junction transistors connected at
their base and collector terminals. In order to model the large-signal behavior of the circuit, we replace
transistors Q1 and Q2 with their corresponding Ebers-Moll large-signal models [23,24]. Figure 1b
shows the large-signal equivalent circuit of the Lockhart wavefolder. We use a double subscript
notation to distinguish the voltages and currents in transistor Q1 from those in Q2. For example, IED,2

denotes the current through the base-emitter diode in Q2. Component values for the circuit have been
compiled in Table 1.

Table 1. Component values for the Lockhart wavefolder circuit.

Component Value (kΩ) Component Value (V)

R 15 VCC 15
RL 1–50 VEE −15

We begin the analysis of the circuit by assuming that the supply voltages are equal but opposite in
sign (i.e., VCC = −VEE), and that |Vin| � VCC. This assumption means that the base-emitter junctions
of both Q1 and Q2 will always be forward-biased and their voltage drops will remain approximately
constant for all expected values of Vin. In Ken Stone’s version of the circuit, Vin is assumed to be
bounded between approximately±1.2 V [53]. Applying KVL around both input–emitter loops gives us

Vin = VCC − RIE,1 −VBE,1 (1)

Vin = VBE,2 + RIE,2 + VEE, (2)

where IE,1 and IE,2 are the emitter currents, and VBE,1 and VBE,2 are the voltages across the base–emitter
junctions of Q1 and Q2, respectively. Solving Equations (1) and (2) for IE,1 and IE,2 gives us:

IE,1 =
VCC −VBE,1 −Vin

R
(3)

IE,2 =
Vin −VBE,2 −VEE

R
. (4)

Next, we apply KCL at the collector node, which gives us

Iout = IC,1 − IC,2, (5)

where

IC,1 = αF IED,1 − ICD,1 (6)

IC,2 = αF IED,2 − ICD,2. (7)

If we then assume that the contributions of the reverse currents αR ICD1 and αR ICD2 to the total
currents associated with the emitter nodes are negligible (i.e., αR ≈ 0), we can establish that
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IED,1 ≈ IE,1 (8)

IED,2 ≈ IE,2. (9)

Assuming αF = 1, as suggested in [23], and inserting Equations (8) and (9) into Equations (6) and
(7), respectively, yields a new expression for the total output current of the circuit:

Iout = IE,1 − IE,2 − ICD,1 + ICD,2. (10)

We then combine Equations (3) and (4) to derive an expression for the difference between
emitter currents:

IE,1 − IE,2 =
VCC + VEE − 2Vin + VBE,2 −VBE,1

R
. (11)

Since VCC + VEE = 0, and voltage drops VBE,1 and VBE,2 are assumed to be constant and equal,
their contribution to this expression disappears. Therefore, we can simplify this result as:

IE,1 − IE,2 = − 2
R

Vin. (12)

Substituting Equation (12) into Equation (10) produces an expression for the total output current
Iout in terms of the input voltage and the currents through the collector diodes:

Iout = −
2
R

Vin − ICD,1 + ICD,2. (13)

The current–voltage (I–V) relationship of diodes can be modeled using Shockley’s ideal diode
equation, defined as

ID = Is

(
exp

(
VD

ηVT

)
− 1

)
, (14)

where ID is the current through the diode, Is is the reverse bias saturation current, VD is the voltage
across the diode, VT is thermal voltage and η is the ideality factor of the diode [56]. For the p–n
junctions inside transistors we can assume a reverse saturation current value Is = 10−17 A and an
ideality factor η = 1. A thermal voltage value VT = 25.864 mV is used throughout this study.

Applying Shockley’s diode equation to the collector diodes and substituting into Equation (13)
gives us:

Iout = −
2Vin

R
− Is

(
exp

(
VCD,1

ηVT

)
− 1

)
︸ ︷︷ ︸

ICD,1

+ Is

(
exp

(
VCD,2

ηVT

)
− 1

)
︸ ︷︷ ︸

ICD,2

. (15)

Next, we use KVL to derive expressions for VCD,1 and VCD,2 in terms of Vin and Vout:

VCD,1 = Vout −Vin (16)

VCD,2 = Vin −Vout. (17)

Now, the collector diodes in the large-signal model are antiparallel. Therefore, we can make
the further assumption that only one of them will conduct at a time depending on the polarity of
Vin. A similar treatment is presented in [57] for the case of diode pairs in guitar distortion circuits.
This means that

ICD,1 ≈ 0 for Vin ≥ 0 and ICD,2 ≈ 0 for Vin < 0.

By combining these new assumptions with Equations (15)–(17) we arrive at the piecewise expression

Iout = −
2
R

Vin + λIs

(
exp

(
λ (Vin −Vout)

ηVT

)
− 1

)
, (18)
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where λ = sgn (Vin) and sgn () is the signum function

sgn(x) :=

⎧⎪⎨⎪⎩
−1 if x < 0
0 if x = 0
1 if x > 0.

(19)

Equation (18) can be further simplified if we consider that the independent constant factor λIs that
results from its expansion will be very small (±10−17 A) and can therefore be neglected. This gives us:

Iout = −
2
R

Vin + λIs exp
(

λ (Vin −Vout)

ηVT

)
. (20)

Finally, we multiply both sides of this expression by RL to derive an input–output voltage
relationship for the Lockhart wavefolder:

Vout = −
2RL

R
Vin + λRL Is exp

(
λ (Vin −Vout)

ηVT

)
. (21)

2.2. Explicit Formulation

Equation (21) describes an implicit relationship between the input and output voltages of the
circuit; it cannot be solved algebraically. Instead, a closed-form solution for Vout can be derived with
the help of the Lambert-W function. The use of the Lambert-W function W() has been previously
researched within the context of VA modeling. Several authors have used it to solve the implicit I–V
relationship of diodes [56,58,59]. Parker and D’Angelo used W() to model the Buchla Lowpass-Gate,
a synthesizer circuit that employs a resistive opto-isolator (also known as a vactrol) in its control
path [16]. Strictly speaking, W() is multivalued; however, in this work, we only utilize the upper
branch of the function. This branch is known as W0() in the literature [56,60].

The Lambert-W function is used to solve equations of the form

(A + Bx) exp (Cx) = D, (22)

which have the explicit solution

x =
1
C

W
(

CD
B

exp
(

AC
B

))
− A

B
, (23)

where A, B, C and D ∈ R [58].
Equation (21) can be arranged in the form described by Equation (22) by first rewriting it as

Vout +
2RL

R
Vin = λRL Is exp

(
λVin

ηVT

)
exp

(−λVout

ηVT

)
, (24)

and dividing both sides by exp (−λVout/ηVT), which gives us(
Vout +

2RL

R
Vin

)
exp

(
λVout

ηVT

)
= λRL Is exp

(
λVin

ηVT

)
. (25)

Solving for Vout as defined in Equation (23) yields an explicit model for the Lockhart wavefolder

Vout = ληVTW (Δ exp (λβVin))− αVin, (26)

where
α =

2RL

R
, β =

2RL + R
ηVTR

and Δ =
RL Is

ηVT
.
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Table 2 summarizes all parameter values for the proposed Lockhart wavefolder model.

Table 2. Parameter values for the Lockhart wavefolder described by Equation (26).

Name Value Name Value Name Value

R 15 kΩ Is 10−17 A VT 25.864 mV
RL 1–50 kΩ η 1 – –

2.3. Model Discretization and Evaluation

The voltages inside the Lockhart wavefolder are time-dependent. Therefore, we can describe the
continuous-time model defined by Equation (26) as being of the form

Vout(t) = f (Vin(t)), (27)

where f () is the transfer function of the system and t is time. In the synthesis literature, the term
“transfer function” is commonly used to denote the waveshaping function [4]. It should not be confused
with the s- and z-domain transfer functions used in linear system analysis.

As previously mentioned, Ken Stone’s circuit features an inverting stage before the output which
can be modeled by inverting the polarity of the right-hand side of Equation (26):

Vout = αVin − ληVTW (Δ exp (λβVin)) . (28)

While including this step is not strictly necessary, we have chosen to do so, as it will facilitate the
evaluation of the model. Now, given the form described by Equation (27), the Lockhart model can be
discretized trivially by replacing all continuous-time signals with their discrete-time equivalents, i.e.,

Vout[n] = f (Vin[n]), (29)

where n is the sample index.
The time-domain behavior of the proposed circuit model was validated by comparing it against a

reference simulation obtained using the SPICE (Simulation Program with Integrated Circuit Emphasis)
software LTspice (Version IV, Linear Technology, Milpitas, CA, USA, 2016) [61]. The results of this
simulation are shown in Figure 2a for values of Vin between −1.5 and 1.5 V. Figure 2b shows the
transfer function of the proposed model implemented in MATLAB (Version R2017a, MathWorks,
Natick, MA, USA, 2017) using Equation (28) and MATLAB’s native “lambertw” function. In both
cases, four different values of RL were simulated: 1, 5, 10 and 50 kΩ. From these figures, we can
observe the general behavior of the Lockhart wavefolder. At low input values, the system behaves
linearly, whereas for high input values the circuit inverts the slope of the driving signal. The transition
between non-folded and folded portions of the signal is gradual, which responds to the characteristic
soft saturating behavior of p–n junctions. The region where the transfer function folds the input signal
is indicated with a blue arrow in Figure 2b for the case when RL = 50 kΩ. As shown in these Figures,
increasing the value of RL sharpens the shape of the transfer function.

The curves shown in Figure 2a,b indicate a good match between the SPICE simulations and the
proposed digital model. Figure 3 shows the absolute value (in mV) of the difference between both
simulations. From this plot, we can observe that the difference between the curves is indeed very small,
below 1 mV for all values of Vin measured. These small differences are perceptually insignificant and
can be attributed to the simplifications made during the analysis of the circuit and to the way in which
SPICE computes currents flowing through semiconductor devices. For example, SPICE introduces a
small fictitious conductance in parallel with each p–n junction in order to aid the convergence of its
iterative solvers. Additionally, the SPICE diode model will account for the small reverse current that
flows when the voltage across the diode is negative [61].
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Figure 2. Transfer function of the Lockhart wavefolder simulated using: (a) SPICE (Simulation Program
with Integrated Circuit Emphasis); and (b) the proposed virtual analog (VA) model. Different colors
indicate different values of RL.
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Figure 3. Absolute value of the difference between a SPICE simulation of the Lockhart wavefolder and
its proposed VA model.

Figure 4 shows a time-domain view of the output of the proposed model when driven by a 500-Hz
sinusoidal waveform with a peak amplitude of 1 V for two different load resistance values, RL = 10
and 50 kΩ. A sampling rate Fs = 44.1 kHz was used to generate these figures, which are plotted
against their corresponding SPICE simulations. From these results, we can once again observe the
effect of wavefolding and the impact of RL on the overall shape of the output. For high values of RL

the transition region between folded and non-folded values becomes very small and the resulting
waveform is almost discontinuous (see Figure 4b). In the frequency domain, this will translate to
higher harmonic content, similar to that of a square wave oscillator. A more detailed frequency-domain
analysis of the Lockhart circuit is presented in Section 5 of this study.

Figure 4. Time-domain view of the proposed Lockhart wavefolder model plotted against its SPICE
simulation for a 500-Hz sinusoidal input (peak amplitude 1 V) with load resistance: (a) RL = 10 kΩ;
and (b) RL = 50 kΩ.

3. The Serge Middle Wave Multiplier

The second circuit considered in this study is the middle section of the Serge Wave Multipliers
(often abbreviated as the Serge VCM). The Serge VCM is a synthesizer module designed in 1977 by
West Coast designer Serge Tcherepnin, founder of Serge Modular Music Systems. It offered three
separate and independent analog sound processors, namely the “top”, “middle” and “bottom” sections.
As described in an original 1980 Serge product catalog, “The middle section generates a sweep of the
odd harmonics (1, 3, 5, 7, 9, 11 and 13th) when a triangle wave is applied to its input... This module can
be used to explore timbral areas beyond the range of ring modulation because there are more varied
harmonics than the sum and difference tones” [62].
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The middle Serge VCM is essentially a waveshaping circuit consisting of six identical wavefolding
stages arranged in series. An amplifier at the input of the circuit is used to modulate the gain of
the input waveform and control the amount of folds introduced [63]. In this section we focus on
the analysis of a single folding stage. The transfer function and frequency-domain behavior of the
complete system are presented in Section 6. Figure 5 shows the schematic of a single wavefolding
stage in the circuit. Component information is given in Table 3.

-
+

VinVin

VoutVout
R1R1

R2R2

VxVx

R3R3

Figure 5. Schematic of a single folding cell in the middle section of the Serge Wave Multipliers (VCM).
Figure adapted from [63].

Table 3. Component information for the Serge wavefolder circuit shown in Figure 5.

Component Value (kΩ) Component Description

R1 33 Diodes 1N4148 or similar
R2 100 Op-Amp TL072 or similar
R3 100 – –

To derive the transfer function for the Serge wavefolding circuit, we first assume ideal op-amp
behavior and derive an expression for Vout in terms of Vin and Vx, the voltage at the non-inverting
input of the amplifier. This gives us:

Vout = Vx −
R3

R2
(Vin −Vx) . (30)

Since in this case R3 = R2, we can further simplify this result as:

Vout = 2Vx −Vin. (31)

Next, we derive an expression for Vx by considering the subcircuit shown in Figure 6, which is
essentially a diode pair similar to those found in guitar distortion circuits [13,57,58].

VinVin VxVx

IFIF IRIR

R1R1II

Figure 6. Equivalent view of the diode saturator at the non-inverting input of the op-amp in Figure 5.

Applying KVL around the outer loop of the circuit yields the relation

Vin = R1 I + Vx, (32)
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where I is the current through resistor R1. Then, we apply KCL at the output node of the circuit, which
gives us

I = IF − IR. (33)

Combining Equation (32) with Equation (33) and applying Shockley’s diode equation gives us

Vin −Vx

R1
= Is

(
exp

(
Vx

ηVT

)
− 1

)
︸ ︷︷ ︸

IF

− Is

(
exp

(−Vx

ηVT

)
− 1

)
︸ ︷︷ ︸

IR

. (34)

As before, we assume the diodes will not conduct simultaneously and arrive at the piecewise
relationship

Vin −Vx = λR1 Is

(
exp

(
λVx

ηVT

)
− 1

)
, (35)

where once again λ = sgn(Vin). To further simplify this expression we neglect the constant factor
λR1 Is that results from its expansion. This gives us:

Vin −Vx = λR1 Is exp
(

λVx

ηVT

)
. (36)

Next, we rearrange this equation in the Lambert-W form described by Equation (22) by dividing
both sides by exp (λVx/ηVT). This yields

(Vin −Vx) exp
(
−λVx

ηVT

)
= λR1 Is, (37)

which can be solved for Vx as:

Vx = Vin − ληVTW
(

R1 Is

ηVT
exp

(
λVin

ηVT

))
. (38)

As a final step, we insert Equation (38) into Equation (31) to derive a complete expression for the
transfer function of a single wavefolding stage in the Serge middle VCM:

Vout = Vin − 2ληVTW
(

R1 Is

ηVT
exp

(
λVin

ηVT

))
. (39)

Figure 7 shows the transfer function of the circuit, evaluated in MATLAB for values of Vin between
−1.5 and 1.5 V. As before, the model was discretized trivially and is presented against its corresponding
SPICE simulation. Parameter values used in this simulation are compiled in Table 4. The value of
parameters Is and η for the 1N4148 diode were matched to those of its corresponding SPICE model [61].
Figure 7b shows the absolute difference between both simulations. These results indicate a good match
between the models, as the maximum difference was once again found to be below 1 mV.

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1
SPICE
Model

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

Figure 7. (a) Transfer function of a single wavefolding stage in the Serge middle VCM measured using
SPICE and the proposed model; and (b) the absolute difference between these two curves.
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Table 4. Simulation parameters for a single folding stage in the middle Serge Wave Multiplier.

Name Value Name Value

Is 2.52 nA R1 33 kΩ
η 1.752 VT 25.864 mV

Finally, Figure 8 shows the output of the Serge wavefolder for a 500-Hz sinusoidal input.
As expected, the circuit behaves as a wavefolder, folding portions of the input waveform whose
absolute value exceeds approximately 0.3 V. This behavior is similar to that of the Lockhart wavefolder
(cf. Figure 4a).

Figure 8. Time-domain view of the Serge wavefolder model plotted against its SPICE simulation for a
500-Hz sinusoidal input with peak amplitude if 1 V.

3.1. Model Equivalence

Equation (39) shares a close resemblance with Equation (28), the proposed Lockhart wavefolder
model. In fact, both expressions have the same form, which consists of the difference between a portion
of the input signal and an input-dependent nonlinear element. In the case of the Lockhart wavefolder,
when the RL = R/2 Equation (28) simplifies to

Vout = Vin − ληVTW
(

RL Is

ηVT
exp

(
λVin

ηVT

))
, (40)

which is remarkably close to Equation (39), with the only difference being the missing factor of two
outside the Lambert-W function. This factor accounts for the difference between physical parameters
Is and η in each circuit. Figure 9 shows a comparison of the transfer functions for the Lockhart
(RL = 7.5 kΩ) and Serge wavefolders implemented using the parameter values in Tables 2 and 4,
respectively. From this figure, we can observe that the only significant difference between both
transfer functions is in their sharpness at the folding points. This means the Lockhart wavefolder will
introduce sharper folds which will translate into brighter sounds at the output. From this analysis,
it is clear that both circuits result in a similar audio effect, even though they are produced using
different architectures.

Figure 9. Transfer functions for the proposed Serge and Lockhart (RL = 7.5 kΩ) wavefolder models.

4. Wavefolding in the Digital Domain

In the previous sections, the time-domain behavior of the Lockhart and Serge wavefolder models
was examined via trivial discretization of their characteristic transfer functions. In this section, we move

188



Appl. Sci. 2017, 7, 1328

on to consider two implications of virtual analog wavefolding: evaluation of the Lambert-W function
and aliasing.

4.1. Evaluating the Lambert-W Function

A particular challenge of using the Lambert-W function in VA modeling, where real-time operation
is paramount, is that of computational efficiency. Optimizing the evaluation of W() is an active
research topic (see, e.g., [64]). For the case of guitar distortion circuits, Paiva et al. proposed the use
of a simplified iterative method which relies on a lookup table for its initial guess [57]. In this work,
we propose approximating the value of W() directly using Fritsch’s iteration, as suggested in [60].
In order to compute wm, an approximation to W(x), where x ∈ R>0, we iterate over

wm+1 = wm(1 + εm), (41)

where

εm =

(
rm

1 + wm

)(
qm − rm

qm − 2rm

)
(42)

rm = ln
(

x
wm

)
− wm (43)

qm = 2 (1 + wm)

(
1 + wm +

2
3

rm

)
, (44)

and m = 0, 1, 2, . . . , M− 1. The value w0 is an initial guess and M is the number of iterations required
for εm to approximate zero within machine-size floating point precision. The special case W(0) = 0 is
defined separately.

The efficiency of Fritsch’s iteration will depend on the choice of initial guess. As explained in [60],
an initial guess within 10−4 of the solution will yield an approximation to W() accurate to within 10−16

in just one iteration. Figure 10 shows the approximate times required to compute W(x) for a set of
values of x between 10−24 and 10300 using Fritsch’s iteration and the previously-proposed Halley’s
method [50]. This range was chosen as it covers all values of interest. For instance, when Vin = 5 V,
the argument of W() in the Serge wavefolder model will be approximately 1.52 × 1044. All times
were computed by averaging the result of 30 iterations implemented under identical circumstances.
A piecewise approximation was used to compute the initial guess, as described in [60]. From this plot,
we can observe that Fritsch’s iteration outperforms Halley’s method by up to approximately 11 times.
A MATLAB implementation of the Lambert-W function used to perform these measurements can be
found in the accompanying website for this article.

Halley
Fritsch

Figure 10. Averaged processing times required to compute W(x) using Halley’s method and Fritsch’s iteration.

4.2. Aliasing Considerations

As discussed in Section 1, nonlinear waveshaping in the digital domain is susceptible to aliasing
distortion due to its frequency-expanding nature. Wavefolding is no exception to this problem. As an
arbitrary input waveform is folded, new harmonic overtones will be added to the frequency spectrum.
Harmonics at frequencies exceeding half of the sampling rate, or the Nyquist limit, will be reflected into
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the audio baseband as aliases. Aliasing is known to cause unpleasant artifacts—such as beating and
inharmonicity—that cannot be tolerated in a music computing scenario. Oversampling is commonly
employed to mitigate this issue; however, this approach increases the computational requirements of
the system by introducing additional operations.

We propose the use of the first-order antialiasing method presented in [48,49]. This method is
designed to reduce aliasing caused by memoryless waveshaping functions with the form described by
Equation (29). The antialiased output of the waveshaping function is defined as

Vout[n] =
F(Vin[n])− F(Vin[n− 1])

Vin[n]−Vin[n− 1]
, (45)

where F() is the antiderivative of f (), the original transfer function. For the case of the Lockhart
wavefolder defined by Equation (28), the integrated transfer function is defined as

F(Vin) =
α

2
V2

in −
ηVT

2β
[Ψ1(Ψ1 + 2)] , (46)

where
Ψ1 = W (Δ exp (λβVin)) , (47)

and α, β and Δ remain as before. This result showcases an advantageous property of the Lambert-W
function W(); its antiderivative is defined in terms of W() itself. Therefore, computing F() does not
pose a major increase in computational costs with respect to evaluating simply f (). For the case of the
Serge wavefolder defined by Equation (39), the required antiderivative is given by

F(Vin) =
V2

in
2
− (ηVT)

2 [Ψ2(Ψ2 + 2)] , (48)

where

Ψ2 = W
(

R1 Is

ηVT
exp

(
λVin

ηVT

))
. (49)

When Vin[n] ≈ Vin[n− 1], Equation (45) can become ill-conditioned. This is avoided by defining
the special case

Vout[n] = f
(

Vin[n] + Vin[n− 1]
2

)
, (50)

when |Vin[n]− Vin[n− 1]| is smaller than a predetermined threshold [48]. This special case simply
bypasses the antialiased form while compensating for the half-sample latency of the method.

5. Results

This section examines the frequency-domain behavior of the Lockhart and Serge wavefolders
and their proposed antialiased forms. Next, we evaluate the computational costs of the antiderivative
method with respect to oversampling for the case of the Lockhart model.

5.1. Frequency-Domain Behavior

The spectrogram in Figure 11 shows the effect of increasing the value of RL in the Lockhart
wavefolder model for a constant 150-Hz sinusoidal input. As expected, the level of harmonic distortion
introduced by the circuit is proportional to the value of this resistance. Therefore, this parameter can
be used for additional timbral control. It should be noted that due to the antisymmetric nature of
the folding function, the system introduces odd harmonics only for input signals centered around
zero. Since the level of harmonics introduced by the Lockhart wavefolder depends on the choice
of RL, we consider the highest recommended case RL = 50 kΩ as a worst-case scenario in terms of
aliasing distortion.
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Figure 11. Spectrogram of the Lockhart wavefolder under 150-Hz sinusoidal input for values of RL

between 1 and 50 kΩ.

Figure 12 shows the spectrograms of a linear sweep from 20 Hz–5 kHz with peak amplitude of 1 V
processed by the proposed Lockhart and Serge wavefolder models. This frequency range was chosen
as it covers all fundamental frequencies of musical interest. A sample rate Fs = 1 MHz was used to
generate these figures in order to simulate an ideal alias-free continuous-time behavior. These results
will be used as a reference when evaluating the performance of the proposed antialiased forms. From
these spectrograms we can observe how the Lockhart wavefolder is capable of generating brighter
sounds. This perceptual attribute can be varied by changing the value of RL.
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Figure 12. Spectogram for a linear sweep from 20 Hz to 5 kHz processed using: (a) the proposed
Lockhart wavefolder model (RL = 50 kΩ); and (b) the proposed Serge wavefolder model. A sample
rate Fs = 1 MHz was used to simulate analog behavior.

Figure 13a shows the result of processing the same linear sweep using the trivial (i.e., non-antialiased)
Lockhart model at a standard audio rate of Fs = 44.1 kHz. When compared to Figure 12a, we can clearly
observe the high levels of aliasing distortion introduced by the model. This is somewhat ameliorated
in Figure 13b, where the sweep has been processed at a sample rate of Fs = 88.2 kHz (i.e., two-times
oversampling). Figure 13c,d shows the result of processing the sweep using the proposed antialiasing
method at audio rate and with two-times oversampling, respectively. As shown in these spectrograms,
there is a significant reduction in aliasing, particularly below the fundamental frequency. This behavior is
advantageous in music applications because at low frequencies the audibility of aliasing distortion
is only limited by the hearing threshold. On the other end of the spectrum, the masking effects of
harmonics will help suppress the audible effects of high-frequency aliases [65].

The spectrograms in Figure 14a,b show the outcome of processing the 1 V linear sweep with the
proposed Serge wavefolder model at audio rate and with two-times oversampling, respectively. When
compared with Figure 13a,b it is evident that the Serge wavefolder model is less susceptible to aliasing
distortion. This can be attributed to the fact that its transfer function is not as sharp as that of the
Lockhart, particularly when RL = 50 kΩ. Figure 14c,d shows the result of processing the linear sweep
using the antiderivative method at audio rate and with oversampling by two. In this case, operating at
audio rate yields very effective results as there are very few visible aliases left below the fundamental.
When combined with oversampling by two the antiderivative method produces a nearly alias-free
spectrum for the measured frequency range.
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Figure 13. Spectrogram for a 1 V linear sweep from 20 Hz–5 kHz processed with the proposed Lockhart
wavefolder (RL = 50 kΩ) model: (a) at audio rate; (b) using two times oversampling; (c) with
antialiasing at audio rate; and (d) with antialiasing and oversampling by two.
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Figure 14. Spectrogram for a 1 V linear sweep from 20 Hz–5 kHz processed with the proposed Serge
wavefolder model: (a) at audio rate; (b) using two times oversampling; (c) with antialiasing at audio
rate; and (d) with antialiasing and oversampling by two.

The performance of the proposed antialiasing method was further evaluated by computing
the A-weighted noise-to-mask ratio (ANMR) for a set of sinusoidal input signals processed by both
wavefolder models. The ANMR has been previously researched as a perceptually-informed measure
to evaluate the audibility of aliasing distortion [41,65]. The algorithm computes the power ratio in
decibels between the wanted harmonics and aliased components, but takes into account the masking
effects of the former. An A-weighting filter is applied to all signals prior to the evaluation of the ANMR
in order to account for the frequency-dependent sensitivity of hearing for low-level sounds. Signals
with an ANMR value below −10 dB are considered to be completely free from perceivable aliasing.
A detailed account of this method can be found in [65].

Figure 15a compares the measured ANMRs for a set of sinusoidal inputs with fundamental
frequencies between 1 and 5 kHz processed by the Lockhart model at different sampling rates.
The ideal alias-free signals required to compute these values were synthesized using Fourier analysis
and additive synthesis, as suggested in [41]. All signals were downsampled back to audio rate
(i.e., 44.1 kHz) prior to evaluation. A dashed horizontal line has been used to indicate the −10 dB
hearing threshold for aliasing distortion. In Figure 15a we can observe the significant increase in
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signal quality obtained by the proposed antialiasing method when applied to the Lockhart wavefolder,
even when operating at audio rate. Moreover, these measurements show that the performance of the
proposed method, when combined with two-times oversampling, is on par with oversampling by a
factor of 8. For all fundamental frequencies below approximately 4.2 kHz, the ANMR lies below the
−10 dB line. This range can be regarded as sufficient for musical applications if we consider that the
highest fundamental frequency on a standard grand piano is 4186.01 Hz (MIDI note C8).

Figure 15. Measured A-weighted noise-to-mask ratios (ANMRs) for a range of sinusoidal waveforms
processed: (a) using the Lockhart wavefolder model (RL = 50 kΩ) under six different sampling rates;
and (b) using the Serge wavefolder model under two different sampling rates, with and without the
proposed antialiasing method. Values below the −10 dB threshold indicate lack of perceivable aliasing.

Figure 15b shows the measured ANMRs for the Serge wavefolder. When implemented at audio
rate, the output is free from perceivable aliasing for fundamental frequencies up to approximately
2 kHz. These measurements go in accordance with the Spectrogram in Figure 14a, which shows
aliasing is significantly more evident above this frequency. The use of the antiderivative method
yields results comparable to those of oversampling by a factor of two, with all measured fundamental
frequencies below approximately 4.6 kHz lying below the −10 dB aliasing threshold. Overall, these
results indicate the proposed Serge wavefolder model can operate at audio rate with the help of the
antiderivative method, therefore avoiding the need for oversampling.

5.2. Computational Costs

The computational costs of the antialiased Lockhart wavefolder model were measured by porting
the algorithms into C code using the 128-bit long double data type. Table 5 shows the computation
times for a 1-s 100-Hz sinusoidal input processed using the proposed model for different peak
amplitude values. These results were computed by averaging the processing times of one hundred
implementations. All tests were performed under identical circumstances, using a fixed resistance
value of RL = 50 kΩ, the highest recommended value. From these results we can observe that
the complexity of the model does not depend on the input and that the overhead of implementing
the antialiasing method is minimal. When operating at audio rate, the added computation time is
approximately 1 ms for a 1-second simulation. Moreover, these time measurements show that the
antialiased Lockhart model, implemented at a sample rate Fs = 88.2 kHz, is approximately 3.5 times
faster than oversampling by a factor of 8 (i.e., Fs = 352.8 kHz) and nearly twice as fast as oversampling
by a factor of 4. Changing the value of RL did not affect the execution times of the algorithms.
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Table 5. Averaged computation times (in milliseconds) for the proposed Lockhart wavefolder model
(RL = 50 kΩ) implemented in C for a 1-s 100-Hz sinusoidal input sampled at different oversampling
(OS) rates and with different peak amplitude levels.

Amplitude (V)
Audio Rate Audio Rate OSx2 OSx4 OSx8 OSx2

(ms) w/Antialiasing (ms) (ms) (ms) (ms) w/ Antialiasing (ms)

1 11.5 12.5 23.4 46.6 92.9 25.4
5 11.6 12.6 23.3 46.8 92.7 25.3
10 11.5 12.6 23.7 46.7 92.9 25.5
15 11.5 12.7 23.5 46.5 92.9 25.5

For high values of RL, long double representation is necessary to account for the large values that
will result at the argument of the Lambert-W function. For smaller values, 64-bit precision will be
sufficient to accommodate most input levels of interest. For instance, when RL = 7.5 kΩ the signal at
the input of the proposed Lockhart wavefolder model can have a peak amplitude of up to 9 V.

The measurements in Table 5 were conducted by synthesizing all input signals at the target rates.
In practical implementations, oversampling will require additional pre- and post-filtering stages that
will further increase the computational costs of the system. The complexity and costs of these filtering
stages will be directly proportional to the required oversampling factor. This constitutes another
advantage of the proposed antialiasing method.

6. Practical Synthesis Usage

In practical sound synthesis applications, a single folding stage is rarely used, as the timbral variety
it can produce is quite limited. Most analog designs, for example the Intellijel μFold and the
aforementioned Yusynth Metalizer, employ several wavefolding stages arranged in series. The number
of stages varies according to the design, but typically cascades of two to six stages are used.
As mentioned in Section 3, the Serge middle VCM utilizes six identical folding stages. Figure 16
shows a simplified block diagram representation of the Serge middle VCM based on the original
design [63]. Blocks labeled “SWF” correspond to the proposed Serge wavefolder model. An ad hoc
gain factor of four, not present in the original circuit, has been added to compensate for the scaling of
the signal introduced by the cascade of wavefolders.

Vin[n]Vin[n] SWFSWF SWFSWF

GSGS

SWFSWF

dc offsetdc offset

SWFSWF SWFSWF SWFSWF Vout[n]Vout[n]

44

Figure 16. Block diagram representation of the Serge middle VCM. Blocks labeled “SWF” indicate the
Serge wavefolder model.

In cascaded wavefolder structures like the one shown in Figure 16, timbral control can be achieved
in two manners. The first is by adjusting the gain of the input waveform (using GS in this case).
This parameter controls the amount of folds introduced, allowing the overall brightness of the sound
to be varied. It can be modulated in real-time to provide articulation to a sound similar to filtering
in subtractive synthesis or modulation index in FM synthesis. The second way to control timbre
is by adding a dc offset to the input of the wavefolder. This breaks the aforementioned symmetry
of the folding function and introduces even harmonics. When modulated by using, for example, a
low-frequency oscillator, this parameter provides an effect reminiscent of pulse-width modulation.
Figure 17a shows the transfer function of the Serge middle VCM model for the case of zero dc offset.
This plot was generated by defining Vin to have a constant value of 1 V and sweeping through values
of GS between −8 and 8. Figure 17b shows the output of the Serge middle VCM when driven by a
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100-Hz sinusoid with GS = 6. For simplicity, in this section, we assume the range of Vin to be fixed at
±1 V; therefore, all gain modulation is done using GS only.

Figure 17. (a) Transfer function of the proposed Serge middle VCM; and (b) its output when driven by
a 100-Hz sinewave for GS = 6 and zero dc offset.

The spectrogram in Figure 18a shows the effect of increasing GS from 0 to 6 for a 150-Hz sinusoidal
input. This plot effectively depicts the rich harmonic patterns introduced by the system, which are
far more complex than those introduce by traditional waveshaping methods and offer a wide timbral
palette for sound synthesis. The fluctuations in energy at the fundamental and first few harmonics
indicate the gain values at which each new fold is introduced. Figure 17b shows the effect of introducing
a dc offset at the input of the system for a constant 200-Hz sinusoidal input. This result shows how
the use of a dc offset can extend the timbral possibilities of the system even further, by introducing
complex patterns consisting of both even and odd harmonics.
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Figure 18. Spectrogram of: (a) a 150-Hz sinewave with peak amplitude 1 V processed by the proposed
Serge middle VCM with varying gain GS from 0–6; and (b) a 200-Hz sinewave processed with varying
gain GS from 0–3 and dc offset from 0–3 V.

Now, although the Lockhart wavefolder was originally designed to operate as a standalone
unit, it can be adapted into a series topology with relative ease. Here, we propose using the
wavefolding structure shown in Figure 19 to expand the synthesis capabilities of the Lockhart
wavefolder. This design, while not based on any existing circuit, is comparable to that of the Yusynth
Metalizer which also utilizes four Lockhart circuits in series [55]. The following paragraphs describe
the sections of this proposed topology. Its frequency-domain behavior is then examined and compared
with that of the Serge middle VCM.

The blocks labeled “LWF” in Figure 19 correspond to the proposed Lockhart wavefolder model.
In order for this cascade of Lockhart wavefolders to behave as expected, we need to make sure that the
individual folding stages satisfy two criteria. Firstly, the individual folders must provide approximately
unity gain for small input values, i.e., below the folding point, and approximately negative unity gain
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beyond the folding point. Secondly, each stage should start folding at the same point with respect to
its individual input.

tanh()tanh() LPFLPFVin[n]Vin[n] Vout[n]Vout[n]

1/31/3 33

fcfcRLRL

LWFLWF LWFLWF LWFLWF LWFLWF

GLGL

dc offsetdc offset

Figure 19. Block diagram for the proposed VA cascaded Lockhart wavefolder topology. Blocks labeled
“LWF” and “LPF” indicate the Lockart wavefolder model and lowpass filtering, respectively.

We can meet these criteria with the proposed Lockhart model by selecting an appropriate value
for RL and adding static gain stages before and after the folding stages. These gain blocks will also
help compensate for the attenuation introduced by the folding operation. First, we choose a value of
RL for which the Lockhart wavefolder exhibits unity gain for small input values. Having found this
resistance value, the pre- and post-gain stages can be determined by measuring the value of |Vout|
at exactly the folding point. The pre-gain is taken to be approximately this value, and the post-gain
is taken to be its inverse. In Section 3.1, it was shown that for RL = 7.5 kΩ the Lockhart wavefolder
exhibits approximately unity gain below the folding point. This value leads to pre- and post-gains of
approximately 1/3 and 3, respectively.

Figure 20a shows the transfer function of the proposed structure measured at the output of the
post-gain block. We can observe how the folds introduced by this structure are evenly distributed,
unlike those in Figure 17a. As with the Serge middle VCM, timbral control is achieved by modulating
the value of GL and by adding a dc offset. The static gain blocks ensure the amplitude of the folded
output is bounded between approximately ±1 V for values of GL between −10 and 10 (assuming once
more that Vin has a peak amplitude of 1 V). Figure 20b shows the time-domain result of processing a
100-Hz sinusoidal input with the proposed structure for GL = 10 and zero dc offset. In this particular
design, additional timbral control can be achieved by modulating the value of RL.

Figure 20. (a) Transfer function of the proposed cascaded Lockhart wavefolder structure measured
after the post-gain block; and (b) its output when driven by a 100-Hz sinusoidal input for GL = 10 and
zero dc offset.

Lastly, we add two optional blocks. The first is a tanh() function after the post-gain block to
model the behavior of an output buffering stage and to limit the range of the output waveform.
This tanh() block can also be antialiased using the antiderivative method described by Equation (45).
The antiderivative of the tanh() function is given by log(cosh()) [48]. The second optional block is a
static one-pole lowpass filter with a cutoff at fc = 1.3 kHz whose purpose is to act as a simple tone
control. A similar static filtering stage can be found at the output of the Buchla 259 wavefolder [17].
The s-domain transfer function of this filtering stage is defined as

H(s) =
wc

s + wc
, (51)

where wc = 2π fc.
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Finally, we examine the time-varying behavior of the proposed structure by considering the case
of a 150-Hz input sinewave with variable gain GL and dc offset. Figure 21 shows the spectrogram that
results from varying GL from 0 to 15. As expected, the system introduces complex harmonic patterns
similar to those shown in Figure 18a. Likewise, Figure 18b demonstrates the effect of varying GL from
0 to 10 while simultaneously increasing the level of dc offset from 0 to 5 V. This response is comparable
to that of the Serge middle VCM (see Figure 18b).
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Figure 21. Spectrogram of: (a) a 150-Hz sinewave with peak amplitude 1 V processed by the proposed
cascaded Lockhart topology with varying gain GL from 0 to15; and (b) a 200-Hz sinewave processed
with varying gain GS from 0 to 0 and dc offset from 0 to 5 V.

A real-time demo of the proposed Lockhart wavefolder topology implemented using Max/MSP
and Gen is available at http://research.spa.aalto.fi/publications/papers/smc17-wavefolder.

7. Conclusions

In this work, we have explored the behavior of two West Coast synthesizer circuits: the Lockhart
and Serge wavefolders. By means of circuit analysis, we have derived closed-form expressions for the
characteristic transfer functions of both systems. These transfer functions were validated against SPICE
simulations implemented using LTspice. The results obtained indicate a good match between the
proposed models and their corresponding SPICE simulations. In addition to this, we observed that the
behavior of both circuits is very similar, despite the fact that their designs are fundamentally different.

The issue of aliasing caused by wavefolding in the digital domain was treated by incorporating
the first-order antiderivative method. Within the context of the Lockhart wavefolder, it was shown
that the proposed antialiased model is perceptually free from the effects of aliasing distortion when
implemented at a sampling rate of Fs = 88.2 kHz. A thorough evaluation of the proposed Lockhart
model indicates that this configuration yields a signal quality equivalent to that of oversampling by
a factor of eight (i.e., Fs = 352.8 kHz) at nearly a fourth of the computational expenses. For the case
of the Serge wavefolder, the use of the antiderivative method produces an increase in signal quality
equivalent to that of oversampling by a factor of two (i.e., Fs = 88.2 kHz).

Furthermore, a recommended synthesis topology built around the Lockhart model consisting of
four cascaded wavefolding stages, a saturator and a lowpass filter was presented. This topology
was compared against a model of the Serge middle VCM built using six wavefolding stages.
These structures illustrate the capabilities of wavefolding in a synthesis environment. However,
it should be noted that the discussed topologies are not unique, as they can be modified according to
the needs of the particular application. This effectively showcases the flexibility of VA models.

Supplementary Materials: The following are available online at http://research.spa.aalto.fi/publications/
papers/smc17-wavefolder: a real-time Max/MSP demo of the proposed Lockhart wavefolder topology
implemented using Gen~and a MATLAB implementation of the Lambert-W function using Fritsch’s iteration.
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Abstract: Can we measure the impact of the presence of an audience on musicians’ performances?
By exploring both acoustic and motion features for performances in Immersive Virtual Environments
(IVEs), this study highlights the impact of the presence of a virtual audience on both the performance
and the perception of authenticity and emotional intensity by listeners. Gestures and sounds produced
were impacted differently when musicians performed at different expressive intents. The social
factor made features converge towards values related to a habitual way of playing regardless of the
expressive intent. This could be due to musicians’ habits to perform in a certain way in front of
a crowd. On the listeners’ side, when comparing different expressive conditions, only one congruent
condition (projected expressive intent in front of an audience) boosted the participants’ ratings
for both authenticity and emotional intensity. At different values for kinetic energy and metrical
centroid, stimuli recorded with an audience showed a different distribution of ratings, challenging
the ecological validity of artificially created expressive intents. Finally, this study highlights the use
of IVEs as a research tool and a training assistant for musicians who are eager to learn how to cope
with their anxiety in front of an audience.

Keywords: immersive virtual environment; music; performance; expressiveness; authenticity;
emotions; social

1. Introduction

Musical performances are the result of a complex interactive phenomenon between the musicians
and the audience who attends and appreciates them. However, the understanding of this complex
phenomenon could benefit from a scientific approach. First, experiments on musical performances
could bring insights into how to deal with musicians’ performance anxiety, as musicians’ training
involves learning to cope with stress during performances. However, opportunities to train musicians
on how to regulate their emotions during concerts are limited. The most effective method seems to
combine relaxation training with exposure to stressful events (to build up realistic expectations of
what will be felt during performances) and cognitive restructuring (to counteract on self-handicapping
habitual thoughts and attitudes) [1]. In fact, musicians’ experience and ability to resist stress mainly
depends on the opportunities they have during their career to perform during live performances and
having repeated peer sessions. Second, researchers interested in the effect of audiences on musicians
and their body language are usually left with uncontrolled and highly variable situations when they
study concerts. On a practical side, recording physiological and motion capture data during concert can
hinder musicians during concerts, thus impacting the quality of their performance, making concerts
a challenging environment for scientific research.
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Immersive Virtual Environments (IVEs) have been used by researchers to control for these
complex parameters [2]. IVEs allow researchers to create realistic virtual environments with unlimited
configurations that can adapt in real time to users’ behavior. It allows for researchers to control for
environmental parameters such as the audience, the space between different objects, and the lighting.
IVEs offer researchers the opportunity to compute perceptual analyses and create new roads for
computational development. This environment combined with a motion capture set-up was used
in this study to precisely record expressive musical gestures and explore the possible underlying
behavioral mechanisms impacted by the presence of an audience in the context of different levels of
expressive intents.

1.1. Controlling Environmental Variables in Virtual Reality

Musicians develop unique abilities allowing them to adapt their behavior to different social
and environmental contexts [2]. Consequently, it is necessary to control for many parameters when
recording musical performances, e.g., sounds, lights, the presence of other musicians or audience.
Thus IVEs represent a key methodological tool for psychological research as it can provide greater
experimental control, more precise measurements, ease of replication across participants, and high
ecological validity, making it extremely attractive for researchers [3,4]. They can also provide live
feedbacks to participants. Virtual reality and IVEs have been used in research for patients suffering
from post-traumatic stress disorder [5–7] and for treating phobias such as fear of flying [8] and
arachnophobia [9]. The use of such technology has also been proven to be efficient for treating
social phobia and reducing the fear of the public speaking [10,11]. Few studies have considered
using virtual environments in music to study performance anxiety [12,13]. In a recent study by
Williamon et al. (2014), musicians were invited to enter IVEs to train their ability to cope with the
pressure of performing live and rated such tool useful for developing their performance skills and
very realistic. It demonstrated that simulated environments are able to offer a realistic experience of
performance contexts.

1.2. Music Performance: From Sound to Gesture

Communicating and expressing emotions through music is the main reason why people engage in
this activity [14]. Evidence points at a general ability to accurately recognize emotions expressed with
music (e.g., happiness, sadness, and nostalgia) [15–21]. Regardless of cultural background or musical
training, people are generally able to name the intended emotion, providing evidence for an universal
recognition not only of the expression of basic emotion but also of more complex feelings [22–24].
Moreover, many studies have tried to capture the acoustic cues that musicians use to convey specific
emotions (e.g., [19,20,25,26]). These cues involve changes in tempo, sound level, articulation, timbre,
timing, tone attack and decay, intonation, vibrato extent and frequency, accents on particular notes, etc.
On the listener’s side, judgments of intended emotions have been related to specific musical features,
including tempo, articulation, intensity, and timbre [17,27–29]. In comparison, the same observations
can be made for vocal expression and emotional prosody, as specific acoustic cues are predominant in
accurately recognizing the intended emotions [30].

While auditory information plays a crucial role in music communication models, Finnäs (2001)
noticed an increasing interest in the visual component influencing the perception of the musical
performance [31]. While the auditory stream convey emotions in music, its associated movements also
contain significant information. Many musical traditions have included a combination of both audio
and visual stimulations during the experience of music performance [32,33]. Such practice still remains
in our mediatized society [34]. The visual component of the live music performance contributes
significantly to the appreciation of music performance [35,36]. Malin (2008) even concludes that
a “variety of musical properties and types of evaluations can be affected by the visual information” [37].
Although both auditory and visual kinematic cues contribute significantly to the perception of overall
expressiveness, the effect of visual kinematic cues appears to be somewhat stronger [38]. It also
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provides preliminary evidence of cross-modal interactions in the perception of auditory and visual
expressiveness in music performance. The visual component should not be categorized as a marginal
phenomenon in music perception, but as an important factor in the communication of meaning.
This process of cross-modal integration exists for many genre of music, from classical to pop and rock
music [33,36]. All in all, visual kinematic cues have been found to influence the perception of phrasing
and musical tension [33], felt emotion [39] the perception of emotional expression [40], and the overall
appreciation of the performance (for a meta-analysis, see [38]).

A crucial visual cue is related to musicians’ gestures, and how their bodies move during performances.
Two types of movements can be here distinguished: instrumental actions and ancillary/expressive
movements [41,42]. The former are creating sound while the latter have an intrinsic relationship with
the music, representing a link between the music and the expressive intention of the musician [43].
Musical gestures are mainly made to produce sounds but are also used by the musician as means to
convey or express emotions (see review Expressive Gesture [44,45]). Musicians’ expressive gestures
fall into two categories: (i) communicating their expressive intentions; and (ii) expressing their feelings
without intending to communicate them [46]. Gestures contribute to communicate information to
the audience as well as the other musicians. Expressive movements occur frequently in musical
performances, even though these movements are not mandatory for musical performance such as
during training [47]. Furthermore, across performers, these idiosyncratic expressive movements
appear to have some consistencies [42,48]. Finally, Vines, Krumhansl, Wanderley, and Levitin (2006)
concluded that these movements are not randomly performed, but rather are used to communicate
a holistic, musical, expressive unit [33]. Understanding how this unit works is the primary goal of
researchers interested in musical gestures.

1.2.1. Emotional Intensity and Expressive Intents in Musical Performances

With the recognition of emotions in music, the emotional intensity and expressive intents have
been shown to be dependent on auditory cues. In their study on such information, researchers asked
participants to rate the emotional expressiveness of music performances in which timing and intensity
were parametrically manipulated [49]. Emotion judgments monotonically increased with performance
variability, and timing changes were reported to explain more variance in emotional expressiveness
than sound intensity. Changes in tempo and sound intensity in a music performance were also shown
to be correlated with one another, and with real-time ratings of emotional arousal [50]. A systematic
relationship between emotionality ratings, timing, and loudness was highlighted when listeners
rated their moment-to-moment level of perceived emotionality while listening to music performances.
Therefore, the variation of acoustic features associated with the expressive intent of the musician
during a performance appears to have a crucial impact on the emotionality perceived. On the visual
side, Davidson (2005) demonstrated that certain perceptual elements of a musician’s gestures are
sufficient for the audience to identify a musician’s expressive intent [43]. She suggested the use of
three level of expressiveness to be able to study the link between expressive gestures and musical
performance: (1) without expression, labeled as “deadpan”; (2) with normal expression/concert-like,
labeled as “projected”; and (3) with exaggerated expression, labeled as “exaggerated”. Some body
parts have been reported to convey more expressive information, specifically head, shoulders, arms,
and torso [46,48,51–53]. Some motion features have also been associated with expressive motion
such as the quantity of motion [54]. The use of motion features helps understand broad, unrefined
body reaction and gives a first glimpse of the behavioral components of expressive gestures. It might
help understand how musicians cope with the audience [28,55,56]. For example, musician facing
an audience and playing in exaggerated expressive manners could be affected by the amount of
supplementary stress caused by the difficulty of the task. All in all, as mentioned by Shaffer (1992) [57],
“a performer can be faithful to its structure and at the same time have the freedom to shape its moods”
(p. 265). This corresponds to a phenomenon called performance expression. It refers to “the small and
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large variations in timing, dynamics, timbre, and pitch that form the micro-structure of a performance
and differentiate it from another performance of the same music” ([58], p. 118).

1.2.2. Authenticity in Musical Performances

The importance of authenticity is undervalued in emotion research and musical performances.
Authenticity could be an underlying factor of emotion communication through music. For example,
in popular music culture, audio-visual performances convey markers of authenticity, which are
essential for the creation of credibility and emotions [34]. In popular music, as the saying goes, “seeing
is believing” ([34], p. 85). In everyday life, the anthropologist Erving Goffman, one of the great
pioneers of social science research on emotions, affirmed that “We all play emotion theater most of the
time”. Goffman (1982) demonstrated that human beings mostly try to present themselves in the best
light and always stage their daily lives to protect themselves [59]. Faked emotions or the modulation of
the expression of emotions play a central role in self-preservation by keeping inappropriate emotional
expressions to damage self-presentation. Scherer et al. (2013) argued that one should abandon the
idea that, for the sake of complete authenticity, actors should live through “real emotions” on the
stage [60]. Specific emotional expressions are only credible, i.e., appear authentic, when they can
be perceived as generated by appraisals that fit the respective circumstances. This means that in
order to succeed in appearing credible, the artist must: (1) pick the most appropriate set of vocal,
facial and body expression elements for the respective emotions and combine them dynamically,
in a psycho-biologically valid fashion; (2) achieve precise synchronization of the respective processes,
letting the expression unfold in an appropriate fashion; and (3) handle the situational development
appropriately in terms of its dynamic flow [60]. These requirements demand the highest amount of
professionalism when trying to voluntary display a certain dynamic forms of expression. In music
performance, one could also argue that self-awareness is a key feature in the perception of authentic
emotion. Musicians exhibit this awareness at different times with both their technique and their
emotional expressiveness. For example, after sight-reading a new music for some time, as the musician
builds up the motor repertoire required, he or she can focus more on putting more expressive intent into
his/her movements. Once these abilities become automatized, i.e., habits for a specific performance,
they are no longer at the forefront of the individual’s consciousness, the musician will then begin to
bring components of their own personal performance style to the music. This, in turn, contributes to
the perceived authenticity of the ultimate performance.

Even though the view of what is an authentic musical performance is subjective and based on
individual bias, listeners tend to agree that authentic musical performance styles all have a sense of
uniqueness. For example, celebrated pianist Glenn Gould is often noted as an exemplary expressive
musician with an extremely particular performance style. This individuality is one of the hallmarks
of authenticity in performance. Wöllner (2013) suggests that individual artistic expression can
be quantified as such when the performance matches the listener’s “mental prototype” of what
a unique and authentic performance would look and sound like [61]. Overall, it is important to
note that, as implied in the BRECVEMA model regarding “appreciation emotions” in aesthetic
judgment [62], while the “mental prototype” we all use when making judgments about the authenticity
of a performance are socially and culturally driven, the gestures that characterize “authenticity” in
music are extremely useful in analyzing how skilled musicians play “emotion theater” to create moving
and expressively credible performances.

1.3. Goal of This Study

This study aims to investigate the impact of the audience presence on both aspects of a music
performance, from both performers and observers’ views. By studying the difference in acoustic and
motion features at different levels of expressive intent, we want to demonstrate the impact of the
audience presence on the link between the expressive intents performed on the musician’s side and the
emotionality perceived on the observer’s side. We hypothesized that the presence of a virtual audience
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would hinder the movements of the musicians due to the stress generated by the act of performing
live. More specifically, it would reduce the differences in acoustic and motion features between the
different expressive conditions. Consequently, this would also impact the emotional intensity and
authenticity perceived by the audience. The participants should therefore report similar values across
expressive conditions.

To understand such complex phenomenon, we recorded musicians playing with different
expressive manners in front of a virtual crowd or an empty room. We analyzed motion and acoustic
features and measured the impact of our social factor, i.e., the audience. Afterwards, we presented
video clips of musicians playing and asked participants to rate both the emotional intensity and
authenticity perceived. We performed a series of analysis to link these values to the audio and visual
cues explored.

2. Materials and Methods

This experiment was divided into two phases: the recording sessions and the rating experiment.
Both phases were approved by the local ethical committee of the department of Psychology,
University of Geneva. These two phases aim to emphasize, respectively, on the proximal and distal
cues of a Brunswik lens model [63]. This type of model has been shown to be highly representative in
the case of emotional prosody [64] and in music [27].

2.1. Recording Session

Four violinists (3 females, Mage = 22) took part in the recordings. They were paid according to
the ethical protocol. They agreed with the use of the material recorded as stimuli for this study.
Musicians performed inside an Immersive Virtual Environment (IVE) with the use of a system
of three screens, seven TITAN QUAD 3D projectors (Digital Projection Limited, Manchester, UK),
and stereo glasses presenting seamless and perceptively coherent 3D images. Two different virtual
environments were created for this experiment: a room filled with an audience behaving naturally and
attending the concert, and the same room without the audience (Appendix Figure A1). The virtual
audience was composed of high quality agents with realistic facial expressions and behaviors. An agent
is created using four different components: (1) realistic body from a 3D scan of real actors; (2) realistic
body animations created from motion capture footage; (3) accurate and controllable facial expressions
based on FACSGen [65,66]; and (4) expressive behavior and social interaction modeling. The audience
behavior could smoothly change from engaged to disengaged behaviors. Specifically, in the engaged
behavior, the audience attention increases through the convergence of individual gazes focusing
on the musician [67]. On the other hand, a disengaged audience is rendered by allowing the gaze
of avatar to wander around as generally observed in distracted people. Furthermore, for realism
purposes, each avatar had random idle animations of their body while looking at the musician in
order to approximate usually seen fluent behaviors at concerts. To avoid unnatural uniformity, part of
the audience (5–10%) is always modeled in the disengaged condition when the majority is engaged,
and vice versa [68].

Each musician was instructed to play 30-second-long interpretations of Bach’s Partita No. 2 in
D minor, BWV 1004: Sarabande. The part of the musical score to be played was carefully selected to
correspond to complete musical phrases. The excerpts were interpreted according to three selected
expressive intents: deadpan, projected, and exaggerated [43]. The different combinations of conditions
were performed in a pseudo-randomized order by each musician. Six excerpts were recorded for each
of the 4 musicians, adding up to a total of 24 excerpts. The sound was captured using an Olympus
LS-10 (Olympus, Tokyo, Japan). Motion capture data was also recorded for every piece using a
VICON optical motion tracking system (Vicon Motion Systems Ltd., Oxford, UK) composed of eight
Bonita 3 cameras (Vicon Motion Systems Ltd., Oxford, UK). A total of 26 markers were used, covering
selected body parts based on recent literature on the analysis of music performance, i.e., the head,
arms, and torso [48,51–53].
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2.2. Rating Experiment

Forty participants took part in the rating study (19 females). All of them spoke French as first
language. The average age was 23 years (SD = 7.19) and most participants were psychology students.
Participants completed the experiment on a computer. The experiment itself was programmed with
Limesurvey [69] and ran on computers with a screen resolution of 1280× 1024 pixels. Loudness was
set to 50% and could be adjusted by the participant. Headphones were provided. The experiment
lasted ~30 min. The participants had to complete a musical habits questionnaire before starting the
experiment. Stimuli were fully mixed together and presented in a unique random order for each
participant. The participant listened to each stimulus while watching the point light display (PLD) of
the musician’s movements and then answered multiple questions. They rated the emotional intensity
of the stimuli, the authenticity, each of the 9 emotions from the Geneva Emotional Music Scales (GEMS)
(Appendix Figure A3) [24]. All ratings were done on sliders from 0 to 100. The participants were
also asked to rate the importance of each body part in evaluating the general emotional intensity.
This process was repeated for the 24 stimuli per participant.

2.3. Multi-Modal Expressive Behavior Analysis

Drawing upon the recent studies [70,71], we considered two types of expressive body features:
the kinetic energy and the Body Twist Index (BTI). The former helps understand broad, unrefined
body reactions and gives a glimpse of the behavioral components of expressive gestures. The latter
captures body shape related information, i.e., the relative displacement of body parts with respect to
other ones. In the case of violin player, this second feature is critical since the upper and lower parts
of the body are dissociated. Violinists tend to twist their body more while playing compared to cello
players for example.

Listening to music does not involved watching or performing gesture in around 80% of the
time [72]. We therefore computed acoustic features and focused essentially on the metrical centroid [73].
This feature offers a very detailed description of the metrical structure of a musical piece. Time-related
aspect of music is thought to have an impact on the emotional arousal and linked to the notion of
musical entrainment [62]. It is also the preferred acoustic cue used by listener to perceived different
emotions in a piece of music [27]. The metrical centroid is expressed in beat per minutes (BPM).
Low BPM values indicate a prevalence of high metrical level (i.e., slow pulsations corresponding to
whole notes, bars, etc.). High BPM values indicate on the contrary that more elementary metrical levels
predominate (i.e., very fast levels corresponding to very fast rhythmical values). We hypothesized that
these three features could help modeling critical changes in musician’s expressive responses to the
presence of an audience.

Both motion features were calculated using authors’ MATLAB (v2016b, MathWorks, Inc., Natick,
MA, USA, 2016) toolbox (build upon the MoCap Toolbox [74]). The kinetic energy was computed for
every marker of the motion capture data and then averaged across markers and over time. The Body
Twist Index was represented by the average angle between the pelvis and a perpendicular line to
the shoulders, considering only the top quantile (above quantile 75%) of the data for each excerpt.
Both features were z-scored per musician (Figure 1). The acoustic feature was computed with the
MIRToolbox 1.6.1 [75]. It was computed on overlapping frames of the musical excerpts (duration:
1 s, hop: 0.25 s). The average value of the dynamic acoustic feature was also z-scored per musician
(Figure 1).

Linear models were used in this study for modeling the performance of the musicians while linear
mixed models were used to estimate the participants’ ratings. Mixed models offer two advantages:
they incorporate random effects and they allow handling correlated data and unequal variance [76].
When using features as fixed effect in the modeling of participants’ perception of authenticity
and emotional intensity, we divided them into four bins (“0–25”,”25–50”,”50–75”, and “75–100”).
This allowed contrasts to be computed between bins. Comparing model was done using Chi-squared
testing. All p-values were corrected using False Discovery Rate (FDR).
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Figure 1. Motion and acoustic features computed: (A) Chronograph of the motion capture data for
one excerpt played in front of an audience while exaggerating expressive intent. (B) Kinetic energy
associated with movements of all the markers for the excerpt depicted in (A). (C) 3D view of the motion
capture and the line associated with the pelvis and shoulder. (D) Transversal view of the motion
capture data and the angle computed between the line from the pelvis and shoulders. (E) Computation
of Body Twist Index. The angle between the aforementioned lines is computed over the duration of
the excerpt. The Body Twist Index consists of the average of all values comprised in the top quantile
(above the quantile 75 value). (F) Sound profile of the performance of the Scherzo of L. van Beethoven’s
Symphony No.9 in D minor, op.125. (G) Corresponding autocorrelogram with tracking of the metrical
structure. (H) Corresponding metrical centroid curve (Copyright Grandjean, D. et al., 2013 [73]).

3. Results

In this section, we present the analysis of both the proximal and distal components of the
performance, i.e., from both performers’ and observers’ side.

3.1. Proximal Performance Data Analysis

In order to characterize the musical gestures and motion, we computed the z-scored values of all
features (kinetic energy, body twist index, and metrical centroid) recorded during the performance at
different expressive intents with the presence or not of a virtual audience. Based on the marginality
principle, we considered only a linear model containing main effects of both the expressive intents and the
social factor as well as the interaction between these factors (Fkineticenergy(5, 18) = 39.78, p = 4.1× 10−9,
R2

adjusted = 0.89 & FBTI(5, 18) = 6.77, p = 0.001, R2
adjusted = 0.55, Fmetricalcentroid(5, 17) = 16.58,

p = 5.17× 10−6, R2
adjusted = 0.78).
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Both motion features increased with stronger expressive intents in the absence of the social factor
(Figure 2). When the audience was present, while the kinetic energy still increased with the expressive
intent, the difference with the other social condition was not significant. When comparing the presence
and absence of the audience, the impact of the social factor only appeared for the deadpan expressive
condition for the BTI. In this case, the presence of the audience was characterized by a significant
increase in the “twist” angle (FBTI,DP,Social(1, 18) = 5.41, p = 0.032). Noteworthy was the significant
difference for the BTI in the deadpan and exaggerated condition when the audience was present or
not. The BTI value increased in the deadpan condition with the presence of an audience while it was
diminished in the exaggerated condition (FBTI,DP/EXAG,Social(1, 18) = 5.64, p = 0.028).

Bo
dy

 tw
is

t i
nd

ex
 (z

-s
co

re
)

*

**

*

***

*
DP PROJ EXAG

-2

-1

0

1

2

B

Ki
ne

tic
 e

ne
rg

y 
(z

-s
co

re
) ***

**

***
***

***

**
A

DP PROJ EXAG

-2

-1

0

1

2

*** : p < 0.001
** : p < 0.01
* : p < 0.05 -2

-1

0

1

2

M
et

ric
al

 c
en

tr
oi

d 
(z

-s
co

re
)

****

*
*

***

***

DP PROJ EXAG

C

Empty

Audience

Figure 2. Impact of the interaction of the expressiveness and the presence of an audience on body
features (deadpan: DP, projected: PROJ, and exaggerated: EXAG): (A) Kinetic energy (red); (B) Body
Twist Index (green); and (C) Metrical centroid (blue). (* p < 0.05, ** p < 0.01, *** p < 0.001).

In the case of the acoustic feature, metrical centroid, we observed a different pattern when the
virtual audience was absent (Figure 2). When asked to play with a “projected” expressive intent,
the metrical centroid of the performance was significantly greater, meaning that the more elementary
metrical levels predominated (i.e., very fast levels corresponding to very fast rhythmical values). It was
however lower for both the “deadpan” and “exaggerated” conditions, contrarily to the linear increase
observed in motion features. The effect of the social factor was highlighted in the increase of the
beats per minute of the metrical centroid for every expressive intent, especially for the “exaggerated”
condition where this increase was significant (FMetCent,EXAG,Social(1, 17) = 9.24, p = 0.007).

3.2. Distal Participant Data Analysis

The second part of our analyses focused on the ratings given by the participants on both
authenticity and emotional intensity. Across all stimuli, the reliability of our participants’ ratings
was high, α = 0.92 for authenticity and α = 0.93 for intensity. Participants were grouped together
into two categories, music-lovers and musicians, based on their responses for the musical habits
questionnaires [77]. No significant difference in means was observed between groups for both
authenticity (Mmusicians = 43.155, SDmusicians = 25.28, Mmusic−lovers = 46.217, SDmusic−lovers = 23.98,
t(819) = −1.829, p = 0.067, d = −0.12) and intensity (Mmusicians = 42.308, SDmusicians = 24.598,
Mmusic−lovers = 45.314, SDmusic−lovers = 22.059, t(819) = −1.89, p = 0.059, d = −0.13). The difference
between both groups is marginal. Moreover, this difference is trivial due to the very small effect size
associated with the p-value being influenced by the large number of trials (see Cohen’s guideline [78]).
We thus concluded that an analysis could be performed on the dataset as a whole. Responses for
authenticity and emotional intensity were also highly correlated (r = 0.727). This is noticeable with
the relatively similar outcomes of the evaluated models. This next section focuses on separate model
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estimations for both authenticity and emotional intensity. Two different models were implemented.
First, we estimated both dependent variables using both the expressive intent and the social factor.
Second, we explored the impact of the variation of both motion and acoustic features on the perceived
emotional intensity and authenticity.

3.2.1. Interaction Effect of the Expressive Intents and the Presence of an Audience on Perceived
Authenticity and Emotional Intensity

Two models were computed to estimate the influence of the expressive intents and the presence
of an audience, respectively, on the perceived authenticity and the emotional intensity. The first model
estimated the perceived emotional intensity using the different categories of expressive intent and
the presence of an audience, as well as the interaction, as fixed effects, and with the participants
and the musician at play as random effects (a model computing only the main effect and not the
interaction is not presented in this article based on the principle of marginality; however, graphs
related to such model can be found in the Supplementary Materials (Appendix Figure A2)). This model
was significantly better than a model using only the main fixed effects, no interaction, and the same
random effects (intensity: χ2(3, Ntrials = 875) = 12.036, p = 0.01, AIC = 7640.6, BIC = 7688.4,
R2

m = 0.08, R2
c = 0.42). The second model estimated the perceived authenticity using the same

fixed and random effects. This model was significantly better than a model using only the main
fixed effects, no interaction, and the same random effects (authenticity: χ2(3, Ntrials = 875) = 18.026,
p = 8.68× 10−4, AIC = 7738.7, BIC = 7786.4, R2

m = 0.11, R2
c = 0.42).

Both perceived authenticity and emotional intensity increased significantly with every
increment of the musicians’ expressiveness in the case of the absence of audience (intensity:
χ2

EmoInt,DP/Proj,Absence(1, Ntrials = 875) = 22.909, p = 1.69 × 10−6, χ2
EmoInt,Proj/Exag,Absence

(1, Ntrials = 875) = 13.765, p = 0.0002, and authenticity: χ2
Auth,DP/Proj,Absence(1, Ntrials = 875)

= 33.624, p = 6.6 × 10−9, χ2
Auth,Proj/Exag,Absence(1, Ntrials = 875) = 11.009, p = 0.0009)

(Figure 3). When the audience was present, the ratings associated with such stimuli were only
significantly different between the deadpan and projected condition for both dependent variables
(intensity: χ2

EmoInt,DP/Proj,Absence(1, Ntrials = 875) = 40.608, p = 1.8e−10, and authenticity:

χ2
Auth,DP/Proj,Presence(1, Ntrials = 875) = 74.007, p < 2.2× 10−16). The comparison between the presence

and the absence of a virtual audience highlighted significantly different results only for the projected
condition (χ2

EmoInt,Proj,Social(1, Ntrials = 875) = 9.327, p = 0.002 and (χ2
Auth,Proj,Social(1, Ntrials = 875)

= 15.896, p = 6.69× 10−5).
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Figure 3. Interaction of the expressiveness and the presence of an audience on: (A) the perceived
emotional intensity; and (B) the perceived authenticity (deadpan: DP, projected: PROJ, and exaggerated:
EXAG) (** p < 0.01, *** p < 0.001).
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3.2.2. Effect of the Motion and Acoustic Features and the Presence of an Audience

Perceived authenticity and emotional intensity were also modeled using the motion and acoustic
features computed on the material recorded. Three models were computed using, respectively,
one of the three features, energy kinetic, body twist index, and metrical centroid. The interaction of
the features, used here as continuous predictors, and the fixed effect representing the presence of
an audience were used in these models. The participants and the musicians were used as random effects.
When comparing such model with models with no interaction, only the models for kinetic energy and
metrical centroid were significantly improving the model accuracy for both emotional intensity (kinetic
energy: χ2(4, Ntrials = 875) = 13.572, p = 0.011, AIC = 7649.9, BIC = 7707.2, R2

m = 0.8, R2
c = 0.42,

metrical centroid: χ2(4, Ntrials = 875) = 32.133, p = 1.8× 10−6, AIC = 7653.7, BIC = 7711, R2
m = 0.08,

R2
c = 0.43) and authenticity (kinetic energy: χ2(4, Ntrials = 875) = 12.339, p = 0.018, AIC = 7750.3,

BIC = 7817.6, R2
m = 0.105, R2

c = 0.42, metrical centroid: χ2(4, Ntrials = 875) = 35.714, p = 3.31× 10−7,
AIC = 7760.5, BIC = 7817.8, R2

m = 0.10, R2
c = 0.42).

When the musician was playing in front of an empty room, the recorded material
was rated as more emotionally intense and authentic as the kinetic energy was increasing.
The stimuli associated with higher value for kinetic energy were significantly rated higher for
both dependent variables (intensity: χ2

EmoInt,Low/MidKinEn,Absence(1, Ntrials = 875) = 4.368,
p = 0.036, χ2

EmoInt,Mid/HighKinEn,Absence(1, Ntrials = 875) = 4.948, p = 0.026; and authenticity:

χ2
Auth,Low/MidKinEn,Absence(1, Ntrials = 875) = 6.66, p = 0.009, χ2

Auth,Mid/HighKinEn,Absence (1, Ntrials = 875)
= 4.47, p = 0.034) In the case of metrical centroid, mid-range values were rated as more intense
and authentic compared to extreme values (Figure 4). The rating associated with lower values were
significantly different from the high values, while the high values were significantly (and marginally
in the case of authenticity) different from the mid values (intensity: χ2

EmoInt,Low/HighMetCent,Absence

(1, Ntrials = 875) = 16.473, p = 4.9× 10−5, χ2
EmoInt,Mid/HighMetCent,Absence(1, Ntrials = 875) = 5.288,

p = 0.021; and authenticity: χ2
Auth,Low/HighMetCent,Absence (1, Ntrials = 875) = 21.277, p = 3.9× 10−6,

χ2
Auth,Mid/HighMetCent,Absence(1, Ntrials = 875) = 3.773, p = 0.052).

The introduction of an audience in front of the musicians influenced how the musicians
performed (Figure 2) but also brought significant changes in how intense and authentic the
performance was perceived. Those changes highlighted the emergence of a bipartite distribution
of our data instead of the tripartite grouping of the expressive intents (Figure 4). For both
the authenticity and the emotional intensity, the two levels of the bipartite distribution were
significantly different from each another (intensity: χ2

EmoInt,KinEn,Low/HighKinEn,Audience(1, Ntrials = 875)

= 59.625, p = 1.14× 10−14, χ2
EmoInt,Low/HighMetCent,Audience(1, Ntrials = 875) = 36.056, p = 1.91× 10−9,

authenticity: χ2
Auth,Low/HighFeatKinEn,Audience(1, Ntrials = 875) = 81.819, p < 2.2× 10−16,

χ2
Auth,Low/HighMetCent,Audience (1, Ntrials = 875) = 48.918, p = 2.6 × 10−12). The values of the

features at which the separation occurred was calculated. It corresponds at 6.73× 10−3 W for the
kinetic energy (kineticenergymin = 2.207× 10−3 W and kineticenergymax = 0.0304 W) and 308.18 BPM
for the metrical centroid (metricalcentroidmin = 260.48 BPM and metricalcentroidmax = 335.57 BPM).
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Figure 4. Impact of the interaction of the computed features: (A,C) kinetic energy (red); and (B,D)
metrical centroid (blue); and the presence of an audience on: (A,B) the perceived emotional intensity;
and (C,D) the perceived authenticity (deadpan: DP, projected: PROJ, and exaggerated: EXAG) (p < 0.01,
* p < 0.05, ** p < 0.01, *** p < 0.001).

4. Discussion

In this study, we highlighted the changes in motion and acoustic features associated with
different expressive manners. We measured the impact of the presence of virtual audience on those
features. We also modeled the perceived emotional intensity and authenticity associated with different
expressive manners and feature values. We provided scientific evidence about how emotional and
authentic musical performances could be perceived.

4.1. Absence of an audience

We observed that different expressive intents were characterized by different quantities of
body movements, as already demonstrated in the literature, in the absence of an audience [43,54].
Specifically, this study explored two features, the kinetic energy and newly developed body twist index,
highlighting that energetic movements and wider body twists were associated with the magnitude of
the expressive intent. Both features were increasing with the different expressive intents. Generally,
it was revealed that musicians tended to make more movements when playing expressively [54].
This absence of the audience allowed them to fully twist and put more energy into their gestures.
When analyzing the sound produced, the metrical centroid representing the metrical structure of the
piece was also impacted by the different expressive manners. However, its value did not linearly
increase between deadpan, projected and exaggerated expressive intents. The projected expressive
intent was characterized by the highest value for the metrical centroid feature. This highlighted the
predominance of faster notes within the musical piece. The other two expressive intents could be
symbolized by longer notes or slow pulsations. In the case of the deadpan style, this suggested a more
controlled way of playing, while emphasizing on a regular and slower beat. When musicians were
exaggerating, the excessive expressive intent was marked on both slower and faster pulsations at
different timing driving the decrease in the centroid value. As musicians dedicated more attention to
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their expressive intent, they change the way they played a certain piece. This confirms the phenomenon
of performance expression [57,58].

When studying participants’ perception of emotional intensity and authenticity, both ratings were
affected significantly by the different expressive intents in the absence of an audience. Ratings were
significantly increasing with the expressive conditions showing greater emotional intensity and
authenticity in the exaggerated condition. The study of the impact of the physical attributes of the
performance on the perception of emotional intensity and authenticity was conducted using feature
values instead of the well-documented expressive conditions. The perception associated to stimuli
with no virtual audience displayed was in line with the feature values obtained for different expressive
intent. The deadpan (low kinetic energy and low metrical centroid), projected (medium kinetic energy
and high metrical centroid), and exaggerated (high kinetic energy and medium metrical centroid)
conditions are perceived, respectively, as relatively low, medium and high emotional intensity and
authenticity. They showed a tripartite distribution of values which would fit with the three expressive
conditions [43].

Before addressing the impact of the social factor on participants’ ratings, we also noted the high
correlation between authenticity and emotional intensity. Two conclusions can be drawn from such
results. Firstly, the difficulty to discriminate between both ratings might be due to an underlying link
between them. In music, authenticity represents an important part of the performance to make the
listener feel the desired emotions [60]. Secondly, such link should be further untangled with a different
experimental setup. We propose the use of "fake" stimuli, where musicians would fake the emotion
felt and performed. This could for example be conducted by using mood induction procedures for
"real" emotion stimuli while asking musicians to fake the rest of the stimuli. The efficiency of mood
induction procedures have been already proven, especially for negative emotions [79].

4.2. Impact of the Presence of a Virtual Audience

When considering the impact of the presence of an audience on the body features, the data
showed an interaction effect between the social factor and the expressive conditions on the features
values. The only non-significant model is associated to kinetic energy. This expressive cue is
well-known and extensively used by musicians to impact their communication of expressive intents.
The presence of an audience does not significantly impact the well-regulated quantity of movement
during the performance. The use of two other features, body twist index and metrical centroid, brings
complementary information on the modification of such expressive performances when playing in
front of an audience. In both features, the differences between the three expressive conditions tend
to fade away with the presence of an audience. Values for each features converge towards ones for
the projected expressive intent. This phenomenon could be linked to habits [80]. Musicians that are
used to play in front of an audience could be tuning their movements in a certain way to make them
comfortable yet expressive. In this study, the presence of an audience seems to push musicians to use
this set of usual movements. When playing with no expressive intent, the musician could feel the need
to still express some emotions for the audience to enjoy the performance more. Deadpan expressive
intents are usually performed in a controlled environment, e.g., at home, alone while rehearsing, when
the musician’s locus on control is self-oriented. Internals’ performance and stress are proven to be better
controlled, for instance in a work environment [81]. The presence of an audience produces considerable
effect, shifting the locus of control, disrupting the habits associated with this expressive condition
and putting musicians in a more complex, stressful and less controlled situation. To counterbalance
this effect, musicians tend to reach back to a controlled and habitual situation mimicking projected
expressive movements. Similarly, exaggerating expressive intents in front of a crowd could put
musicians in an uncomfortable position where their play seems a bit less authentic. To counterbalance
this effect, musicians will then naturally try to be less expressive and go back to a projected expressive
condition. Consequently, our first hypothesis is therefore validated showing that gestures become less
differentiable across conditions.
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Similar effects could be observed on the emotional intensity and authenticity. Both deadpan and
exaggerated stimuli produce responses similar to the projected conditions when an audience is present
during the musicians’ performances. As the values of the features tend to converge towards the likes
of the projected expressive intent, perception converges towards a uniform value represented by the
projected scenario. This phenomenon is most likely due to the unease felt by the musician when playing
with an unfamiliar expressive style in a habitual situation. The difference in perceptual intensity and
authenticity is the strongest in the case of musicians playing as they would in a concert and facing
a virtual audience. Contrarily to deadpan and exaggerated conditions, the ease coming with the
congruence of the common context—playing in a concert-like fashion and facing an audience—allows
musicians to appear more authentic and communicate their expressive intent better in the process.

When playing in front of an audience, the previously observed tripartite distribution of ratings
disappears. For both emotional intensity and authenticity, the distribution based on the both kinetic
energy and metrical centroid becomes dichotomist. The emergence of such threshold between
perception of high and low emotional intensity/authenticity is a repercussion of the convergence of
exaggerated performances toward a concert-like situation. In front of an audience, both projected
and exaggerated context are evaluated as highly authentic and emotionally intense. The second
hypothesis stating that different expressive conditions would be rated similarly for emotional intensity
and authenticity in the social condition is therefore verified. Furthermore, the calculated threshold
could consequently be used for automatic detection of emotional intensity.

Both models using the expressive conditions and the features values are converging towards one
conclusion: the use of the methodological framework designed by Davidson, 2005, is here showing its
limits in its ecological validity [43]. While the three expressive intents can be communicated accurately
by the musicians to the listeners, the presence of an audience, even a virtual one, during the recordings
reduces the ability to differentiate between such categories of expressive intents. The distinction between
the projected and exaggerated conditions is blurred and we suggest to take into account such modifications
when recording musicians in front of a public, virtual or real. This audience effect on the expressive
intents might here be due to an emergence of non-explicit and involuntary regulation processes in social
context, driving a strong impact of such conditions. Such processes should be further explored.

4.3. Interactive Virtual Environments as a Tool to Study Musical Performances

Our findings supports the use of tools such as IVEs in music research . Previous studies in the
domain of social phobias already recommended the use of IVE for coping with stress generated by the fear
of public speaking [10,11]. Similarly, IVEs could become crucial tools to train musicians to cope with stress
related to live performances and aid learning [2]. As shown in this study, the presence of an audience
impacts both the movements and sounds related to the performance and, consequently, the perception
of listeners. The system developed in this study could also be easily adapted to context-sensitivity
in real-time and could provide feedbacks to the musicians, e.g., when their movements are radically
diverging from a previous recorded performance. It could help musicians understand the impact of stress
on their performance allowing them to develop coping mechanisms for musical performance anxiety.
Finally, research on communication of emotions, alongside with this study and the IVE, might be used by
music teachers to enhance performers’ expressiveness [82,83].

5. Conclusions

To conclude, the presence of an audience generated important variations in both acoustic and
motion features related to music performance. This influence is to be taken into account when
approaching music research during concerts. Immersive Virtual Environments could therefore be
utilized both for research and as a tool for training musicians to cope with audience anxiety.
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Appendix A

A

B

Figure A1. Interactive Virtual Environment: (A) Example views of both social conditions (left, empty; right,
audience); (B) details of a disengaged audience (deadpan: DP, projected: PROJ, and exaggerated: EXAG).

Appendix B

Figure A2. Impact of the expressiveness on (A) the perceived emotional intensity; (B) the perceived
authenticity (deadpan: DP, projected: PROJ, and exaggerated: EXAG).
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Appendix C

Figure A3. Impact of the interaction between the Geneva emotional scale and the expressiveness
(deadpan: DP, projected: PROJ, and exaggerated: EXAG).
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Abstract: Two concepts are presented, extended, and unified in this paper: mobile device
augmentation towards musical instruments design and the concept of hybrid instruments. The first
consists of using mobile devices at the heart of novel musical instruments. Smartphones and tablets
are augmented with passive and active elements that can take part in the production of sound
(e.g., resonators, exciter, etc.), add new affordances to the device, or change its global aesthetics and
shape. Hybrid instruments combine physical/acoustical and “physically informed” virtual/digital
elements. Recent progress in physical modeling of musical instruments and digital fabrication is
exploited to treat instrument parts in a multidimensional way, allowing any physical element to
be substituted with a virtual one and vice versa (as long as it is physically possible). A wide range
of tools to design mobile hybrid instruments is introduced and evaluated. Aesthetic and design
considerations when making such instruments are also presented through a series of examples.

Keywords: mobile music; physical modeling; musical instrument design

1. Introduction

1.1. Physical Interfaces and Virtual Instruments: Remutualizing the Instrument

The concept of musical controller is not new and was perhaps invented when the first organs
were made centuries ago. However, the rise of analog synthesizers in the middle of the twentieth
century, followed a few decades later by digital synthesizers almost systematized the dissociation of
the control-interface and sound-generation in musical instrument design. This gave birth to a new
family of musical instruments known as “Digital Musical Instruments” (DMIs).

Marc Battier defines DMIs from a “human computer interaction (HCI) standpoint” as “instruments
that include a separate gestural interface (or gestural controller unit) from a sound generation unit [1].”
Thus, this feature that originally resulted from logical engineering decisions encouraged by the use of
flexible new technologies, became one of the defining components of DMIs [2,3]. This characteristic
has been extensively commented upon and studied in the New Interfaces for Musical Expression
(NIME) literature. In particular, Marcello Wanderley highlights the fact that “with the separation of
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the DMI into two independent units, basic interaction characteristics of existing instruments may be
lost and/or difficult to reproduce” [4].

Perry Cook provides an exhaustive overview of the risks associated with “abstracting the
controller from the synthesizer,” [5] which might sometimes result in a “loss of intimacy” between
performer and instrument. More specifically, he associates the flaws of “demutualized instruments”
to the lack of haptic feedback (which has been extensively studied [4,6]), the lack of “fidelity in the
connections from the controller to the generator,” and the fact that “no meaningful physics goes on in
the controller.”

This paper addresses the first and the third issues pointed out by Cook and builds upon his work
by providing a framework to design remutualized instruments reconciling the haptic, the physical,
and the virtual.

1.2. Augmented and Acoustically Driven Hybrid Instruments: Thinking DMIs As a Whole

Augmented and acoustically driven hybrid instruments are two special kinds of DMIs combining
acoustical and virtual elements to make sound. By doing so, they often blur the interface/synthesizer
boundary, making them more mutualized and unified as a whole, partly solving the issue presented
in Section 1.1.

Augmented instruments are based on acoustic instruments that are “enhanced” using virtual
elements. Digital technologies can be added to the existing tool-set of instrument designers. There exist
dozens of examples of such instruments in the computer music literature [7–12].

Instead of being based on existing acoustic instruments, acoustically driven hybrid instruments
use acoustic elements (e.g., membrane, solid surfaces, strings, etc.) to drive virtual (i.e., electronic,
digital, etc.) ones. The electric guitar is a good example of this kind of instrument. Acoustically
driven hybrid instruments have been extensively studied and theorized by Roberto Aimi in his PhD
thesis [13]. Their goal is to play to the strengths of physical/acoustical elements (e.g., imperfection,
tangibility, randomness, etc.) and combine them with the infinite possibilities of digital ones.

A specific kind of acoustically driven hybrid instruments uses digital physical models
(see Section 1.5) as the virtual portion of the instrument. The Korg Wavedrum (http://www.korg.com/
us/products/drums/wavedrum_global_edition/—All URLs were verified on 1 December 2017.) is
probably one of the earliest examples of this type of instrument. It uses the sound excitations created
on a physical drum membrane to drive a wide range of physical models. The same technique has been
used as the core of a wide range of other musical instruments [13–17].

By using acoustical elements as an interface, instruments presented in this section implement a
form of “passive haptic feedback,” (i.e., the performer physically feels these elements while actuating
them, even though they are not transmitting information from the virtual simulation via active
force feedback). Moreover, they force the instrument maker to “co-design synthesis algorithms and
controllers” (see Section 1.1 and [5]) reinforcing “the sense of intimacy, connectedness, and embodiment
for the player and audience” [5].

1.3. Mobile Devices as Musical Instruments

Mobile devices (smart-phones, tablets, etc.) have been used as musical instruments for the
past ten years both in the industry (e.g., GarageBand (http://www.apple.com/ios/garageband)
for iPad, Smule’s apps (https://www.smule.com), moForte’s GeoShred (http://www.moforte.com/
geoshredapp), etc.) and in the academic community [18–22]. As stand alone devices they present a
promising platform for the creation of versatile instruments for live music performance. Within a
single entity, sounds can be generated and controlled, differentiating them from most Digital Musical
Instruments (DMIs), and allowing the creation of instruments much closer to “traditional” acoustic
instruments in this respect. This resemblance is pushed even further with mobile phone orchestras
such as MoPhO (http://mopho.stanford.edu) [23], where each performer uses a mobile phone as a
independent musical instrument.
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1.4. Augmenting Mobile Devices

Despite all their qualities, mobile devices were never designed to be used as musical instruments
and lack some crucial elements to compete with their acoustic counterparts. This problem can be
solved by adding prosthetics to the device implementing missing features or enhancing existing ones.
Augmentations can be classified in two categories: passive and active.

Passive augmentations leverage built-in elements of the device (e.g., speaker, microphone, motion
sensors, touchscreen, etc.) to implement new features or improve existing ones. Thus, the scope of this
kind of augmentation is limited to what the host device can offer. There exist many examples of this
type of augmentation ranging from passive amplifiers (e.g., Etsy Amplifiers (https://www.etsy.com/
market/iphone_amplifier)) to smart-phone-based motion synthesizer controller (e.g., AAUG Motion
Synth Controller (http://www.auug.com/)).

Active augmentations rely on electronic elements to add new features to mobile devices. Thus,
they must be connected to it using one of its input or output ports (e.g., headphone jack, USB, etc.).
Unlike passive augmentations, their scope is more or less infinite. Active augmentations range from
external speakers to smart-phone-based musical instruments such as the Artiphon INSTRUMENT 1
(https://artiphon.com/).

1.5. Physical Modeling

Waveguide synthesis has been used since the second half of the 1980’s to model a wide range
of musical instruments [24–27]. The main advantages of this technique are its simplicity and
efficiency while still sounding adequately real. It allows for the accurate modeling of a wide range
of instruments (string and wind instruments, tonal percussion, etc.) just with a single “filtered delay
loop.” This technique was used in many commercial synthesizers in the 1990s such as the Yamaha VL1.

While any instrument part implementing a quasi harmonic series (e.g., a linear string, tube, etc.)
can be modeled with a single digital waveguide, other parts must be modeled using other techniques
such as modal synthesis.

Modal synthesis [28] consists of implementing each mode of a linear system as an exponentially
decaying sine wave. Each mode can then be configured with its frequency, gain, and resonance
duration (T60). Since each harmonic is implemented with an independent sine wave generator,
this technique is a lot more computationally expensive than waveguide modeling. The parameters
of a modal synthesizer (essentially a list of frequencies, gains, and T60s) can be calculated from
the impulse response of a physical object [29] or by using the Finite Element Method (FEM) on a
volumetric mesh [30]. This technique strengthens the link between physical elements and their virtual
counterparts as it allows for the design of an instrument part on a computer using CAD software,
and turn it into a physical model that could also be materialized using digital fabrication. This concept
is further developed in Section 5.2.

Other methods such as finite-difference schemes [31] can be used to implement physical models of
musical instruments and provide more flexibility and accuracy in some cases. However, most of them
are computationally more expensive than waveguide models and modal synthesis. An overview of
these techniques is provided in [27]. Since this paper is targeting the use of physical models on mobile
platforms with a limited computational power, we’re focusing on CPU-efficient techniques.

1.6. 3D Printing, Acoustics, and Musical Instrument Design/Lutherie

3D printing has been used extensively in the past few years to make novel, traditional, acoustic,
digital, etc., musical instruments [32]. While high-end 3D printers can be used to make full size
traditional acoustic musical instruments, cheaper printers are often utilized to augment or modify
existing instruments or to make new ones from random objects. Fast prototyping and iterative design
are at the heart of this new approach to lutherie and musical instrument making in general [33].
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While string instruments are particularly well represented [34–38], many experiments around
wind instruments have been conducted as well [39–41].

1.7. Towards the Hybrid Mobile Instrument

In a previous publication [42], we introduced the concept of “augmented mobile-device” and
we presented the BLADEAXE: an acoustically driven hybrid instrument partly based on acoustic
elements used to generate sound excitations and an iPad. The iPad was used both as a controller,
and to implement virtual physical-model-based elements of the instrument. The BLADEAXE was
the last iteration of a series of mobile-device-based instruments that we developed during the past
four years.

In this paper, we generalize the various concepts introduced by the BLADEAXE and propose a
framework centered around the FAUST programming language [43] to facilitate the design of “hybrid
mobile instruments.” Such instruments combine physical/acoustical elements and physically informed
virtual/digital elements (i.e., physical models) (Throughout this paper, “physical elements” designate
tangible acoustical musical instrument parts and “virtual elements” designate digital, physically
informed (based on a physical model) instrument parts.). Virtual elements are implemented on the
mobile device that serves as the “core” of the system. Modern digital fabrication (e.g., 3D printing,
etc.) is combined to physical modeling techniques to approach musical instrument design in a
multidimensional way. By being standalone, implementing passive haptic feedback, and having a
unified design between the interface and the sound generation unit, we believe that hybrid mobile
instruments solve some of the flaws of DMIs highlighted by Perry Cook [5].

First, we present faust2smartkeyb, a FAUST-based tool facilitating the design of musical
apps and focusing on skill transfer. It serves as the “glue” between the different building blocks of
mobile-device-based hybrid musical instruments (i.e., physically modeled parts, built-in and external
sensors, touchscreen interface, connections to digitally fabricated elements, etc.). Next, we introduce
MOBILE3D, an OpenScad (http://www.openscad.org) library to help design mobile device passive
augmentations using DIY (Do It Yourself ) digital fabrication techniques such as 3D printing and laser
cutting. We give an exhaustive overview of the taxonomy of the various types of passive augmentations
that can be implemented on mobile devices through a series of examples and we demonstrate how
they leverage existing components on the device. Next, a framework based on the Teensy board
(https://www.pjrc.com/teensy/) and FAUST, to design and make active mobile device augmentations
is presented and evaluated through the results of a workshop. Finally, the concept of “acoustically
driven hybrid mobile instrument” is studied and a framework centered around the FAUST Physical
Modeling Toolkit to design virtual and physical musical instrument parts is presented.

2. faust2smartkeyb: Facilitating Musical Apps Design and Skill Transfer

Making musical apps for mobile devices involves the use and mastery of various technologies,
standards, programming languages, and techniques ranging from low level C++ programming for
real-time DSP (Digital Signal Processing) to advanced interface design. This adds up to the variety of
the platforms (e.g., iOS, Android, etc.) and of their associated tools (e.g., Xcode, Android Studio, etc.),
standards, and languages (e.g., JAVA, C++, Objective-C, etc.).

While there exists a few tools to facilitate the design of musical apps such as libpd, [44]
Mobile CSOUND [45], and more recently JUCE (https://www.juce.com) and SuperPowered
(http://superpowered.com), none of them provides a comprehensive cross-platform environment
for musical touchscreen interface design, high level DSP programming, turnkey instrument physical
model prototyping, built-in sensors handling and mapping, MIDI and OSC compatibility, etc.

Earlier works inspired the system presented in this section and served as its basis. faust2ios
and faust2android [46] are command line tools to convert FAUST codes into fully working Android
and iOS applications. The user interface of apps generated using this system corresponds to the
standard UI specifications provided in the FAUST code and is made out of sliders, buttons, groups,
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etc. More recently, faust2api, a lower level tool to generate audio engines with FAUST featuring
polyphony, built-in sensors mapping, MIDI and OSC (Open Sound Control) support, etc., for a wide
range of platforms including Android and iOS was introduced [47].

Despite the fact that user interfaces better adapted to musical applications (e.g., piano keyboards,
(x, y) controllers, etc.) can replace the standard UI of a FAUST object in apps generated by
faust2android [48], they are far from providing a generic solution to capture musical gestures
on a touchscreen and to allow for musical skill transfer.

In this section, we present faust2smartkeyb (faust2smartkeyb is now part of the FAUST

distribution.), a tool based on faust2api to facilitate the creation of musical apps for Android and
iOS. The use of musical instrument physical models in this context and in that of acoustically driven
hybrid instrument design (see Section 5) is emphasized. Similarly, allowing the design of interfaces
implementing skill transfer from existing musical instruments is one of our main focus.

2.1. Apps Generation and General Implementation

faust2smartkeyb works the same way than most FAUST targets/“architectures” [49] and can
be called using the faust2smartkeyb command-line tool:

faust2smartkeyb [options] faustFile.dsp

where faustFile.dsp is a FAUST file declaring a SMARTKEYBOARD interface (see Section 2.2) and
[options] is a set of options to configure general parameters of the generated app (e.g., Android vs.
iOS app, internal number of polyphony voices, etc.). An exhaustive list of these options is available in
the faust2smartkeyb documentation [50].

The only required option is the app type (-android or -ios). Unless specified otherwise
(e.g., using the -source option), faust2smartkeyb will compile the app directly in the terminal
and upload it on any Android device connected to the computer if the -install option is
provided. If -source is used, an Xcode (https://developer.apple.com/xcode/) or an Android Studio
(https://developer.android.com/studio) project is generated, depending on the selected app type
(see Figure 1).

faust2smartkeyb is based on faust2api [47] and takes advantage of most of the features
of this system. It provides polyphony, MIDI, and OSC support and allows for SMARTKEYBOARD

interfaces to interact with the DSP portion of the app at a very high level (see Figure 1).
faust2smartkeyb inherits some of faust2api’s options. For example, an external audio

effect FAUST file can be specified using -effect. This is very useful to save computation when
implementing a polyphonic synthesizer [47]. Similarly, -nvoices can be used to override the
default maximum number of polyphony voices (twelve) of the DSP engine generated by faust2api
(see Figure 1).

The DSP engine generated by faust2api is transferred to a template Xcode or Android Studio
project (see Figure 1) and contains the SMARTKEYBOARD declaration (see Section 2.2). The interface
of the app, which is implemented in JAVA on Android and in Objective-C on iOS, is built from this
declaration. While OSC support is built-in in the DSP engine and works both on iOS and Android,
MIDI support is only available on iOS thanks to Rt-MIDI [47] (see Figure 1). On Android, raw MIDI
messages are retrieved in the JAVA portion of the app and “pushed” to the DSP engine. MIDI is
only supported since Android-23 so faust2smartkeyb apps wont have MIDI support on older
Android versions.
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Figure 1. Overview of faust2smartkeyb.

2.2. Architecture of a Simple faust2smartkeyb Code

The SMARTKEYBOARD interface can be declared anywhere in a FAUST file using the
SmartKeyboard{} metadata:

declare interface "SmartKeyboard{

// configuration keys

}";
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It is based on the idea that any touchscreen musical interface can be implemented as a set of
keyboards with different key numbers (like a table with columns and cells, essentially). Various
interfaces ranging from drum pads, isomorphic keyboards, (x, y) controllers, wind instruments
fingerings, etc. can be implemented using this paradigm. The position of fingers in the interface can
be continuously tracked and transmitted to the DSP engine both as high level parameters formatted
by the system (e.g., frequency, note on/off, gain, etc.) or low level parameters (e.g., (x, y) position,
key and keyboard ID, etc.). These parameters are declared in the FAUST code using default parameter
names (see [50] for an exhaustive list).

By default, the screen interface is a polyphonic chromatic keyboard with thirteen keys whose
lowest key is a C5 (MIDI note number 60). A set of key/value pairs can be used to override the
default look and behavior of the interface (see [50] for an exhaustive list). Code Listing 1 presents
the FAUST code of a simple app where two identical keyboards can be used to control a simple
synthesizer based on a band-limited sawtooth wave oscillator and a simple exponential envelope
generator. Since MIDI support is enabled by default in apps generated by faust2smartkeyb and
that the SMARTKEYBOARD standard parameters are the same as the one used for MIDI in FAUST,
this app is also controllable by any MIDI keyboard connected to the device running it. A screen-shot
of the interface of the app generated from Code Listing 1 can be seen in Figure 2.

declare interface "SmartKeyboard{

’Number of Keyboards’:’2’

}";

import("stdfaust.lib");

f = nentry("freq",200,40,2000,0.01);

g = nentry("gain",1,0,1,0.01);

t = button("gate");

envelope = t*g : si.smoo;

process = os.sawtooth(f)*envelope <: _,_;

Listing 1: Simple SMARTKEYBOARD FAUST app.

Figure 2. Simple SMARTKEYBOARD interface.

2.3. Preparing a FAUST Code for Continuous Pitch Control

In faust2smartkeyb programs, pitch is handled using the freq and bend standard
parameters [50]. The behavior of the formatting of these parameters can be configured using
specific keys.
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freq gives the “reference frequency” of a note and is tied to the gate parameter. Every time
gate goes from 0 to 1 (which correlates with a new note event), the value of freq is updated. freq
always corresponds to an integer MIDI pitch number which implies that its value is always quantized
to the nearest semitone.

Pitch can be continuously updated by using the bend standard parameter. bend is a ratio that
should be multiplied to freq. E.g.,:

f = nentry("freq",200,40,2000,0.01);

bend = nentry("bend",1,0,10,0.01) : si.polySmooth(t,0.999,1);

freq = f*bend;

The state of polyphonic voices is conserved in memory until the app is ended. Thus, the value of bend
might jump from one value to another when a new voice is activated. polySmooth() is used here to
smooth the value of bend to prevent clicks, only after the voice started. This suppresses any potential
“sweep” that might occur if the value of bend changes abruptly at the beginning of a note.

2.4. Configuring Continuous Pitch Control

The Rounding Mode configuration key has a significant impact on the behavior of freq, bend,
and gate. When Rounding Mode = 0, pitch is fully “quantized,” and the value of bend is always
1. Additionally, a new note is triggered every time a finger slides to a new key, impacting the value of
freq and gate. When Rounding Mode = 1, continuous pitch control is activated, and the value
of bend is constantly updated in function the position of the finger on the screen. New note events
updating the value of freq and gate are only triggered when fingers start touching the screen. While
this mode might be useful in some cases, it is hard to use when playing tonal music as any new note
might be “out of tune.”

When Rounding Mode = 2, “pitch rounding” is activated and the value of bend is rounded
to match the nearest quantized semitone when the finger is not moving on the screen. This allows
for generated sounds to be “in tune” without preventing slides, vibratos, etc. While the design
of such a system has been previously studied [51], we decided to implement our own algorithm
for this (see Figure 3). touchDiff is the distance on the screen between two touch events for a
specific finger. This value is smoothed (sTouchDiff) using a unity-dc-gain one pole lowpass filter
in a separate thread running at a rate defined by configuration key Rounding Update Speed.
Rounding Smooth corresponds to the pole of the lowpass filter used for smoothing (0.9 by default).
A separate thread is needed since the callback of touch events is only called when events are received.
If sTouchDiff is greater than Rounding Threshold during a certain number of cycles defined by
Rounding Cycles, then rounding is deactivated and the value of bend corresponds to the exact
position of the finger on the screen. If rounding is activated, the value of bend is rounded to match the
nearest pitch of the chromatic scale.

touchDiff
Rounding Thread

while(on){
sTouchDiff = smooth(touchDiff);
if(sTouchDiff >= roundingThresh &&

moveCount >= roundingCycles){
rounding = false;

}
else{
rounding = true;
moveCount = 0;

}
if(touchDiff >= 1) moveCount++;
sleep(roundingUpdateSpeed);

}

rounding

UI Thread

if(rounding){ 
send quantized bend

}
else{
send raw bend

}

SmartKeyboard

Figure 3. SMARTKEYBOARD pitch rounding “pseudo code” algorithm.
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2.5. Using Specific Scales

A wide range of musical scales (see [50] for an exhaustive list), all compatible with the system
described in Section 2.4, can be used with the SMARTKEYBOARD interface and configured using
the Keyboard N - Scale key. When other scales than the chromatic scale are used, keys on the
keyboard all have the same color.

Custom scales and temperaments can be implemented using the Keyboard N - Scale

configuration key. It allows us to specify a series of intervals to be repeated along the keyboard
(not necessarily at the octave). Intervals are provided as semitones and can have a decimal value.
For example, the chromatic scale can be implemented as:

Keyboard N - Scale = {1}

Similarly, the standard equal-tempered major scale can be specified as:

Keyboard N - Scale = {2,2,1,2,2,2,1}

A 5-limit just intoned major scale (rounded to the nearest 0.01 cents) could be:

Keyboard N - Scale = {2.0391,1.8243,1.1173,2.0391,2.0391,1.8243,1.1173}

Equal-tempered Bohlen-Pierce (dividing 3:1 into 13 equal intervals) would be:

Keyboard N - Scale = {146.304230835802}

Alternatively, custom scales and pitch mappings can be implemented directly from the FAUST

code using some of the lower level standard parameters returned by the SMARTKEYBOARD interface
(e.g., x, y, key, keyboard, etc.).

2.6. Handling Polyphony and Monophony

By default, the DSP engine generated by faust2api has twelve polyphony voices.
This parameter can be overridden using the -nvoices option when executing the faust2smartkeyb
command. This system works independently from the monophonic/polyphonic configuration of the
SMARTKEYBOARD interface. Indeed, even when a keyboard is monophonic, a polyphonic synthesizer
might still be needed to leave time for the release of an envelope generator, for example.

The Max Keyboard Polyphony key defines the maximum number of voices of polyphony of a
SMARTKEYBOARD interface. Polyphony is tied to fingers present on the screen, in other words, one
finger corresponds to one voice. If Max Keyboard Polyphony = 1, then the interface becomes
“monophonic.” The monophonic behavior of the system is configured using the Mono Mode key [50].

2.7. Other Modes

In some cases, both the monophonic and the polyphonic paradigms are not adapted. For example,
when implementing an instrument based on a physical model, it might be necessary to use a single voice
and constantly run it. This might be the case of a virtual wind instrument where notes are “triggered”
by some of the continuous parameters of the embouchure and not by discrete events such as the one
created by a key. This type of system can be implemented by setting the Max Keyboard Polyphony

key to zero. In that case, the first available voice is triggered and ran until the app is killed. Adding
new fingers on the screen will have no impact on that and the gate parameter wont be sent to the DSP
engine. freq will keep being sent unless the Keyboard N - Send Freq is set to zero. Since this
parameter is keyboard specific, some keyboards in the interface might be used for pitch control while
others might be used for other types of applications (e.g., X/Y controller, etc.).

It might be useful in some cases to number the standard x and y parameters in
function of the fingers present on the screen. This can be easily accomplished by setting the
Keyboard N - Count Fingers key to one. In that case, the first finger to touch the screen will
send the x0 and y0 standard parameters to the DSP engine, the second finger x1 and y1, and so on.
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2.8. Example: Violin App

Implementation strategies greatly varies from one instrument to another, so giving a fully
representative example is impossible. Instead, we focus on a specific implementation of a violin here
where strings are excited by an interface independent from the keyboards used to control their pitch.
This illustrates a “typical” physical model mapping where the MIDI concept of note on/off event is not
used. More examples are available on-line (Making Faust-Based Smartphone Musical Instruments On-Line
Tutorial: https://ccrma.stanford.edu/~rmichon/faustTutorials/#making-faust-based-smartphone-
musical-instruments).

Unlike plucked string instruments, bowed string instruments must be constantly excited to
generate sound. Thus, parameters linked to bowing (i.e., bow pressure, bow velocity, etc.) must be
continuously controlled. The faust2smartkeyb code presented in Listing 2 is a violin app where
each string is represented by one keyboard in the interface. An independent surface can be used to
control the bow pressure and velocity. This system is common to all strings that are activated when
they are touched on the screen. This virtual touchscreen interface could be easily be substituted by a
physical one using the technique presented in Section 4.

The SMARTKEYBOARD configuration declares 5 keyboards (4 strings and one control surface
for bowing). “String keyboards” are tuned like on a violin (G, D, A, E) and are configured to be
monophonic and implement “pitch stealing” when a higher pitch is selected. Bow velocity is computed
by measuring the displacement of the finger touching the 5th keyboard (bowVel). Bow pressure just
corresponds to the y position of the finger on this keyboard. Strings are activated when at least one
finger is touching the corresponding keyboard (as(i)).

The app doesn’t take advantage of the polyphony support of faust2smartkeyb and a single
voice is constantly ran after the app is launched (Max Keyboard Polyphony = 0). Four virtual
strings based on a simple violin string model (violinModel()) implemented in the FAUST Physical
Modeling Library (see Section 5.2) are declared in parallel and activated in function of events happening
on the screen.

declare interface "SmartKeyboard{

’Number of Keyboards’:’5’,’Max Keyboard Polyphony’:’0’,

’Rounding Mode’:’2’,’Send Fingers Count’:’1’,

’Keyboard 0 - Number of Keys’:’19’,

[...same for next 3 keyboards...]

’Keyboard 4 - Number of Keys’:’1’,

’Keyboard 0 - Lowest Key’:’55’,’Keyboard 1 - Lowest Key’:’62’,

’Keyboard 2 - Lowest Key’:’69’,’Keyboard 3 - Lowest Key’:’76’,

’Keyboard 0 - Send Keyboard Freq’:’1’,

[...same for next 3 keyboards...]

’Keyboard 4 - Send Freq’:’0’,’Keyboard 4 - Send Key X’:’1’,

’Keyboard 4 - Send Key Y’:’1’,’Keyboard 4 - Static Mode’:’1’,

’Keyboard 4 - Key 0 - Label’:’Bow’

}";

////////////////////// SMARTKEYBOARD PARAMETERS /////////////////////////

kbfreq(0) = hslider("kb0freq",220,20,10000,0.01);

kbbend(0) = hslider("kb0bend",1,0,10,0.01);

[...same for the 3 next keyboards...]

kb4k0x = hslider("kb4k0x",0,0,1,1) : si.smoo;

kb4k0y = hslider("kb4k0y",0,0,1,1) : si.smoo;

kbfingers(0) = hslider("kb0fingers",0,0,10,1) : int;

[...same for the 3 next keyboards...]

///////////////////////// MODEL PARAMETERS //////////////////////////////
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sl(i) = kbfreq(i)*kbbend(i) : pm.f2l : si.smoo; // strings lengths

as(i) = kbfingers(i)>0; // activate string

bowPress = kb4k0y; // could also be controlled by an external controller

bowVel = kb4k0x-kb4k0x’ : abs : *(8000) : min(1) : si.smoo;

bowPos = 0.7; // could be controlled by an external controller

//////////////////////// ASSEMBLING MODELS //////////////////////////////

process = par(i,4,pm.violinModel(sl(i),bowPress,bowVel*as(i),bowPos))

:> _;

Listing 2: faust2smartkeyb app implementing a violin with an independent interface for bowing.

Alternatively, the bowing interface could be removed and the bow velocity could be calculated
based on the displacement on the y axis of a finger on a keyboard, allowing one to excite the string
and control its pitch with a single finger. However, concentrating so many parameters on a single
gesture tends to limit the affordances of the instrument. The code presented in Listing 2 could be easily
modified to implement this behavior.

Mastering a musical instrument, should it be fully acoustic, digital, or hybrid, is a time consuming
process. While skill transfer can help reduce its duration, we do not claim that the instruments
presented in this paper are faster to learn than any other type of instrument. Virtuosity can be afforded
by the instrument, but it still depends on the musicianship of the performer.

This section just gave an overview of some of the features of faust2smartkeyb. More details
about this tool can be found in its documentation [50] as well as on the corresponding on-line tutorials.

3. Passively Augmenting Mobile Devices

In this section, we try to generalize the concept of “passively augmented mobile device” briefly
introduced in Section 1.4 and we provide a framework to design this kind of instrument. We focus
on “passive augmentations” leveraging existing components of hand-held mobile devices in a very
lightweight, non-invasive way (as opposed to “active augmentation” presented in Section 4 that require
the use of electronic components). We introduce MOBILE3D, an OpenScad (http://www.openscad.org)
library to help design mobile device augmentations using DIY digital fabrication techniques such as
3D printing and laser cutting. We give an exhaustive overview of the taxonomy of the various types
of passive augmentations that can be implemented on mobile devices through a series of examples
and we demonstrate how they leverage existing components on the device. Finally, we evaluate our
framework and propose future directions for this type of research.

3.1. Mobile 3D

MOBILE3D is an OpenScad library facilitating the design of mobile device augmentations.
OpenScad is an open-source Computer Assisted Design (CAD) software using a high level functional
programming language to specify the shape of any object. It supports fully parametric parts, permitting
users to rapidly adapt geometries to the variety of devices available on the market.

MOBILE3D is organized in different files that are all based on a single library containing
generic standard elements (basics.scad) ranging from simple useful shapes to more advanced
augmentations such as the ones presented in the following sections. A series of device-specific files
adapt the elements of basics.scad and are also available for the iPhone 5, 6, and 6 Plus and for the
iPod Touch. For example, a generic horn usable as a passive amplifier for the built-in speaker of a
mobile device can be simply created with the following call in OpenScad:

include <basics.scad>

SmallPassiveAmp();

To generate the same object specifically for the iPhone 5, the following code can be written:

include <iPhone5.scad>
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iPhone5_SmallPassiveAmp();

Finally, the shape of an object can be easily modified either by providing parameters as
arguments to the corresponding function, or by overriding them globally before the function is
called. If this approach is chosen, all the parts called in the OpenScad code will be updated,
which can be very convenient in some cases. For example, the radius (expressed in millimeters
here) of iPhone5_SmallPassiveAmp() can be modified locally by writing:

include <iPhone5.scad>

iPhone5_SmallPassiveAmp(hornRadius=40);

or globally by writing:

include <iPhone5.scad>

iPhone5_SmallPassiveAmp_HornRadius = 40;

iPhone5_SmallPassiveAmp();

MOBILE3D is based on two fundamental elements that can be used to quickly attach any prosthetic
to the device: the top and bottom holders (see Figure 4). They were designed to be 3D printed using
elastomeric material such as NinjaFlex R© (https://ninjatek.com) in order to easily install and remove
the device without damaging it. They also help reducing printing duration, which is often a major
issue during prototyping. These two holders glued to a laser-cut plastic plate form a sturdy case,
whereas completely printing this part would take much more time.

Figure 4 presents an example of an iPhone 5 augmented with a passive amplifier. The bottom
holder and the horn were printed separately and glued together, but they could also have been printed
as one piece. In this example, the bottom and top holders were printed with PLA (PolyLactic Acid),
which is a hard plastic, and they were mounted on the plate using Velcro R©. This is an alternative
solution to using NinjaFlex R© that can be useful when augmenting the mobile device with large
appendixes requiring a stronger support.

The passive amplifier presented in Figure 4 was made by overriding the default parameters of the
iPhone5_SmallPassiveAmp() function:

include <lib/iPhone5.scad>

iPhone5_SmallPassiveAmp_HornLength = 40;

iPhone5_SmallPassiveAmp_HornRadius = 40;

iPhone5_SmallPassiveAmp_HornDeformationFactor = 0.7;

iPhone5_SmallPassiveAmp();

An exhaustive list of all the elements available in MOBILE3D can be found on the project webpage
(https://ccrma.stanford.edu/~rmichon/mobile3D).

Passive Amplifier iPhone 5

Velcro

Bottom Holder

Top Holder

Figure 4. iPhone 5 augmented with a horn used as passive amplifier on its built-in speaker (instrument
by Erin Meadows).
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3.2. Leveraging Built-In Sensors and Elements

Mobile devices host a wide range of built-in sensors and elements that can be used to control
sound synthesizers (see Section 2). While the variety of available sensors and elements differs from
one device to another, most smart-phones have at least a touch screen, a loudspeaker, a microphone,
and some type of motion sensor (accelerometer, gyroscope, etc.). In this section, we’ll focus on these
four elements and we’ll demonstrate how they can be “augmented” for specific musical applications.

3.2.1. Microphone

While the built-in microphone of a mobile device can simply serve as a source for any kind of
sound process (e.g., audio effect, physical model, etc.), it can also be used as a versatile, high rate
sensor [52]. In this section, we demonstrate how it can be augmented for different kinds of uses.

One of the first concrete uses of the built-in microphone of a mobile device to control some sound
synthesis process was done with Smule’s Ocarina [22]. There, the microphone serves as a blow sensor
by measuring the gain of the signal created when blowing on it to control the gain of an ocarina
sound synthesizer.

MOBILE3D contains an object that can be used to leverage this principle when placed in front
of the microphone (see Figure 5). It essentially allows for the performer to blow into a mouthpiece
mounted on the device. The air-flow is directed through a small aperture inside the pipe, creating a
sound that can be recorded by the microphone and analyzed in the app using standard amplitude
tracking techniques. The air-flow is then sent outside of the pipe, preventing it from ever being in
direct contact with the microphone.

Mobile Device

Mic Mouthpiece
(where the performer can blow)

Nails of different lengths and diameters change
the harmonic content of the sound generated

by the air flow inside the tube

Figure 5. Mouthpiece for mobile device built-in mic (on the left) and frequency-based blow sensor for
mobile device built-in microphone (on the right).

The acquired signal is much cleaner than when the performer blows directly onto the mic, allowing
us to generate precise control data. Additionally, condensation never accumulates on the mic which
can help extend the duration of its life, etc.

The built-in microphone of mobile devices has already been used as a data acquisition system to
implement various kinds of sensors using frequency analysis techniques [53]. MOBILE3D contains
an object using similar principles that can be used to control some of the parameters of a synthesizer
running on a mobile device. It is based on a conical tube (see Figure 5) where dozens of small tines of
different length and diameter are placed inside it. These tines get thicker towards the end of the tube
and their length varies linearly around it. When the performer blows inside the tube, the resulting
airflow hits the nails, creating sounds with varying harmonic content. By directing the airflow towards
different locations inside the tube, the performer can generate various kind of sounds that can be
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recognized in the app using frequency analysis techniques. The intensity and the position of the
airflow around the tube can be measured by keeping track of the spectral centroid of the generated
sound, and used to control synthesis parameters.

The same approach can be used with an infinite number of augmentations with different
shapes. While our basic spectral-centroid-based analysis technique only allows us to extract two
continuous parameters from the generated signal, it should be possible to get more of them using more
advanced techniques.

3.2.2. Speaker

Even though their quality and power has significantly increased during the last decade, mobile
device built-in speakers are generally only good for speech, not music. This is mostly due to their small
size and the lack of a proper resonance chamber to boost bass, resulting in a very curvy frequency
response and a lack of power.

There exists a wide range of passive amplifiers on the market to boost the sound generated by the
built-in speakers of mobile devices, also attempting to flatten their frequency response (see Section 1.4).
These passive amplifiers can be seen as resonators driven by the speaker. In this section, we present
various kinds of resonators that can be connected to the built-in speaker of mobile devices to amplify
and/or modify their sound.

MOBILE3D contains multiple passive amplifiers of various kinds that can be used to boost the
loudness of the built-in speaker of mobile devices (e.g., see Figure 4). Some of them were designed
to maximize their effect on the generated sound [54]. Their shape can vary greatly and will usually
be determined by the type of the instrument. For example, if the instrument requires the performer
to make fast movements, a small passive amplifier will be preferred to a large one, etc. Similarly,
the orientation of the output of the amplifier will often be determined by the way the performer holds
the instrument, etc. These are design decisions that are left up to the instrument designer.

3D printed musical instrument resonators (e.g., guitar body, etc.) can be seen as a special case of
passive amplifiers. MOBILE3D contains a few examples of such resonators that can be driven by the
device’s built-in speakers. While they don’t offer any significant advantage over “standard” passive
amplifiers like the one presented in the previous paragraph, they are aesthetically interesting and
perfectly translate the idea of hybrid instrument developed in Section 5.

Another way to use the signal generated by the built-in speakers of mobile devices is to
modify it using dynamic resonators. For example, in the instrument presented in Figure 6,
the performer’s hand can filter the generated sound to create a wah effect. This can be very expressive,
especially if the signal has a dense spectral content. This instrument is featured in the teaser video
(https://www.youtube.com/watch?v=dGBDrmvG4Yk) of the workshop presented in Section 3.4.

Waveguide driving the output of the built-in 
speaker to the mouth of the performer

Figure 6. Hand resonator (on the left) and mouth resonator (on the right) for mobile device
built-in speaker.
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Similarly, the sound generated by the built-in speaker is sent to the mouth of the performer in the
instrument presented in Figure 6. The sound is therefore both modulated acoustically and through the
embedded synthesis and touch-screen. The same result can obviously be achieved by directly applying
the mouth of the performer to the speaker, but the augmentation presented in Figure 6 increases the
effect of the oral cavity on the sound through a passive wave guide.

3.2.3. Motion Sensors

Most mobile devices have at least one kind of built-in motion sensor (e.g., accelerometer,
gyroscope, etc.). They are perfect to continuously control the parameters of sound synthesizer and
have been used as such since the beginning of mobile music (see Section 1.3).

Augmentations can be made to mobile devices to direct and optimize the use of this type of sensor.
This kind of augmentation can be classified in two main categories:

• augmentations to create specific kinds of movements (spin, swing, shake, etc.),
• augmentations related to how the device is held.

Figure 7 presents a “sound toy” where a mobile device can be spun like a top. This creates a slight
“Leslie effect”, increased by the passive amplifier. Additionally, the accelerometer and gyroscope data
are used to control the synthesizer running on the device. This instrument is featured in the teaser
video of the workshop presented in Section 3.4.

Mobile Device

Passive amplifier optimizing 
the Leslie effect

Hemisphere to
spin the device

Figure 7. Mobile-device-based top creating a “Leslie” effect when spun.

Another example of motion-sensor-based augmentation is presented in Figure 8 and described
with more details in Section 3.4. It features a smart-phone mounted on a bike wheel where, once again,
the gyroscope and accelerometer data are used to control the parameters of a synthesizer running on
the device. Similarly, a “rolling smart-phone” is presented in Figure 8 and described in Section 3.4.
MOBILE3D contains a series of templates and functions to make this kind of augmentation.

Augmentations leveraging built-in sensors related to how the device is held are presented in more
detail in Section 3.3.
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Wheels Embedded passive amplifier

Figure 8. Rolling mobile phone with phasing effect by Revital Hollander (on the left) and mobile
device mounted on a bike wheel by Patricia Robinson (on the right).

3.2.4. Other Sensors

Most mobile devices host built-in sensors that exceed the ones presented in the previous sections
and are not supported yet in MOBILE3D. For example, built-in cameras can be used as very versatile
sensors [52], and a wide range of passive augmentations could be applied to them to “customize” their
use for musical ends. We plan to support more sensors in MOBILE3D in the future.

3.3. Holding Mobile Devices

Mobile devices were designed to be held in a specific way, mostly so that they can be used
conveniently both as a phone and to use the touch-screen (see Section 1.3). Passive augmentations can
be designed to hold mobile devices in different ways to help carry out specific musical gestures, better
leveraging the potential of the touch-screen and of built-in sensors.

More generally, this type of augmentation is targeted towards making mobile-device-based
musical instruments more engaging and easier to play.

In this section, we give a brief overview of the different types of augmentations that can be made
with MOBILE3D to hold mobile devices in different ways.

3.3.1. Wind Instrument Paradigm

One of the first attempts to hold a smart-phone as a wind instrument was Ocarina, where the
screen interface was designed to be similar to a traditional ocarina. The idea of holding a smart-phone
as such is quite appealing since all fingers (beside the thumbs) of both hands perfectly fit on the screen
(thumbs can be placed on the other side of the device to hold it). However, this position is impractical
since at least one finger has to be on the screen in order to hold the device securely. The simple
augmentation presented in Figure 9 solves this problem by adding “handles” on both sides of the
device so that it can be held using the palm of the two hands, leaving all fingers (including the thumbs)
free to carry out any action. Several functions and templates are available in MOBILE3D to design
these types of augmentations.
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Thumb ring Laser cut handles

Figure 9. Thumb-held mobile-device-based musical instrument (on the left) and smart-phone
augmented to be held as a wind instrument (on the right).

3.3.2. Holding the Device with One Hand

MOBILE3D contains several functions and templates to hold mobile devices with one hand,
leaving at least four fingers available to perform on the touch-screen. This way to hold the device
opens up a wide range of options to fully take advantage of the built-in motion sensors and easily
execute free movements. Additionally, the performer can decide to use two devices in this case (one
for each hand).

The instrument presented in Figure 9 uses one of MOBILE3D’s ring holders to hold the device
with only the thumb.

3.3.3. Other Holding Options

There are obviously many other options to hold mobile-devices to carry out specific musical
gestures. For example, one might hold the device in one hand and perform it with the other, etc.
In any case, we believe that MOBILE3D provides enough options to cover the design needs for most
musical instruments.

3.4. More Examples and Evaluation

To evaluate MOBILE3D and the framework presented in this paper, we organized a
one-week workshop last summer at Stanford’s Center for Computer Research in Music and
Acoustics (CCRMA) called The Composed Instrument Workshop: Intersections of 3D Printing and
Digital Audio for Mobile Platforms (Workshop Web-Page: https://ccrma.stanford.edu/~rmichon/
composedInstrumentWorkshop/). We taught the seven participants how to make basic musical
smart-phone apps using faust2smartkeyb (see Section 2) and how to use MOBILE3D to design
mobile device augmentations. They were free to make any musical instrument or sound toy for their
final project. Some examples of these instruments are presented in Figures 4 and 8.

In only one week, participants mastered all these techniques and designed and implemented
very original instrument ideas. This helped us debug and improve MOBILE3D with new objects
and features.

4. Actively Augmenting Mobile Devices

While the non-invasive and lightweight character of passive mobile device augmentations
(see Section 3) contributes to the overall physical coherence of hybrid instruments, their simplicity
can sometimes be a limitation as they remain tied to what built-in active elements of the device
(e.g., touchscreen, microphone, speaker, etc.) can offer. Inversely, active augmentations can take any
form and can be used to implement almost anything that mobile devices don’t have. While their level
of complexity can be more or less infinite, we praise for an incremental approach where instrument
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designers should first take advantage of elements already available on mobile devices, and then use
active augmentations parsimoniously to implement what they could not have done otherwise.

In this section, we provide a framework/method to make active augmentations for mobile devices,
towards mobile hybrid musical instrument design (see Section 5). Unlike passive augmentations,
the scope of active augmentations is almost infinite and any musical controller could probably fit in
this category. Thus, we will only consider the tools to carry out this task and let design or aesthetic
considerations up to the instrument maker.

4.1. Active Augmentation Framework

In our view, mobile device augmentations should supplement existing built-in sensors
(e.g., touchscreen, motion sensors, etc.) and remain as lightweight and confined as possible. Indeed,
there’s often not much to add to a mobile device to turn it into a truly expressive musical instrument.
NUANCE [55] is a good example of that since it adds a whole new level of expressivity to the
touchscreen, simply by using a few sensors. On the other hand, unlike passive augmentations,
active augmentations can be used to add an infinite number of features.

In this section, we introduce a framework for designing active mobile device augmentations
supplementing sensors already available on the device. This allows us to keep our augmentations
lightweight and powered by the device, preserving the standalone aspect and partly the physical
coherence of the instrument.

To keep our augmentations simple, we propose to use a wired solution for transmitting sensor
data to the mobile device, which also allows us to power the augmentation. Augmentations requiring
an external power supply (e.g., battery) are discarded and are not considered in the frame of this work.

MIDI is a standard universal way to transmit real-time musical (and non-musical) control data
to mobile devices, so we opted for this solution. Teensys such the Teensy 3.2 (https://www.pjrc.
com/store/teensy32.html) are micro-controllers providing built-in USB MIDI support, making them
particularly well suited to be used in our framework.

Teensyduino (https://www.pjrc.com/teensy/teensyduino.html) (Teensy’s IDE), comes with a
high level library part of Bounce.h for sending MIDI over USB. The code presented in Listing 3
demonstrates how to use this library to send sensor values on a MIDI “Continuous Controller” (CC).

#include <Bounce.h>

void setup() {

}

void loop() {

int sensorValue = analogRead(A0);

int midiCC = 10; // must match the faust configuration

int midiValue = sensorValue*127/1024; // value between 0-127

int midiChannel = 0;

usbMIDI.sendControlChange(midiCC,midiValue,midiChannel); // send!

delay(30); // wait for 30ms

}

Listing 3: Simple Teensy code sending sensor data in MIDI format over USB.

Once uploaded to the microcontroller, the Teensy board can be connected via USB to any
MIDI-compatible mobile device (iOS and Android) to control some of the parameters of a
faust2smartkeyb app (see Section 2). This will require the use of a USB adapter, depending
on the type of USB plug available on the device. MIDI is enabled by default in faust2smartkeyb

apps and parameters in the FAUST code can be mapped to a specific MIDI CC by using a metadata
(see Section 2.2):

frequency = nentry("frequency[midi:ctrl 10]",1000,20,2000,0.01);
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Here, the frequency parameter will be controlled by MIDI messages coming from MIDI CC 10
and mapped to the minimum (20 Hz for MIDI CC 10 = 0) and maximum (2000 Hz for MIDI CC 10 = 127)
values defined in the nentry declaration. Thus, if this parameter was controlling the frequency of
an oscillator and that the Teensy board running the code presented in Listing 3 was connected to the
mobile device running the corresponding faust2smartkeyb app, the sensor connected to the A0 pin
of the Teensy would be able to control the frequency of the generated sound.

Other types of MIDI messages (e.g., sendNoteOn()) can be sent to a faust2smartkeyb app
using the same technique.

Most of the parameters controlled by elements on the touchscreen or by built-in sensors of the
app presented in Section 2.8 could be substituted by external sensors or custom interfaces using the
technique described above.

4.2. Examples and Evaluation: CCRMA Mobile Synth Summer Workshop

The framework presented in Section 4.1 was evaluated within a two weeks workshop at CCRMA
at the end of June 2017 (https://ccrma.stanford.edu/~rmichon/mobileSynth: this webpage contains
more details about the different instruments presented in the following subsections.). It was done
in continuity with the FAUST Workshop taught the previous years (https://ccrma.stanford.edu/
~rmichon/faustWorkshops/2016/) and the Composed Instrument Workshop presented in Section 3.4.
During the first week (Mobile App Development for Sound Synthesis and Processing in Faust), participants
learned how to use FAUST through faust2smartkeyb and made a wide range of musical apps.
During the second week (3D Printing and Musical Interface Design for Smart-phone Augmentation),
they designed various passive (see Section 3) and active augmentations using the framework presented
in Section 4.1. They were encouraged to first use elements available on the device (e.g., built-in
sensors, touchscreen, etc.) and then think about what was missing to their instrument to make it more
expressive and controllable.

This section presents selected works from students of the workshop.

4.2.1. Bouncy-Phone by Casey Kim

Casey Kim designed Bouncy-Phone, an instrument where a 3D printed spring is “sandwiched”
between an iPhone and an acrylic plate hosting a set of photo-resistors (see Figure 10). The interface
on the touchscreen implements two parallel piano keyboards controlling the pitch of a monophonic
synthesizer. The instrument is played by blowing onto the built-in microphone, in a similar way than
Ocarina. The x axis of the accelerometer is mapped to the frequency of a lowpass filter applied to the
generated sound. The spring is used to better control the position of the device in space in order to
finely tune the frequency of the filter. The shades created by the two hands of the performer between
the phone and the acrylic plate are used to control the parameters of various audio effects.

4.2.2. Something Else by Edmond Howser

Edmond Howser designed Something Else, an instrument running a set of virtual strings based
on physical models from the FAUST Physical Modeling Library (see Section 5.2). The touchscreen of
an iPhone can be used to trigger sound excitations of different pitches. A set of three photoresistors
were placed in 3D printed cavities (see Figure 10) that can be covered by the fingers of the performer
to progressively block the light, allowing for a precise control of the parameters associated to them.
These sensors were mapped to the parameters of a set of audio effects applied to the sounds generated
by the string physical models. The instrument is meant to be held as a trumpet with three fingers on
top of it (one per photoresistor) and fingers from the other hand on the side, on the touchscreen.

4.2.3. Mobile Hang by Marit Brademann

Mobile Hang is an instrument based on an iPhone designed by Marit Brademann. A 3D printed
prosthetic is mounted on the back of the mobile device (see Figure 10). It hosts a Teensy board as well
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as a set of force sensitive resistors that can be used to trigger a wide range of percussion sounds based
on modal physical models of the FAUST Physical Modeling Library (see Section 5.2) with different
velocities. A large hole placed in the back of the tapping surface allows for the performer to hold
the instrument with the thumb of his right hand. The left hand is then free to interact with the
different (x, y) controllers on the touchscreen controlling the parameters of various effects applied to
the generated sounds. Mobile Hang also takes advantage of the built-in accelerometer of the device to
control additional parameters.

Photoresistors FSRs

Figure 10. Bouncy-Phone by Casey Kim, Something Else by Edmond Howser, and Mobile Hang by Marit
Brademann (from left to right).

5. Articulating the Hybrid Mobile Instrument

Current technologies allow one to blur the boundary between the physical/acoustical and the
virtual/digital world. Transforming a physical object into its virtual approximation can be done easily
using various techniques (see Section 1.5). On the other hand, recent progress in digital fabrication,
with 3D printing in particular (see Section 1.6), allows us to materialize 3D virtual objects. Even though
3D printed acoustic instruments don’t compete yet with “traditionally made” ones, their quality keeps
increasing and they remain perfectly usable.

This section generalizes some of the concepts used by the BLADEAXE [42], where sound excitations
made by physical objects are used to drive physical-model-based virtual elements. It allows for
instrument designers to arbitrarily choose the nature (physical or virtual) of the different parts of
their creations.

We introduce a series of tools completing the framework presented in this paper to approach
musical instrument design in a multimodal way where physical acoustical parts can be “virtualized”
and vice versa. First, we give an overview of our framework to design mobile hybrid instruments.
We provide a set of rules to help the instrument designer to make critical decisions about the nature
(acoustical or digital) of the different parts of his instrument in the context of mobile devices. Then we
introduce the FAUST Physical Modeling Library (FPML), “the core” of our framework, that can be used
to implement a wide range of physical models of musical instruments to be run on a mobile device
(e.g., using faust2smartkeyb). Finally, we demonstrate how custom models can be implemented
using MESH2FAUST [56] and FMPL.

5.1. Framework Overview

5.1.1. From Physical to Virtual

In Section 1.5, we gave an overview of different physical modeling techniques that can
be used to make virtual versions of physical objects designed to generate sound (i.e., musical
instruments). The framework presented in this section is a bit more limiting and focuses on specific
modeling techniques that are flexible and computationally cheap (which is a crucial feature for
mobile development).
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Various linearizable acoustical physical objects can be easily turned into modal physical models
using their impulse response [28]. Pierre-Amaury Grumiaux et al. implemented ir2faust [57],
a command-line tool taking an impulse response in audio format and generating the corresponding
FAUST physical model compatible with the FAUST Physical Modeling Library presented in Section 5.2.
This technique is commonly used to make signal models of musical instrument parts (e.g., acoustic
resonators such as violin and guitar bodies, etc.).

Modal physical models can also be generated by carrying out a finite element analysis (FEM) on a
3D volumetric mesh. Meshes can be made “from scratch” or using a 3D scanner, allowing musical
instrument designers to make virtual parts using a CAD model. MESH2FAUST [56] can be used to
carry out this type of task. Modal models generated by this tool are fully compatible with the FAUST

Physical Modeling Library presented in Section 5.2. While this technique is more flexible and allows
us to model elements “from scratch,” generated models are usually not as accurate as the one deduced
from the impulse response of a physical object that faithfully reproduce its harmonic content.

Even though it is tempting to model an instrument in its whole using its complete graphical
representation, better results are usually obtained using a modular approach where each part of the
instrument (e.g., strings, bridge, body, etc.) are modeled as single entities. The FAUST Physical
Modeling Library introduced in Section 5.2 implements a wide range of ready-to-use musical
instrument parts. Missing elements can then be easily created using MESH2FAUST or ir2faust.
Various examples of such models are presented in Sections 5.2.2 and 5.2.3.

5.1.2. From Virtual to Physical

3D printing can be used to materialize virtual representation of musical instrument parts under
certain conditions. Thus, most elements provided to MESH2FAUST [56] can be printed and turned into
physical objects.

5.1.3. Connecting Virtual and Physical Elements

Standard hardware for digitizing mechanical acoustic waves and vice versa can be used to connect
the physical and virtual elements of a hybrid instrument (see Figure 11). Piezos (contact microphones)
can capture mechanical waves on solid surfaces (e.g., guitar body, string, etc.) and microphones
mechanical air waves (e.g., in a tube, etc.). Captured signals can be digitized using an analog to digital
converter (ADC). Inversely, digital audio signals can be converted to analog signals using a digital
to analog converter (DAC) and then to mechanical waves with a transducer (for solid surfaces) or a
speaker (for the air).

In some cases, a unidirectional connection is sufficient as waves travel in only one direction
and are not (or almost not) reflected. This is the case of the BLADEAXE [42] where sound excitations
(i.e., plucks) are picked up using piezos and transmitted to virtual strings. This type of system
remains simple and works relatively well as the latency of the DAC or the ADC doesn’t impact the
characteristics the generated sound.

On the other hand, a bidirectional connection (see Section 5.2.1) might be necessary in other cases.
Indeed, reflection waves play a crucial role in the production of sound in some musical instruments
such as woodwinds. For examples, connecting a physical clarinet mouthpiece to a virtual bore will
require the use of a bidirectional connection in order for the frequency of vibration of the reed to
be coupled to the tube it is connected to. This type of connection extends beyond the instrument to
the performer that constantly adjusts its various parameters in function of the generated sound [5].
However, implementing this type of system can be very challenging as the DAC and the ADC will
add latency, which in the case of the previous example will artificially increase the length of the virtual
bore. Thus, using low latency DACs and ADCs is crucial when implementing this type of systems
sometimes involving the use of active control techniques [58,59].

More generally, the use of high-end components with a flat frequency response is very important
when implementing any kind of hybrid instruments. Also, hardware can become very invasive in
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some cases, and it is the musical instrument designer’s responsibility to find the right balance between
all these parameters.

Bidirectional Connection

ADC
Physical
Element

Piezo/Microphone

Transducer/Speaker DAC

Virtual
Element

Figure 11. Bidirectional connection between virtual and physical elements of a hybrid instrument.

5.1.4. Adapting This Framework to Mobile Devices

Beyond this theoretical modularity (keeping in mind that audio latency can be a limiting factor
in some cases) where any part of mobile hybrid instruments can either be physical or virtual, some
design “templates” are more efficient than others. Here, we give some guidelines/rules to restrain the
scope of our framework to optimize its results when making mobile hybrid instruments.

In the context of augmented mobile instruments where standalone aspects and lightness are
key factors, the number of physical/acoustical elements of hybrid instruments must be scaled down
compared to what is possible with a desktop-based system. Indeed, transducers are large and heavy
components requiring the use of an amplifier, which itself needs a large power source other than the
mobile device battery, etc. Similarly, multichannel ADCs and DACs can take a fair amount of space
and will likely need to be powered with an external battery/power supply.

Even though applications generated with faust2smartkeyb (see Section 2) are fully compatible
with external USB ADC/DACs, we believe that restraining hybrid mobile instruments to their built-in
ADC/DACs helps preserve their compactness and playability.

Beyond the aesthetic and philosophical implications of hybrid instruments (which are of great
interest but are not the object of this paper), their practical goal is to leverage the benefits of
physical and virtual elements to combine them. In practice, the digital world is more flexible and
allows us to model/approximate many physical elements. However, even with advanced sensor
technologies, it often fails to capture the intimacy (see Section 1.1) between a performer and an acoustic
instrument allowing us to directly interact with its sound generation unit (e.g., plucked strings, hand
drum, etc.) [13].

Thus, a key factor in the success of hybrid mobile instruments lies in the use of a
physical/acoustical element as the direct interface for the performer, enabling passive haptic feedback
and taking advantage of the randomness and unpredictability of acoustical elements (see Section 1.2).
In other words, even though it is possible to combine any acoustical element with any digital
one, we encourage instrument designers to use acoustical excitations to drive virtual elements
(see Figure 12), implementing the concept of “acoustically driven hybrid instruments” presented
in Section 1.2. While the single analog input available on most mobile devices allows for the connection
of one acoustical element, having access to more independent analog inputs would significantly
expend the scope of the type of instruments implementable with our framework. This remains one of
its main limitation.

Physical Element Piezo ADC
Virtual Element(s)
(Physical Model(s))

DAC Audio Out

Augmented Mobile Device

Figure 12. “Typical” acoustically driven mobile hybrid instrument model.
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5.2. FAUST Physical Modeling Library

More than just a set of functions, the FAUST Physical Modeling Library provides a comprehensive
environment to implement physical models of musical instrument parts fully compatible with the
hybrid instrument paradigm described in Section 5. This section summarizes its various features.

5.2.1. Bidirectional Block-Diagram Algebra

In the physical world, waves propagate in multiple dimensions and directions across the
different parts of musical instruments. Thus, coupling between the constituting elements of an
instrument sometimes plays an important role in its general acoustical behavior. In Section 5.1.3,
we highlighted the importance of bidirectional connections to implement coupling between the
performer, the physical, and the virtual elements of a hybrid instrument. While these types of
connections happen naturally between physical elements, it is necessary to implement them when
connecting virtual elements together.

The block-diagram algebra of FAUST allows us to connect blocks in a unidirectional way (from
left to right) and feedback signals (from right to left) can be implemented using the tilde (~) diagram
composition operation:

process = (A : B) ~ (C : D) ;

where A, B, C, and D are hypothetical functions with a single argument and a single output.
The resulting FAUST-generated block diagram can be seen in Figure 13.

A B

CD

process

Figure 13. Bidirectional construction in FAUST using the tilde diagram composition operation.

In this case, the D/A and the C/B couples can be seen as bidirectional blocks/functions that could
implement some musical instrument part. However, the FAUST semantics doesn’t allow them to be
specified as such from the code, preventing the implementation of “bidirectional functions.” Since this
feature is required to create a library of physical modeling elements, we had to implement it.

Bidirectional blocks in the FAUST Physical Modeling Library all have three inputs and outputs.
Thus, an empty block can be expressed as:

emptyBlock = _,_,_;

The first input and output correspond to left-going waves (e.g., C and D in Figure 13), the second
input and output to right-going waves (e.g., A and B in Figure 13), and the third input and output can
be used to carry any signal to the end of the algorithm. As we’ll see in Section 5.2.2, this can be useful
when picking up the sound at the middle of a virtual string, for example.

Bidirectional blocks are connected to each other using the chain primitive which is part of
physmodels.lib. For example, an open waveguide (no terminations) expressed as:

waveguide(nMax,n) = par(i,2,de.fdelay4(nMax,n)),_;

where nMax is the maximum length of the waveguide and n its current length, could be connected to
our emptyBlock:

foo = chain(emptyBlock : waveguide(256,n) : emptyBlock) ;
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Note the use of fdelay4 in waveguide, which is a fourth order fractional delay line [60].
The FAUST compiler is not able yet to generate the block diagram corresponding to the previous

expression in an organized bidirectional way (see Section 5.3). However, a “hand-made” diagram can
be seen in Figure 14.

emptyBlock waveguide(256,g) emptyBlock
Right
Going
Waves

Left
Going
Waves

Output

Figure 14. Bidirectional construction in FAUST using the chain primitive.

The placement of elements in a chain matters and corresponds to their order in the physical
world. For example, for a set of hypothetical functions implementing the different parts of a violin,
we could write:

violin = chain(nuts : string : bridge : body);

The main limitation of this system is that it introduces a one sample delay in both directions for
each block in the chain due to the internal use of ~ [49]. This has to be taken into account when
implementing certain types of elements such as a string or a tube.

Terminations can be added on both sides of a chain using lTermination(A,B) for a left-side
termination and rTerminations(B,C) for a right-side termination where B can be any bidirectional
block, including a chain, and A and C are functions that can be put between left and right-going
signals (see Figure 15).

lTermination(A,B)

A
B

C
B

rTermination(B,C)

Figure 15. lTermination(A,B) and rTermination(B,C) in the FAUST Physical Modeling Library.

A signal x can be fed anywhere in a chain by using the in(x) primitive. Similarly, left
and right-going waves can be summed and extracted from a chain using the out primitive
(see Code Listing 4).

Finally, a chain of blocks A can be “terminated” using endChain(A) which essentially removes
the three inputs and the first two outputs of A.

Assembling a simple waveguide string model with “ideal” rigid terminations is simple using
this framework:

string(length,pluckPosition,excitation) = endChain(wg)

with{

maxStringLength = 3; // in meters

lengthTuning = 0.08; // adjusted "by hand"

tunedLength = length-lengthTuning;

nUp = tunedLength*pluckPosition; // upper string segment length

nDown = tunedLength*(1-pluckPosition); // lower string segment length

lTerm = lTermination(*(-1),basicBlock); // phase inversion

rTerm = rTermination(basicBlock,*(-1)); // phase inversion
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stringSegment(maxLength,length) = waveguide(nMax,n)

with{

nMax = maxLength : l2s; // meters to samples

n = length : l2s/2; // meters to samples

};

wg = chain(lTerm : stringSegment(maxStringLength,nUp) :

in(excitation) : out : stringSegment(maxStringLength,nDown) :

rTerm); // waveguide chain

};

Listing 4: “Ideal” string model with rigid terminations.

In this case, since in and out are placed next to each other in the chain, the position of excitation
and the position of the pickup are the same as well.

5.2.2. Assembling High Level Parts: Violin Example

FPML contains a wide range of ready-to-use instrument parts and pre-assembled models.
An overview of the content of the library is provided in the FAUST libraries documentation [60].
Detailing the implementation of each function of the library would be interesting, however this section
focuses on one of its models: violinModel (see Code Listing 5) which implements a simple bowed
string connected to a body through a bridge.

violinModel(stringLength,bowPressure,bowVelocity,bowPosition) =

endChain(modelChain)

with{

stringTuning = 0.08;

stringL = stringLength-stringTuning;

modelChain = chain(

violinNuts :

violinBowedString(stringL,bowPressure,bowVelocity,bowPosition) :

violinBridge : violinBody : out

);

};

Listing 5: violinModel: a simple violin physical model from the FAUST Physical Modeling Library.

violinModel assembles various high-level functions implementing violin parts. violinNuts
is a termination applying a light low-pass filter on the reflected signal. violinBowedString

is made out of two open string segments allowing us to choose the bowing position. The bow
nonlinearity is implemented using a table. violinBridge implements the “right termination” as
well as the reflectance and the transmittance filters [27]. Finally, violinBody is a simple violin body
modal model.

In addition to its various models and parts, the FPML also implements a series of ready-to-use
models hosting their own user interface. The corresponding functions end with the _ui suffix.
For example:

process = pm.violin_ui;

is a complete FAUST program adding a simple user interface to control the violin model presented in
Code Listing 5.

While [...]_ui functions associate continuous UI elements (e.g., knobs, sliders, etc.) to
the parameters of a model, functions ending with the _ui_midi prefix automatically format the
parameters linked the FAUST MIDI parameters (i.e., frequency, gain, and note-on/off) using envelope
generators. Thus, such functions are ready to be controlled by a MIDI keyboard.
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Nonlinear behaviors play an important role in some instruments (e.g., gongs, cymbals, etc.).
While waveguide models and modal synthesis are naturally linear, nonlinearities can be introduced
using nonlinear allpass ladder filters [61]. allpassNL implements such a filter in the FAUST Physical
Modeling Library.

Some of the physical models of the FAUST-STK [62] were ported to FPML and are available
through various functions in the library.

5.2.3. Example: Marimba Physical Model Using FPML and MESH2FAUST

This section briefly demonstrates how a simple marimba physical model can be made using
MESH2FAUST and FPML (An extended version of this example with more technical details is also
available in the corresponding on-line tutorial: https://ccrma.stanford.edu/~rmichon/faustTutorials/
#making-custom-elements-using-mesh2faust). The idea is to use a 3D CAD model of a marimba bar,
generate the corresponding modal model, and then connect it to a tube model implemented in FPML.

A simple marimba bar 3D model can be made by extruding a marimba bar cross section
using the Inkscape to OpenSCAD tool part of MESH2FAUST [56]. The resulting CAD model is then
turned into a volumetric mesh by importing it to MeshLab and by uniformly re-sampling it to have
approximately 4500 vertices. The mesh produced during this step (marimbaBar.obj in the following
code listing) can then be processed by MESH2FAUST using the following command (A complete listing
of MESH2FAUST’s options can be found in its on-line documentation: https://github.com/grame-
cncm/faust/blob/master-dev/tools/physicalModeling/mesh2faust/README.md.):

mesh2faust --infile marimbaBar.obj --nsynthmodes 50 --nfemmodes 200

--maxmode 15000 --expos 2831 3208 3624 3975 4403 --freqcontrol

--material 1.3E9 0.33 720 --name marimbaBarModel

The material parameters are those of rosewood which is traditionally used to make marimba bars.
The number of modes is limited to 50 and various excitation positions were selected to be uniformly
spaced across the horizontal axis of the bar. frequency control mode is activated to be able to
transpose the modes of the generated model in function of the fundamental frequency making the
model more generic.

A simple marimba resonator was assembled using FPML and is presented in Code Listing 6. It is
made out of an open tube where two simple lowpass filters placed at its extremities are used to model
the wave reflections. The model is excited on one side of the tube and sound is picked-up on the
other side.

marimbaResTube(tubeLength,excitation) = endChain(tubeChain)

with{

lengthTuning = 0.04; tunedLength = tubeLength-lengthTuning;

absorption = 0.99; lowpassPole = 0.95;

endTubeReflexion = si.smooth(lowpassPole)*absorption;

tubeChain = chain(

in(excitation) : terminations(endTubeReflexion,

openTube(maxLength,tunedLength),

endTubeReflexion) : out

);

};

Listing 6: Simple marimba resonator tube implemented with FPML.

Code Listing 7 demonstrates how the marimba bar model generated with MESH2FAUST

(marimbaBarModel) can be simply connected to the marimba resonator. A unidirectional connection
can be used in this case since waves are only transmitted from the bar to the resonator.
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marimbaModel(freq,exPos) =

marimbaBarModel(freq,exPos,maxT60,T60Decay,T60Slope) :

marimbaResTube(resTubeLength)

with{

resTubeLength = freq : f2l;

maxT60 = 0.1; T60Decay = 1; T60Slope = 5;

};

Listing 7: Simple marimba physical model.

This model is now part of the FAUST Physical Modeling Library. It could be easily used with
faust2smartkeyb to implement a marimba app (see Section 2) as well as with any of the FAUST

targets (e.g., Web App, Plug-In, etc.). More examples of models created using this technique can be
found on-line (Faust Physical Modeling Toolkit Webpage: https://ccrma.stanford.edu/~rmichon/
pmFaust/).

5.3. Discussion and Future Directions

The framework presented in this section remains limited by several factors. Audio latency
induced by ADCs and DACs prevents in some cases the implementation of cohesive bidirectional
chains between physical and virtual elements. Audio latency reduction has been an ongoing research
topic for many years and more work has to be done in this direction. This problem is exacerbated
by the use of mobile devices at the heart of these systems that are far from being specialized for this
specific type of application (i.e., operating system optimizations inducing extra latency, number of
analog inputs and outputs, etc.). On the other hand, we believe that despite the compromises that they
entail, mobile devices remain a versatile, and yet easy to customize platform well suited to implement
hybrid instruments (e.g., the BLADEAXE [42]).

The FAUST Physical Modeling Library is far from being exhaustive and many models and
instruments could be added to it. We believe that MESH2FAUST will help enlarge the set of functions
available in this system.

The framework presented in Section 5.2.1 allows us to assemble the different parts of instrument
models in a simple way by introducing a bidirectional block diagram algebra to FAUST. While it
provides a high level approach to physical modeling, FAUST is not able to generate the corresponding
block diagram in a structured way. This would be a nice feature to add.

Similarly, we would like to extend the idea of being able to make multidimensional block diagrams
in FAUST by adding new primitives to the language.

More generally, we hope to make more instruments using this framework and use them on stage
for live performance.

6. Conclusions

By combining physical and virtual elements, hybrid instruments are “physically coherent” by
nature and allow instrument designers to play to the strengths of both acoustical and digital elements.
Current technologies and techniques allow us to blur the boundary between the physical and the
virtual world enabling musical instrument designers to treat instrument parts in a multidimensional
way. The FAUST Physical Modeling Toolkit presented in Section 5 facilitates the design of such
instruments by providing a way to approach physical modeling of musical instruments at a very
high level.

Mobile devices combined with physical passive or active augmentations are well suited to
implement hybrid instruments. Their built-in sensors, standalone aspect, and computational
capabilities are the core elements required to implement the virtual portion of hybrid instruments.
faust2smartkeyb facilitates the design of mobile apps using elements from the FAUST Physical
Modeling Library, implementing skill transfer, and serving as the glue between the various parts of the
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instrument. Mobile devices might limit the scope of hybrid instruments by scaling down the number
of connections between acoustical and digital elements because of technical limitations. However,
we demonstrated that a wide range of instruments can still be implemented using this type of system.

The framework presented in this paper is a toolkit for musical instrument designers. By facilitating
skill transfer, it can help accelerate the learning process of instruments made with it. However, musical
instruments remain a tool controlled by the performer. Having a well designed instrument leveraging
some of the concepts presented here doesn’t mean that it will systematically play beautiful music and
generate pleasing sounds: this is mostly up to the performer.

We believe that mobile hybrid instruments presented in this paper help reconcile the haptic,
the physical, and the virtual, partially solving some of the flaws of DMIs depicted by Perry Cook [5].

We recently finished releasing the various elements of the framework presented in this paper and
we hope to see the development of more mobile-device-based hybrid instruments in the future.
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Abstract: We recently presented a new model for singing synthesis based on a modified version
of the WaveNet architecture. Instead of modeling raw waveform, we model features produced by
a parametric vocoder that separates the influence of pitch and timbre. This allows conveniently
modifying pitch to match any target melody, facilitates training on more modest dataset sizes,
and significantly reduces training and generation times. Nonetheless, compared to modeling
waveform directly, ways of effectively handling higher-dimensional outputs, multiple feature streams
and regularization become more important with our approach. In this work, we extend our proposed
system to include additional components for predicting F0 and phonetic timings from a musical score
with lyrics. These expression-related features are learned together with timbrical features from a
single set of natural songs. We compare our method to existing statistical parametric, concatenative,
and neural network-based approaches using quantitative metrics as well as listening tests.

Keywords: singing synthesis; machine learning; deep learning; conditional generative models;
autoregressive models

1. Introduction

Many of today’s more successful singing synthesizers are based on concatenative methods [1,2].
That is, they transform and concatenate short waveform units selected from an inventory of recordings
of a singer. While such systems are able to achieve good sound quality and naturalness in certain
settings, they tend to be limited in terms of flexibility, and can be difficult to extend or significantly
improve upon. One notable limitation is that jointly sampling musical and phonetic contexts usually is
not feasible, forcing timbre and expression to be modeled disjointly, from separate, specialized corpora.
Machine learning approaches, such as statistical parametric methods [3,4], are much less rigid and
do allow for things such as combining data from multiple speakers, model adaptation using small
amounts of training data, and joint modeling of timbre and expression from a single corpus of natural
songs. However, until recently, these approaches have been unable to match the sound quality of
concatenative methods, in particular suffering from oversmoothing in frequency and time.

Recent advances in generative models for Text-to-Speech Synthesis (TTS) using Deep Neural
Networks (DNNs), in particular the WaveNet model [5], showed that model-based approaches can
achieve sound quality on-par or even beyond that of concatenative systems. This model’s ability to
accurately generate raw speech waveform sample-by-sample, clearly shows that oversmoothing is
not an issue. Recently, we presented a model for singing synthesis based on the WaveNet model [6],
with an important difference being that we model vocoder features rather than raw waveform. While
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a vocoder unavoidably introduces some degradation in sound quality, we consider the degradation
introduced by current models to still be the dominant factor. Thus, if we can improve the quality
of the generative model, we should be able to achieve a quality closer to the upper bound the
vocoder can provide, i.e., round-trip vocoder analysis-synthesis without modification. Additionally,
by decomposing the signal into phonetic and pitch components, we are able to conveniently
synthesize any melody with any lyrics, and require less training data to sufficiently cover the entire
pitch-timbre space.

Our previously presented system only generated timbrical features, and did not generate features
related to musical expression, such as F0 and phonetic timings. Additionally, the corpora used to
train the models were specialized recordings similar to those used for building concatenative voices.
In this work, we extend our previously presented system to also include F0 and phonetic timing
prediction, and train the entire system from a single corpus of natural singing. We feel that this is an
important step forward towards capturing all aspects of a singer’s voice in a natural setting. Finally,
we provide detailed quantitative and qualitative experiments and results.

2. Proposed System

2.1. Overview

The task of singing synthesis mimics the task of a singer during a studio recording, that is,
interpret a musical score with lyrics to produce a singing waveform signal. The goal of our system
is to model a specific singer’s voice and a specific style of singing. To achieve this, we first record a
singer singing a set of musical scores. From these recording, acoustic features are extracted using the
analysis part of a vocoder. Additionally, the recordings are phonetically transcribed and segmented.
Note level transcription and segmentation can be generally obtained from the musical scores, as long
as the singer did not excessively deviate from the written score.

During training, our model learns to produce acoustic features given phonetic and musical
input sequences, including the begin and end time of each segment. However, during generation,
we only have access to the note begin and end times, and phoneme sequence corresponding to each
note (generally a syllable). As we do not have access to the begin and end times of each phoneme,
these must be predicted using a phonetic timing model. The next step is to predict F0 from the timed
musical and phonetic information, using a pitch model. The predicted phonetic timings and F0 are
then used by the timbre model to generate the remaining acoustic features such as the harmonic
spectral envelope, aperiodicity envelope and voiced/unvoiced (V/UV) decision. Finally, the synthesis
part of the vocoder is used to generate the waveform signal from the acoustic features. An overview of
the entire system is depicted in Figure 1.
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Figure 1. Diagram depicting an overview of the system with its different components. Here, V/UV is
the predicted voice/unvoiced decision, and the Fill UV block fills unvoiced isegments by interpolation.
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2.2. Modified WaveNet Architecture

The main building block of our system is based on the WaveNet model and architecture. A key
aspect of this model is that it is autoregressive. That is, the prediction at each timestep depends on
(a window of) predictions of past timesteps. In our case, a timestep corresponds to a single frame of
acoustic features. Additionally, the model is probabilistic, meaning that the prediction is a probability
distribution rather than a single value. In order to control the prediction, e.g., by phonetic and musical
inputs, the predicted distribution is not only conditioned on past predictions, but also on control
inputs. This model is implemented using a powerful, yet efficient neural network architecture.

The network we propose, depicted in Figure 2, shares most of its architecture with WaveNet.
Like this model we use gated convolutional units instead of gated recurrent units, such as Long
Short-Term Memory (LSTM) units, to speed up training. The input is fed through an initial causal
convolution which is then followed by stacks of 2× 1 dilated convolutions [7] where the dilation
factor is doubled for each layer. This allows exponentially growing the model’s receptive field, while
linearly increasing the number of required parameters. To increase the total nonlinearity of the model
without excessively growing its receptive field, the dilation factor is increased up to a limit and then the
sequence is repeated. We use residual and skip connections to facilitate training deeper networks [8].
As we wish to control the synthesizer by inputting notes and lyrics, we use a conditional version of
the model. At every layer, before the gated nonlinearity, feature maps derived from control inputs are
summed to the feature maps from the layer’s main convolution. In our case, we do the same thing at
the output stack, similar to [9].
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Figure 2. Overview of the modified WaveNet network architecture. In this case, the network depicted
predicts harmonic spectral envelope features (top-right and bottom), given control inputs (mid-right).

The underlying idea of this model is that joint probability over all timesteps can be formulated as
a product of conditional probabilities for a single timestep with some causal ordering. The conditional
probability distributions are predicted by a neural network trained to maximize likelihood of a
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observation given past observations. To synthesize, predictions are made by sampling the predicted
distribution conditioned on past predictions, that is, in a sequential, autoregressive manner. However,
while models on which we base our model like WaveNet, or PixelCNN [10] and PixelRNN [11]
before it, perform this factorization for univariate variables (e.g., individual waveform samples or
pixel channels), we do so for multivariate vectors corresponding to a single frame,

p (x1, . . . , xT | c) =
T

∏
t=1

p (xt | x<t, c) , (1)

where xt is an N-dimensional vector of acoustic features [xt,1, . . . , xt,N ], c is an T-by-M-dimensional
matrix of control inputs, and T is the length of the signal. In our case, we consider the variables within
a frame to be conditionally independent,

p (xt | x<t, c) =
N

∏
i=1

p (xt,i | x<t, c) . (2)

In other words, a single neural network predicts the parameters of a multivariate conditional
distribution with diagonal covariance, corresponding to the acoustic features of a single frame.

The main reason for choosing this model is that, unlike raw audio waveform, features produced
by a parametric vocoder have two dimensions, similar to (single channel) images. However, unlike
images, these two dimensions are not both spatial dimensions, but rather time-frequency dimensions.
The translation invariance that 2D convolutions offer is an undesirable property for the frequency
(or cepstral quefrency) dimension. Therefore, we model the features as 1D data with multiple channels.
Note that these channels are only independent within the current frame; the prediction of each of the
features in the current frame still depends on all of the features of all past frames within the receptive
field (the range of input samples that affect a single output sample). This can be explained easily as all
input channels of the initial causal convolution contribute to all resulting feature maps, and so on for
the other convolutions.

Predicting all channels at once rather than one-by-one simplifies the models, as it avoids the need
for masking channels and separating them in groups. This approach is similar to [12], where all three
RGB channels of a pixel in an image are predicted at once, although in our work we do not incorporate
additional linear dependencies between channel means.

2.2.1. Constrained Mixture Density Output

Many of the architectures on which we base our model predict categorical distributions, using a
softmax output. The advantage of this nonparametric approach is that no a priori assumptions have to
be made about the (conditional) distribution of the data, allowing things such as skewed or truncated
distributions, multiple modes, and so on. Drawbacks of this approach include an increase in model
parameters, values are no longer ordinal, and the need to discretize data which is not naturally discrete
or has high bitdepth.

Because our model predicts an entire frame at once, the issue of increased parameter count is
aggravated. Instead, we opted to use a mixture density output similar to [12]. This decision was
partially motivated because in earlier versions of our model with softmax output [13], we noted the
predicted distributions were generally quite close to Gaussian or skewed Gaussian. In our model
we use a mixture of four continuous Gaussian components, constrained in such a way that there are
only four free parameters (location, scale, skewness and a shape parameter). Figure 3 shows some
of the typical distributions that the contraints imposed by this parameter mapping allow. We found
such constraints to be useful to avoid certain pathological distributions, and in our case explicitly not
allowing multimodal distributions was helpful to improve results. We also found this approach speeds
up convergence compared to using categorical output. See Appendix A for details.
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Figure 3. Example distributions of the constrained mixture density output. All subplots use location
ξ = 0 and scale ω = 6× 10−2, but varying skewness α and shape β. The plots show the resulting
mixture distributions (solid) and the four underlying Gaussian components (dashed).

2.2.2. Regularization

While the generation process is autoregressive, during training rather than using past predictions,
groundtruth past samples are used. This is a practical necessity as it allows the computations to
be parallelized. However this also causes a number of issues. One issue, known as exposure
bias [14], results in the model becoming biased to the groundtruth data it is exposed to during
training, and causing errors to accumulate at each autoregressive generation step based on its own past
predictions. In our case, such errors cause a degradation in synthesis quality, e.g., unnatural timbre
shifts over time. Another notable issue is that as the model’s predictions are conditioned on both past
timesteps and control inputs, the network may mostly only pay attention to past timesteps and ignore
the control inputs [15]. In our case, this can result in the model occasionally changing certain lyrics
rather than follow those dictated by its control inputs.

One way to reduce the exposure bias issue may be to increase the dataset size, so that the model
is exposed to a wider range of data. However, we argue that the second problem is mostly a result of
the inherent nature of the data modeled. Unlike raw waveform, vocoder features are relatively smooth
over time, more so for singing where there are many sustained vowels. This means that, usually,
the model will be able to make accurate predictions given the highly correlated past timesteps.

As a way around both these issues, we propose using a denoising objective to regularize
the network,

L = − log p (xt | x̃<t, c) with x̃<t ∼ p (x̃<t | x<t) , (3)

where p (x̃ | x) is a Gaussian corruption distribution,

p (x̃ | x) =N (x̃; x, λI) , (4)

with noise level λ ≥ 0. That is, Gaussian noise is added to the input of the network, while the network
is trained to predict the uncorrupted target.

When sufficiently large values of λ are used, this technique is very effective for solving the
problems noted above. However, the generated output can also become noticeably more noisy.
One way to reduce this undesirable side effect is to apply some post processing to the predicted output
distribution, much in the same vein as the temperature softmax used in similar models (e.g., [9]).

We have also tried other regularization techniques, such as dropout, but found them to be
ultimately inferior to simply injecting input noise.

2.3. Timbre Model

This model is responsible for generating acoustic features related to the timbre of the voice.
It consists of a multistream variant of the modified WaveNet architecture. Control inputs are the
sequence of timed phonemes and F0, predicted by the timing model and pitch model respectively.
The predicted timbrical acoustic features can be combined with the predicted F0 to generate the final
waveform using the synthesis stage of the vocoder.
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2.3.1. Multistream Architecture

Most parametric vocoders separate the speech signal into several components. In our case, we use
three feature streams; a harmonic spectral envelope, an aperiodicity envelope and a voiced/unvoiced
decision (continuous pitch is predicted by the pitch model and given as a control input). These
components are largely independent, but their coherence is important (e.g., synthesizing a harmonic
component corresponding to a voiced frame as unvoiced will generally cause artifacts, and vice
versa). Rather than jointly modeling all data streams with a single model, we decided to model these
components using independent networks. This approach gives us more fine-grained control over each
stream’s architecture, and also avoids the possibility of streams with lower perceptual importance
interfering with streams of higher perceptual importance. For instance, the harmonic component is by
far the most important, therefore we would not want any other jointly modeled stream potentially
reducing model capacity dedicated to this component.

To encourage predictions to be coherent, we concatenate the predictions of one network to the
input of another, as depicted in Figure 4. In our current system, the aperiodic component depends on
the harmonic component, and the voiced/unvoiced decision depends on both harmonic and aperiodic
components. All the networks are similar, but have slightly different hyperparameters (see Table A1 in
Appendix C for details). The voiced/unvoiced decision network has a Bernoulli output distribution
rather than a mixture density (see Section 2.2.1). While we found this approach to generally work well,
we did not exhaustively investigate the many other alternative approaches.

Harm.

V/UV

Aper.

Harm.

Aper.

V/UV

Harm.

Control inputs

Aper.

V/UV

Training Generation

Figure 4. Diagram depicting the cascaded multistream architecture for training and generation phases.
The “z−1” blocks represent unit delays. The upward inputs represent control inputs, shared between
all streams. Autoregressive connections in generation phase are not shown.

2.3.2. Handling Long Notes

In most datasets, not all note durations will be exhaustively covered. In particular, the case of
synthesizing notes significantly longer than the notes in the dataset can be problematic. This issue
manifests itself mainly as a repetition in time of some of the transitions predicted by the timbre model,
causing a kind of stutter. To reduce such artifacts, we compute the control feature corresponding to
the frame position within the phoneme (see Section 2.6) with a nonlinear mapping depending on the
length of the phoneme. The idea behind this is that the edges of a phoneme, where the transitions are
likely to be, will maintain their original rate, while the more stable center parts will be expanded more.

2.4. Pitch Model

Generating expressive F0 contours for singing voice is quite challenging. Not only is this because
of its importance to the overall results, but also because in singing voice there are many factors
that simultaneously affect F0. There are a number of musical factors, including melody, various
types of attacks, releases and transitions, phrasing, vibratos, and so on. Additionally, phonetics
can also cause inflections in F0, so-called microprosody [16]. Some approaches try to decompose
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these factors to various degrees, for instance by separating vibratos [4] or using source material
without consonants [1,17]. In our approach, however, we model the F0 contour as-is, without any
decomposition. As such, F0 is predicted from both musical and phonetic control inputs, using a
modified WaveNet architecture (see Table A1 in Appendix C for details).

2.4.1. Data Augmentation

One issue with modeling pitch, is that obtaining a dataset that sufficiently covers all notes in a
singer’s register can be challenging. Assuming that pitch gestures are largely independent of absolute
pitch, we apply data augmentation by pitch shifting the training data, similar to [18]. While training,
we first draw a pitch shift in semitones from a discrete uniform random distribution, for each sample
in the minibatch,

pshift∼ U (pshiftmin, pshiftmax) (5)

pshiftmin = pitchsinger
min − pitchsample

max (6)

pshiftmax = pitchsinger
max − pitchsample

min , (7)

where pshiftmin and pshiftmax define the maximum range of pitch shift applied to each sample. These
ensure that all notes of the melody within a sample can occur at any note within the singer’s register.
Finally, this pitch shift is applied to both the pitch used as a control input and the target output pitch,

ˆpitchcond = pitchcond + pshift (8)

f̂0 = f0 2
1

12 pshift . (9)

2.4.2. Tuning Postprocessing

For pitch in singing voice, one particular concern is ensuring that the predicted F0 contour is in
tune. The model described above does not enforce this constraint, and in fact we observed predicted
pitch to sometimes be slightly out of tune. If we define “out of tune” as simply deviating a certain
amount from the note pitch, it is quite normal for F0 to be out of tune for some notes in expressive
singing, without perceptually sounding out of tune. One reason why our model sometimes sounds
slightly out of tune may be that such notes are reproduced in different musical context where they do
sound out of tune. We speculate that one way to combat this is may be use a more extensive dataset.

We improve tuning of our system by applying a moderate postprocessing of predicted F0.
For each note (or segment within a long note), the perceived pitch is estimated using F0 and its
derivative. The smoothed difference between this pitch and the score note pitch is used to correct the
final pitch used to generate the waveform. Appendix B discusses the algorithm in detail.

2.5. Timing Model

The timing model is used to predict the duration of each phoneme in the sequence to synthesize.
Unlike with TTS systems where phoneme durations are generally predicted in a freerunning manner,
in singing synthesis, the phoneme durations are heavily constrained by the musical score. In our
proposed system we enforce this constraint using a multistep prediction. First, the note timing model
predicts the deviations of note (and rest) onsets with respect to nominal onsets in the musical score.
At the same time phoneme durations are predicted by the phoneme duration model. Finally, a simple
fitting heuristic is used to ensure the predicted phoneme durations fit within the available note
duration, after adjusting timing. This approach is somewhat similar to the approach taken by [19].

2.5.1. Note Timing Model

Most singers will not follow the timing of a musical score exactly. Slightly advancing or delaying
notes is part of normal expressive singing, and is the result of the given musical and linguistic context
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and the style of the singer. Additionally, there may be a small truly random component, simply because
most singers cannot sing with exact timing.

Note onset deviations are computed from a musical score and phonetic segmentation of the
corresponding utterance by the singer. We define a note onset deviation as the difference between
the onset of the first syllabic nucleus in a note and that note’s nominal onset as written in the musical
score. These deviations are also computed for rest notes, or equivalently, note offsets before a rest.

We use a neural network to predict these deviations from note-level musical and linguistic input
features. These input features are designed by hand, in part because using note-level data means we
have relatively few samples compared to phoneme or frame-level data. We assume that these features
contain most or all contextual information relevant to computing note time deviations, therefore we
can use a simple feedforward neural network, without the need for a recurrent or convolutional
architecture. To avoid making any assumptions about the (conditional) probability distribution of the
note onset deviations, we use a nonparametric approach by using a softmax output and discretizing
the deviations to multiples of the hoptime. Details of the input features and network architecture are
available in Table A2 (Appendix C).

2.5.2. Phoneme Duration Model

Phoneme durations are obtained in a similar way. They are first computed from the given phonetic
segmentation, and then discretized on a log scale, similar to [20]. A neural network is used to predict
the phoneme durations from phoneme-level musical and linguistic input features. Unlike the note
timing model, in this case we do require some local context information, so we use a convolutional
architecture. Here we assume the range of context information affecting the duration of a phoneme
to be limited by the musical score and the linguistic constraints on the number of possible onset and
coda consonants. Therefore, the limited receptive field of a convolutional neural net should not be
a significant disadvantage over a recurrent neural net’s unbound receptive field. See Table A2 in
Appendix C for details.

2.5.3. Fitting Heuristic

The fitting heuristic is used to conform the total of predicted phoneme durations to the available
note duration predicted by the note timing model. The basic strategy is to expand or shrink the
(principal) vowel, ensuring it is always at least some given percentage of the note duration, by also
shrinking consonants if needed.

First, the sequence of phonemes to fit in the note duration is obtained by “shifting” onset
consonants to the preceding note. The sequences will thus always start with a vowel (or silence
for rests), followed by zero or more consonants formed by the note’s coda consonants and the next
note’s onset consonants. In cases where a note contains multiple syllables, the secondary vowels are
handled as if they were consonants. Then, the sequence of N predicted durations d0, d1, . . . , dN−1 is fit
into the available note duration da,

r = min

(
1,

da(1− r0)

∑N−1
i=1 di

)
, (10)

where r0 is the minimum fraction of the note’s duration to be occupied by the primary syllabic nucleus.

d̂i =

⎧⎨⎩da − r ∑N−1
j=1 dj for i = 0

rdi for i = 1, 2, . . . , N − 1 .
(11)
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2.6. Acoustic and Control Frontend

We use an acoustic frontend based on the WORLD vocoder [21] (D4C edition [22]) with a
32 kHz sample rate and 5 ms hop time. The dimensionality of the harmonic component is reduced to
60 log Mel-Frequency Spectral Coefficients (MFSCs) by truncated frequency warping in the cepstral
domain [23] with an all-pole filter with warping coefficient α = 0.45. The dimensionality of the aperiodic
component is reduced to four coefficients by exploiting WORLD’s inherently bandwise aperiodic
analysis. All acoustic features are min/max normalized before feeding them to the neural network.

The control frontend produces linguistic and musical features that control the synthesizer.
The linguistic features we use are relatively simple compared to most TTS systems as we omit most
of the features that are principally used to predict prosody. The main linguistic features we use
are previous, current and next phoneme identity encoded as one-hot vectors. We assume that the
lyrics input is a phonetic rather than orthographic sequence. For datasets that do not already include
aligned phonetic and acoustic features, we apply a forced alignment using a speaker-dependent
Hidden Semi-Markov Model (HSMM) trained using deterministic annealing [24]. The most important
musical features are note pitch and duration, as one-hot and 4-state coarse coded vectors respectively.
Additionally, we include the normalized position of the current frame within the current phoneme
and note as a 3-state coarse coded vectors, roughly corresponding to the probability of being in the
beginning, middle or end of the phoneme or note respectively. See Table A1 in Appendix C for a
complete listing of the control features used.

2.7. Audio Generation Speed

One special concern with autoregressive models, especially those generating raw waveform,
is that the time required to generate a sequence can exceed several times the sequence’s duration.
Our approach generating vocoder features has the advantage that timesteps have to be produced at
a much lower rate, as well as requiring a significantly reduced network architecture to achieve
a similar receptive field. However, even in this case, as autoregressive inference is inherently
sequential, it cannot exploit massively parallel hardware such as modern GPUs. Therefore, naive
implementations of the generation algorithm still tend to be relatively slow. By caching calculations
between timesteps, we were able to implement a fast generation algorithm. While this algorithm was
developed independently, it is essentially identical to those proposed in other works [25,26]. Using this
algorithm, our model can achieve generation speeds of 10–15× real-time on CPU. Combined with low
memory and disk footprints, these relatively fast generation speeds make the system competitive with
most existing systems in terms of deployability.

3. Related Work

Our method is heavily based on a class of fully-visible probabilistic autoregressive generative
models that use neural networks with similar architectures. This type of model was first proposed
to model natural images (PixelCNN) [9,10,12], but was later also applied to modeling raw audio
waveform (WaveNet) [5], video (Video Pixel Networks) [27] and text (ByteNet) [28].

Soon after WaveNet, there have been several other related works on text-to-speech. Deep Voice [26]
obtains real-time inference by using a deeper, but narrower architecture, and heavily optimized
generation algorithm. It also introduces a pipeline comprised of solely neural network-based
building blocks, although these are independently trained and targets are still obtained in a
traditional way, i.e., by using an F0 estimator, phonetic dictionary, and so on. Deep Voice 2 [20]
improves the components of this pipeline, and explores multispeaker training which allows modeling
hundreds of voices with less than half an hour of data per speaker. The SampleRNN [29]
model proposes an alternative architecture for unconditional raw waveform generation based
on multiscale hierarchical Recurrent Neural Networks (RNNs) rather than dilated Convolutional
Neural Networks (CNNs). Char2Wav [30] uses a SampleRNN component as a neural vocoder
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for synthesizing predicted vocoder parameters. The vocoder parameters are predicted by an
attention-based sequence-to-sequence (seq2seq) model, which allows for a fully end-to-end system,
generating speech signals from unaligned orthographic or phonetic sequences. Another end-to-end
system is Tacotron [31], which proposes a sophisticated seq2seq model able to predict magnitude
spectrum frames from text.

More traditional neural parametric speech synthesizers tend to be based on feedforward
architectures such as DNNs and Mixture Density Networks (MDNs) [32], or on recurrent architectures
such as Long Short-Term Memory RNNs (LSTM-RNNs) [33]. Feedforward networks learn a framewise
mapping between linguistic and acoustic features, thus potentially producing discontinuous output.
This is often partly mitigated by predicting static, delta and delta-delta feature distributions combined
with a parameter generation algorithm that maximizes output probability [34]. Recurrent architectures
avoid this issue by propagating hidden states (and sometimes the output state) over time. In contrast,
autoregressive architectures such as the one we propose make predictions based on predicted past
acoustic features, allowing, among other things, to better model rapid modulations such as plosive
and trill consonants.

There have been several works proposing different types of singing synthesizers. The more
prominent of which are based on concatenative methods [1,2] and statistical parametric methods
centered around Hidden Markov Models (HMMs) [3,4]. Similar to in this work, an important benefit
of statistical models is that they allow joint modeling of timbre and musical expression from natural
singing [18,35]. Many of the techniques developed for HMM-based TTS are also applicable to singing
synthesis, e.g., speaker-adaptive training [36]. The main drawback of HMM-based approaches is
that phonemes are modeled using a small number of discrete states and within each state statistics
are constant. This causes excessive averaging, an overly static “buzzy” sound and noticeable state
transitions in long sustained vowels in the case of singing. More recently, the work on HMM singing
synthesis was extended to feedforward DNNs [37], albeit with a somewhat limited architecture.

4. Experiments

The goal of our experiments is mainly to compare our system against competing systems such as
concatenative unit selection, HMM or DNN systems. We are also interested in having some indication
of the absolute performance of our system, i.e., compared to a reference recording.

We conducted two sets of experiments; one set of experiments involve systems trained on a
dataset of natural singing and the second set involve systems trained on a dataset of what we call
pseudo singing. Pseudo singing are recordings of something in between speech and singing, using a
constant cadence and one or more constant pitches. One limitation of pseudo singing is that it can
only be used to train timbre models, as it does not contain musical expression. However, the reason
for also conducting experiments with this kind of data is two-fold: first, we expect the performance
of in particular unit selection systems to be notably better with pseudo singing datasets, as the more
stable and coherent data is better suited for this type of system; and, second, we have access to a
wider range of datasets of this kind, including more languages. As we only compare the performance
of the timbre model of different systems when using pseudo singing, we generate sequences in a
so-called performance driven manner, that is, F0 and phonetic timings that control the timbre model
are obtained from a reference recording.

The webpage accompanying this article, http://www.dtic.upf.edu/~mblaauw/NPSS/, contains
several demo songs synthesized by our system, after training on both kinds of data.

4.1. Datasets

For systems trained on natural singing, we use a public dataset published by the Nagoya Institute
of Technology (Nitech), identified as NIT-SONG070-F001 (http://hts.sp.nitech.ac.jp/archives/2.3/HTS-
demo_NIT-SONG070-F001.tar.bz2). This dataset consists of studio quality recordings of a female
singer singing Japanese children songs. The original dataset consists of 70 songs, but the public version

259



Appl. Sci. 2017, 7, 1313

consists of a 31 song subset (approximately 31 min, including silences). Out of these 31 songs, we use
28 for training and 3 for testing (utterances 015, 029 and 040).

We use three proprietary datasets from training systems on pseudo singing; an English male
voice (M1), an English female voice (F1) and Spanish female voice (F2). The studio quality recordings
consist of short sentences which were sung at a single pitch and an approximately constant cadence.
The sentences were selected to favor high diphone coverage. The Spanish dataset contains 123
sentences, while the English datasets contain 524 sentences (approximately 16 and 35 min respectively,
including silences). A randomly selected 10% of sentences are used for testing.

Note that these datasets are small compared to the datasets typically used to train TTS systems.
However, for natural singing, many-hour datasets would exceed the repertoire of most singers.
For pseudo singing, as only timbre is captured in a very constrained setting, substantially larger
datasets would likely yield diminishing returns.

4.2. Compared Systems

• NPSS: Our system, which we call Neural Parametric Singing Synthesizer (NPSS), as described in
Section 2.

• IS16: A concatenative unit selection-based system [1], which was the highest rated system in the
Interspeech 2016 Singing Synthesis Challenge.

• Sinsy-HMM: A publicly accessible implementation of the Sinsy HMM-based synthesizer
(http://www.sinsy.jp/). This system is described in [4,35], although the implementation may
differ to some degree from any single publication, according to one of the authors in private
correspondence. While the system was trained on the same NIT-SONG070-F001 dataset, it should
be noted that the full 70 song dataset was used, including the 3 songs we use for testing.

• Sinsy-DNN: A publicly accessible implementation of the Sinsy feedforward DNN-based
synthesizer (http://www.sinsy.jp/) [37]. The same caveats as with Sinsy-HMM apply here.
Additionally, the DNN voice is marked as “beta”, and thus should be considered still experimental.
The prediction of timing and vibrato parameters in this system seems to be identical to Sinsy-HMM
at the time of writing. Thus, only timbre and “baseline” F0 is predicted by the DNN system.

• HTS: A HMM-based system, similar to Sinsy-HMM, but consisting of a timbre model only, and
trained on pseudo singing. The standard demo recipe from the HTS toolkit (version 2.3) [38] was
followed, except for a somewhat simplified context dependency (just the two previous and two
following phonemes).

4.3. Methodology

We compare the different systems using a set of quantitative and qualitative tests. Finding
perceptually relevant metrics to compare generative models quantitatively tends to be very challenging,
as is the case with expressive singing voice. Although we pay special attention to the metrics we use,
this should be kept in mind when comparing values. Qualitative tests tend to be more conclusive,
but can also be challenging when evaluating multidimensional aspects such as “expression”. It should
be noted that the quantitative metrics for the systems trained on pseudo singing are evaluated with
respect to a pseudo singing reference. Therefore, these results might not directly correspond to our end
goal, expressive singing, as evaluated in the listening tests and quantitative metrics for the systems
trained on natural singing.

4.3.1. Quantitative Metrics

For all metrics, we apply a simple linear time mapping to reduce misalignments due to predicted
timings possibly differing from reference timings.

• Mel-Cepstral Distortion (MCD): Mel-Cepstral Distortion (MCD) is a common perceptually
motivated metric for the quantitative evaluation of timbre models. In our case, some moderate
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modifications are made to improve robustness for singing voice; Mel-cepstral parameters are
extracted from WORLD spectra, rather than STFT spectra, to better handle high pitches. To reduce
the effect of pitch mismatches between reference and prediction, we filter pairs of frames with a
pitch difference exceeding ±200 cents. Similarly, to increase robustness to small misalignments in
time, frames with a modified z-score exceeding 3.5 are not considered [39]. MCD is computed for
harmonic components, using 33 (0–13.6 kHz) coefficients.

• Band Aperiodicity Distortion (BAPD): Identical to MCD, except computed over linearly spaced
band aperiodicity coefficients. BAPD is computed for aperiodic components, using 4 (3–12 kHz)
coefficients.

• Modulation Spectrum (MS) for Mel-Generalized Coefficients (MGC): One issue with
framewise metrics, like MCD, is that these do not consider the behavior of the predicted parameter
sequences over time. In particular, the common issue of oversmoothing is typically not reflected in
these metrics. A recently proposed metric, the Modulation Spectrum (MS) [40], allows visualizing
the spectral content of predicted time sequences. For instance, showing oversmoothing as a
rolloff of higher modulation frequencies. We are mainly interested in the lower band of the MS
(e.g., <25 Hz), because the higher band of the reference (natural singing) can be overly affected
by noise in the parameter estimation. To obtain a single scalar metric, we use the Modulation
Spectrum Log Spectral Distortion (MS-LSD) between the modulation spectra of a predicted
parameter sequence and a reference recording.

• Voiced/unvoiced decision metrics: In singing voice, there is a notable imbalance between voiced
and unvoiced frames due to having many long, sustained vowels. As both false positives
(unvoiced frames predicted as voiced) and false negatives (voiced frames predicted as unvoiced)
can result in highly noticeable artifacts, we list both False Positive Rate (FPR) and False Negative
Rate (FPR) for this estimator. All silences are excluded.

• Timing metrics: Metrics for the timing model are relatively straight forward, e.g., Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE) or Pearson correlation coefficient r between onsets
or durations. We list errors for note onsets, offsets and consonant durations separately to ensure
the fitting heuristic affects the results only minimally.

• F0 metrics: Standard F0 metrics such as RMSE are given, but it should be noted that these metrics
are often not very correlated to perceptual metrics in singing [41]. For instance, starting a vibrato
slightly early or late compared to the reference may be equally valid musically, but can the cause
the two F0 contours to become out of phase, resulting in high distances.

• Modulation Spectrum (MS) for log F0: Similar to timbre, we use MS-based metrics to get a sense
of how close the generated F0 contours are in terms of variability over time. The MS of F0 is
computed by first segmenting the score into sequences of continuous notes, without rests. Then,
for each sequence, the remaining unvoiced regions in the log F0 curve are filled using cubic
spline interpolation. We apply a Tukey window corresponding to a 50 frame fade in and fade out,
and subtract the per-sequence mean. Then, the modulation spectra are computed using a Discrete
Fourier Transform (DFT) size 4096, and averaged over all sequences.

4.3.2. Listening Tests

For the listening tests, all stimuli were downsampled to 32 kHz, which is the lowest common
denominator between the different systems.

• Mean Opinion Score (MOS): For the systems trained on natural singing, we conducted a
MUSHRA [42] style listening test. The 40 participants, of which 8 indicated native or good
knowledge of Japanese, were asked to rate different versions of the same audio excerpt compared
to a reference. The test consisted to 2 short excerpts (<10 s) for each of the 3 validation set songs,
in 7 versions (reference, hidden reference, anchor and 4 systems), for a total of 42 stimuli. The scale
used as 0–100, divided into 5 segments corresponding to a 5-scale MOS test. The anchor consisted
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of a distorted version of the NPSS synthesis, applying the following transformations: 2D Gaussian
smoothing (σ = 10) of harmonic, aperiodic and F0 parameters, linearly expanding the spectral
envelope by 5.2%, random pitch offset (±100 cents every 250 ms, interpolated by cubic spline),
and randomly “flipping” 2% of the voiced/unvoiced decisions. We excluded 59 of the total
240 tests performed, as these had a hidden reference rated below 80 (ideally the rating should
be 100). We speculate that these cases could be due to the relative difficulty of the listening test for
untrained listeners.

• Preference Test: For the systems trained on pseudo singing, we conducted an AB preference test.
The 18 participants were asked for their preference between two different stimuli, or indicate no
preference. The stimuli consisted of two short excerpts (<10 s) of one song per voice/language.
Versions with and without background music were presented. We perform pairwise comparisons
between our system and two other systems, resulting in a total of 24 stimuli.

5. Results

5.1. Quantitative Results

For systems trained on natural singing, Tables 1–3 list quantitative metrics related to timbre,
timing and pitch models respectively. Examples of different modulation spectra for timbre and pitch
are shown in Figures 5 and 6. For systems trained on pseudo singing, Table 4 lists quantitative metrics
related to timbre models.

Table 1. Quantitative results for the timbre models trained on natural singing. Note that for the IS16
system the Modulation Spectrum Log Spectral Distortion (MS-LSD) and Voiced/Unvoiced (V/UV)
metrics are omitted as it does not use predicted harmonic features (MS-LSD is computed from predicted
features, not analyzed features) or V/UV decision. The HTS system is only considered when comparing
systems trained on pseudo singing, but should be roughly equivalent to Sinsy-HMM.

System
Harmonic Aperiodic V/UV

MCD (dB) MS-LSD (<25 Hz/Full, dB) BAPD (dB) FPR (%) FNR (%)

IS16 6.94 - 3.84 -
Sinsy-HMM 7.01 8.09/18.50 4.09 15.90 0.68
Sinsy-DNN 5.41 13.76/29.87 5.02 13.75 0.63
NPSS 5.54 7.60/11.65 3.44 16.32 0.64

Table 2. Quantitative results for the timing models trained on natural singing. The table lists Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE), both in 5 ms frames, and Pearson
correlation coefficient r. Note that the Sinsy-DNN system uses the same HMM-based duration model
as the Sinsy-HMM system, so it is excluded from the comparison. The IS16 system used durations
predicted by the NPSS system. The HTS system is only considered when comparing systems trained
on pseudo singing, but should be roughly equivalent to Sinsy-HMM.

System
Note Onset Deviations Note Offset Deviations Consonant Durations

MAE RMSE r MAE RMSE r MAE RMSE r

Sinsy-HMM 7.107 9.027 0.379 13.800 17.755 0.699 4.022 5.262 0.589
NPSS 6.128 8.383 0.419 12.100 18.645 0.713 3.719 4.979 0.632
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Table 3. Quantitative results of pitch models trained on natural singing. Table shows log F0 Modulation
Spectrum Log Spectral Distortion (MS-LSD) in dB. The F0 Root Mean Squared Error (RMSE) in cents
and Pearson correlation coefficient r are also given for reference. The IS16 and HTS systems are
excluded from this comparison because they are not suitable for modeling F0 from natural singing.

System MS-LSD (<25 Hz, dB) RSME (Cents) r

Sinsy-HMM 5.052 81.795 0.977
Sinsy-DNN 2.858 83.706 0.976
NPSS 2.008 105.980 0.963

Figure 5. Comparing the average modulation spectrum of harmonic Mel-Generalized Coefficient
(MGC) features. In the plotted excerpt, the relation between pitch and timbre during vibratos can be
observed.

Figure 6. Comparing the average modulation spectrum of log F0 contours predicted by various systems
and natural singing.
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Table 4. Quantitative results for the timbre models trained on pseudo singing, separated by
voice/language. The IS16 system is excluded from the quantitative metrics because removing
utterances from the dataset to use for testing would mean missing diphones would have to be replaced.
The Sinsy-HMM and Sinsy-DNN systems were excluded from this comparison, as the only available
models are trained on natural singing. The listed metrics are Mel-Cepstral Distortion (MCD) and
Modulation Spectrum Log Spectral Distortion (MS-LSD) for harmonic features, Band Aperiodicity
Distortion (BAPD) for aperiodic features, and False Positive Rate (FPR) and False Negative Rate (FNR)
for voiced/unvoiced (V/UV) features.

Voice (Language) System
Harmonic Aperiodic V/UV

MCD (dB) MS-LSD (<25 Hz/Full, dB) BAPD (dB) FPR (%) FNR (%)

M1 (Eng.) HTS 4.95 11.09/22.44 2.72 16.10 2.46
NPSS 5.14 7.79/8.18 2.44 11.22 2.65

F1 (Eng.) HTS 4.75 10.25/22.09 4.07 15.60 1.01
NPSS 4.95 5.68/9.04 3.83 15.79 0.56

F2 (Spa.) HTS 4.88 11.07/22.28 3.62 1.85 2.21
NPSS 5.27 8.02/6.59 3.38 1.40 3.20

These metrics show that, for some of the framewise metrics, such as harmonic MCD, our system
is slightly behind. For some other metrics, such as the timing errors or aperiodic BAPD, our system
is slightly ahead. For systems trained on pseudo singing the differences tend to be a little bigger,
we argue that this is due that predicting averages for this kind of data results in good results for these
kind of metrics. However, in all metrics based on the modulation spectrum, which considers variations
in time, NPSS shows an improvement over the other systems.

When we compare an example of generated harmonic parameters during a vibrato in the left two
subplots of Figure 5, we notice the features predicted by NPSS having more detail than Sinsy-HMM
and Sinsy-DNN. In particular the framewise conditioning of harmonic features on F0 in NPSS, causes
the harmonic features to modulate along the vibrato, similar to what happens in the reference recording.
In the modulation spectrum analysis on the right-hand side of Figure 5, we can see that overall NPSS
tends to follow the modulation spectrum of the reference recording a little closer than Sinsy-HMM and
Sinsy-DNN in lower modulation frequencies. Compared to especially Sinsy-DNN, NPSS has less rolloff
in higher modulation frequencies, indicating less oversmoothing over time. However, all systems have
less high frequency modulation spectrum content than the reference recording, indicating none of the
systems are able to reproduce all the details of the original signal.

The analysis of the modulation spectrum of the log F0 predicted by different systems is shown in
Figure 6. We can see that overall NPSS matches the modulation spectrum of the reference recording
similarly or slightly better than Sinsy-HMM, but notably better than Sinsy-DNN. When we focus our
attention to the range of modulation frequencies corresponding to vibratos in this voice, 5–7 Hz, we see
that Sinsy-HMM and Sinsy-DNN have a sharp peak at 5 Hz, whereas for NPSS this whole range has
increased energy, similar to the reference. This may indicate that NPSS produces a wider range of
vibrato rates, similar to a real singer. In Sinsy-HMM and Sinsy-DNN vibrato parameters (rate and
depth) are modeled separately from the base F0, which may explain their tendency to produce very
controlled, regular vibratos.

5.2. Qualitative Results

Results of the listening tests comparing different systems trained on natural singing are listed in
Table 5. For systems trained on pseudo singing, results of the preference listening test are shown in
Figure 7.
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Table 5. Mean opinion scores for systems trained on natural singing, displayed on a 1–5 scale with
their respective 95% confidence intervals. The HTS system is only considered when comparing systems
trained on pseudo singing, but should be roughly equivalent to Sinsy-HMM.

System Mean Opinion Score

Hidden reference 4.76 ± 0.04
IS16 2.36 ± 0.11
Sinsy-HMM 2.98 ± 0.10
Sinsy-DNN 2.77 ± 0.10
NPSS 3.43 ± 0.11

Figure 7. Results of the preference test for systems trained on pseudo singing. The Sinsy-HMM and
Sinsy-DNN systems were excluded from this comparison, as the only available models are trained on
natural singing.

In the listening tests, NPSS is clearly ahead of competing systems. In the MOS test for systems
trained on natural singing, NPSS is around a third between the second best rated system (Sinsy-HMM)
and the reference. Here, it should be noted that the concatenative system, IS16, performs worst,
showing that this kind of system is poorly suited for this kind of data. In contrast, the preference test
for systems trained on pseudo singing, shows a strong preference for NPSS over the HTS system, and
a moderate preference over the IS16 system, which was designed for this kind of data. The correlation
between the qualitative results and the quantitative metrics based on the modulation spectrum indicate
that this may be a metric with higher perceptual relevance than the framewise metrics such as MCD.

In our experience NPSS, HMM and DNN systems all produce quite coherent timbres.
The concatenative system in contrast tends to produce more discontinuous timbres, especially when
using a dataset of natural singing, or other artifacts at concatenation boundaries, e.g., in fast singing or
when phonetic segmentation is not perfect. We found NPSS to generally produce less static features
over time, and less coloring of timbre. Compared to HMM and DNN systems, the autoregressive
generation of NPSS seems to help in reproducing rapidly varying consonants, although these can
occasionally sound better still in the concatenative system. In terms of expression, the HMM system
produces very coherent behavior, which while perhaps a little less human, tends to generally sound
quite pleasant. NPSS on the other hand, seems to be more varied, but this also means that results are
sometimes better than other times. One notable quality of NPSS is that the framewise conditioning
of timbre on pitch means that vibratos produce natural, synchronized modulations in both pitch and
timbre (see, e.g., Figure 5), unlike in the other systems which condition on note pitch.

6. Conclusions

We presented a singing synthesizer based on neural networks, which can generate synthetic
singing voice given a musical score with lyrics. From a single set of relatively few songs, the system is
able to learn both timbre and expression. Separate, but interconnected models learn phonetic timing,
pitch and timbre. The core building block of the system is a variant of the WaveNet architecture,
modified to allow generating features obtained from a parametric vocoder. This autoregressive
approach offers improved reproduction of consonants and a more natural variation of predicted
parameters over time, compared to competing approaches such as statistical parametric systems.
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Compared to concatenative approaches, our model allows for greater flexibility and is more robust
to small misalignments between phonetic and acoustic features in the training data. In listening test
our system was rated to reduce the gap between the second best system and the reference recording
by about a third. While correlating this with quantitative metrics is challenging, metrics that take
into account variations over time, such as the modulation spectrum, do seem to corroborate this.
The relatively small CPU, memory and disk footprint allows for many practical applications of our
system. We hope that in the near future we can evaluate our model trained on natural singing for a
wider range of languages and datasets. Further exploring the flexibility offered by this neural approach,
such as the area of multispeaker training is also promising, as it might help to overcome the issue of
limited dataset sizes typical of singing voice.
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Appendix A. Details Constrained Gaussian Mixture

The output mixture density we call Constrained Gaussian Mixture (CGM), is a mixture of
K = 4 Gaussians,

p(x) =
K−1

∑
k=0

wkN (x; μk, σ2
k ) . (A1)

The 12 mixture parameters wk, μk, σk for k = 0, 1, . . . , K− 1 are computed from four free parameters:
location ξ, scale ω, skewness α and shape β (see Figure 3 for some example distributions). Assuming
the network predicts four outputs with linear activations, a0, a1, a2, a3, we apply some nonlinearities to
obtain the free parameters in suitable ranges,

ξ = 2 sigm(a0)− 1 range [−1, 1] (A2)

ω =
2

255
e4 sigm(a1) range

[
2

255
,

2e4

255

]
(A3)

α = 2 sigm(a2)− 1 range [−1, 1] (A4)

β = 2 sigm(a3) range [0, 2] . (A5)

Then, we map predicted location ξ, scale ω, skewness α and shape β to Gaussian mixture
parameters μk, σk, wk for k = 0, 1, . . . , K− 1,

σk = ωe(|α|γs−1)k (A6)

μk = ξ +
k−1

∑
i=0

σkγuα (A7)

wk =
α2kβkγk

w

∑K−1
i=0 α2iβiγi

w
, (A8)
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where γu, γs and γw are constants tuned by hand,

γu = 1.6 (A9)

γs = 1.1 (A10)

γw =
1

1.75
. (A11)

A temperature control is achieved by first shifting component means towards their global
weighted average,

μ̄ =
K−1

∑
k=0

μkwk (A12)

μ̂k = μk + (μ̄− μk)(1− τ) , (A13)

where 0 < τ ≤ 1 is the temperature. Then, the component variances are scaled by the temperature,

σ̂k = σk
√

τ . (A14)

Appendix B. Details Tuning Postprocessing

The principal idea behind the tuning correction postprocessing is simple; apply the difference
between the perceived pitch of a note, given its predicted F0 contour, and the pitch of the corresponding
note in the score. However, robustly estimating the perceived pitch of a note from the corresponding
F0 contour is nontrivial. In singing voice there are many factors that affect F0, but may not influence
the perceived note pitch. These factors include vibratos, scoops, releases, transitions, microprosody
due to consonants and so on. Therefore, simple estimators, such as directly taking the mean of the
framewise F0 over the note duration, will typically yield poor results.

To obtain a more robust estimate of the perceived note pitch, F0, we compute a weighted average
of the predicted F0 over the note’s duration,

F0 =
∑i F0iwi

∑i wi
, (A15)

where F0i and wi correspond to the i-th frame within a given note of the predicted F0 vector and
weighting vector respectively. To simplify notation, throughout this section “F0” refers to log F0 in
semitones. The weighting vector in Equation (A15) is composed of a number of different factors that
correspond to different heuristics designed to make the estimate more robust,

w = wewdwpwt . (A16)

The first of these factors, we, is a weighting to reduce the influence of the edges of the note, where
most of the transition effects will typically be located. We compute we as a Tukey window with α = 0.5.
That is, we apply a cosine-taper weighting along the first and last 25% of the note duration.

The second factor, wd, is a weighting depending on the derivative of the F0 contour. The idea is
that the portion of the note where F0 is mostly flat will contribute more to the perceived pitch than
portions where F0 fluctuates due to transitions or microprosody. We first estimate the derivative by
convolving the signal with a 3rd order 1st derivative Savitzky-Golay FIR filter, sd, with a length of 11
frames (55 milliseconds),

dF0 = F0 � sd , (A17)

where � denotes the convolution operator. Then, we compute the weighting factor, wd, as follows,

wd,i =
1

min(1 + 27|dF0i|, 15)
, (A18)
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where the constants were obtained empirically.
The third factor, wp, is a weighting depending on the phoneme corresponding to each frame pi,

wp,i =

⎧⎪⎪⎨⎪⎪⎩
2, for pi ∈ {vowel, syllabic consonant}
0, for pi ∈ {silence, pause, breath}
1, otherwise.

(A19)

The idea is that frames corresponding to vowels typically contribute more to the perceived pitch
than consonants, which often contain microprosody effects.

The last factor, wt, is a weighting depending on the distance from the target pitch, based on the
assumption that detuning in the perceived pitch will typically be caused by relatively small deviations.
Other factors, such as scoops or microprosody, may cause relatively big deviations, but these tend not
to contribute to the perceived detuning. We use a pitch deviation of ±1 semitone as a threshold,

wt,i =

{
1, for |F0tar − F0i| ≤ 1

1/|F0tar − F0i|, otherwise.
(A20)

Finally, the required amount of pitch correction, cF0, is computed for each frame in a note
as follows,

cF0i = F0tar − F0 , (A21)

where F0tar is the note’s target pitch, as is written in the score. For rests, we do not apply any correction,
cF0i = 0. These framewise correction vectors are then concatenated for all notes and rests in the
sequence. As the resulting vector may be discontinuous, we smooth it by zero-phase filtering with a
Gaussian window with a length of 30 frames (150 milliseconds).

As the above method computes a notewise correction, it is based on the assumption that the
detuning will be approximately constant along a note. However, this is not always the case, especially
for longer notes. There can for instance be a pitch trend along a note’s duration, which may sound like
the singer is slowly trying to reach the correct pitch. To reduce this kind of detuning, we divide longer
notes in smaller sub-note segments, and compute the per-segment correction as described above.
However, prior to the final smoothing step, instead of a constant correction per segment, we obtain the
framewise correction by linearly interpolating each segment’s correction at its center.

Appendix C. Model Hyperparameters

Table A1 lists the hyperparameters for the timbre model and pitch model, which both use the
same modified WaveNet architecture. Table A2 list the hyperparameters for timing models, which use
a simpler architecture. All models are trained using the Adam optimizer [43] with standard parameters
β1 = 0.9, β2 = 0.999, ε = 1× 10−8; initial learning rates and inverse time decays are listed in the tables.
Training a complete system takes around 10 h on a single Titan X Pascal GPU. While we found these
settings to work well experimentally, they have not been exhaustively optimized.

Table A1. Hyperparameters for networks based on WaveNet architecture.

Hyperparameter
Timbre Model Pitch Model

Harmonic Aperiodic V/UV F0

Feature dimensionality 60 4 1 1

Additional inputs (dim.) - harmonic (60) harmonic (60)
aperiodic (4) -
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Table A1. Cont.

Hyperparameter
Timbre Model Pitch Model

Harmonic Aperiodic V/UV F0

Control inputs

prev. phn. identity (one-hot)
cur. phn. identity (one-hot)
next phn. identity (one-hot)

pos.-in-phn. (coarse)
F0 (coarse)

prev. phn. class (one-hot)
cur. phn. class (one-hot)
next phn. class (one-hot)

pos.-in-phn. (coarse)
prev. note pitch (one-hot)
cur. note pitch (one-hot)
next note pitch (one-hot)
prev. note dur. (coarse)
cur. note dur. (coarse)
next note dur. (coarse)
pos.-in-note (coarse)

Input noise level λ 0.4 0.4 0.4 0.4

Generation temperature τ
piecewise linear

(0,0.05; 3,0.05;
8,0.5; 60,0.5)

0.01 - 0.01

Initial causal convolution 10× 1 10× 1 10× 1 20× 1

Residual channels 130 20 20 100

Dilated convolutions 2× 1 2× 1 2× 1 2× 1

Num. layers 5 5 5 13

Num. layers per stage 3 3 3 7

Dilation factors 1, 2, 4, 1, 2 1, 2, 4, 1, 2 1, 2, 4, 1, 2 1, 2, 4, 8, 16, 32, 64,
1, 2, 4, 8, 16, 32

Receptive field (ms) 100 100 100 1050

Skip channels 240 16 4 100

Output stage tanh→ 1× 1
→ 60× CGMK=4

tanh→ 1× 1
→ 4× CGMK=4

tanh→ 1× 1
→ 1× sigmoid

tanh→ 1× 1
→ 1× CGMK=4

Batch size 32 32 32 64

Num. valid out timesteps 210 210 210 105

Learning rate
(initial, decay, interval)

5× 10−4,
1× 10−5, 1

5× 10−4,
1× 10−5, 1

5× 10−4,
1× 10−5, 1

1× 10−3,
-

Num. epochs (updates) 1650 (82,500) 1650 (82,500) 1650 (82,500) 235 (11,750)

Table A2. Hyperparameters for timing networks.

Hyperparameter Note Timing Phoneme Duration

Input features

note duration (one-hot)
prev. note duration (one-hot)
1st phoneme class (one-hot)

note position in bar (normalized)
note is rest

num. coda consonants prev. note
prev. note is rest

phoneme identity (one-hot)
phoneme class (one-hot)

phoneme is vowel
phoneme kind (onset/nucleus/coda/inner)

note duration (one-hot)
prev. note duration (one-hot)
next note duration (one-hot)

Target range (frames) [−15,14], [−30,29] for rests [5, 538]

Target discretization 30 bins, linear 50 bins, log scale
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Table A2. Cont.

Hyperparameter Note Timing Phoneme Duration

Architecture

input→ dropout (0.81)
1× 1→ 256× ReLU→ dropout (0.9)
1× 1→ 64× ReLU→ dropout (0.9)

1× 1→ 32× ReLU→ dropout (0.81)
1× 1→ 30-way softmax

input→ dropout (0.8)
3× 1→ 256× gated tanh→ dropout (0.8)

3× 1 (dilation = 2)→ 64× gated tanh
→ dropout (0.8)

1× 1→ 32× gated tanh→ dropout (0.64)
1× 1→ 50-way softmax

Batch size 32 16

Learning rate 2× 10−4 2× 10−4

Number of epochs 140 210
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Abstract: Rendering spatial sound scenes via audio objects has become popular in recent years,
since it can provide more flexibility for different auditory scenarios, such as 3D movies, spatial audio
communication and virtual classrooms. To facilitate high-quality bitrate-efficient distribution for
spatial audio objects, an encoding scheme based on intra-object sparsity (approximate k-sparsity of
the audio object itself) is proposed in this paper. The statistical analysis is presented to validate the
notion that the audio object has a stronger sparseness in the Modified Discrete Cosine Transform
(MDCT) domain than in the Short Time Fourier Transform (STFT) domain. By exploiting intra-object
sparsity in the MDCT domain, multiple simultaneously occurring audio objects are compressed into
a mono downmix signal with side information. To ensure a balanced perception quality of audio
objects, a Psychoacoustic-based time-frequency instants sorting algorithm and an energy equalized
Number of Preserved Time-Frequency Bins (NPTF) allocation strategy are proposed, which are
employed in the underlying compression framework. The downmix signal can be further encoded
via Scalar Quantized Vector Huffman Coding (SQVH) technique at a desirable bitrate, and the side
information is transmitted in a lossless manner. Both objective and subjective evaluations show that
the proposed encoding scheme outperforms the Sparsity Analysis (SPA) approach and Spatial Audio
Object Coding (SAOC) in cases where eight objects were jointly encoded.

Keywords: audio object coding; sparsity; psychoacoustic model; multi-channel audio coding

1. Introduction

With the development of multimedia video/audio signal processing, multi-channel 3D audio
has been widely employed for applications, such as cinemas and home theatre systems, since it can
provide excellent spatial realism of the original sound field, as compared to the traditional mono/stereo
audio format.

There are multiple formats for rendering 3D audio, which contain channel-based, object-based
and HOA-based audio formats. In traditional spatial sound rendering approach, the channel-based
format is adopted in the early stage. For example, the 5.1 surround audio format [1] provides a
horizontal soundfield and it has been widely employed for applications, such as the cinema and
home theater. Furthermore, typical ‘3D’ formats include a varying number of height channels, such as
7.1 audio format (with two height channels). As the channel number increases, the audio data will
raise dramatically. Due to the bandwidth constrained usage scenarios, the spatial audio coding
technique has become an ongoing research topic in recent decades. In 1997, ISO /MPEG (Moving
Picture Experts Group) designed the first commercially-used multi-channel audio coder MPEG-2
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Advanced Audio Coding (MPEG-2 AAC) [2]. It could compress multi-channel audio by adding a
number of advanced coding tools to MPEG-1 audio codecs, delivering European Broadcasting Union
(EBU) broadcast quality at a bitrate of 320 kbps for a 5.1 signal. In 2006, MPEG Surround (MPS) [3,4]
was created for highly transmission of multi-channel sound by downmixing the multi-channel signals
into mono/stereo signal and extracting Interaural Level Differences (ILD), ITD (Interaural Time
Differences) and IC (Interaural Coherence) as side information. Spatially Squeezed Surround Audio
Coding (S3AC) [5–7], as a new method instead of original “downmix plus spatial parameters” model,
exploited spatial direction of virtual sound source and mapping the soundfield from 360◦ into 60◦.
At the receiver, the decoded signals can be achieved by inverse mapping the 60◦ stereo soundfield
into 360◦.

However, such channel-based audio format has its limitation on flexibility, i.e., each channel
is designated to feed a loudspeaker in a known prescribed position and cannot be adjusted for
different reproduction needs by the users. Alternatively, a spatial sound scene can be described by
a number of sound objects, each positioned at a certain target object position in space, which can be
totally independent from the locations of available loudspeakers [8]. In order to fulfill the demand
of interactive audio elements, object-based (a.k.a. object-oriented) audio format enables users to
control audio content or sense of direction in application scenarios where the number of sound sources
varies, sources move are commonly encountered. Hence, object signals generally need to be rendered
to their target positions by appropriate rendering algorithms, e.g., Vector Base Amplitude Panning
(VBAP) [9]. Therefore, object-based audio format can personalize customer’s listening experience and
make surround sound more realistic. By now, object-based audio has been commercialized in many
acoustic field, e.g., Dolby ATMOS for cinemas [10].

To facilitate high-quality bitrate-efficient distribution of audio objects, several methods have
been developed, one of these techniques is MPEG Spatial Audio Object Coding (SAOC) [11,12].
SAOC encodes audio objects into a mono/stereo downmix signal plus side information via Quadrature
Mirror Filter (QMF) and extract the parameters that stand for the energy relationship between different
audio objects. Additionally, Directional Audio Coding (DirAC) [13,14] compress a spatial scene by
calculating a direction vector representing spatial location information of the virtual sources. At the
decoder side, the virtual sources are created from the downmixed signal at positions given by the
direction vectors and they are panned by combining different loudspeakers through VBAP. The latest
MPEG-H 3D audio coding standard incorporates the existing MPEG technology components to
provide universal means for carriage of channel-based, object-based and Higher Order Ambisonics
(HOA) based inputs [15]. Both MPEG-Surround (MPEG-S) and SAOC are included in MPEG-H 3D
audio standard.

Recently, a Psychoacoustic-based Analysis-By-Synthesis (PABS) method [16,17] was proposed
for encoding multiple speech objects, which could compress four simultaneously occurring speech
sources in two downmix signals relied on inter-object sparsity [18]. However, with the number of
objects increases, the inter-object sparsity becomes weakened, which leads to quality loss of decoded
signal. In our previous work [19–21], a multiple audio objects encoding approach was proposed based
on intra-object sparsity. Unlike the inter-object sparsity employed in PABS framework, this encoding
scheme exploited the sparseness of object itself. That is, in a certain domain, an object signal can
be represented by a small number of time-frequency instants. The evaluation results validated that
this intra-object based approach achieved a better performance than PABS algorithm and retain the
superior perceptual quality of the decoded signals. However, the aforementioned technique still has
some restrictions which leads to a sub-optimum solution for object compression. Firstly, Short Time
Fourier Transform (STFT) is chosen as the linear time-frequency transform to analyze audio objects.
Yet the energy compaction capability of STFT is not optimal. Secondly, the above object encoding
scheme concentrated on the features of object signal itself without considering the psychoacoustic,
thus it is not an optimal quantization means for Human Auditory System (HAS).

274



Appl. Sci. 2017, 7, 1301

This paper expands on the contributions in [19]. Based on intra-object sparsity, we propose a
novel encoding scheme for multiple audio objects to further optimize our previous proposed approach
and minimize the quality loss caused by compression. Firstly, by exploiting intra-object sparsity in
the Modified Discrete Cosine Transform (MDCT) domain, multiple simultaneously occurring audio
objects are compressed into a mono downmix signal with side information. Secondly, psychoacoustic
model is utilized in the proposed codec to accomplish an optimal quantization for HAS. Hence,
a Psychoacoustic-based Time-Frequency (TF) instants sorting algorithm is proposed for extracting
the dominant TF instants in the MDCT domain. Furthermore, by utilizing these extracted TF
instants, we propose a fast algorithm of Number of Preserved Time-Frequency Bins (NPTF, defined in
Appendix A) allocation strategy to ensure a balanced perception quality for all object signals. Finally,
the downmix signal can be further encoded via SQVH technique at desirable bitrate and the side
information is transmitted in a lossless manner. In addition, a comparative study of intra-object sparsity
of audio signal in the STFT domain and MDCT domain is presented via statistical analysis. The results
show that audio objects have sparsity-promoting property in the MDCT domain, which means that a
greater data compression ratio can be achieved.

The remainder of the paper is structured as follows: Section 2 introduces the architecture of the
encoding framework in detail. Experimental results are presented and discussed in Section 3, while the
conclusion is given in Section 4. Appendix A investigates the sparsity of audio objects in the STFT and
MDCT domain, respectively.

2. Proposed Compression Framework

In the previous work, we adopted STFT as time-frequency transform to analyze the sparsity of
audio signal and designed a codec based on the intra-object sparsity. From the statistical results of
sparsity presented in Appendix A, we know that audio signals satisfy the approximate k-sparsity
both in the STFT and MDCT domain, i.e., the energy of audio signal is almost concentrated in k
time-frequency instants. In other words, audio signals have sparsity-promoting property in the
MDCT domain in contrast to STFT, that is, k(rFEPR)MDCT < k(rFEPR)STFT. By using this advantage
of MDCT, a multiple audio objects compression framework is proposed in this section based on
intra-object sparsity. The proposed encoding scheme consists of five modules: time-frequency
transform, active object detection, psychoacoustic-based TF instants sorting, NPTF allocation strategy
and Scalar Quantized Vector Huffman Coding (SQVH).

The following process is operated in a frame-wise fashion. As is shown in Figure 1, all input audio
objects (Source 1 to Source Q) are converted into time-frequency domain using MDCT. After active
object detection, the TF instants of all active objects will be sorted according to Psychoacoustic model
in order to extract the most perceptually important time-frequency instants. Then, a NPTF allocation
strategy among all audio objects is proposed to counterpoise the energy of all preserved TF instants of
each object. Thereafter, the extracted time-frequency instants are downmixed into a mono mixture
stream plus side information via downmix processing operation. Particularly attention is that the
downmix signal can be further compressed by existing audio coding methods. In this proposed
method, SQVH technique is employed after de-mixing all TF instants, because it can compress audio
signal at desirable bitrate. At the receiving end, Source 1 to Source Q can be decoded by exploiting the
received downmix signal and the side information. The detailed contents are described below.
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Figure 1. The block diagram for the proposed compression framework. (MDCT, Modified Discrete
Cosine Transform; IMDCT, Inverse Modified Discrete Cosine Transform; NPTF, Number of Preserved
Time-Frequency Bins; SQVH, Scalar Quantized Vector Huffman Coding; TF, Time-Frequency).

2.1. MDCT and Active Object Detection

In nth frame, an input audio object sn = [sn(1), sn(2), . . . , sn(M)] is transformed into the MDCT
domain, denoted by S(n, l), where n (1 ≤ n ≤ N) and l (1 ≤ l ≤ L) are frame number and frequency
index, respectively. M = 1024 is the frame length. Here, a 2048-points MDCT is applied with 50%
overlapped [22]. By this overlap, discontinuity at block boundary is smoothed out without increasing
the number of transform coefficients. Afterwards, MDCT of an original signal sn can be formulated as:

S(n, l) = 2
[

sn ·
(

ϕ1
l

)T
+ sn+1 ·

(
ϕ2

l

)T
]

(1)

where L = 1024, ϕ1
l �

{
ϕ1

l (1), ϕ1
l (2), · · · , ϕ1

l (M)
}

, ϕ2
l �

{
ϕ2

l (1), ϕ2
l (2), · · · , ϕ2

l (M)
}

are
the basis functions corresponding to nth frame and (n + 1)th frame. ϕ1
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cos

[
π
M ·
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2

)
·
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2
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[

π
M ·

(
m + 3M+1

2

)
·
(

l − 1
2

)]
and T is the

transpose operation. In addition, a Kaiser–Bessel derived (KBD) short-time window slid along the
time axis with 50% overlapping between frames is used as window function ω(m).

In order to ensure the encoding scheme only encodes active frames without processing the silence
frames, an Active Object Detection technique is applied to check the active audio objects in the current
frame. Hence, Voice Activity Detection (VAD) [23] is utilized in this work, which is based on the
short-time energy of audio in the current frame and comparison with the estimated background noise
level. Each source uses a flag to indicate whether it is active in current frame. i.e.,

f lag =

{
1, if the current object is active

0, otherwise
(2)

Afterwards, only the frames which are detected as active will be sent into the next module.
In contrast, the mute frames will be ignored in the proposed codec. This procedure ensures that silence
frames cannot be selected.
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2.2. Psychoacoustic-Based TF Instants Sorting

In Appendix A, it is proved that the majority of the frame energy concentrates in finite k
time-frequency instants for each audio object. For this reason, we can extract these k dominant TF
instants for compression. In our previous work [19–21], TF instants are sorted and extracted by natural
ordering via the magnitude of the normalized energy. However, this approach does not take into
account HAS. It is well-known that HAS is not equally sensitive to all frequencies within the audible
band since it has a non-flat frequency response. This simply means that we can hear some tones better
than others. Thus, tones played at the same volume (intensity) at different frequencies are perceived as
if they are being played at different volumes. For the purpose of enhance perceptual quality, we design
a novel method through absolute auditory masking threshold to extract the dominant TF instants.

The absolute threshold of hearing characterizes the amount of energy needed in a pure tone such
that it can be detected by a listener in a noiseless environment and it is expressed in terms of dB Sound
Pressure Level (SPL) [24]. The quiet threshold is well approximated by the continuous nonlinear
function, which is based on a number of listeners that were generated in a National Institutes of Health
(NIH) study of typical American hearing acuity [25]:

T( f ) = 3.64× ( f /1000)−0.8 − 6.5× e−0.6( f /1000−3.3)2
+ 10−3 × ( f /1000)4 (3)

where T(f ) reflects the auditory properties for human ear in the STFT domain. Hence, the T(f ) should
be discretized and converted into the MDCT domain. The whole processing procedure includes two
steps: inverse time-frequency transform and MDCT [26]. After these operations, absolute auditory
masking threshold in the MDCT domain is denoted as Tmdct (l) (dB expression), where l = 1, 2, . . . , L.
Then, an L-dimensional Absolute Auditory Masking Threshold (AAMT) vector T ≡ [Tmdct(1), Tmdct(2),
. . . , Tmdct(L)] is generated for subsequent computing. From psychoacoustic theory, it is clear that if
there exists a TF bin (n0, l0) that the difference between SdB(n0, l0) (dB expression of S(n0, l0)) and
Tmdct(l0) is larger than other TF bins, which means that S(n0, l0) can be perceived more easily than other
TF components, but not vice versa. Specifically, any signals below this threshold curve (i.e., SdB(n0, l0)
− Tmdct(l0) < 0) is imperceptible (because Tmdct (l) is the lowest limit of HAS). Rely on this phenomenon,
the AAMT vector T is used for extracting the perceptual dominant TF instants efficiently.

For qth (1 ≤ q ≤ Q) audio object Sq(n, l), whose dB expression is written as Sq_dB(n, l).
An aggregated vector can be attained by converging each Sq_dB(n, l) denoted as Sq_dB≡ [Sq_dB(n,
1), Sq_dB(n, 2), . . . , Sq_dB(n, L)]. Subsequently, a perceptual detection vector is designed as:

Pq = Sq_dB–T ≡
[
Pq(n, 1), Pq(n, 2), · · · , Pq(n, L)

]
(4)

where Pq(n,l) = Sq_dB(n,l) − Tmdct(l). To sort each element in Pq according to the magnitude in
descending order, mathematically, a new vector can be attained as:

P′q ≡
[

Pq(n, lq
1), · · · , Pq(n, lq

L)
]

(5)

the elements in P′q satisfy:

Pq(n, lq
i ) ≥ Pq(n, lq

j ), ∀i < j, i, j ∈ {1, 2, · · · , L} (6)

where lq
1, · · · , lq

L is the reorder frequency index which represent the perceptual significantly TF instants
in order of importance for HAS. In other words, Sq(n, lq

1) is the most considerable component with
respect to HAS. In contrast, Sq(n, lq

L) is almost the least significant TF instant for HAS.
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2.3. NPTF Allocation Strategy

Allocating the NPTF for each active object signal can be actualized with various manners according
to realistic application scenarios. As a most common used means called simplified average distribution
method, all active objects share the same NPTF has been employed in [19,21]. This allocation
method balances a tradeoff between computational complexity and perceptual quality. Therefore,
it is a simple and efficient way. Nonetheless, this allocation strategy cannot guarantee all decoded
objects with similar perceptual quality. Especially, the uneven quality can be emerged if there exists
big difference of intra-object sparseness amongst objects. To conquer the above-mentioned issue,
an Analysis-by-Synthesis (ABS) framework was proposed to balance the perceptual quality for all
objects through solving a minimax problem via the iterative processing [20]. The test results show
that this technique yields the approximate evenly distributed Frame Energy Preservation Ratio (FEPR,
defined in Appendix A) for all objects. Despite the harmonious perceptual quality can be maintained,
the attendant problem which is the sharp increase in computational complexity cannot be neglected.
Accordingly, relied on the TF sorting result obtained in Section 2.2, an NPTF allocation strategy for
obtaining a balanced perceptual quality of all inputs is proposed in this work.

In the nth frame, we assume that the qth object will be distributed kq NPTF, i.e., kq TF instants will
be extracted for coding. An Individual Object Energy Retention ratio (IOER) function for the qth object
is defined by:

f IOER(k, q) =

k
∑

i=1
Sq

(
n, lq

i

)
L
∑

l=1
Sq(n, l)

(7)

where lq
i is the reorder frequency index obtained in the previous section. IOER function represents

the energy of the k perceptual significant elements against the original signal Sq(n, l). Thus, kq will be
allocated for each object with approximate IOER. Under the criterion of minimum mean-square error,
for all q ∈ {1, 2, . . . , Q} the kq can be attained via a constrained optimization equation as follow:

min
k1,k2,··· ,kQ

Q
∑

q=1
‖ f IOER(kq, q)− f ‖2

s.t.
Q
∑

q=1
kq = L

(8)

where f = 1
Q

Q
∑

q=1
f IOER(k, q) represents the average energy of all objects. The optimal solution k1, k2,

. . . , kQ for each object are the desired NPTF1, NPTF2, . . . , NPTFQ, which can be searched by our
proposed method elaborated in Algorithm 1.

The proposed NPTF allocation strategy allows different reserved TF instants (i.e., MDCT
coefficients) for each object among a certain group of multi-track audio objects without iterative
processing, therefore, the computational complexity decrease rapidly through the dynamic TF instants
distribution algorithm. In addition, a sub-equal perception quality for each object can be maintained
via our proposed NPTF allocation strategy rather than pursuit the quality of a particular object.

Thereafter, vector P′q needs to be extract the NPTFq(kq) elements to forming a new vector

p̃q ≡
[

Pq(n, lq
1), · · · , pq(n, lq

NPTFq
)
]
.. It should be note that lq

1, lq
2, . . . , lq

NPTFq
indicate the origin

of Sq

(
n, lq

1

)
, Sq

(
n, lq

2

)
, . . . , Sq

(
n, lq

NPTFq

)
, respectively. We group lq

1, lq
2, . . . , lq

NPTFq
into a vector

Iq ≡
[
lq
1, lq

2, . . . , lq
NPTFq

]
, in the meantime, a new vector containing all extracted TF instants Ŝq ≡[

Sq

(
n, lq

1

)
, Sq

(
n, lq

2

)
, . . . , Sq

(
n, lq

NPTFq

)]
is generated. Finally, both Iq and Ŝq should be stored locally

and sent into the Downmix Processing module.
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Algorithm 1: NPTF allocation strategy based on bisection method

Input: Q � number of audio objects
Input:

{
Sq(n, l)

}Q
q=1 � MDCT coefficients of each audio object

Input:
{

lq
i

}L

i=1
� reordered frequency index by psychoacoustic model

Input: BPA � lower limit used in dichotomy part
Input: BPB � upper limit used in dichotomy part
Input: BPM � median used in dichotomy part
Output: K � desired NPTF allocation result

1. Set K = Ø
2. for q = 1 to Q do

3. for k = 1 to L do

4. Calculate IOER function f IOER(k, q) using
{

Sq(n, l)
}Q

q=1 and
{

lq
i

}L

i=1
in Formula (12).

5. end for

6. end for

7. Initialize BPA = 0, BPB = 1, BPM = 0.5·(BPA + BPB), STOP = 0.01 chosen based on a series of informal
experimental results.

8. while (BPB–BPA > STOP) do

9. Find the index value corresponding to BPM value in IOER function (i.e., f IOER(kq, q) ≈ BPM),
denoted by kq.

10. if
Q
∑

q=1
kq > L then

11. BPB = BPM,
12. BPM = [0.5·(BPA + BPB)].
13. else

14. BPA = BPM,
15. BPM = [0.5·(BPA + BPB)].
16. end if

17. end while

18. K =
{

kq
}Q

q=1

19. return K

2.4. Downmix Processing

After extracting the dominant TF instants Ŝq, source 1 to source Q only contains the perception
significantly MDCT coefficients of all active audio objects. However, each source include a number
of zero entries, hence, the downmix processing must be exploited which aims to redistributing the
nonzero entries of the extracted TF instants from 1 to L in the frequency axis to generate the mono
downmix signal.

For each active source q, a k-sparse (k = NPTFq) approximation signal of Sq(n, l) can be attained by
rearrange Ŝq in the original position, expressed as:

S̃q(n, l) =

{
Sq(n, l), if l ∈ Iq

0, otherwise
(9)

The downmix matrix is denoted as Dn ≡
[
S̃1, S̃2, · · · , S̃Q

]T
, where S̃q ≡[

S̃q(n, 1), S̃q(n, 2), . . . , S̃q(n, L)
]

and T is the transpose operation. This matrix is sparse matrix
containing M × L entries. Through a column-wise scanning of Dn and sequencing the nonzero
entries onto the frequency axis according to the scanning order, the mono downmix signal and side
information can be obtained via Algorithm 2.
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Figure 2 indicates the demixing procedure in accordance with an example of eight simultaneously
occurring audio objects. Each square represents a time-frequency instant. The preserved TF
components for each sound source (a total of 8 audio objects in this example) are represented by
various color-block and shading.
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Figure 2. Example of TF (Time-Frequency) instants extraction and de-mixing procedure with eight
unique simultaneously occurring sources.

Furthermore, the above-presented downmix processing guarantees the redistributed TF
components locating in the nearby frequency position as their original position, which is prerequisite
for subsequent Scalar Quantized Vector Huffman Coding (SQVH). Consequently, the downmix signal
dn can be further encoded by SQVH technique. Meanwhile, the side information compressed via the
Run Length Coding (RLC) and the Golomb-Rice coding [19] at about 90 kbps.

2.5. Downmix Signal Compressing by SQVH

SQVH is a kind of efficient transform coding method which is used in fixed bitrate codec [26–28].
In this section, SQVH with variable bitrate for encoding downmix signal is designed and described
as follows.

For the nth frame, the downmix signal dn attained in Algorithm 2 can be expressed as:

dn ≡ [dn(1), dn(2), · · · , dn(L)] (10)

dn need to be divided into 51 sub-bands, each sub-band contains 20 TF instants, respectively
(without considering the last 4 instants). The sub-band power (spectrum energy) is determined for
each of the 51 regions and it is defined as root-mean-square (rms) value of coterminous 20 MDCT
coefficients computed as:

Rrms(r) =

√√√√ 1
20

20

∑
l=1

d2
n(20(r− 1) + l) (11)

where r is region index, r = 0, 1, . . . , 50. The region power is then quantized with a logarithmic
quantizer, 2(i/2+1) are set to be quantization values, where i is an integer in the range [−8, 31]. Rrms(0)
is the lowest frequency region, which is quantized with 5 bits and transmitted directly in transmission
channel. The quantization indices of the remaining 50 regions, which are differentially coded against
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the last highest-numbered region and then Huffman coded with variable bitrates. In each sub-band,
the Quantized Index (QI) value can be given by:

QIr(l) = min
{ ⌊

|dn(20·(r−1)+l)|
Rrms(r)×qstepsize

+ b
⌋

, MAX
}

(12)

where qstepsize is quantization steps, b is an offset value according to different categories, � � denotes
a round-up operation, MAX is maximum of MDCT coefficients corresponding to that category and
l represents the lth vector in the region r. There are several categories designed in SQVH coding.
The category assigned to a region defines the quantization and coding parameters such as quantization
step size, offset, vector dimension vd and an expected total number of bits. The coding parameters for
different category is given in Table 1.

Algorithm 2: Downmix processing compression algorithm

Input: Q � number of audio objects
Input: L � frequency index
Input: λ � downmix signal index
Input: S̃q � k-sparse approximation signal of Sq

Output: SIn � side information matrix
Output: dn � downmix signal

1. Initialize λ= 1.
2. Set SIn = 0, dn = 0.
3. for l = 1 to L do

4. for q = 1 to Q do

5. if S̃q(n, l) �= 0 then

6. dn(λ) = S̃q(n, l).
7. SIn(q, l) = 1.
8. Increment λ.
9. end if

10. end for

11. end for

12. return dn and SIn

Table 1. The coding parameters for different category.

Categories qstepsize b MAX vd Bit Count

0 2−1.5 0.3 13 2 52
1 2−1.0 0.33 9 2 47
2 2−0.5 0.36 6 2 43
3 20.0 0.39 4 4 37

As is depicted in Table 1, four categories are selected in this work. Category 0 has the smallest
quantization step size and uses the most bits, but not vice-versa. The set of scalar values, QIr(l),
correspond to a unique vector is identified by an index as follows:

vindex(i) =
vd−1

∑
j=0

QIr(i× vd + j)(MAX + 1)[vd−(j+1)] (13)

where i represents the ith vector in region r and j is the index to the jth value of QIr(l) in a given vector.
Then, all vector indices are Huffman coded with variable bit-length code for that region. Three types
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of bit-stream distributions are given in the proposed method, whose performance is evaluated in
next section.

2.6. Decoding Process

In decoding stage, MDCT coefficients recovery is an inverse operation of de-mixing procedure,
thus it needs the received downmix signal and the side information as auxiliary information.
The downmix signal is decoded by the same standard audio codec as used in the encoder and
the side information is decoded by the lossless codec. Thereafter, all recovered TF instants are assigned
to the corresponding audio object. Finally, all audio object signals are obtained by transforming back
to the time domain using the IMDCT.

3. Performance Evaluation

In this section, a series of objective and subjective tests are presented, which aim to examine the
performance of the proposed encoding framework.

3.1. Test Conditions

The QUASI audio database [29] is employed as the test database in our evaluation work,
which offers a vast variety categories of audio object signals (e.g., piano, vocal, drums, vocal, etc.)
sampled at 44.1 kHz. All the test audio data are selected from this database. Four test files are used for
evaluate the encoding quality when multiple audio objects are active simultaneously. Each test file
consists of eight audio segments which is created with the length of 15 s. In other words, eight audio
segments representing eight different types of audio objects are grouped together to form a multi-track
test audio file, where the notes are also different among the eight tracks. The MUltiple Stimuli with
Hidden Reference and Anchor (MUSRHA) methodology [30] and Perceptual Evaluation of Audio
Quality (PEAQ) are employed in subjective and objective evaluation, respectively. Moreover, there are
15 listeners who took part in each subjective listening test. A 2048-points MDCT is utilized with 50%
overlapping while adopting KBD window as window function.

3.2. Objective Evaluations

The first experiment is performed in the lossless transmission case, it means that both the downmix
signal and the side information are compressed using lossless techniques. The Sparsity Analysis (SPA)
multiple audio objects compression technique proposed in our previous work is served as reference
approach [19] (named “SPA-STFT”) because of its superior performance. Meanwhile, the intermediate
step given by SPA that uses the MDCT (named ‘SPA-MDCT’) is also compared in this test. The Objective
Difference Grade (ODG) score calculated by the PEAQ of ITU-R BS.1387 is chosen as the evaluation
criterion, which reflect the perceptual difference between the compressed signal and the original one.
The ODG values vary from 0 to −4 with 0 being imperceptible loss in quality and −4 being a very
annoying degradation in quality. What needs to be emphasized is that ODG scores cannot be treated
as an absolute criterion because it only provide a relative reference value of the perceptual quality.
Condition ‘Pro’ represents the objects encoded by our proposed encoding framework while condition
‘SPA-STFT’ and ‘SPA-MDCT’ are the reference approaches. Note that ‘SPA-STFT’ encoding approach
exploits a 2048-points Short Time Fourier Transform (STFT) with 50% overlapping.

Statistical results are shown in Figure 3 where each subfigure corresponds to an eight-track audio
file. From each subfigure, it can be observed that the decoded signals through our proposed encoding
framework has the highest ODG score compared to both the SPA and the MDCT-based SPA approach,
which indicates that the proposed framework can cause less damage to audio quality compared to
these two reference approaches.
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(a) (b) 

(c) (d) 

Figure 3. ODG (Objective Difference Grade) Score for the proposed audio object encoding approach
and the SPA (Sparsity Analysis) framework (both in the STFT (Short Time Fourier Transform) and
MDCT domain). (a–d) represent the results for 4 multi-track audio files.

In addition, the performance of the MDCT-based SPA approach is better than the SPA, which prove
that the selection of MDCT as time-frequency transform is efficient. Furthermore, in order to observe
the quality differences of decoded objects, the standard deviation of each file is given as follow:

As illustrated in Figure 4, our proposed encoding framework has a lower standard deviation than
the reference algorithms for each multi-track audio file. Hence, it proves that a more balanced quality
of decoded objects can be maintained compared to the reference approaches. In general, this test
validates that the proposed approach is robust to different kinds of audio objects.

Figure 4. The standard deviation of ODG score of four multi-track audio files.

In the lossy transmission case, the downmix signal which generated by encoder is further
compressed using the SQVH at 105.14 kbps, 112.53 kbps and 120.7 kbps, respectively. Each sub-band
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corresponds to a group of certain qstepsize, whose allocation for three types of bitrates can be calculated
as shown in Table 2.

Table 2. The qstepsize allocation for three types of bitrates.

The Index of the Bitrate Sub-Band
r

1~13 14~26 27~39 40~51

105.14 kbps 2−1.5 2−1.0 2−0.5 20.0

112.53 kbps 2−1.5 2−1.0 2−1.0 2−1.0

120.7 kbps 2−1.5 2−1.5 2−1.5 2−1.5

The ODG score in three types of bitrates are presented in Figure 5. Condition ‘Pro-105’, ‘Pro-112’,
‘Pro-120’ correspond to compress downmix signal at 105.14 kbps, 112.53 kbps and 120.7 kbps,
respectively. It can be observed that the higher quantization precision leads to the better quality
of decoded objects but the total bitrates increase as well. Therefore, we cannot pursuit a single factor
such as high audio quality or low bitrate for transmission [25]. In consequence, we need to make a
trade-off between audio quality and total bitrates in practical application scenarios.

(a) (b)

(c) (d)

Figure 5. The ODG score of four multi-track audio files, where each file correspond to three types of
bitrates. (a–d) represent the results for 4 multi-track audio files.

3.3. Subjective Evaluation

The subjective evaluation is further utilized to measure the perceptual quality of decoded object
signals, which consists of four MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA)
listening tests. Sennheiser HD600 headphone is used for playback. Note that for the first three
tests, each decoded object generated by the corresponding approach is played independently
without spatialization.
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The first test is the lossless transmission case, aims to make a comparison between our proposed
encoding framework and the SPA algorithm. Four group multi-track audio files used in previous
experiments are also treated as test data in this section. Condition ‘SPA’ means the reference approach
(the same as condition ‘SPA-STFT’ in Section 3.2) and condition ‘Pro’ means the proposed framework.
The original object signal is served as the Hidden Reference (condition ’Ref’) and condition ‘Anchor’ is
3.5 kHz low-pass filtered anchor signal. A total of 15 listeners participated in the test.

Results are shown in Figure 6 with 95% confidence intervals. It can be observed that the proposed
encoding framework achieves a higher score than the SPA approach with clear statistical significant
differences. Moreover, the MUSHRA scores for the proposed framework achieve over 80 indicating
’Excellent’ subjective quality compared to the Hidden Reference, which proves that the better perceptual
quality can be attained compared to the reference approach.

Figure 6. MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) test results for the SPA
framework and the proposed framework with 95% confidence intervals.

For lossy transmission case, the downmix signal encoded at 105 kbps via SQVH corresponds to
‘Pro-105’. Condition ‘SPA-128’ means the reference approach whose downmix signal compressed at
the bitrate of 128 kbps using the MPEG-2 AAC codec.

Results are presented in Figure 7 with 95% confidence intervals. Obviously, our proposed
encoding scheme has a better perceptual quality and a lower bitrate compared to the SPA approach.
That is, when a similar perceptual quality is desired, the proposed method requires less total bitrate
than the SPA approach.

Figure 7. MUSHRA test results for the SPA method encoding at 128 kbps and the proposed approach
at 105.14 kbps with 95% confidence intervals.
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Furthermore, we evaluate the perceptual quality of the decoded audio objects using our proposed
approach, using MPEG-2 AAC to encode each object independently and using Spatial Audio Object
Coding (SAOC). The MUSHRA listening test is employed with five conditions, namely, Ref, Pro-105,
AAC-30, SAOC and Anchor. The downmix signal in condition ‘Pro-105’ is further compressed using
SQVH at 105.14 kbps. Meanwhile, the side information can be compressed at about 90 kbps [19].
Condition ‘AAC-30’ is the separate encoding of each original audio object using the MPEG-2 AAC
codec at 30 kbps, the total bitrate is almost the same as ‘Pro-120’ (30 kbps/channel × 8 channels
= 240 kbps). Condition ‘SAOC’ represents the objects are encoded by SAOC. The total SAOC side
information rate of input objects is about 40 kbps (5 kbps per object), while the downmix signal
generated by SAOC is compressed by the standard audio codec MPEG-2 AAC at the bitrate of
128 kbps.

It is demonstrated in Figure 8 that our proposed approach at 105 kbps possess the similar
perceptual quality as separate encoding approach using MPEG-2 AAC. Yet the complexity of separate
encoding is much higher than our proposed approach. Furthermore, both our proposed method and
separate encoding approach attained a better performance compared with SAOC.

Figure 8. MUSHRA test results for separate AAC (Advanced Audio Coding) encoding at
30 kbps, SAOC (Spatial Audio Object Coding) and our proposed approach at 105 kbps with 95%
confidence intervals.

The last test devotes to evaluate the quality of the spatial soundfield generated by positioning
the decoded audio objects in different spatial locations, which stands for the real application scenario.
Specifically, for each eight-track audio, which are positioned uniformly in a circumference with a center
at the listener, i.e., the locations are 0◦, ±45◦, ±90◦, ±135◦, ±180◦, respectively. A binaural signal
(test audio data) is created by convoluting each independent decoded audio object signal with the
corresponding Head-Related Impulse Responses (HRIR) [31]. The MUSHRA listening test is employed
with 6 conditions, namely, Ref, Pro-105, SPA-128, AAC-30, SAOC and Anchor, which are the same as
previous tests. Here, Sennheiser HD600 headphone is used for playing the synthesized binaural signal.

It can be observed from Figure 9 that our proposed method can achieve a higher scores compared
to all the rest encoding approaches. The results (Figures 8 and 9) also show that the proposed approach
achieves a significant improvement over separate encoding method using MPEG-2 AAC for binaural
rendering but not in the independently playback scenario. This is due to the spatial hearing theory,
which reveals that in each frequency only a few audio objects located at different positions can be
perceived by the human ear (i.e., not all audio objects are sensitive at same frequency). In our proposed
codec, only the most perceptually important time-frequency instants (not all time-frequency instants)
of each audio object are coded with a higher quantization precision, while these frequency components
are important for HAS. The coding error produced by our codec can be masked by spatial masking
effect to a great extant from the last experiment. However, MPEG-2 AAC encodes all time-frequency
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instants with a relatively lower quantization precision at 30 kbps. When multiple audio objects
were encoded separately by MPEG-2 AAC, there are some coding error that cannot be reduced by
spatial masking effect. Hence, the proposed approach shows significant improvements over condition
‘AAC-30’ for binaural rendering.

Figure 9. MUSHRA test results with 95% confidence intervals for the soundfield rendering using
separate AAC encoding at 30 kbps, SAOC, SPA and our proposed approach at 105 kbps.

From a series of objective and subjective listening test, we prove that the proposed approach
can adapt to various bitrates conditions and it is suitable for encoding multiple audio objects in real
application scenarios.

4. Conclusions

In this paper, an efficiently encoding approach for multiple audio objects based on intra-object
sparsity was presented. Unlike the existing STFT-based compression framework, statistical analysis
validated that for the case of tonal solo instruments audio objects possess better energy concentration
property in the MDCT domain so that MDCT is selected as basic transform in our encoding scheme.
In order to achieve a balanced perceptual quality for all object signals, both psychoacoustic-based and
energy balanced NPTF allocation strategy algorithm is proposed for obtaining the optimal MDCT
coefficients of each object. Moreover, SQVH is utilized to further encode downmix signal at variable
bitrates. Objective and subjective evaluations shows that the proposed approach outperforms the
existing intra-object based approach and achieves a more balanced perceptual quality when eight
simultaneously occurring audio objects were encoded jointly. The results also confirmed that the
proposed framework attained higher perceptual quality compared to SAOC. Further research could
include the investigation of relative auditory masking threshold, in order to acquire a better perceptual
quality amongst all objects.
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Appendix A. Sparsity Analysis of Audio Signal in the MDCT Domain

Considering that the MDCT is a commonly used time-frequency transform in signal processing,
the intra-object sparsity of audio signal in the MDCT domain should be investigated. Thus,
a quantitative analysis for sparsity of audio signals both in the MDCT and STFT domain is given in
this appendix.

According to the k-sparsity theory interpreted in compressed sensing [32,33], a signal/sequence
is regarded as (strict) k-sparse when it contains k nonzero entries with k « K, where K is the length
of the signal or sequence. In addition, a sequence can be considered as an approximate k-sparse if k
entries of the sequence occupy the majority of the total amount in magnitude, while the magnitude of
other entries are remarkable small. In our previous work [19], we validated that an audio signal is not
sparse in time domain, but its STFT coefficients in frequency domain fulfills the approximate k-sparsity.
For this reason, STFT is selected as basic transform in our preceding designed object encoding system.
The perceptual quality of the decoded signal can achieve a satisfactory level. However, STFT is not an
optimum sparseness time-frequency transform. In consideration of the energy compaction property
(i.e., a small number of TF instants capture the majority of the energy) of MDCT, therefore, approximate
k-sparsity of audio signal in the MDCT domain will be investigated compared to that in the STFT
domain by statistical analysis.

Appendix A.1. Measuring the Sparsity of Audio Signal

A time-frequency representations of an audio signal can be obtained by a linear transform.
Specifically, for a general dictionary of atoms D = {ϕl}, the linear representation of an audio signal
sn(m) in nth frame can be defined by:

S(n, l) =
M

∑
m=1

sn(m)ϕl(m) (A1)

where n, m and l represent frame number, time index and frequency index, respectively. M is the
length of each frame. Short-time Fourier Transform (STFT) basis functions and Discrete Cosine
Transform (DCT) basis functions are ordinarily used as time-frequency atoms in speech and audio
signal compression. DCT is widely used in audio coding mainly because of its energy compaction
feature. Nevertheless, due to the blocking effect caused by the different quantitative level between
frames, the processed signal cannot be perfectly reconstructed by IDCT. Evolved from DCT, MDCT has
emerged as an efficaciously tool in high quality audio coding over the last decade because it helps
to mitigate the blocking artifacts that deteriorate the reconstruction of transform audio coders with
non-overlapped transforms [34]. It should be noted that MDCT can be taken as a filterbank with 50%
overlapped window, hence, Time Domain Aliasing Cancellation (TDAC) must be exploited in the
practical processing. Meanwhile, the chosen window function must satisfy the TDAC requirement.
In this work, a Kaiser-Bessel derived (KBD) window [35] is chosen to meet the computing needs
of TDAC and overlap-add algorithms. Particularly, for a finite-length audio signal whose MDCT
coefficients are densely concentrated at low indices than the STFT (Short Time Fourier Transform) does,
which is called “energy compaction” property [36]. With this prerequisite, a detailed comparative
study and analyses of energy compaction feature (a.k.a. sparsity) of different audio objects in the STFT
domain and MDCT domain is implemented.

To measure and explore sparsity of audio signal in the time-frequency domain, a measurement
addressed as Frame Energy Preservation Ratio (FEPR) and the Number of Preserved TF bins (NPTF)
was proposed in [19]. Specifically, the sparse approximation signal of S(n, l), referred as S’(n, l), contains
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the maximum K* TF instants by preserving the portion of TF instants according to their amplitude of
S(n, l) while setting the other TF instants to zero, which can be expressed by:

S′(n, l) =

{
S(n, l), if l ∈ L
0, otherwise

(A2)

where L � {l1, l2, · · · , lK∗}, is the set of K* frequency indices corresponding to the maximum K*
time-frequency instants. Thus, S’(n, l) is a K*-sparse signal.

Suppose θn ≡ [S(n, 1), · · · , S(n, L)] is the L-dimensional vector denotes the TF representation of
the audio object signal in nth frame, θ′n ≡ [S′(n, 1), · · · , S′(n, L)] is sparse approximation vector of θn.
Then, the Frame Energy Preservation Ratio (FEPR) can be given by:

rFEPR(n) =
‖θ′n‖1
‖θn‖1

(A3)

where ‖·‖p denotes the lp-norm.
Afterwards, for arbitrary given r∗FEPR, if there exists a series of subset Li ⊂ {1, 2, · · · , L}, i = 1, 2,

. . . , such that the corresponding sparse signal vector θ′n,i ≡ [S′ i(n, 1), · · · , S′ i(n, L)]. The Number of
Preserved TF instants (NPTF), written as k, is defined as a function of r∗FEPR:

k(r∗FEPR) = inf

{
‖θ′n,i‖0

∣∣∣∣∣‖ θ
′
n,i ‖1

‖ θn ‖1
≥ r∗FEPR , i = 1, 2, · · · ,

}
(A4)

where inf{·} represents the infimum. k(r∗FEPR) describes the least achievable preserved TF bins for
arbitrary r∗FEPR. Especially, a lower k(r∗FEPR) with a certain r∗FEPR means stronger sparsity for an
audio signal.

Appendix A.2. Statistical Analysis Results

To reveal the superior properties of MDCT, in each frame, 315 mono audio recordings selected
from University of Iowa Music Instrument Samples (Iowa-MIS) audio database [37] sampled at
44.1 kHz and 100 mono speech recordings selected from Nippon Telegraph & Telephone (NTT)
database are chosen as the test data. The selected audio recordings contain 7 types of tonal solo
instruments. In this statistics work, a 2048-point STFT and MDCT basis with 50% overlapping is
applied to form the time-frequency instants. Meanwhile, a KBD window with the size of 2048 points is
used as the window function to meet the demand of overlap-add. A statistical analysis of NPTF is
taken with the FEPR ranged from 98% to 80%. Results are shown in Figure A1 with 95% confidence
intervals. Note that STFT-domain descriptions corresponding to instruments or speech are respectively
denoted by ‘Flute-STFT’, ‘Violin-STFT’, ‘Sax-STFT’, ‘Oboe-STFT’, ‘Trombone-STFT’, ‘Trumpet-STFT’,
‘Horn-STFT’ and ‘Speech-STFT’. In contrast, MDCT-domain representations are respectively regarded
as ‘Flute-MDCT’, ‘Violin-MDCT’, ‘Sax-MDCT’, ‘Oboe-MDCT’, ‘Trombone-MDCT’, ‘Trumpet-MDCT’,
‘Horn-MDCT’ and ‘Speech-MDCT’.
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Figure A1. NPTF (Number of Preserved Time-Frequency Bins) results calculated from eight types of
audio signals in various FEPR (Frame Energy Preservation Ratio).

Figure A1 indicates that by decreasing FEPR, the averaged NPTF degrades as well. More precisely,
NPTF is a convex function as FEPR decreases uniformly in terms of all test instruments and speech,
that is, audio object or speech signal are sparse both in STFT and MDCT domain. Furthermore, it shows
that there exists a noticeable difference between adjacent light color and dark color bars, in other
words, the averaged NPTF in the MDCT domain is much lower than that in the STFT domain for each
instrument and speech with a certain FEPR.

While the energy compaction property of MDCT is fairly intuitive, it becomes agnostic as the
FEPR changes. To measure the disparity between the averaged NPTF for MDCT coefficients and STFT
coefficients of audio signal with a known FEPR, a Normalized Relative Difference Ratio (NRDR) is
defined as (k is NPTF and rFEPR is FEPR):

NRDR(rFEPR) =
k(rFEPR)STFT − k(rFEPR)MDCT

k(rFEPR)STFT
(A5)

where k(rFEPR)STFT and k(rFEPR)MDCT are the averaged NPTF for an audio signal in the STFT and MDCT
domain with a certain FEPR, respectively. NRDR is the difference between them. The larger the NRDR
is, means that the less NPTF needed in the MDCT domain. Then, a statistical bar graph is presented
which reflects the relationship between NRDR and FEPR.

Results are shown in Figure A2 with different NRDR at rFEPR = 98~80%. It can be observe that the
NRDR of all tested audio signals are non-negative, which means that the averaged NPTF in the MDCT
domain is higher than that in the STFT domain. This result testifies that the performance of MDCT is
absolutely dominant for all of the tested 8 items.

Interestingly, we find that NRDR is gradually increasing as rFEPR uniformly decrease from 98%
to 88%. When 80% ≤ rFEPR ≤ 88%, the NRDR maintains at the same level or slightly grow. Videlicet,
with the decrement of FEPR, the superiority of MDCT is becoming increasingly obvious.

The next phenomenon needs to be noted is that the sparsity of violin and trumpet is particularly
evident in the MDCT domain, because their NRDR can reach up to 60% when rFEPR = 80% whilst
other instruments can only achieve roughly 45%~55%. Besides, the sparseness of selected speech
signals is weaker than all instruments in the MDCT domain but maintain consistency as far as the
global regularity.

Hence, the results in Figure A2 confirm that, for all tested signals, MDCT has a better energy
compaction capability than STFT to the great extent. It means that audio or speech signal is more
sparse in the MDCT domain than in the STFT domain.
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Figure A2. NRDR (Normalized Relative Difference Ratio) of eight types of audio signals under STFT
(Short Time Fourier Transform) and MDCT (Modified Discrete Cosine Transform) in various FEPR.

References

1. International Telecommunication Union. BS.775: Multichannel Stereophonic Sound System with and without
Accompanying Picture; International Telecommunications Union: Geneva, Switzerland, 2006.

2. Bosi, M.; Brandenburg, K.; Quackenbush, S.; Fielder, L.; Akagiri, K.; Fuchs, H.; Dietz, M. ISO/IEC MPEG-2
advanced audio coding. J. Audio Eng. Soc. 1997, 45, 789–814.

3. Breebaart, J.; Disch, S.; Faller, C.; Herre, J.; Hotho, G.; Kjörling, K.; Myburg, F.; Neusinger, M.; Oomen, W.;
Purnhagen, H.; et al. MPEG spatial audio coding/MPEG surround: Overview and current status.
In Proceedings of the Audio Engineering Society Convention 119, New York, NY, USA, 7–10 October 2005.

4. Quackenbush, S.; Herre, J. MPEG surround. IEEE MultiMedia 2005, 12, 18–23. [CrossRef]
5. Cheng, B.; Ritz, C.; Burnett, I. Principles and analysis of the squeezing approach to low bit rate spatial audio

coding. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Honolulu, HI, USA, 16–20 April 2007; pp. I-13–I-16.

6. Cheng, B.; Ritz, C.; Burnett, I. A spatial squeezing approach to ambisonic audio compression. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Las Vegas, NV, USA, 31 March–4 April 2008; pp. 369–372.

7. Cheng, B.; Ritz, C.; Burnett, I.; Zheng, X. A general compression approach to multi-channel three-dimensional
audio. IEEE Trans. Audio Speech Lang. Process. 2013, 21, 1676–1688. [CrossRef]

8. Bleidt, R.; Borsum, A.; Fuchs, H.; Weiss, S.M. Object-based audio: Opportunities for improved listening
experience and increased listener involvement. In Proceedings of the SMPTE 2014 Annual Technical
Conference & Exhibition, Hollywood, CA, USA, 20–23 October 2014.

9. Pulkki, V. Virtual sound source positioning using vector base amplitude panning. J. Audio Eng. Soc. 1997, 45,
456–466.

10. Dolby Laboratories, “Dolby ATMOS Cinema Specifications”. 2014. Available online: http://www.dolby.
com/us/en/technologies/dolbyatmos/dolby-atmos-specifications.pdf (accessed on 25 October 2017).

11. Breebaart, J.; Engdegard, J.; Falch, C.; Hellmuth, O.; Hilpert, J.; Holzer, A.; Koppens, J.; Oomen, W.; Resch, B.;
Schuijers, E.; et al. Spatial Audio Object Coding (SAOC)—The upcoming MPEG standard on parametric
object based audio coding. In Proceedings of the Audio Engineering Society Convention 124, Amsterdam,
The Netherlands, 17–20 May 2008.

12. Herre, J.; Purnhagen, H.; Koppens, J.; Hellmuth, O.; Engdegard, J.; Hilper, J.; Villemoes, L.; Terentiv, L.;
Falch, C.; Holzer, A.; et al. MPEG Spatial Audio Object Coding—The ISO/MPEG standard for efficient
coding of interactive audio scenes. J. Audio Eng. Soc. 2012, 60, 655–673.

291



Appl. Sci. 2017, 7, 1301

13. Pulkki, V. Directional audio coding in spatial sound reproduction and stereo upmixing. In Proceedings
of the Audio Engineering Society Conference: 28th International Conference: The Future of Audio
Technology—Surround and Beyond, Piteå, Sweden, 30 June–2 July 2006.

14. Faller, C.; Pulkki, V. Directional audio coding: Filterbank and STFT-based design. In Proceedings of the
Audio Engineering Society Convention 120, Paris, France, 20–23 May 2006.

15. Herre, J.; Hilpert, J.; Kuntz, A.; Plogsties, J. MPEG-H 3D audio—The new standard for coding of immersive
spatial audio. IEEE J. Sel. Top. Signal Process. 2015, 9, 770–779. [CrossRef]

16. Zheng, X.; Ritz, C.; Xi, J. Encoding navigable speech sources: An analysis by synthesis approach.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Kyoto, Japan, 25–30 March 2012; pp. 405–408.

17. Zheng, X.; Ritz, C.; Xi, J. Encoding navigable speech sources: A psychoacoustic-based analysis-by-synthesis
approach. IEEE Trans. Audio Speech Lang. Process. 2013, 21, 29–38. [CrossRef]

18. Yilmaz, O.; Rickard, S. Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Audio
Speech Lang. Process. 2004, 52, 1830–1847. [CrossRef]

19. Jia, M.; Yang, Z.; Bao, C.; Zheng, X.; Ritz, C. Encoding multiple audio objects using intra-object sparsity.
IEEE Trans. Audio Speech Lang. Process. 2015, 23, 1082–1095.

20. Yang, Z.; Jia, M.; Bao, C.; Wang, W. An analysis-by-synthesis encoding approach for multiple audio objects.
In Proceedings of the IEEE Signal and Information Processing Association Annual Summit and Conference
(APSIPA), Hong Kong, China, 16–19 December 2015; pp. 59–62.

21. Yang, Z.; Jia, M.; Wang, W.; Zhang, J. Multi-Stage Encoding Scheme for Multiple Audio Objects Using
Compressed Sensing. Cybern. Inf. Technol. 2015, 15, 135–146.

22. Wang, Y.; Vilermo, M. Modified discrete cosine transform: Its implications for audio coding and error
concealment. J. Audio Eng. Soc. 2003, 51, 52–61.

23. Enqing, D.; Guizhong, L.; Yatong, Z.; Yu, C. Voice activity detection based on short-time energy and noise
spectrum adaptation. In Proceedings of the IEEE International Conference on Signal Processing (ICSP),
Beijing, China, 26–30 August 2002; pp. 464–467.

24. Painter, T.; Spanias, A. Perceptual coding of digital audio. Proc. IEEE 2000, 88, 451–515. [CrossRef]
25. Spanias, A.; Painter, T.; Atti, V. Audio Signal Processing and Coding; John Wiley & Sons: Hoboken, NJ, USA,

2006; pp. 114 & 274, ISBN 9780470041970.
26. Jia, M.; Bao, C.; Liu, X. An embedded speech and audio coding method based on bit-plane coding and SQVH.

In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology
(ISSPIT), Ajman, UAE, 11–16 December 2009; pp. 43–48.

27. Xie, M.; Lindbergh, D.; Chu, P. ITU-T G.722.1 Annex C: A new low-complexity 14 kHz audio coding standard.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toulouse, France, 14–19 May 2006; pp. 173–176.

28. Xie, M.; Lindbergh, D.; Chu, P. From ITU-T G.722.1 to ITU-T G.722.1 Annex C: A New Low-Complexity
14kHz Bandwidth Audio Coding Standard. J. Multimed. 2007, 2, 65–76. [CrossRef]

29. QUASI Database—A Musical Audio Signal Database for Source Separation. Available online: http://www.
tsi.telecomparistech.fr/aao/en/2012/03/12/quasi/ (accessed on 25 October 2017).

30. International Telecommunication Union. BS.1534: Method for the Subjective Assessment of Intermediate Quality
Levels of Coding Systems; International Telecommunication Union: Geneva, Switzerland, 1997.

31. Gardner, B.; Martin, K. HRTF Measurements of a KEMAR Dummy-Head Microphone. Available online:
http://sound.media.mit.edu/resources/KEMAR.html (accessed on 25 October 2017).

32. Candes, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25,
21–30. [CrossRef]

33. Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements.
Commun. Pure Appl. Math. 2006, 59, 1207–1223. [CrossRef]

34. Dhas, M.D.K.; Sheeba, P.M. Analysis of audio signal using integer MDCT with Kaiser Bessel Derived window.
In Proceedings of the IEEE International Conference on Advanced Computing and Communication Systems
(ICACCS), Coimbatore, India, 6–7 January 2017; pp. 1–6.

35. Bosi, M.; Goldberg, R.E. Introduction to Digital Audio Coding and Standards; Springer: Berlin, Germany, 2003.

292



Appl. Sci. 2017, 7, 1301

36. Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Publishing House of Electronics
Industry: Beijing, China, 2011; pp. 673–683. ISBN 9787121122026.

37. University of Iowa Music Instrument Samples. Available online: http://theremin.music.uiowa.edu/MIS.
html (accessed on 25 October 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

293



applied  
sciences

Article

Wearable Vibration Based Computer Interaction and
Communication System for Deaf

Mete Yağanoğlu 1,*and Cemal Köse 2

1 Department of Computer Engineering, Faculty of Engineering, Ataturk University, 25240 Erzurum, Turkey
2 Department of Computer Engineering, Faculty of Engineering, Karadeniz Technical University,

61080 Trabzon, Turkey; ckose@ktu.edu.tr
* Correspondence: yaganoglu@atauni.edu.tr; Tel.: +90-535-445-2400

Academic Editor: Stefania Serafin
Received: 29 September 2017; Accepted: 11 December 2017; Published: 13 December 2017

Abstract: In individuals with impaired hearing, determining the direction of sound is a significant
problem. The direction of sound was determined in this study, which allowed hearing impaired
individuals to perceive where sounds originated. This study also determined whether something
was being spoken loudly near the hearing impaired individual. In this manner, it was intended that
they should be able to recognize panic conditions more quickly. The developed wearable system has
four microphone inlets, two vibration motor outlets, and four Light Emitting Diode (LED) outlets.
The vibration of motors placed on the right and left fingertips permits the indication of the direction
of sound through specific vibration frequencies. This study applies the ReliefF feature selection
method to evaluate every feature in comparison to other features and determine which features are
more effective in the classification phase. This study primarily selects the best feature extraction and
classification methods. Then, the prototype device has been tested using these selected methods
on themselves. ReliefF feature selection methods are used in the studies; the success of K nearest
neighborhood (Knn) classification had a 93% success rate and classification with Support Vector
Machine (SVM) had a 94% success rate. At close range, SVM and two of the best feature methods
were used and returned a 98% success rate. When testing our wearable devices on users in real time,
we used a classification technique to detect the direction and our wearable devices responded in
0.68 s; this saves power in comparison to traditional direction detection methods. Meanwhile, if there
was an echo in an indoor environment, the success rate increased; the echo canceller was disabled in
environments without an echo to save power. We also compared our system with the localization
algorithm based on the microphone array; the wearable device that we developed had a high success
rate and it produced faster results at lower cost than other methods. This study provides a new idea
for the benefit of deaf individuals that is preferable to a computer environment.

Keywords: wearable computing system; vibrating speaker for deaf; human–computer interaction;
feature extraction; speech processing

1. Introduction

In this technological era, information technology is effectively being used in numerous aspects
of our lives. The communication problems between humans and information have gradually made
machines more important.

One of speech recognition systems’ most significant purposes is to provide human–computer
communication through speech communication from users in a widespread manner and enable a more
extensive use of computer systems that facilitate the work of people in many fields.

Speech is the primary form of communication among people. People have the ability to
understand the meaning and to recognize the speaker, gender of speaker, age and emotional situation
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of the speaker [1]. Voice communication among people starts with a thought and intent activating
neural actions generating speech sounds in the brain. The listener receives the speech through the
auditory system converting the speech to neural signals that the brain can comprehend [2,3].

Many important computer and internet technology based studies intended to facilitate the lives
of hearing impaired individuals are being performed. Through these studies, attempts are being made
to improve the living quality of hearing impaired individuals.

The most important problem of hearing impaired individuals is their inability to perceive the
point where the sound is coming from. In this study, our primary objective was to enable hearing
impaired individuals to perceive the direction of sound and to turn towards that direction. Another
objective was to ensure hearing impaired individuals can disambiguate their attention by perceiving
whether the speaker is speaking softly or loudly.

Basically, the work performed by a voice recognition application is to receive the speech data and
to estimate what is being said. For this purpose, the sound received from the mic, in other words the
analogue signal is first converted to digital and the attributes of the acoustic signal is obtained for the
determination of required properties.

The sound wave forming the sound includes two significant properties. These properties are
amplitude and frequency. While frequency determines the treble and gravity properties of sound,
the amplitude determines the severity of sound and its energy. Sound recognition systems benefit
from analysis and sorting of acoustic signals.

As shown in Figure 1, our wearable device has also been tested in real time and the results
have been compared. In Figure 1, the device is mounted on the clothes of deaf users and it responds
instantaneously to vibrations in real time and detects the deaf person.

 

Figure 1. In testing our wearable device on the user in real time.

As can be seen in the system in Figure 2, data obtained from individuals are transferred to the
computer via the system we developed. Through this process, the obtained data passes the stages of
pre-processing, feature extraction and classification, then the direction of voices is detected; this has
also been tested in real time in this study. Subjects were given real time voices and whether they could
understand where the voices were coming from was observed.
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FEATURE 
EXTRACTION

PREPROCESSING

CLASSIFICATION

Figure 2. Human–Computer Interface System.

The main purpose of this study was to let people with hearing disabilities hear sounds that
were coming from behind such as brake sounds and horn sounds. Sounds coming from behind are
a significant source of anxiety for people with hearing disabilities. In addition, hearing the sounds
of brakes and horns is important and allows people with hearing disabilities to have safer journeys.
It will provide immediate extra perception and decision capabilities in real time to people with hearing
disabilities; the aim is to make a product that can be used in daily life by people with hearing disabilities
and to make their lives more prosperous.

2. Related Works

Some of the most common problems are the determinations of the age, gender, sensual situation
and feasible changing situations of the speaker like being sleepy or drunk. Defining some aspects of
the speech signal in a period of more than a few seconds or a few syllables is necessary to create a
high number appropriate high-level attribute and to conduct the general machinery learning methods
for high-dimensional attributes data. In the study of Pohjalainen et al., researchers have focused on
the automatic selection of usable signal attributes in order to understand the assigned paralinguistic
analysis duties better and with the aim to improve the classification performance from within the big
and non-elective basic attributes cluster [4].

In a period when the interaction between individuals and machines has increased, the definition-
detection of feelings might allow the creation of intelligent machinery and make emotions, just like
individuals. In voice recognition and speaker definition applications, emotions are at the forefront.
Because of this, the definition of emotions and its effect on speech signals might improve the speech
performance and speaker recognition systems. Fear type emotion definition can be used in the
voice-based control system to control a critical situation [5].

In the study of Vassis et al., a wireless system on the basis of standard wireless techniques
was suggested in order to protect the mobile assessment procedure. Furthermore, personalization
techniques were implemented in order to adapt the screen display and test results according to the
needs of the students [6].
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In their study, Shivakumar and Rajasenathipathi connected deaf and blind people to a computer
using these equipment hardware control procedures and a screen input program in order to be able to
help them benefit from the latest computer technology through vibrating gloves for communication
purposes [7].

The window of deaf and blind people opening up to the world is very small. The new technology
can be helpful in this, but it is expensive. In their study, Arato et al. developed a very cost-effective
method in order to write and read SMS using a smart phone with an internal vibrating motor and tested
this. Words and characters were turned into vibrating Braille codes and Morse words. Morse was
taught in order to perceive the characters as codes and words as a language [8].

In the study of Nanayakkara et al. the answer to the question whether the tactual and visual
knowledge combination can be used in order to increase the music experimentation in terms of the
deaf was asked, and if yes, how to use it was explored. The concepts provided in this article can
be beneficial in turning other peripheral voice types into visual demonstration and/or tactile input
tools and thus, for example, they will allow a deaf person to hear the sound of the doorbell, footsteps
approaching from behind, the voice of somebody calling for him, to understand speech and to watch
television with less stress. This research shows the important potential of deaf people in using the
existing technology to significantly change the way of experiencing music [9].

The study of Gollner et al. introduces a new communication system to support the communication
of deaf and blind people, thus consolidating their freedom [10].

In their study, Schmitz and Ertl developed a system that shows maps in a tactile manner using
a standard noisy gamepad in order to ensure that blind and deaf people use and discover electronic
maps. This system was aimed for both indoor and outdoor use, and thus it contains mechanisms in
order to take a broad outline of larger areas in addition to the discovery of small areas. It was thus
aimed to make digital maps accessible using vibrations [11].

In their study, Ketabdar and Polzehl developed an application for mobile phones that can analyze
the audio content, tactile subject and visual warnings in case a noisy event takes place. This application
is especially useful for deaf people or those with hearing disorder in that they are warned by noisy
events happening around them. The voice content analysis algorithm catches the data using the
microphone of the mobile phone and checks the change in the noisy activities happening around the
user. If any change happens and other conditions are encountered, the application gives visual or
vibratory-tactile warnings in proportion to the change of the voice content. This informs the user about
the incident. The functionality of this algorithm can be further developed with the analysis of user
movements [12].

In their study, Caetano and Jousmaki recorded the signals from 11 normal-hearing adults up to
200 Hz vibration and transmitted them to the fingertips of the right hand. All of the subjects reported
that they perceived a noise upon touching the vibrating tube and did not sense anything when they
did not touch the tube [13].

Cochlear implant (CI) users can also benefit from additional tactile help, such as those performed
by normal hearing people. Zhong et al. used two bone-anchored hearing aids (BAHA) as a tactile
vibration source. The two bone-anchored hearing aids connected to each other by a special device to
maintain a certain distance and angle have both directional microphones, one of which is programmed
to the front left and the other to the front right [14].

There are a large number of CI users who will not benefit from permanent hearing but will benefit
from the tips available in low frequency information. Wang and colleagues have studied the skill of
tactile helpers to convey low frequency cues in the study because the frequency sensitivity of human
haptic sense is similar to the frequency sensitivity of human acoustic hearing at low frequencies.
A total of 5 CI users and 10 normal hearing participants provide adaptations that are designed for low
predictability of words and rate the proportion of correct and incorrect words in word segmentation
using empirical expressions balanced against syllable frequency. The results of using the BAHA show
that there is a small but significant improvement on the ratio of the tactile helper and correct words,
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and the word segmentation errors are decreasing. These findings support the use of tactile information
in the perceptual task of word segmentation [15].

In the study of Mesaros et al., various metrics recommended for assessment of polyphonic sound
event perception systems used in realist cases, where multiple sound sources are simultaneously active,
are presented and discussed [16].

In the study of Wang et al., the subjective assessment over six deaf individuals with V-form
audiogram suggests that there is approximately 10% recovery in the score of talk separation for
monosyllabic Word lists tested in a silent acoustic environment [17].

In the study of Gao et al., a system designed to help deaf people communicate with others
was presented. Some useful new ideas in design and practice are proposed. An algorithm based
on geometric analysis has been introduced in order to extract the unchanging feature to the signer
position. Experiments show that the techniques proposed in the Gao et al. study are effective on
recognition rate or recognition performance [18].

In the study of Lin et al., an audio classification and segmentation method based on Gabor wavelet
properties is proposed [19].

Tervo et al. recommends the approach of spatial sound analysis and synthesis for automobile
sound systems in their study. An objective analysis of sound area in terms of direction and energy
provides the synthesis of the emergence of multi-channel speakers. Because of an automobile cabin’s
excessive acoustics, the authors recommend a few steps to make both objective and perception
performance better [20].

3. Materials and Methods

In the first phase, our wearable system was tested and applied in real-time. Our system estimates
new incoming data in real time and gives information to the user immediately via vibrations.
Our wearable device predicts the direction again as the system responds and redirects the user.
Using this method helped find the best of the methods described in the previous section and that
method was implemented. Different voices were provided from different directions to subjects and
they were asked to guess the direction of each. These results were compared with real results and the
level of success was determined for our wearable system.

In the second phase, the system is connected to the computer and the voices and their directions
were transferred to a digital environment. Data collected from four different microphones were
kept in matrixes each time and thus a data pool was created. The created data passed the stages of
preprocessing, feature extraction and classification, and was successful. A comparison was made with
the real time application and the results were interpreted.

The developed wearable system (see Figure 3) had four microphone inlets. Four microphones
were required to ensure distinguishable differentiation in the four basic directions. The system was first
tested using three microphones, but four were deemed necessary due to three obtaining low success
rates and due to there being four main directions. They were placed to the right, left, front, and rear of
the individual through the developed human–computer interface system. The experimental results
showed accuracy improved if four microphones were used instead of three. Two vibration motor
outlet units were used in the developed system; placing the vibration motors on the right and left
fingertips permitted the indication of the direction of sound by specific vibration frequencies. The most
important reason in the preference of fingertips is the high number of nerves present in the fingertips.
Moreover, vibration motors placed on the fingertips are easier to use and do not disturb the individual.

The developed system has four Light Emitting Diode (LED) outlets; when sound is perceived,
the LED of the outlet in the perceived direction of vibration is lit. The use of both vibration and LED
ensures that the user can more clearly perceive the relevant direction is perceived. We use LEDs to give
a visual warning. Meanwhile, the use of four different LED lights is considered for the four different
directions. If the user cannot interpret the vibrations, they can gain clarity by looking at the LEDs.
The role of vibration in this study is to activate the sense of touch for hearing-impaired individuals.
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Through touch, hearing-impaired individuals will be able to gain understanding more easily and will
have more comfort.

 

Figure 3. The developed wearable system.

The features of the device we have developed are; ARM-based 32-bit MCU with Flash memory.
3.6 V application supply, 72 MHz maximum frequency, 7 timers, 2 ADCs, 9 com. Interfaces.
Rechargeable batteries were used for our wearable device. The batteries can work for about 10 h.

In vibration, individuals are able to perceive the coming sound with a difference of 20 ms, and the
direction of coming sound can be determined at 20 ms after giving the vibration. In other words,
the individual is able to distinguish the coming sound after 20 ms.

Vibration severities of 3 different levels were applied on the finger:

• 0.5 V–1 V at 1st level for perception of silent sounds
• 1 V–2 V at 2nd level for perception of medium sounds
• 2 V–3 V at 3rd level for the perception of loud sounds

Here, 0.5, 1, 2 and 3 V indicate the intensity of the vibration. This means that if our system detects
a loud person, it gives a stronger vibration to the perception of the user. For 50 people with normal
hearing, the sound of sea or wind was provided via headphones. The reason for the choice of such
sounds is that they are used in deafness tests and were recommended by the attending physician.
Those sounds were set to a level (16–60 dB) that would not disturb users; through this, it does not have
a distract users.

After the vibration, it was applied in two different stages:

• Low classification level for those below 20 ms,
• High level classification for those 20 ms and above.

Thus, we will be able to perceive whether an individual is speaking loudly or quietly by adjusting
the vibration severity. For instance, if there is an individual nearby speaking loudly, the user will be
able to perceive it and respond quicker. Through this levelling, a distinction can be made in whether
a speaker is yelling. The main purpose of this is to reduce the response time for hearing impaired
individuals. It is possible that someone shouting nearby is referring to a problem and the listener
should pay more attention.
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In the performed study, 50 individuals without hearing impairment, four deaf people and
two people with moderate hearing loss were subjected to a wearable system and tested, and significant
success was obtained. Normal users could only hear the sea or wind music; the wearable technology
we developed was placed on the user’s back and tested. The user was aware of where sound was
coming from despite the high level of noise in their ear and they were able to head in the appropriate
direction. The ears of 50 individuals without hearing impairment were closed to prevent their hearing
ability, and the system was started in such a manner that they were unable to perceive where sounds
originated. These individuals were tested for five days at different locations and their classification
successes were calculated.

Four deaf people and two people with moderate hearing lose were tested for five days in different
locations and their results were compared with those of normal subjects based on eight directions
during individuals’ tests. Sound originated from the left, right, front, rear, and the intersection points
between these directions, and the success rate was tested. Four and eight direction results were
interpreted in this study and experiments were progressed in both indoor and outdoor environments.

People were used as sound sources in real-time experiments. While walking outside, someone
would come from behind and call out, and whether the person using the device could detect them was
evaluated. A loudspeaker was used as the sound source in the computer environment.

In this study, there were microphones on the right, left, behind, and front of the user and vibration
motors were attached to the left and right fingertips. For example, if a sound came from the left,
the vibration motor on the left fingertip would start working. Both the right and left vibration motors
would operate for the front and behind directions. For the front direction the right–left vibration
motors would briefly vibrate three times. For behind, right, and left directions, the vibration motors
vibrate would three times for extended periods. The person who uses the product would determine
the direction in approximately 70 ms on average. Through this study, loud or soft low sounding
people were recognizable and people with hearing problems could pay attention according to this
classification. For example, if someone making a loud sound was nearby, people with hearing problems
were able to understand this and react faster according to this understanding.

3.1. Definitions and Preliminaries

There are four microphone inputs, two vibration engine outputs and four LED outputs in the
developed system. With the help of vibration engines that we placed on the right and left fingertips,
the direction of the voice was shown by certain vibration intervals. When the voice is perceived, if the
vibration perceives its direction, the LED that belongs to that output is on. In this study, the system is
tested both in real time and after the data are transferred to the computer.

3.1.1. Description of Data Set

There is a problem including four classes:

1. Class: Data received from left mic
2. Class: Data received from right mic
3. Class: Data received from front mic
4. Class: Data received from rear mic

Four microphones were used in this study. Using 4 microphones represents 4 basic directions.
The data from each direction is added to the 4 direction tables. A new incoming voice data is estimated
by using 4 data tables. In real time, our system predicts a new incoming data and immediately informs
the user with the vibration.

3.1.2. Training Data

Training data of the four classes were received and transmitted to matrices. Attributes are derived
from training data of each class, and they were estimated for the data allocated to the test.
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3.2. Preprocessing

Various preprocessing methods are used in the preprocessing phase. These are: filtration,
normalization, noise reduction methods and analysis of basic components. In this study, normalization
from among preprocessing methods was used.

Statistical normalization or Z-Score normalization was used in the preprocessing phase.
Some values on the same data set having values smaller than 0 and some having higher values
indicate that these distances among data and especially the data at the beginning or end points of data
will be more effective on the results. By the normalization of data, it is ensured that each parameter
in the training entrance set contributes equally to the model’s estimation operation. The arithmetic
average and standard deviation of columns corresponding to each variable are found. Then the data
is normalized by the formula specified in the following equation, and the distances among data are
removed and the end points in data are reduced [21].

x′ =
xi − μi

σi
(1)

It states; xi = input value; μi = average of input data set; σi = standard deviation of input data set.

3.3. Method of Feature Extraction

Feature extraction is the most significant method for some problems such as speech recognition.
There are various methods of feature extraction. These can be listed as independent components
analysis, wavelet transform, Fourier analysis, common spatial pattern, skewness, kurtosis, total,
average, variance, standard deviation, polynomial matching [22].

Learning a wider-total attribute indicates utility below: [4,23,24]

• Classification performance stems from the rustication of voice or untrustworthy attributes.
• Basic classifiers that reveal a better generalization skill with less input values in terms of

new samplings.
• Understanding the classification problem through application by discovering the relevant and

irrelevant attributes.

The main goal of the attributes is collecting as much data as possible without changing the
acoustic specialty of speakers sound.

3.3.1. Skewness

Skewness is an asymmetrical measure of distribution. It is also the deterioration degree of
symmetry in normal distribution. If the distribution has a long tail towards right, it is called positive
skew or skew to right, and if the distribution has a long tail towards left, it is called negative skew or
skew to left.

S =
1
L ∑L

i=1(xi − x)2(
1
L ∑L

i=1(xi − x)2
)3 (2)

3.3.2. Kurtosis

Kurtosis is the measure of how an adverse inclined distribution is. The distribution of kurtosis
can be stated as follows:

b =
E(x− μ)4

σ4 (3)
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3.3.3. Zero Crossing Rate (ZCR)

Zero Crossing is a term that is used widely in electronic, mathematics and image processing.
ZCR gives the ratio of the signal changes from positive to negative or the other way round.
ZCR calculates this by counting the sound waves that cut the zero axis [25].

3.3.4. Local Maximum (Lmax) and Local Minimum (Lmin)

Lmax and Lmin points are called as local extremum points. The biggest local maximum point
is called absolute maximum point and the smallest of the Lmin point is called absolute minimum
point. Lmax starts with a signal changing transformation in time impact area in two dimensional map.
Lmax perception correction is made by the comparison of the results of different lower signals. If the
Lmax average number is higher, the point of those samplings in much important [26].

3.3.5. Root Mean Square (RMS)

RMS is the square root of the average sum of the signal. RMS is a value of 3D photogrammetry
and in time the changes in the volume and the shape are considered. The mathematical method for
calculating the RMS is as follows [27]:

XRMS =

√
x2

1 + x2
2 + . . . + x2

N
N

(4)

X is the vertical distance between two points and N is the sum of the reference points on the two
compared surfaces. RMS, is a statistical value which is used for calculating the increasing number of
the changes. It is especially useful for the waves that changes positively and negatively.

3.3.6. Variance

Variance is measure of the distribution. It shows the distribution of the data set according to the
average. It shows the changing between that moment’s value and the average value according to
the deviation.

3.4. Classification

3.4.1. K Nearest Neighborhood (Knn)

In Knn, the similarities of the data to be classified with the normal behavior data in the learning
cluster are calculated and the assignments are done according to the closest k data average and the
threshold value determined. An important point is the pre-determination of the characteristics of
each class.

Knn’s goal is to classify new data by using their characteristics and with the help of previously
classified samples. Knn depends on a simple discriminating assumption known as intensity
assumption. This classification has been successfully adopted in other non-parametric applications
until speech definition [28].

In the Knn algorithm, first the k value should be determined. After determination of the k value,
the calculation of its distance with all the learning samples should be performed and then ordering is
performed as per minimum distance. After the ordering operation, which class value it belongs to is
found. In this algorithm, when a sample is received from outside the training cluster, we try to find
out to which class it belongs. Leave-one-out cross validation (LOOCV) was used in order to select the
most suitable k value. We tried to find the k value by using the LOOCV.

LOOCV consists of dividing the data cluster to n pieces randomly. In each n repetition, n − 1
will be used as the training set and the excluded sampling will be used as the test set. In each of the n
repetitions, a full data cluster is used for training except a sampling and as test cluster.
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LOOCV is normally limited to applications where existing education data is restricted.
For instance; any little deviation from tiny education data causes a large scale change in the appropriate
model. In such a case, this reduces the deviation of the data in each trial to the lowest level, so adopting
a LOOCV strategy makes sense. LOOCV is rarely used for large scale applications, because it is
numerically expensive [29].

1000 units of training data were used. 250 data for each of the four classes were derived from
among 1000 units of training data. One of 1000 units of training data forms the 1000-1 sub training
cluster for validation cluster. Here, the part being specified as the sub training cluster was derived
from the training cluster. Training cluster is divided into two being the sub training cluster and the
validation cluster. In the validation cluster, the data to be considered for the test are available.

The change of k arising from randomness is not at issue. The values of k are selected as 1, 3, 5, 7, 9,
11 and they are compared with the responses in the training cluster. After these operations, the best k
value becomes determined. k = 5 value, having the best rate, is selected. Here, the determination of k
value states how many nearest values should be considered.

3.4.2. Support Vector Machine (SVM)

SVM was developed by Cortes and Vapnik for the solution of pattern recognition and classification
problems [30]. The most important advantage of SVM is that it solves the classification problems by
transforming them to quadratic optimization problems. Thus, the number of transactions related to
solving the problem in the learning phase decreases and other techniques or algorithm based solutions
can be reached more quickly. Due to this technical feature, there is a great advantage on large scale data
sets. Additionally, it is based on optimization, classification performance, computational complexity
and usability is much more successful [31,32].

SVM is a machine learning algorithm that works by the principle of non-structural risk
minimization that is based on convex optimization. This algorithm is an independent learning
algorithm that does not need any knowledge of the combined distribution function as data [33].

The aim of SVM is to achieve an optimal separation hyper-plane apart that will separate the classes.
In other words, maximizing the distance between the support vectors that belong to different classes.
SVM is a machine learning algorithm that was developed to solve multi-class classification problems.

Data sets that can or can’t be distinguished as linear can be classified by SVM. The n dimensioned
nonlinear data set can be transformed to a new data set as m dimensioned by m > n. In high dimensions
linear classifications can be made. With an appropriate conversion, data can always be separated into
two classes with a hyper plane.

3.5. Feature Selection

ReliefF is the developed version of the Relief statistical model. ReliefF is a widely-used feature
selection algorithm [34] that carries out the process of feature selection by handling a sample from a
dataset and creating a model based on its nearness to other samples in its own class and distance from
other classes [35]. This study applies the ReliefF feature selection method to evaluate every feature in
comparison to other features and determine which features are more effective in the classification phase.

3.6. Localization Algorithm Based on the Microphone Array

Position estimation methods in the literature are generally time of arrival (TOA), arrival time
difference (TDOA) and received signal strength (RSS) based methods [36]. TDOA-based methods are
highly advantageous because they can make highly accurate predictions. TDOA-based methods that
use the maximum likelihood approach require a starting value and attempt to achieve the optimal
result in an iterative manner [37]. If the initial values are not properly selected, there is a risk of
not reaching the optimum result. In order to remove this disadvantage, closed form solutions have
been developed.
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Closed-loop algorithms utilize the least squares technique widely used for TDOA-based position
estimation [38]. In TDOA-based position estimation methods, time delay estimates of the signal
between sensor pairs are used. Major difficulties in TDOA estimation are the need for high data
sharing and synchronization between sensors. This affects the speed and cost of the system negatively.
The traditional TDOA estimation method in the literature uses the cross-correlation technique [39].

3.7. Echo Elimination

The reflection and return of sound wave after striking an obstacle is called echo. The echo causes
the decrease of quality and clarity of the audio signal. Finite Impulse Response (FIR) filters are also
referred as non-recursive filters. These filters are linear phase filters and are designed easily. In FIR
filters, the same input is multiplied by more than one constant. This process is commonly known as
Multiple Constant Multiplications. These operations are often used in digital signal processing
applications and hardware based architects are the best choice for maximum performance and
minimum power consumption.

4. Experimental Results

This study primarily selects the best feature methods and classification methods. Then, the prototype
device has been tested using these selected methods on themselves. Meanwhile, tests have also been
done on a computer environment and shown comparatively. The ReliefF method aims to find features’
values and whether dependencies exist by trying to reveal them. This study selects the two best
features using the ReliefF method. The two best feature methods turned out to be the Lmax and ZCR.

The results of the feature extraction method described above are shown in Figure 4 according to
the data we took from the data set. As can be seen, the best categorizing method is the Lmax with ZCR
using SVM. The results in Figure 4 show the mean values between 1 and 4 m.
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Figure 4. Knn’s and SVM’s Classification Success of Feature Extraction Methods (SVM: Support Vector
Machine; Knn: K Nearest Neighborhood).

As seen in Table 1, the results obtained in real time and data were transferred to the digital
environment and compared with the results obtained after the stages of preprocessing, feature
extraction and classification. The results in Table 1 show the mean values between 1 and 4 m.
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Table 1. Success rate of our system real time and obtained after computer.

Left Right Front Back

Accurate perception of the system 94.2% 94.3% 92% 92.7%
Accurate perception of the individual 92.8% 93% 91.1% 90.6%

Our wearable device produces results when there are more than 1 person. As can be seen in the
Figure 5, people from 1-m and 3-m distances called the hearing-impaired individual. Our wearable
device has noticed the individual who is close to him and he has directed that direction. As shown
in Figure 5, the person with hearing impairment perceives this when the Person C behind the
hearing impaired person calls to himself. 98% success was achieved in the results made in the
room environment. It gives visual warning according to the proximity and distance.

Figure 5. Testing wearable system.

As shown in Table 2, measurements were taken in the room environment, corridor and outside
environment. As shown in Table 2, our wearable device was tested in room, the hallway and the
exterior with a distance of 1 and 4 m. The success rate is shown by taking the average of the measured
values with the sound meter. Each experiment was tested and the results were compared. In Table 2,
the average level increase is caused by the increase of noise level in noisy environment and outdoor
environment, but the success did not decrease much.

Table 2. Success rate of different environment.

Environment Measurement Direction Detection (1 m) Direction Detection (4 m) Sound Detection

Room 30 Db (A) 98% 97% 100%
Corridor 34 Db (A) 96% 93% 100%
Outdoor 40 Db (A) 93% 89% 99%

As seen in Table 3, perception of the direction of sound at a distance of ne meter was obtained
as 97%. The best success rate was obtained by the sounds received from left and right directions.
The success rate decreased with the increase of distance. As the direction increased, two directions were
considered in the perception of sound, and the success rate decreased. And the direction where the
success rate was the lowest was the front. The main reason for that is the placement of the developed
human-computer interface system on the back of the individual. The sound coming from the front is
being mixed up with the sounds coming from left or right.
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Table 3. Success rate of finding the direction according to the distance.

Distance Left Right Front Back

1 m 96% 97.2% 92.4% 91.1%
2 m 95.1% 96% 90.2% 90%
3 m 93.3% 93.5% 90% 89.5%
4 m 90% 91% 84.2% 85.8%

As seen in Table 4, when perception of where the sound is coming from is considered, high success
was obtained. As can be seen in Table 4, voice perception without checking the direction had great
success. Voice was provided at low, normal and high levels and whether our system has perceived
correctly or not was tested. Recognition success of the sound without looking at the direction of the
source was 100%. It means our system recognized the sounds successfully.

Table 4. Successful perception rate of the voice without considering the distance.

Distance Success Ratio (Loud Sound) Success Ratio (Low Sound)

1 m 100% 100%
2 m 100% 100%
3 m 100% 100%
4 m 100% 99%

When individuals without hearing impairment and hearing impaired individuals were compared,
Figure 6 compares deaf individuals with normal individuals and moderate hearing lose individuals.
As a result of the application in real-time detection of deaf individuals’ direction detection has a success
rate of 88%. In Figure 6, the recognition of the sound source’s direction for normal people, deaf and
moderate hearing lose people is shown. As the number of people with hearing problems is low and the
ability to teach them is limited, the normal people’s number is higher. However, with proper training
the number of people with hearing problems can be increased.
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Figure 6. Success of deaf, moderate hearing loss and normal people to perceive the direction of voice.

As shown in Figure 7 in our system the individual speakers talk in real time and it can be
determined if it is a shouting voice or a normal voice. Also, the direction of the shouting person
or normal talking person can be determined and the classification succeeded. With this application,
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the normal voice detection is calculated as 95% and shouting voice detection is 91.8%. The results in
Figure 7 show the mean values between 1 and 4 m.

It has been conducted by looking at eight directions; therefore a good distinction cannot be made
when it is spoken in the middle of two directions. When only four directions are looked, a better
success rate is seen. As it can be seen in Table 5, the results based on 4 and 8 directions are compared.
The reason of lower rate of success in eight directions is that the direction of the voice could not be
determined in intercardinal points. The results in Table 5 show the mean values between 1 and 4 m.

As shown in Table 6, the device we developed is faster than the TDOA algorithm. At the same
time, it costs less because it uses less microphones. The device we have developed has been tested in
real-time as well as the TDOA algorithm has been tested as a simulation.

The wearable device we developed also provides power management. If there is an echo in the
environment, the echo is removed and the success rate is increased by 1.3%. In environments without
echo, the echo canceller is disabled.
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Figure 7. Success rate of loud and normal sound perceptions.

Table 5. Success Rate of 4 and 8 directions.

Left Right Front Back

4 Direction 94% 94% 92% 92%
8 Direction 91% 90% 88% 85%

Table 6. Compared our system with the localization algorithm based on the microphone array.

Speed Cost Accuracy

TDOA 2.33 s 16 mics 97%
Our study 0.68 s 4 mics 98%

5. Discussion

We want the people with hearing problems to have a proper life at home or in the workplace
by understanding the nature of sounds and their source. In this study, a vibration based system was
suggested for hearing impaired individuals to perceive the direction of sound.
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This study was tested real time. With the help of program we have written, our wearable system
on the individual had 94% Success. In close range, SVM and two of the best feature methods are
used and 98% successes are accomplished. By decreasing the noise in the area, the success can be
increased. One of the most important problems in deaf is that they could not understand where the
voice is coming from. This study helped the hearing impaired people to understand where the voice
is coming from real time. It will be very useful for the deaf to be able to locate the direction of the
stimulating sounds. Sometimes it can be very dangerous for them not to hear the horn of a car which
is coming from their backs. No factors affect the test environment. In real-time tests, deaf individuals
can determine direction thanks to our wearable devices. In outdoor tests, a decline in the classification
success has been observed due to noise.

The vibration-based wearable device we have developed solves the problem of determining the
direction from which a voice is coming, which is an important problem for deaf people. A deaf person
should be able to sense noise and know its direction in a spontaneous instance. The direction of the
voice has been determined in this study and thus it has been ensured that he can senses the direction
from which the voice is coming. In particular, voices coming from behind or that a deaf individual
cannot see will bother them; however, the device we have developed means that deaf individuals can
sense a voice coming from behind them and travel more safely. This study has determined by whether
a person is speaking loudly next to a deaf individual. Somebody might increase their tone of voice
while speaking to the deaf individual in a panic and therefore this circumstance has been targeted so
that the deaf person can notice such panic sooner. The deaf individual will be able to sense whether
someone is shouting and if there is an important situation, his perception delay will be reduced thanks
to the system we have developed. For instance, the deaf individual will be able to distinguish between
a bell, the sound of a dog coming closer, or somebody calling to them; therefore, this can help them live
more comfortably and safely with less public stress. In the feedback from deaf individuals using our
device, they highlighted that they found the device very beneficial. The fact that they can particularly
sense if there is an important voice coming from someone they cannot see makes it feel more reliable.
Meanwhile, the fact that they can sense the voices of their parents calling them in real time while they
are sleeping at home in particular has ensured that they feel more comfortable.

This study presents a new idea based on vibrating floor to the people with hearing problems who
prefer to work with wearable computer related fields. We believe that the information which are present
here will be useful for people with hearing problems who are working for system development on
wearable processing and human-computer interaction fields. First, the best feature and classification
method has been selected in the experimental studies. Using ReliefF from the feature selection
algorithms allowed selecting the two best feature methods. Then, both real-time and computer tests
were performed. Our tests have been done at a distance of 1–4 m in a (30–40 dB (A)) noisy environment.
In the room, corridor, and outside environments, tests were done at a distance of 1–4 m. Whether one
speaks with normal voice or screams has also been tested in our studies. The wearable device we have
developed as a prototype has provided deaf people with more comfortable lives.

In the study performed, the derivation of training and test data, validation phase and selection
of the best attribute derivation method takes time. Especially while determining the attribute, it is
required to find the most distinguishing method by using the other methods. While performing
operation with multiple data, which data is more significant for us is an important problem in
implementations. The attribute method being used may differ among implementations. In such
studies, the important point is to derive attributes more than one and to perform their joint use. In this
manner, a better classification success can be obtained.

In the study, sound perception will be performed through vibration. A system will be developed
for the hearing impaired individuals to perceive both the direction of speaker and what he is speaking
of. In this system, first the perception of specific vowels and consonants will be made, and their
distinguishing properties will be determined, and perception by the hearing impaired individual
through vibration will be ensured.
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6. Conclusions

Consequently, the direction of sound is perceived to a large extent. Moreover, it was also
determined whether the speaker is shouting or not. In future studies, deep learning, correlation
and hidden Markov model will be used and the success of system will tried to be increased. Also,
other methods in the classification stage will be used to get the best result. For further studies,
the optimum distances for the microphones will be calculated and the voice recognition will be made
with the best categorizing agent. Which sounds are most important for deaf people will be determined
using our wearable device in future studies; it is important for standard of living which sound is
determined, particularly with direction determination. Meanwhile, real-time visualization requires
consideration; a wearable device that transmits the direction from which sounds originate will be
made into glasses that a deaf individual can wear.
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Abstract: A novel method for audio time stretching has been developed. In time stretching, the audio
signal’s duration is expanded, whereas its frequency content remains unchanged. The proposed time
stretching method employs the new concept of fuzzy classification of time-frequency points, or bins,
in the spectrogram of the signal. Each time-frequency bin is assigned, using a continuous membership
function, to three signal classes: tonalness, noisiness, and transientness. The method does not require
the signal to be explicitly decomposed into different components, but instead, the computing of phase
propagation, which is required for time stretching, is handled differently in each time-frequency
point according to the fuzzy membership values. The new method is compared with three previous
time-stretching methods by means of a listening test. The test results show that the proposed method
yields slightly better sound quality for large stretching factors as compared to a state-of-the-art
algorithm, and practically the same quality as a commercial algorithm. The sound quality of all
tested methods is dependent on the audio signal type. According to this study, the proposed
method performs well on music signals consisting of mixed tonal, noisy, and transient components,
such as singing, techno music, and a jazz recording containing vocals. It performs less well on music
containing only noisy and transient sounds, such as a drum solo. The proposed method is applicable
to the high-quality time stretching of a wide variety of music signals.

Keywords: audio systems; digital signal processing; music; spectral analysis; spectrogram

1. Introduction

Time-scale modification (TSM) refers to an audio processing technique, which changes the
duration of a signal without changing the frequencies contained in that signal [1–3]. For example,
it is possible to reduce the speed of a speech signal so that it sounds as if the person is
speaking more slowly, since the fundamental frequency and the spectral envelope are preserved.
Time stretching corresponds to the extension of the signal, but this term is used as a synonym for TSM.
Audio time stretching has numerous applications, such as fast browsing of speech recordings [4],
music production [5], foreign language and music learning [6], fitting of a piece of music to a prescribed
time slot [7], and slowing down the soundtrack for slow-motion video [8]. Additionally, TSM is often
used as a processing step in pitch shifting, which aims at changing the frequencies in the signal without
changing its duration [2,3,7,9,10].

Audio signals can be considered to consist of sinusoidal, noise, and transient components [11–14].
The main challenge in TSM is in simultaneously preserving the subjective quality of these
distinct components. Standard time-domain TSM methods, such as the synchronized overlap-add
(SOLA) [15], the waveform-similarity overlap-add [16], and the pitch-synchronous overlap-add [17]
techniques, are considered to provide high-quality TSM for quasi-harmonic signals. When these
methods are applied to polyphonic signals, however, only the most dominant periodic pattern of the
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input waveform is preserved, while other periodic components suffer from phase jump artifacts at
the synthesis frame boundaries. Furthermore, overlap-add techniques are prone to transient skipping
or duplication when the signal is contracted or extended, respectively. To solve this, transients can be
detected and the time-scale factor can be changed during transients [18,19].

Standard phase vocoder TSM techniques [20,21] are based on a sinusoidal model of the
input signal. Thus, they are most suitable for processing of signals which can be represented as
a sum of slowly varying sinusoids. Even with these kind of signals however, the phase vocoder TSM
introduces an artifact typically described as “phasiness” to the processed sound [21,22]. Furthermore,
transients processed with the standard phase vocoder suffer from a softening of the perceived attack,
often referred to as “transient smearing” [2,3,23]. A standard solution for reducing transient smearing
is to apply a phase reset or phase locking at detected transient locations of the input signal [23–25].

As another approach to overcome these problems in the phase vocoder, TSM techniques using
classification of spectral components based on their signal type have been proposed recently. In [26],
spectral peaks are classified into sinusoids, noise, and transients, using the methods of [23,27].
Using the information from the peak classification, the phase modification applied in the technique
is based only on the sinusoidally classified peaks. It uses the method of [23] to detect and preserve
transient components. Furthermore, to better preserve the noise characteristics of the input sound,
uniformly distributed random numbers are added to the phases of spectral peaks classified as noise.
In [28], spectral bins are classified into sinusoidal and transient components, using the median filtering
technique of [29]. The time-domain signals synthesized from the classified components are then
processed separately, using an appropriate analysis window length for each class. Phase vocoder
processing with a relatively long analysis window is applied to the sinusoidal components. A standard
overlap-add scheme with a shorter analysis window is used for the transient components.

Both of the above methods are based on a binary classification of the spectral bins. However, it is
more reasonable to consider the energy in each spectral bin as a superposition of energy from sinusoidal,
noise, and transient components [13]. Therefore, each spectral bin should be allowed to belong to all of
the classes simultaneously, with a certain degree of membership for each class. This kind of approach
is known as fuzzy classification [30,31]. To this end, in [32], a continuous measure denoted as tonalness
was proposed. Tonalness is defined as a continuous value between 0 and 1, which gives the estimated
likelihood of each spectral bin belonging to a tonal component. However, the proposed measure alone
does not assess the estimation of the noisiness or transientness of the spectral bins. Thus, a way to
estimate the degree of membership to all of these classes for each spectral bin is needed.

In this paper, a novel phase vocoder-based TSM technique is proposed in which the applied
phase propagation is based on the characteristics of the input audio. The input audio characteristics
are quantified by means of fuzzy classification of spectral bins into sinusoids, noise, and transients.
The information about the nature of the spectral bins is used for preserving the intra-sinusoidal
phase coherence of the tonal components, while simultaneously preserving the noise characteristics
of the input audio. Furthermore, a novel method for transient detection and preservation based
on the classified bins is proposed. To evaluate the quality of the proposed method, a listening test
was conducted. The results of the listening test suggest that the proposed method is competitive
against a state-of-the art academic TSM method and commercial TSM software.

The remainder of this paper is structured as follows. In Section 2, the proposed method for fuzzy
classification of spectral bins is presented. In Section 3, a novel TSM technique which uses the fuzzy
membership values is detailed. In Section 4, the results of the conducted listening test are presented
and discussed. Finally, Section 5 concludes the paper.

2. Fuzzy Classification of Bins in the Spectrogram

The proposed method for the classification of spectral bins is based on the observation that,
in a time-frequency representation of a signal, stationary tonal components appear as ridges in the
time direction, whereas transient components appear as ridges in the frequency direction [29,33].
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Thus, if a spectral bin contributes to the forming of a time-direction ridge, most of its energy is likely
to come from a tonal component in the input signal. Similarly, if a spectral bin contributes to the
forming of a frequency-direction ridge, most of its energy is probably from a transient component.
As a time-frequency representation, the short-time Fourier transform (STFT) is used:

X[m, k] =
N/2

∑
n=−N/2

x[n + mHa]w[n]e−jωkn, (1)

where m and k are the integer time frame and spectral bin indices, respectively, x[n] is the input signal,
Ha is the analysis hop size, w[n] is the analysis window, N is the analysis frame length and the
number of frequency bins in each frame, and ωk = 2πk/N is the normalized center frequency of the
kth STFT bin. Figure 1 shows the STFT magnitude of a signal consisting of a melody played on the
piano, accompanied by soft percussion and a double bass. The time-direction ridges introduced by the
harmonic instruments and the frequency-direction ridges introduced by the percussion are apparent
on the spectrogram.
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Figure 1. Spectrogram of a signal consisting of piano, percussion, and double bass.

The tonal and transient STFTs Xs[m, k] and Xt[m, k], respectively, are computed using the median
filtering technique proposed by Fitzgerald [29]:

Xs[m, k] = median(|X[m− Lt

2
+ 1, k]|, ..., |X[m +

Lt

2
, k]|) (2)

and

Xt[m, k] = median(|X[m, k−
L f

2
+ 1]|, ..., |X[m, k +

L f

2
]|), (3)

where Lt and L f are the lengths of the median filters in time and frequency directions,
respectively. For the tonal STFT, the subscript s (denoting sinusoidal) is used and for the
transient STFT the subscript t. Median filtering in the time direction suppresses the effect of
transients in the STFT magnitude, while preserving most of the energy of the tonal components.
Conversely, median filtering in the frequency direction suppresses the effect of tonal components,
while preserving most of the transient energy [29].

The two median-filtered STFTs are used to estimate the tonalness, noisiness, and transientness of
each analysis STFT bin. We estimate tonalness by the ratio

Rs[m, k] =
Xs[m, k]

Xs[m, k] + Xt[m, k]
. (4)
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We define transientness as the complement of tonalness:

Rt[m, k] = 1− Rs[m, k] =
Xt[m, k]

Xs[m, k] + Xt[m, k]
. (5)

Signal components which are neither tonal nor transient can be assumed to be noiselike.
Experiments on noise signal analysis using the above median filtering method show that the tonalness
value is often approximately Rs = 0.5. This is demonstrated in Figure 2b in which a histogram of
the tonalness values of STFT bins of a pink noise signal (Figure 2a) is shown. It can be seen that the
tonalness values are approximately normally distributed around the value 0.5. Thus, we estimate
noisiness by

Rn[m, k] = 1− |Rs[m, k]− Rt[m, k]| =
{

2Rs[m, k], if Rs[m, k] ≤ 0.5

2(1− Rs[m, k]), otherwise.
(6)
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Figure 2. (a) Spectrogram of pink noise and (b) the histogram of tonalness values for its spectrogram bins.

The tonalness, noisiness, and transientness can be used to denote the degree of membership of
each STFT bin to the corresponding class in a fuzzy manner. The relations between the classes are
visualized in Figure 3.

Figure 4 shows the computed tonalness, noisiness, and transientness values for the STFT bins
of the example audio signal used above. The tonalness values in Figure 4a are close to 1 for the bins
which represent the harmonics of the piano and double bass tones, whereas the tonalness values are
close to 0 for the bins which represent percussive sounds. In Figure 4b, the noisiness values are close
to 1 for the bins which do not significantly contribute either to the tonal nor the transient components
in the input audio. Finally, it can be seen that the transientness values in Figure 4c are complementary
to the tonalness values of Figure 4a.
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Figure 3. The relations between the three fuzzy classes.
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Figure 4. (a) Tonalness, (b) noisiness, and (c) transientness values for the short-time Fourier transform
(STFT) bins of the example audio signal. Cf. Figure 1.

3. Novel Time-Scale Modification Technique

This section introduces the new TSM technique that is based on the fuzzy classification of spectral
bins defined above.

3.1. Proposed Phase Propagation

The phase vocoder TSM is based on the differentiation and subsequent integration of the analysis
STFT phases in time. This process is known as phase propagation. The phase propagation in the new
TSM method is based on a modification to the phase-locked vocoder by Laroche and Dolson [21].
The phase propagation in the phase-locked vocoder can be described as follows. For each frame in the
analysis STFT (1), peaks are identified. Peaks are defined as spectral bins, whose magnitude is greater
than the magnitude of its four closest neighboring bins.
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The phases of the peak bins are differentiated to obtain the instantaneous frequency for each
peak bin:

ωinst[m, k] = ωk +
1

Ha
κ[m, k], (7)

where κ[m, k] is the estimated “heterodyned phase increment”:

κ[m, k] =
[
� X[m, k]− � X[m− 1, k]− Haωk

]
2π

. (8)

Here,
[
·
]

2π
denotes the principal determination of the angle, i.e., the operator wraps the input angle

to the interval [−π, π]. The phases of the peak bins in the synthesis STFT Y[m, k] can be computed by
integrating the estimated instantaneous frequencies according to the synthesis hop size Hs:

� Y[m, k] = � Y[m− 1, k] + Hsωinst[m, k], (9)

The ratio between the analysis and synthesis hop sizes Ha and Hs determines the TSM factor α.
In practice, the synthesis hop size is fixed and the analysis hop size then depends on the desired
TSM factor:

Ha =
Hs

α
. (10)

In the standard phase vocoder TSM [20], the phase propagation of (7)–(9) is applied to all bins,
not only peak bins. In the phase-locked vocoder [21], the way the phases of non-peak bins are modified
is known as phase locking. It is based on the idea that the phase relations between all spectral bins,
which contribute to the representation of a single sinusoid, should be preserved when the phases
are modified. This is achieved by modifying the phases of the STFT bins surrounding each peak
such that the phase relations between the peak and the surrounding bins are preserved from the
analysis STFT. Given a peak bin kp, the phases of the bins surrounding the peak are modified by:

� Y[m, k] = � X[m, k] +
[
� Y[m, kp]− � X[m, kp]

]
2π

, (11)

where � Y[m, kp] is computed according to (7)–(9). This approach is known as identity phase locking.
As the motivation behind phase locking states, it should only be applied to bins that are

considered sinusoidal. When applied to non-sinusoidal bins, the phase locking introduces a metallic
sounding artifact to the processed signal. Since the tonalness, noisiness, and transientness of each bin
are determined, this information can be used when the phase locking is applied. We want to be able
to apply phase locking to bins which represent a tonal component, while preserving the randomized
phase relationships of bins representing noise.

Thus, the phase locking is first applied to all bins. Afterwards, phase randomization is applied to
the bins according to the estimated noisiness values. The final synthesis phases are obtained by adding
uniformly distributed noise to the synthesis phases computed with the phase-locked vocoder:

� Y′[m, k] = � Y[m, k] + πAn[m, k](u[m, k]− 1
2
), (12)

where u[m, k] are the added noise values and � Y[m, k] are the synthesis phases computed with the
phase-locked vocoder. The pseudo-random numbers u[m, k] are drawn from the uniform distribution
U (0, 1). An[m, k] is the phase randomization factor, which is based on the estimated noisiness of the
bin Rn[m, k] and the TSM factor α:

An[m, k] =
1
4
[

tanh(bn(Rn[m, k]− 1)) + 1
][

tanh(bα(α−
3
2
)) + 1

]
, (13)

where constants bn and bα control the shape of non-linear mappings of the hyperbolic tangents.
The values bn = bα = 4 were used in this implementation.
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The phase randomization factor An, as a function of the estimated noisiness Rn and the TSM
factor α, is shown in Figure 5. The phase randomization factor increases with increasing TSM factor and
noisiness. The phase randomization factor saturates as the values increase, so that at most, the uniform
noise added to the phases obtains values in the interval [−0.5π, 0.5π].

Figure 5. A contour plot of the phase randomization factor An, with bn = bα = 4. TSM: time-scale
modification.

3.2. Transient Detection and Preservation

For transient detection and preservation, a similar strategy to [23] was adopted. However,
the proposed method is based on the estimated transientness of the STFT bins. Using the measure
for transientness, the smearing of both the transient onsets and offsets is prevented. The transients
are processed so that the transient energy is mostly contained on a single synthesis frame, effectively
suppressing the transient smearing artifact, which is typical for the phase vocoder based TSM.

3.2.1. Detection

To detect transients, the overall transientness of each analysis frame is estimated, and denoted as
frame transientness:

rt[m] =
1

N − 1

N−1

∑
k=1

Rt[m, k]. (14)

The analysis frames which are centered on a transient component appear as local maxima in the
frame transientness. Transients need to be detected as soon as the analysis window slides over them in
order to prevent the smearing of transient onsets. To this end, the time derivative of frame transientness
is used:

d
dm

rt[m] ≈ 1
Ha

(rt[m]− rt[m− 1]), (15)

where the time derivative is approximated with the backward difference method. As the analysis
window slides over a transient, there is an abrupt increase in the frame transientness. These instants
appear as local maxima in the time derivative of the frame transientness. Local maxima in the time
derivative of the frame transientness that exceed a given threshold are used for transient detection.

Figure 6 illustrates the proposed transient detection method using the same audio excerpt as above,
containing piano, percussion, and double bass. The transients appear as local maxima in the frame
transientness signal in Figure 6a. Transient onsets are detected from the time derivative of the frame
transientness, from the local maxima, which exceed the given threshold (the red dashed line in
Figure 6b). The detected transient onsets are marked with orange crosses. After an onset is detected,
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the analysis frame which is centered on the transient is detected from the subsequent local maxima in
the frame transientness. The detected analysis frames centered on a transient are marked with purple
circles in Figure 6a.
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Figure 6. Illustration of the proposed transient detection. (a) Frame transientness. Locations of the
detected transients are marked with purple circles; (b) Time derivative of the frame transientness.
Detected transient onsets are marked with orange crosses. The red dashed line shows the transient
detection threshold.

3.2.2. Transient Preservation

To prevent transient smearing, it is necessary to concentrate the transient energy in time.
A single transient contributes energy to multiple analysis frames, because the frames are overlapping.
During the synthesis, the phases of the STFT bins are modified, and the synthesis frames are relocated
in time, which results in smearing of the transient energy.

To remove this effect, transients are detected as the analysis window slides over them.
When a transient onset has been detected using the method described above, the energy in the
STFT bins is suppressed according to their estimated transientness:

|Y[m, k]| = (1− Rt[m, k])|X[m, k]|. (16)

This gain is only applied to bins whose estimated transientness is larger than 0.5. Similar to [23], the bins
to which this gain has been applied are kept in a non-contracting set of transient bins Kt. When it
is detected that the analysis window is centered on a transient, as explained above, a phase reset is
performed on the transient bins. That is, the original analysis phases are kept during synthesis for the
transient bins. Subsequently, as the analysis window slides over the transient, the same gain reduction
is applied for the transient bins, as during the onset of the transient (16). The bins are retained in the
set of transient bins until their transientness decays to a value smaller than 0.5, or until the analysis
frame slides completely away from the detected transient center. Finally, since the synthesis frames
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before and after the center of the transient do not contribute to the transients’ energy, the magnitudes
of the transient bins are compensated by

|Y[mt, kt]| = ∑m∈Z w2[(mt −m)Hs]

w2[0]
∑k∈Kt Rt[mt, k]

|Kt|
|X[mt, kt]|, (17)

where mt is the transient frame index, |Kt| denotes the number of elements in the set Kt, and kt ∈ Kt,
which is the defined set of transient bins.

This method aims to prevent the smearing of both the transient onsets and offsets during TSM.
In effect, the transients are separated from the input audio, and relocated in time according to the
TSM factor. However, in contrast to methods where transients are explicitly separated from the input
audio [13,14,28,34], the proposed method is more likely to keep transients perceptually intact with
other components of the sound. Since the transients are kept in the same STFT representation,
phase modifications in subsequent frames are dependent on the phases of the transient bins.
This suggests that transients related to the onsets of harmonic sounds, such as the pluck of a note
while strumming a guitar, should blend smoothly with the following tonal component of the sound.
Furthermore, the soft manner in which the amplitudes of the transient bins are attenuated during
onsets and offsets should prevent strong artifacts arising from errors in the transient detection.

Figure 7 shows an example of a transient processed with the proposed method. The original
audio shown in Figure 7a consists of a solo violin overlaid with a castanet click. Figure 7b shows the
time-scale modified sample with TSM factor α = 1.5, using the standard phase vocoder. In the modified
sample, the energy of the castanet click is spread over time. This demonstrates the well known
transient smearing artifact of standard phase vocoder TSM. Figure 7c shows the time-scale modified
sample using the proposed method. It can be seen that while the duration of the signal has changed,
the castanet click in the modified audio resembles the one in the original, without any visible
transient smearing.

(a)

(b)

(c)
Figure 7. An example of the proposed transient preservation method. (a) shows the original audio,
consisting of a solo violin overlaid with a castanet click. Also shown are the modified samples with
TSM factor α = 1.5, using (b) the standard phase vocoder, and (c) the proposed method.

4. Evaluation

To evaluate the quality of the proposed TSM technique, a listening test was conducted.
The listening test was realized online using the Web Audio Evaluation Tool [35]. The test subjects
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were asked to use headphones. The test setup used was the same as in [28]. In each trial, the subjects
were presented with the original audio sample and four modified samples processed with different
TSM techniques. The subjects were asked to rate the quality of time-scale modified audio excerpts
using a scale from 1 (poor) to 5 (excellent).

All 11 subjects who participated in the test reported having a background in acoustics, and 10 of
them had previous experience of participating in listening tests. None of the subjects reported
hearing problems. The ages of the subjects ranged from 23 to 37, with a median age of 28. Of the
11 subjects, 10 were male and 1 was female.

In the evaluation of the proposed method, the following settings were used: the sample
rate was 44.1 kHz, a Hann window of length N = 4096 was chosen for the STFT analysis
and synthesis, the synthesis hop size was set to Hs = 512, and the number of frequency bins in
the STFT was K = N = 4096. The length of the median filter in the frequency direction was 500 Hz,
which corresponds to 46 bins. In the time direction, the length of the median filter was chosen to
be 200 ms, but the number of frames it corresponds to depends on the analysis hop size, which is
determined by the TSM factor according to (10). Finally, the transient detection threshold was set to
td = 10−4 = 0.00010.

In addition to the proposed method (PROP), the following techniques were included: the standard
phase vocoder (PV), using the same STFT analysis and synthesis settings as the proposed method;
a recently published technique (harmonic–percussive separation, HP) [28], which uses harmonic
and percussive separation for transient preservation; and the élastique algorithm (EL) [36], which is
a state-of-the-art commercial tool for time and pitch-scale modification. The samples processed by
these methods were obtained using the TSM toolbox [37].

Eight different audio excerpts (sampled at 44.1 kHz) and two different stretching factors α = 1.5
and α = 2.0 were tested using the four techniques. This resulted in a total of 64 samples rated by each
subject. The audio excerpts are described in Table 1. The lengths of the original audio excerpts ranged
from 3 to 10 s. The processed audio excerpts and Matlab code for the proposed method are available
online at http://research.spa.aalto.fi/publications/papers/applsci-ats/.

Table 1. List of audio excerpts used in the subjective listening test.

Name Description

CastViolin Solo violin and castanets, from [37]
Classical Excerpt from Bólero, performed by the London Symphony Orchestra
JJCale Excerpt from Cocaine, performed by J.J. Cale
DrumSolo Solo performed on a drum set, from [37]
Eddie Excerpt from Early in the Morning, performed by Eddie Rabbit
Jazz Excerpt from I Can See Clearly, performed by the Holly Cole Trio
Techno Excerpt from Return to Balojax, performed by Deviant Species and Scorb
Vocals Excerpt from Tom’s Diner, performed by Suzanne Vega

To estimate the sound quality of the techniques, mean opinion scores (MOS) were computed for
all samples from the ratings given by the subjects. The resulting MOS values are shown in Table 2.
A bar diagram of the same data is also shown in Figure 8.

As expected, the standard PV performed worse than all the other tested methods. For the CastViolin
sample, the proposed method (PROP) performed better than the other methods, with both TSM factors.
This suggests that the proposed method preserves the quality of the transients in the modified signals
better than the other methods. The proposed method also scored best with the Jazz excerpt. In addition
to the well-preserved transients, the results are likely to be explained by the naturalness of the singing
voice in the modified signals. This can be attributed to the proposed phase propagation, which allows
simultaneous preservation of the tonal and noisy qualities of the singing voice. This is also reflected
in the results of the Vocals excerpt, where the proposed method also performed well, while scoring
slightly lower than HP. For the Techno sample, the proposed method scored significantly higher than
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the other methods with TSM factor α = 1.5. For TSM factor α = 2.0, however, the proposed method
scored lower than EL. The proposed method also scored highest for the JJCale sample with TSM
factor α = 2.0.

Table 2. Mean opinion scores for the audio samples. PV: phase vocoder; HP: harmonic–percussive
separation; EL: élastique algorithm; PROP: proposed method.

α= 1.5 α= 2.0
PV HP EL PROP PV HP EL PROP

CastViolin 1.8 3.8 3.6 4.1 1.4 3.6 3.3 4.1
Classical 2.3 3.5 3.7 3.3 1.6 3.0 3.7 2.8

JJCale 2.7 2.5 3.4 2.9 1.2 2.5 3.1 3.2
DrumSolo 1.5 3.5 3.2 2.3 1.7 2.4 2.5 1.8

Eddie 1.9 3.1 4.2 3.2 1.2 2.2 3.6 3.1
Jazz 1.9 3.6 3.4 3.6 1.5 3.3 2.7 3.7

Techno 1.3 2.7 3.3 4.1 1.6 2.5 3.1 2.7
Vocals 1.7 3.5 2.9 3.4 1.5 3.3 2.7 3.1

Mean 1.9 3.3 3.5 3.4 1.5 2.9 3.1 3.1

The proposed method performed more poorly on the excerpts DrumSolo and Classical. Both of
these samples contained fast sequences of transients. It is likely that the poorer performance is due to
the individual transients not being resolved during the analysis, because of the relatively long analysis
window used. Also, for the excerpt Eddie, EL scored higher than the proposed method. Note that the
audio excepts were not selected so that the results would be preferable for one of the tested methods.
Instead, they represent some interesting and critical cases, such as singing and sharp transients.

The preferences of subjects over the tested TSM methods seem to depend significantly on the
signal being processed. Overall, the MOS values computed from all the samples suggest that the
proposed method yields slightly better quality than HP and practically the same quality as EL.
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Figure 8. Cont.
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Figure 8. Mean opinion scores for eight audio samples using four TSM methods for (a) medium
(α = 1.5), and (b) large (α = 2.0) TSM factors. The rightmost bars show the average score for all
eight samples. PV: phase vocoder; HP: harmonic–percussive separation [28]; EL: élastique [36];
PROP: proposed method.

The proposed method introduces some additional computational complexity when compared to
the standard phase-locked vocoder. In the analysis stage, the fuzzy classification of the spectral bins
requires median filtering of the magnitude of the analysis STFT. The number of samples in each median
filtering operation depends on the analysis hop size and the number of frequency bins in each short
time spectra. In the modification stage, additional complexity arises from drawing pseudo-random
values for the phase randomization. Furthermore, computing the phase randomization factor, as in
Equation (13), requires the evaluation of two hyperbolic tangent functions for each point in the STFT.
Since the argument for the second hyperbolic tangent depends only on the TSM factor, its value needs
to be updated only when the TSM factor is changed. Finally, due to the way the values are used,
a lookup table approximation can be used for evaluating the hyperbolic tangents without significantly
affecting the quality of the modification.

5. Conclusions

In this paper, a novel TSM method was presented. The method is based on fuzzy classification
of spectral bins into sinusoids, noise, and transients. The information from the bin classification is
used to preserve the characteristics of these distinct signal components during TSM. The listening
test results presented in this paper suggest that the proposed method performs generally better than
a state-of-the-art algorithm and is competitive with commercial software.

The proposed method still suffers to some extent from the fixed time and frequency
resolution of the STFT. Finding ways to apply the concept of fuzzy classification of spectral
bins to a multiresolution time-frequency transformation could further increase the quality of the
proposed method. Finally, although this paper only considered TSM, the method for fuzzy classification
of spectral bins could be applied to various audio signal analysis tasks, such as multi-pitch estimation
and beat tracking.
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Abstract: This paper presents a method for automatic music transcription applied to audio recordings
of a cappella performances with multiple singers. We propose a system for multi-pitch detection
and voice assignment that integrates an acoustic and a music language model. The acoustic model
performs spectrogram decomposition, extending probabilistic latent component analysis (PLCA) using
a six-dimensional dictionary with pre-extracted log-spectral templates. The music language model
performs voice separation and assignment using hidden Markov models that apply musicological
assumptions. By integrating the two models, the system is able to detect multiple concurrent pitches
in polyphonic vocal music and assign each detected pitch to a specific voice type such as soprano,
alto, tenor or bass (SATB). We compare our system against multiple baselines, achieving state-of-the-art
results for both multi-pitch detection and voice assignment on a dataset of Bach chorales and another
of barbershop quartets. We also present an additional evaluation of our system using varied pitch
tolerance levels to investigate its performance at 20-cent pitch resolution.

Keywords: automatic music transcription; multi-pitch detection; voice assignment; music signal
analysis; music language models; polyphonic vocal music; music information retrieval

1. Introduction

Automatic music transcription (AMT) is one of the fundamental problems of music information
retrieval and is defined as the process of converting an acoustic music signal into some form of music
notation [1]. A core problem of AMT is multi-pitch detection, the detection of multiple concurrent
pitches from an audio recording. While much work has gone into the field of multi-pitch detection in
recent years, it has frequently been constrained to instrumental music, most often piano recordings
due to a wealth of available data. Vocal music has been less often studied, likely due to the complexity
and variety of sounds that can be produced by a singer.

Spectrogram factorization methods have been used extensively in the last decade for multi-pitch
detection [1]. These approaches decompose an input time-frequency representation (such as
a spectrogram) into a linear combination of non-negative factors, often consisting of spectral atoms and
note activations. The most successful of these spectrogram factorization methods have been based on
non-negative matrix factorisation (NMF) [2] or probabilistic latent component analysis (PLCA) [3].

While these spectrogram factorisation methods have shown promise for AMT, their parameter
estimation can suffer from local optima, a problem that has motivated a variety of approaches
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that incorporate additional knowledge in an attempt to achieve more meaningful decompositions.
Vincent et al. [4] used an adaptive spectral decomposition for multi-pitch detection assuming that the
input signal can be decomposed as a sum of narrowband spectra. Kameoka et al. [5] exploited structural
regularities in the spectrograms during the NMF process, adding constraints and regularization to
reduce the degrees of freedom of their model. These constraints are based on time-varying basis spectra
(e.g., using sound states: “attack”, “decay”, “sustain” and “release”) and have since been included
in other probabilistic models [6,7]. Fuentes et al. [8] introduced the concept of brakes, slowing the
convergence rate of any model parameter known to be properly initialized. Other approaches [7,9,10]
avoid undesirable parameter convergence using pre-learning steps, where spectral atoms of specific
instruments are extracted in a supervised manner. Using the constant-Q transform (CQT) [11] as the
input time-frequency representation, some approaches developed techniques using shift-invariant
models over log-frequency [6,10,12], allowing for the creation of a compact set of dictionary templates
that can support tuning deviations and frequency modulations. Shift-invariant models are also used
in several recent approaches for automatic music transcription [6,13,14]. O’Hanlon et al. [15] propose
stepwise and gradient-based methods for non-negative group sparse decompositions, exploring
the use of subspace modelling of note spectra. This group sparse NMF approach is used to tune
a generic harmonic subspace dictionary, improving automatic music transcription results based on NMF.
However, despite promising results of template-based techniques [7,9,10], the considerable variation in
the spectral shape of pitches produced by different sources can still affect generalization performance.

Recent research on multi-pitch detection has also focused on deep learning approaches: in [16,17],
feedforward, recurrent and convolutional neural networks were evaluated towards the problem of
automatic piano transcription. While the aforementioned approaches focus on the task of polyphonic
piano transcription due to the presence of sufficiently large piano-specific datasets, the recently released
MusicNet dataset [18] provides a large corpus for multi-instrument music suitable for training deep
learning methods for the task of polyphonic music transcription. Convolutional neural networks
were also used in [19] for learning salience representations for fundamental frequency estimation in
polyphonic audio recordings.

Multi-pitch detection of vocal music represents a significant step up in difficulty as the variety of
sounds produced by a single singer can be both unique and wide-ranging. The timbre of two singers’
voices can differ greatly, and even for a single singer, different vowel sounds produce extremely varied
overtone patterns. For vocal music, Bohak and Marolt [20] propose a method for transcribing folk
music containing both instruments and vocals, which takes advantage of melodic repetitions present
in that type of music using a musicological model for note-based transcription. A less explored type
of music is a cappella; in particular, vocal quartets constitute a traditional form of Western music,
typically dividing a piece into multiple vocal parts such as soprano, alto, tenor and bass (SATB). In [21],
an acoustic model based on spectrogram factorisation was proposed for multi-pitch detection of such
vocal quartets.

A small group of methods has attempted to go beyond multi-pitch detection, towards instrument
assignment (also called timbre tracking) [9,22,23], where systems detect multiple pitches and assign
each pitch to a specific source that produced it. Bay et al. [22] tracked individual instruments in
polyphonic instrumental music using a spectrogram factorisation approach with continuity constraints
controlled by a hidden Markov model (HMM). To the authors’ knowledge, no methods have yet been
proposed to perform both multi-pitch detection and instrument/voice assignment on polyphonic
vocal music.

An emerging area of automatic music transcription attempts to combine acoustic models (those
based on audio information only) with music language models, which model sequences of notes
and other music cues based on knowledge from music theory or from constraints automatically
derived from symbolic music data. This is in direct analogy to automatic speech recognition systems,
which typically combine an acoustic model with a spoken language model. Ryynanen and Klapuri [24],
for example, combined acoustic and music language models for polyphonic music transcription,
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where the musicological model estimates the probability of a detected note sequence. Another example
of such an integrated system is the work by Sigtia et al. [16], which combined neural network-based
acoustic and music language models for multi-pitch detection in piano music. The system used various
types of neural networks for the acoustic component (feedforward, recurrent, convolutional) along
with a recurrent neural network acting as a language model for modelling the correlations between
pitch combinations over time.

Combining instrument assignment with this idea of using a music language model, it is natural
to look towards the field of voice separation [25], which involves the separation of pitches into streams
of notes, called voices, and is mainly addressed in the context of symbolic music processing. It is
important to note that voice separation, while similar to our task of voice assignment, is indeed
a distinct task. Specifically, while both involve an initial step of separating the incoming notes into
voices, voice assignment involves a further step of labelling each of those voices as a specific part or
instrument, in our case soprano, alto, tenor or bass.

Most symbolic voice separation approaches are based on voice leading rules, which have been
investigated and described from a cognitive perspective in a few different works [26–28]. Among these
rules, three main principles emerge: (1) large melodic intervals between consecutive notes in a single
voice should be avoided; (2) two voices should not, in general, cross in pitch; and (3) the stream of
notes within a single voice should be relatively continuous, without long gaps of silence, ensuring
temporal continuity.

There are many different definitions of what precisely constitutes a voice, both perceptually and
musically, discussed more fully in [25]; however, for our purposes, a voice is quite simply defined as the
notes sung by a single vocalist. Therefore, our interest in voice separation models lies with those that
separate notes into strictly monophonic voices (i.e., those that do not allow for concurrent notes), rather
than polyphonic voices as in [29]. We would also like our chosen model to be designed to be run in
a mostly unsupervised fashion, rather than being designed for use with human interaction (as in [30]),
and for it not to require background information about the piece, such as time signature or metrical
information (as in [31]). While many voice separation models remain that meet our criteria [32–36],
the one described in [37] is the most promising for our use because it both (1) achieves state-of-the-art
performance and (2) can be applied directly to live performance.

In this work, we present a system able to perform multi-pitch detection of polyphonic a cappella
vocal music, as well as assign each detected pitch to a particular voice (soprano, alto, tenor or bass),
where the number of voices is known a priori. Our approach uses an acoustic model for multi-pitch
detection based on probabilistic latent component analysis (PLCA), which is modified from the model
proposed in [21], and an HMM-based music language model for voice assignment based on the
model of [37]. Compared to our previous work [38], this model contains a new dynamic dictionary
voice type assignment step (described in Section 2.3), which accounts for its increased performance.
Although previous work has integrated musicological information for note event modelling [16,20,24],
to the authors’ knowledge, this is the first attempt to incorporate an acoustic model with a music
language model for the task of voice or instrument assignment from audio, as well as the first attempt
to propose a system for voice assignment in polyphonic a cappella music. The approach described
in this paper focuses on recordings of singing performances by vocal quartets without instrumental
accompaniment; to that end, we use two datasets containing a capella recordings of Bach chorales and
barbershop quartets. The proposed system is evaluated both in terms of multi-pitch detection and
voice assignment, where it reaches an F-measure of over 70% and 50% for the two respective tasks.

The remainder of this paper is organised as follows. In Section 2, we describe the proposed
approach, consisting of the acoustic model, the music language model and model integration.
In Section 3, we report on experimental results using two datasets comprising recordings of vocal
quartets. Section 4 closes with conclusions and perspectives for future work.
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2. Proposed Method

In this section, we present a system for multi-pitch detection and voice assignment applied to
audio recordings of polyphonic vocal music (where the number of voices is known a priori) that
integrates an acoustic model with a music language model. First, we describe the acoustic model,
a spectrogram factorization process based on probabilistic latent component analysis (PLCA). Then,
we present the music language model, an HMM-based voice assignment model. Finally, a joint
model is proposed for the integration of these two components. Figure 1 illustrates the proposed
system pipeline.

Figure 1. Proposed system diagram.

2.1. Acoustic Model

The acoustic model is a variant of the spectrogram factorisation-based model proposed in [21].
The model’s primary goal is to explore the factorization of an input log-frequency spectrogram
into components that have a close connection with singing characteristics such as voice type and
the vocalization of different vowel sounds. We formulate the model dictionary templates into
a six-dimensional tensor, representing log-frequency index, singer source, pitch, tuning deviation
with 20 cent resolution, vowel type and voice type. Similarly to [9], the singer source and vowel
type parameters constrain the search space into a mixture-of-subspaces, clustering a large variety of
singers into a small number of categories. In this model, the voice type parameter corresponds to
the vocal part (SATB), where each vocal part is linked to a distinct set of singers (the singer source).
For details on the dictionary construction, see Section 2.1.2. As time-frequency representation, we use
a normalised variable-Q transform (VQT) spectrogram [39] with a hop size of 20 ms and 20-cent
frequency resolution. For convenience, we have chosen a pitch resolution that produces an integer
number of bins per semitone (five in this case) and is also close to the range of just noticeable differences
in musical intervals [40]. The input VQT spectrogram is denoted as Xω,t ∈ RΩ×T , where ω denotes
log-frequency and t time. In the model, Xω,t is approximated by a bivariate probability distribution
P(ω, t), which is in turn decomposed as:

P(ω, t) = P(t) ∑
s,p, f ,o,v

P(ω|s, p, f , o, v)Pt(s|p)Pt( f |p)Pt(o|p)P(v)Pt(p|v) (1)

where P(t) is the spectrogram energy (known quantity) and P(ω|s, p, f , o, v) is the fixed pre-extracted
spectral template dictionary. The variable s denotes the singer index (out of the collection of singer
subjects used to construct the input dictionary); p ∈ {21, . . . , 108} denotes pitch in Musical Instrument
Digital Interface (MIDI) scale; f denotes tuning deviation from 12-tone equal temperament in 20-cent
resolution ( f ∈ {1, . . . , 5}, with f = 3 denoting ideal tuning); o denotes the vowel type; and v denotes
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the voice type (e.g., soprano, alto, tenor, bass). The contribution of specific singer subjects from the
training dictionary is modelled by Pt(s|p), i.e., the singer contribution per pitch over time. Pt( f |p) is
the tuning deviation per pitch over time, and finally, Pt(o|p) is the time-varying vowel contribution
per pitch . (Although Pt(o|p) is not explicitly used in this proposed approach, it is kept to ensure
consistency with the Real World Computing (RWC) audio dataset [41] structure (see Section 2.1.2).)
Unlike in [21] (which uses Pt(v|p)), this model decomposes the probabilities of pitch and voice type as
P(v)Pt(p|v). That is, P(v) can be viewed as a mixture weight that denotes the overall contribution of
each voice type to the whole input recording, and Pt(p|v) denotes the pitch activation for a specific
voice type (e.g., SATB) over time.

The factorization can be achieved by the expectation-maximization (EM) algorithm [42], where the
unknown model parameters Pt(s|p), Pt( f |p), Pt(o|p), Pt(p|v) and P(v) are iteratively estimated. In the
expectation step, we compute the posterior as:

Pt(s, p, f , o, v|ω) =
P(ω|s, p, f , o, v)Pt(s|p)Pt( f |p)Pt(o|p)P(v)Pt(p|v)

∑s,p, f ,o,v P(ω|s, p, f , o, v)Pt(s|p)Pt( f |p)Pt(o|p)P(v)Pt(p|v) (2)

In the maximization step, each unknown model parameter is then updated using the posterior
from Equation (2):

Pt(s|p) ∝ ∑
f ,o,v,ω

Pt(s, p, f , o, v|ω)Xω,t (3)

Pt( f |p) ∝ ∑
s,o,v,ω

Pt(s, p, f , o, v|ω)Xω,t (4)

Pt(o|p) ∝ ∑
s, f ,v,ω

Pt(s, p, f , o, v|ω)Xω,t (5)

Pt(p|v) ∝ ∑
s, f ,o,ω

Pt(s, p, f , o, v|ω)Xω,t (6)

P(v) ∝ ∑
s, f ,o,p,ω,t

Pt(s, p, f , o, p|ω)Xω,t (7)

The model parameters are randomly initialised, and the EM algorithm iterates over
Equations (2)–(7). In our experiments, we use 30 iterations, as this ensures that the model will
converge; in practice, the model converges after about 18 iterations. In order to promote temporal
continuity, we apply a median filter to the Pt(p|v) estimate across time, before its normalisation at
each EM iteration, using a filter span of 240 ms, a duration of approximately half of one beat in
Allegro tempo.

2.1.1. Acoustic Model Output

The output of the acoustic model is a semitone-scale pitch activity tensor for each voice type and
a pitch shifting tensor, given by P(p, v, t) = P(t)P(v)Pt(p|v) and P( f , p, v, t) = P(t)P(v)Pt(p|v)Pt( f |p),
respectively. By stacking together slices of P( f , p, v, t) for all values of p, we can create a 20-cent resolution
time-pitch representation for each voice type v:

P( f ′, v, t) = P
(

f ′ (mod 5) + 1,
⌊

f ′

5

⌋
+ 21, v, t

)
(8)

where f ′ ∈ {0, ..., 439} denotes pitch in 20-cent resolution. The voice-specific 20-cent resolution
pitch activation output is given by P( f ′, v, t), and the overall multi-pitch activations without voice
assignment are given by P( f ′, t) = ∑v P( f ′, v, t). The 20-cent resolution multi-pitch activations P( f ′, t)
are converted into multi-pitch detections, represented by a binary matrix B( f ′, t), through a binarisation
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process with a fixed threshold Lth. Specifically, pitch activations whose values are greater than Lth are
set to one in matrix B, while all others are set to zero.

This binarised matrix B( f ′, t) is then post-processed in order to obtain more accurate pitch
activations. In this step, we scan each time frame of the matrix B, replacing the pitch candidates by
the position of spectrogram peaks detected from Xω,t and that are validated by a minimum pitch
distance rule:

(Δpeaks(Xt, B( f ′, t)) < T1) ∨ (Δpeaks(Xt, B( f ′, t− 1)) < T2), (9)

where B( f ′, t) represents each binarised pitch activation at time frame t. The function Δpeaks in (9)
indicates the minimum pitch distance between the selected list of peak candidates in Xt and each
pitch candidate B( f ′, t) and B( f ′, t− 1), respectively. In our experiments, we use T1 = 1 and T2 = 3,
based on density distributions of |Δpeaks|, which were estimated from measurements in our datasets
using the pitch ground truth. The use of the previous frame (t− 1) helps to keep the temporal continuity
when a pitch candidate is eventually removed by the Lth threshold.

2.1.2. Dictionary Extraction

Dictionary P(ω|s, p, f , o, v) with spectral templates from multiple singers is built based on English
pure vowels (monophthongs), such as those used in the solfège system of learning music: Do, Re, Mi,
Fa, Sol, La, Ti and Do. The dictionaries use spectral templates extracted from solo singing recordings in
the Musical Instrument Sound subset of the Real World Computing (RWC) database (RWC-MDB-I-2001
Nos. 45–49) [41]. The recordings contain sequences of notes following a chromatic scale, where the
range of notes varies according to the tessitura of distinct vocal parts. Each singer sings a scale in five
distinct English vowels (/a/, /æ/, /i/, /6/, /u/). In total, we have used 15 distinct singers: 9 male
and 6 female, consisting of 3 human subjects for each voice type (bass, baritone, tenor, alto, soprano).

Although the aim of this work is the transcription of vocal quartets, we keep the spectral templates
from all five voice types in the dictionary because we do not know in advance the voice types present
in each audio recording. This decision allows the dictionary to cover a wider variety of vocal timbres
during the spectral decomposition, although not all of the resulting voice assignment probabilities will
be used during its integration with the music language model for a single song. Rather, our model
dynamically aligns one of the dictionary’s voice types to each vocal part in a song. This dynamic
dictionary alignment is based on the music language model’s voice assignments and is discussed
further in Section 2.3.

The fundamental frequency ( f0) sequence from each monophonic recording is estimated using the
Probabilistic YIN (PYIN) algorithm [43]. Afterwards, the time-frequency representation is extracted
using the VQT, with 60 bins per octave. A spectral template is extracted for each frame, regarding the
singer source, vowel type and voice type. In order to incorporate multiple estimates from a common
pitch, the set of estimates that fall inside the same pitch bin are replaced by its metrically-trimmed
mean, discarding 20% of the samples as possible outliers. The use of the metrically-trimmed mean aims
to reduce the influence of possible pitch inaccuracies obtained from the automatic application of the
PYIN algorithm. However, there is no guarantee that the final estimate will be free of eventual outliers.
The set of spectral templates is then pre-shifted across log-frequency in order to support tuning
deviations for ±20 and ±40 cent and are stored into a six-dimensional tensor matrix P(ω|s, p, f , o, v).
Due to the available data from the chromatic scales, the resulting dictionary P(ω|s, p, f , o, v) has some
pitch templates missing, as shown in Figure 2a.

To address the aforementioned issue, we have investigated alternative ways to fill out the
missing templates in the dictionary, including spectrum estimation by replication [14,44], linear
and nonlinear interpolation and a generative process based on Gaussian mixture models (inspired
by [45,46]). Following experimentation, we have chosen the replication approach, where existing
templates belonging to the same dictionary are used to fill in the missing parts of the pitch scale,
as this has been shown to achieve the best performance [47]. In this approach, the spectral shape of
a given pitch pn is repeated (with the appropriate log-frequency shift) over all subsequent pitches

331



Appl. Sci. 2017, 7, 1285

p ∈ [pn+1, pm−1] until another template is found (the pitch template pm). Figure 2b illustrates the
resulting dictionary templates of one singer example (vowel /a/) from our audio dataset, following
the above replication process.

(a) (b)

Figure 2. Example from an /a/ vowel utterance (one singer) templates: (a) original templates from the
variable-Q transform (VQT) spectrogram; (b) revised dictionary templates following replication.

2.2. Music Language Model

The music language model attempts to assign each detected pitch to a single voice based on
musicological constraints. It is a variant of the HMM-based voice separation approach proposed in [37],
where the main change is to the emission function (here it is probabilistic, while in the previous work,
it was deterministic). The model separates sequential sets of multi-pitch activations into monophonic
voices (of type SATB) based on three principles: (1) consecutive notes within a voice tend to occur on
similar pitches; (2) there are minimal temporal gaps between them; and (3) voices are unlikely to cross.

The observed data for the HMM are notes generated from the acoustic model’s binarised
20-cent resolution multi-pitch activations B( f ′, t), where each activation generates a note n with
pitch Pitch(n) = � f ′

5 �, onset time On(n) = t and offset time Off(n) = t + 1. Duplicates are discarded
in the case where two 20-cent resolution detections refer to the same semitone pitch. Ot represents this
set of observed notes at frame t.

2.2.1. State Space

In the HMM, a state St at frame t contains a list of M monophonic voices Vi, 1 ≤ i ≤ M. M is set
via a parameter, and in this work, we use M = 4. In the initial state S0, all of the voices are empty,
and at each frame, each voice may be assigned a single note (or no note). Thus, each voice contains
the entire history of the notes, which have been assigned to it from Frame 1 to t. This is necessary
because the note history is used in the calculation of the transition probabilities (Section 2.2.2); however,
it causes the theoretical state space of our model to blow up exponentially. Therefore, instead of using
precomputed transition and emission probabilities, we must use transition and emission probability
functions, presented in the following sections.

Conceptually, it is helpful to think of each state as simply a list of M voices. Thus, each state
transition is calculated based on the voices in the previous state (though some of the probability
calculations require knowledge of individual notes).

2.2.2. Transition Function

A state St−1 has a transition to state St if and only if each voice Vi ∈ St−1 can either be transformed
into the corresponding Vi ∈ St by assigning to it a single note with onset time t, or if it is identical to
the corresponding Vi ∈ St.
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This transition from St−1 to St can be represented by the variable TSt−1,Nt ,Wt , where St−1 is the
original state, Nt is a list of every note with onset time t assigned to a voice in St and Wt is a list of
integers, each representing the voice assignment index for the corresponding note Nt. Specifically,
Nt and Wt are of equal length, and the i-th integer in Wt represents the index of the voice to which
the i-th note in Nt is assigned in St. Notice that here, Nt only contains those observed notes that are
assigned to a voice in St, rather than all observed notes.

The HMM transition probability P(St|St−1) is defined as P(TSt−1,Nt ,Wt):

P(TSt−1,Nt ,Wt) = Ψ(Wt)
|Nt |
∏
i=1

C(St−1, ni, wi)P(Vwi , ni) (10)

The first term in the above product is a function representing the voice assignment probability
and is defined as follows:

Ψ(W) =
M

∏
j=1

{
Pv j ∈ W

1− Pv j /∈ W
(11)

Here, the parameter Pv is the probability that a given voice contains a note in a frame.
C(St−1, n, w) is a penalty function used to minimize the voice crossings, which are rare, though

they do sometimes occur. It returns by default one, but its output is multiplied by a parameter
Pcross—representing the probability of a voice being out of pitch order with an adjacent voice—for each
of the following cases that applies:

1. w > 1 and Pitch(Vw−1) > Pitch(n)
2. w < M and Pitch(Vw+1) < Pitch(n)

These cases in fact provide the definition for precisely what constitutes two voices being “out of
pitch order”. For example, if the soprano voice contains a note at a lower pitch than the alto voice in
a given frame, the soprano voice is said to be out of pitch order. Cases 1 and 2 apply when a note is
out of pitch order with the preceding or succeeding voice in the state, respectively. Pitch(V) represents
the pitch of a voice and is calculated as a weighted sum of the pitches of its most recent l (a parameter)
notes, where each note’s weight is twice the weight of the previous note. Here, ni refers to the i-th note
assigned to voice V.

Pitch(V) =

min(l,|V|)
∑

i=0
(2iPitch(n|V|−i))

min(l,|V|)
∑

i=0
2i

(12)

P(V, n) represents the probability of a note n being assigned to a voice V and is the product of
a pitch score and a gap score.

P(V, n) = pitch(V, n) gap(V, n) (13)

The pitch score, used to minimise melodic jumps within a voice, is computed as shown in
Equation (14), where N (μ, σ, x) represents a normal distribution with mean μ and standard deviation
σ evaluated at x, and σp is a parameter. The gap score is used to prefer temporal continuity within
a voice and is computed using Equation (15), where Off(V) is the offset time of the most recent note in
V, and σg and gmin are parameters. Both Δp and Δg return one if V is empty.

pitch(V, n) = N (Pitch(V), σp, Pitch(n)) (14)

gap(V, n) = max
(

ln
(
−On(n)−Off(V)

σg
+ 1

)
+1, gmin

)
(15)
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2.2.3. Emission Function

A state St emits a set of notes with onset at time t, with the constraint that a state containing
a voice with a note at onset time t must emit that note. The probability of a state St emitting the note
set Ot is shown in Equation (16), using the voice posterior Pt(v|p) from the acoustic model.

P(Ot|St) = ∏
n∈Ot

{
Pt(v = i|p = ρ(n)) n ∈ Vi ∈ St

1 otherwise
(16)

Notice that a state is not penalised for emitting notes not assigned to any of its voices. This allows
the model to better handle false positives from the multi-pitch detection. For example, if the acoustic
model detects more than M pitches, the state is allowed to emit the corresponding notes without
penalty. We do, however, penalise a state for not assigning a voice any note during a frame, but this is
handled by Ψ(W) from Equation (11).

2.2.4. Inference

To find the most likely final state given our observed note sets, we use the Viterbi algorithm [48]
with beam search with beam size b. That is, after each iteration, we save only the b = 50 most likely
states given the observed data to that point, in order to handle the complexity of the HMM. A simple
two-voice example of the HMM being run discriminatively can be found in Figures 3 and 4.

Pitch

Frame1 2 3 4

40

41

42

43

�

�

�

�

�

Figure 3. An example of an input to the music language model given a simple song with only two
voices. Here, for each detected pitch, there are two bars, representing the relative value of Pt(p|v)
for each voice at that frame. (The upper voice is shown in red and the lower voice is shown in blue.)
The ground truth voice assignment for each detected note is given by a check mark next to the bar
representing the correct voice. Notice that there is a false positive pitch detection at Pitch 41 at Frame 3.

Figure 3 shows example input pitch detections, where empty grid cells represent pitches that
have not passed the PLCA’s post-processing binarisation step, and the bars in the other cells represent
relative values of Pt(p|v) for each colour-coded voice. (The upper voice is shown in red and the lower
voice is shown in blue.) There is a check mark next to the bar representing the ground-truth voice
assignment for each detected pitch. Notice that there is no check mark in the cell representing Pitch 41
at Frame 3, indicating a false positive pitch detection.

Figure 4 shows the HMM decoding process of the input from Figure 3, using a beam size of two
and two voices. Notes are represented as “[pitch, frame]” and are colour-coded based on their ground
truth voice assignment. (Notes belonging to the upper voice are shown in red and notes belonging to
the lower voice are shown in blue.) Again, notice false positive pitch detection [41, 3]. In this figure,
the emission sets Ot are shown on the bottom, and the boxes below each Ot node list the emitted notes
in decreasing pitch order. Meanwhile, the voices contained by a state at each time step are listed in the
boxes above each St node, where voices are listed in decreasing pitch order and are separated by braces.
The most likely state hypothesis at each time step is on the bottom row, and each state box (except for
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S0) has an incoming arrow indicating which prior state hypothesis was used to transition into that state.
Those state hypotheses with an entirely correct voice assignment are represented by a thick border.

S0 S1 S2 S3

O1 O2 O3

{[43, 1], [40, 1]} {[42, 2]} {[43, 3], [41, 3],
[40, 3]}

{}
{}

{[43, 1]}
{[40, 1]}

{[43, 1]}
{[40, 1], [42, 2]}

{[43, 1], [42, 2],
[43, 3]}

{[40, 1], [40, 3]}

{[40, 1]}
{[43, 1]}

{[43, 1], [42, 2]}
{[40, 1]}

{[43, 1], [43, 3]}
{[40, 1], [42, 2],

[40, 3]}

Figure 4. An example of the music language model being run on the detected pitches from Figure 3
with a beam size of two and two voices. Notes are represented as “[pitch,frame]” and are colour-coded
based on their ground truth voice assignment. (Notes belonging to the upper voice are shown in red
and notes belonging to the lower voice are shown in blue.) The observed note sets are listed beneath
each Ot. Notice the false positive pitch detection [41, 3] in O3. The two most likely state hypotheses
at each step are listed in the large rectangles above each state St, where the voices are notated with
braces. The most likely state hypothesis at each step appears on the bottom row, and each state has
an incoming arrow indicating which prior state hypothesis was used to transition into that state.
Those state hypotheses with an entirely correct voice assignment are represented by a thick border.

Initially, S0 contains two empty voices. Next, O1 is seen, and the most likely voice assignment
is also the correct one, assigning the pitches to the voices in decreasing pitch order. The second
hypothesis for S1 is very unlikely: the two voices are out of pitch order with each other, and its values
of Pt(p|v) are lower than the correct assignments. Thus, once O2 is seen at Frame 2, that hypothesis
drops out, and both hypothesis S2 states transition from the most likely S1 state. However, due to
noisy Pt(p|v) estimates from the PLCA, the most likely S2 contains an incorrect assignment for the
note [42, 2], while the second S2 hypothesis is correct. In S3, however, these hypotheses flip back,
resulting in the correct overall voice assignment for this example input. Notice that the false positive
pitch detection [41, 3] is not assigned to any hypothesis state since its values of Pt(p|v) are relatively
small. Meanwhile, the Pt(p|v) estimates from the PLCA for the other two pitches are quite good and
allow the HMM to correct itself (assuming good parameter settings), judging that the voice {[43, 1],
[42, 2], [43, 3]} in the higher voice is more likely than the voice {[40, 1], [42, 2], [40, 3]} in the lower voice,
even given the noisy Pt(p|v) estimates for the note [42, 2].

2.3. Model Integration

In this section, we describe the integration of the acoustic model and the music language model
into a single system that jointly performs multi-pitch detection and voice assignment from audio.
The pitch activations Pt(p|v) for each voice type from the PLCA dictionary (bass, tenor, baritone,
alto and soprano) are quite noisy, resulting in very low accuracy for voice assignment, as can be seen
from our results (Table 1, row Schramm and Benetos [21]). However, we have found that a good
prior distribution for Pt(p|v) can drive the spectrogram factorisation towards a more meaningful voice
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assignment. This prior is given by the music language model, and its integration into the system
pipeline is performed in two stages.

Table 1. Voice assignment results, where standard deviations are shown in parentheses.
The post-processing refinement step described in Section 2.1.1 was also run on the output of all cited
methods. For those that do not output any voice assignment information (Klapuri [49], Salamon and
Gomez [50], Vincent et al. [4] and Pertusa and Iñesta [51]), the music language model was run once
on its output with default settings and M = 4. VOCAL4-MP represents our proposed method with
the acoustic model only. For VOCAL4-MP and [21], voice assignments are derived from each model’s
probabilistic voice assignment estimates (Pt(v|p) for [21] and Pt(p|v) for VOCAL4-MP). VOCAL4-VA
refers to our fully-integrated model.

Model
Bach Chorales

Fva Fs Fa Ft Fb

Klapuri [49] 28.12 (4.38) 24.23 (10.28) 22.98 (11.85) 29.35 (12.43) 35.92 (10.97)
Salamon and Gomez [50] 24.83 (5.31) 30.03 (12.63) 25.24 (10.92) 21.09 (9.91) 22.95 (9.30)
Vincent et al. [4] 18.30 (4.87) 13.43 (7.03) 15.52 (6.50) 17.14 (6.77) 27.10 (8.44)
Pertusa and Iñesta [51] 44.05 (4.60) 40.18 (11.28) 43.34 (7.38) 41.54 (7.02) 50.56 (6.16)
Schramm and Benetos [21] 20.31 (3.40) 20.42 (5.36) 21.27 (4.75) 14.49 (1.37) 25.05 (2.12)
VOCAL4-MP 21.84 (9.37) 12.99 (11.23) 10.27 (10.13) 22.72 (6.72) 41.37 (9.41)
VOCAL4-VA 56.49 (10.48) 52.37 (12.92) 49.13 (11.22) 53.10 (11.71) 71.38 (6.06)

Model
Barbershop Quartets

Fva Fs Fa Ft Fb

Klapuri [49] 20.90 (5.79) 2.53 (4.82) 29.02 (13.25) 7.94 (7.48) 44.09 (14.26)
Salamon and Gomez [50] 20.38 (6.61) 11.14 (10.27) 35.14 (14.04) 8.44 (8.22) 26.81 (13.69)
Vincent et al. [4] 19.13 (8.52) 10.20 (8.25) 17.97 (9.03) 15.93 (8.85) 32.41 (12.41)
Pertusa and Iñesta [51] 37.19 (8.62) 30.68 (13.94) 36.15 (11.70) 29.15 (13.90) 52.78 (10.37)
Schramm and Benetos [21] 23.98 (4.34) 24.45 (6.36) 31.61 (6.79) 13.55 (2.18) 26.34 (2.03)
VOCAL4-MP 18.35 (7.56) 2.40 (5.54) 10.56 (13.92) 16.61 (7.31) 43.85 (3.46)
VOCAL4-VA 49.06 (14.65) 41.78 (18.78) 34.62 (16.29) 35.59 (16.93) 84.25 (6.58)

Since multi-pitch detections from the acoustic model are the input for the music language model,
spurious detections can result in errors during the voice separation process. Therefore, in the first
stage, we run the EM algorithm using only the acoustic model from Section 2.1 for 15 iterations to
allow for convergence to stable multi-pitch detections. Next, the system runs for 15 more EM iterations,
this time also using the music language model from Section 2.2. During each EM iteration in this
second stage, the acoustic model is run first, and then, the language model is run on the resulting
multi-pitch detections. To integrate the two models, we apply a fusion mechanism inspired by the one
used in [52] to improve the acoustic model’s pitch activations based on the resulting voice assignments.

The output of the language model is introduced into the acoustic model as a prior to Pt(p|v).
During the acoustic model’s EM updates, Equation (6) is modified as:

Pnew
t (p|v) = αPt(p|v) + (1− α)φt(p|v), (17)

where α is a weight parameter controlling the effect of the acoustic and language model and φ is
a hyperparameter defined as:

φt(p|v) ∝ Pa
t (p|v)Pt(p|v). (18)

Pa
t (p|v) is calculated from the most probable final HMM state Stmax using the pitch score Δp(V, n)

from the HMM transition function of Equation (14). For V, we use the voice Vv ∈ Stmax as it was at
frame t− 1, and for n, we use a note at pitch p. The probability values are then normalised over all
pitches per voice. The pitch score returns a value of one when the V is an empty voice (thus becoming
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a uniform distribution over all pitches). The hyperparameter of Equation (18) acts as a soft mask,
reweighing the pitch contribution of each voice based on detected pitches from the previous iteration.

Performance depends on a proper alignment between the voice types present in each song and
the voice types present in the PLCA dictionary. Therefore, we dynamically assign one of the five voice
types present in the dictionary (see Section 2.1.2) to each of the voices extracted by the music language
model. During the first integrated EM iteration, the acoustic model’s voice probabilities Pt(p|v) are
set to a uniform distribution upon input to the music language model. Additionally, we cannot be
sure which voice types are present in a given song, so we run the language model with M = 5. Here,
the acoustic model’s detections contain many overtones, and we do not want to simply use M = 4,
because many of the overtones are actually assigned a slightly greater probability than the correct
notes by the acoustic model. Rather, the overtones tend to be higher in pitch than the correct notes and,
thus, are almost exclusively assigned to the fifth voice by the HMM. These decisions combined allow
the music language model to drive the acoustic model towards the correct decomposition without
being influenced by the acoustic model’s initially noisy voice type probabilities.

After this initial HMM iteration, we make the dynamic dictionary voice type assignments using
the following equation:

VoiceType(Vi) = arg max
v

∑
p,t

Pt(p|v)Pa
t (p|Vi), (19)

such that each voice Vi from the HMM is assigned the voice type v from the dictionary that gives
the greatest correlation between the (initial, non-uniform) PLCA voice probabilities Pt(p|v) and the
HMM voice priors Pa

t (p|Vi). This alignment procedure begins with the HMM’s lowest voice and
performs a greedy search, such that for each subsequent voice, the arg max only searches over those
dictionary voice types not already assigned to a lower HMM voice. This dynamic dictionary voice type
assignment allows the model to decide which voice types are present in a given song at runtime. For all
subsequent iterations, this voice type assignment is saved and used during integration. Additionally,
the HMM is now run with M = 4, and the voice type assignment is used to ensure that the PLCA
output Pt(p|v) estimates correspond to the correct voice indices in the HMM. This dynamic dictionary
type alignment is a novel feature of the proposed model compared to our previous work [38].

We also place certain constraints on the HMM during its first iteration. Specifically, where Ot is
the set notes observed at frame t: (1) if |Ot| ≤ M, each note in Ot must be assigned to a voice in St;
and (2) if |Ot| > M, the voices in St must contain exactly the M most likely pitch activations from Ot,
according to the P(p, t) from the acoustic model, where ties are broken such that lower pitches are
considered more likely (since overtones are the most likely false positives).

The final output of the integrated system is a list of the detected pitches at each time frame that
are assigned to a voice in the most probable final HMM state Stmax , along with the voice assignment for
each after the full 30 EM iterations. Figure 6 shows an example output of the integrated system and is
discussed more in depth in Section 3.4.

3. Evaluation

3.1. Datasets

We evaluate the proposed model on two datasets of a capella recordings: one of 26 Bach chorales
and another of 22 barbershop quartets, in total 104 minutes. (Original recordings are available at
http://www.pgmusic.com/bachchorales.htm and http://www.pgmusic.com/barbershopquartet.htm
respectively.) These are the same datasets used in [21], allowing for a direct comparison between it and
the acoustic model proposed in Section 2.1. Each file is in wave format with a sample rate of 22.05 kHz
and 16 bits per sample. Each recording has four distinct vocal parts (SATB), with one part per channel.
The recordings from the barbershop dataset each contain four male voices, while the Bach chorale
recordings each contain a mixture of two male and two female voices.
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A frame-based pitch ground truth for each vocal part was extracted using a monophonic pitch
tracking algorithm [43] on each individual monophonic track with default settings. Experiments are
conducted using the mix down of each audio file with polyphonic content, not the individual tracks.

3.2. Evaluation Metrics

We evaluate the proposed system on both multi-pitch detection and voice assignment using the
frame-based precision, recall and F-measure as defined in the Music Information Retrieval Evaluation
eXchange (MIREX) multiple-F0 estimation evaluations [53], with a frame hop size of 20 ms.

The F-measure obtained by the multi-pitch detection is denoted as Fmp, and for this, we combine
the individual voice ground truths into a single ground truth for each recording. For voice assignment,
we simply use the individual voice ground truths and define voice-specific F-measures of Fs, Fa, Ft and
Fb for each respective SATB vocal part. We also define an overall voice assignment F-measure Fva for
a given recording as the arithmetic mean of its four voice-specific F-measures.

3.3. Training

To train the acoustic model, we use recordings from the RWC dataset [41] to generate the
six-dimensional dictionary of log-spectral templates specified in Section 2.1, following the procedure
described in Section 2.1.2.

For all parameters in the music language model, we use the values reported in [37] that were used
for voice separation in the fugues, except that we double the value of σp to eight to better handle noise
from the acoustic model. We also introduce two new parameters to the system: the voice crossing
probability Pcross and the voice assignment probability Pv. We use MIDI files of 50 Bach chorales,
available at http://kern.ccarh.org/ (none of which appear in the test set), splitting the notes into
20-ms frames, and measure the proportion of frames in which a voice was out of pitch order with
another voice and the proportion of frames in which each voice contains a note. This results in values
of Pcross = 0.006 and Pv = 0.99, which we use for testing.

To train the model integration weight α, we use a grid search on the range [0.1, 0.9] with a step
size of 0.1, maximising Fva for each of our datasets. Similarly, the value of the threshold Lth that is used
for the binarisation of the multi-pitch activations in Section 2.1.1 is based on a grid search on the range
[0.0, 0.1] with a step size of 0.01, again maximising Fva for each dataset. To avoid overfitting, we employ
cross-validation, using the parameter settings that maximise the chorales’ Fva when evaluating the
barbershop quartets, and vice versa; nonetheless, the resulting parameter settings are the same for
both datasets: α = 0.1 and Lth = 0.01.

3.4. Results

We use five baseline methods for evaluation: Vincent et al. [4], which uses an adaptive spectral
decomposition based on NMF; Pertusa and Iñesta [51], which selects candidates among spectral
peaks, validating candidates through additional audio descriptors; Schramm and Benetos [21], a PLCA
model for multi-pitch detection from multi-singers, similar to the acoustic model of our proposed
system, although it also includes a binary classifier to estimate the final pitch detections from the pitch
activations; as well as two multi-pitch detection methods from the Essentia library [54]: Klapuri [49],
which sums the amplitudes of harmonic partials to detect pitch presence; and Salamon and Gomez [50],
which uses melodic pitch contour information to model pitch detections. For all five of these methods,
we also run the post-processing refinement step described in Section 2.1.1 on their output.

We evaluate the above systems against two versions of our proposed model: VOCAL4-MP, using
only the acoustic model described in Section 2.1; and VOCAL4-VA, using the fully-integrated model.

From the multi-pitch detection results in Table 2, it can be seen that our integrated model
VOCAL4-MP achieves the highest Fmp on both datasets. In fact, VOCAL4-VA outperforms VOCAL4-MP
substantially, indicating that the music language model is indeed able to drive the acoustic model to
a more meaningful factorisation.
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Table 2. Multi-pitch detection results, where standard deviations are shown in parentheses.
The post-processing refinement step described in Section 2.1.1 was also run on the output of all cited
methods. VOCAL4-MP represents our proposed method with the acoustic model only, while VOCAL4-VA
refers to our fully-integrated model.

Model Bach Chorales Barbershop Quartets

Klapuri [49] 54.62 (3.00) 48.24 (4.50)
Salamon and Gomez [50] 49.52 (5.18) 45.22 (6.94)
Vincent et al. [4] 53.58 (6.27) 51.04 (8.52)
Pertusa and Iñesta [51] 67.19 (3.82) 63.85 (6.69)
Schramm and Benetos [21] 71.03 (3.33) 70.84 (6.17)
VOCAL4-MP 63.05 (3.12) 59.09 (5.07)
VOCAL4-VA 71.76 (3.51) 75.70 (6.18)

For voice assignment, using each baseline method above that does not output any voice
assignment information (Klapuri [49], Salamon and Gomez [50], Vincent et al. [4] and Pertusa and
Iñesta [51]), we run our music language model once on its output with default settings and M = 4,
after the post-processing refinement step. Meanwhile, for Schramm and Benetos [21], as well as
VOCAL4-MP, the voice assignments are derived from each model’s probabilistic voice assignment
estimates (Pt(v|p) for [21] and Pt(p|v) for VOCAL4-MP).

The voice assignment results are shown in Table 1, where it is shown that VOCAL4-VA
outperforms the other models, suggesting that a language model is necessary for the task. It is
also clear that integrating the language model as we have (rather than simply including one as
a post-processing step) leads to greatly improved performance. Specifically, notice that the difference
in performance between our model and the baseline methods is much greater for voice separation
than for multi-pitch detection, even though we applied our language model to those baseline methods’
results as post-processing.

Also interesting to note is that our model performs significantly better on the bass voice than
on the other voices. While this is also true of many of the baseline methods, for none of them is the
difference as great as with our model. Overtones are a major source of errors in our model, and the
bass voice avoids these since it is almost always the lowest voice.

A further investigation into our model’s performance can be found in Figure 5, which shows all
of the VOCAL4-VA model’s F-measures, averaged across all songs in the corresponding dataset after
each EM iteration. The first thing to notice is the large jump in performance at Iteration 15, when the
language model is first integrated into the process. This jump is most significant for voice assignment,
but is also clear for multi-pitch detection. The main source of the improvement in multi-pitch detection
is that the music language model helps to eliminate many false positive pitch detections using the
integrated pitch prior. In fact, the multi-pitch detection performance improves again after the 16th
iteration and then remains relatively stable throughout the remaining iterations.

The voice assignment results follow a similar pattern, though without the additional jump in
performance after Iteration 16. In the Bach chorales, the voice separation performance even continues
to improve until the end of all 30 iterations. For the barbershop quartets, however, the performance
increases until Iteration 20, before decreasing slightly until the end of the process. This slight decrease
in performance over the final 10 iterations is due to the alto and soprano voices: Fb and Ft each remain
stable over the final 10 iterations, while Fa and Fs each decrease. This difference is likely explained by
the acoustic model not being able to properly decompose the alto and soprano voices. The barbershop
quartets have no true female voices (i.e., each part is sung by a male vocalist), but the template
dictionary’s alto and soprano voices are sung by female vocalists; thus, the alto and soprano parts
must be estimated through a rough approximation of a spectral basis combination of female voices.
Such a rough approximation could be the cause of our model’s difficulty in decomposing the alto and
soprano voices in the barbershop quartets.
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Figure 5. The VOCAL4-VA model’s F-measures after each EM iteration, averaged across all songs in
each dataset. (a) Bach chorales; (b) barbershop quartets.

Figure 6 illustrates the output of our proposed system, run on excerpts from both the Bach
chorale (a, left) and barbershop quartet (b, right) datasets, for the joint multi-pitch detection and
voice assignment tasks. Figure 6(a1),(b1) show the ground truth, using colour to denote vocal part;
Figure 6(a2),(b2) show the probabilistic pitch detections from the acoustic model after the 30th EM
iteration, summed over all voices (∑5

v=1 Pt(p|v)), where a darker shade of gray indicates a greater
probability; Figure 6(a3),(b3) present the final output of the integrated system, again using colour to
denote vocal part.

As mentioned earlier, the bass voice assignment outperforms all other voice assignments in
almost all cases, since false positive pitch detections from the acoustic model often correspond with
overtones from lower notes that occur in the same pitch range as the correct notes from higher
voices. These overtone errors are most commonly found in the soprano voice, for example at
around 105 seconds in the Bach chorale excerpt and around 64.5 seconds in the barbershop quartet
excerpt, where Figure 6(a2),(b2) clearly show high probabilities for these overtones. It is clear from
Figure 6(a3),(b3) that such overtone errors in the soprano voice also lead to voice assignment errors in
the lower voices since our system can now assign the correct soprano pitch detections to the alto voice,
alto to tenor and tenor to bass.

Another common source of errors (for both multi-pitch detection and voice assignment) is vibrato.
The acoustic model can have trouble detecting vibrato, and the music language model prefers voices
with constant pitch over voices alternating between two pitches, leading to many off-by-one errors in
pitch detection. Such errors are evident throughout the Bach chorale excerpt, particularly in the tenor
voice towards the beginning where our system detects mostly constant pitches (both in the acoustic
model output and the final output) while the ground truth contains some vibrato. Furthermore, at the
end of both excerpts, there is vibrato present, and our system simply detects no pitches rather than the
vibrato. This is most evident in the tenor voice of the Bach chorale, but is also evident in the soprano,
alto and tenor voices of the barbershop quartet.
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Excerpt from Bach Chorale dataset:
“If Thou but Suffer God to Guide Thee”

(Johann Sebastian Bach)

(a1)

Excerpt from Barbershop Quartet dataset:
“It is a Long, Long Way to Tipperary”

(Jack Judge and Harry H. Williams)

(b1)

(a2) (b2)

(a3) (b3)

Figure 6. Example system input and output of excerpts from the Bach Chorale (a) (left) and barbershop
quartet (b) (right) datasets. (a1,b1) show the ground truth, using colour to denote vocal part (red:
soprano; brown: alto; blue: tenor; green: bass). (a2,b2) show the probabilistic pitch detections from
the acoustic model after the 30th EM iteration, summed over all voices (∑5

v=1 Pt(p|v)), where a darker
shade of gray indicates a greater probability; (a3,b3) present the final output of the integrated system,
again using colour to denote vocal part.

A closer look at errors from both vibrato and overtones can be found in Figure 7, which shows
pitch detections (red) and ground truth (black) for the soprano voice from an excerpt of “O Sacred
Head Sore Wounded” from the Bach chorales dataset. Here, errors from overtones can be seen
around 108.5 seconds, where the detected pitch 54 is the second partial from the tenor voice (not
shown), which is at pitch 42 at that time. Errors from vibrato are evident around 107.75 seconds and
108.6 seconds, where the pitch detections remain at a constant pitch while the ground truth switches
between adjacent pitches.
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Figure 7. Pitch detections (red) and ground truth (black) for the soprano voice from an excerpt of
“O Sacred Head Sore Wounded” from the Bach chorales dataset, showing errors from both vibrato and
overtones (from the tenor voice, not shown).

Twenty-Cent Resolution

To further investigate our model’s performance, especially on vibrato, we present its performance
using 20-cent resolution instead of semitone resolution. Specifically, we divide each semitone into
five 20 cent-wide frequency bins. We convert our integrated model’s final semitone-based output into
these bins using a post-processing step: for each detected pitch, we assign it to the 20-cent bin with the
maximum Pt( f |p) value from the acoustic model’s final decomposition iteration.

Results are reported in terms of a cent-based pitch tolerance. A tolerance of zero cents means that
a pitch detection will only be evaluated as a true positive if it is in the correct 20-cent bin. A tolerance
of ±20 cents means that a pitch detection will be evaluated as a true positive if it is within one bin of
the correct bin. In general, a tolerance of ±20k cents will count any pitch detection falling within k bins
of the correct bin as a true positive.

Figure 8 illustrates our model’s performance using different tolerance levels. In general,
our model’s semitone-based F-measures lie in between its F-measures when evaluated 20-cent
resolution at ±40-cent and ±60-cent tolerance. This does not sound too surprising as a tolerance
of ±50 cents would approximate a semitone; however, we would have expected our model’s
performance with 20-cent resolution to be somewhat better than its performance with semitone
resolution, as it should reduce errors associated with vibrato that crosses a semitone boundary. This lack
of improvement suggests that our model’s difficulty in detecting vibrato is not due simply to semitone
crossings, but rather, may be a more fundamental issue of vibrato itself.
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Figure 8. Our proposed model’s performance on each dataset using pitch tolerance levels from zero
cents up to ±100 cents. (a) Bach chorales; (b) barbershop quartets.
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4. Conclusions

In this paper, we have presented a system for multi-pitch detection and voice assignment for
a cappella recordings of multiple singers. It consists of two integrated components: a PLCA-based
acoustic model and an HMM-based music language model. To our knowledge, ours is the first system
to be designed for the task. (Supporting Material for this work is available at http://inf.ufrgs.br/
~rschramm/projects/music/musingers.)

We have evaluated our system on both multi-pitch detection and voice assignment on two datasets:
one of Bach chorales and another of barbershop quartets, and we achieve state-of-the-art performance
on both datasets for each task. We have also shown that integrating the music language model
improves multi-pitch detection performance compared to a simpler version of our system with only
the acoustic model. This suggests, as has been shown in previous work, that incorporating such music
language models into other acoustic music information retrieval tasks might also be of some benefit,
since they can guide acoustic models using musicological principles.

For voice assignment, while our system performs well given the difficulty of the task, there is
certainly room for improvement, given that the theoretical upper bound for our model is a perfect
transcription if the acoustic model’s Pt(p|v) estimates are accurate enough. As overtones and vibrato
constitute the main sources of errors in our system, reducing such errors would lead to a great
improvement in the performance of our system. Thus, future work will concentrate on methods to
eliminate such errors, for example by post-processing steps that examine more closely the spectral
properties of detected pitches for overtone classification and the presence of vibrato. Another possible
improvement could be found during the dynamic dictionary voice type assignment step. In particular,
running a voice type recognition process as a preprocessing step may result in better performance.

We will also investigate the use of incorporating additional information from the acoustic model
into the music language model to continue to improve performance. In particular, we currently do not
use either the singer subject probabilities Pt(s|p) or the vowel probabilities Pt(o|p) at all, the values of
which may contain useful voice separation information. Similarly, incorporating harmonic information
such as chord and key information into the music language model could lead to a more informative
prior for the acoustic model during integration. Additionally, learning a new dictionary for the acoustic
model, for example an instrument dictionary, would allow our system to be applied to different styles
of music such as instrumentals or those containing both instruments and vocals, and we intend to
investigate the generality of our system in that context.

Another possible avenue for future work is the adaptation of our system to work on the note level
rather than the frame level. The music language model was initially designed to do so, but the acoustic
model and the integration procedure will have to be adapted as they are currently limited to working
on a frame level. Such a note-based system may also eliminate the need for robust vibrato detection,
as a pitch with vibrato would then correctly be classified as a single note at a single pitch. An additional
benefit to adapting our system to work on the note level would be the ability to incorporate metrical or
rhythmic information into the music language model.
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Abstract: We conducted an experiment using a purposefully designed audio-based game called
the Music Puzzle with Japanese university students with different levels of hearing acuity and
experience with music in order to determine the effects of these factors on solving such games.
A group of hearing-impaired students (n = 12) was compared with two hearing control groups
with the additional characteristic of having high (n = 12) or low (n = 12) engagement in musical
activities. The game was played with three sound sets or modes; speech, music, and a mix of the two.
The results showed that people with hearing loss had longer processing times for sounds when playing
the game. Solving the game task in the speech mode was found particularly difficult for the group
with hearing loss, and while they found the game difficult in general, they expressed a fondness for
the game and a preference for music. Participants with less musical experience showed difficulties in
playing the game with musical material. We were able to explain the impacts of hearing acuity and
musical experience; furthermore, we can promote this kind of tool as a viable way to train hearing by
focused listening to sound, particularly with music.

Keywords: audio games; educational tools; audio signal processing; computer interfaces;
music cognition; perception; training; language

1. Introduction

Musical experiences affect persons with hearing loss and hearing persons similarly. Hence,
music can provide similar benefits to both groups [1]. However, it is well known that people with
hearing impairment listen to music much less. This can be seen, for example, when comparing individuals
before and after cochlear implantation [2]. It is also established that even people with only mild or moderate
hearing impairment exhibit language disorders [3].

In order to increase the likelihood of people with hearing loss having enjoyable listening
experiences, we believe that one solution is exposure to activities involving focused listening. Hearing
persons focus on the sound itself when they listen to music (musical listening) while they also pay
attention to the source or the situation of the sound (everyday listening) [4]. We use “focused listening”
for people with hearing loss so that they may listen to sounds, noticing the change along time with its
pitch, timbre, and other sound features as hearing persons do.

Thus, playing an audio game where attention to music is required to solve the task—such as
one that can be played casually to entertain—would promote actively listening to music. In turn,
this voluntary exposure to sound supports language acquisition and development [5], personal
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development and social grooming [6], and the ability to extract information from the coincidental and
surrounding sounds of everyday life [7].

In previous studies, authors and colleagues presented an audio game called the Music Puzzle as
well as preliminary results from pilot testing (see for instance [8,9]); in the current work, we investigate
specifically how hearing acuity and musical experience can impact game-playing achievements.
The experiment involved both hearing and hearing-impaired university students.

Hearing impairments, hearing loss, and hearing acuity are closely related terms. Hearing loss
is, according to several definitions, “a general term that refers to a reduced auditory acuity” [10].
Auditory acuity is also well defined and “describes how sensitive the auditory system is to
sound” [11]. Hearing acuity measured through audiometry will not determine to what extent the
person listens to or likes music. Actually, there are many accounts of professional artists with hearing
loss who earned great success in music, such as Evelyn Glennie [12], Paul Whittaker [13], and Danny
Lane [14]. Another example is the world-touring Gallaudet Dance Company [15], where the members
are university students with hearing loss.

Organizations and teachers in different countries manage activities related to teaching music
to children with hearing loss (for instance, Music and the Deaf [16], and hear ME now [17]),
and to experiencing music (for instance, initiatives by the Mahler Chamber Orchestra [18]). There are
reports on how to accommodate music activities for the hearing-impaired [19], and music education for
the hearing-impaired is furthermore an active research area, such as in teaching orchestral music [20].

Even without personal music training or special music activities, many young people with hearing
loss enjoy music actively, through dancing, going to karaoke, watching artist promotion videos, playing
the drums, or just listening to music. Many of them also like to play music games either on computers
or mobile devices, or at video arcades. It has however been shown [21] that interpretation of the
communicated emotions in music (arguably music’s most important characteristic) is significantly less
precise in the hearing-impaired compared to typical listeners, partly due to problems of timbre and
pitch perception.

Familiarity with music, gained from exposure, will increase emotional engagement in listening [22].
Also concerning motivations for engaging in musical activities, it was found [23] that although
motivations for the hearing-impaired were similar to those of the hearing population, the degree of
early exposure to music has an impact on music-making later in life. Musical experiences have also been
documented as having positive effects and providing benefits for hearing subjects, for instance, related
to language acquisition [24], social interaction [25], and auditory skills in different aspects [26–30].
Without focused listening, the same benefits for language acquisition cannot be achieved [31].

1.1. Hearing Loss, Music Listening, and Music Training

Studies on the relationship between hearing loss and music listening have been performed within
several areas. In music therapy, the positive effects of musical interventions on children with hearing
loss have been described [32,33]. Much of the recent research on music with hearing loss has focused
on the emerging technologies related to cochlear implants, while some studies look particularly at
hearing loss with just hearing aids, such as in the description of how people with hearing aids listen to
music from an audiological perspective [34,35]. Music perception by cochlear implant users has been
observed both by otolaryngology laboratories [36–38] and by psychologists’ groups [39,40].

Music perception by people with hearing loss has also been explored from various perspectives:
which music elements to use in an experiment, ways to propose music, benefits of cochlear implants
and hearing aids, and the age and impairment history of participants. Experiments related to the
perception of pitch vary from basic pitch discrimination tasks [41] to memorization [36], singing [1],
and recognition [40] of melodies. Experiments related to exploring the role of temporal information
for melody recognition have included both tempo and rhythm as well as pitch information [42].
It has been shown that pitch and timbre—when parametrically varied in a synthesized tone signal and
with music listening history accounted for—interfere and confuse listeners in discrimination tests [43].
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Potentially, musical training can improve timbre perception and identification in cochlear implant
patients [44].

Musical training is typically given to people with hearing loss either in the long or short term.
Various experiments have investigated possible long-term effects of informal music activities provided
to participants at schools [1], and measured the effectiveness of long-term music lessons for improving
the perception of environmental sounds [45]. In short-term training for cochlear implant users, little
progress was found in terms of music skills [46]. Effects of the training were found in linguistic
identification tests after controlled training of combining the acoustic information of a hearing aid
with the electric information from a cochlear implant [47]. Some of these results are related to brain
development [1,46].

1.2. Games for Training and Special Support, and Audio-Based Games

In recent years, needs for training and skill practice have been studied through so-called serious
games or games for learning. Such games have been shown to be both effective and motivational [48,49],
and they are generally applied in any type of context. The design of games for persons with physical
or cognitive impairments, for instance, does not only have the purpose of giving them opportunities of
playing entertaining games, but is also intended to improve logical thinking, cognitive skills, or social
skills. Games for children with autism spectrum disorder have, in different studies, been shown to
support the development of social skills such as membership, partnership, and friendship [50,51].

For auditory training such as exposing oneself to focused listening, it is reasonable to expect that
serious games based on sound would be appropriate. Audio-based games are common both among
serious games and among games only for entertainment. However, they differ greatly in design,
gameplay, and functionality [52,53]. In particular, there are many examples of such games that have
been developed for people with visual impairments and that can be played entirely without a graphical
user interface [54,55]. Additionally, there are many general music tutoring games that practice specific
skills such as solfège, rhythm, melody, and notation [56–58]. Games for training listening for the
hearing-impaired are less common, although some specialize in cochlear implants [59,60].

The above and many other games provide promising interfaces for gameplay involving solving
specific musical tasks, or for training in supplementary modalities for the impaired, which is predominantly
visual. Instead of adapting these games to sound discrimination training for the hearing-impaired,
we suggest methodically focusing on the impaired auditory sensory organ using an alternative game
design. The game design is based on focused listening with an elementary graphical interface.

1.3. Aim of the Study

For our studies, we have developed an audio-based game with a simple graphical user interface
that provides no visual cues to help solve the game. The game includes musical material, speech in
terms of read poems, and mixes of those materials. It is intended that people with hearing loss use
focused listening in order to win. We conducted an experiment to explore if the game can be used in
auditory training and engaged three participant groups that differed in measured hearing acuity and
self-reported music experiences; this way we could investigate the impact these factors have on game
playing, but also the impact of speech and language ability since this correlates with hearing acuity.

In addition, we were interested in finding out how the game is played, what makes it enjoyable,
and if music is a preferred material in auditory training. In order to resemble an everyday listening
situation, the participants played with headphones, and not with e.g., Bluetooth bridging for hearing
aids. They adjusted the volume of both hearing aids and the game sounds to their typically preferred
level; this way, we explored the impact of their hearing relative to their typical listening conditions.

If the game is appreciated among the experiment participants, it is ready to be used as a formal
and informal training tool for a wide group of the hearing-impaired. On the whole, we would be able
explain the impact of the above factors, and therefore recommend considering this kind of tool in the
future training of hearing.
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2. The Music Puzzle

The developed game, called the Music Puzzle, has a gameplay which resembles that of a classic
jigsaw puzzle. It is developed for Android devices with touchscreen and uses a Pure data real-time
audio engine library [61] (see also [8,9]). Our initial idea was to use music, which means that the
purpose of the game is to recompose a musically correct piece of music from fragmented parts of
a recording. However, the game is not restricted to music, but can use any audio recording.

The complete puzzle to be solved is represented by a ball on the screen, and pressing this ball will
play the corresponding sound file (see Figure 1). Then, this ball is divided into smaller pieces or “sound
objects” (to be explained shortly) with an identical appearance and they are randomly distributed
in the graphical user interface. These smaller puzzle pieces or sound objects can be reassembled
into a complete whole. The sound objects can furthermore be manipulated in pitch, and filtered by
equalization (from here on referred to as EQ); they will, like the bigger ball, play the linked sound
upon being pressed. For a video example of the game, please see the supplementary materials.

(a) (b)

(c) (d)

Figure 1. The Music Puzzle gameplay interface as seen on a tablet. (a) Initiate a session, listen to the
target music piece, and shake the tablet; (b) Listen and order sound objects by finger touch. There are
four action buttons: How did I do? (evaluate current order), Play Solution (repeat target piece), Play the
current (play the order as seen on screen), and Oh, I give up (quit the puzzle); (c) Adjust pitch and
equalization (EQ; filtering) for each object. The radio buttons are randomly colored and ordered so as
to not give any visual cues to the solution; (d) Completed puzzle with an evaluation.

The player hears the entire puzzle to be solved once, then proceeds to reorder the pieces and
change pitch and EQ appropriately. In order to solve the puzzle in its intended music mode, one has
to memorize and understand not only melody and rhythm, but also its timbre and possibly other
characteristics. With non-musical types of stimuli like speech and environmental sounds, decisions for
solving will rely on additional cues for music such as language and meaning.

2.1. Sound Objects

Sound objects are generated as fragments of the original recorded audio following a “shake
the tablet” action to mimic the concept of breaking a fragile ball into pieces. The number of objects
generated depends on shaking force. Segmentation is done by dividing the whole file into fragments
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of equal duration. These sound objects are in the game connected with fast crossfades (5 ms) to
avoid zero-crossings. A random selection of objects is further modified in pitch or EQ, or both; in the
latter cases the task difficulty will naturally increase [43]. Both segmentation and modifications are
performed in real time.

The sounds are modified using filtering (EQ) by adjusting the energy of the low and high
frequency components in the audio signal; this is done either by a low-pass or a high-pass filter (using
the standard Pure data objects lop~ and hip~). The low-pass filter has a cutoff frequency at 2000 Hz,
which means everything above this cutoff in the sound is attenuated (i.e., no treble). The high-pass filter
has a cutoff frequency at 500 Hz, attenuating everything below (i.e., no bass). In either modification,
the important frequency range of 500–2000 Hz is left intact. Cutoff frequencies were determined from
experimentation and observation.

The pitch is modified either by −1000 cents, −500 cents, +500 cents, or +1000 cents; a 100-cent
change corresponds to a semitone pitch shift. Even pitch changes were determined by experimentation.
The modulations are done in the frequency domain which leave durations unaltered (using
a modification of the Pure data patch I07-phase.vocoder). All sounds used for the experiment were
uncompressed mono audio files sampled at 44.1 kHz to facilitate the frequency-domain manipulations.

2.2. User Interface and Gameplay

Figure 1 shows the different screens of the user interface. First, in Figure 1a, the user listens to the
target piece to reconstruct by tapping the large ball. Then, the user shakes the tablet to break apart
the target piece into several fragments (sound objects) represented by small identical balls; Figure 1b
shows the resulting display after shaking the tablet.

The intended gameplay is to

1. tap and listen to the sounding objects
2. long press and adjust EQ and pitches
3. drag and arrange the objects horizontally from left to right
4. click the menu item to check and evaluate the solution

where the steps can be executed in any order and repeated in a trial-and-error procedure.
The four square buttons at the top of the screen (see Figure 1b) are used for evaluating the order,

pitch, and EQ (How did I do?), replay the target sound (Play solution), play the current arrangement
of objects as it appears on the screen (Play the current), and there is a final option to end the session
(Oh, I give up). Two buttons in the lower left are “cheat buttons”, described shortly.

EQ and pitch modification dialogs, as seen in Figure 1c, are activated by a long press on an object.
Radio buttons are presented in random order and colors so as to not provide visual cues that could
help solve the puzzle. Each press on a radio button will play the sound with selected adjustment.

2.3. Game Difficulty

The difficulty level is determined by the number of pieces generated, the pitch shifts, the filtering,
and last but not least the characteristics of the sound recording. When the shaking yields many pieces,
the game is in most cases more difficult because the durations of the sound objects get shorter and
all other factors that increase difficulty are more likely to occur and have a larger impact. In the used
version, the game had to be solved perfectly to be counted as accomplished; for other purposes,
the threshold for success could be adjusted.

For both modulation types (pitch and EQ), it is possible to set any arbitrary values in a text file,
and in this way augment the game with increasing difficulty and levels. However, following a testing
phase with intended users, it was not considered necessary at this point.

Sound objects will also constitute a difficulty differentiation. Shake force determines the number
of generated objects, and the difficulty naturally increases with more objects. Object duration is
determined by their number and also by the target’s total duration. Finally, the cut points of the objects
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may come at any place in the original sound: imagine for instance a drum loop of four bars cut into
three objects (easier) compared to four objects (harder), or a piece cut into a large number of objects;
some may end up with only silence. In our experiment this was not an issue, but for further use one
should apply an automatic analysis of the target sound to avoid unsolvable puzzles.

Alternatively, if the puzzle gets too hard to solve, the pitch and EQ modifications can be
automatically corrected using the Pitch Cheat and EQ Cheat buttons in the left bottom corner of
the screen. Furthermore, the user can choose to replay the target sound by clicking Play solution.
Cheat buttons and the replay function can be deactivated in the settings file.

2.4. Preparation and Data Collection

Before using the game for experimental purposes, the difficulty settings text file should be edited
and a collection of pieces should be prepared in folders. Any type and duration of audio recording can
be used.

A game session starts when a player listens to the target sound (clicking the large ball) and ends
with the final notification in Figure 1d if the participant can build the target sound, or when clicking
the “give-up button” . Each game session is recorded in a log file. The log file includes time-stamped
information about the session and all the user’s actions on the touchscreen.

3. Materials and Methods

An experiment was designed to collect gaming data and user evaluations. The experiment was
conducted in accordance with the Declaration of Helsinki and with ethical approval from the involved
universities. All included data are anonymous. Each participant was carefully briefed about the
experiment and signed a consent form to participate. In the study, we only look at various time
measurements, frequencies of interactions, and preference of sound material. In addition, participants
were informed about hearing acuity and music listening experiences. We conducted three sets of
gaming sessions with a total of 36 participants (14 female). They were university students of ages from
18 to 23, and were recruited into equally-sized groups as follows:

Group Hearing Language Musical experience

HI Impairment Japanese –
NEX Normal Japanese Low
EXP Normal Japanese High

The Japanese hearing-impaired participants (HI) group was recruited from a university for
hearing-impaired technology students. Eleven participants had profound degrees of hearing loss,
while one participant had severe hearing loss [62]. Profound loss is considered to be above 90 dB,
and severe in the range 70–90 dB. Hearing loss and acuity are measured with audiometers and
expressed in decibels hearing level (dBHL). Because of the human ears’ characteristic of perceiving
sounds differently depending on frequencies, decibels sound pressure level (dBSPL) cannot show
hearing acuity by frequency [63]. Eleven of the participants used hearing aids in the experiment and
one was a cochlear implantee. They could use their hearing aids according to their own preferences
with two intended benefits: for their comfort, and because this would approximate their typical
listening situation. Though the research with hearing-impaired persons tends to focus on either
cochlear implanters or users of hearing aids, we do not divide them according to their hearing devices
because our research interest is to provide them the opportunities to listen to sounds with joy.

The recruitment of Japanese hearing participants with low musical experience (NEX) and Japanese
hearing participants with high musical experience (EXP) was based on their self-assessment of
engagement in musical activities; NEX were recruited among students without ongoing music activities,
while EXP had formal activities. As a simplified measure of music activity, we asked them to rate
their musical experience in terms of listening to music in everyday life with respect to five levels
ranging from very rare to very often; the question included examples of listening situations. Figure 2
shows the ratio of their music-listening experiences. For HI, musical experience was registered, but not
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used as a qualifier for inclusion in the experiment. There was one hearing-impaired participant
who did not listen to music, but otherwise the musical experience of HI and NEX matched very well
(the summed ratios of ‘very often’ and ‘often’, and of ‘rarely’ and ‘very rarely’ were the same between
the two groups). One-way analysis of variance (ANOVA) shows there are significant differences in
music-listening experiences (p = 0.02), and from multiple comparisons differences are seen between
HI/EXP and NEX/EXP.

Figure 2. Music-listening experiences of the three participant groups hearing impaired (HI), and
normal hearing with low (NEX) and high (EXP) music experience.

3.1. Game Material

We prepared sound sets for four game “levels”, each with three game modes consisting of speech,
music, and mixed sound material. We will use initial capital letters to denote that the puzzle condition
is based on a Music, Speech, or Mixed target piece. The sound sets did not give the game levels
increased difficulty; this was handled according to the above. The Speech pieces did not contain any
musical sounds, and the Music pieces did not contain any vocals. The Mixed pieces were simply the
combination of one Speech and one Music piece sound file mixed to a new mono sound file. All pieces
were 15 s long and normalized in Audacity (http://manual.audacityteam.org/man/normalize.html)
to have the same peak amplitude.

The speech recordings were from commercially available recordings by Japanese poetry readers,
both female and male. Sets 1 and 4 were from old Japanese poems, while Set 2 was from a Japanese
translation of an English poem, and the reading of Set 3 was from a Japanese pop song. Most Japanese
young people would be familiar with the poems and the pop song.

The music recordings were excerpted from cello performances of well-known compositions.
Three were by Japanese composers working in the field of classical music in films, and one was
composed by Fauré. They were chosen based on pre-studies of the Music Puzzle, (see e.g., [9]). Before
deciding on a recording, we evaluated its suitability by listening to the mix; the main condition was
that the speech should be easily legible through the music. Table 1 shows the four sets of sound pieces.
The order of sets 2–4 was randomized.

For the experiment, we installed the game and sound material on four Nexus 7 tablets and
two Samsung Galaxy tablets. Audio was presented through headphones with large cups so as to
fit and accommodate hearing aids; they could choose between Sony MDR-XD200 (closed type),
Audio-Technica ATH-AD500X (open type), or their personal headphones if features were comparable.
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Table 1. Speech and music material used in the experiments.

Set Speech Excerpt Reader Author Music Excerpt Composer

1 Under a cherry tree Female M. Kajii Après un réve G. Fauré
2 Do not stand at my grave and weep Male M. Arai Nausicaa requiem J. Hisaishi
3 Lemon Female M. Sada Always with me Y. Kimura
4 Not losing to the rain Male K. Miyazawa Castle in the sky J. Hisaishi

3.2. Procedure

Each experimental session took one hour. First, there was an eight-minute preparation that
consisted of reading an explanation of the game purpose, how to play, and a short demonstration.
After that, participants gave their consent and other information such as their musical experience and
hearing levels. They tried Set 1 as training for 15 min; then they proceeded to play with sets 2–4 for
35 min. We encouraged but did not require them to play with all modes (sound material) in a set,
and with no specific order. Finally, participants gave post-descriptions of their preference regarding
the sound material and the experienced difficulty.

The experiment took place in a classroom setting with 2–6 students at a time. Each participant
had a tablet and headphones. They were instructed to adjust the sound volume to a comfortable level
and were free to readjust this setting when necessary. Also, they were allowed to take breaks if needed.
They received a token gratitude of about USD10 for their participation.

4. Results

We describe the results of the experiments by comparing the three participant groups in subjective
evaluations and the way participants played the game. For comparison of the groups, analysis of
variance (ANOVA) was used. Post hoc analyses were performed with the Tukey–Kramer procedure
on the independent observations, with the level of statistical significance set at p < 0.05.

4.1. Games

Game sessions are divided into the number of sessions played and game achievement. Data were
extracted from the log files.

4.1.1. Number of Sessions

The numbers of game sessions during the experiment for each participant group were HI = 81,
NEX = 79, and EXP = 104. For HI, the ratio of playing Music was larger, the ratio of playing Mixed
was smaller, while for Speech there were no differences between the groups. The number of game
sessions and ratios of the specific materials are shown in Table 2.

4.1.2. Achievement of Games

Sessions could be ended in three ways: an achieved completed puzzle, the “give up option”,
and the tablet’s back button. A session was considered “achieved” only when the order of sound
objects, the EQ, and the pitch were correct—thresholds for correctness can be adjusted in the settings
(see Figure 1d). A “give up” exit is recorded when a user presses this action button. When pressing
the system’s back button, home button or power, the logged action is exit by back button; this is an
unwanted action but not easily circumvented. It was also observed to happen by mistake.

Table 2(c) shows the ratio of achievement by each participant group. For all three modes (Speech,
Music and Mixed), achievement by HI was less than for the other groups. In all modes, ANOVA
showed significant differences between participant groups. The post hoc test shows that there were
differences between HI and the other participant groups with all modes.
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Table 2. Overview of game sessions with (a) the total number of sessions played for each of the three
groups hearing impaired (HI), and normal hearing with low (NEX) and high (EXP) music experience,
(b) the ratio of material played for each mode, (c) the ratio of completed sessions for each mode,
and (d) the ratio of puzzles that were evaluated as easy (ratio = 1) for each participant group and mode.

HI NEX EXP

(a) Number of game sessions Total 81 79 104

Game sessions ratio
Speech 0.37 0.37 0.34

(b) Music 0.40 0.32 0.34
Mixed 0.23 0.32 0.33

Achieved sessions ratio
Speech 0.35 0.93 1.00

(c) Music 0.25 0.83 0.85
Mixed 0.23 0.95 1.00

Evaluation of difficulty
Speech 0.53 0.83 0.92

(d) Music 0.44 0.24 0.66
Mixed 0.47 0.91 0.91

4.2. Subjective Evaluation

The subjective evaluations were collected from questionnaire data both during and after the
sessions. After each game, its difficulty was rated on a five-level scale. A control question queried about
which sound material that was heard to confirm that the sounds were played properly. We recorded no
errors in determining the mode for the hearing groups, but some for HI—this was also an anticipated
result and does not imply errors in the playback.

4.2.1. Fondness

The post-activity questionnaire asked participants about the game in terms of enjoyment.
The results of rated fondness derived from “how entertaining” the Music Puzzle is and preferences
towards material are shown in Figure 3a,b respectively. Questions were answered as follows:

How entertaining was the game? Hearing participants with low reported musical activity (NEX) gave the
lowest evaluation. Overall, 3 of 12 found it to be “boring” and only half found it to be entertaining.
In the other groups, 28 out of 36 gave ratings that the game was entertaining, and only 1 person found
it boring.

Which material do you like the best? The three groups showed a difference in their preferred sound mode.
The preference for the Music mode was greatest in the HI group, while NEX clearly preferred the
Mixed mode. None of the groups rated the Speech condition highly.

Would you use the game if it was free? With similar distribution across all groups, 69% answered they
would use the Music Puzzle if it was free. The game is not currently available in the Android or iOS
app stores, and there are no plans to charge for use when it is publicly released.

(a) (b)

Figure 3. Ratings of fondness of playing the game. (a) Answers to “how entertaining was the Music
Puzzle?” (b) Preferred material by each participant group.
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4.2.2. Difficulties

We asked participants to rate the difficulty from very difficult to very easy using five levels for
each game session. In Table 2(d), the ratios of ratings with low difficulty (the three lowest levels) are
elicited for each group and mode. For hearing participants NEX and EXP, both Mixed and Speech
modes were considered easy, while HI found the Speech mode to be hard. NEX and EXP differed in
the rating of music stimuli, where NEX even rated the Music mode as harder than the HI group did.
HI had similar ratings for the Speech and Music modes, but differed in their rating of the Mixed mode.

The differences between the participant groups were shown by ANOVA in the modes Speech
and Mixed, where all p-values were small (p � 0.01). The multiple comparison showed differences
between HI-NEX and HI-EXP in both modes. As described above, two groups were formed for
the Speech and Mixed modes: one consisting of HI and the other consisting of hearing participants
(NEX and EXP). Table 3 rows (a)–(c) summarize the results of multiple comparison on the number
of performed game sessions, the ratio of achieved game sessions, and the subjective evaluation of
difficulties, by each mode.

Table 3. Significant differences are shown using asterisks (p < 0.05 *, p < 0.01 **). The differences
between participant groups in (a) the ratio of game sessions; (b) the ratio of achieved sessions; (c) the
subjective evaluation of game difficulty; (d) clicks on sound objects; (e) clicks on “Play Solution”;
(f) clicks on “Play the current”; (g) clicks on “How did I do?”; (h) game duration for completing one
puzzle; and (i) duration per click for a game session measured as inter-onset intervals (IOI).

HI– NEX HI– EXP NEX– EXP

Ratio of game sessions
Speech

(a) Music
Mixed ∗

Ratio of achieved game
sessions

Speech ∗∗ ∗∗
(b) Music ∗∗ ∗∗

Mixed ∗∗ ∗∗

Difficulty of game
Speech ∗∗ ∗∗

(c) Music
Mixed ∗∗ ∗∗

Clicks on sound objects
Speech ∗

(d) Music
Mixed

Clicks on Play solution
Speech ∗∗ ∗∗

(e) Music ∗∗ ∗∗
Mixed ∗∗ ∗∗

Clicks on Play the
current

Speech
(f) Music

Mixed

Clicks on “How did I
do?” (evaluation)

Speech ∗
(g) Music ∗ ∗∗

Mixed ∗ ∗

Game duration
Speech ∗∗ ∗∗

(h) Music
Mixed ∗∗ ∗∗

IOI of clicks
Speech ∗∗ ∗∗

(i) Music ∗∗ ∗∗
Mixed ∗∗ ∗∗
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4.3. Interaction

The way participants played Music Puzzle can be described in terms of clicks on sound objects
and buttons. We recorded all screen interaction, including the sound objects and interface buttons
described earlier. In the following, we analyze game interaction and playing strategies using the
number of clicks and time measurements.

4.3.1. Pitch and EQ Cheating

When a user clicks “Pitch Cheat” or “EQ Cheat”, pitch alterations and filtering, respectively,
are corrected for all sound objects. Since a cheat is persistent and thus available only once in a
game session, we looked at the ratio of using cheat buttons in all sessions for each type of material.
Figure 4a,b shows these ratios; HI used cheat buttons in about the half of the game sessions, and the
other groups used these functions more sparingly. There was little difference between the two cheat
modes: as it appears, HI in particular tended to use both buttons when “cheating”.

(a) (b)

(c) (d)

Figure 4. User interaction during play. The ratios of using cheat buttons for correcting all altered
pitches (a); and filtering (EQ) (b); and the number of clicks needed to change pitch (c) and EQ (d).

4.3.2. Adjusting Pitch and EQ

When a user decides to adjust pitch or EQ (Figure 1c), clicking the radio buttons will play the
available variations. The only way to find the correct is by listening, thus the number of clicks can
tell how many trials are needed to identify the unaltered one. Figure 4c,d show these numbers,
and seemingly, the HI perform better than the other participant groups. As we will discuss, this is,
however, a consequence of the problems of discriminating timbre and pitch differences among HI
which leads to activating the cheats. Note that for pitch there are five options, while EQ only has three;
this is observable in the figure.

4.3.3. Interaction with Sound Objects and Buttons

The interaction can be divided into compulsory and optional actions. It is necessary to click the
sound objects and listen in order to arrange them in the correct order. One can click two or more
objects in succession to play a sequence. Furthermore, the evaluation “How did I do?” must be clicked
at least once for completing a game. However, players do not need to listen to the target (solution)
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sound or the current sound during a game session. The function buttons “Play Solution”, “Play the
current” and “How did I do?” can be clicked any number of times. The plots in Figure 5 show the
average number of clicks on sound objects and function buttons.

(a) (b)

(c) (d)

Figure 5. Comparison of the players’ interaction during a game session. Number of clicks on (a) sound
objects; (b) “Play Solution” replay target button; (c) “Play the Current”; and (d) the “How did I do?”
evaluation button. Note that the scale is different in (a).

Table 3 rows (d)–(g) show the results of multiple comparison to see the differences between
participant groups on button clicks. Similar to the difficulties in Table 3(c), the HI group is in contrast
to the other groups in the tendency to click on “Play Solution”. HI evaluated the games (“How did
I do?”) more often than hearing groups. There were no differences for “Play the current”, and the
gameplay did not require one to click it.

4.3.4. Duration and Speed

Duration is defined here as the time it takes to finish a session, whether the session was
successfully achieved or not. We also calculate the time between clicks, or inter-onset intervals (IOI) of
clicks. Here we include subsequent clicks of either object clicks, pitch or EQ changes, play solutions,
and playing the current. Speed is a reciprocal of the duration per click and represents the swiftness in
interaction and gameplay. Figure 6a,b show game duration and IOI by each participant group and for
each mode.

Differences between participant groups were found in the duration of game materials Speech and
Mixed, and there were also differences in IOI found for all modes. It should be noted that calculating
IOI in this kind of game is not trivial because some actions will necessitate longer intervals than others,
and the results must be interpreted with some caution. Table 3(h),(i) shows the results of multiple
comparison to find the differences between participant groups and material for duration and IOI.
The differences between modes on time measurements were p � 0.01 where the Music mode was
different from both the Speech and Mixed modes.
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(a) (b)

Figure 6. Duration and inter-onset intervals (IOI) in seconds. Durations for (a) game sessions; and for
(b) IOI of clicks (one click to the next).

4.4. Summary

A summary of the effects and found differences that are mentioned in this section is shown in
Table 4 (Table 3 shows the results, while Table 4 shows the explanation of the grouping). We consider
hearing acuity, level of music experience, and also language proficiency based on the assumption that
the hearing-impaired generally show language disorders [3].

Differences in hearing acuity are evident for the HI group, and in music experience for the EXP
group. For language proficiency, HI differs from both NEX and EXP.

Table 4. Summary of significant differences between participant groups. The differences between
participant groups concerning the effects of hearing loss, music experiences, and language proficiency.

Effects HI– NEX HI– EXP NEX– EXP

Hearing loss � �
Music experiences � �
Speech and language � �

5. Discussion

Through comparing the results of the three participant groups, we discuss the effects hearing
acuity, music experience, and language proficiency have on the outcome of playing Music Puzzle.
We also consider how people with and without hearing loss enjoy playing the game.

5.1. The Effect of Hearing Acuity

Since hearing loss affects the proficiency of playing Music Puzzle, it follows that the experiment
would reveal differences between the HI participant group and the others (NEX and EXP): these are
summarized in the first row of Table 4, and more details can be found in Table 3. The following results
from multiple comparisons show differences due to hearing loss:

• Lower ratio of the performed Mixed mode (Table 2(b)).
• Lower ratio of achieved sessions for the Speech mode (Table 3(b)).
• Higher ratio of clicks on “Pitch cheat” for Speech and Mixed modes (Figure 4a).
• Higher ratio of clicks on “EQ cheat” for Speech and Mixed modes (Figure 4b).
• Fewer attempts at “change pitch” in all modes (Figure 4c).
• Fewer attempts at “change EQ” in all modes (Figure 4d).
• Higher number of clicks on “How did I do?” for Music and Mixed modes (Table 3(g)).
• Longer inter-onset interval (IOI) of clicks for all modes (Table 3(i)).

These findings lead to considering the following possible interpretations:
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Hearing-impairment introduces difficulties in extracting useful cues from both music and speech played
simultaneously, and from “listening to” speech. Differences between people with and without hearing loss
were found for the Mixed condition in the ratio of achieved sessions. This implies that the overlapping
of sounds in speech and music makes the game harder to solve for people with hearing loss, or that
those with normal hearing can better utilize the additional cues. In the ratio of the performed modes,
differences between people with and without hearing loss were found in Speech. In other words,
speech, more than music, is difficult for HI. Language proficiency will thus be helpful, but the game’s
puzzles are still not easily solved by constructing lexical meaning from the fragments; these fragments
are short, and the poems relatively intricate.

Hearing-impairment introduces difficulties in distinguishing pitch alterations and filtering. Cheat buttons were
used more often by people with hearing loss, and they experienced a greater challenge in correcting
pitch and EQ. Cheat buttons were also used by hearing participants when they played with Music
material. This implies that remembering nuances of pitch and EQ adjustments in music was also
difficult for people without hearing loss.

Persons with hearing-impairment take longer to process a heard sound. The study showed that people
with hearing loss wait longer after clicking the sound object button or other buttons before clicking
a new one. We know that hearing acuity does not correspond with problems of interacting with
computers [64], thus the reasons for timing differences could be: (1) they listen to the whole sound
from a sounding object or the effect of other buttons, while people without hearing loss only listen to
the start, or listen only a certain extent; (2) they listen to sound then think for a while; or (3) the time to
start processing sound could be later for HI. Considering that the lengths of the fragments correspond
to the intervals recorded by NEX and EXP (which means these groups would click the next sound
object without hesitation), (1) is a less plausible explanation. We conclude that HI adopt a focused
listening strategy which involves longer time for processing the played sounds.

5.2. The Effect of Music Experiences

We found no distinct differences that could be explained only by music experience in this
experiment, as seen in the right column comparing NEX and EXP in Table 3, but in the next section
we will discuss effects that appeared in combination with speech material and language. We should
remember that the less musically-experienced hearing group in this experiment is comprised of typical
university students who still have a comparatively high exposure to music.

As was described in our previous paper [65], one particular individual with hearing loss who
had a lot of musical activities was able to achieve all the sessions she tried in that experiment. Thus,
introducing a group of people with hearing loss with a lot of musical activities may also yield
different results.

5.3. The Effect of Language and Speech

While all the participants were native Japanese speakers, HI did not have equivalent language
fluency in listening to speech (cf. [3]), and we can thus make two clusters of HI and NEX/EXP. Effects
of language can be found in the differences shown in the row titled “Speech and language” in Table 4.
One effect is found in the number of clicks on sound objects in playing with Speech material as shown
in Table 3(d). This shows the difficulties of using language cues in solving the puzzle, for instance from
remembering fragments of a spoken sentence. Other effects are found in the following cases when
playing Speech and Mixed materials:

• Subjective evaluation of difficulties (Table 3(c)).
• Time to complete a game session (Table 3(h)).

These show no differences for music listening in the two clusters; while speech will be more
problematic for hearing-impaired who can use fewer cues in constructing a meaningful whole, solving
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for music is comparable for HI and NEX/EXP. Even the third row in Table 4 shows no differences
between NEX and EXP. Differences were found with HI for the duration of game completion when
playing in the Mixed and Speech modes (Table 3(h)). However, NEX took longer to play the Music
mode than EXP, rating it more difficult (Table 2(d)). They also liked it less (Figure 3). This implies that
musical experiences affect play after all.

5.4. General Discussion

The game was generally well received, as seen in Figure 3a; in fact, regardless of hearing loss,
70% claim they would use it—although this is a speculative measurement, the proportionality
between groups is illustrious. As could be expected, the results of this experiment show that people
with hearing loss could not complete puzzles to the same extent as the hearing control groups.
However, they enjoyed the puzzles and liked the Music mode the best among the three sound
materials. This implies that people with hearing loss have good motivations for music listening
through the game. It is worth noting that the experiment allowed the participants to choose modes
quite freely, and that an alternative test design would highlight other issues in addition to preference.

A related and not as expected finding was that NEX and EXP rated the Music mode as rather
difficult. NEX did not prefer the Music mode, while EXP did. Could it be that this attitude in NEX was
caused by believing that there were external expectations about understanding music that they needed
to fulfill? Possibly they show anxiety in terms of making mistakes which are not seen as clearly for
EXP who would likely have a more analytical approach towards music listening.

The number of clicks for adjusting pitch was much higher for the Music condition than the others.
This should mean that pitch manipulations in the Speech condition were more easily detected (our
material had both male and female readers). Because Japanese is a pitch-accent language [66], prosodic
cues are probably used in solving the puzzle; this would need to be investigated further through
speech material with fewer pitch variations.

As seen, the HI spent much more time on pitch and EQ adjustments for all conditions. The most
probable reason that we can see is that the task was just too hard, and they simply gave up and used
cheat buttons. During the experiment design and set-up phase, it became very clear that our initial
values for manipulations were far too subtle. The implemented pitch shifts of 5 and 10 semitones,
and the filter thresholds of 2000 Hz for low-pass and 500 Hz for high-pass are to a normal hearing
person easily identifiable, except possibly for pitch in music pieces with solo instruments. Even the
maximum possible number of generated objects was reduced from around 18–20 to around 6–7 pieces.

The description of the waiting time between two clicks relates to the way people with hearing
loss are playing the game. Currently, though it is not clear what the reason is for them to wait longer
after clicks, this could depend on whether they remember any elements of music. If this is so, then it is
helpful to understand what they remember in helping to enjoy music more.

5.5. Further Development

In its current gameplay design and aesthetics, the game leaves much to be desired in order to
compete with the attractiveness of trending games on the market. However, the functionality worked
according to planned use, and the material was sufficient for the scope of testing. From here, as we now
consider the concept to be verified to be beneficial as a training tool, the Music Puzzle will be subject to
changes in: (1) graphical design and interaction; (2) game types and difficulty progression; (3) sound
material and transformations; (4) logging and social connectivity; (5) targeted training recommendations;
and likely (6) a platform change to Web Audio (see http://www.w3.org/TR/webaudio/).

6. Conclusions

The Music Puzzle—an audio-based puzzle game—had the purpose of giving persons with hearing
loss an effective and entertaining alternative exposure to focused listening. Research has shown that
focused listening is beneficial for training listening ability, and also language development. The game
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was tailored for hearing impairments, but was designed to be engaging for everyone. The game does
not require much from the user in terms of previous training or gaming experiences, and was designed
to be inclusive for the hearing-impaired (the game has since then been developed with alternative
interfaces and for other purposes not reported here). Despite the fact that people with hearing loss
could not complete nearly as many started games as their hearing peers, the task was still not found to
be too difficult and it can give new prospects for voluntary, focused listening to music or other sounds.

Care should be taken in selecting sound materials and in designing the gameplay to accommodate
differences in processing time for sounds. Although speech and language are important objectives
for training, music was both found to have appreciated qualities and was preferred by the target user
group. Music was also found to be more challenging as a game task in general.

Many music training programs require instruction from a professional in an equipped, dedicated
space, but the Music Puzzle is a game designed to be used at leisure. Any persons with access to
commonplace technology such as smartphones or tablets can play at any place alone at any time.
This way, opportunities for listening to music attentively increase with no special resources: the game
can be acquired and used for free, expanded upon, and used for different purposes. With development
of its design, the Music Puzzle is a conceptually different and attractive audio game.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/2076-3417/7/
12/1278/s1.
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Abstract: The use of headphones in reproducing spatial sound is becoming more and more popular.
For instance, virtual reality applications often use head-tracking to keep the binaurally reproduced
auditory environment stable and to improve externalization. Here, we study one spatial sound
reproduction method over headphones, in particular the positioning of the virtual loudspeakers.
The paper presents an algorithm that optimizes the positioning of virtual reproduction loudspeakers
to reduce the computational cost in head-tracked real-time rendering. The listening test results suggest
that listeners could discriminate the optimized loudspeaker arrays for renderings that reproduced
a relatively simple acoustic conditions, but optimized array was not significantly different from
equally spaced array for a reproduction of a more complex case. Moreover, the optimization seems to
change the perceived openness and timbre, according to the verbal feedback of the test subjects.

Keywords: Spatial audio; Spatial sound reproduction; SDM; Headphone reproduction; Optimization

1. Introduction

Spatial audio aims to reproduce a believable illusion for a listener being in a real acoustic space
by electronic means [1]. Dozens of different ways exist to record or artificially create the spatial
sound signals, which are further reproduced with an array of loudspeakers or with headphones [2].
For good spatial resolution, a high number of reproduction loudspeakers are often used in research
facilities or in special venues, but such arrays are impractical in domestic or other daily listening
environments. Therefore, the headphone reproduction of spatial sound is gaining interest. Commonly,
the headphone-based spatial sound is implemented by virtualizing the reproduction loudspeaker
array with the Head-Related Transfer Functions (HRTFs) [3]. In essence, HRTFs are applied to virtually
position the sound sources around the listener. The resulting binaural rendering can sound very
convincing at the best, but, for some users, the sound is localized inside the head. To achieve better
externalization, head-tracking devices are often used to compensate the movement of the listener’s
head and to keep the reproduced auditory environment stable [4,5].

This work studies the virtual loudspeaker positioning in headphone-based spatial sound
reproduction. The sound rendering is based on the Spatial Decomposition Method (SDM) [6], which in
essence analyzes directional information in spatial room impulse responses (RIRs). In brief, the SDM
uses a compact array of microphones in a RIR measurement. Based on the time difference of arrivals
between microphone pairs in short time windows, it estimates the direction of arrival (DOA) for
each audio sample in the captured RIR. Therefore, the SDM allows a wide range of perceptual room
acoustics studies, and it has been recently applied to study concert halls [7,8], studio control rooms [9],
car cabins [10,11], as well as stage acoustics for musicians [12].

To reproduce the spatial sound analyzed with the SDM, audio samples in RIR are assigned to the
loudspeakers of a given reproduction array. The assignment yields a number of sparse impulse
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responses equal to the number of loudspeakers used. The spatial sound is finally rendered by
convolving sound signals with each of these sparse impulse responses. That is, the measured RIR is
distributed spatially as convolution reverberators for a defined reproduction loudspeaker array.

Although the direction of arriving sound is accurately estimated in the analysis, the practical
limits in the real or virtual loudspeaker array introduce varying amounts of angular error to the spatial
sound reproduction. In the worst case, the mismatch between original and synthesized DOA may
change the spatial image of the acoustic space drastically. In theory, all angular errors could be avoided
and the analyzed sound field could be reproduced perfectly by assigning each sample to its own
loudspeaker. However, this kind of approach is physically infeasible to implement, especially for real
room-acoustic conditions.

One popular method to reduce the angular error in spatial sound synthesis is the Vector Base
Amplitude Panning (VBAP) [13]. VBAP weights each sound sample between the three closest
reproduction loudspeakers so that the resulting sound appears to arrive from the original direction.
When applied to all samples in the RIR, the spatial image of the space is reproduced correctly. However,
it is known that amplitude panning of samples corresponds to time-averaging of multiple HRTFs,
leading to low-pass filter effect on the perceived sound [14].

Earlier studies employing SDM [7–12] have utilized a more straightforward synthesis method,
namely Nearest Loudspeaker Synthesis (NLS), partially to circumvent the potential spectral issues
with VBAP. NLS distributes each audio sample of a single monaural RIR to the nearest reproduction
loudspeaker based on the estimated DOA information. Since only one reproduction loudspeaker
at a time is involved in reproducing the RIR sample, this approach is free from the effects of HRTF
averaging, but at the cost of increased angular error.

The aforementioned studies have used predetermined physical loudspeaker arrays for
reproduction. Similar studies could still benefit from increased fidelity of spatial sound reproduction
either by increasing the number of loudspeakers or by using the existing loudspeakers more efficiently.
However, in many cases, adding loudspeakers is less feasible than optimizing the existing physical
setup. When the reproduction of spatial audio is substituted with headphone listening, as in this study,
the optimization becomes even more sensible. In theory, headphones enable the use of practically an
unlimited number of virtual loudspeakers in any given direction. However, since the computational
cost is directly proportional to the number of spatial channels rendered for headphones, using a smaller
number of virtual loudspeakers is preferred. This requirement justifies smarter allocation of resources,
which, in this case, means optimized virtual loudspeaker positions.

This paper presents a method of determining a room-specific virtual loudspeaker array that
reproduces spatial sound perceptually more efficiently than a predetermined conventional array.
The proposed method aims to minimize the directional error of NLS as well as to enhance
labor-to-quality ratio of the rendering. In other words, spatial sound can be reproduced either more
accurately with the same number of virtual loudspeakers, or at the same quality with a reduced channel
number. These so-called optimized loudspeaker setups are compared with uniformly distributed
setups to measure how recognizable are the differences in reproduction.

The paper is structured as follows. First, Section 2 outlines the structure of the position
optimization system. Next, Section 3 describes the listening test, followed by the results in Section 4.
Finally, more detailed analysis is presented with discussion in Section 5 and wrapped up in Section 6.

2. Virtual Loudspeaker Position Optimization

The sound reproduction system used in this paper is similar to one presented by Tervo et al. [10].
The system performs SDM analysis and NLS reproduction as described in Section 1, resulting in
a sparse impulse response (IR) for each reproduction loudspeaker. Finally, those sparse IRs are
convolved with the audio signals to create the spatial sound. The used version of the SDM also
post-equalizes the loudspeaker IRs as the rapid channel changes of the IR cause whitening of the
signal. It should be noted that the optimization of the reproduction loudspeaker positions is done
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for SDM data before the convolution step. In other words, the optimization requires a spatial sound
reproduction technique that has information on the spatial IR for each sound source, and thus cannot
be applied to an arbitrary spatial sound reproduction technique.

The NLS requires information on the reproduction loudspeaker positions in order to be able to
distribute the samples properly. As mentioned in Section 1, the positions are usually static and not
changed according to the acoustics of the space being reproduced. The method presented in this
section replaces these static loudspeaker positions with optimal ones that are calculated from the RIR
of the room being reproduced. The system used in reproduction is therefore the same as described
above except for the way the loudspeaker setup is determined.

Figure 1 outlines the position optimization process which is done in two steps in its most basic
form. First, SDM samples including RIR pressure and directional metadata (azimuth and elevation)
are weighted according to their energy as well as their spatiotemporal properties. Then, loudspeaker
positions are initialized based on the calculated weights and the final positions are obtained by
clustering weighted DOAs iteratively until convergence. The clustering is computationally heavy
by default due to a large number of RIR samples. To accelerate this process, the weighting data are
reduced to a discrete number of equidistantly spaced points on the surface of a unit sphere, creating a
downsampled spatial map of weights. Here, this operation is called spatial downsampling.

Figure 1. Position optimization system outline. Spatial Decomposition Method (SDM) generated
data containing directions of arrival (DOA) the omnidirectional pressure values for each sample
are provided to the algorithm, from which the optimized loudspeaker positions are approximated.
The numbers inside the boxes refer to the corresponding sections in this paper, spatial downsampling
part (in blue) working as an extra acceleration component for the main algorithm (in black).

These steps are described in detail in the following subsections. First, the weighting and clustering
operations are described, followed by the downsampling step.

2.1. Sample Weighting

Even though loudspeaker position optimization is calculated from the RIR, optimal results are not
achieved with the pressure values of the IR alone. The early part of the RIR, which includes the direct
sound and early reflections, can be assumed to contain the most important perceptual information
about the acoustic space. As opposed to the late part, the central role of the early part is supported by
its significance in the identification of the acoustic space [15]. This is why it is reasonable to emphasize
the early part of the response through directionally accurate reproduction. In addition, some of the
DOAs calculated by the SDM describe the actual incoming direction of sound more accurately than
others, which is discussed below in more detail. To take these presented properties into account in
optimization, the first step in the process is to weight each pressure sample in the RIR accordingly.
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The weighting is based on SDM data points—in other words, pressure and DOA of each audio
sample in the RIR. As a whole, this information is called SDM data. The weighting w = {w1 . . . wN}
can be seen as a mapping of this data:{

f : (p, udoa) �→ w
∣∣∣ p, w ∈ R

N , udoa ∈ R
N×3, ||udoa,n|| = 1, wn ∈ [0, 1] ∀ n = 1 . . . N

}
(1)

where p and udoa are the pressure and DOA values of the SDM data, respetively; and N is the length
of the IR in samples. In short, each SDM data point generates one scalar weight to be associated with
itself.

Each weight consists of four distinct subweights named energy, delay, gradient and direction that
are described in more detail below.

1. Energy weighting corresponds to the most traditional form of weighting. Each SDM data point is
weighted according to its energy:

wE,n =
p2

n
maxn(p2

n)
(2)

where pn is the omnidirectional pressure value of the nth data point. This gives more weight to
data points with more incident energy.

2. Delay weighting emphasizes the SDM data points that locate in the earlier part of the RIR.
Weighting is computed as a normalized backward Schroeder integral [16] over the RIR:

wT,n =
∑N

k=n p2
k

∑N
k=1 p2

k

(3)

This causes the direct sound and early reflections with distinctively more energy to be weighted
more than samples in the later part of the response. This aspect is linked to psychocaoustics,
as the early part of the RIR is perceptually more important than the late reverberation [15].

3. Gradient weighting is used as a reliability measure to the SDM data points. The reliability of one
SDM data point is dependent on the data points directly before and after it in time. If DOAs of
the neighboring data points are close to the DOA of the current point, the point is given a large
weight, and the greater the distance to its neighbors, the smaller the weight. The weight of one
SDM data point is resolved as a mean of the distances between the DOA of the point and the
DOAs of the previous and next data points:

wG,n = 10(minn(dG,n)−dG,n)/10 (4)

dG,n =
||udoa,n − udoa,n−1||+ ||udoa,n+1 − udoa,n||

2h
(5)

where h is the size of the time step between two SDM samples. The reasoning for this procedure is
based on the fact that the SDM provides weighted average of the true DOAs in case of overlapping
plane waves [6,10]. The set of samples over which the DOA changes can then be considered as
spatially less accurate than samples with more steady DOA estimate.

4. Direction weighting emphasizes the data points that have a lot of energy arriving from their
general direction regardless of the temporal information. The operation can be thought as a
low-pass filter for directions; a single high-energy sample does not get a large weight unless there
are more high energy samples in the same spherical sector. Conversely, the sectors with mainly
low-energy samples are given a small weight. Perceptually, this operation can be thought as
simulating the limits of perception. A single high energy sample cannot be heard separately but
a longer period of time is needed to generate a perceivable acoustic event. Therefore, directions
with more high-energy samples should be prioritized when searching for optimal loudspeaker
positions. There is also a benefit in algorithmic means as the influence of high-energy sectors are
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spread, making it easier for the optimization algorithm to iterate to the directions with higher
energy density. Similar to the spatial downsampling presented later in Section 2.3, the general
energy directions are approximated by calculating an energy map. First, an equidistant grid
of points is created on the surface of the unit sphere, representing DOAs in the listener space.
Then, each SDM data point is assigned to the closest point in this grid, measuring the distance
from the DOA of the data point to the DOA of the grid point. When this nearest-neighbor search
is ready, the energies of the assigned data points are accumulated grid point wise. The operation
results in an energy map where the energy of different incoming directions has been approximated.
Finally, the weight of the SDM data point is calculated from this map by interpolation:

wD,n =
∑3

i=1 Emin(n,i) ∗ dmin(n,i)

∑3
i=1 dmin(n,i)

(6)

dmin(n,i) = ith smallest value of a set {||udoa,n − ugrid,m||, m = 1 . . . M} (7)

where ugrid,m is the DOA of mth grid point, M is the number of grid points and Emin(n,i) is the
energy value associated with the ith closest grid point.

These four subweights form the final weight vector w f inal through the following equation:

w f inal =
4

∏
i=1

w
ci
i (8)

where wi is a vector containing the values of one of the subweights described above and ci is the
corresponding mixing coefficient. As all wi are equalized in range [0, 1], mixing coefficients practically
adjust how much each partial weight vector reduces the resulting weights. Through the rest of the
position optimization process, the weights are combined with their corresponding DOAs and used as
a replacement for the pressure of the IR.

2.2. Initialization and Weighted DOA Clustering

As described before, NLS assigns each SDM data point to the closest loudspeaker in the
reproduction array, resulting in a set of sparse IRs. However, the end result is not optimal as
more important data points, for example early reflections, are allowed as much directional error
as less direction-critical samples in the late reverberation. The weighting presented in the previous
section solves the importance problem of different samples, but does not determine the actual virtual
loudspeaker positions by itself. Therefore, weighted K-means clustering algorithm is used to find the
most optimal loudspeaker positions based on the weighting data.

The aim of clustering is to find structure in the data iteratively, and the K-means algorithm
is one of the most widely used clustering methods. The idea of the method is to minimize the
Euclidean distance of the cluster data points by first assigning data vectors to cluster nodes and
then update the node location according to the assigned vectors, most commonly to data mean.
When these two operations are repeated, the result starts to converge towards the concentrations of
data. However, the conventional K-means algorithm does not work in this case, as our data are not
equally weighted. Instead, we use the weighted mean of the allocated samples to determine the cluster
node position—or, as in this case, a new loudspeaker position. This causes the algorithm to position
the node closer to the more weighted areas, effectively reducing the spatial error of directionally more
important parts. The weights used by this algorithm are calculated as described in Section 2.1.

The downside of the K-means algorithm is that the method is prone to find only a local
optimum. To circumvent this problem, a good initialization of loudspeaker positions is required.
Smart initialization not only boosts the probability of finding more optimal solution than a random
one, but also helps the K-means to converge faster and find that solution in less time.

The initialization step is implemented in the presented system as follows. First, a weight map
similar to the one used in direction weighting in Section 2.1 is generated. There is one major difference:
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instead of using an equidistantly spaced point grid, the applied grid has equidistantly spaced points
in the azimuth direction, but the elevation spacing is cosine-weighted. This procedure is applied to
have every grid point to accumulate energy from approximately equally sized area. This kind of grid
is also easier to sample from, as there is an equal number of azimuth points at each elevation angle.
After equalizing the values of this map, it becomes a probability distribution function (pdf) which is
later sampled from for new loudspeaker positions.

The initial loudspeaker positions are defined with Monte Carlo sampling. New positions are
drawn from the weight distribution one-by-one and each new position is compared with all other
positions already selected. If the new position is too close to any of the older locations, the sample is
discarded and a new draw is made. If the new candidate is valid, it is stored and the sampling pdf
is altered with Von Mises-Fisher distribution [17] so that the proximity of the new position is picked
less probably in the next iteration round. After drawing all the initial positions, the final positions are
determined with weighted K-means clustering described above.

Occasionally, virtual loudspeaker positions tend to cluster during weighted K-means step iteration.
In extreme cases, the final setup has two or more virtual loudspeakers positioned within a few degrees
of each other. To eliminate such cases, each position has a repulsion area around itself. When two or
more loudspeakers are moved too close to each other, the one with the most weight keeps its position
while the others are relocated. The new positions are determined so that the relocated loudspeakers
are as far from the other loudspeakers as possible. The repulsion area is gradually reduced to ensure
that the algorithm converges even when there are lots of virtual loudspeakers to relocate.

Finally, the optimization algorithm described above is summarized in Algorithm 1. First, the initial
loudspeaker positions are sampled from the weight map that is generated from the weights (Section 2.3).
The initial distances are controlled by rejecting the samples that are too close to previously sampled
positions. When all the initial locations have been sampled successfully, the final positions are iterated
by using weighted K-means clustering. Again, the distances of the iterated loudspeaker positions are
monitored and loudspeakers with less weight are relocated in the case they come too close to more
weighted ones. This relocation area is gradually reduced by the algorithm, which leads to convergence.
The final result is then a set of virtual loudspeaker positions that are located close to the most weighted
samples in their reproduction region.
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Algorithm 1 Virtual loudspeaker optimization by using weighted DOA clustering.

1: function OPTIMIZELOUDSPEAKERPOSITIONS(w, udoa, Nls, drepulsion)
2: Wmap ← CalculateWeightMap(w, udoa) � Initialize loudspeaker positions
3: uls ← SampleWeightMap(Wmap, Nls)
4: repeat � Calculate weighted K-means
5: uls,old ← uls
6: cls ← 0N×1

7: for n ← 1 to N do
8: cls,n ← arg mini(||uls,i − udoa,n||) � find the closest loudspeaker to the SDM data point
9: end for

10: for i ← 1 to Nls do
11: (wcls, ucls)← (w, udoa)|cls,n=i � assign the data point to the ith loudspeaker
12: uls,i ← ∑k (wcls,kucls,k) / ∑k (wcls,k) � weighted mean of the assigned DOAs
13: end for
14: dclosest ← 0Nls×1 � Apply repulsion area
15: for i ← 1 to Nls do
16: dclosest,i ← minj �=i(||uls,i − uls,j||) � distance to the closest neighbor
17: end for
18: for all dclosest,i < drepulsion, from smallest to largest do
19: uv ← vertices of a Voronoi diagram of uls � potential furthest points
20: uls,i ← arg maxuv,j(mini(||uv,j − uls,i||)) � Select the uv,j furthest from all uls
21: end for
22: reduce drepulsion
23: until all ||uls − uls,old|| < threshold
24: return uls
25: end function

2.3. Spatial Downsampling

The optimization process described in Sections 2.1 and 2.2 is already a working solution,
which finds the optimized virtual loudspeaker positions from the SDM data. However, the process
is slow due to the amount of data. The complexity of K-means algorithm is directly proportional to
the number of data points clustered. As an IR of a regular concert hall is approximately two seconds
long, there are 96,000 data points after SDM analysis when using 48 kHz sampling rate. Finding the
optimal positions over the whole data is possible, but requires long computation time to complete.
However, a considerable speedup is possible by reducing the number of data points. If the reduced
data are used to find a coarse approximation of the positions, and the whole data are only used to
fine-tune the result, a considerable speedup may be achieved. Here, this data reduction step is called
spatial downsampling.

The implementation of spatial downsampling is similar to direction weighting and initialization
of loudspeaker positions described before. The SDM data points are condensed to equidistant point
grid on the unit sphere. The difference is that the energy of each data point is distributed between
the three closest grid points in order to get more accurate approximation of the surrounding energy
field. The distribution is calculated by determining barycentric coordinates of the data point with
respect to those three closest grid points. The reduced point grid is then used instead of SDM data
to initialize and optimize the virtual loudspeaker positions. After the optimization algorithm has
converged, the reduced data are replaced by the original SDM data and the final optimized positions
are fine-tuned from the reduced data optimum. The processing time is shortened due to reduced data,
but the result is the same as without the reduction due to the fine-tuning step.

3. Perceptual Evaluation with a Listening Test

The performance of the virtual loudspeaker location optimization and its effect on the perceived
spatial sound reproduction was evaluated with a subjective listening test. The aim of the listening test
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was to examine how perceivable the differences are in two typical use cases of the SDM-based spatial
sound. The first case was a stereo music played in a dry studio control room and the second case was
an orchestra music performance set to the acoustics of a concert hall. It should be noted that the first
case has two sound sources in a small space and the second one has 24 sound sources in a large space.

3.1. Listening Test Setup and Sound Signals

The listening test setup is illustrated in Figure 2. The setup consisted of a desk, a computer and
noise canceling headphones (Bose QuietComfort 25) and was located in the corner of a quiet open
plan office. The listener’s head was tracked with a commercial tracking system (Optitrack V100 and
TrackingTools software, version 2.5.3; 2012 by NaturalPoint Inc., Corvallis, OR, USA) that utilizes
six infrared cameras surrounding the listening space. To reduce visual distractions, the front field of
view of the subject was obscured with a curtain. The listening test program was built on the Unity
engine and it utilized head tracking in six degrees of freedom. HRTFs were generated from a scanned
human head with a fast boundary element method [18] in far field. All the participants used the same
HRTF set containing 836 directions. No interpolation was used between the HRTFs and the filter was
swapped without cross-fading.

The experiment consisted of two test sets. Both sets introduced different listening conditions
in order to compare loudspeaker optimization performance. The acoustic spaces were a studio
control room in Helsinki, Finland and Musikverein concert hall, Vienna, Austria, later referred to as a
“small room” and a “concert hall”, respectively. The small room RIRs had been measured with stereo
pair of loudspeakers, whereas the acoustic response of the concert hall had been captured by using
loudspeaker orchestra [7]. Based on these prior measurements, the SDM analysis had been done for
both rooms in advance.

Figure 2. A sketch of the listening test setup. The listener (in the middle) is surrounded by six infrared
cameras (red) that track the movements of the noise-canceling headphones. The field of view has been
obscured with a curtain.

Both sets contained four different virtual loudspeaker setups; two position optimized setups
and two uniformly distributed setups with fixed virtual loudspeaker positions for direct sounds.
In Figures 3 and 4, all these conditions have been illustrated for both spaces. The optimized loudspeaker
setups were visually inspected for potential loudspeaker clusters, and uniform setups were based on
Platonic solids.
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Figure 3. Loudspeaker setups (white circles) overlaid with the spatial map of overall sound energy in
the small room case: (a) uniform setup with 14 loudspeakers; (b) uniform setup with 22 loudspeakers;
(c) optimized setup with 14 loudspeakers; and (d) optimized setup with 22 loudspeakers.

Figure 4. Loudspeaker setups used in the concert hall samples: (a) uniform setup with 16 loudspeakers;
(b) uniform setup with 24 loudspeakers; (c) optimized setup with 16 loudspeakers; and (d) optimized
setup with 24 loudspeakers.

The sound signals used were typical for both rooms. Since the small room was measured with
traditional stereo setup, a stereo signal was used. In our case, a 34-s excerpt from the beginning of
Céline Dion’s song “Because You Loved Me” was selected. For the concert hall, the music signal
selected for the loudspeaker orchestra was Jean Sibelius’s Lemminkäinen suite, 1st part, 851–885 s.
The orchestra signals were captured in professional recording with 21 close microphones for different
instrument groups as quasi-anechoic material, which were then mapped to 24 measurement source
channels in the loudspeaker orchestra.
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The reproduction levels of all presented stimuli were equalized. This was accomplished by
computing the equivalent level Leq of combined virtual loudspeaker channels as

Leq = 20 log

⎛⎝
√

∑M
i=1 ∑N

n=1 x2
i,n

N

⎞⎠ (9)

where M is the number of channels, N is the length of one signal and xi = {xi,1 . . . xi,N} is the input
signal of channel i. This level was then used to calculate level alignment coefficient Ceq:

Ceq = 10((Leq,0−Leq)/20) (10)

where Leq,0 = −25 dB was the target level. Finally, all output channels were multiplied by Ceq to get
the level aligned multichannel sound.

3.2. Listening Test Method

The listening test was executed as an ABX discrimination test. Subjects were asked to answer
a question: “Which one of the samples A or B is the reference X?”. Moreover, they were asked to
write down the criterion that they used to discriminate the reference from the odd sample. If they
could not discriminate the samples from each other, they were asked to choose their answer at random.
Full comparison between four conditions forms six pairs, which were repeated four times. Thus, a total
of 24 stimulus triplets were presented for both rooms. A preference test was also considered as an
option for the listening test. However, the differences between some of the samples were found to be
small during preliminary tests, which made the asking for a preference unfeasible. Preference is also a
matter of taste, which would have required more participants in the test, in case there would have
been more than one preference group.

The listening test started with the participant reading and signing a paper of informed consent
describing the test procedure, possible harm, and data policy. Then, the subject did both test sets
in randomized order. Before each set, there were a training set of four ABX triplets, during which
the listener was instructed to adjust the listening volume to a reasonable level. After the training
set, the subject was asked to keep the volume at the same level during the test set. The subject was
given an option to take a break between the test sets, and after completing the experiment, a small
non-monetary compensation was offered to the subjects.

3.3. Statistical Analysis

The ABX test is designed to detect the small differences of the compared signals. Therefore
the difference should not be detected by all the participants or otherwise the test loses its purpose.
The contrary also holds: if the difference is too small, all participants have to guess and the result
of the experiment is statistical noise. That being said, an approximation to the ability to distinguish
the sound samples is needed to determine the expected detection rate over the listener population.
In other words, the experimenter should decide how big portion of the subjects has truly heard the
difference in the samples. When determining the threshold, one should also keep in mind the time and
resources that can be used—smaller threshold needs more subjects and vice versa. The limit selected
for this experiment is a compromise between distinction and the number of subjects; the expected
detection threshold was set at one third of the population.

The determined threshold cannot be used directly to determine how large proportion of subjects
has successfully discriminated the difference. Instead, the determined threshold needs to be adjusted
to calculate the proportion Pobs with the rearrangement of Abbot’s formula [19]:

Pobs = Pd + P0(1− Pd) (11)
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where Pd is the proportion of subjects that truly noticed the difference and P0 is the proportion of the
population that got the test right by chance. Pobs basically tells us the proportion of subjects that should
score the sample pair right to prove the alternate hypothesis right.

After calculating the required observed proportion, the required number of subjects can be
approximated with the following equation [19]:

N =

[Zα
√

p0q0 + Zβ
√

paqa

p0 − pa

]2

(12)

where Zα and Zβ are the corresponding Z-scores of selected false positive and negative rates; p0 is
the chance probability; pa is the chosen probability for an alternate hypothesis; and q0 = 1− p0,
qa = 1− pa. However, required subject count becomes prohibitively large if our selected detection
threshold is used for a simple ABX test setup. The reason for this is the chance of a subject guessing
the correct sample—for the used test, the chance rate is 50 percent per evaluated pair. According to the
Equation (12), 94 participants would be needed to ensure the significance of the effect. To reduce the
number of required subjects, replications of the same samples were used. The strategy was to make
the participant evaluate the same sample pair multiple times. The subject was required to get all the
replications right for the test case in order to count the sample as properly discriminated. The number
of replications in this test was set at four times per sample pair, effectively reducing the chance rate to
6.25 percent and the number of required participants to 15 people.

To calculate Z-score for the results, the proportion of true discriminators should be calculated from
the results. The equation for calculating the adjusted proportion Padj can be derived from Equation (11):

Padj =
Pobs − P0

1− P0
. (13)

From Padj, Z-score can be calculated with a binomial test for proportions [19]:

z =
Padj − p0 − 1/(2N)√

p0q0/N
(14)

where N is the number of subjects. Finally, 95 percent confidence intervals were calculated [19]:

CI95% = Padj ± Z95%SEPadj (15)

where Z95% = 1.645 is the Z-score for 95 percent confidence interval and SEPadj is the standard error for
the adjusted proportion of discriminators [19]:

SEPadj =

√
Padj(1− Padj)

N
. (16)

4. Results

A total of 17 subjects participated in the listening test out of which 15 completed the whole
experiment. The population consisted of acoustics experts and an audio engineer. Three people
reported some kind of hearing defects: small dips, slight oversensitivity and 10 dB hearing threshold
difference between right and left ears. However, these defects did not affect the test performance of
these particular subjects, which is why their data was not excluded from the results. Both subjects
that did not finish reported hearing clicking sounds during cross-fade, thus preventing them from
focusedly discriminating the stimuli. However, only a few participants who finished the test reported
observing this phenomenon or being distracted by it.
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4.1. Discrimination

Discrimination results for all test cases are presented in Figure 5, each case presenting the
chance-corrected discrimination rate (a cross) and its one-tailed 95 percent Confidence Interval (CI).
In addition, the selected detection threshold Pd = 33.33% and chance rate P0 = 6.25% have been
visualized. The numerical values of the results are tabulated in Table 1.

In the small room case, five out of six comparisons were significantly recognizable. Especially
U14 has been clearly separated from the others. Both cases involving U22 were also recognized by
a smaller margin; the cases are clearly over the chance rate, but may be heard less than third of the
population within the limits of the confidence intervals. Comparison between optimized setups did
not cross Pd, thus reaching significant similarity. In other words, less than one third of the population
can ever discriminate the setups from each other.

On the contrary, none of the concert hall comparisons were significantly recognizable. Comparison
of uniform setups appeared to be the most recognizable out of these setups, but further experiments
are needed to conclude how recognizable the case is in the end. The rest of the comparisons and their
CIs did not cross Pd, again reaching significant similarity. In particular, comparison between O16 and
uniform setups could not be recognized, probably because the direct sound was reproduced similarly
in all of them.

Figure 5. The discrimination rates of different listening conditions and their one-sided 95% confidence
intervals (Pd set discrimination level, P0 chance rate).
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Table 1. Results of the listening test and the frequencies of the attributes elicited by 15 subjects for
correctly rated pairs.

Space Small Room Concert Hall

Sample A O14 O14 O14 O22 O22 U14 O16 O16 O16 O24 O24 U16
Sample B O22 U14 U22 U14 U22 U22 O24 U16 U24 U16 U24 U24

Subjects 4/4 correct 2 13 7 10 7 14 3 0 1 3 2 4
4/4 proportion (%) 13.3 86.7 46.7 66.7 46.7 93.3 20.0 0.0 6.7 20.0 13.3 26.7
Padj (%) 7.6 85.8 43.1 64.4 43.1 92.9 14.7 0.0 0.4 14.7 7.6 21.8
CI. lower (%) - 70.9 22.1 44.1 22.1 82.0 - - - - - -
CI. upper (%) 18.8 - - - - - 29.7 0.0 3.3 29.7 18.8 39.3

Attribute Frequency of attributes elicited on the difference between samples A and B

image shift 4 15 9 13 9 12 4 2 6 2 3 2
reverberance - 7 1 5 7 15 4 3 5 4 3 2
width - 6 2 4 6 4 2 7 3 4 3 3
spectral balance 2 9 5 3 1 2 4 1 2 - 1 7
timbre 1 3 3 4 4 3 - 1 2 4 4 3
spatial impression 1 3 6 2 2 5 3 1 - - 2 4
envelopment - 4 3 5 1 3 2 2 3 1 2 3
bass 1 3 2 2 4 4 1 1 2 - - 1
loudness 1 1 - - 1 - 6 3 1 3 1 2
brightness 1 1 - 2 - 3 2 1 - 1 1 -
distance - 1 - 2 1 1 1 - 1 1 2 -
size of space - - - - - - 4 1 - 1 1 -
focus 1 - - - 2 2 - - - - - -
warmth - - - 1 - 2 - - - - - -
openness - - - 1 - - - - - - 2 -
dynamic range – - - - - - - - - 1 1 -
clarity - - - - - 1 - - - - - -
source presence - - 1 - - - - - - - - -
spatial balance - - - - 1 - - - - - - -

Total 12 53 32 44 39 57 33 23 25 22 26 27

4.2. Discrimination Criteria

The discrimination criteria reported by subjects on a paper form were first encoded into electrical
form. These answers were then interpreted and translated into English by using the wheel of concert
hall acoustics [20], each answer translating into one or more terms. Then, the resulting attributes were
sorted and accumulated so that the frequencies of all individual attributes could be reported for every
sample pair separately. Only those attributes were included in the analysis whose corresponding
discrimination was correct.

The results of the analysis have been reported in order of frequency in Table 1. The most frequent
perceptual discriminating factors between conditions were image shift, reverberance, and width.
The small room had also reported differences in spectral balance, spatial impression and timbre. In the
concert hall renderings, loudness differences were reported in addition to the attributes used also for
the small room.

Image shift was most frequently reported as the discriminating attribute in the small room.
Uniform setup with 14 loudspeakers (U14) systematically collected the most reports, which reflects
the high discrimination rate. In addition, the difference in reverberance made the discrimination of
uniform setups (U14 vs. U22) even easier. Optimized setup with 14 loudspeakers (O14) had notable
differences in spectral balance when compared with uniform setups. Most frequent reports on spatial
impression concentrated in comparison of U22 to both O14 and U14.

The elicited attributes in concert hall pairs were not as distinct as in the case of the small room.
The most evident differences were width in O16 vs. U16 and spectral balance in U16 vs. U24. Otherwise
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the distribution of answers was more uniform. In O16 vs. O24 loudness appeared the most frequent
factor, as image shift and reverberance did in the case of O16 vs. U24. In the rest of the cases, there was
no consensus on discriminative attributes.

5. Discussion

As the results show, the listening conditions drastically affect how well the differences in virtual
loudspeaker positioning are noticed in binaural reproduction. The small room case appeared very
susceptible to perceived image shifts and altered reverberance when the reproduction loudspeaker
configuration was changed, whereas the changes in the setups were barely noticeable with the concert
hall case.

As visualized in Figure 3, perceived image shifts in the small room are explainable by the changes
in the directions of early reflections. There are four strong reflections visible above the direct sounds,
as well as reflections from the desk. The virtual loudspeakers of U14 that reproduce those directions
are far from the reflections, whereas optimized setups have co-located loudspeakers for each of them.
In U22, virtual loudspeakers are also off from those directions, but they are closer to them than in U14.
This partly explains why U22 is as easy to discriminate from the optimized setups as U14 is. Visual
inspection also suggests that O14 is a subset of O22, explaining why they are difficult to discriminate
from each other. In short, strong early reflections affect the spatial image drastically, therefore requiring
precise reproduction of their directions.

A notable aspect in the concert hall case is that the directions of early reflections did not play as
large role as they did in the small room. The direct sound reproduction loudspeakers were positioned
identically between O16 and uniform setups, making discrimination between the setups hard. O24 had
more loudspeakers optimized to reproduce direct sounds, thus being more distinctive than O16 when
compared with uniform setups. Finally, U16 and U24 could probably have been discriminated from
each other because of the combined effect of differences in the reproduction of side, ceiling and back
wall reflections. To summarize, direct sounds dominate the spatial impression, allowing more drastic
changes in reflection directions before the difference is heard.

The small room case had only two sound sources with 60 degree separation. The reflections
are then relatively scarce, therefore likely more audible and susceptible to changes in reproduction.
The concert hall case in turn had 24 densely located sound sources, each having their own set of
reflections and source signals. As the source positions are close to each other at the stage, most of the
reflections are coming from adjacent directions. However, as these directions are not precisely the
same, the reflections are spread over a larger area than in the two-channel case, therefore making the
precise direction of the reflection fuzzier. However, more experiments are needed in different spaces to
prove this theory.

Another difference between the cases is the strength of the reverberation. Small room has only
little if any diffuse reverberation, whereas the concert hall has prominently longer and more diffuse
reverberation. Strong reverberant field may reduce the importance of correct spatial reproduction of
earliest reflections. This psychoacoustic factor remains hypothetical and also needs more research.

6. Conclusions

The aim of this study was to present a method of optimizing virtual loudspeaker positions for
spatial sound reproduction with head-tracked headphones. The rendering of spatial sound was
implemented with the Spatial Decomposition Method in combination with nearest loudspeaker
synthesis to analyze and reproduce measured room impulse responses in perceptual room acoustics
studies. These studies have earlier used a static loudspeaker array to synthesize spatial impulse
responses convolved with sound signals. However, a static reproduction array is not an optimal way
of reproduction when concerning the arbitrary directions of early reflections. This is especially the
case with headphones where the loudspeakers are virtualized with the help of HRTFs.
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The implementation was evaluated with a discriminative listening test, which consisted of one
simple and one complex auditory scene. They were a small room with stereo loudspeaker audio
and a concert hall with 24 channel orchestra music. The results implied that optimization of virtual
loudspeaker positions is important in a small room. This is because misplaced early reflections cause
image shifting and change perception of reverberance. However, this effect was not so large in the
concert hall case. In any case, the number of virtual loudspeakers can be reduced to minimize the
real-time computation required for HRTF processing, if the directions of direct sounds and early
reflections are accurately reproduced. The study for the minimum number of virtual loudspeakers
needed without deteriorating the sound quality is left for future work.
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HRTF Head Related Transfer Function
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U14/U16/U22/U24 Uniform loudspeaker setup with 14/16/22/24 loudspeakers
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Abstract: Music similarity is a complex concept that manifests itself in areas such as Music
Information Retrieval (MIR), musicological analysis and music cognition. Modelling the similarity
of two music items is key for a number of music-related applications, such as cover song detection
and query-by-humming. Typically, similarity models are based on intuition, heuristics or small-scale
cognitive experiments; thus, applicability to broader contexts cannot be guaranteed. We argue that
data-driven tools and analysis methods, applied to songs known to be related, can potentially provide
us with information regarding the fine-grained nature of music similarity. Interestingly, music and
biological sequences share a number of parallel concepts; from the natural sequence-representation,
to their mechanisms of generating variations, i.e., oral transmission and evolution respectively.
As such, there is a great potential for applying scientific methods and tools from bioinformatics
to music. Stripped-down from biological heuristics, certain bioinformatics approaches can be
generalized to any type of sequence. Consequently, reliable and unbiased data-driven solutions to
problems such as biological sequence similarity and conservation analysis can be applied to music
similarity and stability analysis. Our paper relies on such an approach to tackle a number of tasks
and more notably to model global melodic similarity.

Keywords: melodic similarity; alignment; stability; variation; bioinformatics

1. Introduction

In 2016, digital music revenues overtook physical revenues for the first time (www.ifpi.org/
downloads/GMR2016.png), a testament to the music industry’s adaptability to the digital age.
Listeners are currently able to stream and explore massive collections of music such as Spotify’s
(www.spotify.com) library of around 30 million tracks. Such a development has changed not
only the way people listen to music, but also the way they interact with it. According to a 2015
survey (www.midiaresearch.com/blog/midia-chart-of-the-week-music-discovery), 35% of users of
streaming services use them to discover new songs and artists, new and exciting music for their
unique personal taste or listening habits. At the same time, the proliferation of digital music
services has raised the listeners’ interest in the accompaniment chords (www.chordify.com), the lyrics
(www.musixmatch.com), the original versions of a cover, the sample (loop) (www.whosampled.com)
that a song uses and many more scenarios that service providers cannot deal with manually.

This development brings Music Information Retrieval (MIR) to the centre of attention. The field
includes research about accurate and efficient computational methods, applied to various music
retrieval and classification tasks such as melody retrieval, cover song detection, automatic chord
extraction and of course music recommendation. Such applications require us to build representations

Appl. Sci. 2017, 7, 1242 382 www.mdpi.com/journal/applsci



Appl. Sci. 2017, 7, 1242

of previously seen classes (e.g., sets of covers of the same song), which can be only compared to
a query (e.g., a cover song whose original is unknown) by means of a meaningful music similarity
function. A robust MIR system should model the fuzziness and uncertainty of the differences between
two musical items perceived as similar. As Van Kranenburg argues specifically about folk song
melodies: “knowledge about the relation between a desired melody and the way this melody is sung
from memory” can increase the robustness of melody retrieval tasks [1].

However, this “knowledge”, the exact mechanics of perceived similarity, is still unknown
or incomplete [2]. This is not surprising considering music’s inherently complex nature [3,4].
The perceived similarity between two musical pieces is known to be subjective: judgements of different
individuals can vary significantly. Marsden [5] argues that similarity involves interpretation, which by
itself is a personal creative act. Ellis et al. [6] argue that the individual perception of similarity can
show variation depending on the listener’s mood or familiarity with the musical culture and can even
change through time. The individual interpretation can be affected also by the multidimensionality of
music, since similarity between two songs can be a function of timbre, melody, rhythm, structure or
indeed any combinations of those (or other) dimensions. To make matters worse, music similarity is
known to be contextual, thus depending on the circumstances of comparison. Deliège [7] argues that
similarity can appear as stable only when the context, “the structure of the natural world or a specific
cultural system” is quite stable itself.

To overcome, or avoid addressing the aforementioned issues, many MIR approaches to similarity
rely on cognition studies, expert heuristics, music theory or formalized models in general. Cognition
studies are scientifically well-founded, but often cannot capture the general consensus due to practical
limitations, such as access to a sufficient number of participants that fit a certain profile for the study.
Expert knowledge, on the other hand, can be a valuable source of information, but with regard to
music, expert knowledge cannot fully explain its highly complex nature and the sophisticated human
perception. In addition, heuristic approaches have the risk of being descriptive rather than predictive.
Formalized models founded on music theory typically neglect that it is not a theory of music perception
of similarity. In addition, such models have the highest risk of being solely descriptive, thus not
providing us with new knowledge. To their defence, all such approaches can have a certain practical
validity, but limited explanatory power, as long as they are evaluated only on a reliable ground-truth
and are applied to narrow contexts. Human ratings of similarity are highly problematic with studies
showing that subjects are inconsistent with each other and even with themselves [8,9]. Regarding the
assessment of similarity between song-triads particularly, Tversky [10] argues that subjects are affected
by the song order of appearance and even the song popularity. Regarding the context, a one-fits-all
model of similarity is impossible, and as Marsden argues: “the best one can hope for is a measure
which will usefully approximate human judgements of similarity in a particular situation” [5].

As long as music cognition fails to provide us a blueprint of how to develop a computational,
generalizable model of music similarity, we are required to explore alternative, data-driven approaches
that aim to model the knowledge extracted from the data and the data relations. Data-driven
music similarity is not a new concept in MIR, but such studies [11,12] have focused on high-level
similarity (genre, artist) where listeners’ opinions are fuzzy. Approaches on more fine-grained music
similarity at the note or chord level, such as the work of Hu et al. [13], are scarce for a legitimate
reason: in order for the data relations to be bias-free and visible, the data need to be organized
in a proper-for-knowledge-extraction form. Properly annotated and disambiguated corpora of
note-to-note or chord-to-chord relationships are extremely hard to find.

Fortunately, algorithms that properly organize sequential data have been widely used and
are fundamental in the field of bioinformatics. One of the most notable algorithms from the vast
bioinformatics toolbox, pairwise sequence alignment via dynamic programming, has been successfully
adapted by MIR to compare musical items such as melodies [14] or chord sequences [15]. On closer
look, musical and biological sequences are not as unrelated as one might think: even as early as the
1950s, it had been observed that they share a number of resembling concepts [16]. Krogh states that
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“the variation in a class of sequences can be described statistically, and this is the basis for most methods
used in biological sequence analysis” [17]. By acknowledging that the variation of certain quantifiable
musical features in a group of related music sequences can be described statistically, as well [18],
we gain access to a number of sophisticated, data-driven approaches and bias-free tools that can be
adopted from bioinformatics, allowing the modelling of music similarity.

1.1. From Bioinformatics to MIR

Bioinformatics use statistical and computational techniques to connect molecular biology and
genetics. Bioinformatics deal with different types of data. DNA sequences carry most of the inherited
genetic information of living organisms. These sequences can be represented as a string over
a four-letter alphabet {A,C,G,T}, where each symbol represents a nucleotide base. DNA sequences
can be as long as several billion symbols, depending on the organism. The instructions to form
proteins, which are essential to living organisms, are encoded in the DNA in the form of subsequences
or sections called genes. Through a translation process, certain genes are mapped into long chains
of amino acids, which fold into three-dimensional protein structures. For computational purposes,
proteins can likewise be considered as strings of characters (typically several hundred symbols) from
a 20-letter alphabet (since there are 20 different common amino acids).

Music, unlike static forms of art, has a temporal nature. As such, music perception relies on
temporal processing [19]. As Gurney argues regarding melodies specifically: “The elements are units
succeeding one another in time; and though each in turn, by being definitely related to its neighbours,
is felt as belonging to a larger whole” [20]. The same idea actually holds for other music elements,
such as chords (notes sounding almost simultaneously) or rhythm. It is therefore not surprising that
certain music items, such as symbolic scores, chord transcriptions and others, similarly to DNA or
proteins, can be naturally represented as sequences of characters from a finite alphabet. When it comes
to music applications, the importance of sequence representation has been demonstrated most notably
by Casey and Slaney [21] and by numerous other works that adopted it over the years.

A core assumption of molecular biology is that of homology: related sequences diverge from
a common ancestor through random processes, such as mutation, insertion, deletion, and more
complex events, aided by natural selection. This process of genetic variation provides the basis for
the biodiversity of organisms. Homologues might share preferentially “conserved” regions, subjected
to fewer mutations compared to the rest of the sequence [22], which are considered crucial for the
functionality of a protein [23]. Similarly, a fundamental observation in music is that music information
passing orally, or in other form, can be subjected to noise. Due to our limited cognitive capacity,
or for artistic purposes, a musical piece can change throughout a network of musical actors. A folk
song that has been transmitted from mouth to mouth and from generation to generation, might differ
dramatically from its original version. Even recorded songs can differ when covered by other artists or
performed live. There is a strong resemblance to biological evolution since music homologues can occur
by altering, inserting, deleting or duplicating music elements to a certain extent [16]. Intuitively also,
certain salient parts of a melody or a chord progression are less likely to mutate, thus remaining
“conserved”, in an alternative version.

Identifying similarity is crucial not only for MIR, but for bioinformatics applications, as well.
Finding homologues through sequence-similarity search is key. Besides the systematic organization,
homologue search can help relate certain characteristic behaviours of a poorly-known protein
sequence [24]. In addition, experimental results on model species can be applied to humans.
Pairwise sequence alignment is the most popular method for assessing the similarity of two sequences.
The idea is to introduce gaps ‘-’ to sequences so that they share the same length, while placing
“related” sequence elements in the same positions. As such, pairwise alignment aims to find the
optimal alignment with respect to a scoring function that optimally captures the evolutionary
relatedness between amino acids (how probable it is for one amino acid to be mutated to another).
Another important bioinformatics application is finding conserved regions or patterns among multiple
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homologue sequences which allows for the estimation of their evolutionary distance, for phylogenetic
analysis and more. This is achieved by aligning three or more sequences simultaneously, a process
typically called Multiple Sequence Alignment (MSA).

1.2. Contribution

In this paper, we argue that MIR can benefit immensely by exploring the full potential of tools,
methods and knowledge from the field of bioinformatics and biological sequence analysis, particularly
considering melodic-similarity related applications. Despite the high resemblance of concepts
(see Table 1), MIR has yet to fully adopt sophisticated solutions such as multiple sequence alignment.
As Van Kranenburg suggested, there is a potential for MIR to harvest the bioinformatics’ long history
of algorithm development, improvement and optimization for biological sequence analysis [1].

Table 1. Shared concepts and terms between music and bioinformatics.

Music Bioinformatics

Melodies, chord progressions DNA, proteins
Oral transmission, cover songs Evolution

Variations, covers Homologues
Tune family, clique Homology, family

Cover song identification, melody retrieval Homologue detection
Stability Conservation

Our previous works on aligning polyphonic voices [25] and melody retrieval [26] more notably,
briefly touched on the relationship between MIR and bioinformatics. However, their ideas and
bioinformatics-inspired solutions facilitated the work presented in this paper. As such, this paper’s
contribution relies first on establishing a strong connection between musical and biological sequences.
This allows us to adopt analysis pipelines and algorithms from bioinformatics to: (a) gain new
insights regarding music similarity by performing a stability analysis, and (b) present novel solutions
for tackling melody retrieval by modelling global similarity. Most importantly, our pipelines are
purely data-driven and free of heuristics, as opposed to other MIR methods. To validate the
generalization-ability of our approach, we apply it to two melodic datasets of different music.
As such, we diverge from previous MIR studies that focused on a specific subset of all possible
music. In addition, previous work on datasets of chord sequences [27] also supports the usability of
this approach to more than melodic data.

The remainder of this paper is organized as follows: Section 2 acts as an introduction the
fundamental sequence comparison and analysis tools derived from bioinformatics. Section 3 describes
the musical datasets used in our work. From there on, we apply the bioinformatics methods and tools
to the datasets. Section 4 investigates the concept of “meaningful” alignments, while Section 5 uses
the findings of 4 to present an analysis of music stability. Section 6 tackles the problems of modelling
global similarity. Finally, Section 7 discusses the conclusions of this paper.

2. Methods and Tools

This section aims to describe the fundamental methods used in biological sequence analysis:
pairwise alignment and multiple sequence alignment. Understanding their mechanics and limitations
is crucial for successfully applying them to MIR tasks. However, the reader familiar with these methods
can skip to Section 3 directly.

2.1. Pairwise Alignment

An intuitive method for DNA or protein sequence comparison is the Levenshtein (or Edit)
distance, which computes the minimal number of one-symbol substitutions, insertions and deletions
to transform one sequence into the other. Such operations can be naturally mapped to the biological
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process of mutation. Given a cost for each operation, the weighted Levenshtein distance can be
computed using dynamic programming. The major drawback of the Levenshtein distance is that
it captures the divergence of the two sequences rather than their relatedness or, the important to
this paper, similarity. In addition, it does not allow for identifying conserved regions between the
sequences, since it is a purely mathematical distance function. As such, computing the similarity of
two DNA or protein sequences is typically performed using alignment, the converse to Edit distance.
During alignment, gaps ‘-’ that represent symbols that were deleted from the sequences via the process
of evolution [28], are introduced in the sequences, until they have the same length and the amount of
“relatedness” between symbols at corresponding positions is maximized.

More formally, consider two sequences over an alphabet of symbols A, X := x1, x2, .., xn and
Y := y1, y2, .., ym with all xi, yi ∈ A. An alignment A of X and Y, consists of two sequences X′ and Y′

over {−} ∪A, such that |X′| = |Y′| = L, where if we remove all ‘-’ from X′, Y′ we are left with X and
Y respectively. The number of possible alignments A for a pair of sequences is exponential in n and
m, so an optimal alignment should be selected given a scoring function that typically derives from
a model of “relatedness” between the symbols of A, where the goal is to put similar symbols at the
same position. The most typical such scoring function is the alignment score:

c(A) =
L

∑
p=1

v(x′p, y′p) (1)

where v : A×A → IR. The scoring function v is typically encoded as an |A| × |A|matrix called the
substitution matrix. Most pairwise alignment methods use a Dynamic Programming (DP) method,
credited to Needleman and Wunsch [29], which computes the optimal (highest scoring) alignment by
filling a cost matrix D recursively:

D(i, j) = max

⎧⎪⎨⎪⎩
D(i− 1, j− 1) + v(xi, yj)

D(i− 1, j)− γ

D(i, j− 1)− γ

(2)

where γ is the gap penalty for aligning a symbol to a gap. An extension uses an affine gap penalty
based on the assumption that the occurrence of consecutive deletions/insertions is more probable than
the occurrence of the same amount of isolated mutations [28]: for a gap of length z, the gap penalty
would be:

γ(z) = −d− (z− 1)e (3)

where d and e are the gap open and gap extension penalties respectively. To optimize an alignment that
uses an affine gap penalty requires a slightly more complex DP algorithm [30]. In the simple non-affine
gap case, the score of the optimal alignment is stored in D(n, m), while the alignment itself can be
obtained by backtracking from D(n, m) to D(0, 0). The Needleman and Wunsch approach is a global
alignment method, since it aims to find the best score among alignments of full-length sequences.
On the other hand, the local alignment framework, first optimized by Smith and Waterman [31], aims to
find the highest scoring alignments of partial sequences by tracking back from max(D(i, j)) instead of
D(n, m), and by forcing all D(i, j) to be non-negative. Local alignment allows for the identification of
substrings (patterns) of high similarity.

When affine gaps are not considered, meaningful, high-quality alignments are solely dependent
on the knowledge captured by the substitution matrix used [30]: optimal alignments with good scoring
matrices will assign high scores to pairs of related sequences, while giving a low alignment score to
unrelated sequences. More formally, given the two sequences X, Y their alignment score c(A) should
represent the relative likelihood that the two sequences are related as opposed to being unrelated
(aligned by chance). This is typically modelled by a ratio, denoted as odds ratio:
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P(X, Y|M)

P(X, Y|R) (4)

where M is a probabilistic model of related sequences and R is a model generating unrelated sequences.
If qa is the frequency of a symbol a, and both X and Y have the same distribution under R, then for the
random alignment case aligned pairs happen independently, which translates to:

P(X, Y|R) = P(X|R)P(Y|R) = ∏
i

qxi ∏
j

qyj (5)

For the matching case, where aligned pairs happen with a joint probability p, the probability for
the alignment is:

P(X, Y|M) = ∏
i

pxiyi (6)

In order to get an additive scoring system, it is standard practice to get the logarithm of
Equation (3), which after substitution becomes:

log
P(X, Y|M)

P(X, Y|R) = ∑
i

log
( pxiyi

qxi qyi

)
(7)

A substitution matrix can be considered nothing more than a matrix arrangement of the
log(pxiyi /qxi qyi ) values (scores) of all possible pairwise symbol combinations.

Sequence alignment via dynamic programming and its time-series counterpart, Dynamic Time
Warping (DTW), have been fundamental tools for many MIR tasks since first being applied in a melody
retrieval task by Mongeau and Sankoff [32]. Alignment, despite being considered an ill-posed problem
for strongly deviating versions of a musical piece [33], has proven to be very useful for identification
or classification tasks where strong similarities are present [1,34] and high scoring alignment has
been shown to correlate well with human judgements [35,36]. It has been used for cover song
detection [37], pattern mining [38], extensively for query-by-humming [14,39] and in other MIR tasks.
Interestingly, DTW has been extended to align items that cannot be naturally represented as single
sequences, such as polyphonic music [40] or audio [41,42]. Consequently, alignment has been also key
to finding correspondences among related music items of not the same format (typically called music
synchronization): it has been used for score following, the task of aligning different music representations
such as audio and score or MIDI (Musical Instrument Digital Interface) [41,43]. Describing alignment’s
numerous MIR applications exceeds the scope of this study. However, a complete overview of DTW in
music up until 2007 can be found in the work of Müller [44].

2.2. Multiple Sequence Alignment

A multiple sequence alignment inserts gaps into more than two sequences over an alphabet
so that they have the same length and the relatedness between symbols in the same columns is
maximized. Formally, given k sequences s1, s2, ..., sk over an alphabet A and a gap symbol ‘-’ /∈ A,
and let g : ({−} ∪ A)∗ → A∗ be a mapping that removes all gaps from a sequence containing gaps.
A multiple sequence alignment A consists of k sequences s′1, s′2, ..., s′k over {−} ∪A such that g(s′i) = si
for all i, (s′1,p, s′2,p, .., s′k,p) �= (−, ...,−) for all p, and |s′i| = L for all i.

Similar to pairwise alignment, there is a great number of possible MSAs for a single input of
sequences [30]. We typically want to pick the most “meaningful” considering our task at hand.
More formally: given an objective scoring function c : A → IR that maps each alignment to a real
number, we are interested in A′ = arg maxA(c(A)). There are many such functions [28], but the
most widely used is the Weighted Sum-Of-Pairs (WSOP or SOP) [45], a summing of scores of all
symbol-pairs per column. Let mj

i be the i-th column j-th row of A, the SOP is defined as such:
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c(A) =
L

∑
i

∑
k<l

wk,lv(mk
i , ml

i) (8)

where wk,l is a weight assigned to the pair of sequences k, l and k < l corresponds to an iteration over
all pairs of rows in the column. Naturally, the objective function can be adapted to accommodate
affine gaps. Computing the optimal MSA is unfortunately NP-complete [46] and cannot be used in
realistic scenarios that include numerous and long sequences. Therefore in the field of bioinformatics,
heuristic approaches that give good alignments, though not guaranteed to be optimal, have been
developed. According to Kemena and Notredame [47], more than 100 different MSA algorithms have
been proposed over the last 30 years but discussing them in detail exceeds the scope of this paper.

MSA algorithms have found a rather small application in MIR. Liu [48] uses the progressive
alignment algorithm to compare different music performances represented as strings derived from
chroma features (distribution of the signal’s energy across a set of pitch classes). In a similar manner
Wang et al. [49] showed that progressive alignment of multiple versions can stabilize the comparison for
hard-to-align recordings that can lead to an increase in alignment accuracy and robustness. Finally in
a tangential task, Knees et al. [50] use a progressive alignment approach to align multiple lyrics
gathered from various online sources.

3. Melodic Sequence Data

Music comprises sound events that can be pitched or unpitched (percussive) with either stable
or unstable pitch. In the context of this paper we consider the tone, a fixed frequency sound (pitch),
to be the most important musical element. In music notation (scores), tones are represented as
notes with accompanying duration values. A series of notes arranged in time and perceived as
a distinct group or idea, is what we roughly define as a melody, although years of musicological
studies have failed to agree on a consensus definition. Poliner et al. [51] define it as “the single
(monophonic) pitch sequence that a listener might reproduce if asked to whistle or hum a piece of
polyphonic music, and that a listener would recognize as being the essence of that music when heard
in comparison.” As Kim et al. [52] also mention, one can recognize a song (out of all known songs) just
by its melody even though it might have been corrupted with noise or cut short. This observation is
a testament to melody’s importance to music perception. As such, melodies have been at the centre of
musicological research [53] and music cognition [54]. In MIR, melody extraction from audio has been
an active research topic, since melodies can act as robust and efficient features for song retrieval [55].
Query-by-humming, i.e., retrieving similar items using a sung melody as a query, has been also an
important, on-going MIR task [56,57].

When it comes to comparing melodies in terms of their similarity, sequence representation is key;
we need to carefully select the music features that we will represent as sequences [47]. As Volk et al. [2]
argue based on relevant studies, music similarity works on many dimensions, such as melodic,
rhythmic or harmonic, but the musicological insights regarding the relative importance of each
dimension are insufficient. The works of Van Kranenburg [1] and Hillewaere et al. [58] revealed the
importance of the pitch dimension, so our work considers melodies as pitch-contours, meaning series
of relative pitch transitions constrained to the region between +11 and −11 semitones (folded to one
octave so that a jump of an octave is treated as unison and therefore ignored). Besides their simplicity
and key-invariance, pitch contours have been found to be more significant to listeners for assessing
melodic similarity than alternative representations [59]. In our work, all sequences of pitch transitions
are mapped to an extension of the 20-letter alphabet that is used to represent the naturally occurring
amino acid for ease of adaptation.

3.1. Datasets

Reliable analysis and modelling of similarity requires first and foremost datasets of unambiguous
relationships between music items. Marsden [5] among others, makes a strong case regarding the
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validity of similarity ranking annotations, considering the paradigm differences of the listening
experiments that generated them. However, he is more supportive to binary or definite annotations of
similarity, such as songs known to be covers, or songs known to be related from musicological studies.
Such data can be used to verify a computational model with regard to its retrieval or classification
performance, since the distance for music items within a category should be less than the distance
of items belonging to different categories. As such, this paper uses two datasets of symbolically
represented melodies of varying size and nature, containing melodies that are considered related
(e.g., covers of the same song) grouped into definite groups called either families, classes or cliques.
Summary statistics for both sets are presented in Table 2.

The Annotated Corpus of the Meertens Tune Collections [60], or TUNEFAM-26, is a set of 360 Dutch
folk songs grouped into 26 “tune families” by Meertens Institute experts. Each contains a group of
melody renditions related through an oral transmission process. For this dataset, expert annotators
assessed the perceived similarity of every melody over a set of dimensions (contour, rhythm, lyrics,
etc.) to a set of 26 prototype “reference melodies”. In addition, the dataset contains 1426 annotated
motif occurrences grouped into 104 classes, where “motifs” correspond to recurring patterns inside the
melodies of a tune family. The Cover Song Variation dataset [61], or CSV-60, is a set of expert-annotated,
symbolically-represented vocal melodies derived from matching structural segments (such as verses
and choruses) of different renditions of sixty pop and rock songs. CSV-60 is inherently different from
TUNEFAM-26 in two ways. First, the grouping of melodies into classes is certain: the songs were
pre-chosen as known covers of songs of interest. Secondly, cover songs are typically not a by-product
of an oral transmission process since cover artists have access to the original version.

Table 2. Summary statistics for the datasets considered in our work. We also present the Area Under
the Curve (AUC) value for the Receiver Operating Characteristic curve (ROC) on the Percentage
Sequence Identity (PID). Given two aligned sequences, the PID score is simply the number of identical
positions in the alignment divided by the number of aligned positions [62]. The higher the AUC PID
the more similar the sequences are in a clique compared to the whole dataset. It should be noted that
the alphabet size presented corresponds to the number of unique symbols appearing in the dataset.

Summary statistics TUNEFAM-26 CSV-60

Number of cliques 26 60
Clique Size median (var) 13.0 (4.016) 4.0 (1.146)

Sequence Length median (var) 43.0 (15.003) 26.0 (10.736)
AUC PID 0.84 0.94

Alphabet Size 22 22

4. Multiple Sequence Alignment Quality for Melodic Sequences

This paper’s main approach on modelling melodic similarity relies on capturing the variation
among two or more perceived-as-similar melodies. For that we need trustworthy, “meaningful”
alignments of related music sequences, such that the statistical properties of the alignment can inform
us about the note-to-note relationships. Since such data can be hard to find, we are required to align
related sequences using alignment algorithms. Alignment, pairwise or otherwise, with notable
exceptions [63,64] has been typically used as an out-of-the-box tool to align instances of music
sequences, with the sole purpose of using its score output further in a retrieval pipeline. The quality
or musical appropriateness of the alignment of symbols themselves has always been evaluated via
a proxy, i.e., some kind of music retrieval scenario. As long as the alignment-pipeline outperformed
other approaches, its utility was considered significant. The major problem however, is that outside
the proxy strategy, there are no studies or musical intuition to prefer one alignment over the other.

Identifying the features that make a “good”, meaningful alignment is an intricate task, not only
for musical but biological sequences as well. Interestingly, proteins are folded into diverse and complex
three-dimensional structures. Structure motifs (not to be confused with the homonym musical concept)
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diverge slower in the evolutionary time scale than sequences, and consequently homology detection
among highly divergent sequences is easier in the structural than the sequence domain, though the
actual algorithms for three-dimensional shape alignment are complex. As such, structure motifs have
been used to aid the alignment of highly-divergent sequences [65]. In addition, reference alignments
produced from biological information, such as a conserved structure, have been frequently used to
assess the quality of an MSA [66].

We argue that similar to biological sequences, a “good” meaningful alignment of musical
significance, can be only evaluated via a trustworthy reference alignment. Previous related work [67]
generated “trustworthy” alignments of the CSV-60 set by using a progressive alignment algorithm
extended on three musical dimensions (pitch, onset, duration). Bountouridis and Van Balen’s choice
was based largely on intuition, since there is no literature supporting those three dimensions. Prätzlich
and Müller [64] investigated the evaluation of music alignment by using solely triplets of recordings of
the same piece and made clear that there are theoretical considerations of alignment quality-assessment
without a reference alignment. Therefore, the question becomes whether there exists a musical analogy
to the protein structure motifs.

In musicology shared, transformed but yet recognizable musical patterns are called “variations”
and according to musicological and cognitive studies, variations are essential to the human perception
of music similarity [2]. Specifically when it comes to classifying folk songs into tune families,
i.e., groups of songs with a common ancestor, Cowdery [68] considers the shared patterns to be a key
criterion. An annotation study on Dutch folk songs by Volk and Van Kranenuburg [4] also supported
this claim by proving that shared, stable musical patterns, called motifs were important for the expert
assessment of music similarity. Consequently, we can theoretically use the motif alignment as reference
for evaluating the quality of musical sequence alignment. For example, consider the following
sequences with expert annotated motifs “AB” (red) and “AFF” (cyan): AFFGABBBBC, ABDDBBC and
AFFABB. Two possible alignments with equal SOP scores are:

AFFGABB-BBC AFFGABB-BBC
––––ABDDBBC A––––BDDBBC
AFF-ABB–––– AFF-ABB––––

From a musicological perspective though, the first alignment is considered of higher quality,
since it aligns perfectly those subsequences that are annotated as same-label motifs. It is of high
importance to investigate which MSA algorithms and settings are optimal with regard to motif
alignment (for example, which algorithm would be more likely to generate the first alignment
rather than the second). The following paragraphs describe the appropriate experiments to answer
such question.

Our experiment pipeline comprises aligning a group of related sequences (that include motifs)
using different motif-agnostic MSA strategies, and then comparing the resulting alignment of motifs
to a reference optimal motif alignment. The comparison is not based on a distance function between
the alignments, but rather on assigning a score to both of them. Besides the different MSA strategies
(to be discussed in Section 4.3), the pipeline requires the following: first, a motif alignment scoring
function that is well-founded (see Section 4.1). Secondly, it requires a dataset of musical sequences that
contain annotated motifs for each clique, combined with trustworthy alignments of these motifs that
would act as a reference (see Section 4.2).

4.1. Motif Alignment Scoring

The only information available to compute a meaningful motif-based MSA score is the motifs’
position in the sequence, length and notes they contain. Due to the lack of knowledge regarding which
pairs of pitches should be aligned together, the motif alignment scoring method cannot be founded
on the pitch dimension. We are confident for only one thing: the notes belonging to same-labelled
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motifs should be somehow aligned. As a consequence, we focus on an intuitive scoring function that
is maximized when same-labelled motifs are maximally overlapped. Given a function label(xi) that
returns the motif label of the i-th note of a sequence X, the WSOP score (denoted motif-SOP) of an MSA
is based on the following scoring function:

v(xm, ym) =

⎧⎪⎨⎪⎩
+1 if label(xm) = label(ym)

−1 if label(xm) �= label(ym)

0 if label(xm) = ∅ or label(ym) = ∅
(9)

In other words, we only penalize those alignments that align notes belonging to different motifs.
Alignment between notes not belonging to any motif (label(xi) = ∅), and labelled notes are considered
neutral since no studies or intuition suggests otherwise. The particular scoring function would assign
the same motif-SOP score for both the following alignments, since only the alignment of motif labels
(represented as colours) is taken into consideration:

AFFGABB-BBC -AFFGABB-BBC
––––ABDDBBC –––––ABDDBBC
-AFFABB–––– A-FF-ABB––––

4.2. Dataset and Reference Motif Alignments

The TUNEFAM-26 dataset is the best benchmark for our experiment, since it contains related
melodies (grouped into tune families) with a number of subsequences annotated by experts and
uniquely labelled as motifs (see Figure 1). It is however, not the optimal benchmark since the expert
annotated motifs of the same label, which can be of different lengths, do not come pre-aligned; we know
which sub-sequences in the family’s melodies are motifs, but we do not know their note-to-note
alignment. Since there are no trustworthy motif alignments, the optimal alignment should be
a by-product of the motif-SOP function and the intuition behind it, i.e., the reference alignment
should be the one that maximizes the motif-SOP score. In order to acquire that for each family,
through visual inspection, we manually align the motif variations. At the same time, we consider
the motif-SOP score of the original unaligned sequences as the lower bound minmSOP, i.e., the worst
possible scenario. The minmSOP and maxmSOP scores allow us to normalize any motif-SOP score to
a meaningful [0, 1] range.

Figure 1. The 15 unaligned sequences of the tune family “Daar ging een heer”. Colours correspond to
motif labels. White colour indicates no motif label.

4.3. Multiple Sequence Alignment Algorithms and Settings

From the numerous MSA algorithms, we selected three based on many factors including simplicity,
popularity or quality of results on several bioinformatic benchmarks. One of the simplest approaches
to MSA, named “star” alignment, aims at employing only pairwise alignments for building the final
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MSA. The idea is to first find the most “central” among the sequences, pairwise align it to each one of
the rest and then combine the pairwise alignments into a single MSA. This method does not necessarily
attempt to optimize the objective function (see Section 2.2) and as such is rarely used. In our case,
star alignment can act as a naive baseline for the more sophisticated algorithms to be compared against.

Progressive Alignment (PA) [69] is one of the most popular and intuitive approaches, and it
comprises three fundamental steps. At first, all pairwise alignments between sequences are computed
to determine the similarity between each pair. At the second step, a similarity tree (guide tree) is
constructed using a hierarchical clustering method, which in biological sequences is sometimes used
to attempt to identify evolutionary relationships between taxa. Finally, working from the leaves of
the tree to the root, one aligns alignments, until reaching the root of the tree, where a single MSA
is built. The drawback of PA, is that incorrect gaps (especially those at early stages) are retained
throughout the process since the moment they are first inserted (the “once a gap, always a gap” rule).
Iterative refinement methods [70,71] aim to tackle this problem by iteratively removing each sequence
and realigning it with a profile created from the MSA of the rest, until an objective function has been
maximized. Our experiments use the PA-based T-COFFEE software (Tree-based consistency objective
function for alignment evaluation) [72]. T-COFFEE aims to tackle the problem by making better use
of information in the early stages . It uses an objective function (called COFFEE [73]) that first builds
a library of all optimal pairwise alignments and secondly, scores a multiple sequence alignment by
measuring its consistency with the library: how many of the aligned pairs in the MSA appear in
the library.

Locating very similar short and shared sub-regions between large sequences has been in important
task in bioinformatics. Such segments can efficiently reduce MSA runtimes and as a consequence,
MSA solutions that incorporate some of form of segmentation, such as DIALIGN[74] and MAFFT [75],
have found successful application. MAFFT in particular, is a progressive alignment method at its core,
but incorporates the Fast Fourier Transform (FFT) for biological sequences. In addition, MAFFT allows
the usage of the iterative refinement method. For non-biological sequences, MAFFT offers a “text”
alignment option that excludes biological and chemically-inspired heuristics from its pipeline. In such
a case, segmenting the sequences becomes a by-product of MAFFT’s objective function that incorporates
both a WSOP and a COFFEE-like scoring. According to MAFFT’s website (mafft.cbrc.jp/alignment/
software), “the use of the WSOP score has the merit that a pattern of gaps can be incorporated into the
objective function”.

MAFFT offers three different strategies for the initial pairwise alignment, that behave differently
with regard to the structure of the sequences. Local alignment with affine gap costs localpair is
appropriate for unaligned sequences centred around a conserved region. The genafpair strategy
uses local alignment with generalized affine gap costs [76] and is appropriate for sequences with
several conserved sub-sequences in long unalignable regions. Global alignment with affine gap costs
globalpair is appropriate for throughout alignable sequences. A lesser known option, which can
be applied on top of localpair and globalpair strategies, is allowshift which is appropriate for
sequences that are largely similar but contaminated by small dissimilar regions.

Each MSA algorithm aims to find the alignment that maximizes the SOP score on the Identity
(ID) scoring scheme, i.e., v(x, y) = +1 if x = y and v(x, y) = −1 if x �= y. As a matrix, the ID scheme
has +1 in the diagonal and −1 otherwise. The effect and importance of gap penalties, or gap settings
(see Equation (3)), is well known for biological sequences [77] and for musical sequences as well [78].
Understanding their behaviour with regard to the MSA is crucial, especially when different matrices
are used. Since literature suggests setting them empirically [77] and the ID matrix is used on each
MSA algorithm in our case, we experiment with a only a small variety of gap settings. At the same
time, we keep in mind that there is no guarantee that these settings optimize the performance of
all MSA algorithms. Regarding T-COFFEE, such penalties are not essential when building the MSA,
since in theory the penalties are estimated from the library of pairwise alignments. In practice, it is
suggested to experiment with different settings while keeping in mind that the penalties are not related
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to the substitution matrix. Gap open can be in the range of [0,−5000] and gap extension in the range
of [−1,−10].

4.4. Results

For each clique of sequences we generated a reference motif alignment manually, and computed its
motif-SOP score (called Sre f ). At the same time, for each motif-agnostic configuration (MSA algorithm,
gap settings), we aligned the melodic sequences. Each resulting alignment was also assigned
a motif-SOP score (called Sauto). In order to identify the best MSA configuration with respect to
motif alignment, we compute its normalized motif-SOP score Sre f /Sauto.

Before proceeding into the quantitative results, it is worth visually examining the alignments
created by the MSA algorithms. Figure 2 presents different alignments of the tune family
“Daar_ging_een_heer_1” for a number of configurations. Regarding quantitative results, Figure 3 and
Table 3 present the normalized motif-SOP score for different configurations. There are a number of
observations that become immediately apparent: first, the normalized motif-SOP score can be less than
zero, since the original unaligned sequences, that act as the lower bound, may include correctly aligned
motifs by random chance (see Figure 1). Secondly as expected, star alignment is the worst performing
algorithm across all gap settings. Regarding the relative performance of the configurations themselves
(excluding star alignment), a Friedman significance test showed that there was a statistically significant
difference in motif-SOP depending on the configuration with p = 0.041. However, post hoc analysis
with Wilcoxon signed-rank tests and Bonferroni correction, revealed that there were no significant
differences among any pair of configurations.

Regarding the overall performance of the algorithms themselves, a Friedman significance test
showed that there was a statistically significant difference in normalized motif-SOP depending on
the algorithm with p < 10−6. Post hoc analysis with Wilcoxon signed-rank tests and a Bonferroni
correction resulted in a significance level set at p < 0.003. p values for all possible pairs are presented
in Table 4. It is clear that MAFFT, run with the globalpair strategy, outperforms T-COFFEE and that
of the three MAFFT strategies, globalpair performs the best. A Wilcoxon signed-rank test between
all the MAFFT algorithms using and not using the allowshift option, revealed that the allowshift
option does not have a significant impact on the results, p = 0.11.

Finally, regarding the gap settings, significance tests showed that for MAFFT and T-COFFEE

in general, there is a significant difference depending on the gap penalties used. For T-COFFEE in
particular, large gap settings such as (−60,−3) or (−40,−2) are not recommended. For MAFFT on the
other hand, small gap penalties, such as (−0.8,−0.5) should be avoided. However it should be noted
that for each particular MAFFT strategy, gap settings have no significant effect.
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Figure 2. Automatically aligned melodic sequences of the tune family “Daar ging een heer” using the
following configurations (top–bottom): MAFFT-genafpair-4.-2., MAFFT-globalpair-allowshift-4.-2.,
MAFFT-loacalpair-2.-1.5, MAFFT-localpair-allowshift-3.-1.5 and T-COFFEE-8-0.5. Colours
correspond to motif labels. White colour indicates no motif label.
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Figure 3. Normalized motif-Sum-Of-Pairs (SOP) score (y-axis) for different gap settings (x-axis) and
Multiple Sequence Alignment (MSA) algorithms.

Table 3. Median (standard deviation) normalized motif-SOP scores for different MSA algorithms and
gap settings. For T-COFFEE, the gap open values are multiplied by 10.

Algorithm 0.8–0.5 1–0.5 2–1.0 2–1.5 3–1.5 4–2 6–3

MAFFT-genaf 0.57 (0.95) 0.61 (0.83) 0.71 (0.68) 0.71 (0.68) 0.70 (0.61) 0.76 (0.53) 0.75 (0.80)
MAFFT-global 0.72 (0.60) 0.78 (0.60) 0.77 (0.49) 0.77 (0.48) 0.75 (0.50) 0.75 (0.41) 0.76 (0.25)

MAFFT-global-allowshift 0.76 (0.83) 0.75 (0.70) 0.78 (0.49) 0.78 (0.47) 0.76 (0.46) 0.82 (0.40) 0.76 (0.26)
MAFFT-local 0.72 (0.58) 0.71 (0.57) 0.75 (0.50) 0.78 (0.45) 0.73 (0.46) 0.76 (0.38) 0.71 (0.24)

MAFFT-local-allowshift 0.69 (0.68) 0.67 (0.72) 0.78 (0.60) 0.77 (0.45) 0.79 (0.45) 0.77 (0.35) 0.77 (0.29)
T-COFFEE 0.65 (0.72) 0.65 (0.72) 0.62 (0.78) 0.62 (0.78) 0.63 (0.80) 0.58 (0.95) 0.58 (1.04)

Star 0.00 (0.49) 0.00 (0.48) 0.04 (0.33) 0.08 (0.37) 0.13 (0.37) 0.12 (0.29) 0.12 (0.24)

Table 4. p values of the Wilcoxon signed-rank tests for pairs of algorithms with regard to the normalized
motif-SOP score. “-a” indicates the allowshift option. p-values larger than 0.05 are not presented.

Algorithm MAFFT-genaf MAFFT-global MAFFT-global-a MAFFT-local MAFFT-local-a

MAFFT-global < 10−6

MAFFT-global-a < 10−5

MAFFT-local
MAFFT-local-a < 10−3

T-COFFEE < 10−4 < 10−4

4.5. Discussion

In this section, we first established a measure of MSA quality based on motifs. Secondly,
we evaluated different MSA algorithms and gap settings on a dataset of folk song melodies. Despite the
small dataset of 26 tune families, the results offer strong proof about the benefits of the MSA algorithms,
and MAFFT in particular. Regarding MAFFT’s success, we hypothesize that it can be attributed to its
objective function that results to gap-free segments. According to Margulis [79], the phrase structure of
a melody is of major importance for the human perception of variation patterns. By treating the located
sub-regions as gap-free segments, MAFFT can be the closest to partitioning melodies into perceptually
meaningful units without using heuristics or expert knowledge.

In general, by establishing a reliable strategy to align multiple instances of melodies, we eliminate
the prerequisite to invent a retrieval/classification proxy to assess the quality of an alignment.
We can also now benefit from both the alignment score and the alignment’s structure itself.
Particularly regarding the latter, since the alignment of notes is musically significant, we can now
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extract knowledge about their relationships. For example, we can perform reliable analysis on notions
such as stability (as we do in the following Section 5) or generate models of similarity (as we do in
Section 6).

5. Analysis of Melodic Stability

It has been theorized that our perception and memorization of melodies is dynamic, meaning
that certain musical events throughout a melody’s length, can be perceived as more stable (resistant to
change) than others depending on the context [80]. Klusen et al. [81] showed that every note in
a melody can be altered in an oral transmission scenario, but some notes are more stable than others.
Numerous studies from cognition [80,82,83] to corpus-based analysis points-of-view [84], have also
evaluated the importance of certain musical factors with regard to their influence on the perceived
music stability. Since the alteration of stable elements can affect the process of recognition, stability is
also a key component for understanding music similarity. Unsurprisingly, stability and music variation
(stability’s counterpart ) have been at the core of both musicology and MIR. From a musicological
perspective, knowledge of the mechanics of those concepts would allow researchers to trace, classify or
possibly even pinpoint in time variations of songs. Similarly, scientists from computational disciplines
may use knowledge of stable musical elements to improve the automatic classification and retrieval of
musical objects, such as the work of Van Balen et al. [85]. Therefore, before proceeding into modelling
music similarity (see Section 6), it is worth investigating the complementary concept of music stability.

Interestingly, conservation is at the centre of biological sequence analysis, in the same way that
stability is at the core of musicology or MIR. As Valdar [23] nicely describes, a multiple sequence
alignment of protein homologue sequences (together with the phylogeny) is a historical record that
tells a story about the evolutionary processes applied and how they shaped a protein through time.
Useful and important regions of a protein sequence often appear as “conserved” columns in the MSA,
and major sequence events that appear on a phylogenetic tree often correspond to epochal moments in
natural history.

In this section we argue that, much as an MSA of protein homologues can inform us about the
statistical properties of the evolutionary processes, an MSA of related melodies can provide us with
valuable information regarding the processes of musical variation. We aim to determine and analyse
regions of less variation inside a selection of related melodies, or in other words, regions of melodic
stability. Analysing stability requires trustworthy MSAs such that the assignment of corresponding
notes across different versions can be directly observed by looking at the MSA’s columns. The findings
of Section 4 allows us to be confident regarding the results of a stability analysis since it can be
conducted on high-quality, musically meaningful alignments.

5.1. Setup

We are interested in applying the best alignment configuration (as established on Section 4) to
the TUNEFAM-26 and CSV-60 melodic datasets. We can later perform an analysis on the aligned
cliques (tune families or cover song melodies) by using an appropriate measure of stability applied
on each column of the MSA. The results from Section 4 have indicated that the best MSA algorithm
for melodic sequences is MAFFT, while its globalpair and localpair strategies are indistinguishable
in terms of alignment quality. Gap settings have little or no effect per strategy, MAFFT options and
gap penalties had minimal effect on alignment quality, so we explored several parameterizations:
MAFFT-globalpair with (−4,−2) gap penalties, MAFFT-globalpair-allowshift with (−4,−2) gap
penalties and MAFFT-localpair-allowshift with (−2,−1) gap penalties.

A quantitative measure of stability, suitable for music sequences, does not exist as a result of
the lack of supporting literature and research. Nevertheless, Bountouridis and Van Balen [67] use
a probabilistic interpretation of the WSOP measure that aims to answer the following question: given
that we observe a single, randomly chosen melodic element, what is the probability for this element to
appear unchanged when we observe a new, unseen a variation of it. In practice, given a set of k aligned
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sequences of length m such as Si : si,1, , si,2, ..., si,m, the stability of the non-gap symbol e in position j is
defined as:

stab(e, j) =
∑k

i=1 |si,j = e| − 1
k− 1

(10)

while the stability of the j-th MSA column is simply PSj = ∑ stab(e, j) over all unique e.
It is worth examining the related bioinformatics literature regarding the equivalent concept of

conservation scores. Valdar [23] mentions that “there is no rigorous mathematical test for judging
a conservation measure”. A scoring method can be only judged with respect to biochemical intuition,
and therefore a number of conservation scores have been proposed through the years [22]. The same
authors list a number of intuitive prerequisites that a conservation score should fulfil, including
sequence weighting (to avoid bias due to near-duplicate sequences) or the consideration of prior amino
acid frequencies. However, applying the same prerequisites to music sequences is not supported by any
musical literature. Consequently, our analysis adopts two widely used and interpretable conservation
scores from bioinformatics: the WSOP score (already discussed thoroughly) and Information Content
(IC). Based on Shannon’s entropy, the IC score of the j-th column is defined as such:

ICj =
Na

∑
i=1

Pe,jlog(
Pe,j

Qe
) (11)

where Na is alphabet size, Pe,j is the frequency of a particular symbol e in the j-th column, while Qe is
the expected frequency of symbol e in the dataset (prior). It should be noted that symbols in a column
with zero frequency are not taken into account.

5.2. Analysis

The next paragraphs present a brief analysis on stability and variation with regard to two music
dimensions, position and pitch intervals. However, it is possible to extend the analysis to dimensions
such as note durations [67] or interval n-grams. Janssen et al. [84] on their corpus-based analysis on
the TUNEFAM-26 dataset, investigated stability with regard to global features related to memorability,
i.e., a phrase length, its position in the melody, its repetitiveness and others.

We hypothesize that certain parts of a melody, such as the beginning or end, are more robust to
variations. We are therefore interested in the stability with regard to a note’s relative position in the
melody. Each column j of an MSA has a computed stability score. Each i-th index of a sequence in
the MSA is assigned the stability score of its corresponding column. It should be noted that due to
gaps, the i-th index of two different sequences may not correspond to the same j column. For each
dataset (TUNEFAM-26 and CSV-60) we accumulate all the position versus stability data, where position
corresponds the i-th index normalized to the [0, 1] range. Figures 4 and 5 present the stability scores
using different scoring methods (computed over three different alignment configurations) versus the
relative position of a note (interval in our case) for the TUNEFAM-26 and CSV-60 datasets respectively.
The corresponding gap ratio of the MSA versus the note position is also presented as a reference,
since all conservation scores are affected by the amount of gaps per column.
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Figure 4. Position versus various stability scores (Information Content (IC), Weighted Sum-Of-Pairs
(WSOP) and PS) for the TUNEFAM-26 dataset using three different alignment configurations. Position
versus gap ratio is also presented (first to the left). Points are quantised to 10 bins.

Figure 5. Position versus various stability scores (IC, WSOP and PS) for the CSV-60 dataset using
three different alignment configurations. Position versus gap ratio is also presented (first to the left).
Points are quantised to 10 bins.

For both datasets there are a number of observations (trends) that become immediately apparent:
first, there is a strong indication that roughly the first half of a melody (up until 60% of its length) is
more stable than the remaining. The downward slope after position 0.6 is prominent in both datasets
and on all different stability scoring methods. This observation seems to agree with findings of
Janssen et al. [84]; stable phrases occur relatively early in the melody. Secondly, the stability towards
the final notes of a melody seems to be increasing. For the TUNEFAM-26 dataset in particular, the final
20% of the melody is very stable. The trend is less obvious on the CSV-60 dataset. However, it should
be reminded that TUNEFAM-26 contains whole folk tune melodies, while CSV-60 contains melodies
corresponding to structural segments of pop/rock songs; we cannot expect certain trends to be
completely shared by both sets.

A potential explanation for this trend would be that artists interpreting a song creatively start out
with an emphasis on the familiar material and take more liberty as the melody or segment progresses,
introducing more variation along the way. But in contrast to the findings of Bountouridis and Van Balen,
our results indicate that artists end with a familiar set of notes (for folk tunes more notably). This can
be potentially attributed to the capacity of our short-memory; after a considerable part of varied
material, our brain requires familiarity as to identify the whole piece as a variation of the original.
For the CSV-60 dataset, since the melodies are shorter, the effect of short-term memory’s capacity is
weaker thus explaining the less obvious trend.

We now turn our focus to pitch intervals. We hypothesize that certain pitch intervals are more
stable than others, i.e., certain transitions are less likely to be varied in a variation of the melody. To test
our hypothesis, we need to measure the overall stability for each interval, while avoiding biases related
to their likelihood of appearing in a sequence or column. We use the Information Content measure,
computed for each symbol (note interval) e in the j-th index of the MSA as such:

ICj(e) = Pe,jlog(
Pe,j

Qe
) (12)
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where Pe,j is the frequency of a particular symbol e in the jth column, while Qe is the expected frequency
of symbol e (prior).

Figure 6 presents the overall stability scores per interval for the whole TUNEFAM-26 and CSV-60
datasets, in addition to their interval distribution. We show the results for the 13 most frequent
intervals, since the remaining are too scarce for reliable analysis. Starting our analysis from the
interval distribution profiles, we observe that they agree with Schoenberg’s “singableness” hypothesis,
that posits (among others) that a melody consists of more stepwise than leap intervals as a result of the
human voice’s nature [86]. The scarcity of chromatic jumps can be explained if we consider them as
short excursions from the scale, which offer difficulties as well according to Schoenberg.

Figure 6. Pitch interval versus IC stability for the TUNEFAM-26 (left) and CSV-60 (right) datasets using
three different alignment configurations. Interval frequencies per dataset are also presented. Results
for only the 13 most frequent intervals are presented.

Regarding the stability-per-interval profiles, on first look, they are quite similar for the two
datasets. Interestingly, the variance seems proportional to the interval’s frequency despite the fact that
our stability measure IC is normalized for the expected frequency per interval. On closer look and
regarding the TUNEFAM-26 dataset, the ±1 and ±5 intervals are significantly more stable than the
±3, ±4 intervals of similar frequency of appearance. In addition, the +7 interval is as stable as the
very frequent ±2 intervals. Therefore, we conclude that there is something inherently salient about
the ±1 and ±5 intervals (at least in the TUNEFAM-26 dataset), but it is unsafe to make hypothesis
regarding why this is the case. It should be noted that the findings of Janssen et al. [84] indicated that
stable phrases are likely to comprise (among others) small pitch intervals and little surprising melodic
material. However, their analysis approach is focused on stable phrases’ global features, while ours
on note-level features. Therefore, a direct comparison of findings, at least for pitch intervals, cannot
be performed.

6. Data-Driven Modelling of Global Similarity

The findings of our stability analysis validated the intuitive hypothesis that some notes are
more likely to be altered in a melodic variation than others. As such, any fine-grained melodic
similarity function needs to accommodate for that fact by integrating meaningful scores for any
pair of notes. In pairwise alignment via dynamic programming, integrating domain knowledge is
only possible through the substitution matrix, which constitutes a model of global similarity, since it
identifies notes commonly changed into other notes. Van Kranenburg [1] extended the DTW scoring
function to include multiple musical dimensions, such as inner-metric analysis or phrase boundaries.
On a melody classification task, he showed that expert-based heuristics could achieve almost perfect
results. De Haas [87] showed that with regard to chord sequence similarity, local alignment with
a substitution matrix based on simple heuristics [15], significantly outperforms his more sophisticated
geometric model that takes into consideration the temporal relations between chords. Despite their
success, the major concern with such approaches is their reliance on heuristics with known issues,
such as limited generalization (see Section 1).

Interestingly in bioinformatics, the problem of meaningful substitution matrices, has been
addressed following a data-driven approach. The major difficulty of the scoring matrix calculation is
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the computation of the joint probability pxiyi (see Equation 7) that expresses the likelihood of the two
symbols at homologous sites. In bioinformatics, the key idea for solving this problem is that trusted
alignments of related sequences can provide information regarding the mutability of symbols. One of
the most widely-used matrices for protein comparison, BLOSUM [88], is actually derived from a large
number of manually constructed, expert-aligned amino-acid sequences by counting how often certain
amino-acids are substituted (mutated).

It follows naturally to investigate the potential of data-driven approaches in the MIR domain as
well. Hirjee and Brown [89,90] generated a data-driven phoneme substitution matrix from misheard
lyrics, gathered from online sources, and successfully applied it on a lyrics retrieval task. Similarly,
Bountouridis et al. [27] used online sources to generate a chord similarity matrix for the task of cover
song detection. Hu et al. [13] on the other hand, based their approach on pairs of aligned sung and
reference melodies for the task of query-by-humming, but failed to significantly outperform a simple
heuristic matrix. This might be attributed to the lack of experimentation with gap penalties or the
noisy frame-based instead of note-based representation. Another major drawback for them was the
amount of data, which consisted of only 40 sung melodies. We argue that expert-based alignments are
generally problematic due to their limited quantity. Online sources have been shown to be potential
solutions for lyrics or chords, but their existence cannot be guaranteed for all possible musical items
such as melodies.

To eliminate the need for trustworthy pre-aligned melodic variations, in this section we propose
the usage of trusted alignment algorithms as discussed in Section 4. Alignments generated by such
algorithms can provide us with the appropriate information to generate a substitution matrix by
computing log odds ratios for any pairs of symbols. While trusted alignment algorithms reduce
the need for expert or crowd-sourced alignments, they still require melodies grouped (by experts
preferably) into related cliques or tune families. These are still hard to find and as such, the applicability
of our approach in real-life scenarios can be limited. Interestingly, in the same way that melody cliques
contain melodic variants, melodies themselves may contain short recurring fragments, intra-song
motifs. Such motifs may appear in variations throughout the melody. It is therefore also possible
to generate a model of similarity among intra-song motifs if properly aligned. We hypothesize that
intra-song motivic similarity can approximate the melodic similarity, or in other words, independent
melodies contain enough information to explain variations in melodic cliques.

In the following paragraphs we present two data-driven approaches for capturing global similarity
realized as substitution matrices for the TUNEFAM-26 and CSV-60 datasets. First, a matrix generated by
alignments of melodic variations belonging to a clique (denoted simply melodic similarity). Secondly,
matrices generated from different alignments of individual melodies with themselves (denoted
intra-song motivic similarity). In order to assess their quality, we later perform an experiment to
evaluate their retrieval performance.

6.1. Generating Substitution Matrices

Before discussing the alignments used, we explain the general process of converting them
into a scoring system (a substitution matrix). The SubsMat package from the bioinformatics library
Biopython provides routines for creating the typical log-odds substitution matrices. For our data,
we firstly create the Accepted Replacement Matrix (ARM), meaning the counted number of
replacements (confusions) according to the alignments. In order to avoid matrix entries of value
zero, we apply pseudo-counts, meaning we add one to each entry. We generate the log-odds matrix
M by applying a function that builds the observed frequency matrix from the ARM. We use the
default settings: log base b = 10 and a multiplication factor f of 10. For two symbols x and y,
their corresponding log-odds score is:

M(x, y) = logb

( pxy

qxqy

)
× f (13)
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with M(x, y) rounded to the nearest integer. We normalize the matrix by dividing each of its elements
with max(M(x, y)), so that the maximum score assigned to a pair of symbols is one.

6.2. Computing the Alignments for Melodic and Intra-Song Motivic Similarity

For the modelling of melodic similarity, the results from Section 4 have indicated that, although
MAFFT is the best alignment strategy, the differences between various configurations are rather
insignificant. Therefore, instead of generating a substitution matrix from clique alignments of one
configuration only, we decided to use the following: MAFFT-globalpair with (−4,−2) gap penalties,
MAFFT-globalpair-allowshiftwith (−4,−2) gap penalties and MAFFT-localpair-allowshiftwith
(−2,−1) gap penalties. The melodic similarity matrices generated for the TUNEFAM-26 and CSV-60
datasets are denoted TFAM-matrix and CSV-matrix respectively.

For the modelling of intra-song motivic similarity, the idea is to align each sequence with
artificial versions of itself, such that all possible instances of intra-song motifs are aligned. In such
a context, a useful and informative version of a sequence is one that when aligned to the original,
maximizes the overlap between different instances of perceived-as-similar motifs. This informativeness
criterion partially agrees with Hertz’s and Stormo’s definition of interesting alignments: those whose
symbol frequencies most differ from the a priori probabilities of the symbols [91]. However,
since informativeness can be erroneously biased, we are interested in alignments that at the same time
minimize the overlap between perceptually different motifs.

Let us consider an example sequence So with two known motif instances “ABF” (cyan),
“AGG” (green) of label L1 and one motif instance “KLM” (red) of label L2: XXABFXXXAGGXXXKLM.
Furthermore, consider three versions of the So sequence based on arbitrary splitting in segments and
further duplication or shuffling: KLXXXXABFXXXAGGXF, XAGGXXABFXAGGX and AGGXXKLMXXXABFXXX.
Three possible pairwise alignments of the versions with the original are:

–––-XXABFXXXAGGXXXKLM XXABFXXXAGGXXXKLM– XXABFXXX–––––AGGXXXKLM
LMXXXXABFXXXAGG––XK–– X–AGGXX–ABFX––AGGX ––AGGXXXKLMXXABFXXX–––

The first example contains alignment of same-label motif instances with themselves (e.g., ABF
to ABF), which provide no new information regarding their variation and therefore is of no value.
The second alignment matches different instances of same-label motifs (e.g., ABF to AGG) but incorrectly
aligns different-label motifs (e.g., AGG to KLM). It is only the third case that satisfies our criteria of a
useful version of a sequence.

In order to identify the method that can be better used in practice to align any intra-song
motifs (where the actual motifs are unknown), we design a simple experiment: we select all single
sequences from the TUNEFAM-26 dataset that contain annotated motifs with two instances and devise
three version-creation methods based on intuition. We then pairwise-align each original sequence to
its different versions using different configurations of motif-agnostic alignment algorithms. In our
experiment, the usefulness criteria are formulated as such: we are given the set L of all motif labels
in a sequence S and Mk = {mk

1, mk
2, ..., mk

j }, the set of all instances of intra-song motifs of label k ∈ L.
We are interested in generating and pairwise-aligning different sequence versions with S, such that
average relative likelihood RM that the different instances ∈ Mk, ∀ k are aligned as opposed to be
aligned by chance, is greater than one and maximal:

rk
M = ∑

i,j j �=i

pmk
i mk

j

qmk
i
qmk

j

RM =
1
L ∑

k∈L
rk

M (14)

At the same time the average relative likelihood RNM that any instances of different-labels motifs
are aligned as opposed to be aligned by chance should be less than one and minimal:
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RNM =
1
L ∑

k,l k �=l
∑
i,j

pmk
i ml

j

qmk
i
qml

j

(15)

In practice, we are interested in the setup (version method plus alignment configuration) that
maximizes RM − RNM. We experiment with three different automatic methods for version creation.
Each method generates θ versions of the original sequence which is then pairwise-aligned to the
original. We experiment with θ = {4, 8, 12, 16}. The automatic methods for version creation are
as follows:

1. Permutations: The original sequence is first split into n same-size segments. Each version is one of
the n! rearrangements of the segments. In our case n is arbitrarily set to four. Although automatic
melody segmentation algorithms could have been used, we decided to used a fixed number of
segments for the sake of simplicity.

2. Halves: The original sequence is iteratively split in subsequences of half size until their length
is equal to four or their number is equal to θ. Each version is a sequence of length equal to the
original, created by the concatenation of one of the subsequences.

3. Halves and shifts: A set of versions created by shifting the sequence by 1/k of its length to the
right k times, resulting to k versions. The idea is to fuse the current set with the halves. We do that
by randomly selecting θ/2 versions from the halves method and θ/2 versions from the current set.

The different versions are pairwise-aligned to the original using the following alignment
configurations: MAFFT-globalpair with (−4,−2) gap penalties, MAFFT-globalpair-allowshift
with (−4,−2) gap penalties and MAFFT-localpair-allowshift with (−2,−1) gap penalties.

The RM, RNM and RM − RNM figures for each version-creation method over all θ and for
each alignment configuration, are presented in Figure 7. We notice that RM is greater than one
and RNM is less than 1 for most setups, meaning that useful alignments are indeed generated.
However, the versions created with the halves method (θ = {4, 6}) and aligned to the original
with localpair-allowshift with (−2,−1) gap penalties, achieve the highest RM − RNM (see the third
column, second row in Figure 7). As such, we generate matrices (denoted halves-θ:4 and halves-θ:6 for
both datasets) based on this configurations.

Figure 7. Cont.
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Figure 7. The average relative likelihood RM (first column) that the different motif instances are
aligned as opposed to be aligned by chance, the average relative likelihood RNM (middle column)
that any instances of different-labels motifs are aligned as opposed to be aligned by chance,
and RM − RNM (last column) figures for each version-creation method (per row) over all θ and
for each alignment configuration.

6.3. Experimental Setup

We are interested in evaluating whether the scoring matrices generated from alignments using
the methods of the previous Section 6.2, outperform the the standard ±1 scoring matrix on the
TUNEFAM-26 and CSV-60 datasets. In the retrieval case, we want to rank higher those melodies
belonging to the same tune family or clique as the query. In the classification task, we want the tune
family or clique of the highest ranked melody to correspond to the query’s (that is, we are doing
a k-Nearest Neighbour (kNN) classification experiment with k = 1).

Regarding the gap settings for this experiment, we should be extremely careful: the significant
variation among the distribution of scores in between the matrices, renders the effect of the gap
settings unpredictable, which can be problematic when aiming for a fair matrix comparison. Intuitively,
there are two possible solutions: either compute the optimal gap settings per matrix, e.g., via a training
process that optimizes the sensitivity (true positive rate) and selectivity (true negative rate) [92],
or present their performance across a set of different penalties. The first approach is suitable for
large datasets but is prone to over-fitting, and lacks a proper theoretical framework [93]. The second
approach resembles the task of systematically comparing classifiers , which allows for a more complete
view of each matrix by exploring the effect of the gap settings. Such an approach follows an intuitive
classifier quality principle that agrees with our goal to develop generalizable solutions: “if a good
classification is achieved only for a very small range in the parameter space, then for many applications
it will be very difficult to achieve the best accuracy rate provided by the classifier” [94].

Picking a range of gap settings for each matrix that fairly represent its quality is not trivial.
To solve the problem of fair matrix comparison, we need a meaningful intermediate mapping between
two gap spaces GA ∈ R2 and GB ∈ R2 that work on matrices A and B respectively; or a single
function f : Rn → R under which (GA,A) and (GB,B) have the same image (are equivalent). Given two
sequences to be aligned, we argue that two settings (ga ∈ GA, A) and (gb ∈ GB, B) are equivalent
and comparable only when they are of same flexibility, meaning they result to alignments of equal
length relative to the original sequences (which translates to equal ratio of gaps to non-gap symbols
for both settings). This idea is based on the observation that for two settings that result to the same
amount of gaps, the alignment quality is solely dependent on the matrices used; as such, the matrices
can be compared fairly. To compute the flexibility values for each of the TUNEFAM-26 and CSV-60
datasets, we randomly selected a subset of 50 sequences and pairwise aligned them using a range of
different gap settings per matrix (d, e ∈ [0.1, 2.0] with 0.1 intervals and e ≤ 0.5d). We used subsets
instead of whole datasets for efficiency reasons, while the gap boundaries 0.1 and 2.0 are considered
typical. For each alignment of sequences s1 and s2 of length l1 and l2 respectively, we computed the
gap to non-gap ratio r = (ng − |l1 − l2|)/(l1 + l2), where ng corresponds to the amount of gaps in the
alignment. The average r over all pairwise alignments using a gap setting on the matrix is what we
consider the setting’s flexibility for that particular dataset. Given the mapping of each gap setting to
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the flexibility space, we can now fairly compare matrices by investigating their retrieval performance
across different flexibility values.

6.4. Results

Figure 8a,b present the average precision and classification accuracy per substitution matrix
over a range of flexibility values for the TUNEFAM-26 and CSV-60 datasets respectively. For the
TUNEFAM-26 dataset and starting from the performance of the TFAM-matrix, we observe that it
significantly increases the retrieval performance across all gap settings. In average, the TFAM-matrix
increases the mean average precision from ID’s 0.65 to 0.69, indicating that some meaningful
similarity/variation knowledge has been indeed captured. The CSV-matrix presents a higher retrieval
performance than the ID matrix, but the significance is not constant across all flexibilities. The same
holds for the intra-song motivic matrices halves-θ:4 and halves-θ:6. If we concatenate the average
precision scores over all flexibilities per matrix, besides the TFAM-matrix (see Figure 8a (top-right))
and perform a Friedman test, we discover that there is a significant difference between the four
matrices. Post hoc analysis shows that the difference is due to the difference in between all pairs of
matrices except halves-θ:4 and halves-θ:6. With regard to the classification accuracy, we do not observe
a significant difference among the matrices.

For the CSV-60 dataset, the differences between matrices are more accentuated even through
visual inspection. The CSV-matrix and learned matrix from the folk tunes collection TFAM-matrix,
significantly outperform ID across almost all flexibilities. The implication of their similar performance
in average will be discussed in the next section. Regarding the intra-song motivic matrices, both present
significantly better performance than ID. Excluding CSV-matrix, a Friedman test with post hoc analysis
on the concatenated average precision, reveals significant difference between all pairs of matrices
except for the halves-θ:4 (0.74) and halves-θ:6 (0.75).

(a)

Figure 8. Cont.
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(b)

Figure 8. Average precision and classification accuracy for each matrix over a range of flexibility values
(left) for the TUNEFAM-26 (a) and CSV-60 (b) datasets. The average precision and accuracy over all
flexibilities per matrix are also presented on the right.

6.5. Discussion

The results offer a number of interesting findings that are secondary to our main question,
e.g., the insignificant difference among matrices for the classification task implies the existence of
almost-duplicates for each query. Or the inverse relation between the retrieval performance of each
matrix to the flexibility value, indicates that real-life retrieval systems should aim for gap settings of low
flexibility. However, most importantly, our results strongly suggest that data-driven matrices, learned
from either melody variations or intra-song motif variations, capture some meaningful relationships
between notes that can find application in melody retrieval. In the case of TUNEFAM-26, the results are
obviously not impressive despite their statistical significance. Van Kranenburg’s heuristics on the same
dataset and task, pushed the MAP and classification accuracy to 0.85 and 0.98 respectively [1]. However,
Van Kranenburg used only one arbitrarily selected gap setting (−0.8, −0.5), thus leaving the effect of
gap settings uninvestigated. In our case however, we established a fairer framework for comparing
matrices. In addition compared to our data-driven approach, Van Kranenburg had to experiment
with a large number of heuristics to find the optimal. For the CSV-60 dataset, and in contrast to
TUNEFAM-26, learning note relationships from folk tune variations or intra-song motifs seems to
have a much more very positive effect in the overall retrieval performance. The reason behind this
difference is unclear, but we can speculate based on intuition. In general, we observe that the vertical
variation, i.e., among melodies belonging to the same family/clique, in the TUNEFAM-26 is more
informative than the vertical variation in CSV-60. This explains why the TFAM-matrix is successful
on both datasets, while CSV-matrix is only successful on CSV-60. Probably, tune families contain
an adequate amount of melodic variations that allows for the generation of an informative matrix.
At the same time the horizontal variation, i.e., among intra-song motifs, is similarly informative in
both datasets. This explains why the performance of halves-θ:4 and halves-θ:6 matrices lies in between
that of the ID and the best performing matrix for each dataset.
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In summary, the results indicate that vertical variation models are more beneficial in a retrieval
scenario. At the same time, the captured relationships of the horizontal models seem inadequate to
approximate their performance. This implies that the way a song varies across its length does not
follow the same principles as its variation through time, but further confirmation with note-to-note
alignments of intra-song motifs and melodic variations is required. Nevertheless, the modelling of
horizontal variation can be considered highly appropriate for practical scenarios of melody retrieval
and classification where clique information is unavailable.

7. Conclusions

Modelling music similarity is a fundamental, but intricate task in MIR. Most previous works
on music similarity, practical or theoretical, relied heavily on heuristics. In contrast, our work
focused on acquiring knowledge on music and melodic similarity in particular from the data itself.
Since data-driven methods and tools have been under development for years in bioinformatics,
and since biological and music sequence share resembling concepts, we investigated their applicability
inside a musical context.

First, we tackled the concept of meaningful and musically significant alignments of related
melodies, by applying the bioinformatics structural alignment metaphor to music motifs. Our results
revealed that the MAFFT multiple alignment algorithm, which uses gap-free sections as anchor points,
is a natural fit for multiple melodic sequences; a strong indication of the importance of musical patterns
for melodic similarity. Trusted MSA techniques made it possible to organize melodic variations such
that melodic stability/variation can be analysed. We argue that our stability analysis findings are free
of heuristics or biases that might have been introduced following other approaches.

Secondly, we investigated the modelling of global melodic similarity. We captured the probability
of one note to be changed to another in a variation and created musically appropriate note-substitution
scoring matrices for melodic alignment. We then put these matrices successfully to the test by designing
retrieval and classification tasks. Our data-driven modelling of music similarity outperforms the naive
±1 matrix, indicating that indeed some novel knowledge was captured. Additionally, we showed
that variations inside a melody can be an alternative source for modelling the similarity of variations
among tune families or cliques of covers.

In general, we showed that bioinformatics tools and methods can find successful application
in music, to answer in a reliable, data-driven way a number of important, on-going questions
in MIR. We argue data-driven approaches, such as ours, constitute an ideal balance between
the two occasionally contradicting goals of MIR, problem solving and knowledge acquisition.
Unfortunately, in the current age of big data, the potential in exploring musical relationships that can
aid both the digital music services and our understanding of music itself remains largely idle. We hope
that our work will stimulate future research to focus on a more constructive direction.
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Featured Application: The results obtained in this paper are applicable to the design of new

musical instruments intended to facilitate the learning and playing of music.

Abstract: Although isomorphic pitch layouts are proposed to afford various advantages for musicians
playing new musical instruments, this paper details the first substantive set of empirical tests on how
two fundamental aspects of isomorphic pitch layouts affect motor learning: shear, which makes the
pitch axis vertical, and the adjacency (or nonadjacency) of pitches a major second apart. After receiving
audio-visual training tasks for a scale and arpeggios, performance accuracies of 24 experienced
musicians were assessed in immediate retention tasks (same as the training tasks, but without the
audio-visual guidance) and in a transfer task (performance of a previously untrained nursery
rhyme). Each participant performed the same tasks with three different pitch layouts and, in total,
four different layouts were tested. Results show that, so long as the performance ceiling has not
already been reached (due to ease of the task or repeated practice), adjacency strongly improves
performance accuracy in the training and retention tasks. They also show that shearing the layout, to
make the pitch axis vertical, worsens performance accuracy for the training tasks but, crucially,
it strongly improves performance accuracy in the transfer task when the participant needs to
perform a new, but related, task. These results can inform the design of pitch layouts in new
musical instruments.

Keywords: sound and music computing; new musical instruments; pitch layouts; perception and
action; motor learning

1. Introduction

Designers of new musical instruments can often be concerned with ensuring accessibility for
users either with no previous musical experience, or for those who already have training in another
instrument, so that they can easily alter or learn new techniques. Several claims regarding the optimal
pitch layout of new musical instruments or interfaces have been made, but as yet there is little empirical
investigation of the factors that may enhance or disturb learning and performance on these devices.
Our previous conference paper detailed the impact of adjacency and shear on pitch accuracy for the
transfer task [1]; in this paper, we take a more comprehensive approach by also considering timing
accuracy, and the training and retention tasks.

Appl. Sci. 2017, 7, 1218 411 www.mdpi.com/journal/applsci
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1.1. Isomorphic Layout Properties

Since the nineteenth century, numerous music theorists and instrument builders have conjectured
that isomorphic pitch layouts provide important advantages over the conventional pitch layouts
of traditional musical instruments [2–5]. Indeed, a number of new musical interfaces have used
isomorphic layouts (e.g., Array Mbira [6], Thummer [7], AXiS-49 [8], Musix Pro [9], LinnStrument [10],
Lightpad Block [11], Terpstra [12]).

An isomorphic layout is one where the spatial arrangement of any set of pitches (a chord, a scale,
a melody, or a complete piece) is invariant with respect to musical transposition. This contrasts with
conventional pitch layouts on traditional musical instruments; for example, on the piano keyboard,
playing a given chord or melody in a different transposition (e.g., in a different key) typically requires
changing fingering to negotiate the differing combinations of vertically offset black and white keys.

Isomorphic layouts also have elegant properties for microtonal scales, which contain pitches
and intervals “between the cracks” of the piano keyboard [13]. Although strict twelve-tone equal
temperament (12-TET) is almost ubiquitous in contemporary Western music, different tunings are
found in historical Western and in non-Western traditions. Isomorphic layouts may, therefore, facilitate
the performance of music both within and beyond conventional contemporary Western traditions.

One elegant property relevant to non-standard tunings is that, unlike the piano keyboard,
isomorphic layouts do not have an immutable periodicity in their spatial structure. On the piano
keyboard, only scale systems that repeat every twelve pitches can be intuitively mapped to its keys.
Conversely, isomorphic layouts provide consistent spatial representations of scales regardless of
their periodicity. This matters because there are many useful tuning systems that do not repeat
every 12 chromatic pitches, such as meantone tunings in 19-TET or 31-TET, which are suitable for
conventional Western music but provide better approximations to just intonation than the standard
12-TET; Bohlen-Pierce scales, which repeat every 13 equal divisions of the 3/1 tritave (instead of the
standard 2/1 octave); the Javanese Pelog system, which is often approximated by a 7-pitch scale in
9-TET; and numerous other scale systems [14].

In this paper, we do not compare isomorphic and non-isomorphic layouts. Instead, we focus on
how different isomorphic layouts impact on learning. This is because there are an infinite number
of unique isomorphic layouts (and a large number that are practicable for conventionally tuned
diatonic-chromatic music): they all share the property of transpositional invariance (by definition)
but they differ in a number of other ways that may plausibly impact their usability. For example,
successive scale pitches, such as C, D, and E, are spatially adjacent in some isomorphic layouts while
in others they are not; additionally, in some isomorphic layouts, pitches are perfectly correlated to
a horizontal or vertical axis while in others they are not [15]. With respect to the instrumentalist,
the “horizontal” axis runs from left to right, the “vertical” axis from bottom to top or from near to
far. In some layouts, octaves may be vertically or horizontally aligned; in others, they are slanted.
Properties such as a vertical pitch axis or a vertical octave axis, or adjacent major seconds, and so
forth, may be conjectured as desirable (or undesirable): either way, they are typically non-independent
because changing one (e.g., pitch axis orientation) may change another (e.g., octave axis orientation).
Choosing an optimal layout thus becomes a non-trivial task that requires knowledge of the relative
importance of the different properties. However, due to their non-independence, it is challenging to
investigate the relative importance of these features experimentally.

To address this, the experiment presented in this paper explores how two independent spatial
transformations of isomorphic layouts—shear and adjacency—impact on learning in a set of melody
retention and transfer tasks. The shear is used to manipulate the angles of the pitch axis and major
second axis, while keeping the octave axis constant; the adjacency manipulation determines whether
or not major seconds are spatially adjacent. These two transformations enable us to test our hypotheses
that adjacent major seconds and a vertical pitch axis facilitate the learning and playing of melodies.

The four layouts that result from these transformations are illustrated in Figure 1a–d. Each figure
shows how pitches are positioned, and the orientation of three axes that we hypothesize will impact
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on the layout’s usability. Each label indicates whether the layout has adjacent major seconds or not
(A and A′, respectively) and whether it is sheared or not (S and S′, respectively). The three axes are the
pitch axis, the octave axis, and the major second axis, as now defined (the implications of these three axes,
and why they may be important, are detailed in Section 1.1.2).

• The pitch axis is any axis onto which the orthogonal (perpendicular) projections of all button centres
are proportional to their pitch; for any given isomorphic layout, all such axes are parallel [16]
(see the caption for Figure 1 for a practical demonstration of how this works).

• The octave axis is here defined as any axis that passes through the closest button centres that are
an octave apart.

• The major second axis (M2 axis, for short) is here defined as any axis that passes through the closest
button centres that are a major second apart.

When considering tunings different to 12-TET (e.g., meantone or Pythagorean), alternative—but more
complex—definitions for the octave and M2 axes become useful.

C D E
F G A B

C D E

Octave axis Pitch axis

AbEbBb
Ab Bb F#

C##
M2 axis

F G A B
C D E

EbAb Bb F#
C#

F#

F G A BEb C#

(a)

C D E
F G A B

C D E
F G A B

Octave axis Pitch axis

M2 axis
AbE

b
Bb

AbE
b
Bb C#

F#
C#

F#

(b)

C D EF G A BC D EF G A B

Octave axis and Pitch axis

AbEbBb
A

EbBb
C#

F#C#
F#

C D EF G A B

A
EbBb

C#
F#

b
b

M2 axis

(c)

C D EF G A BC D EF G A B
Octave axis and Pitch axis

M2 axis

Ab
Eb

Bb
Ab

Eb
Bb

C#
F#
C#

F#

(d)

Figure 1. The four isomorphic layouts tested in the experiment. They have differently angled pitch
axes and major seconds axes. An easy way to understand the meaning of the pitch axis is to place
a ruler on any of the above subfigures so that it is at right angles to the pitch axis. If the ruler is then
slid in the direction of the pitch axis, with its angle kept constant, the button-centres passing under the
ruler’s edge will always be encountered in ascending pitch order. This occurs only when the ruler is
oriented and moved, in this way, with the pitch axis. This means that, when the pitch axis is vertical,
as in (c,d), the pitch of each button is proportional to its vertical position. In all four layouts, the octave
axis is vertical; that is, buttons that are an octave apart are vertically aligned. (a) A′S′: nonadjacent
M2s, unsheared; (b) AS′ (the Wicki layout [4]): adjacent M2s, unsheared; (c) A′S: nonadjacent M2s,
sheared; (d) AS: adjacent M2s, sheared.

1.1.1. Adjacent (A) or NonAdjacent (A′) Seconds

Scale steps (i.e., major and minor seconds) are, across cultures, the commonest intervals
in melodies [17]. It makes sense for such musically privileged intervals also to be spatially
privileged. An obvious way of spatially privileging intervals is to make their pitches adjacent:
this makes transitioning between them physically easy, and makes them visually salient. However,
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when considering bass or harmony parts, scale steps may play a less important role. This suggests that
differing layouts might be optimal for differing musical uses.

The focus of this experiment is on melody so, for any given layout, we tested one version where
all major seconds are adjacent and an adapted version where they are nonadjacent (minor seconds
were nonadjacent in both versions). Both types of layouts have been used in new musical interfaces;
for example, the Thummer (which used the Wicki layout (Figure 1b) had adjacent major seconds,
while the AXiS-49 (which uses a Tonnetz-like layout [18]) has nonadjacent seconds but adjacent thirds
and fifths.

1.1.2. Sheared (S) or Unsheared (S′)

We conjecture that having any of the above-mentioned axes (pitch, octave, and M2) perfectly
horizontal or perfectly vertical makes the layout more comprehensible: if the pitch axis is vertical
or horizontal (rather than slanted), it allows for the pitch of buttons to be more easily estimated by
sight, thereby enhancing processing fluency. Similar advantages hold for the octave and M2 axes:
scales typically repeat at the octave, while the major second is the commonest scale-step in both the
diatonic and pentatonic scales that form the backbone of most Western music.

However, changing the angle of one of these axes requires changing the angle of one or both of the
others, so their independent effects can be hard to disambiguate. A way to gain partial independence
of axis angles is to shear the layout parallel with one of the axes—the angle of the parallel-to-shear axis
will not change while the angles of the other two will. A shear is a spatial transformation in which points
are shifted parallel to an axis by a distance proportional to their distance from that axis. (For example,
shearing a rectangle parallel to an axis running straight down its middle produces a parallelogram; the
sides that are parallel to the shear axis remain parallel to it, while the other two sides rotate). As shown
by comparing Figure 1a with Figure 1c, or by comparing Figure 1b with Figure 1d, we used a shear
parallel with the octave axis to create two versions of the nonadjacent layout and two versions of the
adjacent layout: each unsheared version (A′S′ or AS′) has a perfectly horizontal M2 axis but a slanted
(non-vertical) pitch axis; each sheared version version (A′S or AS) has a slanted (non-horizontal) M2
axis but a vertical pitch axis. In both cases the octave axis was vertical.

In this investigation, therefore, we remove any possible impact of the octave axis orientation;
we cannot, however, quantitatively disambiguate between the effects of the pitch axis and the M2 axis.

Unsheared layouts are common in new musical interfaces because these typically use buttons
arranged in a perfectly square or hexagonal array; we are not aware of a hardware interface that
makes use of shear to make the pitch axis vertical or horizontal (although this is a design feature of the
software MIDI sequencer Hex [15]).

1.2. Motor Skill Learning in Music Performance

Learning a new musical instrument requires a number gross and fine motor skills in order to
physically play a note. This is often carried out in tandem with sensory processing of feedback from
the body and of auditory features (e.g., melody, rhythm, timbre) in order to learn how to play specific
sequences [19]. For the purposes of our experiment, by using musically-trained participants and
sequences familiar to those musicians such as scales and arpeggios, we reduce this to a motor learning
problem. How best can musicians learn to play on a new pitch layout?

In learning a motor skill there are three general stages [20]:

• A cognitive stage, encompassing the processing of information and detecting patterns.
Here, various motor solutions are tried out, and the performer finds which solutions are
most effective.

• A fixation stage, when the general motor solution has been selected, and a period commences
where the patterns of movement are perfected. This stage can last months, or even years.
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• An autonomous stage, where the movement patterns do not require as much conscious attention
on the part of the performer.

Essentially, learning the motor-pitch associations of a new instrument requires the performer to
perceive and remember pitch patterns. Once these pitch patterns are learned, the performer becomes
more focused on eliminating various sources of motor error. Because achieving motor autonomy is
a lengthy process—one that can seldom be captured by short-term experiments—our current study
focuses on only the first two elements of motor learning.

Learning a pattern of actions and their associated responses can be affected by pre-existing
action-response representations: essentially, the anticipated effects of an action have an influence on
the performance of that action; for example, reaction time is faster when participants are instructed to
press a button forcefully and this elicits a loud tone, rather than when the effect is not compatible with
the action (e.g., a soft tone) [21]. Therefore, it may also hold that pre-existing expectations of the pitch
effects of a sequence of actions may have an influence on the performance of that sequence.

Research into the Spatial-Musical Association of Response Codes (or SMARC effect) demonstrates
not only a vertical alignment (increasing pitch height is mapped vertically from low to high), but also
a horizontal alignment (increasing pitch height is mapped horizontally from left to right) in musically
trained participants [22]. This horizontal effect is far more subtle in non-musicians [23] and in some
cases non-existent [24,25], suggesting that musical training enhances this particular spatial dimension.
It is posited that this may be a learned-association effect [26]. These pitch representations have been
shown to influence motor planning and action. Keller and colleagues found that, for a sequence of
three consecutive keypresses, timing was more accurate when the produced tones were compatible
with the pre-existing associations that increasing vertical movement results in an increase in pitch
height [27,28]. This appears to be evident across different levels of expertise (non-musicians and trained
musicians), although, as expected, training enhances the strength of this existing representation [29].
We investigate only 2-dimensional pitch layouts, so do not consider the implications of Shepard’s
helical model of pitch perception [30], which requires a cylindrical—hence 3-dimensional—form [31].

The tendency in the pitch-motor representation literature has been to reverse or scramble pitches
from the traditional down-to-up or left-to-right assignment. Although many new pitch layouts may
not violate this basic learned pitch-motor association, adjustments to the learned general motor pattern
may still be required depending on the spacing of intervals, and the precise orientation of the pitch axis.
Stewart and colleagues [26] demonstrated an effect on reaction time in a task using “normal” versus
“stretched” representations of pitch along a horizontal axis (sequences which did or did correspond to
a learned pattern of movement that could be played with the fingers of a single hand). This suggests
that, despite their similarity to other layouts (both “normal” and “stretched” satisfied the left-right
horizontal sequence), the patterns of notes may have fundamentally changed for the performer, and so
require a certain amount of motor learning in this new (but clearly related) task.

It seems plausible then that certain aspects of a new layout, within the realm of satisfying
the vertical and horizontal SMARC effects, will facilitate such learning, while others may hinder it.
These aspects may be related to (a) previously learned pitch-motor mappings; (b) ergonomic issues,
such as the physical ease of making the motions required to play the target pitches, and also from
(c) processing fluency, such as how easy it is to see or sense, by proprioception, musical features
that are relevant to the task. As detailed in Sections 1.1.1 and 1.1.2, in this experiment, we focus on
the last of these and, in particular, on two musical attributes that are important for melodies and
two spatial attributes that have a plausible impact on processing fluency. The musical attributes
are major seconds (important because of their prevalence in melodies and musical scales) and pitch
height. The spatial attributes are verticality (we hypothesize that perfectly vertical, or horizontal,
lines are easier to imagine than are slanted lines) and adjacency (we hypothesize that it is generally
easier to find a spatially adjacent pitch than one that is separated). The experimental manipulation,
therefore, involves participants learning and playing pitch layouts with vertical versus slanted pitch
axes, and adjacent versus nonadjacent major seconds.
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To test how well the participants have learned the new layouts and perfected their motor pattern,
we are particularly interested in the transfer of learning from one task to another. For instance, a piano
player will practice scales not only to achieve good performance of scales, but also to fluently play
scale-like passages in other musical pieces. In our study, we designed a training and testing paradigm
for the different pitch layouts such that the transfer task involved a previously unpracticed, but familiar
(in pitch) melody.

1.3. Study Design

For this experiment, we were interested in examining how features of a pitch layout affected
performance accuracy in the learning of a new motor pattern, how this skill was retained at test
immediately after training, and performance accuracy in transfer of this skill to a new, untrained
task. Musically experienced participants played three out of the four layouts under consideration
(see Figure 1): all 24 participants played both AS′ and AS, with 12 participants each playing either
A′S or A′S′.

The independent variables were

• Adjacency ∈ {0, 1}, where 0 is the code for a layout with non-adjacent major seconds (A′S′ or A′S),
and 1 is the code for a layout with adjacent major seconds (AS′ or AS).

• Shear ∈ {0, 1}, where 0 is the code for an unsheared layout (A′S′ or AS′), and 1 is the code for
a sheared layout (A′S or AS).

• LayoutNo ∈ {0, 1, 2}, where 0 is the code for the first layout played by a participant, 1 is the code
for the second layout they played, and 2 is the code for the third and final layout they played.

• PerfNo ∈ {0, 1, 2, 3}, where 0 is the code for their first performance of a given layout, 1 is the code
for their second performance of a given layout, 2 is the code for their third performance of a given
layout, 3 is the code for their fourth performance of a given layout. Note that participants gave
three performances for the training, two performances for the immediate retention tasks, and four
performances for the transfer task.

Each participant played the layouts in one of four different sequences, and each such sequence
was played by 6 participants:

• AS′ then A′S′ then AS
• AS′ then A′S then AS
• AS then A′S′ then AS′

• AS then A′S then AS′.

This means that the nonadjacent seconds layouts (A′S′ and A′S) were always presented second,
and that participants who started with the unsheared adjacent layout (AS′) finished with the sheared
adjacent layout (AS), and vice versa.

In each such layout, participants received an equivalent training and testing program: first for
the C major scale, then for arpeggios of all triads in C major. The scale task was used to support
the learning of the spatial patterns of seconds in the diatonic scale; the arpeggios to support the
learning of the spatial patterns of larger intervals such as thirds and fourths in the diatonic scale.
Immediate retention (performance without any audiovisual training) was tested after each task.
The transfer task required participants to perform a well-known melody (Frère Jacques) for which they
had received no prior training. This melody contains numerous major and minor seconds but also
larger intervals. Participants were given 20 s to practice before their performances were recorded.
These procedures are further detailed in Sections 2.2–2.4.

Participants’ preferences were elicited in a semi-structured interview, a detailed analysis of which
is available in [1]. The current paper will fully describe the results of the performances of training and
testing materials (both retention and transfer tasks), assessed for their inaccuracy in terms of number
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of incorrect notes as well as the timing of the performed notes in comparison to either the audiovisual
sequence (training) or the metronome beat (retention and transfer).

2. Results

2.1. Modelling Approach

In order to determine effect sizes and significances of the independent variables (Adjacency, Shear,
LayoutNo, PerfNo), these variables were regressed on the dependent variable Inaccuracy. The method
used to calculate Inaccuracy (detailed in Section 4.4) takes account of both pitch errors and timing errors
in participants’ performances. Due to fundamental differences in the training tasks compared with
the test tasks (retention and transfer), the method for calculating their respective Inaccuracy values
differs (see Section 4.4). In both cases, however, Inaccuracy takes only positive values, because a value
of 0 implies a perfect performance.

Initially, linear mixed effects models were fitted to the Inaccuracy data. (Mixed effects models are
regressions where participants’ coefficients are treated as samples from a single, and best-fitting,
multivariate normal distribution. Given this distribution, the means of the coefficients are termed fixed
effects, their (co)variances are termed random effects. For within subject designs, mixed effects models
are widely recommended to avoid Type I errors [32]).

However, the residuals were skewed and heteroscedastic. For this reason, a generalized linear
mixed effects model with a gamma distribution and a log link was used—this combination of
distribution and link function providing the best fit to the data. (Generalized linear models are designed to
cope with data that do not meet the assumptions required by linear regression models; notably, that the
residuals are homoscedastic and symmetric. These violations typically occur when the data can take
only a subset of real values, such as Inaccuracy, which can take only positive values. For positive-valued
data, the gamma distribution with a log link is commonly used. The link function transforms the mean
of the chosen distribution so that it is linearly related to the independent variables [33].)

The log link means that the exponential of each predictor’s fixed effect value represents the
multiplicative factor by which Inaccuracy changes for each unit increase of that predictor (all else
being equal). For example, a fixed effect of 0.5 means that a unit increase in that predictor multiplies
Inaccuracy by exp(0.5) = 1.649; put differently, Inaccuracy increases by 64.9%. In the subsequent tables,
this exponential value is shown in the “Factor” column.

In each model, the intercept was included as a random effect grouped by participant to allow it
to take account of participants’ differing abilities. Generally, maximal random effects structures [32]
(with all fixed effects and their interactions included as random effects) were attempted, but such
models failed to converge, even after removing interactions. The resulting models, therefore, assume
that the independent variables are invariant across participants in the population, but that particpants’
overall ability does vary.

The experimental design was unbalanced because nonadjacent layouts occurred only during
the second layout (i.e., Adjacency = 0 ⇐⇒ LayoutNo = 1). For this reason, the predictor Adjacency
was not included in any interactions. Including Adjacency in interactions results in rank-deficient
design matrices or in conditional effects for lower-order terms that are hard to interpret; for example,
if the interactions Shear:Adjacency and Shear:LayoutNo are included, then the conditional effect for
Shear refers to the effect of Shear when LayoutNo = 0 and Adjacency = 0, which never actually occurs
in the experiment. All other possible interactions were included in the initial model. To simplify
interpretation of lower-order terms, any nonsignificant 3-way interactions were removed from the
model, and the model was refitted. For the same reason, any nonsignificant 2-way interactions not
part of a 3-way interaction were then removed, and the model refitted.

Classical t-tests of significance in mixed effects models are considered to be anti-conservative
(prone to incorrectly low p-values); for this reason, each predictor’s p-value (as shown in the subsequent
summary tables) was estimated through theoretical (χ2(1)) tests of the likelihood ratio between the
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model with that predictor and the model without that predictor. All models were fitted with the
lme-4 package in R, and p-values estimated by the drop1 function using the Chisq option, or the anova
function. The r2 value shown in each table is the squared correlation between the model’s predictions
and the observed data, hence loosely analogous to R2 in linear regression.

2.2. Training Performances

Participants performed two training tasks: (1) Scales, and (2) Arpeggios. For each layout,
participants completed three training performances of the scale, and three of the arpeggios.
The accuracy of performances in the two training tasks, averaged across participants, are summarized
in Figures 2 and 3 as a function of the independent variables detailed in Section 1.3. The 95%
confidence intervals were obtained with 100,000 bootstrap samples, calculated and plotted in MATLAB.
The generalized linear mixed effects models used to estimate the effects’ sizes and significances of
Adjacency, Shear, LayoutNo, and PerfNo are summarized in Tables 1 and 2.
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Figure 2. Inaccuracies, averaged across participants, for the scale training task. The higher the line,
the more accurate the average performance. The bootstrapped confidence intervals cover a 95% range.
Adjacent layouts have solid lines, nonadjacent have dashed lines. Sheared layouts have orange lines,
unsheared have blue lines. The first performance is coded 0, the second is coded 1, . . . ; the first layout
is coded 0, the second is coded 1.

Table 1. Generalized linear mixed effects model for the scale training task.

Fixed Effect Estimate Factor p-Value

(Intercept) 3.48 32.61 <0.001 ***
Adjacency −0.06 0.94 0.263

Shear 0.13 1.14 0.026 *
LayoutNo −0.37 0.69 0.001 ***

PerfNo −0.27 0.77 <0.001 ***
LayoutNo:PerfNo 0.12 1.13 0.003 **

Log Likelihood −727.67
Num. obs. 208

Num. groups: ID 24
Var: ID (Intercept) 0.04

Var: Residual 0.17
r2 0.44

*** p < 0.001, ** p < 0.01, * p < 0.05.

The significant coefficient for Shear (1.14) indicates that sheared layouts worsen performance
accuracy in the scale training task: they multiply inaccuracy by 1.14 (increase it by 14%). Looking at
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Figure 2, it is apparent that this effect is arising mainly in the non-adjacent layouts—the accuracies for
A′S (dashed orange) are lower than the accuracies for A′S′ (dashed blue). Note that the interaction
between Adjacency and Shear was not tested for the reasons explained in Section 2.1.

The significant coefficients for LayoutNo (0.69), PerfNo (0.77), and their interaction LayoutNo:PerfNo
(1.13), indicate that accuracy in the scale training task improves over successive layouts and
performances, but less so when either is high. In Figure 2, the positive gradient of the lines in the
first layout block (0/0, 1/0, 2/0) appear greater than those of the second (0/1, 1/1, 2/1) and third
(0/2, 1/2, 2/2) blocks; the inaccuracy measured at the beginning of each layout block (performance 0)
also appears to increase across layout blocks 0–2, but less so with performances 1 and 2 (the middles
and ends of each layout block).
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Figure 3. Inaccuracies, averaged across participants, for the arpeggio training task. The higher the line,
the more accurate the average performance. The bootstrapped confidence intervals cover a 95% range.
Adjacent layouts have solid lines, nonadjacent have dashed lines. Sheared layouts have orange lines,
unsheared have blue lines. The first performance is coded 0, the second is coded 1, . . . ; the first layout
is coded 0, the second is coded 1.

Table 2. Generalized linear mixed effects model for the arpeggio training task.

Fixed Effect Estimate Factor p-Value

(Intercept) 3.92 50.36 <0.001 ***
Adjacency −0.43 0.65 <0.001 ***

Shear 0.08 1.08 0.037 *
LayoutNo −0.22 0.80 <0.001 ***

PerfNo −0.09 0.91 <0.001 ***

Log Likelihood −738.65
Num. obs. 209

Num. groups: ID 24
Var: ID (Intercept) 0.05

Var: Residual 0.08
r2 0.78

*** p < 0.001, ** p < 0.01, * p < 0.05.

The significant coefficient for Adjacency (0.65) indicates that adjacent layouts strongly improve
performance accuracy in the arpeggio training task: they multiply inaccuracy by 0.65 (decrease it
by 35%). This is visible in Figure 3 where the dashed lines in the second layout block are lower than
an imaginary line connecting the first and third blocks.

The significant coefficient for Shear (1.08) indicates that sheared layouts slightly worsen accuracy
in the arpeggio training task: they multiply inaccuracy by 1.08 (increase it by 8%). Looking at Figure 3,
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it is apparent that this effect is arising mainly in the non-adjacent layouts—the accuracies for A′S
(dashed orange) are lower than the accuracies for A′S′ (dashed blue). Note that the interaction between
Adjacency and Shear was not tested for the reasons explained in Section 2.1.

The significant coefficients for LayoutNo (0.80) and PerfNo (0.91) indicate that accuracy in the
scale training task improves over successive layouts and performances (inaccuracy is reduced by 20%
and 9%, respectively). This is shown, in Figure 3, by the positive gradient across the three performances
in the majority of the layouts presented, and the general increase in accuracy across the three layout
blocks (bearing in mind the drop in the second block resulting from the effects of non-adjacency).

2.3. Immediate Retention

Performances to evaluate immediate retention were recorded for the two trained tasks (1) Scales;
(2) Arpeggios. Test performance results are reported here only for item 1 because most of the test
performances of item 2 had too many errors in pitch and timing to be reliably tracked with respect
to the target pitches. The distinctly lower performance accuracy here may reflect the greater musical
complexity of the arpeggios compared to the scales and therefore increased difficulty in memorising
the sequence (compare Figures 7 and 8 in Section 4.2.2). It may also be because the tested pitch layouts
are not as well suited to the arpeggios as they are to the scales. The results for the arpeggio training
task—detailed in Section 2.2—are, however, still useful in the comparison with the scale training task.

For each layout, participants completed two retention performances of the scale without audiovisual
support. The accuracy of these performances, averaged across participants, are summarized in
Figure 4. The generalized linear mixed effects model used to estimate the effects’ sizes and significances
of Adjacency, Shear, LayoutNo, and PerfNo is summarized in Table 3.

The significant coefficient for Adjacency (0.58) indicates that adjacent layouts strongly improve
performance accuracy in the scale retention task: they multiply inaccuracy by 0.58 (decrease it by 42%).
In Figure 4, note how the accuracies for the non-adjacent layouts A′S′ and A′S (dashed lines) are lower
than the accuracies in the adjacent layouts.
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Figure 4. Inaccuracies, averaged across participants, for the scale retention task. The higher the line,
the more accurate the average performance. The bootstrapped confidence intervals cover a 95% range.
Adjacent layouts have solid lines, nonadjacent have dashed lines. Sheared layouts have orange lines,
unsheared have blue lines. The first performance is coded 0, the second is coded 1; the first layout is
coded 0, the second is coded 1.
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Table 3. Generalized linear mixed effects model for immediate retention of the scale task.

Fixed Effect Estimate Factor p-Value

(Intercept) 2.85 17.32 <0.001 ***
Adjacency −0.54 0.58 <0.001 ***

Shear −0.08 0.92 0.305
LayoutNo −0.04 0.96 0.412

PerfNo 0.04 1.04 0.581

Log Likelihood −437.37
Num. obs. 142

Num. groups: ID 24
Var: ID (Intercept) 0.06

Var: Residual 0.26
r2 0.38

*** p < 0.001, ** p < 0.01, * p < 0.05.

2.4. Transfer

Transfer of learning was evaluated by performances of a separate test melody that participants
had not received training for: Frère Jacques. For each layout, participants performed the transfer task
for four consecutive performances.

The accuracy of performances for the transfer task, averaged across participants, are summarized
in Figure 5. The generalized linear mixed effects model used to estimate the effects’ sizes and
significances of Adjacency, Shear, LayoutNo, and PerfNo is summarized in Table 4.

The significant coefficient for Shear (0.61) indicates that, for the first layout, which is always
adjacent, sheared layouts strongly improve accuracy in the transfer task: they multiply inaccuracy by
0.61 (decrease it by 39%). The significant coefficient for the interaction LayoutNo:Shear (1.39) indicates
that the positive effect of shear vanishes in the second and third layouts. In Figure 5, note how,
in the first layout block (0/0, 1/0, 2/0, 3/0), the accuracies for the sheared layout AS (orange) are
higher than the unsheared layout AS′ (blue) but, in the second or third layout blocks, the accuracies
for the sheared layouts (AS, A′S—orange) are, if anything, slightly lower than those for the unsheared
layouts (AS′, A′S′—blue).

0/0 1/0 2/0 3/0 0/1 1/1 2/1 3/1 0/2 1/2 2/2 3/2
Performance number / Layout number

70 
65 
60 
55 
50 
45 
40 
35 
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25 
20 
15 
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5  
0  
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AS'
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A'S'
A'S
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Figure 5. Inaccuracies, averaged across participants, for the transfer task (Frère Jacques). The higher the
line, the more accurate the average performance. The bootstrapped confidence intervals cover a 95%
range. Adjacent layouts have solid lines, nonadjacent have dashed lines. Sheared layouts have orange
lines, unsheared have blue lines. The first performance is coded 0, the second is coded 1, . . . ; the first
layout is coded 0, the second is coded 1.
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Table 4. Generalized linear mixed effects model for the transfer task (Frère Jacques).

Fixed Effect Estimate Factor p-Value

(Intercept) 3.43 30.85 <0.001 ***
Adjacency −0.05 0.96 0.408

Shear −0.50 0.61 <0.001 ***
LayoutNo −0.38 0.68 <0.001 ***

PerfNo −0.13 0.88 <0.001 ***
LayoutNo:Shear 0.33 1.39 0.002 **

LayoutNo:PerfNo 0.07 1.07 0.021 *

Log Likelihood −996.89
Num. obs. 288

Num. groups: ID 24
Var: ID (Intercept) 0.11

Var: Residual 0.26
r2 0.66

*** p < 0.001, ** p < 0.01, * p < 0.05.

The significant coefficients for LayoutNo (0.68), PerfNo (0.88), and their interaction LayoutNo:PerfNo
(1.07) indicate that accuracy in the transfer task improves over successive layouts and performances,
but less so when either is high. In Figure 5, the positive gradient of the slopes in the first layout block
(0/0, 1/0, 2/0, 3/0) appear greater than those of the second (0/1, 1/1, 2/1, 3/1) and third (0/2, 1/2,
2/2, 3/2) blocks; the inaccuracy measured at the beginning of each layout block (performance 0) also
appears to increase across layout blocks 0–2, but less so with later performances.

3. Discussion

3.1. PerfNo and LayoutNo

Three out of the four tasks (the two training tasks and the transfer task) show a strong positive
effect of PerfNo and LayoutNo. Both effects are indicative of learning. The former indicates that the
more a participant plays on a given layout the better they get (until the ceiling is reached). The latter
indicates that learning in one layout extends to different layouts. This is unsurprising given the
similarity of the four different layouts: they all exhibit a “3 + 4” scale pattern where, to play a major
scale, a row of three buttons is played from left to right, then there is a “carriage return” to the next
row above where a row of four buttons is played followed by a “carriage return” to the next row
above, and the pattern starts again (in the next higher octave). The immediate retention of the scale
task does not show any impact of PerfNo or LayoutNo. This is clearly due to the simplicity of the
task—participants are close to their ceiling from the very start.

3.2. Adjacency

In two out of the four tasks (the arpeggio training task and the transfer task), Adjacency has
a strong positive effect (35% and 42% decreases in inaccuracy). The statistical results from the other
two tasks (see also Figures 2 and 5) also hint at this positive effect but the values are not significant.
It seems that any impact of adjacency in the transfer task is swamped by the learning that has already
occurred by the time the adjacent layout is played (remember that an adjacent layout always came
second for all participants and never first or third). A future experiment that balances the design,
by also having nonadjacent layouts first and third, will have greater statistical power to detect the
impact of adjacency in this context. Judging the results in total, we have strong evidence that adjacent
major seconds improve playing accuracy in a variety of one-handed melodic tasks. Although this
could be a result of the high number of major seconds present in both the scales and the nursery rhyme
chosen for the transfer task, the positive effect of adjacency effect is also seen in the arpeggio task,
which has a large emphasis on other intervals—notably major and minor thirds, and perfect fourths.
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Here, we might have expected the adjacent layout to be no more useful than the nonadjacent layout.
However, the findings suggest that successfully learning major seconds may also provide a useful
foundation for learning and playing other intervals. Hence, adjacent major seconds may be a broadly
useful property.

3.3. Shear

The impact of Shear is a little more complicated. In both of the training tasks, it has a significant
negative effect on playing accuracy (14% and 8% increases in inaccuracy). It has no significant
effect in the immediate retention of the scale task. However, for the principal data collected in this
experiment—the Frère Jacques transfer task—it has a strong positive effect for the first (and adjacent)
layout presented. The reason this effect does not carry through to the second and third layouts
presented may be due to performances hitting ceiling (as appears to be the case by looking at Figure 5);
they may also be due to shear having a positive effect with adjacent layouts but not with nonadjacent
layouts (as explained in Section 2.1, due to the experimental design, interactions with Adjacency were
not included and, hence, not directly tested).

It remains to account for why shear may worsen performances in simple training tasks,
but improve them when playing a new melody. We hypothesize that the slanted runs of major
seconds in the sheared layouts provide an impediment to accuracy due to the slant making movement
physically more difficult or confusing due to its unfamiliarity compared with the piano keyboard.
However, in a task like playing a new melody, which requires finding correct pitches without having
previously learned a sequential pattern, and has a more complex and variable sequence of movements,
the additional clarity of the vertical pitch axis in the sheared layouts becomes more important and
trounces the previously mentioned disadvantages. This hypothesis matches the outcomes we see,
but would require further testing using differing playing tasks with differing requirements for quickly
accessing and recognizing relative pitch heights.

3.4. Limitations

There are some limitations of the current experiment. First, the nonadjacent layouts (A′S and A′S)
occurred only second, which means that in the transfer task the impact of adjacency was overwhelmed
by learning effects; it also means that the full range of interactions between the variables could not be
tested. Secondly (as detailed in Section 1.1.2), by shearing parallel with the octave axis, the angles of the
pitch axis and the angle of the major second axis covaried, so these two effects cannot be disambiguated;
furthermore, the angle of the octave axis was invariant (it was always vertical) so not tested. Thirdly,
only melodies were tested—we would expect different results for bass lines (where perfect fifths
and fourths are prevalent) or for harmony, where thirds are also prevalent. Fourthly, all of the pitch
layouts tested were rather similar in their overall form—this similarity is a natural consequence of
good experimental design, which requires changing only the variables of interest across conditions,
but it may limit generalizability. Finally, other covarying aspects of the layouts were not independently
tested (e.g., adjacencies or angles of other intervals).

Most of these limitations can be overcome by conducting further experiments, although it would
not be feasible to address all of them at once. For instance, the nonadjacent layouts could be presented
first and third; the shears could be made parallel with the pitch axis or with the major second
axis—doing both, in conjunction with this experiment, would enable the effects of the pitch, octave,
and M2 axes’ angles to be fully disambiguated; differing musical contexts, such as chord progressions
or bass lines, could be trained and tested; a wider range of layouts, with configurations distinctly
different from those considered here, could be used.

With respect to the results, limitations can be seen in the ceiling effect achieved quickly for some of
the tasks, particularly with the second and third layouts played. The experiment allowed for training
with audiovisual performances for 4 separate instances (one watching the audiovisual sequence,
and the remaining three playing along with the sequence). For the scale task, this was sufficient
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for participants to excel in the immediate retention test; conversely, for the arpeggio task, this may
not have been enough training because performances in the immediate retention were too poor to
analyse. For the transfer task, 20 s of exploration was allowed prior to the first performance on each
layout. This is not a standard figure, but was used to avoid a floor performance for this untrained task.
However, for the second and third layouts, this may have helped participants too much because ceiling
performance was reached quickly. Selecting training period lengths and tasks with the appropriate
difficulty are important in the design of learning experiments. A task of appropriate difficulty can
ensure that a learning effect can be measured.

3.5. Summary

In broad terms, the results demonstrate that the precise form of a pitch layout has a crucial impact
on its effectiveness, hence the importance of uncovering the underlying properties—such as interval
adjacency and axis angles—that account for these effects on motor learning. With regard to these
two properties, the data support our hypotheses that spatially privileging major seconds by making
them adjacent, and making the pitch axis salient by giving it a vertical orientation, facilitates motor
learning for melodies played on novel pitch layouts.

The two historically established pitch layouts that have adjacent major seconds and, for 12-TET,
also have a pitch axis that is close to vertical or horizontal (and so require only a small shear to perfectly
align them) are the Wicki layout [4] and the Bosanquet layout [2,3]. The results obtained here, therefore,
suggest that appropriately sheared versions of these two layouts (e.g., the AS layout, illustrated in
Figure 1d, which is a sheared Wicki layout) are optimal for playing melodies.

4. Methods

The methods and materials are, for the most part, the same as in [1]. Previously, only the number
of correct notes was reported for the transfer task. In this paper, we have developed a new method
(detailed in Section 4.4) for measuring the inacuracies of participants’ performances during the training,
immediate retention, and transfer tasks.

4.1. Participants

Twenty-four participants were recruited (mean age = 26, age range: 18–44) with at least 5 years
of musical experience on at least one instrument (excluding the voice). Ethical approval for this
experiment was obtained via the Western Sydney University Human Research Ethics Committee
(approval number: H10487).

4.2. Materials

4.2.1. Hardware and Software

The software sequencer Hex [15] was modified to function as a multitouch MIDI controller,
and presented on an Acer touchscreen notebook, as shown in Figure 6. Note names were not shown on
the interface, but middle D was indicated with a subtly brighter button to serve as a global reference.
The position of middle C was indicated to participants, this being the starting pitch of every scale,
arpeggio, or melody they played.

In order to present training sequences effectively, both aurally and visually, Hex’s virtual buttons
were highlighted in time with a MIDI sequence. All training sequences were at 90 bpm and introduced
by a two-bar metronome count.
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Figure 6. The multitouch interface used in the experiment.

4.2.2. Musical Tasks

Melodies for musical tasks were chosen to be single-line sequences to be performed solely with
the right hand. The training melodies consisted of a set of C major scales (Figure 7) and a set of
arpeggios (again only using the notes of the C major scale—Figure 8) spanning two octaves, and all
starting and ending on middle C. The well-known nursery rhyme Frère Jacques was used as the transfer
task melody (Figure 9); it too was played in C major and began and ended on middle C.

Figure 7. The scale training and retention task.

Figure 8. The arpeggio training and retention task.

Figure 9. The transfer task: Frère Jacques.
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4.3. Procedure

The layouts were presented in four different sequences, with each sequence played by
6 participants: AS′ then A′S′ then AS; or AS′ then A′S then AS; or AS then A′S′ then AS′; or AS then
A′S then AS′.

4.3.1. Training Paradigm and Testing of Immediate Retention

For each of their three layouts, participants were directed through a 15 min training and testing
paradigm involving (1) scales and (2) arpeggios. For each stage, this involved:

1. watching the sequence once as demonstrated by audiovisual highlighting
2. playing along with the audiovisual highlighted sequence three times (training)
3. reproducing the sequence in the absence of audiovisual highlighting, for two consecutive

performances (immediate retention task)

All demonstration sequences and participant performances were played in time with a 90 bpm
metronome, and recorded as MIDI files.

4.3.2. Transfer Task

A final production task asked participants to play a well-known nursery rhyme—Frère Jacques.
Participants first heard an audio recording of the nursery rhyme to confirm their knowledge of the
melody. They were then given 20 s initially to explore the layout and find the correct notes before
giving four consecutive performances. Again, these performances were instructed to be played in
time with a 90 bpm metronome. Although this represents a fairly simple task, the nursery rhyme was
chosen as it facilitated measurement of participants’ skill with each particular layout. We assume that
as the participants’ memory for the melody was intact, their performance would only be affected by
their memory of the layout itself.

4.4. Measuring Performance Inaccuracy

Separate measures were developed to assess performance inaccuracy in the training tasks
(playing along with the audiovisual highlighted sequence), and performance inaccuracy in the retention
and transfer tasks (playing along with a metronome beat). Both measures first calculate an Accuracy
score by taking account of both the number of “correct” notes played, and the timing of these notes in
comparison to either the audiovisual sequence (in the training tasks), or the audio metronome beat
(in the retention and transfer tasks). This is then converted into an Inaccuracy score by subtracting
Accuracy from the maximum possible Accuracy value (as would be achieved by a flawless performance).

4.4.1. Training Tasks

In the training tasks, the participant played along with the audiovisual highlighted sequence.
Here, a “correct” performance would constitute playing the correct pitches at the correct times in the
sequence; that is, matching the sequence being produced aurally and visually onscreen. For each
target note in the audiovisual demo, a window of 666 ms (the interonset interval at 90 bpm), centred
around the target note, was created. The first performed note within this window to match the target’s
MIDI note number was used. In this way, inserted notes which did not match the expected MIDI note
were not penalized if the “correct” note was played at some point in the time window. If no matching
MIDI note number was identified within this window, a zero score was allocated for this target note in
the sequence. The first matching MIDI note number was then assigned a score reflecting its timing
accuracy—a value of 1, if played at the same time as the target; linearly reducing to 0 as the timing
error increases to the boundary of the window (±333 ms). The resulting scores are summed. As a final
step, the total is normalized by dividing it by the number of notes in the target sequence and multiplied
by 100. This puts accuracy onto the same scale for target sequences of different lengths, such that 100
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always means the target sequence has been performed perfectly. The formula to calculate a participant’s
inaccuracy in the training sequences of the scales and arpeggios is

Inaccuracy = 100− Accuracy, where

Accuracy =
100
N

N

∑
n=1

1− |tp − tn|
333

, (1)

and

• N is the total number of notes in the target sequence
• tn is the time in milliseconds of nth target note
• tp is the time in milliseconds of first performed note within the tn± 333 time window that matches

the pitch of the target note.

4.4.2. Retention and Transfer Tasks

In the immediate retention and transfer tasks, the participant played the test sequence along
with a 90 bpm metronome. Here, a “correct” performance would constitute playing the correct notes
in the expected sequence, as before, but with one caveat related to penalizing errors. Because these
tasks were accompanied only aurally by a metronome beat, the performer might add an extra note
or leave a gap so that all subsequent notes are then played one metronome beat late. In a situation
such as this, it is reasonable to penalize the first late note, but not the subsequent notes, which are then
correct subject to a delay. Similarly, a performer might skip a note, hence all subsequent notes will be
a metronome beat early. As before, it is reasonable only to penalize the first pitch error.

To establish which notes of the performed sequence were “correctly” pitched, we used the Note
Time Playing Path software [34], which uses a windowing process to identify where extra, skipped,
or substituted (wrongly pitched) notes occur. For performances where there were large numbers of
pitch errors (>5), this matching process was visually confirmed.

In order to count the total number of errors, we took a novel approach where only the first pitch
error in a consecutive sequence of pitch errors was included. For example, consider a performer who
plays the first four notes of a scale correctly (C, D, E, F). After this he/she plays three wrong notes in
a row (D, D, E), but then returns to the original scale sequence one note after the last correct note (A, B).
In this instance of four consecutive errors—three wrong notes (D, D, E) and one deletion (G)—only the
first error is counted. The final penalty is then calculated by the total number of such “first” errors,
designated by the letter E in Equation (2). This final error value is subtracted from an accuracy score
calculated in the same manner as Equation (1) with the exception that it refers only to the correct
notes in the performance. As before, the accuracy value is normalized by 100/N to ensure a perfect
performance of a melody of any length has an accuracy of 100, which means the formula to calculate
a participant’s inaccuracy in the retention and transfer tasks is

Inaccuracy = 100− Accuracy, where

Accuracy =
100
N

(( C

∑
c=1

1− |tc − tm|
333

)
− E

)
, (2)

and

• N is the total number of notes in the target sequence.
• C is the total number of notes in the corrected performance.
• tc is the time in milliseconds of the cth note in the corrected performance.
• tm is the time of the metronome beat closest to the performed note tc.
• E is the number of errors calculated as explained above.

427



Appl. Sci. 2017, 7, 1218

We have defined two versions of Inaccuracy—one for the training tasks, one for the retention and
transfer tasks. The context (e.g., in Section 2) will always make clear which of these is being used.
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Abstract: The classification of acoustic scenes and events is an emerging area of research in the field
of machine listening. Most of the research conducted so far uses spectral features extracted from
monaural or stereophonic audio rather than spatial features extracted from multichannel recordings.
This is partly due to the lack thus far of a substantial body of spatial recordings of acoustic scenes.
This paper formally introduces EigenScape, a new database of fourth-order Ambisonic recordings
of eight different acoustic scene classes. The potential applications of a spatial machine listening
system are discussed before detailed information on the recording process and dataset are provided.
A baseline spatial classification system using directional audio coding (DirAC) techniques is detailed
and results from this classifier are presented. The classifier is shown to give good overall scene
classification accuracy across the dataset, with 7 of 8 scenes being classified with an accuracy of
greater than 60% with an 11% improvement in overall accuracy compared to use of Mel-frequency
cepstral coefficient (MFCC) features. Further analysis of the results shows potential improvements to
the classifier. It is concluded that the results validate the new database and show that spatial features
can characterise acoustic scenes and as such are worthy of further investigation.

Keywords: soundscape; acoustic environment; acoustic scene; ambisonics; spatial audio; Eigenmike;
machine learning; dataset; recordings

1. Introduction

Since machine listening became an eminent field in the early 1990s, the vast majority of research
has focused on automatic speech recognition (ASR) [1] and computational solutions to the well-known
‘cocktail party problem’—the “ability to listen to and follow one speaker in the presence of others” [2].
This is now a mature field of study, with robust speech recognition systems featured in most modern
smartphones. There has also been a great deal of research on music information retrieval (MIR) [3],
a technology with applications in intelligent playlist algorithms used by online music streaming
services [4]. There has been comparatively little research investigating the automatic recognition of
general acoustic scenes or acoustic events, though there has been an increase in interest in this area
in recent years, largely due to the annual Detection and Classification of Acoustic Scenes and Events
(DCASE) challenges established in 2013 [5].

The DCASE challenges have attracted a large number of submissions designed to solve the
problem of acoustic scene classification (ASC) or acoustic event detection (AED). A typical ASC or AED
system requires a feature extraction stage in order to reduce the complexity of the data to be classified.
The key is the coarsening of the available data such that similar sounds will yield similar features
(generalisation), yet the features should be distinguishable from those yielded by different types of
sounds (discrimination). Generally, the audio is split into frames and some kind of mathematical
transform is applied in order to extract a feature vector from each frame. Features extracted from
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labelled recordings (training data) are used to train some form of classification algorithm, which can
then be used to return labels for new unlabelled recordings (testing data). See [6] for a thorough
overview of this process.

The systems submitted to DCASE all identify acoustic scenes and events based upon features
extracted from monaural or stereophonic recordings. A small number of systems have used spatial
features extracted from binaural recordings [7–9], but the potential for extracting features using more
sophisticated spatial recordings remains almost completely unexplored. This is due to a number of
factors, including inheritance of techniques from ASR and MIR and the envisioned applications of
ASC and AED.

A majority of the early research into ASR approached the problem with the aim of emulating
elements of human sound perception. This “biologically relevant” [1] approach can be seen in the
popular Mel-frequency cepstral coefficient (MFCC) features, which use a mel-scaled filter bank in order
to crudely emulate the human cochlear response [10]. A more fundamental self-imposed limitation of
this approach is the use of one- or two-microphone recordings. Although, on introducing the DCASE
challenge, Stowell et al. stated that “human-centric aims do not directly reflect our goal... which is
to develop systems that can extract semantic information about the environment around them from
audio data” [5], it is natural to inherit techniques from more mature related fields.

The most commonly stated applications of ASC and AED technologies include adding
context-awareness to smart devices, wearable technology, or robotics [6] where mounting of spatial
microphone arrays would perhaps be more impractical. Another application is automatic labelling of
archive audio, where the majority of recordings will be in mono or stereo format [5,6].

Some lesser-considered applications of ASC and AED technology involve the holistic analysis
of acoustic scenes in and of themselves. The focus here is gaining a greater understanding of the
constituent parts of acoustic scenes and how they change over time. This has potential applications
in acoustic ecology research for natural environments, re-synthesis of acoustic scenes for virtual
reality, and in obtaining more detailed measures for urban environmental sound than the prevailing
LAeq sound level metric. The LAeq measurement aggregates all sound present in a scene into one
single sound level figure. This disregards the variety of sources of the sounds, influencing much
environmental sound legislation to focus on its suppression—an “environmental noise approach” [11].
A machine listening system could consider the content of an acoustic scene as well as absolute sound
levels. This information could be used to create more subtle metrics regarding urban sound, taking
into account human perception and preference—a “soundscape approach” [11]. This kind of system
was proposed by Bunting et al. [12], but despite some promising work involving source separation in
Ambisonic audio [13], published results from that project have been limited. The term soundscape is
used here according to the ISO definition, meaning “the acoustic environment of a place, as perceived
by people, whose character is the result of the action and interaction of natural and/or human
factors” [14]. This emphasis on perception is apt in this case, but a subjective perceptual construct is
clearly not what a machine listening system will receive as input for analysis. We therefore use the
term ‘acoustic scene’ when discussing recordings.

Another potential application of such a system is assisting in the synthesis of acoustic scenes
for experimental purposes. If a researcher or organisation wishes to obtain detailed data on human
perception of environmental sound, one technique that can be used is a sound walk, in which listening
tests can be conducted in situ at a location of interest. This gives the most realistic stimulus possible,
direct from the environment itself. Results gained using this technique are therefore as representative
as possible of subjects’ reactions with respect to the real-world acoustic environment, a factor known
as ‘ecological validity’ [15,16]. The key disadvantages are that this method is not repeatable [15]
and can be very time-consuming [17]. An alternative is laboratory reproduction of acoustic scenes,
presented either binaurally [18] or using Ambisonics [19,20]. These are less time-consuming and more
repeatable [15], but the clear disadvantage is the potential for reduced ecological validity of the results,
which leads to the criticism that lab results “ought to be validated in situ” [21]. A key issue is how to
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condense an urban sound recording into a shorter format whilst retaining ecological validity. Methods
for this have included selection of small clips at random [15] or manually arranging a acoustic scene
“composition” in order to “create a balanced impression” [19]—essentially condensing the acoustic
scene by ear. Whilst manual composition of a stimulus is undoubtably more robust than presentation
of a random short clip that may or may not be representative of the acoustic scene as a whole, it is
not an optimal process. The subjective recomposition of an acoustic scene by a researcher introduces
a source of bias that could be reflected in the results. A machine listening system could effectively
bypass this issue by providing detailed analysis that could assist with synthesis of shorter clips that
remained statistically representative of real acoustic scenes.

The limitation to low channel counts is less applicable given these applications of machine
listening technology. Spatial recordings offer the potential for a rich new source of information that
could be utilised by machine listening systems and higher channel counts offer the opportunity for
sophisticated source separation [13,22] which could assist with event detection.

The lack of research into classification using spatial audio features could also be due to the
fact that there has been, as yet, no comprehensive database of spatially-recorded acoustic scenes.
Any modern database of recordings intended for use in ASC research must contain many examples
of each location class. This is to avoid the situation whereby classification results are artificially
exaggerated due to test clips being extracted from the same longer recordings as clips used to train
classifiers, as exemplified in [23].

A similar phenomenon has been seen in MIR research where classifiers were tested on tracks from
the same albums as their training material [24]. The TUT Database [25], used in DCASE challenges
since 2016, fulfils this criterion. It features recordings of 15 different acoustic scene classes made across a
wide variety of locations, with details provided in order to avoid any crossover in locations between the
training and testing sets. This database was recorded using binaural in-ear microphones. The DCASE
2013 AED task [5] used a small set of office recordings made in Ambisonic B-format (though only
stereo versions were released as part of the challenge). Since it was intended for AED, this dataset
features recordings of office environments only, not the wide range of locations needed for ASC
work. The DEMAND database [26] features spatial recordings of six different acoustic scene classes,
each recorded over three different locations. This is a substantial amount of data, but potentially still
too small a collection for effective classifier training and validation. The recordings were made using a
custom-made 16-channel microphone grid, which offers potential for spatial information extraction,
though techniques developed using this data might not be generalisable to other microphone setups.
This paper introduces EigenScape, a database of fourth-order Ambisonic recordings of a variety of
urban and natural acoustic scenes for research into acoustic scene and event detection. The database
and associated materials are freely available—see Supplementary Materials for the relevant URLs.

The paper is organised as follows: Section 2 covers the technical details of the recording process,
provides information on the recorded data itself, and describes the baseline classification used for
initial analysis of the database. Section 3 gives detailed results from the baseline classifier and offers
some analysis of its behaviour and the implications this has for the dataset. Section 4 offers some
additional discussion of the results, details potential further work, and concludes the paper.

2. Materials and Methods

2.1. Recording

EigenScape was recorded using the mh Acoustics EigenMike [27], a 32-channel spherical
microphone array capable of recording up to fourth-order Ambisonic format. In Bates’ Ambisonic
microphone comparisons [28,29] the EigenMike is among the lowest rated in terms of perceptual audio
quality, rated as sounding “dull” compared to other microphones. Conversely, directional analysis
shows the EigenMike gives the highest directional accuracy of any of the microphones tested, including
the popular first-order Ambisonic Soundfield MKV and Core Sound TetraMic. It should be noted that
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the analysis in [28,29] used only the first-order output from the EigenMike (for parity with the other
microphones), disregarding the higher-order channels. Since the dataset presented in this paper is
primarily aimed at machine (rather than human) listening, and the EigenMike can record far more
detailed spatial information than first-order microphones whilst retaining a relatively portable form
factor, the EigenMike was chosen for this task.

Recordings were made using the proprietary EigenMike Microphone Interface Box and
EigenStudio recording application [27]. Recordings were made at 24-bit/48 kHz resolution and the
files use Ambisonic Channel Number (ACN) ordering [30]. All the recordings used a gain level of
+25 dB set within the EigenStudio software as the ambient sound at many recording locations did
not yield an adequate recording level at lower gain levels. The only exception to this is the recording
labelled ‘TrainStation-08’, which used only +5 dB gain as very high level locomotive engine noise
present at that location caused severe clipping at +25 dB.

For the majority of the recordings, the EigenMike was mounted in a Rycote windshield designed
for use with the SoundField ST350 microphone [31]. Although the windshield was not designed
for the EigenMike, care was taken to rigidly mount the microphone and the shield was effective
in cancelling wind noise. The first few recordings used a custom-made windshield, but this was
switched for the Rycote as the set-up time proved far too long. One indoor recording did not use any
windshield. The discrepancies in windshield use and gain level should be negligible by comparison to
the wide variety of sounds present in the scenes, especially when coarse features are extracted for use
in a machine listening system. Such a system should be robust to the small spectral changes incurred
by use of different windshields and to differences in ambient sound level between scenes. Indeed,
the DARES project [32] used entirely different recording setups for indoor and outdoor recordings
and this was judged to have “minimal influence on the quality of the database”. Nevertheless,
these discrepancies are noted in metadata provided for EigenScape.

To make these recordings, the microphone was mounted on a standard microphone stand set to
around head height. A Samsung Gear 360 camera [33] was also mounted to the tripod, recording video
in order to assist with future annotation of events within scenes where the sound might be ambiguous.
Figure 1 shows the full recording apparatus.

Figure 1. The setup used to record the EigenScape database: mh-Acoustics Eigenmike within a Rycote
windshield, a Samsung Gear 360 camera, an Eigenmike Microphone Interface Box, and an Apple
MacBook Pro. The equipment is shown here at Redcar Beach, UK: 54°37′16′′ N, 1°04′50′′ W.
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2.2. Details

Eight different examples each of eight different classes of acoustic scene were recorded for
a total of 64 recordings. All recordings are exactly 10 minutes in length. The uniform recording
duration facilitates easy segmentation into clips of equal length (e.g., 20 segments, each 30 s long).
Basic segmentation tools are available with the dataset in order to assist with this. The recordings were
planned out specifically to create a completely evenly-weighted dataset between the various scenes
and to facilitate easy partitioning into folds (e.g., six recordings used for training, the other two used
for testing).

The location classes were inspired by the classes featured in the TUT database: lakeside beach,
bus, cafe/restaurant, car, city center, forest path, grocery store, home, library, metro station, office,
urban park, residential area, train, and tram [25], but restricted to open public spaces, reflecting the
shifted focus of this work towards acoustic scene analysis. The eight classes in EigenScape are as
follows: Beach, Busy Street, Park, Pedestrian Zone, Quiet Street, Shopping Centre, Train Station,
and Woodland. These location classes were chosen to give a good variety of acoustic environments
found in urban areas and to be relatively accessible for the recording process. The recordings were
made at locations across the North of England in May 2017. An online map has been created showing
all the recording sites and is listed in Supplementary Materials. Basic location details are included
in the dataset metadata, along with recording dates and times. Although individual consent is not
required for recording in public spaces, permissions of the relevant local authorities or premises
management was sought where possible. Some locations would not allow tripod-based recordings,
so the microphone stand was held as a monopod. These are noted in the metadata.

A little over 10 minutes was recorded at each location, with a short amount of time removed
from the beginning and end of each file post-recording. This removed the experimenter noise
incurred by activating and deactivating the equipment and achieved the exactly uniform length
of the audio clips. During recording, every effort was made to minimise sound introduced to the scene
by the experimenter or equipment. It should be noted that occasionally a curious passerby would ask
about what was happening. This was fairly unavoidable in busier public places, but since conversation
is part of the acoustic scenes of such locations, these incidents should not affect feature extraction too
much. Discretion is advised if these recordings are used for listening tests or as background ambiences
in sound design work.

The complete dataset has been made available online for download. The full database is presented
in uncompressed WAV format within a series of ZIP files organised by class. Since each recording
is 10 minutes of 25 tracks at 24-bit/48 kHz, the whole set is just under 140 GB in size. As this could
potentially be very taxing on disk space and problematic to download on slower internet connections,
a second version of the dataset was created for easier access. This second version consists of all the
recordings, but limited to the first-order Ambisonic channels (four tracks) and losslessly compressed to
FLAC format within a single ZIP file. This results in a much more manageable size of 12.6 GB, whilst
still enabling spatial audio analysis and reproduction. This is also in accordance with the UK Data
Service’s recommended format for audio data [34].

2.3. Baseline Classification

To create a baseline for this database that utilises spatial information whilst maintaining
a level of parity with the MFCC-Gaussian mixture model (GMM) baseline typically used in DCASE
challenges [5,6,25], the audio was filtered into 20 mel-spaced frequency bands (covering the frequency
range up to 12 kHz) using a bank of bandpass finite impulse response (FIR) filters. The filters each
used 2048 taps and were designed using hamming windows. Estimate direction of arrival (DOA)
estimates to be used as features were extracted from each band using directional audio coding (DirAC)
analysis [35–37] as follows:

D = −PU (1)
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where P contains the 20 mel-filtered versions of the zeroth-order Ambisonic channel (W) of the
recording and U contains the filtered versions of the first-order Ambisonic bi-directional X, Y and
Z-channels in a three-dimensional matrix. Resultant matrix D contains instantaneous DOA estimates
for each frequency band. Mean values of D were calculated over a frame length of 2048 samples,
with 25% overlap between frames. Angular values for azimuth θ and elevation φ were derived from
this as follows [38]:

θ = arctan
(

X
Y

)
(2)

φ = arccos
(

Z
||D||

)
(3)

where X, Y , and Z are the X, Y and Z channel matrices extracted from D. These angular values were
used as features. Diffuseness values were also used as features, and were calculated as follows [36]:

ψ = 1− || − D||
c{E} (4)

where {.} represents the mean-per-frame values described previously, c is the speed of sound, and:

E =
1
2

ρ0

(
P2

Z2
0
+ ||U||2

)
(5)

where Z0 is the characteristic acoustic impedance and ρ0 is the mean density of air.
The database was split into four folds for cross-validation. In each fold, six location class recordings

were used for training, with the remaining two used for testing. The extracted DirAC features from
each frame of the training audio were used to train a bank of 10-component GMMs (one per scene class).
The test audio was cut into 30-s segments (40 segments in total for testing). Features were extracted
from these segments, and each GMM gave a probability score for the frames. These scores were
summed across frames from the entire 30-s segment, with the segment classified according to the
model which gave the highest total probability score across all frames.

3. Results

Initial analysis of this dataset previously published as part of the DCASE 2017 workshop [39]
compared classification accuracies achieved using the DirAC features to those achieved when
using MFCCs. In addition, classifiers were trained using individual DirAC features—azimuth,
elevation and diffuseness—and a classifier was trained using a concatenation of all MFCC and DirAC
features. Figure 2 shows the mean and standard deviation classification accuracies achieved across
all scenes using these various feature sets. It can be seen that using all DirAC features to train a
GMM classifier gives a mean accuracy of 64% across all scene classes, whereas MFCC features give a
58% mean accuracy (averaged across all folds). Azimuth data alone is much less discriminative between
scenes, giving an accuracy of 43% on average, which is markedly worse than MFCCs. Elevation data,
on the other hand, gives similar accuracies, and diffuseness data gives slightly better accuracies than
MFCCs. The low accuracy when using azimuth data is probably attributable to the fact that azimuth
estimates will be affected by the orientation of the microphone array relative to the recorded scene,
whereas elevation and diffuseness should be rotation-invariant. A new classifier using elevation and
diffuseness values only was therefore trained and gave an average classification accuracy of 69%,
which is the best performance that was achieved. The elevation/diffuseness (E/D)—GMM classifier
was therefore adopted as the baseline classifier and all further results reported here are derived from it.
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Figure 2. Mean and standard deviation classification accuracies across all folds for the entire
dataset using various different feature sets (from [39]). MFCC: Mel-frequency cepstral coefficient;
DirAC: directional audio coding.

Figure 3 shows the mean and standard deviation classification accuracies from the baseline for
each acoustic scene class. As previously mentioned, the mean accuracy across all scene classes is 69%.
The low standard deviation (7%) indicates the dataset as a whole gives features that are fairly consistent
across all folds. All of the scene classes except Beach are classified with mean accuracies above 60%.
In fact, if the Beach class is discounted, the overall mean accuracy rises by 9%. Busy Street, Pedestrian
Zone and Woodland are classified particularly well, at 86%, 97% and 85% accuracy, respectively.
Looking at the standard deviation values for accuracy across folds could give some indication of
the within-class variability between the different scene recordings. The very low standard deviation
in Pedestrian Zone accuracies of 4% implies that the Pedestrian Zone recordings have very similar
sonic characteristics, that is, they give very consistent features. Busy Street, Park and Train Station
could be said to be moderately consistent, whereas Quiet Street, Shopping Centre and Woodland show
more variability between the various recordings. The drastically lower accuracy of the Beach scene
classification is very anomalous. It could be that as the primary sound source at a beach will likely be
widespread and diffuse broadband noise from the ocean waves, this could yield indistinct features
that could be difficult for the classifier to separate from other scenes.

Figure 4 shows confusion matrices (previously published in [39]), which indicate classifications
made by the MFCC and E/D classifiers averaged across all folds. Rows indicate the true classes
and columns indicate the labels returned by the classifiers. The E/D matrix features a much more
prominent leading diagonal and confusion is much less widespread than in the MFCC matrix, clearly
indicating that the E/D classifier outperforms the MFCC classifier in the vast majority of cases. Beach is
the only class in which the MFCC classifier significantly outperforms the E/D classifier. The most
commonly-returned labels for the Beach scene by the E/D classifier are Quiet Street and Busy Street,
perhaps due to the aforementioned broadband noise from ocean waves yielding spatial features similar
to that of passing cars. This interpretation is corroborated by Figure 5, which shows elevation estimates
extracted using Equation (3) from 30-s segments of Beach, Quiet Street and Train Station recordings as
heat maps for comparison. The Beach and Quiet Street plots both show large areas across time and
frequency where elevation estimates remain broadly consistent at around 90°, indicating the presence
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of broadband noise sources dominating around that angle. The Train Station plot, on the other hand,
shows much more erratic changes in elevation estimates across time, and indeed there is no confusion
between Beach and Train Station using the E/D classifier.

Figure 3. Mean and standard deviation classification accuracies across all folds for each scene class
using the elevation/diffuseness–Gaussian mixture model (E/D-GMM) classifier.

(a) MFCC features (b) E/D features

Figure 4. Confusion matrices of classifiers trained using MFCC features and elevation/diffuseness
features extracted using DirAC. Figures indicate classification percentages across all folds (from [39]).
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(a) Beach

(b) Quiet Street

(c) Train Station

Figure 5. Heat maps depicting elevation estimates extracted from 30-s segments of Beach, Quiet Street
and Train Station recordings.

It is interesting to consider instances where the E/D classifier considerably outperforms the MFCC
classifier, such as with Pedestrian Zone, which is classified with 97% accuracy by the E/D classifier,
whereas the MFCC classifier only manages 52%. This indicates that the spatial information present in
pedestrian zones is much more discriminative than the spectral information, which seems to share
common features with both quiet streets and train stations. Further to this, it is interesting to investigate
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the instances where there is significant confusion present in both classifiers. Park, for instance, is most
commonly misclassified as Quiet Street by both classifiers. This is probably due to the fact that both
Park and Quiet Street scenes are both characterised as being relatively quiet locations, yet are still in
the midst of urban areas. These recordings tend to contain occasional human sound and low-level
background urban ‘hum’ (as opposed to Woodland, which tends to lack this). In other cases, however,
the specific misclassifications do not always correspond. The most common misclassification of the
Shopping Centre by the MFCC classifier is the Pedestrian Zone, a result perhaps caused by prominent
human sound found in both locations. In contrast to this, for the E/D classifier the most common
misclassification of the Shopping Centre is Train Station, and in fact there is no confusion with the
Pedestrian Zone at all. This could be due to the similarity in acoustics between the large reverberant
indoor spaces typical of train stations and shopping centres, which could have an impact on the values
calculated for elevation and diffuseness.

Figure 6 shows receiver operating characteristic (ROC) curves for the individual models trained
to identify each location class. These curves evaluate each GMM’s performance as a one-versus-rest
classifier. The curves were generated by comparing the scores generated by each model with the
ground-truth labels for each scene and calculating the probabilities that a certain score will be given to
a correct clip (true positive) or will be given to a clip from another scene (false positive). These pairs
of probabilities are calculated for every score output from the classifier and when plotted, form the
ROC curve. The larger the area under the curve (AUC), the better the classifier. The curves shown in
Figure 6 show the mean ROC across the four folds. It can clearly be seen that the AUC values do not
follow the pattern of the classification accuracies shown in Figure 3. This discrepancy is most stark
in Figure 6a, which shows the Beach model to be the best individual classifier, with an AUC of 0.95.
This indicates that the Beach model is individually very good at telling apart Beach clips from all other
scenes. The very low Beach classification accuracy from the system as a whole could be explained by
the fact that all the other scene models have lower AUC values than the Beach model, which suggests
greater tendencies in the other models to give incorrect scenes higher probability scores.

It should be noted here that points on the ROC curves do not indicate absolute score levels.
For instance, a false positive point on any given curve will not necessarily be reached at the same
absolute probability score as that point on any other curve. It is therefore possible that the Beach model
tends to give lower probability scores in general than the other models, and is therefore most of the the
time ‘outvoted’ by other models.

These results suggest that classification accuracies could be improved by using the AUC values
from each model to create confidence weightings to inform the decision making process beyond
the basic summing of probability scores. A lower score from the Beach model could, for instance,
carry more weight than from the Train Station model, which has an AUC of 0.58, indicating
performance at only slightly higher than chance levels.

(a) Beach (b) Busy Street

Figure 6. Cont.
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(c) Park (d) Pedestrian Zone

(e) Quiet Street (f) Shopping Centre

(g) Train Station (h) Woodland

Figure 6. Receiver operating characteristics (ROC) curves for each scene classifier, showing mean
(solid line) and standard deviation (grey area) of the curves calculated using results across all folds.
Dotted line represents chance performance. AUC: area under the curve.

4. Discussion

The results presented in Section 3 indicate that the collation of EigenScape has been successful
in that this classification exercise shows the suitability of this dataset for segmentation and
cross-validation. The good, but not perfect, degree of accuracy shown by the baseline E/D-GMM
classifier is very significant in that it goes some way towards showing the validity of this dataset in
terms of providing a good variety of recordings. Recordings within a class label are similar enough to
be grouped together by a classifier, whilst retaining an appropriate degree of variation.

These results suggest that DirAC spatial features extracted from Ambisonic audio could be
viable and useful features to use for acoustic scene identification. The simplicity of the classifier
used here indicates that higher accuracies could be gleaned from these features, perhaps by using
a more sophisticated decision-making process, or simply more sophisticated models. Utilising
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temporal features could be a compelling next step in this work. It would be especially interesting
to investigate whether Δ-azimuth values could be more discriminative than the azimuth values
themselves, being perhaps less dependent on microphone orientation. It is also worth noting that
all spatial analysis of this dataset so far has used only the first-order Ambisonic channels for feature
extraction. The fourth-order channels present in this database provide much higher spatial precision
that could enable more sophisticated feature extraction. The high channel count should also facilitate
detailed source separation that could be used for polyphonic event detection work. Event detection
within scenes should be a key area of research with this dataset moving forwards.

The size and scope of this database are such that there is a lot more knowledge to be gained
than has been presented here. The findings of this paper are important initial results that indicate the
investigation of spatial audio features could be a fertile new area in machine listening, especially with
a view to applications in environmental sound monitoring and analysis.

Supplementary Materials: The EigenScape database is provided freely to inspire and promote research work and
creativity. Please cite this paper in any published research or other work utilising this dataset. EigenScape Dataset:
http://doi.org/10.5281/zenodo.1012809; Baseline code and segmentation tools: https://github.com/marc1701/
EigenScape; Recording Map: http://bit.ly/EigenSMap.
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Abbreviations

The following abbreviations are used in this manuscript:

ASR Automatic Speech Recognition
MIR Music Information Retrieval
DCASE Detection and Classification of Acoustic Scenes and Events
ASC Acoustic Scene Classification
AED Acoustic Event Detection
MFCC Mel-Frequency Cepstral Coefficients
DOA Direction of Arrival
DirAC Directional Audio Coding
GMM Gaussian Mixture Model
E/D Elevation/Diffuseness
ROC Receiver Operating Characteristic
AUC Area Under the Curve
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Abstract: As brain-computer interfaces (BCI) must provide reliable ways for end users to accomplish
a specific task, methods to secure the best possible translation of the intention of the users are
constantly being explored. In this paper, we propose and test a number of convolutional neural
network (CNN) structures to identify and classify single-trial P300 in electroencephalogram (EEG)
readings of an auditory BCI. The recorded data correspond to nine subjects in a series of experiment
sessions in which auditory stimuli following the oddball paradigm were presented via earphones
from six different virtual directions at time intervals of 200, 300, 400 and 500 ms. Using three different
approaches for the pooling process, we report the average accuracy for 18 CNN structures. The results
obtained for most of the CNN models show clear improvement over past studies in similar contexts,
as well as over other commonly-used classifiers. We found that the models that consider data from
the time and space domains and those that overlap in the pooling process usually offer better results
regardless of the number of layers. Additionally, patterns of improvement with single-layered CNN
models can be observed.

Keywords: convolutional neural networks (CNN); auditory brain-computer interface (BCI); P300;
virtual sound; electroencephalogram (EEG); pool strategies; classification

1. Introduction

Brain-computer interfaces (BCI) provide a way for their users to control devices by basically
interpreting their brain activity [1]. BCI have enormous potential for improving quality of life,
particularly for those who have been affected by neurological disorders that partially or fully impede
their motor capacities. In severe conditions such as complete locked-in syndrome (CLIS), patients are
unable to willfully control movements of the eye or any other body part. In such cases, BCI based
on only auditory cues are a viable option for establishing a communication channel [2]. BCI can be
seen as module-based devices, where at least two essential parts can be recognized: the brain activity
recording module and the brain activity classification one.

To record brain activity, electroencephalography (EEG)-based technologies are often used
because they are noninvasive, portable, produce accurate readings and are affordable compared
with other methods [3–5]. Within the EEG readings, we can find some recognizable patterns, the P300
event-related potential (ERP) being of particular interest. The P300 is a positive deflection that can
be observed in the brain activity of a subject, and it can be elicited via cue presentation following
the oddball paradigm, an experimental setting in which sequences of regular cues are interrupted by
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irregular ones in order to evoke recognizable patterns within the brain activity of the subject. The P300
occurs between 250 and 700 ms after the presentation of an irregular cue in an experimental setting in
which the participant is asked to attend to a particular cue (an irregular one in the oddball paradigm).
The P300 has been exploited in many ways to produce a number of functional applications [6,7].
Although the specific technology used for recording the brain activity is closely tied to the final
performance of the classifier used, [8,9] demonstrated that training and motivation have a positive and
visible impact on the shape and appearance of the P300. Experimental setups using EEG and the P300
have been widely used in the development of BCI [10–13].

For data classification, machine learning models such as artificial neural networks (ANN) and
support vector machines (SVM) have not only been used widely but have also produced satisfactory
results in many BCI applications [14–18]. In recent years, the implementation of convolutional neural
networks (CNN) for classification purposes in tasks such as image and speech recognition has been
successful [19,20]. As a result, CNN have become an increasing topic of focus in various research
fields, especially those involving multidimensional data. The CNN topology enables dimensional
reduction of the input while also extracting relevant features for classification. For BCI, CNN have
successfully been used for rapid serial visual presentation (RSVP) tasks [21], as well as for navigation
in a virtual environment [22]. CNN consist of an arrangement of layers where the input goes through
a convolution and a sub-sampling process called pooling, generating in this way features and reducing
the size of the needed connections.

In the work of [15], which serves as a major inspiration and reference for the present study,
the authors advise against the use of CNN models that mix data from multiple dimensions during
the processes of the convolution layer for classification purposes in BCI. However, for our research,
we found that considering data from both the time and space domains for the pooling process of
the convolution layer results in better CNN classification accuracy. Additionally, we tested pool
processes with and without overlapping to assess whether this difference in processing impacts CNN
performance. These overlapping approaches were explored for image classification in the work of [23],
who reported better performance in the overlapping case, and with respect to speech-related tasks
in [24], who found no difference between the approaches and stated that it might depend strictly on
the data being used.

In this study, we present and test 18 different CNN models that use the above-mentioned
approaches for the pooling process, but also different numbers of convolution layers to classify
whether the P300 is present or absent in single-trial EEG readings from an auditory BCI experimental
setup. For the experiment, nine subjects were presented with auditory stimuli (100 ms of white noise)
for six virtual directions following the oddball paradigm and were asked to attend to the stimuli
coming from a specific direction at a time and count in silence every time this happened to potentially
increase the correct production of the P300. The BCI approach followed in this work is a reproduction
of the one presented in [25] as it has relevant characteristics for auditory BCI (especially portability)
such as the use of earphones to present the auditory stimuli and the capacity to simulate sound
direction through them. Unlike the work of [25], which considers only one trial interval of 1100 ms
between stimuli presentation, we considered variant time intervals (200, 300, 400 and 500 ms) between
presentations of the auditory stimuli for all 18 CNN models to evaluate the extent to which this
variation could affect the performance of the classifier.

This paper is organized as follows: Section 2 contains the information regarding the conformation
of the dataset used, such as the experimental setup and data processing. The structure of proposed
CNN models, specific parameters considered for this study and the details of the selected models are
described in Section 3. A summary of the obtained results is presented in Section 4, with a strong
focus on the similarities between the observed patterns in the performance of the structures. Finally,
in Sections 5 and 6, we discuss our results and ideas for future work.
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2. Experimental Setup and Production of the Datasets

2.1. Experiment

The dataset used for this study corresponds to the evoked P300 waves of nine healthy subjects
(8 men, 1 woman) on an auditory BCI paradigm. A digital electroencephalogram system (Active Two,
BioSemi, Amsterdam, Netherlands) was used to record the brain activity at 256 Hz. The device consists
of 64 electrodes distributed over the head of the subject by means of a cap with the distribution shown
in Figure 1a. This study was approved by the ethics board of the Nagaoka University of Technology.
All subjects signed consent forms that contained detailed information about the experiment, and all
methods complied with the Declaration of Helsinki.

By using the out of the head sound localization method [26], the subjects were presented
with stimuli (100 ms of white noise) from six different virtual directions via earphones followed
by an interval in which no sound was produced (silent interval). Figure 1b shows the six virtual
direction positions relative to the subject.

We refer to one stimulus and one corresponding silent interval as a trial. Four different trial
lengths (200, 300, 400, and 500 ms) were considered in order to analyze the impact that the speed of
the stimuli presentation could have on the identification of the P300 wave.

For the creation of this dataset, each subject completed a task, which was comprised of a collection
of 12 sessions, for each of the proposed trial lengths. Figure 1c illustrates the conformation of a task.
Each session had as the attention target a fixed sound direction that changed clockwise from one
session to another starting from Direction 1 (see Figure 1b). Subjects were asked to attend only to the
stimuli perceived to be coming from the target direction and to count in silence the number of times it
was produced. The subjects performed this experiment with their eyes closed.

In each session, around 180 pseudo-randomized trials were produced, meaning that for every six
trials, sound from each direction was produced at least once and that stimuli coming from the target
direction were never produced subsequently to avoid overlapping of the P300 wave. Thus, of the
approximately 180 trials contained in each session, only a sixth of these would contain the P300 wave
corresponding to the target stimuli.

(a) (b) (c)

Figure 1. (a) 64 electroencephalogram (EEG) channel layout used in the experiments. Reference
electrodes attached to the ears; (b) Virtual disposition of the six sound directions with respect to the
user. A stimulus is being produced from Direction 3; (c) Task constitution.

2.2. EEG Data Preprocessing and Accommodation

EEG data preprocessing is conducted as follows: The recorded EEG data are baseline corrected and
filtered. Baseline correction is carried out using a first order Savitzky–Golay filter to produce a signal
approximation that is then subtracted from the original signal. In that case, the baseline correction is
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conducted for the period from −100 ms before the stimulus onset until the end of the trial (i.e., end of the
silent period after the stimulus offset). This then becomes an example in the training or testing datasets.

For the filtering process, we use Butterworth coefficients to make a bandpass filter with low
and high cutoff frequencies of 0.1 Hz and 8 Hz, respectively. Once the correction and filtering are
completed, the data are then down-sampled to 25 Hz to reduce the size of the generated examples.

To generate the training and test sets that will be input into the CNN, trials are divided into
two groups, randomly: those with and without the target stimuli. Each trial constitutes an example in
the training or test set, so there are around 180 examples for each session. As there are 12 sessions for
each task and a sixth of the trials correspond to when the stimuli were heard, a total of approximately
360 target and around 1800 non-target examples can be obtained for a single subject in one task.
The target and non-target examples are distributed as closely as possible into a 50/50 relation among
the training and test sets. Regardless of the trial length, the examples have a matrix shape of 28× 64,
which corresponds to 1100 ms of recordings along the 64 EEG channels after the stimuli were presented.
This is done to assure each example contains the same amount of information.

3. Convolutional Neural Networks

This particular neural network architecture is a type of multilayer perceptron with
a feature-generation and a dimension-reduction -oriented layer, which, together, compose what
is called a convolutional layer. Unlike other layer-based neural networks, the CNN can receive
a multidimensional input in its original form, process it and successfully classify it without a previous
feature extraction step. This is possible because the features are generated within the CNN layers,
preventing possible information loss caused by user-created features or data rearrangement. Figure 2
shows the process an input experiences before classification by one of our proposed CNN models.

Figure 2. Structure of a convolutional neural network (CNN) depicting the results of applying
the convolution and pooling processes in the convolution layer for the input. Default pooling
(non-overlapping) is shown in this figure.

The convolution and pooling processes consist of applying patches (also known as kernels) to the
input or the result from the previous patch application to extract features and reduce their sizes. For our
study, a number M = 64 of feature maps is produced as a result of the applications of such patches, each
producing a feature map different from the other ones as the weights of the patches change. If an input,
convolution patch and pool patch with sizes of [t× s], [a× b] and [c× d], respectively, are considered,
the convolution patch is first applied to the input to extract features of interest, which generates
a feature map of size (t− a + 1)× (s− b + 1). Then, the pooling process takes place, which in our case
is max pooling. By taking a single desired value out of an area (of the feature map) defined by the size
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of the pool patch, this process generates a resulting feature map of size (t− a + 1)/c× (s− b + 1)/d
for those cases in which the pooling process does not overlap. For our case t = 28, s = 64, a, b, c, d
change depending on the patches being used. The resulting feature maps are then connected to the
output layer in which classification takes place. While in the convolution process, the applied patches
overlap, that is not normally the case for the pooling process (see Section 3.1.3 for details). In this study,
we test also CNN structures that cause the pool patches to overlap. The convolution and pooling
processes occur as many times as there are convolution layers in the CNN.

3.1. Proposed Structures

As with other neural network structures, there are several CNN parameters to be defined by the
user that will directly impact CNN performance. In this study, we considered as variables the number
of convolutional layers and the shape of convolutional and pool patches. However, the learning rate,
experiment stopping conditions, pool stride and optimization method are always the same regardless
of the structure being tested. By proposing variations to the above-mentioned parameters, we were
able to evaluate 18 different CNN structures in terms of classification rate. Figure 2 shows the general
structure of the CNN used in this study.

3.1.1. Number of Convolution Layers

We propose structures with one and two convolution layers. This is the biggest structural
difference the proposed models could exhibit as it heavily affects the size of the resulting feature
maps. Structures with more than two convolution layers are not advised for applications such as ours,
as early tests showed that the input was over simplified and the classification rate highly affected in
a negative way.

3.1.2. Shape of Convolution and Pool Patches

Each of the EEG electrodes experiences the presence of the P300 wave in different magnitudes,
and there are certain regions that are more likely to show it. This has been reported by different
studies [14,25]. However, in most studies that attempt to classify EEG data, the two-dimensional
position of the channels along the scalp of the user is mapped, generating a one-dimensional array
that positions channels from different regions of the brain next to one another.

Given that applying either of the kernels in a squared-shaped fashion like that demonstrated
in Figure 2 will result in feature maps that mix data from both the space and time domains, it is
advised [14] that patches be constructed such that they only consider information of one dimension
and one channel at a time. In this study, we considered three different convolution and pool patch
sizes, including one pool patch that considers data from two adjacent channels simultaneously in
the one-dimensional array. These patch sizes were chosen as a result of preliminary tests, in which
a wide number of options was analyzed using data from one subject. The different CNN structures
that were tested for this study consist of combinations of the selected number of layers and sizes of
convolution and pool patches, which are summarized in Table 1. For a given number of convolution
layers, the nine possible combinations of convolution and pool patches are considered. For the CNN
with two layers, the same combination of convolution and pool patches is used in each layer. For the
pooling operation, max pooling is applied.

Table 1. Proposed and tested number of convolution layers, size of convolution patches and size of
pool patches.

Convolution Layers 1 2

Size of convolution patch 2× 1 4× 1 5× 1
Size of pool patch 2× 1 3× 1 3× 2
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For easier identification within the text, we will use brackets to refer to the patches listed above,
e.g., pool patch [3× 2]. The convolution layers will only be referred to as layers in the following
sections. In this study, 64 feature maps of the same size are generated after the convolution.

3.1.3. Pool Stride

For this study, a fixed pool stride of size 2× 1 was considered for all 18 proposed CNN structures.
Normally, the pool stride is the same size as the pool patch, which means that the pool process takes
place in areas of the data that do not overlap. However, in early tests, that approach proved to be
inadequate especially for the structures with two convolution layers. A fixed pool stride as the one
proposed in this study implies that the area in which the pool kernels are applied overlap for the [3× 1]
and the [3× 2] pool patches. The consequences of fixing the pool stride for the proposed pool patches
can be seen in Figure 3, where the gray areas are those that the pool process has already considered,
while the dark-colored ones correspond to those areas considered more than once (overlap) in the
current application of the pool patches. Regardless of the pool patch size, their application occurs
one space to the right of the previous one at a time and, when meeting the end of the structure, going
back to the start, but spaced two spaces vertically. Although the consequences of the overlapping
pooling process are still unknown in the application of CNN in BCI, this approach has successfully
been used for image recognition [23]. With the selected size of the fixed pool stride and the proposed
pool patches, we can account for CNN that do not experience overlapping in the case of pool patch
[2× 1], other ones that do experience overlap for the [3× 1] patch and, finally, models that experience
overlapping and also consider data from two channels simultaneously, which corresponds to the pool
patch [3× 2]. Depending on the pool strategy used, the size of the resulting feature map varies slightly.

Figure 3. Proposed pooling patches applied on a 5× 3 structure to show overlapping caused by the
fixed pooling stride. Gray areas represent those in which the patch has been applied, and dark-colored
areas are those in which the patch overlaps with previous iterations.

3.1.4. Learning Rate

The discussion towards learning rate usually goes in two directions: whether it is chosen based
on how fast it is desired for the training to be finished or depending on the size of each example in
the dataset. The learning rate used for this study is 0.008. Several other learning rate values ranging
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from 0.1 to 0.000001 were tested in preliminary tests with noticeable negative repercussions for CNN
performance, either with respect to the time required to train or the overall classification rate. The value
was chosen as it allows one to see gradual and meaningful changes in the accuracy rate evolution
during both training and test phases.

3.1.5. Optimization Method

We used stochastic gradient descent (SGD) to minimize the error present during training.
The work of [27] has demonstrated that this method is useful for training neural networks on large
datasets. For this case, the error function E(w) is given as a sum of terms for a set of independent
observations En(w), one for each example or batch of examples in the dataset being used in the form:

E(w) =
N

∑
n=1

En(w). (1)

Thus, making the weight updates based on one example or batch of examples at a time, such that:

w(τ+1) = w(τ) − η∇En(w(τ)) (2)

where w is the weight and bias of the network grouped together (weight vector), τ is the number of
iterations of the learning process in the neural network, η is the learning rate and n ranges from one
to Q, which is the maximum number of examples or possible batches in the provided set depending
on whether the batch approach is used or not. For this study, batches of 100 examples were used when
training any of the proposed CNN structures.

3.1.6. Output Classification

We used a softmax function to evaluate the probability of the input x belonging to each of the
possible classes. This is done by:

p(Ck|x) =
p(x|Ck)p(Ck)

∑j p(x|Cj)p(Cj)
, (3)

where Ck is the current class being considered, and j = 1, ..., L, where L represents the maximum number
of classes. After the probability is computed for each class, the highest value is forced to one and the
rest to zero, forming a vector of the same size as the provided teaching vector (labels). The vectors are
then compared to see if the suggested class is the same as the one given as the teaching vector.

3.1.7. Accuracy Rate

As the data-sets used for training and testing the different CNN contained examples for two classes
of stimuli (target and non-target) in different amounts, the accuracy rate is defined by the expression:

accuracy =

√
TP
P
× TN

N
, (4)

which heavily penalizes poor individual classification performance in binary classification tasks.
TP stands for true positives and is the number of correctly classified target examples, and TN, which
stands for true negatives, is the number of correctly classified non-target examples. P and N represent
the total number of examples of the target and non-target classes, respectively, for this case.

All the CNN structures were implemented using a GeForce GTX TITAN X GPU by NVIDIA in
Python 2.7 using the work developed by [28].
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4. Results for P300 Identification

In this section, we compare the obtained results from the 72 CNN models (18 for each of the
four trial intervals) and group them in two different ways in order to facilitate the appreciation of
patterns of interest. First, the obtained accuracy rates with fixed convolution patches as seen in Table 2
are discussed. Then, we describe the results of models with fixed pool patches, as shown in Table 3.
These two ways of presenting the same results allows one to recognize some performance patterns
linked to the convolution or pool patches used for each model. The results show the mean accuracy of
each model for the nine subjects that took part in the experiment. At the same time, the results are the
mean value obtained from a two-fold cross-validation, where the accuracy for each fold was calculated
using Equation (4).

The highest accuracy rate obtained among all the tested models was 0.927 for trials 500 ms long
in the model with one layer, convolution patch [4× 1] and pool patch [3× 2]. The lowest accuracy
rate was 0.783 for trials 200 ms long in the model with two layers, convolution patch [5× 1] and pool
patch [2× 1].

Table 2. Summarized results for the 18 convolutional neural networks (CNN) structures for all
considered trial lengths with fixed convolution patches. PP = pool patch, CP= convolution patch,
CL= convolution layers.

500 ms 400 ms 300 ms 200 ms

CP PP CL 1 CL 2 CL 1 CL 2 CL 1 CL 2 CL 1 CL 2

[2× 1]
[2× 1] 0.882 0.915 0.860 0.914 0.850 0.903 0.842 0.880
[3× 1] 0.920 0.910 0.899 0.906 0.865 0.883 0.880 0.891
[3× 2] 0.907 0.910 0.919 0.906 0.881 0.884 0.897 0.887

[4× 1]
[2× 1] 0.855 0.869 0.867 0.880 0.796 0.809 0.837 0.814
[3× 1] 0.880 0.884 0.901 0.864 0.858 0.855 0.838 0.832
[3× 2] 0.927 0.916 0.912 0.868 0.872 0.836 0.911 0.848

[5× 1]
[2× 1] 0.869 0.840 0.855 0.867 0.805 0.827 0.841 0.783
[3× 1] 0.896 0.847 0.880 0.868 0.874 0.839 0.841 0.826
[3× 2] 0.897 0.857 0.895 0.859 0.890 0.824 0.915 0.820

Table 3. Summarized results for the 18 CNN structures for all considered trial lengths with fixed pool
patches. PP = pool patch, CP= convolution patch, CL= convolution layers.

500 ms 400 ms 300 ms 200 ms

PP CP CL 1 CL 2 CL 1 CL 2 CL 1 CL 2 CL 1 CL 2

[2× 1]
[2× 1] 0.882 0.915 0.860 0.914 0.850 0.903 0.842 0.880
[4× 1] 0.855 0.869 0.867 0.880 0.796 0.809 0.837 0.814
[5× 1] 0.869 0.840 0.855 0.867 0.805 0.827 0.841 0.783

[3× 1]
[2× 1] 0.920 0.910 0.899 0.906 0.865 0.883 0.880 0.891
[4× 1] 0.880 0.884 0.901 0.864 0.858 0.855 0.838 0.832
[5× 1] 0.896 0.847 0.880 0.868 0.874 0.839 0.841 0.826

[3× 2]
[2× 1] 0.907 0.910 0.919 0.906 0.881 0.884 0.897 0.887
[4× 1] 0.927 0.916 0.912 0.868 0.872 0.836 0.911 0.848
[5× 1] 0.897 0.857 0.895 0.859 0.890 0.824 0.915 0.820

4.1. Fixed Convolution Patches

Producing good results by mixing information from two adjacent channels in a mapped channel
vector was considered with skepticism. However, if a direct comparison between the structures with
different pool patches is considered (see Table 2), in all cases but one for the one-layered structures and
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considering all trial lengths, the best results were obtained by those models using the pool patch [3× 2],
which considers both spatial and temporal information. This behavior is not seen for models that use
two layers. Additionally, regardless of the number of layers, 58.3% (42 models) of the time, the best
results were from structures that used pool patch [3× 2], 25% (18 models) of the time for when pool
patch [3× 1] was applied and 16.6% (12 models) of the time for structures that used pool patch [2× 1].

With respect to the convolution patch [5 × 1] for trials 200 ms long, the lowest accuracy
corresponded to the structure with one layer and pool patch [2× 1]. In this condition, an accuracy rate
of 0.915 was also achieved by another structure (one layer and pool patch [3× 2]), thus representing
the biggest accuracy rate gap (around 13%) among results produced for a trial of the same length and
convolution patch.

4.2. Fixed Pool Patches

In Table 3, the results are now accommodated by fixing the pool patches. Comparing results
between different convolution patches on the structures with one and two layers separately reveals
a tendency for the convolution patch [2× 1] to offer the best accuracy rates for 70.8% of the cases
(51 models). As for the convolution patches [4× 1] and [5× 1], for 16.6% (12 models) and 12.5%
(9 models) of the time, they produce the best results, respectively. If only the two-layer models are
considered, the convolution patch [2× 1] offers the best results for all cases except one (the model
with PP = [3 × 2] and CP = [2 × 1]), similar to the pattern for the one-layer models in Table 2
discussed before.

4.3. Mean Accuracy Rate for Fixed Patches

Given the fixed convolution or pool patches presented in Tables 2 and 3, the mean accuracy for all
possible CNN models is presented in Figure 4 to show the differences in patch performance.

Figure 4. Mean accuracy, along with the accuracy’s standard deviation, for all models with fixed
convolution patches (left) and pool patches (right).

For the convolution patches, [2 × 1] achieved the overall highest accuracy (presented with
the standard deviation), i.e., with 0.891 ± 0.021, followed by [4 × 1] and [5 × 1], in that order,
with 0.864± 0.034 and 0.855± 0.032, respectively. As for the pool patches, the approach in which the
pool patch is the same size as the pool stride, i.e., no overlapping occurs, yielded the lowest overall
accuracy at 0.853± 0.026, followed by [3× 1], the patch representing the overlapping pool process,
with 0.872± 0.035, and finally, by the pool patch that not only causes overlap, but also considers data
from two adjacent channels in the mapped version of the channels, [3× 2], with 0.885± 0.03.
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5. Discussion

In this study, we proposed and tested the efficacy of 18 different CNN for classifying the presence
or absence of the P300 wave from the EEG readings of nine subjects in an auditory BCI with virtual
direction sources. We approached the classification task by testing three pooling strategies and
considering four different trial lengths for the presentation of the auditory stimuli. The implementation
of the mentioned strategies is possible due to the fixed pooling stride explained in Section 3.1.3 and
present in all of the CNN models. The fixed pooling stride also prevents the resulting feature maps
from being oversimplified, as having a stride that matches the size of the pooling kernel might not be
possible in all cases due to the down-sampling of the data.

5.1. Pooling Strategies and Other Studies

The first pooling strategy, represented by pool patch [2× 1], is the most common approach used
in CNN and consists of a pooling process in which the pool patch and stride are of the same size.
In this study, this approach led to the lowest general accuracy rates.

The goal of the second strategy, represented by [3× 1], is to cause overlapping of the pool patches.
This strategy has been tested in previous work, although with data of a very different nature. While [24]
reported no differences between performance for approaches with or without overlapping for speech
tasks, we have found that, as in the work of [27], better CNN model performance can be achieved
using an overlapping pool strategy.

The third strategy, represented by pool patch [3 × 2], showed that the performance of the
overlapping strategy can be further enhanced by also considering data from two different adjacent
channels simultaneously. This consideration is not applied to the original input, but rather to feature
maps generated after the convolution patch is applied.

Past studies involving the classification of single-trial P300 includes the work of [14], in which
results are reported for P300 identification using raw data from Dataset II from the third BCI
competition [17]. Rather than changing the parameters of a CNN model, they presented the results
of changing the way the input is constructed. In the best scenario, they achieve accuracy rates of
0.7038 and 0.7819 for each of two subjects, with a mean accuracy of 0.7428. In the work of [29],
three experiments were conducted, which compared different classifiers for classification of single-trial
ERPs for rapid serial visual presentation (RSVP) tasks. They found that the best performance is
achieved by a CNN, with a mean accuracy and standard deviation of 0.86± 0.073. Another RSVP task
is presented in [21] where CNNs are also used for classification. By applying the CNN classifier, they
found that they could improve the results obtained in previous studies. These studies are well known,
but were not focused on single-trial P300 classification; however, they present approaches that inspired
this work and provide a reference to what has normally been achieved in this context.

In [25], single trial P300 classification is reported as part of their results. By using support vector
machines (SVM), they achieve a mean accuracy rate of approximately 0.70 for seven subjects when
considering a reduced number of EEG channels. Another case of a single-trial identification attempt
comes from [30], where Fisher’s discriminant analysis (FDA) regularized parameters are searched for
using particle swarm optimization, achieving an accuracy of 0.745 for single trials and no channel
selection. These results can be fairly compared to ours (see Section 5.4), as the goal of these studies,
their experimental setup and BCI approach are the same as the ones we present.

In this study, the highest mean accuracy rate for nine subjects was 0.927, and the lowest was 0.783.
The mean accuracy rates for all the models for fixed trial intervals were 0.855± 0.036, 0.853± 0.031,
0.884± 0.021 and 0.888± 0.026 for the 200-, 300-, 400- and 500-ms trial interval, respectively.

5.2. Convolution Patches and Number of Layers

Although we approached this study expecting the pooling strategies to play the most relevant role
performance-wise, we also observed patterns of improvement depending on the selected convolution

453



Appl. Sci. 2017, 7, 1197

patch (as presented in Figure 4) and the number of layers. Considering less information in the time
domain for the convolution process leads to better mean accuracy rates. We found the difference
between the highest and lowest mean accuracy rate in the convolution patch to be 0.036, which is
slightly bigger than the difference between the lowest and highest mean accuracy rates between the
tested pool strategies (0.032).

On a related matter, the models with only one layer outperformed those with two layers in
21 (58.3%) of the 36 cases. As each time the pool patch is applied, the size of the input is reduced
significantly, a large number of layers might produce an oversimplification of the input. In our
preliminary research, models with three and four layers were tested for different tasks using the
datasets described in this work; however, they performed poorly in comparison to models with
only one or two layers. This situation might be different if the input we used did not consist of
down-sampled data, therefore not falling into the oversimplification problem with the proposed
CNN models.

To analyze whether the down-sampling negatively affects the performance of the CNN, we used
non-down-sampled data to test the model that achieved the highest accuracy as reported in Section 4.
The results, which favor the down-sampled data, can be seen in Figure 5.

Figure 5. Difference in mean accuracy for the model with the highest performance using down-sampled
and non-down-sampled data.

By using down-sampled data, we could not only boost the accuracy with respect to the
non-down-sampled data, but also shorten the training/testing times inherent in the size of the input.

5.3. Alternative Training Approach

For the results presented in Section 4, we used the training approach ‘single subject approach’
described in Section 5.3.1 trying to achieve the best possible performance. However, the ‘combined
subjects approach’ described in Section 5.3.2 is also a viable way to address CNN training. Next, we will
discuss the differences between both approaches and offer results that support our decision to
implement the former.

5.3.1. Single-Subject Approach

This approach consists of training one CNN using the data of a single subject at a time for each
trial length. As the ability to correctly recognize irregular auditory cues varies from one subject to
another, this approach allows some of the trained CNN models to perform particularly well if the
data come from a subject that excelled in the recognition task. The drawback of using this approach
is the large amount of time needed to obtain the mean accuracy of a single CNN model as each of
the proposed structures is trained individually for each subject. Therefore, considering a single trial
length, 9× 18 CNN were trained. The mean accuracy rate obtained for all subjects is presented as the
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result for a single CNN model. The average time spent on training was about 20 min for the structures
with one convolution layer and approximately 27 min for those with two layers.

5.3.2. Combined Subjects Approach

This approach consists of training only one CNN with examples from all of the subjects for each
different trial length and then testing each subject individually on the trained CNN. This approach
allows one to decrease the number of CNN to train in order to obtain the average accuracy rate for
a single CNN model and therefore the time needed to analyze the results. Using this approach also
means that the number of examples for training and testing will increase by the number of subjects.
A major drawback of this approach is that subjects who fail to recognize the irregular auditory cues will
produce examples that do not contain the P300 even if they are labeled otherwise, negatively affecting
the CNN performance. For a single CNN model considering data from all subjects, the average time
spent on training was about 32 min for the structures with one convolution layer and approximately
39 for those with two layers.

The model that exhibited the best performance in Section 4 was chosen to be tested using also the
previously explained combined subjects approach to determine if it offered better performance than
that of the currently used approach. Table 4 shows the comparison between the results for the single
subject and combined subjects approaches for each subject considering the CNN structure with the
overall highest accuracy rate (one layer, convolution patch [4× 1], pool patch [3× 2]). The difference
in the mean accuracy rate is about 6%, in favor of the single-subject approach. If subjects are compared
in terms of the two approaches, the combined subjects approach is better only in one out of the nine
cases. Subject 9, which produced the lowest accuracy in the single-subject approach, benefited slightly
from the combined subjects approach. In the eight cases in which the single-subject approach obtains
better results, the accuracy rates between both approaches varies between 0% and 11%, depending
on the subject. Figure 6 shows the receiver operating characteristic (ROC) curves for each of the nine
subjects for the CNN model with the highest accuracy under the single-subject approach. These curves
can serve to better understand the results presented in Table 4 for such an approach.

Although there is a substantial difference between both approaches of about five times in terms
of the amount of time each one required to produce the mean accuracy, the single-subject approach
offered better results.

Figure 6. Receiver operating characteristic (ROC) curves of each subject for the CNN model with
one layer, convolution patch [4× 1] and pool patch [3× 2] using the single-subject approach.
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Table 4. Comparison between the accuracy rates obtained for the single-subject (SS) and combined
subject (CS) approaches for the CNN model with 1 layer, convolution patch [4 × 1] and pool
patch [3 × 2].

500 ms

Subject SS CS

1 0.926 0.858
2 0.893 0.817
3 0.914 0.912
4 0.948 0.877
5 0.969 0.851
6 0.953 0.854
7 0.969 0.915
8 0.916 0.836
9 0.854 0.865

Average accuracy 0.927 0.865

5.4. CNN and Other Classifiers

As presented in Section 5.1, there are many studies related somehow to the one we present now.
We considered it appropriate to compare some of the classifiers those works present that are not CNN.
To compare the obtained results from the CNN with other classifiers, we used support vector machines
(SVM) and Fisher’s discriminant analysis (FDA) for all of the available trial lengths. Details for how
we implemented these two classifiers can be found in the Appendix. Table 5 shows the comparison
between the accuracy, precision and recall results obtained from the SVM, FDA and the CNN model
that achieved the highest accuracy rate in four different trial intervals: 200, 300, 400 and 500 ms.

Table 5. Comparison between the overall accuracy rates, precision and recall obtained for the CNN
model with the highest accuracy rate, support vector machines (SVM) and Fisher’s discriminant
analysis (FDA).

Accuracy Precision Recall

CNN SVM FDA CNN SVM FDA CNN SVM FDA

500 ms 0.927 0.709 0.745 0.994 0.37 0.43 0.826 0.70 0.71
400 ms 0.912 0.711 0.731 0.987 0.37 0.41 0.836 0.70 0.68
300 ms 0.872 0.691 0.707 0.992 0.35 0.39 0.766 0.68 0.65
200 ms 0.911 0.662 0.688 1.00 0.34 0.36 0.833 0.62 0.61

The results from CNN with the highest accuracy compared to those of the SVM or the FDA are
clearly higher, and this difference decreases if we take into consideration the lowest accuracy obtained
by one of our CNN models, which is 0.783, with a precision of 1.0 and a recall of 0.618 for the 200-ms
trial interval.

5.5. Future Work

Like many previous studies, we used a mapped version of the EEG channels to create
a two-dimensional input for CNN. However, EEG data, especially those recorded during experiments
conducted using the oddball paradigm, exhibit areas where irregular events have more visible
repercussions. For this reason, it is of interest in the future for EEG analysis that the input of the CNN
is a three-dimensional structure. Images have this kind of topology, in which two dimensions are used
for the position of pixels and three channels define the color of a given pixel. Thus, instead of analyzing
one channel at a time to avoid mixing spatial and temporal information, larger two-dimensional
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patches could be used in both the convolution and pooling process to address a specific moment in the
EEG readings. The result would be a map showing the complete brain activity in that particular point.

Embracing different training schemes to reduce the computation time needed for the results to be
obtained should be considered. The presented accuracy rates were obtained by training and testing
a CNN for each subject on each of the proposed structures and repeating that for the different trial
lengths, resulting in long training sessions to obtain the mean accuracy rate of a single structure.

6. Conclusions

By proposing and testing CNN models to classify single-trial P300 waves, we obtained state of
the art performances for CNN models using different pooling strategies in the form of mean accuracy
rates for nine subjects. We proved that, in off-line classification, single-trial P300 examples could be
correctly classified in the auditory BCI we proposed, which uses headphones to produce sound from
six virtual directions, thus reducing the amount of hardware needed to implement the BCI in real
life. While similar previous studies obtained accuracy rates varying from approximately 0.70 to 0.745,
we found mean accuracy rates ranging from 0.855 to 0.888 depending on the trial interval and from
0.783 to 0.927 if individual models are considered. We achieved this by applying different pooling
strategies that affect the performance of CNN models dealing with EEG data for classification purposes,
as well as using a different number of convolution layers. We found that either of the approaches that
overlap in the pooling process or also consider data from two adjacent channels performed better than
the most common approach, which uses a pooling stride that is the same size as the pool patch and
only considers data from one channel at a time. In most cases, models with simple structures (only
one layer) perform better for this type of case and also offer faster training times. Other improvement
patterns were also observed for the different convolution patches, as well as for how to approach the
training and testing of CNN models.
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Appendix A

SVM

Analysis was performed using LIBSVM software [31] and implemented in MATLAB (MathWorks,
Natick, MA, USA). We used a weighted linear SVM [32] to compensate for imbalance in the
target and non-target examples. Thus, we used a penalty parameter of C+ for the target and
C-for the non-target examples. The penalty parameter for each class was searched in the range
of 10−6 to 10−1 (10−6 ≤ 10m ≤ 10−1; m: −6:0.5:−1) within the training. We determined the best
parameters as those that obtained the highest accuracy using 10-fold cross-validation for the training.
Using the best penalty parameters, we constructed the SVM classifier using all training data and
applied it to the test data.

FDA

We used a variant of the regularized Fisher discriminant analysis (FDA) as the classification
algorithm [30]. In this algorithm, a regularized parameter for FDA is searched for by particle swarm
optimization (for details, see [30]) within the training. In this study, we used all EEG channels
without selection.
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Featured Application: A real-time physical model sound effect that can replicate the sound of

a number of swinging objects, such as a sword, baseball bat and golf club, has great potential

for dynamic environments within virtual reality or games. The properties exposed by the sound

effects model could be automatically adjusted by a physics engine giving a wide corpus of sounds

from one simple model, all based on fundamental fluid dynamics principles.

Abstract: A real-time physically-derived sound synthesis model is presented that replicates the
sounds generated as an object swings through the air. Equations obtained from fluid dynamics are
used to determine the sounds generated while exposing practical parameters for a user or game
engine to vary. Listening tests reveal that for the majority of objects modelled, participants rated the
sounds from our model as plausible as actual recordings. The sword sound effect performed worse
than others, and it is speculated that one cause may be linked to the difference between expectations
of a sound and the actual sound for a given object.

Keywords: sound synthesis; physical modelling; aeroacoustics; sound effects; real-time; game audio;
virtual reality

1. Introduction

The sound of an object swinging through the air has a very distinctive swoosh sound. We expect
this sound when watching a sword fight in a movie or playing a golfing game. This is a common
sound within films, TV programmes and games covering genres like sports, material arts or
a swashbuckling yarn. These distinct sounds are all generated by a similar physical process as the
objects move through the air.

When sounds are added into media to replicate or emphasise original sounds, like a sword swoosh,
they are classed as sound effects. A sound effect is usually implemented as a pre-recorded sample
or from sound synthesis. Pre-recorded samples have a drawback in media like games and virtual
reality as they are unable to change or evolve with the environment, but they are often viewed as more
perceptually accurate than synthesised effects. Synthesised effects have the advantage of being based
on algorithms and hence have the potential to adapt with their environments.

Being able to replicate these sounds within a single synthesis model offers the opportunity
to cover a wide variety of objects travelling through the air. This potentially gives a programmer
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the ability to obtain the results required without having to find a sample within a sound effects
library or record the sound themselves. It also provides an audio programmer the ability to
integrate parameters of the model into a game engine. Thus, the synthesis model can evolve
with the environment, increasing immersion within a game or virtual reality. A video illustrating
the model being used to synthesise a sword swing within the Unity game engine is shown at
https://www.youtube.com/watch?v=zVvNthqKQIk.

This article is a revised and extended version of [1], which won the best paper award at the 14th
Sound and Music Computing Conference 2017. It presents a new sound synthesis method illustrating
the design, implementation and analysis of a real-time physically-derived model that can be used to
produce sounds similar to those of an object swooshing through the air. The objects examined were
a metal sword, a wooden sword, a baseball bat, a golf club and a broom handle, which represent
different object geometries commonly heard swinging through the air. To our knowledge, this is the
first synthesis model that replicates a wide variety of objects swinging through the air by using bona
fide fluid dynamics equations to calculate the sound output in real time.

Section 2 describes the state of the art and related work, while Section 3 gives a detailed description
of our method. The implementation is given in Section 4 followed by both subjective and objective
evaluations of our model in Section 5. A discussion of the work is presented in Section 6 followed by
conclusions in Section 7.

2. Background and Related Work

Sound synthesis techniques can be split into two broad approaches, signal-based and physical
models [2]. Signal-based models aim to replicate the sound properties; matching frequency components,
replicating the time envelope or similar. Physical models aim to replicate the processes behind the
natural sound creation by mathematical models.

The advantage of a signal-based model is that it is relatively computationally inexpensive
to replicate the spectrum of a sound using established techniques such as additive synthesis or
noise shaping. A drawback of this approach is that it is rarely possible to relate changes in signal
properties to the physical processes creating the sound. For example, an increase in speed of a sword not
only changes the fundamental tone frequency, but also the gain. Therefore, changing one signal-based
property could lose realism in another.

Physical models aim to replicate the physics behind the sound generation process.
Sounds generated by these models have the advantage of possessing greater authenticity in the
generated sounds, especially in relation to parameter adjustments. A potential drawback is that
the computational cost required to produce sounds is often high, and the physical models typically
cannot adapt quickly to parameter adjustments, making real-time operation challenging and often
not possible.

In the middle of these traditional techniques lay physically-inspired models. These hybrid
approaches replicate the signal produced, but add characteristics of the physics that are behind
the sound creation. For a simple sword model, this might be noise shaping with a bandpass filter with
centre frequency proportional to the speed of the swing. A variety of examples of physically-inspired
models was given in [3]; the model for whistling wires being exactly the bandpass filter mentioned.

Four different sword models were evaluated in [4]. Here, the application was for interactive
gaming, and the evaluation was focused on perception and preference rather than accuracy of sound.
The user was able to interact with the sound effect through the use of a Wii Controller. One model was
a band-filtered noise signal with the centre frequency proportional to the acceleration of the controller.
A physically-inspired model replicated the dominant frequency modes extracted from a recording
of a bamboo stick swung through the air. The amplitude of the modes was mapped to the real-time
acceleration data.

The other synthesis methods in [4] both mapped acceleration data from the Wii Controller to
different parameters; one using the data to threshold between two audio samples, the other a granular
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synthesis method mapping acceleration to the playback speed of grains. Tests revealed that the
granular synthesis was the preferred method for expression and perception. One possible reason that
the physical model was less popular could be the lack of correlation between speed and frequency
pitch, which the band-filtered noise had. This may also be present in the granular model.

A signal-based approach to a variety of environmental sound effects, including sword whoosh,
waves and wind sounds, was undertaken in [2]. Analysis and synthesis occur in the frequency domain
using a sub-band method to produce narrow band coloured noise. In [5], a rapier sword sound was
replicated, but this focused on the impact rather than the swoosh when swung through the air.

A physical model of sword sounds was explored in [6]. Here, offline sound textures were
generated based on the physical dimensions of the sword. The sound textures were then played back
with speed proportional to the movement. The sound textures were generated using computational
fluid dynamics software (CFD), solving the Navier–Stokes equations and used Lighthill’s acoustic
analogy [7] extended by Curle’s method [8]. In this model [6], the sword was split into a number of
compact sound sources (discussed in Section 3.2), spaced along the length of the sword. As the sword
was swept thought the air, each source moved at a different speed; therefore, the sound texture for
each source was adjusted accordingly. The sounds from each source were summed and output to
the listener.

An overview of the different synthesis methods and parameters available to a user are presented in
table form in Table 1. It can be seen that the only model offering real-time operation with instantaneous
variability of physical parameter was [1]. Outputs from [4,6] were used within our listening test,
Section 5, to represent alternative synthesis methods.

Table 1. Table highlighting different synthesis methods for swing sounds.

Reference Synthesis Method Parameters Comments

[1] Physically derived Length, diameter, length of swing and
speed of swing Operates in real time

[2] Frequency domain
signal-based model

Amplitude control over analysis and
synthesis filters Operates in real time

[4]

Granular Accelerometer speed Mapped to playback speed

Sample-based Accelerometer speed Triggered by threshold speeds

Noise shaping Accelerometer speed Mapped to bandpass centre frequency

Physically inspired Accelerometer speed Mapped to the amplitude of frequency modes

[6] Computational fluid
dynamics Length, diameter and swing speed Real-time operation, but requires initial

offline computations

A Japanese katana sword was analysed in [9] by means of wind tunnel experiments. A number of
harmonics from vortex shedding were observed along with additional harmonics from a cavity tone
due to the shinogi or blood grooves in the profile of the sword.

3. Method

3.1. Aeroacoustics

When sound is generated by airflows or air interacting with objects, the process is
labelled aeroacoustics. This falls under the wider body of research known as fluid dynamics,
which describes the physical processes controlling the flow of fluids and enables the prediction
of pressures, noises, strains on objects, etc. Understanding these processes enables better design of
a wide number of objects including aircraft, cars, trains, ships, buildings, space vehicles and bridges.

Today, computers are able to solve the highly complex equations that govern these processes
using techniques like finite difference or finite volume techniques and mapping out the domain of
interest with complex mesh structures. Even with the advances in the computational power available,
these processes can take hours and even days to complete depending on the level of detail required.
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Prior to the availability of such processing power, engineers and scientists derived and defined
simpler equations to allow them to calculate the approximate acoustic characteristics. These are
labelled semi-empirical equations, where assumptions and generalisations have been made to simplify
calculations or to yield results in accordance with observations. Although many of these equations
may at first appear complicated, once all the relevant parameters are known, they produce exact results
with errors only due to the approximations made during the equation derivation.

There is a number of fundamental aeroacoustic sounds that constitute the main focus of research.
Figure 1 illustrates a number of these fundamental tones and gives examples of the types of objects
that produce them. Each tone is generated by distinct fluid dynamics processes.

Figure 1. A simplified taxonomy of aeroacoustic sounds.

3.2. Aeolian Tone

It can be seen from Figure 1 that the Aeolian tone is the fundamental tone produced when an object
like a sword or bat is swung through the air. A brief overview of the Aeolian tone characteristics will be
given here, including a number of fundamental equations. For greater depth, the reader is directed to [10].

3.2.1. Tone Frequency

Strouhal (1878) defined a useful relationship between the tone frequency fl , air speed u(t) and
cylinder diameter d, Equation (1). The variable St is known as the Strouhal number.

St =
fl d

u(t)
(1)

Rearranging to isolate the tone frequency gives:

fl =
Stu(t)

d
(2)

As air flows around a cylinder, vortices are shed, causing a fluctuating lift force normal to the
flow dominated by the fundamental frequency, fl . Simultaneously, a side axial fluctuating drag force
is present with frequency fd, twice that of the lift frequency. It was noted in [11] that, “The amplitude
of the fluctuating lift is approximately ten times greater than that of the fluctuating drag”.

It was shown in [8] and confirmed in [12] that aeroacoustic sounds in low flow speed
situations could be modelled by the summation of compact sound sources, namely monopoles,
dipoles and quadrupoles. An acoustic monopole can be described as a pulsating sphere, much smaller
than the acoustic wavelength. A dipole is equivalent to two monopoles separated by a small distance,
but of opposite phase. Quadrupoles are two dipoles separated by a small distance with opposite phases.
A longitudinal quadrupole has the dipole axes in the same line, while a lateral quadrupole can be
considered as four monopoles at the corners of a rectangle [13]. Aeolian tones can be represented by
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dipole sources, one for the lift fundamental frequency and one for the drag; each source can include
a number of harmonics.

The turbulence around the cylinder affects the frequency and the bandwidth of the tone produced.
A measure of this turbulence is given by a dimensionless variable, the Reynolds number Re, given by
the relationship in Equation (3).

Re =
ρair d u(t)

μair
(3)

where ρair and μair are the density and viscosity of air, respectively. An experimental study of the
relationship between the Strouhal number and the Reynolds number was performed in [14], giving the
following equation:

St = λ +
τ√
Re

(4)

where λ and τ are constants and given in Table 1 of [14] (additional values were calculated in [10]).
The different values represent the turbulence regions of the flow, starting at laminar up to sub-critical.
With the Strouhal number obtained, diameter and air speed known, we can apply them to Equation (2)
and obtain the fundamental frequency, fl , of the Aeolian tone, generated by the lift force.

3.2.2. Source Gain

The time-averaged acoustic intensity Il (W/m2) of an Aeolian tone lift dipole source and the
time-averaging period were given in [15]. The time-averaged acoustic intensity for low airspeeds is
given as:

Il ≈
√

2πκ2S2
t l b ρ u(t)6 sin2 θ cos2 ϕ

32c3r2(1−M cos θ)4

{
exp

[
−1

2

(
2πM St l

d

)2
sin2 θ sin2 ϕ

]}
(5)

where b is the cylinder length; M is the Mach number; M = u(t)/c, where c is the speed of sound.
The elevation angle, azimuth angle and distance between listener and source are given by θ, ϕ

and r, respectively. κ is a numerical constant that lies somewhere between 0.5 and 2 [15]. The correlation
length, l, has dimensionless units of diameter d and indicates the span-wise length that the vortex
shedding is in phase; after this, the vortices become decorrelated. The work in [15] states that the
exponent of Equation (5) can be neglected at low Mach numbers, in accordance with [16]. The gain
for the drag dipole is obtained from its relationship to the lift gain given in [11] and the lift dipole
harmonics values from similar relationships published in [17].

3.2.3. Wake Noise

As the Reynolds number increases, the vortices diffuse rapidly and merge into a turbulent wake.
The wake produces wide band noise modelled by lateral quadrupole sources whose intensities vary with
u(t)8 [18]. It was noted in [18] that there is very little noise content below the lift dipole fundamental
frequency. Above the fundamental frequency, the roll off of the amplitude of the turbulent noise is 1

f 2 .
The sound generated by jet turbulence was examined in [15,19,20]. The work in [15] states that

the radiated sound pattern is greatly influenced by a Doppler factor of (1−Mcosθ)−5. The wake noise
has less energy than a jet, and its intensity Iw has been approximated by the authors to capture this
relationship as shown in Equation (6):

Iw ∼ Γ

√
2πκ2S2

t l bρ u(t)8

16π2c5(1−M cos(π − θ))5r2

(
1 + B cos4(θ)− B + 3

4
sin2(2θ) sin2(ϕ)

)
(6)

where Γ is a scaling factor between wake noise and lift dipole noise and B is an empirical constant.
A value of B = 0.7 was found in [19] to match measured values.
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4. Implementation

Our model was built using Pure Data, a real-time graphical data flow programming language.
This was chosen due to the open source nature of the code and ease of repeatability rather than high
performance computations.

4.1. Discrete Compact Sound Source

4.1.1. Fundamental Frequency Calculation

A uniform sampling of the continuous air flow speed u[n], along with the given diameter d set
by the user, permits the calculation of the Reynolds number Re from a discrete implementation of
Equation (3). Using data published in [14] the discrete Strouhal number St was calculated, Equation (4).
Thereafter, a discrete implementation of Equation (2) was used to obtain the lift fundamental
frequency fl .

4.1.2. Gain Calculations

The time-averaged intensity value Il1 calculated by Equation (5) pertains to the dipole associated
with the fundamental lift frequency fl . Previous theoretical research [16] has set the constant κ = 1
and neglected the exponent. We set κ = 1 matching conditions used by [16], likewise neglecting the
exponent, which has a negligible effect due to the low Mach numbers used in this implementation [15].
The correlation length l was obtained from a graph published in [21] showing the ratio of correlation
length to diameter, l/d, as a function of the Reynolds number. An equation replicating this relationship
has been derived by the authors in Equation (7).

l = 101.536R−0.245
e d (7)

The discrete intensity value pertaining to the drag force Id1 was calculated using Equation (8).

Id1 ∼ 0.1

√
2πS2

t ρu[n]6l(sin(θ + π
2 ))

2b(cos ϕ)2

32c3r2(1−M cos θ)4 (8)

where constant π
2 was added to the value of θ due to the 90◦ phase difference between the lift and

drag forces.

4.1.3. Harmonic Content Calculations

In [10], the Aeolian tone was presented with two harmonics for the lift dipole and one for the
drag dipole. Due to the additional computational complexity this adds, multiplied by the number of
sources in each swinging object, the number of harmonics was reduced down to the most perceptually
significant; the first lift dipole harmonic at 3 fl .

Hardin [17] stated that this value was 60% of the fundamental SPL. This was implemented as
shown below:

Il3 = 100.6 log10 Il1 (9)

4.1.4. Tone Bandwidth Calculations

As stated in Section 3.2.1, there is a bandwidth around the tone, and this is related to
the Reynolds number. Data available in [22] were limited to Reynolds numbers under 237,000.
The relationship between the bandwidth and Reynolds number from 0–193,260 was found to be
linear. This relationship was interpolated from the data as:

Δ f
fl
(%) = 4.624× 10−5Re + 0.9797 (10)
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where Δ f is the tone bandwidth at −3 dB of the peak frequency. Above a Reynolds number of 193,260,
a quadratic formula was found to fit the bandwidth data. This is shown in Equation (11).

Δ f
fl
(%) = 1.27× 10−10R2

e − 8.552× 10−5Re + 16.5 (11)

In signal processing, the relationship between the peak frequency and bandwidth is called the
Q value, (Q = fl/Δ f ), the reciprocal of the percentage value, obtained by an implementation of
Equations (10) and (11).

4.1.5. Wake Calculations

A noise profile of 1
f 2 is known as brown noise. This was approximated using white noise and the

transfer function shown in Equation (12) [23].

Hbrown(z) =
1

1− αz−1 (12)

In [23], α has a value of 1, but this proved unstable in our implementation. A value of 0.99
was chosen, giving a stable implementation while producing a virtually identical magnitude spectrum.
The required noise profile was generated using the transfer function given in Equation (13):

B[z] = Hbrown[z]W[z] (13)

where W[z] is a white noise source and the output B[z] is a brown noise source. There is little wake
contribution below the fundamental frequency [18]. Therefore, a high pass filter was applied to B[z]
with the filter cut-off set at the lift dipole fundamental frequency, fl . This produces the turbulent noise
profile required, G[z]:

G[z] = Hhp[z]B[z] (14)

where Hhp[z] is the high pass filter transfer function. The inverse Z-transform of G[z] gives the wake
output signal, g[n]. The wake gain was calculated by a discrete implementation of Equation (6). A value
of Γ = 0.2 was set perceptually based on sounds generated from experiments (Section 5), giving Iw.

4.1.6. Final Output

To generate the correct output sound for the fundamental lift dipole, we used a white noise source
filtered by a bandpass filter. The centre frequency of the bandpass filter was set to fl and the Q value
as calculated in Section 4.1.4, giving the bandpass filter output xl1[n]. The same process was applied in
relation to the fundamental drag dipole, using fd as a bandpass filter centre frequency, giving an output
of xd1[n]. The lift dipole harmonic 3 fl was computed in a similar way, giving output xl3[n].

The gain values for the lift and drag dipole outputs were obtained from Equations (5) and (8).
The appropriate gain value for the lift dipole harmonic was given in Equation (9). Finally, the wake
output g[n] with gain Iw was added. Note that a single white noise source was used for all fundamental
and harmonic dipoles and for the wake noise as they were all part of a single compact source.

Combining the outputs from the lift dipole, drag dipole, harmonic and wake, it is possible to
define a final output, Equation (15):

youtput[n] = χ

[
Il xl1[n] + Idxd1[n] + Il3xl3[n] + Iwg[n]

]
(15)

where χ is an absolute gain value allowing the user to increase the overall sound level depending on
artistic requirements.
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4.2. Swinging Model

The basic concept of all the models was to line up a number of the compact sources to replicate
the sounds created as a cylindrical object swings through the air. The intensities given in Equation (15)
were time averaged, which caused an issue for our model due to the swing time being shorter than the
averaging process. Thus, the intensity was implemented as an instantaneous value.

For each of our models, eight Aeolian tone compact sound sources were used to replicate
the sounds. The distance between each source depends on the correlation length, the distance given in
diameters before the vortices being shed go out of phase or become decorrelated.

To increase the flexibility and ease of use of our swinging objects model, two modes of operation
were available; one allowing the user to adjust the diameter of the top and bottom of the object with
a linear interpolation between them and the second with preset objects based on actual physical
measurements. Both modes of operation allow the user to predefine the top speed of the tip, start and
end position of the object being swung, as well as the position of the observer. These parameters can
be easily mapped to graphics or animation to have an exact match with visuals. The coordinate system
used for the model is shown in Figure 2.

For ease of calculation, the swing action throughout was made to be an arc of constant radius and
hence always tracing a line on the surface of a sphere. This allowed us to calculate the distance between
the start and end position of the swing using the Haversine formula [24]. This formula calculates the
length of a great circle on a sphere and is shown in Equation (16) below:

arc length = 2r arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))
(16)

where φ1 and φ2 are the latitude of the start and finish points, respectively; λ1 and λ2 are the longitude
values of the start and finish points. Latitude and longitude values are given in radians and determined
from the start and end positions set by the user.

The radius r is the distance between the centre of the arc and tip of the object. This was set to be
the length of the object with an additional 0.35 m to represent the length of the swinging arm. The top
speed of the object being swung was set as the halfway distance of the arc, with linear acceleration and
deceleration to and from rest.

In our implementation, the sword sweep created a two-dimensional plane in a three-dimensional
environment with the observer taken as a point in that environment. Trigonometry identities were
used to calculate the elevation and azimuth between each source and the observer.

Panning was included as the sound moves across the xy plane, as well as the Doppler effect. It was
shown in [25] that the addition of the Doppler effect increases the natural perception. This effect was
taken into account when the sword was moving towards or away from the observer and frequencies
adjusted accordingly.

4.3. Variable Mode

This model gives the user the ability to vary the diameter of the object by setting the object
diameter at the tip and the hilt. The user can also vary the length of the object. The position of the
Aeolian tone compact sound sources depends on the choices made by the user when setting the
diameter and length values.

Six of the eight compact sound sources were placed at the tip of the object. It is known from
Equation (5) that the gain is proportional to u(t)6, and the greatest speed will be at the tip of a sword,
a golf club, etc., during a normal swing. The remaining sources were placed at the hilt and midway
between the 6th source at the tip and the hilt. This is illustrated in Figure 2.

This positioning of the six sources at the tip was equivalent to each source having a set correlation
length of 7d; see Section 3.2.2. A range of correlation values from 17–3d were given in [16] depending on
the Reynolds number. A plot showing similar values was given in [21]. Since the position of the sources
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has to be chosen prior to calculation of the Reynolds number, the value 7d was chosen as a compromise,
covering a reasonable length of the sword for a wide range of speeds (in [6], the correlation length of
3d was used; the number of sources set to match the length of the sword).

Figure 2. Position of 8 compact sources and coordinates used in the sword model.

4.4. Preset Mode

A number of actual objects were measured; a metal sword, wooden sword, baseball bat, 3–wood
golf club, 7–iron golf club and a broom handle. Exact measurements gave us the opportunity to
set the position and diameter of each of the compact sound sources individually, giving a more
accurate model. The correlation length at the tip of all objects was set to 5d for all objects except the
baseball bat, which had a reduced correlation length of 2d due to its thickness. The exact values of the
source position from the base of the object to the tip and the corresponding object diameter are shown
in Table 2.

Table 2. Diameter and radius of compact sound sources for the preset objects. All values in metres.
Correlation length = 5d except for baseball bat, where correlation length = 2d.

Metal Sword Wooden Sword Baseball Bat 3–Wood Golf Club Broom Handle

Radius Diameter Radius Diameter Radius Diameter Radius Diameter Radius Diameter

0 0.0046 0 0.0117 0 0.0237 0 0.0258 0 0.0270
0.418 0.0046 0.307 0.0111 0.159 0.0237 0.383 0.0124 0.313 0.0270
0.777 0.0046 0.370 0.0108 0.314 0.0246 0.767 0.0095 0.625 0.0270
0.780 0.0037 0.417 0.0105 0.371 0.0286 0.813 0.0092 0.760 0.0270
0.810 0.0029 0.465 0.0103 0.444 0.0366 0.857 0.0089 0.895 0.0270
0.821 0.0022 0.512 0.0100 0.549 0.0504 0.900 0.0086 1.030 0.0270
0.830 0.0017 0.560 0.0098 0.672 0.0637 1.050 0.0154 1.165 0.0270
0.836 0.0013 0.607 0.0095 0.804 0.0659 1.100 0.0388 1.300 0.0270

4.5. Grooved Profile

In [26], a physically-derived sound synthesis model of a cavity tone was presented. This covers
a separate fundamental aeroacoustic sound with a different set of fluid dynamics equations governing
the generation of the tone. In [9], the sound generated by a grooved sword was found to contain
a number of discrete frequencies, including those from the cavity tone. Thus, we added in cavity tone
compact sound sources at the same location as the Aeolian tone compact sources to our model.

5. Evaluations and Results

5.1. Subjective Evaluation

The subjective evaluation was split into two different tests, a listening test and an object
recognition test. A total of 26 participants undertook the test, 18 males, 7 females and 1 preferring
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not to say. Participants were aged between 17 and 71 with a median of 28 and standard deviation
of 13. The order of the listening test and object recognition was split to examine if the order had any
influence on the results. Working models of both versions of the swinging object model are available at
https://code.soundsoftware.ac.uk/projects/physicallyderivedswingingobjects, which includes a copy
of all sounds used in our listening test.

5.1.1. Listening Tests

A double-blind listening test was carried out to evaluate the effectiveness of our synthesis model.
The Web Audio Evaluation Tool [27] was used to build and run listening tests in the browser.
This allowed test page order and samples on each page to be randomised. All samples were loudness
normalised in accordance with [28]. Headphones were used to administer the sounds to participants.
These were either AKG K553 Pro Closed-Back Studio Headphones or Beyerdynamic DT150 closed
back Isolating Studio Headphones.

Each participant was presented with five test pages, one for each of the preset sound effects.
The wooden sword, baseball bat, golf club and broom handle pages contained two real samples,
two samples from our physical model (PM), two samples generated by spectral modelling synthesis
(SMS) [29] from a recording and an anchor. The metal sword page included two real samples,
one synthesis sample from [4], one synthesis sample from [6], one SMS sample, one sample from our
physical model and a sample from the physical model with cavity tone compact sound sources added.

All the sampled recordings were captured by the authors within the Listening Room, Electronic
Engineering and Computer Science Department, Queen Mary University of London. They were
recorded on a Neumann U87 microphone placed approximately 20 cm from the midpoint of the swing
and at 90 degrees to the plane of the swing. The impulse response of the room was captured and
applied to all other sounds in the listening test so that the natural reverb of the room would not
influence the results (except samples from [4,6]).

The anchors were created from a real-time browser-based synthesis effect (http://c4dm.eecs.qmul.
ac.uk/audioengineering/RTSFX/app/main-panel/whoosh.html), to allow a thorough comparison of
how plausible the synthesis method is compared to the recorded sample. It was expected that a low
pass filtered sample, as used in the MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA)
standard, would still be considered plausible, whereas a low-quality anchor would encourage the full
use of the scale and allow for better understanding as to the effectiveness of the synthesis method.

Rating the plausibility of sound from a physical model was the preferred judgement in [30],
stating a plausible sound as one that listeners thought “was produced in some physical manner”.
Box plots for all five objects are shown in Figure 3. Our physical model outperforms the alternative
synthesis methods on all of the objects except the metal sword. The metal sword performed poorly for
plausibility in this test, with the model with added cavity tones performing slightly better.

(a) Broom Handle (b) Baseball Bat

Figure 3. Cont.
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(c) Golf Club (d) Wooden Sword

(e) Metal Sword

Figure 3. Box plots showing plausibility results for the preset objects. (ANCH, Anchor; SMS, Spectral
Modelling Synthesis; PM, Physical Model; PMCavity, physical model including cavity tone; Real,
recorded sample).

We performed the Shapiro–Wilk test for the plausibility ratings to examine the distribution
of the ratings. The results are shown in Table 3, which indicate that 29 out of 36 tests were not
normally distributed. To examine similarity between the ratings between each audio source in the
listening test, we performed the Mann–Whitney U-test. Results of these are shown in Tables 4–8.

Table 3. Results for Shapiro–Wilk test for the plausibility ratings (****⇒ p < 0.0001, ***⇒ p < 0.001,
** ⇒ p < 0.01, * ⇒ p < 0.05, - ⇒ p ≥ 0.05). SMS, spectral modelling synthesis; PM, physical model;
PMCavity, physical model including cavity tone; Real, recorded sample.

Anchor SMS1 SMS2 PM1 PM2 Real1 Real2

Broom Handle *** ** *** - ** *** ***
Baseball Bat *** *** ** * - * -

Golf Club *** * ** * * * -
Wooden Sword **** *** *** - * * **

Anchor SMS1 Bottcher Dobashi PM PMCavity Real1 Real2
Metal Sword **** - - * *** ** * *

Table 4. The effect of different samples for a broom pole (**** ⇒ p < 0.0001, *** ⇒ p < 0.001,
** ⇒ p < 0.01, * ⇒ p < 0.05, - ⇒ p ≥ 0.05). SMS, spectral modelling synthesis; PM, physical model;
Real, recorded sample.

Anchor SMS1 SMS2 PM1 PM2 Real1 Real2

ANCH . - - **** **** **** ****
SMS1 . - **** **** **** ****
SMS2 . **** **** **** ****
PM1 . - - -
PM2 . * -
Real1 . -
Real2 .
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Table 5. The effect of different samples for a baseball bat (**** ⇒ p < 0.0001, *** ⇒ p < 0.001,
** ⇒ p < 0.01, * ⇒ p < 0.05, - ⇒ p ≥ 0.05). SMS, spectral modelling synthesis; PM, physical model;
Real, recorded sample.

Anchor SMS1 SMS2 PM1 PM2 Real1 Real2

ANCH . - - **** **** **** ****
SMS1 . - **** **** **** ****
SMS2 . **** **** **** ****
PM1 . * - *
PM2 . - -
Real1 . -
Real2 .

Table 6. The effect of different samples for a golf club (**** ⇒ p < 0.0001, *** ⇒ p < 0.001,
** ⇒ p < 0.01, * ⇒ p < 0.05, - ⇒ p ≥ 0.05). SMS, spectral modelling synthesis; PM, physical model;
Real, recorded sample.

Anchor SMS1 SMS2 PM1 PM2 Real1 Real2

ANCH . **** **** **** **** **** ****
SMS1 . - *** *** **** *
SMS2 . **** **** **** ****
PM1 . - - -
PM2 . - -
Real1 . -
Real2 .

Table 7. The effect of different sample for a wooden sword (**** ⇒ p < 0.0001, *** ⇒ p < 0.001,
** ⇒ p < 0.01, * ⇒ p < 0.05, - ⇒ p ≥ 0.05). SMS, spectral modelling synthesis; PM, physical model;
Real, recorded sample.

Anchor SMS1 SMS2 PM1 PM2 Real1 Real2

ANCH . - * **** **** **** ****
SMS1 . - **** **** *** **
SMS2 . **** **** *** **
PM1 . - - *
PM2 . - *
Real1 . -
Real2 .

Table 8. The effect of different samples for a metal sword (****⇒ p < 0.0001, ***⇒ p < 0.001, **⇒ p < 0.01,
*⇒ p < 0.05, -⇒ p ≥ 0.05). SMS, spectral modelling synthesis; PM, physical model; PMCavity, physical
model including cavity tone; Real, recorded sample.

Anchor SMS1 Bottcher Dobashi PM PMCavity Real1 Real2

ANCH . **** **** **** * **** **** ****
SMS1 . - ** ** - *** ****

Bottcher . - **** ** ** ****
Dobashi . **** *** - ****

PM . * **** ****
PMCavity . **** ****

Real1 . **
Real2 .

471



Appl. Sci. 2017, 7, 1177

5.1.2. Object Recognition

For this test, participants were able to control the speed parameter of the physical model by use of
a Wii controller and swinging the virtual object through the air. The five preset objects were presented
in a pseudorandom order and the user asked to identify which object they were swinging from the
list of presets. Fourteen participants completed the object recognition test prior to the listening test,
and 12 completed it after the listening test. Each preset was presented twice giving 10 individual tests
in total.

Tables 9 and 10 give the results of how often participants correctly identified the object being
modelled by our physical model. A clear difference can be seen between participants who completed
the object recognition test prior to the listening test compared to those who completed the object
recognition after. It is reasonable to conclude that completing the listening test first provides some
level of training for the object recognition.

Table 9. Objects identified from the Wii Controller; tested before the listening test.

Object Correctly Guessed (%)

Wooden Sword 0
Metal Sword 36

Broom Handle 7
Baseball Bat 11
Golf Club 21

Table 10. Objects identified from Wii Controller; tested after the listening test.

Object Correctly Guessed (%)

Wooden Sword 38
Metal Sword 63

Broom Handle 42
Baseball Bat 46
Golf Club 38

Results presented in Table 9 show that participants were far less able to identify the object being
modelled by our synthesis model when having to choose before the listening test. In fact, it was more
common to choose one of the other objects being modelled rather than the correct one. The wooden
sword model was never correctly identified, while the metal sword object was correctly identified
more than any other object, but still less than 50% of the time.

On examination of those who completed the object recognition test after the listening test, shown in
Table 10, it can be seen that there was an increase for all objects being correctly identified. Similar to
results shown in Table 9, the metal sword object was correctly identified more often than the other
objects and on this occasion, more often than not. Although the results for the other objects are higher
than those presented in Table 9, it was still more common for participants to choose one of the other
objects being modelled rather than the one being replicated by our synthesis model.

5.2. Objective Evaluation

The sound produced by katana swords was examined in [9]. One sword examined had a profile
with grooves on either side, which produced a cavity tone along with the Aeolian tone. To replicate
this, we added a cavity tone model [26] to the sword model, which allowed a wider range of sword
and object profiles to be modelled.

The sword in [9] had a thickness of 0.005 m, and the tones were measured in a wind tunnel with
airspeed u = 24 ms−1. Roger [9] observed a tone around 960 Hz due to vortex shedding (Aeolian tone)
and a higher frequency sound around 6–9 kHz. The dimension of the groove in the sword was not
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published in [9], but it was possible for us to replicate this sound based on the published cavity
tone peaks.

The magnitude spectrum output of a compact sound source, including the cavity tone, is shown
in Figure 4. The parameters set were airspeed u = 24 ms−1, diameter d = 0.005 m and cavity length
L = 0.00307 m. The Aeolian tone frequency can be seen clearly at 969 Hz, with a harmonic at 2907 Hz.
The cavity tone frequencies are seen at 3213 Hz, 7497 Hz, 11,780 Hz and 16,064 Hz. The length of the
cavity was set to give the second cavity tone at 7497 Hz, approximately halfway between the 6 kHz
and 9 kHz observed in [9].

Figure 4. Magnitude spectrum of the physical model of the grooved sword.

The Aeolian tone and second cavity tone are very similar to the details published in [9]. The peaks
around 3 kHz from the Aeolian tone harmonic and first cavity tone are at a greater magnitude in the
synthesis model than in [9]. The published data do not cover frequencies as high as the third and
fourth cavity tone.

It was noted in [9] that two oscillating motions around a sword with a groove will modulate
each other. In [9], wind tunnel experiments were given where the airspeed was ramped from
u = 15 ms−1 to u = 30 ms−1. Under these circumstances there were a number of extra
harmonics found. The magnitude of individual modulated frequencies varies with airspeed. Our model
does not produce any harmonics that relate to the interaction between the two oscillating tones.
The addition of these may increase the authenticity of our model and is a possible area of future work.

6. Discussion

The results from the listening test indicate that overall, our model performs well compared to
other synthesis models. It has exceptional performance for the broom handle, baseball bat, golf club
and wooden sword objects, where participants found sounds generated by our model to be as
plausible as real recordings. The exception to this was the metal sword physical model sound effect,
which actually performed worse in this test compared to our previously published test [1]. During the
previous listening test [1], we did not have the physical dimensions of the sword samples. In this test,
we had the dimensions, as well as the impulse response of the room in which the samples were
recorded, thus enabling a fairer comparison.

One possible reason for the poorer performance of the metal sword physical model was that all
the other modelled objects were thicker than the metal sword. Thicker objects have higher Reynolds
numbers, which results in lower Q values. Spectral modelling synthesis analyses a recording and
extracts sinusoidal components. Thinner objects produce sounds closer to pure tones and hence are
better synthesised using SMS than thicker objects.
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Table 8 shows that our physical model was significantly different from all other sounds,
especially the real sounds and those synthesised by other methods. Since only one physical model
sound was compared with a number of others, it is believed that a further listening test would be
necessary to investigate if this result would be repeated over the range of sword dimensions and
speeds. Results given in [1] indicated that the lower quality physical model sounds were rated as more
plausible. These sounds had a fixed Q value that gave the impression of a thicker object. The diameter
used to generate sounds in [6] was 0.01 m, substantially thicker than the sword we were modelling.
It may be the case that listeners perceive a thicker sound as more plausible even if not physically
accurate. This could be revealed in future perceptual evaluations.

In the original paper [1], the value of Γ in Equation (6) was set to 1× 10−4. This was set perceptually
as no exact relationship between dipole and wake noise had been identified. During the design
of the listening test for this article, the value was again set perceptually, but this time, all objects
were considered, including sounds generated using the Wii Controller. This resulted in the value of Γ
being set to 0.2, increasing the wake gain.

The broom handle, baseball bat and golf club objects were all cylindrical with thickness to width
ratios of 1:1. For the wooden sword, this ratio decreases to approximately 0.37:1 and for a metal sword
to approximately 0.14:1. The Aeolian tone model is designed around vortex shedding from cylindrical
objects, and it is reasonable to assume that additional discrepancies may exist when there is a deviation
from the thickness to width ratio of a cylinder.

Another possible reason for the poor rating of the metal sword object compared to the other
objects is that the number of participants who have swung a real sword and heard the sound may
well be less than those who have perhaps swung a golf club and the other objects. Memory plays
an important role in perception [31]. If participants have heard a Foley sound effect for a sword more
often than an actual sword sound, this may influence their perception of the physical model.

In contrast, it can be argued that participants will have more likely heard the actual sounds of
a golf club at a live sporting event or within sporting broadcasts, and hence, their memory of these
sounds would be closer to the physical model. Since all participants were from the U.K., the baseball
bat would most likely not be as familiar to them as other objects, and hence, they might not have as
strong a memory of the sound made by this object. This would make the difference between a memory
of a Foley sound and an actual sound diminish.

It is clear from the object recognition that, with zero training, it was extremely difficult to identify
an object from controlling the speed parameter from the swing of a Wii Controller. This is corroborated
by the variation in results from those who did the object recognition test before the listening test to
those who took the test after. Clearly, the listening tests provided participants with some form of
informal training for the object recognition (it was found that the object recognition test provides
negligible training for the listening test). This is in line with results from [32] where it was found that
participant training was the dominant factor in determining whether or not similar tests produced
significant results.

A common comment from participants when completing recognition tests was that they would
like to have some visual stimulus to assist them with making their decision. It is anticipated that
participants may have given more accurate choices if they were able to choose from pictures of the
five objects being modelled rather than the names. The label of broom handle could produce a wide
variety of images in the minds of participants, but a picture of the actual broom handle we were
modelling would allow participants to focus on the same object. A further comment was that the
participant would prefer a none of the above option when they believed the sound did not match any
of the objects.

The use of a Wii Controller was an obvious interface for participants to swing and generate the
sounds due to the sensors and ergonomic design. It was noted in a previous test as part of [1] that
a participant would have liked some sense of weight in their hand to increase their sense of belief.
This comment, along with the previous comment requesting visual stimulus, indicates that participants
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look for non-aural cues to assist in identifying sounds. Further research into which cues participants
prefer and the effects on identification is required.

Since all sounds from the objects modelled were generated by the same physical model, it was
understandable that there was some confusion between choices, possibly due to sonic similarities
between the sound effects. The only differences between each synthesis model were the dimensions of
the object being swung and the speed, either set as in the listening test or generated by each participant
using the Wii Controller. A listening test that only provides a choice between a metal sword and
a baseball bat would be expected to produce more clear-cut results.

The classification of different sound effects with sonic similarities was examined in [33] where
nine categories of sound effects were identified. It is anticipated that objects modelled herein would
be categorised into the same category in [33], but within weapons and sports in a traditional sound
effect library.

Comparison with results published in [9] indicates that we have good agreement with the Aeolian
tone frequency generated by vortex shedding. Wind tunnel results show the sword tested in [9] having
an Aeolian tone peak at 960 Hz, while our model predicts the frequency at 969 Hz, a difference of 0.9%.

The inclusion of the cavity tone within the sword model provides the possibility to model more
complex blade profiles. Listening tests indicate that it was found as plausible as the SMS sample,
similar to Bottcher’s sample, but not as plausible as Dobashi’s sample and the real recordings. None of
the other profiles are believed to include the cavity tone, but it was found that inclusion of it makes
our model more plausible. It is difficult to draw overriding conclusions why this occurred, but it may
be linked to Foley sword sound effects previously heard by participants.

Future research into the inclusion of the cavity tone compared to actual swords with known cavity
profiles would be advantageous, enabling us to better judge how plausible the inclusion of this tone
is in the generation of sword swoosh sounds. This would also assist in evaluating how the lack of
modulation between the Aeolian tone and cavity tone in our model affects perception and if we need
to extend our model to include this.

The range of sword profiles that we are able to model from using only the Aeolian tone and
cavity tone is yet to be explored. Similarly, it is yet to be established if the sword material, bronze,
steal, etc., plays an important role in the sound produced. It is known that when the vortex shedding
frequency is approximately equal to a vibration frequency of the object, the sound is re-enforced.
A physical model replicating this in the form of an Aeolian harp was given in [34]. Adding some of
the physical properties implemented in this model would allow for consideration of the mass density
of the metal and damping of the construction to be considered. Whether this would have an influence
on perception is another area for further research.

Further objective evaluation would include obtaining exact velocity data for known object swings
and comparing the physical model using these data and a recording of the swing from which these
data were captured. This may involve wind tunnel measurements as in [9].

It is recognised that the swing sounds recorded for the listening tests were mono, and the
output from the physical model includes basic stereo panning. The listener position within the
virtual space of the physical model was set to replicate the microphone position when the other
sounds were recorded. Although we believe this would not have a strong affect on plausible ratings,
examination of spatialisation should be undertaken within future evaluation, and recording swing
sounds binaurally would be preferred.

Additional models could be developed to replicate other sporting equipment, for example
hockey sticks, cricket bats or even tennis racquets or lacrosse sticks, which have meshed faces.
A physical model of a ball travelling through the air may also be possible although the fluid dynamics
will differ from that of a cylinder, and the spinning of the ball may add other sounds not possible from
our model. Authenticity may also be increased if the swinging arc of the objects was not restricted to
great circles on the surface of a sphere. Normal swings often have the arms extending at the elbow,
creating more elliptical arcs.
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7. Conclusions

This article has presented a physically-derived synthesis model for objects swinging through
the air. Adjustable parameters allow the user to approximate objects or to predefine the dimensions
of objects. It is possible to match the object dimensions to graphics and for them to be morphed
in real time.

Listening tests indicated that for all objects, except the very thinnest, participants found our model
as plausible as real-world recordings. We have also highlighted that recognising an object from hearing
the sound only was extremely difficult without any form of training.

An initial evaluation of extending the shape of profiles by adding the cavity tone has been carried
out. Further evaluation is required in relation to this, examining the profiles of known objects that
contain cavities and the interaction between the two fundamental aeroacoustic tones.
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Abstract: This paper presents a compositional hierarchical model for pattern discovery in symbolic
music. The model can be regarded as a deep architecture with a transparent structure. It can learn
a set of repeated patterns within individual works or larger corpora in an unsupervised manner,
relying on statistics of pattern occurrences, and robustly infer the learned patterns in new, unknown
works. A learned model contains representations of patterns on different layers, from the simple
short structures on lower layers to the longer and more complex music structures on higher layers.
A pattern selection procedure can be used to extract the most frequent patterns from the model.
We evaluate the model on the publicly available JKU Patterns Datasetsand compare the results to
other approaches.

Keywords: music information retrieval; compositional modelling; pattern discovery; symbolic
music representations

1. Introduction

In music, hierarchical representations are intuitive when one considers its spectral and temporal
structures. In an analytical sense, the Generative Theory of Tonal Music (GTTM) by Lerdahl and
Jackendoff [1] offers an approach of explicit hierarchical music modelling in musicology, well known
in contemporary music theory. Although GTTM mostly relies on expert rules, the concept of
hierarchical structuring seems reasonable, derived from the humans’ search for structure in consciously
perceived surroundings. There are several attempts to build a system capable of automatic analysis
supported by the GTTM and Schenkerian analysis [2–4]. Several other rule-based models were also
researched in Music Information Retrieval (MIR) and related fields [5,6]. Furthermore, the hierarchical
models abound in analysis of music perception from the point of view of computational biology and
neuroscience [7,8].

In parallel to explicit hierarchical representations, a variety of new approaches emerged under a
common name of deep learning [9]. Several neural-network-based approaches have been proposed for
melody transcription (e.g., [10]), genre classification (e.g., [11]), onset detection (e.g., [12]), drum pattern
analysis (e.g., [13]) and chord estimation (e.g., [14]). The idea behind a deep learning algorithm is to
construct multiple levels of data abstraction: a hierarchy of features. The high-level representations in
the training data are reflected in the hierarchy. However, the encoded knowledge is implicit and is
difficult to explain in a transparent (non black-box) way. Therefore, although deep learning enables
unsupervised learning of features and achieves good results on a variety of tasks, it is not very
appropriate for pattern discovery in music where explicit explanations of input are desired.
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The discovery of repeated patterns is a known problem in different domains, including computer
vision (e.g., [15]), bioinformatics (e.g., [16]) and music information retrieval (MIR). Although a common
problem, its definition, as well as pattern discovery algorithms, significantly differs across these fields.
In music, the importance of repetition has been addressed and discussed by a number of music theorists
(e.g., [17]) and, more recently, also by researchers who develop algorithms for semi-automatic music
analysis, such as one described by Marsden [4]. In the MIR field, an initiative for a common definition
of different tasks was formalized into the Music Information Retrieval Evaluation eXchange (MIREX),
in an attempt to compare different approaches. MIREX is a community-based framework for formal
evaluation of algorithms and techniques related to MIR [18]. The MIREX community established
several tasks dealing with patterns and structures in music, including structural segmentation,
symbolic melodic similarity and pattern matching, and pattern discovery.

The aim of the discovery of repeated themes and sections task is to find repetitions which
represent one of the more significant aspects of a music piece [19]. The MIREX task definition states
“the algorithms take a piece of music as input, and output a list of patterns repeated within that
piece” [20]. The task may also seem similar to the well-known pattern matching task [21], However,
while a pattern matching algorithm aims to find the place of a searched pattern within a dataset and
usually has a clear quantitative relation between a query and a match, a discovery of repeated patterns
finds locations of multiple similar sequences of data in the dataset, without any information about
the searched pattern. The definition of a pattern has been troubling researchers since the beginning;
while a pattern may come as an intuitive representation with a repetitive substance, patterns in music
are more difficult to define and are usually formalized using theoretical rules, specific to the music
era and genre. In the discovery of repeated themes and sections task, a pattern is defined as “a set of
on-time-pitch pairs that occurs at least twice (i.e., is repeated at least once) in a piece of music. The
second, third, etc. occurrences of the pattern will likely be shifted in time and perhaps also transposed,
relative to the first occurrence.” [20]. As noted by Wang et al. [22], the pattern discovery task differs
from the structural segmentation task, where segments cover the whole music piece and represent
disjoint sets of events. In the pattern discovery task, patterns may partially overlap or be subsets of
another pattern. However, some of the approaches mentioned in this section (e.g., [23,24]) perform
pattern discovery by calculating a set of non-overlapping patterns.

A variety of approaches has been proposed for pattern discovery in music in the past years.
Conklin and Anagnostopoulou [25] proposed a multiple viewpoint pattern discovery algorithm based
on a suffix-tree. For a selected viewpoint (a transformation of a musical event into an abstract feature)
the algorithm builds a suffix tree of viewpoint sequences (transformed music pieces). After selecting
patterns which meet specified frequency and significance thresholds, the leafs of the suffix tree are
reported as longest significant patterns in the corpus. Conklin and Bergeron [24] apply two algorithms,
using viewpoints which represent abstract properties of musical notes for statistical modelling of
melody [26]. A viewpoint is thus a function that computes values for events in a sequence; a pattern is
a sequence of such feature sets, where the latter represent a logical conjunction of multiple viewpoints.
The authors present a complete algorithm which can find all ‘maximal frequent patterns’ and an
optimization algorithm using a faster heuristic approach, where the found patterns may not always be
the maximal frequent patterns. The maximal frequent pattern represents a pattern whose component
feature set cannot be further specialized without the pattern becoming infrequent. Rolland [27]
presents the FlExPat (Flexible Extraction of Patterns) algorithm for extracting sequential patterns from
sequences of data. The algorithm first identifies equipollent passage pairs and produces a similarity
graph, representing the relations between each two passages; patterns are extracted from the similarity
graph. The author evaluated the approach on a set of ten Charlie Parker solos from the subset of
Owens’ corpus [28] and reported a satisfactory pattern extraction of a large number of the annotated
patterns. Cambouropoulos et al. [23] introduced an approach for extraction of patterns from abstract
strings of symbols, allowing for a partial overlap of various abstract symbolic classes. They also
focused on time complexity of their solution and addressed the problem of approximate pattern
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matching. Based on their previous work [29], they presented the PAT algorithm for segmentation
based on maximal repeated patterns. Besides discovering the patterns, and subject and counter-subject
entries in fugues, Meredith [30] described multiple point-set compression algorithms, including several
COSIATEC and COSIATECCompress approaches and Forth’s algorithm. The author evaluated these
approaches on three music analysis tasks: the classification of folk song melodies into tune families,
discovering entries of subjects and counter-subjects in fugues, and the discovery of repeated themes
and sections in polyphonic works task. Meredith [31] also evaluated his SIATECCompressSegment
algorithm for the task, which is a greedy compression algorithm based on the previously introduced
SIATEC approach [19]. The algorithm evaluates patterns based on assumption that perceptually
interesting patterns correspond to Maximal Translatable Patterns (MTP). The approach produces
a compact encoding of a musical piece, defined by a point-set representation, in form of a set of
Translational Equivalence Classes (TEC) of MTPs. The MTP with a defined particular vector is a set
of points, which can be translated by that vector to give other points in the point-set representation.
The authors observed that the MTPs often correspond to perceptually significant repeated patterns in
music. The TEC defines a set of all patterns which are translationally equivalent to a pattern defining
the specific TEC. The SIATECCompressSegment approach generates an ordered list of TECs which
may overlap (in contrast to other related versions such as COSIATEC).

Recently, Velarde and Meredith [32] extended a previously introduced approach to melodic
segmentation [33] for melodic classification and segmentation, where the symbolic input is first
segmented, then compared and hierarchically clustered. Finally, the clusters are ranked, taking into
account the cumulative length of all occurrences within each cluster. Based on their results, it can be
assumed that the output is additionally filtered by a threshold defining the number of output patterns.
Lartillot [34] introduced the PatMinr algorithm [35] which uses an incremental one-pass approach to
identify pattern occurrences. To avoid redundancy, the author addresses two issues: closed pattern
mining, which filters out the patterns that have more occurrences than their more specific patterns,
thus providing more robust patterns, and pattern cyclicity, which removes redundant matches for
successive occurrences of a single underlying pattern. The most recent approach submitted to the
MIREX task by Ren [36] also employs a closed pattern approach commonly used in data mining.
Nieto and FarBood [37] proposed the MotivesExtractor which obtains a harmonic representation of
the audio or symbolic input and extracts patterns based on a produced self-similarity matrix. Using a
score-based greedy algorithm ([38]) the approach extracts repeated segments, allowing the patterns
to overlap. Finally, the segments are grouped into clusters and provided in the algorithm’s output
as patterns.

In contrast to the existing hierarchical and deep approaches, the Compositional Hierarchical
Model (CHM) presented in this paper is a transparent deep architecture. The model provides an
explicit (transparent) encoding of concepts, learned in an unsupervised manner, thus merging the
benefits of explicit and deep hierarchical models in MIR. The CHM is built around the premise that the
repetitive nature of patterns can be captured by observing statistics of occurrences of their sub-patterns,
thus providing a hierarchy of the analysed symbolic music representation(s) [39]. Similar to other
approaches that build a tree of patterns based on their subsumption (e.g., [25]), the CHM first
extracts small atomic patterns and builds complex patterns as compositions of these atomic patterns.
Its ability to concurrently provide multiple pattern hypotheses on several levels of complexity and
their transparent descriptions makes it very suitable for pattern extraction, as patterns may overlap or
be mutually included.

The compositional hierarchical model was first introduced by Pesek et al. [40] and was evaluated
for several MIR tasks, including automated chord estimation and multiple fundamental frequency
estimation [41]. In the paper, we present an adaptation of the model for analysis of Symbolic
music (SymCHM) applied to the task of finding repeated patterns and sections. Instead of finding
compositions in a frequency-magnitude audio representation, the adjusted model searches for
compositions of symbolic events in the time-pitch-onset domain. The model learns a hierarchy
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of patterns; the transparent nature of the model allows the user to explore and analyse a music piece
by observing the hierarchy of pattern occurrences. For the automatic discovery of repeated patterns,
the patterns represented in the hierarchy are extracted. We analyse the model output and propose an
extension of the model named SymCHMMerge, which refines the extracted patterns.

The contributions of this paper are as follows: the compositional hierarchical model for symbolic
music analysis that can learn hierarchical melodic structures in an unsupervised manner is presented.
An application of the model to the task of finding repeated patterns and sections is evaluated.
The improved pattern extraction and merging approach from knowledge encoded in the model
(SymCHMMerge) is proposed and analysed.

The paper is structured as follows: we present the SymCHM in Section 2, describe its application
and extension to pattern extraction in Section 3 and present its evaluation and error analysis in Section 4.
We conclude the paper with an overview of other possible applications of the presented model and
outline future work in Section 5.

2. The Symbolic Compositional Hierarchical Model

The Symbolic Compositional Hierarchical Model (SymCHM) is derived from the CHM [40,41],
which in turn was inspired by an approach for object categorization in computer vision, named the
learned Hierarchy of Parts (lHoP) [42]. The SymCHM provides a hierarchical representation of a
symbolic music piece, from individual notes on the lowest layer, up to complex musical patterns on
higher layers. It is based on a hierarchical decomposition of music into atomic blocks, denoted as parts
(not to be confused with ‘voice’ or ‘vocal/instrumental part’. This denomination is used to retain the
consistency in relation to the lHoP). According to their musical complexity, parts are structured across
several layers, whereby parts on higher layers form compositions of parts on lower layers. A part can
therefore describe a simple individual event as well as a complex composition of events. While events
in the original compositional hierarchical model represent spectral audio features (frequencies, pitch
partials and pitches), the SymCHM models notes and their compositions into melodic patterns.

2.1. Model Description

2.1.1. Compositional Layers

The SymCHM consists of an input layer L0 and several compositional layers {L1, . . . ,LN}.
Each compositional layer Ln contains a set of parts {Pn

1 , . . . , Pn
Mn
}, which are formed as compositions of

parts from the previous layer Ln−1. The parts on the layer Ln−1 may form any number of compositions
on the layer Ln, which enables their effective reuse and thus learning of compact models, as shown
later in this paper. A hierarchy of parts is illustrated in Figure 1.

The SymCHM retains part definitions of the original CHM model. The i-th composition on the
layer Ln, denoted Pn

i , is defined as:

Pn
i = {Pn−1

k0
, {Pn−1

kj
, (μj, σj)}K−1

j=1 }. (1)

Pn
i is a composition of K parts from the layer Ln−1, called subparts. The composition is governed

by parameters μ1,...,K−1 and σ1,...,K−1, which model relationships between the subparts. In contrast to
most existing hierarchical and deep approaches, the CHM encodes compositions in a relative rather
than absolute manner. This is achieved by encoding the relative distance (offset) between each subpart
Pn−1

kj
, from the first subpart Pn−1

k0
, called the central part. The offset is encoded as a Gaussian with

parameters μj and σj. In SymCHM, offsets are modelled in semitones in the pitch domain (a semitone
is the smallest musical interval commonly used in Western tonal music), thus a composition encodes
the semitone distance between patterns represented by various subparts. Currently, the standard
deviation σj is set to a small fixed value, which does not allow for deviations from the offset encoded by
μj. In future work we may relax this condition to potentially achieve similar robustness as in chromatic
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to morphetic pitch translation [43]. As an example, the part P3
2 in Figure 1 represents a composition of

two subparts with offset 2 (μ = 2), meaning its pattern is a concatenation of two sub-patterns spaced
two semitones apart. All compositions and their parameters (μ, σ) are learned in an unsupervised
manner as explained in Section 2.2.

Such relative encoding of knowledge enables the model to learn position-independent concepts,
which in turn enables learning of compact models from small datasets, which still generalize well [41].
This is an advantage over most neural network deep approaches, which encode concepts in an absolute
manner and therefore need very large datasets to train properly.

Figure 1. The symbolic compositional hierarchical model. The input layer corresponds to a symbolic
music representation (a sequence of pitches). Parts on higher layers are compositions of lower-layer
parts (depicted as connections between parts, the parameter μ is given in semitones). The structure of a
part is displayed above each part in the figure, represented by a sequence of pitch values relative to the
first subpart (e.g., [0,0,1] for the part P2

1 ). A part may be contained in several compositions, e.g., P1
M1

is
a part of compositions P2

2 and P2
3 . The entire structure is transparent, thus we can observe the entire

sub-tree of the part P4
1 . A part activates, when (a part of) the pattern it represents is found in the input.

As an example, P4
1 activates twice (Inputs A and B), however there are differences in the found patterns.

Pattern A is positioned five semitones higher than B; Pattern B is missing one event (dotted green
rectangle); and the pitch of one event (blue rectangle) differs between the two patterns.

2.1.2. Activations: Occurrences of Patterns

An activation of a part corresponds to the presence of the concept it encodes (melodic pattern in
SymCHM) in the model input. An activation has three components: location and onset time, which map
the relative pattern representation onto a specific MIDI (Musical Instrument Digital Interface technical
standard) pitch and a time position within the input sequence of events (thus making it absolute) and
magnitude, representing its strength.

A part will activate at a given location if all of its subparts are activated with magnitude greater
than zero (this condition is relaxed with hallucination, which we introduce later in this section). A part
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can concurrently activate at different locations and times, which indicates multiple occurrences of its
concept in the input representation. In terms of the repeated pattern discovery task, each activation of a
part can be observed as a pattern occurrence: a repetition of the pattern encoded by the observed part.

More formally, the activation A is defined as a triplet 〈AL, AT , AM〉 of location, time and
magnitude. The activation location AL and the time AT of the part Pn

i are defined as:

AL(Pn
i ) = AL(Pn−1

k0
)

AT(Pn
i ) = AT(Pn−1

k0
).

(2)

The compositions therefore propagate their locations and onset times upwards through the
hierarchy. Such propagation can be usefully employed as an indexing mechanism and allows for a
top-down analysis of activations.

The activation magnitude represents the strength of the composition’s match with the input and
is defined as a weighted sum of subpart magnitudes:

AM(Pn
i ) = tanh

(
1
K ∑K−1

j=0 wj AM(Pn−1
kj

)
)

, (3)

where the weights wj are defined by the match between the learned and the observed relative subpart
pitch locations and bounded by the difference in their activation times:

wj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 : j = 0

N (δLj, μj, σj) : j > 0∧ δTj < τW

0 : δTj ≥ τW

δLj = AL(Pn−1
kj

)− AL(Pn−1
k0

)

δTj = AT(Pn−1
kj

)− AT(Pn−1
k0

)

. (4)

The motivation behind the usage of tanh function introduced in Equation (3) is retained from
neural-network-based architectures: it provides a saturated output with the maximum limited to one.
Any other function could be used to calculate the magnitude of the activation, but the hyperbolic
tangent function possesses several interesting properties: it is a monotonically increasing function
with a smooth gradient and has a value close to one as it approaches infinity. Since the activation
magnitudes are directly used to calculate activations on a higher layer, the output of the function needs
to be normalized.

The parameter τW represents the maximal difference between activation times of two subparts
(time distance of two patterns) which still produces an activation. Such a limit must be imposed in
order to avoid a combinatorial explosion of possible compositions. If subpart activations fall within this
time window, their activation magnitude is calculated according to the match between their observed
(δLj) and their learned (μj, σj) relative pitch distances. A part will activate with maximal magnitude
when its subparts activate at pitch distances according to the learned representation encoded by μj
and σj. Note that onset times do not directly influence the activation magnitude. Thus, the activation
strength of a pattern is not dependent on the temporal distance between its sub-patterns (within τW)
and remains the same whether they are adjacent or separated by other events, allowing for gaps
between sub-patterns.

2.1.3. The Input Representation and Input Layer

A symbolic music representation encoding note pitches and onset times represents input to the
SymCHM. Any symbolic encoding that includes these values can be used, such as MusicXML, MIDI
or text-based representations; the latter two are also available for the MIREX pattern discovery task.
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We can thus define the input representation as a set of note onset (e.g., in seconds) and note pitch
(e.g., MIDI pitch) tuples S = {(No, Np)}.

The input layer of SymCHM L0 models such a symbolic music representation. It consists of a
single atomic part P0

1 , which activates for all note events as:

A = 〈AL(P0
1 ), AT(P0

1 ), AM(P0
1 )〉 ← 〈Np, No, 1〉 (5)

Thus, the activation locations AL are equal to note pitches, the onset times AT to note onsets,
while the magnitude AM is assumed to be 1 for all events (it can also represent note dynamics, if greater
importance is to be put on accented notes).

An example of a learned hierarchy is shown in Figure 1. The part P0
1 is activated for each

input note event. The parts on the first layer represent intervals, e.g., P1
4 represents a minor second

(offset one semitone) and is activated for all such intervals in the input regardless of gaps, with notes
spaced maximally τW apart. P4

1 represents a sequence of note events defined by a series of offsets
[0,0,1,2,−7,−12,4,4,5,−3,−12,7] and is activated at MIDI locations 65 and 70.

2.2. Constructing a Hierarchy of Parts

The model is built layer-by-layer with unsupervised learning on a single or multiple musical
pieces. In the ‘intra-opus’ pattern discovery task experiment described in this paper, we build a model
for each musical piece separately.

The learning process is an optimization problem, where for each layer a set of all possible part
compositions of the layer is searched for a minimal subset of compositions that covers a maximal
amount of events in the training set. The learning process is driven by statistics of part activations
that capture regularities in the input data. It consists of two main steps: (1) finding a set of all possible
compositions, denoted candidate compositions, and (2) selecting compositions that explain a maximal
amount of events in the training set.

To construct a new layer Ln, a set of new candidate compositions C, which will be considered
for inclusion in the new layer, is first formed (Step 1). This set of candidate compositions is obtained
by inferring the hierarchy with the training data and generating activations of parts layer-by-layer
from L0 to Ln−1, as explained in Section 2.3. The candidate compositions for layer Ln are generated
from histograms of co-occurrences of Ln−1 part activations within the time window τW (see also
Equation (4)). Frequent co-occurrences indicate the presence of underlying patterns. New compositions
are formed from combinations of Ln−1 parts where the number of co-occurrences exceeds the learning
threshold τC. The composition parameter μ is estimated from the corresponding histogram.

The L1 candidate compositions are thus constructed as a relative structure of two co-occurring
L0 part activations, both occurring within the time window τW . This procedure is repeated on all
consecutive layers, where activations of parts co-occurring within the time window on a previous
layer Ln−1 compose new part candidates on the next layer Ln. Since the model allows for partial
overlapping of the covered structure (e.g., P2

1 in Figure 1), the structures on these layers represent
3–4 music events. Consequently, the LN candidate compositions include all combinations of LN−1

part pairs representing structures of 2N−1–2N music events.
In the second step, a subset of compositions from C that covers a maximum number of events in

the input data is selected. As the problem of selecting a set of compositions from C which optimally
cover the input data is NP (nondeterministic polynomial time) complete, a greedy approach, which
selects a subset of compositions and leaves a minimal amount of events in the input uncovered, was
introduced in [41].

The composition selection uses part coverage as a measure of the part’s suitability for selection.
The coverage of the part Pn

i can be obtained by projecting its activations to the input layer and
observing the covered events. For a single activation of the part Pn

i at the time T and the location L,
coverage is defined as the union of coverages of its subparts:
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C(A(Pn
i )) =

K−1⋃
j=0

C(A(Pn−1
kj

)). (6)

When the input layer is reached, the coverage is defined by the presence of an event at the given
location and time as:

C(A(P0
1 )) =

⎧⎨⎩AL(P0
1 ) : AM(P0

1 ) > 0

∅ : otherwise
. (7)

Based on coverage, the greedy composition selection approach is defined as follows:

• the coverage of each part from C is calculated as a union of events in the training data covered by
all activations of the part,

• parts are iteratively added to the new layer Ln by choosing the part that adds most to the coverage
of the entire training set in each iteration. This ensures that only compositions that provide
enough coverage of new data with regard to the currently selected set of parts will be added,

• the algorithm stops when the additional coverage falls below the learning threshold τL.

The learning procedure is repeated for each layer until a desired number of layers is reached.
The reader should note that the number of layers governs the maximal length of encoded patterns,
as discussed in the evaluation.

2.3. Inferring Patterns

A learned model captures the repetitive patterns in the training data, which are relatively encoded
and may be observed through an inspection of the model’s parts on its various layers. When a trained
model is presented with new input data, the learned patterns may be located in the input through
the process of inference. Inference calculates part activations on the input data (and thus absolute
pattern positions) according to Equations (2) and (3). They are calculated bottom-up layer-by-layer,
whereby the input data activates the layer L0. As already mentioned, the activation of a part represents
a specific occurrence of the pattern it represents in the input. An activation has three components:
location and onset time, which map the relative pattern onto a specific set of pitches within the input
sequence of events (thus making it absolute), and magnitude, representing its strength. A part can
concurrently activate at different locations, which indicates multiple occurrences of the represented
pattern in the input representation.

Inference may be exact or approximate, where in the latter case two additional mechanisms,
hallucination and inhibition, enable the model to find patterns with deletions, changes or insertions,
thus increasing its predictive power and robustness.

2.3.1. Hallucination

As described in Section 2.1, a part activation is produced only if all subparts activate with
magnitude greater than zero at locations which approximately correspond to the structure encoded
by the part. This conservative behaviour may be relaxed by hallucination. It enables a part to
produce activations even when the structure it represents is incomplete or modified in the input
(e.g., missing notes, added notes, changed pitch, changed note order). Hallucination is important,
as it enables the model to find variations of patterns represented by individual parts. The missing
information is obtained from knowledge acquired during learning and encoded in the model structure.
Using hallucination, the model generates activations of parts most fittingly covering the input
representation, where notes which are not present, but are encoded in the model, are hallucinated.
It is implemented by changing the conditions under which a part may activate. With hallucination,
a part may activate even if all of its subparts are activated, when the percentage of events it represents,
covered in the input, exceeds a hallucination threshold τH . Thus, if we set τH to one, the default

485



Appl. Sci. 2017, 7, 1135

behaviour is obtained, while lowering its value leads to increased hallucination and tolerance to
changes in patterns.

The hallucination threshold τH influences the number of discovered patterns and identified
pattern occurrences. When lowered, the amount of activations increases, as parts may activate on
incomplete matches, thus producing activations which would otherwise not be generated. Additionally,
if used during learning, the number of parts on lower layers will decrease, as parts added to a layer
will have higher coverage due to more activations.

2.3.2. Inhibition

Inhibition in our model is a hypothesis refinement mechanism, which reduces the amount of
redundant activations. An activation of a part Pn

i is inhibited (removed) when one or multiple
parts Pn

j1
, . . . , Pn

jK
cover a large part of the same events in the input, but with stronger magnitude.

More formally, activation of the part Pn
i is inhibited when the following conditions are met:

∃{Pn
j1 . . . Pn

jK} :
|C(A(Pn

i ))\
⋃K

k=1 C(A(Pn
jk
))|

|C(A(Pn
i ))|

< τI (8)

and
∀Pn

jk ∈ {Pn
j1 . . . Pn

jK} : AM(Pn
jk ) > AM(Pn

i ). (9)

The C(A) represents activation coverage (Equation (6)), AM activation magnitude (Equation (3))
and τI controls the strength of inhibition. If τI is set to zero, no inhibition occurs; the larger its value,
the more activations are inhibited and propagated less between model layers. Notably, only activations
with magnitude larger than that of the part Pn

i are considered in the inhibition process.
Besides reducing the number of activations and output patterns, the inhibition mechanism can

also be used for producing alternative explanations of the input. If activations of the strongest pattern
which inhibits other competing hypotheses are removed from the model, the next best hypothesis is
selected during inference, thus providing an alternative explanation with different pattern occurrences
to appear in the model’s output.

3. Pattern Selection with SymCHM

The SymCHM model can be trained on a single or multiple symbolic music representations.
It learns a hierarchical representation of patterns occurring in the input, where patterns encoded by
parts on higher layers are compositions of patterns on lower layers. The inference produces part
activations which expose the learned patterns (and their variations) in the input data. Shorter and
more trivial patterns naturally occur more frequently, longer patterns less frequently. On the other
hand, longer patterns may entirely subsume shorter patterns. Occurrences of melodic patterns in a
given piece are discovered by observing activations of the learned model’s parts, where each activation
of a part is interpreted as an occurrence of the pattern encoded by the part.

To use the model for the discovery of repeated patterns and sections task, we need to select
which of the found patterns will be provided in the model’s output. In this Section, we present two
approaches for a pattern selection.

3.1. Basic Selection

In a basic pattern selection, we output all patterns of sufficient complexity, as encoded by parts
starting from the layer L up to the highest layer N. First, we select all parts from the layers LL . . .LN .
Since parts on higher layers are compositions of parts on lower layers, we exclude all parts which are
subparts of a composition on a higher layer to avoid redundancy. The final selection of parts can be
formulated as:

486



Appl. Sci. 2017, 7, 1135

N⋃
l=L

{Pl
i ∈ Ll : (¬∃Pl+1

j )[Pl+1
j ∈ Ll+1 ∧ Pl

i ∈ Pl+1
j ]} (10)

Inference is then performed on a music piece and activations of the selected parts represent
the found patterns and their locations in the piece. Hallucination and inhibition are applied
during inference to provide balance between producing hypotheses which partially match the input
representation (hallucination) and the amount of competitive hypotheses produced (inhibition).

3.2. SymCHMMerge: Improved Pattern Selection

An analysis of the basic pattern selection algorithm showed lack of diversity in the found patterns,
as the patterns were often very similar and overlapping. We improved the algorithm by merging
redundant patterns and adjusting the learning and inference parameters, and named the resulting
model SymCHMMerge.

3.2.1. Merging Redundant Patterns

Since parts in our model are learned in an unsupervised manner, several parts may represent
similar and overlapping patterns (e.g., patterns shifted by a few notes). Inhibition reduces redundant
activations of such parts, however it is usually not enforced strongly, as it could overly reduce the
number of activations and found patterns. To reduce the number of such overlapping patterns,
we merge them into single, longer patterns.

Let π(A(Pn
i )) represent a pattern occurrence defined by the projection π of the activation A of

the part Pn
i onto the layer L0. Ψn

i represents the set of all such pattern occurrences discovered by
activations of the part:

Ψn
i =

⋃
k

{π(Ak(Pn
i ))}. (11)

Two pattern occurrences ai and aj, produced by the parts Pn
i and Pm

j , are taken to be redundant,
if they overlap significantly. We express this by calculating the Jaccard similarity coefficient and
compare it to a threshold τR:

ai = π(A(Pn
i )), aj = π(A(Pm

j ))

J(ai, aj) =
|ai ∩ aj|
|ai ∪ aj|

> τR.
(12)

We aim to merge redundant pattern occurrences of two parts if they frequently produce
overlapping patterns. Therefore, we calculate the proportion of such patterns produced by the two
parts as:

1
|Ψn

i |+ |Ψm
j |

∑
ai∈Ψn

i

∑
aj∈Ψm

j

|J(ai, aj) > τR|. (13)

If the proportion exceeds a threshold τM, all redundant pattern occurrences of the two parts
are merged.

For evaluation, the thresholds τR and τM were both set to 0.5, meaning that pattern occurrences
produced by two parts had to share at least 50% of events in the input layer and appear together in at
least 50% of cases, to be merged.

3.2.2. Increasing Diversity

To address the problem of pattern diversity, we needed to increase the number of patterns found by
the model. This was achieved with three simple adjustments. First, we lowered the candidate selection
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thresholds in the greedy phase of the learning process to add more parts to each layer (evaluation
showed that on average 16% more parts were added). Second, more layers were considered when
searching for pattern occurrences, and third, hallucination was increased during inference. All these
modifications could also be made with the basic pattern selection approach; however, they would
result in an even higher number of redundant patterns. With SymCHMMerge, redundant occurrences
are merged and thus the diversity of the found patterns increases.

4. Evaluation

We evaluated the proposed model for the discovery of repeated themes and sections task in
symbolic monophonic music pieces. Since we are searching for patterns within a given piece (and not
across the entire corpus) the model was built independently for each piece and inferred on the same
piece. All model parameters were kept constant during all evaluations and were not tuned to each
specific case. The parameters were set to the values defined in Table 1. The τW parameter limiting the
time span of activations was set to τW = 2n+2 events. The values and short descriptions of parameters
are also listed in Table 1. The values for the τH and τI parameters are based on the stable performance
achieved in the range around 0.5 for (see the Sensitivity to parameter values subsection. The τR and
τM values were set to the majority thresholds of 50% and were not tuned. The τL parameter value was
retained from the original spectral CHM where it was evaluated empirically.

Table 1. Model’s parameter settings for the experiment.

Parameter Description Value

τH
Hallucination parameter retaining the activation of a part in an

incomplete presence of the events in the input signal 0.5

τI Inhibition parameter reducing the number of competing activations 0.4

τR
Redundancy parameter determining the the necessary amount of

overlapping pattern occurrences in order for the occurrences to be merged 0.5

τM
Merging parameter determining the amount of redundant pattern

occurrences needed for two patterns to be merged into one 0.5

τL
Learning threshold for added coverage which needs to be exceeded

in order for a candidate composition to be retained while learning the model 0.005

τW Window limiting the time span of activations, defined per layer Ln 2n+2

Table 2 shows the performance of SymCHM on the MIREX 2015 discovery of repeated themes
and sections task. To compare SymCHM to SymCHMMerge, the Table 2 also includes the results of
their evaluation on the publicly available JKU Patterns Development Dataset (PDD) [44]. Detailed
results of SymCHMMerge on this dataset are shown in Table 3.

The JKU PDD dataset (the dataset is publicly available on this link: https://dl.dropbox.com/u/
11997856/JKU/JKUPDD-Aug2013.zip) consists of five pieces:

• Bach’s Prelude and Fugue in A minor (BWV(Bach-Werke-Verzeichnis) 889): 731 note events,
3 patterns, 21 pattern occurrences,

• Beethoven’s Piano Sonata in F minor (Opus 2, No. 1), third movement: 638 note events, 7 patterns,
22 pattern occurrences,

• Chopin’s Mazurka in B flat minor (Opus 24, No. 4): 747 note events, 4 patterns, 94 pattern occurrences,
• Gibbons’ “The Silver Swan”: 347 note events, 8 patterns, 33 pattern occurrences,
• Mozart’s Piano Sonata in E flat major, K. 282-2nd movement: 923 note events, 9 patterns,

38 pattern occurrences.
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Table 2. Evaluation of SymCHM, SymCHMMerge and Music Information Retrieval Evaluation
eXchange (MIREX) results of other proposed approaches for the discovery of repeated themes and
sections task on the JKU Patterns Development Dataset (PDD) and JKU Patterns Testing Dataset (PTD),
denoted as MIREX 2015.

Algorithm Pest Rest F1est Pocc(c=0.75) Rocc(0.75) F1occ(c=0.75)

SymCHM MIREX 2015 53.36 41.40 42.32 81.34 59.84 67.92
NF1 MIREX 2014 50.06 54.42 50.22 59.72 32.88 40.86
DM1 MIREX 2013 52.28 60.86 54.80 56.70 75.14 62.42
OL1 MIREX 2015 61.66 56.10 49.76 87.90 75.98 80.66
VM2 MIREX 2015 65.14 63.14 62.74 60.06 58.44 57.00

SymCHM JKU PDD 67.92 45.36 51.01 93.90 82.72 86.85
SymCHMMerge JKU PDD 67.96 50.67 56.97 88.61 75.66 80.02

TLF1 Pocc(c=0.5) Rocc(c=0.5) F1occ(c=0.5) P R F1

SymCHM MIREX 2015 37.78 73.34 62.48 67.24 10.64 6.50 5.12
NF1 MIREX 2014 33.28 54.98 33.40 40.80 1.54 5.00 2.36
DM1 MIREX 2013 43.28 47.20 74.46 56.94 2.66 4.50 3.24
OL1 MIREX 2015 42.72 78.78 71.08 74.50 16.0 23.74 12.36
VM2 MIREX 2015 42.20 46.14 60.98 51.52 6.20 6.50 6.2

SymCHM JKU PDD 51.75 78.53 72.99 75.41 25.00 13.89 17.18
SymCHMMerge JKU PDD 52.89 83.23 68.86 73.88 35.83 20.56 25.63

4.1. Evaluation Metrics

Evaluation metrics from the MIREX discovery of repeated themes and sections task were used for
evaluation. This subsection provides a short description and formalization of the definitions found in
the MIREX task definition [20]. The establishment measure (precision Pest, recall Rest and F score F1est)
evaluates the algorithm’s ability to find at least one occurrence of each pattern shifted in time and pitch.
Two occurrence measures F1occ evaluate the extent of the model’s ability to find all pattern occurrences,
where the c = {0.5, 0.75} factor represents the inexactness tolerance threshold. Meredith [30] proposed
an additional three-layer metric (P3, R3, TLF1) that provides balance between the establishment and the
occurrence measures. The exact precision, recall and F score measures (P, R, F1) show the algorithm’s
performance in matching the found patterns with the reference annotations in an exact manner.

The metrics are formally defined using the following set of symbols:

• nP : the number of patterns in a ground truth
• Π = {P1,P2, . . . ,PnP }: a set of ground truth patterns
• P = {P1, P2, . . . , PmP}—occurrences of pattern P
• nQ: the number of patterns in the algorithm’s output
• Ξ = {Q1,Q2, . . . ,QnQ}: a set of patterns returned by the algorithm
• Q = {Q1, Q2, . . . , QmQ}—occurrences of pattern Q.
• k: the number of ground truth patterns identified by the algorithm

The standard precision is defined as P = k/nQ, the recall as R = k/nP , and the F1 score
as F1 = 2× P× R/(P + R). Due to the extreme difficulty of discovering strictly exact patterns,
more robust versions of the metrics are provided: the occurrence and the establishment scores.
First, the cardinality score is used to determine the music similarity between the annotated and
the discovered patterns:

sc(Pi, Qj) : |Pi ∩Qj|/ max{|Pi|, |Qj|} (14)

489



Appl. Sci. 2017, 7, 1135

A score matrix is calculated based on the similarity as follows:

s(P ,Q) =

⎡⎢⎢⎢⎢⎣
s(P1, Q1) s(P1, Q2) . . . s(P1, QmQ)

s(P2, Q1) s(P2, Q2) . . . s(P2, QmQ)
...

...
. . .

...
s(PmP , Q1) s(PmP , Q2) . . . s(PmP , QmQ)

⎤⎥⎥⎥⎥⎦ (15)

Based on the score matrix, the establishment matrix is calculated from the set of annotated patterns
Π and the set of algorithm’s output patterns Ξ:

S(Π, Ξ) =

⎡⎢⎢⎢⎢⎣
S(P1,Q1) S(P1,Q2) . . . S(P1,QnQ)

S(P2,Q1) S(P2,Q2) . . . S(P2,QnQ)
...

...
. . .

...
S(PnP ,Q1) S(PnP ,Q2) . . . S(PnP ,QnQ)

⎤⎥⎥⎥⎥⎦ (16)

The establishment precision is thus defined as:

Pest =
1

nQ

nQ

∑
j=1

max{S(Pi,Qj)|i = 1 . . . nP} (17)

The establishment recall is defined as:

Rest =
1

nP

nP

∑
j=1

max{S(Pi,Qj)|i = 1 . . . nQ} (18)

Additionally, the establishment F1 score is calculated as:

F1est = 2× Pest × Rest/(Pest + Rest) (19)

The establishment metrics reward a single match between the annotated and algorithm’s patterns.
To counterbalance this bias, the occurrence metrics are used. The occurrence metrics reward the
algorithm’s ability to find all occurrences of a single pattern. To loosen the exactness, the found
patterns may be inexact. This inexactness is implemented using a threshold c (default values used
in the 0.5 and 0.75), The indices I of the establishment matrix with values greater than or equal this
threshold c are considered discovered. The occurrence matrix O(Π, Ξ) is calculated using the following
approach, starting with an empty nP × nQ matrix and the establishment indices I :

∀(i, j) ∈ I : O(Π, Ξ)[i, j] = s(Pi,Qj). (20)

The occurrence precision score is consequently calculated using the occurrence matrix as follows:

Pocc =
1

ncol

nQ

∑
j=1

O(i, j)|i = 1 . . . nP , (21)

where ncol represents the number of non-zero columns in occurrence matrix O. The occurrence recall
score is analogously calculated as:

Rocc =
1

nrow

nP

∑
j=1

S(i, j)|i = 1 . . . nQ, (22)

where nrow represents the number of non-zero rows in the occurrence matrix O.
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4.2. Performance

The SymCHM with the basic pattern selection algorithm was submitted to the MIREX 2015
discovery of repeated themes and sections task. The results are shown in Table 2. The submitted
model learned a six layer hierarchy, where activations of parts on Layers 4–6 were output as the found
pattern occurrences.

In the MIREX 2015 evaluation [20], the two state-of-the art approaches by Velarde and Meredith
(VM2) [32] and Lartillot (OL1 ) [34] achieved better overall results. However, the SymCHM
outperformed other algorithms on the first piece in the MIREX evaluation dataset and achieved
better results than VM2 in pattern occurrence measures, which indicated the model’s ability to robustly
identify the occurrences of the identified patterns. Compared to other approaches proposed in previous
MIREX evaluations, such as NF1’14 [37] and DM1’13 [45], SymCHM found more pattern occurrences,
as well a higher number of exact matches. The SymCHM also achieved a higher TLF1 score when
compared to NF1’14 submission.

Table 3. A detailed list of JKU Patterns Development Dataset results for the SymCHMMerge
approach. The nP and nQ columns represent the number of annotated patterns and the number
of discovered patterns respectively. Song names are shortened, using a four letter abbreviation of the
composer’s name.

Piece nP nQ Pest Rest F1est Pocc(c=0.75) Rocc(c=0.75) F1occ(c=0.75)

bach 3 2 100.00 66.67 80.00 100.00 45.65 62.68
beet 7 7 65.81 60.02 62.78 80.71 80.71 80.71
chop 4 5 47.95 49.81 48.86 62.36 51.96 56.69
gbns 8 3 78.16 35.49 48.81 100.00 100.00 100.00
mzrt 9 8 47.88 41.39 44.40 100.00 100.00 100.00

Average 6.2 5 67.96 50.67 56.97 88.61 75.66 80.02

Piece P3 R3 TLF1 Pocc(c=0.5) Rocc(c=0.5) F1occ(c=0.5) P R F1

bach 62.96 41.97 50.37 100.00 45.65 62.68 100.00 66.67 80.00
beet 77.38 64.95 70.62 79.24 72.44 75.69 0.00 0.00 0.00
chop 46.96 39.92 43.15 57.00 46.29 51.09 0.00 0.00 0.00
gbns 81.82 34.33 48.37 100.00 100.00 100.00 66.67 25.00 36.36
mzrt 57.21 47.54 51.93 79.92 79.92 79.92 12.50 11.11 11.77

Average 65.27 45.74 52.89 83.23 68.86 73.88 35.83 20.56 25.63

To increase diversity and decrease redundancy, we introduced the SymCHMMerge with an
improved pattern selection algorithm. Activations of parts on Layers 2–6 were considered for finding
pattern occurrences, where each layer included 16% more parts on average due to the more relaxed
learning conditions.

A comparison between both models on the JKU PDD dataset showed that the SymCHMMerge
achieved significantly better results (Friedman’s test: χ2 = 7.2, p < 0.01). It mostly improved in
establishment measures, which indicated an improvement of the algorithm’s ability to discover at
least one occurrence of a pattern, tolerating for time shift and transposition [20]. On the other hand,
occurrence measures F1occ(c=0.75) and F1occ(c=0.5) which evaluated the algorithm’s ability to find all
occurrences of the established patterns, have dropped by 5%. We attribute this drop to a higher number
of established patterns, for which the occurrence measure is calculated. Finally, the absolute precision,
recall and F scores significantly increased due to the SymCHMMerge’s pattern merging procedure and
increased pattern diversity.

4.3. Sensitivity to Parameter Values

To assess the sensitivity of SymCHMMerge to changes of model parameters, we analysed its
performance by varying the inhibition and hallucination parameters τI and τH , which affect inference.
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We observed the behaviour of occurrence and establishment measures in order to estimate the balance
between the two. Due to the large number of possible parameter combinations, we evaluated how
changes in one parameter (set for all layers) affect performance when all other parameters are fixed.

4.3.1. Inhibition

The top part of Figure 2 shows how changes in the inhibition parameter τI affect the results.
An increase of τI increases inhibition and removes activations which are only partially covered by
others, while a decrease will allow for more overlapping activations to propagate to higher layers.
The plots show that reduced inhibition has a positive effect on occurrence recall, which is expected,
as more activations are produced. It is even more interesting that it also positively affects precision of
found occurrences, which might be explained by the fact that overlapping activations are successfully
merged by the merging algorithm of SymCHMMerge. For the establishment metrics, the effect of
changes in inhibition is not so obvious, and apart from extreme values, performance is stable.

4.3.2. Hallucination

The bottom part of Figure 2 shows how changes in the hallucination parameter τH affect
performance. As described in Section 2.3.1, larger τH values decrease hallucination and thus the
number of activations. Decreased hallucination affects both occurrence and establishment of patterns,
as there is little tolerance for pattern variations. With more hallucination, both measures increase
and then remain stable; again, precision is not affected significantly, as the merging algorithm of
SymCHMMerge reduces the growing number of activations on higher layers.
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Figure 2. Sensitivity of the model to changes of the hallucination parameter τI (top) and the inhibition
parameter τH (bottom). When one parameter was varied, all others remained fixed.
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4.4. Error Analysis

To increase our understanding of the model’s performance, we performed an analysis of its most
common types of errors.

4.4.1. Incomplete Matches

We observed that the occurrence metrics increase when we allow for partially incomplete patterns
to be discovered (hallucination), however, the exact F1 scores do not always increase. After observing
the pattern occurrences which do not contribute to the rise in F1 score, we discovered that these
patterns do not completely match the reference annotations, as shown in Figure 3.

The difference between a reference annotation and a model’s proposed pattern usually presents
itself at the edges of an occurrence, where the model assumes that one or more preceding or succeeding
events belong to the pattern. These events frequently occur at the same locations (relative to the pattern),
with similar time and pitch offsets. Thus, the model adds these events to the pattern occurrence,
causing mismatch with the reference annotation. Such errors could be resolved by incorporating
theoretical rules governing the beginnings and endings of patterns, e.g., gap rule ([46], p. 68) into the
pattern selection algorithm.

Figure 3. An incomplete pattern match of two pattern occurrences in Bach BWV 889 Fugue in A
minor (from the JKU PDD dataset). Two pattern occurrences are presented in the figure (top and
bottom). A piano roll representation is shown where the reference annotation is coloured in grey and
the identified pattern occurrences outlined with red borders. Even though similar, events on the right
side (shown in light blue) are not part of the reference annotations, however they are included in the
model’s patterns due to their co-occurrence with other events.

4.4.2. Unidentified Patterns

Patterns which were not identified by the model usually belong to one of two types: section
patterns and short patterns.

Section patterns, such as in Mozart’s Piano Sonata in E flat major, K. 282-2nd movement, remain
unidentified. These section patterns represent large segments of music (50–137 events). The six layers
in our model have the potential of encoding patterns of up to 64 events. While some of the reference
patterns could be identified, the model did not contain a sufficient amount of layers to cover the largest
patterns. We consequently focused on observing the absence of the shorter section patterns (between
50 and 64 events). While incomplete (often overlapping) matches of these patterns were found on the
L5 and L6 layers (sub-patterns), there were no complete matches between the found patterns and the
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reference annotations. Furthermore, the overlap was not high enough that these sub-patterns would
be merged during pattern merging.

The second subgroup—the short patterns—also frequently occur in evaluation datasets.
These patterns are 4–5 events long. They are identified by the model on the layers L2 and L3, and also
form compositions on higher layers. If such larger compositions are present, the pattern selection
procedure excludes the short patterns from the final output.

The discovery of larger patterns could be improved by building additional compositional layers
while learning the model, and by adjusting the merging rules for long patterns. To find more short
patterns, we could add additional criteria that would counterbalance the promotion of longer patterns
during pattern selection. For example, the event duration could be used when considering the
importance of short events.

4.5. Drawbacks of the Evaluation

To establish the effectiveness of the proposed model in the symbolic domain, we evaluated the
model for the pattern discovery task, where a comparison between the SymCHM and other approaches
is based on the JKU PDD and JKU PTD datasets. To avoid diminishing the MIREX’s position of being
an evaluation exchange and not a benchmarking framework, we focused our evaluation on the two
variants of the compositional model we developed, the SymCHM and SymCHMMerge, as shown in
Table 2.

As thoroughly discussed by Meredith [30], this MIREX task possesses many drawbacks and thus
might not be the optimal tool for an algorithm comparison. However, it is rather difficult to create an
experiment which would provide a clearer evaluation of the algorithm’s performance. First, a definition
of a pattern is vague; there are several sources gathered in the JKU datasets. Some of the patterns in the
ground truth represent themes, while others represent entire sections. Without any prior knowledge
about the goal (length of pattern, perhaps a ratio between the length and the variation within the
pattern occurrences), the metrics are logically leaning towards awarding the approach which finds
most occurrences of the discovered pattern. It seems impossible to design an algorithm capable of
finding a “pattern” when the definition of a pattern varies among the annotators. The three-layer
F score proposed by Meredith is a step towards a metric which provides the balance between the
establishment and the occurrence metrics otherwise provided. Second, the size of the dataset presents
a limitation: the combined JKU PDD and JKU PTD datasets represent ten (classical) musical pieces in
total. It is thus difficult to claim the datasets provide a representative sample of any kind of music or
genre. However, we acknowledge the incredible effort put in the creation of the datasets and the tasks;
we believe the size of the datasets is affected by the effort needed. Nevertheless, we believe the MIREX
discovery of repeated themes and sections task is currently the best currently available approximation
of a performance evaluation for the pattern discovery in music.

5. Conclusions

In the paper, we presented the compositional hierarchical model for pattern discovery in symbolic
music representations. The model calculates a hierarchical representation of melodic patterns in a music
corpus with a statistically-based learning algorithm. It can be viewed as a transparent deep architecture,
combining the ability of unsupervised learning of multi-layer hierarchies with a transparent structure
that enables insight into the learned concepts. The inference process with hallucination and inhibition
mechanisms enables the search for pattern variations.

We evaluated the model in the MIREX evaluation campaign and its improved pattern selection
algorithm on the JKU PDD dataset, where we show that we can obtain favourable results with the
improved version of the model. We showed that the model can be used for finding patterns in symbolic
music and that it can learn to extract patterns in an unsupervised manner without hard-coding the
rules of music theory. We have also demonstrated the transfer of the model from classification tasks
based on audio representations to pattern extraction in the symbolic domain. The results obtained by
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the model are not on par with the best two performing algorithms. Nevertheless, the proposed model
performs better than several other proposed approaches. As discussed in Section 4.5, this evaluation
contains many potential drawbacks, but it is currently the best approximation for pattern discovery
evaluation. The definition of the ‘pattern’ itself is elusive and may contain many different explanations,
varying from strictly music-theoretical, to mathematical formalization. The human perception of
patterns in music itself is too difficult to explain and incorporate in a single formalized task. However,
with the proposed model, we have demonstrated that a deep transparent architecture can tackle
the pattern discovery by employing unsupervised learning and may thus better approximate how
listeners recognize patterns than the rule-based systems. Due to its transparency, the model is not only
applicable to tasks where a single output is provided, but can also be used for exploration and pattern
discovery by an expert. The model produces multiple hypotheses on several layers, which can be used
as reference points in a deeper semi-automatic music analysis. We believe this further strengthens the
model’s usefulness to the wider MIR community.

In our future work, we will focus on improving the model. We plan to include event duration
into pattern selection and merging and adapt the model for polyphonic pattern discovery. We could
also introduce pattern ranking, similar to [32], and add music theory rules, as discussed in Section 4.4.
The model’s output could further be optimized by supervised training of model parameters, especially
the number of layers in the hierarchy and the layers in the model’s output. However, a sufficiently
large annotated dataset is needed for such an optimization, significantly larger than the datasets
currently used to evaluate the pattern discovery task.

The proposed approach can also be applied to identify similar and inexact patterns across larger
corpora. We plan on evaluating the model in an inter-opus pattern discovery task, aiding the current
research in tune family identification and folk music analysis. To tackle classification tasks, the model
can be observed as a feature generator; thus, its output can be employed as an input to tune family
analysis, similarity comparison or composer identification.
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SymCHM Compositional Hierarchical model for Symbolic music representations
SymCHMMerge An extension of the SymCHM using a pattern merging technique
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Abstract: This article presents a new framework for unit generator development for Csound,
supporting a full object-oriented programming approach. It introduces the concept of unit generators
and opcodes, and its centrality with regards to music programming languages in general, and Csound
in specific. The layout of an opcode from the perspective of the Csound C-language API is presented,
with some outline code examples. This is followed by a discussion which places the unit generator
within the object-oriented paradigm and the motivation for a full C++ programming support, which is
provided by the Csound Plugin Opcode Framework (CPOF). The design of CPOF is then explored
in detail, supported by several opcode examples. The article concludes by discussing two key
applications of object-orientation and their respective instances in the Csound code base.
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1. Introduction

All modern music programming systems provide means for extending their capabilities [1].
In most cases, this extensibility applies to allowing new unit generators (UGs) to be added to the system.
A UG is defined as a component of the system programming language responsible for processing input
and/or generating some output [2]. These may take the form of control or audio signals, messages
of some kind, or single values. UGs are core elements of any MUSIC N-type language and they are
are responsible for much of the processing power provided by the system. While some languages
allow the user to process signal using only primitive operations, UGs provide in most cases a more
convenient and efficient way to implement a given algorithm. The efficiency gain can be of various
orders of magnitude, depending on the system and the kind of operations involved [3]. In some
cases, UGs are the only means possible to realise a given algorithm, as the language in question is
not designed to process signals directly or does not provide the required primitive operations to
implement it (on a sample-level basis).

1.1. Csound Unit Generators

Csound [4,5], is a MUSIC N-type system, which consists of an audio engine, a music programming
language, and an application programming interface (API). UGs in Csound are more commonly called
opcodes or functions. While the system does not distinguish between these two, we often reserve the
latter name for UGs with no side effects, which are pure functions [6]. Structurally, however, there is
no distinction between these as far as their implementation layout is concerned, and we will employ
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the term opcode more generally to denote a UG of any kind. Internally, all operations are implemented
by opcodes/functions (including all primitive arithmetic and control-of-flow), which places them
as a central pillar of the system. Some of these of course are going to be minimal and light-weight,
and others can be of significant complexity.

Csound has a collection of internal or built-in opcodes that are compiled into the system, but also
provides a mechanism for adding new opcodes [7]. This mechanism is made up by two separate
components, namely

1. An interface for registering new opcodes, provided by Csound API.
2. Dynamic library loading is provided by the audio engine at startup. As part of this, a given

directory is searched for suitable library files containing new opcodes.

Opcodes are usually written in C, although other languages producing a compatible binary
format can be employed. Each opcode will be defined by a dataspace and up to three processing
functions that are called by the engine at different times depending on the type of signals that are to be
processed. An opcode is invoked by Csound code in units called instruments or user-defined opcodes
(UDOs). The engine will instantiate it by allocating space for its data, and call its processing functions
according to one or more of two action times (passes):

1. initialisation time: code is executed once, after instantiation. It can also be invoked again if
a re-initialisation pass is requested.

2. performance time: code is executed repeatedly each control cycle to consume and/or produce
a signal. There are two separate types of functions that can be defined for performance:

(a) control: this function is invoked to deal with scalar inputs or outputs (e.g., processing
a single sample at a time).

(b) audio: code is expected to deal with audio signals, which are passed as vectors to it.

The three processing functions defined by an opcode are each connected to one of the processing
cases listed above. They are also linked to the different types of variables supported by the Csound
language, which the opcodes will be designed to operate on:

• i-type: these variables are floating-point scalars that can only change at initialisation or
re-initialisation time.

• k-type: also floating-point scalars, these will only change at performance time, although they can
also be initialised at i-time.

• a-type: this is a floating-point vector, which is modified at performance time. The length of this
vector is defined by a ksmps variable that can assume local (instrument) values or can be set
globally for the whole engine. Vectors can also be initialised at i-time. Audio-rate functions are
designed to operate on these variables.

• S-type: character strings, which can be modified at i-time and perf-time, although it is more
common to do so only at i-time.

• f-type: frequency-domain signals (fsigs), these contain self-describing spectral data (of different
formats) that are processed at performance-time by control-rate functions.

• arrays: composite-type variables of each of the above types. A very important case is k and i

arrays, for which there are various important applications.

An opcode is defined to operate on a given set of input and/or output argument types. Parameters
passed to them have to match the pre-defined types. Multiple versions of the same opcode can be
declared for different types, which is a case of overloading.
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1.1.1. Opcode Layout

The Csound API mandates that opcodes should have the following components:

• A data structure declared with the following format. It always contains an OPDS member as its
first component. This holds a set of elements common to all opcodes.

struct NAME {

OPDS h;

// output argument addresses

// input argument addresses

// dataspace members

};

where we need to declare one pointer variable for each output and input argument (in the order
they should occur in the Csound language code). When the opcode is called, the output and
input argument addresses are passed to Csound through these pointers. The C variable types for
different Csound argument types are:

– MYFLT*: pointers to the internal floating-point data type (MYFLT is either defined as a 64 or
a 32-bit float, depending on the engine version and platform) are used for all basic numeric
arguments. (i, k, or a).

– STRINGDAT*: used for string arguments.
– PVSDAT*: holds an fsig argument
– ARRAYDAT*: for array arguments (of any fundamental type).

• A function with the signature

int func(CSOUND *, void *);

for each one of the required action times (init, control, and/or audio). The first argument is
a pointer to the Csound engine that instantiated this opcode. The second argument receives
a pointer to the allocated dataspace for a given instance of the opcode.

New opcodes are registered with the engine using the Csound C API function
csoundAppendOpcode(),

int csoundAppendOpcode(CSOUND *csound, const char *opname,

int dsblksiz, int flags, int thread,

const char *outypes, const char *intypes,

int (*iopadr)(CSOUND *, void *),

int (*kopadr)(CSOUND *, void *),

int (*aopadr)(CSOUND *, void *));

This takes in the opcode name opname; the size of the dataspace dsblksiz in bytes;
multithreading flags (normally 0); a thread code for the action times, which determines whether it
should be active on i-time (1), k-rate (2), and/or a-rate (4); and the functions for i-time, k-rate, and a-rate
(NULL if not needed), for an engine given by csound. Two strings, outtypes and intypes, define
the output and input argument types expected by the opcode. Valid values are the characters i, k, a,
S, f, with an added [] to indicate array arguments.

1.1.2. Plugin libraries

As discussed in Section 1.1, the Csound engine has a dynamic library loading mechanism
that scans a given directory, the opcode directory (which can be defined by the OPCODE6DIR or
OPCODE6DIR64 environment variables) and loads any suitable files containing opcodes. Alternatively,
Csound can be passed the option --opcode-lib= to load a given plugin library file at startup.
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To recognise a dynamic library as containing Csound code, the engine looks for the definition of
three functions:

csoundModuleCreate(CSOUND *csound);

csoundModuleInit(CSOUND *csound);

csoundModuleDestroy(CSOUND *csound);

If these functions exist, the library is loaded and csoundModuleCreate() followed by
csoundModuleInit(). One of these functions should contain the call to the opcode registration API
function to append the new UGs to the list kept by the engine.

To enable libraries to be built without the need to link directly to the Csound library,
an AppendOpcode() function exists in the CSOUND structure allowing code to call the API function
indirectly via the engine pointer. For example,

PUBLIC int csoundModuleInit(CSOUND *csound) {

csound->AppendOpcode(csound, "test", sizeof(struct OPTEST),

0, 1, "i", "i", test_init, NULL, NULL);

return 0;

}

registers an opcode with the name test, running at init-time only, implemented by the function
test_init. This function invokes the exact same code as the Csound API call, but it is more
convenient for the purposes of a plugin library.

1.1.3. Discussion

Csound UG development relies on the conventions outlined in Section 1.1.1, plus a comprehensive
set of API functions provided in the CSOUND structure (including, as we saw in Section 1.1.2,
the opcode-registering function AppendOpcode). These support a range of facilities and access to the
engine that allow a complete scope for the development of new unit generators. However, it is the case
that this interface can be more complex and cumbersome than necessary, owing to the characteristics
of the C language.

From an object-oriented (OO) perspective [8], we can observe that an opcode might be described
as a class that inherits from OPDS. It will contain a variable number of argument objects (0− N),
depending on its outputs and inputs. An opcode class can define up to three public methods, one for
each action time required. These methods take as a parameter the Csound engine object, which has
a large number of public methods that can be used for a variety of means: to retrieve engine attributes;
to print messages; to handle MIDI data; to list and retrieve lists of arguments; to perform memory
allocation and management; to access function tables; to perform FFTs and handle frequency-domain
data; to access disk files; to generate random numbers; to spawn threads, manage locks and circular
buffers; plus a number of other miscellaneous operations.

The Csound engine is responsible for constructing opcodes at instantiation. Effectively, this entails
only the allocation of space for its data members, if no pre-allocated space exists already. Any further
initialisation, if required, needs to be performed by the init-time method. When an instance of
an opcode is no longer active, there is no automatic recovery of the memory space, and so new
instances can take advantage of pre-existing space and skip allocation. However, memory can be
recovered at certain stages explicitly if needed. Opcodes can also optionally register a destructor
method with the engine, that will be called when an instance is no longer active.

From this analysis, we conclude that the structure of an opcode effectively takes an object-oriented
form as far as it is possible under C. However, the language is not conducive to the application of
techniques that would maximise code re-use and encapsulation, which would allow developers to
concentrate directly on the implementation of their algorithms. Code re-use not only helps to save
work in reproducing boilerplate lines, but also supports a more robust development, where a given
functionality is implemented once and only once facilitating the task of ensuring correctness in the
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code. Encapsulation allows for certain fundamental components to be hidden away and manipulated
through a logic interface, which greatly supports developers in concentrating on the task at hand.

An ideal candidate language to support this type of approach is C++ in its more modern
incarnations [9]. Unlike other languages such as Java, it is possible to compile code to a binary
form that can be taken directly by the Csound dynamic loading mechanism, and it does not require
a virtual machine environment to run. It is also very closely integrated with C, especially if we regard
it as its superset. Differently to Objective-C, there is no major syntactic chasm between C and C++
code, and its new constructs have evolved organically as extensions to the original language.

1.2. Unit Generators and Plugins in Other Systems

As outlined in Section 1.1.3, the original Csound opcode C API imposes effectively a C-based
OOP idiom, with limitations determined by the choice of language. A similar arrangement for UG
development is present under Pure Data (PD) [10], where an essentially object-oriented structure is
implemented in C. The API for plugins provides functions to register a new class (an UG in PD),
as well as to register methods to respond to various messages that the system provides. Due to this
message-passing nature of the PD engine, it is slightly more complex to add a new UG than it is in
Csound. However, there are a number of similarities, including the presence of an audio processing
method (corresponding to the performance-time audio function in Csound) and an object constructor
(with similarities) to the init-time function. New classes are registered with the system in a similar way
to Csound, in a given plugin entry point function. Thus, a C++ treatment similar to what is described
for Csound in Sections 2–4 is also possible for PD.

The case of SuperCollider [11] UGs (ugens) is a little more mixed. The synthesis engine is written
in C++, adopting as we would expect, a full OO approach. However, the ugen API uses a mostly
C-oriented approach (not unlike Csound), with heavy use of macro substitution and depending on C
linkage (extern "C") [12]. This is highly surprising, since we would expect that it could use a more
up-to-date idiom, enabled as it is by the C++ language. Unlike Csound or PD, there would be no
limitations as to what the engine might be able to handle, since there is no language barrier to speak
of. Additionally, new ugen registration requires a class definition in the SuperCollider language to be
provided separately, which should match the C++ code. This is, of course, not needed either in Csound
or PD, and it is an aspect that does not compare very well with these systems. However, in general,
the OOP approach explored in this paper could also potentially be implemented to aid SuperCollider
ugen development, without some of constraints imposed by the C language as discussed in Section 2.1.

Finally, as an example of a fuller use of C++ for plugin development, we have the VST
framework [13]. Under this model, we have the use of a C++ class inheritance mechanism to define
new plugins, and a simple plugin registration process based on a single function call at the plugin
entry point. Equally, there are programming libraries that are implemented in C++ and employ
an OO approach, such as STK [14] and SndObj [15], which are based on earlier standards of the
language, and AuLib [16], which takes advantage of the latest, C++14 [17]. However, VST( and audio
programming libraries in general) is not fully comparable to Csound (PD or SuperCollider) as a system.
Thus, we can conclude that an OOP C idiom predominates in UG development for the most important
music programming environments. A more modern approach might be more conducive to better
programming practices that can in particular support the implementation of signal processing code.
The achievement of this result is one of the main objectives of the present work.

2. The Framework

In order to support object-oriented programming (OOP) for unit generator development, a new
framework development is developed from the ground up. The main objective of the work to
provide an environment that is conducive to modern programming practices discussed in Section 1.1.3.
The remainder of this paper will concentrate on describing the design and implementation of the
Csound Plugin Opcode Framework (CPOF (To be pronounced see-pough or cipó, vine in Portuguese,

502



Appl. Sci. 2017, 7, 970

appropriated from the tupi-guarani word meaning “the hand of the branch”)) [18], and the discussion
of results. This framework provides an alternative for opcode programming that attempts to be
thin, simple, complete, and that handles internal Csound resources in a safe way (using the same
mechanisms provided by the underlying C interface).

An object-oriented framework is a type of library or API that supports the development of new
classes through inheritance/sub-classing. This is set in contrast to a toolkit where existing classes are
expected to be used through delegation or composition [19]. In this sense, CPOF is a framework with
a small associated toolkit of support classes that encapsulate a number of key operations.

2.1. Design Fundamentals

The conditions in which the framework is supposed to work constrain significantly the scope of
what is possible. In particular,

1. The main Csound engine is written in C. As we have noted, it instantiates opcodes and makes
calls to opcode processing functions, but it does not support any C++ facilities.

2. Polymorphism [20] via virtual functions [21] is not possible (due to 1) since C does not provide
dynamic dispatch. All function calls have to be resolved at compile time.

3. The process of registering an opcode with the engine requires that processing functions are defined
as static. As we have seen, up to three different functions should be registered (for different
action times).

4. In C, the sub-classing of the base structure (OPDS) is achieved by adding this as its first
member variable.

In relation to the last item above, we will assume a similar behaviour in C++. While defining
an opcode base class for the framework, we have the practical expectation that all C++ compilers
place subclass members contiguously to their superclass object in memory. Although this layout
is not imposed by the C++ standard, it is the standard practice [22]. CPOF assumes then that the
following code

struct OPCD {

OPDS h;

};

is binary equivalent to

struct OPCD : OPDS {

};

The absence of a virtual function mechanism for overriding base class methods can be overcome
with different compile time strategies. One of the possibilities for designing a framework based on
polymorphism without the use of dynamic binding is to employ a method called curiously recurring
template pattern (CRTP) [23].

However, we can do better with a much simpler approach. Given the constraints in which
the opcode classes are meant to operate, there is no need for a compile-time mimicking of the
virtual-function mechanism. This is because it is not our objective to have a general purpose framework
for C++ programs, where users would be instantiating their own objects and possibly using generic
pointers and references that need to bind to the correct override.

Here the scope is much narrower: the developer supplies the code, but will not call it directly
(the functions are effectively callbacks). Csound does the instantiation and the calls, so we can make
the decision at compile time just by providing functions that hide rather than override (in the dynamic
binding sense) the base class ones. In this case, hiding plays the same role as overriding, there is in
practice no distinction between the two. A plugin base class can be defined from which we will inherit
to create the actual opcodes. This class will inherit from OPDS (which is opaque to CPOF) and provide
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some extra members that are commonly used by all opcodes. It will also provide stub methods for
the processing functions, which then can be specialised (hidden, in reality) by derived class methods.
An initial design for an opcode base class would thus be

struct Plugin : OPDS {

// dataspace

...

// stub methods

int init() { return OK; }

int kperf() { return OK; }

int aperf() { return OK; }

};

from which we would inherit our own class to implement the new opcode:

struct MyClass: Plugin {

...

};

Given that in any practical applications they will not ever be called, it would seem that these stubs
are surplus to requirements. However, having these allows a considerable simplification in the plugin
registration process. We can just register any plugin in the same way, even if it does only provide one
or two of the required processing functions. The stubs play an important role to keep the compiler
happy in this scheme, even if Csound will not take any notice of them.

This mechanism requires that we provide function templates for opcode registration. These get
instantiated with exactly the derived types and are used to glue the C++ code into Csound. Each one
of them is minimal: consisting just of a call to the instantiated class processing function:

template <typename T> int init(CSOUND *csound, T *p) {

p->csound = (Csound *)csound;

return p->init();

}

template <typename T> int kperf(CSOUND *csound, T *p) {

p->csound = (Csound *)csound;

return p->kperf();

}

template <typename T> int aperf(CSOUND *csound, T *p) {

p->csound = (Csound *)csound;

p->sa_offset();

return p->aperf();

}

In this case, T is our derived class, which implements the new opcode. Registration can then be
also implemented using a template function

template <typename T>

int plugin(CSOUND *cs, const char *name, const char *oargs,

const char *iargs, uint32_t thread, uint32_t flags = 0) {

return cs->AppendOpcode(cs, (char *)name, sizeof(T), flags, thread,

(char *)oargs, (char *)iargs, (SUBR)init<T>,

(SUBR)kperf<T>, (SUBR)aperf<T>);

}
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In this design, a class can be registered by instantiating and invoking the template function,

Plugin<MyOpcode>(...);

This call will be resolved at compile time with the requested class argument (MyOpcode).
When running, Csound calls the template functions for processing, which in their turn delegate
directly to the ones defined in the opcode class in question (If they are not defined there, the call will
default to the non-op stub). Note that this is all hidden from the framework user (in the header file
plugin.h), who only needs to derive her classes and register them. As we will see in the following
sections, this scheme enables significant economy, re-use and reduction in code verbosity (one of the
issues with CRTP).

2.2. Opcode Arguments

To allow for a flexible handling of opcode output and input arguments, we can refine our earlier
definition of an opcode base class. It is possible to take advantage of non-type (numeric) template
variables to define the number of arguments for a class:

template <uint32_t N, uint32_t M> struct Plugin : OPDS { ... };

where N and M will define how many outputs and inputs an opcode will take, respectively, which are
defined by the class declaration (template instantiation).

As we have seen in Section 1.1.1, opcode arguments can be of different pointer types, depending
on the Csound variable types required. The Param class in CPOF is employed to encapsulate these,
providing a general interface to arguments:

template <uint32_t N> class Param {

MYFLT *ptrs[N];

...

};

In the base class, we declare two of these objects, outargs and inargs as its first two members
(Figure 1):

template <uint32_t N, uint32_t M> struct Plugin : OPDS {

Param<N> outargs;

Param<M> inargs;

...

};

Note that this ensures a complete binary compatibility between the C-structure form of an opcode
dataspace and the CPOF template base class (assuming the standard layout discussed in Section 2.1 is
obeyed by the C++ compiler).
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Figure 1. The Plugin template base class, derived from the opaque C structure OPDS.

2.3. The Base Class

In summary, this re-definition of the framework base class makes it a class template that needs to
be instantiated by user code. To create a new opcode, we derive our own class by declaring the required
number of output and inputs needs as template arguments (CPOF code uses the csnd namespace and
is declared in the plugin.h header file):

#include <plugin.h>

struct MyPlug : csnd::Plugin<1,1> { };

The above lines will create a plugin opcode with one output (first template argument) and one
input (second template argument). This class defines a complete opcode, but since it is only using the
base class stubs, it is also fully non-op. It will inherit the following members from Plugin:

• outargs: a Params object holding output arguments.
• inargs: input arguments (Params).
• csound: a pointer to the Csound engine object.
• offset: the starting position of an audio vector (for audio opcodes only).
• nsmps: the size of an audio vector (also for audio opcodes only).
• init(), kperf() and aperf() non-op methods, to be reimplemented as needed.
• out_count() and incount(): these functions return the number of arguments for output and

input, respectively. They are useful for opcodes with variable number of arguments.
• sa_offset(): this method calculates the correct values for offset and nsmps. User called

does not need to invoke it, as it is called implicitly by the aperf() template function before it
delegates to the plugin code.

As we have outlined in Section 1.1.1, Csound has two basic passes for opcodes: init and perf-time.
The former runs a processing routine once per instrument instantiation (and/or once again if a re-init
is called for). Code for this is placed in the Plugin class init() function. Perf-time code runs in
a loop and is called once every control (k-)cycle (also known as k-period). The other class methods
kperf() and aperf() are called in this loop, for control (scalar) and audio (vectorial) processing.
The following examples demonstrate the derivation of plugin classes for each one of these opcode
types (i, k or a). Note that k and a opcodes can also use i-time functions if they require some sort of
initialisation.
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2.3.1. Initialisation-time Opcodes

For init-time opcodes, all we need to do is provide an implementation of the init() method,
as shown in Listing 1.

Listing 1: i-time opcode example

struct Simplei : csnd::Plugin<1,1> {

int init() {

outargs[0] = inargs[0];

return OK;

}

};

In this simple example, we just copy the input arguments to the output once, at init-time.
Each scalar input type can be accessed using array indexing. All numeric argument data is real,
declared as MYFLT, which, as we have seen, is the internal floating-point type used in Csound.

2.3.2. Control-rate Opcodes

For opcodes running only at k-rate (no init-time operation), all we need to do is provide
an implementation of the kperf() method, demonstrated by the code in Listing 2.

Listing 2: k-rate opcode example

struct Simplek : csnd::Plugin<1,1> {

int kperf() {

outargs[0] = inargs[0];

return OK;

}

};

Similarly, in this simple example, we just copy the input arguments to the output at each k-period.

2.3.3. Audio-Rate Opcodes

For opcodes running only at a-rate (and with no init-time operation), we need to do provide
an implementation of the aperf() method to process an audio vector (Listing 3).

Listing 3: a-rate opcode example

struct Simplea : csnd::Plugin<1,1> {

int aperf() {

std::copy(inargs(0)+offset, inargs(0)+nsmps, outargs(0));

return OK;

}

};

Because audio arguments are nsmps-size vectors, we get these using the overloaded operator()
for the inargs and outargs objects, which takes the argument number as input and returns a MYFLT
pointer to the vector.

2.4. Registering Opcodes with Csound

We have discussed in Section 2.1 how the opcode registration mechanism is implement through
the CPOF function template plugin(). In order to use it, we just have to instantiate and invoke it
with the required parameters. It signature is:

template <typename T>
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int plugin(Csound *csound,

const char *name,

const char *oargs,

const char *iargs,

uint32_t thread,

uint32_t flags = 0)

where we have the following arguments:

• csound: a pointer to the Csound object to which we want to register our opcode.
• name: the opcode name as it will be used in Csound code.
• oargs: a string containing the output argument types, one identifier per argument.
• iargs: a string containing the input argument types, one identifier per argument.
• thread: a code to tell Csound when the opcode should be active.
• flags: multithread flags (generally 0 unless the opcode accesses global resources).

For the argument type identifiers, we have seen in Section 1.1.1 that the most common types
are: a (audio), k (control), i (i-time), S (string) and f (fsig). The thread argument, which defines what
methods will be called by the opcode, can be defined by the following constants:

• thread::i: indicates init().
• thread::k: indicates kperf().
• thread::ik: indicates init() and kperf().
• thread::a: indicates aperf().
• thread::ia: indicates init() and aperf().
• thread::ika: indicates init(), kperf() and aperf().

CPOF supports the symbol on_load() as its entry point (Declared in the header file modload.h).
This function needs to implemented only once per plugin library, and it should contain the calls to
one registration function for each opcode to be added to the engine. For example, the three opcodes
defined in Section 2.3 can be registered as shown in Listing 4.

Listing 4: Registering opcodes with Csound

#include <modload.h>

void csnd::on_load(Csound *csound){

csnd::plugin<Simplei>(csound, "simple", "i", "i", csnd::thread::i);

csnd::plugin<Simplek>(csound, "simple", "k", "k", csnd::thread::k);

csnd::plugin<Simplea>(csound, "simple", "a", "a", csnd::thread::a);

return CSOUND_OK;

}

These calls will register the simple polymorphic opcode, which can be used with i-, k- and
a-rate variables. In each instantiation of the plugin registration template, the class name is passed
as an argument to it, followed by the function call. If the class defines two specific static members,
otypes and itypes, to hold the types for output and input arguments, declared as

struct MyPlug : csnd::Plugin<1,2> {

static constexpr char const *otypes = "k";

static constexpr char const *itypes = "ki";

...

};

then we can use a simpler overload of the plugin registration function:
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template <typename T>

int plugin(Csound *csound,

const char *name,

uint32_t thread,

uint32_t flags = 0)

For some classes, this might be a very convenient way to define the argument types. For other
cases, where opcode polymorphism might be involved, we might re-use the same class for different
argument types, in which case it is not desirable to define these statically in a class.

2.5. Constructing and Destroying Member Variables

As opcode classes are instantiated by the Csound engine through C-language code, constructors
for member variables are not invoked automatically. For member variables of non-trivial types,
this may pose an issue, especially if there are specific initialisation steps to be performed at construction.
All classes in the toolkit have no such requirements and do not declare constructors, but external code
from other libraries might do. For these, CPOF provides a mechanism to call the member variable
constructor explicitly. This is based on the use of a placement new via a function template, which is
used to access the class constructor for an object:

template <typename T, typename ... Types>

T *constr(T* p, Types ... args){

return new(p) T(args ...);

}

As an example, consider an object of type A called obj, which needs to be constructed
explicitly, using

A::A(int, float) { ... };

To invoke it, we should place the following call in the init() method of our opcode class:

csnd::constr(&obj, 10, 10.f);

where the arguments are the variable address, followed by any class constructor parameters.
Again, given that the compiler knows that obj is of type A, it resolves the template without the
need for an explicit type instantiation.

It is also important to note that if the object constructed in this form allocates any resources
dynamically, we will need to free these. For this we are required to call the object destructor explicitly
by using another function template, defined in CPOF as

template<typename T> void destr(T *p) {

p->T::~T();

}

The call to the destructor should be issued at the point where we no longer need the object.
For opcodes that run at perf-time, this is normally done in the opcoe deinit() method. For example,
to clean up a member variable obj, we implement the following code:

int deinit() {

csnd::destr(&obj);

return OK;

}

3. The Engine Object

As noted in Section 1.1.1, the Csound API provides a large range of facilities to opcodes through
several functions provided in the CSOUND data structure, which is made opaque to CPOF. In fact,
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since the API is designed to cater for a wider variety of applications beyond extending the language,
many of these functions are not designed for use in UGs. For this reason, to provide a clearer interface
for opcode programming, CPOF encapsulates the engine into an object that exposes only the relevant
methods to the user.

All opcodes are run inside the Csound engine, represented by the Csound class (Figure 2). As we
have seen above, the Plugin class holds a pointer of this type, which can be used to access the various
utility methods provided by the engine. The following are the public methods of the Csound class in
each category:

• Messaging:

– init_error(): takes a string message and signals an initialisation error.
– perf_error(): takes a string message, an instrument instance and signals a performance error.
– warning(): warning messages.
– message(): information messages.

• System parameters:

– sr(): returns engine sampling rate.
– _0dbfs(): returns max amplitude reference.
– _A4(): returns A4 pitch reference.
– nchnls(): return number of output channels for the engine.
– nchnls_i(): same, for input channel numbers.
– current_time_samples(): current engine time in samples.
– current_time_seconds(): current engine time in seconds.
– is_asig(): check for an audio signal argument.

• MIDI data access:

– midi_channel(): midi channel assigned to this instrument.
– midi_note_num(): midi note number (if the instrument was instantiated with a MIDI

NOTE ON).
– midi_note_vel(): same, for velocity.
– midi_chn_aftertouch(): channel aftertouch.
– midi_chn_polytouch(): polyphonic aftertouch.
– midi_chn_ctl(): continuous control value.
– midi_chn_pitchbend(): pitch bend data.
– midi_chn_list(): list of active notes for this channel.

• FFT:

– fft_setup(): FFT operation setup.
– rfft(): real-to-complex, complex-to-real FFT.
– fft(): complex-to-complex FFT.

• Memory allocation (Csound-managed heap):

– malloc(): malloc-style memory allocation.
– calloc(): calloc-style memory allocation.
– realloc(): realloc-style memory allocation.
– strdup(): string duplication.
– free(): memory deallocation.
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Figure 2. The Csound engine class, derived from the opaque C structure CSOUND.

In addition to these, the Csound class also holds a deinit method registration function template
that can be used by opcodes to implement housekeeping tasks.

template <typename T> void plugin_deinit(T *p);

This is only required if the Plugin-derived class has allocated extra resources using mechanisms
that require explicit clean-up. It is not need in most cases, as we will see in our examples. To use it,
the plugin needs to declare and implement a deinit() method and then call the plugin_deinit()
method passing itself (through a this pointer) in its own init() function:

csound->plugin_deinit(this);

Because of the presence of the opcode object as an argument, the compiler resolves the template
instantiation without requiring an explicit template parameter.

4. Toolkit Classes

Plugins developed with CPOF can avail of a number of helper classes that compose its toolkit.
These include the aforementioned Params class, as well as classes for resource allocation, input/output
access/manipulation, threads, and support for constructing objects allocated in Csound’s heap.

4.1. Parameters

As we have already discussed in Section 2.2, parameters passed to a Csound opcode instance
are encapsulated by the Params class so that they can be conveniently accessed. The class has the
following public methods:

• operator[](): array-style access to numeric (scalar) parameter values.
• begin(), cbegin(): begin iterators for the parameter list.
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• end(), cend(): end iterators.
• iterator and const_iterator: iterator types for this class.
• operator()(): function-style access to numeric (vector) parameter pointers.
• data(): same as the function operator, access to the parameter address.
• str_data(): access to parameter as a STRINGDAT reference (see Section 4.5).
• fsig_data(): access to parameter as a Fsig reference (fsig data class, see Section 5).
• vector_data(): access to parameter as a Vector<T> reference (Csound 1-D numeric array

data, see Section 4.6).
• myfltvec_data(): access to parameter as a myfltvec reference (Csound 1-D numeric array,

see Section 4.6).

As we can see, this is is a thin wrapper over the argument pointers, which translates between the
original MYFLT* and the various argument types, and allows for iteration over the parameter lists.

4.2. Audio Signals

As outlined in Section 1.1.1, audio signal variables are vectors of nsmps samples and we can
access them through raw MYFLT pointers from input and output parameters. While this works
well in a C-language environment, it is possible to provide a better object-oriented support to the
manipulation of vectors through encapsulation. The AudioSig class wraps audio signal vectors
conveniently, providing iterators and subscript access:

• operator[](): array-style access to individual samples.
• begin(), cbegin(): begin iterators for the audio vector.
• end(), cend(): end iterators.
• iterator and const_iterator: iterator types for this class.
• operator()(): function-style access to numeric (vector) parameter pointers.

Objects are constructed by passing the current plugin pointer (this) and the raw parameter
pointer. The final parameter is flag for an optional resetting of the audio signal vector:

AudioSig(OPDS *p, MYFLT *s, bool res = false);

With this, we can re-write the simple audio example opcode to use this class and its iterators in
a typical C++ idiom, as demonstrated in Listing 5.

Listing 5: a-rate opcode example, using AudioSig objects

struct Simplea : csnd::Plugin<1,1> {

int aperf() {

csnd::AudioSig in(this, inargs(0));

csnd::AudioSig out(this, outargs(0));

std::copy(in.begin(), in.end(), out.begin());

return OK;

}

};

4.3. Memory Allocation

Csound provides its own managed heap for dynamic memory allocation. The engine provides
mechanisms to allocate space as required. This ensures that there are no leaks and that there is
an efficient use of resources. When an opcode requires a certain amount of space that is not known at
compile time, it can avail of this mechanism to get access to it.

It is not advisable for developers to employ any other memory allocation methods. In C, this means
that standard library functions malloc etc should be avoided. In C++, we should avoid to use the new
operator (new) and containers that employ it (for instance, std::vector). They are more difficult to
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integrate and use properly in this environment, especially given the fact that we are operating under
in a hybrid space that includes a C platform supporting the C++ code.

The main mechanism for memory allocation in opcodes is provided by the AuxAlloc()

function in the Csound API. This is encapsulated by the helper class AuxMem in CPOF, which allows
an object-oriented approach to memory manipulation. This class has the following methods:

• allocate(): allocates new memory whenever required.
• operator[]: array-subscript access to the allocated memory.
• data(): returns a pointer to the data.
• len(): returns the length of the vector.
• begin(), cbegin(): begin iterators to the data memory.
• end(), cend(): end iterators.
• iterator and const_iterator: iterator types for this class.

In Listing 6, the DelayLine class implements a simple comb filter [24] with three parameters
(audio input, i-time delay time, and k-rate feedback amount. It demonstrates the use of the AuxMem
template class, which holds the delay memory for the opcode.

Listing 6: Delay line opcode example

struct DelayLine : csnd::Plugin<1,3> {

static constexpr char const *otypes = "a";

static constexpr char const *itypes = "aik";

csnd::AuxMem<MYFLT> delay;

csnd::AuxMem<MYFLT>::iterator iter;

int init() {

delay.allocate(csound, csound->sr()*inargs[1]);

iter = delay.begin();

return OK;

}

int aperf() {

csnd::AudioSig in(this, inargs(0));

csnd::AudioSig out(this, outargs(0));

MYFLT g = inargs[2];

std::transform(in.begin() ,in.end(), out.begin(), [this](MYFLT s) {

MYFLT o = *iter;

*iter = s + o*g;

if(++iter == delay.end()) iter = delay.begin();

return o;

} );

return OK;

}

};

In this example, we use an AuxMem iterator to access the delay vector, in a typical C++ idiom.
The delay line access is implemented via a lambda that captures he opcode dataspace and processes
every sample of the input producing the output vector. While this example uses an iterator for
convenience, it is equally possible to access each element with an array-style subscript. The memory
allocated by this class is managed by Csound, so we do not need to be concerned about disposing of it.
To register this opcode, we can use
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csnd::plugin<DelayLine>(csound, "delayline", csnd::thread::ia);

because the output and input types have already been declared in the class as the compile-time
constants itypes and otypes.

In addition to the automatic AuxMen mechanism, Csound also offers the more conventional
malloc-style allocation. This is not generally used in opcode development, but it is accessible via
methods of the Csound engine object. It requires explicit de-allocation of resources on clean-up.

4.4. Function Table Access

Function tables are used by Csound for a variety of applications. They hold an array of floating-
point numbers that is normally created by one of the GEN routines offered by the system [4]. These can
generate tables based on trigonometric functions, polynomials, envelopes, windows, and other various
mathematical formulae. Function tables are essential for many opcodes, such as oscillators, granular
generators, waveshapers, and various different types of processors.

The Csound C API offers access to function tables via a FUNC structure. In CPOF, this access is
facilitated by a thin wrapper class that allows us to treat it as a vector object. This is provided by the
Table class:

• init(): initialises a table object from an opcode argument pointer.
• operator[]: array-subscript access to the function table.
• data(): returns a pointer to the function table data.
• len(): returns the length of the table (excluding guard point).
• begin(), cbegin(): iterators to the beginning of the function table.
• end(), cend(): end iterators.
• iterator and const_iterator: iterator types for this class.

A typical usage example is given by the table-lookup oscillator algorithm [25]. In listing 7,
the Oscillator class implements truncating lookup using a C++11 range-for facility.

Listing 7: Table-lookup oscillator opcode example

struct Oscillator : csnd::Plugin<1,3> {

static constexpr char const *otypes = "a";

static constexpr char const *itypes = "kki";

csnd::Table tab;

double scl;

double x;

int init() {

tab.init(csound,inargs(2));

scl = tab.len()/csound->sr();

x = 0;

return OK;

}

int aperf() {

csnd::AudioSig out(this, outargs(0));

MYFLT amp = inargs[0];

MYFLT si = inargs[1] * scl;

double ph = x;

for(auto &s : out) {

s = amp * tab[(uint32_t) ph];
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ph += si;

while (ph < 0) ph += tab.len();

while (ph >= tab.len()) ph -= tab.len();

}

x = ph;

return OK;

}

};

A table is initialised by passing the relevant argument pointer to it (using its data() method).
This will hold the function table number that is passed to opcode. In this example, as we need a precise
index value, it is more convenient to use array index access instead of iterators, although these are also
available in the class. This opcode is registered by

csnd::plugin<Oscillator>(csound, "oscillator", csnd::thread::ia);

4.5. String Types

String variables in Csound are held in a STRINGDAT data structure, containing two members,
a pointer to the address holding the zero-terminated string, and a size:

typedef struct {

char *data;

int size;

} STRINGDAT;

The size parameter contains the total space currently allocated for the string, which might be
larger than the actual string. While CPOF does not wrap strings, it provides a translated access to
string arguments through the argument objects str_data() function. This takes an argument index
(similarly to data()) and returns a reference to the string variable, as demonstrated in this example:

struct Tprint : csnd::Plugin<0,1> {

static constexpr char const *otypes = "";

static constexpr char const *itypes = "S";

int init() {

char *s = inargs.str_data(0).data;

csound->message(s);

return OK;

}

};

This opcode will print the string to the console. Note that we have no output arguments, so we
set the first template parameter to 0. We register it using

csnd::plugin<Tprint>(csound, "tprint", csnd::thread::i);

4.6. Array Variables

Opcodes with array inputs or outputs use the data structure ARRAYDAT for parameters.
Again, in order to facilitate access to these argument types, CPOF provides a template class,
Vector<typename T>. This currently supports only one-dimensional arrays directly, but can be
used with all basic Csound variable types.

This container class is derived from ARRAYDAT and wraps an array argument of a type defined
by its template parameter. Input variables of these types are already properly initialised, but outputs
need to be initialised with a given array size. The class has the following members:
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• init(): initialises an output variable.
• operator[]: array-subscript access to the vector data.
• data(): returns a pointer to the vector data.
• len(): returns the length of the vector.
• begin(), cbegin(): iterators to the beginning and end of the vector.
• end(), cend(): end iterators.
• iterator and const_iterator: iterator types for this class.
• data_array(): returns a pointer to the vector data address.

In addition to this, the inargs and outargs objects in the Plugin class have a template method
that can be used to get a Vector class reference. A trivial example is shown in Listing 8, implementing
both i-time and k-rate array operations.

Listing 8: i-time and k-rate array opcode example

struct SimpleArray : csnd::Plugin<1, 1>{

int init() {

csnd::Vector<MYFLT> &out = outargs.vector_data<MYFLT>(0);

csnd::Vector<MYFLT> &in = inargs.vector_data<MYFLT>(0);

out.init(csound, in.len());

std::copy(in.begin(), in.end(), out.begin());

return OK;

}

int kperf() {

csnd::Vector<MYFLT> &out = outargs.vector_data<MYFLT>(0);

csnd::Vector<MYFLT> &in = inargs.vector_data<MYFLT>(0);

std::copy(in.begin(), in.end(), out.begin());

return OK;

}

};

This opcode is registered using

csnd::plugin<SimpleArray>(csound, "simple", "i[]", "i[]", csnd::thread::i);

for i-time operation and

csnd::plugin<SimpleArray>(csound, "simple", "k[]", "k[]", csnd::thread::ik);

for perf-time processing. This is an example of an overloaded opcode, that can operate on i and
k-type variables. To facilitate the manipulation of this more common type of array, based on MYFLT,
CPOF defines the following type:

typedef Vector<MYFLT> myfltvec;

5. Streaming Spectral Processing

Csound has a very useful mechanism for streaming (as opposed to batch) spectral processing,
which is based on its fsig data type [26]. This is a self-describing type, which holds a frame of spectral
data in one of several formats, defined by the C data structure PVSDAT (This C structure is provided
here for reference only, it is opaque to CPOF):

typedef struct pvsdat {

int32 N;

int32 sliding;

int32 NB;
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int32 overlap;

int32 winsize;

int32 wintype;

int32 format;

uint32 framecount;

AUXCH frame;

} PVSDAT;

This structure contains information on the DFT size used in the analysis, the window and hop
sizes, the window type, the data format, and the current frame count. It also sets the analysis mode
(normal or sample-by-sample sliding, where the actual hopsize is 1). The actual frame data is stored in
an AUXCH memory structure, which is managed by Csound.

An opcode implementing fsig processing will operate nominally at the control rate, but will
actually compute new frames at a rate determined by the analysis hopsize. This is implemented
by checking the fsig framecount and only proceeding to consume and produce new frames if
this is greater than the opcode internal frame counter. For streaming spectral processing opcodes,
CPOF provides a separate base class, FPlugin, derived from Plugin, with an extra member variable,
framecount, used for this purpose.

To facilitate fsig manipulation, the toolkit provides the Fsig class, derived from PVSDAT, with the
following methods:

• init(): initialises an fsig. There are two overloads: it is possible to initialise it from individual
parameters (DFT size, hop size, etc.) or directly from another fsig. Initialisation is only needed for
output variables.

• dft_size(): DFT size.
• hop_size(): hopsize.
• win_size(): window size.
• win_type(): returns the window type (Hamming = 0, von Hann =1, Kaiser = 2, custom = 3,

Blackman = 4 and 5, Nutall = 6, Blackman-Harris = 7 and 8, rectangular = 9).
• nbins(): number of bins.
• count(): current frame count.
• isSliding(): checks for sliding mode.
• fsig_format(): returns the data format. This will vary depending on the source. To facilitate

identification, CPOF defines the following constants:

– fsig_format::pvs: standard phase vocoder frame, composed of bins containing
amplitude and frequency pairs.There are N/2 + 1 bins (N is the DFT frame size), equally
spaced between between 0 Hz and the Nyquist frequency (inclusive).

– fsig_format::polar: similar to the pvs type, except that bins contain pairs of magnitude
and phase data.

– fsig_format::complex: as above, but with bins holding complex-format data
(real, imaginary).

– fsig_format::tracks: this format holds tracks of amplitude, frequency, phase, and track
ID (used in partial tracking opcodes).

Phase Vocoder Data

The most common format used in Csound opcodes is phase vocoder amplitude-frequency [25,27].
To provide a convinient access access to bins, a container interface is provided by pv_frame

(spv_frame for the sliding mode (pv_frame is a convenience typedef for Pvframe<pv_bin>),
whereas spv_frame is Pvframe<spv_bin>). This is a class derived from Fsig that can hold a series
of pv_bin (spv_bin for sliding (pv_bin is Pvbin<float> and spv_bin is Pvbin<MYFLT>))
objects, which have the following methods (Figure 3):

• amp(): returns the bin amplitude.
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• freq(): returns the bin frequency.
• amp(float a): sets the bin amplitude to a.
• freq(float f): sets the bin frequency to f.
• operator*(pv_bin f): multiply the amp of a pvs bin by f.amp.
• operator*(MYFLT f): multiply the bin amp by f
• operator*=(): unary versions of the above.

Figure 3. The Fsig and pv_frame classes and their relationship to the opaque C structure PVSDAT.

The pv_bin class can also be translated into a std::complex<float>, object if needed.
This class is also fully compatible with the C complex type and an object obj can be cast into a float
array consisting of two items (or a float pointer), using reinterpret_cast<float(&)[2]>(obj)
or reinterpret_cast<float*>(&obj). The pv_frame (or spv_frame) class contains the
following members:

• operator[]: array-subscript access to the spectral frame
• data(): returns a pointer to the spectral frame data.
• len(): returns the length of the frame.
• begin(), cbegin() and end(), cend(): return iterators to the beginning and end of the data

frame.
• iterator and const_iterator: iterator types for this class.

As noted above, fsig opcodes run at k-rate but will internally use an update rate based on the
analysis hopsize. For this to work, a frame count is kept and checked to make sure we only process the
input when new data is available. The example in Listing 9 shows a class implementing a simple gain
scaler for fsigs:

Listing 9: Fsig opcode example

struct PVGain : csnd::FPlugin<1, 2> {

static constexpr char const *otypes = "f";

static constexpr char const *itypes = "fk";

int init() {

if(inargs.fsig_data(0).isSliding())

return csound->init_error("sliding not supported");

if(inargs.fsig_data(0).fsig_format() != csnd::fsig_format::pvs &&

inargs.fsig_data(0).fsig_format() != csnd::fsig_format::polar){

char *s = "format not supported";

return csound->init_error(s);

}

csnd::Fsig &fout = outargs.fsig_data(0);
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fout.init(csound, inargs.fsig_data(0));

framecount = 0;

return OK;

}

int kperf() {

csnd::pv_frame &fin = inargs.fsig_data(0);

csnd::pv_frame &fout = outargs.fsig_data(0);

uint32_t i;

if(framecount < fin.count()) {

std::transform(fin.begin(), fin.end(), fout.begin(),

[this](csnd::pv_bin f){ return f *= inargs[1]; });

framecount = fout.count(fin.count());

}

return OK;

}

};

The Params class offers a dedicated method that is used on the arguments objects to get references
to the Fsig parameters. This can also be assigned directly to a pv_frame reference variable. At init-time,
we initialise the output based on the input fsig format. At performance time, we check the input
count and process the data if necessary. The facilities offered by CPOF allow us to use a standard
library transform algorithm with a lambda object and implement the gain processing very compactly.
This opcode is registered using

csnd::plugin<PVGain>(csound, "pvg", csnd::thread::ik);

6. Multithreading Support

The Csound API includes an interface for multithreading, which is implemented via pthreads [28]
on POSIX systems, or other native threading libraries in non-POSIX platforms. To allow opcodes
an object-oriented access to this C interface, CPOF provides the Thread pure virtual class. This is
subclassed and instantiated to encapsulate a separate thread whose entry point is given by a run()
method. The base class provides join() and get_thread() methods for joining a thread and
getting its handle.

The example in Listing 10 illustrates the use of the Thread class. This implements a message
printer on separate thread, picking up a string from the input and outputting it to the terminal.
We derive a class that includes the run() method. To prevent data races, the class provides its own
spin locks. A message is passed to it via the set_messsage() method.

Listing 10: Deriving a class from Thread

class PrintThread : public csnd::Thread {

std::atomic_bool splock;

std::atomic_bool on;

std::string message;

void lock() {

bool tmp = false;

while(!splock.compare_exchange_weak(tmp, true))

tmp = false;

}
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void unlock() {

splock = false;

}

uintptr_t run() {

std::string old;

while(on) {

lock();

if(old.compare(message)) {

csound->message(message.c_str());

old = message;

}

unlock();

}

return 0;

}

public:

PrintThread(csnd::Csound *csound)

: Thread(csound), splock(false), on(true), message("") {};

~PrintThread(){

on = false;

join();

}

void set_message(const char *m) {

lock();

message = m;

unlock();

}

};

The opcode class then is composed with it, as demonstrated in Listing 11. It will instantiate the
object by calling its constructor and then pass messages to it from the performance method.

Listing 11: Threading opcode example

struct TPrint : csnd::Plugin<0, 1> {

static constexpr char const *otypes = "";

static constexpr char const *itypes = "S";

PrintThread thread;

int init() {

csound->plugin_deinit(this);

csnd::constr(&thread, csound);

return OK;

}

int deinit() {

csnd::destr(&thread);
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return OK;

}

int kperf() {

thread.set_message(inargs.str_data(0).data);

return OK;

}

};

7. Results

As we have noted, CPOF supports a fully object-oriented approach to the development of
new Csound opcodes, which is the main result of this work. In this section, we first oppose two
versions of the same unit generator, the first using the original C API and the second based on CPOF.
This demonstrates the advantages of applying the framework in the implementation of the opcode.
To complement this, drawing from examples in the Csound codebase, we highlight two particular
aspects of object-oriented programming that are enabled by CPOF: code re-use and the application of
standard algorithms. Concluding this section, the overall contribution of this work to Csound and
audio programming in general is discussed.

7.1. CPOF versus C API

As a way of comparing the CPOF approach with the original C API, we will focus on
re-implementing an existing opcode using the framework. We have chose tone, a simple first-order
lowpass filter, which provides a simple code that is easy to follow, but also demonstrates the
compactness of the C++ approach. In Listing 12, we present the original code, taken from the Csound
sources and adapted as a plugin. While the original code is actually an internal opcode, for the sake of
making an exact comparison, we present it here in a modified version as an externally-loaded plugin.
The only changes made to the original code are to do with opcode registration.

Listing 12: Tone opcode, original C API version

typedef struct {

OPDS h;

MYFLT *ar, *asig, *khp, *istor;

double c1, c2, yt1, prvhp;

} TONE;

int tonset(CSOUND *csound, TONE *p)

{

double b;

p->prvhp = (double)*p->khp;

b = 2.0 - cos((double)(p->prvhp * TWOPI/csound->GetSr()));

p->c2 = b - sqrt(b * b - 1.0);

p->c1 = 1.0 - p->c2;

if (LIKELY(!(*p->istor)))

p->yt1 = 0.0;

return OK;

}
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int tone(CSOUND *csound, TONE *p)

{

MYFLT *ar, *asig;

uint32_t offset = p->h.insdshead->ksmps_offset;

uint32_t early = p->h.insdshead->ksmps_no_end;

uint32_t n, nsmps = CS_KSMPS;

double c1 = p->c1, c2 = p->c2;

double yt1 = p->yt1;

if (*p->khp != (MYFLT)p->prvhp) {

double b;

p->prvhp = (double)*p->khp;

b = 2.0 - cos((double)(p->prvhp * TWOPI/csound->GetSr()));

p->c2 = c2 = b - sqrt(b * b - 1.0);

p->c1 = c1 = 1.0 - c2;

}

ar = p->ar;

asig = p->asig;

if (UNLIKELY(offset)) memset(ar, '\0', offset*sizeof(MYFLT));

if (UNLIKELY(early)) {

nsmps -= early;

memset(&ar[nsmps], '\0', early*sizeof(MYFLT));

}

for (n=offset; n<nsmps; n++) {

yt1 = c1 * (double)(asig[n]) + c2 * yt1;

ar[n] = (MYFLT)yt1;

}

p->yt1 = yt1;

return OK;

}

int csoundModuleInit(CSOUND *csound) {

csoundAppendOpcode(csound, "tone", sizeof(TONE), 0, 5, "a", "ako",

(SUBR) toneset, NULL, (SUBR) tone);

return OK;

};

int csoundModuleCreate(CSOUND *csound) { return OK; };

int csoundModuleDestroy(CSOUND *csound) { return OK; };

This code example follows the straight C API opcode implementation: a data structure is
provided, along with init-time and audio-rate perf-time functions. The opcode is registered using
csoundAppendOpcode() called in csoundModuleInit(). Looking at the code, besides the typical
C idiom, we see that there are a number of lines of code devoted to saving to the dataspace, setting
sample-accurate parameters (offset, nsmps), and so on.

In contrast, the CPOF version, in Listing 13, is much more succinct. The functions have direct
access to the dataspace, which allows them to update state directly. The use of iterators allow us
to replace the loop with a single function call containing a lambda expression. The attention of the
programmer is directed to the actual filter equation implemented therein. The code is made more
compact also by replacing the filter update lines by inline calls to the update() method. All the
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boilerplate code present in the C version is hidden away by the framework. Finally, opcode registration
is much simplified by the use of the function template.

Listing 13: Tone opcode, CPOF version

struct Tone : csnd::Plugin <1, 3> {

static constexpr char const *otypes = "a";

static constexpr char const *itypes = "aio";

double c1;

double c2;

double yt1;

double prvhp;

void update() {

prvhp = (double) inargs[1];

double b = 2.0 - cos(prvhp*csnd::twopi/csound->sr());

c2 = b - sqrt(b * b - 1.0);

c1 = 1.0 - c2;

}

int init() {

update();

if (!inargs[2]) yt1 = 0.;

return OK;

}

int aperf() {

csnd::AudioSig in(this, inargs(0));

csnd::AudioSig out(this, outargs(0));

double y = yt1;

if (prvhp != inargs[1]) update();

std::transform(in.begin(), in.end(), out.begin(),

[this, &y](MYFLT x) {

return (y = c1 * x + c2 * y);

});

yt1 = y;

return OK;

}

};

void csnd::on_load(Csound *csound) {

csnd::plugin<Tone>(csound, "tone", csnd::thread::ia);

};

While detailed performance considerations are beyond the scope of this paper, it is nonetheless
useful to observe how the two versions of this simple opcode compare in that respect. Using standard
timing tests, it was found that the elapsed CPU times of both versions are very close, as illustrated in
Table 1 for various vector size (ksmps) values.
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Table 1. CPU time ratio C:C++ of versions of the opcode tone. These results are an average of five
runs per test, each processing 600 seconds of audio at fs = 44100 KHz. Tests were run on the x86_64
architecture under MacOS and the clang compiler.

ksmps 1 2 4 8 16 32 64 128

CPU time 0.996369 0.995616 0.982088 0.975774 0.966242 1.000936 0.960440 0.975930

7.2. Code Re-Use

With CPOF, massive code re-use can be applied to generate whole families of opcodes.
For example, the following class template is used to generate a set of numeric array-variable operators
for i-time and k-rate processing. This is based on creating a template opcode class that can be
instantiated with different functions that have the same signature. The class in Listing 14 implements
it for single argument operators.

Listing 14: Single-argument function class template

template <MYFLT (*op)(MYFLT)> struct ArrayOp : csnd::Plugin<1, 1> {

int process(csnd::myfltvec &out, csnd::myfltvec &in) {

std::transform(in.begin(), in.end(), out.begin(),

[](MYFLT f) { return op(f); });

return OK;

}

int init() {

csnd::myfltvec &out = outargs.myfltvec_data(0);

csnd::myfltvec &in = inargs.myfltvec_data(0);

out.init(csound, in.len());

return process(out, in);

}

int kperf() {

return process(outargs.myfltvec_data(0), inargs.myfltvec_data(0));

}

};

We can instantiate it with a huge variety of one-in one-out functions from the standard library,
thus creating over forty new opcodes. This is done by just registering each opcode using the same
ArrayOp class with a different template parameter, as demonstrated in Listing 15.

Listing 15: Instantiating the array opcodes and registering them with Csound

void csnd::on_load(Csound *csound) {

csnd::plugin<ArrayOp<std::ceil>>(csound, "ceil", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::ceil>>(csound, "ceil", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::floor>>(csound, "floor", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::floor>>(csound, "floor", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::round>>(csound, "round", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::round>>(csound, "round", "k[]", "k[]",

524



Appl. Sci. 2017, 7, 970

csnd::thread::ik);

csnd::plugin<ArrayOp<std::trunc>>(csound, "int", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::trunc>>(csound, "int", "k[]", "k[]",

csnd::thread::i);

csnd::plugin<ArrayOp<frac>>(csound, "frac", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<frac>>(csound, "frac", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::exp2>>(csound, "powoftwo", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::exp2>>(csound, "powoftwo", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::fabs>>(csound, "abs", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::fabs>>(csound, "abs", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::log10>>(csound, "log2", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::log10>>(csound, "log2", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::log10>>(csound, "log10", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::log10>>(csound, "log10", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::log>>(csound, "log", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::log>>(csound, "log", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::exp>>(csound, "exp", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::exp>>(csound, "exp", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::sqrt>>(csound, "sqrt", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::sqrt>>(csound, "sqrt", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::cos>>(csound, "cos", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::cos>>(csound, "cos", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::sin>>(csound, "sin", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::sin>>(csound, "sin", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::tan>>(csound, "tan", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::tan>>(csound, "tan", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::acos>>(csound, "cosinv", "i[]", "i[]",
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csnd::thread::i);

csnd::plugin<ArrayOp<std::acos>>(csound, "cosinv", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::asin>>(csound, "sininv", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::asin>>(csound, "sininv", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::atan>>(csound, "taninv", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::atan>>(csound, "taninv", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::cosh>>(csound, "cosh", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::cosh>>(csound, "cosh", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::sinh>>(csound, "sinh", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::sinh>>(csound, "sinh", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::tanh>>(csound, "tanh", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::tanh>>(csound, "tanh", "k[]", "k[]",

csnd::thread::ik);

csnd::plugin<ArrayOp<std::cbrt>>(csound, "cbrt", "i[]", "i[]",

csnd::thread::i);

csnd::plugin<ArrayOp<std::cbrt>>(csound, "cbrt", "k[]", "k[]",

csnd::thread::ik);

}

A similar approach can be used for functions of two arguments, yielding yet another large set of
new opcodes. While this is a simple and indeed obvious example that can deliver re-use in a large
scale, more generally the framework reduces the amount of code repetition significantly.

7.3. Standard Algorithms

Another example shows the use of standard algorithms in spectral processing. The opcode in
Listing 16 implements spectral tracing [29], which retains only a given number of bins in each frame,
according to their amplitude. To select the bins, we need to sort them to find out the ones we want to
retain (the loudest N). For this we collect all amplitudes from the frame and then apply nth element
sorting, placing the threshold amplitude in element n. Then we just filter the original frame according
to this threshold. Here we have the performance code (amps is a dynamically allocated array belonging
to the Plugin object).

Listing 16: Phase vocoder tracing opcode

struct PVTrace : csnd::FPlugin<1, 2> {

csnd::AuxMem<float> amps;

static constexpr char const *otypes = "f";

static constexpr char const *itypes = "fk";

int init() {

if (inargs.fsig_data(0).isSliding())

return csound->init_error(Str("sliding not supported"));
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if (inargs.fsig_data(0).fsig_format() != csnd::fsig_format::pvs &&

inargs.fsig_data(0).fsig_format() != csnd::fsig_format::polar)

return csound->init_error(Str("fsig format not supported"));

amps.allocate(csound, inargs.fsig_data(0).nbins());

csnd::Fsig &fout = outargs.fsig_data(0);

fout.init(csound, inargs.fsig_data(0));

framecount = 0;

return OK;

}

int kperf() {

csnd::pv_frame &fin = inargs.fsig_data(0);

csnd::pv_frame &fout = outargs.fsig_data(0);

if (framecount < fin.count()) {

int n = fin.len() - (int) inargs[1];

float thrsh;

std::transform(fin.begin(), fin.end(), amps.begin(),

[](csnd::pv_bin f) { return f.amp(); });

std::nth_element(amps.begin(), amps.begin() + n, amps.end());

thrsh = amps[n];

std::transform(fin.begin(), fin.end(), fout.begin(),

[thrsh](csnd::pv_bin f) {

return f.amp() >= thrsh ? f : csnd::pv_bin();

});

framecount = fout.count(fin.count());

}

return OK;

}

};

7.4. Discussion

One of the main objectives of this work, as stated earlier, is to provide support for more modern
C++ approaches to opcode development, which can, in particular, facilitate the writing of signal
processing code. Under this point, we were able to show through the comparison of CPOF and C
API code that such objective has been met. A cursory comparison of the two versions demonstrates
a number of surface differences in the CPOF version: economy of expressions, code length (36 lines
vs. 59), and clarity of context. A closer look will reveal how the semantics of the process (the application
of a filter equation) is far better realised in the C++ version, without the intrusion of set-up and
boilerplate code.

In fact, this comparative exercise points out to the fact that a lot of code re-use could actually
replace the traditional approach to write components such as filters. We were able to demonstrate how
this is possible in a simple case of stateless operators, but the principle is applicable to other types of
opcodes, of varying levels of complexity. In the case of filters, by supplying different update() and
filter lambdas to a template class, a whole family of such processors can be implemented. Beyond this
extensive code re-use, we can also make avail of standard algorithms for these tasks, which not only
simplifies some of the development stages, but also helps improve correctness of implementation.
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We may conclude that the availability of CPOF in the Csound code allows for better engineering
practices in the development of opcodes. A corollary of this conclusion is that CPOF provides
Csound a much more advanced means of UG development than what is available in similar music
programming environments. This is because, as we have noted in Section 1.2, a more traditional C-like
OOP idiom is prevalent elsewhere (even where C++ is the implementation language).

Another important result of this work, which should be highlighted here is the integration of
modern C++ practices into a pure-C environment. While this has been done elsewhere, the extent to
which we were able to apply the C++11 standard and generate a completely C-compatible code is
of note. Some of the techniques developed here, such as the use of hiding and templating as part of
the polymorphism mechanism, while quite particular to the case, are original solutions introduced
by this work. Some of these are applicable to other systems, including as noted in Section 1.2, PD,
SuperCollider, and more generally should be of interest to developers of DSP applications.

8. Conclusions

Object-oriented programming is an established paradigm for systems implementation, which has
been used in a variety of applications. In music programming systems, it is very well suited to the
development of language components, unit generators, which themselves are loosely modelled on this
approach. Csound originally provided through its API a C-language interface for the addition of new
opcodes to the system, but the supports for object orientation under that language are incipient.

This paper described the motivations, design and implementation of a framework for opcode
development in C++, CPOF, together with its support toolkit. We were able to demonstrate how it
enables a range of idioms that are being adopted as standard for object-oriented programming under
that language, especially following the advent of C++11 [30] standard. We have provided a detailed
discussion of the framework code with several examples, complemented with the discussion of two
specific cases of object-orientation that are well supported by CPOF.

This version of CPOF is already being adopted by Csound opcode developers; starting from
version 6.09, a number of new UGs have appeared, which are based on the framework. While the
design described here is solid and matches well the underlying opcode model, some additions and
improvements might be considered in newer versions. One particular approach would be to consider
a way to encapsulate the Csound type system in a more complete way under C++, representing not
only the data formats (as we do now), but also the timing aspects of each type.

To build a plugin opcode library based on this framework, a C++ compiler supporting the C++11
standard (-std=c++11), and the Csound public headers. The Csound plugin mechanism does not
depend on any particular link-time libraries. The opcode library should be built as a dynamic/shared
module (e.g., .so on Linux, .dylib on OSX or .dll on Windows), and placed in the opcode directory
(or, alternatively, it can be loaded with the --opcode-lib= flag).

All opcode examples in this paper, with the exception of the ones in Section 7, are provided
in opcodes.cpp, found in the examples/plugin directory of the Csound source codebase
(https://github.com/csound/csound). The cases discussed in Section 7 are part of the existing
code base (in Opcodes/arrayops.cpp and Opcodes/pvsops.cpp). CPOF is part of Csound
and is distributed alongside its public headers. Csound is free software, licensed by the Lesser GNU
Public License.
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Abstract: This paper presents a two-stage transcription framework for a specific piano, which
combines deep learning and spectrogram factorization techniques. In the first stage, two convolutional
neural networks (CNNs) are adopted to recognize the notes of the piano preliminarily, and note
verification for the specific individual is conducted in the second stage. The note recognition stage is
independent of piano individual, in which one CNN is used to detect onsets and another is used to
estimate the probabilities of pitches at each detected onset. Hence, candidate pitches at candidate
onsets are obtained in the first stage. During the note verification, templates for the specific piano
are generated to model the attack of note per pitch. Then, the spectrogram of the segment around
candidate onset is factorized using attack templates of candidate pitches. In this way, not only the
pitches are picked up by note activations, but the onsets are revised. Experiments show that CNN
outperforms other types of neural networks in both onset detection and pitch estimation, and the
combination of two CNNs yields better performance than a single CNN in note recognition. We also
observe that note verification further improves the performance of transcription. In the transcription
of a specific piano, the proposed system achieves 82% on note-wise F-measure, which outperforms
the state-of-the-art.

Keywords: music information retrieval; piano transcription; note recognition; note verification;
onset detection; multi-pitch estimation

1. Introduction

Automatic music transcription (AMT) is a process of transcribing a musical audio signal into
a symbolic representation, such as a piano roll or music score. It has many applications in music
information retrieval, composition, music education, and music visualization.

AMT has been researched for four decades (since 1977) [1,2], and it is still a challenging problem.
While the transcription of monophonic music is considered solved, polyphonic AMT remains open
because the signal is more complex. In polyphonic music, many notes overlap in the time domain and
interact in the frequency domain. Additionally, the complexity of polyphony increases with the number
of sound sources. For example, the concurrent notes in orchestral music come from instruments of
different timbral properties, and the corresponding AMT performance is poor.

Note is the basic unit of music, and the main problem of transcription is to extract the information
of every note in the music [3]. For each note, a set of information includes: pitch, onset, offset,
loudness, and timbre. Pitch is a major attribute of auditory sensation, which can be reliably related
to the fundamental frequency (F0). Onset refers to the beginning time of a note, and offset refers to
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the ending time. Loudness is the characteristic related to the amplitude of a sound. Timbre is that
perceptual attribute in which a listener can judge that two sounds having the same loudness and pitch
are dissimilar. In general, we only focus on which notes are played and when they appear in the music.
Therefore, the pitch and onset time are necessary in the results of AMT.

The approaches to polyphonic transcription can be divided into frame-based methods and
note-based methods [4]. The frame-based approaches estimate pitches in each time frame and form
frame-level results in a post-processing stage. The most straightforward solution is to analyze the
time–frequency representation of audio and compute the fundamental frequencies [5]. Short-time
Fourier transform (STFT) [6,7] and constant Q transform (CQT) [8] are two widely used time–frequency
analysis methods. Zhou proposed resonator time–frequency image (RTFI), in which a first-order
complex resonator filter bank is adopted to the analysis of music [9]. Dressler used multi-resolution
STFT, and the pitch was estimated by detecting peaks in the weighted spectrum [10]. Spectrogram
factorization techniques are also very popular in AMT, such as non-negative matrix factorization
(NMF) [11]. Probabilistic latent component analysis (PLCA) is another factorization technique, which
aims to fit a latent variable probabilistic model to normalised spectrograms [12,13]. Apart from the
discriminative approaches, deep neural networks have been used to identify pitches recently. Nam
superimposed a support vector machine (SVM) on top of a deep belief network (DBN) to learn feature
representations [14]. Sigtia compared the performance of neural networks and proposed a recurrent
neural network (RNN) language model for music transcription [15]. Kelz utilized both a ConvNet and
an AUNet in transcription, and investigated the glass ceiling effect of deep neural networks [16].

The note-based transcription approaches directly estimate notes, including pitches and onsets.
One solution is combining the estimation of pitches and onsets into a single framework [17,18].
Kameoka [19] used harmonic temporal structured clustering to estimate the attributes of notes
simultaneously. In [20], Böck used an RNN with bidirectional long short-term memory (LSTM)
units. Similarly, Sigtia utilized three kinds of neural networks to transfer the input audio to a list
of notes, along with the corresponding pitches and onset times [21]. Another solution is employing
a separate onset detection stage and an additional pitch estimation stage. The approaches in this
category often estimate the pitches using the segments between two successive onsets, and an accurate
onset detection benefits the transcription. Marolt proposed a connectionist approach which contains
a neural network of onset detection [22]. Costantini detected the onsets and estimated the pitches
at the note attack using SVM [23]. However, little deep-learning-based research has been done in
this category, to our knowledge.

Modeling the instrument being transcribed and learning the corresponding timbral properties is
an efficient way to improve the AMT performance. Instrument-specific transcription research restricts
the employed instrument models to a specific type. Depending on the timbral properties of different
instruments, different sets of constraints are adopted in instrument-specific AMT systems [24–26].
As a typical multi-pitch instrument, the piano has been widely studied in AMT because its polyphony
is challenging. The task of piano transcription has existed in MIREX (Music Information Retrieval
Evaluation eXchange) since 2007, and it is competitive every year [27]. Figure 1 gives MIREX’s annual
best results for the note tracking of piano subset based on onset only over the past 10 years. The current
state-of-the-art system won 82% on F-measure in MIREX 2016, which is employed as a baseline system
to evaluate the performance of our proposed method [28].
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Figure 1. The 2007–2016 annual best results for piano transcription in MIREX (Music Information
Retrieval Evaluation eXchange).

Individual-specific transcription is a new direction of AMT, which can make use of more
characteristics of the individual piano. Cogliati and Duan modeled the temporal evolution of piano
notes, and the spectrogram was factorized using the templates [29]. In the same context-dependent
setting, they also employed convolutional sparse coding to transcribe the music from a specific piano
in the specific environment [30]. In the supervised NMF, templates were usually formed by the isolated
notes of the specific piano to be transcribed. Ewert employed spectro-temporal patterns to model
the temporal evolution in NMF [31]. Cheng proposed a method to model the attack and decay of
notes, and all the templates were trained by a Disklavier piano [32]. In the same transcription task,
Gao combined the convolutional NMF with a differential spectrogram [33].

In this paper, we focus on the note-based polyphonic transcription for a specific piano. Deep
learning technique is adopted to recognize notes preliminarily, and then the candidate notes are
verified for the specific piano. In the stage of note recognition, a convolutional neural network (CNN)
is used to detect onsets, and another CNN is used to estimate the probabilities of pitches at each
detected onset. During the note verification, the spectrogram is factorized using attack templates of
notes. Compared to existing AMT approaches, the proposed method has the following advantages:

(1) The note recognition stage yields a note-level transcription by estimating the pitch at each onset.
Compared to existing deep-learning-based methods which use a single network, two consecutive
CNNs yield better performance.

(2) An extra stage of note verification is conducted for the specific piano, in which the spectrogram
factorization improves the precision of transcription. Compared with the traditional NMF, the
proposed note verification stage could save computing time and storage space to a great extent.

(3) The proposed method achieves better performance in specific piano transcription compared to
the state-of-the-art approach.

The outline of this paper is as follows. The proposed framework is described in Section 2. The
transcription and comparison experiments are presented in Section 3. Finally, conclusions are drawn
in Section 4.

2. Proposed Framework

The proposed transcription framework is shown in Figure 2, which comprises a note recognition
module and a note verification module. In this section, we describe the two stages.
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Figure 2. Diagram for the proposed framework. CNN: convolutional neural network; NMF:
non-negative matrix factorization.

2.1. Note Recognition

Recently, convolutional learning has achieved great success in music signal processing, such as
genre classification [34], artist classification [35], and chord detection [36]. In the task of AMT, CNNs
have also been evaluated for onset detection and frame-based transcription, respectively. In the
experiments of onset detection, Schlüter used CNNs of different architectures [37]. The results
shows that a CNN with linear rectifier outperformed the state-of-the-art while requiring less manual
preprocessing. Sigtia utilized a CNN to transcribe polyphonic piano music frame-by-frame, and the
output was estimated pitches at each frame [21]. Although CNN yields the best performance on the
frame-based metrics, an NMF method outperforms CNN on note-based metrics. So, it is promising for
CNN to make use of the note onset and generate a note-based transcription. Here we train a CNN to
detect onset and another CNN to estimate pitches at each detected onset.

CNNs are neural networks characterized by a convolutional structure. The convolutional layers
are designed to preserve the spatial structure of the input. In each convolutional layer, a set of weights
act on a fixed-size local region of the input. These weights are then repeatedly applied to the entire
input to produce a feature map. After the convolution of input with shared weights, the output of
the convolutional layer is obtained by adding a bias term and then applying a non-linear function.
Each unit of out feature map in the convolutional layer can be computed as:

qj,m = f (
I

∑
i

N

∑
n

oi,n+m−1wi,j,n + bj) (1)

where oi,m is the mth unit of the ith input feature map, qj,m is the mth unit of the jth output feature
map, wi,j,n is the nth element of the weight vector, bj is the bias term added to the jth feature map,
f (·) is the activation function. I is the number of input feature maps, and N is the size of weight
filter. A convolutional layer is often followed by a pooling layer, which subsamples each feature map.
For example, the most common max pooling only retains the maximum value in non-overlapping
cells. When the max pooling function is used, the pooling layer is defined as:

pj,m =
K

max
k=1

qj,(m−1)×s+k (2)

where K is the pooling size and s is the shift size of pooling windows. Here, pj,m is the mth unit of
the jth output feature map. qj,m is the mth unit of the jth input feature map in this pooling layer,
and it is also the corresponding unit of the output feature map in the last convolutional layer. Finally,
the CNN ends in fully-connected layers that integrate the information of layers below. In audio signal
processing, the input to the CNN is a window of feature frames centering around time t, whereas the
output contains posterior probabilities of different categories at time t.

There are several motivations for applying CNNs to music transcription. Firstly, aggregating over
several frames achieves better performance than processing a single frame. For example, the attack
stage of notes can be modeled by applying a context window around the onset so that the onset will be
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detected more accurately. Secondly, the architecture of the CNN can learn features along both the time
and frequency axes. CNN is proper for processing the harmonic structure in a spectrogram because of
its shift invariance. Compared with deep neural network (DNN) and RNN, the weight sharing and
pooling architecture leads to a reduction of parameters.

In the proposed note recognition stage, two CNNs are trained using a constant Q transform (CQT)
of the music signal. The spectrogram of CQT is suited as time–frequency representation for music
since its frequency bins are evenly spaced on a logarithmic axis. Additionally, the inter-harmonic
spacings are constant for different pitches so that the CNN can learn pitch-invariant information.
We trained a CNN of one output unit as an onset detector, giving binary labels to distinguish onsets
from non-onsets. The architecture of this CNN is shown in Figure 3. The CNN takes a spectrogram
slice of several frames as a single input, and each spectrogram excerpt centers on the frame to be
detected. All of the spectrograms are extracted along the music signal, with a hop size of one frame.
Feeding the spectrograms of the test signal to the network, we can obtain an onset activation function
over time. The frame whose activation function is greater than the threshold is set to be the candidate
onset.

The onset detector is followed by another CNN for multi-pitch estimation (MPE), which has the
same architecture except for the output layer. Its input is a spectrogram slice centered at the onset
frame. The CNN has 88 units in the output layer, corresponding the 88 pitches of piano. To make
sure the multiple pitches can be estimated at the same time, all the outputs are transformed by a
sigmoid function. For each training sample, the onset time is annotated accurately in advance. In the
testing procedure, the input is a spectrogram slice centered at the candidate onset, which is detected
by the previous CNN. A set of probabilities of 88 pitches is estimated through the network. Finally,
the candidate pitches at candidate onsets are obtained by applying a threshold to the output.

Figure 3. CNN architecture for onset detection.

2.2. Note Verification

Note verification for the specific piano is implemented through an NMF. As a frame-based
approach, the traditional NMF factorises a spectrogram of a piano signal into 88 spectral bases and
sparsity activations. Here the NMF only takes the candidate onsets and pitches into consideration
and provides a note-wise representation. In the proposed framework, the sound to be transcribed
is reconstructed by:

Rt+T
t−T =

K

∑
k=1

Wk Ht+T
t−T (3)

where Rt+T
t−T is the reconstructed spectrogram of 2T + 1 frames and t is the frame of candidate onset.

W is the attack template for the specific piano, k ∈ [1, K] is the index of candidate pitches, and Ht+T
t−T

is the note activations. For the piano to be transcribed, 88 individual notes are pre-recorded and
each template is obtained by computing the average spectrum over time frames. The attack template
was calculated using the attack stage of each note rather than the whole duration. Note activations

534



Appl. Sci. 2017, 7, 901

Ht+T
t−T can be estimated by minimising the difference between the reconstruction Rt+T

t−T and the original
spectrogram Xt+T

t−T . The spectrogram Xt+T
t−T is also the input being fed to the pitch estimation CNN.

Finally, we verified the candidate notes from activations. Only the candidate pitches whose peaks in
the activations exceed a threshold will be identified. Meanwhile, the time when activations exceed the
threshold will be set as the onset. Compared with the traditional NMF, the proposed method can save
computing time and storage space to a great extent.

An illustration of note verification is shown in Figure 4. Figure 4a is a spectrogram excerpt
used for traditional NMF, in which a C4 note starts at 0.14 s and ends at 0.96 s. Additionally, a C#4
note fades away before the C4 note appears, and a A3 note is played at last. Here, we only present
the factorization of note C4. The templates and activations are shown in Figure 4b,c, respectively.
Compared with the traditional template (solid line), the attack template (dashed line) concentrates on
the percussive stage of the note and shows a different characteristic. For example, both the high-order
harmonics and components between harmonics have higher amplitude in the spectrum of the attack
template. In Figure 4c, the solid line is the frame-wise activations for traditional NMF, and the dashed
line corresponds to the attack activations for note verification. Both curves rise rapidly at the onset time,
and a note C4 can be detected using a threshold of 3.0. However, another peak appears in the curve of
traditional activations at the end of note C4, and a false positive will be detected using the threshold.
Therefore, the NMF using attack templates are more suitable to be applied in note verification.

Figure 4. An illustration of note verification: (a) a spectrogram excerpt used for NMF; (b) the attack
templates and traditional templates; (c) the attack activations and traditional activations in NMF.

In the stage of note verification, the effect of the dynamic level of templates is important. Even for
a specific piano, the spectrograms of same pitch vary depending on different dynamics. Figure 5 shows
the attack templates of note C4, played at three common dynamics: forte, mezzo-forte, and piano.
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As shown in Figure 5, there are differences between the templates of three dynamics—especially for
the higher partials. In the high-frequency range, the notes of louder dynamic have richer spectral
content compared to notes of softer dynamics. This indicates that the louder dynamics excite more
modes in the vibration of strings than softer dynamics, which is consistent with the assumption of [30].
If we factorize a forte note using piano templates, false positives may happen because the forte note
contains some spectral content which is not present in the corresponding piano template. This error
will not occur when we transcribe a note using attack templates of louder dynamics.

Figure 5. Attack templates of note C4 played at three dynamics: forte, mezzo-forte, and piano.

3. Experiments

In this section, we describe the dataset used in our experiments. Then, the experimental
preprocessing, parameters, and metrics are introduced. Finally, we present the results from the
different experiments and analyze the performance of the proposed approach.

3.1. Dataset

The transcription experiments were conducted on the MIDI aligned piano sounds (MAPS) dataset
[38]. The MAPS dataset provides piano recordings, the related aligned MIDI files, and annotated
text files. The overall size of MAPS is about 60 h of audio, and it is the largest database for piano
transcription. There are nine categories of recordings corresponding to different piano types and
recording conditions. Seven categories of audio are produced by software piano synthesizers, while
two categories of recordings are obtained from a real Yamaha Disklavier upright piano. The dataset
consists of isolated notes, chords, and 30 pieces of music in each category. For music pieces, the number
of concurrent notes ranges from one to nine. Each music piece lasts more than 30 s, and all 270 pieces
contain 18 h of audio signal.

We aim at the transcription of the Disklavier piano, which is in category “ENSTDkCl” of the
MAPS dataset. For the real piano, the recording room was a studio with dimensions equal to about
4× 5 m. The distance between the piano and the microphones was about 50 cm. MIDI files were
created beforehand and were sent to the MIDI input of the Disklavier. Then, the audio was recorded
using two omnidirectional microphones.

To build a universal model independent of the real individual, we trained the CNNs using
210 music pieces of synthesized pianos in the MAPS dataset. The training set contains 460,988 notes
and the overall size is about 14 h. The proposed system was evaluated on the music pieces of the
Disklavier piano. In the testing set, there are 30 music pieces, and only the first 30 s of each piece was
used for transcription. The testing set contains 7345 notes in total. The setting is realistic because
the training set and testing set are disjoint on piano types. During the note verification, the attack
templates were obtained from the isolated notes produced by the same piano.

3.2. Experimental Settings

The proposed framework takes the spectrograms of CQT as input. The audio signal was segmented
with a frame length of 100 ms and a hop-size of 10 ms. The CQTs cover 88 notes of piano, and there

536



Appl. Sci. 2017, 7, 901

are 36 bins per octave. Hence, a 267-dimensional CQT vector is extracted for each frame. A context
window of nine frames was applied to the CQTs so that we could obtain a spectrogram slice.

In the note recognition, architectures of these two CNNs were similar (as shown in Figure 3):
two convolutional layers, two pooling layers, and two fully-connected layers. These two CNNs
have the same structure, except for the final fully-connected layer. For the spectrogram slices of
267 dimensions by 9 frames, the first convolutional layer with 10 filters of size 16× 2 computes 10
feature maps of size 252× 8. The next layer performs max-pooling of 2× 2, reducing the size of maps
to 126× 4. The second convolutional layer contains 20 filters of size 11× 3, which generates 20 feature
maps of 116× 2. The max-pooling size of the second pooling layer was also set to 2× 2, resulting
in 20 maps of 58× 1. The first fully-connected layer contains 256 units, and the number of units in
the final layer changes with the task. In the CNN for onset detection, the final fully-connected layer
has a single output unit. In the CNN for MPE, the final fully-connected layer has 88 output units.
The two convolutional layers and the first fully-connected layer use the rectified linear unit (ReLU)
activation function, and the final fully-connected layers use the sigmoid function. Appendix A shows
more details about the CNNs.

The CNNs were trained using mini-batch gradient descent, and the size of a mini-batch was 256.
The Adam algorithm [39] was also used in the training. An initial learning rate of 0.01 was decreased to
0 over 100 epochs. To prevent over-fitting, a dropout of 0.5 was applied to each network. We also used
the method of early stopping, in which training was stopped if the cost (cross entropy) did not decrease
for 20 epochs. The training of two CNNs was independent, whereas the CNNs were concatenated in
the testing procedure. For the testing data, the first CNN estimates the candidate onset and the input
of the second CNN is a spectrogram slice centered at the candidate onset.

During the note verification, we trained one attack template per pitch using the forte notes. The
attack template was obtained by calculating the average of first 5-frame spectrogram followed by
the onset. Each spectrum to be factorised is 267 dimension by 9 frames, and the central frame is the
candidate onset detected by the first CNN.

Note-based metrics were employed to assess the performance of the proposed system [40]. A note
event is regarded as right if its pitch is correct and its onset is within a ±50 ms range of the ground
truth onset. These measures are defined as:

P =
NTP

NTP + NFP
(4)

R =
NTP

NTP + NFN
(5)

F =
2× P× R

P + R
(6)

where P, R, F correspond to precision, recall, and F-measure, respectively, and NTP, NFP, and NFN are
the numbers of true positives, false positives, false negatives respectively.

3.3. Results

To evaluate the performance of proposed approach comprehensively, we present the results of
each step. Firstly, we analyze the performance of two CNNs, which were trained for onset detection
and pitch estimation, respectively. Additionally, the performance of the proposed note recognition
module was evaluated on piano transcription. At last, we compared the proposed approach with a
state-of-the-art method on individual-specific transcription.

3.3.1. Onset Detection

For comparative purposes, the DNN and RNN were used for onset detection. In the training of
DNN and RNN, we performed a grid search over sets of parameters to find an architecture with the
best performance. The uncertain parameters of neural networks are: number of layers L ∈ {1, 2, 3, 4},
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number of hidden units H ∈ {32, 64, 128, 256, 512}. The hidden unit activation is a ReLU function and
the output unit activation is sigmoid. In the architecture of RNN, LSTM [41] units are used, and the
length of sequence was set to 10. The other parameters and methods in training are same as them in
the CNN, such as dropout and early stopping.

All the results of onset detection are presented in Table 1. As shown in Table 1, the CNN performs
best and the RNN outperforms DNN on all evaluation metrics. For example, the CNN yields a relative
improvement of 2.84% over the RNN, and the RNN outperforms the DNN by 4.48% on F-measure.
Both the CNN and RNN take a sequence of spectrums as input, which utilize the context information
over time. Additionally, the spatial structure of the spectrogram is preserved by the CNN, which is
useful for onset detection.

Table 1. Performance on onset detection using different neural networks. DNN: deep neural network;
RNN: recurrent neural network.

Method Recall Precision F-Measure

CNN 0.9731 0.9590 0.9660
DNN 0.9319 0.8683 0.8990
RNN 0.9530 0.9259 0.9393

Figure 6 shows the outputs of neural networks for a music excerpt along with the corresponding
ground truth. The excerpt is the first 10 s of track MAPS_MUS-bk_xmas5_ENSTDkCl. It is a typical
example for transcription, and it is analyzed in each of the following experiments. In the ground truth
(Figure 6d), there are two values: zero represents non-onset, and one stands for onset. We can also
observe that the onset is sparse in the excerpt’s first 8.8 s, and it is dense in the last 1.2 s. As shown in
Figure 6, the DNN’s output is far away from the ground truth, which cannot detect the dense onset
and bring many false positives. This example explains why the DNN yields low recall and precision in
Table 1. RNN and CNN are more suitable for onset detection than DNN. This is largely due to the
context information over time. The evolution of a note can be modeled using the sequence information,
so the false positives will not be detected in the sustain or decay stage of the note. Compared to RNN,
CNN’s output is closer to the ground truth—especially for the dense onset. When two adjacent onsets
have small time difference, their detection is difficult through change along the time axis. In this case,
we can identify the onset using the pitch information. CNN is such a method, which learns a feature
along both the time and frequency axes through its convolutional layers.
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Figure 6. Results of onset detection: (a–c) the output of CNN, DNN, and RNN, respectively; (d) the
corresponding ground truth.

3.3.2. Multi-Pitch Estimation

The DNN and RNN were also used as comparative methods for pitch estimation. The architecture
and training parameters are the same as that in onset detection, except for the final layer. Each net has
88 units in the output layer, and the output unit activation is sigmoid. In the training and evaluation,
all onset time was determined accurately in advance, and the pitch estimation was carried out at each
onset.

The results of MPE are shown in Table 2. As shown in Table 2, the CNN outperformed other nets
on all evaluation metrics. For example, the CNN yielded a relative improvement of 24.61% over the
DNN and outperformed RNN by 15.91% on note-based F-measure. This is largely because the CNN
can learn pitch-invariant features from the frames around the onset. We can also observe that the RNN
outperformed the DNN on precision and F-measure, which indicates that the context information is
helpful in pitch estimation. Therefore, the advantage of CNN is significant in the subtask of onset
detection and MPE.

Table 2. Performance on pitch estimation using different neural networks.

Method Recall Precision F-Measure

CNN 0.7810 0.8319 0.8056
DNN 0.6223 0.6727 0.6465
RNN 0.6020 0.8221 0.6950

Figure 7 shows the graphical representation of the outputs of neural networks for the music excerpt
along with the corresponding ground truth piano roll. As shown in the ground truth (Figure 7d),
the pitch estimation of this excerpt is challenging. The polyphony at each time instant is four in
the excerpt’s first 8.8 s, and the overlapping is serious. Additionally, the notes are much shorter in
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the excerpt’s last 1.2 s. Compared to the posteriograms of CNN and RNN, DNN estimated more
pitches, where many of them were false positives. This is because DNN’s topology is simple and its
input is just the spectrum at onset. Utilizing the note sequence information in piano music, RNN
produced a higher-precision output. However, RNN’s output seemed to be a result of monophonic
pitch estimation, which yielded many false negatives and corresponded to low recall. In general,
the CNN’s output was much closer to the ground truth than DNN and RNN. Unlike RNN’s input,
the context information of CNN’s input is from several frames around each onset. CNN can model the
attack stage of each pitch through this information, such that the MPE at onset is more accurate. There
are also some octave errors which require further effort in the CNN’s posteriogram. For example,
the MIDI pitch of 46 (about 116.54 Hz) was estimated to be MIDI pitch 58 (about 233.08 Hz) at the
eighth onset.

Figure 7. Results of multi-pitch estimation (MPE): (a–c) the output of CNN, DNN, and RNN,
respectively; (d) the corresponding ground truth piano roll representation.

3.3.3. Note Recognition

To evaluate the performance of the proposed note recognition stage which contains two CNNs,
another CNN system was used for comparison [21]. The system contained only a single CNN, which
transcribes music frame-by-frame and returns a list of notes with pitches and onset. This system will
be referred to as Sigtia. Actually, the note recognition stage can be treated as a piano transcription
system, which takes no account of the individual to be transcribed. To make a comprehensive
comparison, two state-of-the-art transcription methods were also used. Both were submitted to
MIREX and evaluated in the task of piano tracking. Benetos’s method uses a variable-Q transform
representation as input and employs probabilistic latent component analysis in transcription [42].
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Troxel’s system is based on Microsoft’s ResNet, and it has achieved the best performance in MIREX.
For Sigtia’s method, we trained a CNN using parameters he described in [21]. We have access to the
code of Benetos’s method, and the second baseline system was implemented by the code. For Troxel’s
system, the results were obtained from the transcription software named AnthemScore [43].

All of the note-based results of transcription are presented in Table 3. In general, the performance
of the proposed note recognition stage is acceptable. Among these four methods, Benetos’ approach
performed the worst on each evaluation measure. This is because Benetos’ model is trained for multiple
instruments instead of piano, and the pre-shifted templates are not helpful for piano transcription.
The proposed note recognition module outperformed Sigtia’s method on all evaluation metrics, which
indicates that two independent CNNs are superior to a single one in AMT. Troxel’s method yielded the
best performance, and it outperformed us by only 0.14% on F-measure. On the metrics of precision,
our proposed note recognition stage was inferior to Troxel’s system. Therefore, we can use a note
verification stage to reduce the false positive notes and improve the precision of transcription.

Table 3. Performance on piano transcription.

Method Recall Precision F-Measure

CNNs 0.7524 0.8593 0.8023
Sigtia 0.6786 0.8023 0.7353

Benetos 0.5857 0.6305 0.6073
Troxel 0.7477 0.8687 0.8037

Figure 8 shows the transcription of the MAPS_MUS-bk_xmas5_ENSTDkCl excerpt using the top
two systems in Table 3. The corresponding ground truth has been shown in Figure 7d. Compared with
the ground truth, the false positive notes are marked using red crosses and the false negative notes
are marked using a blue dashed line. We can observe that the onset of notes in Figure 8a are detected
more accurately than that in Figure 8b. This can be attributed to the CNN for onset detection in our
system. In the excerpt’s first 8.8 s, the transcription result of Troxel’s system is better than that of our
two consecutive CNNs. There are eight false negative errors and five false positive errors in Figure 8a.
Correspondingly, there are only three false negative notes and two false positive notes in Figure 8b.
One solution to reduce the false negative errors is to apply a small threshold to the output of the second
CNN. This will bring more false positive notes, so an additional note verification stage is necessary.
In the excerpt’s last 1.2 s, the performance of our note recognition stage was much better than Troxel’s
system. As the duration of notes here are short, the accurate onset is essential for transcribing them.
This also indicates the advantage of our CNNs on short-note transcription.
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Figure 8. Results of piano transcription: (a) the transcription produced by CNNs in our proposed
framwork; and (b) the transcription produced by Troxel’s system.

3.3.4. Transcription for Specific Piano

In our proposed framework, the individual-specific transcription is conducted by feeding the
output of note recognition into a note verification stage. For comparative purposes, two transcription
systems were used to evaluate the performance of the proposed method. The first comparative
approach was proposed by Cheng, which is the current state-of-the-art specific piano transcription
method [32]. Cheng’s method is implemented using a sparse NMF in AMT, and all the templates
are extracted using the notes from "ENSTDkCl" of MAPS. Considering that the CNNs have shown
advantages in the note recognition stage, the second comparative approach is based on them. Adding
the specific individual’s data to the training set, we got two adapted CNNs. To make a fair comparison,
the newly-added training samples were isolated notes produced by the same piano.

The transcription results are shown in Table 4, and the proposed method performed best in general.
Although they are based on the same note recognition module, the proposed system outperformed
the adapted CNNs on all evaluation metrics. This illustrates the benefits of note verification. Another
reason is that the CNNs cannot learn enough information about the specific individual through these
limited isolated notes—especially the information of polyphony. The proposed system outperformed
Cheng’s system in terms of recall and F-measure. Our proposed method estimated 5511 notes correctly,
whereas the number of true positive notes was 5421 for Cheng’s method. This can be attributed to the
use of note recognition, which achieved significant performance on recall through CNNs. Meanwhile,
the preliminary results led to a limitation of note verification. Both the proposed method and Cheng’s
method achieved better performance than the adapted CNN on all evaluation metrics. One of the
reasons may be that both of them use the templates of attack during the NMF.
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Table 4. Performance comparison on specific piano transcription.

Method Recall Precision F-Measure

Proposed 0.7503 0.9039 0.8200
Cheng 0.7381 0.9070 0.8139

Adapted CNNs 0.7458 0.8792 0.8070

In general, all of the specific piano transcription systems in Table 4 perform better than
universal systems in Table 3. We can conclude that making use of the information of specific
individual is promising in AMT. Compared with results in Table 3, The proposed system performed
better on the metrics of precision and F-measure when the note verification stage was applied.
Therefore, the effectiveness of note verification is validated again.

The results of the proposed method and the state-of-the-art method are compared concretely.
Figure 9 shows the F-measure obtained by our proposed and Cheng’s methods, which is along the
different octaves of a piano. As shown in Figure 9, our proposed method outperformed Cheng’s
method for six octaves, except for the A5-Ab6 octave. Cheng’s method achieved an F-measure of
0.4854 for A0-Ab1, which shows its poor performance in the transcription of low-pitch notes. The
proposed method showed a more balanced result, with an F-measure of 0.5672 for the first octave.
In general, the F-measure increased approximately along the increase of octaves for the two methods.
This suggests the limitation of the time-domain approach, which brings a time–frequency resolution
trade-off.

Figure 9. F-measure per octave achieved by our proposed system and Cheng’s system.

Figure 10 shows the specific piano transcription of the MAPS_MUS-bk_xmas5_ENSTDkCl excerpt,
which was produced by our proposed framework and Cheng’s system. Compared with the ground
truth in Figure 7d, the false positive notes are marked using red crosses, and the false negative notes
are marked using a blue dashed line. The contrast between Figures 8a and 10a indicates that the
note verification can improve the precision of transcription. As shown in Figure 10, Cheng’s method
estimated more correct pitches than our proposed method in the excerpt’s first 8.8 s. This is due to a
limitation in our proposed system. Although the note verification conducted on candidate notes can
save computing time and storage space, it is limited because the candidate set is not complete. In the
excerpt’s last 1.2 s, our system yielded a better performance than Cheng’s system. This indicates the
advantage of our note recognition stage, which is good at transcribing short notes. Another reason is
that modeling both the attack and decay stages in short duration is difficult for Cheng’s system.
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Figure 10. Results of specific piano transcription: (a) the transcription of our proposed system and
(b) the transcription of Cheng’s system.

4. Conclusions

We present a two-stage framework for note-level polyphonic piano music transcription, which
comprises a note recognition stage and a note verification stage. In the note recognition, one CNN is
trained for onset detection and another is trained for pitch estimation at each onset. To our knowledge,
the combination of two CNNs has not been attempted before for AMT. The note verification for the
specific piano is implemented using NMF. The factorization is conducted in the time slice around
candidate onset, which only uses attack templates of the candidate pitches. Our experiments are
carried out on the MAPS database and the performance of each module is discussed. The experiments
demonstrate that CNN performs better than other types of neural networks in the subtasks of onset
detection and pitch estimation, and the connection of two CNNs outperforms a single CNN in note
recognition. We also observe that the performance of transcription is improved significantly when note
verification is applied to the system, and our proposed system performs better than state-of-the-art
systems in specific piano transcription.

There are some limitations of the proposed system. As the biggest dataset for piano AMT,
the MAPS has only 270 solo pieces. So, the data may be not enough for training CNNs. Although
training data and testing data are from synthesized pianos and a real piano, respectively, they contain
overlaps in music pieces. The limited data and piece-dependent scheme led the CNNs to overfit.
For the real pieces in the testing dataset, the recording environment was quiet and the distance between
the piano and microphones was close. Therefore, one future research direction is to discuss whether
the proposed method is robust to noise and reverberation. Additionally, the proposed method cannot
estimate note offsets or loudness, which will be another research direction in the future.
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Appendix A

#Builds the CNN. The code is based on the open source software library-TensorFlow.
import tensorflow as tf

def inference(images0):
"""Build the CNN model.
Args: images0: Images placeholder, from inputs().
Returns: sigmoid_linear: Output tensor with the computed probabilities.
"""
images=tf.reshape(images0, [-1,267,9,1])

# conv1
with tf.variable_scope(’conv1’) as scope:

weights = tf.Variable(tf.truncated_normal([16,2,1,10],stddev=0.1))
conv = tf.nn.conv2d(images, weights, [1,1,1,1],padding=’VALID’)
biases = tf.Variable(tf.constant(0.1,shape=[10]))
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)

# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=’SAME’,

name=’pool1’)

# conv2
with tf.variable_scope(’conv2’) as scope:

weights = tf.Variable(tf.truncated_normal([11,3,10,20],stddev=0.1))
conv = tf.nn.conv2d(pool1, weights, [1, 1, 1, 1], padding=’VALID’)
biases = tf.Variable(tf.constant(0.1,shape=[20]))
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)

# pool2
pool2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=’SAME’,

name=’pool2’)

# fully-connected1
with tf.variable_scope(’fully-connected1’) as scope:

reshape = tf.reshape(pool2, [-1,58*1*20])
weights = tf.Variable(tf.truncated_normal([58*1*20,256],stddev=0.1))
biases = tf.Variable(tf.constant(0.1,shape=[256]))
local = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)

# fully-connected2
with tf.variable_scope(’fully-connected2’) as scope:

#dropout
local3_drop =tf.nn.dropout(local, 0.5)
weights = tf.Variable(tf.truncated_normal([256,num_classes],stddev=0.1))
biases = tf.Variable(tf.constant(0.1,shape=[num_classes]))
sigmoid_linear = tf.nn.sigmoid(tf.matmul(local3_drop, weights) + biases, name=scope.name)
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return sigmoid_linear

def loss(logits, labels):
"""Calculates the loss from the logits and the labels.
Args:
logits: Logits from inference(), float - [batch_size, num_classes].
labels: Labels tensor, int32 - [batch_size, num_classes].
Returns: cross_entropy: Loss tensor of type float.
"""
cross_entropy = -tf.reduce_sum(labels*tf.log(logits+1e-10)+(1-labels)*tf.log(1-logits+1e-10))
return cross_entropy

def evaluation(logits, labels, threshold):
"""Evaluate the quality of the logits at predicting the label.
Args:
logits: Logits from inference(), float - [batch_size, num_classes].
labels: Labels tensor, int32 - [batch_size, num_classes].
threshold: Threshold applied to the logits.
Returns: accuracy: Compute precision of predicting.
"""
pred=tf.cast(tf.greater(logits, threshold),"float")
correct_prediction = tf.cast(tf.equal(pred, labels), "float")
accuracy = tf.reduce_mean(correct_prediction)
return accuracy

def training(loss, learning_rate):
"""Sets up the training Ops.
Creates an optimizer and applies the gradients to all trainable variables.
Args:
loss: Loss tensor, from loss().
learning_rate: The learning rate to use for gradient descent.
Returns: train_op: The Op for training.
"""
# Create the gradient descent optimizer with the given learning rate.
optimizer = tf.train.AdamOptimizer(learning_rate)
# Use the optimizer to apply the gradients that minimize the loss
train_op = optimizer.minimize(loss)
return train_op
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Abstract: Ambient Assisted Living (AAL) has become an attractive research topic due to growing
interest in remote monitoring of older people. Development in sensor technologies and advances
in wireless communications allows to remotely offer smart assistance and monitor those people at
their own home, increasing their quality of life. In this context, Wireless Acoustic Sensor Networks
(WASN) provide a suitable way for implementing AAL systems which can be used to infer hazardous
situations via environmental sounds identification. Nevertheless, satisfying sensor solutions have not
been found with the considerations of both low cost and high performance. In this paper, we report
the design and implementation of a wireless acoustic sensor to be located at the edge of a WASN for
recording and processing environmental sounds which can be applied to AAL systems for personal
healthcare because it has the following significant advantages: low cost, small size, audio sampling
and computation capabilities for audio processing. The proposed wireless acoustic sensor is able to
record audio samples at least to 10 kHz sampling frequency and 12-bit resolution. Also, it is capable
of doing audio signal processing without compromising the sample rate and the energy consumption
by using a new microcontroller released at the last quarter of 2016. The proposed low cost wireless
acoustic sensor has been verified using four randomness tests for doing statistical analysis and a
classification system of the recorded sounds based on audio fingerprints.

Keywords: wireless acoustic sensor; ambient assisted living; internet of things; edge computing;
low cost; ESP32

1. Introduction

As one of the fastest growing technologies in the emerging Internet of Things (IoT) environment,
low power wireless sensor networks are expected to realize IoT applications and to provide connectivity
for remote smart objects. The basic concept of IoT is that various smart objects can be automatically
linked into a network for interacting with humans through perception and networking technologies [1].
Smart objects in the IoT have the ability to send information through the Internet to provide the
interaction among multiple things and people. IoT is opening tremendous opportunities for novel
applications that promise to improve the quality of people life.
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The development of IoT technologies can be applied to a huge variety of applications, such as
intelligent power grid [2], healthcare [3], environmental monitoring [4], localization [5], etc. In an
AAL context where assisted living technologies are based on ambient intelligence, smart objects need
to use wireless communications because of the requirements of supporting mobile applications and
remote monitoring of people. AAL can be used for detecting and preventing distress situations,
improving wellness and health conditions of older adults. AAL technologies can also provide more
safety for the elderly, using mobile emergency response systems, detecting domestic accidents,
monitoring activities of daily living, issuing reminders, as well as helping with mobility and
automation, and, overall, improving their quality of life [6,7]. In fact, according [8], AAL should
be understood as a system for extending the time people can live in their preferred environment by
increasing their autonomy, self-confidence and mobility; supporting the preservation of health and
functional capabilities of the elderly, promoting a better and healthier lifestyle for individuals at risk;
enhancing security, preventing social isolation and supporting the preservation of the multifunctional
network around the individual; supporting carers, families and care organizations; and increasing the
efficiency and productivity of used resources in the ageing societies.

A survey of sensors in assisted living of older people is presented in [9], such as passive infrared
(PIR) and vibration sensors, accelerometers, cameras, depth sensors, and microphones. These systems
should satisfy some requirements as: low-cost, high accuracy, user acceptance and privacy. These can
be connected to form a network for an intelligent home designed for elderly people. The data and
decision results that the sensors produce can be processed and fused over a cloud or a fog. Authors
expect that the IoT will lead to remote health monitoring and emergency notification AAL systems that
will operate autonomously, without requiring user intervention. In this context, audio recognition is
also a promising way to ensure more safety by contributing to detection of distress situations because
of the interaction of each person with her environment may be identified. In fact, in [10] detection of
distress situations and monitoring of activity and health are described as two challenges to address in
AAL environments. On the one hand, the identification the sounds of everyday life can be particularly
useful for detecting distress situations in which the person might be. For instance, the detection of
a fall can be used to call an emergency number. On the other hand, audio processing can be quite
useful for the monitoring of the person’s activity and the assessment of some decline. For instance,
an application might consist of recognising health related symptoms such as coughing, scraping throats
and sniffles. Hence, the development of WASN with low power consumption and low cost are suitable
for implementing AAL systems. In this research, we are focused in the development of a low cost
wireless acoustic sensor with audio processing capabilities and network connectivity to be located at
the edge of a WASN.

The WASN have been developed under the paradigms of both the Smart City and the IoT.
In recent years, there has been a rapid evolution of WASN, and many works have been developed.
To date, several authors have designed and deployed WASN for different purposes such as noise
monitoring [11] or sound identification as road traffic, horns, and people [12]. For instance, in [13]
the production and analysis of a real-life environmental audio database in two urban and suburban
scenarios corresponding to the pilot areas of the DYNAMAP project was presented. The WASN of the
DYNAMAP project is based on low cost acoustic sensor but it is connected to digital recorder for data
saving. Hence, unlike our research, audio samples cannot be sent to a central server using wireless
communications, and neither audio processing can not be carried out at node. Audio recordings have
been categorized as road traffic noise, background city noise, and anomalous noise events. However,
it was carried out offline with Audicity and Matlab software [14].

In [15], a distributed noise measurement system based on IoT technology was developed.
The sensor node is based on a Raspberry Pi with an electret omnidirectional microphone and a
sound card in order to record the audio. The data from WASN was interpolated for obtaining a spatial
noise level in a small-sized city. However, the system was designed to measure, represent and predict
urban noise levels, and not for audio processing and classification.
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In [16], the design of low cost wireless sensor node for environmental noise measurement
is described. The sensor node platform is built on ATmega128L with 4 kB RAM, and its internal
10-bit ADC can operate a peak sampling rate of 33 kHz. However, according the microcontroller
specifications, the maximum sampling rate for 10-bit resolution is 9.8 kHz and not 33 kHz. In addition,
only the effective sound pressure is sent, and an audio processing is not carried out.

Nevertheless, the WASN paradigm presents several challenges, ranging from those derived from
the design and development of the wireless sensor network, such as energy harvesting and low cost
hardware development and maintenance, to some specific challenges derived from the automation of
the data collection and subsequent signal processing, such as to detect anomalous noise events [13].
In addition, the sensor of a WASN designed for AAL systems should process the enviromental sounds
to rapidly infer hazardous situations instead to send the full audio record to a server for a centralized
processing. Thus, processing data at the node can ensure shorter response time and better reliability.
In this context, the use of devices with an increasing storage and computation capacity coins a new term:
Edge or Fog Computing. This model extends Cloud computing and services to the edge of the network
reducing network latency and offloading computation [17], as well as to avoid bottlenecks at remote
server due to the throughput and volume of data to be collected and processed. Edge Computing has
the potential to address the concerns of response time requirement, battery life constraint, bandwidth
cost saving, as well as data safety and privacy [18]. This concept covers computational to be performed
at the edge of the network and to exchange data from or to cloud IoT services. In [19], the design and
deployment of a WASN at home, inspired by the Mobile Edge Computing paradigm [20] able to gather
the data of all acoustic sensing nodes deployed to infer the audio events of interest in an AAL context
is described. It follows a distributed implementation, where all digital signal processing is carried out
in a concentrator offloading the sensor nodes and avoiding the use of the server to remotely process
the data. This concentrator is based on a GPU embedded platform.

As has been discussed, many research using low cost sensors in a WASN have been developed.
Nevertheless, those works have been designed to measure only noise levels and not for sound
identification. On the other hand, research where audio processing is carried out are based on medium
cost platforms, such as Raspberry or GPU, or using cloud services. Hence, the aim of this research
is to solve these deficiencies designing a low cost acoustic sensor to do audio processing at the edge
of network.

There is no doubt that significant progress has been made in the field of wireless acoustic
sensor networks. However, an improvement to the actual sensors is needed because the main
drawback of these recent WASN is that their power consumption and cost do not fit some of the
critical requirements of AAL applications: power consumption, mobility, size and cost. In addition,
humans are most sensitive to frequencies between 2 kHz and 5 kHz, and the speech and environmental
sounds are often less than 5 kHz bandwidth. Therefore, the sensor has to be characterized by a spectrum
with these frequencies. In this paper, a novel wireless acoustic sensor is proposed. The main novelty
of this work comes from the fact that the proposed wireless acoustic sensor is able to record audio
samples at least at 10 kHz sampling frequency (5 kHz bandwidth) and 12-bit resolution, and audio
signal processing can be carried out at node without compromising the sample rate and the energy
consumption. Furthermore, this sensor can be applied in AAL systems for personal healthcare because
it has the following significant advantages: low cost, small size, wireless network connectivity, audio
sampling and computation capabilities for audio processing. Thus, the identification of sounds for an
AAL context, such as fall detection or health related symptoms, could be carried out at the edge of a
WASN reducing network latency and improving response time and battery life of proposed sensor,
enhancing quality of life and safety of older people.

The remainder of this paper is organized as follows. Section 2 describes the low cost proposed
wireless acoustic sensor. Section 3 describes the used methods to validate and evaluate the
proposed sensor. Section 4 shows the results of some experiments carried out to validate the designed
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sensor in this study. Finally, in Section 5 draws some conclusions and discusses some possible directions
for future research.

2. Wireless Acoustic Sensor

In this section the proposed low cost wireless acoustic sensor is described which is formed by an
audio sensor and a microcontroller based board. The main goal in designing the sensor was to obtain a
product of small size, low cost, low consumption and versatile which allows to be used in permanent
and remote monitoring in AAL systems.

2.1. Audio Sensor

The audio sensor is an electret microphone amplifier with adjustable gain [21]. It is based on an
electret omnidirectional microphone, CMA-4544PF-W, and an op-amp specifically optimized for use
as microphone preamplifiers, a Maxim MAX4466, Figure 1. They provide the ideal combination
of an optimized gain bandwidth product with low voltage operation in ultra-small packages.
Furthermore, it has an almost flat response in the frequency range between 50 Hz and 10 kHz,
Figure 2. Therefore, the characterization of sensor is fulfilled whose operating frequency lies within
the range 100 Hz–5 kHz.

Figure 1. Schematic of audio sensor.

Figure 2. Frequency response curve of microphone.
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2.2. Microcontroller Based Board

Three low cost microcontroller platforms were evaluated, joinly with the above audio
sensor, to determine the best option for the proposed system: Libelium Waspmote platform [22],
Espressif ESP8266 board [23], and Espressif ESP32 board [24]. Figure 3 shows the evaluated
microcontroller boards.

Figure 3. Microcontroller boards: (a) Waspmote; (b) ESP8266; (c) ESP32.

Waspmote board is a modular device that allows us to install different sensors and different
radio transceivers. Waspmote hardware architecture has been specially designed to be extremely
low consumption. The Waspmote has an Atmega1281 microcontroller running at 14 MHz with
programmable sleep modes. These sleep modes make Waspmote the lowest consumption sensor
platform in the market (0.7 uA in hibernate mode and 55 uA in sleep mode). The whole set, formed by
Waspmote and audio sensor, has a small size (85 × 75 × 35 mm, included battery). The ATmega1281
has 8 ADC channels with 10-bit resolution. Due to the microcontroller characteristics, the tested
maximum ADC sampling frequency was 9.8 kHz. In addition, it has only 8 kB SRAM, and therefore,
the audio recording is about a few tenths of a second maximum duration. Waspmote has an SD card
and could be used to save the sampled data. Nevertheless, the sample rate of ADC converter must be
fit to 8-bit resolution to carry out these extra operations needed.

ESP8266 board delivers a highly integrated Wi-Fi SoC solution for efficient power, with its
complete and self-contained Wi-Fi networking capabilities. It integrates an enhanced version of
Tensilica’s L106 Diamond series 32-bit processor and on-chip SRAM with an ADC with 10-bit resolution,
and can be interfaced with external sensors through the GPIOs, in low development cost at prototyped.
One of the most common boards with the ESP8266 is NodeMCU, with ESP-12E module, Figure 3b.
The whole set, formed by ESP8266 and audio sensor, has a very small size (50 × 30 × 20 mm) which is
very useful to place at different positions in a discrete way. It can support up to 80 MHz frequency
clock. It has a built-in SPI flash memory with 4MB capacity and the SRAM capacity available to users
is about 36 kB. The tested maximum ADC sampling frequency was 10.6 kHz.

Espressif Systems announced the launch of ESP32 cloud on chip on September 6th, 2016. It is a
Dual Core Wi-Fi + BT Combo MCU. Some of features of the ESP32 are the following: the CPU is an
Xtensa Dual-Core 32-bit LX6 microprocessor, operating up to 240 MHz, 520 kB SRAM, 12-bit SAR ADC
up to 18 channels and built-in Wi-Fi card, supporting IEEE 802.11 b/g/n standards, and Bluetooth
v4.2 BR/EDR and BLE. Also, the ESP32 chip features 40 physical GPIO pads which can be used as
a general purpose I/O, to connect new sensors, or can be connected to an internal peripheral signal.
The most common development board is the ESP32S, with a ESP-WROOM-32 module and an SRAM
capacity available to users about 300 kB. As previous board, the whole set, formed by ESP32 and audio
sensor, has a very small size (55 × 30 × 20 mm), and is very useful to place at different positions in
a discrete way. The tested maximum ADC sampling frequency was 100 kHz. It is enough for the
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system purposes. Furthermore, ADC is non-blocking, so the conversion process with other instructions
execution can be overlapped.

Although all analyzed boards can fulfill for implementing a wireless acoustic sensor, ESP32
board was chosen because it has the biggest: ADC bit resolution, SRAM capacity, and microprocessor
frequency. Furthermore, because of it has a dual core and the microcontroller’s connectivity features
and functionalities, audio samples are gathered while other operations can be simultaneously done,
such as sending data to a server using IP protocol or data processing, thus promoting the edge
computing idea. Figure 4 shows the wireless acoustic sensor based on ESP32 board. On the other hand,
the cost of proposed sensor is about 10 Euros, being it very competitive for an AAL environment.

Figure 4. Wireless acoustic sensor based on ESP32 board.

Lastly, the principle of operation of the software implementation for the proposed wireless
acoustic sensor is shown in Figure 5. First, a timer interruption is enabled for gathering the audio
samples from ADC using AnalogRead function. Timer is set to 100 μs to obtain a sampling frequency
at 10 kHz. Next, the data obtained from ADC are stored in an endless buffer. Finally, the raw data can
be sent to a server for recording the sampled data in a wav format file or a suitable audio fingerprint to
identify different sound events that can be used for detecting hazardous situations.

Figure 5. Graphical flow diagram implemented in the wireless acoustic sensor.

3. System Validation Methods

In order to validate the proposed wireless acoustic sensor a statistical analysis and an audio
classification of recorded samples are carrying out. Thus, randomness tests and an audio fingerprint
matching were the methods employed for system validation and are described in this section.

3.1. Randomness Tests

Randomness tests can be used to determine whether a dataset has a recognizable pattern, and
therefore whether the process that generated it is significantly random. That is, it can be used to test
the hypothesis that the elements of a sequence are mutually independent or not. Four randomness
tests were used to demonstrate that recorded audio files by the proposed system have a recognizable
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pattern, and hence, the sampled audio information is not random. The following randomness tests
were used: Bartels Test [25], Cox Stuart Test [26], Mann-Kendall Test [27] and Wald-Wolfowitz Test [28].

3.1.1. Bartels Test

This randomness test is the rank version of von Neumann’s Ratio Test for Randomness [29].

3.1.2. Cox Stuart Test

In this test data are grouped in pairs with the ith observation of the first half paired with the ith
observation of the second half of the time-ordered data. If the length of vector X is odd the middle
observation is eliminated. The Cox Stuart test is then simply a sign test applied to these paired data.

3.1.3. Mann-Kendall Test

This randomness test is a non-parametric statistical test that analyzes difference in signs between
earlier and later data points. The idea is that if a trend is present, the sign values will tend to
increase constantly, or decrease constantly. Every value is compared to every value preceding it in the
time series.

3.1.4. Wald-Wolfowitz Test

This randomness test is a non-parametric statistical test that transforms into a dichotomous vector
according as each values is above or below a given threshold. Values equal to the level are removed
from the sample. The default threshold value used in applications is the sample median.

3.2. Audio Fingerprint Matching

An audio fingerprint is a compact content-based signature that summarizes an audio recording.
This technology has attracted attention since they allow the identification of audio independently of its
format and without the need of meta-data or watermark embedding [30]. The main objective of an
audio fingerprint mechanism is to efficiently compare the equality (or not) of two audio files, not by
comparing the files themselves, but by comparing substantially smaller sets of information, referred to
as audio fingerprints. Furthermore, audio fingerpint length is a lot less than the raw audio data. In order
to validate the proposed wireless acoustic sensor, an open source application, termed Chromaprint [31],
is used to generate the fingerprints of original and recorded audios. Then, to find an audio matching
between original and recorded audios, the Hamming distance is evaluated using both fingerprints.

3.2.1. Chromaprint Process

Chromaprint converts the audio input to mono and downsampled to 11,025 Hz. The audio signal
is converted to the frequency domain by performing a short-time Fourier Transform (STFT) with a
frame size of 4096 samples (371 ms) and a 2/3 overlap (2731 samples). The resulting spectrum is
converted to 12 bins representing the chroma of the signal. This information is called “chroma features”.
Each bin in the chromagram represents the energy that is present in a musical note. The 12 bins
represent the 12 notes of the chromatic scale. In order to transform the bins in a more compact form to
carry out the fingerprint matching, a 12-by-16 sliding window is moved over the chromagram one
sample at a time. On each of them is applied a pre-defined set of 16 filters that capture intensity
differences across musical notes and time. Each of the filters quantizes the energy value to a
2-bit number. The 2-bit value is encoded using Gray coding. The 2-bit hash values from each of
the 16 filters are converted to a single 32-bit integer representing the subfingerprint of the 12-by-16
window. The window is advanced one sample to calculate the next subfingerprint. The full fingerprint
is composed by the all subfinngerprints.
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3.2.2. Hamming Distance

In order to find a simple audio matching for verifying and validating the proposed system,
the Hamming distance is implemented because is performed at the bit-level and therefore, requires less
computational complexity. The Hamming distance between two (NFx32)-bit binary fingerprint vectors
f v1 and f v2 is computed as Equation (1):

Hd( f v1, f v2) =
NFx32

∑
i=1

F(bit f v1(i) �= bit f v2(i)) (1)

where NF denotes the number of subfingerprints of vectors, bit f v1(i) and bit f v2 are the ith element of
binary fingerprint vectors, and F() is an function defined by Equation (2):

F(x) =

{
1 if x is true
0 otherwise

(2)

3.2.3. Matching Algorithm

Algorithm 1 was used to evaluate the shortest Hamming distance between all original
environmental sounds and each recorded audio. The shortest distance identifies and matches the
recorded audio with the original sound.

Algorithm 1 Audio Fingerprint Matching
Require: Fingerprint of recorded audio, f v1

Require: Fingerprint of all original audios, f vsource

L1 ← length( f v1)

for source ←1: all original fingerprints do

Lsource ← length( f vsource)

for i ← 1 : (Lsource− L1− 1) do

distanceVector ← Hd( f v1, f vsource(i : L1 + i− 1))
end for

distanceAllAudioVector ← min(distanceVector)
end for

return min(distanceAllAudioVector)

4. Results and Discussion

This section describes the acoustic anechoic chamber where different audio samples from
different environmental sounds were gathered and the dataset built to evaluate the validity of the
proposed sensor. Afterwards, the results of aforementioned system evaluation methods, randomness
tests and audio fingerprint matching, are presented and discussed. Also, the usefulness of the proposed
sensor board in terms of energy consumption and audio processing capabilities are carried out.

4.1. Acoustic Anechoic Chamber

The acoustic anechoic chamber where experiments were carried out is located on the second floor
of Institute for Technological Development and Innovation in Communications (IDeTIC) building
at Las Palmas de Gran Canaria University, Spain. The chamber area is nearly 200 cm wide and
430 cm long, and it has a simple design to absorb reflections of sound waves and is also isolated from
waves entering from its surroundings.
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The soundproofing of the chamber is carried out using foam pyramidal panels which is a powerful
sound absorber that dramatically reduces echo, reverberation and standing waves. For the acoustic
insulation is used rock wool and polyurethane panels. Figure 6 shows acoustic anechoic chamber at
IDeTIC and the foam pyramidal panels used.

Figure 6. Acoustic anechoic chamber at IDeTIC.

4.2. Dataset

A total of 48 audio records were gathered from fourteen different indoor and
outdoor environmental sounds for performing the statistical analysis and audio classification.
These environmental records have been downloaded from Freesound website [32]. Table 1 shows the
dataset characteristics. Each environmental sound was recorded using a 10 kHz sampling frequency
and 8-bit resolution during 10 s. In order to gather different samples, the start point of each recording
was randomly established.

Table 1. Audio recordings dataset.

Environmental Sound Duration (s) Number of Records

S1—Traffic jam in a city 49 3
S2—People on a street without traffic 34 3
S3—Very strong traffic 70 5
S4—City park with children 33 3
S5—Pedestrian zone of a city with traffic 32 3
S6—Inside of a noisy room by traffic 60 4
S7—Ambulance passing with the siren 29 4
S8—Drilling machine in a city 18 3
S9—Police car passing with the siren 28 3
S10—Ambulance siren. Doppler effect 24 3
S11—Dense traffic in a city 72 5
S12—Indoor door slam 23 3
S13—Indoor gun shots 98 3
S14—Slicing vegetables in a kitchen 40 3

4.2.1. Randomness Tests

All recorded audios were evaluated with the four above randomness tests. The null hypothesis of
randomness is tested against nonrandomness, and a p-value is calculated which is used in the context
of null hypothesis testing in order to quantify the idea of statistical significance of evidence, that is,
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the probability of finding the observed results when the null hypothesis is true. In the tests, if the
p-value is less than 0.05, the null hypothesis is rejected because a significant difference exists.

Table 2 shows the p-values of four randomness tests. As can be seen, all p-values for Bartels,
Mann-Kendall and Wald-Wofowitz tests are less than 0.05. For Cox Stuart test, most results return
a p-value less than 0.05, and only eight tests are slightly greater than this value. It is not significant,
and hence the null hypothesis can be rejected. Thus, it can be considered that the recorded audio files
by wireless acoustic sensor are not significantly random, and therefore, have a recognizable pattern.

Table 2. p-values of randomness tests.

Record Bartels Cox Stuart Mann-Kendall Wald-Wolfowitz

S1-R1 0 0.06 ≈0 0
S1-R2 0 0.01 ≈0 0
S1-R3 0 0.09 ≈0 0
S2-R1 0 ≈0 ≈0 0
S2-R2 0 ≈0 ≈0 0
S2-R3 0 ≈0 ≈0 0
S3-R1 0 ≈0 ≈0 0
S3-R2 0 0.02 ≈0 0
S3-R3 0 0.12 ≈0 0
S3-R4 0 0.13 ≈0 0
S3-R5 0 0.09 ≈0 0
S4-R1 0 ≈0 0 0
S4-R2 0 ≈0 0 0
S4-R3 0 ≈0 ≈0 0
S5-R1 0 ≈0 ≈0 0
S5-R2 0 ≈0 0 0
S5-R3 0 ≈0 0 0
S6-R1 0 ≈0 0 0
S6-R2 0 ≈0 0 0
S6-R3 0 ≈0 0 0
S6-R4 0 ≈0 0 0
S7-R1 0 0.07 0 0
S7-R2 0 0.08 ≈0 0
S7-R3 0 0.02 ≈0 0
S7-R4 0 ≈0 ≈0 0
S8-R1 0 ≈0 ≈0 0
S8-R2 0 0.01 ≈0 0
S8-R3 0 ≈0 ≈0 0
S9-R1 0 ≈0 0 0
S9-R2 0 ≈0 0 0
S9-R3 0 0.01 0 0
S10-R1 0 0.03 ≈0 0
S10-R2 0 0.03 ≈0 0
S10-R3 0 0.06 ≈0 0
S11-R1 0 ≈0 ≈0 0
S11-R2 0 0.01 ≈0 0
S11-R3 0 ≈0 ≈0 0
S11-R4 0 0.06 ≈0 0
S11-R5 0 ≈0 ≈0 0
S12-R1 0 0.01 ≈0 0
S12-R2 0 0.01 0 0
S12-R3 0 ≈0 0 0
S13-R1 0 ≈0 0 0
S13-R2 0 ≈0 0 0
S13-R3 0 0.01 0 0
S14-R1 0 0.05 0 0
S14-R2 0 ≈0 0 0
S14-R3 0 0.06 0 0
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4.2.2. Audio Fingerprint Matching

To carry out the audio fingerprint matching, an audio fingerprint was computed both for each
recorded audio and original environmental sounds. All recorded audios are 10 s long, therefore,
each recorded audio fingerprint is 66 subfingerprints long. Thus, the vectors used in Equation (1)
are 2112 (66 × 32) bits length. Afterwards, Algorithm 1 was used to evaluate the shortest Hamming
distance between all original environmental sounds and each recorded audio. The shortest distance
identifies and matches the recorded audio with the original sound.

Table 3 shows the results returned by Algorithm 1 when it was evaluated for each recorded audio.
For each one the shortest Hamming Distance is bold marked. As can be seen, most of recorded audios
match with its correspondent original sound, yielding an 85.4% accuracy, and there is not dependency
with the kind of sound, indoor or outdoor. Furthermore, a 91.6% accuracy is reached when the three
shortest Hamming distances are used, that is, a recorded audio is correctly classified and found in a
set of three sounds with a 91.6% probability. On the other hand, all S10 recordings were classified as
S3 original audio. It can be because doppler effect is perceived in both audios. In any case, the aim of
this experiment is not to implement a robust classification system, but to demonstrate the validity of
the proposed acoustic sensor. Taking in account the results, it can be asserted that the recorded audios
have a high grade of similarity with its original sound, and hence, the proposed acoustic sensor can
be validated.

Table 3. Audio fingerprints matching.

Record S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

S1-R1 773 1088 1075 1086 1132 1107 1249 1232 1096 1257 1111 1232 1060 1146
S1-R2 1025 1086 1047 1050 1111 1182 1323 1121 1146 1164 1053 1234 1040 1239
S1-R3 883 1012 1022 996 1151 1108 1227 1152 1111 1180 1101 1252 923 1114
S2-R1 1058 351 995 1017 1087 1100 1237 1118 1138 1208 997 1170 855 1156
S2-R2 1047 336 961 962 1083 1120 1231 1150 1161 1245 1022 1091 838 1127
S2-R3 1093 1088 1083 1070 1124 1224 1265 1162 1230 1288 1105 1204 1098 1194
S3-R1 1115 992 549 1002 1111 1037 1288 1212 1099 1298 1072 1150 890 1034
S3-R2 1144 995 486 1053 1121 1110 1253 1277 1127 1289 1102 1138 924 1116
S3-R3 1138 1037 459 1053 1223 1126 1225 1247 1178 1290 1097 1203 927 1144
S3-R4 1122 1036 427 1035 1117 1091 1303 1116 1179 1276 1081 1081 962 1060
S3-R5 1112 1066 485 1126 1180 1177 1247 1198 1168 1276 1061 1177 1023 1183
S4-R1 1032 939 1003 370 1133 1051 1250 1157 1160 1249 1064 1195 833 1159
S4-R2 1035 978 996 396 1107 1133 1187 1159 1135 1270 1061 1150 867 1142
S4-R3 1102 1051 1089 313 1122 1128 1280 1182 1218 1172 1116 1211 951 1164
S5-R1 1112 1112 1060 1134 377 1102 1215 1157 1178 1262 1088 1162 1081 1163
S5-R2 1095 1024 1033 1132 1053 1064 1246 1170 1119 1376 1058 1143 973 1121
S5-R3 1140 1080 1108 1182 403 1108 1236 1174 1204 1270 1135 1193 1102 1150
S6-R1 1209 1171 1153 1161 1131 591 1240 1198 1318 1306 1155 1188 1172 1010
S6-R2 1141 1019 1080 1141 1059 598 1248 1149 1191 1277 1099 1166 1022 1066
S6-R3 1043 1035 972 1051 1107 1040 1365 1106 1088 1152 1073 1153 1055 1059
S6-R4 1134 1051 1026 1164 1093 485 1289 1151 1172 1275 1152 1185 1007 1039
S7-R1 1167 1121 1089 1153 1150 1178 1026 1220 1196 1170 1145 1095 1059 1129
S7-R2 1208 1217 1091 1215 1247 1205 991 1226 1209 1234 1183 1179 1183 1169
S7-R3 1236 1192 1133 1256 1273 1225 340 1371 1283 1311 1166 1159 1335 1212
S7-R4 1201 1174 1136 1165 1216 1174 351 1246 1247 1240 1151 1196 1242 1227
S8-R1 981 1096 1155 1069 1096 1196 1265 949 1091 1079 977 1186 982 1218
S8-R2 1015 1111 1123 1047 1036 1161 1274 340 1095 1077 986 1181 986 1236
S8-R3 1007 1093 1136 1071 1081 1189 1289 847 1079 1027 975 1217 988 1238
S9-R1 1113 1138 1111 1133 1151 1036 1380 1056 1040 1103 1099 1167 1098 1018
S9-R2 1164 1195 1143 1245 1192 1061 1322 1156 402 1228 1128 1199 1106 1052
S9-R3 1140 1129 1142 1191 1199 1160 1314 1139 445 1195 1110 1231 1052 1193
S10-R1 1151 1118 1065 1160 1275 1201 1227 1355 1186 1380 1160 1197 1194 1097
S10-R2 1149 1061 1060 1124 1173 1105 1322 1250 1073 1305 1157 1219 1192 1128
S10-R3 1191 1140 1092 1095 1205 1200 1206 1218 1152 1299 1112 1237 1175 1148
S11-R1 1072 1031 1105 1071 1106 1147 1259 1121 1136 1334 483 1141 903 1125
S11-R2 1070 1084 1085 1059 1125 1112 1207 1090 1129 1287 538 1238 981 1162
S11-R3 997 1066 1121 1051 1080 1138 1280 1030 1111 1190 483 1175 922 1249
S11-R4 1144 1174 1161 1208 1132 1095 1187 1192 1179 1311 358 1167 1136 1156
S11-R5 1066 1022 1082 1038 1125 1086 1261 1163 1178 1340 488 1170 931 1068
S12-R1 1227 1222 1195 1219 1166 1140 1181 1263 1265 1297 1194 495 1288 1192
S12-R2 1094 1055 1051 1033 1125 1115 1252 1029 1102 1193 1080 1024 953 1183
S12-R3 1121 1095 1122 1094 1140 1156 1262 1122 1233 1228 1054 1009 1074 1149
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Table 3. Cont.

Record S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

S13-R1 1039 1031 991 1019 1110 1076 1400 972 1108 1031 985 1169 758 1060
S13-R2 1029 966 956 942 1140 1036 1323 1036 1015 1128 986 1165 618 1058
S13-R3 953 954 994 860 1099 1072 1246 1045 1055 1142 937 1217 372 1180
S14-R1 1082 1052 1077 1111 1113 1148 1293 1071 1102 1140 1120 1158 985 758
S14-R2 1078 979 1022 1085 1106 1095 1295 1093 1122 1172 1117 1159 1001 768
S14-R3 1244 1158 1129 1228 1170 931 1381 1233 1110 1360 1219 1092 1156 249

4.3. Energy Consumption and Audio Proccesing Capabilities

In order to evaluate the energy consumption of the proposed sensor, three experiments with
different processing capabilities were performed: (A) audio recording, (B) audio recording and
Fast Fourier Transform (FFT) calculation, and (C) audio recording and UDP datagram sending via
Wi-Fi connection. Audio recording was carried out in an infinite loop using a 10 kHz sampling
frequency and 12-bit resolution. The ArduinoFFT library [33] was used to implement the FFT,
and it was computed each 12.8 ms, that is, every FFT was run after 128 new samples were recorded.
UDP datagram sending was carried out each 25.6 ms, therefore, each UDP datagram is sent when
256 new samples are gathered. The prototype sensor was powered by 5 V, and the current consumption
was measurement for each experiment. Table 4 shows the results. As can be seen, the A and B
experiments have similar energy consumption because all operations are carried out in an infinite loop
and additional resources are not used, only the processor. However, in the C experiment, Wi-Fi module
is periodiocally transmitting a datagram, and therefore, the energy consumption is higher. In any
case, the maximun energy consumption is about 0.8 W, and the proposed sensor could be powered by
battery for a long time.

Table 4. Energy consumption.

Experiment Average Current (mA) Energy Consumption (W)

A—Audio recording 139 0.695
B—Audio recording and FFT 141 0.705
C—Audio recording and UDP sending 165 0.825

On the other hand, audio processing capabilities were evaluated implementing the FFT with
different number of samples and carrying out an audio recording using the same core. FFT was
chosen because is an expensive computational algorithm in audio processing. Each experiment was
performed 1000 times and the average execution time was computed. Table 5 shows the average
execution time for each experiment. As can be seen, the execution time increases with the number
of samples. In addition, using the same number of samples, the FFT execution time is slightly
higher when the simultaneous sampling is carried out, that is, the FFT was computed while other
samples were gathered. Nevertheless, about 20 ms is only spent to compute a 512 sample FFT. Hence,
audio processing capabilities could be performed without compromising the sample rate and the
energy consumption, and edge computing paradigm can be implemented in the proposed sensor.

Table 5. Fast Fourier Transform execution time.

Number of Samples Simultaneous Sampling Average Execution Time (ms)

128 No 3.32
128 Yes 4.45
256 No 7.04
256 Yes 9.43
512 No 14.92
512 Yes 19.97
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5. Conclusions and Future Work

As was discussed in this paper, in recent years, many authors have experienced a growing interest
in remote monitoring of older people, and several systems have been proposed in the literature.
These systems are commonly termed as AAL systems, but the acoustic sensors were not designed
with low cost and audio processing requisites. In this paper, we described the design of a low cost
wireless acoustic sensor for AAL systems based on ESP32 board. In order to choose the best platform,
three different low cost microcontroller boards were evaluated. It was given a detailed description
of the hardware and the principle of operation of software implementation. The proposed sensor
is capable of recording ambient sounds at least to 10 kHz sampling frequency and 12-bit resolution.
Furthermore, the sensor board has computation capabilities to carry out audio signal processing
and network communications without compromising the sample rate and the energy consumption.
Hence, the proposed sensor can improve AAL solutions carrying out the audio identification for
monitoring of activity and health, and the detection of distress situations at the edge of WASN.
Thus, a shorter response time and better reliability is ensured enhancing quality of life and safety
of older people. The acoustic sensor is very small in size, and therefore is very useful to be used in
a discrete way for personal healthcare in AAL systems, and the cost of hardware platform is very
competitive. The experiments on the proposed system showed that the system worked well. System
validation is demonstrated by experimental results, which were statistically obtained analysing several
tests of randomness and audio classification. Furthermore, evaluations of energy consumption and
audio processing capabilities were carried out demonstrating the usefulness and low power, and that
edge computing paradigm can be implemented at the proposed sensor.

In our ongoing work, we are planning to design a better sound classification system based on
audio fingerprint to be implemented at each acoustic sensor. Moreover, we are also planning to
deploy a WASN using the proposed acoustic sensor in this paper to evaluate the whole system and
network performance.
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Abstract: Room response equalization aims at improving the sound reproduction in rooms by
applying advanced digital signal processing techniques to design an equalizer on the basis of one
or more measurements of the room response. This topic has been intensively studied in the last
40 years, resulting in a number of effective techniques facing different aspects of the problem.
This review paper aims at giving an overview of the existing methods following their historical
evolution, and discussing pros and cons of each approach with relation to the room characteristics, as
well as instrumental and perceptual measures. The review is concluded by a discussion on emerging
topics and new trends.
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1. Introduction

When sound is reproduced by one or more loudspeakers, the perception of the desired auditory
illusion is modified by the listening environment. To some extent this may be seen as positive, since
spaciousness and depth is added, but the environment and the sound reproduction system can also
introduce undesired artifacts. Excessive reflections or resonances within the listening environment
may result in an undesired alteration of the auditory illusion. A non-ideal reproduction system may
even add some artifacts (e.g., frequency band extension, nonlinearities) to the original sound.

Room response equalization (RRE) has been studied in theory and applied in practice for
improving the quality of sound reproduction contrasting the detrimental effects of the room
environment and reproduction system. In an RRE system, the room transfer function (RTF)
characterizing the path from the sound reproduction system to the listener is equalized with a suitably
designed equalizer that can be realized in several manners. The basic idea is to measure the room
impulse response (RIR) using a microphone, and then obtain the equalizer through its inversion.
However, several issues influence this method, and thus a wide variety of techniques have been
developed over the last 40 years. The reader should be aware that many different names have been
used in the literature for RRE, such as “room equalization”, “room correction”, “room compensation”,
“room inversion”, “room dereverberation”, “dereverberation”, “reverberation reduction”, and others.
In this review, the collective term RRE is used to denote any technique that aims to design an equalizer
from measurements of the RTF.

Borrowing the words of [1], there is a “multidimensionality of alternatives for room inverse filter design”.
In particular, the inversion of the RIR can be performed considering a non-parametric approach such
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as least-mean-squares or direct inversion of the frequency response [1,2], a parametric approach
such as autoregressive-moving average (ARMA) modeling [1,3], or temporal decay control at low
frequency [1,4]. However, as reported in [1], this is not the only classification possible: RRE can also be
classified into minimum- or mixed-phase. The former aims only at the equalization of RTF magnitude,
while the latter also acts on the excess-phase RTF component.

In this review paper, a general classification is presented aiming at a broader view
on the state-of-the-art in RRE. Figure 1 provides a conceptual scheme of this classification,
clustering the various techniques that will be presented in the following. As shown in
Figure 1, the RRE approaches are divided into single-point (single-input/single-output—SISO,
multiple-input/single-output—MISO) and multi-point (single-input/multiple-output—SIMO,
multiple-input/multiple-output—MIMO) room equalizers. A single position room equalizer estimates
the equalization filter on the basis of the measurement in a single location of the RTF [5]. It is
effective only in a limited zone around the measured point (of the size of a fraction of the acoustic
wavelength). In reality, the RTF varies significantly with respect to the position in the room [6,7] and
time [2], as the room can be considered a “weakly non-stationary” system [8]. To enlarge the equalized
zone and to contrast the room response variations, multi-point equalizers have been proposed [9].
A multi-point room equalizer uses multiple measurements of the RTF at different locations in order
to design the equalizer. These approaches can be used for fixed and adaptive equalization. The
former is based on RTFs measured at fixed positions at a certain time. The latter is capable of
tracking and adapting to changes in the room response due to its time varying nature resulting for
instance from temperature changes or movement of people or other obstacles. Different pre-processing
techniques are applied to contrast audible distortions caused by fixed equalization in scenarios where
RTFs vary. Different equalizer design techniques can also be adopted (classified in the following as
minimum-phase or mixed-phase). More recently [10], equalization in spatio-temporally transformed
domains for the adaptive equalization of massive multichannel sound reproduction systems has been
investigated, and is presently a topic of active research.

Figure 1. A general classification of room response equalization (RRE) systems. Possible
approaches: 1 short filters, 2 complex smoothing, 3 frequency warping, 4 Kautz filters, 5

multirate approaches, 6 room impulse response (RIR) reshaping, 7 homomorphic filtering, 8

linear predictive coding analysis, 9 least-squares optimization techniques, 10 frequency domain
deconvolution, 11 multiple-input/multiple-output inverse theorem (MINT) solutions, 12 average and
weighted average methods, 13 clustering methods, 14 prototype approach, 15 common acoustical
poles compensation, 16 modal equalization, 17 plane wave approach, 18 quasi-anechoic approach,
19 wave domain adaptive filtering, 20 transform domain approaches, 21 room geometry aware

methods. MIMO: multiple-input/multiple-output; MISO: multiple-input/single-output; SIMO:
single-input/multiple-output; SISO: single-input/single-output.
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This paper aims to provide an up-to-date review on RRE, discussing the pros and the cons of each
technique, following the historical evolution. It is worth underlining that the RRE problem is analyzed
from the viewpoint of impulse response analysis. All approaches that are not directly based on RIR
analysis (e.g., parametric or graphic equalizers) are not discussed. The reader is referred to [11] for a
comprehensive review on this topic. Another research field related to RRE which is not addressed in
this paper is sound spatialization. The reader is referred to [12] for a recent review.

This review article is organized as follows: Section 2 describes the characteristics of room impulse
responses and its perception by the human auditory system. Section 3 introduces the basic concept of
RRE, explaining the main challenges in inverting room responses. Section 4 describes the approaches
used for equalizer design following their historical evolution. Section 5 discusses pre-processing
techniques used to cope for RIR variations by exploiting human perception. Section 6 covers the
evolution from single-point to multi-point equalization using multiple microphones placed within the
room. Section 7 reports adaptive approaches for RRE in the framework of single-point and multi-point
equalization. Section 8 introduces innovative approaches following a wave-theoretical view on the
problem. Section 9 describes instrumental and perceptual measures used for state-of-the-art evaluation
of RRE approaches. Section 10 reports emerging methods and new trends in the field. Finally, Section 11
concludes this review.

2. The Room Response and Its Perception

The characteristics of the room response in the time and frequency domain are related to the
acoustic properties of the environment that influence human perception. Due to this aspect, it is
sensible to shape the impulse response analysis in order to handle important issues that should be
considered in the RRE procedure to reach a sound listening improvement. This includes knowledge
on human perception and psychoacoustics to be exploited explicitly in the equalization procedure.

An impulse response, obtained from a sound source in a specific position of a real environment,
can be divided into three parts [13]: (i) direct sound; (ii) early reflections, and (iii) late reflections,
as reported in Figure 2a. The transition from early reflections to late reflections is given by the
mixing time, estimating the time elapsed from early to late reflections. It can be estimated in several
manners [14,15]. Direct sound and early reflections are fundamental for the localization of the
sound source and perception of its timbre [16–18], while the late reverberation provides cues on
the spaciousness of the room [19]. Studies on the perception of reflections and their influence on
the timbre can be found in [19–25]. The spectral content of direct and reflected sound is different.
Walls, drapes, and upholstery typically absorb the high frequencies of reflections. The effect is boosted
by multiple reflections, with the late reverberation typically having a much lower energy in the
high frequencies.

At low frequencies, the wavelength is comparable to typical room dimensions: standing waves
may appear in a room for steady-state signals, resulting in well defined position-dependent maxima
and minima of the magnitude response. At these frequencies, the room response has a smooth behavior
characterized by well separated resonances and notches, as illustrated in Figure 2b. The resonances
and notches are determined by interference patterns caused by the direct sound and reflections,
with notches appearing when the path-length difference is an odd number of half wavelengths.
The notches become increasingly dense with increasing frequency. For frequencies greater than the
Schroeder frequency [13], the frequency response becomes extremely irregular. Spectral peaks are
more audible than notches [20], but wide-bandwidth notches are also audible [26]. At high frequencies,
the peaks and notches strongly depend on the position in the room and on factors like the room
humidity and temperature [27–29] or obstacle movements [30–34]. It must be pointed out that these
large variations in the response have little influence on the subjective impression of the listener [18].
It has been suggested [19,22,24] that the ear is more sensitive to signal onsets (i.e., to the full spectrum
of the initial part of the RIR) and that it largely ignores the high-frequency components of the late
reverb [35]. This aspect should be considered in the equalizer design.
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(a)

(b)

Figure 2. Real RIR behaviour (a) in the time domain and (b) in the frequency domain.

The perception of high frequencies is particularly affected by the frequency resolution of the
human auditory system. The resolution of the ear is nonlinear and nonuniform with frequency,
with an almost logarithmic dependency on frequency [36]. This aspect has led to the introduction of
psychoacoustic frequency scales in the equalizer development with the aim of modifying the spectral
content according to human perception. The mel scale [37], the Bark (critical band rate) scale [38],
and the ERB (equivalent rectangular bandwidth) scale [39] are examples of psychoacoustic frequency
scales that usually build on a filterbank model of hearing. The mel scale is a perceptual scale of pitches
judged by listeners to be equal in distance from one another. The Bark scale is based on the critical
bands (i.e., the bandwidth of the auditory filters modeling hearing and frequency masking at different
frequencies). The ERB is also related to the Bark scale and to auditory filters, since the ERB filters pass
the same amount of energy as the auditory filters they correspond to. It can be concluded that the
logarithmic frequency scale of human hearing largely explains the low sensitivity to peaks and notches
at high frequencies, and this aspect should be considered in the equalizer design.

The temporal integration and masking properties of the human auditory system also affect the
perception of reflections. The ear perceives sounds by integrating them with a window of around
60 ms duration, having an equivalent rectangular duration of 5 ms [40]. The window is asymmetrical,
with a slower rise and faster decay. The ear is insensitive to temporal events shorter than about
2 ms [41]. Masking indicates a condition where sounds which presented isolated would be audible
are hidden by the presence of a higher level sound (the masker). We can have both simultaneous
and non-simultaneous masking. Simultaneous masking depends on the frequency of the masker and
the masked signal. It has its maximum effect when the two differ by less than a critical bandwidth.
It diminishes quickly when the frequency of the masker is greater than the masked signal, while it
diminishes more slowly when the frequency of masker is lower than the masked signal [42,43].
Non-simultaneous masking refers to situations where the masker and masked sound are separated in
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time. It is divided into backward masking, with the masked sound preceding the masker, and forward
masking, with the masked sound following the masker. Backward masking is quite limited in time [43]:
its effect disappears after 15–20 ms [44,45], with the most significant portion fading out after 5 ms [46].
Forward masking has a longer extension of 100–200 ms. Its behavior is similar to simultaneous
masking, and it depends on the frequency relationship between masker and masked sound. According
to [39], its effect starts as simultaneous masking and then fades out over time with a straight line in
a graph representing the masking reduction in dB versus time [43]. An average forward masking
curve has been introduced in [43,47]. For the first 10 ms, the curve has a constant value equal to −9 dB,
which is the maximum level of masking in [19], and then it decays over time. This phenomenon can be
exploited in the equalization procedure as discussed in the next sections.

The audibility of room reflections also depends on the direction of arrival of the direct sound and
reflections with respect to the listener [48], on the loudness of the direct sound (reflections can be more
easily perceived with louder direct sound), on the kind of signal [19], and on the spectral content of
direct sound and reflections (masking has a stronger effect if the spectral content of direct sound and
reflections coincides) [48].

In the following sections, different RRE techniques are discussed highlighting the problems
following from the physical properties of the room response and how the characteristics of the human
auditory system can be included.

3. Invertibility of the Room Response

The first research paper on RRE can be attributed to Neely and Allen in 1979 [5]. In their seminal
paper, they studied the invertibility of the RTF and implications. Considering the RTF of a synthetic
room, they showed that if the reflectivity of the wall is low (below 36%) the RTF is minimum-phase
and thus invertible. On the contrary, with larger wall reflection coefficients, as those of typical rooms
(in the range 70%–90%), the RIR is non-minimum-phase. However, it is still possible to equalize the
minimum-phase part of the room response (i.e., the amplitude response and the minimum-phase part
of the phase response) by factoring the RTF H(z) into a product of a minimum-phase term Hm(z) and
a stable all-pass filter A(z),

H(z) = Hm(z) · A(z). (1)

The equalization filter is simply computed by taking the inverse z-transform of the reciprocal of the
spectrum of Hm(z). By listening to the result of the minimum-phase equalization, Neely and Allen
reported that “The room effect had been removed, but a tone, much like a bell chime, sounded in the
background” [5].

The original approach of [5] is in reality affected by several problems, many discovered by
researchers only in later studies. Following the chronological order in which these problems
were addressed:

• When the room response is non-minimum-phase, an exact inverse cannot be implemented with a
single sound source, since the inverse is either unstable or acausal.

• The exact equalization of the room response—or of its minimum-phase part—requires very
long filters.

• The equalizer is affected by any imperfection in the measurement of the room response [6,34].
• The room response strongly depends on the location of the loudspeaker and the microphone used

for the measurement [6,31–34,48,49].
• Exact equalization is possible only in one location, and the extent of the equalized zone is just a

fraction of the acoustic wavelength [6]. At high frequencies, the equalized zone can be smaller
than the inter-aural distance of the ears (around 18 cm).

• The notches of the room response—which are affected by the noise floor—are highly boosted by
the equalizer with the generation of an often audible tone-like noise (the bell chime experienced
by Neely and Allen) [50–52].
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• The room response is actually slowly time-varying, affected by humidity and temperature [28,29]
and by movement of people or other obstacles in the enclosure.

• The human ear is sensitive to the excess-phase of the RTF [53].
• The equalizer should preserve the natural roll-off of loudspeakers at low and high frequencies [54,55].

Amplifying these frequencies could cause an unnatural boost of the loudspeaker response, causing
nonlinear effects, energy dissipation, and possible damages.

In what follows, we will discuss the different solutions that have been devised in order to
contrast the above-mentioned problems. In particular, we will review the techniques used to
design the equalizer, considering both minimum-phase and mixed-phase equalization strategies,
and pre-processing techniques used to contrast the effects of the variations of the room response with
position and time. As much as possible, we will try to follow the chronological order in which the
techniques were proposed to illustrate the evolution of RRE.

4. Equalizer Design Techniques

In the techniques we discuss, the room response equalizer is designed on the basis of
measurements of the RIR or RTF in one or more locations within the desired listening area. As we
will see in Section 5, the room response is pre-processed in most cases in order to contrast some of the
detrimental effects discussed in Section 3. In any case, a prototype room response is usually obtained
and used for the equalizer design.

Most of the equalizer design techniques can be classified into the following five classes:

• Homomorphic filtering;
• Linear predictive coding (LPC) analysis;
• Least-squares (or other) optimization techniques;
• Frequency domain deconvolution;
• Multiple-input/multiple-output inverse theorem (MINT) solutions.

The first two techniques are generally used for minimum-phase equalization, the latter three for
mixed-phase equalization.

4.1. Homomorphic Filtering

Homomorphic filtering was already proposed for minimum phase equalization in the seminal
paper of Neely and Allen [5], but many other authors introduced modified versions of the
homomorphic technique [56–58]. In homomorphic filtering, the minimum phase part of the
room response is extracted from the causal part of the complex cepstrum. A stable infinite
impulse response (IIR) equalizer is then obtained by direct inversion of the minimum-phase part.
Since the excess-phase part of the RTF was found to carry most of the reverberant energy [59],
in [6,56] the homomorphic technique was also used for mixed-phase equalization. In particular,
the minimum-phase equalizer was complemented with an excess-phase equalizer, designed with a
least-squares technique. Another possibility for implementing an excess-phase equalizer is to use
a matched filter—i.e., a filter having an impulse response that is the time-reversal of the impulse
response of the excess-phase system [57]. However, mixed-phase equalization based on homomorphic
technique was found to be oversensitive to errors in the initial homomorphic decomposition of the
room response [56,60]. Improvements to the homomorphic technique were reported in [57] and [58].
In [57], an iterative homomorphic technique is proposed by iteratively flattening the RTF magnitude
response. The technique overcomes potential numerical problems and “provides more insight into
subjective aspects of magnitude and phase equalization in the reduction of acoustic reverberation” [57]. In [58],
some of the low-frequency dominant poles of the filter transfer function are replaced by new ones with
smaller magnitude before computing the inverse filter. The technique allows the extent of oscillations
associated with these poles to be reduced. The main disadvantage of the homomorphic technique
is the large length of the all-zero (finite impulse response) model of the room response and the high

569



Appl. Sci. 2018, 8, 16

sensitivity of the model to “changes in source/receiver placement” [61]. From this point of view, the LPC
analysis provides more robust results [61].

4.2. LPC Analysis

In LPC analysis, the room response is modeled with a minimum-phase all-pole filter and the
equalizer is a finite impulse response (FIR) filter. The all-pole model can be obtained by different
techniques, including the efficient Levison–Durbin algorithm [62]. LPC analysis has been one of the
most successful approaches for minimum-phase equalization, and has been successfully used by many
researchers [61,63–75]. An all-pole filter can adequately model the spectral peaks of the room response,
while it provides a less accurate model of the notches. We should remember that in the human auditory
system the spectral peaks are more audible than the notches [20]. Moreover, the room response varies
significantly with respect to the position in correspondence to notches [49]. An all-pole equalizer can
compensate the most audible parts of the room response (the spectral peaks), without boosting the
notches, which is another desirable property of the equalizer.

The main limitation of LPC analysis is the fact that it can be used only for minimum-phase
equalization, and it must be complemented with other techniques to equalize the excess-phase.

4.3. Least-Squares Optimization Methods

Mixed-phase equalization requires the approximation of the inverse of a non-minimum phase
response, which is acausal. In order to approximate an acausal impulse response, it was proposed in
[76] to add a delay in the response of the equalizer and to design the equalizer by minimizing
a least-squares error criterion. The approach proposed in [76] was thereafter followed and
improved upon by many researchers, for both single-position and multiple-position equalization
[77] (see Section 6). Mixed-phase equalization requires the introduction of a delay in the equalizer.
This delay should be kept as low as possible (on the order of a few milliseconds according to the
backward masking characteristics of the ear [46]), since it can give rise to annoying artifacts in the
form of pre-ringing or pre-echo effects. At the same time, the delay should be sufficiently long
to obtain reasonable mixed-phase equalization. The least-squares optimization has been the key
ingredient of many adaptive solutions, starting from the seminal paper of [77], as detailed in Section
7. Other least-squares optimization criteria considering further constraints have also been proposed;
e.g., deconvolution with regularization [51], room response reshaping [78], Kautz filters [55], and short
filters [79].

The main limitations of the least-squares methods are the high sensitivity to the peaks and notches
of the room response, the non-uniform distribution of errors in the spectrum, and the possibility of
pre-ringing or pre-echo artifacts caused by the equalizer delay.

4.4. Frequency Domain Deconvolution

Another technique used for the equalizer design is based on frequency domain deconvolution.
As initially proposed in [80], the equalizer can be directly designed in the discrete Fourier transform
(DFT) domain by considering the reciprocal of the room response. In [80], the technique is applied
to the DFT of a windowed impulse response in order to correct only the early reflections of the room
response that affect the perception of timbre and to obtain a short equalizer response. In general,
this technique can be applied both for minimum-phase and mixed-phase equalization (adding an
appropriate delay), but the room response must be properly pre-processed. In particular, the depth
of the notches of the room response should be suitably limited to avoid excessive gains and long
impulse responses of the equalizer, which could result in tonal artifacts [52]. In [50], the equalizer
is designed by dividing the complex spectrum of a target response with the complex spectrum of
the measured room response. To avoid the problem of notches, a positive bias is added to the
measured room response. This technique is known as “deconvolution with regularization”, with the bias
called “regularization parameter”. The concept was formalized by Kirkeby and colleagues in [51,81]
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by considering a least-squares optimization criterion with a “penalty effort”. It is also known as the
“Kirkeby algorithm”. In [52], the technique was applied to RRE. The regularization parameter controls
the longest time constant of the inverse filters [81] in practice. In order to ensure that the time constant
is neither too long nor too short, the regularization parameter must be set appropriately [51]. In [82],
the authors show how the poles of the deconvolution solution are influenced by the regularization
parameter. In particular, for each zero close to the unit circle, a triplet of two poles and one zero is
generated, with one of the poles outside the unit circle. This pole is responsible for an acausal response,
and thus modeling delay should be introduced. In [43], an analysis of RRE based on the Kirkeby
algorithm on the basis of psychoacoustic criteria is provided. In the considered conditions, it was
shown that the “errors in the dereverberation process manifested themselves as extremely audible
and annoying resonances. These arose from the presence of deep spectral notches in the transfer
functions of loudspeaker–room combinations, which created tonal artifacts that occurred long before
and after the direct-arrival sounds. Furthermore, an extreme sensitivity to changes in position was
found, which prevented the optimization of dereverberation over practically sized listening areas.
The quality of the dereverberation was found to degrade even further for larger acoustic spaces.”
Despite these limitations, deconvolution with regularization approaches has been successfully applied
in combination with other techniques used to avoid perceivable distortions. For example, it has been
combined with frequency warping [83,84], or used in wave field synthesis [85].

4.5. Multiple-Input/Multiple-Output Inverse Theorem Methods

A method for the exact inversion of the RIR—even when it is non-minimum phase—was proposed
in [86,87]. The method is based on a principle called the multiple-input/multiple-output inverse
theorem (MINT). With this method, the inverse is constructed from multiple FIR filters, by adding “some
extra acoustic signal-transmission channels produced by multiple loudspeakers or microphones.” In practice,
the MINT states that it is possible to obtain an exact inversion of the room response if the number of
loudspeakers is larger than the number of microphones (i.e., measurement points). Thus, the approach
is intrinsically multi-channel. Let us consider the case of a system with two loudspeakers and one
microphone. Let us indicate with G1(z) and G2(z) the transfer functions from the loudspeakers to
the microphones, and with H1(z) and H2(z) the transfer functions of the equalizers associated to
each loudspeaker. Then, for exact inversion of the room response, H1(z) and H2(z) must satisfy the
following condition:

H1(z)G1(z) + H2(z)G2(z) = 1. (2)

As shown in [87], the solution of Equation (2) exists if G1(z) and G2(z) are relatively prime (i.e., do not
have common zeros), and when the solution exists the orders of H1(z) and H2(z) are lower than G2(z)
and G1(z), respectively. The approach is very powerful because it allows the acausality problem of
the equalizer to be overcome. However, the MINT approach also exhibits strong limitations. In [88],
the MINT is analyzed under a numerical perspective, studying the condition number of the time
domain matrix that is inverted. It is shown that the condition number of the time domain matrix is
related to the singular values of the transfer matrix evaluated over frequency. The condition number
decreases and the numerical performance is enhanced as the number of loudspeakers is increased.
However, the condition number increases “at the rate of approximately 1 bit” (i.e., of approximately 6 dB)
for each microphone added [88]. Moreover, an analysis of the MINT technique is also presented in [89],
discussing the conditions which must be fulfilled for an exact inverse filter matrix to exist. Additionally,
[89] demonstrates that the number of loudspeakers must exceed the number of microphones in a
manner consistent with the findings of [87]. Moreover, an explicit formula is derived specifying
the number of required inverse filter coefficients for the existence of an exact inverse. The paper
also investigates the spatial extent of the zones of equalization produced by inverse filtering. It is
shown that the equalized zone scales in size in accordance with the acoustic wavelength at the highest
frequency of interest.
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The low extent of the equalized zone and the numerical sensitivity to errors in the measured
responses appear to be the main limitations of the MINT. An improvement of the method has been
proposed in [90], where more control points are considered without increasing the number of inverse
filters. Another improvement is discussed in [91], where an iterative method is applied to the MINT
considering an optimally-stopped weighted conjugate gradient. To improve the computational
efficiency of the MINT, an oversampled subband approach with decimation has been presented
in [92].

4.6. Alternative Classification of Equalizers

As explained earlier, equalizers may be classified in several ways, and the above design techniques
have already been classified into minimum-phase or mixed-phase. Another interesting classification of
the equalizer design methods was provided in [55]. According to [55], the equalizer design methods
can be classified into “indirect” and “direct” methods. As shown in Figure 3, indirect methods
estimate a model of the room response—possibly processed—to obtain the equalizer by model
inversion. Direct methods instead minimize the error between the equalized room response and
a target response. From this point of view, homomorphic filtering, LPC analysis, and frequency
domain deconvolution constitute indirect methods, while least-squares optimization constitutes a
direct method. Multiple-input/multiple-output inverse theorem techniques can be classified as both
direct and indirect methods, since they compute the equalizer considering the inversion of a matrix of
room responses. However, according to Equation (2) they can also be estimated by minimizing the
error with respect to an ideal response.

(a) (b)

Figure 3. (a) Indirect and (b) direct equalizer design methods classification as reported in [55], where
HEQ represents the equalization filter, HR is the reproduction channel, HM is the measured impulse
response, and HT and HTE are the target functions.

5. Pre-Processing Techniques

The main techniques that have been developed to overcome the limitations of RRE dictated by
the characteristics of the room response, also taking advantage of the psychoacoustic properties of the
ear, are discussed in the following. These approaches are capable of modifying the measured RIR and
should be applied before the actual equalization procedure. They are suitable for both single-point
and multi-point equalization.

The major problems of RRE that were addressed in the early approaches were the very long
impulse responses of the equalizer, the limited region of space in which the RRE is effective, and the
slow time variations of the room response. The very long impulse response of an exact equalizer is
due to the spectral characteristics of the room response, as shown in Figure 2b, with many peaks and
notches that increase their density towards high frequencies. The notches correspond to zeros close
to the unit circle in the RTF. Thus, the inverse filter has poles close to the unit circle that determine
the long impulse response. The notches at high frequencies are extremely variable with position and
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time, determining the small extent in space and time in which the equalizer is effective. Movements
of listening position of 10 cm can cause variations of up to 20 dB in the room response [93], and a
pre-processing technique is required to contrast these variations.

5.1. Short Filters

One of the first expedients to improve RRE resorted in using short equalization filters.
By considering a coarse model of the room response which tries to capture and correct only the
general trend of the room response, avoiding modeling the sharp peaks and notches, it is possible
to reduce the temporal length of the equalizer impulse response. This solution is also beneficial for
enlarging the extent of the equalized zone and to cope with the room response variations in time [2].
One of the most effective techniques for designing short equalization filters is that based on LPC
analysis [61], which obtains a good modeling of the peaks of the room response, with a coarser
modeling of notches.

5.2. Non-Uniform Frequency Resolution

To improve the accuracy and effectiveness of equalization, the equalizer should take advantage of
the characteristics of the room response and the human ear. At low frequencies, the room frequency
response is more regular and the peaks and notches are mostly insensitive to the position in the room.
The resolution of the ear is nonuniform and nonlinear, with a logarithmic dependence on frequency.
At high frequencies, the ear is rather insensitive to notches of the room response and to high-frequency
reverberation. Accordingly, the equalizer should provide fine resolution at low frequencies and a
coarser resolution at higher frequencies. Many techniques have been developed following this strategy:

• Complex smoothing,
• Frequency warping,
• Kautz filters and parallel IIR filters with fixed poles,
• Multirate approaches.

5.2.1. Complex Smoothing

Fractional octave-band smoothing of the power spectrum has been widely applied in audio
processing. Its use can be traced back to analog equalizers (as for example the one-third-octave-band
filterbank analyzers), and was later extended to digital spectrum analyzers. In [35,94], the authors
extend the technique by introducing a methodology for smoothing the complex transfer function of
the measured room response with fractional octave profiles. The technique can be implemented in
the time or frequency domains. It is perceptually compliant since the spectral smoothing follows the
frequency resolution of the ear, with a fine resolution at low frequencies and a lower resolution at high
frequencies. As a result, in the time domain the application of complex smoothing can retain the initial
high-frequency content of the early components (i.e., the transient behavior of the direct sound and of
the first reflections) and then can progressively introduce a low-pass filtering of the later components
(i.e., of room reverberation) [95]. This is also desirable from another psychoacoustic point of view. In
dispersive room environments, the ear is very sensitive to the signal onsets (i.e., to the full frequency
range of the first part of the RIR), while it is less sensitive to the high-frequency components of late
reflections [19,22,24,35]. When the complex smoothed impulse responses are used for the design of an
RRE, they allow the avoidance of compensating sharp notches at high frequencies in order to obtain a
reduced length of the equalizer, and they provide a more robust equalization with lower sensitivity to
possible changes in the listener position and to other variations in the room response [2,35]. Figure 4
shows the complex smoothing effect on an RTF for different resolutions. By introducing an appropriate
delay in the equalizer, complex smoothing allows the mixed-phase equalization of a room response.
As an alternative to complex smoothing, frequency-dependent signal windowing [96] or a separate
smoothing of the magnitude and phase of the transfer function [97] have been proposed.
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Figure 4. Complex smoothing of a measured room transfer function (RTF): (a) RTF; (b) 1/12
octave-band complex smoothing; (c) 1/3 octave-band complex smoothing.

5.2.2. Frequency Warping

Another technique that provides a nonuniform frequency resolution is “frequency warping” [98].
The original idea of frequency warping is presented in [99], where a nonuniform Fourier transform is
introduced. The technique consists of replacing the unit delay z−1 of digital filters with a first-order
all-pass filter,

D1(z) =
z−1 − λ

1− λz−1 , (3)

thus obtaining a bilinear mapping of the unit circle on itself. The warping effect can be adjusted to
approximate the spectral representation of the ear [100]. In [101], analytic expressions that approximate
the Bark and ERB scale are provided. They allow for a very good approximation of the Bark scale
and less accurate approximation of the ERB scale, due to the higher frequency resolution required,
particularly at low frequencies. The effect of the frequency warping can be easily reversed by again
replacing the unit delay z−1 with the all-pass filter

D̃1(z) =
z−1 + λ

1 + λz−1 . (4)

Figure 5 shows an example of the effect of frequency warping on an RTF for different values of λ.
The reader should note the expansion of the low frequency range and the compression of the high
frequencies obtained with positive values of the warping parameter λ.

Warped FIR and IIR filters can be obtained by replacing the tapped delay line with a chain of
first-order all-pass filters, but while the implementation of warped FIR filters is immediate [66], warped
IIR filters require appropriate structures to avoid delay-free loops [102]. Warped FIR filters are strictly
related to the Laguerre filters [103], the only difference being the fact that in a Laguerre filter there is
an additional prefilter placed before the all-pass chain [66]. A logarithmic frequency scale can also
be approximated, but in this case the all-pass chain has to be replaced with a filterbank formed by
all-pass filters.

Frequency warping has been exploited in many audio applications, from LPC analysis [100],
audio equalization [104,105], loudspeaker equalization [106–108], and physical modeling of guitar
bodies [109], to head-related transfer function (HRTF) filtering [66,109]. The reader is referred to [66]
for a review of frequency warping techniques and their applications. In the context of RRE, frequency
warping has been used by many researchers in minimum-phase equalization to improve the equalizer
performance by expanding the resolution at low frequencies and compressing it at high frequencies.
A psychoacoustically-motivated frequency scale—in most cases the Bark scale—is used. For example,
in the approach of [70,71], a prototype room response is first frequency warped to an approximate
Bark scale. Then, an all-pole model of the room response is obtained in the warped domain using
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LPC analysis. Eventually, a minimum-phase equalizer is derived in the time domain by de-warping
the inverse of the all-pole model with (4). The main disadvantage of this approach is represented by
the high computational cost of the frequency warping operation. In [73,75], frequency warping was
efficiently implemented by nonlinearly sampling a high-resolution fast Fourier transform (FFT) of the
prototype room response.

Figure 5. Frequency warping of a measured RTF: (a) RTF; (b) warped RIR with λ = 0.2; (c) warped
RIR with λ = 0.5.

5.2.3. Kautz Filters and Parallel IIR Filters with Fixed Poles

Kautz filters are rational orthonormal filter structures. They are orthonormal since they have
orthonormal impulse responses. Continuous-time rational transfer functions with orthonormal
impulse responses were studied by Kautz in [110]. Discrete-time orthonormal transfer functions
were later studied by Broome in [111], who named them “discrete Kautz functions”. Kautz filters
can be considered as a generalization of warped FIR filters and Laugerre filters, where the chain of
all-pass filters with equal poles is replaced by a chain of all-pass filters with individual poles, possibly
complex [54]. Figure 6 shows the results of Kautz modelling a measured RTF.

Figure 6. Kautz filter applied on a measured RTF: (a) RTF; (b) Kautz model of order 1000; (c) Kautz
model of order 300.

By properly choosing the poles, it is possible to realize an arbitrary allocation of the frequency
resolution of the designed filter. An approximation of the log-frequency scale resolution with Kautz
filters can be found in [55]. The poles can be chosen a priori on the basis of the desired resolution,
but they can also be tuned to the specific application by matching the pole frequency with the
resonances of the system to be modeled [54]. In practice, fine tuning of the poles is necessary
when designing low-order models for highly resonant systems [54]. Once the poles are chosen,
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system identification using Kautz filters can benefit from the orthogonality of the impulse responses.
The reader is referred to [54] for a discussion about pole fitting and identification methods.

Kautz filters have been used for RRE, exploiting the nonuniform frequency resolution of these
filters. They have been applied both for minimum-phase and mixed-phase equalization, using both
fixed poles or tuned poles [54,55]. When a fixed pole approach is used, the Kautz filters can also
be designed and implemented in the form of a filterbank of second-order sections [112–114], with
advantages for the computational complexity. In [114,115], the theoretical equivalence of parallel filters
and Kautz filters is shown, and formulas to convert the parameters of the two structures into each
other are given. Figure 7 reports a parallel filter design example following the methodology of [114].

Figure 7. Bank’s parallel filter design example: (a) RTF; (b) the resulting filter frequency response. The
dotted lines represent the individual transfer functions of the 16 second-order sections, while the circles
display the pole frequencies.

5.2.4. Multirate Approaches

Another possibility for achieving a nonuniform frequency resolution is given by multirate
approaches. In these approaches the spectrum is divided into different bands, that are down-sampled
and separately processed with filters of different length. In most of the proposed approaches, one of
the filters covers the low frequencies [50,72,116–120] which is used for modal equalization and low
resonances control (see Section 6.5) or for bass management. Generally, the low-frequency filters must
compensate very long reverberation times, and thus the filters benefit from the high down-sampling
at low frequencies. The filters used for mid and high frequencies generally use a lower resolution
compared to the low frequencies, with strong computational savings.

For example, in [119] the authors propose a dual band equalization procedure. The low frequency
channel is restricted approximately to the Schroeder frequency through down-sampling. An FFT-based
technique with regularization is used to design a minimum-phase equalizer with homomorphic
filtering. The upper band is also equalized with a minimum-phase equalizer designed with LPC
analysis and warping techniques. In [120], the same authors have instead divided the spectrum into
three bands: the low-, mid-, and high-frequency bands. The low band is again restricted approximately
to the Schroeder frequency—specifically 150 Hz—through down-sampling, but the equalizer is now
designed with the LPC technique. In the mid-frequency band from 150 Hz to 900 Hz, the equalizer is
designed with a warped LPC technique to focus attention to the lower part of the band. Above 900 Hz,
the high-frequency spectrum is smoothed to reduce sensitivity to position, and then the equalizer is
found by inverting the smoothed spectrum, imposing a slightly decreasing target function. The authors
have also combined this basic equalizer with an excess phase equalizer in the low-frequency band,
and a pre-processing based on a deconvolution technique in the first 10 ms after the direct sound.

In [72], the authors have combined the multi-point fuzzy c-means clustering technique of [121]
(see Section 6.2) with a dual-band multirate approach, separating the low-frequency band below 80 Hz
from the high-frequency band beyond 80 Hz. The low-frequency band is decimated by a factor of 256
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to work with small length room responses, prior to applying the fuzzy c-means clustering technique
for designing the equalizer.

5.3. Room Impulse Response Reshaping

Another possibility for taking into account the psychoacoustic characteristics of the ear is that
of reshaping the impulse response in such a way that the alteration of the room becomes inaudible.
In RIR shortening, the attenuation of the original RIR is accelerated so that the reverberation effect is
weakened. Different techniques have been proposed in the literature [78,122–130]. In what follows, we
review the most relevant methods. Most of these methods are not RRE methods in a strict sense, but
they could be easily combined with RRE techniques.

The first attempts of RIR reshaping [122,123] tried to adapt the concepts of channel shortening
developed in the telecommunication area [131–134], applying least-squares optimization algorithms.
By properly designing a reshaping filter, it is possible to maximize the energy of the equalized RIR in
a desired time window, minimizing at the same time the tails of the room response in an undesired
window. In this way, for example, it is possible to directly maximize the D50 measure for intelligibility
of speech, which is the ratio of the energy within 50 ms after the first peak of an RIR versus the energy
of the complete response. The least-squares optimization of the reshaping filter segregating the desired
time window from the undesired window provided unsatisfactory results [122] in the form of audible
late echoes or spectral distortions. These problems are caused by the strong separation imposed
considering non-overlapping desired and undesired windows, and by the least-squares optimization
that leads to a non-uniform error distribution. Thus, already in [122] the authors modified the channel
shortening paradigm with the aim of shaping the desired impulse response to a shorter reverberation
time, considering a gradual transition between the desired and undesired windows.

The approach was improved in [78,124,126,127]. These approaches exploit the psychoacoustic
properties of the human auditory system, and in particular the forward-masking effect. They aim
to obtain an equalized response that decays sufficiently quickly to avoid audible echoes, such that
the reverberation time is masked by the direct sound according to the forward-masking effect of
the human auditory system. The desired and undesired windows are here specified according
to the average forward masking curve of [47] and [43]. Moreover, to avoid the problems due
to least-squares optimization, infinity-norm and p-norm optimization (with large values of p) are
proposed. The approach is also applied to multi-channel problems in [125,130].

No spectral requirement is imposed by any of the above-mentioned RIR reshaping approaches.
In most cases, these approaches usually yield a flat overall frequency response, but with very
long impulse responses they may lead to spectral distortions [128]. To contrast this problem,
in [128] the objective function is modified to incorporate a p-norm-based regularization term in
the frequency domain, thus imposing the joint optimization in time and frequency domains. In [135],
the regularization term is replaced by an integrated spectral flatness measure, which allows the
integration of the concept of auditory scales into the equalizer design. Thus, the approaches of
[128,135] combine RIR reshaping with RRE.

6. From Single-Point to Multi-Point Equalization

Another classification of RRE is relative to the number of microphones or control points used.
Classical approaches are based on the use of one RIR captured near the listener position (see Section 4),
implying a specific sweet spot where the equalization is effective [136]. The objective of multi-point
equalizers is to enlarge the equalized zone [137], also improving the robustness of the equalizer
towards measurement errors and variations of the room response, implicitly exploiting the variation
between the multiple measurements. In what follows, a review of multi-point equalization methods is
given, taking into account that most of the techniques discussed in the previous sections have also
been applied to multi-point RRE.
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6.1. Average and Weighted Average Methods

One of the earliest multi-point approaches was proposed by Elliot and Nelson. In [77], the authors
presented a method for designing an equalization filter for sound reproduction systems by adjusting
the filter coefficients so as to minimize the sum of squared errors between the equalized responses
at multiple points in the room and a delayed version of the original signal. The paper considers
both fixed and adaptive equalizers based on filtered-x algorithms. The approach is effective and has
also been applied in many other improved techniques [9,31,33,118]. The main limitation is given
by the fact that the implicit averaging in the sum of squared errors cannot exploit the similarities in
the room responses, nor can favorite equalization at certain positions. In the context of car audio
equalization [118], the technique was improved by considering multi-point equalization with a
weighted average of the errors. The solution provided improvements in the response at the selected
location, “without significant degradations at other points” [118].

6.2. Clustering Methods

We can exploit the similarities between different spatially distributed room responses by clustering
them according to a chosen distance measure. In [138], the “extremely large set” of possible RTFs within
an enclosure was grouped together and equalized by a smaller number of equalizers. The RTFs were
modeled with all-pole filters using LPC analysis, and thus minimum-phase equalizers were designed.
Then, vector quantization was performed to optimally classify the all-pole filters. The classification
can be used as a spatial equalization library, achieving reduction in reverberation over a wide range of
positions within the enclosure, depending on the actual position of the listener. The main limitation of
this method is the necessity to extract and memorize a large set of room responses and equalizers and
to track the position of the listener.

A fuzzy c-means clustering method is applied in [30,70–72,121,139,140]. In the approach of [121,139],
“representative prototypical room responses” are derived from several measured room responses that share
similar characteristics using the fuzzy c-means unsupervised learning method. The prototypical
responses are then combined to form “a general point response” based on the fuzzy standard additive
model of Kosko [141,142]. The method employs a weighting according to “the level of activation” of a
prototype, depending upon the degrees of assignment of the room responses to the cluster containing
the prototype. The equalizer is then computed from the inverse of the general point response using
LPC analysis, “obtaining a significant improvement in equalization performance over the spatial averaging
methods” with the suppression of the peaks in the room magnitude spectra [139]. The method was
further improved in [70,71,140] by applying the fuzzy c-means clustering to warped impulse responses,
thus taking advantage of the perceptual properties of the ear. The approach was also combined with
multirate filtering in [72] to allow effective filtering of the low frequency response at low sampling
rates with computational savings.

The approach of [70,139] was later improved by applying frequency warping and fuzzy
c-means clustering to the magnitude room responses [73,75], with a strong improvement in terms of
computational complexity. A weighted fuzzy c-means clustering was also proposed in [143], where the
RIR samples were weighted in a different manner to account for the different effect they have on RRE.

6.3. Prototype Approach

The fuzzy c-means clustering approach of [70,139] is also a first example of a “multi-point prototype
approach”. These methods use measurements of the room response in different locations to extract
a prototype response which is representative of the perceptual acoustic situation that has to be
corrected. A single equalizer is then designed with indirect or direct methods [55], on the basis of this
prototype response.

Different approaches for the determination of the prototype response were studied in [144].
In particular, the fuzzy c-means method was compared with the mean average, the median, the
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min-max, and the root-mean-square average, and applied to fractional octave complex-smoothed
spectra. The equalizer was then derived by inversion or the Kirkeby algorithm [81], or LPC analysis,
with minimum-phase equalization. In the considered conditions, the mean average gave the best
results, with the other methods also providing similar performance. The prototype extraction approach
based on mean average was also combined with the method of [73] and applied to room-response
equalization [75,145]. Subjective listening tests confirmed the good results obtained with the
approach [75]. The approach was further extended in [146,147] by also considering a group-delay
equalization. In [146], after the determination of the minimum-phase equalizer, the smoothed phase
responses measured at different positions are corrected with the phase response of the equalizer
and are used to determine the group delay responses. A prototype group delay is computed by
averaging the group delay at the different positions, and after spectral smoothing is used to extract an
all-pass FIR group-delay equalizer. In [147], the prototype phase response used to determine the phase
equalizer is extracted only from the early reflections, which represent the contribution of the direct
sound, discarding the late reflections that represent the reverberation of the environment. The mixing
time between early and late reflections is calculated using the approach presented in [147,148] based
on Gaussianity estimators. The prototype function is truncated using the mixing time, and an FIR
phase equalizer is obtained with the matched filter technique; i.e., time-reversing the all-pass impulse
response. With this approach, pre-ringing artifacts are avoided, since only the early reflections are
considered in the equalizer. In fact, taking into consideration only the first reflections, only the main
characteristics of the room are considered and those parts of the impulse response which contain zeros
that vary with the position and according to [149] produce the pre-ringing artifacts are avoided.

A prototype approach is also followed in [93,150–153]. According to the authors, “part of the impact
of a listening room is natural to the human ear and should not be removed by a room correction system” [93].
In particular, sound reproduction in a room normally causes an increased sound pressure level at the
lower frequencies, because of the lower absorption typically found at these frequencies. Since this
effect is natural to the human ear, as it provides the sense of being in a room, room equalization
systems should not be allowed to remove the smooth increase in level at low frequencies, also referred
to as the “room gain”. The room gain describes how the room efficiency increases at low frequencies
compared to high frequencies [152]. Moreover, the prototype response should preserve the basic
characteristics of the loudspeaker; i.e., the equalizer should not try “to make all loudspeakers sound
alike”. Thus, the developed system estimates the main characteristics of the loudspeaker: lower
cut-off frequency and slope, sensitivity, directivity index, and upper cut-off for the treble driver.
The equalizer is designed by acquiring information both of local properties at the listening position
and on the acoustic power in the three-dimensional sound field. The RRE is based on measuring
the sound pressure at the listening position and in at least three other randomly selected positions.
The measurement in the listening position holds information on the perceived sound field, while
the other room measurements hold information on the energy in the three-dimensional sound field.
The information is then used to calculate lower and upper gain limits for the designed equalizer.
The prototype response is automatically calculated based on the measurements. At low frequencies,
the prototype response is designed to provide the same room gain of a listening room conforming
to the IEC 268–13 standard [154], approximating a smooth room gain with a second-order shelving
function, which adds 6 dB level smoothly below 120 Hz [152]. The equalizer is minimum phase and
designed on basis of the homomorphic technique [151].

6.4. Common Acoustical Poles Compensation

At low frequencies strong resonances can appear in the room response. These resonances are
often independent of the position and are associated with long slowly-decaying modes. Different
techniques have been proposed to compensate the low-frequency response. Many of these techniques
exploit multi-point measurements to determine the spectral properties of the resonances.
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A model for a RTF using common acoustical poles corresponding to the resonances of a room
is proposed in [63]. The common acoustical poles are estimated as the common pole values of many
low-frequency RTFs estimated for different source and receiver positions. The poles are computed
from an LPC model of the room response, estimated by two possible methods: (i) using a least-squares
method, assuming all measured RTFs have the same LPC coefficients and (ii) averaging the LPC
coefficients estimated from each measured RTF. The estimated poles correspond to the major resonance
frequencies of the room. Then, using the estimated common poles, the method of [63] models the RTF
with different moving average coefficients. The model is called by the authors the common acoustical
pole and zero model, since it is a zero-pole model formed by the common acoustical poles and the
zeros provided by the moving average coefficients. The approach was later expanded in [64,65].
In [64], a multi-point equalization filter using the common acoustical poles is proposed. The common
acoustical poles are again estimated as common LPC coefficients from multiple measurement of
the RTFs. The equalization is then achieved with an FIR filter having the inverse characteristics
of the common acoustical pole function. As for the other all-pole models, the equalization filter
is a minimum-phase equalizer that cannot compensate for the notches of the frequency response.
Nevertheless, the filter can suppress the common peaks due to resonances in the multiple positions,
and has low sensitivity to changes in the receiver position. In [65] a pre-conditioning stage is added to
the common acoustical poles equalizer. The pre-conditioning stage suppresses low-Q resonances in the
entire spectrum, while a second stage based on the common acoustical poles suppresses or minimizes
the low-frequency resonances. In [155], an empirical technique to select an appropriate order for the
common acoustical pole model is proposed. The technique selects the first order for which a further
growth does not lead to an improvement in the modeling accuracy for at least one of the measured
RIRs. The model order depends on the chosen maximum frequency of the modeled poles. The iterative
algorithm of [156] is also based on the common-acoustical-pole and zero model. It designs biquadratic
filters suitable for multi-point RRE.

The common acoustical poles compensation could also benefit from the filterbank technique based
on second-order sections of [112–115], exploiting in particular the logarithmic frequency resolution
and the ability to customize the pole positions.

6.5. Modal Equalization

Modal equalization has also been proposed at low frequencies [4,157]. Modal equalization aims
to control excessively long decays in listening rooms caused by low-frequency modes, minimizing
the audibility of these resonances. Modal equalization balances the rate of sound decay of the
low-frequency modes to correspond to the reverberation time at mid and high frequencies. This is not
an RRE technique by itself, but it can be used with conventional magnitude equalization to optimize
the reproduced sound quality. In [157], two methods for implementing active modal equalization are
proposed. The first approach considers a single loudspeaker and filters the sound such that the mode
decay rates are controlled (e.g., using a filter with couples of zeros placed in correspondence to the
poles responsible for the resonances). The second approach implements modal equalization by one
or more secondary loudspeakers. A correction filter is considered for each secondary loudspeaker
in order to produce a compensatory sound. The first approach was studied in depth, and different
techniques for identifying the modes, estimating their parameters, and designing the equalizer are
presented. Estimation of the modal decay parameters is based on the nonlinear optimization of the
model for exponential decay plus stationary noise floor presented in [158].

6.6. Plane Wave Approach

Another possibility for equalizing the sound in the low-frequency region is that offered by the
plane wave approach. In rectangular rooms with a symmetric arrangement of loudspeakers in two
opposite walls, it has been shown in theory [159] and experiments [160] that equalization within the
entire room can be achieved at low frequencies. The approach generates a plane wave that propagates
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from one wall to the opposite one, where it is absorbed by the loudspeakers. In the experiments of
[160], the signals fed to the loudspeakers are determined with the RRE approach of [89]. The error
sensors are positioned in two planes perpendicular to the direction of propagation of the simulated
plane wave. The desired signal in the planes is a Dirac delta function with a delay corresponding to
the time it takes the sound to travel the distance between the planes. A plane wave approach has also
been studied by the authors of [161–165]. First, in [161], the authors developed an application based
on finite-difference time domain approximation for studying low frequencies in audio reproduction.
In particular, a rectangular room has been simulated by using a discrete model in time and space.
Then, in [162] the application was used to study different configurations of loudspeakers in the room
to reduce the effect of the acoustic modes. It is shown that by increasing the number of loudspeakers,
the variation of the room response across positions is improved at the expense of an increment in
the magnitude deviation at every position. The application has also been used to assess the effect of
different equalization techniques, such as multi-point equalization and equalization of the acoustic
radiation power of the loudspeaker. Eventually, a solution for equalizing the low-frequency sound field
using multiple loudspeakers—named controlled acoustic bass system (CABS)—was proposed and
studied in [163–165]. This solution creates a traveling plane wave in one side of the room and cancels
it at the opposite wall using extra loudspeakers, with delayed and anti-phase response to remove
back-wall reflections. Using the application of [161] and real measurements in rectangular rooms, the
authors have shown that the CABS solution can produce a uniform acoustic field in the low-frequency
range. In [166], the approach of [159,163] is further extended to rooms of arbitrary shape with multiple
loudspeakers “situated in more normal locations” considering a 5.0 loudspeaker set-up. Additionally,
[167] has addressed the problem of a non-rectangular room and of an asymmetric loudspeaker set-up.
In [167] a multiple-input/multiple-output (MIMO) equalization technique that prescribes only the
magnitude of the room response in the control points is proposed. The approach allows a smaller
magnitude deviation to be obtained compared to the previous plane-wave approaches.

To improve equalization with plane waves, a control approach called effort variation
regularization was proposed in [168]. In this approach, the conventional cost function of RRE
of [169]—based on the minimization of the least-squares error in multiple control points—is modified
by adding a regularization term proportional to the squared deviations between source strengths.
The approach can be applied both in the frequency and time domain. Simulation results show that
the technique can lead to smaller global reproduction errors and better equalization performance at
listening positions away from the control points, than the Tikhonov regularization or the approach
based on feeding the same signal to all loudspeakers placed on the same wall.

6.7. Other Low-Frequency RRE Approaches

At very low frequencies, instead of a plane wave, it is much more efficient to use a pressure-field
chamber approach [170]. This approach is obtained by sending the same signal to all loudspeakers.
This generates a standing wave pattern inside the room, which is homogeneous at wavelengths
considerably larger than the room. For this reason, in [170] a hybrid-field playback approach is
proposed which combines the efficiency of the pressure-field playback at the very low frequencies
with the homogeneous sound-field obtained with the plane wave approach at higher frequencies.

In [79], the problem of multiple-loudspeaker low-frequency RRE for a wide listening area,
with the equalized loudspeaker supported by the remaining ones, is addressed as a multipoint
error minimization problem between the desired response and the synthesized magnitude response.
The cost function is minimized, imposing physical and psychoacoustical criteria. In particular, to obtain
short equalization filters, a temporal masking constraint is imposed on the equalization filters. To avoid
perceivable echoes, a combination of delay and gain relative to the main loudspeaker is considered,
with the auxiliary loudspeaker signals that should fall below the echo threshold [171]. To avoid
modifications in the spatial perception, the delay of the auxiliary loudspeaker signals is enforced to be
at least of 1 ms in order to exploit the precedence effect. To avoid boosting the notches, a maximum-gain
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is imposed on the equalizers. The room equalization filters are computed considering a convex
optimization framework that takes all these constraints into account.

6.8. Quasi-Anechoic Approach

An approach that is complementary to the low-frequency techniques introduced in the previous
sub-section is the quasi-anechoic approach of [172]. At mid- and high- frequencies, the timbre
perception and localization is dominated by the direct sound. Thus, in [172], a quasi-anechoic
loudspeaker response is obtained as a gated version (up to the first reflection) of the RIR and is used to
design the equalizer in two steps. First, a mixed phase equalizer is derived from the quasi-anechoic RIR,
computing the inverse filter with a least-squares approach. The quasi-anechoic loudspeaker response
has a short length and the delay introduced by the equalizer is too short to produce pre-ringing
artifacts. Then, a minimum-phase equalizer is used to correct the remaining part of the room response
(i.e., the magnitude spectrum modifications caused by reverberation).

In [173], the quasi-anechoic approach is combined with the prototype approach described
in Section 6.3. In particular, a novel prototype function is derived from the combination of
quasi-anechoic impulse responses with the impulse responses recorded in the real environment
to be equalized. The approach is used to equalize the direct sound only in the mid–high-frequency
range, while applying full equalization in the modal frequency range. The approach is motivated again
by the fact that at mid and high frequencies the timbre perception and localization is dominated
by the direct sound. Thus, the measurable but mostly inaudible magnitude deviations due to
reflections should not be equalized [174]. In [173], several experiments were conducted in order
to validate the proposed approach, reporting objective measurements and subjective listening tests
in comparison with approaches of the state-of-the-art. In this context, Figures 8 report the results
of the equalization procedure. In particular, Figure 8a shows four impulse responses acquired in a
real room—the prototype function and the equalizer obtained with the multi-point approach of [173]
and the single-point equalizer derived as an inverse filter of the smoothed frequency response of IR1.
Figure 8b shows the effect of the equalization procedure on the IRs applying the multi-point approach,
while Figure 8c shows the effect of the single-point equalizer. It is evident that the performance of
the single-point equalizer is very good only for IR1, while the multi-point equalizer exhibits flatter
frequency responses compared to those obtained with the single-point approach.

(a)

Figure 8. Cont.
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(b)

(c)

Figure 8. Equalization procedure: (a) impulse responses (IRs) with prototype function Hprot,
multi-point equalizer EQmulti, single-point equalizer EQsingle. Equalization results applying (b)
single-point equalizer EQsingle; and (c) multi-point equalizer EQmulti.

7. Adaptive Single-Point and Multi-Point Equalization

The room is generally a time-varying environment (a “weakly non-stationary” system as defined
in [2]) that changes as a function of several parameters, such as the position of physical objects
in the room, the opening of doors, as well as the movement of people and other obstacles in the
enclosure [6,175]. Additionally, temperature variations can lead to large variations in the RIR,
as reported by [176]. Furthermore, variations of the source and receiver positions, and of loudspeaker
and microphone characteristics may occur as reported in [6]. Thus, adaptive solutions suitable to
track and correct slow variations in the room response should be adopted. Different adaptive RRE
techniques have been proposed in the literature. The approaches are here classified considering the
number of input and output channels as SISO/SIMO, and MISO/MIMO, where input refers to the
number of loudspeakers and output to the number of microphones, since these classes share similar
problems in the identification procedure.

7.1. SISO/SIMO Approaches

These techniques can be classified into time domain and frequency domain approaches.

7.1.1. Time Domain Approaches

A first adaptive equalizer was proposed in [77], considering the variability of the environment
from different points of view. The approach was based on a single-point technique, adaptively
minimizing in the time domain the mean-squared error between the equalized response and a delayed
single-channel version of the original signal using a filtered-x algorithm. The equalization was effective
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for the considered position, but a degradation in other points of the enclosure was introduced, as also
described in Section 6. Therefore, a multi-point approach was also presented by the same authors
in [77], where the equalizer was designed by adaptively minimizing the sum of squared errors between
the equalized responses in several positions and a delayed version of the input signal. Unfortunately,
the approach is very sensitive to peaks and notches in the room response and to room response
variations at different positions. As a consequence, pre-echo problems can easily be experienced.

7.1.2. Frequency Domain Approaches

Working in the frequency domain, a single-point RRE technique was proposed in [177]. Here,
the loudspeaker and microphone signals are split into subbands (a 20-band filterbank) and the
equalization is achieved by adaptively updating the filter weights in these subbands. The approach
is interesting because it combines simplicity, robustness towards peaks and notches of the room
response, and the ability to track room response variations. It was improved in [178] by introducing
a frequency-dependent step size. In this way, it is possible to optimize the adaptive equalization
in each subband, improving the overall convergence speed. In [179], a further improvement of the
previous methods [177,178] has also been presented to cope with the online identification of the
impulse response. In particular, the room response estimation is obtained by means of inserting
artificial test signals in such a way that they remain inaudible to listeners by exploiting frequency
masking. The signal is then analyzed in the frequency domain to identify the test signal and to
determine the RIR. In [180] the approach of [177,178] was elaborated and improved by developing a
multi-point solution. After identification in frequency bands, a fractional octave smoothing is applied
to the impulse responses, and a prototype filter is computed from the mean of the room magnitude
responses. The obtained results have shown that the performance of this rather simple structure can be
improved by considering a multi-point solution, which results in an increased width of the equalized
zone. In [84], the approach of [180] was further elaborated considering frequency warping in the
low-frequency region to improve perception. Specifically, the room responses at different positions in
the zone to be equalized are estimated in the warped domain and the common trend of these responses
is extracted as a prototype function. This allows the equalizer resolution to be increased at frequencies
where the human auditory system is more sensitive. Adaptive versions of the filterbank techniques of
[112–115] could also be used for the same purpose.

7.2. MISO/MIMO Approaches

The adaptive RRE techniques proposed in [84,178,180] (and many other papers) consider the
equalization of a single sound source (i.e., of a single audio reproduction channel), due to the problem
of estimating several impulse responses at the same time. If two or more channels are employed, the
covariance matrix of a multichannel adaptive algorithm becomes ill-conditioned due to the correlations
between the channels for typical reproduction techniques. The ill-conditioning generally causes
convergence problems. This was shown, for instance, for stereophonic acoustic echo cancellation [181].
To cope with the non-uniqueness problem, a method to reduce the inter-channel coherence is usually
exploited. In this context, many of the techniques used to reduce the channel cross-correlations
often introduce significant distortions, which are unacceptable in high-quality sound reproduction
systems [181,182]. Therefore, a suitable technique which is capable of decorrelating the loudspeaker
signals and of preserving the audio quality must be considered. The approach in [183] introduces a
multichannel solution which also considers the non-uniqueness problem. The room responses are
estimated with good accuracy by reducing the inter-channel coherence using a technique that produces
only a mild degradation of the sound quality. Specifically, the low-frequency region is decorrelated by
exploiting the missing-fundamental phenomenon, while the high frequencies are decorrelated with a
second-order time-varying all-pass filter combined with a multiple notch filter [184]. The equalizer is
designed in the warped frequency domain to improve the equalization in the low-frequency region and,
at the same time, to reduce the computational cost of the design. In [185], the adaptive multichannel
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and multi-position RRE system briefly introduced in [183] is fully detailed and extended, providing a
real-time implementation in commercial Hi-Fi products.

To improve the convergence speed and the robustness of the adaptive identification algorithm
in the presence of low signal-to-noise ratio, the use of a biased adaptive algorithm has recently
been proposed in [186] for a MIMO system. In detail, the algorithm is based on the improved
proportionate normalized least-mean squares algorithm (IPNLMS) within the conventional filtered-x
scheme (IPNLMS-FX), previously introduced for active noise control (ANC) [187], and here extended
towards multichannel equalization. However this method requires an a priori estimation of the
impulse responses, which is not available in many practical applications. With the same purpose of
improving convergence and robustness, a combination of block-based adaptive filters (also employing
biased algorithms) was proposed in [188].

It is worth underlining that if a binaural system is considered, a natural decorrelation among
stereo channels is obtained. A stereo representation of an adaptive RRE system can be achieved without
channel decorrelation, as reported in [169,189]. An improvement of this technique is presented in [190],
where a subband structure is proposed to reduce the computational complexity of the procedure.

8. Fixed and Adaptive Wave Domain Equalization

The equalization approaches reviewed so far considered the reproduced sound field at one
or more points in space. These points should ideally coincide with a potential listener position or
restricted listening area. A broader view of equalization can be gained by taking the entire reproduced
sound field within the desired—potentially large—listening area into account. This can be achieved
by taking the spatio-temporal character of the sound field instead of the sound pressure at a limited
number of points into consideration. In order to lay the grounds, the background of equalization
following such a field-centered view is reviewed in the next subsection. This is followed by a review
of representative approaches in the subsequent subsections.

8.1. Physical Background

The Helmholtz integral equation (HIE) [191] provides the solution of the inhomogeneous wave
equation with respect to homogeneous boundary conditions. This covers—among others—the sound
field reproduced by a distribution of loudspeakers in a room. The HIE states that the sound pressure
within a source and scatterer free volume V is uniquely determined by the sound pressure and its
directional gradient at the boundary ∂V of the volume. This finding can be exploited for the analysis
of sound fields as well as for their synthesis. For the analysis of sound fields, it is sufficient to capture
the sound pressure and its gradient at the border of the volume of interest. The same holds for the
synthesis of sound fields where placing loudspeakers around a listening area allows full control
of the sound field within that area. However, in terms of technical complexity, it is generally not
desirable to capture both the sound pressure and its directional gradient using two different types of
microphones placed at the boundary of the listening area. The same also holds for the synthesis using
loudspeakers. Here one would have to employ monopole and dipole loudspeakers. Microphones and
loudspeakers with the properties of a monopole are desirable over their dipole counterparts. It has been
shown [192] that the HIE can be reduced to a monopole-only variant under some practically feasible
limitations. This lays the theoretical ground of RRE within an extended listening area. In summary,
the sound field within the listening area can be analyzed and controlled by a continuous distribution
of microphones and loudspeakers located on the boundary of the listening area. However, the solution
of the underlying continuous problem requires the solution of integral equations derived from the
HIE [193]. Operator theory provides a solution to this problem by expanding Green’s function into
orthogonal basis functions. A closer look onto this will be taken in the subsequent section on wave
domain adaptive filtering.
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For a practical implementation of the principles outlined above, only a finite number of
microphones and loudspeakers can be used. Hence, the continuous distribution of microphones
and loudspeakers must be sampled spatially. The geometry and sampling is illustrated in Figure 9.

Figure 9. Application of the Helmholtz integral equation (HIE) to room compensation and spatial
sampling of the loudspeaker and microphone contour.

The wave-theoretical view on RRE introduced above requires a sufficiently dense sampling of the
loudspeaker and microphone contour. For typical systems, this calls for a high number of loudspeakers
and microphones even when the upper frequency limit is quite low. Spatial sampling has been
investigated intensively for different geometries and techniques [194–196]. The full three-dimensional
coverage of the listening areas boundary by loudspeakers and microphone is often not feasible
in practice. The limitations of considering only a planar listening area leveled with the listener’s ears
which is surround by loudspeakers are discussed in [197].

8.2. Wave-Domain Adaptive Filtering

An adaptive solution to the computation of RRE filters is desirable since the acoustic transfer
paths may change, for instance due to people entering the room or due to temperature changes. As an
example, the consequences of varying the room temperature on RRE using static filters are illustrated in
[198]. A wide variety of adaptation algorithms have been developed in the past. Since RRE is an inverse
problem, the class of filtered-x algorithms is well suited. The filters may be computed adaptively
with the multichannel filtered-x recursive least-squares algorithm (X-RLS) [199]. However, in the
context of multichannel RRE, an adaptive solution has three fundamental issues: (1) ill-conditioning;
(2) non-uniqueness; and (3) numerical complexity. The first problem is related to the spatio-temporal
correlation of typical loudspeaker signals, the second to the underlying optimization problem, and the
third to the size of typical MIMO systems following the wave-theoretical view. A solution to the third
problem—which also augments the other two issues—has been proposed by wave domain adaptive
filtering (WDAF) [10,200]. Here the underlying MIMO system is decoupled by a set of spatio-temporal
transforms, as illustrated in Figure 10.
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Figure 10. Block diagram illustrating the concept of wave domain adaptive filtering (WDAF)-based
room equalization. The driving signals for the N loudspeakers—denoted by d(N)—are transformed
into the wave domain using the spatio-temporal transform T1, resulting in M transformed components

d̃
(M). These are filtered in the wave domain by the MIMO matrix C̃ of equalization filters, resulting in

the pre-filtered loudspeaker driving signals w̃(M), which are then transformed back by T2. The acoustic
paths between the N loudspeakers and M control points (microphones) are combined into the MIMO
room transfer matrix R. The signals at the control points l(M) are transformed into the wave domain

using transformation T3, resulting in the transformed control signals l̃
(M). The desired free-field

propagation is modeled in the wave domain by the MIMO matrix F̃ of free-field transfer functions,
resulting in the transformed desired signals ã(M) at the control points. The error ẽ(M) used for
adaptation of the compensation filters is given by the difference of the transformed desired signals

ã(M) and the actual signals l̃
(M) at the control points.

The transforms T1 through T3 are motivated by the physical background of the room equalization
problem and its solution using orthogonal expansions, as outlined in the previous section. In terms of
the underlying multichannel problem, this can be achieved by diagonalization of the MIMO systems
using a generalized singular value decomposition (GSVD). This approach is known as eigenspace
adaptive filtering (EAF) [193]. As a consequence, the adaptation problem is reduced to the adaptation
of the main diagonal elements of the MIMO room equalization filter C̃ in the transformed domain.
In this way, the computational complexity is lowered significantly and the non-uniqueness problem is
improved. However, EAF requires that the transfer paths from the loudspeakers to the microphones are
known, which contradicts the idea of an adaptive computation of the equalization filters. Using analytic
transformations which are based upon the free-field solutions of the wave equation, an approximate
diagonalization of the MIMO system has been achieved [10,200].

The original approach focused on adapting only the diagonal paths in the transformed domain.
In [201], this was extended towards a flexible adaptation framework also considering off-diagonal
paths. The full adaptation of all paths in the transformed domain is investigated in [202]. Invertible
transformations for WDAF have been introduced in [203], while a subband approach to WDAF has
been published in [204]. Furthermore, strategies for the use of irregularly-spaced loudspeaker arrays
have been proposed in [205].

8.3. Transform Domain Approaches

WDAF utilizes a set of transformations that transform the multichannel adaptive equalization
problem into a transformed domain. This basic idea of applying a spatial transformation has also been
applied to non-adaptive room equalization aiming at a large listening area. In [206], the sound field
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has been decomposed into circular/cylindrical basis functions for a concentric setup of loudspeaker
and microphone array. This is essentially a two-dimensional problem. The equalization filters have
been computed by least-squares optimization in the transformed domain. Room equalization has also
been considered in the context of multizone synthesis by formulating the three-dimensional problem
in the spherical harmonics domain (e.g., [207]).

A rather different approach is discussed in [208]. Here the original HIE is interpreted such that the
sound field exterior to a spherical loudspeaker array is attenuated by the usage of variable directivity
loudspeakers. The attenuation of the exterior sound field leads to less reflections traveling back into
the listening area. Although such loudspeakers have not yet been realized, the simulation results look
promising. The equalization problem is considered in the spherical harmonics domain, where the
filters are computed by least-squares optimization.

8.4. Room Geometry-Aware Methods

The knowledge of the room geometry can be used to compute the resulting sound field in the
room, for instance by the mirror image method. The control capabilities of a sound field synthesis
system can then be used to cancel out the assumed contributions from the room. Methods which
explicitly exploit knowledge on the room geometry can be seen as a specialization of the methods
discussed so far, since they are based on a wave-theoretic view of the problem. A method for the
equalization of early reflections for wave field synthesis (WFS) has been published in [209]. Here the
mirror image sources are canceled out by anti-phase virtual point sources placed at the pre-computed
positions of the image sources. A similar approach is presented in [210] for higher-order Ambisonics.
An approach to room equalization for a linear loudspeaker array producing beams for a virtual
surround system is discussed in [211]. The equalization of room reflections is achieved by accounting
for the reflection of the beams in the room. The equalization filters are computed by solving the
underlying least-squares problem in closed-form. In [212], a method is presented which is based on
numerically simulating the impulse responses between the loudspeakers and control points. Only the
early reflections are considered. The simulated impulse responses are fed into a MIMO solver for
derivation of the equalization filters.

8.5. MIMO and SIMO Approaches

As an alternative to the wave-theoretic approach discussed so far, the acoustic paths between
the loudspeakers and microphones can be interpreted as independent linear time-invariant systems.
All resulting transfer functions can be combined together into a multiple-input/multiple-output
(MIMO) system. MIMO room equalization approaches differ, amongst others, with respect to the
loudspeaker and microphone positions (control points), and the particular technique used to compute
the equalization filters. The difference between the wave-theoretic and the MIMO approaches discussed
in the sequel is that the computation of equalization filters is not performed in a spatially transformed
domain. Although the placement of the loudspeakers and microphones on the border of the listening
area is motivated by the HIE, MIMO approaches may depart from this placement. As stated above,
a sufficient number of loudspeakers and microphones must be used in order to synthesize and capture
the entire sound field up to a given frequency. If the sampling is not dense enough, equalization may
only be achieved at or in close vicinity to the microphone positions.

A non-adaptive MIMO approach which directly emerges from the discretization of the HIE is
presented in [213]. The MIMO system is inverted in order to compute equalization filters for global
equalization. As an alternative, a local solution is also discussed. A similar approach is followed in
[85] for wave field synthesis. Channel shortening has also been investigated in the context of MIMO
equalization [214,215] based on a least-squares solution.

The computation of equalization filters generally constitutes an inverse problem.
Various algorithms have been proposed that improve the numerical and computational
efficiency, as well as the numerical conditioning—for instance, a fast iterative MIMO inversion
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algorithm working in the DFT-domain [216], or a DFT-domain approximation of the MIMO filtered-x
algorithm [217]. In [216], a steepest-descent and approximative Gauss–Newton iterative algorithm for
the design of a MIMO equalizer is presented. In [218], a method for coping with the low conditioning
of the transfer function matrix at some frequencies is proposed. The problem is amended by
studying the structure of the MIMO transfer function matrix and replacing its inverse matrix by a
pseudo-inverse that allows a range of acceptable solutions. Polynomial-based MIMO formulations
of the room equalization problem are discussed in [219,220] with extensions towards explicitly
controlling the number of active loudspeakers used for equalization [221].

There are also a number of specialized equalization approaches for specific scenarios. For instance,
the equalization of multichannel stereophonic systems under the constraint that stereophonic pairs of
loudspeakers should have similar transfer functions is discussed in [222–224]. The approach is split
into two stages: (i) equalization of a single path also utilizing the other loudspeakers and (ii) similarity
optimization between two channels that are used for stereophonic imaging. The room equalization in
cars has been considered in various studies. A non-adaptive MIMO equalization approach utilizing
IIR or FIR filters is presented in [225]. The optimization is performed in terms of the overall magnitude
response to avoid coloration/tonal issues. A combined room equalization and cross-talk canceling
approach for cars is discussed in [226].

Besides the MIMO approaches reviewed so far, single loudspeaker room equalization
approaches have also been investigated which utilize multiple microphones. This constitutes a
single-input/multiple-output (SIMO) problem. A non-adaptive polynomial multivariate control
approach combined with a constrained mean squared error design and zero clustering is discussed
in [149]. A statistic inferential method which considers the statistical variation between the different
microphone positions for improved robustness and an enlarged listening area is presented in [227].

9. Evaluation Methods for RRE

One important aspect is the evaluation of RRE results, considering instrumental measures or
subjective listening tests. The former aims at measures which are in relation with the goal of the
procedure—for example, quantifying the similarity between the target function and the equalization
result. However, an important role should be assigned to perceptual evaluation, since the final
judgment is always performed by the human listener in the specific environment. In this section, we
first analyze instrumental parameters used as a primary analysis stage of the obtained results. Then,
a review of the most common listening test procedures is reported.

9.1. Instrumental Measures

In the following section, the most common instrumental measures for RRE evaluation are
reviewed. Throughout the section, h(n) denotes the RIR in the discrete time domain, while H(ejω)

denotes its discrete-time Fourier transform with ω being the normalized angular frequency.

9.1.1. Spectral Deviation Measures

The spectral deviation was first used for the evaluation of the RRE procedure in [76], and was
then adopted in many other papers [92,228]. The spectral deviation, SD, of a frequency response E(ejω)

can be expressed as

SD =

√√√√ 1
Qh −Ql + 1

Qh

∑
i=Ql

(
10 log10

∣∣∣E (ej 2Π
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)∣∣∣− D

)2
, (5)
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D =
1
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∑
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(
10 log10

∣∣∣E (ej 2Π
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)∣∣∣) , (6)
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where Ql and Qh are the lowest and highest frequency indexes, respectively, of the equalized band.
Usually, the experimental results provide an initial spectral deviation SD,in, calculated with

E(ejω) = H(ejω), and a final spectral deviation SD,fin, computed after equalization by considering
E(ejω) = H(ejω) · Hinv(ejω), where Hinv(ejω) represents the designed equalizer. Figure 11 shows the
curves used for the SD calculation. A Mean Spectral Deviation Measure (MSDM) that represents the
mean value of the final spectral deviation measures over the entire set of measured RIRs has also been
considered [74,146].

Figure 11. Equalization results: the spectral deviation measures the distance between the equalized
response curve and the flat one: (red) H(ejω), (blue) Hinv(ejω), (green) E(ejω) = H(ejω) · Hinv(ejω).

In analogy to the mean spectral deviation measure, which gives a measure of the deviation of
the magnitude frequency response from a flat one [228], a mean group delay deviation measure was
introduced in [147,229] to quantify the average variation in terms of group delay:

GDD =
1
M

M

∑
l=1

√√√√ 1
Qh −Ql + 1

Qh

∑
i=Ql

(GDl(i)− Kl)
2, (7)

where

Kl =
1

Qh −Ql + 1

Qh

∑
i=Ql

GDl(i), (8)

Ql and Qh are the lowest and the highest frequency indexes, respectively, of the equalized band,
and GDl(i) is the group delay of the M RIRs for the i-th frequency index.

The objective of mixed-phase equalization is to achieve a linear phase, and therefore the group
delay should be as flat as possible: using this parameter it is possible to quantify the distance of the
obtained group delay from a constant delay.

9.1.2. Sammon Map

The Sammon map was introduced for the evaluation of RRE in [230]. It is a non-linear projection
method that maps multidimensional data onto fewer dimensions (e.g., two or three). The main property
of the Sammon map is that it retains the geometrical distances between signals in a multidimensional
space in two or three dimensions. Given the M magnitude responses |Hk(ejω)|, k = 1, . . . , M,
of the measured RIRs, the Sammon map algorithm iteratively minimizes—by a gradient descent
scheme—the cumulative sum of the differences between the Euclidean distances in the high and low
dimensional space. The following objective function is minimized:
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d′lm =
L

∑
i=1
|rl(i)− rm(i)|2 , (11)

where W is the number of equally-spaced frequencies and L is the dimension of the Sammon map space.

In the Sammon map, the point associated with Hk(ejω) is represented as
(

rk(1), . . . , rk(L)
)

.

Considering a two-dimensional mapping (L = 2), upon convergence, the points
(

rk(1), rk(2)
)

with
k = 1, . . . , M are configured on a two-dimensional plane such that the relative distances between
the different Hk(ejω) are visually discernible. After equalization, the resulting performance can be
determined from the size and shape of the region defined by the equalized frequency responses on the
map. A circular shape around zeros indicates uniform equalization at all locations [230]. Figure 12
shows the results obtained using the Sammon map: it can be observed that for IRs without equalization
(Figure 12a), the points are located far from the center of the map, while for IRs with equalization
(Figure 12b), the points are uniformly distributed around the center of the map.

(a)

(b)

Figure 12. Sammon map results: (a) RIR without equalization; (b) RIR with equalization.
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9.1.3. Energy Decay Reliefs

The effect of equalization can be evaluated considering the energy decay relief (EDR), which is a
time-frequency generalization of the energy decay curve (EDC) used to calculate the reverberation
time T60. Since room modes are characterized by peaks in the frequency response and extended
ringing in the time domain, the EDR measure can help to understand the effect of the equalization
procedure. The EDR is defined as the time-frequency representation of the RIR energy decay [231,232],
and working in the continuous-time domain, it is calculated as follows:

EDRh (t, f ) =
∫ +∞

t
ρh (τ, f ) dτ, (12)

where ρh (τ, f ) is the energetic time-frequency representation of the RIR using a short-time Fourier
transform (STFT) procedure applied with a rectangular analysis window.

Figure 13 shows the EDR calculated before and after the equalization procedure. Considering
the temporal behavior, the plots show a reduction in decay times, while in the frequency domain,
a reduction of the frequency peaks can be observed. Generally, after the equalization procedure a more
uniform behavior is obtained, with a reduction of peaks and notches.

(a)

(b)

Figure 13. EDR results: (a) without equalization; (b) after equalization.

9.1.4. Acoustic Parameters

The quality of an audio signal can be evaluated considering some objective quality measures
based on the RIR [233]. Acoustic parameters obtained using objective measures were first used for
the assessment of RRE in [6]. The following acoustic parameters have been used in many papers
about RRE:
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• the definition index, which is defined as the percentage ratio of the energy of the first 50 ms or
80 ms after the main peak to the remaining energy of the RIR (D50 or D80) [13,234];

• the clarity index, which is defined as the logarithmic ratio of the energy of the first 50 ms or 80 ms
after the main peak to the remaining energy of the RIR (C50 or C80) [13,235];

• the early decay time, which is defined as the time in which the first 10 dB fall of a decay process
occurs, multiplied by a factor of 6 (EDT) [13,236];

• the direct-to-reverberation-ratio (DRR), also known as direct-to-reverberant-energy-ratio [233,237,238]
is defined as the logarithmic ratio between the main peak and the remaining RIR;

• the central time (CT) [13,239] is the center of gravity of the energy of the RIR.

9.2. Perceptual Evaluation

To assess the audio quality, listening tests have to be performed following an appropriate
procedure. Many proposals for the perceptual evaluation of an audio system can be found in the
literature [240,241]. However, focusing on RRE and referring to the state-of-the-art, the perceptual
assessment of RRE systems should adhere to the following standards:

• ITU-R BS.1116-1 [242]: “Methods for subjective assessment of small impairments in audio systems
including multichannel sound systems”,

• ITU-R BS.1534-1 [243]: “Method for the subjective assessment of intermediate quality level of
coding systems”,

• ITU-R BS.1284-1 [244]: “General methods for the subjective assessment of sound quality”.

All these recommendations provide a description of the test methodology, test procedure, and
statistical methods to elaborate the acquired data. However due to the broadness of this topic, the
discussion will be focused only on the most relevant procedures that have been applied to RRE.

The ITU-R BS.1284-1 recommendation provides a guide to the general assessment of perceived
audio quality, and has been applied in [75,145] for the assessment of RRE. It is worth noting that ITU-R
BS.1284-1 is based on ITU-R BS.1116-1. According to the guidelines of [244], expert listeners should
be preferred to “give a better and a quicker indication of the likely results in the long term.” The subjective
listening test is conceived as a comparison test, and the listeners should be instructed to provide a
score using a seven-grade scale with a recommended resolution of 1 decimal place, as reported in
[244]. The test is based on paired comparisons with references, and the score is given after listening to
a repetition (four times consecutively) of the predetermined programme sequence. In the case of the
assessment of an equalization procedure, the following sequence is considered in [75,145]:

1. reference sequence without equalization;
2. same sequence, equalized with one of the selected equalization techniques;
3. reference sequence without equalization (repeated);
4. same sequence, equalized with one of the selected equalization techniques (repeated).

As recommended in [244], the stimuli should never exceeded 20 s in length, thus lengths were
limited between 15 to 20 s. Moreover, care was taken in order to guarantee that the tested musical
items did not appear to be interrupted. For each reference signal, the presentation order of the
different equalization methods was randomized and the listener did not know which equalization
methodology was under test. Following the recommendation, before the listening test, a training
set was subministrated to the listeners. As reported in [145], in order to familiarize with the test
procedure, the test materials and the test environment, the subjects had the possibility to listen to
each audio item in all conditions under evaluation. While the ITU-R BS.1284-1 recommendation
suggests several attributes for characterizing the perceived sound quality, in [75,145] three attributes
have been considered; i.e., “transparency” (all details of the performance can be clearly perceived),
“timbre” (accurate portrayal of the different sound), “main impression” (the integrity of the total
sound image and the interaction between other parameters). In order to test the room response
equalizer using different spectral content, different music genres were considered as reference signals.
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Finally, the obtained results were processed to derive the mean values and the confidence intervals.
A significance level of 0.05 was considered for computing the confidence intervals.

10. Emerging Topics and New Trends

In this section, emerging topics and new trends related to RRE are analyzed. In particular,
the necessity of improving the performance of the equalization algorithms combined with the
increasing interest in new technologies have led to innovative applications and interesting
developments.

10.1. Personal Sound Zones

In the last years, there is an increasing interest in the possibility of reproducing different content
in adjacent spatially restricted zones for multiple listeners by reducing the interference between the
zones. These approaches are known as personal sound zones [245], multi-zone synthesis, or multi-zone
sound control. A recent review on this topic can be found in [246], and more details in the numerous
published papers on the subject [247–274]. At the current state, the achievable suppression between
the zones is limited by various acoustical and practical restrictions, resulting in a limited applicability
to real-world scenarios. In [262], an overview is presented on the major challenges that have to
be dealt with for multi-zone sound control in a reverberant environment. Interference mitigation
and room compensation robust to changes and uncertainties in the acoustic environment remain as
challenging problems. An approach to room equalization for sound pressure control over a region of
space combined with a wave domain sound field representation is presented in [262]. The approach
is reported to be robust at low frequencies, but ineffective at high frequencies where the reverberant
sound field is diffuse, calling for a very high number of loudspeakers.

10.2. Portable Devices

In recent years the use of portable devices has increased enormously, reaching a very high level
of expansion. However, due to the loudspeakers’ characteristics and their interactions with the
room environment, many of these devices are capable of satisfying just the basic audio requirements.
This situation can be partially improved taking into consideration the acoustics of these devices and
applying advanced audio techniques. In [275], a multi-point equalization procedure is introduced to
improve the non-ideal response of a portable system such as the mobile phone. Objective measurements
and subjective listening test results have confirmed the positive effect of the algorithms on personal
portable devices. In [276], a static and an adaptive algorithm for frequency response linearization
applied to mobile computers is reported. Subjective listening tests have underlined an improvement
in the listener’s perception, confirming the validity of such approaches.

10.3. Nonlinear Equalization

Sound reproduction systems can exhibit an undesirable behavior not only due to the room
acoustics, but also due to loudspeaker and amplifier systems that can produce linear and nonlinear
distortions. In order to remove the nonlinear effects, in [277–279] equalizers that involve Volterra filters
to model the amplifier-loudspeaker-enclosure are used before driving the output signal through the
loudspeakers. In this way it is possible to equalize not only the linear behavior of the system, but also
its nonlinear behavior considering adaptive procedures.

10.4. Room Equalization with Moving Microphone

One of the main issues of multi-point equalization is the measurement of the RIRs, which requires
a long time to achieve a certain spatial resolution inside the listening area. A solution to this problem
can be found by using time-variant system identification techniques [280,281]. Here RIRs are measured
by applying a dynamic method based on the use of one moving microphone instead of estimating the
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RIRs independently. This procedure allows to obtain a dense grid of RIRs from one spatially continuous
measurement that can be used in multi-point equalization to estimate the prototype function and
equalization filters.

11. Conclusions

In this paper, following the historical path, a complete overview of the state-of-the-art has been
presented. In order to underline the evolution and the potentiality of RRE, different classifications
have been considered for the approaches. A first classification can be done considering the number of
impulse responses used for the estimation of the equalization filter (i.e., single-point or multi-point
equalizers). The former is effective only on a reduced zone around the measurement point, while
the latter is capable of enlarging the equalized zone and contrasting the room response variations.
The second classification can be performed considering an instantaneous or continuous measurement of
the impulse responses (i.e., fixed or adaptive approaches). The former consists of a-priori measurement
of the impulse responses, while the latter is based on a continuous update of the impulse responses
and thus of the equalizer to cope with the temporal variations of the environment. Within this
general classification, we must consider pre-processing techniques that are used to contrast the audible
distortions caused by equalization errors due to the RIRs variations, minimum-phase and mixed-phase,
direct and indirect approaches for different equalizer design techniques, and wave domain filters for
the equalization of massive multichannel sound reproduction systems. Following this classification,
different approaches have been described. Table 1 summarizes the state-of-the-art methods as function
of classification criteria, i.e., pre-processing techniques, minimum phase and mixed phase technique,
fixed and adaptive approaches, single-point and multi-point approaches, direct and indirect methods
according to the definition of Section 4.6, and wave domain methods. It is evident that several methods
can cover more than one aspect, extending the potential and the effectiveness of the methodology.
In this context, the instrumental measurement and perceptual evaluation of the equalization results
become crucial: some examples of the main approaches from the state-of-the-art in this field have been
reported. Finally, a general discussion on emerging methodologies and new trends for RRE has been
presented. It is evident that the increasing availability of personal devices will lead to an increased use
of RRE techniques to enhance their performance.
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