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Abstract: Recent work at the U.S. Naval Research Laboratory studied atmospheric turbulence on
dynamic links with the goal of developing an optical anemometer and turbulence characterization
system for unmanned aerial vehicle (UAV) applications. Providing information on the degree of
atmospheric turbulence, as well as wind information and scintillation, in a low size, weight and power
(SWaP) system is key for the design of a system that is also capable of adapting quickly to changes
in atmospheric conditions. The envisioned system consists of a bi-static dynamic link between a
transmitter (Tx) and a receiver (Rx), relying on a small UAV. In a dynamic link, the propagation
distance between the Tx/Rx changes rapidly. Due to SWaP constraints, a monostatic system is
challenging for such configurations, so we explored a system in which the Tx/Rx is co-located on a
mobile platform (UAV), which has a mounted retroreflector. Beam divergence control is key in such a
system, both for finding the UAV (increased beam divergence at the Tx) and for signal optimization
at the Rx. This led us to the concept of using adaptive/active elements to control the divergence at
the Tx but also to the implementation of an adaptive/active retroreflector in which the return beam
divergence can be controlled in order to optimize the signal at the Rx. This paper presents the design,
fabrication and characterization of a low SWaP adaptive retroreflector.

Keywords: adaptive retroreflector; tunable lens; adaptive lens; polymer optics; divergence control;
fluidic lens; tunable optics

1. Introduction

Retroreflectors are passive devices that return the incident signal through the same
propagation path. For our intended application on UAVs, a retroreflector is ideal, due to its
size and zero power consumption. The fact that this is a dynamic link (with changing dis-
tance between the transmitter and the point where the signal is reflected occurring quickly
or discretely) means that signal degradation is expected due to atmospheric turbulence
induced effects, but also due to the general nature of a propagating beam. In order to
ameliorate these effects, we relied on low order adaptive optics correction, in this case,
focus control. Due to the constraints in SWaP, we have designed and fabricated an adaptive
retroreflector which allows us to change the divergence of the beam in order to optimize the
link, achieving higher link performance or longer distances than can normally be obtained
with a passive system. This device enables the control of the divergence, which can be
used to optimize the return signal in a monostatic configuration or to increase the return
footprint of the beam in a bi-static, dynamic, or reconfigurable link (moving link), this latter
case being the motivation for the following types of devices [1,2].

Adaptive optical devices (also known as active or tunable devices) are devices that can
adjust their surface/curvature (such as deformable mirrors, fluidic lenses, elastic/elastomeric
solids) or modify their index of refractions (such as liquid crystals) in order to change the
optical properties of the element, such as its focal length. This leads to the design and
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fabrication of an adaptive retroreflector—the one described in this paper is based on fluidic
optical elements, for which NRL has extensive expertise [3-5].

2. AR Design and Configurations

Our adaptive retroreflector (AR) can be used with a corner cube retroreflector, solid
or hollow, and consists of an optical fluid, encapsulated by an elastomeric membrane that
can be deformed via an actuator—in this case, the same actuator we use for our adaptive
polymer lenses. This actuator and its electronics have been designed for tactical applications
in which SWaP is key, making this ideal for UAV applications.

Depending on the application, both the membrane and fluid can be replaced with
an elastomeric optical polymer (which can be made from the same material as the optical
membrane) that can be deformed mechanically to make the adaptive retroreflector. This
device enables contro-1 of the divergence.

The device can be fabricated in two ways: (1) using an elastomeric optical polymer, or
(2) a fluidic adaptive/tunable device with a hollow or solid retroreflector. While manufac-
turing errors could change the operation of a retroreflector with an elastic polymer in front,
by slightly changing the direction of return light, such errors can be easily quantified and
corrected, for example, by monitoring the overall optical performance with an interferometer.

For the elastomeric optical polymer option, the elastic polymer is molded to a desired
initial shape and the change on the polymer surface can be affected by means of applying a
pressure/compression to the polymer. An elastomeric optical polymer is a polymer that
has high transmission at the user-desired operational wavelength and has elastic properties
which allow the solid substrate to be deformed. A second alternative to deform the polymer
can be achieved by the use of dielectric elastomer actuation in which a voltage is applied to
a pliable electrode and the polymer is deformed, creating the change on its surface. Figure 1
shows the configuration of the elastomer optical polymer, as well as three operational states
of the adaptive retroreflector.

soft optical polymer

’ retro

a) - |b)

Figure 1. Schematic of an adaptive retroreflector using a solid elastomeric polymer: (a) flat (b) convex
and (c) concave.

For a fluidic adaptive/tunable option, an elastomeric membrane encapsulates an optical
fluid which is mounted on the front of a hollow or solid retroreflector. The elastomeric
membrane needs to have similar optical and mechanical properties to those described above
for the solid option. The optical fluid, needs to be optically and chemically compatible
with the membrane and needs to have high transmission at the operational wavelength.
Polydimethylsiloxane is a common polymer that can be used for the membrane as well as
for the elastomeric solid option. For the optical fluids, there are numerous oils, polymers
and resins that have been studied (for example, water, glycerol, etc.) [3]. The actuation of
this system can be achieved by compressing/decompressing the flexible membrane, which
creates a change on its surface. This occurs by moving a cylinder along the optical axis of the
system, thus compressing the circumference of the flexible membrane. Besides the mechanical
action, magnetic actuation or use of a compliant electrode (dielectric elastomer) can achieve
actuation of the membrane. There are other actuation techniques that are situatable and
could be implemented as well, such as those used by commercially available fluidic lenses,
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for example, Varioptics, Optotune and Holochip [6-12]. Figure 2, shows a conceptual sketch
of the adaptive retroreflector based on the flexible membrane/fluidic concept.

optical f!uid chﬂ)gr

Figure 2. Schematic of an adaptive retroreflector using an optical liquid /fluidic: (a) flat (b) convex
and (c) concave.

The latter configuration was selected for this paper. The device changes the divergence of
the returned beam but can also work as a regular passive retroreflector if the system requires.

3. Fabrication, Characterization and Results

Here, we present the optical design of the AR as fabricated and in the configuration we
used for testing. We describe the optical setups used for testing and comparing the device
to a passive retroreflector. Data for the repeatability and arbitrary radius of curvature
measurements was acquired using a Zygo Verifire HD optical interferometer. Furthermore,
we show images taken comparing a passive retroreflector in comparison with AR, both
actuated and flat.

3.1. AR Optical Design

We used OpticStudio nonsequential tools to model the corner cube retroreflector and
adaptive components and, for visualization purposes, a beam splitter cube was added, as
shown in Figure 3. This was also the configuration chosen for the test. Note that we did
not model the thickness of the membrane, since the effects of the membrane are negligible
in OpticStudio for this type of application. The model was performed using the volume
of the fluid, the fluid acting as a lens which changes its radius of curvature and center
thickness. The figure shows a collimated beam, incident on a beam splitter cube which
reflects part of the incident light and transmits a portion, which then impinges on the
adaptive retroreflector. Light is reflected back from the retroreflector and reflected again
from the beam splitter cube and incident on the detector. In field operations, the beam
splitter can be used to monitor the incoming beam and direct the adaptive retroreflector
in order to control the divergence. It can also be used without the beam splitter cube,
such that the beam can be monitored at the receiver side and the system optimized in
a power-in-the-bucket (PIB) configuration using well-known algorithms (e.g., stochastic
parallel-gradient-descent) [13,14]; the AR is then instructed by this information.

3.2. Fabrication of the AR

For this particular design we used a 12.7 mm corner cube retroreflector from Thorlabs,
polydimethysiloxane (PDMS) as the membrane, glass support structures for the PDMS,
and an optical fluid with an index of refraction of 1.45 and an Abbe number of 45.0 (at
A =589 nm). The first step consisted in making the PDMS membrane which was then
bonded to the glass support structure. The fluid was added to the membrane/glass
structure and the corner cube was bonded to it. The last step was to mount the AR into the
actuator and start the testing—the assembly steps are shown in Figure 4. An important
note: for this proof of concept, we did not follow the special fabrication procedures that
we normally utilize to reduce the surface wavefront error which involve the reduction of
coma induced by gravity and astigmatism resulting from the materials and fabrication
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procedures. Figure 4 shows the top-level schematic of the assembly procedure, as well
as pictures of the assembled AR (in its actuator). The actuator was custom-made for our
adaptive lenses, and we were able to modify one to accommodate the AR. The actuator
consists of a modified motor in a custom housing, with a maximum clear aperture of
19.5 mm, optical encoder with a resolution of ~50 nm, speed of ~2.5 mm/s, peak power
consumption ~15 W, idle power consumption of ~1-500 uW and temperature monitoring
of 0.01 °C. The electronics can control two actuators at the same time and can run off three
CR-123 batteries (two batteries for a single actuator) with an average number of actuations
of about 6000 per set of batteries.

Beam splitter cube M H
1
Collimated Converging Divergent 11
beam beam beam
Detector
a) b) <)

Figure 3. Optical design setup used for testing including the collimated source incident on the beam
splitter cube with the outputs: (a) a collimated beam, (b) a converging beam, and (c) a divergent beam.

Support ring
Membrane Q.

Membrane
bonding ring

31.7 mm

Optical fluid —

wuw ot

Corner cube
holder

Corner cube s

Assembled AR AR in actuator

Fabrication of AR
Figure 4. Schematic representation of the fabrication and assembly process of the AR.

3.3. Laboratory Optical Setup

The AR was tested in various ways. Firstly, in the same way that we measured
the radius of curvature (ROC) of lenses using a Zygo interferometer—for this device we
measured two ROCs as a test, a positive (convex surface) with a ROC of 234 mm and a
negative (concave surface) of —185 mm. The second setup was to compare the performance
and proof of concept of the AR in comparison with a passive retroreflector, as shown in
Figure 5. We used the HeNe 633 nm source of the Zygo interferometer and a 1550 nm was co-
aligned for further testing. Data from the 1550 nm was not included but performance of the
active surface component at this wavelength has been demonstrated in a previous report [5].
We were able to use the beam collimated or with the addition of a known divergence that
could be removed with the AR and compared with the passive retroreflector. The setup with
the beam splitter cube allowed us to look at the return beam with the interferometer and, on
the other arm, to look at the output with a camera, photodetector or power meter, while
we were able to use beam blocks to look at each retroreflector individually or additionally,
enabling viewing of the interference fringes formed by the two. This facilitated alignment,
but also monitoring of the difference when the AR is actuated. This same setup was also



Photonics 2022, 9, 124

used to perform first order measurements of the repeatability of the AR by actuating the AR
from a flat state to a convex or concave state and back to a flat state, while measuring the
surface form with the interferometer. An important note: temperature was monitored in the
room, but temperature compensation of the AR was not used—the room environment was
stable and thus compensation was not required.

Science
camera Adaptive retro-reflector

= Conventional
retro-reflector

Interferometer and
1550 nm source

A—
Beam Adaptive
blocks . retro-reflector

Passive
retro-reflector

Figure 5. (Left) Layout of the optical testing setup. (Right) Picture of optical devices used
for measurements.

3.4. Results/Discussion
3.4.1. ROC and Surface Measurements

The first test consisted of measurements of the ROC, positive and negative, in order to
evaluate the performance of the device. Figure 6 shows a set of measurements, including a
(left) measurement for a positive ROC of 255 mm and a (right) measurement for a negative
ROC of 184 mm. The top row shows the 3D surface profile, and the bottom row indicates the
2D profile. The black circles in the figure are software masks used to remove unnecessary
back reflections created by dust particles in the reference sphere. Within the respective
figures, the left column (A or C) is the raw measurement and the right side (B or D) is with
the dominant aberrations removed. As mentioned before, fabrication was not optimized
for the surface figure, but what can be seen is the typical dominant aberration of coma
and astigmatism, which are characteristic for this type of fluidic structures. Coma is due
to gravity and astigmatism is due to fabrication or assembly procedures. For the positive
ROC case demonstrated below, coma is the dominant aberration. On the negative ROC,
there is a combination of coma and astigmatism, because measurements were taken close to
the negative resting ROC (fabricated ROC) of the membrane for the fabricated AR device.
The fabricated aberrations were more noticeable closer to the resting ROC because, for
this type of actuation mechanism, this is the point of contact where boundary conditions
are established between the membrane and actuation surface for the clear aperture. At
this point, the amplitude of any existing aberrations can be enhanced. Another aberration
that can be noticed is trefoil on both ROCs—this was purely due to the assembly in the
actuator. We developed procedures for fabrication and assembly that reduce the dominant
aberrations which are implemented when building adaptive polymer lenses, with the caveat
that we can minimize coma based on the application, but do not completely eliminate
it. The procedure to eliminate coma during fabrication is extremely complex, costly and
time consuming if performed at the active surface. There are other ways to minimize it,
including using a corrective element along the optical path of the system or close to the
active surface, and this is a typical configuration used in commercial adaptive/tunable
lenses [11].
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Positive ROC

Negative ROC

Figure 6. (Left) Positive ROC measurement (A,B columns) 2D and 3D profiles with dominant

aberration removed, in this instance being coma (B column). (Right) Negative ROC measurement
(C,D columns) 2D and 3D profiles with dominant aberration removed, in this instance, coma and
astigmatism (D column).

Using the data from Figure 6, a Zernike fit was performed using the Mx software tools
from the interferometer and coefficients of the fit for both the positive and negative ROCs
are shown in Table 1.

Table 1. Results from the Zernike fit coefficients obtained from the data in Figure 6, for positive ROC
(top) and negative ROC (bottom).

ROC =225 mm

Zernike Fit
Coeff Value (A) n m Representation
ZFR 0 0.000 0 0 1
ZFR 1 0.000 1 1 pcos(0)
ZFR 2 0.000 1 -1 psin(0)
ZFR 3 0.018 2 0 —1+2p2
ZFR 4 —0.085 2 2 p2cos(20)
ZFR 5 —0.407 2 -2 p2sin(20)
ZFR 6 —0.122 3 1 (—2p + 3p3)cos(0)
ZFR7 2.191 3 -1 (—2p + 3p3)sin(0)
ZFR 8 —0.047 4 0 1—6p2+6p4

ROC = —184 mm

Zernike Fit
Coeff Value (A) n m Representation
ZFR 0 0.000 0 0 1
ZFR 1 0.000 1 1 pcos(0)
ZFR 2 0.000 1 ~1 psin(0)
ZFR 3 —0.049 2 0 —1+2p2
ZFR 4 —0.211 2 2 p2cos(20)
ZFR 5 ~1.823 2 -2 p2sin(20)
ZFR 6 —0.108 3 1 (—2p + 3p3)cos(0)
ZFR7 —2.115 3 -1 (—2p + 3p3)sin(0)
ZFR 8 —0.372 4 0 1— 6p2 + 6p4

Figure 7, shows data taken for the AR at the same ROCs mentioned above but in a
perpendicular configuration in order to eliminate the effects of coma due to gravity. Note,
that for the data no terms have been removed. Astigmatism and trefoil were noticeable but
the large magnitude due to coma was absent.
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Positive ROC Negative ROC
No terms removed

Perpendicular
measurements setup

Figure 7. (A) Positive and (B) negative ROC, 2D and 3D surface representation for the perpendicular
setup. Right side shows a picture of the setup.

The same procedure was performed on the results from Figure 7 and Table 2 shows
the Zernike fit coefficients for the perpendicular measurements.

Table 2. Results from the Zernike fit coefficients obtained from the data in Figure 7, for positive ROC
(top) and negative ROC (bottom).

ROC =225 mm Perpendicular

Zernike Fit
Coeff Value (A) n m Representation
ZFR 0 0.000 0 0 1
ZFR1 0.000 1 1 pcos(0)
ZFR 2 0.000 1 -1 psin(0)
ZFR 3 0.038 2 —1+2p2
ZFR 4 0.137 2 2 p2cos(20)
ZFR 5 —0.390 2 -2 p2sin(20)
ZFR 6 0.065 3 1 (—2p + 3p3)cos(0)
ZFR7 —0.071 3 -1 (—2p + 3p3)sin(0)
ZFR 8 —0.099 4 0 1 — 6p2 + 6p4

ROC = —184 mm Perpendicular

Zernike Fit
Coeff Value (A) n m Representation
ZFR 0 0.000 0 0 1
ZFR 1 0.000 1 1 pcos(0)
ZFR 2 0.000 1 -1 psin(0)
ZFR 3 —0.202 2 0 —1+2p2
ZFR 4 —0.052 2 2 p2cos(20)
ZFR 5 —1.248 2 -2 p2sin(20)
ZFR 6 0.126 3 1 (—2p + 3p3)cos(0)
ZFR7 —0.112 3 -1 (—2p + 3p3)sin(0)
ZFR 8 —0.224 4 0 1 — 6p2 + 6p4

3.4.2. Repeatability Measurements

Repeatability measurements were taken using the setup in Figure 5. The data collection
consisted in changing the actuation state by a known encoder count from a flat state to a
convex/concave state, while recording the encoder position as well as the data from the
inferferometer. The encoder data is in the form of a set of three numbers: the set position by
user (state of the lens), the temperature compensate position (once thermal compensation
is activated) and the measured position. This last position, or the difference from the set
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position, was recorded. Readings from the interferometer PV(A) (peak to valley) and power(A)
were recorded as well. Data was taken for a delta for encoder counts of 150 and 300 from
flat, on both positive (convex or higher encoder counts), and negative (concave or lower
encoder counts) direction. Figure 8 shows a sequence of consecutive measurements from flat
to positive and Figure 9 shows measurements from flat to negative for a delta of 150 encoder
counts. Note, the hexagonal pattern was a result of the facets of the corner cube. This was
noticeable in this configuration based on the testing setup with the interferometer using a
transmission flat. For the ROCs the measurements differed, since we were using a reference
sphere and the spherical wavefront matched the deformed membrane, not the retroreflector.

Figure 8. The AR was actuated from the flat state to a compressed state (or convex surface) and back
to flat. For each case the top row is the 3D surface and the bottom row the 2D surface.

Figure 9. The AR was actuated from the flat state to a less compressed state (or concave surface) and
back to flat. For each case the top row is the 3D surface and the bottom row the 2D surface.

In Figure 10, data is presented in graphical (with error bars based on the standard devi-
ation), and tabular, form for the sequences, with 20 data points for delta 150 and 10 points
for delta 300, and all cases starting from the same initial flat position. The average and
standard deviation for the encoder position and peak-to-valley for the cases are shown in
the table.

Figure 11 shows a comparison of the AR with a passive retroreflector. A screen was
placed at a distance of approximately 1500 mm and the response from a collimated beam
recorded and the AR was actuated in order to focus the beam on the screen.
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Ave. encod. Pos| 27,490 | 0.564 | 27,640 | 2.261 | 27,790 | 4.248 | 27,340 | 2.408 | 27,190 | 4.256
Stdev 0.16 0.02 0.00 0.05 | 0.00 | 0.02 | 0.00 | 0.02 0.00 0.04

Figure 10. Graphical and tabular representation of the actuation sequence for the cases described
above. Delta values refer to the change in encoder position from the flat state.

Conventional retro AR (flat state) Two retros overlay

#

AR focus

Conventional

Figure 11. Images taken in the laboratory at a known distance from the retroreflector are shown (left)
conventional retroreflector, (middle) AR in the flat state, and (right) both retroreflectors overlapping
in the screen with the AR actuated to focus the beam at that particular distance.

4. Conclusions

We have presented the concept of an adaptive retroreflector. This concept was de-
veloped during a data campaign to study the atmospheric turbulence in a dynamic link,
with the end goal of an optical anemometer for UAV applications in which the propagation
distance is changing rapidly. The concept of the AR was then designed, fabricated and
tested in a laboratory environment as a proof of concept. This particular device can operate
from the VIS to the SWIR and preliminary parameters of its performance were studied.
The next step will consist of fabricating a device following the tighter tolerance procedures
developed previously for adaptive lenses. A follow-up report will consist of performing a
calibration in a laboratory environment, including thermal compensation and quantification
of losses added by absorption and/or scattering due to the membrane/fluid combination
in comparison with a conventional retroreflector. The latter case will be studied in more
detail in a field experiment where we can compare the losses due to the addition of the
membrane/fluid combination with the losses of a conventional retroreflector (e.g., due to
diffraction, or divergence introduced by atmospheric turbulence) at a propagation path.
A power-in-the-bucket configuration will be used to compare the divergence control of the
adaptive retroreflector and a conventional one. While the overall losses depend on configu-
ration and materials, our experience with fluidic lenses has shown that the transmission
losses are negligible compared to effects induced by turbulence.
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5. Patents

A provisional patent application has been submitted, U.S. Patent Application Serial
No. 62/695,310.
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Abstract: We show that there is an intrinsic link between the use of Walsh aberration modes in
adaptive optics (AO) and the mathematics of lattices. The discrete and binary nature of these modes
means that there are infinite combinations of Walsh mode coefficients that can optimally correct the
same aberration. Finding such a correction is hence a poorly conditioned optimisation problem that
can be difficult to solve. This can be mitigated by confining the AO correction space defined in Walsh
mode coefficients to the fundamental Voronoi cell of a lattice. By restricting the correction space in
this way, one can ensure there is only one set of Walsh coefficients that corresponds to the optimum
correction aberration. This property is used to enable the design of efficient estimation algorithms to
solve the inverse problem of finding correction aberrations from a sequence of measurements in a
wavefront sensorless AO system. The benefit of this approach is illustrated using a neural-network-
based estimator.

Keywords: lattice geometry; Walsh functions; adaptive optics

1. Introduction

Many adaptive optics (AO) methods have been developed to compensate phase aberra-
tions in a range of applications including astronomy, ophthalmology and microscopy [1-3].
All AO systems are limited, in some way, by the capabilities of the adaptive element,
typically a deformable mirror (DM) or a spatial light modulator (SLM), that corrects
the aberrations. One such limitation is in the range of phase functions that the element
can correct. The correction space of an AO element is defined by the range of phase func-
tions that can be imparted by the device. For a pixelated AO device, such as a SLM or
segmented DM, the correction space is defined by the set of accessible pixel states, which
could be represented by the set of phase values for each pixel.

In many AO systems, it is preferable to design the system around a set of orthogonal
modes for representation and control of the wavefront, rather than localized wavefront
modulations. For example, wavefont-sensorless AO systems usually use a modal basis [4,5].
This method involves the sequential application of predetermined bias aberrations, the
acquisition of a set of measurements of an appropriate quality metric, and then estimation
of the required correction aberration. The conventional approach to sensorless AO is to
use knowledge of the forward problem—that is how the quality metric is affected by input
aberrations—to inform the design of an efficient estimation scheme that, in effect, solves
the inverse problem of finding the optimal correction aberrations from the set of metric
measurements. Such estimation can be performed using optimisation algorithms or neural
networks (NN) to solve the inverse problem [6,7].

It is known that control using modes defined across the whole pupil provides stronger
modulation of the optimisation metric than individual pixels or subregions of the pupil [5].
Such whole-pupil modulation hence provides more robust operation, particularly in low-
light level imaging scenarios when the signal-to-noise ratio (SNR) is low. For such pixel-
based sensorless AO systems, Walsh modes are an appropriate choice. Walsh modes are a
set of orthogonal functions that represent phase patterns across a pixelated pupil, where
the number of pixels is equal to a power of 2 [8,9]. Each Walsh mode consists of an equal
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number of pixels taking each of the binary values +1 or —1. For the different modes, a
different combination of pixels takes the positive and negative values.

The binary nature of Walsh modes means that the range of each mode that must
be searched to find the optimum correction is finite. This contrasts with other modal
bases built upon continuous functions, such as Zernike polynomials, which would have
unbounded range (albeit limited by the stroke of the adaptive correction element).

However, care needs to be taken when considering combinations of Walsh modes, as
multiple combinations of modes can have the same effect on the system. This means that
there are multiple potential solutions to the inverse problem of finding the optimal set of
Walsh mode coefficients that optimise aberration correction. These multiple solutions can
cause complications in defining an estimator to solve the inverse problem. Solving the
inverse problem would be considerably simplified if we could ensure that there was only
one optimal solution in the search space.

We show that there are properties of the Walsh modes that link the operation of
these sensorless AO systems to the mathematics of lattices [10]. We discuss how these
mathematical properties can aid the design of aberration estimation algorithms by con-
straining the search space. Specifically, we show heuristically that through understanding
of the lattice geometry, we can define a unique finite search space, in terms of combina-
tions of Walsh mode coefficients, that contains a single optimum correction. This permits
the implementation of an efficient NN-based optimisation scheme that can measure and
correct any combination of N Walsh modes of any coefficient value using only 2N + 1
metric measurements. We show that a simple NN can be trained to solve the inverse
problem if the search space is constrained using the lattice model, whereas the correct
combination of Walsh mode coefficients cannot reliably be found for a nonconstrained
search space.

2. Optical System Model

For the purposes of modelling, we considered the simple sensorless adaptive optics
system shown in Figure 1. Such a model has been extensively used for analysis of such sen-
sorless systems [11,12], as the principle of operation is readily extendable to similar optical
systems, including applications in laser material processing, free-space communications,
and laser scanning microscopy.

input adaptive
. lens
aberration element
| I
D U4

Figure 1. Optical system used for modelling. The input wavefront contains a phase aberration ®,
which passes through a correction device imparting an additional phase ¥. The beam is focussed
onto a vanishingly small pinhole detector on the optical axis that admits the intensity I.

The input beam to the system is collimated and has uniform amplitude. The input
phase aberration is ®(r) and the phase ¥(r) is added by the adaptive element (AE), which
could be a pixelated SLM or a segmented DM. These are both considered to be added at the
pupil P, which is taken to have unit radius; r is the normalised coordinate vector in the pupil.
The lens performs a Fourier transform of the pupil field to provide a focal field. A vanishingly
small pinhole detector is placed on axis at the centre of the focus and detects a signal I that
corresponds to the on-axis intensity at the focus. This is equivalent to the power of the
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zero-frequency component of the Fourier transform, which is equivalent to the squared
modulus of the mean value of the pupil field. Mathematically, this can be expressed as

2

I= ’1 // expi[®(r) + ¥(r)]d*r (1)
7TJJP
where the maximum, aberration-free signal is normalised to 1.

3. Representation of Aberrations as Walsh Modes

For simplicity, let us assume ®(r) = 0 so that all aberrations can be represented within
Y (r). Let us also assume that the adaptive element is a pixelated device, where each of the
N pixels can introduce a piston phase. The phase introduced by the adaptive element could
be expressed as

N
Y(r) = z; a1 (1) 2)

where 7;(r) are the phase influence functions of each pixel, which have value 1 within
the pixel area and 0 elsewhere; a; are the coefficients of these influence functions, which
correspond to the pixel phase value. Alternatively, we could represent the AE phase as

N-1
Y(r) =) Brw(r) 3)
k=0

where wy(r) are functions that take binary values of —1 or +1 in each pixel region, such
that the Ith pixel takes on the Ith value of the kth Walsh function of length N, WN[I] [8].
By are the coefficients of these functions wy (r). For a given sequence length N = 27, where
7 is an integer, there are N orthogonal Walsh functions, each of which consists of N/2
elements of value —1 or +1, except for the first function that consists entirely of 1 s (see
examples in Figure 2). We follow the convention that the Walsh function index starts at
k = 0. From the above relationships, it is clear that each pixel phase can be represented as

N-1
o= Y BW[I] @)
k=0

or alternatively in matrix—vector format as
a=Wb ®)

where a is a vector of length N that contains the phase value of each pixel, b is a vector of
length N that contains the coefficient of each Walsh function and W is an N x N Walsh-
Hadamard matrix consisting of values +1 [13,14]. The rows of this matrix correspond
to each of the Walsh functions. The matrix W provides the mapping between the Walsh
coefficients and the pixel values. For Hadamard matrices, WWT = NIy, where Iy is the
identity matrix of size N [13,14]. Hence, we can invert Equation (5) as

1
b= _—_W 6
S Wa ©)
Note that for a set of Walsh functions to be defined, we require N = 27, where 7y is
an integer. We assume throughout this paper therefore that N = 27. However, Hadamard
matrices also exist for N = 4+, where 1 is an integer [13,14]. For simplicity, these other
matrices will not be considered in this current analysis.
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Figure 2. Illustrations of Walsh modes. (a) The Walsh functions W8 [I] shown in numerical form.

(b) The Walsh modes W16 [I] shown as aberration basis modes over a square aperture. (c) The polar
Walsh modes, equivalent to W,}6 [/] shown as aberration basis modes over a circular aperture. In both
(b) and (c), index k = 0 for the first mode is in the top left, and k increments in row-major order to
k = 15in the bottom right.

4. Lattice Symmetry of Aberration States

We can define the aberration state fully as the vector of pixel values a. Thus, we
can consider that a point at position a in the N-dimensional space of pixel values is
equivalent to an aberration state where any coefficient «; is replaced by «; + 27rq, where
g is an arbitrary integer. This reveals a repetitive structure in each coordinate of the
N-dimensional space that results in a lattice type symmetry. Hence, in this space, there is
an infinite number of points that represent a given aberration state and these points are
arranged in a transformed integer lattice Zy that is scaled by a factor of 27t and offset by
the pixel value «; along each dimension. Furthermore, the lattice structure is based around
a fundamental unit that is an N-dimensional cube of side length 277; this fundamental unit
is known as a Voronoi cell [10].

The matrix—vector operation of Equation (6) can now be interpreted as a rotation (as
W is an orthogonal matrix) and scaling by 1/ N of the vector a to give the Walsh coefficient
vector b. The lattice symmetry is hence maintained in a rotated and scaled form when the
state is described by b. When represented by the vector a, any Walsh function consists of
equal magnitude amounts (+1 or —1) of each pixel value, so the vector must be directed
along certain body diagonals of the cubic Voronoi cell. After transformation, these body
diagonals lie along the axes of the vector space containing b. This lattice symmetry will be
used for derivations later in this article.

5. Effects of Pixels and Modes on Signal Modulation

Let us assume that each pixel of the AE has equal area (the pixels should have equal
area if the amplitude profile at the pupil is uniform. For nonuniform illumination, the pixel
area should be varied to provide the same total power in each pixel (e.g., the pixels could be
large near the edge of the pupil for a Gaussian illumination profile.) No constraint is placed
here on the position or shape of the pixels.), so that the integration used in Equation (1) can
be replaced by a summation, assuming here that ®(r) = 0:

1Y P X NN
=N Y exp (ing)| = N Yoexp (i), AW
1=1 =1 k=0

2

@)

If the arbitrarily chosen Ith pixel is varied and all other pixel values have the same
value (here arbitrarily set to zero), then

(o)) = (1—2) —i—%cosle 8)

where the modulation depth D = 4(N — 1)/ N2. For all other Walsh functions other than

14



Photonics 2022, 9, 547

WV [1], the signal is also cyclic as a function of By:

I(Bx) = cos® By )

where the modulation depth has the maximum possible value of 1 and the period in terms
of By is 7. The effects of single pixel and modal variations are shown in Figure 3.

a I(cr) b ()

1.0
W

0.6}

0.4

0.2}

-2m - 0 ™ 27 -2m - 0 ™ 27

Figure 3. (a) Variation of signal for a 16-pixel system with a single pixel modulation showing low
modulation depth and period 27r. (b) variation of a Walsh mode in the same system showing full
modulation and period 7.

If a combination of Walsh modes is present with small coefficients, we can use a
Maclaurin expansion of the exponential in Equation (7) to give

2
I~1- Z;ﬁjﬁk (;{ ;WJN[Z]W,N[ZO + ;ﬁk <;] ;Wﬁ[l}ﬂ (10)
J

The term in the final bracket 3 Y WNII] is equal to zero except for when k = 0,
in which case it has value 1. The orthogonality property of the Walsh functions means
that £ ¥ WjN [1JWY[1] in the second term is equivalent to the Kronecker delta function Sk
Hence, the signal is approximately

N-1 )
Ix1- Y By (11
k=1

This is equivalent to the well-known approximation of the Strehl ratio as 1 — ¢2,,;, where

®rms is the root mean square value of the aberration, which in this case is equal to 1/ Y B>

6. Defining a Well-Corrected System

If we define our system to be “well-corrected” when the root-mean-square (rms) phase
error is below a chosen value, such that ¢,;;s < €, then the system will be well-corrected

when I > 1 — €2. We can also express the second term in Equation (11) as a length N — 1
vector b’, which is equivalent to b with the piston coefficient removed, as

Iml—|b/{z (12)

Our condition for being well-corrected is hence equivalent to requiring that |b’| < e.
Interpreted geometrically, this means that any point within an (N — 1)-dimensional spherical
volume of radius € centred on the point where I = 1 will be considered well-corrected.

In practice, the total aberration in a system will be the sum of the input aberration and
that introduced by the AE, that is ®(r) + ¥(r). The values of b’ discussed here consolidate
these two sources of aberrations to represent the residual aberrations, such that we seek
a perfect correction for which b’ = 0. We will also assume for this analysis that the input
aberration consists entirely of modes that can be corrected by the AE.
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7. Vector Space Representation of Well-Corrected States

The signal variation as a function of pixel values was given in Equation (7) and can be
expressed alternatively as

2 2

I =

1Y . N .
N Z exp (ia))| = N 1+ Z exp (ing) (13)
=1 =2

where &) = a; — 1. From this, we find the value I = 1 can only be obtained if #; mod 277 =0
for all I. We derive this result by considering the phasor sum of each of the terms in the
final modulus expression: the maximum signal is only obtained when all of the exponential
terms in the summation are real.

In a more general case where all pixels are offset by a mean pixel phase value c rather
than the first pixel phase value, we could state that I = 1 only if each element of the
vector a has a value &) = c + 2n7 where n is an arbitrary integer. We can also express
the signal explicitly as I(a); this is a function of the vector a, which describes a point in
an N-dimensional space. In this way, we can see that I(a) has maximum value 1 at the
origin of this space when c is zero. Furthermore, we see that there is an infinite number
of points in this space at which I(a) = 1. For example, on each of the axes, there are
points where I(a) = 1 that are equally spaced at steps of 27t. Varying the value of ¢ is
equivalent to adding a constant phase to every pixel (or equivalent to adding the piston
mode to the whole pupil) and thus has no effect on the signal. We deduce therefore that
there are infinite lines of I(a) = 1 parallel to the vector (1,1,...,1)". As the value of ¢ has
no effect on the signal, we can set this arbitrarily to zero without affecting further analysis.
This is equivalent to removing the piston mode. It is also equivalent to taking the (N — 1)
dimensional subspace including the origin in an orientation orthogonal to the direction
(L1,..., 1)T. The position of the maxima in this slice would be equivalent to the positions
of a scaled version of the integer lattice Zy;, as explained in Section 3, projected along the
direction (1,1,...,1)". An illustration is provided in Figure 4.

5
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Figure 4. Illustration of the lattice geometry for intensity variation with pixel phase value. As it is not
possible to represent higher order systems in a three-dimensional rendering, the example shown is
for a three-pixel system. While this system does not use Walsh modes, it shows the same phenomena
of piston invariance and lattice-like behaviour. The axes represent each of the pixel phase values
in radians. The same volume rendering is shown from two different angles. The visible contours
are set at I = 0.01 (blue) and I = 0.8 (orange) to show the positions of the zeros and the maxima,
respectively. The function I is invariant with the piston mode, hence the elongation of the contours
along the direction (1,1,1). The lattice like structure of the function is apparent, in this case in the
form of the hexagonal lattice. This shows that there are many different combinations of aberration
mode coefficients that provide a similar well-corrected state. Analogous behaviour is found in higher
dimensions for the Walsh-mode-based systems.
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8. Lattice Representation of States after Removal of Piston

The removal of the piston mode is equivalent to the removal of the first row of the
matrix W to create the reduced matrix W’ and removing the corresponding element of b to
obtain a reduced vector b’ so that

a=W"p (14)

As row—column products represent dot products between Walsh vectors, the following
relationship is valid: WW’ TN In_1, so Equation (14) can be inverted as

! 1 /
b’ = NW a (15)

We can interpret Equation (15) as a transformation from an N-dimensional vector of
pixel values a to an (N — 1)-dimensional vector of Walsh modal coefficients b’.

The matrix W’ is, however, a redundant representation, as the column space has
dimension greater than its rank. This is rectified by removal of any one of the columns to
create the matrix W”; we choose arbitrarily to remove the first column. In order to maintain
the form of Equation (15), we remove the first element of the vector a to produce a new
vector a’. From a practical perspective, this means that the pixel value 47 is a dependent
parameter determined by the other pixel values because of removal of the piston mode.

b’ = %W”a’ (16)
The operation performed by matrix W” is to map the vector a’ to the corresponding
vector b’. Similarly, the operation of W would be to transform (project) the positions of the
maxima of I(a) = 1, which were located on lines passing through a scaled integer lattice Zy
(as illustrated in Figure 4), to another lattice in the (N — 1)-dimensional space spanned by b’.
We can determine the properties of this new lattice by considering its Gram matrix,
which is the matrix of the inner products between its lattice vectors [10]. The Gram matrix
is hence given by

N-1 -1

1 T 1
G=_—W'W'=— -1 N-1 - 17
N N| . S 47

where the factor of 1/N has been chosen so that the basis vectors are equivalent to Walsh
functions with normalised vector magnitudes. G is equivalent to the Gram matrix of the
so-called A};_, lattice [10], which is an (N — 1)-dimensional analogue of the body centred
cubic (BCC) lattice in three dimensions. It follows that the maxima in the (N — 1)-dimensional
space spanned by b’ must be located at the lattice points of a scaled A%, _, lattice.

Understanding the symmetries of this lattice thus provides an understanding of the
symmetries of the function I(b’). For example, the response of the signal around each
lattice point should be identical. In other words, I(b’ —d,,) = I(b’) for all m, where
d;; represents an arbitrary lattice point. As there is an infinite number of lattice points,
there is an infinite combination of the (N — 1) Walsh coefficients that can provide the
optimal correction. Furthermore, correction to a precision of ¢,,s < € can be achieved by
finding a setting for the adaptive correction device that places b’ within a sphere of radius
€ centred upon any of the lattice points.

9. Fundamental Correction Space

The lattice model allows us to define a fundamental correction space—that is, the
range of b’ we must search to find an optimal correction. This fundamental correction
space is smaller than the correction space covered by all pixel values in the range 0 to 27t
radians. The lattice symmetry of the function I(b’) indicates that we need only search the
Voronoi cell of the lattice in order to cover all possible states. Therefore, the search space is
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the Voronoi cell of the scaled A};_ lattice, whose properties are known [10]. The position
of the cell’s vertices can be readily calculated. For example, the Voronoi cell of the A3 (or
BCC) lattice is a truncated octahedron; this would be the Voronoi cell for a N = 4 pixel
system and is illustrated in Figure 5.

Using the symmetries of the Voronoi cell, further general properties of this funda-
mental correction space can be derived. Moving along any of the axes from a lattice point
at which I(b’) = 1, we encounter another lattice point at a distance b = 7 (noting that
this corresponds to the variation of a single Walsh function, the pixel values of which will
be £ for this value of b; see Equation (9)). Therefore, the halfway point between lattice
points along the axis is at a distance b = 7r/2. Hence, the distance between two faces of the
Voronoi cell along such an axis is 77. By looking solely along the axes, one might assume
that the search space is an (N — 1)-dimensional cube of side length 7, which would have a
volume of 7V ~1. However, the Voronoi cell’s volume is given by

aN-1

VN

which is a factor 1/+/N smaller than the encompassing hypercube [10]. Hence, for large
numbers of pixels, the search space is considerably smaller than might be assumed if
considering the pixel phases directly.
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Figure 5. (a) Illustration of the lattice geometry for the fundamental correction space of a four-pixel
system, which corresponds to three Walsh modes after neglecting the piston mode. The axes represent
each of the Walsh coefficient values in radians. The same volume rendering is shown from two
different angles. The visible contours are set at I = 0.01 (blue) and I = 0.8 (orange) to show the
positions of the zeros and the maxima, respectively. The BCC lattice geometry is apparent. (b) The
Voronoi cell for the A5 (or BCC) lattice, a truncated octahedron, is shown within an encompassing
cube of side length 7 radians.

10. Implications of the Lattice Structure for Sensorless AO

We have shown that searching the Voronoi cell of the A};_; lattice is sufficient to
find the optimal correction in the whole Walsh coefficient space of the adaptive element.
The lattice structure also means that this same cell repeats over the whole space.
Consequently, if the aberration in the system can be accurately represented by a finite
number of Walsh modes, then the necessary search space is finite. This contrasts with
an aberration represented by a finite number of continuous modes, such as Zernike poly-
nomials, where the search space would have to be infinite in extent to cover all possible
coefficient values.

In modal sensorless AO correction schemes, a sequence of predetermined bias aberra-
tions for fixed set of correction modes is applied to the adaptive element and the correspond-
ing signal values are recorded. From this set of measurements, the correction aberration is
estimated using an appropriately chosen optimisation algorithm. When using continuous
modes, such estimation can provide accurate correction for aberrations over a limited
magnitude range but usually provides poor estimation outside this range. Using Walsh
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modes, however, the finite search space within one Voronoi cell of the lattice structure for a
fixed set of modes means that it is possible to design a correction scheme that is accurate
across all possible aberrations within the Walsh mode set. For the continuous modes, the
bias aberrations span a finite range, such as in the typical configuration for sensorless AO
of having equal magnitude positive and negative biases for each mode. However, the same
configuration for Walsh modes in effect spans an infinite range, as the bias positions are
also repeated in the lattice structure across the whole coefficient space.

If a sequence of intensity measurements is taken with bias aberrations defined as
each Walsh mode with an amplitude of 77/2, the set of measurements is related to the
Walsh transform of the pixel values (see Appendix B). The sum of these measurements is
equal to the intensity after aberration correction. This has important implications for the
normalisation of measurements for use in aberration estimation algorithms.

11. Neural Network for Solution of the Inverse Problem

We used the knowledge of the fundamental correction space to design estimators
for a sensorless AO scheme. Specifically, the estimation process should solve the inverse
problem to obtain aberration coefficients from the set of biased intensity measurements.
We choose to demonstrate this with a NN estimator, whose design incorporates physical
knowledge of the system. This method was chosen as it is more readily extendable to more
advanced AO systems than conventional optimisation algorithms.

In this demonstration, we compare two similar NN-based methods for which the
search space is defined differently. In the first case, it was assumed that each of the Walsh
mode coefficients a; can take any value —71/2 < gy < /2. This was equivalent to
taking any point in a (N — 1)-dimensional cube in coefficient space (we refer to this as
the “hypercube cell”). In the second case, the coefficients were chosen so that they lie only
within the Voronoi cell centred at the origin (we refer to this as the “primary Voronoi cell”).
This primary Voronoi cell would be a sub-region of the hypercube used in the first case. Based
upon the previous analysis, it was known that there would be a single point corresponding to
optimum correction in the primary Voronoi cell but multiple such points in the hypercube cell.

Having multiple global optima in the search space can be detrimental when using
neural networks to perform such an optimisation. This is because such ill-conditioned
problems have no unique answer and thus prevent convergence of the network training.
We employed a bespoke NN architecture that was developed to take advantage of the
particular physical process used in the sensorless AO scheme. The overall process and the
NN architecture are outlined here. More details about the NN can be found in Appendix D.
In order to adequately sample the space, a biasing scheme was chosen that used 2N — 1
measurements. This corresponded to the application of positive and negative biases of
magnitude 71/3 for each of the (N — 1) Walsh modes, excluding piston; an additional
nonbiased measurement was also included. For the kth mode, we denote the negatively
bias measurement as I~ !, the positively biased measurement as L I and the unbiased
measurement as Ij.

The NN process was constructed as shown in Figure 6; a more detailed description of
the architecture is given in Appendix D. The NN takes two separate sets of inputs, both of
which rely on biased intensities (generated using Equation (1)): the first (Inputl) directly
uses these normalised intensity values, while the second (Input2) analytically processes
the intensities based upon sinusoidal estimation to acquire a set of preliminary aberration
coefficient estimates. The first input is passed into a convolutional neural network (CNN)
followed by fully connected layers (FCL). It is then concatenated with the second input
(Input2) and passed into fully connected layers to generate the outputs that correspond
to the estimated Walsh coefficients. The rationale behind this dual input approach was
that the learning task would be easier if based, in effect, on the differences between rough
estimates and actual measurements rather than on the raw measurements themselves.
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Figure 6. Outline of the NN architecture and preprocessing of data. CNN: convolutional neural
network; FCL: fully connected layer; OL: output layer.

Inputl was structured in the instance of N = 8, as a matrix in the following form
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I 'Lt
L L' Lt
+1 -1
Inputl = fg EH Ii_ ) (19)
I L't
L It oIt

I L' Lt

This structure was chosen so that the CNN block could interpret known correlations
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