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Alina Bărbulescu and Cristian S, tefan Dumitriu
Assessing Water Quality by Statistical Methods
Reprinted from: Water 2021, 13, 1026, doi:10.3390/w13081026 . . . . . . . . . . . . . . . . . . . . . 1

Alina Barbulescu
Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review
Reprinted from: Water 2020, 12, 1356, doi:10.3390/w12051356 . . . . . . . . . . . . . . . . . . . . . 5

Leticia Baena-Ruiz and David Pulido-Velazquez
A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital Aquifers
at Basin Scale
Reprinted from: Water 2020, 12, 2971, doi:10.3390/w12112971 . . . . . . . . . . . . . . . . . . . . . 27

Alina Barbulescu, Yousef Nazzal and Fares Howari
Assessing the Groundwater Quality in the Liwa Area, the United Arab Emirates
Reprinted from: Water 2020, 12, 2816, doi:10.3390/w12102816 . . . . . . . . . . . . . . . . . . . . . 53

Xinqiang Du, Jing Feng, Min Fang and Xueyan Ye
Sources, Influencing Factors, and Pollution Process of Inorganic Nitrogen in Shallow
Groundwater of a Typical Agricultural Area in Northeast China
Reprinted from: Water 2020, 12, 3292, doi:10.3390/w12113292 . . . . . . . . . . . . . . . . . . . . . 71

Carmen Maftei, Constantin Buta and Ionela Carazeanu Popovici
The Impact of Human Interventions and Changes in Climate on the Hydro-Chemical
Composition of Techirghiol Lake (Romania)
Reprinted from: Water 2020, 12, 2261, doi:10.3390/w12082261 . . . . . . . . . . . . . . . . . . . . . 93

Md Mamun, Ji Yoon Kim and Kwang-Guk An
Multivariate Statistical Analysis of Water Quality and Trophic State in an Artificial Dam
Reservoir
Reprinted from: Water 2021, 13, 186, doi:10.3390/w13020186 . . . . . . . . . . . . . . . . . . . . . 107

Ahmed A. Al-Taani, Maen Rashdan, Yousef Nazzal, Fares Howari, Jibran Iqbal and Abdulla
Al-Rawabdeh et al.
Evaluation of the Gulf of Aqaba Coastal Water, Jordan
Reprinted from: Water 2020, 12, 2125, doi:10.3390/w12082125 . . . . . . . . . . . . . . . . . . . . . 125

Chenjuan Jiang, Jia’nan Zhou, Jingcai Wang, Guosheng Fu and Jiren Zhou
Characteristics and Causes of Long-Term Water Quality Variation in Lixiahe Abdominal
Area, China
Reprinted from: Water 2020, 12, 1694, doi:10.3390/w12061694 . . . . . . . . . . . . . . . . . . . . . 141

Yilei Yu, Xianfang Song, Yinghua Zhang and Fandong Zheng
Assessment of Water Quality Using Chemometrics and Multivariate Statistics: A Case Study in
Chaobai River Replenished by Reclaimed Water, North China
Reprinted from: Water 2020, 12, 2551, doi:10.3390/w12092551 . . . . . . . . . . . . . . . . . . . . . 159

v



TaeHo Kim, YoungWoo Kim, Jihoon Shin, ByeongGeon Go and YoonKyung Cha
Assessing Land-Cover Effects on Stream Water Quality in Metropolitan Areas Using the Water
Quality Index
Reprinted from: Water 2020, 12, 3294, doi:10.3390/w12113294 . . . . . . . . . . . . . . . . . . . . . 183

Romulus Costache, Alina Barbulescu and Quoc Bao Pham
Integrated Framework for Detecting the Areas Prone to Flooding Generated by Flash-Floods in
Small River Catchments
Reprinted from: Water 2021, 13, 758, doi:10.3390/w13060758 . . . . . . . . . . . . . . . . . . . . . 203
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Preface to ”Assessing Water Quality by Statistical
Methods”

Water, indispensable for life, has became scarcer in the last period due to overexploitation

and pollution. Deforestation, urbanization, and, generally, agricultural and economic development

lead to the water quality decreasing not only of the surface water, but also of the groundwater,

endangering the water reserve. Toxic substances reaching water bodies without satisfactory treatment

and climate change negatively impact water quality. Moreover, billions of inhabitants worldwide

suffer from water scarcity, having limited or challenging access to drinking water. Therefore,

evaluating the groundwater vulnerability and the threats to the surface waters, like detecting the

pollution sources, their seasonal and spatial extent, and assessing the water quality are essential for

making insight decisions on reducing and eliminating, if possible, the pollution impact.

Recent studies on water quality increasingly used statistical methods to select the water

parameters that significantly impact the water quality or address pollution extent. They highlighted

the advantages of the proposed approach in terms of time and cost savings. The advantage of

using statistical methods also relies on validating the result that may be used in the next phase of

forecasting. Therefore, the Special Issue “Assessing the Water Quality by Statistical Methods” of

“Water” the book is based on contains articles on the following topics:

- Spatial and temporal analysis of the pollutants dissipation in water;

- Assessing the water quality using different water quality indicators;

- Assessing the groundwater vulnerability by parametric and nonparametric methods;

- Multivariate statistical approaches for evaluation of complex water quality datasets;

- Integrated frameworks for detecting the water quality in different catchments;

- Assessing the pollutants’ transport in water;

- Quantitative and qualitative analysis of spatial and spatio-temporal hydrological data;

- Artificial intelligence methods for modeling the water parameters series.

The topics may interest water resources scientists and the larger public, treating actual

environmental problems. Some methodologies proposed in the articles can be used or adapted to

analyze other complex databases or solve spatiotemporal environmental problems.

The editor thanks the authors for sharing their research, and the reviewers whose valuable

suggestions significantly improved the submitted articles.

We also thank the editorial staff, who ensured an excellent editorial process.

Alina Barbulescu

Editor
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Water is one of the natural resources most affected by anthropogenic activities, like
industry, agriculture, and traffic. Moreover, pollutants resulting from different sources
are reaching water bodies with insufficient or without proper treatment. Climate change
impacts the water quality as well, reducing the quantities of drinking water. Apart from
human health, profoundly affected by water pollution, organisms living in the water and
many ecosystems are affected more and more. Considering the difficult access to the
drinking water of the population from different parts of the world, preserving the water
resources, assessing their quality, and taking measures for the remediation of the water
bodies’ natural properties is a must.

In this context, the Special Issue with the title “Assessing Water Quality by Statistical
Methods” addressed topics related to groundwater vulnerability [1–4], estimating water
quality parameters in natural and artificial lakes and gulfs [5–7], investigating the causes
of Rivers pollution [8–10], and proposing new tools for estimating the regional extent [11]
and mitigating the effects of high precipitations on the water quality [12].

The single review [1] published in this volume addresses the groundwater vulnerabil-
ity evaluation by the DRASTIC method and DRASTIC-like approaches, without including
the particular case of the karst aquifer. Since its proposal, DRASTIC has become an essential
tool for assessing the groundwater vulnerability, being adapted to different cases, like
lithology, regions, land-uses, pollutants, land cover, and types of human settlements (rural
and urban). The review is based on 128 articles, giving a detailed image of the previous
work and opening possible study directions.

The article of Baena-Ruiz and Pulido-Velazquez [2] adapts the DRASTIC index to
obtain reliable assessments in carbonate aquifers while maintaining its original conceptual
formulation. The authors combine spatial statistics and decision trees to establish the
DRASTIC parameters’ domains and their associated weights. Comparisons of the new
method’s results with those obtained using the COP for the karst aquifer [13] show a
concordance on 75% of the study area, the Upper Guadiana Basin. Given its good output,
this approach should be validated in future studies.

In the same idea of evaluating the groundwater quality, in another part of the world—
the United Arab Emirates—the article [3] proposes a combined approach involving a
multivariate statistical analysis and water quality indices’ use. The study relies on a
database containing 42 concentration series of 19 water parameters collected in the Liwa
area. Since the hypothesis that the series of water parameters recorded at different locations
are similar was rejected, the samples were grouped in clusters and the main parameters that
determined the differences between the clusters were determined by Principal Component
Analysis (PCA). Finally, a quality index for assessing the water suitability for drinking
was computed in two scenarios. The authors emphasized the necessity of using more than
one technique to evaluate water quality for different purposes and to cross-validate the
results [3].

Du et al. [4] employed the Factorial Analysis (FA) and Correspondence Analysis (CA),
combined with geospatial tools, to identify the sources of inorganic nitrogen compounds
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in shallow groundwater, to determine the governing influencing factors and analyze the
formation process in an agricultural area in Northeast China [4].

In the article [5], the authors investigated the long-term time series of salinity and
water level of Techirghiol Lake (Romania), renowned in Europe for its sapropelic mud’s
therapeutic properties. These variables trends have been studied as functions of the
precipitation, overland flow, groundwater recharge, and the hydraulic works from the
lake’s neighborhood. The study shows that the Techirghiol Lake is a heavily modified
water body.

Mamun et al. [6] realized a comprehensive spatial and temporal analysis of the water
quality of the Paldang reservoir (Korea), which is an important source of freshwater. The
tools utilized to carry out the research were the PCA, FA, and stepwise spatial discriminant
analysis (DA), together with the Trophic State Index (TSI) and Trophic State Index deviation
(TSID). They show that anthropogenic activity is mainly responsible for the significant
spatial variations of most water parameters. The water parameters that significantly vary
during different seasons are the temperature, the biological oxygen demand, and total
suspended solids. The water parameters that significantly vary at different sites are the
water temperature, the electrical conductivity, the total nitrogen, the ratio biological oxygen
demand: chemical oxygen demand, and total nitrogen: total phosphorus.

In their research, Al-Taani et al. [7] investigated the water quality of the Aqaba Gulf in
Jordan, a zone with high touristic potential. The investigation of 19 parameters of water
samples collected in different parts of the Littoral did not present specific patterns, except
for the metal contents that showed increasing values close to an industrial complex by
comparison to other sampling places.

The article Characteristics and Causes of Long-Term Water Quality Variation in Lixiahe
Abdominal Area, China [8] presents the results of a set of statistical tests (the Mann–Kendall
trend test and Sen’s slope estimator) and the analysis of the correlation between the water
quality variation, the water level, and the water diversion employing the cross wavelet
transform and wavelet coherence. The results show that the comprehensive water quality
index (CWQI) included periodic fluctuations on multiple scales from 0.25 to 5 years [8].

Yu et al. [9] analyzed twenty water parameters from samples collected during March,
May, July, September, and November 2010 in Chaobai River (China). They found that
the eutrophication level was severe in most locations where the water was collected, and
the water was not appropriate for irrigation water (indicated by the sodium adsorption
ratio). Cluster analysis was used to determine the significant spatial and temporal variation
among different data series. The Gibbs plot indicated that the water–rock interaction mainly
controls the water chemistry, whereas the PCA showed that river water had undergone the
minerals dissolution.

Kim et al. [10] study the land-cover influence on the streams water quality in urban
zones from South Korea. After classifying the watersheds in three clusters, the factorial
analysis is used to select the water parameters that participate in the computation of a
newly defined water quality indicator (WQImin), further employed to estimate the degree
of water contamination. WQImin appears as a competitor for the other water quality
indexes already known.

Costache et al. [11] introduced an integrated framework for detecting the areas prone
to flooding generated by flash-floods in small river catchments as an indicator for water
quality. Three models were generated in the first stage, by a combination of frequency
ratio (FR), weights of evidence (WOE), and statistical index (SI), with fuzzy analytical
hierarchy process (FAHP), and the best one (FAHP-WOE) was selected. In the next stage,
the first step’s output was weighted using the flow accumulation method to determine
the valleys with different levels of susceptibility to flood. Finally, ten flood conditioning
factors were used to determine flood susceptibility through the analytical hierarchy process
model. Given that the higher the susceptibility to flooding is, the higher the pollution with
different sediments and other materials carried by the water is, this method provides an
interesting tool for pollution warning in small river catchments.
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The article [12] proposes a new evolutionary approach for determining an optimal
parameter in the Inverse Distance Weighting Interpolation (IDW) method that has a large
applicability in the spatial interpolation of regional data series. Proposed for the scenario,
the algorithm was tested on 41 series collected at ten locations, in Dobrogea, Romania.
In terms of the mean absolute error (MAE) and the mean standard error (MSE) the new
algorithm outperformed the classical IDW, the ordinary kriging, and the Particle Swarm
Optimization of IDW. The algorithm should be validated on other data sets.

Author Contributions: Conceptualization, A.B. and C.S, .D.; methodology, A.B. and C.S, .D.; for-
mal analysis, C.S, .D.; writing—A.B. and C.S, .D.; writing—review and editing, A.B.; supervision,
A.B.; project administration, A.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bărbulescu, A. Assessing the groundwater vulnerability: DRASTIC method and its versions: A review. Water 2020, 12, 1356.

[CrossRef]
2. Baena-Ruiz, L.; Pulido-Velazquez, D. A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital

Aquifers at Basin Scale. Water 2020, 12, 2971. [CrossRef]
3. Bărbulescu, A.; Nazzal, Y.; Howari, F. Assessing the groundwater quality in the Liwa area, the United Arab Emirates. Water 2020,

12, 2816. [CrossRef]
4. Du, X.; Feng, J.; Fang, M.; Ye, X. Sources, Influencing Factors, and Pollution Process of Inorganic Nitrogen in Shallow Groundwater

of a Typical Agricultural Area in Northeast China. Water 2020, 12, 3292. [CrossRef]
5. Maftei, C.; Buta, C.; Carazeanu Popovici, I. The Impact of Human Interventions and Changes in Climate on the Hydro-Chemical

Composition of Techirghiol Lake (Romania). Water 2020, 12, 2261. [CrossRef]
6. Mamun, M.; Kim, J.Y.; An, K.-G. Multivariate Statistical Analysis of Water Quality and Trophic State in an Artificial Dam Reservoir.

Water 2021, 13, 186. [CrossRef]
7. Al-Taani, A.A.; Rashdan, M.; Nazzal, Y.; Howari, F.; Iqbal, J.; Al-Rawabdeh, A.; Al Bsoul, A.; Khashashneh, S. Evaluation of the

Gulf of Aqaba Coastal Water, Jordan. Water 2020, 12, 2125. [CrossRef]
8. Jiang, C.; Zhou, J.; Wang, J.; Fu, G.; Zhou, J. Characteristics and Causes of Long-Term Water Quality Variation in Lixiahe

Abdominal Area, China. Water 2020, 12, 1694. [CrossRef]
9. Yu, Y.; Song, X.; Zhang, Y.; Zheng, F. Assessment of Water Quality Using Chemometrics and Multivariate Statistics: A Case Study

in Chaobai River Replenished by Reclaimed Water, North China. Water 2020, 12, 2551. [CrossRef]
10. Kim, T.; Kim, Y.; Shin, J.; Go, B.; Cha, Y. Assessing Land-Cover Effects on Stream Water Quality in Metropolitan Areas Using the

Water Quality Index. Water 2020, 12, 3294. [CrossRef]
11. Costache, R.; Bărbulescu, A.; Pham, Q.B. Integrated framework for detecting the areas prone to flooding generated by flash-floods

in small river catchments—A useful indicator for water quality. Water 2021, 13, 758. [CrossRef]
12. Bărbulescu, C.; S, erban, M.-L. Indrecan, Improving spatial interpolation quality. IDW versus a genetic algorithm. Water 2021,

13, 863. [CrossRef]
13. Ravbar, N.; Goldscheider, N. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst

catchment. Hydrogeol. J. 2008, 17, 725–733. [CrossRef]

3





water

Review

Assessing Groundwater Vulnerability: DRASTIC and
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Abstract: Groundwater vulnerability studies are sources of essential information for the management
of water resources, aiming at the water quality preservation. Different methodologies for estimating
the groundwater vulnerability, in general, or of the karst aquifer, in particular, are known. Among
them, DRASTIC is one of the most popular due to its performance and easy-to-use applicability. In
this article, we review DRASTIC and some DRASTIC-like methods introduced by different scientists,
emphasizing their applications, advantages, and drawbacks.

Keywords: aquifer; DRASTIC; index; groundwater; vulnerability

1. Introduction

In recent decades, water scarcity and its pollution became a major issue all over the world.
Preserving the groundwater quality is very important for assuring the drinking water resources, given
that billions of people all over the world do not have access to water or suffer from water scarcity [1].

Since 1968, when Margat [2] introduced the concept of groundwater vulnerability, many definitions
were proposed for this concept. For example, Hirata and Bertolo [3] defined the groundwater
vulnerability as “the property of a groundwater system that depends on the sensitivity of the material
in permitting the degradation of the saturated zone by pollutant substances originating from human
activities”, while the National Research Council [4] defined this term as “the relative ease with
which a contaminant (in this case a pesticide) applied on or near the land surface can migrate to the
aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and
hydrogeological sensitivity conditions”.

The intrinsic vulnerability describes the water vulnerability to different pollutants (independent
of their nature) resulted from human activities and is related to the hydrological, geological, and
hydrogeological aquifer’s characteristics. Given that the aquifers have different reactions to the
same contaminant due to their physicochemical characteristics, the specific vulnerability shows the
groundwater vulnerability to a pollutant (or a group of pollutants), determined by the pollutant’s
properties, taking into account the time of impact, its intensity, and the interaction between the intrinsic
vulnerability components and the contaminant [5,6].

Adams and Foster [7] emphasized that the aquifer vulnerability depends on the properties of the
layers situated above the saturated zone to attenuate the pollutants’ effect, by retention or neutralization
by chemical reactions.

Gogu and Dassargues [6] divided the approaches of assessing the groundwater vulnerability in
three groups, as a function of the groundwater protection. The first group takes into account only
the soil and unsaturated zone, the second one takes into consideration the groundwater flow and the
contaminant transfer to some extent [8], whereas the third focuses on the soil, the unsaturated medium,
and the aquifer.
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Different approaches are used for estimating groundwater vulnerability. They can be grouped into
three categories. The first group is formed by the index-based methods, which take into consideration
only the characteristics of soil and unsaturated zone. They are divided into Hydrogeological Complex
and Settings methods (HCS) [9]; Matrix Systems [10], approaches based on the combination of
two parameters, and Rating Systems [11–13]. They work by building water vulnerability groups
using different ratings associated with the physical characteristics of the study media. The second
group contains the statistical approaches that assess the groundwater vulnerability through statistical
analysis or regression models [14–16]. The third one contains the methods based on simulation, which
uses simulation techniques for forecasting the processes related to contaminant transport [17–20].
The index-based techniques have the advantage that they do not depend on data availability or
similarities [21].

The procedures that belong to the first and second categories are used for studying the intrinsic
vulnerability of large areas [22].

The most used index methods for studying the groundwater vulnerability are DRASTIC [23],
GOD [12], AVI rating system [13], DIVERSITY [24], ISIS [11], PRAST [25], SEEPAGE, SINTACS [26–29].
For the karst aquifer, EPIK [5], REKS [30], RISKE [31], RISKE 2 [32], COP and COP + K [33,34],
PaPRIKa [35], PI and the Slovene approach [36,37] have been proposed.

Introduced in 1985, DRASTIC is among the most popular approaches used in groundwater
vulnerability estimation due to its capability and easy-to-use. In the following, we shall focus on
reviewing this method, and some of the DRASTIC-like procedures that aim to improve the performance
of the groundwater vulnerability estimation, emphasizing the differences between them. We shall not
focus on the methods assessing the groundwater vulnerability for the karst aquifer because of the
extensive literature for the general case and the lack of space.

Some classifications of the methods that will be presented in next sections are:

1. Based on the extent of their use:

a. With general applicability—DRASTIC, GOD
b. For specific regions—SINTACS, DRAMIC, DRIST, DRAV
c. That considers the land use—DRASTIC-LU, DRASIC-LU, SINTACS-LU
d. For urban area—DRAMIC, DRASTICA

2. Based on the specific vulnerabilities assessed:

a. Lithological-oriented—methods assessing the kart aquifer vulnerability [5,29–36] and for
the fractured environment (referred in the following by Modified DRASTIC)

b. Pollutants’ oriented—Pesticide-DRASTIC, Modified Pesticide–DRASTIC, SI DRARCH.

We shall indicate the references to the articles treating these methods in the next sections, together
with a description of approaches.

The methods (and corresponding parameters) for groundwater vulnerability assessment discussed
in this article are summarized in Table 1.

2. DRASTIC

DRASTIC is a model that considers the main hydrological and geological factors with a
potential impact on aquifer pollution. Its acronym stands for D—depth to groundwater, R—recharge
rate, A—aquifer, S—soil, T—topography, I—vadose zone’s impact, and C—aquifer’s hydraulic
conductivity [38].

The depth to water table (D) [m] is the thickness of the layer crossed by the pollutant before
reaching the aquifer. The aquifer vulnerability is inverse proportional to the depth to the water table.

6
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The net recharge (R) [mm/year] represents the volume of infiltrated water that reaches the aquifer.
The contamination possibility increases if the net recharge increases. Three types of recharges can be
distinguished: direct, indirect, and localized [39,40]. The aquifer media (A) consists of different types
of rocks serving as an aquifer.

The upper part of the vadose zone, with intense biological activity, is defined to be the soil media (S).
The topography (T) (%) is defined by the terrain slope, together with its variation. A low slope

will determine a small surface flow and a high pollution risk.
The vadose zone’s impact (I)—The unsaturated or discontinuously saturated layer situated above

the water table is called vadose. The pollutant’s transfer is influenced by the vadose zone’s lithology.
The aquifer hydraulic conductivity (C) is the aquifer materials’ capacity to leave the water to pass

through it. The aquifer vulnerability is low for reduced hydraulic conductivities.
The hypotheses of the DRASTIC models are:

• The pollutants are produced at the surface of the Earth;
• The pollutants are transported into the soil by precipitation;
• The pollutants’ travel velocity is that of the water;
• The affected area must be big enough.

Firstly, a rate from 1 to 10 is assigned to each parameter, 1 being the least important [38]. Then, the
DRASTIC index score is built, using the weights fixed for each parameter. The formula for DRASTIC
index is:

DRASTIC index = DRDw + RRRw + ARAw + SRSw + TRTw + IRIw + CRCw (1)

where R is the rate and w is the parameter weight.
The weights have been set up by EPA (the United States Environmental Protection Agency) based

on the experts’ knowledge after studying different regions. In the original DRASTIC algorithm the
weights range from 1 to 5 (1 being the least important), the smallest possible index score is 23 and the
highest, 230. Tables 2 and 3 contain the weights and ratings of the components, firstly provided in [38].
Lower groundwater vulnerability is described by a lower index score.

Table 2. DRASTIC D, R, T, and C rating and weighting [38].

Depth to Water (mm) −weight = 5

range 0–1.5 1.5–4.6 4.6–9.1 9.1–15.2 15.2–22.8 22.8–30.4 >30.4
rating 10 9 7 5 3 2 1

Net Recharge (mm) −weight = 4

range 0–50.8 50.8–101.6 101.6–177.8 177.8–254 >254
rating 1 3 7 8 9

Hydraulic Conductivity of the Aquifer (m/day) −weight = 3

range 0.04–4.1 4.1–12.3 12.3–28.7 28.7–41 41–82 >82
rating 1 2 4 6 8 10

Topography (slope %) −weight = 1

range 0–2 2–6 6–12 12–18 >18
rating 10 9 5 3 1
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Table 3. DRASTIC A, I, S rating and weighting

Aquifer Media Vadose Zone Material Soil Media

weight = 3 rating weight = 5 rating weight = 2 rating

Massive shale 2 Silt/clay 1 Non-srinking and
non-aggregated clay 1

Metamorphic/igneous 3 Shale 3 Muck 2
Weathered
metamorphic/igneous 4 Metamorphic/igneous 4 Clay loam 3

Thin-bedded sandstone,
limestone, shale
sequences

6 Limestone 6 Silty loam 4

Massive sandstone 6 Sandstone 6 Loam 5

Massive limestone 8 Bedded limestone,
Sandstone, shale 6 Sandy loam 6

Sand and gravel 8
Sand and gravel with
significant silt and
clay

6 Shrinking and/or
aggregated clay 7

Basalt 9 Sand and gravel 8 Peat 8
Karst limestone 10 Basalt 9 Sand 9

Karst limestone 10 Gravel 10
Thin or absent 10

Different authors [41,42] pointed out the DRASTIC results’ accuracy, the small amount of input
data, its application’s low cost [38,43], reduced computational time, and simple computational
procedure [44]. DRASTIC proved to be useful for evaluating the aquifer vulnerability in priority
monitoring areas and as a valuable indicator where detailed hydrogeological evaluation is necessary.
Other authors emphasized the limited validation procedure of the DRASTIC methodology [45,46]
and a low correlation between the experimental data and the model’s output [47,48]. Wang et al. [49]
remarked on the necessity of procedure adaption for urban areas, while the parameters’ weight choice
in the DRASTIC index was criticized by Merchant [50]. Therefore, several approaches were proposed
for improving the groundwater vulnerability estimation accuracy, each of them involving a different
number of parameters. In the following, we shall present some of these methods and the rationale for
their use.

Although the DRASTIC model was intended to be used in mapping applications, it was not
expressly designed for use in a GIS, its initial applications employing a manual map overlay and
computation procedure [50]. The main importance of vulnerability maps is that their analysis can
provide effective information for making informed decisions for water management [51].

Merchant et al. [52] were the first that used GIS for DRASTIC implementation. Since then,
due to their capability of retrieving, storing, organizing, analyzing, and presenting geographically
referenced spatial data, GIS methods have been successfully employed for assessing the groundwater
vulnerability [53–60].

The main GIS advantage is its efficiency of combining data layers and changing the parameters
used for the vulnerability classification [49]. For producing a groundwater pollution risk map (Figure 1),
it is necessary to prepare the seven individual maps (one for each component in the model). Therefore,
all data should be available, accurate enough [50], and introduced in a GIS database.
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Figure 1. Flowchart for building a vulnerability map in DRASTIC (adapted from [61]).

The D parameter layer is generated using topographic maps. Then, the IDW method is applied for
interpolating the water level data and obtaining the depth to the water layer. The general water balance
equations are used for generating the recharge layer, R. The lithology, and the type of aquifer media are
considered for the estimation of the A factor. The soil media, S, is determined by using the soil textural
classification chart. The topographic slope, T, is determined by using a digital elevation model and
the data extraction from the topography layer. Then the slope layer (%) is generated, and the range is
reclassified taking into account the DRASTIC ranges. The impact of the V factor is determined using
the depth to the water layer and the well logs report. The hydraulic conductivity data is retrieved
by experimental measurements. Finally, the pollution risk layer is produced using the seven layers
previously built by GIS, and all the DRASTIC thematic layers are combined [62].

3. Modified DRASTIC (DRASTICM)

Scientific studies pointed out that geologic structures have a significant impact on highly fractured
environments’ vulnerability. Therefore, in a study performed for a region form Nicaragua, Mendoza
and Barmen [63] modified the DRASTIC index by including the influence of the length, connectivity,
and lineament density. They introduced the lineament influence, denoted by M, in the new model,
called Modified DRASTIC, whose index, MDI, is defined by

MDI = DRASTIC index + 5MR, (2)

where R is the rating, M is the lineament factor.
A rate between 0 and 3 was assigned to the influence of the lineament.
Data collected from the field and photographic interpretation were normalized and combined in a

map to assess the lineament influence. This map and the other seven (from DRASTIC) contributed to
building the Modified DRASTIC map.

Mendoza and Barmen [63] also proposed the classification of groundwater vulnerability degree
as very high (MDI > 199), high (MDI between 160 and 199), moderate (MDI in the range 120–159), low
(MDI between 80 and 119), and very low (MDI < 79).

The results show that D and T are the factors with a significant influence on vulnerability prediction.
Compared with DRASTIC, the modified DRASTIC gave a better estimation of the contamination risk
in zones with high fractured structures.
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4. DRIST and Modified DRASTIC

Introduced for investigating the underground water vulnerability in Grombalia, the DRIST
model was adapted to the hydrogeological system properties from this region. DRIST considers
only parameters related to the unsaturated aquifer zone, while DRASTIC works with the aquifer
saturated zone characteristics [40]. The calculation of the DRIST vulnerability index is similar to that
for DRASTIC (but ignoring A and C parameters).

In the same article, Chenini et al. [40] proposed a Modified DRASTIC method. The difference
between these approaches resides in the estimation of the factors A and I. In the new one the lithology
is substituted by the permeability, as suggested in [64]. The other maps are created by the same
procedure as in DRASTIC.

The permeability map of the vertical vadose zone is realized based on the vertical permeability
formula:

K1 = H
/ p∑

i=1

(hi/ki), (3)

where K1 is the vertical average permeability (m/s), H—the unsaturated zone total thickness (m),
hi—the thickness of the ith layer (m), ki—the permeability of the ith layer (m/s), and p—the number of
layers [64].

The saturated zone’s permeability map is determined using the formula of the horizontal
permeability [65]:

K2 = (
∑p

i=1
(hiki))/(

∑p

i=1
hi), (4)

where K2 is the average horizontal permeability (m/s), hi, ki and p have the same significance as in

formula (3), while
p∑

i=1
hi at the denominator of formula (10) is the saturated zone total thickness (m).

Comparing the two vulnerability maps, Chenini et al. [40] showed that there are differences
between them. The area with medium vulnerability is more significant in the Modified DRASTIC
due to the minimization of the saturated zone effect, as an effect of the permeability replacement by
lithology in the process of parameters’ estimation. DRIST map reflects the effect of removing the factors
related to the saturated zone.

Sakala et al. [66] used the same model and a neural network approach to generate a groundwater
vulnerability model. The network used as input the DRIST parameters, and as the training dataset, the
sulfate and Total Dissolved Solids (TDS) concentrations retrieved from five groundwater samples. The
groundwater vulnerability model was finally obtained by applying a fuzzy operator for combining the
training and classification results. The model’s results are well correlated with the available data and
the output of the DRIST model.

5. DRAV

DRAV is a model designed by modifying DRASTIC for taking into account the groundwater
characteristics from the arid zones [67]. Since generally, in those areas, there is no horizontal runoff,
the DRASTIC T term was removed, and S was replaced by V (vadose zone’s lithology). The factors D,
R, and A were kept in the new model.

The DRAV index is a linear combination of the factors D, R, A, and V with the normalized weights
0.20, 0.15, 0.31, and 0.34, respectively.

The scores for the D factor are 1, 2, 3, 5, 7, 10, for groundwater depths (m) greater than 30, in the
interval (10, 30], between 6 and 10, in the interval (3, 6], in the range 1–3, less than 1, respectively [66].

The scores for the R factor are 1, 2, 4, 6, 8, 10, for recharge modules (×104 m3/km2/area) less than
5, in the interval [5, 10), between 10 and 20, from 20 to 30, in the interval [30, 50), greater than 50,
respectively [67].

The scores for the A factor are 1, 3, 5, 7, and 10, for a storativity (m3/day/m) smaller than 2, between
2 and 20, in the interval [20, 200), from 200 to 1000, and greater than 1000, respectively [66].
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The scores (for the V factor) 10, 4, 2, and 1 were associated with Sandy gravel, Sandy loam, Sandy
clay, and Silty and fine sand, respectively [67].

Five classes of phreatic water vulnerability (extremely high, high, medium, low, and extremely
low) corresponds to vulnerability indices above 8, the interval (6, 8], between 4 and 6, the interval (2,
4], ≤ 2, respectively.

DRAV was used to analyze the pore groundwater in the northwestern part of China, but no
comparison with other methods is provided. Therefore more studies are necessary to validate
this approach.

6. DRAMIC

Many scientists emphasized the limitations of DRASTIC’s application for urban areas [49,68], as
follows. (1) The terrain where the cities are situated is mostly flat, so the T factor in the DRASTIC
model is not relevant. (2) The values of the soil media can be hardly obtained because the ground
surface is mostly covered by concrete. (3) The hydraulic conductivity is not relevant. Therefore, they
built the DRAMIC index, by replacing in DRASTIC the S factor by the thickness of the aquifer (M), and
the C factor by the contaminant impact (denoted by C as well). It must be noticed that DRAMIC does
not consider the pollutants’ properties, but its stability and infiltration capacity into the aquifer. The
parameters (and ratings) in DRAMIC are [49]:

• Aquifer thickness (m): 0–6 (9), 6–15 (7), 15–25 (5), 25–32 (4), 32–40 (3), 40–50 (2), >50 (1);
• Contaminant’s characteristics:

� Stability, infiltration easiness (9)
� Stability, infiltration relative easiness (7)
� Stability, infiltration uneasiness, and Relative stability, infiltration easiness (5)
� Relative stability, infiltration relative easiness (4)
� Relative stability, infiltration uneasiness, and Instability, infiltration easiness (3)
� Instability, infiltration relative easiness (2)
� Instability, infiltration uneasiness (1)

The DRAMIC Index is computed by the relation

DRAMIC index = 2DR + 3RR + 4AR + 2MR + 5IR + 1CR (5)

where R is the rating.
The main factors considered in DRAMIC are the stability of the pollutant and the easiness of the

pollutant infiltration. The results of this model applied in a study from China (Wuhan region) were
compared with the field data, showing a good correlation. Despite promising results, other studies are
needed to validate this method for other urban areas.

7. DRASTICA

DRASTICA is a modified DRASTIC model, which includes the anthropogenic influence
in urbanized environments [68,69]. A new factor (A-anthropic factor) was introduced, with
the weight equal to 5. The index is computed as in DRASTIC, adding the new term, ARAw,
where AR is the rating and Aw the weight. The anthropic factors and the rating assigned are
the following [68]: Effluents/sewage/industrial waste (untreated), Oil spillage/gas flaring and
E-wastes – 9, Open dumpsites (non-sanitary landfill) and Emissions from automobiles/generators
– 8, Cementary/soakaway/pit latrine (unlined) and Fertilizer/agrochemicals–7, Domestic waste
(organic/degradable) – 6, Effluents/sewage/industrial waste (treated) and Sanitary landfill – 5,
Cementary/soakaway/pit-latrine (lined) and Bush burning – 4. The rating and weighing of the
other parameters were kept as in DRASTIC.
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Four vulnerability categories were built (low, moderate, high, and very high), corresponding to
values of vulnerability indexes in the intervals 140–159, 160–179, 180–199, 200–215.

In a study of the water pollution impact in Lucknow, India, DRASTICA better performs by
comparison to DRASTIC, when the models were validated using field data. The sensitivity study
emphasized that the less sensitive factors were A (aquifer), followed by S and T. The parameters with
the highest impact are D, followed by A (anthropogenic factor) and C.

Another research concerning the groundwater vulnerability in the Niger Delta [69] concluded
that the anthropic activity (incorporated in the A factor) had a consistent impact on the
groundwater contamination.

8. DRASTIC-LU

Studies concerning the groundwater vulnerability showed an increasing impact of land use
on water contamination [51,70,71]. Alam et al. [51] indicated that industrial and sewage pollution,
pesticides, and fertilizers alter groundwater quality. They proposed a new index, DRASTIC-LU,
adding “the land use pattern” (LU) parameter. The land use categories considered (and the rating) are
respectively: urban and industrial (10), rural and industrial (9), rural and agriculture (8), with a weight
of 5.

The DRASTIC-LU index is computed by:

DRASTIC-LU = DRDw + RRRw + ARAw + SRSw + TRTw + IRIw + CRCw + LRLw, (6)

where the land use rating and weight are LR and Lw, respectively.
The other acronyms have the same significance as in the DRASTIC index.
The parameter of the vadose zone impact (IR) is computed by [70]:

IR = T
/(∑n

i=1

Ti

Iri

)
, (7)

where T is the vadose zone total thickness, Ti is the ith layer thickness and Iri is the ith layer rating.
Since this approach considers many layers of the vadose zone, it is expected to provide more

accurate results.
The values of the DRASTIC-LU index are situated in the interval [158, 190], divided into

subintervals as follows: less than 160 (corresponding to low vulnerability zone), 160–170 (medium
vulnerability zone), 170–180 (corresponding to high vulnerability zone), greater than 180 (very high
vulnerability).

Some research [51,70,72,73] investigated the groundwater vulnerability in different regions of
India. In a study related to a zone of Central India, Alam [50] showed that the most significant
parameters in the model DRASTIC-LU model are D, I, C, and LU.

In a vulnerability analysis in the Basin of Damodar River, Kumar and Khrisma [72] compared the
performance of DRASTIC and DRASTIC-LU, emphasizing the significant impact of the LU component.
The sequence of impact intensities I > D > C > LU > S > T > R > A resulted after investigating the
map sensitivity. At the models’ validation stage, a better correlation between the field data and the
estimated ones resulted in the DRASTIC-LU model (0.893 against 0.781 for DRASTIC). Therefore one
can conclude that the essential factors that should be taken into account for assessing the vulnerability
in the study zone are A, T, I, and LU.

In the sensitivity analysis by map removal in a DRASTIC-LU approach for Karun Basin, Sinha
et al. [73] found a different sequence of impact intensities by comparison with [72] (LU > S > T > D
> I > A > R). Therefore, the LU and S factors have the main effect on the DRASTIC-LU index. This
result is concordant with the field reality (the aquifer’ shallow waters). Sensitivity analysis revealed
that depth of water table, land use, and topography produce large variations of vulnerability index by
comparison with other parameters.
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9. DRASIC-LU

DRASIC-LU is a version of DRASTIC, initially used for assessing the groundwater pollution risk
in some sub-regions of India (Ganga Plain) [71]. Due to the topographic small variation, the parameter
T was removed from the DRASTIC index and was replaced by the parameter L (land use), which
reflects the land use impact on the water quality [74]. The land use categories are the same as in the
DRASTIC-LU, and the vadose zone impact parameter is computed by the relation (7). Qinghai et
al. [75] introduced the hydraulic conductivity values in concordance with the experimental data. They
are respectively:

• The ratings for D (depth to the water table) are 2, 3 and 5, while the weighting factor is 5;
• The rating for net recharge (R) is 9, and the weight scale is 4;
• The rating for aquifer media (A) is 8, and the weight scale is 3;
• The ratings for soil media (S) are 5 and 6, and the weight scale is 2;
• The ratings for vadose zone impact (I) are 1 and 2, while the weight scale is 5;
• The ratings for hydraulic conductivity (C) are 4, 8 and 10, while the weight scale is 3;
• The ratings for land use (L) are 8, 9, and 10, and the weight scale is 5.

The new index is defined by:

DRASIC-LU = DRDw + RRRw + ARAw + SRSw + IRIw + CRCw + LRLw, (8)

The terms have the same significance as in Equations (1) and (6). The index varies in the interval
[140, 180], which is divided in four sub-intervals: [140, 150]—for low vulnerability zones, [150,
160]—for moderate vulnerability zones, [160, 170] for high vulnerability zones and [170, 180]—for very
high, respectively.

Studying an aquifer from the Ganga Plain, Umar et al. [74] concluded that D, C, I, and LU are the
main factors to be considered for vulnerability mapping.

10. SI Index

Ribeiro [76] introduced the SI method for the estimation of the groundwater vulnerability to
pollutants generated in areas at medium and large in Portugal. SI is obtained by removing S, I, and C
from DRASTIC an including the land use parameter (LU) that incorporates the agricultural activities’
impact (especially nitrates) on the water quality [77]. Therefore this method assesses the specific
vulnerability of groundwater.

The SI index is computed by:

SI = DRDw + RRRw + ARAw + TRTw + LURLUw, (9)

where the parameters’ weights are [77]:

Dw = 0.186, Rw = 0.212, Aw = 0.259, Tw = 0.121, LUw = 0.222.

The essential land use activities classes and the corresponding rating values (displayed inside the
brackets) [77] varies between 0 (for semi-natural zones and forest) and 100 (for mines, landfill, and
industrial discharge), with intermediate values as follows:

• 90—Paddy fields, Irrigated perimeters irrigated,
• 80—Shipyard and quarry,
• 75—Green and continuous urban zones, and artificially covered zones
• 70—Discontinuous urban zones, and Permanent cultures
• 50—Aquatic media, agro-forest zones, pastures.
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From 2000, when it was introduced, the SI index was applied for vulnerability studies in Columbia,
Malaysia, Morocco, Portugal, and Tunisia [59,76–84]. Hamza and Added [82] show that DRASTIC
does not consider the contaminant’s nature and gives great weight to the hydrogeological factors. The
case study supports the idea that the SI method was designed for taking into account the nitrates
properties and the relations between them and the intrinsic vulnerability. LU factor integrates the land
use types, allowing the integration of different particular characteristics.

The results of Stigter et al. [77] and Hamza et al. [83] show that permeable aquifer and high
recharge are responsible for the pollution vulnerability increase. For chloride or nitrate contaminants
in specific conditions, the dilution potential may have a significant role in the determination of
contamination degree [81]. Validating the vulnerability maps using the measured nitrites concentration,
Stigter et al. [77] emphasized the groundwater vulnerability underestimation when DRASTIC was
used instead of SI. Another comparative analysis of these methods validated in the field showed a
better concordance when using the SI approach [83].

11. DRARCH

This model was introduced for studying the water vulnerability at arsenic in the Taiyuan basin
and is based on simulation of the solute transport. The procedure can be summarized as follows [75]:

(1) Build a series of contaminant transport models employing Hydrus1D and use each model index
in the simulations of the contaminant transport.

(2) Increase the accepted index value and compute the associated migration distance of
the contaminant.

(3) Analyze the relationship between the index values and the pollutant’ simulated migration
distances and determine the indexes’ ratings.

(4) Use the factorial analysis to determine the weighting of each index.
(5) Apply the ordinary kriging for estimating the vulnerability spatial variation over the basin.

The D and R indices from DRASTIC are kept in the DRARCH model, while the other indices were
replaced by:

• Aquifer thickness (A);
• The ratio of the clay layers’ thickness to the vadose zone thickness (R), introduced for emphasizing

that the clay has a specific surface area and an adsorption capacity greater than other sediments;
• The coefficient of pollutant’s adsorption by the sediment in the vadose zone (C);
• Aquifer hydraulic conductivity (H).

The indices weights are 2, 1, 7, 9, 7, and 5, respectively. The rating values associated with these
indices are given in [49]. The range, in meters, and the rating associated with the depth to the water
table are respectively: 0–2 (10), 2–5 (9), 5–7 (7), 7–10 (5), 10–12 (3), 12–15 (2) and >15 (1). For the net
recharge, the range, in millimeters, and the rating are respectively: 0–50 (1), 50–70 (2), 70–80 (3), 80–100
(4), 100–150 (6), 150–200 (9) and >200 (10). For the aquifer thickness, the range, in meters, and the
rating are respectively: 0–5 (10), 5–15 (9), 15–25 (8), 25–30 (4), 30–50 (2) and >50 (1).

For the ratio of the cumulative thickness of clay layers to the total thickness of vadose zone, the
range, in %, and the rating are respectively: 0–5 (10), 5–10 (8), 10–20 (5), 20–30 (3), 60–100 (1). For the
contaminant adsorption coefficient of sediment in the vadose zone, the range, in L/kg, and the rating
are respectively: 0–1 (10), 1–2 (9), 2–5 (7), 5–15 (5), 15–30 (3), 30–50 (2) and >50 (1). For the hydraulic
conductivity of the aquifer, the range, in m/d, and the rating are respectively: 0–5 (1), 5–10 (2), 10–15
(4), 15–20 (7), 20–25 (8), >25 (10).

The total vulnerability score V is computed by:

V = DRDw + RRRw + ARAw + RRRw + CRCw + HRHw (10)
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where V is the DRARCH score, R—the rating value, w—the parameter weight.
The vulnerability index values are between 31 and 310 and five vulnerability classes were adopted:

very low (31–86), low (87–142), moderate (143–198), high (199–254), and very high (255–310).
Other approaches of the aquifer vulnerability to arsenic used a GIS-based DRASTIC [85], with the

vulnerability classifications and the indices values given in [86].

12. SINTACS

SINTACS was proposed and developed by Civita [26] and Civita and De Maio [27,28] for improving
and adapting the DRASTIC model to the particularities of Italy. The letters in SINTACS are the first letters
of the Italian words that define the models’ factors. They are the depth to the water table (Soggicenza),
effective infiltration (Infiltrazione), attenuation capacity of the unsaturated zone (Nonsaturo), type of
the soil media (Tipologia della copertura), characteristics of the saturated zone (Acquifero), hydraulic
conductivity (Conducibilità), and topographic slope (Superficie topografica) [25,29].

Civita [29] remarked that for using one or another method for assessing the groundwater
vulnerability, one should consider the density of the observation points, the data availability, its
completeness, and reliability, the homogeneity of the study region. In a critical review of some methods
he presents the reasons for searching a better approach for the evaluation of groundwater vulnerability:

• The soil action is isolated from the action of the embedding system.
• The climatic factors and their influence on the water system is not considered
• Most methods have only a local application
• The use of vulnerability maps for the prevention of the groundwater quality deterioration should

be supported by a deep insight into the mechanism of the contaminant production and its risk
level [21].

Based on the use of the same parameters, the SINTACS structure has a higher complexity than the
DRASTIC one.

For a complete and reliable database, the SINTACS procedure is the following [25,29].

• Select the factors used in the study
• Divide the factors into types or subintervals containing the factors’ values
• Assign a rating, P, between 1 and 10, to each subinterval, in concordance with its importance in

the last step of the algorithm (Figure 2)
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• Choose the strings of weights, W, and multiply the factor ratings (Table 4).

Table 4. Strings of weights in SINTACS (adapted from [29]).

Parameter S I N T A C S

Normal 5 4 5 3 3 3 3
Severe 5 5 4 5 3 2 2
Seepage 4 4 4 2 5 5 2
Karst 2 5 1 3 5 5 5
Fissured 3 3 3 4 4 5 4
Nitrates 5 5 4 5 2 2 3

The vulnerability index is computed as a weighted average, by the formula:

IS=
∑7

i=1
wi × Pi, (11)

Pi being the rating value and wi is the corresponding weight.
One of the SINTACS advantages is the possibility of simultaneous use in different zones since

each situation has assigned a specific weighting rate. Notice the differences between the DRASTIC and
SINTACS procedures of weighting and rating, the last one operating in parallel with different strings
of weights (Table 4) to describe the environmental conditions [6]. The most difficult task remains the
range selection and the assignation of weight and ratings.

Ratings in SINTACS for the net recharge (R) are Coarse alluvial deposit 6–9, karstified limestone
8–10, Fractured limestone 4–8, Fissured dolomite 2–5, Medium-fine alluvial deposit 3–6, sandstone
complex 4–7, Sandstone and conglomerate 5–8, Fissured plutonic rock 3–5, Turbidic sequence 2–5,
Fissured volcanic rock 5–10, Marl and claystone 1–2, Coarse moraine 4–6, Clay, silt and peat 2–4,
Medium –fine moraine 1–2, Pyrolastic rock 2–5, Fissured metamorphic rock 2–6 [27].

The six vulnerability classes (and the corresponding intervals of the vulnerability index) are very
high (IS > 210), high (186 < IS < 210), moderately high (140 < IS < 186), medium (105 < IS < 140), low
(80 < IS < 105), and very low (IS < 80).

For extending the applicability of SINTACS to the entire Italian territory, a new approach was
introduced, by combining the SINTACS Release 5 [28] with the GNDCI_CNR Basic Method [29].
Since its release, SINTACS became one of the most used methods for the assessment of groundwater
vulnerability in countries as Algeria, Italy, Jordan, Morocco, Thailand [87–93].

Corniello et al. [89] remarked that lithological and morphological settings play an important role
in the process of generating SINTACS vulnerability maps. In a comparative study of three methods [90]
on sites situated in a Mediterranean region, it is shown that the climatic conditions have a significant
influence on the methods’ performance, DRASTIC providing better results than SINTACS and AVI.
A comparative study of the vulnerability maps produced by DRASTIC and SINTACS for an aquifer
situated in Algeria [91] shows that the results are statistically concordant. Luoma et al. [92] emphasize
in their research on a coastal aquifer that the SINTACS vulnerability maps are concordant with the
field reality.

From the comparative analysis of the results provided by performing DRASTIC, SINTACS, and
GOD methods on a database from Central Romania [93], one can remark on the similarity of the
maps generated by the first two methods, there are few differences in the extent of the class of low
vulnerability. In zones with small vulnerability variations, GOD performed worst. Therefore this
method should be used only for regions with big vulnerability variations.

Aiming at detecting the capabilities of five groundwater vulnerability approaches, Civita and
De Regibus [11] developed their research in three zones (mountains, hills, and flat). SINTACS and
DRASTIC could adapt to the various situations, by comparison to the other competitors (GOD being
among them) due to their flexibility.
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Secunda et al. [94] and Noori et al. [95] used a SINTACS-LU approach in their research. The new
factor, LU, was introduced by analogy to DRASTIC-LU, for considering the land use effect on the
groundwater vulnerability. The new approaches better performed than SINTACS in case studies
from Israel and Iran. Both SINTACS-LU and DRASTIC-LU vulnerability maps delimited the zones
highly affected by human activity [94]. The sensitivity analysis for SINTACS-LU [95] showed that the
parameter with the highest impact was the vadose zone, followed by the land use. The analysis of the
correlation between the vulnerability index and the nitrate values (recorded on-field) was the highest
for SINTACS-LU (0.75), by comparison to those of DRASTIC-LU (0.68) and SI (0.64).

13. Groundwater Vulnerability Assessment to Specific Pollutants

Even if all the described methods could be applied to assess the groundwater vulnerability to
contamination, new approaches have been proposed to account for the specific properties of some
pollutants. These include Pesticide DRASTIC, Pesticide DRASTIC-LU [38,96], Modified Pesticide
DRASTIC [80,81,96], Modified DRASTIC for nitrate [20,46,96–99]. The factors weights in Pesticide
DRASTIC and Pesticide DRASTIC LU differs from those of DRASTIC, the rating being preserved.
They are presented in Table 5. The ratings of the land use in Pesticide DRASTIC-LU are 1, 5, 7, or 8.

Table 5. Weights assigned to the parameters in Pesticide DRASTIC, Pesticide DRASTIC-LU.

Parameter D R A S T I C LU

Pesticide
DRASTIC 5 4 3 5 3 4 2 -

Pesticide
DRASTIC-LU 5 4 3 5 3 4 2 5

DRASTIC, Pesticide DRASTIC, and Pesticide DRASTIC-LU were used for a study in a part of the
Gangetic Plain with intense agricultural activities. Statistical analysis of the average values revealed
that the most significant contribution to calculation the vulnerability indexes were I, T (in DRASTIC
and Pesticide DRASTIC), and D, followed by R (in Pesticide DRASTIC LU). The sensitivity analysis
found that A and R factors had the highest impact on all the models. The less significant parameters
were S, and T—in DRASTIC, I and C—in Pesticide DRASTIC. Pesticide DRASTIC was the best model
point of view of the correlation between the field data and prediction [96].

DRASTIC, Pesticide DRASTIC, and SI were applied in a case study of an aquifer from Tunisia. SI
and Pesticide DRASTIC better detected the pollution risk. The concordance between the categories of
vulnerability determined by these approaches was 64%. The authors [80] recommend the use of these
two approaches for different purposes; the first one for monitoring, whereas the second one as a part
of a multicriteria decision tool for allocating different zones to specific anthropic activities.

The performance of the same three models, together with Modified DRASTIC were compared
on an aquifer in India (Telangana) [81]. The D factor has a considerable impact, followed by soil, the
smaller one being that of R. The vulnerability classes are almost the same in SI, modified DRASTIC, and
modified Pesticide DRASTIC because of the effect of LU inclusion. The Modified Pesticide DRASTIC
map contains a higher area with high vulnerability, compared to Pesticide DRASTIC. The scientists
remarked [81] the DRASTIC vulnerability underestimation and SI overestimation. All the models (but
SI) are in concordance by at least 60%. It seems that the modified Pesticide DRASTIC provided the
best predictions.

The nitrate is not a natural compound of soil, being the result of human activities, like the fertilizers
used in agriculture or defecation [100]. While some authors used the Pesticide DRASTIC or Pesticide
DRASTIC-LU to study the soil contamination with nitrates [46], other scientists [97–99] developed new
approaches for improving the weights assigning in DRASTIC. Antonakos and Lambrakis [98] proposed
DRASTIC-based hybrid methods, Huan et al. [99] adjusted the DRASTIC rating and weighting system.
They validated their models on study cases from Greece and China, respectively.
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Kazakis and Voudouris [97] replaced the A, S, and I factors of DRASTIC by the thickness of the
aquifer, losses of nitrogen from the soil, and hydraulic resistance. The second factor was estimated
by the GLEAMS model [101]. The parameters’ range and weights were also modified. The two new
methods, named DRASTIC-PA and DRASTIC-PAN, were compared to DRASTIC and LOSN-PN. Their
performance were validated by the sensitivity analysis.

14. Other Approaches

In addition to the discussed approaches and those listed in Introduction [5,12,13,23–37], Modified
versions of DRASTIC have also been developed. Some of them, for carbonate aquifers, are presented
in the articles of Davies et al. [102] (that introduced KARST), Witkowski et al. [103], Różkowski [104],
Denny et al. [105] (that introduced DRASTIC-Fm), Jiménez-Madrid et al. [106] (that introduced
DRISTPI). We shall not insist here on them, due to lack of space.

As already mentioned, one of the main criticism of DRASTIC was that it does not take into
account the study particular characteristics of each study region, and does not adapt the ratings and
weights [46]. To surpass this inconvenience, other techniques have been proposed, as follows:

• Approaches for improving the weighting techniques [107]
• Approaches that use Analytic Hierarchy Process (AHP) and AHP-fuzzy [46,60,108,109]
• Approaches that use the fuzzy logic [110–114]
• Approaches that use genetic algorithms and neural networks [45,115–117].
• Correspondence Analysis [118], aiming at minimizing the redundancy between factors using a

multivariate statistical method
• Calibration techniques, proposed in [98,119], used in [99,100].
• For a deep insight into these approaches, the readers can access the cited articles.

15. Models’ Validation

Different authors used many models to validate the results of the vulnerability maps [25,90,120].
Kumar et al. [21] emphasize that this comparison is not advisable because various approaches use
different parameters, so the vulnerability maps might not be similar. The benefit of such procedures
is to offer an insight into the existence and spatial distribution of groundwater pollution. Therefore,
other techniques should be used, as the validation of the vulnerability maps on contaminants data
sets collected on-site from wells distributed in the study region. This is usually done using the
concentrations of nitrates in the collected samples. A method whose results are most contrasting could
be considered most sensitive, so it can be used [6].

Napolitano-Fabri [121] proposed the single-parameter sensitivity analysis (SPSA), which is the
most frequently used technique for evaluating the significance of the parameters in the vulnerability
models [46,57,58,64,99,122–127]. SPSA provides information on the rating and weighting assigned to
each parameter, enabling its evaluation by the researcher. SPSA compares the theoretical and effective
weights assigned to each parameter in a model.

Lodwick et al. [128] introduced the map removal sensitivity analysis (MRSA) for assessing the
uncertainty degree of the models’ output. MRSA consists of removing one map from the analysis of
vulnerability and computing a variation index.

Higher SPSA (MRSA) is, higher the importance of the parameter is.
Promising methods of validation involve statistical methods, such those proposed by Masetti [15],

Neukum [17], Panagopoulos et al. [118], and Pacheco et al. [121].

16. Conclusions

In this article, we reviewed DRASTIC and the main DRASTIC-like approaches proposed by
scientists for improving the initial algorithm. The methods for assessment of the groundwater
vulnerability in karstic regions were not discussed here. DRASTIC is among the most used tools for
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groundwater vulnerability evaluation. Generally, it uses readily available geodata with no experimental
data. DRASTIC employs numerous parameters, and its outputs are only sometimes compared with
field-collected data. Therefore DRASTIC-based forecast should be rigorously checked before making
management decisions.

The groundwater vulnerability maps are important tools for assessing the groundwater
vulnerability and planning future land use. No method developed for creating vulnerability maps is the
most reliable, each of them depending on the aquifer characteristics, the land use, the data availability,
the parameters involved in the model, the weightings, and rating assigned to each parameter.

Some aspects should be addressed in the next studies:

• Development of analytical methods for choosing and validating the ratings and weightings
attached to each parameter in the models

• Integrating the models of water flow and pollutants’ transport in different soils types in the
methodology of choosing the weighting values of different parameters

• Detecting the relationships between the parameters used in the models by statistical methods and
removing the effect of this correlation by adjustment of the ratings and weightings attached to the
corresponding parameters

• Development of unified models that should include the soil and geological characteristics
• Development of hybrid models to reduce the influence of subjectivity in the parameters’ settings

and use the statistical methods for the results’ validation.
• Improvement of the databases containing hydro-chemical elements and their integration into

GIS software
• Improvement of GIS software by integrating analytical methods with groundwater

vulnerability methods
• Development of spatio-temporal methods for the groundwater vulnerability assessment.
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Abstract: The DRASTIC (D: Depth to water; R: Net recharge; A: Aquifer media; S: Soil media;
T: Topography; I: Impact of vadose zone; C: Hydraulic conductivity) index is usually applied
to assess intrinsic vulnerability in detrital and carbonate aquifers, although it does not take into
account the particularities of karst systems as the COP (C: Concentration of flow; O: Overlying
layers above water table; P: precipitation) method does. In this paper we aim to find a reasonable
correspondence between the vulnerability maps obtained using these two methods. We adapt the
DRASTIC index in order to obtain reliable assessments in carbonate aquifers while maintaining
its original conceptual formulation. This approach is analogous to the hypothesis of “equivalent
porous medium”, which applies to karstic aquifers the numerical solution developed for detrital
aquifers. We applied our novel method to the Upper Guadiana Basin, which contains both carbonate
and detrital aquifers. Validation analysis demonstrated a higher confidence in the vulnerability
assessment provided by the COP method in the carbonate aquifers. The proposed method solves an
optimization problem to minimize the differences between the assessments provided by the modified
DRASTIC and COP methods. Decision trees and spatial statistics analyses were combined to identify
the ranges and weights of DRASTIC parameters to produce an optimal solution that matches the
COP vulnerability classification for carbonate aquifers in 75% of the area, while maintaining a reliable
assessment of the detrital aquifers in the Basin.

Keywords: groundwater vulnerability; carbonate aquifers; optimized DRASTIC; COP; decision trees;
nitrate validation

1. Introduction

Groundwater pollution is a widespread problem affecting most aquifers all over the world
due to the increasing agricultural and industrial human activity [1,2]. It is the result of
the interaction between the anthroposphere and the hydrosphere, where substances from the
different land uses penetrate the groundwater, leading to impacts on environmental water
quality and human health. The protection of the groundwater resources has become a
priority due to the importance of groundwater for human supply, irrigation and dependent
ecosystems, especially in semi-arid regions [3–5]. The degree of protection depends on intrinsic
groundwater vulnerability, which is defined as the susceptibility of aquifers to pollution arising
from anthropogenic activity [6]. Several methods have been proposed to assess intrinsic
vulnerability by using conceptual groundwater flow models and taking transport processes into
account [7,8]. The most frequently employed methods are the index-based approaches [9,10]
of which DRASTIC (D: Depth to water; R: Net recharge; A: Aquifer media; S: Soil media; T: Topography;
I: Impact of vadose zone; C: Hydraulic conductivity) [9] is the most common. DRASTIC has been
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applied to various types of aquifer, though some authors have revealed that it is not suitable for
assessing vulnerability in some karstic aquifers [10–13].

Karstic aquifers present physical particularities that, in general, make them more sensitive to
contamination [14,15]. Specific approaches, such as the COP (C: Concentration of flow; O: Overlying
layers above water table; P: precipitation) method [10], have been developed specifically to assess
groundwater vulnerability in carbonate (karstic) aquifers. The COP method has been extensively
applied in different research studies to this type of aquifer [16–21].

However, despite significant physical differences between detrital and karstic aquifers, the same
approaches are often applied to simulate groundwater processes in both types of aquifers. In numerical
groundwater flow models, the “equivalent porous medium” assumes the validity of the Darcy’s
law in karstic aquifers, which is the most frequent numerical approach deduced for detrital aquifers.
We find many examples of application of this approach both for detrital aquifers [22–24] and karstic
aquifers [25,26]. In the same way, index methods such as DRASTIC could be suited to assessing
vulnerability in both detrital and karstic aquifers.

In this context, recent research studies have attempted to adapt the DRASTIC method to karst
aquifers in recent years [12,27–30]. Some of these [12,28,29] modified DRASTIC by including and/or
removing parameters to account for karst characteristics. Other studies [27,30] adapted DRASTIC
by modifying the classic assessment according to the distribution of nitrate concentration, although
the most contaminated areas do not always imply higher vulnerability [31,32]. A detailed review of
different approaches proposed to modify the DRASTIC method is given in [13].

These modifications of the DRASTIC method were performed using different
methodologies/approaches: single-parameter sensitivity analysis [3,5,33], calibration by correlation
analysis with pollutants [4,34,35], analytic hierarchy process [36–38] amongst others. Different data
mining algorithms have also been applied to improve DRASTIC performance [39–42], predict areas
vulnerable to groundwater contamination or to identify hydrogeological factors influencing
groundwater contamination [39,43,44]. Data mining algorithms aim to extract knowledge from
previously unknown and indistinguishable data, and are used as operational tools to find
optimal solutions in high-dimension problems. Although many authors have employed these
techniques for different purposes, more research is needed to explore the potential of the statistical
techniques—including data mining—to deal with the uncertainties in the weights and ratings of
index-based methods in the groundwater vulnerability assessments [45].

In general, the aforementioned index-based methods have been proven to provide satisfactory
vulnerability assessment in a variety of regions. However, different index methods often provide
dissimilar results in a single study area, making it difficult to compare and validate results [46–48].
In complex groundwater systems containing various aquifers types, an integrated vulnerability
assessment is needed to homogenize criteria and compare results at basin scale and between different
case studies. In general, a harmonized method that is applicable to all aquifer types would be more
likely to be implemented worldwide [12,49]. Previous work [12] has aimed at developing a new
method (DRISTPI; Depth to water, Recharge, Impact of vadose zone, Soil, Topography, Preferential
Infiltration) by adding and removing certain parameters from the classic DRASTIC method that can be
applied to any type of aquifer. It was tested in karstic aquifers, but not in detrital aquifers.

In this paper we propose a novel approach to standardize the DRASTIC method to assess
vulnerability in a basin composed by both, detrital and carbonate aquifers. We proposed an adaptation
of the most commonly applied method for detrital aquifers—the DRASTIC method—to obtain a reliable
vulnerability assessment for carbonate aquifers. The DRASTIC method can be applied in both detrital
and carbonate aquifers, though it does not always provide appropriate vulnerability assessment in
carbonate aquifers. In contrast, the COP method is specific to carbonate aquifers and it yielded better
results in the validation analysis in our case study. Therefore, we proposed to adapt DRASTIC to
harmonize the vulnerability assessment for different aquifer typologies, in order to make the results
comparable in a basin that contains a wide variety of geological formations. Harmonization of criteria
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in the vulnerability assessment would allow the dissimilarities provided by different vulnerability
methods to be dealt with. Although in the literature we can find several attempts to adapt the DRASTIC
method to the particularities of each case study, none of them have proved the applicability of the
modified DRASTIC in different aquifer typologies.

In this study, an optimization problem is solved to establish a correspondence between DRASTIC
and COP by maintaining the original formulation of the DRASTIC method. It aims to find the weights
and ranges of the DRASTIC parameters that maximize the correspondence between the qualitative
vulnerability classes obtained using DRASTIC and COP methods. The optimization problem is
solved through a new approach that combines spatial statistics analysis and data mining (decision
trees). Although decision trees have been applied to predict the sensitivity to contaminants based on
groundwater vulnerability [50,51], they have not been used to adapt/improve the DRASTIC method.

The optimization methodology was applied to five carbonate aquifers in the Upper Guadiana
Basin, where the validation analysis demonstrated that COP method produces better vulnerability
assessment than the original DRASTIC one. The optimal solution obtained for carbonate aquifers
(O-DRASTIC) was also tested in the three detrital aquifers within the basin and the validation analysis
also shows significant improvement in the results comparing with the original DRASTIC. A sensitivity
analysis of the changes introduced to define the optimum DRASTIC reveals the influence of the various
intrinsic characteristics on the severity of vulnerability for different aquifer typologies.

2. Materials and Methods

2.1. Study Area and Data

The Upper Guadiana Basin (Figure 1) is located in the central part of Spain. It is composed of eight
groundwater bodies including five unconfined mixed (carbonate and detrital) and three unconfined
detrital aquifers extending over approximately 14,000 km2.
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Figure 1. Location of study area within the Upper Guadiana Basin (Spain).

The climate in this area is typically continental and semiarid. Mean annual precipitation over
the period 1974–2015 was 445 mm and the mean annual temperature is 14.7 ◦C. Mean potential
evapotranspiration is 700 mm/year.

The area is predominantly flat, bounded by mountain landscapes to the north (Sierra de Altomira)
and south (Campo de Montiel).

Connectivity between groundwater bodies is structurally complex, with strong natural interaction
between groundwater and surface water. Under natural conditions groundwater flow discharges into
the central aquifer of the system (Mancha Occidental Aquifer) [52] which flows eastwards.

The predominantly dry climate and the prevalence of irrigated agriculture means that the Upper
Guadiana Basin has been intensively pumped, and this has led to some of its aquifers being declared
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overexploited [53]. The water table is highly variable, lying at less than 1 m to more than 250 m,
though over most of the basin it lies below 15 m.

Rainfall is the main source of aquifers’ recharge. Mean annual recharge varies between 45 and
70 mm/year, although there is disagreement about these values [52–54].

The soils in the basin mainly belong to the cambisol group according to the FAO (Food and
Agriculture Organization of the United Nations) classification [54,55]. Regosol and others, such as
luvisol and podzol, can be found in the southeast [54]. Soil texture in the northern part of the basin is
predominantly silty-loam, whereas the soil in the southern part it is peaty.

The geology is complex, including mixed carbonate–detrital aquifers. In the southern half of the
Upper Guadiana Basin, the aquifers are predominantly composed of limestones, with many karstified
zones [53]. In general, the karst is not very developed and there are no swallow holes in these aquifers.
Many parts of the central aquifer are formed by Tertiary detrital deposits [53]. The northern aquifers are
more heterogeneous. There are no large karstified areas and other formations of metamorphic materials
can be found. The detrital aquifers are mainly composed of Tertiary and Quaternary alluvial materials.

The unsaturated zone is formed by poorly permeable lithologies in the northern part of the basin,
with higher permeabilities in the southern part [54].

Conductivity in the Upper Guadiana Basin varies widely. To the north, conductivity is low
(below 1.5 × 10−4 m/s); in the central part there are zones with values higher than 5 × 10−4 m/s,
while conductivity to the southern is mainly in the range 3.5 × 10−4–5 × 10−4 m/s [56].

2.2. DRASTIC and COP Vulnerability Maps

DRASTIC and COP vulnerability maps were calculated in the five mixed aquifers following the
proposal made in [9,10], respectively (Figure 2). A detailed explanation of these methods can be found
in the Appendix A. Tables A4 and A5 (Appendix B) summarizes the data sources and the methodology
applied to calculate the parameters of DRASTIC (hereinafter, we will call it “original DRASTIC”) and
COP, respectively.

The “original DRASTIC” values vary between 41 and 171 within the study area. The final index
was reclassified into five qualitative classes (Very low: <100; Low: 100–120; Moderate: 120–160; High:
160–180; Very high: ≥180) by grouping the original categories proposed in [9] to obtain the same number
of classes as the COP vulnerability map. The values of parameters Aquifer media, Soil media, Impact of
vadose zone and Conductivity (Figure 2(a3,a4,a6,a7)) show significant heterogeneity, with clear
differences between the northern and central–southern areas. These differences are finally reflected in
the vulnerability map (Figure 2(a8)).

Figure 2b shows the results of applying the COP method as proposed by [10]. The protection
conferred by Overlaying the layers (Figure 2(b2)) generally decreases from north to south. It is very low
in the southern part due to the presence of limestones and dolomites outcrops. The surface features
related to the Concentration of flow (Figure 3(b1)) produce only a slight reduction of protection over
80% of the area, except in the southern Campo de Montiel aquifer, where the protection from Overlying
layers is greatly reduced.

While the highest values of the DRASTIC index are located in the center and southern part of
the basin (classified as “Moderate vulnerability”), the highest values of the COP index appear in the
southern zone (Campo de Montiel aquifer). Both indices give their lowest values in the north area
(Sierra de Altomira and Lillo Quintanar aquifers).

The percentage overlap between the vulnerability classes obtained using COP and DRASTIC
is 55.75%. There is a significant coincidence in the “Very low” and “Low” vulnerability classes,
which cover nearly 80% of the area in the COP map. However, the coincidence in “High” and
“Very high” classes is almost null. A misclassification of the highest vulnerability areas of groundwater
dependent ecosystems such as the Upper Guadiana Basin would lead to erroneous planning and
management decisions, possibly leading to significant environmental impacts.
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Figure 2. (a) DRASTIC (D: Depth to water; R: Net recharge; A: Aquifer media; S: Soil media;
T: Topography; I: Impact of vadose zone; C: Hydraulic conductivity) maps: (a1) Depth to water;
(a2) Net recharge; (a3) Aquifer media; (a4) Soil media; (a5) Topography; (a6) Impact of vadose zone;
(a7) Hydraulic conductivity; (a8) Vulnerability map; (b) COP(C: Concentration of flow; O: Overlying
layers above water table; P: precipitation) maps: (b1) Reduction of protection due to Concentration
of flow; (b2) Degree of protection from Overlying layers; (b3) Reduction of protection due to the
precipitation factor; (b4) Vulnerability map.

Water 2020, 12, x FOR PEER REVIEW  6 of 26 

 

 
Figure 3. Validation of vulnerability maps in mixed aquifers: (a) DRASTIC + 5 × land use (LU); (b) 
COP + 5/LU; (c) mean nitrate concentration map (1975–2015). 

2.3. Validation of Vulnerability Maps 

Contaminant loads are linked to human activities and land use (LU). Therefore, in addition to 
aquifer vulnerability, these are a key factor in determining groundwater contamination [3,57]. In the 
study area, the intensive agriculture and the use of nitrogen fertilizers has provoked high levels of 
nitrates in many groundwater areas. Since nitrate is not naturally found in groundwater, it is 
considered to be a good indicator of contamination by human impact, especially in agricultural zones. 
The DRASTIC vulnerability map is validated by adding an LU factor to the DRASTIC index 
(Equation (1)), as proposed in other studies [27,58,59]. Making an analogy, the index defining 
protection against pollution could be based on the COP vulnerability (Equation (2)). In this case the 
inverse of the LU factor is considered since a higher COP index indicates lower vulnerability levels. 
Since the principal land use is agriculture, the pollution index and the protection-against-pollution 
index will maintain the factor of 5 used to weight the LU term, as was originally included in the 
DRASTIC pollution index by other authors [27,60]: Pollution index (DRASTIC) = DRASTIC index + 5 × LU (1)

Protection െ against െ Pollution index (COP) = COP index + 5LU (2)

The rates assigned to LU [3,27,33,34] are shown in Table 1. 

Table 1. Rates of LU. 

LU Rate 
Agro-forestry areas 7 

Airports 2 
Annual crops associated with permanent crops 8 

Broad-leaved forest 2 
Burnt areas 2 

Complex cultivation patterns 8 

Figure 3. Validation of vulnerability maps in mixed aquifers: (a) DRASTIC + 5 × land use (LU);
(b) COP + 5/LU; (c) mean nitrate concentration map (1975–2015).

31



Water 2020, 12, 2971

2.3. Validation of Vulnerability Maps

Contaminant loads are linked to human activities and land use (LU). Therefore, in addition
to aquifer vulnerability, these are a key factor in determining groundwater contamination [3,57].
In the study area, the intensive agriculture and the use of nitrogen fertilizers has provoked high
levels of nitrates in many groundwater areas. Since nitrate is not naturally found in groundwater,
it is considered to be a good indicator of contamination by human impact, especially in agricultural
zones. The DRASTIC vulnerability map is validated by adding an LU factor to the DRASTIC index
(Equation (1)), as proposed in other studies [27,58,59]. Making an analogy, the index defining protection
against pollution could be based on the COP vulnerability (Equation (2)). In this case the inverse of
the LU factor is considered since a higher COP index indicates lower vulnerability levels. Since the
principal land use is agriculture, the pollution index and the protection-against-pollution index will
maintain the factor of 5 used to weight the LU term, as was originally included in the DRASTIC
pollution index by other authors [27,60]:

Pollution index (DRASTIC) = DRASTIC index + 5× LU (1)

Protection− against− Pollution index (COP) = COP index +
5

LU
(2)

The rates assigned to LU [3,27,33,34] are shown in Table 1.

Table 1. Rates of LU.

LU Rate

Agro-forestry areas 7
Airports 2

Annual crops associated with permanent crops 8
Broad-leaved forest 2

Burnt areas 2
Complex cultivation patterns 8

Coniferous forest 2
Construction sites 2

Continuous urban fabric 10
Discontinuous urban fabric 10

Dump sites 9
Fruit trees and berry plantations 7
Industrial or commercial units 8

Inland marshes 1
Land principally occupied by agriculture, with

significant areas of natural vegetation 5

Mineral extraction sites 3
Mixed forest 3

Natural grasslands 3
Non-irrigated arable land 5

Olive groves 6
Pastures 5

Permanently irrigated land 8
Road and rail networks and associated land 2

Sclerophyllous vegetation 3
Sparsely vegetated areas 3

Sport and leisure facilities 2
Transitional woodland-shrub 2

Vineyards 5
Water bodies 1

The correlations (R-squared coefficient) with the pollution index derived from DRASTIC and COP
methods (Figure 3) were determined from the 214 observation points where nitrate concentration data
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was available (1974 to 2015 provided by the Spanish Geological Survey and the River Basin Authority).
The DRASTIC pollution index (Figure 3a) is weakly correlated with the mean nitrate concentration
(R2 = 0.04) in the carbonate aquifers. However, the protection-against-pollution index linked to the
COP map (Figure 3b) shows strong correlation (R2 = 0.78). Accordingly, in this validation analysis,
the COP vulnerability assessment for the study area provides a more reliable assessment than the
DRASTIC index one.

As can be observed in Figures 2 and 3, both DRASTIC and COP indices suggest low vulnerability
in some zones with high nitrate concentration (in the western part of the basin) that results from
the intensive agricultural exploitation since early 1970’s. Thus, groundwater contamination not only
depends on intrinsic vulnerability, but also the land use, type of crops, type of irrigation, etc. For this
reason, the most contaminated areas do not always correspond to the most vulnerable ones [31,32].

2.4. Methodology: Optimization of DRASTIC Method

In this paper we adapt the DRASTIC method to minimize differences with the COP vulnerability
map for the five carbonate aquifers in the Upper Guadiana Basin, which has been proven to provide
better results in those aquifers according to the validation analysis. The main objective is to obtain
a harmonized method that allows vulnerability in carbonate and detrital aquifers to be assessed
in a homogenous way, in a system comprising varying geological formations. The harmonization
of criteria to assess groundwater vulnerability will make the results comparable at basin scale.
To this end, the DRASTIC index is recalculated by varying the ranges and weights of its parameters
(fulfilling certain constraints to maintain a rational definition), in order to minimize the differences with
the COP vulnerability map for the five mixed (carbonate and detrital) aquifers in the Upper Guadiana
Basin. Data mining techniques are then applied to identify the ranges and weights that provide an
optimal solution.

Figure 4 shows the flowchart of the proposed optimization problem and the methodology applied.
Two objective functions (O.F.) were tested: (A) to maximize the percentage of spatial coincidence
(area, Si) between DRASTIC and COP vulnerability classes; and (B) to minimize the distance (di;
see Equation (3)) between the vulnerability classes in DRASTIC and COP. The decision variables in
this optimization problem are (1) the ranges (of the DRASTIC index and its parameters) and (2) the
weights of the DRASTIC parameters.
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Figure 4. Flowchart of methodology.

The ranges of the DRASTIC parameters and index are proposed based on the available data in the
study area and covering a wide range of hypothetical cases. The following constraints regarding the
ranges proposal are imposed:

• The ranges of non-continuous parameters (A, S and I) were assumed to be invariant and we
classify these parameters as proposed in [9]. We modify the DRASTIC index classification (DR)
and the ranges of only three numerical parameters in DRASTIC: Depth to water (D), Topography
(T) and Conductivity (C). The proposed ranges are shown in Table 2. Due to the narrow variability
of the data in the study area the recharge ranges were not modified.

• The number of classes and rates adopted for all parameters are as proposed in [9]. We change only
the distribution of numerical data within the ranges in order to adapt them to the characteristics
of the case study.

• The modification of ranges is based on statistical criteria according to the distribution of data in
the study area (quantile method, equal intervals, natural clusters in ArcGis and increasing the
limit of the ranges by a constant value) [32,61].

• We established a minimum range amplitude of 5 for the DRASTIC vulnerability classes. We also
established certain constraints in the weights of parameters:

• Only weights between 1 to 5 are considered;
• The sum of the weights had to be 23 for each combination (as the original proposal in [9]).
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For each combination of parameter ranges and weights used to generate a DRASTIC map,
the distance (di) or difference between vulnerability classes reported by DRASTIC and COP is
calculated by Equation (3):

di =
∑
α jk × x jk (3)

where

• αjk is the total area of “j” vulnerability class of COP overlapping with the “k” vulnerability class
of DRASTIC;

• xjk is a weight from 0 to 4 depending on the number of jumps from one vulnerability class
to another.

In order to establish a dimensionless threshold to quantify the distance (di), it is expressed as a
percentage of the maximum calculated distance (dmax) over all calculated DRASTIC indices:

di(%) =
di

dmax
× 100 (4)

In order to reduce the number of calculations, we employ data mining techniques (decision trees)
to select the values of the variables domain to be tested. The optimal solution is sought following
two steps:

1. Ranges optimization:

i. First, DRASTIC vulnerability maps are calculated modifying the ranges of parameters
and the classification of the DRASTIC index. The weights of parameters are the same as
proposed in [9].

ii. All the DRASTIC indices are evaluated through the objective functions and the results are
classified intro three categories (Table 3).

iii. Decision trees are applied in order to find out the ranges for each parameter that gives
the highest coincidence (Max(Si)) and a lowest distance (Min(di)) between vulnerability
classes assigned using DRASTIC and COP.

2. Weights optimization:

i. In this second step, the weights of parameters are introduced as new variables to compute
all the feasible combinations of weights and parameter ranges selected in the previous
step. The DRASTIC index is calculated for all the combinations of weights and selected
classifications in step 1.

ii. The new set of DRASTIC maps are evaluated by means of the objective functions.
iii. For each parameter, decision trees are applied again to determine the weight that yields

greatest similarity between the DRASTIC and COP maps.

Table 3. Classification criteria of objective functions for the decision trees algorithm.

Objective Function Value Class

Si (spatial coincidence)
<30% 1

30–50% 2
>50% 3

di (distance)
<30% 1

30–50% 2
>50% 3

The main objective of decision trees in this study is to identify the ranges and weights for each
DRASTIC parameter involved in any combination that yields the maximum spatial coincidence (Si)
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and the minimum distance between vulnerability classes (di) (Si = 3 or di = 1 according to Table 3).
We establish these threshold values according to the distribution of results in the first set of combinations.
Decision trees reduce the computational cost of the optimization problem and allow the most relevant
variables to be identified in the vulnerability assessment in carbonate aquifers.

The CHAID (Chi-square Automatic Interaction Detection) algorithm [62,63] is applied in decision
trees, considering the objective functions of the optimization problem (Si and di) as dependent variables.
The proposed ranges and weights of parameters and classifications of DRASTIC are the independent
variables, and the chi-squared test of significance is used as the splitting criterion in the CHAID
algorithm. Each dataset generated in steps 1 and 2 is partitioned into a training set (70%) and a testing
set (the remaining 30%) in order to assess the performance of the models. The goodness-of-fit of the
classification is evaluated using the precision index [51,64]:

Precision =

∑n=3
n=1 TPn

∑n=3
n=1(TPn + FPn)

(5)

where:

• n = number of classes;
• TPn = number of correctly recognized class examples in the class n;
• FPn = number of examples incorrectly assigned to the class n;

Decision trees can represent the relationship between variables and output class using specific
rules following the pathway from the root node to the terminal node [63,65,66]. A priori, the number
of terminal nodes on the tree can determine the number of rules but it may generate a large number of
irrelevant pieces of information. Only the most relevant variables (rules with the highest population
for each decision tree with precision above 50%) whose terminal nodes in the tree are classified as
Si = 3 or di = 1 are selected to generate all the feasible combinations to compute the DRASTIC indices.

3. Results

3.1. Optimization of the DRASTIC Method

3.1.1. Ranges Optimization

In the first optimization step, we obtained a total of 11,520 different DRASTIC maps. The spatial
coincidence (Si) of the vulnerability classes between the DRASTIC and COP maps rose to 61.31%
(from 55.75% in “original DRASTIC”) and the minimum distance between vulnerability classes (di) fell
to 20.85% (doriginal DRASTIC = 24.72%).

The selected ranges (from Table 2) for each parameter extracted from decision trees were as follows:

• DR11, DR12, DR14, DR15 and DR16 for DRASTIC classification;
• D*, D1, D2, D3 and D4 for Depth to water;
• T* and T1 for Topography;
• C7 and C8 for Conductivity.

The ranges proposed in [9] were selected for parameters D and T in the decision tress.
For conductivity, the selected classifications (C7 and C8) assign lower rates to conductivity values.

3.1.2. Weights Optimization

The selected ranges for parameters and the DRASTIC index were combined, varying the weights
of parameters between one and five. Due to a large number of generated combinations, we first
considered weights one, three and five. This resulted in 35,700 new DRASTIC maps. The spatial
coincidence (Si) between vulnerability classes increased to 70.34% and the minimum distance between
vulnerability classes (di) fell to 8.45%.

37



Water 2020, 12, 2971

Decision trees were applied again to determine the optimum weight for each parameter. We aimed
to determine if the value of the weight for each parameter provides relevant information in the
optimization problem. We found that a weight equal to five did not appear in relevant rules in
parameters D and T, whereas a weight equal to one did not appear for parameters R and S. All weights
(one, three, and five) were found in rules for parameters A, I and C.

A new set of combinations of ranges and weights were computed to find an optimum between the
gaps left due to constraints. We introduced the mid-weights for each parameter, discarding those not
found in the relevant rules. We included the following weights for each parameter: WD = 2; WR = 4;
WA = 2 and 4; WS = 4; WT = 2; WI = 2 and 4; WC = 2 and 4. The total of combinations provide two
optimal solutions:

• Optimum of O.F. Min(di): di = 8.45; Si = 42.91;
• Optimum of O.F. Max(Si): di = 13.05; Si = 70.34;

The second solution was considered the best solution because the gain in Si was higher than the
loss in di. Finally, the best solution was refined by adjusting the classification of the DRASTIC index to
increase the spatial coincidence with the COP map, obtaining the optimum DRASTIC. The classification
of the optimum DRASTIC does not match with the ranges proposed originally in [9]. The objective
functions take the following values for the optimum DRASTIC: Si = 76.75%; di = 10.92%.

Figure 5 shows the dot-plot of the all the DRASTIC indices calculated. It reveals the efficacy of
using decision trees in the methodology to reduce the number of combinations to be tested when
seeking the optimal solution. Each set of combinations improves the objective functions. Black dots
show those including the mid-weights for each parameter that produce improvement in the objective
function “di”, but not in “Si”. Red dots indicate the DRASTIC indices that provide Max(Si) and Min(di).
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3.2. Analysis of Optimum DRASTIC (O-DRASTIC)

O-DRASTIC keeps the ranges proposed in [9] for parameters D and T. Only ranges of parameter
C change in O-DRASTIC (C8 from Table 2). In general, the value of the conductivity rates is reduced in
O-DRASTIC. The spatial distribution of conductivity ranges shows slight changes. The weights (W) of
parameters of O-DRASTIC are shown in Table 4, compared with the original DRASTIC weights.

Table 4. Weights of parameters of original DRASTIC and optimum (O)-DRASTIC.

DRASTIC Parameters D R A S T I C

W (original DRASTIC) 5 4 3 2 1 5 3
W (O-DRASTIC) 1 5 5 5 1 5 1
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Results of O-DRASTIC reveal that Depth to water and Conductivity have no a significant impact
on vulnerability for our case study area. The ranges of parameter C in O-DRASTIC also support this
conclusion given that the new classification of this parameter reduces the rate assigned to conductivity
values. This conclusion is confirmed by the single-parameter sensitivity analysis of O-DRASTIC,
in which the parameter C takes a mean effective weight of 1.7% (compared to its empirical weight
4.3%). In general, in the study area, the carbonate aquifers have a scarcely developed karst. In fact,
approximately half the study area shows lower rates in the conductivity map. Although conductivity
takes high values in some zones, the ranges of this parameter change in O-DRASTIC with respect to
the original DRASTIC. The new classification in O-DRASTIC assigns lower rates to the conductivity
values. Therefore, this parameter losses influence, which is also reflected in the weight. Moreover,
conductivity can be considered as implicit in the aquifer media parameter (A), which increased in
weight in O-DRASTIC in our case study. The reduced weight of parameter D may be due to the large
depth to water table over most of the study area. The mean effective weight obtained in the sensitivity
analysis was 3.2% (empirical weight = 4.3%) Aquifer media and Soil media gained great significance in
the vulnerability assessment, as well as Recharge, albeit by a reduced amount. Impact of vadose zone
continues to be an important factor in O-DRASTIC.

The weights in O-DRASTIC are consistent with the concept of COP methodology, where the
vulnerability assessment is based mainly on the degree of protection afforded by overlying layers and
the way in which the water percolates (recharges) into the aquifer.

The main changes between the original and optimum DRASTIC vulnerability maps mostly occur
in areas of “Very low” and “Moderate” vulnerability of the original DRASTIC, since these are the
predominant classes in this vulnerability map. Remarkably, those changes do not always occur in one
direction. “Moderate” vulnerability shifts towards “Low” or “Very high” vulnerability depending on
the zone, whereas other “Moderate” vulnerability areas remain with the same class. In the same way,
some “Very low” vulnerability zones jump up a vulnerability class to “Low”, while other maintain the
same class. We analyzed the differences in the distribution of the parameter rates in these areas.

Figure 6a shows that the main factor causing the vulnerability to change from “Moderate” to
“Low” is Depth to water. Since the weight of this parameter changed from five to one in O-DRASTIC,
zones with higher rates of D report a greater fall in the vulnerability value, leading the vulnerability
class to drop by one level. This graph also shows how some areas with rates of three, five and seven
change from “Moderate” to “High” vulnerability, which demonstrates that other parameters influence
the “Very high” vulnerability class.

On the other hand, we can observe in Figure 6a that the rate of parameter S (soil media) is
equal to eight over more than 80% of the area where vulnerability increased from “Moderate” to
“Very high”, corresponding with soils with a high organic content, and outcrops of limestone and
dolomites. Furthermore, the rate of S is equal to four over nearly 90% of the area where vulnerability
fell from “Moderate” to “Low”. Zones where no change in vulnerability class was observed have soils
with medium values.

A similar conclusion regarding Soil media is drawn in the areas where vulnerability rose from
“Very low” to “Low” (Figure 6b). In these zones we can also observe higher rates of parameters A
(aquifer media) and I (impact of vadose zone). These zones correspond to karstified areas and highly
permeable layers.

The results highlight the influence of Aquifer media, Soil media and Impact of vadose zone in the
vulnerability of carbonate aquifers.

These conclusions are supported by the single-parameter sensitivity analysis carried out for
O-DRASTIC, which yields higher effective weights in parameters A, S and I and lower effective weights
for parameters D and C.
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In general, the new ranges of Conductivity in O-DRASTIC contribute to an overall drop in
vulnerability class, but the weights of parameters cause a sharp jump in vulnerability class, especially
in the southern part of the basin, where Aquifer media and Soil media have the greatest influence
(higher rates in this area).

The values of the optimum DRASTIC (O-DRASTIC) vary between 52 and 178 and the optimal
vulnerability classes are the following:

• “Very low”: 52–107;
• “Low”: 107–130;
• “Moderate”: 130–138;
• “High”: 138–146;
• “Very high”: ≥146;

Figure 7a shows a better distribution of vulnerability values in O-DRASTIC within the COP
vulnerability classes (compared to the original DRASTIC). Close similarities can also be appreciated
between the O-DRASTIC and COP vulnerability maps (Figure 7b). The vulnerability classes in

40



Water 2020, 12, 2971

O-DRASTIC overlap with COP over 76.75% of the basin, representing an improvement of 20% relative
to the original DRASTIC. This spatial coincidence is particularly improved in the class of “Very high”
vulnerability, with a 90% coincidence between COP and O-DRASTIC.
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O-DRASTIC was validated using the pollution index (Equation (1)) and the correlation with nitrate
concentration (R2 = 0.653) in carbonate aquifers improved with respect to the original DRASTIC).

Lastly, we assessed the vulnerability of the three detrital aquifers in the Upper Guadiana Basin
by applying original DRASTIC and O-DRASTIC, and we validated the maps following Equation (1).
Original DRASTIC showed a good correlation (R2 = 0.765) in detrital aquifers but O-DRASTIC gave
a significantly better correlation (R2 = 0.862). Both methods (original DRASTIC and O-DRASTIC)
perform a better vulnerability assessment in detrital aquifers than in carbonate aquifers.

Figure 8 shows the change that O-DRASTIC produces (compared to original DRASTIC) in terms
of distance between vulnerability classes. Negative values mean the vulnerability class drops in
O-DRASTIC compared to original DRASTIC, while positive values mean the vulnerability class in
O-DRASTIC is higher than in original DRASTIC. Three zones are thus distinguished in the Upper
Guadiana Basin: the southern area (Campo de Montiel) where vulnerability increases by one or two
classes. This area is characterized by a higher recharge rate and a karstified aquifer. In the mid-basin
(including Mancha Occidental I, Mancha Occidental II, Consuegra Villacañas and Rus-Valdelobos),
vulnerability decreases generally by one class, although most of the area remains unchanged; in the
northern zone (Lillo-Quintanar, Sierra de Altomira and La Obispalía) only small areas jump up a
vulnerability class, and by only one level.
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original DRASTIC.

The largest difference in vulnerability class assigned is for carbonate aquifers. More than 17%
of the carbonate aquifers area rises by two classes or more vulnerability classes. Only 7% of the
detrital aquifers area jumps by this much, while 62% of the detrital aquifers show no change in the
vulnerability class.

4. Discussion and Conclusions

This paper demonstrates that the DRASTIC method can be adapted to assess vulnerability in
carbonate aquifers by undertaking some simple modifications of the weights and ranges of the parameters.
Most recent studies to adapt the DRASTIC method to carbonate aquifers have aimed to transform DRASTIC
by including and/or removing parameters that take the karst characteristics into account [12,28,29].
Other studies modified the classic assessment according to nitrate concentrations [27,30], though the
most highly contaminated groundwater does not always imply higher vulnerability [31,32]. Instead of
using either of these previous approaches, our study establishes a correspondence between DRASTIC
and a vulnerability method that was specifically developed for karstic aquifers, the COP method,
and therefore we avoid making conceptual changes in the original definition of DRASTIC method.

Our methodology is based on an optimization approach that identifies the ranges and weights of
DRASTIC parameters that minimize the differences in the vulnerability assessment compared with
the COP method, which was developed specifically for karstic aquifers. It allows us to identify the
significance of the different DRASTIC parameters in the vulnerability assessment in karstic aquifers.
Decision trees and spatial statistics analyses are combined to identify the ranges and weights of
parameters that provide the optimal DRASTIC classes in terms of coincidence and distance with the
COP vulnerability map. This optimization approach could be applied by minimizing the differences
with respect to any other reference method for assessing vulnerability, whose results has been previously
validated and considered as reasonable. Although many data mining techniques have been applied
in groundwater vulnerability assessments [39,40,42], only a few studies have used decision trees
in vulnerability studies [50,51]. They have been mainly used to assess other groundwater quality
problems [65,67,68].

Our proposed method was applied in the Upper Guadiana Basin, an agricultural area that overlies
carbonate and detrital aquifers. The socio-economic and hydrogeological particularities of the basin
highlight the need to establish unified management measures at basin scale, not only regarding
groundwater exploitation but also in terms of protecting the good quality of the groundwater resource.
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Therefore, harmonization of criteria to assess groundwater vulnerability would allow comparison at
basin scale and overcome the issue of dissonant results provided by contrasting vulnerability methods.
Our approach assumes that the COP method provides a better approximation of the vulnerability
in the case study. This assumption was tested by means of a validation analysis in which we show
that the “protection-against-pollution” index (derived from COP and LU data) more closely correlates
(R2 = 0.78) with nitrate concentration than the DRASTIC “pollution index”. The results of the validation
show that the pollution index derived from the original DRASTIC for carbonate aquifers is not
correlated with nitrates (R2 = 0.04), whereas in detrital aquifers there is a close correlation ((R2 = 0.76).
Other authors have previously pointed out that the original DRASTIC method does not significantly
correlate with nitrate concentration in agricultural areas [45,59,69]. In contrast, the pollution index
derived from O-DRASTIC shows significant correlation with nitrates for both, carbonate and detrital
aquifers (R2 = 0.65 and R2 = 0.86, respectively).

The optimal solution (O-DRASTIC) obtained in this optimization problem shows that changing the
range of the Conductivity parameter produces a small drop in the vulnerability class compared with the
original DRASTIC but does not lead to a significant improvement in the objective functions (coincidence
and distance between vulnerability classes). The reduced significance of Conductivity is also confirmed
by the much-reduced weight assigned to this parameter in O-DRASTIC. Other DRASTIC adaptation
for carbonate aquifers also pointed the reduced significance of Conductivity to assess the potential
“protection-against-pollution” in karstic systems [12]. We also observed a reduced significance of the
Depth to water table in our case study (WD = 1). Other research studies that modified the weights of
DRASTIC parameters [3,69,70] also found the Depth to water parameter to be insignificant. Specifically
in karstic aquifers Depth to water is not so relevant in protecting an aquifer from contamination
because of the high transit velocity through the vadose zone [12]. Moreover, the low significance of in
our case study may be due to fact that the water table lies below 30 m over most of the basin. The same
argument was also stated in another case study [3]. The reduced significance of Depth to water and
Conductivity is confirmed by a sensitivity analysis. Topography and Impact of vadose zone maintain
their weights (WT and WI) as defined in the original DRASTIC, while the remaining parameters
(Recharge, Aquifer media and Soil media) are given maximum weights (WR = WA = WS = 5). The large
increments in the weights given to Aquifer media and Soil media in O-DRASTIC show that they are
the most significant factors controlling the vulnerability in karstic aquifers. Other authors concur that
these parameters are the most significant [3,70,71]. The principal change in O-DRASTIC with respect to
the original DRASTIC is in the weights of parameters, which highlights that these parameters embrace
most of the uncertainty in the DRASTIC vulnerability assessment [72].

Our optimal solution provides an improvement of 20% in terms of coincidence between the
vulnerability classes assigned by DRASTIC and COP. This improvement was achieved by applying
spatial statistical analyses and decision trees, which allowed potential solutions to be obtained by
exploring only a 0.1% of the total dimensionality of the defined optimization problem. The proposed
method also helps to achieve a better understanding of the parameters and variables of the “equivalent
detrital approach” that really influence vulnerability in this karstic system. This optimal solution was
tested for the carbonate and detrital aquifers in our case study, but it should also be tested in other
different aquifers with similar hydrogeological characteristics in order to prove its applicability in a
broader context under different management framework.

In summary, results show that COP and O-DRASTIC report higher vulnerability classes than
the original DRASTIC method over 36% of the total area overlying carbonate aquifers. The greatest
differences between the original DRASTIC and O-DRASTIC are produced for the carbonate aquifers
rather than the detrital aquifers. This confirms that the reliability of DRASTIC vulnerability assessment
is significantly better for detrital aquifers than for karst aquifers. These underestimations of vulnerability
in karstic aquifers when applying the classic DRASTIC is due to the physical particularities of these
aquifers and their greater sensitivity to pollution [1,12,31].
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Hypotheses, Limitations and Future Works

We have demonstrated the applicability of the method in the case of carbonate aquifers where the
karst is not highly developed. Its applicability to well-developed karst aquifers also needs to be tested.
The main adopted assumptions and limitations of the general methodology adopted are:

• The ranges of categorical non-continuous parameters (Aquifer media, Soil media and Impact of
vadose zone) are not modified in this optimization procedure. We consider that the Delphi criteria
proposed in [9] can be applied to establish the relative significance of each range with respect to
potential pollution.

• Other algorithms and/or techniques (for example, a Random Forest algorithm) could be employed
to achieve the goal in a more efficient way.

• We have not studied the whole domain of potential solutions, and a wider spectrum of parameter
ranges could be tested to find other optimal solutions. Moreover, the optimization procedure
provides local optimum solutions.

• Although decision trees help to reduce the dimensionality of the optimization problem,
the methodology involves a large number of calculations, which might handicap extending
the method to other case studies.

• The proposed methodology requires a previous validated vulnerability assessment in the study
area in order to optimize the DRASTIC method.

Future work should be developed to verify the applicability of O-DRASTIC in other case studies,
including aquifers with different physical (climatic and hydrogeological settings) and management
particularities in order to withdrawal more generalized conclusions.
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Appendix A. DRASTIC and COP Methods

Appendix A.1. DRASTIC Method

DRASTIC method was developed by [9] to assess intrinsic groundwater vulnerability in any type
of aquifer.

This method considers that there are seven parameters/variables influencing the vulnerability
to contamination: Depth to water table (D), Net recharge (R), Aquifer media (A), Soil media (S),
Topography (T), Impact of vadose zone (I) and Hydraulic conductivity (C). A rate of importance is
assigned to the parameters according to the value or characteristics of each parameter (Table A1).

The values of the parameters are weighted to obtain the DRASTIC index, which is calculated
following Equation (A1):

DRASTIC index = 5×D + 4×R + 3×A + 2× S + 1× T + 5× I + 3×C (A1)
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The DRASTIC index was originally classified into eight vulnerability levels according to some
color codes [9] (Table A2) although it is usually grouped into five vulnerability classes that do not
match with the original proposal in [9].

Table A1. Ranges and rates for DRASTIC parameters.

Groundwater Table Depth

Original Ranges (ft) Transformed Ranges (m) Original Ratings

0–5 0–1.5 10
5–15 1.5–4.6 9

15–30 4.6–9.1 7
30–50 9.1–15.2 5
50–75 15.1–22.9 3
75–100 22.9–30.5 2
>100 >30.5 1

Net Recharge

Original Ranges (inches) Transformed Ranges (mm) Original Ratings

0–2 0–50.8 1
2–4 50.8–101.6 3
4–7 101.6–177.8 6
7–10 177.8–254.0 8
>10 >254.0 9

Aquifer Media

Original Ranges Original Ranges

Massive shale 2
Metamorphic/Igneous 3

Weathered metamorphic/Igneous 4
Thin bedded sandstone, Limestone, Shale sequences 6

Massive sandstone 6
Massive limestone 6
Sand and gravel 8

Basalt 9
Karst limestone 10

Soil Media

Original Ranges Original Ranges

Thin or absent 10
Gravel 10
Sand 9
Peat 8

Shrinking and/or aggregated clay 7
Sandy loam 6

Loam 5
Silty loam 4
Clay loam 3

Muck 2
Nonshrinking and nonaggregated clay 1

Topography (% Slope)

Original Ranges Original Ranges

0–2 10
2–6 9
6–12 5

12–18 3
>18 1
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Table A1. Cont.

Impact of Vadose Zone

Original Ranges Original Ranges

Silt/Clay 1
Shale 3

Limestone 6
Sandstone 6

Bedded limestone, sandstone, shale 6
Sand and gravel with significant silt and clay 6

Metamorphic/Igneous 4
Sand and gravel 8

Basalt 9
Karst limestone 10

Hydraulic Conductivity

Original Ranges (GPD/FT2) Transformed Ranges (m/s) Original Ratings

1–100 4.7 × 10−7–4.7 × 10−5 1
100–300 4.7 × 10−5–1.4 × 10−4 2
300–700 1.4 × 10−4–3.3 × 10−4 4

700–1000 3.3 × 10−4–4.7 × 10−4 6
1000–2000 4.7 × 10−4–9.3 × 10−4 8

>2000 >9.3 × 10−4 10

Table A2. Color codes for the DRASTIC index.

DRASTIC Index Color Code

<79 Violet
80–99 Indigo

100–119 Blue
120–139 Dark Green
140–159 Light Green
160–179 Yellow
180–199 Orange

>200 Red

Appendix A.2. COP Method

The COP method was developed by [10] to assess intrinsic groundwater vulnerability in
carbonate aquifers.

This method considers the properties of layers overlying the water table (O factor),
the concentration of flow (C factor) and precipitation (P factor) as the main parameters influencing
groundwater vulnerability in carbonate aquifers. The concept of this method is to assess the natural
protection of groundwater determined by the overlying soils and the unsaturated zone, which may be
modified by the infiltration process and climatic conditions.

Each factor is divided into subfactors, whose formulation is detailed explained in [10]. The factors
are classified in ranges and the COP index calculated as the product of the three factors following the
Equation (A2):

COP index = C×O× P (A2)

The ranges of factors and the COP index are shown in Table A3.
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Table A3. Values for COP parameters and vulnerability classes for the COP index.

C Factor O Factor p Factor COP Index

Ranges Reduction of
Protection Ranges Protection

Value Ranges Reduction of
Protection Ranges Vulnerability

Classes

0–0.2 Very high 1 Very low 0.4–0.5 Very high 0–0.5 Very high
0.2–0.4 High 2 Low 0.6 High 0.5–1 High
0.4–0.6 Moderate 2–4 Moderate 0.7 Moderate 1–2 Moderate
0.6–0.8 Low 4–8 High 0.8 Low 2–4 Low
0.8–1.0 Very low 8–15 Very high 0.9–1 Very low 4–15 Very low

Appendix B. Data Source and Methodology to Calculate DRASTIC and COP

Table A4. Data source and methodology to calculate DRASTIC parameters.

Factor Data Source Methodology

D
Data from simulation flow model (River
Basin Authority) (mean of the simulated

data for each grid point from 1974 to 2015).

Spatial interpolation using IDW (Inverse Distance
Weighted) of groundwater level data and

reclassification into D index values.

R
Recharge time series calculated from

SACRAMENTO model. Mean recharge
value in the period 1974–2015.

Estimation of the mean net recharge taking into
account the different hydrology cycle variables in the

period 1974–2015.

A Hydrogeological map of Spain 1:200,000. Direct assignment of A index values for each
hydrogeological unit delimitated.

S Soil Map of Spain 1:1,000,000. Direct assignment of S index values for each soil type.

T Digital Terrain Model at 100 × 100 m cell size. Calculation of the slope raster file and reclassification
of values into T index values.

I Lithostratigraphic map of Spain 1:200,000. Direct assignment of I index values for each
lithostratigraphic unit.

C Flow model at 1000 × 1000 m cell size. Spatial interpolation using IDW of conductivity data
and reclassification into C index values.

Table A5. Data source and methodology to calculate COP parameters.

Factor Subfactor Data Source Methodology

C

- - There are no catchment areas to swallow holes in
these aquifers.

Scenario 2

Vegetation from CORINE LAND
COVER and slope from Digital

Terrain Model (100 × 100 m cell size)
Karstic features from previous

research works & fieldwork and
litthostratigraphic map 1:200,000.

Carbonate lithologies with low karstification are
considered as fissured formations. Limestones and
dolomites with high or very high permeability are

considered as scarcely developed karst. For sv factor, the
vegetation cover is considered high when more than 30%

of the surface is covered.
Assignment of the values for the karstic features,

vegetation and slope according to COP methodology.

O

OS—Soil Soil Map of Spain 1:1,000,000. Assignment of the Os values after classify the different
types of soil according to the COP methodology.

OL—Lithology Lithostratigraphic map of
Spain 1:200,000.

Classification of each lithology according to COP
methodology and determination of thickness of vadose

zone from 3D flow model.

P

PQ—Precipitation
quantity

Precipitation data from SPAIN02 [73]
in the grid within the Upper

Guadiana Basin (mean rainfall taking
into account data above 0.5 mm/day).

Reclassification of the precipitation values into the PQ
subfactor values, taking into account the average rainfall

in the wet years.
Precipitation series from SPAIN02 between 1974 and

2015 were used to extract the mean annual precipitation
for wet years.

PI—Temporal
distribution

Precipitation data from SPAIN02
(number of rainy days in the grid

within the Upper Guadiana Basin).

Counting of the number of rainy days above 0.5 mm for
each cell in the SPAIN02 grid.

For the estimate of the rainy days per year,
meteorological historical series between 1974 and 2015

from SPAIN02 were analysed.
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Abstract: Last period groundwater quality raises big concerns all over the world since it is a
limited source of drinkable water and for agricultural and industrial use. While the suitability of
the groundwater of Liwa aquifer (Abu Dhabi Emirate) for agricultural use has been previously
partially studied, not all the water parameters have been taken into account. Therefore, in this
paper, we propose the study of 42 concentrations series of 19 groundwater parameters. We test the
hypothesis that the water parameters series recorded at different locations are similar and group the
samples in clusters. The main parameters that determine the differences between the clusters are
determined by Principal Component Analysis (PCA). Finally, we use a quality index for assessing
the water suitability for drinking. The conclusions emphasize the necessity of using more than one
technique to evaluate water quality for different purposes and to cross-validate the results.

Keywords: groundwater; water parameters; k-means; principal component analysis; water quality index

1. Introduction

All over the world, billions of people suffer from water scarcity because less than 1% of the world’s
water is fresh and accessible [1]. The remediation of polluted aquifers is generally difficult and in
many cases, is not possible. Therefore, the study of water quality is an essential study topic for water
resources scientists [2–12] as a first step for taking informed measures for keeping it clean and as a
warning for reducing its pollution [12].

MIKE-II, QUASAR, QUAL2E, and CE-QUALW2, SIMCAT, TOMCAT are water quality models
providing comprehensive modeling of water quality conditions in river systems [13]. They are
developed for particular purposes and none of them are best. For assessing the surface water quality,
researchers [14–19] introduced water quality indices (WQI), the most known being CCMEWQI [16].
A review of the most important ones, containing their composition, structure, and comparison is
provided in [14]. Other approaches use univariate statistical methods, as time series analysis, for
describing the temporal [6–8,10] evolution of some water parameters. Bhat et al. [8] and Ioele et al. [20]
employed multivariate statistical tools. ANOVA is utilized for evaluating the differences among the
series of water quality variables recorded at the study sites. Cluster analysis (CA) allows selecting
the groups of sites with similar characteristics (concentrations, pH) of water parameters. Principal
Component Analysis (PCA) leads to the detection of the main water parameters that influence water
quality [20]. Gad et al. [21] combined a drinking water quality index and four pollution indices,
principal component analysis (PCA), partial least squares regression (PLSR), and stepwise multiple
linear regression (SMLR) to evaluate the water quality for drinking purposes in the Nile Delta.
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Assessing the groundwater quality became a study topic in 1968 when the “groundwater
vulnerability” notion was introduced by Margat [22]. The definitions of this concept [22–24] aim at
catching the interaction between a contaminant applied in the soil vicinity (or its surface) and the
aquifer, during the pollutant’s transportation by the rainwater. The physicochemical reactions and their
effects on the groundwater depend on hydrogeological conditions and the pollutant characteristics,
quantity, and exposure time [25–27].

The study of groundwater quality and the risk to pollutants’ exposure is generally done by using
the DRASTIC model, introduced by Aller et al. [28], DRASTIC-like methods (AVI [29], DIVERSITY [30],
GOD [31], ISIS [32], PRAST [33], SINTACS [34–36], etc.), and their versions (DRAMIC [37], DRIST [38],
DRAV [39], DRASTIC-LU [40], DRASIC-LU [41], SINTACS-LU [42,43], DRASTICA [44,45], etc.). For a
review of these methods, the reader may refer to [46]. Specific methods for studying the karst aquifer
vulnerability are also employed; among them are COP [47], EPIK [48], REKS [49], RISKE [50,51],
PaPRIKa [52], and PI [53]. GIS is an important tool in these cases for drawing the vulnerability
maps [54,55].

For assessing the groundwater suitability for drinking or agricultural use at different locations,
scientists [56–59] use indices like Chloro-alkaline index (CAI), Saturation index (SI), Sodium Absorption
Ratio (SAR), Residual Sodium Carbonate (RSC), Kelley’s ratio, and magnesium hazard. A single WQI
(single-factor pollution index (I), the nemerow pollution index (NI), heavy metal evaluation index
(HEI), the degree of contamination (Cd)), or geostatistical methods can also be utilized to emphasize
the groundwater pollution at a regional scale [60,61].

In this article, we propose a combined methodology for studying the groundwater characteristics
at a regional scale. Firstly, we test the similarity of the series of water parameters (collected at different
sites), then we cluster the sites with the same characteristics and perform the Principal Components
Analysis (PCA) for extracting the significant components. Then, we assess the suitability of water for
drinking using a water quality index. Finally, we compare the obtained results with those provided by
the literature and conclude.

2. Study Area and Methods

2.1. Study Area

Abu Dhabi Emirate, the largest emirate of the United Arab Emirates, is situated along the
Arabian Gulf, between 22.5◦ and 25◦ north latitudes and 51◦–55◦ east longitudes. The study area, Liwa,
belongs to Abu Dhabi Emirate. Water samples were collected in the northern part of the Liwa Crescent,
between Madinat Zayed and Meziyrah. The distribution of the drilling wells is presented in Figure 1,
whereas their coordinates are given in Table 1.

Figure 1. Locations of drilling sites.

54



Water 2020, 12, 2816

Table 1. Coordinates of the drilling locations.

Sample No.
Coordinates

Sample No.
Coordinates

Sample No.
Coordinates

North East North East North East

1 23.05.07 53.59.44 15 23.04.21 54.02.56 29 23.09.21 53.46.27
2 23.05.09 53.59.49 16 23.07.32 53.59.21 30 23.08.39 53.45.33
3 23.05.10 53.59.55 17 23.07.23 53.59.20 31 23.09.34 53.47.13
4 23.05.15 53.59.29 18 23.08.00 53.59.52 32 23.09.37 53.47.15
5 23.05.05 53.59.31 19 23.08.02 53.59.58 33 23.09.31 53.47.17
6 23.05.54 54.01.05 20 23.07.45 53.54.44 34 23.06.36 53.44.10
7 23.05.52 54.01.00 21 23.08.12 53.47.14 35 23.06.33 53.44.09
8 23.07.05 54.02.07 22 23.08.08 53.46.38 36 23.06.31 53.43.27
9 23.06.33 54.01.11 23 23.08.13 53.46.38 37 23.06.38 53.43.24
10 23.06.18 54.00.33 24 23.08.01 53.46.39 38 23.06.33 53.43.10
11 23.06.25 54.00.38 25 23.07.58 53.45.51 39 23.06.55 53.40.42
12 23.07.28 54.00.53 26 23.08.18 53.45.48 40 23.07.24 53.40.47
13 23.06.39 54.59.45 27 23.08.18 53.45.56 41 23.05.10 53.38.49
14 23.03.39 54.03.30 28 23.08.44 53.45.38

The mean monthly temperature in the region is between 20 ◦C and 35 ◦C, with minima between
13 ◦C and 29 ◦C and maxima in the interval 31 ◦C–48 ◦C. The average humidity varies from 59% to
68%, with a maximum of about 79%. The maximum monthly average precipitation recorded from 2003
till 2017 was 16 mm (in December) and 10 mm (in January), without precipitation from May to October.

In the Liwa area, continental and shallow water marine sedimentary rocks were deposited from
Cambrian to Quaternary. Liwa’s aquifer lithology is composed of two essential stratigraphic units.
The first one has a thickness between 100 m and 150 m and is formed by a Quaternary part, Holocene,
and Pleistocene Aeolian fine to medium sands and interdunal deposits. The second one, with a
thickness of over 350 m, is a Tertiary unit formed by mudstones, evaporites, and clastics of Miocene
age [62]. The shallow aquifer formation consists of sand and sandstone, with a variable thickness
underlain by siltstone, claystone, and evaporites. In the Liwa area, the altitude of the groundwater
level is between 60 m and 107 m a.s.m.l. (above mean sea level). The shape of the groundwater
table is concave down, elongated from East to West. Its top is situated approximately 25 km north of
Mezairaa [63]. The gradient of the groundwater table is less than 0.5 m/km in the east-west direction,
0.5 m/km in the southern part, and more than 1 m/km in the northern region.

The principal aquifer of the Western Region, situated in the northern Liwa area, consists of the
upper subunit of the Quaternary sediments. To the west, the aquifer extends to the Sabkha Matti area,
while to the East, it borders the gravel plains located at the foot of the Oman Mountains. The average
thickness of the principal aquifer varies between 30 m to 50 m. Overlaying sands dunes, forming a thick
unsaturated zone, cover the aquifer. The lower subunit of the Quaternary sediments represents a fully
saturated aquitard, situated above the aquiclude consisting of the Tertiary Lower Fars unit [62,63] area,
while to the East, it borders the gravel plains located at the foot of the Oman Mountains. The average
thickness of the principal aquifer varies between 30 m to 50 m. Overlaying sands dunes, forming a
thick unsaturated zone, cover the aquifer. The lower subunit of the Quaternary sediments represents a
fully saturated aquitard, situated above the aquiclude consisting of the Tertiary Lower Fars unit [62,63].
A schematic description of the Liwa aquifer and well cross-section are shown in Figure 2.
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Figure 2. (a) A schematic description of the Liwa aquifer and (b) a well cross-section.

2.2. Experimental Study

For the present study, we collected groundwater samples from 41 wells situated in the Liwa zone
in March 2018 and stored them in polyethylene bottles of 1 L capacity. We followed the methods of the
American Public Health Association for the samples’ preservation and analysis [64].

pH, electrical conductivity (EC), and total dissolved solids (TDS) were determined at the sampling
sites using a pH-meter, a portable EC-meter, and a TDS-meter (Hanna Instruments, Ann Arbor,
MI, USA). The sodium (Na+), potassium (K+), magnesium (Mg2+), and calcium (Ca2+) ions were
determined by atomic absorption spectrophotometry (AAS), while the carbonate and bicarbonate were
analyzed by volumetric methods. Sulfate (SO4

2−) was estimated by the colorimetric and turbidimetric
methods. The nitrate concentration was measured by ionic chromatography. Trace elements (Cd, Cr,
Zn, Pb, Cu, Ni, Mn) were determined by Inductively Coupled Plasma spectrophotometer (ICP-OES,
Agilent, CA, USA). One can find the results of the chemical analyses in [62].

2.3. Methodology

The statistical analysis performed on the series of water parameters consisted of the following.
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Determine the variability of the water parameters at different locations

For this aim, the basic statistics, the histograms, and the boxplots of the series were studied.
Comparisons of the series values with the maximum admissible limits have also been performed.
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2.3. Methodology 

The statistical analysis performed on the series of water parameters consisted of the following. 

 Determine the variability of the water parameters at different locations 

For this aim, the basic statistics, the histograms, and the boxplots of the series were studied. 

Comparisons of the series values with the maximum admissible limits have also been performed. 

Study of the similarity of the series collected at different sites

For the rest of the study, except for the computation of the water quality index, data were
standardized by dividing the concentration of each element by the maximum concentration of the
element. Then, to test the hypothesis that there is no statistically significant difference between the
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water elements in the samples collected at different study places, the Kruskal-Wallis nonparametric
test [65] was performed at a 5% significance level. If the null hypothesis was rejected, the Dunn post
hoc test was applied to determine the pairs of dissimilar samples [66].
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 Determine the variability of the water parameters at different locations 

For this aim, the basic statistics, the histograms, and the boxplots of the series were studied. 

Comparisons of the series values with the maximum admissible limits have also been performed. 

Perform data clustering

The classification of the series into homogenous groups within which the patterns are the same
was done by using the k-means clustering algorithm [67]. This algorithm determines groups of data
series based on a criterion of error minimization, which computes the distance of instances to their
representative values. The stages of the k-means algorithm are summarized below [68–70].

Let us consider that Z = (z1, z2, ..., zm), zi ∈ Rn, i = 1, m is the vector that contains the series
concentrations measures at each location (column j is composed of data from site j).

(1) Firstly, the number of clusters, k, is selected.

This number is either introduced by the user or computed based on different algorithms.
Among the methods used to determine the optimal number of clusters, the most popular are the elbow,
the silhouette, and the gap statistic methods [71]. In this article, we employed the facilities of the R
software, especially the NbClust, which provides 30 algorithms for the detection of the optimal k.
The best number of clusters is selected according to the majority rule [72].

(2) The clusters’ centroids ϑ1, . . . ,ϑk ∈ Rn are initialized and the distances between the data points
and the cluster centers are computed. Each point is assigned to the cluster that minimizes the
distances from it to the clusters’ centers.

(3) The new clusters’ centers are determined, the procedure restarts from (2) and runs until no data
point can be reassigned to another cluster. Then, stop.
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 Determine the variability of the water parameters at different locations 

For this aim, the basic statistics, the histograms, and the boxplots of the series were studied. 

Comparisons of the series values with the maximum admissible limits have also been performed. 

Perform the Principal Component Analysis (PCA) [73–75]

In hydrological studies, PCA is a tool for finding the water quality parameters that describe the
processes that govern the groundwater chemistry and extract valuable information using only the
significant variables. PCA is a statistical procedure of the multivariate analysis, designed for reducing
the variables’ number and replacing them with a few artificial ones (Principal Components—PCs).
These PCs are independent factors that mainly explain the study phenomenon and sum up a significant
amount of variance. There are many criteria used for extracting the principal components; among them,
the most used are the Catell Scree plot, the Kaiser criterion (Kaiser), and the Explained Variance
Criterion. The first PC accounts for the highest variability are emphasized on the Scree plot [74].
Kaiser criterion [76] takes into account the selection of those PCs that correspond to eigenvalues greater
than 1 [77]. Here, we used both the Scree plot and the Kaiser criteria for detecting the PC.

The biplot shows the contributions of the variables on the PCs. The loadings emphasize the
correlations between the input variables and the factors.

For a deeper insight into the PCA and its implementation in R software, the reader may
see [74,75,78,79].
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 Determine the variability of the water parameters at different locations 

For this aim, the basic statistics, the histograms, and the boxplots of the series were studied. 

Comparisons of the series values with the maximum admissible limits have also been performed. 

Assessing the suitability of water for drinking

For this aim, we used a weighted arithmetic Water Quality Index (WQI) [80–82]. The WQI index
is built as follows:

(1) choose the water parameters used in the computation;
(2) compute the quality rating (qi) for each parameter by:

qi =
Ci −Cideal
Si −Cideal

, (1)
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where Ci is the actual concentration in sample i, 1/Si is the admissible value, and Cideal = 0 for all,
but pH, for which Cideal = 7;

(3) Compute the weight of each water parameter, i, by:

wi =
1/Si∑n

i=1(1/Si)
, (2)

where n is the number of water parameters taken into consideration;
(4) Compute the WQI by:

WQI =
∑n

i=1(wi Qi), (3)

(5) Classify the water quality based on the interval in which the value is contained. The classes
and the corresponding intervals are A (Excellent)—(0,25], B (Good)—(25,50], C (Poor)—(50,75],
D (Very poor)—(76,100], and E (unsuitable) > 1000 [80].

(6) Compare the values of WQI for the samples contained in different clusters.

3. Results and Discussion

Table 2 contains the basic statistics of the study data series.

Table 2. Basic statistics of the water parameters.

Minimum Maximum Average Standard Deviation Variation Coefficient (cv)

pH 6.1900 7.190 6.519 0.256 0.039
EC (µS/cm) 328.0000 3003.000 1478.488 648.574 0.439
TDS (mg/L) 136.0000 1565.000 863.049 354.590 0.411
Na+ (mg/L) 638.1750 5302.039 2923.174 1044.109 0.357
K+ (mg/L) 2.7043 17.203 8.964 3.121 0.348
Cl− (mg/L) 827.0140 9628.939 5670.833 2258.713 0.398

NO3− (mg/L) 0.4259 2.486 1.410 0.550 0.390
SO42− (mg/L) 4.1290 45.794 23.570 9.142 0.388
CO32− (mg/L) 14.4000 108.000 57.712 27.473 0.476
HCO3− (mg/L) 14.6400 236.680 87.546 48.842 0.558

Ca2+ (mg/L) 104.2060 1244.785 705.423 269.035 0.381
Mg2+ (mg/L) 21.5390 672.509 316.744 148.690 0.469

Cd (mg/L) 0.0001 0.002 0.001 0.000 0.762
Cr (mg/L) 0.0005 0.023 0.015 0.005 0.362
Cu (mg/L) 0.0009 0.004 0.002 0.001 0.433
Mn (mg/L) 0.0001 0.011 0.002 0.003 1.242
Ni (mg/L) 0.0005 0.004 0.002 0.001 0.563
Pb (mg/L) 0.0013 0.012 0.005 0.003 0.500
Zn (mg/L) 0.0004 0.052 0.005 0.010 2.135

High amplitudes of the registered values are found for almost all study elements, with very high
standard deviations for EC, TDS, Na+, Cl−, Ca2+, and Mg2+. The higher the standard deviation is,
the higher the variation of the values of a series about the mean is. The coefficients of variation show
high variability of Zn, Mn, Cd, and Ni concentrations by comparison to the other series.

The boxplots of data series (Figure 3) show the existence of some outliers for pH, K+, SO4
2−, EC,

HCO3
−, Cd, Cu, Mn, Ni, Pb, and Zn series.
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Figure 3. Boxplot of water parameters.

In the presence of outliers, the standard deviation becomes high. This is the situation, for example,
for the EC series, which presents very high outliers (3003, 2995 µs/cm) compared to the other values,
significantly augmenting the standard deviation.

Still, the pH remains in the admissible limits, its values being between 6.19 and 7.19. Also,
the groundwater is not contaminated with Cd, Cr, Cu, Mn, Ni, and Zn, with the maximum concentrations
of these elements being well below the admissible limits (0.003, 0.05, 2, 0.5, 0.07, and 3 mg/L, respectively).
Only samples 9 and 11 contain Pb in concentrations (0.1117 and 0.01229 mg/L) greater than the prescribed
limit (0.01 mg/L).

Comparing the determined values of the water parameters with the WHO’s drinking water
standards [57,83], it results that Na+ and chlorides concentrations exceeded the admissible potability
limits (200 mg/L and 250 mg/L, respectively) between 3.19 and 26.51 times (for Na+) and between 4.13
and 48.14 times (for chlorides), respectively. In the aquifer system, sodium is mainly derived from the
dissolution of salt minerals and silicate weathering [84]. EC has 80% of values above the permissible
limit for drinkable water (1000 µs/cm). The variation of EC values could be explained by rock water
interaction and anthropogenic influences, like agricultural run-off and wastewater discharges [57].
TDS has 80.5% of values above 600 mg/L, with 35.7% of water samples being in the category of highly
undrinkable water (>1000 mg/L).

The concentrations of Ca2+ exceed the permissible limits (75 mg/L) between 1.39 and 16.60 times.
The contribution of Ca2+ content in water is dependent on the solubility of CaCO3 and CaSO4 [85].

Figure 4 presents the histograms, showing asymmetric and non-uniform distributions of the water
parameters. Zn, Cd, Mn, and Co series present the highest right—skewness, whereas Na+ and K+ have
the lowest asymmetry.
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The Kruskal-Wallis test rejected the null hypothesis that the data series obtained at different
sites have the same distribution. The post hoc Dunn test emphasized the dissimilarities between the
samples, listed in Table 3. The significance of the numbers’ combinations is explained in the following.
For example, in the first column and the fourth row, “4; 26, 27” means that Sample 4 and Sample 26 do
not have the same distribution and Sample 4 and Sample 27 also do not have the same distribution.
On another hand, in the first column and 12th row, “12; -” means that there is no dissimilarity between
Sample 12 and all the samples with a label greater than 12. Being a diagonal table, the dissimilarities
with the samples labelled with a number smaller than 12 are already displayed in the previous rows
(and first column); in this example, these are 6, 7, 9, and 11.

Table 3. Diagonal table of dissimilarities that resulted from the Dunn test.

1; 21, 26, 27, 41 15; 21, 26, 27, 40, 41 29; -
2; 7, 9, 11 16; 21, 26, 27, 40, 41 30; 34
3; 7, 9, 11, 26 17; 21, 26, 27, 40, 41 31; -
4; 26, 27 18; 34, 35 32; 34
5; 18, 19, 21, 23, 25–27, 29, 30, 32, 33, 40, 41 19; 34 33; 34, 35
6; 12, 18, 19, 21–33, 40, 41 20; 21, 26, 27 34; 40, 41
7; 12, 18–33, 37, 38, 39, 40, 41 21; 34–37,39 35; 40, 41
8; 18, 21, 26, 27, 30, 32, 33, 40, 41 22; - 36; -
9; 12, 18, 19, 21–33, 40, 41 23; 34 37; -
10; 18, 21, 23, 25–27, 30, 32, 33, 40, 41 24; - 38; -
11; 12, 18, 19, 21–33, 40, 41 25; 34 39; -
12; - 26; 34–39 40; -
13; 21, 26, 27, 30, 32, 33, 40, 41 27; 34–37, 39 41; -
14; 18, 19, 21, 23, 25–27, 30, 32, 33, 40, 41 28; -

One can also see that samples 40 and 41 are not similar to samples 5–11, 13–17, 34, 35; samples 18,
19, 21, 23, 25–27, 30, 32, 33 are not similar to 5 and 6; and samples 12, 18, 19, 21–33 are not similar to 7 and
9, and so on. These dissimilarities are originated in the concentrations of some groundwater elements.

To classify the water samples based on their chemical composition, clustering has been performed.
The best number of clusters was found to be 3. The clusters are presented in Figure 5.
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Figure 5. Clusters.

There is a clear separation between the clusters, as expected for a good clustering.
Comparing the results from Table 4 and Figure 5, one can remark their concordance. For example,

6, 7, 9, and 11 (situated in the second cluster) are not in the same cluster as 12, 18, 40, and 41 (situated in
the third cluster); 15, 16, and 17 (situated in the first cluster) are not in the same cluster as 21, 26, 27, 40,
and 41 (situated in the third cluster).

Table 4. Principal Component Analysis (PCA) Summary—the first nine principal components (PCs).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Standard deviation 2.6936 1.6215 1.2924 1.1733 1.0402 0.9941 0.9708 0.8309 0.7715
Proportion of variance 0.3819 0.1384 0.0879 0.0725 0.0569 0.0520 0.0496 0.0363 0.0313
Cumulative proportion 0.3819 0.5203 0.6082 0.6806 0.7376 0.7896 0.8392 0.8755 0.9068

The sites in the first cluster are mainly situated along communication roads, so the effect of
pollution is higher. The water in this cluster is highly undrinkable: TDS >1000 ppm, the sodium
content is at least 12 times bigger than the admissible value (200 mg/L), the chloride content is more
than 20 times higher than the upper limit (250 mg/L).

For the elements in the second cluster, pH is between 6.12–6.92, EC in the interval 2465–3003
(µS/cm), and TDS is between 1287 and 1585 ppm (higher than the values determined in the samples
from the first cluster). The sodium and potassium concentrations in the samples from the second
cluster are generally higher than those in the samples from the first one: the average values in the
second (first) cluster are 3870 (3733) mg/L and 13.24 (10.74) mg/L, respectively. The same is true for the
chlorides for which an average of 8630 (7277) mg/L is detected in the second (first) cluster.

Significant differences are found between the average values of carbonate, bicarbonate calcium,
and magnesium, which are 87.6, 32.94, 1125, and 587 mg/L for the second cluster, whereas for the first
one, they are 50.18, 106.59, 856, and 349 mg/L, respectively.

The mean concentrations of Cu and Zn (Pb) are 3 and 2.5 times higher (4 times smaller), respectively,
in the second cluster by comparison to the first one.

The third cluster is characterized by the lowest TDS (603.35 pm), Na+ (2045 mg/L), K+ (6.7 mg/L),
Cl− (3714 mg/L), CO3

2− (58.13 mg/L), and Ca2+ (494 mg/L) concentrations. The average concentrations
of lead and zinc are about 1.7 times higher than those from the first cluster. Comparable concentrations
of Mn are recorded in the second and third clusters, whereas concentrations of Cu are about 1.4 bigger
in the second cluster than in the third one. The nitrates, sulfates, and Ni concentrations are the highest
in the samples from the second cluster and the lowest in the last one.
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The next step was to perform PCA for selecting the main components that determine the water
quality. The Scree plot (Figure 6) was used for selecting the principal components (PCs). Figure 6
shows that the first two components have the highest contribution to explain the variance (38.2% and
13.8%).

Figure 6. Scree plot.

Table 4 shows the summary of PCA (standard deviation, the proportion of variance, and cumulative
proportion) for the first eight PCs. Generally, the selected principal components are those of which their
corresponding eigenvalues are greater than 1. In this case, the first five components have eigenvalues
greater than one and explain 73.76% of the variance (which is an acceptable percentage). Since the
percentage of explained variation is high, we shall keep only PC1–PC5.

The contributions of the variables on the first two PCs are presented in the biplot (Figure 7).

Figure 7. Biplot.

The distances from the variables to the origin represent the variables’ quality on the factor map.
The pairs (pH and Ni), (CO3

2−, and HCO3
−) are strongly negatively correlated (since the segments

represented in Figure 7 are opposite). Sites 7, 6, 9, and 11 (Figure 7, top left-hand side) are opposite to
26 and 27 (Figure 7, top right-hand side), reconfirming the classification of the four sites (7, 6, 9, and 11)
in a separate cluster. The same is true for sites 7, 6, 9, and 11 on one hand and 14 on the other one.

The variables whose distances to the origin are high are well represented on the factor map. In our
case, the most significant contributions to PC1 are those of HCO3

−, CO3
2−, Cu, Pb, to PC2—Mg2+, Na+,
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K+, TDS (Figures 7 and 8, the first two bar charts) and on PC3—Cr, Mn, Cd, Zn, Pb, CO3
2− (Figure 8,

the last bar chart).

Figure 8. Contributions (%) of the variables on PC1, PC2, PC3.

The elements of the eigenvectors are called PC loadings [75]. The factor loadings associated with
each of the variables in a given PC are the correlation between the original variable and the factor.
The significant variables are those with loadings greater than 5%.

In Figure 8, the horizontal dashed line represents the 5% contribution to a PC. Nine elements have
a contribution greater than 5% to PC1, six to PC2, and six to PC3.

Figure 9 contains the quality of representation of the variables on the factor map. It is another
way to summarize the contributions of each element to the first five PCs. In our study, the significant
ones are Mg2+ and Na+ (on PC1), carbonates (on PC2), followed by the heavy metals: Cr (with the
loading 0.52 on PC3), Mn (with the loading 0.509 on PC4), and Zn (with the loading 0.740 on PC5).
Thus, we expect that they will differentiate the water samples. The high influence of HCO3

− on PC1
could be explained by the recharge due to precipitation [86].

Figure 9. Quality representation of the variables on the factor map.

Finally, the values of the WQI index for all the sites are presented in Table 5.
The columns of this table contain:

• The numbers of the samples (columns 1 and 6);
• WQI 1—water quality index computed using EC, TDS, Na+, K+, Cl−, NO3

−, SO4
2−, HCO3

−, Ca2+,
Mg2+, Cd, Cr, Cu, Mn, Ni, Pb, Zn data series;

• WQI 2—water quality index computed using all, but Cr, Mn, Zn;
• Cat 1 and Cat 2 represent the quality class of water corresponding to WQI 1 and WQI 2.
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Table 5. WQI.

Sample WQI 1 Cat.1 WQI 2 Cat.2 Sample WQI 1 Cat.1 WQI 2 Cat.2

1 25.995 B 24.265 A 22 20.898 A 19.847 A
2 23.836 A 22.684 A 23 16.522 A 15.279 A
3 16.664 A 15.238 A 24 27.103 B 27.100 B
4 12.816 A 11.439 A 25 10.362 A 8.967 A
5 24.164 A 22.925 A 26 19.748 A 18.646 A
6 23.103 A 21.307 A 27 22.450 A 21.223 A
7 44.773 B 43.864 B 28 28.860 B 27.075 B
8 72.656 C 71.075 C 29 19.501 A 17.781 A
9 67.319 C 65.891 C 30 21.255 A 19.899 A
10 23.720 A 21.728 A 31 13.307 A 13.258 A
11 54.921 C 53.764 C 32 14.913 A 13.572 A
12 20.767 A 19.192 A 33 29.131 B 27.998 B
13 14.999 A 13.624 A 34 8.269 A 6.828 A
14 25.705 B 24.789 A 35 21.114 A 19.518 A
15 20.140 A 19.049 A 36 16.156 A 14.178 A
16 26.387 B 24.518 A 37 18.241 A 17.317 A
17 27.083 B 25.365 B 38 26.526 B 25.752 B
18 25.893 B 25.114 B 39 21.232 A 20.416 A
19 22.725 A 21.858 A 40 18.153 A 17.069 A
20 35.357 B 35.103 B 41 8.896 A 7.117 A
21 15.046 A 14.821 A

Based on the WQI 1 (WQI 2), the quality of water for drinking can be classified as follows:

• for the samples from the first cluster, 70.6% (88.2%)—excellent, 29.41% (11.8%)—good;
• for the samples from the second cluster, 25% (25%)—excellent, 25% (25%)—good, 50% (50%)—poor;
• for the samples from the third cluster, 70% (70%)—excellent, 25% (25%)—good, 5% (5%)—poor.

After removing the concentrations of Cr, Mn, and Zn from the analysis, the modification of the
percentage of samples in the first cluster classified in the category Excellent increased from 70.6% to
88.2%. The inclusion in the categories Excellent, Good, and Poor remain the same for all the samples
in the second and third cluster when removing Cr, Mn, and Zn from the analysis. Therefore, we can
conclude that these three elements have a significant influence on water quality.

4. Conclusions

In this article, we proposed an integrated approach for water quality evaluation and applied
it to the data series containing the groundwater parameters measured in the Liwa area, the United
Arab Emirates.

Firstly, the similarity of the water samples was determined using statistical tests. The results of
the Dunn post hoc test determined pairs of samples that are not similar. The k-means algorithm was
then used to determine the groups of samples with the same characteristics. We found three clusters,
determined by the hydrogeological structure of the region and the anthropic activity. The clustering
result is concordant with the dissimilarity test. This means that series that were found to be similar
belong to the same cluster, while the dissimilar ones belong to different clusters.

The PCA shows that only five components out of 19 (analyzed) could be used to describe the
water quality. The heavy metals have a significant influence on the first five PCs, so human activities
impact the water quality. The samples included in the second cluster are the most polluted because
they are extracted from places with heavy traffic and agricultural land use.

WQI was computed in two scenarios: taking into account all the elements and removing three of
them. In both cases, the water quality was mainly excellent and good for the samples belonging to the
first and third clusters. In the second scenario, the percentage of samples included in the category
Excellent increased, showing the impact of removing the series of Cr, Mn, and Zn from the analysis.
Thus, we can conclude that the existence of heavy metals impacts water quality.
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When analyzing the TDS, of which its contribution is high on PC1, 37% of samples contain
brackish water (TDS > 1000); the rest, is freshwater. On the other hand, when studying the suitability
of the water for particular uses, like irrigation, specific indicators must be used, even if the WQI shows
good water quality because the global index (utilized here) is computed as a weighted average of
water parameters, with specific indices concentrating on particular water parameters (like Na, Mg,
and Ca). Therefore, we recommend the use of different techniques and indicators that cross-validate
each other for assessing the water quality for general and particular utilization.
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Abstract: As one of the largest agricultural areas, the Sanjiang Plain of Northeast China has faced
serious inorganic nitrogen pollution of groundwater, but the sources and the formation mechanism
of pollution in the regional shallow groundwater remain unclear, which constrains the progress of
pollution control and agricultural development planning. An investigation on potential nitrogen
sources, groundwater inorganic nitrogen compounds (NH4

+, NO3
−, NO2

−), and topsoil total nitrogen
concentration (TN) was conducted in a typical paddy irrigation area of Sanjiang Plain. Multivariate
statistical analysis combined with geospatial-based assessment was applied to identify the sources,
determine the governing influencing factors, and analyze the formation process of inorganic nitrogen
compounds in shallow groundwater. The results show that the land use type, oxidation-reduction
potential (Eh), groundwater depth, NO2

− concentration, and electrical conductivity (EC) are highly
correlated with the NO3

− pollution in groundwater, while DO and Eh affected the distribution of
NH4

+ most; the high concentrations of NO3
− in sampling wells are most likely to be found in the

residential land and are distributed mainly in densely populated areas, whereas the NH4
+ compounds

are most likely to accumulate in the paddy field or the lands surrounded by paddy field and reach
the highest level in the northwest of the area, where the fields were cultivated intensively with higher
fertilization rates and highest values of topsoil TN. From the results, it can be concluded that that the
NO3

− compounds in groundwater originated from manure and domestic waste and accumulated
in the oxidizing environment, while the NH4

+ compounds were derived from N fertilization and
remained steady in the reducing environment. NO2

− compounds in groundwater were the immediate
products of nitrification as a result of microorganism activities.

Keywords: inorganic nitrogen; shallow groundwater; multivariate statistical analysis

1. Introduction

Nitrogen pollution in groundwater, especially in areas of intensive agriculture, has aroused
widespread concern throughout the world [1]. It has been reported that the excess of the main inorganic
nitrogen compounds in drinking water (NO3

−, NH4
+, NO2

−) are detrimental to human health [2–4].
The mechanism of the formation process of inorganic nitrogen compounds in groundwater is

complex due to the variety of nitrogen sources and the intricacy of influencing factors in the environment.
Numerous studies have reported that the inorganic nitrogen compounds in groundwater could
originate from nitrogen-based fertilizer, manure, as well as domestic and industrial pollution. Besides,
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the discharge from septic tanks, leaking sewers, and eutrophic surface water can all contribute [5].
In some cases, the atmospheric nitrogen deposition [6] and soil organic nitrogen mineralization [7]
can also play important roles in nitrogen pollution in groundwater. In addition, some environmental
factors such as pH, oxidation-reduction potential (Eh), soil organic matter, and bacterial activity [8–11]
can greatly affect the species and amount of nitrogen in groundwater.

In previous research, several methods have been developed to identify nitrogen sources,
among which the chemical analysis and stable isotope methods are the most traditional ones.
Moreover, some new tracing methods and comprehensive methods have also been developed.
As for chemical analysis, it has been widely used as an auxiliary identifying method because some
characteristic ions (e.g., Ca2+, Mg2+, and SO4

2−) in groundwater can carry information about their
origins [12], and some halides (Cl−, Br− and I−) usually have something to do with anthropogenic
activities and remain relatively conserved in the subsurface environment [13–15]. The ratios of
NO3

−/Cl−, Cl−/Br−, and I−/Na+ in groundwater are also key identifiers of the origin, by which
Katz [16], Panno [17], and Pastén-Zapata [13] successfully identified the sources of nitrate coming from
wastewater. Nevertheless, the types and concentrations of characteristic components vary widely in
different pollution sources and change greatly during the physical and chemical reactions occurring in
the subsurface environment, limiting the ability of chemical analyses to achieve accurate pollution
source results.

In a similar manner, the stable isotope ratios of nitrogen (δ15N, δ18O) and boron (δ11B) are effective
indicators of the pollution sources since different sources of nitrogen often share distinct isotopic
compositions [18]. However, the use of single isotope tracers often cannot discriminate the sources
correctly. This is because isotope ratios between sources have overlap values and the nitrification,
denitrification, and other reactions that nitrogen may experience in the subsurface environment could
cause the isotope values to deviate from theoretical ones, impacting the accuracy of the results. Hence,
the nitrate-nitrogen and nitrate-oxygen dual-isotope methods have become a powerful tool in nitrate
source identification since Kendall [19] reviewed the distribution of δ15N and δ18O values of various
sources. The dual-isotope method can not only improve the accuracy of source differentiation but also
make it possible to quantify the contribution of different sources to the pollution [20–22].

In recent years, some new types of tracers have been applied to identify sources of nitrogen
pollution in groundwater. Nakagawa et al. [23] used coprostanol, which is produced by bacterial
reduction of cholesterol in the gut of higher animals, as an indicator to investigate nitrate sources of
pollution for an aquifer in Shimabara, Nagasaki, Japan, and verified that coprostanol had the potential
for nitrate source identification by comparing the results with those obtained by the dual-isotope
method. This indicates that it is essential to develop and adopt some new types of tracers as additional
tools to support the dual-isotope method, which will make the identification process more efficient
and accurate.

The single identification methods inevitably have some limitations in application due to the
complexity of nitrogen formation processes, and some comprehensive methods have shown advantages
in recent years, namely the adoption of multitracers and the integration of source appointment
with the analysis of relevant factors (e.g., land use types). Moreover, some researchers have used
geospatial-based assessment [24,25], groundwater age interpretation [26], and microbial community
analysis [27] as auxiliaries to enhance the investigation of nitrogen sources. Multivariate statistics [28,29]
is a powerful tool to integrate all the identification methods and relevant studies together, and thus
the factor analysis [30], principal component analysis [31,32], clustering analysis [13,30], and factorial
correspondence analysis [14] have been widely applied in hydrogeological research. Nevertheless,
such studies have either focused on the origin and fate of the pollutants or the reactions experienced by
nitrogen before or after leaching into groundwater, but both lines of study have seldom been combined
in an analysis of the whole formation process of pollution systematically. As such deep insight into the
essential nature of the pollution process is lacking.
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There is no doubt that agricultural nonpoint source nitrogen pollution in groundwater is a serious
worldwide problem since the pollution behaviors are intricate and disordered. Thus, to make clear
the sources and pollution process of this kind of nitrogen pollution, it is necessary to investigate the
potential pollution sources and relevant information such as the population density and amounts of
fertilizer application at the early stage of source identification. Meanwhile, statistical analysis methods
like multivariate statistics and geospatial statistics should be utilized to explore the intrinsic connection
between nitrogen concentration and other factors that may contribute to pollution. Moreover, the tracing
methods such as chemical analysis and stable isotope methods can provide more direct and powerful
support to the analysis process.

The Sanjiang Plain in Northeast China (Figure 1), which is one of the most important national food
production bases, has been intensively developed for agriculture since the 1950s. It has experienced
four instances of large-scale reclamation, during which the large areas of wetland were adapted
into paddy fields, and large amounts of fertilizers were applied to the soil every year. At the same
time, the deterioration of groundwater quality in this area had become the key factor that limited the
sustainable development of local water supply and agricultural planting. Recent studies reported
that the Sanjiang Plain has faced the risk of serious inorganic nitrogen pollution of groundwater
in some regions [33,34]. However, the information about nitrogen sources and behavior in this
area is limited, and the formation process of nitrogen pollution in regional groundwater remains
unclear, which will undoubtedly constrain the progress of its control and impact the large-scale plan of
agricultural development.
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In this study, the survey was conducted in a typical paddy irrigation area of Songhua River
watershed on the distribution of the potential nitrogen sources, groundwater inorganic nitrogen
compounds (nitrate, ammonia, and nitrite), and topsoil total nitrogen concentration. Then, multivariate
statistics and the geospatial-based assessment were combined to identify the nitrogen sources and the
governing factors affecting pollution. After describing the methods and detailing the results, this paper
discusses the formation process of inorganic nitrogen in groundwater. The results of this study provide
a scientific basis for pollution control in the irrigation area and promote the future development of the
agricultural security of the Sanjiang Plain.

2. Study Area

2.1. Geographic Location and Climate

Puyang irrigation area is located between Luobei and Suibin counties (47◦12′54′′–47◦22′04′′ N,
131◦00′32′′–131◦31′51′′ E) of the Sanjiang Plain and falls on the north bank of the lower reach of
Songhua River (Figure 1). It has a cold temperate continental monsoon climate with a mean annual
rainfall of 535.5 mm and a mean annual evaporation of 694.4 mm (E601). Most of the rainfall occurs from
June to September, which accounts for about 70% of annual precipitation. The annual air temperature
ranges from −19.3 ◦C (January) to 21.7 ◦C (July).

2.2. Geology and Hydrology Characteristics

Lying in the Songhua River alluvial plain, the characteristic landform pattern consists of first
terraces and flood plains (Figure 1). The thickness of the quaternary strata ranges from 270 to 280 m,
and the thickness of the aquifer is between 50 and 200 m. From top to bottom, the aquifer lithology can
be separated as medium sand, medium-coarse sand, and a sand and gravel layer, which developed
from the upper, middle, and lower Pleistocene respectively. There are no stable aquitard layers between
aquifers, and the hydraulic conductivity ranges from 9.6 to 16.1 m/day. According to the embedment
features and dynamic characteristic of groundwater, the regional groundwater can be divided into
feeble confined water and phreatic water; the former is mainly distributed along the sides of the valley
plain, which belong to the first terraces, and has a buried depth of 3–5 m, whereas the latter is mainly
distributed in the flood plain area and shares a buried depth between 1 and 3 m (Figure 1).

The groundwater of the irrigation area is mainly recharged by precipitation and lateral groundwater
runoff and is also recharged by surface water seepage, floodwaters, and irrigation water infiltration at
some times and in some regions. Lateral groundwater runoff is also the main form of groundwater
discharge. The irrigation area has flat terrain, and the groundwater flows slowly with the hydraulic
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gradient of 1/5000 to 1/10,000. In accordance with the terrain slope aspect, the groundwater flow
direction is generally from southeast to northwest.

The groundwater table of a year meets the lowest level during the periods of March and April
and then rises shortly after along the river bank due to the spring flood. It rises greatly during July and
August as it is recharged by precipitation infiltration and reaches the peak level during August and
September. From late October or early November to the end of April or early May, the ground surface
is frozen and the groundwater table is in a state of decline.

3. Materials and Methods

3.1. Pollution Source Investigation

Due to the major activity of the area being rice farming and industrial pollution being absent,
a field survey that focused on the domestic and agricultural situations was conducted to investigate the
potential nitrogen sources in the Puyang irrigation area. The amount and distribution of towns, villages,
population, livestock, fertilization, sewage systems, and landfills were all included in the survey.

3.2. Sampling and Analysis

A total of 78 groundwater samples and 19 soil samples were collected in August 2017. Most of the
groundwater sampling points were evenly distributed within the domain of Puyang irrigation area,
whereas some densely populated villages and previously monitored pollution areas were sampled
much more intensively. Some outside wells adjacent to the irrigation area were also sampled to
properly map the distribution of nitrogen pollution intensity. The types of sampling wells mainly
consisted of domestic wells and irrigation wells. Because the depths of the two types of wells were
significantly different (the depths of the domestic wells were generally less than 20 m, while those of
the irrigation wells were about 30 m), the adjacent domestic and irrigation wells were both sampled
in order to better understand how the well depth affected the nitrogen pollution of the groundwater.
The pH, electrical conductivity (EC), dissolved oxygen (DO), and oxidation-reduction potential (Eh)
of the groundwater were measured in situ using a portable multiparameter meter (HQ40d, Hach,
Loveland, CO, USA), which was previously calibrated. All water samples for chemical analysis were
filtered with a 0.45-µm filter before laboratory analysis. The inorganic nitrogen, including NH4

+, NO3
−,

NO2
−, was analyzed by ion chromatography. In addition, the use type of the land where the sampling

wells were located, the well depth, and the potential pollution source conditions were recorded, and
the water depth of the sampling wells was measured in situ.

Topsoil samples were collected to analyze the concentrations of the total organic and inorganic
nitrogen (TN). The position of sampling points was close to the water sampling well, covering various
land use types and geomorphic units. TN was analyzed by Jilin University Testing Center.

3.3. Statistical Methods and Graphical Representation

The average value, median value, and standard deviation of the pH, EC, DO, and Eh were
evaluated to depict the results of the chemical analysis of groundwater. Nonparametric testing was
used because inorganic nitrogen data in the study were not normally distributed. The concentrations
of NH4

+ and NO3
− of water samples in this study were grouped by well depth and land use types.

Mann–Whitney U test was used to determine whether there was a significant difference (α = 0.05)
between every two groups (n > 10) of data [35], which made the basis of the regrouping of the data.

To understand the spatial distribution characteristics of nitrogen pollution in groundwater,
the pollution intensity of NH4

+ and NO3
− of the study area were mapped according to the ordinary

kriging interpolation in ArcGIS (ESRI, Redlands, CA, USA) software.
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3.4. Statistical Methods and Graphical Representation

Some indicators of nitrogen pollution sources in groundwater such as land use type and Eh,
which also reflect the formation process that the nitrogen load experiences in the subsurface environment,
are highly correlated among themselves. Multivariate statistical analysis could provide insight into the
relationship between variables. In this study, factor analysis (FA) was conducted to highlight the main
factors that determined the nitrogen concentration in groundwater. Then, the correspondence analysis
(CA) was combined to further analyze and the conclusions drawn from FA. Both the FA and CA were
performed in SPSS 20.0 software.

FA is widely applied for data reduction in hydrochemical and hydrogeological studies [31] and
has also been used in nitrogen source appointment in recent years [14]. The main process of FA
includes establishing an orthogonal factor model, selecting common factors, and performing factor
rotation. In this study, eight quantitative variables (nitrogen concentration, Eh, EC, well depth, DO,
water depth) and three qualitative variables (land use type, water richness of aquifer, landform pattern)
were selected. Prior to FA, the qualitative variables were transformed into ordinal ones based on
the practical situation and the regrouped results from the significance test, and all the variables were
standardized to eliminate the effects of dimension.

CA is a multivariate analysis method that can reduce the original variables to a small number
of orthogonal factors that by definition are independent [36]. It can not only study variables and
samples simultaneously but also study both the qualitative and quantitative variables by dividing
them into classes [36]. The correlation of variables can be depicted by a correspondence analysis plot,
of which the vicinity of points could reflect the close level between variables. Due to the weakness of
the analysis of the qualitative variables by FA, which could only distinguish between the effects of
the two land use type groups on the nitrogen pollution in this study, CA was proposed to determine
the qualitative variables, especially the land use type’s effect on nitrogen pollution in the study area,
and further analyze the correlation between the main influencing factors and identify the sources of
nitrogen pollution. The variables of CA in this study include the concentrations of NH4

+ and NO3
−,

land use type, well depth, and Eh. Among them, the concentrations of NH4
+ and NO3

− were divided
into three classes, while Eh and the well depth were divided into two groups.

4. Results

4.1. Distribution of Potential Nitrogen Sources

According to the pollution source investigation, there was one densely populated town and
19 villages in the irrigation area. The main residential population in the villages had moved to the town
in 2010, leaving all of the villages but four uninhabited most of the year except during the transplanting
and harvesting periods. The northern suburb of the town had 70–80 households inhabited by farmers.
Only the town and one village in the area had been equipped with operational sewage systems and
centralized garbage disposal facilities. One hoggery and one cattle farm were operating in the area,
and several heads of livestock were being raised in the inhabited villages.

Obviously, most of the irrigation area land surface was covered by paddy fields, which had an area
of 273.5 km2 according to the statistical data. The rate of fertilization of the farmland is shown in Figure 2.
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4.2. Distribution of NH4
+ and NO3

− in Different Well Depths and Land Use Types

The chemical analysis results of groundwater samples are shown in Table 1, and it can clearly
be observed that the nitrogen concentrations under different well depths and land use types are
significantly different (as shown in Figures 3 and 4). Considering that the nitrogen concentrations
at different depths show a very obvious difference, the depth of sampling wells could be divided
into two groups: greater than 20 m (WO20), which is the depth of irrigation wells, and less than
20 m (WU20), which is the depth of drinking water supply wells. The use type of the land where
the sampling wells were located could be divided into six categories: concentrated residential land;
paddy field; warehouse; and decentralized residential land surrounded by paddy fields, livestock farm,
and vegetable field.

Table 1. Descriptive statistics of the chemical analysis of groundwater.

Average Value Median Value Minimum
Value

Maximum
Value

Standard
Deviation

NH4
+-N (mg/L) 0.31 0.20 0.00 2.50 0.44

NO3
−-N (mg/L) 1.8 0.3 0.2 11.6 2.8

NO3
−-N (mg/L) 0.015 0.006 0.001 0.215 0.033

EC (µs/cm) 325.4 244.5 83.6 1296.0 223.3
DO (mg/L) 3.94 3.52 1.52 9.85 1.69

Eh (mv) 30.1 24.6 −108.6 162.6 76.1
pH 6.97 6.92 6.03 7.61 0.30

According to Mann-Whitney U test, the concentration of NH4
+ in WO20 was significantly

higher than that in WU20; the opposite was found for NO3
−. The significant differences in NH4

+

concentration under different land use types can be summarized as follows: paddy field > concentrated
residential land, decentralized residential land > concentrated residential land, and paddy field >

warehouse. For NO3
−, these differences were as follows: concentrated residential land > paddy field,

concentrated residential land > decentralized residential land, warehouse > paddy field, and warehouse
> decentralized residential land (Table 2). The water samples from livestock farm and vegetable field
were not included in the test due to the small sample size. As seen in Figure 3, the distribution of NH4

+

and NO3
− in livestock farm is similar to that in decentralized residential land; the NH4

+ concentration
in vegetation field is lower than that in other land use types, and the distribution of NO3

− in vegetation
field is similar as that in concentrated residential land and warehouse.

77



Water 2020, 12, 3292Water 2020, 12, x FOR PEER REVIEW 8 of 22 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Box plot of NH4+ (a), NO3− (b) and NO2− (c) concentration in groundwater from different land 
use types. 

Figure 3. Box plot of NH4
+ (a), NO3

− (b) and NO2
− (c) concentration in groundwater from different

land use types.

78



Water 2020, 12, 3292
Water 2020, 12, x FOR PEER REVIEW 9 of 22 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Box plot of NH4+ (a), NO3− (b) and NO2− (c) concentration in groundwater from different well 
depths. 

Figure 4. Box plot of NH4
+ (a), NO3

− (b) and NO2
− (c) concentration in groundwater from different

well depths.

79



Water 2020, 12, 3292

Table 2. The differences in NH4
+ and NO3

− concentrations under different categories of land use type
and well depth.

Categories Significance Level
(p)

Differences between
Categories (Confidence

Interval of 95%)

NH4
+ Land use type

CR a vs. P b 0.001 P > CR
CR vs. W c 0.421 not significantly different

CR vs. DR d 0.044 DR > R
P vs. W 0.002 P > W
P vs. DR 0.302 not significantly different
W vs. DR 0.108 not significantly different

Well depth WU20 vs. WO20 0.004 WO20 > WU20

NO3
− Land use type

CR vs. P 0.000 CR > P
CR vs. W 0.508 not significantly different
CR vs. DR 0.003 CR > DR

P vs. W 0.004 W > P
P vs. DR 0.134 not significantly different
W vs. DR 0.037 W > DR

Well depth WU20 vs. WO20 0.005 WU20 > WO20
a Concentrated residential land; b paddy field; c warehouse; d decentralized residential land.

Based on the test results of the distribution of NH4
+ and NO3

− in different land use types, the land
use type could be reclassified into two groups, with one including concentrated residential land,
warehouse, and vegetation field and the other including paddy field, decentralized residential land,
and livestock farm.

4.3. Multivariate Statistical Analysis

4.3.1. Factor Analysis

The values of the variables in FA are shown in Table 3. A correlation test of the standardized
variables was conducted, and the correlation matrix and the correlation heat map are shown in Table 4
and Figure 5, respectively. The correlation coefficients between variables were not large due to the
interactions between multiple variables, thus indicating that it is essential to highlight the common
information in variables using FA. The KMO test statistic of variables was 0.655 (greater than 0.5),
and the Sig value of Bartlett sphericity test statistic was less than 0.01, which indicated that the variables
were significantly correlated and suitable for FA.

Table 3. Assigned values of the variables for factor analysis.

Quantitative
Variables Value Qualitative Variables Value

NH4
+

The actual value of
analysis

Land use type

Concentrated residential
land, warehouse,
vegetable field

2

NO3
−

Paddy field,
decentralized residential

land, livestock farm
1

NO2
− Water richness of

aquifer
Water-rich 2

Eh Relatively water-rich 1
DO Landform pattern Alluvial plain 2
EC First terrace 1
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Table 4. Correlation matrix of variables in factor analysis.

Well
Depth

Water
Depth Eh DO EC NH4

+ NO3− NO2−
Land Use

Type
Water

Richness
Landform

Pattern

Well
depth 1.000 0.296 −0.335 0.184 −0.354 0.143 −0.368 −0.212 −0.379 −0.037 −0.032

Water
depth 1.000 −0.227 0.063 −0.267 0.191 −0.291 −0.157 −0.196 −0.572 −0.254

Eh 1.000 −0.030 0.384 −0.597 0.605 0.313 0.335 0.200 0.236
DO 1.000 0.025 −0.052 0.089 −0.063 0.010 −0.158 0.039
EC 1.000 −0.157 0.592 0.264 0.305 0.246 0.207

NH4
+ 1.000 −0.381 −0.193 −0.239 −0.111 −0.237

NO3
− 1.000 0.572 0.479 0.169 0.001

NO2
− 1.000 0.311 0.181 0.045

Land
use
type

1.000 0.299 −0.006

Water
richness 1.000 0.353

Landform
pattern 1.000Water 2020, 12, x FOR PEER REVIEW 12 of 22 

 

 
Figure 5. Correlation heat map of variables in factor analysis. 
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Figure 5. Correlation heat map of variables in factor analysis.

The first three factors (PC1, PC2, and PC3) contribute to 27.67%, 17.20%, and 12.38% of the
variance, respectively, accounting for 57.24% of the total. From the load matrix and loading diagram of
the rotation factor (Table 5 and Figure 6), the first factor (PC1) has a strong positive correlation with the
concentration of NO3

−, and this factor could be regarded as the NO3
− pollution influencing index.

The second factor (PC2) exhibits strong to moderate positive correlation with landform pattern and
water richness of aquifer and negative correlation with water depth, and this factor could be considered
as the groundwater cycling index. The last factor (PC3) shows the strongest negative correlation with
the concentration of NH4

+ and could be useful as a NH4
+ pollution index.
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Table 5. Load matrix of the rotation factor of the first three principal factors.

Variables
Principal Factors

PC1 PC2 PC3

NO3
− 0.855 0.038 0.261

Land use type 0.671 0.104 −0.034
Well depth −0.660 −0.073 0.254

NO2
− 0.636 0.028 0.037

Eh 0.622 0.230 0.475
EC 0.609 0.248 0.103

Landform pattern 0.160 0.817 −0.137
Water richness −0.112 0.712 0.370

Water depth −0.288 −0.705 0.113
NH4

+ −0.358 −0.214 −0.644
DO −0.122 −0.200 0.638

Eigenvalue 3.043 1.892 1.362
Cumulative % of variance 27.667% 44.864% 57.244%Water 2020, 12, x FOR PEER REVIEW 13 of 22 
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Figure 6. Loading diagram of the variables for principle factors. (a) Loading of the variables for PC1
and PC2. (b) Loading of the variables for PC1 and PC3. (c) Loading of the variables for PC3 and PC2.

The loading of variables for PC1 and PC3 depicted in Figure 6b reflects the variables’ correlation
with NO3

− and NH4
+ pollution and the distances between variables directly. From the x-axis

(representing NO3
− pollution index), it can be seen that PC1 has a strong to moderate correlation with

land use type, well depth, the concentration of NO2
−, Eh, and EC. The positive correlation with land

use type means that greater NO3
− pollution risks exist for groundwater in concentrated residential land,

warehouse, and vegetation field than the others. EC has a moderate positive correlation with PC1 (0.609),
indicating that the NO3

− and EC may arise together in groundwater. In the meantime, the Eh, which
represents the redox potential of groundwater, is positively correlated with PC1 (0.622), suggesting
that an oxidizing environment is essential for NO3

− in groundwater. The positive correlation with the
concentration of NO2

− reflects the transformation between NO3
− and NO2

−. On the other hand, PC1
shows a moderate negative correlation with well depth (−0.660), which means that the groundwater
in shallow, oxidizing wells has more potential to accumulate NO3

−. As for the y-axis (representing
NH4

+ pollution index), the concentration of NH4
+ lies on the opposite end of the axis from DO and Eh,

indicating that NH4
+ exists in the anoxic and reducing groundwater environment. The weak positive

correlation of PC3 with the water richness of aquifer demonstrates that the distribution of NH4
+ in the

regional aquifer is also affected by the dilution effect.

4.3.2. Correspondence Analysis (CA)

The values and categories of the variables are shown in Table 6, and the classes of nitrogen
concentration (NO3

−, NH4
+), Eh, well depth, and land use type in the CA are projected on the

primary plane in Figure 7. The first two factorial axes which explain 90.60% of the total data variance
were retained in the primary plane. The first factor (x-axis) explained 58.74% of the total variance,
where the reducing and oxidizing environments are oppositely located and could be divided into
two parts, the left part representing the reducing environment and the right one representing the
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oxidizing environment. The WU20, high to moderate concentration of NO3
− (NN3, NN2), and the low

concentration of NH4
+ (AN1) are located on the right side, whereas the WO20, low concentration of

NO3
− (NN1), and high to moderate concentration of NH4

+ (AN3, AN2) are on the left side, indicating
that the deep aquifer is rich in reducing substances such as ferrous and organic matter, and the
oxidizing groundwater has more potential to induce NO3

−, while NH4
+ is more likely to accumulate

in the reducing environment, which is consistent with the FA explanation. Various land use types are
distributed on the different sides of x-axis and reflect the well construction preference of local people.
The wells in paddy field were constructed for irrigation, so the well depth is relatively deep to meet the
need for water supply, and the groundwater is generally in a reducing condition. The wells situated
in concentrated residential land mainly provide domestic water and were constructed with higher
quality standards; the wells in such land are relatively shallow (the local deep aquifer is rich in iron),
and the groundwater is in an oxidizing environment.

Table 6. Assigned values of the variables for correspondence analysis.

Variables Categories Value

NH4
+-N

<0.20 mg/L AN1
≥0.20 and <0.50 mg/L AN2

≥0.5 mg/L AN3

NO3
−-N

<1.0 mg/L NN1
≥1.0 and <5.0 mg/L NN2

≥5.0 mg/L NN3

Eh
<0 mv Reducing environment
≥0 mv Oxidizing environment

Well depth ≤20 m WU20
>20 m WO20

Land use type Concentrated residential land, paddy field, warehouse,
decentralized residential land, vegetable field, livestock farm
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The distances between the variable classes in the plane can be used to interpret the essential
relevance between each of them. The high to moderate concentration of NO3

− is in the vicinity of
vegetation field and concentrated residential land, which suggests that these two land use types are
most likely to result in NO3

− pollution in groundwater. Warehouses are closest to the oxidizing
environment and are in the vicinity of NN3 and NN2, representing another place vulnerable to
NO3

− pollution.
Measuring the angle of the vector is another method to facilitate interpretation. Concerning the

NH4
+ classes, AN3 has the smallest angle with decentralized residential land which was surrounded

by paddy field, and AN2 has the smallest angle with paddy field, suggesting that paddy field has the
largest potential to impose NH4

+ pollution.

4.4. Spatial Distribution of Nitrogen Concentration in Groundwater

The concentrations of NH4
+ and NO3

− in the wells of different depths were significantly different
(p < 0.01); the spatial distribution of NH4

+ and NO3
− in the wells with the depths of ≤20 and >20 m was

mapped using the method of ordinary kriging interpolation. Figure 8 shows that the concentrations of
NH4

+ in WU20 were generally smaller than those in WO20, which was in accordance with the above-
mentioned test (p = 0.004). The spatial area where NH4

+-N concentrations exceeded the WHO criteria
(0.5 mg/L) in the WO20 was larger than that of WU20. However, the positions of the NH4

+ excessive
area were distributed similarly for both well depths. Generally, the highest concentration of NH4

+

occurred in the northwest of the irrigation area, and the central part of the area also showed the risk of
NH4

+ pollution.
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Figure 9 shows that the NO3
− concentrations in WU20 were generally higher than those in WO20,

as verified by the above-mentioned test (p = 0.005). Large areas of the NO3
− concentration in WU20

of the irrigation area exceeded 3 mg/L and were believed to be a result of anthropogenic sources as
shown in previous studies, whereas NO3

−-N concentrations in WO20 were generally lower than 3 mg/L.
The areas of excessive NO3

− in WU20 were mostly distributed around the densely populated town and
villages in a patchy shape or located in vegetation fields of places that were not densely populated.
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4.5. Distribution of TN Concentration in Topsoil

The distribution of TN concentration in topsoil is depicted in Figure 10, which shows that the
average TN concentration of fields (dry land, paddy field, vegetation field) was higher than that of
natural land. As for natural land, the TN concentration in forest land was higher than that in riverbank
and wetland, due to the N deposition of plant litter.

Figure 11 shows that the TN concentration in topsoil was not significantly relevant to the NH4
+-N

concentration in the vicinity of groundwater sampling wells, while the location of the largest value
of topsoil TN was in the vicinity of the highest NH4

+-N concentration well; both were located in the
northwest of the area. The TN values of topsoil located near the groundwater wells with low NO3

−-N
concentrations were in random distribution, whereas the moderate to high concentrations of NO3

−-N
in groundwater (>1.0 mg/L) appeared to be relevant to the TN value of nearby topsoil (Figure 11).
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5. Discussion

5.1. Nitrogen Source Appointments

According to the results of the potential nitrogen source investigation in the study area,
the dominating N sources include the excess N of fertilization (mainly composed of urea and
ammonia), domestic sewage, and manure. Regarding the different land use types of paddy field,
concentrated residential land, decentralized residential land, warehouse, and livestock farm, the N
fertilization mainly contributed to the pollution in paddy fields and the land surrounded by paddy
fields, such as decentralized residential land and warehouse, and the domestic sewage and manure
pollution mainly occurred in residential land, vegetable field, and livestock farm, also occurring in
decentralized residential land.

Figure 10 shows that the moderate to high concentrations of NO3
−-N in groundwater (>1.0 mg/L)

appeared to be relevant to the TN value of nearby topsoil, proving that the NO3
− pollution in

groundwater was a result of the surface nitrogen infiltration. The FA results indicate that greater NO3
−

pollution risks exist for groundwater in concentrated residential land, warehouse, and vegetation
field than groundwater in other land use types. It is expressed in detail by CA that the vegetation
field and the concentrated residential land are most likely to result in NO3

− pollution in groundwater.
This indicates that the NO3

− in groundwater of the irrigation area originated from domestic sewage
and manure. This conclusion can be supported by FA results suggesting that the EC, which is regarded
as an indicative index of wastewater, rises together with NO3

−. Considering the spatial distribution of
NO3

− concentration in groundwater, the areas of excessive NO3
− are mostly distributed around the

densely populated town and villages or located in vegetation fields, which demonstrates again that it
is the domestic sewage and manure that generate NO3

− pollution in groundwater.
The CA results also indicate that paddy field has the greatest potential to impose NH4

+ pollution,
from which it can be concluded that the NH4

+ in groundwater mainly came from the fertilizer N
excess. Concerning the spatial distribution of NH4

+ in groundwater, the highest concentration of NH4
+

occurred in the northwest of the irrigation area. According to the fertilizer application investigation,
the fertilizer rate in the north part of the irrigation area was larger than that in the south, and the
northwest was the intensive agricultural district of the area; these findings are in accordance with the
spatial distribution characteristics of NH4

+ in groundwater and support the conclusion that NH4
+ in

groundwater originated from fertilizer. Meanwhile, the highest value of TN in topsoil also occurred
in the northwest of the area, which was in the vicinity of the well with the highest concentration of
NH4

+. It is further suggesting that fertilizer was the main contributor to both the soil N and the NH4
+

in groundwater.

5.2. Governing Factors Determining the Nitrogen Distribution in Groundwater

The nitrogen components in groundwater are a result of nitrogen emission and a series of physical,
chemical, and biochemical reactions in the surface and subsurface environment. Besides the nitrogen
sources, the specific characteristics of aquifers and vadose zones such as their permeability and
thickness, the soil medium, and the environmental factors (e.g., dissolved oxygen and reducing matter,
temperature, and soil water content) can all influence the distribution of nitrogen in groundwater.
In this study, some comprehensive and accessible indexes (land use type, water richness of the aquifer,
landform pattern, Eh, EC, DO, well depth, and water depth) were selected to facilitate the analysis of
the influential elements and determine the governing factors. Among the selected indexes, the land
use type and EC were indicative of the pollution sources; water richness of the aquifer, water depth,
and landform pattern can represent the specific characteristics of aquifers and vadose zones; and the
Eh, DO, and well depth reflect the oxidizing and reducing matter in the environment.

The FA results have highlighted the main factors that determine the nitrogen concentration in
groundwater. The results show that the NO3

− pollution influencing index (PC1) has a strong to
moderate positive correlation with land use type, NO2

− concentration, Eh, and EC and a negative
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correlation with the well depth, indicating that both the nitrogen sources and the redox environment
are important for the development of NO3

− pollution in groundwater of the study area. NO3
− is stable

in the oxidizing environment, but denitrification (the reduction of NO3
− to N2 and NO2

−) happens
as a result of microbial action when groundwater conditions become reducing; as such, Eh has a
positive correlation with NO3

− distribution. Moreover, in the results of CA, the high to moderate
concentrations and low concentrations of NO3

− belong to oxidizing and reducing environments,
respectively, again proving that the redox environment is one of the main factors affecting NO3

−
distribution. The groundwater in shallow wells has a higher potential to accumulate NO3

−. This is
due to the mixing of the groundwater from different depths, which dilutes the polluting shallow water,
and it is also due to the reducing matter in deeper aquifers making the denitrification possible and
attenuating NO3

−, which has been verified in the results of FA.
The results of FA also suggest that the DO and Eh are the most important factors that determine the

NH4
+ concentration. In an aerobic and oxidizing environment, NH4

+ is easily oxidized, thus making
it difficult to keep the NH4

+ loading stable in the groundwater. Besides, the dilution effect is another
factor affecting NH4

+ distribution by diminishing the concentration of it. For the irrigation area,
the NH4

+ sources (mainly from fertilizer) are not highly variable in spatial distribution, and thus the
variety of pollutants on the surface contribute little to the NH4

+ difference in groundwater. The anoxic
and reducing environment is the dominant factor that determines whether NH4

+ can exist in a stable
state and the concentration at which it exists in groundwater.

5.3. Formation Process of Inorganic Nitrogen in Groundwater

The inorganic nitrogen in groundwater is a result of surface nitrogen emission and the physical,
chemical, and biochemical reactions that the nitrogen load experiences in the subsurface environment.
According to the above-mentioned analysis, the nitrogen speciation and concentration are greatly
affected by the redox environment of the aquifer, which is represented by the combination of Eh, DO,
and well depth. When the groundwater was in the oxidizing condition, the NH4

+ concentration was
low, and the NO3

− concentration was determined by nitrogen loading. When the groundwater was
in a reducing environment, the NO3

− concentration was fairly low, and the NH4
+ concentration was

determined by the amount of fertilizer application. The high levels of NO2
− were accompanied by high

concentrations of NO3
−, as an immediate product of nitrification. The formation process of inorganic

nitrogen pollution in groundwater can be summarized as follows:
(1) NH4

+-N pollution: The paddy field, of which the soil was generally in a reducing environment
due to the standing water, was mainly treated with ammonium fertilizer and urea, which easily
transforms into ammonium; thus, the nitrogen loading was mostly in the form of NH4

+-N. Previous
studies have mentioned that NH4

+ is apt to be assimilated by vegetation [37] and volatilization [38],
and the excess NH4

+ would be absorbed by soil materials to a great extent [39]. This greatly attenuates
NH4

+-N content before leaching into the groundwater. The NH4
+-N that leaches into groundwater has

two different fates: one is to remain stable as NH4
+-N if the groundwater is in a reducing environment,

while the other is to be transformed into NO3
− or NO2

− if the groundwater is in an oxidizing aquifer.
The threshold concentration of NO3

−-N in groundwater is much greater than that of NH4
+-N, so there

will not be enough oxidized NO3
− to lead to pollution, but the NH4

+-N in a reducing environment has
a large potential risk.

(2) NO3
−-N and NO2

−-N pollution: The soil of residential land is commonly in an oxidizing
environment, and thus the nitrogen emission from manure and sewage water is mainly in the form
of organic N and NO3

−-N. These kinds of nitrogen are not lessened as much as NH4
+-N in the

vadose zone, and most of them will leach into groundwater. Afterward, if the groundwater is in an
oxidizing environment, NO3

−-N will remain stable, and organic nitrogen will be transformed into
NO3

−-N or NO2
−-N by mineralization and nitrification with microorganisms, causing the NO3

−-N
and NO2

−-N pollution of groundwater. If the groundwater is in a reducing environment, NO3
−-N will

be transformed into N2O and N2 and attenuated to a large extent.
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6. Conclusions

Groundwater inorganic nitrogen and topsoil total nitrogen were analyzed in the Puyang
irrigation area of Sanjiang Plain, and a pollution source investigation was conducted to identify
the sources, influencing factors, and formation process of inorganic nitrogen pollution in regional
shallow groundwater. In the study area, the potential nitrogen sources are fertilizer, manure, rural
domestic waste, and septic system leakage, while atmospheric nitrogen deposition was not considered
in this study. For all of the land use types evaluated, the land use types could be reclassified into two
groups, with one including concentrated residential land, warehouse, and vegetation field and the
other including paddy field, decentralized residential land, and livestock farm. These groups were
determined by the distribution characteristic of inorganic nitrogen, where the former might have higher
NO3

− and lower NH4
+ concentration than the latter. As for the well depth, the concentration of NH4

+

in WO20 was found to significantly higher than that in WU20 by Mann-Whitney U test. The opposite
relationship was found for NO3

−.
The results of multivariate statistical analysis showed that the land use type, well depth, NO2

−
concentration, Eh, and EC were highly related to the NO3

− pollution, and the high concentration of
NO3

− was likely to be found in vegetation field and concentrated residential land and was associated
with an oxidizing environment; the NH4

+ pollution had the strongest correlation with DO and Eh,
and the reducing environment, decentralized residential land, and paddy field had more potential to
impose NH4

+ pollution. These results highlight that the nitrogen sources and the redox environment
determine the distribution of NO3

− and the redox environment governs the distribution of NH4
+ in

the shallow groundwater of the irrigation area.
The NH4

+ pollution area was mainly distributed in the northwest of the area, where the fertilizer
application rate was much higher and the highest value of topsoil TN was found, supporting the
conclusion drawn from multivariate statistical analysis that the NH4

+ in groundwater originated from
fertilizer. As for the high concentration of NO3

− in groundwater, which was mainly situated around
the densely populated villages and towns and was relevant to the TN value of nearby topsoil, this was
thought to come from manure and domestic waste.

The formation process of inorganic nitrogen pollution in shallow groundwater of the area can be
summarized as follows: (1) the NH4

+ from fertilizer was greatly attenuated by volatilization, plant
uptake, and soil matter absorption and then accumulated in a reducing aquifer or was transformed
into NO3

− and NO2
− by nitrification in an oxidizing aquifer with microorganisms; (2) the organic

nitrogen and NO3
− in manure and domestic waste were leached, losing little on the surface, to the

vadose zone, where they remained steady as NO3
−-N in the oxidizing groundwater or were attenuated

by microorganism-caused denitrification in the reducing groundwater.
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Abstract: The aim of this study is to establish the potential effect of changes in climate and anthropic
interventions made over time on the hydro-chemical properties of the Techirghiol Lake. Located in the
littoral region of the Black Sea, Techirghiol Lake is the most hypersaline lake of Romania—well-known
for the therapeutic properties of the saline water and sapropelic mud. Long-term time series of
salinity and water level were investigated in relation to the lake water inputs (precipitation, overland
flow and groundwater), to chemical parameters (pH, DO and BOD5) and also to the hydraulic works
designed and built in the region. The obtained results reveal a degradation of this ecosystem in the
period of 1970–1998, when the extensive irrigation practice in the proximity of the lake had a negative
effect on the water budget of Techirghiol Lake (an increased freshwater input through runoff and
seepage), followed by a major decrease of the lake’s salinity.

Keywords: human intervention; changes in climate; salty lake

1. Introduction

Climate change has a considerable impact on ecosystems, affecting air temperature, the amount of
precipitation, the frequency and intensity of extreme events, the sea level, etc. In the past decades,
many studies have been conducted on saline lakes which show not only the importance of saline
lakes in the economies, but also the impact of climate change on the water level and chemical
content [1–3]. The study conducted by Valero-Garces et al. [4] on the saline lakes from Spain highlights
the influences of agricultural practices, particularly of irrigation, on the lake’s hydrological behavior.
Webster et al. [5] have examined the influence of the increasing trend of drought on semiconservative
cations, Ca+ and Mg+, in seven lakes from Northern Wisconsin, and have concluded that the high
evaporation rates, combined with the decreased amount of precipitation, caused an increase of cation
concentrations in all lakes. Recent studies conducted in Poland concerning the influence of many
factors (climatic, hydrologic, morphometric) on lake temperatures have shown that the lake response
to factor modifications depends on the local conditions and lake characteristics [6,7]. All over the
world, the studies conducted had the same conclusion: the saline lakes are threatened by climate
change and by the various anthropogenic activities, which lead to dramatic changes in lakes chemistry
and dynamics [1,8–10]. The analysis of water chemistry in relation to environmental factors allows a
better understanding of the process variability and is very useful for researchers and deciders in the
field of water management and monitoring [7,11].
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This study presents an analysis of the potential effect of changes in climate and anthropic
interventions on the hydro-chemical properties of Techirghiol Lake, located in the littoral region of the
Black Sea. We have combined historical knowledge of human activities and management of the lake
and the surrounding areas with a compilation of data detailing precipitation, river discharge and more.
The first part of this study is focused of the study area and its main characteristic elements (climatic,
geologic, hydrogeologic and hydrologic). In the second part, the chemical composition and water
quality of Techirghiol Lake were investigated in the context of climatic and anthropogenic impact using
Romanian methodologies and regulation.

2. Materials and Methods

This section is divided in two parts: the first part is dedicated to the presentation of the study
area and its main characteristic elements (climatic, geologic, hydrogeologic, hydrologic and lake water
chemistry) and the second one features the methods used.

2.1. Study Area and Its Characteristics

Techirghiol Lake is a result of the latest paleogeographic evolution of the Black Sea, dictated
by the evolution of the sea level over time [12–14], which contributed to the development of the
present shoreline. Accordingly, the coastal development and the sand-belt formation have completely
isolated Techirghiol Lake. Located on the Black Sea coast, 16 km south from Constanta City (Figure 1),
Techirghiol Lake is mainly known for the curative properties of its sapropelic mud and hypersaline
water. Here, a veritable tourism economy has developed since 1899, around balneological treatment
and medical rehabilitation.

The catchment area of Techirghiol Lake is situated in the South Dobrogea Plateau, having a surface
of approximately 160 km2. The lake is 8 km long, with the maximum width of 4.4 km and a water
depth varying between 1.5 m and 9.5 m. The maximum water depth was recorded at 9.75 m and the
average water depth is 3.6 m [15].

The studied area has a relief consisting in a not very tall plateau (+70–80 m), with a slope which
descends to the sea that ends abruptly with a 30-m-high cliff (Figure 1).

The Techirghiol Lake area is situated in a temperate–continental climatic zone, which is influenced
by the Black Sea. The region is characterized by an average annual temperature of approximately 11 ◦C
and an annual rainfall amount of about 400 mm [16]. The data recorded at Constanta meteorological
station were chosen in order to analyze the influence of climatic parameters on the lake′s behavior.

From a geological point of view, Techirghiol Lake area is situated in the South Dobrogea Plateau.
The South Dobrogea Plateau basement layer consists of granitic gneiss and crystalline shale. Above this
basement layer, this sector integrates three main sedimentary geological systems: Sarmatian limestone,
red clay mixed with gypsum and loess deposits. The presence of faults and the sedimentary structure
of Techirghiol Lake area have determined the development of several deep complex aquifers, among
which a free surface aquifer situated in Sarmatian limestone and a pressure aquifer located in limestone
and dolomitic deposits [17].

From the hydrological point of view, Techirghiol Lake is situated at the confluence of several
important valleys (Figure 2), most of them with an intermittent flow. In 1910, Pascu [18] identified
four important valleys that drained the Techirghiol catchment: Carlichioi (Biruinta) Valley, Techirghiol
Valley, Muzurat (today Urlichioi) valley and Tuzla Valley. In 1976, Breier identified three important
valleys: Techirghiol, Tuzla and Carlichioi (Biruinta) valleys (Figure 2). Today, the hydrological regime
of the main hydrographic networks is very different, and the important valleys are barred by different
hydraulic works (dams and penstock) in order to prevent the entrance of freshwater in the lake
(Figure 2). The hydrological features of the lake are related to the evolution of the lake’s level, which is
strongly influenced by the aquifer input and by the discharge of the valleys.
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Techirghiol Town is well known as a balneotherapy center due to the importance of sapropelic
mud and saline water used in therapeutic treatment. Two important centers have been developed
here: the Techirghiol Balneotherapy Center (in 1899) and the Eforie Balneotherapy Center (in 1923).
To sustain the economic development of this area, water supplies for the localities were established
around the lake in the period of 1953–1956. During this period, wastewater was discharged into
the lake. Since 1956, wastewater has been treated by a wastewater treatment plant built in South
Eforie Town. Treated water is discharged first into the Tuzla pond, and then into Techirghiol Lake.
In 1969, important hydraulic works were made in the Lake Techirghiol catchment: (i) 12 km west of
the lake is situated the principal irrigation channel “Basarabi—Negru Voda”, which loses 60% of the
water through infiltration; (ii) 8 km north of the lake is located the “Danube—Black Sea”-navigable
channel. In 1971, an irrigation system built in the area was put into operation. Since 1976, water
from the treatment plant has been introduced into the irrigation system. In order to eliminate the
effects of irrigation on the lake’s parameters—and due to the fact that the stoppage of irrigation was
incompatible with the state policies of that period (Dobrogea Region being an arid area where crops
cannot grow in optimal conditions without irrigation)—the National Water Administration took at
that time a series of measures to limit the effects of irrigation. First, in 1972–1973 and then in 1983,
water from the lake was pumped directly into the sea. The protection works were carried out in
three stages, which were completed in 2005. In the first stage during 1977–1979, all groundwater
observation drillings were equipped with pumps and the wastewater discharge into the lake was
forbidden. During the second stage (1980–1983), another 11 groundwater drillings were equipped
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with pumps (intercepted water was used for water supply) and on the rivers Biruinta, Izvoarele and
Gospodarie were built dams (behind the dams were placed two pumping stations). The third stage
began in 1988 with the construction of the Techirghiol dam—which ended in 1991—and the drainage
of the freshwater from behind the dam through a pipe (diameter of 1400 mm and a length of 9.1 km)
into Belona Lake (near Eforie Town). A number of small dams were also built in all of the small valleys
to intercept the freshwater and evacuate it. As a result of all these hydraulic works, the water surface
of Techirghiol Lake decreased. Now, the studied area is divided into three zones: the freshwater
area—Biruinta, Izvoarele, Gospodariei lakes, the brackish water area—Zarguzon Lake and the saline
water area—Techirghiol Lake (Figure 2).
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The main characteristics investigated in this study which influence the Techirghiol water budget
are annual precipitation, overland flow and groundwater. These data are obtained from government
reports spanning the period of 1953–2015.

The lake water chemistry parameters investigation that covers salinity, pH, dissolved oxygen
(DO) and biochemical oxygen demand (BOD) is based on the data provided by the Romanian
Water Administration—Dobrogea Littoral Branch. The data were obtained from various sources,
such as government reports, old published papers or unpublished reports [19–25]. The systematic
measurement started in 1993, but several government works [21,22] provide some values for these
chemical parameters before this period. The investigated period is 1993–2015.

2.2. Methodologies

The methodology used for the analysis of hydrological data is described by Kundzewicz and
Robsson [26] and is based on the following steps: (1) obtainment and preparation of a suitable dataset;
(2) exploratory analysis of the data and (3) application of statistical tests. Concerning the first step
the datasets were performed by INHGA (Romanian National Institute of Hydrology and Water
Management), so they are expected to be reliable and free of gross errors, given that the gauging process
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was supervised by professional personnel. A set of statistical tests which detect step-change in the
mean or median of a series was used in previous studies [16,27–31], namely Pettitt, Buishand test, Lee
and Heghinian test. In order to detect multiple changes in time series data, the segmentation procedure
of Hubert and changing point analysis (based on CUSUM procedure) were used and presented in
previous studies we have already mentioned. Some results will be provided in the following paragraph
in correlation with other investigated parameters.

The chemical composition and water quality of Techirghiol Lake were investigated in the
context of climatic and anthropogenic impact using Romanian methodologies and regulation [19,20].
According to the methodology, Techirghiol Lake is a heavily modified water body. In this respect, for
each chemical element mentioned above, the methodology establishes the limits and the ecological
status/potential. Three ecological potential classes are identified for heavily modified water bodies:
(i) maximum ecological potential (PEM), (ii) good ecological potential (PEB), (iii) moderate ecological
potential (PEMo). The range of variation of each class was developed by a series of research institutes
and experts.

3. Results and Discussion

To determine the effects of changes in climate in the Dobrogea region and thus on the behavior of
Lake Techirghiol, the results obtained in the studies previously mentioned are capitalized [16,27–30].
To conclude: (T—temperature) a break point is identified in 1997–1998 and the mean annual
temperature increased by 0.8 ◦C in the 1997–2015 period—compared to the period of 1953–1997, which
is in concordance with the estimation made for Europe by different reports [32–35]. (P−precipitation)
Figure 3 shows the variability of rainfall amount from 1953 to 2015.
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Figure 3. Precipitation variation (1953–2015 period).

The annual precipitation value varies between a minimum value of 255 and a maximum value of
825 mm. The multiannual rainfall value for the entire study period is 425 mm. According to [27,35],
precipitations have a break point in 1994. For the period of 1953–1994 we observe a decreasing trend
and after it an increasing trend (Figure 3), and the mean annual precipitation increased from 373 to 531
mm. Starting with 1995, the annual precipitation has been above the multiannual precipitation except
the following years: 2000 and 2001, 2011 and 2013.
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The overland flow (OvF) is presented in Figure 4. This flow is provided by two major river valleys:
Biruinta and Urlichioi.
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Figure 4. Overland flow variation [35].

According to [35], the overland flow time data series presents three break points in 1971, 1978 and
2000. The first was observed in 1970 when the irrigation system became operational (in the period of
1953–1970 the average overland flow rate was 48 mm). The third one is observed in 2000. After 2000
the overland flow value returned to the average value of the 1953–1970 period (41 mm). We consider
that this breakpoint is in relation to anthropic intervention: 1997–1998 was the last time freshwater was
introduced into the main irrigation channel that crosses the lake’s catchment: in 1991, the Techirghiol
dam entered into operation. In the period of 1970–2000, the average overland flow increased to 632 mm
(the increase was about 14 times relative to the previous period—580 mm). However, the maximum
value of overland flow was recorded in 1995 (1058 mm).

The groundwater supply (GW) is presented in Figure 5. The values varied between a minimum
value of 98.2 mm (2015) and a maximum value of 1206.9 mm recorded in 1985. It is noted that the
groundwater input time series is divided in three subseries [35]. During the period of 1953–1969,
the groundwater input value did not exceed 534 mm. Since 1970, this value has increased on average
about 1.5 times. The average value for the period of 1970–2000 was 754.7 mm. Since 2000, as a result of
finalizing the works proposed in the third stage, the groundwater input value decreased, reaching the
minimum value (98 mm) in 2015.

In Figure 6 is represented the variation of the main inputs (P + OvF + GW) in Techirghiol Lake as
average per period. The periods marked by the human interventions and the breakpoint in precipitation
data series is highlighted. Analyzing the results obtained we could conclude that the hydraulic works
built until 1970, especially the irrigation system, changed the water budget of Techirghiol Lake after
1971. In the 1971–1978 periods, the overland flow increased from 46 to 411 mm on average. In this
period, the overland flow represented 31% of the total budget. The first protective works performed in
1977–1979 did not influence the overland flow and groundwater regime in the sense that it diminished.
On the contrary, in the period of 1979–1983 (only five years), the average values of these parameters
increased and represented 80% of the total water budget. We could conclude that the hydraulic
works did not have the expected effect, given the average values of groundwater increase from 692 to
1040 mm approximately, in the period of 1984–1986.
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The hydraulic works performed in the period of 1983–1986 failed to bring new improvements
to the Techirghiol water budget. The average values of overland flow are maintained at the level of
the period of 1987–1994, while the average values of groundwater flow have decreased by 200 mm.
As previously mentioned, starting with 1995 the value of precipitation increased. In the following
period, the average values are maintained at 43% of the total water budget. The protective works
started in 1988 and were finalized in 1991 and 2005, the stoppage of the irrigation activity (1998)
causing an improvement of the water budget: the average of overland flow decreased to 39 mm and
the average groundwater value to 264 mm.
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Figure 7 shows the evolution of the water level in the lake between 1953 and 2015; some isolated
measurement data are from 1909.
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It can be seen that in the investigated period, water levels in the lake rose from −150 cm to +153 cm
(the measurements are relative to the Black Sea level). Between 1909 and 1952 the water level in the lake
increased by an average of 0.8 cm/year, between 1954 and 1966 the water level increased by 6 cm/year.
Since 1970 the water level in the lake has become positive (+9 cm), relative to the Black Sea reference
level (±0.00). The increase in water level in the lake was accentuated after 1970, the average value
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being 9 cm/year, as a result of land irrigation of the lake’s catchment. From 1965 to 1989, the water
level steadily increased to 133 cm, and in the period of 1996–1999 the level reached the highest values
(+153 cm). As a result of the hydraulic works, there has been a trend of increasing the water level in
the lake, combined with the decrease of the salinity of the water. Since the land irrigation was stopped
(in 1998) the lake’s water level has been slowly decreasing in the following years, in 2015 the level
being 22 cm above Black Sea level (Figure 7).

Increases of water inputs led to the severe decrease of salinity around 47 g‰ in 1992 and 1997.
In the irrigation period of 1970–1997, even if a number of protective measures were introduced,
a substantial increase in salinity was not possible. After the irrigation was stopped (1998), the salinity
began to increase, reaching the value of 70 g‰ (in 2015).

The changes caused by the increase of the freshwater inflow and the decrease of salinity caused
quantitative changes in the lake′s biotic community, especially in some organisms involved in the
process of peloidogenesis. Some studies [21,36] reveal a decrease of green algae Cladophora vagabunda
from 81.49 tons in 1978 to 42 tons in 1981. It is known [37] that the optimal salinity values in which
this alga can develop are 73–83 g/L. This situation began to improve in 1987 when the second stage of
protective works became operational. The completion of protective work (in 2005) and closure of the
irrigation system (in 1998) has led to ecosystem regeneration.

The water of Techirghiol Lake is alkaline; the average value for pH is 8.3 (Figure 8). Normally,
there is a direct relationship between water pH and salinity; a higher value of pH is given by the high
content of mineralization. Even if the salinity of Techirghiol Lake waters decreased to a value of 47 g‰,
the pH value of the waters was never under the value of 7.9. Figure 8 shows that the lake water pH is
situated in the range 6.5–9 pH, more accurate under 8.5 units, except the values from 1999 and 2000.
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Figure 8. Variation of pH over time.

Figure 9 shows the variation of the dissolved oxygen (DO) time data series. It can be seen that
the dissolved oxygen (DO) varies between 11 and 4.04 mg/L. In the period of 1975–1990 the DO
values were over 8 mg/L and lake water could be included in the PEB category. The DO values have
decreased after 1990 from an average of 8.91 mg/L to 6.24 mg/L. Correspondingly, the ecological
potential has decreased, lake water could be included in the PEB/PEMo category. Three exceptions
could be considered: 2009, 2013 and 2014, when water could be included in the PEM/PEB category.
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Figure 9. Variation of dissolved oxygen (DO).

The biologic oxygen demand (BOD) represents the mass concentration of dissolved oxygen
consumed by microorganism or measures the chemical oxidation of inorganic matter in a given time
(e.g., BOD5 stands for five days test). BOD5 affects the DO values. A greater BOD5 value means
less oxygen for the microorganism’s activity. The variation of this indicator is presented in Figure 10.
Generally during the 1975–1993 period, the BOD5 values were between 3 mg/L and 6 mg/L and the
lake water could be included in the PEM/PEB ecological potential category. After 1994 the BOD5 values
have generally increased above 6 mg/L. In fact, during the period of 1994–2012, the average was three
times higher than the average of the previous period.
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Figure 10. Variation of Biochemical oxygen demand (BOD).

The ecological potential of Techirghiol Lake from the point of view of the investigated elements
varies throughout the period investigated (Table 1). It can be seen that Techirghiol Lake water could
be included in the PEB/PEM category for the period of 1975–1990 (in this period, a larger quantity
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of freshwater was introduced via the irrigation system). After 1990 (1993 for BOD5) lake water was
included in the PEB/PEMo category.

Table 1. Ecological Potential Variation.

Water Chemistry Elements Ecological Potential Period

pH PEM 1975–2015

DO
PEB 1975–1990

PEB/PEMo 1990–2005
PEB 2005–2015

BOD5
PEM/PEB 1975–1993

PEB/PEMo 1993–2015

It is very complex to explain the multiple factors that play a role in changing water chemistry
variation. Barbulescu and Barbes [32] consider that one of the direct consequences of the decrease
in water salinity was the modification of the lake biodiversity. Some studies appreciated that the
phytoplankton structure was modified during the irrigation period: the number of species diminishing
to 14–18 in relation to the previous period, when 38 species were found [21,22,37]. Another indicator is
Artemia Salina. A drastic decreasing of Artemia Salina during the irrigation period, compared to the
reference period (1952–1960), when densities above 100 g/L were recorded [22]. We can conclude that
the cause of the increase of BOD5 in the last period (after 1995) could be an increase of aquatic life
forms (phytoplankton or/and zooplankton).

4. Conclusions

An important aspect of Techirghiol Lake is its potential in the tourism industry, due to its unique
properties: saline water and sapropelic mud. The malfunction of environmental protection measures
and faulty or insufficient design (period of 1960–1987), in conjunction with the changes in climate has
disturbed the normal functioning of the Techirghiol Lake ecosystem, finally resulting in a decrease in
its capacity to yield economic values. It is therefore concluded that 1953 is considered as the last year
in which the Techirghiol Lake system was under the influence of natural factors and the 1970 year
is marked by the passage of the water level to positive values. Starting with 1971, the irrigation
system became operational and the ecosystem degradation became aggressive. The rate of salinity
decreased as a result of freshwater supply being 1.24‰ during the period of 1970–1987. The period of
1980–1987 is a critical one: overland flow increased (14 times the level of the period of 1953–1970 and
the hydrological regime of Biruinta and Urlichioi tributary rivers became permanent); groundwater
input increased by 7.2 mil.mc/year over the same period.

The most important challenge in the management of Techirghiol Lake basin is to integrate and
balance the interest of the ecosystem and the economy. It is well known that the Dobrogea region is an
arid area where crops cannot grow in optimum conditions without irrigation. New investigation in
needed to provide the sound, scientific basis in order to find a balance between protecting the ecosystem,
increasing the economy and designing hydrotechnical systems in the context of climate change.

Author Contributions: Conceptualization, C.M.; methodology, C.M., C.B. and I.C.P.; validation, C.M., C.B. and
I.C.P.; investigation, C.M.; resources, I.C.P. and C.B.; data curation, C.B.; writing—original draft preparation, C.M.;
writing—review and editing, C.M., C.B., I.C.P.; visualization, I.C.P.; supervision, C.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the Dobrogea Littoral Water Basin Administration for
technical support and National Meteorological Agency—Dobrogea meteorological Center which provided the
climatic data.

Conflicts of Interest: The authors declare no conflict of interest.

103



Water 2020, 12, 2261

References

1. Shadrin, N.; Zheng, M.; Oren, A. Past, present and future of saline lakes: Research for global sustainable
development. Chin. J. Ocean. Limnol. 2015, 33, 1349–1353. [CrossRef]

2. Abbaspour, M.; Javid, A.H.; Mirbagheri, S.A.; Givi, F.A.; Moghimi, P. Investigation of lake drying attributed
to climate change. Int. J. Environ. Sci. Technol. 2012, 9, 257–266. [CrossRef]

3. Delju, A.H.; Ceylan, A.; Piguet, E.; Rebetez, M. Observed climate variability and change in Urmia Lake Basin,
Iran. Theor. Appl. Climatol. 2013, 111, 285–296. [CrossRef]

4. Valero-Garcés, B.L.; Navas, A.; Machin, J.; Stevenson, T.; Davis, B. Responses of a Saline Lake ecosystem in a
semiarid region to irrigation and climate variability: The history of Salada Chiprana, Central Ebro Basin,
Spain. AMBIO A J. Hum. Environ. 2000, 29, 344–350. [CrossRef]

5. Webster, K.E.; Kratz, T.K.; Bowser, C.J.; Magnuson, J.J.; Rose, W.J. The influence of landscape position on lake
chemical responses to drought in northern Wisconsin. Limnol. Oceanogr. 1996, 41, 977–984. [CrossRef]

6. Ptak, M.; Sojka, M.; Choinski, A.; Nowak, B. Effect of Environmental Conditions and Morphometric
Parameters on Surface Water Temperature in Polish Lakes. Water 2018, 10, 580. [CrossRef]

7. Stan, F.I.; Neculau, G.; Zaharia, L.; Ioana-Toroimac, G. The hydrological budget of lakes. Case studies
Fântânele and Izvorul Muntelui Reservoirs (Romania). In Water Resources and Wetlands, 4th International
Conference Water Resources and Wetlands, Tulcea, Romania, 5–9 September 2018; Gastescu, P., Bretcan, P., Eds.;
Romanian Limnogeographical Association: Targoviste, Romania, 2018; pp. 56–63.

8. Salameh, E.; El-Naser, H. Changes in the Dead Sea Level and their Impacts on the Surrounding Groundwater
Bodies. Acta Hydrochim. Hydrobiol. 2000, 28, 24–33. [CrossRef]

9. Carrasco, N.K.; Perissinotto, R. Development of a Halotolerant Community in the St. Lucia Estuary
(South Africa) during a Hypersaline Phase. PLoS ONE 2012, 7, e29927. [CrossRef]

10. Piovano, E.L.; Ariztegui, D.; Moreira, S.D. Recent environmental changes in Laguna Mar Chiquita
(central Argentina): A sedimentary model for a highly variable saline lake. Sedimentology 2002, 49,
1371–1384. [CrossRef]

11. Sojka, M.; Choinski, A.; Ptak, M.; Siepak, M. The Variability of Lake Water Chemistry in the Bory Tucholskie
National Park (Northern Poland). Water 2020, 12, 394. [CrossRef]

12. Posea, G. Geomorfologia României—Relief, Tipuri, Geneză, Regionare; (Edit, ia a 2-a); Fundatia “România de
Mâine”: Bucuresti, Romania, 2005. (In Romanian)

13. Gastescu, P.; Bretca, P. Aspecte privind starea actuală a lacurilor Siutghiol şi Techirghiol. Analele Universităţii
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Abstract: Paldang Reservoir, located in the Han River basin in South Korea, is used for drinking water,
fishing, irrigation, recreation, and hydroelectric power. Therefore, the water quality of the reservoir
is of great importance. The main objectives of this study were to evaluate spatial and seasonal
variations of surface water quality in the reservoir using multivariate statistical techniques (MSTs)
along with the Trophic State Index (TSI) and Trophic State Index deviation (TSID). The empirical
relationships among nutrients (total phosphorus, TP; total nitrogen, TN), chlorophyll-a (CHL-a), and
annual variations of water quality parameters were also determined. To this end, 12 water quality
parameters were monitored monthly at five sites along the reservoir from 1996 to 2019. Most of
the parameters (all except pH, dissolved oxygen (DO), and total coliform bacteria (TCB)) showed
significant spatial variations, indicating an influence of anthropogenic activities. Principal component
analysis combined with factor analysis (PCA/FA) suggested that the parameters responsible for
water quality variations were primarily correlated with nutrients and organic matter (anthropogenic),
suspended solids (both natural and anthropogenic), and ionic concentrations (both natural and
anthropogenic). Stepwise spatial discriminant analysis (DA) identified water temperature (WT), DO,
electrical conductivity (EC), chemical oxygen demand (COD), the ratio of biological oxygen demand
(BOD) to COD (BOD/COD), TN, TN:TP, and TCB as the parameters responsible for variations
among sites, and seasonal stepwise DA identified WT, BOD, and total suspended solids (TSS) as the
parameters responsible for variations among seasons. COD has increased (R2 = 0.63, p < 0.01) in the
reservoir since 1996, suggesting that nonbiodegradable organic loading to the water body is rising.
The empirical regression models of CHL-a-TP (R2 = 0.45) and CHL-a-TN (R2 = 0.27) indicated that
TP better explained algal growth than TN. The mean TSI values for TP, CHL-a, and Secchi depth
(SD) indicated a eutrophic state of the reservoir for all seasons and sites. Analysis of TSID suggested
that blue-green algae dominated the algal community in the reservoir. The present results show that
a significant increase in algal chlorophyll occurs during spring in the reservoir. Our findings may
facilitate the management of Paldang Reservoir.

Keywords: multivariate statistical methods; Trophic State Index; water quality; empirical model;
Paldang Reservoir

1. Introduction

Although water is indispensable to life, it is one of the most threatened resources
worldwide [1]. Clean and safe freshwater is a basic need for human health and economic
development, but anthropogenic activities like industrialization, urbanization, and inten-
sive agricultural farming have negatively impacted freshwater sources, hindering their
use for drinking, irrigation, fishing, recreational, domestic, and industrial purposes [2–5].
Therefore, serious attention should be paid to protect freshwater resources. Among these,
reservoirs are the most vulnerable due to high loads of pollutants, nutrients, organic matter,
and suspended solids from the watershed [6,7]. For effective water management, gathering
reliable information on reservoir water quality, evaluating spatial and seasonal water qual-
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ity changes, detecting pollution sources, determining water quality status, and controlling
water pollution in reservoirs are essential [1,3,8–11].

To assess the water quality of surface water resources, MSTs, TSI, and TSID have
been widely used, and therefore have played a significant role in water resource manage-
ment [2,9,11,12]. Multivariate statistical methods, such as discriminant analysis (DA), prin-
cipal component analysis (PCA), factor analysis (FA), correlation analysis, and analysis of
variance (ANOVA) facilitate the interpretation of complex water quality datasets [1,13,14].
These methods are also used to identify factors that influence surface water quality, serving
as a valuable tool for effective surface water quality management [2,11]. These approaches
can be used to evaluate temporal and spatial changes in surface water quality caused by
natural and anthropogenic factors [2].

However, MSTs have some limitations when used alone [2]. Therefore, applying
MSTs, TSI, and TSID in combination can be advantageous for assessing the water quality
of reservoirs. To date, a few studies have used MSTs, TSI, and TSID together for surface
water quality assessment of reservoirs [2,15]. The TSI and TSID were used to quantify the
degree of eutrophication of a water body. Carlson [12] proposed a quantitative index to
calculate the degree of eutrophication in lakes and reservoirs based on total phosphorus
(TP), chlorophyll-a (CHL-a), and Secchi depth (SD). According to Carlson and others, TP is
the best forecaster of algal growth, while CHL-a is the most reliable algal biomass indicator,
and SD is the best proxy for water clarity in water bodies [4,16–18]. Moreover, TSI and
TSID are used to evaluate spatial and seasonal changes in the water quality of reservoirs,
and thereby provide useful information for reservoir management [19,20].

Seasonal rainfall patterns, hydrology, and watershed morphology are the major factors
known to regulate water quality within a watershed [21]. These factors are closely related
to the ecosystem’s nutrient regime, water clarity, and algal growth. Rainfall is directly
linked to inflow, outflow, depth, and water residence time (WRT), which control nutrient
and suspended solids loads to the water body [22,23]. Empirical evidence suggests that
phosphorus (P) is the key factor limiting CHL-a growth in freshwater systems [4,17,19].
Excessive concentrations of nutrients, especially P, may accelerate algal growth and cause
eutrophication in reservoirs [24]. Total suspended solids are a potential source of P and
play an essential role in the P cycle in reservoirs [2].

Paldang Reservoir is one of the largest reservoirs in South Korea, with a water volume
of 255 × 106 m3 and a surface area of 28.9 km2 [25,26]. The maximum depth of water at
full supply level is 21 m, and the mean depth is 8.3 m [25]. It is a manmade lake formed
after the construction of a hydroelectric dam in 1973 and is located in the central Korean
Peninsula [25]. Paldang Reservoir has been used for fishing, irrigation, recreation, hydro-
electric power, and drinking water purposes. Additionally, it serves as an essential water
resource for people living in the Seoul metropolitan area and surrounding cities [26]. More
than 24 million people (48% of the Korean population) rely on the Paldang Reservoir for
drinking water [27]. Therefore, the water quality of the reservoir is of great importance to
Korea. However, human activities in the watershed have increased, resulting in significant
pollution problems in the reservoir. Urbanization, domestic and industrial wastewater
discharge, intensive agricultural activities, waste from animal farms, and inflowing rivers
are all major sources of water pollution in the reservoir [27–29].

For these reasons, comprehensive water quality assessments of the reservoir are
needed. The purposes of the present study are to (1) determine the spatial and seasonal
variations of water quality parameters and identify the key factors affecting water quality
in the reservoir using MSTs, (2) assess the trophic status of the reservoir using TSI and
TSID, (3) determine how water quality parameters are correlated with hydrology, and
(4) develop empirical models of the CHL-a-TP, CHL-a-TN, TSS-TP, and TSS-TN in the
reservoir. Thus, this study will assess the current status of water quality and aid the
development of effective management and conservation strategies to protect water quality
in Paldang Reservoir.
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2. Materials and Methods
2.1. Study Sites and Water Quality Parameters

Paldang Reservoir is the most downstream reservoir in the Han River system, and is
situated at the confluence of the North Han River, South Han River, and Kyoungan Stream
(Figure 1; [30]). In this study, five reservoir sampling sites (S1–S5) were selected. Sites
1 and 2 were located in the South Han River part of the reservoir. In contrast, sites 3–5
were located at the North Han River, Kyoungan Stream, and dam, respectively. The water
intake tower for Paldang Reservoir is located at S5 (Figure 1). Based on their hydrological
characteristics, reservoirs can be divided into two types, namely, lake- and river-type
reservoirs. Lake-type reservoirs are generally characterized by high depth and long water
WRT, while river-type reservoirs have shallower depths and shorter WRTs [31]. Paldang
Reservoir is considered a river-type reservoir due to its shallow depth (mean depth: 8.3 m)
and short WRT (3–10 days) [25,32]. Paldang Reservoir does not fully stratify throughout the
year [30]. The overall inflow and outflow rates of the reservoir are almost equal, resulting
in very small annual water level fluctuations. The annual amount of rainfall and water
inflow from the upstream watershed directly influence WRT in Paldang Reservoir [30].
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Figure 1. The map showing the sampling sites of Paldang Reservoir.

Monthly surface water quality data for the Paldang Reservoir from 1996 to 2019
were obtained from the Ministry of Environment’s national water quality measurement
network (http://water.nier.go.kr). Monthly rainfall and inflow and outflow data were
collected from the Korean Meteorological Administration and the Korean Water Resource
Corporation, respectively. WRT was defined as the reservoir water volume divided by the
inflow rate [33]. The loading data for TP, TN, TSS, BOD, and COD were calculated using a
conversion factor derived from the corresponding concentrations.
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2.2. Trophic State Index and Trophic State Index Deviation

The trophic status of the Paldang Reservoir was determined using Carlson’s TSI.
The range of average TSI values designated Oligotrophic is 30–40, Mesotrophic is 40–50,
Eutrophic is 50–70, and Hypereutrophic is >70 [18]. The following equations were used to
calculate TSI values for the Paldang Reservoir [12]:

TSI (CHL-a, µg L−1) = 10 × [6 − (2.04 − 0.68ln(CHL-a))/ln2] (1)

TSI (TP, µg L−1) = 10 × [6 − ln(48/TP)/ln2] (2)

TSI (SD, m) = 10 × [6 − ln(SD)/ln2] (3)

Using two-dimensional approaches, the TSID was defined using the relationships TSI
(CHL-a)-TSI (SD) and TSI (CHL-a)-TSI (TP). This method has also been used frequently to
quantify the degree of eutrophication and identify the limiting nutrient in reservoirs [18].

2.3. Statistical Analysis

The Kolmogorov–Smirnov single-sample test was used to examine the distribution
of water quality data prior to statistical analyses [1]. One-way ANOVA was performed to
determine whether there were significant spatial and seasonal variations in the reservoir’s
water quality parameter values. Pearson correlation analysis was used to analyze the
relationships between various water quality variables. PCA/FA was conducted to deter-
mine the factors and pollution sources affecting the surface water quality [34]. Bartlett’s
sphericity test and the Kaiser–Meyer–Olkin (KMO) test were conducted first to determine
the suitability of the data for PCA/FA [2]. DA was performed to assess both spatial and
temporal variations in water quality and to identify water quality variables that could best
distinguish among sites and seasons [11,34]. Standard and stepwise DA was applied to raw
data. PCA/FA was applied to experimental data, standardized through Z-scale transfor-
mation, to avoid misclassification [2]. SPSS software (version 22.0; SPSS Inc., Chicago, IL,
USA) was used for all statistical analyses. Bar, box, and scatter plots were prepared using
SigmaPlot 14.0 software (Systat Software, Inc., San Jose, CA, USA). Interpolation of TSI
values was conducted using QGIS 3.14 (QGIS Development Team, Gossau, Switzerland).
Conditional plotting analysis was carried out with R 3.5.2 (R Development Core Team,
Vienna, Austria).

3. Results and Discussion
3.1. Spatial and Seasonal Variations

The mean values of 12 water quality parameters recorded at five sampling sites in
Paldang Reservoir are presented in Table 1. In this study, all variables except pH, dissolved
oxygen (DO), and total coliform bacteria (TCB) showed significant spatial differences
among sites (p < 0.05, Table 1). The spatial variations of these parameters indicate impacts
of anthropogenic activities in the reservoir [25,32]. For example, BOD, COD, TSS, TN,
TP, and CHL-a concentrations were significantly higher at site S4 than any other site; this
site receives inputs from industrial and domestic wastewater [30]. Site S4 in Paldang
Reservoir is affected by Kyoungan Stream. The water quality of this tributary stream is
worse than that of the South Han River (Sites S1 and S2) and North Han River (Site S3),
and thus, it may significantly impact the reservoir’s water quality [25]. Water clarity (SD)
was higher at Site S3 than other sites, indicating that the North Han River input is cleaner
than the South Han River and Kyoungan Stream inflows [25]. The highest mean electrical
conductivity (EC) was recorded at Site S1 due to agricultural activities and untreated
household wastewater effluent.
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The water quality parameters of the Paldang Reservoir showed significant hetero-
geneity (p < 0.05) among the four seasons (Table 1). Water temperature (WT), TSS, TP, and
TCB exhibited significantly higher values in the summer, whereas pH, EC, BOD, COD, TN,
and CHL-a were highest in the spring. TSS and TP concentrations were elevated during
the summer due to intense precipitation (Supplementary Figure S1). The summer mon-
soon significantly influences the hydrology, nutrients, and suspended solids concentration
in Korean reservoirs [35]. More intense rainfall contributes to increased TSS in Paldang
Reservoir water. The daily loading data also showed that TP, TN, TSS, BOD, and COD
were higher during the summer monsoon season than any other season (Supplementary
Figure S2). This result supports the view that the summer monsoon is the main driver of
high levels of nutrients, organic matter, and suspended solids in mid-latitude East Asian
reservoirs, such as those in South Korea, Eastern China, and Japan [36]. The regression
equation between TSS and TP indicates that TSS is associated with 45% of TP in Paldang
Reservoir (Supplementary Figure S3). This result suggests that TSS may act as a nutrient
carrier in the reservoir [37].

Organic matter (BOD and COD) in reservoirs can have either allochthonous or au-
tochthonous origins. Allochthonous organic matter enters aquatic systems mainly via
runoff derived from overland water flow during rainfall events, while autochthonous or-
ganic matter is produced through photosynthesis by phytoplankton and hydrophytes [32].
As Paldang Reservoir is a river-type reservoir, it experiences high flow rates during the
summer season, and large amounts of allochthonous organic matter is introduced into the
reservoir. Park et al. [32] showed that 69% of the total organic matter was allochthonous in
Paldang Reservoir during the summer season. In contrast, a high autochthonous organic
matter load was observed in the winter and spring due to low flow rates and increased
WRT [32]. Park et al. [30] revealed that 73% of autochthonous organic matter loading occurs
during the spring. The peak organic matter concentration coincides with the maximum
production of algae (spring bloom). This finding suggests that autochthonous production
by phytoplankton (CHL-a) during the spring period is critical to organic matter buildup in
Paldang Reservoir; thus, the threat to the water quality of Paldang Reservoir is greatest in
spring [30,32].

In the present study, the water quality status of each sampling site and season was
assessed by comparing the mean values of water quality parameters with those listed in
the Korean Lakes and Reservoirs Surface Water Quality Regulation, 2015 (Supplementary
Table S1). As shown in Table S1, Site S4 had class III water quality (contaminated water),
while all other sites had class II water quality (lightly contaminated water) in terms of COD.
Based on TSS, all sites fell into the class III water quality category except site S3. Sites S1
and S4 were in the class IV water quality (somewhat poor; contaminated water) in terms
of TP. Site S4 had class IV water quality in terms of CHL-a. During spring, algal growth
increased in the reservoir, and water quality was somewhat poor (class IV; contaminated
water). TP concentrations were higher during summer due to surface runoff, and the water
body was in class IV. All sites and seasons had class Ia water quality in terms of pH and
DO. Notably, Site S5 (near the water intake tower) was in class III (average; contaminated
water) in terms of CHL-a, TSS, and TP.

3.2. Correlation Analysis

Pearson correlation analysis was used to evaluate the relationships among 12 water
quality parameters (Supplementary Table S2). As anticipated, DO was negatively associated
with WT, as oxygen is more soluble in cold water [1]. High BOD and COD levels indicate
organic pollution in the reservoir [34,35]. Increasing nutrient concentrations (TP and TN)
lead to elevated organic matter concentrations (BOD and COD) in the reservoir [1,15]. EC
showed significant positive relationships with BOD (r = 0.40, p < 0.01), COD (r = 0.59,
p < 0.01), and TN (r = 0.55, p < 0.01). TN, TP, and BOD showed strong positive relationships
with each other, demonstrating that their sources were analogous. TSS showed a significant
positive relationship with TP (r = 0.47, p < 0.01), indicating that suspended particles have a
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tendency to adsorb P [38]. During rainfall events and stream bank erosion in high-flow
periods, agricultural and industrial runoff can contribute to high levels of TSS and TP in
the reservoir [38]. CHL-a was positively correlated with TP (r = 0.70, p < 0.01) and TN
(r = 0.53, p < 0.01), which are key factors affecting phytoplankton growth in this water
body [39]. The reservoir’s water clarity decreased with increase in the TP, TN, CHL-a, TSS,
and BOD concentrations.

3.3. Annual Variations of Water Quality

Annual data can provide information about long-term water quality dynamics in
Paldang Reservoir. The results showed that TP (R2 = 0.27, p < 0.01), BOD (R2 = 0.26,
p < 0.01), and CHL-a (R2 = 0.33, p < 0.01) have decreased significantly since 1996 (Figure 2).
The loading data for TP (R2 = 0.21, p < 0.02), TN (R2 = 0.19, p < 0.03), and BOD (R2 = 0.35,
p < 0.00) also showed a decreasing pattern in Paldang Reservoir (Supplementary Figure S4).
COD (R2 = 0.63, p < 0.01) and SD (R2 = 0.37, p < 0.01) have increased in Paldang Reservoir
since 1996. Moreover, the loading pattern for COD has changed. BOD concentrations in
most Korean lakes and reservoirs are continuously decreasing, while COD concentrations
have been increasing in most cases, indicating that high concentrations of nonbiodegradable
organic matter in the influent may be inefficiently degraded by the biological effluent
treatment process [30,40]. COD represents both biodegradable and nonbiodegradable
organic pollution in water systems. However, increases in the COD level suggest increased
nonbiodegradable organic loading from wastewater treatment plants (WWTPs) and urban
sewage systems to the water body [41]. A previous study conducted in the United States
found an increase in the occurrence and persistence of inorganic solid loading from a
WWTP to a water body [42]. Industries may not strictly comply with environmental
regulations, and thus may contribute large amounts of nonbiodegradable compounds to
aquatic systems [43]. Water quality management strategies in Korean reservoirs likely
need to be re-evaluated with a focus on water pollutant management, especially for
organic matter.

3.4. Hydrology, Nutrients, and Chlorophyll-a

Inflow, outflow, and WRT are major drivers of the distributions of nutrients, suspended
solids, and CHL-a in aquatic environments. Compared to TN and CHL-a, inflow, outflow,
and WRT were more significant determinants of the concentrations of TP (R2 = 0.30, 0.29,
0.30, p < 0.01) and TSS (R2 = 0.39, 0.36, 0.39, p < 0.01) (Figure 3). The present findings
were similar to previous studies in Korean reservoirs. Previous research in various parts
of the world has shown that external loadings of TP and TSS are highly correlated with
inflow, outflow, and WRT in the watershed, and this conclusion was supported by the
present study [23,44,45]. Many studies have reported effects of WRT on algal growth in
aquatic systems [46,47]. However, the results of the present study did not concur with
some previous studies. Thus, WRT may not always be linked to algal growth in the
reservoir. This may indicate that release of autochthonous nutrients regulates algal growth
in Paldang Reservoir. Lee et al. [36] suggested that algal chlorophyll growth was influenced
by nutrients in Paldang Reservoir.
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The empirical models based on log-transformed CHL-a-TP and CHL-a-TN relation-
ships are shown in Figure 4. Nutrients more strongly influenced chlorophyll growth in the
reservoir’s ambient water, and the concentration of TP (R2 = 0.45, p < 0.01) better explained
algal growth than that of TN (R2 = 0.27, p < 0.01), indicating a P-limited system. When two
predictors are strongly correlated (R2 > 0.70), collinearity problems may arise that impede
determination of the nutrient limiting algal growth. The present results showed that TP and
TN (R2 = 0.55) are moderately correlated in Paldang Reservoir. To avoid these problems,
conditional plots have been used to identify limiting nutrients in aquatic systems [35,48].
Conditional plots showed that the association between CHL-a and TP was relatively steady
in Paldang Reservoir, as indicated by the smooth lines on the four panels with similar
slopes, which suggested that the effect of TP on CHL-a is consistent irrespective of the
level of TN, in turn indicating a P-limited reservoir (Supplementary Figures S5 and S6). In
addition, the conditional plot shows no interaction between TP and TN, further verifying
that Paldang Reservoir is a P-limited system.
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3.5. Trophic State Index and Trophic State Index Deviation

The trophic state of Paldang Reservoir, based on TP, TN, CHL-a, and SD, showed
heterogeneity among sites and seasons, all of which were categorized as mesotrophic to
eutrophic (Supplementary Table S3) [49,50]. These results are similar to the findings of
previous trophic state classification studies in Korean reservoirs [4,51]. The primary sources
of nutrients for Paldang Reservoir are agricultural fertilizer, animal manure, municipal
sewage, and industrial effluents [25]. Based on TP concentrations, all sites and seasons
were under eutrophic conditions, except for Site S3 and the winter season. Notably, we
found that Paldang Reservoir was in a eutrophic state in all sites and seasons, on the basis
of TN, CHL-a, and SD. Considering the present results, measures should be taken to control
eutrophication in Paldang Reservoir.

Assessing the potential of a water source to support cyanobacterial blooms or blue-
green algae is essential for water resource management [52]. WT, TP, CHL-a, and SD are
essential factors for determining potential cyanobacterial growth in a reservoir [53]. The
concentrations of TP and CHL-a, along with SD, in Paldang Reservoir indicate a moderate
level of risk for cyanobacterial exposure (Supplementary Table S4). CHL-a is a good
indicator of overall phytoplankton biomass, and monitoring CHL-a is a direct method for
semiquantitative estimation of cyanobacterial biomass in aquatic systems [20]. For South
Korean reservoirs supplying drinking water, a cyanobacteria watch is issued when the
concentration of CHL-a exceeds 15 µg L−1. Furthermore, an alert is issued when the CHL-a
concentration is greater than 25 µg L−1. Once a watch or alert has been issued, additional
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treatment processes are required at water treatment plants until the watch or alert is cleared.
Additionally, when an alert is issued, water intake below that at which algae can inhabit
and analysis of cyanotoxin in the treated water, are required [54]. The results of the present
study indicate that all sites and seasons (except site S3 and winter) were under watch
conditions. Previous studies of Paldang Reservoir have suggested that cyanobacterial
blooms occur during the spring season, which is in line with our findings [30,32].

Analysis of TSI and TSID provides valuable information on algal chlorophyll devel-
opment, nutrient variability, and other parameters in lakes and reservoirs [4,12]. TSI and
TSID were estimated based on TP, CHL-a, and SD in Paldang Reservoir, and their values
showed spatial and seasonal variations (Figures 4 and 5). The mean TSI (TP), TSI (CHL-a),
and TSI (SD) values indicate a eutrophic state during all seasons and at all sites (Figure 5,
Supplementary Figure S7). These consistent eutrophic conditions may reduce DO and
hamper ecosystem functions. The mean TSI (CHL-a) indicated more eutrophic conditions
during spring and summer than the fall and winter. Water quality was worse in terms of
TSI at Site S4 than other sites, and this site influenced water quality at the drinking water
tower (Supplementary Figure S7; Site S5). Park et al. [32] revealed that Kyoungan Stream
(Site S4) has a significant impact on the quality of drinking water in Paldang Reservoir.
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Analysis of TSID showed that blue-green algae were predominant in the reservoir
during all four seasons based on the relationships of TSI (CHL-a) with TSI (SD) and TSI
(TP) (Figure 5). Blooms of blue-green algae are associated with eutrophic conditions [18].
Previous research identified the following genera of cyanobacteria in Paldang Reservoir:
Anabaena, Aphanocapsa, Chroococcus, Coelosphaerium, Dactylococcopsis, Microcystis, Merismo-
pedia, Phormidium, Oscillatoria, and Pseudoanabaena [26]. The occurrence of cyanobacteria
is affected by light, temperature, pH, and nutrients. The concentration of TP is a major
factor influencing the cyanobacterial contribution to total algal biomass [55]. Moreover,
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the biomass of cyanobacterial genera, such as Aphanizomenon, Anabaena, and Microcystis, is
strongly influenced by the levels of TP and TN [55].

Nonalgal turbidity was observed during the summer and fall due to surface runoff
from the watershed. Such turbidity is a common occurrence in Asian lakes and reservoirs
during the monsoon period [35,56]. Small amounts of zooplankton grazing and P-limited
small particles were observed in the reservoir. In addition, the TSID data indicated that TSI
(CHL-a) was significantly higher than TSI (TP) during spring and winter, demonstrating
that algal productivity was higher than expected and highlighting the controlling effect of
P [4,18]. The water’s trophic state must remain oligotrophic to mesotrophic for drinking wa-
ter purposes according to the United States Environmental Protection Agency and Korean
Ministry of Environment guidelines. The reservoir water intake towers face substantial
bloom problems, impeding access to the water supply for local residents.

3.6. Discriminant Analysis

To study spatial and seasonal variations of water quality, DA was performed on the
raw dataset. The spatial discriminant functions (DFs) and classification matrixes (CMs)
used in this study are provided in Tables 2 and S5, respectively. Spatial standard and
stepwise DFs with 14 and 8 discriminant variables, respectively, were used to generate
CMs, which assigned 100% of cases correctly (Tables 2 and S5). The stepwise spatial DA
results suggest that WT, DO, EC, COD, BOD/COD, TN, TN:TP, and TCB are the most
important variables for explaining spatial variations in water quality in Paldang Reservoir
among the five sites. The DFs indicated that WT, COD, BOD/COD, and TN were higher
at Site S4 than other sites due to industrial and domestic wastewater effluents. These
results are in accordance with previous findings in Paldang Reservoir [30]. Therefore, the
spatial variations of these water quality parameters were mainly related to anthropogenic
activities in the watershed.

Table 2. Classification functions for discriminant analysis of spatial variations in water quality of the reservoir. pH—
hydrogen ion concentration, WT—water temperature, DO—dissolved oxygen, EC—electrical conductivity, BOD—biological
oxygen demand, COD—chemical oxygen demand, TSS—total suspended solids, TN—total nitrogen, TP—total phosphorus,
CHL—chlorophyll-a, SD—Secchi depth, TCB—total coliform bacteria.

Variables

Standard Mode Stepwise Mode

Sites Sites

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

pH 68.57 68.32 61.35 61.71 66.49

WT 64.79 65.87 67.94 71.54 67.04 49.92 50.85 53.26 54.03 52.24

DO 76.22 76.18 73.18 75.920 72.93 41.12 40.93 36.90 39.34 37.81

EC −0.30 −0.34 −0.72 −0.45 −0.56 0.008 −0.02 −0.37 −0.10 −0.23

BOD −848.28 −851.76 −842.51 −878.11 −842.64

COD 490.21 493.72 483.60 519.40 485.98 29.33 31.11 28.17 42.95 29.29

BOD/COD 3179.55 3193.22 3094.43 3308.40 3115.40 −0.84 0.36 −64.35 16.47 −42.13

TSS −2.08 −2.07 −2.06 −2.23 −1.928

TN 207.13 207.32 189.37 220.82 196.23 148.86 148.83 131.73 161.47 138.90

TP 1.37 1.37 1.37 1.42 1.35

TN:TP −1.35 −1.34 −1.10 −1.35 −1.20 −0.42 −0.41 −0.18 −0.41 −0.28

CHL-a −4.95 −4.92 −4.45 −4.92 −4.67

SD (m) 88.44 88.91 98.74 83.91 92.50

TCB −0.001 −0.001 −0.002 −0.001 −0.001 −0.0005 −0.0004 −0.001 −0.0008 −0.001

(Constant) −2295.99 −2316.61 −2130.01 −2456.2 −2187.23 −807 −818.77 −691.97 −919.18 −724.82

Fisher’s linear discriminant functions.
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Seasonal DFs and CMs are shown in Tables 3 and S6, respectively, and were used to
evaluate seasonal changes in water quality in Paldang Reservoir. Seasonal standard and
stepwise mode DFs using 14 and 3 discriminant variables, respectively, generated CMs
that assigned 100% of cases correctly (Tables 3 and S6). Temporal stepwise DA findings
showed that WT, BOD, and TSS were the most important factors in temporal variations in
the water quality of Paldang Reservoir among the four seasons. The DFs indicated that
WT and TSS were higher during summer than other seasons. WT was highest in summer
and lowest in winter due to the impact of climate seasonality [1]. TSS concentrations were
higher during summer due to summer monsoon effects [35]. In contrast, BOD was highest
in spring. Previous research revealed elevated organic matter concentrations during spring
in Paldang Reservoir [32].

Table 3. Classification functions for discriminant analysis of seasonal variations in water quality of the reservoir. pH—
hydrogen ion concentration, WT—water temperature, DO—dissolved oxygen, EC—electrical conductivity, BOD-biological
oxygen demand, COD—chemical oxygen demand, TSS—total suspended solids, TN—total nitrogen, TP—total phosphorus,
CHL—chlorophyll-a, SD—Secchi depth, TCB—total coliform bacteria.

Variables

Standard Mode Stepwise Mode

Season Season

Spring Summer Fall Winter Spring Summer Fall Winter

pH 38.16 37.93 37.88 38.11

WT 4.16 4.99 4.64 3.66 0.60 1.54 1.18 0.08

DO 17.83 17.41 17.42 17.79

EC 0.18 0.17 0.17 0.16

BOD −207.80 −209.89 −210.07 −209.58 9.80 6.63 5.21 6.03

COD 102.58 102.18 101.04 101.13

BOD/COD 713.31 711.79 708.23 708.02

TSS −1.00 −0.96 −1.00 −1.06 0.26 0.32 0.22 0.14

TN 47.09 45.11 45.15 45.83

TP 0.52 0.54 0.51 0.50

TN:TP −0.09 −0.09 −0.09 −0.08

CHL-a −1.07 −1.07 −1.06 −1.07

SD (m) 21.79 22.30 22.13 23.01

TCB −0.0002 −0.0001 −0.0001 −0.0001

(Constant) −553.79 −551.02 −535.15 −532.22 −16.02 −26.89 −16.30 −5.36

Fisher’s linear discriminant functions.

Varol et al. [2] studied surface water quality variations in Keban Reservoir, Turkey,
using the DA method, and found that eight and three variables successfully explained
the temporal and spatial variations, respectively, among 19 water quality parameters.
Chen et al. [14] studied surface water quality variations in Danjiangkou Reservoir, China,
using the DA method, and their results indicated that six and four variables effectively
explained spatial and temporal variations, respectively, among 11 water quality parameters.
Mustapha et al. [57] studied surface water quality variations in the upper reach of the
Kano River, Nigeria, using the DA method and successfully identified 7 variables, among
23 tested, having a statistically significant effect on the spatial variations. Singh et al. [9]
showed that DA allows for data reduction, where only six and two variables were sufficient
to discriminate spatial and temporal variations, respectively, in the Gomti River, India.
Similarly, Zhang et al. [58] applied this method to evaluate spatial-temporal variations of
water quality in the southwest New Territories and Kowloon, Hong Kong, and revealed
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that four and eight parameters could support 84.2% and 96.1% correct assignment in
temporal and spatial analysis, respectively [58]. Furthermore, they suggested that the
number of monitoring variables (and the associated cost) could be reduced, as their method
allowed for considerable reduction of the dimensionality of the large dataset. Overall, DA
led to a considerable reduction in the present research dataset and helped determine the
parameters responsible for spatial and temporal variations.

3.7. Principal Component Analysis Combined with Factor Analysis (PCA/FA)

Urbanization, domestic sewage, industrial wastewater effluents, intensive agricultural
activities, and waste from animal farms and inflowing rivers are the primary sources of
water pollution in Paldang Reservoir. Bartlett’s test and KMO were performed to examine
the suitability of the data for PCA/FA. In the present study, the KMO value was 0.59, and
Bartlett’s test was significant (p < 0.000), indicating that the Paldang Reservoir data were
suitable for PCA/FA and that meaningful relationships were present among the water
quality variables. PCA/FA with varimax rotation identified five varifactors (VFs), which
explained 82.32% of the total variance (Table 4). Varifactor 1 (VF1) represented 25.82% of
the total variance and showed a strong positive loading (>0.70) for TP, strong negative
loadings for TN:TP and SD, and moderate positive loadings (between 0.5 and 0.7) for TSS,
TN, and CHL-a (Table 4). This VF represents inputs of nutrients and suspended matter
from untreated domestic sewage, industrial effluents, and agricultural runoff. Nutrient
inputs influence algal growth in Paldang Reservoir. The negative contribution of SD to
this VF is related to high levels of nutrients, suspended solids, and algal growth [4,11].
VF2 showed strong positive loadings for pH and BOD/COD, and a moderate positive
loading for BOD. This VF represents organic matter concentrations in the reservoir. VF3
(17.85% of the total variance) showed strong positive loadings for WT, EC, and COD and a
moderate positive loading for BOD. This VF indicates the contributions of ions and organic
matter input to the reservoir from untreated domestic sewage, industrial effluents, and
agricultural runoff. VF4 (9.65 of the total variance) had a strong positive loading for DO,
while VF5 (9.61% of the total variance) displayed a strong positive loading for TCB. The
PCA/FA findings suggest that most of the variation in reservoir water quality can be
attributed to nutrients and organic matter (anthropogenic), suspended solids (both natural
and anthropogenic), and ionic concentrations (both natural and anthropogenic), which are
regulated by both natural and anthropogenic activities.

Table 4. Varimax rotated component matrix for water quality parameters (Kaiser–Meyer–Olkin (KMO) = 0.59, Bartlett’s
test was significant (p = 0.000), extraction method: principal component analysis, and rotation method: varimax with
Kaiser normalization, and bold and italic values represent strong and moderate loadings, respectively). pH—hydrogen
ion concentration, WT—water temperature, DO—dissolved oxygen, EC—electrical conductivity, BOD-biological oxygen
demand, COD—chemical oxygen demand, TSS—total suspended solids, TN—total nitrogen, TP-total phosphorus, CHL—
chlorophyll-a, SD—Secchi depth, TCB—total coliform bacteria.

Variables
Components

VF1 VF2 VF3 VF4 VF5

pH 0.2 0.81 −0.08 0.07 −0.14

WT −0.27 0.47 0.71 −0.17 −0.14

DO 0.001 0.11 0.02 0.95 0.03

EC 0.12 −0.02 0.87 −0.05 0.08

BOD 0.32 0.64 0.53 0.22 0.09

COD 0.34 −0.22 0.78 0.30 −0.04

BOD/COD 0.09 0.92 0.01 −0.02 0.16

TSS 0.60 −0.35 0.04 0.41 0.33

TN 0.60 0.24 0.46 −0.13 0.44

TP 0.88 0.20 0.15 −0.04 0.09
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Table 4. Cont.

Variables
Components

VF1 VF2 VF3 VF4 VF5

TN:TP −0.84 0.02 0.01 0.01 0.05

CHL-a 0.68 0.44 0.29 −0.001 −0.20

SD (m) −0.75 −0.27 −0.06 −0.22 −0.24

TCB 0.06 −0.01 −0.01 0.06 0.91

Eigenvalues 3.61 2.71 2.50 1.35 1.34

Percentage of variance 25.82 19.37 17.85 9.65 9.61

Cumulative percentage 25.82 45.19 63.05 72.70 82.32

PCA/FA is a dimension-reduction technique that provides information about the
most significant factors through simplification of the data. Therefore, this method has
been utilized in various studies exploring the pollution sources affecting a water system.
For example, PCA/FA was employed by Lim et al. [59] to identify sources of pollution
in the Langat River, Malaysia. Four components were extracted in group 1, explaining
85% of the total variance, while six components were extracted in group 2, explaining
88% of the total variance. Based on these data, they determined that seawater intrusion,
agricultural and industrial pollution, and geological weathering were mainly responsible
for the river pollution. In addition, Tanriverdi et al. [60] used PCA/FA to analyze and
assess the surface water quality of Ceyhan River and suggested that stations near cities
were strongly affected by household wastewater, while other stations were influenced by
agricultural facilities. Moreover, Jha et al. [61] identified major pollution sources influencing
physicochemical variables in Aerial Bay, Andaman Islands, using the FA technique, which
included rivulet flux into the bay, land run-off, prevailing biological processes, and tidal
flow. Haji Gholizadeh et al. [11] identified five and four potential pollution sources to the
Miami Canal in South Florida during the wet and dry seasons, respectively, which affected
water quality variables. PCA/FA was used to distinguish four potential pollution types,
namely, organic pollution, nutrient pollution, chemical pollution, and natural pollution, in
Danjiangkou Reservoir, China, revealing that the study area was primarily influenced by
industrial effluent and domestic sewage [14]

4. Conclusions

MSTs, TSI, and TSID were combined to assess the water quality of Paldang Reservoir.
All variables except pH, DO, and TCB showed significant spatial variations due to the
effects of anthropogenic activities. The mean values of TSI (TP), TSI (CHL-a), and TSI
(SD) indicated a eutrophic state, and TSID showed that blue-green algae dominated the
reservoir. PCA/FA results revealed that the concentrations of TP, TN, BOD, COD, TSS,
and EC were generally linked to both anthropogenic activities and natural processes.
Stepwise DA provided better results for both spatial and temporal analyses. Thus, this
study demonstrated that MSTs, TSI, and TSID are effective approaches for evaluating
reservoir water quality, and that these methods can be used in combination as useful water
quality management tools. Relative to US EPA and MOE guidelines, the reservoir is in a
eutrophic state in terms of CHL-a, which is unfavorable for drinking purposes. To improve
the water quality of this reservoir, nutrient and organic matter loads from the watershed
should be limited.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
441/13/2/186/s1, Figure S1: Seasonal and Total rainfall pattern of Paldang watershed (Spring:
March–May, Summer: June–August, Fall: September–November, Winter: December–February, and
TRF: total rainfall), Figure S2: Loading Data of TP, TN, TSS, BOD, and COD in the Paldang Reser-
voir (TP—total phosphorus, TN—total nitrogen, TSS—total suspended solids, BOD—biological
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oxygen demand, COD—chemical oxygen demand, Spring: March–May, Summer: June–August,
Fall: September–November, and Winter: December–February), Figure S3: Empirical relations among
TSS, TP, and TN (TP—total phosphorus, TN—total nitrogen, TSS—total suspended solids), Figure
S4: Yearly loading data of TP, TN, TSS, BOD, COD (TP—total phosphorus, TN—total nitrogen,
TSS—total suspended solids, BOD—biological oxygen demand, COD—chemical oxygen demand),
Figure S5: The relationship between CHL-a and TP is plotted conditional on the range of TN (TP—
total phosphorus, TN—total nitrogen, CHL—chlorophyll-a), Figure S6: The relationship between
CHL-a and TN is plotted conditional on the range of TP (TP—total phosphorus, TN—total nitrogen,
CHL—chlorophyll-a), Figure S7: Trophic State Index of Paldang Reservoir at five different sites,
Table S1: Water quality classes of Paldang Reservoir based on sites and seasons according to the
Korean Ministry of Environment water quality standards for reservoirs and lakes (pH—hydrogen
ion concentration, DO—dissolved oxygen, COD—chemical oxygen demand, TSS-total suspended
solids, TN—total nitrogen, TP—total phosphorus, CHL—chlorophyll-a, TCB—total coliform bacteria,
Ia: very good (high-quality water), Ib: good (high-quality water), II: somewhat good (lightly con-
taminated water), III: average (contaminated water), IV: somewhat poor (contaminated water), V:
poor (highly contaminated water), VI: very poor (highly contaminated water)), Table S2: Pearson
correlation analysis of water quality parameters (units mg L−1, except pH, WT (◦C), EC (µS cm−1),
TP (µg L−1), CHL-a (µg L−1), SD (m), and TCB (MPNML−100)). pH—hydrogen ion concentration,
WT—water temperature, DO—dissolved oxygen, EC—electrical conductivity, BOD—biological oxy-
gen demand, COD—chemical oxygen demand, TSS—total suspended solids, TN—total nitrogen,
TP—total phosphorus, CHL—chlorophyll-a, SD—Secchi depth, TCB—total coliform bacteria, Ta-
ble S3: Trophic state criteria based on TP, TN, CHL-a, and SD from Nurnberg (1996) for Paldang
Reservoir (TN—total nitrogen, TP—total phosphorus, CHL—chlorophyll-a, SD—Secchi depth, M:
mesotrophic, E: eutrophic, and H: Hypereutrophic), Table S4: Thresholds of risk associated with
potential exposure to cyanobacteria in Paldang Reservoir (adopted from WHO, 2015, LRE: lower
risk of exposure, MRE: moderate risk of exposure and HRE: higher risk of exposure, TP—total
phosphorus, CHL—chlorophyll-a, SD—Secchi depth), Table S5: Classification matrix for discriminant
analysis of spatial variations in water quality of the reservoirs, Table S6: Classification matrix for
discriminant analysis of seasonal variations in water quality of the reservoirs.
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Abstract: (1) Background: The Gulf of Aqaba (GoA) supports unique and diverse marine ecosystems.
It is one of the highest anthropogenically impacted coasts in the Middle East region, where rapid
human activities are likely to degrade these naturally diverse but stressed ecosystems. (2) Methods:
Various water quality parameters were measured to assess the current status and conditions of
GoA seawater including pH, total dissolved solids (TDS), total alkalinity (TA), Cl−, NO3

−, SO4
2−,

PO4
3−, NH4

+, Ca2+, Mg2+, Na+, K+, Sr, Cd, Co, Cr, Cu, Fe, Mn, Pb, and Zn. (3) Results: The pH
values indicated basic coastal waters. The elevated levels of TDS with an average of about 42
g/L indicated highly saline conditions. Relatively low levels of inorganic nutrients were observed
consistent with the prevalence of oligotrophic conditions in GoA seawater. The concentrations of Ca2+,
Mg2+, Na+, K+, Sr, Cl−, and SO4

2− in surface layer varied spatially from about 423–487, 2246–2356,
9542–12,647, 513–713, 9.2–10.4, 22,173–25,992, and 317–407 mg/L, respectively. The average levels
of Cd, Co, Cr, Cu, Fe, Mn, Pb and Zn ranged from 0.51, 0.38, 1.44, 1.29, 0.88, 0.38, and 6.05 µg/L,
respectively. (4) Conclusions: The prevailing saline conditions of high temperatures, high evaporation
rates, the water stratification and intense dust storms are major contributing factors to the observed
seawater chemistry. The surface distribution of water quality variables showed spatial variations
with no specific patterns, except for metal contents which exhibited southward increasing trends,
closed to the industrial complex. The vast majority of these quality parameters showed relatively
higher values compared to those of other regions.

Keywords: water quality; coastal area; metals; pollution source; Gulf of Aqaba; Jordan; Red Sea

1. Introduction

The Gulf of Aqaba (GoA) is the upper northeastern segment of the Red Sea [1]. It is a
partially-isolated, narrow and deep coastal water body. The Strait of Tiran connects GoA with the
Red Sea (Figure 1). Despite the extreme environmental conditions, the GoA supports unique aquatic
ecosystems and biodiversity, and is a habitat for one of the world’s richest coral communities [2,3].
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The GoA is one of the high anthropogenically impacted coasts in the Middle East region [4]. The
expansion in economic and industrial activities in the Gulf’s bordering countries have contributed to
the degradation of naturally stressed coastal and marine ecosystems. They are subjected to various
impacts and sources of pollution including dredging and reclamation activities, coastal construction
development, industrial waste, ports, oil spills, and domestic sewage, among others [5].

GoA is the only marine port for Jordan, and is highly vulnerable to pollution, where all
marine-related activities are concentrated within a few kilometers of the coast (27 km). In addition,
many economic, industrial, and recreational activities are taking place along the Jordanian coastline,
many of which are of potential environmental impacts [6–9]. Additionally, the region plans to have a
number of large coastal projects (such as the Red-Dead Sea conduit, new resorts, and ports relocation),
which will certainly accelerate the degradation cycle of existing environmental conditions and threaten
these unique marine communities [7]. Signs of human impacts were reported [10–12].

In addition to human impacts, the GoA is subject to regular dust storm events that contribute
metals and other chemicals to the GoA coastal water [8,9]. Aeolian dust flux to GoA is likely to
influence seawater chemistry [13], where atmospheric dry deposition in the GoA is considered an
important external source of trace metals [8,9,14–16]. The mineral dust rate on GoA region is one of the
highest on Earth [8,9,13,17]. It is believed that the frequency of dust storm events will become more
common in the GoA, due to increase in regional aridity and dust fluxes [18,19].

The relatively small volume and absence of significant wave action along with the low rate of
water circulation and renewal (between GoA and the Red Sea), render the Gulf particularly vulnerable
to pollution. The residence time of water in the Gulf averaged 1–3 years [20,21].
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The growing concern over the sustainability of these unique aquatic ecosystems of GoA has
recently gained momentum and became a priority issue in Jordan. The impact of intense and
widespread human activities from the Gulf’s bordering countries poses imminent threats to GoA
coast, which requires a proper monitoring plan. The objective of the present study is to assess the
current status of surface water quality along the coastal region of the Jordanian GoA coast. It also
intends to evaluate the spatial distribution of a variety heavy metals and to identify potential sources
of contamination. This assessment will help develop a sustainable management plan for coastal
water resources.

2. Materials and Methods

2.1. Description of Study Area

The GoA is the Red Sea’s northeastern extension. It is a partially-enclosed, narrow and deep
coastal water body. The Strait of Tiran connects the Red Sea to the GoA (Figure 1). The GoA extends
approximately 180 km southward with a width ranging from 5–25 km (the average of 16 km maximum),
and a maximum depth of about 1800 m (the average is about 800 m). Only 27 km of the eastern coast
belong in Jordan, and the remaining coastline, unpopulated, and largely underdeveloped, lie in the
Saudi territory.

The GoA is influenced by prevailing subtropical conditions with extremely high temperatures,
high evaporation rate (about 400 cm/year) and negligible rainfall (of less than 2.2 cm/year) [22]. Surface
water flow in the Gulf is nonexistent or limited solely during rare intense rainstorms occurring as flash
floods in winter. The average water temperature in the upper 200 m varies seasonally from 20 ◦C in
winter to 28 ◦C in summer, whereas the average air temperature ranges between 32.20 ± 3.16 ◦C in
summer and 17.60 ± 3.46 ◦C in winter [23]. The maximum sea level of 154.30 cm was recorded in
2013 [23].

These conditions result in a high salinity in surface water layer, ranging from 40.3 to 40.8‰ in
winter and from 40.5 to 46.6‰ in summer [9,24–26]. The surface coastal water of the GoA is extremely
oligotrophic, because of its nutrient-poor water originating from the Red Sea surface waters through
the Straits of Tiran. The surface water is shallow with stable thermocline throughout the year, except in
wintertime, when a wind-driven convective mixing occurs between the deep (nutrient-rich) and surface
waters. Water stratification occurs in spring. However, the oceanographic characteristics of extensive
solar irradiance, high transparency, deep sunlight penetration, and warm water created unique aquatic
ecosystems and biodiversity, with one of the world’s richest coral communities [2,3].

The northerly wind, with a high speed and activity during summertime, is the prevailing wind
direction and is responsible for the majority of aeolian deposition events in the region. However,
Khamaseen winds blowing in springtime account for most sand and dust storms in southern Jordan
and the adjacent areas [27]. They deliver dust from the interior of the Sahara Desert in north Africa.

2.2. Sampling and Analysis

Surface water samples were collected in September 2017 from 30 different locations along the coastal
areas of GoA, Jordan (from north to south), sampling sites are presented in Figure 1. Coastal water
samples were collected in 1-L precleaned polyethylene containers pre-rinsed with 10% HCl and 2
mL of HNO3, Samples were labeled and measured in the field for pH, electrical conductivity (EC,
mS/cm at 25 ◦C), and total dissolved solids (TDS) using pH-meter (Sensions 5, HACH portable case),
and EC/TDS-meter (ECOSCAN-hand held series, EUTECH instruments). Water samples were kept
refrigerated at 4 ◦C and transported to a water laboratory (Yarmouk University, Jordan) for subsequent
chemical analyses. Sample preparation and analysis followed APHA [28] procedures.

In the laboratory, all samples were filtered by Whatman filter paper (No. 42) and analyzed for
total alkalinity (TA), Cl−, NO3

−, SO4
2−, PO4

3−, NH4
+, Ca2+, Mg2+, Na+, K+, Cd, Co, Cr, Cu, Fe, Mn, Pb,

Sr, and Zn, as follows: 50 mL of filtered samples were used to determine the concentrations of Na+, K+,
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Ca2+, Mg2+, and Cd, Co, Cr, Fe, Mn, Pb, Sr, Zn using flame atomic absorption spectrophotometer FAAS
(NOVAA 300 Analytica JENA AJ with detection limits varying from 0.001–0.02 µg/L. Each sample
was analyzed in duplicate. The accuracy and precision of the analytical method was evaluated by the
analysis of a reference material (NASS-5), with recoveries ranging between 98.02–104.01%. A total of 5
mL of filtered samples was used to measure NH4

+, Cl−, NO3
−, SO4

2−, PO4
3− by ion chromatography

(IC) (Dionex ICS 1600, Thermoscientific). A total of 25 mL of filtered samples were titrated with 0.02 N
H2SO4, using phenolphthalein and methyl orange as indicators to determine total alkalinity (TA) of
the water samples. There are two pH endpoints corresponding to the above indicators at 8.3 and at 4.3.
TA was calculated using the following equation:

TA = (volume of acid used * normality of acid * 50,000)/volume of sample.

The average ionic mass balance for water quality data was −0.02% indicating a high level
of accuracy.

3. Results and Discussion

The results of dissolved metals and physicochemical properties of coastal water are tabulated in
Table 1, and presented in Figures 2–5. The pH values of surface water layer ranged between 8 and
8.49, with a mean value of 8.26 (Table 1 and Figure 2). They indicate a slightly basic coastal water.
They showed a slight spatial variability with no distinct trends. This is likely related to the calcium
carbonate buffering capacity of water [23].
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tabulated in Table 1, and presented in Figures 2–5. The pH values of surface water layer ranged 
between 8 and 8.49, with a mean value of 8.26 (Table 1 and Figure 2). They indicate a slightly 
basic coastal water. They showed a slight spatial variability with no distinct trends. This is 
likely related to the calcium carbonate buffering capacity of water [23]. 

 
Figure 2. The electrical conductivity (EC), total dissolved solids (TDS), and pH of GoA coastal 
water. 

Figure 2. The electrical conductivity (EC), total dissolved solids (TDS), and pH of GoA coastal water.
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In addition, these pH values are probably attributable to low growth levels, and production
of algal biomass that would contribute organic acids to coastal water when decomposed. While
the weather conditions of high temperatures and abundant sunlight allow phytoplankton to grow
in abundance, our sampling campaign coincided with a period of nutrient-depleted and stratified
water, where photosynthetic activity was at its lowest levels. Manasreh et al. [23] recorded the lowest
chlorophyll-a levels in summertime and highest during winter. Microbial decomposition of dead
phytoplankton, algae and other flora, produces humic substances, organic acids and amino acids that
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raise the seawater acidity. Additionally, higher temperature during summertime will reduce dissolved
CO2 levels in coastal water and increases the pH value.

TA (total alkalinity) concentrations ranged between 128 and 162 mg/L, with an average value of
146 mg/L. These high values are consistent with the coastal water’s buffering capacity (due to high
contents of calcium carbonates) of the GoA’s water. The TDS varied from about 41.22–42.74 g/L with
an average of 41.95 g/L. EC varied from 51.42 to 52.87 mS/cm with average of 52.17 mS/cm. Similar
values of TDS were reported along the Saudi GoA with an average of 41.4 g/L [9].

The spatial pattens of TDS in water showed insignificant variations (Figure 2). The elevated levels
of TDS indicate highly saline conditions in the GoA and are primarily attributable to its geographic
location in a subtropical desert region, with very high evaporation rates, very low precipitation,
and negligible freshwater input. Manasreh et al. [23] reported an evaporation of 2 m/year in the GoA
with an increasing salinity toward the north. In addition to these salinity raising factors, the high
TDS values are linked to water stratification and poor water circulation during the sampling period.
These factors created unique environmental conditions of higher temperature, evaporation, and salinity
than average, compared to the average range for oceans. Lack of input of freshwater into the coastal
water contributes to high salinity water. A negligible supply of terrigenous sediments into the water
results in clear water conditions with high transparency.

Higher water density is often observed in summertime in response to high salinity (due to
poor water mixing). From July–August, a stratified water column dominates with thermocline and
pyncnocline, occurring at about 250 m in 2013 and near 350 m in 2014 and 2015 [23]. The northwards
currents drag warm and saline waters to GoA from the Red Sea [25,29]. The flow of surface water
from the Red Sea to the GoA is triggered by the high evaporation rate, where the flowing water offsets
the evaporation loss [30]. The GoA surface seawater temperature is 2 ◦C lower than that of the Red
Sea, where the flowing water brings heat that increases temperature, evaporation rates and salinity of
surface seawater layer.

In addition, the TDS values become higher in August, corresponding to the summer season,
a period of high dust storm events. The atmospheric dust input is an significant source of salts (and
metals) to GoA water [8,9]. The GoA is located in a desert-belt region with frequent dust storms,
where Negev and Sinai Deserts are in the west and the Arabian Desert is in east. It is believed that large
quantities of dust aerosols delivered to GoA is originated from adjacent deserts [31]. Dust deposition
will significantly influence the composition of GoA seawater, where the deposition rate of dust in GoA
is one of the highest on Earth [13] ranging between 28 g/m2/year in the northwestern part [13] to about
34.68 g/m2/year in Aqaba city at the northeastern corner of GoA [8]. TDS was significantly correlated
with Ca2+, Mg2+, Na+, Sr and Cl− with r = 0.86, 0.88, 0.81 and 0.70, respectively (Table 2). These ions
are major contributors to seawater salinity.

Inorganic nutrients (nitrate, ammonium, phosphate) are minor constituents of seawater, but are
essential for marine ecosystem productivity and growth. Relatively low levels of inorganic nutrients
(NH4

+, PO4
3−, NO3

−) (Table 1 and Figure 3) were observed in surface water layer, consistent with
the findings of others [23,32–35]. The coastal water in GoA is in extremely oligotrophic conditions,
with very limited nutrients supplied to Gulf’s water through terrestrial runoff.

Nitrates are present in all water samples, where the concentrations increased slightly in some
locations, although not all. NO3

− concentrations ranged between 12.22 mg/L up to 15.50 mg/L,
with overall mean and median levels of about 13.85 and 13.78 mg/L, respectively (Table 1 and Figure 3).
Ammonium levels fluctuated from 13.08 and 16.91 mg/L, with mean and median values of about 15
mg/L (Table 1 and Figure 3). While the nutrient levels generally varied, their variations showed no
spatial trends. Nitrate and ammonium showed relatively similar ups and downs and were significantly
correlated with r = 0.65 (Table 2).
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Nitrate is the major nitrogen species in the oxic zone, while ammonium dominates in the anoxic
zone. The nitrification is a kinetic reaction and is dependent on several water conditions such as salinity,
pH, and Eh [36,37]. However, the coexistence of nitrate and ammonium can trigger or slow down
nitrogen conversion like nitrification or denitrification [38]. The coexistence of NH4

+ and NO3
− may

result from poor mixing in groundwater, especially in locations where both nitrogen species are released
from active pollution sources [39,40]. The GoA waters are well oxygenated with redox indicators of
oxidizing conditions [9]. Manasreh et al. [23] observed that the GoA water is well-ventilated due to the
annual water mixing with complete saturation (100%).

This suggests that the presence of high NH4
+ levels could be associated with leaks from sewer

system and/or because of water discharged from fish farm or fertilizer plume. Phosphate varied from
0.16–0.29 mg/L, with an average of 0.21 mg/L (Table 1 and Figure 3). Relatively higher concentrations
were observed in the northern GoA, in close proximity to the phosphate terminal, where deposition
of dust containing phosphate during loading/unloading activities may contribute phosphates to
seawater. While phosphate showed low levels, it is the limiting nutrient for phytoplankton growth.
Weak correlations between phosphate and both ammonium and nitrate were observed with r = −0.02
and 0.18, respectively (Table 2).

Aeolian deposits can provide important nutrients which stimulate the primary productivity
in marine ecosystems [41–44], especially in oligotrophic water [45], like the GoA [10,20]. However,
they can also deliver various contaminants that negatively impact the aquatic biodiversity.

Similar observations were reported by Badran [46], where phosphate and nitrate levels in surface
water varied seasonally, with the lowest in summer and the highest in winter. The sampling period
was concurrent with water stratification, and the concentrations of nutrients in surface water layer
were low. In the winter season, winds drive convective mixing of deep (nutrient-rich) and surface
waters, where nitrate and other nutrients are injected into the euphotic zone, resulting in seasonal
plankton blooms [47]. The highest productivity (chlorophyll-a) is expected during the winter season,
which declines to minimum levels in summertime [23].

Water stratification and high sunlight irradiation during summertime further draw down the
inorganic nutrients in the surface water by enhancing primary productivity at the subsurface water layer
(50–75 m) [34]. During photosynthesis, phytoplankton assimilate nutrients, and it is the availability of
inorganic nitrogen that often limits the rate of primary production in the sea [32]. Nutrients uptake
within the euphotic zone in oligotrophic water body results in a considerable depletion of their
levels. Phytoplankton communities in oligotrophic waters are likely to survive by utilizing recycled
nutrients [48,49].

Nutrient levels in the southern Red Sea are greater than its northern and central regions. The inflow
of surface water from the Red Sea to GoA (to compensate for the high evaporation loss) is a contributing
factor to lower levels of nutrients observed in GoA seawater (oligotrophic water). In late summer,
an increase of 25% in nutrient levels is observed in the southern Red Sea compared to the central
region, due to the inflow of nutrient-rich waters from the Gulf of Aden to the southern area of the Red
Sea [50]. The highest levels of phosphate in the southern Red Sea are usually observed in October,
following upwellings in the Arabian Sea.

In addition to water mixing, it is likely that nitrate and other nutrients are associated with
atmospheric deposition, as this area experiences frequent dust storms. Rare flash floods carrying
terrigenous sediments can be a minor contributor to nitrate and phosphate in coastal water. Dust from
the phosphate terminal in the GoA provides further evidence of contribution of aeolian dust to coastal
water. Fish farming and wastewater discharges may be important sources of nitrate and phosphate,
as water samples were collected adjacent to the coastlines closer to touristic, industrial and other
human facilities.

Sr content in seawater ranged between 9.17 and 10.42 mg/L (Table 1). The concentrations of Ca2+,
Mg2+, Na+ and K+ in surface seawater layer varied from 423.32–486.99, 2246.2–2355.9, 9541.5–12,646.9
and 512.84–712.91 mg/L, respectively (Table 1). High temperature and evaporation rates are main
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contributors to high levels of ions, among others. The spatial distributions of Ca2+, Mg2+ and Sr in
surface water exhibited relatively similar patterns with no trends. Ca2+ was positively correlated with
Mg2+, Sr, and Na+ with correlation coefficients of 0.97, 0.85, and 0.52, respectively. The correlation
coefficients between Mg2+ and Sr was 0.87, and between Mg2+ and Na+ is 0.59. The K+ levels in
seawater was not significantly correlated with any cation tested.

Cl− exhibited spatial changes in surface water, with concentrations ranging from
22,172.88–25,991.94 mg/L. The SO4

-2 values in seawater samples varied between 316.99 and 407.45
mg/L. Cl was correlated with Ca2+, Mg2+ and Na+ with correlation coefficients of 0.54, 0.60 and 0.74,
respectively. Similar to K+, the SO4

2− content showed no significant correlations with any other ions
of seawater. TDS values were well correlated with Cl−, Ca2+, Mg2+, Na+ and Sr, with r = 0.70, 0.86,
0.88, 0.81 and 0.81, respectively. Whereas salinity was neither correlated with SO4

2− nor with K+.
Dust deposition to GoA is also an important contributor to TDS and other ions.

Table 3 compares seawater chemistry of the GoA (northernmost Red Sea) analyzed in this study
relative to other regions of the Red Sea. Relatively elevated levels of pH, TA, Cl−, NO3

−, PO4
3−, NH4

+,
Mg2+ and K were observed for GoA, compared to the central and northern Red Sea. Whereas SO4

2−,
TDS, Ca, and Na showed values that are comparable to or lower than those for other parts of the Red
Sea water.

Table 3. Comparison of water quality parameters in different regions of the Red Sea and GoA.

pH EC TDS TA Cl− NO3− SO42− PO43− NH4
+ Ca Mg Na K

mS/cm g/L mg/L mg/L

Present study
(northernmost

Red Sea)
8.26 52.17 41.95 146 24,326.4 13.85 385.77 0.21 14.98 452.13 2298.01 10,801.44 594.08

Northern Red
Sea (Egypt) [51] 7.7 60.3 42 98 23,607 12.4 1260 0.39 738 1570 12,339 287

Central Red Sea
(Jeddah, Saudi)

[52]
8.1 72.55 43.55 128 22,336 1 2440 <0.13 - 496 1512 11,920 -

The concentrations of metals in surface seawater layer are shown in Table 1 and presented in
Figure 5. Zn showed the highest concentration, with an average concentration of 6.05µg/L. Other metals
that followed were in the order Cr > Fe > Cu > Mn > Cd > Pb = Co (Table 1, Figure 5).

Spatial variability of metals contents in seawater samples exhibited increasing trends toward the
south (Figure 5), where the industrial complex is located. Potential impacts from heavy metals are
commonly confined to areas in the vicinity of urban or industrialized regions on the coastal edge.
However, these levels of metals also suggest that they have probably been derived from multiple
sources, including a geogenic origin.

Al-Taani et al. [9] reported high levels of dissolved oxygen, with redox values indicating oxidizing
conditions in the coastal water GoA, which may favor immobilization of some metals with relatively
low levels in seawater samples. Zn in seawater varied from 3.63–8.28 µg/L with an average of 6.05 µg/L
(Table 1 and Figure 5). These values are higher than those reported for the Saudi GoA [9], the offshore
surface seawater of Red Sea [53], the average oceanic concentration [54], and the Mediterranean surface
seawater [55] (Table 4).

In addition, atmospheric dry deposition is the primary external source of trace metals to GoA [14].
Aeolian dry fluxes of certain trace elements (e.g., Cd, Pb, Cu and Zn) to the ocean water may surpass
those of riverine sources [56,57]. Aeolian dust of Zn to GoA ranges between 1.68 mg/m2/year (in Eilat
city at the northwestern corner; [31]) and 4.02 mg/m2/year (in Aqaba city in northeastern region; [8]).
High concentrations of Zn were observed GoA seawater ranging from 5.71–11.55 µg/L [58] in the
vicinity of Industrial Complex.
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Table 4. Comparison of selected metals (µg/L) in surface seawater of GoA relative to other regions.

Cd Co Cr Cu Fe Mn Pb Zn

Present study 0.51 0.38 1.44 1.24 1.29 0.88 0.38 6.05
Saudi GoA [9] 0.03 0.236 0.957 6.183 15.255 0.259 0.202 3.323
Offshore surface seawater,
northern Red Sea [53] 0.53 0.15 - 0.11 1.58 0.11 0.36 0.22

Oceanic concentration [54] 0.07 0.005 a 0.33 0.12 0.04 0.01 0.001 0.4
Mediterranean surface
seawater [55] 0.42 b 1 c 3.4 d 0.2 e 0.056–0.336 f 0.11–0.19 f 0.05 g 0.17

a: [59,60]. b: [61]. c: [62]. d: [63,64]. e: [65,66]. f: [67]. g: [62,65].

Fe contents of seawater varied from 0.75–1.94 µg/L with a mean value of 1.29 µg/L. These
concentrations of Fe showed spatial variability in surface water layer with generally greater values
in the southern GoA (Figure 5). During the stratified summer, surface water becomes enriched in
Fe [13], but the winter mixing of surface and deep water layers, decreases these Fe levels. The average
concentration of Fe measured in the present study is relatively comparable to that for the Red sea offshore
seawater [53], but higher than the averages for oceanic concentration [54] and the Mediterranean
seawater [68] (Table 4). Higher concentrations of Fe were observed in the Saudi GoA with about 15.25
µg/L, suggesting that atmospheric dry deposition in this area is more intense. It is believed that Fe
is probably derived from crustal sources. The average dry flux of Fe to the GoA waters varied from
about 216 mg/m2/year [31] to 440 mg/m2/year [8].

Cr levels varied from 0.96–1.91 µg/L with average value about 1.44 µg/L (Table 1). These values
are higher than those observed in the Saudi GoA seawater [9], the mean oceanic level [54], but less
than those for the Mediterranean Sea [63,64] (Table 3). The spatial pattern of Cr suggests that these
high levels of Cr at the southern end of GoA are most likely related to discharge of brine water from
desalination plant [68]. In addition to the industrial wastewater, mineral dust from fertilizer and
cement factories remain potential sources of Cr to GoA seawater. atmospheric aerosol deposition to
GoA fluctuated between 0.96 mg/m2/year in Eilat city [31], and about 1.42 mg/m2/year in Aqaba city [8].

Mn content in southern water samples exhibited higher values relative to the northern part of
GoA (Table 1 and Figure 5), and it is likely to originate form anthropogenic emissions [31]. The Mn
contents in surface seawater ranged between 0.68 and 1.15 µg/L, with an average of 0.88 µg/L, which
is three times as much as that measured for the Saudi GoA [9]. These values are also greater than
those reported for the offshore water of Red Sea [53], the average oceanic concentration, and those
for the Mediterranean Sea [67] (Table 4). Windblown dust of Mn to the uppermost eastern GoA
(Elat city) averaged 5.28 mg/m2/year [31], whereas, in the northernmost extension, a mean value of
10.29 mg/m2/year was reported [8]. In addition, Mn is probably related to desalination plants in the
neighboring cities (Eilat, Taba and Haql) [3,9], where various heavy metals, including Mn, may be
released with the discharged water of thermal desalination plants, depending on the metal alloys
used [68,69].

Cd concentrations in seawater ranged between 0.2 and 0.76 µg/L, with an average of 0.51 µg/L
(Table 1). Similarly, elevated levels of Cd were found in the southern GoA (Figure 5), where industrial
activities are concentrated. Comparable levels of Cd have been reported by Shriadah et al. [53] for the
northern Red Sea (offshore seawater), but higher than those for the average oceanic levels of about 0.07
µg/L [54]. Additionally, the average Cd content in surface seawater measured in the present study is
greater than those for Saudi GoA and the Mediterranean Sea (Table 4).

In addition to desalination plants, the anthropogenically derived Cd (and other metals such as Pb
and Co) is likely related to the discharge of cooling water and sewage in the southern GoA [26,70,71].
The average concentration of Cd from atmospheric dust varied from 0.012 mg/m2/year in Eilat city [31]
to 0.04 mg/m2/year in Aqaba city [8].
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Co content in surface seawater exhibited little spatial variations, with relatively higher levels were
observed in the southern portion of GoA (Figure 5). Co ranged from 0.28–0.51 µg/L, with average
Co values of about 0.38 µg/L (Table 1). Lower average Co contents were reported for the northern
Red Sea offshore water [53] and for the Saudi GoA [9]. Co occurs in seawater at concentrations
below 0.005 µg/L [59,60]. However, higher average value has been detected in the surface water of
Mediterranean Sea [62]. Potential sources of Co in GoA seawater are likely similar to those of Co [9].
Dust particles collected from GoA region showed an average of 0.1 mg/m2/year [31].

Relatively elevated levels of Cu were detected in seawater samples, varying from 0.69–1.91 µg/L,
with greater values observed for the southern sampling sites (Figure 5). These values are higher
than the average ocean level [54] and the offshore water of Red Sea [53] (Table 3). An average
Cu value of 0.2 µg/L was reported for the Mediterranean Sea [67,68]. However, elevated levels of
Cu were detected in the Saudi GoA (at the Jordan–Saudi border). The atmospheric dry deposition
flux of Cu to GoA region ranged from 0.38 mg/m2/year in Eilat [31] to 0.68 mg/m2/year in Aqaba
city [8]. Elevated concentrations of Cu have been reported in Jordanian GoA water, in the range of
0.74–2.28 µg/L [58], and are higher than those measured in this study.

Pb levels in seawater samples varied from 0.17–0.79 µg/L, with a spatial pattern of increasing
levels in the southern part of GoA. The average Pb value of 0.38 µg/L is comparable to those measured
in offshore surface water sites of Red Sea [53], but higher than those reported for the Saudi GoA [9], the
average ocean, and the Mediterranean surface seawater (Table 3). Pb is of anthropogenic origin, mainly
from fossil fuel burning [72]. Elevated concentrations of Pb were found in the Jordanian GoA water
ranging between 0.73 and 1.43 µg/L [56]. GoA receives high dry flux of Pb varying from 0.8 mg/m2/year
in Eilat [31] to about 1.42 mg/m2/year in Aqaba city [8]. All metals tested were significantly correlated
(Table 2) indicating that they may have been derived from similar sources.

4. Conclusions

GoA is a place for rich and diverse marine ecosystems. It is highly vulnerable to pollution,
wherehuman activities in the bordering countries are intense, with high potential for water
contamination. This requires cross-border collaboration to protect these naturally diverse but stressed
ecosystems. This study intended to ascertain the seawater quality conditions along the eastern coast of
GoA, Jordan. The sampling campaign coincided with a period of low levels of inorganic nutrients,
low rates of algal growth with reduced microbial decomposition of dead algal cells. In addition to
prevailing saline conditions of high temperatures and high evaporation rates, the water stratification
and intense dust storms are the major contributing factors to the observed seawater chemistry. The
surface distribution of water quality variables showed spatial variations with no specific patterns,
except for metal contents, which exhibited southward increasing trends, closed to the industrial
complex. The vast majority of these quality parameters showed relatively higher values compared to
those of other regions.
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Abstract: The Lixiahe abdominal area is a representative plain river network in the lower reaches of
the Huai River, being an upstream section of south-to-north water diversion from the Yangtze River in
Jiangsu Province, China. The assessment of long-term water quality variation and the identification
of probable causes can provide references for sustainable water resources management. Based on the
monthly water quality data of 15 monitoring stations in the Lixiahe abdominal area, the periodic
characteristics and tendency of water quality variation were studied by combining wavelet analysis,
the Mann–Kendall trend test, and Sen’s slope estimator, and the correlation between water quality
variation, water level, and water diversion was discussed with cross wavelet transform and wavelet
coherence. The results show that the comprehensive water quality index (CWQI) included periodic
fluctuations on multiple scales from 0.25 to 5 years. The CWQI of 7 out of 15 monitoring stations
has a significant decreasing trend, indicating regional water quality improvement. The trend slope
ranges from −0.071/yr to 0.007/yr, where −0.071/yr indicates the water quality improvement by one
grade in 15 years. The spatial variation of water quality in the Lixiahe abdominal area was significant.
The water quality of the main water diversion channels and its nearby rivers was significantly
improved, while the improvement of other areas was not significant or even became worse due to the
increasing discharge of pollutants. The CWQI of the main water diversion channels and its nearby
rivers was inversely correlated with the amount of water diversion. The greater the amount of water
diversion, the better the water quality. The water diversion from the Yangtze River has played an
important role in improving the regional water environment.

Keywords: water quality variation; wavelet analysis; low-pass filtering; linear regression

1. Introduction

Water environment deterioration is a prominent issue in river basin management throughout the
world, which has become a serious threat to water security [1]. Surface water and groundwater is
affected by geological, climatic, and other natural conditions as well as anthropogenic activities [2] such
as precipitation, the pumping of groundwater, and regional droughts [3,4], which is of great significance
to the ecological environment of the basin and the production and life of residents in the surrounding
areas [5]. The assessment of long-term water quality variation and identification of probable causes
can provide information supports and references for sustainable water resources management.

The single factor index method [6,7], comprehensive pollution index method [8,9], Canadian
Council of Ministers of the Environment Water Quality Index (CCME CWQI) [10,11], multivariate
statistical techniques [12,13], such as cluster analysis [14], discriminant analysis [12], factor analysis [13],
principal component analysis [15], and artificial neural network [16,17] are widely used in river water
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quality evaluation. DRASTIC is a widely used indexing method to assess groundwater vulnerability to
a wide range of potential contaminants [18,19]. All these methods are used to comprehensively assess
the water quality as well as identify spatial and temporal variations in water quality and main sources
of contamination.

Wavelet analysis is becoming a common tool for analyzing localized variations of power within a
time series [20,21], which is widely used in hydrology in the study of noise elimination, filtering of
time series, monitoring of abrupt points, identification of periodic components [22,23], and assessing
the long-term variation of water quality [24,25]. Besides, wavelet analysis is also combined with
Artificial Neural Network (wavelet-ANN), Adaptive Neuro-Fuzzy Inference System (wavelet-ANFIS),
or extreme learning machine to predict monthly water quality, which is successfully used in the
Aji-Chay River in Northwestern Iran [26,27], the Yamuna river in India [28], and the Johor River
in Malaysia [29].

In previous studies on temporal variation of water quality, multivariate statistical techniques and
continuous wavelet transform are used to present a significant and validated picture of the seasonal
periodic behavior of water quality, but they do not directly explore long-term periods, variation
tendency, and the coherence of the periodic behavior of water quality variables with influencing factors.
This present study aims to remedy this shortcoming by investigating long-term periods, variation
tendency, and the coherence of water quality with water level and water diversion from outside the
basin with combined methods of continuous wavelet transform, cross wavelet transform, wavelet
coherence, Mann–Kendall trend test, and Sen’s slope estimator.

The Lixiahe abdominal area is a representative plain river network in the lower reaches of Huai
River, where the water used for industry and agriculture is mainly from water diversion from the
Yangtze River. The water diversion project is widely constructed to solve the problems of regional water
shortage and water pollution in many countries, including Australia, China, Canada, India, the United
States, and others [30]. Hence, assessment of the effects of the water diversion on the regional water
resource and water quality is significant for sustainable water resources management [31,32]. Since the
water diversion project in the Lixiahe abdominal area has been executed for decades, it is valuable to
investigate the long-term water quality variation and its possible causes to give scientific guidelines for
water resources management and the optimization of water diversion operation. Based on the monthly
water quality data of 15 monitoring stations from 2003 to 2017, the comprehensive water quality index
(CWQI) was used to evaluate the water quality of the river, and the methods of wavelet analysis,
Mann–Kendall trend test, and Sen’s slope estimator were used to study periodic characteristics and
tendency of water quality variation. Furthermore, the possible causes of water quality variation
were discussed.

2. Materials and Methods

2.1. Study Area Description

The Lixiahe abdominal area is a relatively closed plain river network in the lower reaches of the
Huai River in Northern Jiangsu Province, China, with an area of 11,722 km2, which is located to the east
of Li Canal, the south of Subei Main Irrigation Canal, the west of Tongyu River, the north of 328 National
Highway from Yangzhou to Nantong, and the Rutai canal (Figure 1). There are many rivers, polder
networks, lakes, marshes, and wetlands in the area. The terrain is high around, low in the middle,
with an altitude ranging from 0 to 10 m above the old-yellow river datum plane. The area belongs to a
subtropical monsoon climate and it is affected by a marine climate. The annual average precipitation is
1025 mm, and the precipitation in flood season accounts for about 70% of the annual rainfall.

Since it is located in the lower reaches of the Huai River, the water quality of the water from
the upper reaches is generally poor. The water used in the area is mainly from the Jiangdu water
conservancy project and the Gaogang water conservancy project, by which the high-quality Yangtze
River water enters the area through the Xintongyang canal and the Taizhouyingjiang River to meet
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the demand for water for life, industry, and agriculture (Figure 1). Point source pollutant is a
major pollution source, while the contribution of agricultural non-point source pollution has been
growing. The mean annual load of four main water quality indicators (permanganate index: CODMn,
ammonium nitrogen: NH3-N, total nitrogen: TN, total phosphorus: TP) was 29,000, 10,000, 23,000,
and 7000 tons in 2003–2017.
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2.2. Hydrological and Water Quality Monitoring

In this study, the monthly water quality data of 15 monitoring stations and the daily water level
data of 8 hydrological stations were collected from 2003 to 2017. The monitoring stations cover Taizhou,
Yancheng, and Yangzhou, which are three important areas in the Lixiahe abdominal area (Figure 1).
The data were collected by the Taizhou Branch, Yancheng branch, and Yangzhou Branch of the Jiangsu
Bureau of the hydrological and water resources survey. In addition, daily water diversion data of
Gaogang and Jiangdu station from 2003 to 2017 were collected from the Taizhou and Yangzhou Branch
of the Jiangsu hydrological and Water Resources Survey Bureau.

2.3. Research Methods

Two main water quality indicators, permanganate index (CODMn) and ammonia nitrogen (NH3-N),
are selected for analysis, and the comprehensive water quality index (CWQI) determined by these two
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factors is calculated. The long-term trend of water quality is studied by using methods of continuous
wavelet transform, Mann–Kendall trend test, and Sen’s slope estimator. The correlation between water
quality and water level as well as water diversion volume are investigated by cross wavelet transform
and wavelet coherence analysis.

2.3.1. Comprehensive Water Quality Identification Index (CWQI)

The comprehensive water quality index comprehensively takes into account a variety of pollution
indexes, which can fully express the overall comprehensive water quality information of the river. The
CWQI is computed using the formula of Xu [33].

Iwq = X1·X2 =
1
m

∑
(P1 + P2 + · · ·+ Pm) (1)

where X1 represents the overall water quality grade in the water quality category, X2 represents
the position of the water quality within the same grade, m is the number of water quality indexes
participating in the comprehensive water quality evaluation, and P1, P2 and Pm represent the single
factor water quality identification index (SWQI) of different monitoring items. The calculation of SWQI
follows the method of Xu [7],

Pi = X1·X2 (2)

where X1 equals grade value of water quality, and X2 reads

X2 =
ρi − ρikl

ρiku − ρikl
(3)

where ρi is the measured mass concentration, k equals X1, and ρikl and ρiku are the lower and upper limit
value of grade k for monitoring item i. The advantage of SWQI compared to pollutant concentration is
that the measured values of different indicators can be converted into the values corresponding to the
water quality category.

The water quality category used in this study is the Standard for surface water environmental
quality assessment of China (GB3838-2002) [34]. The detailed range values of water quality indicators
and SWQI/CWQI corresponding to different water quality grades as well as its description are presented
in Table 1, where the range values of single indicators are according to GB3838-2002 [34], the range
values of SWQI/CWQI are according to the calculation method introduced by Xu [7,33], and the water
quality description is subjectively given according to the regional water quality objective of Grade III.

Table 1. The range values of water quality category.

Indicator
Range Values (mg/L)

Grade I Grade II Grade III Grade IV Grade V Inferior to Grade V

CODMn [0, 2) [2, 4) [4, 6) [6, 10) [10, 15) [15, infinity)
NH3-N [0, 0.15) [0.15, 0.5) [0.5, 1) [1, 1.5) [1.5, 2) [2, infinity)

SWQI/CWQI [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, infinity)
Description Extremely good Very good Good Poor Very poor Extremely poor

Note: The range values of CODMn and NH3-N are cited from (GB3838-2002) [34].

2.3.2. Continuous Wavelet Transform

Continuous wavelet analysis can clearly reveal a variety of variation periods hidden in the time
series by decomposing a time series into time–frequency space. The time series of CWQI is standardized,
and the significant period CWQI variation is analyzed by using the continuous wavelet transform
(CWT) method. The CWT used in this work followed the method of Torrence and Compo [20,35],
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and the Morlet wavelet was employed as the mother function for the analysis. The prototype formula
of Morlet is

Ψ0(η) = π−1/4eiω0ηe−η2/2 (4)

where η is dimensionless time, and ω0 is a dimensionless frequency, which can be set to 6 to satisfy the
admissible condition. The CWT of the discrete time series xn is defined as

WX
n (s) =

N−1∑

n′=0

xn′Ψ∗
[
(n′ − n)

δt
s

]
(5)

where WX
n (s) is the wavelet coefficients, N is the length of the time series xn, * is the complex conjugate,

and δt is the temporal sampling interval.
∣∣∣Wn(s)

∣∣∣2 represents the wavelet power spectrum. By varying
the wavelet scale s and translating along the localized time index n, the wavelet power spectrum
reveals the fluctuating energy of different periodicities defined by s versus time.

Red noise is used as background spectrum to test the wavelet spectrum. The first order
autoregressive (AR1) process is used in the red noise test. The power spectrum of background
red noise is defined as

Pk = (1− α2)/
(∣∣∣1− α2e−2iπk

∣∣∣
)

(6)

where α is the correlation coefficient of autoregressive equation in red noise power spectrum, and k is the
Fourier frequency index. In general, values outside the wavelet influence cone (COI) at various scales
are estimated at the significance level of 5%. For detailed information, please refer to references [20,21].
In this study, cross wavelet transform (XWT) and wavelet coherence (WTC) were done in Matlab
software.

2.3.3. Trend Analysis Methods

Tests for the detection of significant trends in a hydro-meteorological time series can be classified
as parametric and non-parametric methods. Parametric trend tests require data to be independent and
normally distributed, while non-parametric trend tests require only that the data be independent [36].
In this study, two non-parametric methods (Mann–Kendall trend test and Sen’s slope estimator) were
used to detect the trends of water quality indicators. The Mann–Kendall statistical test is able to
quantify the significance of trends in time series, and the Sen’s slope estimator is used for estimating
the slope of trend, both of which are widely used in hydro-meteorological time series [37,38].

In the Mann–Kendall statistical test, the standard normal test statistic ZS is computed according
to reference [36]. Positive values of ZS indicate increasing trends, while negative ZS values show
decreasing trends. Testing trends is done at the significance level α = 0.05.

When |Zs| > Z1−α, α significant trend exists in the time series, where Z1−α = 1.96. In the Sen’s
slope estimator, Qmed is computed, the sign of which reflects data trend reflection, while the value of
which indicates the steepness of the trend. For detailed information on the Mann–Kendall and Sen’s
slope estimator, please refer to references [36,39].

2.3.4. Cross Wavelet Transform and Wavelet Coherence

Cross wavelet transform (XWT) and wavelet coherence (WTC) can reveal the multi-scale
relationship between two time series in the time-frequency domain, and they can analyze the resonance
period and phase relationship in high-energy and low-energy regions, respectively [21]. In this study,
XWT and WTC methods are used to analyze the relationship between water quality variation and
water level and water diversion volume, and the methods follow Grinsted et al. [21].

The result of the XWT of two series Xn and Yn is defined as

WXY
n = WX

n WY∗
n (7)
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where
∣∣∣WXY

∣∣∣ is the cross wavelet power, and * is the complex conjugate.
The WTC is defined as

R2
n(s) =

∣∣∣∣S
(
s−1WXY

n (s)
)∣∣∣∣

2

S
(
s−1

∣∣∣WX
n (s)

∣∣∣2
)
·S

(
s−1

∣∣∣WY
n (s)

∣∣∣2
) (8)

where s is a smoothing operator. The level of statistical significance of WTC was estimated using the
Monte Carlo method. For detailed information, please refer to references [20,21]. In this study, XWT
and WTC were done in Matlab software.

3. Characteristics of Water Quality Variation

3.1. General Description of Water Quality

During 2003–2017, the annual mean CODMn and NH3-N in the Lixiahe abdominal area are
4.69 mg/L and 0.68 mg/L, and the CWQI is 3.24, which is Grade III according to GB3838-2002 [34].
According to the results of the Mann–Kendall trend test and Sen’s slope estimator on water quality
indicators, NH3-N and CWQI show a significant decreasing trend (Table 2). Hence, the water quality
improves (Figure 2).

The regional water quality shows significant seasonal changes (Figure 2). From January to March,
CODMn and NH3-N are both high; from April to June, CODMn and NH3-N are gradually decreasing,
and the water quality is gradually improving; in July, CODMn and NH3-N are both soaring, and the
water quality is the worst in the year; from August to October, CODMn and NH3-N are gradually
decreasing, and the water quality is gradually improving; from November to December, the NH3-N
increases, and the water quality is slightly worse (Table 3). The seasonal variation of water quality is
mainly affected by the rainfall and the amount of water diversion. From January to May, the water
quality gradually improves with the increase of water diversion volume; from June to September,
the water diversion volume gradually decreases, and the precipitation rises to the maximum value
in the year, which brings a large amount of non-point source pollutants to rivers, resulting in the
deterioration of the water body; from October to December, the precipitation is low, but the water
diversion volume increases significantly, and the water quality improves [40].

There is significant spatial variation in the water quality. The CODMn and NH3-N of YJMD in the
northwest and SYYX, LTZZ, SYDG, TDQT, XTLT in the main river channels of water diversion are
relatively low, and the water quality is very good, with CWQI smaller than 3. The NH3-N of SGSX is
high, and the CODMn of GGDG, XTHT, CLDY, HGAF, XGSG is high, and the water quality is good,
with CWQI in the range of 3–4. At BCSD, BSZS and XTBM, both CODMn and NH3-N are high, with a
CWQI larger than 4; therefore, the water quality is poor (Table 3). The regional water quality target is
Grade III of GB3838-2002, but the CODMn and NH3-N of each station exceed the standard by a certain
proportion, with regional mean overproof rates of 15% and 21%, respectively. Here, the overproof rate
means the portion of observed water quality data inferior to Grade III, whose upper limit value of
CODMn and NH3-N is 6 mg/L and 1 mg/L, respectively [19]. The overproof rates of CODMn at BSZS,
XGSG and XTBM are high, with values bigger than 20%. The overproof rates of NH3-N at XTBM,
BCSD, BSZS, SGSX and XTLT are high, with values bigger than 25% (Table 4).

Table 2. Trend analysis of regional annual mean CODMn, NH3-N, and CWQI.

Indicator Zs Value Trend Slope Tendency Significance

CODMn −0.693 −0.015 Decrease Not significant
NH3-N −3.068 −0.01 Decrease Significant
CWQI −1.98 −0.013 Decrease Significant
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Table 3. Intra-annual variation of water quality.

Month January February March April May June July August September October November December Mean Standard
Deviation

CODMn (mg/L) 4.9 4.8 4.8 4.5 4.0 4.1 5.6 5.2 5.0 4.6 4.5 4.4 4.7 0.68
NH3-N (mg/L) 0.80 0.85 0.77 0.69 0.59 0.54 1.04 0.64 0.52 0.55 0.62 0.61 0.68 0.24

CWQI 3.35 3.42 3.36 3.19 3.00 2.96 3.80 3.34 3.15 3.09 3.16 3.10 3.24 0.35

Table 4. Characteristic values of annual mean water quality of each station.

Region Monitoring
Stations

CODMn (mg/L) NH3-N (mg/L) CWQI

Max. Min. Mean op Rate *
(%) Max. Min. Mean op Rate *

(%) Max. Min. Mean

Taizhou

CLDY 6.0 2.5 4.9 16 1.0 0.3 0.5 9 3.7 2.7 3.2
HGAF 6.1 1.8 5.1 18 1.0 0.2 0.5 7 3.8 1.8 3.2
LTZZ 4.5 2.0 3.6 6 0.8 0.2 0.5 10 3.3 2.3 2.8
SGSX 5.8 2.8 4.6 8 1.3 0.5 0.9 32 3.9 3.0 3.5
TDQT 4.8 1.8 3.4 3 1.1 0.3 0.6 16 3.6 2.1 2.9
XGSG 8.1 4.8 5.7 28 1.0 0.3 0.6 10 4.1 3.2 3.4
XTBM 6.7 2.0 5.0 24 2.4 0.3 1.6 73 4.9 2.2 4.2
XTLT 5.0 3.0 3.5 6 1.1 0.3 0.7 25 3.7 2.5 3.0

Yancheng

GGDG 5.6 4.8 5.3 13 0.7 0.2 0.4 4 3.4 2.9 3.1
SYYX 5.2 4.4 4.7 4 0.4 0.1 0.3 2 3.0 2.5 2.8
XTHT 9.3 4.5 5.2 17 0.7 0.3 0.4 2 3.9 2.8 3.1
YJMD 5.4 3.6 4.4 5 1.4 0.1 0.3 7 3.9 2.1 2.7

Yangzhou
BSZS 8.0 4.4 6.1 42 2.2 0.9 1.1 49 5.0 3.5 4.0
BCSD 7.4 4.2 5.0 18 1.9 1.0 1.4 62 4.6 3.6 4.0
SYDG 6.5 2.9 3.9 8 0.7 0.2 0.5 7 3.6 2.3 2.8

* overproof rate: portion of observed water quality data inferior to Grade III.
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3.2. Periodic Variation of Water Quality

CWT was employed to the CWQI time series of each station to analyze its periodic characteristics.
The CWT results of some stations are presented in Figure 3, and the characteristic period of each station
is summarized in Table 5. At a 95% confidence level, the CWQI of each station has a significant period
in the time-frequency domain.
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Figure 3. Results of continuous wavelet transform (CWT) of CWQI at six representative stations,
(a) HGAF, (b) XGSG, (c) XTBM, (d) GGDG, (e) YJMD, (f) BSZS. Red and blue represent the peak and
valley values of energy density respectively, and the color shade represents the relative strength of
energy density. The closed area of the black thick solid line has passed the red noise test of the 95%
confidence level. The cone area under the black thin solid line is the wavelet influence cone (COI),
which indicates the area with great influence of data edge.

In northern Taizhou, CLDY, SGSX, and XGSG have a period of 10–12 months, and the periodic
occurrence of each station is different; HGAF has a period of 21–30 months (2005–2008). In southern
Taizhou, LTZZ, TDQT, and XTBM have a period of 21–25 months (2005–2008), and XTLT has a
period of 2–8 months (2005–2007). In the Yancheng area, GGDG, SYYX, and YJMD have a period
of 10 months, and the periods of occurrence of each station are different. XTHT has a period of
30–36 months (2006–2008). In the Yangzhou area, BSZS and SYDG have a 13-month cycle (2005–2007);
SYDG has a 4–7-month cycle (2005–2006). In general, the CWQI of each station contains multi-scale
significant periodic fluctuations of 3–59 months, and the seasonal variation of 12 months is significant
at most stations.
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Table 5. The characteristic periods of CWQI.

Region Monitoring
Stations Characteristic Periods

Taizhou

CLDY
Time 2010–2012 2012–2013 2015 - -

Period (month) 10–13 2–5 2–4 - -

HGAF
Time 2004–2005 2005–2008 2008–2009 2013–2014 2016

Period (month) 2–6 21–30 2–4 4–6 2–4

LTZZ
Time 2005–2007 2010–2012 2012 2012–2013 2016–2017

Period (month) 18–25 10–15 2–5 6–7 2–6

SGSX
Time 2007–2009 2008–2010 2012–2013 2016–2017 -

Period (month) 5–7 9–14 6 2–8 -

TDQT Time 2005–2008 2007–2008 2010–2011 2015 2016
Period (month) 21–30 5–7 6–7 4–5 2–7

XGSG
Time 2005–2008 2006–2008 2012 2014 2016

Period (month) 4–16 2–5 2–5 2–4 2–4

XTBM
Time 2005–2009 2007–2009 2012–2013 2014 2015–2016

Period (month) 18–31 9–13 2–6 5–7 2–5

XTLT
Time 2005–2007 2013 2016 - -

Period (month) 2–8 2–3 2–4 - -

Yancheng

GGDG
Time 2007–2008 2008–2015 2016–2017 - -

Period (month) 2–6 10–16 6–7 - -

SYYX
Time 2007 2008–2009 2015–2016 2016 -

Period (month) 2–5 6–7 9–14 4–6 -

XTHT
Time 2006–2008 2012 2015–2016 - -

Period (month) 30–36 2–4 2–5 - -

YJMD Time 2006–2007 2008 2011 - -
Period (month) 2–10 6–7 2–4 - -

Yangzhou

BSZS
Time 2005–2007 2012–2013 2012–2013 2016 -

Period (month) 10–15 2–5 11–15 5–6 -

BCSD
Time 2003–2005 2007 2009–2010 2010–2012 2012–2013

Period (month) 4–9 13 6–8 46–59 2–5

SYDG
Time 2003–2004 2005–2006 2007–2008 2011 2016

Period (month) 6–7 4–7 6–7 7 2–6

3.3. Long-Term Trends of Water Quality

Long-term trends of water quality were investigated by applying the Mann–Kendall trend test
and Sen’s slope estimator on the CWQI. The CWQI of 7 out of 15 monitoring stations has a significant
decreasing trend (Table 6). In the Taizhou area, the trend of the CWQI of XTLT is the most significant,
showing a rapid decreasing trend, with a trend slope to be −0.056/yr, and the water quality is greatly
improved; at SGSX, TDQT, LTZZ, and XGSG, the CWQI variation shows a very significant decreasing
trend, with the trend slope to be between −0.046/yr and −0.023/yr, and the water quality is significantly
improved. The CWQI variation of CLDY, HGAF, and XTBM is not significant. In the Yancheng area,
the trend of CWQI variation is not significant. In the Yangzhou area, the trend of CWQI of BSZS is
the most significant, showing a rapid decreasing trend, with the trend slope to be −0.071/yr, which
indicates the water quality improvement by one grade in 15 years, and the water quality is greatly
improved. The CWQI of SYDG shows a very significant decreasing trend, with the trend slope to be
−0.037/yr, and the water quality is obviously improved. The CWQI variation of BCSD is not significant.

The trend slope of CWQI ranges from −0.071/yr to 0.007/yr, and two-thirds of the monitoring
stations have a negative trend slope, indicating that the water quality of rivers in the Lixiahe abdominal
area is gradually improving, but the spatial difference is large (Figure 4). The water quality of XTLT,
TDQT, SGSX, LTZZ, and XGSG in the Taizhou area and SYDG and BSZS in the Yangzhou area, which
are located in the main channels of water diversion, has been significantly improved, while in the
Yancheng area, which is located downstream of the water diversion, the improvement on water quality
is not significant. The water quality of the XTBM in the southeastern area, HGAF and GGDG in
the eastern area, and BCSD in the western area, which cannot be reached by the diversion water,
even shows a trend of deterioration.
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Table 6. The trend and trend slope of the CWQI.

Region Monitoring Stations Zs Value Annual Trend Slope Tendency Significance

Taizhou

CLDY −0.897 −0.007 Decrease Not significant
HGAF 0.739 0.006 Increase Not significant
LTZZ −2.734 −0.026 Decrease Significant
SGSX −4.267 −0.042 Decrease Significant
TDQT −2.985 −0.035 Decrease Significant
XGSG −3.144 −0.023 Decrease Significant
XTBM 0.170 0.002 Increase Not significant
XTLT −4.015 −0.056 Decrease Significant

Yancheng

GGDG 0.964 0.007 Increase Not significant
SYYX −0.685 −0.005 Decrease Not significant
STHT −1.851 −0.014 Decrease Not significant
YJMD −1.549 −0.013 Decrease Not significant

Yangzhou
BSZS −6.245 −0.071 Decrease Significant
BCSD 0.510 0.007 Increase Not significant
SYDG −2.854 −0.037 Decrease Significant

Water 2020, 12, 1694 10 of 17 

 

SYYX −0.685 −0.005 Decrease Not significant 
STHT −1.851 −0.014 Decrease Not significant 
YJMD −1.549 −0.013 Decrease Not significant 

Yangzhou 
BSZS −6.245 −0.071 Decrease Significant 
BCSD 0.510 0.007 Increase Not significant 
SYDG −2.854 −0.037 Decrease Significant 

 
Figure 4. Spatial variation of trend slope of the CWQI. 

4. Possible Causes of Water Quality Variation 

The temporal and spatial variation of water quality is closely related to the discharge and 
accumulation of pollutants, the local water resources from precipitation, and the amount of water 
from external sources. Therefore, the following discussion focuses on the impact of water pollutant 
input, water level, and the amount of diversion water on water quality. 

4.1. Input of Regional Water Pollutants 

It is not easy to obtain the regional short-term pollutant input; thus, the annual load of four main 
indicators (CODMn, NH3-N, TN, and TP) of the Lixiahe abdominal area was calculated according to the 
Jiangsu Statistical Yearbook (Figure 5). During 2003–2017, the discharge of CODMn and TP increased by 
54% and 39% respectively, while the increase in NH3-N and TN was slightly smaller, 27% and 24%. The 
growth rate of point source pollutants from industrial and municipal wastewater emissions is about 
35%. The main point source pollutant inputs are CODMn and TP, and the amount of NH3-N and TN is 
relatively small. Among the non-point source pollutants, the growth rate of CODMn and TP is relatively 
large, 70% and 47% respectively, and the growth rate of NH3-N and TN is relatively small, about 24%. 
In general, with the booming of the social economy, the main pollutants discharged to river water have 
increased significantly, which may induce water environment deterioration. 

4.2. Correlation Analysis of Water Quality and Water Level 

The water level reflects the amount of water in the area, which is influenced by multi-processes 
of precipitation, water diversion, and drainage, and it has an important impact on the water quality. 
The correlation of the CWQI and water level of each station are analyzed by XWT and WTC analysis 

Figure 4. Spatial variation of trend slope of the CWQI.

4. Possible Causes of Water Quality Variation

The temporal and spatial variation of water quality is closely related to the discharge and
accumulation of pollutants, the local water resources from precipitation, and the amount of water from
external sources. Therefore, the following discussion focuses on the impact of water pollutant input,
water level, and the amount of diversion water on water quality.

4.1. Input of Regional Water Pollutants

It is not easy to obtain the regional short-term pollutant input; thus, the annual load of four main
indicators (CODMn, NH3-N, TN, and TP) of the Lixiahe abdominal area was calculated according to the
Jiangsu Statistical Yearbook (Figure 5). During 2003–2017, the discharge of CODMn and TP increased
by 54% and 39% respectively, while the increase in NH3-N and TN was slightly smaller, 27% and 24%.
The growth rate of point source pollutants from industrial and municipal wastewater emissions is
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about 35%. The main point source pollutant inputs are CODMn and TP, and the amount of NH3-N and
TN is relatively small. Among the non-point source pollutants, the growth rate of CODMn and TP is
relatively large, 70% and 47% respectively, and the growth rate of NH3-N and TN is relatively small,
about 24%. In general, with the booming of the social economy, the main pollutants discharged to river
water have increased significantly, which may induce water environment deterioration.

Water 2020, 12, 1694 11 of 17 

 

by identifying the resonance period. The XWT and WTC reflect the resonance signal characteristics 
and the correlation coefficient of the CWQI and water level in the high-energy area and low-energy 
area, respectively. The results of XWT and WTC analysis at some stations are shown in Figure 6, and 
the correlation between the CWQI and water level at each station is summarized in Table 7. 

In the Taizhou area, except for HGAF, the CWQI and water level of the other seven stations have 
a resonance period of 12–14 months, CLDY, LTZZ, and XTLT have positive correlations, XGSG and 
XTBM have negative correlations, SGSX has negative and positive correlations in the high-energy area 
and low-energy area respectively, TDQT has a transition from negative correlation to positive 
correlation in the high-energy area and positive correlation in the low-energy area. In the Yancheng 
area, there is a 12–14-month resonance period between the CWQI and water level at four monitoring 
stations, GGDG and YJMD have positive correlations, XTHT has a negative correlation, SYYX has 
positive and negative correlations in the high-energy area and low-energy area, respectively. In the 
Yangzhou area, there are 12–14-month resonance periods between the CWQI and water level of three 
monitoring stations, BSZS and BCSD have a negative correlation, and SYDG has a positive correlation. 

In general, the CWQI has a resonance period of about 12 months with water level, with positive 
correlation accounting for 62% and negative correlation accounting for 38%. The change of correlation 
in different periods is mainly related to the water level being affected by multiple factors, such as 
local water resources, water diversion, and drainage. The increase in local water recourse due to 
precipitation induces the water level rise and water quality deterioration with an increase in the 
CWQI, due to large amount of non-point source pollutants entering the river with rainfall runoff. The 
increase in diversion water leads to water level rise and water quality improvement with an increase 
in the CWQI. Hence, the CWQI and water level is mainly negatively correlated in the wet season, 
when the water resource is mainly from rainfall runoff, while the CWQI and water level is mainly 
positively correlated in the dry season, when the water resource is mainly from water diversion. 

 

Figure 5. Temporal variation of annual load of four main pollutants, (a) CODMn, (b) NH3-N, (c) TN, 
and (d) TP, discharged to the river water of the Lixiahe abdominal area. 

Figure 5. Temporal variation of annual load of four main pollutants, (a) CODMn, (b) NH3-N, (c) TN,
and (d) TP, discharged to the river water of the Lixiahe abdominal area.

4.2. Correlation Analysis of Water Quality and Water Level

The water level reflects the amount of water in the area, which is influenced by multi-processes
of precipitation, water diversion, and drainage, and it has an important impact on the water quality.
The correlation of the CWQI and water level of each station are analyzed by XWT and WTC analysis by
identifying the resonance period. The XWT and WTC reflect the resonance signal characteristics and
the correlation coefficient of the CWQI and water level in the high-energy area and low-energy area,
respectively. The results of XWT and WTC analysis at some stations are shown in Figure 6, and the
correlation between the CWQI and water level at each station is summarized in Table 7.

In the Taizhou area, except for HGAF, the CWQI and water level of the other seven stations have
a resonance period of 12–14 months, CLDY, LTZZ, and XTLT have positive correlations, XGSG and
XTBM have negative correlations, SGSX has negative and positive correlations in the high-energy
area and low-energy area respectively, TDQT has a transition from negative correlation to positive
correlation in the high-energy area and positive correlation in the low-energy area. In the Yancheng
area, there is a 12–14-month resonance period between the CWQI and water level at four monitoring
stations, GGDG and YJMD have positive correlations, XTHT has a negative correlation, SYYX has
positive and negative correlations in the high-energy area and low-energy area, respectively. In the
Yangzhou area, there are 12–14-month resonance periods between the CWQI and water level of three
monitoring stations, BSZS and BCSD have a negative correlation, and SYDG has a positive correlation.
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Figure 6. Results of XWT (a) and WTC (b) of CWQI and water level at six representative stations.
The color scale on the right side of the figure represents the density of the cross wavelet power spectrum,
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one-quarter of a cycle.
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Table 7. Correlation between the CWQI and water level.

Region
Monitoring

Stations

High-Energy Area Low-Energy Area

Resonance
Period (Month) Time Phase

Relationship
Resonance

Period (Month) Time Phase
Relationship

Correlation
Coefficient

Taizhou

CLDY
10–14 2009–2013 → 4–7 2005–2007 ↑ 0.8
10–14 2013–2016 → 8–16 2010–2015 → 0.8

HGAF 11–13 2008 ← 1–4 2016–2017 ↑ 0.9

LTZZ
10–14 2004–2006 ↑ 4–7 2006–2007 → 0.8
9–15 2007–2013 → 39–50 2007–2012 → 0.7

11–14 2014–2016 → 8–20 2011–2016 → 0.9

SGSX
10–14 2007–2011 ← 2–6 2011 → 0.8

- - - 10–14 2012–2015 → 0.7

TDQT
10–15 2006–2009 ← 10–13 2007–2009 ← 0.7
11–15 2014–2016 → 27–32 2005–2007 ↑ 0.8

- - - 12–26 2013–2016 → 0.9

XGSG
9–16 2004–2009 ← 10–16 2005–2009 ← 0.8

- - - 43–57 2007–2009 ← 0.7

XTBM
10–13 2004–2005 → 8–16 2008–2010 ← 0.8
9–15 2007–2011 → - - - -

XTLT
9–14 2004–2008 ↓ 40–52 2007–2010 ← 0.7

10–15 2010–2016 → 8–16 2011–2016 → 0.9

Yancheng

GGDG
10–15 2009–2013 → 2–8 2004–2006 → 0.9
12–14 2013–2016 → 8–14 2008–2013 → 0.8

SYYX
11–15 2004–2009 ← 20–30 2005–2006 ← 0.8
10–15 2009–2012 ↓ 9–18 2004–2012 ← 0.9
11–14 2014–2016 → - - - -

XTHT
11–14 2004–2006 ← 12–13 2004–2005 ← 0.7
12–14 2008–2010 ← 12–14 2011–2014 ← 0.7

- - - 12–20 2015–2016 ↓ 0.8

YJMD 12–14 2014–2016 → 1–9 2009–2012 → 0.9
- - - 10–16 2011–2016 → 0.8

Yangzhou

BSZS
9–15 2004–2009 ← 8–15 2005–2009 ← 0.9

11–14 2011–2015 ← 21–31 2011–2014 → 0.8
- - - 11–14 2012–2016 ← 0.8

BCSD 9–15 2004–2010 ← 9–16 2004–2012 ← 0.9

SYDG
11–13 2010–2011 → 1–6 2005–2007 ↑ 0.9
12–15 2014–2016 → 12–15 2015–2016 → 0.8

In general, the CWQI has a resonance period of about 12 months with water level, with positive
correlation accounting for 62% and negative correlation accounting for 38%. The change of correlation
in different periods is mainly related to the water level being affected by multiple factors, such as
local water resources, water diversion, and drainage. The increase in local water recourse due to
precipitation induces the water level rise and water quality deterioration with an increase in the CWQI,
due to large amount of non-point source pollutants entering the river with rainfall runoff. The increase
in diversion water leads to water level rise and water quality improvement with an increase in the
CWQI. Hence, the CWQI and water level is mainly negatively correlated in the wet season, when the
water resource is mainly from rainfall runoff, while the CWQI and water level is mainly positively
correlated in the dry season, when the water resource is mainly from water diversion.

4.3. Correlation Analysis of Water Quality and Amount of Diversion Water

The Lixiahe abdominal area is in the upstream section of south-to-north water diversion from the
Yangtze River in Jiangsu Province. Thus, the water quality of the area is improved by introducing the
good-quality Yangtze River water. The correlation of the CWQI and water diversion volume of each
station is analyzed by XWT and WTC analysis, by identifying the resonance period. The results of XWT
and WTC analysis of the CWQI and water diversion volume at some stations are shown in Figure 7.
The correlation between the CWQI and diversion water at each station is summarized in Table 8.
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In the Taizhou area, except for the high-energy area of HGAF, there is a resonance period of
11–12 months for the CWQI and water diversion volume of each station; CLDY, HGAF, LTZZ, SGSX
and TDQT have inverse correlation, the CWQI of XGSG lags behind the water diversion volume by
one-quarter of a cycle, while XTBM and XTLT have different correlation in the high-energy area and
low-energy area. In the Yancheng area, there is a 12–13-month resonance period between the CWQI
and water diversion volume at four monitoring stations. Here, XTHT has positive correlation, GGDG
and YJMD have negative correlation, SYYX has different correlations in the high-energy area and
low-energy area. In the Yangzhou area, the resonance period of the CWQI and water diversion volume
of three monitoring stations is 12–14 months, BSZS has a positive correlation, SYDG has a negative
correlation, and the CWQI of BCSD lags behind the water diversion volume by one-quarter of a cycle.
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Figure 7. Results of XWT (a) and WTC (b) of the CWQI and the amount of diversion water at six
representative stations. The color scale on the right side of the figure represents the density of the cross
wavelet power spectrum, and the arrow direction reflects the phase relationship between the CWQI
and water level: ‘→ ’ represents the same phase, ‘← ‘ represents the opposite phase, ‘↓ ‘ represents
that the CWQI lags behind the water level by one-quarter of a cycle, and ‘↑ ‘ represents that the CWQI
advances the water level by one-quarter of a cycle.
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Table 8. Correlation between the CWQI and the amount of diversion water.

Region
Monitoring

Stations

High-Energy Region Low-Energy Region

Resonance
Period (Month) Time Phase

Relationship
Resonance

Period (Month) Time Phase
Relationship

Correlation
Coefficient

Taizhou

CLDY
10–13 2013–2015 ← 1–7 2004–2007 ← 0.9

- - - 8–16 2011–2015 ← 0.8

HGAF 5–7 2013–2014 ↑ 8–16 2012–2015 ← 0.8

LTZZ

12–14 2011–2012 ← 3–7 2005–2008 ← 0.9
11–15 2015–2016 ← 5–8 2009–2013 ← 0.9

- - - 11–32 2014–2016 ← 0.8
- - - 2–7 2015–2016 ← 0.8

SGSX
11–14 2008–2010 ↓ 4–7 2007–2011 ← 0.9

- - - 11–15 2008–2010 ↓ 0.7
- - - 11–25 2012–2016 ← 0.9

TDQT
12–13 2007–2008 ↓ 4-8 2005–2007 ← 0.9

2–7 2014–2016 ← 4–31 2007–2016 ← 0.9
12–14 2015–2016 ← - - - -

XGSG 10–15 2005–2008 ↓ 10–16 2004–2008 ↓ 0.8

XTBM
10–13 2007–2009 → 9–14 2008–2011 → 0.9

- - - 4–8 2013–2016 ← 0.8

XTLT
4–7 2005–2007 ← 1–8 2004–2013 ← 0.9

11–12 2005–2007 → 10–18 2012–2016 ← 0.9
12–15 2015–2016 ← - - - -

Yancheng

GGDG
11–16 2008–2016 ← 10–16 2010–2014 ↑ 0.8

- - - 18–27 2005–2012 ← 0.9

SYYX
11-14 2014–2016 ← 5–8 2007–2009 ← 0.9

- - - 10–14 2007–2009 → 0.8
- - - 5–8 2013–2014 ← 0.9

XTHT
12–14 2009–2010 → 11–14 2004–2005 → 0.8

- - - 11–16 2009–2011 → 0.7
- - - 10–13 2013–2014 → 0.7

YJMD 12–14 2014–2016 ← 4–7 2008–2010 ← 0.9
- - - 9–15 2012–2016 ← 0.8

Yangzhou

BSZS
11–14 2005–2008 → 10–16 2004–2009 → 0.9
12–14 2012–2014 → 12–16 2012–2013 → 0.7

BCSD
4–8 2004–2006 ← 1–15 2003–2007 ← 0.9

12–14 2005–2008 ↓ 12–14 2010–2012 → 0.7

SYDG
4–7 2005–2007 ← 1–8 2004–2009 ← 0.9
2–7 2014–2016 ← 2–8 2010–2014 ← 0.9

12–15 2015–2016 ← 2–15 2014–2016 ← 0.8

In general, there is a resonance period of about 12 months between the CWQI and water diversion
volume at each monitoring station. Two-thirds of the 15 monitoring stations are located in the main
channels of water diversion and nearby rivers, and one-third is far away from the main channels of
water diversion. The CWQI of the monitoring stations at the water diversion route and its nearby river
is inversely related to the water diversion volume. The larger the water diversion volume, the better
the water quality. The water diversion from the Yangtze River plays an important role in improving
the regional water environment.

Due to the complexity of the water quality variation and the limitation on the methodology, this
study was qualitative when assessing the possible causes of water quality variation. Nevertheless,
water diversion is proved to be an important contributor to improving the regional water environment.
Further work is required to investigate the quantitative relationship between the water quality and
intensity and duration of water diversion to provide scientific guidance on the optimization of water
diversion operation.

5. Conclusions

From 2003 to 2017, the water quality variation in the Lixiahe abdominal area contains multi-scale
periodic fluctuations of 3–59 months, and the seasonal variation of 12 months is significant at most
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stations. The CWQI of 7 out of 15 monitoring stations has a significant decreasing trend, and the trend
slope ranges from −0.071/yr to 0.007/yr. The water quality of the main routes of the water diversion
and the nearby rivers has significantly improved, while the water quality of rivers far away from
the main routes, which is less affected by the water diversion, has no obvious improvement, or even
becomes worse.

The CWQI and water level is mainly positively correlated in the wet season, when the water
resource is mainly from rainfall runoff that brings many non-point pollutants, while the CWQI and
water level are mainly inversely correlated in the dry season, when the water resource is mainly from
water diversion from the Yangtze River. The CWQI and the water diversion volume are inversely
related at monitoring stations in the main routes of water diversion and its nearby river. Hence, water
diversion plays an important role in improving the regional water environment.

With the booming of the social economy in the Lixiahe abdominal area, the main pollutants
discharged to river water have increased, but the water quality has generally improved, especially in
the main routes of water diversion and its nearby rivers, due to the water diversion from the Yangtze
River. Hence, the key to regional water environment improvement lies in the systematic control of
point and non-point source pollutants and the optimization of water diversion operation.
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Abstract: Dry rivers could be effectively recovered by reclaimed water in North China, while river
water quality would be an important issue. Therefore, it is important to understand the spatiotemporal
variation and controlling factors of river water. Water samples were collected during March, May,
July, September, and November in the year 2010, then 20 parameters were analyzed. The water
environment was oxidizing and alkaline, which was beneficial for nitrification. Nitrate was the
main nitrogen form. Depleted and enriched isotopes were found in reclaimed water and river water,
respectively. Total nitrogen (TN) and total phosphorus (TP) of reclaimed water exceed the threshold
of reclaimed water reuse standard and Class V in the surface water quality criteria. Most river water
was at the severe eutrophication level. The sodium adsorption ratio indicated a medium harmful level
for irrigation purpose. Significant spatial and temporal variation was explored by cluster analysis.
Five months and nine stations were both classified into two distinct clusters. It was found that 6
parameters (chloride: Cl−, sulphate: SO4

2−, potassium: K+, sodium: Na+, magnesium: Mg2+, and
total dissolved solids: TDS) had significant upward temporal variation, and 12 parameters (dissolved
oxygen: DO, electric conductivity: EC, bicarbonate: HCO3

−, K+, Na+, Ca2+, TDS, nitrite-nitrogen:
NO2-N, nitrate nitrogen: NO3-N, TN, TP, and chlorophyll a: Chl.a) and 4 parameters (Mg2+, ammonia
nitrogen: NH3-N, and the oxygen-18 and hydron-2 stable isotope: δ18O and δ2H) had a significant
downward and upward spatial trend, respectively. The Gibbs plot showed that river water chemistry
was mainly controlled by a water–rock interaction. The ionic relationship and principal component
analysis showed that river water had undergone the dissolution of carbonate, calcite, and silicate
minerals, cation exchange, a process of nitrification, photosynthesis of phytoplankton, and stable
isotope enrichment. In addition, gypsum and salt rock have a potential dissolution process.

Keywords: water chemistry; river water; reclaimed water; multivariate statistics; Chaobai River

1. Introduction

North China has been facing serious water resources shortage in recent decades, as a result
of continual drought, large consumption of water resources, water pollution, and economic
development [1,2]. The groundwater table continued to decline and many rivers have been cut
off or dried up for years [3]. Beijing as the capital of China, i.e., a big city located in North China,
has also been facing massive water shortage. Multi-year average precipitation and evaporation are
about 590 mm and 1800 mm, respectively [4,5]. Surface water resources of Beijing was 7.22 × 108 m3,
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and 14.32 × 108 m3 in the year 2010 and 2018, respectively [4]. In 2018, the inflow to Beijing from
the middle route of the South-to-North Water Diversion Project was 11.92 × 108 m3. Consumption
of Beijing water resources was 35.2 × 108 m3 and 39.3 × 108 m3 in 2010 and 2018, respectively. Then,
the shortage gap was satisfied by excessive use of groundwater. At the same time, utilization of
reclaimed water rapidly increased from 2010 (6.8 × 108 m3) to 2018 (10.8 × 108 m3) [4,5]. Now,
reclaimed water has become the “stable second water source of Beijing”, which was used for industry
reuse, agricultural irrigation, river and lake landscape, and municipal utility [6]. As reclaimed water
originated from treated wastewater, water quality was significantly different from natural surface
water. High and complex content of salinity, nutrients (nitrogen and phosphorus), metals, and organic
matter were remarkable features of reclaimed water. This could lead to soil salination [7], accumulation
of heavy metals [8], groundwater pollution risk [9,10], antibiotics risk [11], and nutrient load in surface
water [12].

Therefore, an understanding of water quality is very important for better use of reclaimed
water. At present, chemometrics and multivariate statistics could provide powerful exploration
for revealing water chemistry/quality characteristics. The Gibbs plot was depicted by drawing the
relationship of the major ion ratio vs. total dissolved solids (TDS) of water, which included major
rivers, rainfall, and seawater in the world [13]. It was powerful to determine the controlling
mechanisms, which contained natural processes (atmospheric precipitation, rock weathering,
and evaporation–crystallization) and anthropogenic activities [14]. A complex interaction among
lithosphere, atmosphere, hydrosphere, and biosphere usually caused lithological weathering, which was
the source of river water chemistry [14–16]. Stoichiometric analysis, e.g., the relationship of different
combinations of dissolved cations and anions, could provide qualitative sources of ions in river
water, such as evaporites, carbonates, and silicates [17–19]. Multivariate statistical analyses are
particularly useful to explore the water chemistry/quality data set. Correlation analysis is powerful
to interpret the relationship of water quality data and to infer specific water chemical processes [20].
The inner characteristics and distribution rule of water quality could be explored using a cluster
analysis, and the similarity and dissimilarity also can be clarified. It usually contains a cluster
of water chemical variables and samples. Consequently, ionic transformation and spatiotemporal
variation could be clearly delineated [21,22]. Analysis of variance can be used to identify whether
the difference of water parameters is significant, furtherly the spatiotemporal variation could be
ascertained quantificationally [23]. Water quality has an extent of random and uncertainty, which will
increase the difficulty of understanding the data. By dimensionality reduction of a large amount of data,
the principal component analysis could determine the key water quality parameters, which are used to
identify pollutant sources and the transforming mechanism of water chemistry [24,25]. In the past,
research of river water quality mainly focused on natural rivers or rivers polluted by different sources
of pollutants. Less studies were performed on rivers mainly replenished by reclaimed water. Generally,
the single research method was usually applied to explore the river water quality. In this study,
we try to combine the application of chemometrics and multivariate statistics methods for river water
quality. So, the problem of river water quality/chemistry, e.g., the relationship of different water quality
parameters, spatiotemporal variation, and evolution of water chemistry, could be quantitatively solved.
Therefore, the combination of chemometrics and multivariate statistics would be more effectively to
clarify the water chemical composition and governing factors. This study would provide sufficient
suggestions for reclaimed water reuse and management of river water quality, even for water quality
control issues of discharge from wastewater treatment plants.

For recovery of the dry Chaobai River, reclaimed water with a flow of 1.0 × 105 m3/d, treated from
Wenyu River water using membrane bioreactor technology, was moved to Chaobai River for ecological
implementation. So, we researched the water quality of reclaimed water and river water for better use
of reclaimed water. The main objectives of our study are (1) to understand the physical and chemical
composition of reclaimed water and river water; (2) to clarify the spatial and temporal variation of
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water parameters; and (3) to ascertain the governing factors of water chemical evolution in the Chaobai
River replenished by reclaimed water.

2. Materials and Methods

2.1. Study Site

The study site, located on the northeast of Beijing city, is the water course in Shunyi County,
belonging to Chaobai River (Figure 1). The climate here has a seasonal temperature with a semi-humid
monsoon climate with four distinct seasons. The multi-annual average temperature, annual rainfall,
and evaporation are 11.8 ◦C, 614.9 mm, and 1175 mm, respectively. Meanwhile, the precipitation was
concentrated mostly from June to September [26].
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Chaobai River has been dry as a result of continual dry weather and the impoundment of
the Miyun Reservoir since 1999, which belongs to the Quaternary Holocene alluvial–diluvial strata.
The riverbed is mainly composed of fine sand, silt, and gravel layers. The thickness of the sand
layer is generally from ten to a few dozen meters. Floodplain and terraces on both banks of the river
channel are loam and sand [26]. While, Wenyu River (Figure 1) near the Chaobai River always has
water flow throughout the year, which is mainly composed of domestic wastewater from surrounding
communities. Wastewater in Wenyu River was treated using membrane bioreactor technology (MBR).
Consequently, treated wastewater (reclaimed water) was transported to the Jian River (length: 4 km
and width: 50–90 m; tributary of Chaobai River) by a water pipeline since the year 2007 [27]. Then,
the Chaobai River channel from dam B to dam D was replenished by reclaimed water with a flow
of 2.5 m3/s. Meanwhile, river flows freely through dam C. Most reclaimed water was stored in this
section of the river as a result of the dams, except for evaporation and infiltration. The main channel of
the river has a length of 7.3 km, width of 200–400 m, and average water depth of 2.5 m. River water
flow was also changed by the dams after the replenishment of reclaimed water. One direction was the
original river flow, i.e., southeast (to SY09), the other was northeast (to SY04; Figure 1).
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2.2. Methods

2.2.1. Water Sampling

For investigating the water quality and controlling factors of river water replenished by reclaimed
water in the Chaobai River, samples of reclaimed water and river water along the river channel were
collected during March, May, July, September, and November in 2010. Nine monitoring stations
(SY01–SY09) are shown in Figure 1, which included one reclaimed water and eight river water
stations. In addition, one sample of reclaimed water in March was missed. Sample bottles with
different volumes (100 mL and 500 mL) were made of polyethylene. The bottles were cleaned once
with detergent, then cleaned once with tap water, and finally cleaned with deionized water 3 times.
Water samples were collected at a depth of 50 cm below the river water surface using a plexiglass
water collector. Three bottles of the water sample were collected for each monitoring station every
time. The polyethylene bottles were prerinsed with water samples three times, before the final water
sample was collected. The sampling frequency was five times for one year, and the sampling time
was from 9:00 am to 5:00 pm. Three bottles of samples were collected at each station. The 100 mL
sample was used for the determination of water stable isotopes, and the cap of the bottle was sealed
with tape to prevent evaporation. A sample of 500 mL for the determination of anions, cations,
nitrogen, and phosphorus was used and another sample of 500 mL was used for chlorophyll a (Chl. a)
determination. All samples were stored in a portable cooler containing ice packs under 4 ◦C.

The precipitation data was measured using the tipping bucket automatic rain sensor (CG-04-D1,
Hebei Yiqing Electronic Technology Company, Handan, China) on the roof of the Geographical Science
Museum of the Institute of Geographical Sciences and Natural Resources Research, Chinese Academy
of Sciences (40◦00′11” N, 116◦23′07” E, 45 m above sea level, about 10 m above the ground) from
January to December 2010. This sampling point was 28 km from the study area in a straight line.
A total of 17 precipitation events were collected, with a total precipitation of 412.7 mm. Then, monthly
distribution data of precipitation in 2010 was obtained by accumulating precipitation events into
the month.

2.2.2. Analytical Techniques

pH, water temperature (T, ◦C), dissolved oxygen (DO), and electric conductivity (EC) were
measured by the portable multi-parameter water quality analyzer (American Hach HQ-40d), which
was produced by HACH Company (Loveland, CO, USA). Water samples were taken back to the
laboratory under 4 ◦C cold storage and analyzed within 24 h. The bicarbonate (HCO3

−) was
determined by titration under the addition of sulfuric acid (0.02 mol/L), which the endpoint of titration
had methyl orange as an indicator. Before further ionic analysis, water samples were filtered through
a 0.45 µm Millipore membrane. Major cations including potassium (K+), sodium (Na+), calcium
(Ca2+), and magnesium (Mg2+) were measured by inductively coupled plasma spectroscope (ICP-OES
Optima 5300DV), produced by Perkinelmer Instruments Co., LTD (Norwalk, Connecticut, USA), with
a detection limit of 0.01 mg/L. Major anions including chloride (Cl−), sulphate (SO4

2−), and nitrate
(NO3

−) were measured by ion chromatograph (Thermo Fisher ICS2100) produced by the DIONEX
company (Sunnyvale, CA, USA), and the detection limit was 0.01 mg/L. Ammonia nitrogen (NH3-N),
nitrite nitrogen (NO2-N), total nitrogen (TN), and total phosphorus (TP) were measured using AMS’s
Smartchem 200 batch analyzer produced by Alliance company (Paris, France), with a detection limit of
0.01 mg/L. Stable isotopes (δ2H and δ18O) were measured by a laser spectroscopic instrument (LGR
DLT-100, Los Gatos Research, Mountain View, CA, USA), with the standard of Vienna standard mean
ocean water (VSMOW). The precisions of δ18O and δ2H were 0.2‰ and 0.6‰, respectively. TDS was
measured by the gravimetric method. The filtered water sample (200 mL) was placed in an evaporating
dish weighed to a constant weight, and then baked to a constant weight at 103 ~ 105 ◦C. The TDS
value was calculated by the increased weight [28]. The collected chlorophyll a (Chl. a) sample samples
were stored at 4 ◦C, and 1 mL of 1% magnesium carbonate suspension was added to each liter of water
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samples to prevent pigmentation caused by acidification. In the laboratory, samples were filtered and
concentrated, and the filter membrane was fully grinded and extracted, then dissolved in acetone to a
constant volume, and finally the supernatant was measured by spectrophotometry. These experimental
details were referred from the analytical book [28].

2.3. Data Processing

Data of the major ions need to be balanced with an error of less than 5% before further analysis.
The summary statistics (e.g., mean, max, min, and coefficient of variation) of water chemistry were
performed by the descriptive statistics package in SPSS 16.0 software (International Business Machines
Corporation, Armonk, NY, USA) [29]. Analysis of variance (ANOVA), hierarchical cluster analysis
(HCA), and principal component analysis (PCA) were all performed by SPSS [29]. Analysis of variance
needs two assumptions about the data, which includes normal distribution and homogeneity of
variance, respectively. These two parameters could be judged by the coefficients of skewness and
Kurtosis, and Levene. The data could be considered to obey the hypothesis of normal distribution
and homogeneity of variance, if the p value was more than 0.05 (p > 0.05). PCA is a way of selecting
factors belonging to the factor analysis. Whether the data are suitable for factor analysis, it could be
identified by KMO (Kaiser–Meyer–Olkin) and its significance (sig.) level test. If the KMO test value
is greater than 100 and p < 0.05, then PCA could be performed. Respect to hierarchical clustering,
especially for R-type, the data need to be standardized for avoiding the difference of dimension and
orders of magnitude for variables [29]. The normality of water quality data was checked firstly by
SPSS 16.0 software [29]. Then, all the data (except pH) were log-transformed and standardized before
further analysis [30,31].

In addition, index, i.e., R2 was used for judging the selection of key variable in HCA, that was
calculated as follows:

R2 =

∑
r2

m− 1
(1)

where, r2 represents the correlation coefficient between different variables in clusters, and m represents
the number of variables in one cluster.

Meanwhile, PHREEQC (Version 3, United States Geological Survey) is a hydrogeochemical
simulation software based on C language [32]. It is mainly used to solve the analysis of chemical
components, solute transport, and dynamic chemical reactions in the interaction system of water, gas,
and rock–soil. The saturation index (SI) of major minerals was calculated by PHREEQC software.

Excessive sodium and salinity in irrigation water would result in sodium hazard. Calcium and
magnesium in soil could be replaced by sodium, which leads to the reduction of permeability and soil
harden [33]. Sodium adsorption ratio (SAR) calculated based on chemical variables was used to assess
irrigation water quality, which was an effective evaluation index [34].

SAR = Na+/
√
(Ca2+ + Mg2+)/2 (2)

where, ionic concentrations are expressed in milliequivalent per liter (meq/L).

3. Results and Discussion

3.1. Water Chemical Composition

Physical and chemical compositions of water samples in the Chaobai River are given in Table 1.
pH ranged from 7.65 to 9.45, with an average value of 8.37, which showed reclaimed water and
river water were all alkaline. The average value in river water was higher than that in reclaimed
water. Water temperature was mainly controlled by the operation of the wastewater treatment plant
(WWTP) and air temperature of seasonal variation. Electric conductivity (EC) and TDS were the similar
parameters indicating the total dissolved solids in aqueous solution, which in reclaimed water were
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both slightly higher than in river water. The order of nitrogen forms in reclaimed water and river
water was: NO3-N > NO2-N > NH3-N, and NO3-N > NH3-N > NO2-N, respectively. The coefficient of
variation (C.V.) of NH3-N and NO2-N was much higher than others. It indicated that they were prone
to chemical transformation in the water environment. Considering the average, higher percentage of
NO3-N /TN in reclaimed water (85%) and river water (78%) indicated nitrate was the major nitrogen
form. The order of anions in reclaimed water was: HCO3

− > SO4
2− > Cl−; while, the order in river

water was: HCO3
− > Cl− > SO4

2−. Whereas, the order of cations (Na+ >Ca2+ >Mg2+ > K+) was the
same in both waters. In terms of the average, seven indicators of river water were higher than in
reclaimed water, which contained pH, Cl−, Mg2+, NH3-N, Chl.a, δ18O, and δ2H. While, the remaining
indexes were the opposite. A reduction of nutrients (NO3-N, NO2-N, TN, and TP) may be caused
by the consumption of phytoplankton or dilution [35,36]. External input from surface runoff in the
rainy season could lead to the increased content of Cl− and Mg2+ [37,38]. Increased ammonia content
may be caused by the mineralization of organic nitrogen [39,40]. High value of Chl.a indicated the
reproduction of phytoplankton, e.g., alga in river water [36]. Stable isotopes (δ18O, δ2H) were depleted
in reclaimed water, while enriched in river water (Table 1), and the similar enrichment phenomenon
was also found in Huai River [10].

Table 1. Water chemical composition of reclaimed water and river water in the Chaobai River
(March–November 2010).

Reclaimed Water River Water

Min. Max. Mean SD C.V. (%) Min. Max. Mean SD C.V. (%)

pH 7.65 8.21 7.93 0.25 3.16 8.08 9.45 8.81 0.41 4.68
T (◦C) 6.90 28.60 21.03 9.65 45.92 1.90 29.70 17.42 10.30 59.12

DO (mg/L) 4.73 8.50 7.33 1.75 23.84 1.25 10.30 6.20 2.50 40.24
EC (µS/cm) 937 1025 982 36.88 3.75 935 1047 859 90.72 10.56
Cl−(mg/L) 72.90 114.00 87.65 18.65 21.27 65.2 148.0 98.15 19.96 20.34

HCO3
−(mg/L) 219.00 299.00 261.75 33.24 12.70 230 386 227.78 49.01 21.52

SO4
2−(mg/L) 81.90 99.50 89.33 7.97 8.92 64.30 120.00 87.04 13.66 15.69

K+(mg/L) 12.90 18.60 16.25 2.83 17.44 6.32 25.80 15.25 4.82 31.60
Na+(mg/L) 80.20 108.00 94.45 11.62 12.30 57.3 135.0 88.46 17.51 19.79
Ca2+(mg/L) 60.10 66.40 63.47 3.17 5.00 23.7 75.2 48.92 12.80 26.17
Mg2+(mg/L) 22.60 28.60 26.00 2.71 10.42 23.3 39.9 29.10 3.43 11.80

NH3-N(mg/L) 0.03 0.11 0.08 0.03 43.92 0.02 1.81 0.38 0.42 109.57
NO2-N(mg/L) 0.22 0.76 0.38 0.26 67.66 0.00 0.74 0.16 0.15 91.60
NO3-N(mg/L) 10.60 19.40 14.75 3.83 25.99 0.03 19.90 7.03 5.95 84.66

TN (mg/L) 11.50 22.10 17.18 4.47 26.01 2.30 20.00 9.62 5.29 54.94
TP (mg/L) 0.44 1.52 1.05 0.46 43.8 0.09 2.76 0.60 0.55 92.00

Chl.a (µg/L) 0.50 3.58 2.03 1.77 87.03 1.96 175.00 58.87 45.18 76.74
TDS (mg/L) 568 655 601 39.35 6.55 419 794 540 80.07 14.82
δ18O (‰) −8.55 −7.25 −7.99 0.63 −7.91 −8.64 −5.14 −6.85 0.98 −14.34
δ2H (‰) −61.34 −55.36 −58.39 2.73 −4.68 −63.64 −43.70 −53.48 5.28 −9.86

A Pearson correlation analysis was applied to explore the relationship of water chemical parameters
by SPSS, and the results are given in Table 2. Carbonate was observably positively correlated with
K+, Na+, and Ca2+, which indicated the dissolution of minerals [41]. Chloride was prominently
and positively related with SO4

2−, K+, Na+, Mg2+, and TDS. TDS was significantly and positively
correlated with EC, Cl−, HCO3

−, SO4
2−, K+, Na+, Ca2+, NO3-N, TN, and TP, respectively. Meanwhile,

the same correlation was also found between EC with these ions. It indicated these ions were the
major composition of TDS and EC. While, TDS were significantly and negatively correlated with
stable isotopes and Chl.a. This may be due to the consumption of nitrogen and phosphorus by
phytoplankton [35,36]. TN was significantly and positively related with TP, indicating their common
origin. At the same time, they were both significantly and positively related with EC, HCO3

−, K+, Na+,
Ca2+, TDS, and NO3-N. In addition, TN was also positively and negatively significantly correlated
with NH3-N and NO2-N, respectively. TN, TP, and other cations were mainly from reclaimed water,
which could explain their significant relationship. The major nitrogen forms (NO3-N) were furtherly
confirmed by its significant and positive relationship with TN (Tables 1 and 2). Part of NH3-N will
be released into the atmosphere [42–44], which could be inferred by its significant and negative
relationship with TN.
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Chl.a was remarkably and negatively related with EC, HCO3
−, Ca2+, δ18O, and δ2H. While, it was

significantly and positively related with pH. CO2 in river water could be converted into organic matter
by the photosynthesis of alga, and HCO3

− was the carbon form in the carbonate system [45,46]. While,
the consumption of nitrogen, phosphorus, and carbon would lead to the decrease of EC. In addition,
the amount of O2 produced by the photosynthesis of alga was much greater than the one required for
respiration, which increased DO content in the water [47,48]. Consequently, the reduction of HCO3

−
and the increase of DO would together raise the pH value (Table 1) [49,50]. Stable isotopes were both
dramatically and negatively correlated with EC, Ca2+, TDS, NO3-N, TN, and TP. Significant and positive
correlation of δ18O and δ2H was determined by a stable isotope fractionation mechanism [51–53].

3.2. Spatial and Temporal Variation

3.2.1. pH, T, DO, EC, and TDS

Spatial and temporal variation of pH, T, DO, EC, and TDS is given in Figure 2. A first gradual
upward and then downward trend were the clear spatial variation of pH, and the rising stage
mainly occurred during stations from SY04 to SY06. The lowest pH was found in reclaimed water
i.e., water sources. Moreover, pH in September was lower than in other months. Meanwhile, the pH
value was very close in other months. River water received more replenishment of precipitation
and surface runoff with low pH with range of 4.35–5.70 [54]. Obvious temporal variation of water
temperature was found, that was mainly affected by air temperature. Its order was: July > May >

September > March > November. Microbial activity was strongly influenced by water temperature.
Consequently, the element cycle driven by a microbe, e.g., nitrogen would be affected by temperature
variation [55]. Lower DO content was found in November, and a higher value was found in May and
July (Figure 2c), while DO in other months was close. DO content varied drastically among monitoring
stations. EC and TDS had the similar downward trend of spatial variation (Figure 2d,e). They both
were higher in reclaimed water, and gradually decreased along the river. Furthermore, the lowest EC
value (718 µS/cm) in March was found at one end of the river flow (SY04), and EC was close in different
months. However, TDS in March, May, and July were slightly higher than that in September and
November. Similar temporal variation of water temperature was also found in the Yongding River [56],
while the spatial variation of these five parameters was different, due to the diverse water quality of
reclaimed water [56] or treated wastewater [57], hydraulic conditions, and the geomorphic feature [58].
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Figure 2. Spatial and temporal variation of pH (a), water temperature (T; b), dissolved oxygen (DO; c),
electric conductivity (EC; d), and total dissolved solids (TDS; e) in the Chaobai River.
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3.2.2. Major Cations and Anions

Figure 3 shows the spatial and temporal variation of major cations and anions. Cl− has apparent
temporal variation, and its order among months was: May > March > July > November > September
(Figure 3a). Cl− content increased gradually along the river water flow direction, except reclaimed
water in March. Elevated chloride indicated the external input, e.g., dissolution of soil and/or sediment,
or surface runoff, as chloride was the conservative ion [59]. The average value in this study was much
less than the mean value in Kakoba sewage effluents (833.33 mg/L) [58]. While, the temporal variation
was not significant [58]. The content of SO4

2− was high in May, and low in July and September
(Figure 3b). Meanwhile, it varied greatly among monitoring stations. Similar spatiotemporal variation
of K+ and Na+ was found in Figure 3c,d. Their high values were found in March, while low
values in September and November, and the medium in May and July. Their downward trend of
spatial variation may be caused by ion exchange and/or dilution [19]. Variation of Ca2+ showed a
remarkable downward spatial trend (Figure 3e). High Ca2+ content was firstly found in reclaimed
water. However, its concentration gradually decreased along river flow, especially in SY04 and SY07 in
May. The observed decrease may be the result of calcium precipitation, and/or calcium ions exchange
with soils/minerals [17,60]. The content of Ca2+ was high in March and July, and low in May, while
medium in other months. Gradual rising was the primary feature of spatial variation of Mg2+, except a
high value of reclaimed water in March (Figure 3f). External input and/or dissolution of mineral with
magnesium may contribute to an increase [61]. High and low value of Mg2+ was found in March and
November, respectively. While, the medium one was in other months. Major cations and anions in the
river impacted by sewage effluents in the Mediterranean had significant spatiotemporal variation [57].
Complexity and high variability occurred in different rivers with diverse conditions.
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Figure 3. Spatial and temporal variation of Cl− (a), SO42− (b), K+ (c), Na+ (d), Ca2+ (e), and Mg2+ (f) in the 
Chaobai River. 
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the Chaobai River.

3.2.3. Nitrogen, Phosphorus, and Chl.a

Spatial and temporal variations of nitrogen, phosphorus, and Chl.a are given in Figure 4.
Spatiotemporal variation of NH3-N was obvious (Figure 4a), with the highest and the second
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highest value in SY01 (September) and SY04 (May), respectively. NH3-N content in May and September
was higher than in other months, while most values of NH3-N were lower than 0.5 mg/L. Most NO2-N
content was lower than 0.4 mg/L (Figure 4b). Generally, spatial variation of NO2-N was decreasing
except for four peak values (SY01 and SY03 in November and SY04 and SY05 in July). These nitrogen
forms also exhibited very high variability Rwizi River (Uganda) [58]. Gradual downward spatial
variation of NO3-N, TN, and TP was apparent. The evident features of NO3-N and TN were the slight
increase from SY05 to SY06 and sharp decrease in SY04. A gradual decrease was also found in the Sand
River (Limpopo, South Africa) impacted by sewage effluents, and this may indicate the self-purification
capacity of the river [62]. The peak value of TP was found in SY02 (May), which was higher than in
reclaimed water. It may be due to the release of sediments and/or sudden external input [63,64]. While,
TP in the Sand River fluctuated across the different sites [62]. First an increase and then a decrease
were the feature of Chl.a spatial variation (Figure 4f). Meanwhile, it was higher downstream than
upstream, with a peak value of SY08 in May (167 µg/L) and July (175 µg/L). High Chl.a was found
in May and July, while a low value in November. There was a slightly low concentration of Chl.a in
September corresponding to July, which may be caused by the dilution. Stations with a high peak
value of Chl.a were the corresponding stations with low nitrogen and phosphorus. It further confirmed
that the absorption and utilization of phytoplankton was the reason for nutrients reduction.
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Figure 4. Spatial and temporal variation of NH3-N (a), NO2-N (b), NO3-N (c), TN (d), TP (e), and Chl.a
(f) in the Chaobai River.

3.2.4. δ2H and δ18O

Figure 5 shows the spatiotemporal variation and the relationship of δ2H and δ18O in reclaimed
water and river water. δ2H and δ18O had the similar variation (Figure 5a,b). The clear spatial trend was
increasing variation of δ2H and δ18O from reclaimed water to the river channel end. It also indicated
the enrichment process of stable isotopes, and the depleted and enriched isotopes in reclaimed water
and the two ends (SY04 and SY09), respectively. Stable isotopes in March and May were higher,
and gradually increased from July to November. In the dry season, e.g., March and May, high air
temperature and less rainfall contributed to isotope enrichment fractionation. However, stable isotopes
of river water would be prone to being depleted as a result of rainfall and surface runoff [65]. According
to our observation, the precipitation in July was the largest (124.6 mm), followed by August (101.8 mm),
which accounted for 30.19% and 24.67% of the annual precipitation respectively. During the rainy
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season (July–September), the cumulative precipitation was 297.9 mm, accounting for 72.18%. Therefore,
isotopes in November also would be affected, as it was just after the rainy season. Almost all samples
were located below the global meteoric water line (GMWL) and local meteoric water line (LMWL),
except several samples on and near the LMWL line (Figure 5c), which indicated that most reclaimed
water and river water were influenced by strong evaporation [52]. Additionally, it was consistent with
the results of the isotope enrichment feature (March and May) in Figure 5a,b. Samples located on
LMWL showed their source of atmospheric precipitation and less evaporation [53,66]. The evaporation
line of stable isotopes among different months were different, and the order of the slope was: July (6.13)
> March (5.72) > November (5.21) > May (4.85) > September (4.02).
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Figure 5. Spatiotemporal variation of δ2H (a) and δ18O (b), and their relationship (c) in the Chaobai
River (GMWL (global meteoric water line) [53] and LMWL (local meteoric water line) [67] in Figure 5c
were cited from published articles, respectively. Red dashed lines represent evaporation line of river
water in different months).

3.3. Processes Controlling Water Chemistry

3.3.1. Gibbs Plot and Bivariate Plot

Mechanisms controlling river water chemistry included atmospheric precipitation,
rock weathering, evaporation–crystallization processes [13], and anthropogenic activities [14]. The high
ratio of Na+/(Na++Ca2+), low ratio of Cl−/(Cl−+HCO3

−), and medium TDS concentration were found
in the Gibbs plot (Figure 6). Meanwhile, distributions of reclaimed water and river water samples
in cation and anion plots were both located in the rock dominance area. It indicated that river water
chemistry was mainly controlled by reclaimed water or the interaction of river water with soil/rock.
While, the effect of precipitation and evaporation was weak. The discharge of reclaimed water from
WWTP was about 1.0 × 105 m3/day. As a result, the TDS load was about 60.1 Ton/day, according to
the average value of the TDS concentration (601 mg/L). Similar Gibbs plot results were found in the
Yongding River, which was also replenished by reclaimed water [56]. Water chemistry in headwaters
of the Yangtze River [15] and Yellow River [68] in China was governed by rock weathering, which was
less impacted by human activities. While, evaporation–crystallization plays an important role in water
chemistry in the river of an arid watershed, e.g., Northern Xinjiang, China [16].
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Figure 6. Gibbs graph of major cations (a) and anions (b) in the Chaobai River channel replenished by
reclaimed water.

Mineral dissolution, precipitation, and redox reaction in the water environment could be inferred
by the relationship of different dissolved ions in waters [13,69]. The ratio of Ca2+/Mg2+ could indicate
the dissolution of carbonate minerals [69]. The ratio value was about equal to 1, indicating the
dissolution of dolomite, that included SY04 (March and July), four samples in November (SY05,
SY06, SY07, and SY08), SY09 (July, September, and November; Figure 7a). The value was between
1 and 2, indicating the dissolution of calcite, which included reclaimed water (SY01), river water
(SY02 and SY03) river samples of SY05 (March and May) and SY06 (Figure 7a). The ratio value of
the remaining samples was less than 1, showing the decrease of Ca2+, which may be caused by ion
exchange. Values of Ca2++Mg2+ vs. the cation of all reclaimed water and river water samples were
located above the equilibrium line (1:1; Figure 7b). It indicated that Ca2+ and Mg2+ were mainly from
the dissolution of carbonate rock and calcite [18,41]. All samples of Na++K+ vs. Cl− (Figure 7c) were
located below the equilibrium line, indicating that sodium and potassium ions were also affected by
the dissolution of silicate minerals except the dissolution of salt rock [68]. Samples of Na++Ca2+ vs.
HCO3

− (Figure 7d) were all located below the equilibrium line, showing that sodium and calcium
were more than bicarbonate, which indicated the dissolution of calcium-bearing minerals. Most of
SO4

2−+Cl− vs. HCO3
− were located below the equilibrium line (Figure 7e), indicating the influence of

strong evaporation. Some of SO4
2−+HCO3

− vs. Ca2++Mg2+ were located near the line (Figure 7e),
indicating the dissolution of carbonate minerals [70]. While, most were below the line (Figure 7e),
indicating the dissolution of the silicate mineral. The same silicate weathering location was found
between the plot of Ca2++/Na+ vs. Mg2+/Na+ (Figure 7g), and plot of Ca2+/Na+ vs. HCO3

−/Na+

(Figure 7h), indicating the weathering and dissolution of the silicate mineral.
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Figure 7. Plot of the ratio of Ca2+/Mg2+(a), bivariate plot of Ca2++Mg2+ vs. the cation (b), Na++K+

vs. Cl− (c), Na++Ca2+ vs. HCO3
− (d), SO4

2−+Cl− vs. HCO3
− (e), SO4

2−+HCO3
− vs. Ca2++Mg2+ (f),

Ca2++/Na+ vs. Mg2+/Na+ (g), and Ca2+/Na+ vs. HCO3
−/Na+ (h) in all samples.

Samples of 1/2HCO3
− + SO4

2− vs. Ca2+ + Mg2+ were located near the equilibrium line (Figure 8a),
indicating the dissolution of calcite, dolomite, and gypsum [71,72]. All samples were below the line
except one sample, showing the excess Ca2++Mg2+. These cations would be balanced by other anions,
which may be silicate. Variation of the ratio of Na+/Ca2++Mg2+ (Figure 8b) was first to increase and
then to decrease, which indicated the occurrence of cation exchange with clay mineral or soils [70].
Lower values were found in SY08 and SY09 stations. The process of weathering and hydrolysis of
carbonate rock or silicate minerals produced equal amounts of divalent cations, HCO3

− and SO4
2−.

As a result, Ca2++Mg2+-HCO3
−-SO4

2−, and Na+-Cl− were used to indicate the participation of cation
exchange, respectively [71]. Some samples of Ca2+ + Mg2+- HCO3

−-SO4
2− vs. Na+-Cl− were located

around the line (y = −x; Figure 8c), which indicated the clear cation exchange. Others showed the
excess sodium ions from reclaimed water. In Figure 8d, the ratio of Na+/Cl− samples was all more
than 1, except three samples (SY08 and SY09 in November and SY09 in July). The average value of
Na+/Cl− in reclaimed water was 1.69, indicating the excess sodium. Values of Na+/Cl− in most river
water samples were close to or less than the reclaimed water, which indicated the external chloride ion.
The ratio of Na+/Cl− was greater than 1, indicating the possible cation exchange [73]. The downward
trend of the Na+/Cl− value may be caused by the following reason. A higher Na+ content exceeded the
equilibrium concentration of exchangeable cations in the medium. Then, the exchange of Ca2+ and
adsorbed Na+ would be suppressed, and even reverse cations exchange would occur. Na+ and Ca2+ in
the water body exchange and Mg2+ may also participate in the exchange [17,19].
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Figure 8. Plot of the ratio of Ca2+ + Mg2+ vs. 1/2HCO3
− + SO4

2− (a), Na+/Ca2+ + Mg2+ (b), Na+-Cl−

vs. Ca2+ + Mg2+- HCO3
−-SO4

2− (c), and Cl− vs. Na+/Cl− (d) in all samples.

Saturation index (SI) of reclaimed water and river water samples is given in Table 3. Potential
dissolution and precipitation processes in the aqueous solution could be inferred by SI values. A zero
SI value indicated the equilibrium state of the mineral to the aqueous, and a positive value showed
the supersaturated state, while a negative value indicated the unsaturated state [32]. The SI value
of gypsum (CaSO4 and CaSO4·2H2O) and halite (NaCl) was negative, while the SI value of calcite
(CaCO3) and dolomite (Ca Mg (CO3)2) was positive. This indicated the potential dissolution process
of gypsum and salt rock, and precipitation of calcite and dolomite in reclaimed water and river water.
The excessive Na+ of water samples may require silicate dissolution to balance it.

Table 3. Saturation index (SI) of samples in monitoring stations in the Chaobai River
(March–November 2010).

SY01 SY02 SY03 SY04 SY05 SY06 SY07 SY08 SY09

CaSO4 −1.99 −1.97 −2.04 −2.23 −2.13 −2.12 −2.23 −2.20 −2.17
CaCO3 0.63 0.94 1.19 1.09 1.36 1.46 1.16 1.00 1.12

Ca Mg (CO3)2 1.16 1.76 2.26 2.32 2.73 2.89 2.47 2.12 2.32
CaSO4·H2O −1.76 −1.73 −1.81 −2.00 −1.90 −1.89 −1.19 −1.96 −1.94

NaCl −6.68 −6.58 −6.62 −4.39 −6.62 −4.26 −6.67 −6.71 −6.72

The numbers of measurements of all monitoring stations were five, except SY01 station (n = 4).

3.3.2. Redox Condition and Nitrogen Forms

Transformation and species of nitrogen in aqueous solution were strongly impacted by the
redox environment [74,75], which could be characterized by DO and/or ORP measured in the field.
The corresponding relationship of DO and three nitrogen forms (NO3-N, NH3-N and NO2-N) is given
in Figure 9. Nitrite was usually the intermediate of the nitrification reaction, which was not stable
and easy to be oxidized [76]. In Figure 9, average DO content of river water in March, May, July,
September, and November was 7.99 ± 2.07 mg/L, 5.64 ± 2.79 mg/L,7.90 ± 0.85 mg/L, 6.21 ± 1.66 mg/L,
and 3.27 ± 1.41 mg/L, respectively. The saturated oxygen content of water was about 10 mg/L at normal
temperature and atmospheric pressure [48,77]. DO content was more than 5 mg/L except the one in
November. Additionally, the oxidizing environment contributes to nitrification [78]. The decrease in
November probably was due to low temperature and less aquatic plants [49,79].
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Figure 9. Relationship of DO with NO3-N (a), NH3-N (b), and NO2-N (c) in reclaimed water and
river water.

pH also played an important role in nitrogen transformation, and the double influences of pH and
the redox environment could be evaluated by the pH–pE plot [78]. Therefore, samples of reclaimed
water and river water were projected into Figure 10. All samples were located around the NO3

− line,
where the stable nitrogen form was nitrate (NO3

−, +5). High DO value of reclaimed water (7.33 ± 1.75)
and river water (6.20 ± 2.47) showed the oxidizing water environment, which was beneficial for nitrate
stable and nitrification [78,80].
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Figure 10. pH–pE diagram of reclaimed water and river water samples in the Chaobai River.

3.3.3. Cluster Analysis and Spatiotemporal Similarity

For identifying the spatiotemporal variation, the key variables should be firstly confirmed. Hence,
three cluster analysis results are shown in Figure 11. In Figure 11c, twenty water chemical parameters
were divided into seven clusters by the R-type cluster method for variables. Clusters were as follows.
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I: δ18O, δ2H, pH, and Chl.a; II: Mg2+; III: Cl−, SO4
2−; IV: NH3-N; V: T, DO; VI: K+, Na+, TDS, HCO3

−,
Ca2+, NO3-N, TN, EC, and TP; VII: NO2-N. The R2 value is calculated according to equation 1 if the
quantity of parameters in one cluster was more than 2. The parameter with the highest R2 value was
retained for the key parameter. The R2 value of δ18O and TDS was 0.45 and 4.80, respectively. As a
result, nine parameters (δ18O, Mg2+, Cl−, SO4

2−, NH3-N, T, DO, TDS, and NO2-N) were selected as
the key ones for further spatiotemporal cluster analysis. Five months were classified into two groups,
Cluster I includes March and May, and Cluster II includes July, September, and November. These two
distinct groups show the significant temporal variation. Spatial variation and similarity were analyzed
by an HCA analysis (Figure 11c). All monitoring stations were classified into two groups, which
include Cluster I (SY04, SY07, SY08, andSY09) and Cluster II (SY01, SY02, SY03, SY05, and SY06).
Stations in Cluster II and Cluster I represent the upstream and downstream (Figure 1), respectively.
The flow direction of reclaimed water along the river channel would eventually go in two directions,
one was SY04 station and the other was SY09 station, because of the blocking effect of the rubber dam
(Figure 1).
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Chaobai River.

Parameters with a significant difference in different clusters were identified using an ANOVA
analysis by SPSS software [29], and the corresponding results are given in Table 4. Whereas, parameters
with no significant difference were not listed. In temporal clusters, six parameters in Cluster I were
significantly higher than the ones in Cluster II, which included Cl−, SO4

2−, K+, Na+, Mg2+, and TDS.
In the spatial clusters, 12 parameters in Cluster I were significantly less than in Cluster II, which
included DO, EC, HCO3

−, K+, Na+, Ca2+, TDS, NO2-N, NO3-N, TN, TP, and Chl.a. While, four
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parameters in Cluster I were significantly higher than in Cluster II, which included Mg2+, NH3-N,
δ18O, and δ2H. As a result, the parameters with a significant difference had remarkable spatiotemporal
variation. δ18O and δ2H of reclaimed water (−7.99‰ ± 0.6‰ and −58.39‰ ± 2.73‰) were more
depleted than the ones in downstream stations (SY04: −5.94‰ ± 0.58‰ SY07: −49.26‰ ± 4.68‰;
SY09: −6.07‰ ± 0.66‰, and SY08: −49.15‰ ± 2.51‰). The evaporation process along the river may
lead to more isotope enrichment. Reclaimed water was the main source of river water, besides the
precipitation and surface runoff from precipitation. Stable isotopes of precipitation were more depleted
compared with reclaimed water [10]. Therefore, strong evaporation was the controlling reason for
stable isotope enrichment downstream [53,66].

Table 4. Parameters in spatiotemporal clusters with a significant difference in the Chaobai River.

Cl− SO42− K+ Na+ Mg2+ TDS

Temporal
clusters

I 119.44 a 96.97 a 18.91 a 101.37 a 30.70 a 590.12 a

II 83.19 b 81.12 b 13.10 b 81.21 b 27.63 b 518.00 b

DO EC HCO3
− K+ Na+ Ca2+ Mg2+ TDS

Spatial
Cluster

I 5.47 b 786 b 208 b 13.10 b 79.36 b 40.59 b 30.36 a 495 b

II 7.00 a 940 a 250 a 17.21 a 97.04 a 58.22 a 27.51 b 588 a

NH3-N NO2-N NO3-N TN TP Chl.a δ18O δ2H

Spatial
Cluster

I 0.51 a 0.124 b 2.04 b 5.33 b 0.281 b 71.00 b −6.11 a −49.20 a

II 0.22 b 0.234 a 12.47 a 14.46 a 0.944 a 39.29 a −7.66 b −57.87 b

Note: Average values of the same parameters in corresponding groups with different letters are significantly different
(p < 0.05). Temporal clusters/ Spatial Cluster

3.3.4. Principal Component Analysis and Controlling Factors

For inferring the controlling factors, two clusters were further analyzed by PCA (Table S1), and the
relationship plots are given in Figure 12. The principal components would be retained according to
the corresponding eigenvalue >1 [24], and the critical related parameters could be kept in terms of an
explaining proportion >0.60 [25]. In Cluster I, six principal components with a total explaining 90.46%
were retained. PC1 had significant and positive loading with Cl−, SO4

2−, K+, Na+, TDS, δ18O, and δ2H.
PC2 was highly and positively related with HCO3

−, Ca2+, and Mg2+. PC3 had a high and positive
relation with EC, NO2-N, and TP. High and positive loading with these three components showed
main water chemical composition of TDS and EC, and mineral dissolution. PC4 had high and positive
loading with δ18O and δ2H. PC5 was positively related with Na+, TN, and Chl.a, while negatively
related with NH3-N. PC6 was highly and positively related with NO3-N and TN. NO3-N was the
main nitrogen formation formed by nitrification of NH3-N [78]. As a result, the negative loading with
NH3-N could be found. Meanwhile, nitrate was also the nitrogen consumed by phytoplankton [35].
Therefore, PC5 and PC6 mainly indicated the nitrogen transformation and the photosynthesis by
phytoplankton. In Cluster II, five principal components explaining 87% were retained. PC1 had high
and positive loading with EC, Cl−, HCO3

−, K+, Na+, Ca2+, Mg2+, and TDS, which indicated reclaimed
water was the main source of major ions. Additionally, these stations were strongly impacted by
reclaimed water. PC2 was highly related with Chl.a, δ18O, and δ2H. PC4 had a negative loading
with SO4

2−. There were no highly related parameters to PC3 and PC5. High and positive loading of
δ18O and δ2H, e.g., PC1, PC4 of Cluster I, and PC2 of Cluster II together showed that stable isotope
compositions were controlled by reclaimed water (main water source) and strong evaporation.

175



Water 2020, 12, 2551
Water 2020, 12, x FOR PEER REVIEW 20 of 25 

 

 
Figure 12. Relationship of principal components in spatial cluster I (a, b, c) and II (d, e, f). 

3.4. Assessment of Water Quality 

According to the water quality standard for reclaimed water used for a scenic environment 
(GB/T18921-2019) in China [84], the average pH of reclaimed water (Table 1) was 7.93 ± 0.25, which 
was in the range of 6–9; the means of NH3-N, TN, and TP were 0.08 ± 0.03 mg/L, 17.18 ± 4.47 mg/L, 
and 1.05 ± 0.46 mg/L, respectively. Correspondingly, their threshold values were 5 mg/L, 15 mg/L, 
and 0.5 mg/L. Therefore, TN and TP of reclaimed water should be reduced to meet the current 
standard requirement [84]. In terms of the surface water environment quality standard (GB3838-2002) 
in China [85], Class I is for the source of drinking water, the National Nature Reserve; Class II is for 
the centralized drinking water surface water source with the first level protected areas, rare aquatic 
habitat; and Class V is for the agricultural water area and the general landscape requirements of the 
waters. Average value of TN (9.62 ± 5.29 mg/L) and TP (0.60 ± 0.55 mg/L) in river water exceeded 
their limited value of the V class (2.0 mg/L, 0.4 mg/L). While, NH3-N (0.38 ± 0.42) in river water was 
in the range of the I (0.15 mg/L) and II (0.50 mg/L) class, and DO (6.20 ± 2.50 mg/L) was higher than 
the threshold value in the II (6.00 mg/L) class. 

On the basis of the sodium adsorption ratio (SAR), proposed by Richards [86], levels were 
divided into four classes (S1: <40; S2: 40–90; S3: 90–150; and S4: >150), and the corresponding harmful 
extents were low, medium, high, and very high, respectively. SAR of reclaimed water and river water 
were 57.80 ± 5.43 and 56.84 ± 10.27, respectively. Both were in the range of 46.46 ± 12.66–62.02 ± 6.92. 
As a result, the level was S2, indicating a medium harmful level. TP = 0.02 mg/L and TN = 0.2 mg/L, 
which were the internationally recognized threshold for eutrophication [87]. TP and TP in reclaimed 
water and river water were significantly higher than these threshold values. Chl.a in almost all 
samples were higher than 40 μg/L, except for three monitoring stations (SY01, SY02, and SY03) and 
some individual samples (SY04 in March; SY06 and SY07 in July; SY09 in September and November; 
and SY08 in November), which indicated severe eutrophication [87,88]. Except for SY01 and SY02, 
the remaining samples were at the eutrophication level, with Chl.a > 7 μg/L. 

4. Conclusions 

-0.5 0.0 0.5 1.0
-0.5

0.0

0.5

1.0

T

PC
2(

17
.2

2%
)

PC1(33.31%)

Ca2+
Mg2+

HCO3
- DO

T TN

NO2-N
NO3-N Chl.a

pH SO4
2-

TDS

K+

Cl-
δ2H

(a)

EC Na+

NH3-N TP

δ18O

-0.5 0.0 0.5 1.0
-0.5

0.0

0.5

1.0

TNHCO3
-

TDS
K+

SO4
2-

Cl-

δ2HMg2+

DO

Ca2+PC
3(

14
.9

5%
)

PC1(33.31%)

Na+

TP

ECNO2-N

δ18O

NH3-N

pH

(b)

NO3-N

TP

-0.5 0.0 0.5 1.0
-0.5

0.0

0.5

1.0

TDS
K+

pH

NH3-N

HCO3
-

δ18O
Cl-pH

SO4
2- Chl.a

NO3-N

Na+

TN

TP

EC

NO2-N

Ca2+

DO

Mg2+
δ2H

PC
3(

14
.9

5)

PC2(17.22%)

(c)

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

PC
2(

19
.3

7%
)

PC1(37.48%)

NO2-N

NH3-N
TN NO3-N

Ca2+
HCO3

-

TDS

TP

Mg2+ Na+

K+

Cl-

DO

T

δ18O
Chl.a

pH
δ2H

SO4
2-

(d)

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0
PC

3(
14

.0
9%

)

PC1(37.48%)

T

δ18O

δ2H

NH3-N

pH

Chl.a

SO4
2-

Cl-

Mg2+

NO3-N

K+
Na+

TDS

TN EC

Ca2+

TP HCO3
-

NO2-N

DO

(e)

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

PC
3(

14
.0

9%
)

PC2(19.37%)

NH3-N

NO3-N

SO4
2-

Chl.a
Cl-

Mg2+
pH

TDSNa+ K+

T

NO2-N

EC
TN

Ca2+

HCO3
-

δ18O

DO

δ2H

(f)

TDS

TP

Figure 12. Relationship of principal components in spatial cluster I (a–c) and II (d–f).

Nitrogen and phosphorus are the nutrient elements for phytoplankton growth. Consequently,
N and P contents would be affected by the biomass of phytoplankton [49]. Therefore, the relationship
of nutrients with Chl.a were complicated. Sometimes, a significant and positive correlation in a certain
period and a disproportionate relationship both could be found in the water environment [35,81].
There must be a relatively excessive amount of N (for P-restricted water) or P (for N-restricted water).
Nutrients would be generally consumed by phytoplankton according to the Redfield ratio [82,83].
This case could be identified by the ratio of N/P. As a result, the surplus nutrient would not contribute
to eutrophication. In fresh water, the N/P ratio was less than 7, indicating that N was the possible
restrictive nutrient, and if the N/P ratio was greater than 7, then P was the possible restrictive one.
Except SY02 in May, the ratio values of all monitoring stations were much higher than 7. Therefore,
P was the restricted nutrient. Besides, hydrodynamic conditions such as temperature, light, water
volume, and flow rate were also important influencing factors [49,81].

3.4. Assessment of Water Quality

According to the water quality standard for reclaimed water used for a scenic environment
(GB/T18921-2019) in China [84], the average pH of reclaimed water (Table 1) was 7.93 ± 0.25, which was
in the range of 6–9; the means of NH3-N, TN, and TP were 0.08 ± 0.03 mg/L, 17.18 ± 4.47 mg/L,
and 1.05 ± 0.46 mg/L, respectively. Correspondingly, their threshold values were 5 mg/L, 15 mg/L,
and 0.5 mg/L. Therefore, TN and TP of reclaimed water should be reduced to meet the current
standard requirement [84]. In terms of the surface water environment quality standard (GB3838-2002)
in China [85], Class I is for the source of drinking water, the National Nature Reserve; Class II is for
the centralized drinking water surface water source with the first level protected areas, rare aquatic
habitat; and Class V is for the agricultural water area and the general landscape requirements of the
waters. Average value of TN (9.62 ± 5.29 mg/L) and TP (0.60 ± 0.55 mg/L) in river water exceeded
their limited value of the V class (2.0 mg/L, 0.4 mg/L). While, NH3-N (0.38 ± 0.42) in river water was in
the range of the I (0.15 mg/L) and II (0.50 mg/L) class, and DO (6.20 ± 2.50 mg/L) was higher than the
threshold value in the II (6.00 mg/L) class.
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On the basis of the sodium adsorption ratio (SAR), proposed by Richards [86], levels were divided
into four classes (S1: <40; S2: 40–90; S3: 90–150; and S4: >150), and the corresponding harmful
extents were low, medium, high, and very high, respectively. SAR of reclaimed water and river water
were 57.80 ± 5.43 and 56.84 ± 10.27, respectively. Both were in the range of 46.46 ± 12.66–62.02 ±
6.92. As a result, the level was S2, indicating a medium harmful level. TP = 0.02 mg/L and TN =

0.2 mg/L, which were the internationally recognized threshold for eutrophication [87]. TP and TP in
reclaimed water and river water were significantly higher than these threshold values. Chl.a in almost
all samples were higher than 40 µg/L, except for three monitoring stations (SY01, SY02, and SY03) and
some individual samples (SY04 in March; SY06 and SY07 in July; SY09 in September and November;
and SY08 in November), which indicated severe eutrophication [87,88]. Except for SY01 and SY02,
the remaining samples were at the eutrophication level, with Chl.a > 7 µg/L.

4. Conclusions

Chemometrics and multivariate statistics were used to study the characteristics and controlling
factors in Chaobai River water, replenished by reclaimed water. The main conclusions were as follows.
All water was oxidized and alkaline, which was beneficial for nitrification. Nitrate was the main
nitrogen form in reclaimed and river water. Depleted and enriched stable isotopes were in reclaimed
water and river water, respectively. TN and TP of reclaimed water exceeded the threshold of the
reclaimed water reuse standard and Class V in the surface water quality criteria. Most river water was
at the severe eutrophication level. The sodium adsorption ratio indicated a medium harmful level
for irrigation purposes. Significant spatial and temporal variation was explored by a cluster analysis.
Five months are classified into two distinct groups (I: March, May; II: July, September, and November).
Nine stations were classified into two clusters (upstream: SY01, SY02, SY03, SY05, and SY06 and
downstream: SY04, SY07, SY08, andSY09). Six parameters (Cl−, SO4

2−, K+, Na+, Mg2+, and TDS) had
significant upward temporal variation. Twelve parameters (DO, EC, HCO3

−, K+, Na+, Ca2+, TDS,
NO2-N, NO3-N, TN, TP, and Chl.a.) had a significant downward spatial trend. While, four parameters
(Mg2+, NH3-N, δ18O, and δ2H) were the opposite. The Gibbs plot showed that river water chemistry
was mainly controlled by reclaimed water or the interaction of river water with soil/rock. The ionic
relationship and principal component analysis showed that river water had undergone the dissolution
of carbonate, calcite, and silicate minerals, cation exchange, a process of nitrification, photosynthesis
of phytoplankton, and stable isotope enrichment by strong evaporation, and gypsum and salt rock
have a potential dissolution process, after reclaimed water was replenished to the river. We think that
water quality of reclaimed water should be furtherly improved to avoid river water eutrophication,
especially for nitrogen and phosphorus.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/9/2551/s1,
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Abstract: This study evaluated the influence of different land-cover types on the overall water quality
of streams in urban areas. To ensure national applicability of the results, this study encompassed ten
major metropolitan areas in South Korea. Using cluster analysis, watersheds were classified into three
land-cover types: Urban-dominated (URB), agriculture-dominated (AGR), and forest-dominated
(FOR). For each land-cover type, factor analysis (FA) was used to ensure simple and feasible parameter
selection for developing the minimum water quality index (WQImin). The chemical oxygen demand,
fecal coliform (total coliform for FOR), and total nitrogen (nitrate-nitrogen for URB) were selected
as key parameters for all land-cover types. Our results suggest that WQImin can minimize bias in
water quality assessment by reducing redundancy among correlated parameters, resulting in better
differentiation of pollution levels. Furthermore, the dominant land-cover type of watersheds, not only
affects the level and causes of pollution, but also influences temporal patterns, including the long-term
trends and seasonality, of stream water quality in urban areas in South Korea.

Keywords: urban stream; factor analysis; land-cover type; metropolitan area; minimum water quality
index; pollution

1. Introduction

Global urbanization is an ongoing trend, with 55% to 68% of the world’s population
projected to reside in urban areas by 2050 [1]. Urbanization induces multiple stressors,
especially land-use/land-cover changes such as deforestation and the growth of industrial and
residential areas, resulting in increased impervious surfaces [2–5]. Consequently, urbanization leads
to a deterioration of water quality in streams through an increase in pollution sources and various
hydromorphological changes [6–8]. Despite their at-risk status, streams in urban areas are crucial water
resources with a number of designated uses, such as drinking water supply, recreation, and wildlife
conservation [9–12].

Therefore, it is vital to establish management strategies for preventing or alleviating water quality
problems; this requires efforts to monitor and assess stream water quality in urban areas. The water
quality index (WQI), an approach that quantitatively integrates a number of chemical, physical,
and biological water quality parameters, has been widely used to assess the water quality status of both
surface and groundwater systems [13–17]. In recent years the advent of big data and the accumulation
of monitored multivariate data has prompted a substantial increase in the application of WQI to
environmental and ecological studies [18–20]. In many of these studies, the developed WQI has been
used to capture long-term trends [21,22], seasonal fluctuations [23,24], or spatial variations [25,26] in
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the overall stream water quality in urban areas. As well as determining the spatiotemporal patterns
of stream water quality in urban areas, previous WQI-based research has also determined pollution
sources and anthropogenic effects [27–29] and selected the key parameters that represent variations in
water quality [30–33].

Recent assessments of urban stream water quality have increasingly employed parameter selection
using a number of statistical methods, highlighting the advantages of this process for cost and time
saving during assessment. For example, Wu et al. [33] used stepwise multiple regression, which assumes
linearity between the WQI and each parameter, to select five parameters representing the water quality
of streams in the highly developed area of Lake Taihu Basin, China. Tripathi and Singal [31] used
both principal component analysis (PCA) and correlation analysis to select nine parameters to develop
a WQI for the Ganga River, which flows through some highly polluted cities of India. Moreover,
linear discriminant analysis was applied by Han et al. [34] to select parameters that most effectively
differentiate temporal groups (wet versus dry period) and spatial groups (east vs. west parts of the
lake) in the Fu River and Baiyangdian Lake, both of which are located in a highly populated region of
northern China.

However, the spatial scales of previous parameter selection studies have been limited to single
water bodies or single basins; thus, the parameters selected in these studies have limited applicability
to other urban stream ecosystems. Furthermore, the effects of different types of anthropogenic
activities (e.g., industry, cultivation, or forestation), on stream water quality in urban areas has
rarely been considered [26,35]. To overcome these limitations, this study presents the first attempt,
to our knowledge, to explicitly account for the effects of different land-cover types on the water
quality response and key water quality parameters of urban streams. This study was conducted on a
national scale, encompassing a wide range of hydromorphological and geographical characteristics and
socioeconomic backgrounds, which are also key factors influencing water quality [36–40]. Therefore,
this study aimed to provide parameter selection results that are both informative and applicable to
other unexplored streams in urban areas of South Korea.

Streams across ten major metropolitan areas of South Korea were investigated. Cluster analysis was
performed to classify stream watersheds based on their land-cover characteristics. Then, the objective
WQI (WQIobj) was calculated for each land-cover type using all available water quality parameters.
The long-term trends of WQIobj were evaluated using the seasonal Mann-Kendall (SMK) test, and only
periods exhibiting temporal stability were used in further analyses. For each land-cover type,
key parameters were selected using factor analysis (FA) to develop the minimum WQI (WQImin).
The objectives of this study were: (1) To assess the long-term trends and seasonality of the overall
stream water quality in metropolitan areas in South Korea; (2) to analyze how different land-cover
types affect stream water quality in urban areas and key water quality parameters; and (3) to evaluate
the correlation between WQIobj and WQImin and relationships between WQImin and land-covers.

2. Materials and Methods

2.1. Study Area and Data Description

Ten major metropolitan areas across South Korea, with populations of greater than one million,
were included in this study (Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, Suwon, Ulsan,
Changwon, and Goyang (Figure 1)) [41]. Within the study area, 81 water quality monitoring sites
were selected at tributaries that directly or indirectly flow into either the Han, Geum, Nakdong,
or Yeongsan Rivers, the four major rivers of South Korea. The selected monitoring sites covered
35 standard watersheds with the range of watershed area from 39 to 294.9 km2, and a mean area of
103.29 km2, the smallest unit of the drainage area division system in South Korea (http://wamis.go.kr).
Water quality data were provided by the National Institute of Environmental Research of the Ministry
of Environment (http://water.nier.go.kr). The data spanned the time period from 2007 to 2018, and the
monitoring frequency varied by site from weekly to monthly. Among the 54 water quality parameters
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initially included in the data, heavy metals and other toxic chemicals, such as mercury, cadmium,
arsenic, and cyanide, were not included because at least 99.5% of the values for these parameters
were either missing or below the detection limit. Furthermore, parameters without available reference
values were not included in the analyses. The reference values (i.e., normalization factors and weights)
required to develop the Bascarón WQI were provided by previous studies [27,42–44].

Figure 1. Location of monitoring sites in ten major metropolitan areas of South Korea.

Fourteen water quality parameters were included in the analyses: Water surface temperature
(Temp), electrical conductivity (EC), pH, dissolved oxygen (DO), five-day biochemical oxygen
demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN),
ammonium nitrogen (NH4

+-N), nitrate nitrogen (NO3
−-N), total phosphorus (TP), orthophosphate

phosphorus (PO4
3−-P), total coliform (TC), and fecal coliform (FC) (Table 1). Among the 81 monitoring

sites initially selected for our study, 58 were included for the water quality assessment as they
had measurements for all 14 water quality parameters. Land-cover data were provided by the
Environmental Geographic Information System; the year of data collection varied from 2010 to 2018
depending on the region (https://egis.me.go.kr). The land-cover data involved seven categories:
urban (or built-up) land, agricultural land, forested land, grassland, wetland, barren land, and water.
For each of the 35 watersheds, the relative proportions of the seven land-cover categories were
calculated using QGIS 2.18.16 [45] and ArcGIS 10.3 software [46].
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2.2. Statistical Analyses

2.2.1. Cluster Analysis (CA)

CA is an unsupervised pattern recognition technique, whereby individual objects are grouped into
a number of clusters whose objects are more similar than those in other clusters. Among the available
CA methods, hierarchical agglomerative CA (HACA) was used in this study. HACA is a successive
process, in which two objects in the closest proximity form a cluster at the lowest hierarchy. In the
next step, the newly generated two clusters in the closest proximity form a combined cluster. Merging
continues until all objects are linked to form a single cluster at the highest hierarchy. The squared
Euclidean distance was used as a measure for calculating the proximity between objects/clusters.

Furthermore, we employed the Ward’s minimum variance linkage function, which uses distance
information to merge objects into a hierarchical cluster tree and is visually represented by a
dendrogram [47]. As HACA results in a single cluster, the dendrogram needs to be divided at
a specific height to generate multiple clusters. The height in the dendrogram can be defined as
(Dlink/Dmax)·100, where Dlink is the linkage distance for a pair of objects/clusters and Dmax is the
maximum linkage distance. According to previous studies, the height for dendrogram partitioning
was set to 60; that is, (Dlink/Dmax)·100 > 60 [48,49]. The CA was performed using ‘dendrogram’
function from the ‘SciPy’ library [50] in Python 3.6 [51]. To generate clusters based on land-cover type,
HACA was performed using the relative proportions of the six land-cover types for each standard
watershed (excluding water) as variables.

The differences in water quality parameters and WQI among different clusters were assessed
using summary statistics and non-parametric tests, i.e., Kruskal Wallis H and Mann-Whitney U tests.
Non-parametric tests were selected due to the non-normality of water quality parameters. The Kruskal
Wallis H test examined the differences in distributions for the three clusters. When the significant
differences occurred, as a post-hoc analysis, the Mann-Whitney U test was used to identify which
cluster(s) revealed the significant difference in distribution from the other cluster(s). The Kruskal
Wallis H and Mann-Whitney U tests were performed using ‘kruskal’ and ‘mannwhitneyu’ from the
‘SciPy’ library [50] Python 3.6 [51]. Statistical significance was indicated by p-value < 0.05.

2.2.2. Water Quality Index (WQI) Development

The method for WQI development used in this study builds on the WQIobj [43], a modification of
the Bascarón WQI, also known as subjective WQI [13], which excludes the constant term multiplied
to WQIobj, which reflects the subjective judgment of overall water quality. The WQIobj is calculated
as follows,

WQIobj =

∑n
i=1 CiPi∑n

i=1 Pi
(1)

where n is the number of available water quality parameters, Ci is a normalization factor that converts
the value of a parameter into a common scale ranging from 0 to 100 with an interval of 10 (Table 1),
Pi is the weight indicating the relative importance of parameters, which ranges from 1 to 4 (Table 1),
and WQImin is a simplification of WQIobj indicating the minimum WQI [42,43] and is calculated as,

WQImin =

∑nmin
i=1 Ci

nmin
(2)

Note that Equation (2) for WQImin does not include the weight term, indicating that the parameters
included in WQImin assessment are considered equally important. Here, nmin is the number of key
parameters, which is a subset of all n available parameters. The WQIobj and WQImin scores were
graded into five classes to indicate the overall water quality status: excellent (91–100), good (71–90),
medium (51–70), bad (26–50), and very bad (0–25) [42,43,52]. Also, when comparing WQImin with
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WQIobj for evaluating whether they are well-correlated, linear regression (WQIobj = a·WQImin + b) was
performed using ‘linregress’ function from the ‘SciPy’ library [50] in Python 3.6 [51].

2.2.3. Seasonal Mann-Kendall (SMK) Test

The Mann-Kendall (MK) test is a non-parametric test that assesses if the temporal trend of a
variable exhibits a monotonic increase or decrease [53,54]. The SMK test is an extension of the MK
test that accounts for the effect of seasonality by performing the test separately for each pre-defined
season [55]. In this study, the SMK was employed to identify the point in time at which WQI no
longer shows a significant increasing or decreasing trend; this stabilized time period was divided into
training and test sets, and further analyses were performed. CA results were used to assess the trend of
monthly averaged WQIobj for each land-cover cluster, initially using the data for the entire time period
(2007–2018). When the trend showed a significant increase or decrease (p-values < 0.05), the SMK was
performed excluding a 1-year period of data from the starting year. The test was iteratively performed
until the trend appeared to be insignificant. The SMK test was performed using ‘seasonal_test’ function
from the ‘pyMannKendall’ library [56] in Python 3.6 [51].

2.2.4. Factor Analysis (FA)

FA attempts to account for the structure (i.e., correlation and variation) of data, consisting of
measured variables with a reduced number of factors, which are also termed latent variables.
Exploratory FA (EFA), which does not assume a priori relationships among the factors and measured
variables, was used to reveal the underlying factors behind the correlations among measured water
quality parameters. Contrary to confirmatory FA, EFA does not posit any relationship between specific
factors and measured variables. Therefore, it suits the purpose of this analysis.

Prior to analysis, the values of all water quality parameters except Temp and pH were
log-transformed, and the values of all parameters were standardized to have a distribution with a
mean of zero and standard deviation of one. To examine whether water quality data were suitable
for FA, the Kaiser-Mayer-Olkin (KMO) test [57] and Bartlett’s test [58] were performed. The FA was
assumed to be valid when the KMO value exceeded 0.5 and the Bartlett’s test result was significant
(p-value < 0.05).

To determine the number of factors retained in the FA, Horn’s parallel analysis (PA) was used [59].
PA compares the eigenvalues (which indicate the relative importance of a factor in explaining
the variance of measured variables) from measured data with the eigenvalues from random data,
which have the same sample size and number of variables as the measured data and are obtained
using a Monte-Carlo simulation. The differences between the eigenvalues from measured data and the
mean eigenvalues from random data were calculated. Factors with differences greater than zero were
retained in the FA.

As a method for factor extraction, principal component analysis (PCA) was used [60,61].
The maximum likelihood method, another common method for factor extraction, was not selected
because of its multivariate normality requirement, which is often not met for water quality parameters
even after the transformation (e.g., log-transformation) of values. Squared factor loading, which reflects
the proportion of variance in a measured variable explained by each factor, was calculated as a result of
PCA implementation. The communality was calculated by summing the squared factor loadings of a
given variable across all factors to indicate the proportion of variance in a measured variable explained
by all factors. Moreover, the uniqueness was calculated by subtracting the communality from the total
variance of a variable.

Factor rotation (i.e., the change in the axes of factors) was implemented to yield interpretable
factors by attaining a simple structure for factor loadings. Without rotation, most variables load heavily
onto the first and early factors, whereas rotation yields a simple structure in which each variable loads
heavily onto only one factor, while loading lightly onto the other factors. Varimax rotation was used
as a rotation method, which is a common type of orthogonal rotation. Orthogonal rotation assumes
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that factors remain uncorrelated with one another. FA was performed using ‘principal’ function from
‘psych’ [62] packages in R 3.5.3 [63].

For each land-cover type, the water quality parameter that showed the highest loading factor
associated with each retained factor was interpreted as a key water quality parameter. Accordingly,
the number of retained factors corresponded to the number of key parameters representing the
overall stream water quality in urban areas. The FA procedure was performed for each land-cover
type determined by CA, and the key parameters for different land-cover types were used for the
WQImin calculation.

3. Results

3.1. Land-Cover Characteristics of Metropolitan Areas in South Korea

Using the HACA, three clusters were generated based on the land-cover characteristics of
35 watersheds in ten major metropolitan areas (Figure 2a). Notably, each of the watersheds included
in each of the three clusters had a single dominant land-cover: Urban, agriculture, and forest,
respectively (Figure 2b, Table S1). The mean proportion of urban land for the 15 watersheds with
urban-dominated land-cover (URB) was 0.50 (± one standard deviation of 0.12), which was higher
than that of agricultural (0.06 ± 0.05) and forested (0.30 ± 0.10) land. In contrast, the five watersheds
with agriculture-dominated land-cover (AGR) had a mean relative area of 0.44 (± 0.08) for agricultural
land-cover, which was more dominant than urban (0.16 ± 0.07) and forested (0.24 ± 0.07) land-cover.
The 15 watersheds with forest-dominated land-cover (FOR) were mainly composed of forested land,
with a mean proportion of 0.60 (± 0.08), whereas the proportion of urban (0.12 ± 0.06) and agricultural
(0.16 ± 0.04) land was relatively minor.

Figure 2. Clustering results of 35 watersheds, named metropolitan area with numbering, based on
six land-cover categories. (a) Dendrogram exhibiting three clusters generated from hierarchical
agglomerative cluster analysis. The horizontal dashed gray line represents the height for dendrogram
partitioning, (Dlink/Dmax)·100 > 60. (b) Percentage (%) of the dominant land-cover type for each
of the three clusters. The red circle, yellow triangle, and green square denote watersheds that are
urban-dominated, agriculture-dominated, and forest-dominated, respectively.

The three land-cover types (URB, AGR, and FOR) were unevenly distributed across the
metropolitan areas. Among the URB, 73.3% were concentrated in Seoul (nine watersheds) and
its adjacent cities, Suwon (one watershed) and Incheon (one watershed). Three of the five AGR
were located in Gwangju, whereas the other two were located in Busan and Changwon. The spatial
distribution of FOR was also concentrated, with 33.3% in Daejeon and 26.7% in Daegu.

3.2. Land-Cover Effects on Stream Water Quality in Urban Areas

The long-term trends of overall water quality calculated using all available parameters (WQIobj),
based on the results of SMK tests, differed by land-cover type (Figure 3). For URB, WQIobj values
gradually improved until becoming stable in 2015 (Figure 3a). In comparison, WQIobj values for AGR
showed a greater improvement in early years before becoming stable in 2012 (Figure 3b). For FOR,

189



Water 2020, 12, 3294

WQIobj values did not show any significant trend during the entire period from 2007 to 2018 (Figure 3c).
In more recent years (2015–2018), during which all land-cover types exhibited a stable trend, the overall
water quality was worst for URB (p-values < 0.05 as a result of Kruskal Wallis H and Mann-Whitney
U tests), as indicated by lower WQIobj values (75.04 ± 9.90) than those for AGR (78.91 ± 8.31) and FOR
(82.82 ± 7.97). Regardless of the land-cover type and time period, WQIobj values tended to be lower
during the wet season (July to September) than during the dry season (Figure 3).

Figure 3. Long-term (2007–2018) trends of objective water quality index (WQIobj) for watersheds with
(a) urban-dominated, (b) agriculture-dominated, and (c) forest-dominated land-cover. Blue and red
circles denote the mean monthly WQIobj for dry and wet seasons, respectively, and vertical lines denote
one standard deviation of monthly WQIobj. The gray area represents a period exhibiting no significant
increase or decrease in WQIobj based on the results of seasonal Mann-Kendall tests.

The land-cover types of the watersheds influenced most water quality parameters in urban
streams except for pH, EC, DO, and PO4

3−-P, which were similar regardless of the dominant land-cover
(Table 2). Compared with URB and AGR, FOR exhibited the lowest level of contamination for the
majority of water quality parameters. The level of contamination between URB and AGR differed
depending on the water quality parameter. In terms of nitrogen (TN and NO3

−-N) and microbiological
indicators (TC and FC), the streams in URB exhibited significantly worse conditions than those in
AGR (Table 2). On the other hand, indicators for organic matter (BOD5 and COD) and turbidity (SS)
indicated significantly higher levels of water contamination in AGR than URB (Table 2).
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Table 2. Summary statistics (mean± one standard deviation) of 14 water quality parameters from 2015 to
2018 for watersheds with urban-dominated (URB), agricultural-dominated (AGR), and forest-dominated
(FOR) land-cover. Asterisks (*) denote parameters whose mean value for either URB or AGR is
significantly higher (or lower in the case of DO) than the other (p-value < 0.05 based on Kruskal Wallis
H and Mann-Whitney U tests).

Parameter Unit
Watershed Type

URB AGR FOR

Temp ◦C 16.33 ± 1.56 16.99 ± 0.69 15.56 ± 1.52
pH - 7.81 ± 0.32 7.76 ± 0.29 7.79 ± 0.34
EC µS/cm 455.51 ± 175.19 497.27 ± 257.41 384.76 ± 209.78
DO mg/L 10.52 ± 1.46 10.49 ± 0.88 11.03 ± 1.04

* BOD5 mg/L 3.05 ± 2.37 4.00 ± 0.49 1.69 ± 1.01
* COD mg/L 5.79 ± 3.04 8.17 ± 0.9 4.38 ± 2.16

* SS mg/L 7.37 ± 5.82 17.29 ± 3.06 6.51 ± 5.27
* TN mg/L 5.92 ± 3.18 3.49 ± 1.42 3.24 ± 1.43

NH4
+-N mg/L 0.87 ± 1.35 0.52 ± 0.44 0.22 ± 0.32

* NO3
−-N mg/L 3.86 ± 1.83 2.12 ± 0.78 2.26 ± 0.75

TP mg/L 0.11 ± 0.10 0.10 ± 0.02 0.06 ± 0.03
PO4

3−-P mg/L 0.05 ± 0.07 0.03 ± 0.01 0.03 ± 0.02
* TC CFU/100 mL 49.20 × 103 ± 69.12 × 103 18.09 × 103 ± 24.97 × 103 11.73 × 103 ± 10.49 × 103

* FC CFU/100 mL 14.01 × 103 ± 36.73 × 103 22.14 × 102 ± 27.98 × 102 16.44 × 102 ± 22.51 × 102

3.3. Key Water Quality Parameters for Different Land-Cover Types

The water quality data were suitable for the application of FA, as indicated by the results of the
KMO test (0.82 for URB, 0.67 for AGR, and 0.73 for FOR) and Barlett’s test (p-value < 0.05 for all
land-cover types). To perform the FA, the data measured during the more recent years (2015–2018),
when the WQIobj values stabilized for all land-cover types, were divided into training (2015–2016) and
testing (2017–2018) data sets. The results of FA using the training data indicated that three factors apiece
should be retained for URB, AGR, and FOR (Table S2). For each land-cover type, the water quality
parameters with the highest factor loading, associated with each of the retained factors, were selected
as the key parameters for the WQImin calculation (Table 3). Frequently, for a given factor, more than
one water quality parameter had a factor loading greater than 0.75 [64], which is indicative of a
strong correlation between the factor and the parameter (Table 3). In such cases, the parameters were
generally highly correlated to each other, with a Pearson’s correlation coefficient ranging from 0.49 to
0.88 (Figure S1). Consequently, the three key parameters selected for URB were COD, FC, and NO3

−-N,
in order of corresponding factors (Table 3). Three parameters were selected for AGR were FC, COD,
and TN (Table 3). The three parameters selected for FOR were COD, TN, and TC (Table 3).

3.4. Comparison between WQIobj and WQImin

Using the test data, the relationships between monthly WQImin and WQIobj values were assessed;
WQImin and WQIobj generally exhibited moderate to strong, linear relationships with R2 values of
0.66 for URB, 0.78 for AGR, and 0.73 for FOR (Figure 4). For both WQIobj and WQImin, URB was
generally associated with the poorest overall water quality, with mean WQI values of 75.79 and 67.20,
respectively. Further, based on both WQIobj and WQImin, the overall water quality for AGR (mean WQI
values of 78.86 and 73.39) was generally poorer than that for FOR (mean WQI values of 82.41 and
77.41). The location of intersection, where the regression line and one-to-one line cross, differed by
land-cover type: 87.48 for URB, 81.98 for AGR, and 88.14 for FOR (Figure 4). Below the intersection,
WQIobj values tended to be higher than WQImin scores, whereas the opposite was true above the
intersection (Figure 4). As the proportion of values below the intersection was greatest for URB,
the positive difference between the mean WQIobj and WQImin values for URB (8.59) was greater than
that for AGR (5.47) and FOR (5.00). Within each land-cover type, the variation of WQImin values,
with one standard deviation of 13.61 for URB, 13.05 for AGR, and 12.09 for FOR, was greater than the
variation of WQIobj values, with one standard deviation of 9.27 for URB, 8.62 for AGR, and 7.97 for
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FOR. Note that the degree of variation in WQI values, in descending order, was URB, AGR, and FOR
for both WQIobj and WQImin.

Table 3. Factor loadings for 14 water quality parameters for watersheds with urban-dominated (URB),
agricultural-dominated (AGR), and forest-dominated (FOR) land-cover. Asterisks (*) indicate a factor
loading greater than 0.75 or the highest factor loading in the factor. Var (%) represents the explained
variance of total variance for each factor.

Parameter

Watershed Type

URB AGR FOR

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Temp 0.261 0.241 −0.639 0.243 0.643 −0.578 0.220 0.473 −0.580
pH 0.205 −0.661 −0.213 −0.666 0.264 −0.434 −0.567 0.021 0.040
EC 0.553 0.108 0.568 −0.340 0.295 0.612 0.342 0.021 0.605
DO −0.164 −0.677 0.379 −0.634 −0.383 −0.071 −0.441 −0.578 0.340

BOD5 * 0.867 0.148 0.062 −0.192 * 0.797 0.031 * 0.751 0.004 0.079
COD * 0.905 0.155 0.015 −0.185 * 0.879 0.018 * 0.897 0.081 −0.027

SS * 0.860 0.050 −0.129 0.028 * 0.791 0.073 * 0.825 0.144 −0.033
TN 0.416 0.330 0.742 0.074 0.015 * 0.930 0.108 0.127 * 0.930

NH4
+-N 0.449 0.503 0.353 0.280 0.279 0.685 0.657 0.144 0.236

NO3
−-N −0.006 0.145 * 0.806 0.040 −0.359 * 0.819 −0.123 0.065 * 0.910

TP 0.696 0.560 0.102 0.609 0.557 −0.098 0.651 0.411 −0.030
PO4

3−-P 0.340 * 0.751 0.125 0.704 −0.150 −0.095 0.141 0.667 0.028
TC 0.158 * 0.810 0.048 * 0.862 −0.157 −0.033 0.062 * 0.825 0.077
FC 0.226 * 0.831 0.025 * 0.865 −0.024 0.084 0.099 * 0.825 0.091

Var (%) 27.2 25.9 16.4 25.3 23.7 21.0 26.0 18.7 18.5

Figure 4. Relationships between objective water quality index (WQIobj) and minimum WQI (WQImin)
for watersheds with, (a) urban-dominated, (b) agriculture-dominated, and (c) forest-dominated land
use. Black circles denote WQI values calculated using the testing data set (2017–2018). Black dotted
and blue dashed lines represent one-to-one, and regression lines, respectively. Red square represents
the point of intersection between the one-to-one line and regression line.

3.5. Spatial Distribution of Overall Stream Water Quality in Urban Areas

WQI values by site, calculated for 2015–2018, indicated that WQIobj and WQImin values were
highly linearly correlated, with an R2 value of 0.84 (Figure 5b). However, there was a clear tendency
for WQIobj values to be higher than WQImin values (Figure 5a,b). The difference in values between
WQIobj and WQImin led to differences in WQI classification in 25.9% of the 58 monitoring sites
(Figure 5a). In Seoul, the change in calculation method from WQIobj to WQImin yielded a change of
classification from good to medium in 33.3% of 18 monitoring sites. In the other five metropolitan areas
(i.e., Daejeon, Gwangju, Daegu, Busan, and Ulsan), a change in classification occurred in one or two
sites, accounting for 7.7–40.0% of the sites in each area (Figure 5a). In the remaining five metropolitan
areas (i.e., Goyang, Suwon, Incheon, and Changwon), no change in WQI classification occurred in
response to application of the WQImin (Figure 5a).
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3.6. Seasonality of Overall Stream Water Quality in Urban Areas

From 2015 to 2018, the monthly patterns of overall water quality calculated using WQImin differed
by land-cover type (Figure 6). For URB, which exhibited the worst overall water quality, the proportion
of WQImin values corresponding to equal to or worse than medium status increased during the wet
season (July to September), whereas the proportion of good to excellent status sites increased during
the dry season (all other months) (Figure 6a). For FOR, the WQImin status was consistently better
than or equal to medium, and the proportion of medium status sites increased during the wet season
(Figure 6c). For AGR, the WQImin status tended to worsen during the wet season, with an increase in
the proportion of medium status sites; however, this seasonality was less consistent compared with
other land-cover types (Figure 6b).

Figure 5. Spatial distribution of the water quality index (WQI) in ten major metropolitan areas of South
Korea. (a) Mean objective WQI (WQIobj) and minimum WQI (WQImin) values and grades from 2015 to
2018 for each of the 58 monitoring sites. (b) Relationship between mean WQIobj and WQImin values.

Figure 6. Monthly distribution (%) of minimum water quality index (WQImin) grades from 2015 to
2018 for watersheds with, (a) urban-dominated, (b) agriculture-dominated, and (c) forest-dominated
land-cover. Month names for dry and wet seasons are colored blue and red, respectively.

193



Water 2020, 12, 3294

4. Discussion

4.1. Suitability of FA as a Parameter Selection Method

In this study, FA, which involves factor extraction and rotation processes, was used to reduce
multiple intercorrelated physical, chemical, and biological water quality parameters into a smaller
number of latent factors, and to select key water quality parameters that had the strongest correlation
with a given latent factor. In previous studies, along with subjective judgments [27,33,65–69],
multivariate statistical techniques were employed to select parameters on an objective basis.
For example, stepwise multiple regression has been used [33,69,70] to determine the set of parameters
that could best explain the variance of WQIobj. Compared with unsupervised learning (e.g., FA),
regression is a supervised method that requires reference values; in this case, WQIobj values for
training data. However, because of the multi-collinearity and the resulting bias, WQIobj is not often a
suitable reference.

Furthermore, previous studies have used PCA at the first step followed by Pearson’s correlation
analysis to extract water quality parameters that showed high contributions to selected components and
low correlations with other parameters [31,66]. Post-hoc correlation analysis was required, since few
first factors derived from PCA are strongly associated with most of the correlated parameters. Therefore,
the application of PCA alone is not sufficient to attain key parameters that represent extracted factors.
To address this limitation, in this study PCA was conducted in conjunction with factor rotation,
which yields a simple structure for the factor loading matrix, in which only a small number of variables
have high loadings onto a given factor and do not overlap among the factors. As a result, parameters
with high loadings on a given factor appear to be more distinct and homogeneous. Therefore, a set of
parameters with high loadings across all factors are expected to represent multifaceted aspects of water
quality. Furthermore, the use of varimax rotation as a factor rotation method ensures the extracted
factors are uncorrelated with one another, facilitating the selection of key parameters, the relationships
among which can be assumed to be independent. Therefore, factor rotation used in conjunction
with PCA does not require subsequent correlation analysis, which simplifies parameter selection to a
single-step process.

4.2. Key water Quality Parameters

Selected key water quality parameters were similar among different land-cover types (COD, FC,
and NO3

−-N for URB; COD, FC, and TN for AGR; COD, TC, and TN for FOR), indicating that the
relationships among parameters were consistent regardless of land-cover type. For example, across all
land-cover types, COD, BOD5, and SS were closely correlated (Figure S1) and had high loadings with
the same factor (Table 3). The high correlations were shown, since the three parameters commonly
account for biodegradable organic matter. In addition, for one being the subset of the other, FC and
TC, and NO3

−-N and TN, were closely related to each other (Figure S1) and had the highest loadings
onto the same factor for all land-cover types (Table 3). Note that phosphorus parameters showed
moderate to strong associations with TC and FC within the same factor for all land-cover types (Table 3).
Therefore, rather than phosphorus parameters, either TC or FC, which showed higher loadings with
the factor than the phosphorus parameters, was selected as the key parameter. A possible speculation
over this co-occurrence tendency is that phosphorus and fecal indicator bacteria may originate from
the same pollution source (e.g., domestic sewage and agricultural runoff) or the same mechanism
(e.g., sediment release), but future research will be necessary for interpreting the causal relationships.

The presence of multiple parameters with almost equally high loadings onto a given factor
necessitated comparisons between WQImin and modified WQImin, in which a key parameter (e.g., COD)
is replaced by its surrogate parameter (e.g., BOD5) that was strongly related to the key parameter within
the same factor. The results illustrated that modified WQImin was generally in close agreement with
WQImin (Figure S2), suggesting that a set of parameters that shows high loadings within the same factor
can be used interchangeably. Note that, compared with other sets of parameters, linear relationships
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between WQImin and modified WQImin for fecal indicator bacteria were weaker because of the large
variability inherent in FC and TC concentrations. Nonetheless, given the marginal differences in factor
loading between TC and FC regardless of land-cover type (Table 3), between the two parameters,
the key parameter should be selected depending on management focus or data availability.

The results of FA need to be interpreted and applied with care. The factor extraction process of
FA determines the factors worth retaining, and the subsequent factor rotation, whereby the factors
become least correlated with each other, yields the proportion of variance explained by a given factor
to be distributed more evenly among the factors. Therefore, it is not particularly valid to prioritize the
factors and the consequent key parameters. Instead, the selected key parameters should be considered
independently of each other and as equally important. In this regard, assigning different weights to
key water quality parameters with equal importance should not be included as a step for WQImin

development. Previous studies reported that using weights improved the linearity between WQImin

and WQIobj [33,70]. In contrast to these findings, we found that the use of weights, which were
estimated based on two methods, the relative weight [33,70] and the percentage of variance explained
by the given factor (Table 3), yielded only slight differences in the WQImin-WQIobj relationships
(Figure S3).

It should be acknowledged that the water quality data, used in this study, did not include several
widely measured parameters, such as parameters for minerals, salts, metals and flow rate. If such
parameters were added to the data, FA may include additional factors and key parameters. Moreover,
the results of parameter selection did not contain the basic water quality parameters of Temp and pH in
the key parameter list for any land-cover type. In addition, despite being frequently included as a key
parameter [42,43,68–70] in previous studies, DO was not selected for any land-cover type in this study
(Table 3). Variations in Temp, pH, and DO may be influenced by anthropogenic activities but are also
attributable to natural variability. That is, they exhibit diurnal fluctuations and are strongly influenced
by meteorological conditions [33,65]. Our results suggest that Temp, pH, and DO, whose patterns
are substantially influenced by natural variations, may not successfully capture the total variance of
stream water quality in urban areas, and may not be suitable for being included as key parameters.

4.3. Comparison between WQImin and WQIobj

Our results of test data showed that WQImin and WQIobj have close linear relationships across
all land-cover types (Figure 4), suggesting that WQImin can be used to predict WQIobj using the
established regression model. However, WQImin values tended to be higher than WQIobj above a
certain threshold and lower than WQIobj below this threshold. This tendency indicates that the use
of WQImin eliminates the “eclipse effect” [71], which arises from the redundancy inherent in WQIobj;
accordingly, WQIobj is subject to overestimating bad water quality status and underestimating good
water quality status. The removal of redundancy was also evidenced by the larger variance of WQImin

compared with that of WQIobj for all land-cover types (Figure 4). Therefore, the development and use
of WQImin is expected to improve the identification of the overall water quality status and the level of
water pollution in streams across urban areas. Our results demonstrate that the method selection for
WQI assessment has important resource and management implications. Changing the method from
WQIobj to WQImin altered the spatial distribution of the overall water quality status; this status change
occurred in a minor to substantial portion of monitoring sites, depending on the metropolitan area
(Figure 5). This change suggests that the use of WQImin instead of WQIobj, which may involve a status
change from “good” to “medium” or vice versa, may affect priority setting and resource allocation
among individual watersheds or groups of watersheds.
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4.4. Land-Cover Effects on Stream Water Quality in Urban Areas

Our results indicate that the dominant land-cover affected the overall stream water quality in
urban areas, with mean values of both WQIobj and WQImin decreasing in the order: FOR > AGR > URB
(Figure 4). The dominant land-cover type also contributed to the deterioration of differing water
quality parameters (i.e., nitrogen and microbiological indicators for URB, but organic matter and
turbidity for AGR) (Table 2). The long-term trends of overall water quality differed by land-cover type
(Figure 3). Over the last decade, WQIobj trends for URB and AGR exhibited early improvement before
becoming stable, whereas the trend for FOR did not change significantly (Figure 3). These patterns
support that, across the country, management programs implemented to control point or non-point
sources for URB and AGR were effective in improving overall stream water quality [72–75].
Moreover, the implementation of conservation measures against continuing development pressures in
metropolitan areas played a role maintaining the water quality in FOR. Furthermore, the land-cover
type exerted an influence on the seasonality of overall water quality (Figure 6). In recent years
(2015–2018), the seasonal patterns of WQImin have differed for URB and FOR, whereas AGR exhibited
less obvious seasonality. The less consistent seasonality for AGR may be partly attributable to the
small sample size (n = 287, compared with n for URB = 1881 and n for FOR = 1162) corresponding
to AGR. During the wet season, both URB and FOR exhibited a negative change in overall water
quality with an increase in the proportion of “medium” and “good” status sites relative to “excellent”
status sites (Figure 6). For URB with typically high proportions of impervious surfaces, stormwater
runoff may play a significant role in decreasing overall water quality during the wet season [76–78].
Moreover, an increase in sediment discharge as well as sediment perturbation with rainfall events
may facilitate the release of pollutants into surface water [79–82], resulting in a decrease in overall
water quality during the wet season in both URB and FOR. In contrast, subsequent to the wet season,
when dilution effects can occur [83–85], URB alone exhibited an increase in the proportion of “bad”
status sites relative to “medium” and “good” status sites (Figure 6). This indicates that, not only
non-point sources, but also point sources, such as wastewater treatment plant effluent, are significant
forms of pollution for URB.

5. Conclusions

This study provided a statistical framework for implementing parameter selection in order to
develop an objective WQImin in a single-step process. Comparisons between WQIobj and WQImin

suggested that WQImin calculated with the key parameters yielded comparable results to WQIobj.
Furthermore, WQImin reduced the eclipse effects arising from the use of correlated parameters for
water quality assessment to result in a better differentiation between good and bad water quality
statuses. These results have implications for management authorities, especially those motivated
to launch their own monitoring network system but who have limited available resources. In this
context, our results can be used to reduce monitoring demands by prioritizing the monitoring
importance of a minimal number of water quality parameters. The results of WQImin confirmed that
the dominant land-cover type of watersheds influence multidimensional aspects of urban stream
water quality; namely, the overall degree and level of pollution as well as long-term and seasonal
patterns. To confirm our results, future studies should expand the number of water quality parameters
exhibiting various characteristics.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/11/3294/s1.
Figure S1: Matrices of the Pearson’s correlation coefficient for the period 2015–2016 among 14 water quality
parameters for (a) urban-dominated (URB), (b) agricultural-dominated (AGR), and (c) forest-dominated (FOR)
land-cover. Water quality parameters with high factor loadings (>0.75) on the same factor are outlined in
the same color, Figure S2: Relationships between the minimum water quality index (WQImin) and modified
WQImin from 2015 to 2018. To develop the modified WQImin, key parameter values were predicted using the
established linear relationship between a key parameter and a surrogate parameter. Then, predicted values
were converted into normalization factors for WQImin calculation. In the x-axis label, WQImin (COD→ BOD5)
indicates that biochemical oxygen demand (BOD5) was used as the surrogate for the key parameter of chemical
oxygen demand (COD). Black dotted lines indicate 1:1 lines. Figure S3: Relationships between objective and
minimum water quality indices (WQIobj and WQImin) from 2017 to 2018. Weights were determined using two
methods; for a-c, a relative weight was assigned to each key parameter and for d-f, the percent variance explained
by a given extracted factor was assigned to each key parameter. Black dotted lines and blue dashed lines
indicate 1:1 lines and regression lines, respectively. Table S1: Proportions of three land-cover categories (urban,
agricultural, and forested land) for urban-dominated watersheds (URB), agricultural-dominated watersheds
(AGR), and forest-dominated watersheds (FOR). Table S2: Parallel analysis results comparing eigenvalues and
simulated mean eigenvalues for urban-dominated (URB), agriculture-dominated (AGR), and forest-dominated
(FOR) land-cover. The simulated mean eigenvalue indicates the mean eigenvalue calculated from randomly
generated simulation data. Asterisks (*) indicate that the eigenvalue is higher than the corresponding simulated
mean eigenvalue.
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Abstract: In the present study, the susceptibility to flash-floods and flooding was studied across the
Izvorul Dorului River basin in Romania. In the first phase, three ensemble models were used to
determine the susceptibility to flash-floods. These models were generated by a combination of three
statistical bivariate methods, namely frequency ratio (FR), weights of evidence (WOE), and statistical
index (SI), with fuzzy analytical hierarchy process (FAHP). The result obtained from the application
of the FAHP-WOE model had the best performance highlighted by an Area Under Curve—Receiver
Operating Characteristics Curve (AUC-ROC) value of 0.837 for the training sample and another
of 0.79 for the validation sample. Furthermore, the results offered by FAHP-WOE were weighted
on the river network level using the flow accumulation method, through which the valleys with
a medium, high, and very high torrential susceptibility were identified. Based on these valleys’
locations, the susceptibility to floods was estimated. Thus, in the first stage, a buffer zone of 200 m
was delimited around the identified valleys along which the floods could occur. Once the buffer
zone was established, ten flood conditioning factors were used to determine the flood susceptibility
through the analytical hierarchy process model. Approximately 25% of the total delimited area had a
high and very high flood susceptibility.

Keywords: flooding; flash-floods; bivariate statistics; fuzzy multicriteria decision-making; small
catchments; Romania

1. Introduction

According to Hu et al. [1], a total number of 2.5 billion peoples were affected by flash-
floods and floods between 1994 and 2013. In the same period, 0.16 billion fatalities occurred
due to the same natural risk phenomena. Therefore, since flash-floods are extremely severe
phenomena, they are also very dangerous for human life [2,3]. These phenomena appear
most frequently in small river basins characterized by a high slope. Additionally, areas
with smaller slopes favor the accumulation of the transported water and materials [4]. In
this context, the identification of sections that favor the surface runoff occurrence, torrential
valleys on which the flash-floods are propagated, and the flood susceptibility assessment in
those regions, is one of the most important measures to combat the negative effects of these
phenomena on water quality and human society. Additionally, the results provided by this
type of analysis are very important in assessing a region’s vulnerability and risk to flash
floods. It should be noted that most of the procedures regarding the evaluation of flash-
flood and flood risk assessment, which were adopted by the European countries includes
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the use of several traditional methods such as hydraulic and hydrological modeling. These
techniques are time consuming and very expensive [5,6]. In this context, the need to
find faster, more accurate, and cheaper techniques for determining the flood hazard has
significantly increased.

In recent years, the scientific field of flash-food and flood susceptibility assessment has
had a high dynamic due to the fast development of the techniques and software used to
perform these analyses [7]. Thus, to assess the flood susceptibility, Geographic Information
System (GIS) techniques, complex models of bivariate statistics, and machine learning are
used [8]. The most used bivariate statistical techniques for assessing susceptibility to natural
hazards are weights of evidence [9], frequency ratio [10], evidential belief function [11],
certainty factor [12], statistical index [13], and index of entropy [14]. The most well-
known machine learning models used in the study of susceptibility to floods are decision
trees [15], multilayer perceptron [16], logistic regression [17], support vector machine [18],
bagging [19], k-nearest neighbor [20], naïve Bayes [21], Decorate [22], Dagging [15], and
adaptive neuro-fuzzy inference system [23]. Many researchers have assessed the risk of
flash-floods and floods by using ensemble models resulting from the combination of several
methods [15,21,24].

Nevertheless, in all the research papers where machine learning and bivariate statistics
were used, the susceptibility was estimated separately for flash-floods and flooding. Up to
now, there is no approach in which the susceptibility to these two phenomena, which are
strongly related, can be estimated together. A first attempt to identify the torrential valleys,
based on the flash-flood susceptibility, was done by Costache et al. [25]. In that study, the
authors managed to detect the river valleys prone to flash-flood propagation using four
hybrid models and the flow accumulation method. Nevertheless, the flooding susceptibility
was not estimated along the torrential river valleys, this fact being a shortcoming that
should be addressed.

In this context, we aimed to propose an integrated approach for estimating the surface
runoff susceptibility and the susceptibility to floods. Thus, in the first stage, we follow
the identification of areas susceptible to flash-floods by applying three overall models
generated by combining frequency ratio, statistical index, and weights of evidence bivariate
statistics models, on the one hand, and fuzzy analytical hierarchy process on the other
hand. The models’ performances were evaluated utilizing the ROC curve. The second stage
of the study aims to identify the torrential valleys susceptible to the propagation of the
upstream flash-floods by applying the flow accumulation method. Once the valleys with a
medium, high, and very high potential for flash-flood propagation are identified, the flood
susceptibility is calculated to determine the areas exposed to floods. Flood susceptibility is
determined through the analytical hierarchy process stand-alone model.

It should be mentioned that this is the first time in the literature when the susceptibility
of these two phenomena, flash-floods and flooding generated by them, were analyzed in
an integrated way and in a spatial causal relationship. The previous studies carried out in
Romania as well as in any part of the globe were focused on the estimation of flooding or
flash-flood susceptibility without taking into account their strong spatial relationship.

2. Study Area

The present study focused on the Izvorul Dorului River basin located in the moun-
tainous area of the central part of Romania. The surface of the study area is 33 km2, which
falls into the category of small-area basins that are frequently affected by rapid floods.
The altitude inside the study zone varies from 763 m to 2202 m (Figure 1a). This high
difference in altitude on a small area creates favorable premises for flash-flood genesis and
their propagation from the upper to the lower part of the river basin. The river basin is
characterized by an average high slope of 15.6◦, which is another indicator of the high
potential for flash-flood propagation along the valleys in the study area. According to the
existing information and, as can be seen in Figure 1b, the afforestation degree of the river
basin is around 50%. Additionally, from Figure 1b, one can remark that in the perimeter of
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the deforested surfaces located at the highest altitude also exists a very high potential for
a rapid surface runoff on the slopes. This is another element indicating that the genesis
of the flash-floods is related to the high-altitude region of the river basin from where they
are propagated along the steep river valleys toward the lowland area. The lower part of
the study area corresponds to the built space of Sinaia city, the most famous mountain
tourist resort in Romania. This locality has been affected by floods multiple times, caused
by Izvorul Dorului River and its tributaries. One of the most violent flash-floods took place
in August 2010 when several dozens of buildings were affected as well as National Road 1,
National Road 71, and the railroad between Bucharest and Brasov cities. Additionally, as a
result of different strong floods, several landslides were activated and affected the houses
from Sinaia.
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3. Methods
3.1. Background of the Models
3.1.1. Statistical Index

Proposed by van Westen [26], statistical index (SI) is a bivariate method widely used
in natural risk susceptibility evaluation studies [13,27]. According to this model, the score
of a predictor class can be computed by applying the natural algorithm to the ratio between
the density of pixels associated with the phenomenon presence in the predictor class and
the density of the same pixels across the study area [28]. Thus, a well-known formula to
estimate the SI weight is the following:

Wij = ln
( fij

f

)
= ln




Npix(Si)
Npix(Ni)

∑ Npix(Si)
∑ Npix(Ni)


, (1)
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where Wij is the weight of the class/category i of predictor j; fij is the density of the
phenomenon in class i of predictor j; f is the density of phenomenon in the study; Npix(Si)
is the number of pixels associated with the phenomenon in class i; and Npix(Ni) is the sum
of pixels of the same parameter class.

3.1.2. Frequency Ratio

Frequency ratio (FR) is a bivariate statistical model, widely applied to evaluate flood
and landslide susceptibility mapping worldwide [9,10,13]. The relationship between food
occurrences and conditioning parameters is used to analyze and calculate the frequency
ratio. The mathematical expression of frequency ratio (i.e., the frequency ratio of class i of
factor j) is given in Equation (2) [10]:

FR =

Npix(1)
Npix(2)

∑ Npix(3)
∑ Npix(4)

(2)

where Npix(1) is the total number of torrential points contained by a class/category of
factor; Npix(2) is the total number of pixels contained by each class/category; ∑ Npix(3)
is the total number of torrential pixels within the study area; and ∑ Npix(4) is the total
number of pixels within the study area.

After calculating the frequency ratio, each controlling factor summed up all the values
to generate a map of flood vulnerability. If the frequency ratio is greater than 1, the
conditioning factors strongly influence flooding, otherwise, there is a negative relationship
between conditioning factors and flood occurrence.

3.1.3. Weights of Evidence

Weights of evidence (WOE) is a widely used statistical model for landslide, flood,
and fire forest susceptibility assessment [29–31]. This method was first introduced for
geological studies in 1992, then adopted for the analysis of different hazards (e.g., fire
forest, flood, landslides) [27]. This method estimates the weights of evidence coefficients
based on the relationship between each class of factors and the flood absence/presence.
The positive weight (W+) and the negative weight (W−) are necessary for the computation.
These weights reflect the presence and absence of areas affected by the flood, respectively,
and can be computed using the following [29–31]:

W+ = ln
P{B|S}
P
{

B
∣∣S
} (3)

W− = ln
P
{

B
∣∣S
}

P
{

B
∣∣S
} (4)

where B and B are the presence and absence of flood conditioning parameters, respectively;
P is the probability; and S, and S are the presence and absence of flooding, respectively.

The output of the performed processes is used to implement Equations (3) and (4) in
ArcGIS. Subsequently, the mathematical representation of these two equations are [29]:

W+ = ln
Npix1

Npix1+ Npix2
Npix3

Npix3+ Npix4

(5)

W− = ln
Npix2

Npix1+ Npix2
Npix4

Npix3+ Npix4

(6)

where W+ and W− are the positive and negative weights, respectively; Npix1 and Npix2
are the number of pixels with flood points inside and outside of the class, respectively;
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and Npix3 and Npix4 are the number of pixels without flooding inside and outside of the
class, respectively.

The final weights of evidence coefficients (Wf ) assigned to each factor class can be
obtained as follows [29]:

W f = W plus + Wmintotal −Wmin (7)

where (Wf ) is the final weight of evidence coefficients; Wmintotal is the total of all negative
weights in a multiclass map; and Wplus and Wmin are the positive negative weights of a
class factor, respectively.

3.1.4. Fuzzy Analytical Hierarchy Process

The analytical hierarchy process (AHP) is an algorithm used for flood, landslide,
and fire forest susceptibility mapping [32–35]. Through a pairwise comparison matrix
constructed based on expert knowledge, AHP was used to calculate the weights of relevant
criterion map layers. Since AHP has several advantages such as its fuzzy extension,
the fuzzy analytical hierarchy process (FAHP) was proposed and applied to solve the
hierarchical fuzzy problems. It can be employed to increase the analysis quality, reducing
the subjectivity in the estimation of weights criteria by a combination of the fuzzy set theory
and the analytical hierarchy process [36]. The following steps show how to determine the
weights of criteria in the FAHP.

The pairwise comparison matrices are constructed from flood conditioning factors
(elevation, slope angle, stream density, curve number, rainfall, lithology, land use, soil
texture, etc.). Linguistic terms are assigned to the pairwise comparison (Equation (8)) to
establish the most important criteria [37]:

A′ =




1′ a′12 · · · a′1n
a′21 1′ · · · a′1n

...
...

. . .
...

a′n1 a′n2 · · · 1′


 =




1′ a′12 · · · a′1n
1/a′21 1′ · · · a′1n

...
...

. . .
...

1/a′n1 1/a′n2 · · · 1′


 (8)

where a’ij indicates a pair of criteria i and j.
The Buckley method [38] is utilized to calculate the fuzzy geometric mean and fuzzy

weight of each criterion by:

r′i =
(
a′i1 ⊗ a′i2 ⊗ . . .⊗ a′in

) 1
n , (9)

w′i = r′i ⊗ (r′1 ⊗ . . .⊗ r′n)
−1, (10)

where a′in is the fuzzy comparison value between the pair criterion i and criterion n; and r′1
is the geometric mean of the fuzzy comparison values for criterion i compared to each of
the other criteria; w′i is the fuzzy weighting of the ith criterion; and w′i = (lwi, mwi, uwi),
where lwi, mwi and uwi are the values of the lower, middle, and upper, fuzzy weighting of
the ith criterion, respectively [37,39].

The extent analysis algorithm was applied to determine the final values of the flood
conditioning factor weights. The construction of a fuzzy triangular comparison matrix is
the first step. This matrix is done by [40]:

A′ =
(

a′ij
)

nxn
=




(1, 1, 1) (l12, m12, u12) · · · (l1n, m1n, u1n)
(l21, m21, u21) (1, 1, 1) · · · (l2n, m2n, u2n)

...
...

. . .
...

(ln1, mn1, un1) (ln2, mn2, un2) · · · (1, 1, 1)


 (11)

where a′ij = (lij, mij, uij) and a
′−1

ij = (1/lij, 1/mij, 1/uij) for i, j = 1, . . . , n and i 6= j.
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Next, we computed the priority vector of the triangular matrix. Then, the fuzzy
arithmetic function was employed to sum up each row of the matrix A′ in a first stage, as
follows:

RSi =
n

∑
j=1

a′ij =

(
n

∑
j=1

lij,
n

∑
j=1

mij,
n

∑
j=1

uij

)
, i = 1, . . . , n (12)

Then, the value of the fuzzy synthetic extent in terms of the ith object is obtained
through the normalization of the above relation, as follows [32]:

S′i =
n

∑
j

a′ij ⊗
[

n

∑
k=1

n

∑
j=1

a′kj

]−1

=

(
∑n

j=1 lij
∑n

k=1 ∑n
j=1 ukj

,
∑n

j=1 mij

∑n
k=1 ∑n

j=1 mkj
,

∑n
j=1 uij

∑n
k=1 ∑n

j=1 lkj

)
, i = 1, . . . , n. (13)

The computation of the degree of possibility of S′i ≥ S′j represents the third step and is
achieved through Equation (14):

V(S′i ≥ S′j) =





1, i f mi ≥ mj,
ui− lj

(ui− mi)+(mj− lj)
, lj ≤ ui, i, j = 1, . . . , n; j 6= i

0, otherwise

(14)

where S′i = (li, mi, ui) and S′j =
(
lj, mj, uj

)
.

Considering that:

w′(ai) = min
{

V(S′i ≥ S′k)
}

, k = 1, 2, . . . ., n; k 6= i (15)

the weight vector values can be calculated by:

w′(ai) =
[
w′(a1), w′(a2), . . . , w′(an)

] T . (16)

The weight vectors were obtained using the following equation after a
normalization process:

w(ai) = [w(a1), w(a2), . . . , w(an)]
T (17)

where w is a non-fuzzy number.
The present study was carried out by completing several methodological steps, as

presented in Figure 5 and also briefly described below.

3.2. Data Used
3.2.1. Torrential Areas Inventory

Identifying the areas previously affected by a natural risk phenomenon is vital for
detecting other zones where that phenomenon has a high probability of occurrence [41].
The appearance of any phenomenon will be favored in areas with characteristics similar
to those where the phenomenon has already occurred [42]. For this reason, to estimate
the susceptibility to the occurrence of rapid floods, torrential areas were inventoried and
mapped. These areas were generated by the rapid surface runoff on the slopes. The
modality of identification of such zones is presented in the studies [43]. Torrential areas
are zones characterized by the unified presence of a torrential microform of relief such
as ravines and gullies generated by surface runoff. Thus, through the satellite images
made available through the Google Earth application (Figure 1), an area affected by intense
torrential processes of about 170 hectares was vectorized, which is located in the upper part
of the river basin where the absence of vegetation and the high slopes favor the apparition
of such phenomena.

3.2.2. Flash-Flood and Flood Predictors

Whereas torrential zones represent an indicator of the rapid surface runoff on the
slopes, certain geographical factors are the predictors of this phenomenon, or in other
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words, are the variables that generate and favor the surface runoff. Moreover, the genesis
of floods generated by flash-floods also depends on the characteristics of geographical
factors. Therefore, to identify as accurately as possible the surfaces favorable to the genesis
of flash-floods and those susceptible to floods, twelve conditioning factors were taken
into account. Eight morphometrical predictors were obtained by processing the digital
elevation model, while the other four flood and flash-flood predictors were collected from
the following vector databases: hydrological soil groups from the Digital Soil Map of
Romania, 1:200,000; land use/cover from Corine Land Cover, 2018; lithology from the
Digital Geological Map of Romania, 1:200,000; and distance from rivers was estimated
with the help of the river network in an Environmental Systems Research Institute (ESRI)
shapefile format. Below, the main characteristics of flood and flash-flood predictors are
briefly presented.

The slope is the geographic factor that has the biggest influence on both the potential
for rapid surface runoff and the flood potential [24]. Surfaces with steep slopes cause rapid
water drainage, while the flat surfaces lead to the water accumulation process [44]. In our
case study, the sloping relief had values between 0.1◦ and 54.1◦ (Figure 2a). This interval
was divided into six classes according to the literature [43].

Land use/cover is another predictor that influences both flash-floods and floods [45].
Lands covered with pastures or without vegetation will favor the appearance of rapid
runoff on the slopes, while areas covered with forests are characterized by a lower potential
for runoff and flooding [21]. In the study area, the grassland and the forest shared equally
almost all of the territory (Figure 2b). Additionally, the presence of the built space in the
lower part of the Izvorul Dorului River basin was observed.

Hydrological soil group has a high influence on the flood. Thus, the flooding phe-
nomenon will likely be over the areas with soils with high clay content such as those in
hydrological group D, while water infiltration will be more pronounced on soils with a
sandy texture [46–48]. Within the study area, the largest surface was occupied by hydrolog-
ical soil group A (Figure 2c).

Convergence index (CI) is a predictor obtained from the DEM whose values show
the concentration degree of the drainage network. CI values close to −100 indicate a
high density of the river network whereas positive CI values are associated with the
interfluvial surfaces. In the study area, the CI values are situated in the range from −86 to
84 (Figure 2d). These were divided into five classes according to the literature [43].

Profile curvature is a predictor whose negative values show the surfaces that favor the
accelerated surface runoff, while the decelerated runoff manifests itself on the surfaces with
positive values. The information from the literature was used to classify profile curvature
values into the next classes: −2.3–−0.1; 0–0.1; 0.2–2.6 (Figure 3a).

The aspect factor obtained from the DEM is an indicator of the humidity potential that
exists at the slope level [49]. In the case of the Izvorul Dorului basin, the southeast surfaces
were the most extensive, these being followed by the southwest slopes (Figure 3b).

Topographic position index (TPI) is a predictor calculated from the DEM, which
shows the relative position of a point in the research area in relation to the immediately
neighboring regions [50]. The next TPI classes were established using the natural breaks
method: −7.8–−1.8; −1.7–−0.5; −0.4–0.5; 0.6–1.9; 2–8.6 (Figure 3c). The following five
classes of Topographic Wetness Index (TWI) were delimited using the natural break method:
−4.4–4.7; 4.8–8.4; 8.5–11.8; 11.9–15; 15.1–23.1 (Figure 3d).

The elevation is a useful indicator for detecting the surfaces exposed to flooding
processes that may occur as a result of flash-flood propagation from the upper part of river
basins [7]. The lower relief zones have a higher sensitivity to flooding occurrence. For the
study area, the range from 763.1 m to 2202 m was split into seven classes that generally
succeeded at a difference of 200 m (Figure 4a).
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Plan curvature shows the difference between the surfaces on which the convergent
and divergent runoff is manifested. Three classes were delimited for the plan curvature
values (Figure 4b): −3–−0.1; 0–0.1; 0.2–1.9.

Lithology is a predictor that influences the infiltration capacity at the ground surface,
so it should be considered in the studies concerning the flood and flash-flood potential.
The conglomerates, breccias, sandy flysch, and marls shale are predominant in the study
area (Figure 4c).

Distance from the river was generated using the Euclidean distance tool from ArcGIS
10.3 software. This is an important parameter that indicates the distance from different
surfaces to the nearest watercourse. The surfaces in the vicinity of watercourses will be
more prone to flash-floods and the floods generated by them. In the present study, the
distance from the river predictor was classified into eight classes.

3.3. Methodological Steps Implemented in the Present Study
3.3.1. Step 1: Flash-Flood Database Preparation

The flash-flood database used in the present research consisted of 1965 torrential points
collected from the delineated torrential surfaces and ten flash-flood conditioning factors.
Building and processing the flash-flood database were done through ArcGIS 10.3 software.
It should be noted that the torrential points were obtained by converting the torrential areas
from a raster format, with a cell size of 30 m, to a point. Therefore, each point corresponds
to a raster cell. According to the literature [51], the entire sample was divided into a training
dataset (70%) and a validation dataset (30%). The training dataset was used to calculate the
frequency ratio, weights of evidence, and statistical index coefficients, while the validation
dataset was used to evaluate the accuracy of the results achieved.

3.3.2. Step 2: Computation of Flash-Flood Potential Index (FFPI)

The flash-flood potential index represents a qualitative indicator of the potential for
torrential surface runoff, which exists at the slope level [52]. In the first stage, the frequency
ratio, weights of evidence, and statistical index coefficients were determined by analyzing
the spatial correlations between the torrential points included in the training sample and
the ten flash-flood predictors. In this regard, the equations from Sections 3.1.1–3.1.3 were
implemented in Excel and ArcGIS. The number of pixels used in the computation of the
types of bivariate statistics coefficients was 1376. Furthermore, the second stage consisted
of the computation of flash-flood predictors weights by the fuzzy analytical hierarchy
process method. Finally, three variants of the flash-flood potential index were computed
by the weighted sum between fuzzy analytical hierarchy process weights and the values of
frequency ratio, weights of evidence, and statistical index coefficients.

3.3.3. Step 3: Evaluation of Results Accuracy Using Receiver Operating Characteristic
(ROC) Curve

The results of FFPI were assessed using the receiver operating characteristic (ROC)
curve. The ROC curve represents a graphical plot that highlights the ability of a binary
model to classify a given dataset used in the modeling process into the presence or the
absence of a specific phenomenon [53]. This is the most frequently used algorithm to
validate the outcomes provided by a model for natural hazards susceptibility [42,49,54,55].
The ROC curves were constructed by comparing the existing torrential points with the flash-
flood potential index results. Both the success rate, constructed with the training sample,
and prediction rate constructed with the validation sample, will be used. The area under
curve (AUC) will highlight the performance of each flash-flood potential index model.

3.3.4. Step 4: Computation the Flood Potential Index (FPI) Based on the Most Performant
FFPI Result

To identify the valleys with a high torrential degree, the best performing flash-flood
potential index that resulted was used in a flow accumulation procedure (Figure 5). Through
the flow accumulation method, the flash-flood potential index values are weighted at the
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level of the river network within the study area. The weighted flash-flood potential
index values are further classified into five categories: very low, low, medium, high, and
very high. In the next stage, to select the river valleys along which the flood potential
index will be calculated, the hydrographic network having assigned a medium, high, and
very high flash-flood propagation susceptibility is selected. The flood potential index
represents a qualitative indicator that highlights the degree to which a specific region
can be affected by the flooding phenomenon [56]. The area on which the flood potential
index will be computed was limited to a buffer zone of 200 m along with the selected
river network. Eventually, the flood potential index values are obtained by involving the
next ten flood conditioning factors in the analytical hierarchy process method: slope, land
use, hydrological soil groups, convergence index, topographic position index, topographic
wetness index, elevation, distance from the river, plan curvature, and lithology. The values
of the FPI are then classified into five categories through which the areas prone to flooding
generated by flash-floods will be detected.
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4. Results
4.1. Bivariate Statistics Coefficients

The values of bivariate statistics coefficients highlight the spatial relationships be-
tween the location of torrential areas and the classes/categories of flash-flood predictors.
According to Table 1, the lowest weights of evidence coefficients were assigned to hydro-
logical soil group D (−15.04), lithological category of sandy flysch, marls shale (−10.3),
lithological category of clays, limestone (−9.27), and hydrological soil group C (−8.91).
The highest weights of evidence values were attributed to slope angles higher than 45◦

(3.34), grassland land use (1.52), lithological category of conglomerates, breccias (1.48),
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and slope angles between 15.1◦ and 25◦ (0.95). In terms of frequency ratio coefficients,
the lowest values (0) were associated with agricultural zones, built-up areas, bare rocks,
lithological categories of sandstone, gravels, clays, and limestone, zones with slope angles
lower than 3◦, and hydrological soil groups C and D. The highest frequency ratio values
were assigned to zones with slope angles higher than 45◦ (13.5), grassland land use (2.07),
lithological category of conglomerates, breccias (2.04), areas with slope angles between
15.1◦ and 25◦ (1.82), and convergence index class between −86 and −3 (1.78). In the case
of SI coefficients, the lowest values were calculated for hydrological soil group D (−7.83),
zones with slopes lower than 3◦ (−5.99), lithological category of sandstone and gravels
(−5.25), lithological category of sandy flysch and marls shale (−5.12), and built-up areas
(−4.94). The highest SI coefficients were obtained by zones with slope angles higher than
45◦ (2.6), grassland land use (0.73), lithological category of conglomerates, breccias (0.71),
zones with slope angles between 15.1◦ and 25◦ (0.6), and convergence index class between
−86 and −3 (0.58).

Table 1. Bivariate statistics of flash-floods conditioning factors classes.

Factor Class Class Pixels Torrential Points WOE FR SI

Slope

0–3◦ 1065 0 −6.05 0.00 −5.99
3.1–7◦ 5008 230 0.26 1.22 0.20
7.1–15◦ 15,098 299 −0.94 0.53 −0.64

15.1–25◦ 9937 677 1.01 1.82 0.60
25.1–45◦ 5407 93 −0.88 0.46 −0.78
45.1–54◦ 152 77 3.34 13.50 2.60

Land use

Built-up areas 374 0 −6.78 0 −4.94
Grassland 16,949 1316 1.52 2.07 0.73

Agriculture
areas 15 0 −3.55 0 −1.73
Forest 19,218 60 −5.05 0.08 −2.49

Bare rocks 111 0 −5.56 0 −3.73

Convergence
index

−86–−3 7514 502 0.93 1.78 0.58
−2.9–−2 2085 114 0.51 1.46 0.38
−1.9–−1 2750 107 0.13 1.04 0.04
−0.9–0 3939 101 −0.35 0.68 −0.38
0.1–84.9 20,379 552 −0.56 0.72 −0.33

Lithology

Sandy flysch,
marls shale 17,891 4 −10.30 0.01 −5.12

Conglomerates,
breccias 17,948 1372 1.48 2.04 0.71

Clays,
limestone 321 0 −9.27 0 −4.79

Sandstone,
gravels 507 0 −4.44 0 −5.25

Plan
curvature

−3–−0.1 7202 345 0.29 1.28 0.244
0–0.1 20,963 821 0.07 1.04 0.043

0.2–1.9 8502 210 −0.57 0.66 −0.418

HSG
A 29,965 1376 0.42 1.22 0.20
C 18 0 −8.91 0 −1.91
D 6684 0 −15.04 0 −7.83

Aspect

Flat surfaces 93 2 −0.31 0.57 −0.56
North 3306 97 −0.01 0.78 −0.25

Northeast 4440 27 −1.70 0.16 −1.82
East 5064 104 −0.43 0.55 −0.60

Southeast 6455 181 −0.09 0.75 −0.29
South 5225 334 0.95 1.70 0.53

Southwest 5434 286 0.69 1.40 0.34
West 3829 211 0.73 1.47 0.38

Northwest 2821 134 0.53 1.27 0.24

TPI

−7.8–−1.8 2063 27 −1.21 0.35 −1.05
−1.7–−0.5 8121 380 0.22 1.25 0.22
−0.4–0.5 16,532 744 0.29 1.20 0.18
0.6–1.9 8181 192 −0.68 0.63 −0.47
2–8.6 1770 33 −0.83 0.50 −0.70

TWI

−4.4–4.7 7477 277 −0.03 0.99 −0.01
4.8–8.4 9509 376 0.06 1.05 0.05

8.5–11.8 9180 307 −0.17 0.89 −0.12
11.9–15 9414 404 0.18 1.14 0.13

15.1–23.1 1083 12 −1.28 0.30 −1.22

Profile
curvature

−3–−0.1 7255 185 −0.65 0.68 −0.39
0–0.1 21,678 957 0.30 1.18 0.16

0.2–1.9 7734 234 −0.45 0.81 −0.22
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4.2. Flash-Flood Potential Index Computation Using Fuzzy Analytical Hierarchy Process Based
Ensembles

Following the methodological steps described in Section 3.1.4 the fuzzy analytical
hierarchy process algorithm was applied to determine the weights of the flash-flood
predictors. In the first step, the fuzzy analytical hierarchy process evaluation matrix was
created based on expert judgment (Table 2). Furthermore, using the values included in the
evaluation matrix, the synthesis values were calculated by using the formula:

[
n

∑
k=1

n

∑
j=1

a′kj

]−1

= (88.48 130.16 182.17)−1 = (0.005 0.008 0.011) (18)

Table 2. Fuzzy analytical hierarchy process evaluation matrix.

1 2 3 4 5 6 7 8 9 10

Slope (1)

l1 1 1 2 1 1 2 3 3 2 1

m1 1 2 3 2 2 3 4 4 3 2

u1 1 3 4 3 3 4 5 5 4 3

Land use (2)

l2 0.33 1 1 1 1 1 2 1 1 1

m2 0.5 1 2 1 2 2 3 2 2 1

u2 1 1 3 1 3 3 4 3 3 1

Convergence
index (3)

l3 0.25 0.33 1 0.33 0.33 1 1 1 1 0.33

m3 0.33 0.5 1 0.5 0.5 1 2 2 1 0.5

u3 0.5 1 1 1 1 1 3 3 1 1

Lithology (4)

l4 0.33 1 1 1 1 1 2 2 1 1

m4 0.5 1 2 1 1 2 3 3 2 1

u4 1 1 3 1 1 3 4 4 3 1

Plan curvature
(5)

l5 0.33 1 1 1 1 1 2 2 1 1

m5 0.5 1 2 1 1 2 3 3 2 1

u5 1 1 3 1 1 3 4 4 3 1

HGS (6)

l6 0.25 0.33 1 0.33 0.33 1 1 1 1 0.33

m6 0.33 0.5 1 0.5 0.5 1 2 2 1 0.5

u6 0.5 1 1 1 1 1 3 3 1 1
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Table 2. Cont.

1 2 3 4 5 6 7 8 9 10

Aspect (7)

l7 0.2 0.25 0.33 0.25 0.25 0.33 1 1 1 0.33

m7 0.25 0.33 0.5 0.33 0.33 0.5 1 1 1 0.5

u7 0.33 0.5 1 0.5 0.5 1 1 1 1 1

TPI (8)

l8 0.2 0.25 0.33 0.25 0.25 0.33 1 1 1 0.33

m8 0.25 0.33 0.5 0.33 0.33 0.5 1 1 1 0.5

u8 0.33 0.5 1 0.5 0.5 1 1 1 1 1

TWI (9)

l9 0.25 0.33 1 0.33 0.33 1 1 1 1 0.33

m9 0.33 0.5 1 0.5 0.5 1 2 2 1 0.5

u9 0.5 1 1 1 1 1 3 3 1 1

Profile
curvature (10)

l10 0.33 1 1 1 1 1 2 1 1 1

m10 0.5 1 2 1 2 2 3 2 2 1

u10 1 1 3 1 3 3 4 3 3 1

The synthesis values calculated above were used in the following step to calculate the
fuzzy numbers for each flash-flood predictor. The fuzzy numbers were then compared
using the degree of possibility procedure, which is exemplified in Table 3. Utilizing
the results provided by the degree of possibility method, the weight vector values were
calculated using the following relations:

w’(ai) = {1 0.71 0.32 0.68 0.68 0.32 0 0 0.32 0.71}T (19)

w(ai) = {0.211 0.15 0.066 0.143 0.143 0.066 0 0 0.066 0.15}T (20)

In the next step, employing the defuzzification procedure, the Triangular Fuzzy
Numbers (TFNs) were transformed into the crisp weights that will be attributed to each
flash-flood predictor and multiplied with statistical index, frequency ratio, and weights of
evidence values to obtain the flash-flood potential index.

Flash-flood potential index values were mapped using the map algebra capability
from ArcGIS software. All three flash-flood potential indices were standardized between 0
and 1 and then reclassified into five classes using the natural break method. In the case
of FFPIFAHP-SI, very low values, situated from 0 to 0.25, were found in about 2.82% of the
study area (Figure 6a). The values, ranging from 0.26 to 0.62, were mainly associated with
the southern half and represent 28.9% of the entire river basin. The medium FFPIFAHP-SI
class corresponded to approximately 13.86% of the Izvorul Dorului catchment. The high
and very high potential were spread over a total of 54.43% of the entire catchment sur-
face. The analysis of FFPIFAHP-FR revealed that the very low potential spanned 18.48%
of the total study area and was present mainly in the southern half. The low flash-flood
potential accounted for approximately 16.29% of the catchment surface, while the medium
FFPIFAHP-WOE, with values from 0.32 to 0.48, covered 26.66% of the study zone. A zone
including 38.57% of the research area was characterized by a high and very high flash-flood
potential (Figure 6b). Following the application of the FAHP-WOE ensemble, only 0.62%
of the Izvorul Dorului catchment had a very low flash-flood potential (Figure 6c). The
low flash-flood potential, with values between 0.26 and 0.44, covered around 10.62% of
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the entire territory, while the medium values quantified approximately 30.81% of the river
basin. A percentage of 57.95% of the study area had high and very high FFPIFAHP-WOE
values ranging from 0.64 to 1.

Table 3. The ordinate of the highest intersection point, the degree possibility for Triangular Fuzzy Numbers (TFNs), and the
weights of the flash-flood predictors.

Slope = 1 Land Use = 2 CI = 3 Lithology = 4 Plan Curvature = 5

V(S1 ≥ S2) = 1 V(S2 ≥ S1) = 0.71 V(S3 ≥ S1) = 0.32 V(S4 ≥ S1) = 0.68 V(S5 ≥ S1) = 0.68
V(S1 ≥ S3) = 1 V(S2 ≥ S3) = 1 V(S3 ≥ S2) = 0.65 V(S4 ≥ S2) = 1 V(S5 ≥ S2) = 1
V(S1 ≥ S4) = 1 V(S2 ≥ S4) = 1 V(S3 ≥ S4) = 0.62 V(S4 ≥ S3) = 1 V(S5 ≥ S3) = 1
V(S1 ≥ S5) = 1 V(S2 ≥ S5) = 1 V(S3 ≥ S5) = 0.62 V(S4 ≥ S5) = 1 V(S5 ≥ S4) = 1
V(S1 ≥ S6) = 1 V(S2 ≥ S6) = 1 V(S3 ≥ S6) = 1 V(S4 ≥ S6) = 1 V(S5 ≥ S6) = 1
V(S1 ≥ S7) = 1 V(S2 ≥ S7) = 1 V(S3 ≥ S7) = 1 V(S4 ≥ S7) = 1 V(S5 ≥ S7) = 1
V(S1 ≥ S8) = 1 V(S2 ≥ S8) = 1 V(S3 ≥ S8) = 1 V(S4 ≥ S8) = 1 V(S5 ≥ S8) = 1
V(S1 ≥ S9) = 1 V(S2 ≥ S9) = 1 V(S3 ≥ S9) = 1 V(S4 ≥ S9) = 1 V(S5 ≥ S9) = 1

V(S1 ≥ S10) = 1 V(S2 ≥ S10) = 1 V(S3 ≥ S10) = 0.65 V(S4 ≥ S10) = 1 V(S5 ≥ S10) = 1
min{V(S1 ≥ Sk)} = 1 min{V(S2 ≥ Sk)} = 0.71 min{V(S3 ≥ Sk)} = 0.32 min{V(S4 ≥ Sk)} = 0.68 min{V(S5 ≥ Sk)} = 0.68

Weight = 0.211 Weight = 0.15 Weight = 0.066 Weight = 0.143 Weight = 0.143

HSG = 6 Aspect = 6 TPI = 7 TWI = 8 Profile Curvature = 10

V(S6 ≥ S1) = 0.32 V(S7 ≥ S1) = 0 V(S8 ≥ S1) = 0 V(S9 ≥ S1) = 0.32 V(S10 ≥ S1) = 0.71
V(S6 ≥ S2) = 0.65 V(S7 ≥ S2) = 0.23 V(S8 ≥ S2) = 0.23 V(S9 ≥ S2) = 0.65 V(S10 ≥ S2) = 1

V(S6 ≥ S3) = 1 V(S7 ≥ S3) = 0.59 V(S8 ≥ S3) = 0.59 V(S9 ≥ S3) = 1 V(S10 ≥ S3) = 1
V(S6 ≥ S4) = 0.62 V(S7 ≥ S4) = 0.19 V(S8 ≥ S4) = 0.19 V(S9 ≥ S4) = 0.62 V(S10 ≥ S4) = 1
V(S6 ≥ S5) = 0.62 V(S7 ≥ S5) = 0.19 V(S8 ≥ S5) = 0.19 V(S9 ≥ S5) = 0.62 V(S10 ≥ S5) = 1

V(S6 ≥ S7) = 1 V(S7 ≥ S6) = 0.59 V(S8 ≥ S6) = 0.59 V(S9 ≥ S6) = 1 V(S10 ≥ S6) = 1
V(S6 ≥ S8) = 1 V(S7 ≥ S8) = 1 V(S8 ≥ S7) = 1 V(S9 ≥ S7) = 1 V(S10 ≥ S7) = 1
V(S6 ≥ S9) = 1 V(S7 ≥ S9) = 0.59 V(S8 ≥ S9) = 0.59 V(S9 ≥ S8) = 1 V(S10 ≥ S8) = 1

V(S6 ≥ S10) = 0.63 V(S7 ≥ S10) = 0.23 V(S8 ≥ S10) = 0.23 V(S9 ≥ S10) = 0.63 V(S10 ≥ S9) = 1
min{V(S6 ≥ Sk)} = 0.32 min{V(S7 ≥ Sk)} = 0 min{V(S8 ≥ Sk)} = 0 min{V(S9 ≥ Sk)} = 0.32 min{V(S10 ≥ Sk)} = 0.71

Weight = 0.066 Weight = 0 Weight = 0 Weight = 0.066 Weight = 0.15

4.3. Flash-Flood Potential Index Results Validation

Results validation is a mandatory step to establish the best ensemble model whose
results will be used to identify the areas prone to flood generated by flash-floods. In this re-
gard, the success rate and prediction rate were used. The success rate revealed that the high-
est performance was obtained by the results provided by FAHP-WOE
(AUC = 0.837), followed by FAHP-SI (AUC = 0.833) and FAHP-FR (AUC = 0.723) (Figure 7a).
The same hierarchy was also revealed by the construction of the prediction rate. Thus, the
FAHP-WOE ranked first (AUC = 0.79), followed by FAHP-SI (AUC = 0.787) and FAHP-FR
(AUC = 0.717) (Figure 7b). Therefore, following the results validation procedure, the
FFPIFAHP-WOE was selected to be used in the next step of the analysis.

4.4. Flood Potential Index Computation

According to the description provided in Section 3.3.4, the flow accumulation method
was applied to FFPIFAHP-WOE to evaluate the torrential degree of the river valleys across
the study area. The results showed that a percentage of 21.59% of the total river valleys
identified were characterized by a low and very low torrential degree and are, therefore,
considered to be less favorable for flash-flood propagation (Figure 8a). For a 200 m
buffer zone along with the other 78.41% of the river valleys, the flood potential index
(FPI) was calculated. In this regard, the stand-alone analytical hierarchy process (AHP)
multicriteria decision-making was used. It should be mentioned that through AHP, in
the first stage, the weights of flash-flood predictors and classes/categories of flash-flood
predictors were calculated. In terms of flash-flood predictors, the highest weight was
detected for slope (0.224), followed by land use (0.137), elevation (0.137), distance from
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river (0.137), lithology (0.085), plan curvature (0.081), hydrological soil groups (0.064),
convergence index (0.055), TPI (0.046), and TWI (0.031) (Table 4). The analysis of the
weights attributed to the classes/categories of flash-flood predictors revealed that the
highest value was obtained for hydrological soil group D (0.66), followed by the plan
curvature class between −3 and −0.1 (0.539), the TPI class between −7.8 and −1.8 (0.439),
the TWI class between −4.4 and 4.7 (0.433), the conglomerates and breccias lithological
categories (0.423), the convergence index class between −86 and −3 (0.42), and the slope
angle class lower than 3◦ (0.379).
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Table 4. Pair-wise comparison matrix and normalized weights for each factor and class/category.

Factor and Classes/Categories Pair-Wise Comparison Matrix AHP Weights
Flood Predictors [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

[1] Slope 1 0.224
[2] TPI 1/4 1 0.046
[3] TWI 1/5 1/2 1 0.031

[4] Land use 1/2 3 4 1 0.137
[5] Lithology 1/3 2 3 1/2 1 0.085
[6] Elevation 1/2 3 4 1 2 1 0.137

[7] Distance from river 1/2 3 4 1 2 1 1 0.137
[8] Plan curvature 1/3 2 2 1/2 1 1/2 1/2 1 0.081

[9] CI 1/4 1 2 1/3 1/2 1/3 1/3 1/2 1 0.055
[10] HSG 1/3 2 3 1/2 1/2 1/2 1/2 1/2 1/2 1 0.064

Classes in each factor

Slope angle
[1] 0–3◦ 1 0.379

[2] 3.1–7◦ 1/2 1 0.249
[3] 7.1–15◦ 1/3 1/2 1 0.160
[4] 15.1–25◦ 1/4 1/3 1/2 1 0.102
[5] 25.1–45◦ 1/5 1/4 1/3 1/2 1 0.065
[6] 45.1–54◦ 1/6 1/5 1/4 1/3 1/2 1 0.043

TPI
[1] −7.8–−1.8 1 0.439
[2] −1.7–−0.5 1/2 1 0.255
[3] −0.4–0.5 1/3 1/2 1 0.156
[4] 0.6–1.9 1/5 1/3 1/2 1 0.092
[5] 2–8.6 1/6 1/4 1/3 1/2 1 0.058

TWI
[1] −4.4–4.7 1 0.433
[2] 4.8–8.4 1/2 1 0.251

[3] 8.5–11.8 1/3 1/2 1 0.164
[4] 11.9–15 1/5 1/3 1/2 1 0.100

[5] 15.1–23.1 1/6 1/4 1/3 1/3 1 0.052

Land use
[1] Built-up areas 1 0.328

[2] Grassland 1/2 1 0.189
[3] Agriculture areas 1/3 1/2 1 0.120

[4] Forest 1/8 1/6 1/5 1 0.034
[5] Bare rocks 1 2 3 8 1 0.328

Lithology
[1] Sandy flysch, marls shale 1 0.227
[2] Conglomerates, breccias 2 1 0.423

[3] Clays, limestone 1/2 1/3 1 0.123
[4] Sandstone, gravels 1 1/2 2 1 0.227

Plan curvature
[1] −3–−0.1 1 0.539

[2] 0–0.1 1/2 1 0.297
[3] 0.2–1.9 1/3 1/2 1 0.164

Elevation
[1] 763.1–1000 m 1 0.350

[2] 1000.1–1200 m 1/2 1 0.237
[3] 1200.1–1400 m 1/3 1/2 1 0.159
[4] 1400.1–1600 m 1/4 1/3 1/2 1 0.107
[5] 1600.1–1800 m 1/5 1/4 1/3 1/2 1 0.071
[6] 1800.1–2000 m 1/6 1/5 1/4 1/3 1/2 1 0.049
[7] 2000.1–2202 m 1/8 1/7 1/6 1/5 1/4 1/3 1 0.026

Distance from river
[1] 0–50 m 1 0.327

[2] 50.1–100 m 1/2 1 0.227
[3] 100.1–150 m 1/3 1/2 1 0.157
[4] 150.1–200 m 1/4 1/3 1/2 1 0.108
[5] 200.1–400 m 1/5 1/4 1/3 1/2 1 0.073
[6] 400.1–700 m 1/6 1/5 1/4 1/3 1/2 1 0.050
[7] 700.1–1000 m 1/7 1/6 1/5 1/4 1/3 1/2 1 0.034

[8] >1000 m 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 0.024

Convergence index
[1] −86–−3 1 0.420
[2] −2.9–−2 1/2 1 0.299
[3] −1.9–−1 1/3 1/3 1 0.141
[4] −0.9–0 1/4 1/4 1/2 1 0.088
[5] 0.1–84.9 1/7 1/5 1/3 1/2 1 0.052

HSG
[1] A 1 0.117
[2] C 3 1 0.224
[3] D 4 5 1 0.660
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The consistency of judgments was evaluated using the consistency ratio (CR) values.
The results from Table 5 show that the CR values were less than 0.1, indicating that all the
comparisons within the matrices were consistent. Table 5 also contains the values of some
parameters involved in the CR computation.

Table 5. Properties of comparison matrices in the previous table.

Factors N λmax CI RI CR

All 10 10.32 0.036 1.49 0.024
Slope 6 6.123 0.025 1.24 0.020
TPI 5 5.046 0.012 1.12 0.010
TWI 5 5.121 0.030 1.12 0.030

Land use 5 5.063 0.016 1.12 0.010
Lithology 4 4.010 0.003 0.90 0.004
Elevation 7 7.248 0.041 1.32 0.030

Distance from river 8 8.292 0.042 1.41 0.030
Plan curvature 3 3.009 0.005 0.58 0.010

CI 5 5.087 0.022 1.12 0.020
HSG 3 3.203 0.102 0.58 0.018

To derive the flood potential index across the study area, the AHP weights, together
with the raster dataset associated with the flood predictors, were used in map algebra of
ArcGIS software. The normalized values of FPI were classified into five classes using the
natural break method. The very low class, between 0 and 0.12, covered about 18.9% of
the total area and was mainly spread along the valleys located in the southern part of the
catchment. Another 23% of the delimited zone was characterized by a low flood potential.
The medium FPI values (between 0.32 and 0.53) were associated with about 33.3% of the
delimited perimeter. The high and very high potential was spread around 24.8% and was
associated with FPI values higher than 0.53 (Figure 8b).

5. Discussion

In the last ten years, the study of the susceptibility to hydrological risk phenomena
has developed significantly as a result of the combined application of geospatial analysis
techniques with statistical models or algorithms from artificial intelligence [49]. It is well
known that small river basins located in mountainous areas favor the occurrence of flash-
floods and their propagation toward the areas located in the lower zones of the basins. The
mountainous area of Romania is not an exception and is often affected by severe flash-
flood events that generate property damage and loss of life. In this context, the present
study aimed to identify the areas exposed to floods generated by flash-floods within the
Izvorul Dorului River basin located in the Romanian Carpathians, which could produce
pollution such as the transport of polycyclic aromatic hydrocarbons resulting from different
sources [57].

The present study included a first part in which the potential for rapid water runoff
on the slopes was determined, the second part referred to the identification of valleys with
high torrential potential, followed by the evaluation of flood susceptibility existing along
these valleys. The potential for rapid surface runoff, expressed through the FFPI, was
calculated by applying three ensemble models resulting from the combination of three
statistical bivariate methods and the fuzzy AHP model.

The decision to apply three ensemble models was taken after a careful review of the
literature according to which hybrid models have higher performance than stand-alone
ones [15]. The models applied for the calculation of the FFPI showed that the hydrographic
basin of the Izvorul Dorului River has a high and very high potential for a rapid surface
runoff with a percentage between 38% and 58% of its surface. It was also highlighted that
in particular, the upper and middle basin is characterized by these values of FFPI. Since the
genesis of rapid water runoff on the slopes is finally reflected in the flooded areas along the
rivers, it was decided to continue the study with the identification of valleys with a high

222



Water 2021, 13, 758

potential for flash-flood propagation, along with the identification of the floodplains. In
this regard, the three FFPI models were evaluated, and the result provided by FAHP-WOE,
characterized by an AUC-ROC curve of 0.837 in the case of training data and 0.79 in the
case of test data, was identified as the most accurate. Using the methodology proposed by
Costache et al. [25], the valleys in the study area were identified and classified according to
the degree of torrentiality. Valleys with a small and very small propagation potential were
eliminated from the analysis, with only those characterized by a medium, high, and very
high potential being used. The AHP model was further used to calculate the flood potential
index along the torrential valleys and at the same time to determine the potential for
flooding generated by the flash-flood propagation. It is worth mentioning that following
the flash-flood genesis (which is facilitated by the torrential areas highlighted in Figure 1)
and their propagation, the areas located along the torrential valleys are the most affected
regions because the water flow from the slopes will be concentrated on the main river
network. Therefore, it is very important to indicate the surfaces that are finally affected by
these complex phenomena. This resulted in 24% of the delimited surface having a high
and very high potential for flooding.

In a previous study, Costache et al. [58] estimated only the flooding susceptibility
along the large river valleys within the Trotus, River basin from Romania, unlike the
present study which analyzed the following three elements in close spatial and causal
connection: (i) flash-flood potential at the slopes level; (ii) river valleys torrential degree;
and (iii) flood potential along the river basins within this small catchment. In addition to
this difference regarding the methodological approaches, the present study also differed
from that conducted by Costache et al. [58] by the methods proposed for determining
the susceptibility to the analyzed hydrological hazards. Thus, in the present study, three
ensemble models of the fuzzy analytical hierarchy process with bivariate statistical methods
for the estimation of flash-flood potential at the slopes level were applied, while in the
previous study, three other ensemble models of the adaptive neuro-fuzzy inference system
(ANIFS) were applied to determine the flooding potential at the large river valley level.
Moreover, the flow accumulation procedure was applied in the present research in order
to identify the torrential valleys. Another example where the fuzzy multicriteria decision
making analysis was proposed to estimate the flood susceptibility was the study carried
out by Azareh et al. [59]. In that research, which focused on the Haraz watershed in Iran,
the authors used a combination between DEMATEL, analytical network process, and fuzzy
logic in order to estimate the flood susceptibility. Like in the present case, the performance
of the applied model was very good, which was revealed by an AUC-ROC curve between
0.8 and 0.9. Nevertheless, the main difference between the present study and the research
work developed by Azareh et al. [59] is given by the fact that the mentioned study only
included the evaluation of the terrain surface potential along the river valley, to produce
the flooding phenomenon and did not also include an evaluation of the slopes for surface
runoff genesis.

6. Conclusions

The assessment of flash-floods and flood susceptibility is an actual scientific topic due
to the high potential of the studies to propose solutions for reducing the economic damage
and diminishing the number of victims. The new approach developed in the present
research is useful because it provides a complete overview regarding the susceptibility of
the entire phenomenon composed of rapid surface runoff on the slopes, the propagation of
flash-floods generated by the surface runoff, and the potential for flooding along torrential
valleys. The water quality in the floodplains will be lower because the flash-flood waves
will be accompanied by the massive transport of materials from the slopes and inside the
forest vegetation. Furthermore, the decision-makers will have a clearer image regarding
the places they must implement measures to reduce the water runoff on the slopes, to
arrange the torrential valleys, and to protect the areas exposed to floods.
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Abstract: This article proposes a new approach for determining the optimal parameter (β) in the
Inverse Distance Weighted Method (IDW) for spatial interpolation of hydrological data series. This
is based on a genetic algorithm (GA) and finds a unique β for the entire study region, while the
classical one determines different βs for different interpolated series. The algorithm is proposed in
four scenarios crossover/mutation: single-point/uniform, single-point/swap, two-point/uniform,
and two-point swap. Its performances are evaluated on data series collected for 41 years at ten
observation sites, in terms of mean absolute error (MAE) and mean standard error (MSE). The
smallest errors are obtained in the two-point swap scenario. Comparisons of the results with those of
the ordinary kriging (KG), classical IDW (with β = 2 and the optimum beta found by our algorithm),
and the Optimized IDW with Particle Swarm Optimization (OIDW) for each study data series show
that the present approach better performs in 70% (80%) cases.

Keywords: genetic algorithm (GA); IDW; spatial interpolation

1. Introduction

Evaluating and predicting the effects of atmospheric factors dynamics, like precipi-
tation and temperature, are of major importance for human activity, especially for zones
with arid or rainy climates. Since water scarcity impacts billions of people worldwide, it
is important to assess the water resources availability at ungauged locations [1]. Spatial
interpolation methods are utilized for estimating the values of environmental variables
using data recorded at neighbor locations. The most utilized approaches are classified as
deterministic, geostatistical, and combined (or hybrid) [2,3]. The Inverse Distance Weight-
ing (IDW) is a deterministic (mechanical) technique. The attribute values of any pair of
points are related to each other, their similarity being inversely proportional to the distance
between the two locations [4,5].

Since IDW does not involve advanced computational knowledge, researchers widely
utilized it for spatial interpolation problems. Different authors presented comparable
IDW performances with other spatial interpolation methods [6–11]. In [6,7], it is shown
that IDW provided better or comparative results as ordinary kriging (OK) in the spatial
interpolation of precipitation in Taiwan and Norfolk Island. Ly et al. [8] reported that OK
and IDW provided the smallest root mean squared error in a study concerning the daily
rainfall at the catchment scale in Belgium. Dong et al. [9] found that Ordinary CoKriging
(OCK) performed better than OK and IDW when interpolating daily rainfall in a river basin
from China. IDW, Thiessen Polygons Method (TPM), and kriging have been evaluated
against the Most Probable Precipitation Method (MPPM) on annual, monthly, seasonal,
and annual monthly maximum precipitation series from ten stations of 41 data [10]. IDW
over performed TPM and OK, but underperformed MPPM. Chen et al. [11] proposed an
improved regression-based scheme (PCRR) that was superior to IDW and multiple linear
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regression (MLR) interpolation methods on data from the mesoscale catchment of the
Fuhe River.

Even if the classical IDW (with the value of the parameter β = 2) was successfully
employed for a long period for spatial interpolation problems, being easy to use, improving
its performances was targeted by scientists. For example, Lu and Wong [4] proposed the
weights’ modification depending on the neighboring locations’ distribution density around
the unsampled place. Golkhatmi et al. [12] introduced altitude as a new variable in the
IDW interpolation (keeping β = 2) and reported good results in the case study.

Another direction is finding the best β. This is an optimization problem by itself,
targeted by many scientists [13–19]. For example, Noori et al. [13] employed IDW for
estimating the distribution of precipitation in Iran, the value of the parameter (β) being
recursively searched in the interval (1, 5], increasing its value each time. However, this
grid-search procedure is time-consuming for small step sizes [5]. To avoid this drawback,
Mei et al. [14] designed and implementing parallel adaptive inverse distance weighting
(AIDW) interpolation algorithms by using the graphics processing unit (GPU) for acceler-
ating the parameter finding. Gholipour et al. [15] propose a hybridization of IDW with a
harmony search, which improves the convergence rate and reduces the search time.

In the same idea, hybrid methods have been proposed. Zhang et al. [16] combined
Support Vector Machines (SVM) with IDW obtaining the SVM residual IDW, obtaining
superior results by comparison to IDW and OK for the spatial interpolation of the multi-
year average annual precipitation in the Three Gorges Region basin. Nourani et al. [17]
used a two-stage framework for spatial interpolation of precipitation, employing, in the
first stage, three artificial intelligence models that generate the input for the second stage,
where they utilize IDW for spatial interpolation. Bărbulescu et al. [18] proposed a Particle
Swarm Optimization approach (called OIDW) for finding a single β in IDW interpolation
of maximum annual precipitation from the Dobrogea region (Romania). Chang et al. [19]
applied a genetic algorithm (GA) to find the optimal distances between the gauged stations
to minimize the estimation errors in IDW. Still, based on our knowledge, no attempt to
optimize the choice of β parameter of IDW using a GA has been made so far.

On the other hand, GAs are widely used for solving real-life problems. For example,
Ratnam et al. [20] improved seasonal air temperature forecasts using a genetic algorithm.
Nasseri et al. [21] presented an optimized scenario for rainfall forecasting using a genetic
algorithm coupled with an artificial neural network using rainfall hyetograph of recording
rain gauges in the Upper Parramatta catchment (Sydney, Australia). Using the ability of
GAs to search complex decision spaces, Sen and Ôztopal [22] utilized such an algorithm
for optimizing the classification of rainy and non-rainy day occurrences using atmospheric
data (temperature, humidity, dew point, vertical velocity). Heat conduction and control
problems have also been solved by utilizing GAs [23,24].

In this context, this article proposes a new approach that optimizes the finding of
the beta parameter of IDW. This is based on a genetic algorithm and finds a unique β

for the entire study region, while the classical one determines different βs for different
interpolated series. The algorithm is proposed in four scenarios crossover/mutation: single-
point/uniform, single-point/swap, two-point/uniform, and two-point swap. Comparisons
of its performances with those of the classical IDW (with β = 2 and the optimal beta found
in our algorithm), ordinary kriging, and two versions of the optimized IDW by using
Particle Swarm Optimization (OIDW) are also provided.

2. Methodology and Data Series
2.1. IDW Interpolation

The study problem is estimating a variable’s values at ungagged locations employing
the same variable’s known values, registered at the neighboring observation sites [18]. In
terms of mathematics, one can formulate the problem as follows. Given a set of spatial data
of a variable z at n observation sites, s1, . . . , sn determine the same variable’s values at the
study site, s0.
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The IDW interpolation formula is:

ẑ(s0) = ∑n
i=1

1/d(s0, si)
β

∑n
i=1

(
1/d(s0, si)

β
) z(si), β > 1 (1)

where ẑ(s0) is the value computed for the site s0, z(si) is the value recorded at the site si,
d(s0, si) is the distance between s0 and si, and β is a parameter whose value is either given
or determined by different optimization methods. In the original algorithm, β = 2 [25,26].

The interpolation quality depends on β which is generally determined after running a
grid search. The time spent for finding the parameters is inverse proportional with the step
of the grid.

2.2. Genetic Algorithms

A genetic algorithm (GA) is a metaheuristic method inspired by natural selection laws
that try to find optimal solutions to complex problems to which deterministic approaches
usually cannot find a good result. The genetic operators, selection, crossover, and mutation
establish a balance between the exploration and exploitation of the search space [27,28].
Exploration means that the algorithm searches for new solutions in new regions, while
exploitation refers to making refinement to existing solutions to improve their quality.
A function called fitness measures the quality of the solutions, which are represented
by chromosomes.

A GA starts with a population of some random chromosomes and (by applying the
principle of ’survival of the fittest’) produces multiple generations by selecting in each one
the fittest individuals for breeding. The mutation is then applied to increase the population
diversity. Along with the generations, better individuals, i.e., better approximations to
the solution, are obtained. The process continues until the fittest individual (the optimal
solution) is found or the maximum number of generations is reached.

Using a genetic algorithm to solve a problem means finding the representation of the
problem’s solutions (encoding of the chromosomes), the fitness function, and the genetic
operators. A chromosome is a feasible solution to the problem. In our case, a chromosome
represents a real value of the parameter a ≤ β ≤ b. Thus, we apply a value encoding and
get a binary string with the length l, calculated using the following formula (the default
encoding of real values to binary strings):

2l− 1 < (b − a) ∗ 10z < 2l (2)

where z represents the given number of β’s decimals. In this study, l = 9 bits.
The decimal value, val, of the binary chromosome representation, is computed by (3).

We get the real value of a chromosome (β) by applying (4).

val = (β − a) × (2l − 1)/(b − a) (3)

or
β = a + val × (b − a)/(2l − 1) (4)

The fitness function controls the possibility of individuals’ reproduction. The better
chromosome is (i.e., the better fitness is), the more likely it is to be selected for breeding
the next generation. Since our goal is to minimize the error between the results obtained
by the spatial interpolation and those recorded at the meteorological stations, the fitness
function will record the mean standard error (MSE) between the known data and those
computed by IDW. A GA performs best when a feasible solution maximizes the fitness
function. Hence, we apply one of the most commonly adopted fitness mapping (inversion
scaling), which does not alter the minimum location, but converts a minimization problem
to an equivalent maximization one.
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We use the mean standard error and mean absolute deviation (MAE) to evaluate the
GA’s performance. The lowest the MAE or MSE is, the better the algorithm performs.

Genetic operators are used for producing new generations of individuals with more
diverse properties. There are three operators, selection, crossover, and mutation, which can
set and, most of the time, find a good ratio between exploration and exploitation of the
search space.

A selection operator determines the best individuals’ regions that will exchange infor-
mation to create a new generation. In this paper, the roulette wheel selection method [27]
is used.

A crossover operator combines two or more parents to generate one or two offspring.
It implements the idea that a swap of information between good individuals will generate
an even better one. In this paper, the single-point crossover and the two-point crossover
are used to create new offspring [29].

A mutation operator randomly modifies chromosomes with a given probability, pm,
called mutation rate, leading to an increased population’s structural diversity. Thus, a
mutation operator facilitates the recovery of genetic material lost during the selection
step and exploring new solutions. Here we used the uniform mutation [27] (one gene is
randomly chosen and its value is modified) and swap mutation [27] (two positions on the
chromosome are randomly selected, and their values are interchanged).

One may configure several control parameters in a genetic algorithm to achieve a
balance between exploration and exploitation. If the population size is large, the search
space is more explored than when the population size is small [28]. However, the runtime
of the algorithm would increase. If crossover and mutation rates are high, the search will
explore much of the solutions space, but there is a high chance of missing good solutions,
the GA acting more like a random search. If crossover and mutation rates are low, the
search space remains unexplored, and in this case, the GA resembles the hill-climbing
algorithms. Therefore, we investigated the influence of the population size, crossover rate,
mutation rate, and stop condition on the GA results. We performed each test ten times
and averaged the results to increase their precision (as suggested in the literature). We
implemented two crossover operators and two mutation operators to find the ones which
are best suited for our problem. We also ran several tests for each pair of operators to see
the relationship between the control parameters and the fitness value. Details are presented
in the following sections.

2.3. New Approach for Estimating Beta

The genetic algorithm we implemented is presented in the following.

Input: The distances between stations and the precipitation series recorded at these stations.
Output: The optimal parameter value of β

Begin

1. Generate a random population of n individuals represented as binary strings of
length l = 9

2. Compute the fitness function

a. Select some chromosomes for crossover operation (the number of selected
individuals is defined by the crossover rate)

b. Apply one of the crossover operators described in 2.2 to generate two new
offspring

c. Copy the remaining chromosomes (that were not recombined) to the next
generation

3. Select a few chromosomes for the mutation (the number of selected individuals is
defined by the mutation rate)

4. If the number of generations is reached, then stop, else go to step 2

End
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For a better understanding, a flowchart of the procedure of determination of the beta
parameter is presented in Figure 1.

In order to find the best parameters settings for our problem, we fine tune our algo-
rithm, which means creating several GA variants to test and find the best one, by slightly
changing of GA parameters (population size, number of generations, crossover and mu-
tation rates). We change only one parameter at a time, and try out several evolutionary
literature-based test values. For example, for the crossover rate, the most used values
in applications are in interval [0.6,1), whereas the mutation rate should be less than 10%.
We run these GA variants on our problem, accept that parameter value at which the GA
performs best, and continue to the next GA parameter, and so forth, to the last one. More
precisely, to select the best population size, stop condition, and crossover rate the following
steps are done.

Step 1. We start with predefined values for the stop condition (10 generations), crossover
rate (0.75), and mutation rate (0.015). Then, we vary the population size and
compute the values of the fitness function. For each pair of operators (single-
point/uniform, single-point/swap, two-point/uniform, two-point/swap), we
chose the optimal population size to be the lowest value from which population
growth does not significantly influence the modification of the fitness value.

Step 2. With the population value determined at Step 1, the crossover rate, and the muta-
tion rate kept at the same values as in Step 1, we run the algorithm to determine
the best number of generations.

Step 3. With the number of individuals determined at Step1, the number of generations
determined at Step 2, and the mutation kept at the same value as in Step 1, we run
the algorithm using different crossover rates, to determine the best crossover rate.

Step 4. To find the best mutation rate, we set the best parameters from the previous steps
and run the algorithm with different mutation rates.

Step 5. The algorithm is run in each scenario with the new parameters determined in the
previous steps.

Figure 1. The procedure flow chart. nGen represents the maximum number of generations.
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Although the complexity of GAs has a probabilistic convergence time [30], the settings
of our genetic algorithm are not complex, and, based on the experimental results that show
that it converges in a short time, we may state that the best convergence time is logarithmic,
O(log(n)), whereas the worst is linear, O(n). In the Results and Discussion, we present the
recorded execution time (in seconds), which shows that the algorithms stop in short time
for each test we did.

2.4. Data Series

Dobrogea is a region covering a surface between the Romanian Littoral of the Black Sea,
the lower Danube River, and the Danube Delta, situated in the southeast part of Romania
and characterized by long droughts periods. Records show the absence of precipitation for
4–6 months per year after 1961, which affects agricultural activities. Researchers analyzed
precipitation and temperature evolution in this zone, especially after 2010, to mitigate the
drought effects [31–33].

The data we are working with is formed by the maximum annual precipitation series
recorded during a period of 41 years at 10 main meteorological stations from the Dobrogea
region (Figure 2).

Figure 2. Maximum annual precipitation series.

3. Results and Discussion

Firstly, we ran several tests to find the settings of control parameters that are most likely
to produce the best results. We started with predefined values from the literature [27,28] for
the stop condition (10 generations), crossover rate (0.75), and mutation rate (0.015). Then,
we varied the population size (from 10 to 80, with a step of 5) and computed the fitness
function’s corresponding values, run time, and β. Table 1 shows the relationship between
the fitness value and population size.

For each pair of operators (single-point/uniform, single-point/swap, two-point/uni-
form, two-point/swap), we chose the optimal population size to be the lowest value from
which population growth does not significantly influence the modification of the fitness
value. This is 45, 40, 30, and 35 individuals, respectively, and the fitness function value is
0.0317. The corresponding β values obtained in the four scenarios are 1.256, 1.372, 1.308,
and 1.336, respectively. These results are highlighted in Table 1.
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Table 1. The impact of population size on the GA accuracy. The best results are highlighted.

Scenario Single Point/Uniform Single Point/Swap Two-Point/Uniform Two-Point/Swap

Pop.
Size Fitness Time

(s) β Fitness Time
(s) β Fitness Time

(s) β Fitness Time
(s) β

10 0.0311 0.300 2.528 0.0312 0.3156 2.316 0.0313 0.3500 2.186 0.0316 0.3625 1.580
15 0.0313 0.4625 1.500 0.0315 0.4688 1.612 0.0313 0.4719 2.154 0.0316 0.4781 1.568
20 0.0314 0.6062 1.862 0.0315 0.6031 1.742 0.0316 0.6375 1.514 0.0309 0.675 2.886
25 0.0315 0.8031 1.766 0.0315 0.8125 1.346 0.0315 0.7906 1.772 0.0313 0.7969 2.092
30 0.0316 0.9375 1.594 0.0315 0.9094 1.708 0.0317 0.9563 1.308 0.0315 0.9531 1.758
35 0.0316 1.0656 1.538 0.0316 1.0625 1.542 0.0317 1.1125 1.382 0.0317 1.100 1.336
40 0.0316 1.2813 1.494 0.0317 1.2188 1.372 0.0317 1.2813 1.298 0.0316 1.2437 1.620
45 0.0317 1.4312 1.256 0.0316 1.3687 1.382 0.0317 1.4094 1.208 0.0317 1.4781 1.212
50 0.0317 1.6781 1.480 0.0317 1.5781 1.128 0.0317 1.5375 1.308 0.0317 1.5594 1.274
55 0.0317 1.6906 1.324 0.0316 1.8375 1.552 0.0317 1.6938 1.132 0.0316 1.700 1.720
60 0.0317 1.8156 1.690 0.0317 1.850 1.258 0.0317 1.8750 1.122 0.0317 1.8469 1.192
65 0.0317 1.9625 1.212 0.0316 1.9781 1.510 0.0317 2.0156 1.294 0.0317 2.0938 1.246
70 0.0317 2.1781 1.248 0.0317 2.2062 1.056 0.0317 2.2250 1.200 0.0317 2.1656 1.210
75 0.0317 2.2437 1.306 0.0317 2.3062 1.126 0.0317 2.3406 1.262 0.0317 2.3687 1.282
80 0.0317 2.4406 1.162 0.0316 2.4469 1.382 0.0317 2.4500 1.320 0.0317 2.5844 1.306

Since we used a predefined number of generations as the stop condition, in the second
stage, we had to determine its optimal value. To find it, for each pair of operators, we
ran tests with several values of the number of generations, the population size previously
estimated (45, 40, 30, 35, respectively—Table 1), keeping the mutation rate set to 0.015, and
the crossover rate set to 0.75. Table 2 and Figure 3 show that the fitness value does not
improve after a certain number of generations (which is the optimal number of generations).

Table 2. The impact of the number of generations on the GA performance. The best results are highlighted.

Scenario Single Point/Uniform Single Point/Swap

Crossover
Rate

Pop.
Size No. Gen Fitness Time (s) β Pop. Size No. Gen Fitness Time (s) β

0.6 45 9 0.0316 1.2469 1.476 40 5 0.0317 0.6219 1.242
0.65 45 9 0.0316 1.2344 1.372 40 5 0.0317 0.6094 1.170
0.7 45 9 0.0316 1.2469 1.26 40 5 0.0317 0.6156 1.310
0.75 45 9 0.0316 1.2875 1.550 40 5 0.0317 0.6094 1.174
0.8 45 9 0.0317 1.2500 1.228 40 5 0.0317 0.6094 1.344
0.85 45 9 0.0317 1.2563 1.064 40 5 0.0317 0.6000 1.148
0.9 45 9 0.0317 1.2313 1.556 40 5 0.0316 0.6125 1.408
0.95 45 9 0.0317 1.2563 1.386 40 5 0.0316 0.6094 1.192

Scenario Two-Point/Uniform Two-Point/Swap

Cross Rate Pop.
Size No. Gen Fitness Time (s) β Pop Size No. Gen Fitness Time (s) β

0.6 30 5 0.0316 0.4594 1.424 35 5 0.0316 0.5625 1.538
0.65 30 5 0.0315 0.4750 1.964 35 5 0.0316 0.5594 1.578
0.7 30 5 0.0316 0.4719 1.564 35 5 0.0317 0.5344 1.362
0.75 30 5 0.0317 0.4594 1.122 35 5 0.0317 0.5313 1.252
0.8 30 5 0.0317 0.4562 1.532 35 5 0.0317 0.5375 1.208
0.85 30 5 0.0317 0.4688 1.400 35 5 0.0317 0.5313 1.348
0.9 30 5 0.0317 0.4688 1.326 35 5 0.0317 0.5469 1.124
0.95 30 5 0.0316 0.4531 1.406 35 5 0.0317 0.5469 1.274
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Figure 3. The impact of the number of generations on fitness value in (a) single-point/uniform, (b) single-point/swap,
(c) two point/uniform, (d) two point /swap scenarios.

Based on the highest fitness value, the optimum number of generations determined
was nine for the single-point/uniform mutation scenario, whereas, for the other scenarios,
the number of generations was five. The corresponding β-values obtained are 1.228, 1.242,
1.122, and 1.362, respectively (highlighted in Table 2, together with the fitness and beta
values). Since in our algorithm, β is represented by a chromosome, and several genetic
operators have been used, different chromosomes (β) could produce the same fitness value.

The next step is the determination of the optimal crossover rate. For this aim, we ran
the algorithm in each scenario with different values of the crossover rate (from 0.6 – value
suggested in the literature to 0.95, with a step of 0.05), the population size and number
of generations previously determined (45, 40, 30, and 35 individuals, respectively; 9, 5, 5,
5 generations, respectively), and the mutation rate kept to 0.015. We chose the optimal
crossover rate for each pair of operators to be the value that gives the best (highest) fitness.

From Table 3 it results that the best crossover rates are 0.8 when using a single-
point/uniform scenario, 0.6 for single-point/swap, 0.75 for two-point/uniform, and 0.7
for two-point/swap. These values correspond to the highlighted sequences of values in
Table 3.

The last step was the determination of the best mutation rate. Therefore, we analyzed
the impact the mutation rate has on the GA’s results. We considered the population size,
the number of generations, and the crossover rates we established in previous stages, and
we performed new tests aiming at detecting the value of the mutation rate. For example, for
single-point uniform mutation, we took the population size = 45, the number of generations
= 9, the crossover rate = 0.80, and ran the tests for a mutation rate from 0.02 to 0.1, with a
step size of 0.01. For each pair of operators, we search the optimal mutation rate for which
the fitness value evolves to a maximum along with the generations. Table 4 contains the
values of the fitness function obtained after running the algorithm in the four scenarios,
with different mutation rates. For example, in Table 4a we present the values of the fitness
function obtained for each generation (from 1 to 9) and the mutation rates from 0.02 to
0.1, in the single-point crossover/uniform mutation scenario. The highest fitness value is
obtained after nine generations in the single-point crossover/uniform mutation, with a
mutation rate of 0.06 (the sixth column–the highlighted values).
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Table 3. The impact of crossover rate on the GA accuracy. The best results are highlighted.

Scenario Single-Point/Uniform Single-Point/Swap

Crossover Rate Pop. Size No. Gen Fitness Time (s) β Pop. Size No. Gen Fitness Time (s) β

0.6 45 9 0.0316 1.2469 1.476 40 5 0.0317 0.6219 1.242
0.65 45 9 0.0316 1.2344 1.372 40 5 0.0317 0.6094 1.170
0.7 45 9 0.0316 1.2469 1.26 40 5 0.0317 0.6156 1.310
0.75 45 9 0.0316 1.2875 1.550 40 5 0.0317 0.6094 1.174
0.8 45 9 0.0317 1.2500 1.228 40 5 0.0317 0.6094 1.344
0.85 45 9 0.0317 1.2563 1.064 40 5 0.0317 0.6000 1.148
0.9 45 9 0.0317 1.2313 1.556 40 5 0.0316 0.6125 1.408
0.95 45 9 0.0317 1.2563 1.386 40 5 0.0316 0.6094 1.192

Two-Point/Uniform Two-Point/Swap

Cross Rate Pop. Size No. Gen Fitness Time (s) β Pop Size No. Gen Fitness Time (s) β

0.6 30 5 0.0316 0.4594 1.424 35 5 0.0316 0.5625 1.538
0.65 30 5 0.0315 0.4750 1.964 35 5 0.0316 0.5594 1.578
0.7 30 5 0.0316 0.4719 1.564 35 5 0.0317 0.5344 1.362
0.75 30 5 0.0317 0.4594 1.122 35 5 0.0317 0.5313 1.252
0.8 30 5 0.0317 0.4562 1.532 35 5 0.0317 0.5375 1.208
0.85 30 5 0.0317 0.4688 1.400 35 5 0.0317 0.5313 1.348
0.9 30 5 0.0317 0.4688 1.326 35 5 0.0317 0.5469 1.124
0.95 30 5 0.0316 0.4531 1.406 35 5 0.0317 0.5469 1.274

Table 4. The impact of mutation rate on the GA accuracy. The best results are highlighted.

a. Single-Point Crossover/Uniform Mutation

Mutation Rate
Gener. 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.0307 0.0309 0.0309 0.0309 0.0308 0.0309 0.0310 0.0309 0.0309
2 0.0309 0.0310 0.0310 0.0310 0.0310 0.0309 0.0310 0.0310 0.0309
3 0.0309 0.0310 0.0310 0.0310 0.0310 0.0310 0.0311 0.0312 0.0309
4 0.0310 0.0311 0.0312 0.0310 0.0310 0.0311 0.0312 0.0312 0.0309
5 0.0310 0.0313 0.0312 0.0311 0.0312 0.0312 0.0312 0.0313 0.0309
6 0.0311 0.0313 0.0312 0.0311 0.0312 0.0312 0.0312 0.0313 0.0309
7 0.0311 0.0313 0.0313 0.0311 0.0312 0.0312 0.0312 0.0313 0.0309
8 0.0312 0.0313 0.0313 0.0311 0.0313 0.0312 0.0311 0.0312 0.0310
9 0.0313 0.0313 0.0313 0.0311 0.0314 0.0313 0.0311 0.0312 0.0312

b. Single-Point Crossover/Swap Mutation

Mutation Rate
Gener. 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.0308 0.0309 0.031 0.0309 0.0309 0.0309 0.0309 0.0308 0.0308
2 0.0308 0.0311 0.031 0.0309 0.0308 0.0309 0.0311 0.0311 0.0310
3 0.0308 0.0312 0.0312 0.0309 0.0308 0.031 0.0311 0.0311 0.0310
4 0.0309 0.0312 0.0312 0.031 0.0310 0.031 0.0312 0.0312 0.0311
5 0.0308 0.0313 0.0313 0.031 0.0310 0.0311 0.0315 0.0312 0.0311

c. Two-Point Crossover/Uniform Mutation

Mutation Rate
Gener. 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.0308 0.0308 0.0309 0.0308 0.0309 0.0311 0.0311 0.0308 0.0308
2 0.0309 0.0309 0.031 0.0309 0.0309 0.031 0.0313 0.0309 0.0309
3 0.0311 0.0309 0.0311 0.0311 0.0309 0.0311 0.0313 0.0311 0.0309
4 0.0311 0.0308 0.0312 0.0309 0.031 0.031 0.031 0.0311 0.0308
5 0.0311 0.0308 0.0313 0.0312 0.031 0.0312 0.0312 0.0311 0.0308
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Table 4. Cont.

d. Two-Point Crossover/Swap Mutation
Gener. 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.0308 0.0309 0.0311 0.0308 0.0308 0.031 0.0309 0.0309 0.0309
2 0.0309 0.031 0.0312 0.031 0.0311 0.031 0.031 0.031 0.0308
3 0.0308 0.031 0.0311 0.0312 0.0309 0.031 0.0311 0.031 0.0309
4 0.031 0.0311 0.0312 0.0313 0.0308 0.0309 0.0311 0.0312 0.0310
5 0.0311 0.031 0.0312 0.0313 0.0309 0.031 0.0311 0.0313 0.0309

In the single-point crossover/swap mutation (Table 4b), the highest fitness value is
0.0315, obtained after 5 generations, with a mutation rate of 0.08 (the eighth column of
Table 4b). For the two-point crossover/uniform mutation and two-point crossover/swap
mutation (Table 4c,d), the best mutation rates are 0.04 and 0.05, respectively, and the
corresponding value of the fitness function is 0.0313 (contained in the highlighted columns—
the fourth and the fifth, respectively).

After setting the optimal parameters, determined in the previous stages, we finally
ran the algorithm to determine the optimum beta parameters. Table 5 summarizes the
parameters used to implement the proposed genetic algorithm (columns 2–5), the fitness
function obtained after running the algorithm with these parameters (column 6), the
execution time (column 7), and the value obtained for the IDW’s parameter (last column).

Remark that the values of β are different when using different scenarios, even if the
fitness value is the same. This is due to the specifics of the individuals’ selection and
operations in GAs.

The lowest execution time (0.6188) is obtained when using the single-point/swap
scenario and the highest one (10.5875 s) when using a two-point/swap procedure. Even if
in the two-point/uniform case, the population size and the number of generations are the
smallest, the execution time is high (the second-highest).

Table 5. The control parameters settings for the GA.

Crossover/Mutation Pop. Size No. of Gen. Crossover
Rate

Mutation
Rate Fitness Time (s) β

Single-Point/Uniform 45 9 0.8 0.06 0.0317 1.2437 1.318
Single-Point/Swap 40 5 0.6 0.08 0.0317 0.6188 1.124

Two-Point/Uniform 30 5 0.75 0.04 0.0317 7.5687 1.064
Two-Point/Swap 35 5 0.7 0.05 0.0317 10.5875 1.042

Table 6 contains the MSE and MAE for each station and the average (the last row of the
table) computed after running the algorithm in each scenario. Comparing the MSEs in the
two-point/swap and single-point/uniform (single-point/swap, and two-point/uniform)
scenario, they are smaller in 70% (70%, 70%) cases, so our algorithm, in two-point/swap
scenario, performs better in 70% cases compared to the other three scenarios. The MSEs’
averages (31.5874, 31.5306, 31.5188, 31.5153) are comparable, the smallest being obtained in
the two-point/swap scenario, followed by the third one.

Comparing the MAEs in the two-point/swap and single-point/uniform (single-
point/swap, and two-point/uniform) scenario, they are smaller in 80% (80%, 80%) cases,
so our algorithm, in two-point/swap scenario, performs better in 80% cases compared
to the other three scenarios. The MAEs’ averages (23.6352, 23.5542, 23.5308, 23.5228) are
comparable, the smallest being obtained in the two-point/swap scenario, followed by the
third one.

The corresponding values computed for beta in the best two cases are 1.042 (in two-
point/swap) and 1.064 (in two-point/uniform).
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Table 6. MSEs and MAEs in GA. The best results are highlighted.

Station
Single-Point/Uniform Single-Point/Swap Two-Point/Uniform Two-Point/Swap

MSE MAE MSE MAE MSE MAE MSE MAE
Adamclisi 36.2300 27.0536 36.1639 27.047 36.1372 27.0440 36.1264 27.0436
Cernavoda 22.9755 16.4861 22.7221 16.2628 22.6682 16.2290 22.6529 16.2254
Constanta 28.8453 17.0195 28.9273 17.2437 28.9601 17.3086 28.9731 17.3311
Corugea 21.0101 15.8130 21.0132 15.7836 21.0419 15.7770 21.0561 15.7744
Harsova 39.4587 26.2462 39.8004 26.2647 39.9151 26.2710 39.9581 26.2731
Jurilovca 24.5367 20.3591 24.4805 20.2806 24.4658 20.2606 24.4607 20.2534
Mangalia 36.4302 27.1703 36.3815 27.0490 36.3661 27.0040 36.3605 26.9864
Medgidia 26.8786 21.8044 26.5124 21.5704 26.3874 21.4822 26.3396 21.4471

Tulcea 33.5917 26.2378 33.5510 26.1170 33.5348 26.0791 33.5283 26.0667
Sulina 45.9171 38.1624 45.7538 37.9231 45.7115 37.8524 45.6972 37.8272

Average 31.5874 23.6352 31.5306 23.5542 31.5188 23.5308 31.5153 23.5228

For comparison reasons, we performed the classical IDW, with β = 2 (the value used
in most applications) and β = 1.042. The MAE and MSE values computed for each station
are presented in Table 7.

Comparing the MSEs in the two-point/swap algorithm (Table 6, column 8) with
those from the IDW with β = 2 (Table 7 column 2), they are smaller in 70% cases (the first
four stations, the sixth, eighth, and ninth), so our algorithm performs better in 70% cases.
Comparing the MSEs in the two-point/swap algorithm with those from the IDW with
β = 1.042 (Table 7 column 4), they are smaller in 60% cases (the second, third, fourth, sixth,
eighth, and ninth stations), so our algorithm better performs in 60% cases.

In terms of the average MSEs, that in the two-point/swap approach is smaller than
those of the IDW (β = 2), IDW (β = 1.042), and slightly higher than in KG (Table 7, the last
column). Still, our approach is preferable against KG since it is difficult to determine the
kriging parameters, requiring special knowledge of geostatistics.

Table 7. MSE and MAE in the classical IDW for β = 2 and β = 1.042. MSE in ordinary kriging (KG).

Station
IDW (β = 2) IDW (β = 1.042) KG * OIDW ** OIDW *

MSE MAE MSE MAE MSE MSE MSE

Adamclisi 36.32 27.03 35.73 26.96 32.73 32.4184 28.5774
Cernavoda 23.78 17.33 28.03 15.88 23.40 22.9189 22.6820
Constanta 37.29 27.80 35.83 27.09 30.22 30.3249 30.1713
Corugea 35.67 27.69 34.34 26.52 22.48 22.4062 22.3283
Hârs, ova 37.95 28.06 35.51 27.16 35.03 35.6281 35.2566
Jurilovca 34.89 27.89 34.35 27.31 23.04 24.1018 23.9813
Mangalia 35.65 26.86 35.03 26.81 42.73 42.0429 41.9517
Medgidia 35.89 27.41 34.89 26.82 22.58 22.3809 22.3073

Tulcea 38.55 29.84 36.15 28.19 43.54 44.0204 43.4118
Sulina 36.99 29.04 35.62 28.03 34.47 33.0844 33.0501

Average 35.30 26.90 34.55 26.08 31.02 30.93 30.37

* Results from [18], Table 2; ** Results from [18], Table 1.

The MAEs in the two-point/swap algorithm are smaller than those from the IDW with
β = 2, in 80% cases (all, but the first and sixth station), and comparable for the first station.

The MAEs in the two-point/swap algorithm are smaller than those from the IDW
(β = 1.042), they in 60% cases (all, but the first and sixth station), and comparable for the
first station.

The average MAE in the two-point/swap approach (23.5228) is significantly smaller
than those in the IDW with β = 2 (26.90), and IDW with β = 1.042 (26.08).

From the computational viewpoint, the highest computational time in our experiment
was 10.5875 (in the two-point scenario), while in the grid search to estimate beta with 3
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decimals takes 60 seconds for each series, so, a total of 60*10 stations = 600 seconds, which
is 56.67 times higher than in our approach.

The last two columns of in Table 7 contains the MSE in the optimized IDW, denoted
by OIDW [18], in two scenarios, as described in [18]—with different beta, found using a
Particle Swarm Optimization (PSO) approach (column 7), or with a single best beta found
by the same approach.

In term of MSE, our GA algorithm (Table 7, column 8) performs better that OIDW
(Table 7, columns 7 and 8) in 80% of cases. Therefore, we can say that a significant
improvement of the interpolation performances are obtained, that may reflect in the water
management policy.

4. Conclusions

In this article, we presented a new approach to finding the beta parameter in IDW,
using a GA implemented in four scenarios. The settings of this GA were optimized for
finding the best fitness function and, by consequence, the best parameter beta, for all the
study sites, not only for some of them.

It is shown that the algorithm proposed here performs better (in all scenarios) than the
classical one (with β = 2 and β = 1.042) in terms of average MSE and MAE. When compared
the MSEs and MAEs for the individual stations, the following results are obtained:

• In IDW with β = 2, MSE is smaller only for Hârs, ova, Mangalia, and Sulina, compared
to the GA with a two-point swap.

• In IDW with β = 2, MAE is smaller only for Adamclisi and Mangalia, compared to the
GA with a two-point swap.

• In IDW with β = 1.042, MSE is smaller than in GA (with two-point/swap) only for
Adamclisi, Mangalia, and Sulina.

• In IDW with β = 1.042, MAE is smaller than in GA with a two-point swap only for
Adamclisi, Cernavoda, and Mangalia.

The algorithm performs faster than the classical IDW, for which the running time on
the same problem is 60s for each interpolated data series (so 600s for all ten series). It is
easy to be implemented and used and can be applied to similar problems only by changing
the input data.

Compared with other artificial intelligence methods used for finding beta (OIDW) our
approach shows superior performances in 80% of cases.

Another advantage is that our algorithm provides a single beta for all the stations,
optimizing the interpolation.

The results obtained in all four GA’s scenarios are comparable. Since the execution
time is the highest in the best scenario (Table 5), the other alternatives can be successfully
used for the spatial interpolation when the number of series or the number of records per
station is very high.
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