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multidimensional geo databases, metadata in spatial data infrastructures, and for different tasks, such

as for multisource georeferenced text integration and geodata flexible querying, for social sensing by

applying sentiment analysis, clustering and geo analysis, for segmentation of roads, clouds and snow,

and for detection of small targets and people on the streets.
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1. Introduction

The term Geospatial Artificial Intelligence (GeoAI) is quite cumbersome, and it has no
single, shared definition.

An initial, narrow definition characterizes GeoAI as the application of machine learn-
ing toolkits to the context of Geographic Information Systems (GISs) in order to simulate
future scenarios via data classification and smart predictive analysis with respect to several
events and phenomena, such as the occurrence of disasters, human health epidemiology,
and the evolution of ecosystems and biodiversity, which, in turn, is undertaken in order to
respond to communities and support community resilience by processing traditional kinds
of geographic information represented in digital cartography [1].

Another wider definition considers GeoAI as the processing of Geospatial Big Data
(GBD) of heterogeneous forms and sources, including both traditional digital cartography
managed by GISs, remote-sensing-based multidimensional data including images and
image time series, georeferenced unstructured and semi-structured texts, and complex geo
databases, with a focus on the geographic dimension [2].

Thus, the application of techniques from AI and data science to GBD, via the ex-
ploitation of high-performance-computing platforms, are merged into GeoAI in order to
understand natural and social phenomena.

A general definition characterizes GeoAI as the use of artificial intelligence methods,
including machine learning and deep learning, to produce knowledge through the analysis
of spatial data and imagery [3]. In this sense, GeoAI is regarded as an emergent spatial
analytical framework for data-intensive geographic information science, facilitating both
environmental sensing and so-called “social sensing” by exploiting both the digital traces
people leave behind as they interact with the IoT and the user-generated digital content
created on social networks to understand the dynamics related to human mobility patterns
and social phenomena.

Moreover, the specificities and importance of the geospatial dimension; its heterogene-
ity in terms of both conceptualization based on either “place” or “space”; the varied formats
of spatial information; the different scales; the need for representing distinct geosemantics,
i.e., the semantics of locations; and the different needs of analysis dictated by the goals
of the applications, which often necessitate geospatial and temporal reasoning, pose new
challenges and opportunities with respect to AI.

The current research topics include multiresolution and multisource GBD fusion; the
multiscale geosummarization of information to improve the quality of GBD; multisource,
heterogeneous GBD integration for data reuse; and experimentation in deep learning
applied to multispectral remote-sensing images, such as CNN, RCNN, LSTM, and GANs
generally used for RGB pictures. Finally, GeoAI must bridge the gap between opaque
technologies, such as deep learning, which are generally regarded as black-boxes, and
more traditional and transparent machine learning approaches to knowledge management,
such as decision trees; KNN; clustering algorithms; data mining; soft computing, including
genetic algorithms and fuzzy logic; ensemble approaches; and semantic representation
and analysis. This can facilitate the advancement of the features of explainable AI, which
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constitutes a mandatory characteristic of software when used for critical tasks impacting
people’s safety and security, such as in the health and law enforcement domains.

Our motivation to organize this Special Issue stemmed from an observation of the
increasing number of academic papers focused on the application of GeoAI and on the
evaluation of its potential to analyse natural, environmental, human-driven, and social
changes and events.

Nevertheless, the Special Issues published at the launch date of our proposal mostly
conceived of GeoAI in the strict sense, and not in the broader view we have already
addressed in this Special Issue, wherein we welcomed approaches that merged multisource
and heterogeneous GBD.

This Special Issue has received a total of 20 submitted papers; 10 of these papers have
been accepted.

The authors’ affiliations correspond to the following countries: Italy, Egypt, the United
Arab Emirates, South Korea, Turkey, Kazakhstan, China, and the US.

The contributions can be grouped into three main topics:
(1) Social sensing by mining geotagged, user-generated content and traces in the form

of either semi-structured textual data or photos;
(2) Environmental monitoring and analysis by employing remote-sensing spatial

temporal data;
(3) Methodological approaches to integrating, mining, representing, and interpreting

multisource and multidimensional spatial-temporal data.

2. GeoAI for Mining Geotagged, User-Generated Content and Traces

Within this section, we consider the descriptions of original approaches developed to
classify and mine geotagged user-generated content and traces, which are created either
purposefully or unknowingly by users of social networks:

(i) “Spatio-Temporal Sentiment Mining of COVID-19 Arabic Social Media” by Tarek
Elsaka et al. [4] is a very interesting paper that mixes several AI techniques for us-
ing NLP and GeoAI to mine the available large datasets implicitly geotagged from
social media in the Arabic language. This study’s goal is to understand people’s
responses to the COVID-19 pandemic. They first developed a technique for inferring
geospatial information from non-geotagged Arabic tweets by performing geo-parsing
and geo-coding. Secondly, they designed a sentiment analysis mechanism applied
at various location resolutions (regions/countries) and at separate topic abstraction
levels (subtopics and main topics). In addition, a correlation-based analysis of Ara-
bic tweets and the official health providers’ data was presented. In the conducted
experiments, the results were visualized in the combined context of the data from
the official health records and lockdown data worldwide, which showed that their
method was able to determine the location of tweets so that the total percentage of
location-enabled tweets increased from 2% to 46% (about 2.5 M tweets). Furthermore,
a positive correlation between the foremost topics such as lockdown and vaccines
and new cases of COVID-19 was also reported. In addition, the negative feelings of
Arab Twitter users during the pandemic were also analysed, which generally included
topics related to lockdowns, closures, and law enforcement, thus demonstrating how
social media constitutes a useful and effective means of “social sensing”.

(ii) “Automatic Classification of Photos by Tourist Attractions Using Deep Learning Model
and Image Feature Vector Clustering” by Jiyeon Kim and Youngok Kang [5] is another
example of a social-sensing application in which photos created in social media are
regarded as representations of tourists’ visual preferences for a specific attraction.
Thus, the paper proposes a method of automatically classifying tourist photos by
tourist attractions. Accordingly, it applies methods of deep learning and image feature
vector clustering to identify clusters of photos associated with attractions. The authors
conducted experiments by collecting a dataset of photos attached to reviews posted
by foreign tourists on TripAdvisor. The advantage of this proposal is that it does not

2



ISPRS Int. J. Geo-Inf. 2023, 12, 10

require the creation of a classification category in advance; moreover, it is capable of
flexibly extracting categories for each tourist destination and improving classification
performance even with rather small data volumes.

(iii) “Detecting People on the Street and the Streetscape Physical Environment from Baidu Street
View Images and Their Effects on Community-Level Street Crime in a Chinese City” by
Han Yue et al. [6] is another example of a social-sensing application, which, in this
case, is used to assess street crime via traces unknowingly left by Baidu users. This
study is the first to combine Street View images (Baidu Street View), deep learning
algorithms, and spatial statistical regression models to retrieve the number of people
on a given street and the features of the visual streetscape environment to understand
street crime. Finally, this study determines the quantitative measurement of people
on a given street and the set of streetscape features that has potential influences on
crime by combining the outputs of two deep learning networks. Specifically, they
found that the number of people on the street had a significantly positive impact on
the total street crime assessment.

3. Remote-Sensing Spatial-Temporal Data for Environmental Monitoring

This section groups three articles that provide novel approaches to the application of
GeoAI methods to interpret remote-sensing spatial-temporal data, either acquired from
LiDAR or from sensors on satellites. They apply a range of different machine learning and
deep learning techniques for distinct environmental applications and tasks, and assess the
accuracy of the results by running experiments on real data:

(iv) “The Use of Machine Learning Algorithms in Urban Tree Species Classification” by Zehra
Cetin and Naci Yastikli [7] analyses LiDAR data with the aim of identifying urban
tree species in cities. This is an important objective for planning sustainable smart
cities, since knowledge of the locations of tree species in an urban area facilitates the
estimation of parameters such as air, water, and land quality; carbon accumulation
reduction; the mitigation of urban heat island effects; and the protection of soil
and water balance. LiDAR systems are a cost-effective alternative to the traditional
methods of identifying tree species based on field surveys and aerial photograph
interpretation; thus, their use also constitutes an original application for this kind of
GBD. The aim of this work was to assess the usage of machine learning algorithms for
classifying the deciduous (broadleaf) and coniferous tree species from 3D raw LiDAR
data in the study site, i.e., the Davutpasa Campus of Yildiz Technical University,
Istanbul, Turkey. To this end, a total of 25 spatial- and intensity-based features were
analysed by three machine learning classifiers—the support vector machine (SVM),
random forest (RF), and multi-layer perceptron (MLP)—to discriminate deciduous
and coniferous tree species in the study area. The compared evaluation results found
that the SVM and RF algorithms generally yielded better classification results than
the MLP algorithm for the target task based on the available training data.

(v) “Multi-Resolution Transformer Network for Building and Road Segmentation of Remote Sens-
ing Image” by Zhongyu Sun et al. [8] details the authors’ extraction of buildings and
roads from remote-sensing images for land cover monitoring and soil consumption
identification, which are of great help in urban planning. Currently, deep learning
algorithms are mainly used for building and road extraction. However, for semantic
segmentation, these methods are limited with respect to the receptive field of high-
resolution remote-sensing images; thus, the image features need to be compressed
by down-sampling so as to determine the loss of detailed information. In order to
address this issue while avoiding down sampling, the paper proposes a novel deep
learning architecture, the Hybrid Multi-resolution and Transformer semantic extrac-
tion Network (HMRT), which stores multiresolution information so as to improve the
ability to comprehend a scene. The experiments proved that the proposed method is
superior to the existing baseline methods.
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(vi) “RepDarkNet: A Multi-Branched Detector for Small-Target Detection in Remote Sensing
Images” by Liming Zhou et al. [9] addresses the problem of detecting small targets
in remote-sensing images, which are often occluded by shadows. To address this
shortcoming in the detection of targets, they propose a backbone feature-extraction
network called “RepDarkNet” that considerably improves the overall network accu-
racy, with almost no increase in inference time with respect to the baseline approach.
In addition, they propose a multi-scale, cross-layer detector that also significantly
improves the network’s ability to detect small targets.

(vii) “Cloud and Snow Segmentation in Satellite Images Using an Encoder–Decoder Deep Con-
volutional Neural Networks” by Kai Zheng et al. [10] details the cloud and snow seg-
mentation of satellite images. They propose a cloud-and-snow segmentation method
based on a deep convolutional neural network (DCNN) with an enhanced encoder–
decoder architecture. Comparative experiments show that the proposed method is
superior to the baseline methods. Additionally, a rough-labelled dataset containing
more than 20,000 images and fine-labelled data consisting of 310 satellite images are
created, with which they studied the relationship between the quality and quantity
of the labels of training data and the performance of cloud and snow segmentation.
Through experiments on the same network with different datasets, they found that
cloud-and-snow segmentation performance is more closely related to the quantity of
labels rather than their quality. Namely, under the same labelling consumption, the
method performs better when solely using rough-labelled images than when using
rough-labelled images plus 10% fine-labelled images.

4. Methodological Approaches to Dealing with Multisource and Multidimensional
Numeric and Alphanumeric Spatial-Temporal Data

This section considers approaches whose focus is primarily on the methods for the
integration, management, querying, and mining of multisource and multidimensional
numeric and alphanumeric spatial-temporal data. Specific attention is paid to the inherent
inconsistencies and uncertainty of the spatial temporal information:

(viii) “Soft Integration of Geo-Tagged Data Sets in J-CO-QL+” by Paolo Fosci and Giuseppe
Psaila [11] tackles the need for the integration of distinct heterogeneous data sets
concerning public places located on Earth created by distinct Web applications, social
networks, recommendation platforms, and likes using the schemeless JSON format.
To exploit complementary and redundant information in such multisource datasets
and reuse it for their purposes, analysts usually need to perform complex, long pre-
processing tasks including data transformation, homogenisation, and data-cleaning,
as well as training activities that require tedious and extensive labelling of data.
To perform integration from scratch, by avoiding these burdening activities, this
paper proposes a methodology based on a soft integration framework defined within
soft-computing and fuzzy sets. The proposed framework, which is a stand-alone
tool devised to process JSON datasets stored within distinct JSON document stores,
enables researchers to perform flexible querying and transformations of multiple
heterogeneous data sets by providing operators with the ability to select, manipulate,
and merge JSON objects with distinct structures. The ease of use, effectiveness, and
efficiency of this soft integration technique is demonstrated with real data.

(ix) “Modelling and Querying Fuzzy SOLAP-Based Framework” by Sinan Keskin and Adnan
Yazıcı [12] addresses the need to analyze GBD generated by sensors by consider-
ing the uncertainty and fuzziness inherent in spatiotemporal database applications.
Spatial Online Analytical Processing (SOLAP) provides appropriate data structures
and supports the querying of multidimensional numeric and alphanumeric spatial
temporal data. Nevertheless, this technique is limited in terms of its ability to manage
uncertainty and fuzziness. Thus, this paper proposes FSOLAP, which is a new frame-
work based on fuzzy logic technologies and SOLAP. The study uses crisp measures
as inputs to this framework and applies fuzzy operations to obtain the membership
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functions and fuzzy classes; then, it generates fuzzy association rules. Therefore,
FSOLAP does not require predefined sets of fuzzy inputs. This approach is applied to
handle non-spatial and fuzzy spatial queries, as well as spatiotemporal fuzzy query
types. Additionally, FSOLAP is not only used to query and analyse historical data
but also to handle predictive fuzzy spatiotemporal queries, which typically require an
inference mechanism.

(x) “Implicit, Formal, and Powerful Semantics in Geoinformation” by the authors herein
and our colleagues Paolo Tagliolato Acquaviva D’Aragona and Paola Carrara [13]
addresses the need to identify suitable methodologies and frameworks in order to
represent and mine GBD depending on their geosemantics—whose classification is
often ill-defined. A meta-review of the state of the art in geosemantics is performed to
pinpoint relevant “keywords” representing key concepts, challenges, methods, and
technologies of the domain. Then, real case studies dealing with geoinformation are
first categorized based on three forms of semantics, defined as implicit, formal, and
powerful (i.e., soft) depending on the kind of the input data they use; consequently,
they are successively associated with the previously identified relevant keywords
for the domain of geosemantics. Finally, the similarities between each pair of anal-
ysed case studies in the space of the keywords are computed in order to ascertain
whether distinguishing methodologies, techniques, and challenges can be related to
the three distinct categories of implicit, formal, and powerful. The outcomes of the
analysis identified the methods and technologies that are more suited to modelling
and processing specific forms of geosemantics categorised into implicit, formal, and
explicit categories.

5. Conclusions

The contributions published in this Special Issue offer a panoply of techniques and
approaches used to deal with GBDs by means of a variety of GeoAI methods. The ap-
proaches are varied with respect to the objectives of their studies, which include both social
and environmental sensing, as well as with respect to the kind of GBD sources, genre,
and formats. While remote-sensing data from satellites and sensors are used mainly for
environmental applications, social media-georeferenced data, both textual and pictorial, are
mainly used for social applications. In both domains, a current trend is to apply deep learn-
ing methods and to compare the results achieved with baselines or with more traditional
machine learning algorithms.

Besides the mainstream deep learning methods, some bucking methods were also
proposed by some of the papers, such as the use of transparent machine learning algorithms
based on soft computing and fuzzy logic. This was motivated by the need for the analyst
to have greater control over the automatic process in order to be able to understand the
phenomenon and to explain it to stakeholders.

Some methodological proposals outlined the need to tackle new challenges with
respect to GBD management, including the need for novel means for multisource GBD
integration and transformation as well as uncertainty and imprecision management. Finally,
from a meta-review of approaches, a synthesis is proposed in order to outline the most
suitable GeoAI methods for managing GBD depending on their geosemantics.

We are also aware that the collected contributions and their topics do not exhaustively
cover all of the challenges related to GeoAI. For example, other, unincluded challenging
topics of GeoAI concern spatial-temporal and thematic solutions, which entails the ability to
answer user questions regarding the retrieval of relevant information from heterogeneous,
multisource GBD, thus satisfying user needs related to specific geographic areas and to a
desired time range, such as “find a well-reputed pizza restaurant close to Milano railway
station which is open on Monday evening”. Another issue in the perspective concerning
the reproducibility and replicability of experiments is the need for high-quality, labelled
GBD benchmark collections that are freely available and allow the research community
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to compare the proposed methods. While this practice is well-established in the textual
information retrieval field, it is still at its infancy in the geographic research community [2].

Finally, we believe we are still in the early stages of integrating and analysing multi-
source and multimodal GBD using GeoAI methods, including geotagged voice and audio
files, remote-sensing images and their derived products, and geotagged text annotations,
which have been collected as natural and environmental observations in many citizen
science projects. The application of GeoAI methods based on embedding representations
may constitute a quantum leap in multimodal GBD integration.
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Abstract: Since the recent outbreak of COVID-19, many scientists have started working on distinct
challenges related to mining the available large datasets from social media as an effective asset to
understand people’s responses to the pandemic. This study presents a comprehensive social data
mining approach to provide in-depth insights related to the COVID-19 pandemic and applied to the
Arabic language. We first developed a technique to infer geospatial information from non-geotagged
Arabic tweets. Secondly, a sentiment analysis mechanism at various levels of spatial granularities and
separate topic scales is introduced. We applied sentiment-based classifications at various location
resolutions (regions/countries) and separate topic abstraction levels (subtopics and main topics).
In addition, a correlation-based analysis of Arabic tweets and the official health providers’ data
will be presented. Moreover, we implemented several mechanisms of topic-based analysis using
occurrence-based and statistical correlation approaches. Finally, we conducted a set of experiments
and visualized our results based on a combined geo-social dataset, official health records, and
lockdown data worldwide. Our results show that the total percentage of location-enabled tweets has
increased from 2% to 46% (about 2.5M tweets). A positive correlation between top topics (lockdown
and vaccine) and the COVID-19 new cases has also been recorded, while negative feelings of Arab
Twitter users were generally raised during this pandemic, on topics related to lockdown, closure, and
law enforcement.

Keywords: Arabic tweets; COVID-19 pandemic; sentiment analysis; social data mining; spatio-
temporal correlation

1. Introduction

Global digital statistics [1] reveal that there were more than 4.2 billion active social
media users by January 2021, which is 90% of the total number of internet users. In addition,
social networks have become a house for numerous real-life events that may occur in our
everyday life. The global COVID-19 pandemic has been spreading worldwide, and related
topics have been trending since then. Many scientists and companies have started working
on challenges related to the processing and analysis of diverse types of health data, medical
images, Bluetooth, and GPS data, as well as social data. From a data mining perspective,
researchers have been trying to extract knowledge from people’s opinions, thoughts, and
feelings from social networks. Social data mining includes various associated fields such as
Sentiment Analysis (SA) [2]. SA infers positive and negative mentions of people’s thoughts,
behaviors, and feelings based on their writings about trending topics [3]. The Twitter
platform is well suited for analysing users’ sentiments during the COVID-19 period, with
over 353 million monthly active users [1]. Using data mining techniques, public opinion on
COVID-19-related topics can be monitored and tracked in space and time.

From a different perspective, and according to the latest Internet world statistics,
Arabic is ranked fourth among the ten most used languages over the Internet [4], with more
than 250 million Internet users [5] originating from Arab countries. Arabic is identified by 22
Arabic-speaking countries as an official language [6]. Furthermore, millions of Arabic users
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use social media networks to communicate and contribute daily Arabic content over social
media. Therefore, our focus in this paper is to analyse Arabic social content available on
Twitter, and to investigate people’s opinions and sentiments about the COVID-19 pandemic.
Recent research works have primarily focused on analyzing social data by extracting
trending topics, and inferring general sentiments from related topics, with a special focus
on the English language. However, COVID-19 related sentiment analysis on Arabic social
media has not been fully addressed. In addition, the few existing research works on Arabic
social data do not consider the spatial-temporal aspect in sentiment analysis.

In this study, we focus on analyzing Arabic social content from Twitter related to the
COVID-19 pandemic, to discover people’s sentiments and correlations between COVID-19-
related topics and subtopics, at different levels of spatio-temporal granularities. We aim to
highlight correlations between insights extracted from social data and official health data
records while investigating the impact of the global pandemic on multiple aspects with
different spatial and temporal scales.

This study extends our previous work [7] by presenting a comprehensive social data
mining approach for the Arabic language, which employs Arabic-specific word embedding
techniques with a focus on the correlation between spatio-temporal social data and official
health data. Our approach presents several unique contributions compared to existing
works as follows:

1. We used the dataset gathered in previous work [7] that contains Arabic tweets related
to COVID-19 from two publicly shared datasets within the time frame from January
2020 to November 2020 (about 5.5M tweets). Then, we enhanced our previous ap-
proach for a location inference technique from non-geotagged tweets based on user
profiles and textual content, which increased the total percentage of location-enabled
tweets. We developed our Geo-Database containing bilingual (English and Arabic)
names of world countries, their capitals, and the famous towns in the Arab world.

2. We implemented several mechanisms for topic-based analysis using occurrence-based
and statistical correlation approaches to examine the spatio-temporal distribution of
trending topics related to COVID-19.

3. We conducted a correlation-based analysis between Arabic tweets and official health
data collected from online platforms.

4. We extend our previous work [7] of sentiment analysis by developing a deep learning
model with bidirectional representations from the unlabeled text by conditioning on
both left and right contexts in all layers. We also enhanced our detection mechanism
at many spatial granularity levels (regions, countries, and cities) and different topic
scales. It leverages unique insights from users’ feedback on top controversial topics
(lockdown, vaccination, etc.).

5. We conducted a comprehensive set of experiments and visualized our results based
on the generated geo-social dataset, sentiment analysis, official health records, and
lockdown data worldwide.

This paper is organized as follows: Section 2 outlines a review of some related
work. The description and implementation of the proposed methodology are presented in
Section 3. The results and findings of the proposed methodology are discussed in Section 4.
Section 5 presents concluding remarks and future research directions.

2. Related Work

Current literature on social data mining has witnessed considerable achievements
from NLP and ML research fields [8]. Sentiment Analysis (SA) [2] expresses the users’
opinions in various forms with diverse linguistic styles to extract subjectivity and polarity
from text [9] to provide countless benefits such as supporting people to make their choices.
From the early days of 2020, researchers began studying social media content related
to COVID-19 that focused on English tweets about COVID-19 or other Latin languages,
while few researchers investigated Arabic content. Some research works motivated topic
analysis to illustrate the hot topics discussed on social media using a word embedding,
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word frequency, location frequency, language frequency, and character and word n-gram
features weighted by TF-IDF. Meanwhile, other researchers applied feature extraction in
feature-based sentiment analysis to determine sentiment polarity and forecast sentiment in
social data [10]. Most of them used ML classifiers to verify results by semantic analysis.
The following sections classify our review of most research studies on social streams,
particularly in Arabic.

2.1. Data Collection and Classification

Recent research works have principally focused on analyzing social data by extracting
trending topics and inferring general sentiments from related topics, with a special focus
on the English language and less production on Arabic content. Many research works
motivated collecting social data to be shared with the research community. In addition,
they used their datasets in statistical analysis investigations such as Alanazi et al. [11] and
Haouari et al. [12]. Some researchers such as Alharbi [13] identified a coronavirus dataset
of Arabic tweets from three Saudi social streams and classified the dataset as conversations
about precautionary steps taken by governments, conversations demonstrating social unity,
and conversations endorsing government decisions. Additionally, some research works
focused on analysis of tweets datasets for classification such as Hamdy et al. [14] who
studied different types of tweets collected from Twitter from different perspectives of
analysis and machine learning classification. They combined different machine learning
models to classify tweets into related/not related to Coronavirus.

2.2. Geolocation Analysis

Some researchers worked on the location-enabled features of social data such as
Qazi et al. [15] that introduced the GeoCoV19, a large-scale Twitter dataset related to the
COVID-19 pandemic. They used the Nominatim (Open Street Maps) data at geolocation
granularity levels to derive their geolocation information using a gazetteer-based method
to extract toponyms from user location and tweet text. Likewise, Lamsal [16] introduced the
COV19Tweets Dataset, a large-scale English language tweets dataset with sentiment ratings.
They filtered the COV19Tweets Dataset’s geotagged tweets to create the GeoCOV19Tweets
Dataset contains only 141k tweets (0.045 percent).

2.3. Topic Analysis and Semantic Analysis

Alshalan et al. [17] used the ArCov-19 dataset [12], an ongoing dataset of Arabic tweets
related to COVID-19, to find the hate speech in the Arab world, as well as the most common
topics addressed in hate speech tweets. They used a pre-trained convolutional neural
network (CNN) model to evaluate tweets for hate speech. Similarly, Alsafari et al. [18] built
Arabic hate and offensive speech detection system because of an increasing proliferation
of hate speech on social media. However, unfortunately, the collected data are not related
to COVID-19. They applied four robust extraction algorithms based on four forms of
hate: religion, race, nationality, and gender. They then labeled the corpus using a three-
hierarchical annotation methodology, ensuring ground truth at each level by verifying inter-
annotation agreement evaluated by applying ML classifiers. As Well, Hamoui et al. [19]
examined the Arabic content on Twitter to see what the most popular topics were among
Arabic users. They used Non-negative Matrix Factorization (NMF) to find the most common
unigrams, bigrams, and trigrams in a dataset of Arabic tweets. They presented, discussed,
and divided the final discovered topics into many categories.

Likewise, Al-Laith et al. [20] analyzed the emotional reactions of people during the
COVID-19 pandemic using a rule-based technique to classify tweets. They examined six
forms of emotion to discover citizens’ worries. Furthermore, they created a framework for
tracking people’s emotions and correlating emotions with tweets mentioning some of the
COVID-19 pandemic symptoms. Similarly, Bahja et al. [21] revealed the initial results of
identifying the relevancy of the tweets and what Arab people tweeted about the COVID-
19 feelings/emotions (Safety, Worry, and Irony). They used ML and NLP techniques to
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discover what Arab people talked about COVID-19 on Twitter. Meanwhile, Essam and
Abdo [22] examined how Arabs are dealing with the COVID-19 pandemic on Twitter.
They extracted specific keywords and n-grams to classify common themes in the compiled
corpus. They conducted a lexicon-based thematic analysis to find that tweeters had high
levels of affective conversation full of negative emotions.

Some research work focused on the sentiment analysis of social data such as
Manguri et al. [23]. They offered a graphical representation of the data after the senti-
ment analysis. Further, Chakraborty et al. [24] demonstrated tweets comprising and how
health organizations have failed to guide people around this pandemic epidemic using a
model with Deep Learning (DL) classifiers. Furthermore, Kabir et al. [25] created a neural
network model and trained using manually labeled data to detect distinct emotions in
Covid-19 tweets at fine-grained labeling. They constructed a bespoke Q&A roBERTa model
to extract terms from tweets predominantly responsible for the accompanying emotions.
Moreover, Hussain et al. [26] developed and used an AI-based technique to analyze social-
media public reaction concerning COVID-19 vaccines in the United Kingdom and the
United States to understand public opinion and discover hot subjects. They employed
NLP and DL algorithms to anticipate average feelings, sentiment trends, and conversation
topics. In addition, low-resource languages have witnessed recent efforts for investigating
sentiment analysis, trying to bridge the gap by manually collecting and annotating social
media data. ALBANA is a deep learning-based sentiment analyzer that performs sentiment
analysis of around 10K Facebook comments in the Albanian language [27]. Attention
mechanism along with fastText word embedding model was used to discover the interde-
pendence and meanings of words while employing a BiLSTM for sentiment classification.
Furthermore, Imran et al. [28] examined how people from various cultural backgrounds
responded to COVID-19 and how they felt about the ensuing steps that various countries
took in response. They used deep long short-term memory (LSTM) models to estimate the
sentiment polarity and emotions from extracted tweets have been trained to reach cutting-
edge accuracy. They demonstrated an original and cutting-edge method for validating the
supervised DL models using Twitter tweets that had been extracted.

2.4. Misleading Information Detection

Some researchers tried to handle the misleading information published on social
media such as Alsudias and Rayson [29] who collected and examined Arabic tweets about
COVID-19 to identify the topics using the k-means algorithm, to detect rumors, and to
predict tweets’ sources. They used ML algorithms to identify false, correct, and irrelevant
information, with two sets of features word frequency and word embedding. In a similar
manner, Elhadad et al. [30] presented the COVID-19 Twitter dataset (COVID-19-FAKES)
in bilingual (Arabic/English). They gathered COVID-19 pre-checked facts from several
fact-checking websites to create a ground-truth database to annotate their collected dataset.
They used shared knowledge from the official websites and Twitter accounts as a source
of accurate information. They used ML algorithms and feature extraction techniques to
annotate Tweets in the COVID-19-FAKES dataset. Similarly, Hussein et al. [31]) created
an effective strategy based on the AraBERT language paradigm for combating the Tweets
COVID-19 Infodemic. They trained language models on plain texts rather than tweets since
pre-trained language models are widely available in many languages and available plain
text corpora are larger than tweet-only corpora, allowing for greater performance.

2.5. Discussion

Table 1 summarizes attempts to process COVID-19-related social data with important
information such as the number of tweets contained in each dataset, the language of the
dataset, the time frame the data was collected, techniques used in the research work, and
the features used in that work.
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To summarize, researchers used analysis of social media content to learn more about
how people react to the COVID-19 pandemic. The exiting work has been conducted
with English data, while Arabic data receives fewer contributions. Moreover, the existing
research works on Arabic social data do not consider the spatial-temporal aspect of the
COVID-19-related content. Furthermore, the correlation between official health data and
social media material has not been fully studied.

3. Research Methods

In this paper, we propose a method to automatically detect and process social datasets
containing Arabic tweets related to the COVID-19 pandemic using ML models and topic
detection and tracking techniques. Figure 1 shows the workflow of our methodology,
while the below subsections describe each phase in more detail. Because we focused
on analyzing the spatio-temporal social data in Arabic tweets related to the COVID-19
pandemic, accordingly our methodology started with data collection of Arabic tweets. We
found two publicly shared Arabic datasets for COVID-19 tweets [11] (3,314,859 tweets)
and [12] (2,111,650 tweets). Unfortunately, both have a low number of geo-tweets, which
is about 2% of the total tweets as discussed in Section 2. Thus, we decided to merge both
datasets (about 5.5M tweets) to feed our experiments. Then, we processed the merged
dataset to infer locations from non-geotagged tweets, thus generating a new dataset of
location-enabled tweets which contains about 46% (about 2.5M tweets) of the original
combined dataset.

Dataset Collection

COVID-19
Arabic 

(Tweets' Ids)

Feature
Extraction Clustering Topics

Results
Visualization

Stats

World MapsTopics Clusters

ArCOV-19 
(Tweets' Ids)

Sentiment
Analysis

Correlation
Analysis

New COVID-19

Figure 1. The Workflow of our methodology to analyze the social data.

Subsequently, useful features are extracted from COVID-19-related tweets. Then,
classification techniques are applied to the extracted feature vectors to detect topics from
the tweet’s text and generate the hot topics. Then again, the sentiment analysis technique
is applied with multiple perspectives to infer the sentiment and opinion polarity at many
spatial (city, country, region) and temporal (day and month) levels. Next, correlation
analysis between the collected tweets’ data and the official health records is applied at
different spatial granularities, such as country and region. Finally, we demonstrate the
visual analytics based on a comprehensive set of experiments use the new Arabic COVID-19
dataset. The following subsections describe each step in our methodology.

3.1. Dataset Collection

The Twitter platform is well suited for studying the sentiment of users during COVID-
19, with over 353 million monthly active users. Therefore we used Twitter because it focuses
on becoming a broadcast platform similar to a real-time news station, with posts by default
being global-readable to link people to the rest of the world. Most of the public Arabic
datasets related to COVID-19 contain a low number of location-enabled tweets, such as
Alanazi et al. [11] and Haouari et al. [12]. Both datasets are collected using Twitter Streaming
API that matched Arabic tweets with the set of COVID-19-related keywords widely used by
people, news media, and official organizations such as Coronavirus, Corona, and Pandemic.
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We collected tweets from both datasets and from which we built a new geo-tagged dataset.
In addition, we defined the period from 1 January 2020, to 30 November 2020, to filter
tweets on the merged dataset. Unfortunately, based on the privacy policy of Twitter, both
shared datasets contain only tweet IDs. Therefore, we hydrated (recollected) the dataset to
get the full tweet objects from Twitter using the TWARC and Hydrator Python libraries
developed for this purpose, which helps to generate JSON files for each day’s tweets. The
new dataset contains more than 5.5M tweets (5,054,141 tweets are unique and about 2.5M
geo-tweets) with an average of Words per Tweet equal to 21. Table 2 presents the statistics
of the monthly distribution of unique tweets, unique words, unique hashtags, and unique
user IDs.

Table 2. Statistics of the monthly distribution of dataset contents.

Month COVID-19
Arabic ArCOV-19 New Dataset Total Words Unique

Words
Unique
Hashtag User IDs

January 208,974 130,002 338,976 7,179,808 103,823 5046 103,823

February 383,474 178,095 561,569 11,311,723 188,158 9207 188,158

March 1,479,692 430,235 1,909,927 41,123,366 615,374 23,820 615,374

April 1,307,424 287,754 1,595,178 32,870,009 516,120 18,777 516,120

May 0 251,670 251,670 5,575,970 89,974 11,619 89,974

June 0 212,380 212,380 4,567,400 81,060 10,679 81,060

July 0 192,754 192,754 4,063,514 68,352 9340 68,352

August 0 166,825 166,825 3,487,262 64,475 8069 64,475

September 0 113,199 113,199 2,323,648 47,711 5553 47,711

October 0 105,634 105,634 2,144,079 43,297 5050 43,297

November 0 93,958 93,958 1,915,613 39,354 4477 39,354

Total 3,379,564 2,162,506 5,542,070 116,562,392 1,224,684 48,954 1,224,684

Figure A1 illustrates the monthly distribution of tweets and hashtags during the
period from February to April 2020 in which most countries around the world were in
COVID-19 Lockdown. One can notice the general trend of tweeting about COVID-19 was
at its peak in March and then gradually reduced to normal about normal levels. It shows
that the general trends of the number of tweets and hashtags were similar.

3.2. Features Extraction

We developed several processes for the Feature Extraction module, as shown in
Figure 2. The first process “Prepare Dataset” contains several sub-processes: “Clean
Dataset”, “Filter Fields”, and “Prepare Arabic Text” The “Clean Dataset” process removes
null values from the tweet’s object. On the other hand, the “Filter Fields” process removes
the unnecessary fields from the tweet’s metadata. Subsequently, to prepare the Arabic text
in each tweet’s object for further text analysis, the process “Prepare Arabic Text” has been
applied to perform the following processes. Figure A2 provides a sample of Arabic tweets
with their English translation after applying all of the following:

• Convert HTML to normal text, which removes the HTML tags.
• Remove links (remove all hyperlinks of advertisements, retweets, etc.)
• Remove diacritics (remove Arabic diacritics)
• Remove punctuation (remove Arabic punctuation characters)
• Normalize and Tokenize Arabic text (We used our own Python code for tokenization)
• Remove Stop Words (remove Arabic stop words based on a list contains 750 words

that published by Alrefaie [32])
• Remove empty lines (remove extra empty lines and extra white spaces).
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Prepare Dataset Infer Location-
Enabled Tweets

Extract Location
Features

Figure 2. Reprocess COVID-19 tweets dataset.

Each tweet object contains several metadata fields that hold much information such
as tweet text, hashtag, and user ID. The available features can be incorporated into our
ML model with relative ease. The geo-location information, such as “Place” and “User
Information”, are important pieces of information that define the originating location of the
tweet. Unfortunately, it needs further work because it is based on the user’s choice to enable
or disable the “Place” option in the Twitter settings. Hence, the number of geotagged tweets
is so small compared to the total number of tweets. In the COVID-19 Arabic dataset [11]
the number of geotagged tweets was 64,705 tweets (2%). Similarly, the ArCov-19 [12]
dataset has only 50,856 tweets (2.4%). Therefore, we develop an algorithm to “generate
Location-Enabled Tweets” from the non-geotagged tweets, as illustrated in Algorithm 1.
The objective of the algorithm as shown in Algorithm 1 is to extract the location-enabled
information. It required using the GeoDB, a manually developed Geo-location database
that contains Bilingual names (English and Arabic) of world country names, capital cities,
and famous towns in the Arab region. This approach analyzes all geo fields found with
the tweet’s object such as “Place name”, “Country”, and “User location” to extract the
tweet source. Unfortunately, the user location information is an optional field that may
is manually entered by the users. Therefore, it may be written in many languages or
contained misinformation.

Our approach worked on two levels to extract chrononyms and astionyms (chrononyms:
proper names of regions or countries; astionyms: proper names of towns and cities [33])
from user location. The first level tries to infer the country name from the information
written in the user location metadata ([user][location]). It queries the GeoDB to extract the
country name matching the [‘user’] [‘location’]. Meanwhile, the second level works only
if the first level failed, and it tries to infer the country name based on detecting the city
name from the information in user location metadata and then retrieves the country name
containing that city.

As a result of applying the Location Extraction algorithm, we increased the size of the
experiments’ dataset from about 115K (2%) up to 2.5M geotagged tweets (46%). Figure 3
illustrates the percentage of the geotagged tweets before and after applying our approach.
Meanwhile, Figure A3 presents the monthly distribution of geo/non-geo tweets in our
new Geo-Tweets dataset. Finally, using the occurrence-based approach, we run a process
to numerically analyze the location-enabled Arabic tweets in the new geo-tweets’ dataset
(2.5M tweets). Most of the Arabic tweets are coming from Arab users living around the
world, and most of them live in the Arab region. As a result, we compared the two regions
(Arab and non-Arab) for originating the Arabic tweets that feed our experiments. This
process extracted all information, which presents the proportion between Arabic tweets
and top Hashtags tweeted by users in Arab and non-Arab regions. Figure 4 illustrates the
comparison between Tweets and Hashtags (Top percentages only, more than 1%) in Arab
and non-Arab countries during the time frame from January to November of 2020. Note
that the top two countries for both tweet generation and hashtags in the Arab regions are
Saudi Arabia and Kuwait. On the other hand, UK and France were the top two countries in
the non-Arab region.
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Algorithm 1: Location Extraction
Input:
TD: Tweets Dataset is the list of all tweets,
TP: Tweets place field, [place][name]
TC: Tweet Country field, [place][country]
TCC: Tweet Country Code field, [place][country code]
TCO: Tweet Coordinates field, [place][bounding box][coordinates]
TUL: Tweet User Location field, [user][location]
CCDB: Countries and Cities Database
GeoDB: Geo-Location Database
Output:
TW: Tweet Source

1 begin;
2 TD = loadTweetsCorpus();
3 for each tweet in TD do
4 if TP is not None then
5 country = TC;
6 if country is not None then
7 place name = TP;
8 country code = TCC;
9 coordinates = TCO;

10 end
11 else
12 if TP is None OR country is None then
13 Select country from CCDB where TUL = country;
14 if country is None then
15 Select country from CCDB where TUL = city;
16 end
17 country code, coordinates = retrieveData(GeoDB);
18 end
19 end
20 end 

 
  

 Figure 3. Percentage of the Geo-tagged tweets in the new COVID-19 Tweets Dataset after applying
the Location Extraction algorithm.
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Figure 4. Tweets and Hashtags in Arab and non-Arab Countries.

3.3. Topic Clustering

In this section, we conducted some experiments to present an initial outcome of dataset
distribution analysis. Our Tweets dataset was formed from two datasets originally collected
using a list of keywords (about 45 unique keywords). We applied the AraVec tool to extend
the list of keywords based on semantic matching. AraVec is a word embedding open-source
project that aims to provide free and efficient word embedding models to the Arabic NLP
research community [34]. The new list contains more than 1600 keywords. Then, we filtered
the list (160 unique topics only) by removing topics non-related to COVID-19 hot topics
such as names of countries and cities. Then, we applied an occurrence-based technique
to each tweet text to find the best-matched keywords that represent the topics illustrated
by tweets.

We used the FuzzyWuzzy Python library (an open-source string similarity matching
library) to determine string similarity as a degree out of 100. It uses the Levenshtein
Distance that calculates the differences between sentences. It also uses the Fuzzy C-Means
(FCM) clustering method to generate a recommender system predicated on homogeneous
attribute measures [35]. Figure 5 presents the monthly distribution of the top topics during
the time frame from January to November 2020. Meanwhile, Figure 6 illustrates the
comparison between the top 20 topics tweeted by users in Arab and non-Arab countries.
Figure A4 displays the word cloud of the top topics. Figure A5 shows the comparison
between top five topics in Arab and non-Arab countries. While, Figure A6 illustrates the
monthly top topics distribution. The top five topics in the top 10 countries is illustrated in
Figure A7. Figures A8 and A9 present the distribution of some main topics (Vaccine and
Treatment) in Arab and non-Arab countries.
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Figure 5. Monthly distribution of Top 10 Topics in the Tweets Dataset. 

  
Figure 6. Top topics distributed globally.

Subsequently, to have a higher-level vision of topics found in Arabic tweets, we have
used clustering techniques to cluster the 140 top topics extracted from our experiments
into main topics. We applied the FCM clustering method that extracts 14 clusters to
represent main topics. Table 3 represents the main high-level topics and their coverage.
The coverage of a topic is calculated from the distribution of top topics in Arabic tweets in
our Geo-dataset.

Figure 7 shows the percentage of main topics distribution in Arab and Non-countries.
It illustrates that the top topics in Arab countries are Corona, Prayer, Lockdown, Hospital,
and vaccines. Meanwhile, in non-Arab countries, the top topics are Sterilization, Orga-
nization, Feeling, Disease Symptoms, and Treatment. Figures A8 show Treatment topics
tweeted in the Arab countries more than Vaccine topics during the first half of the year
2020 and vice versa. Meanwhile, Figure A9 displays the Vaccine topics appeared on social
media in non-Arab countries from the second quarter of 2020.
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Table 3. Main topics clusters.

Main Topic Coverage Description Example of Top Topics

Corona 55.74% Topics related to Coronavirus New injuries, checkup, Virus, Corona,
COVID-19

Prayer 25.68% Topics related to prayers to God usually raised
by Arab people

Save us, heal me by your ability, Protect from
your torment, Your generosity, and mercy

Lockdown 13.90% Topics related to actions done by governments
against the COVID-19 pandemic

Curfew, School closure, Separate service,
Closing

Hospital 3.41% Topics related to tweets discuss entering
hospitals and their procedures

Quarantine Hospital, Isolation Hospital,
Oxygen, Anesthesia

Disease’s
Symptoms 0.44% Topics related to symptoms of Coronavirus fever, cough, tiredness, headache, sore throat,

diarrhea

Diseases 0.23% Topics related to other diseases rather than
Coronavirus

Pneumonia, Kidney failure, Nervous
breakdown, Heart failure

Feeling 0.16% Topics related to feelings about Coronavirus kindness, laugh, discontent

Treatment 0.12% Topics related to treatment of Coronavirus Enzymes, Tamiflu, Stem cells, Hydroxy
chloroquine

Religious 0.11% Topics related to religious activities Fasting, Fasting, Pilgrimage

Vaccine 0.11% Topics related to all talks about vaccine
production or distribution Vaccine, immunization, Serum

Sterilization 0.02% Topics related to sterilization actions Antiseptic, Chlorine, Wash off

Organization 0.01% Topics related to organizations mentions Health organization, Reuters

Miscellaneous 0.07% Miscellaneous topics Rationalization, make a complaint, Electricity
shut down

 

  
Figure 7. Main topics in Arab and non-Arab countries.

3.4. Sentiment Analysis

Social data mining has recently become an attractive field of research that relates to
the method of automatically extracting valuable information from computerized textual
data [36]. It includes various associated fields such as question answering systems, text
summarization, and SA [2]. Generally, research on social data mining and SA can be
classified into supervised and unsupervised approaches [37]. Supervised (or corpus-based)
approaches require labeled datasets, usually expensive to collect and label. On the other
hand, the unsupervised approach (recognized as the lexicon-based approach) depends on
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extracting features for classification and clustering purposes. For instance, unsupervised
sentiment analysis employs sentiment lexicons built with the assumption that words have
prior sentiments. Consequently, because of the variety and wide distribution of informal
writing in languages, it is a time-consuming and challenging task to create such lexicons.
Many ML classifiers can be applied to improve the performance of SA on both approaches
such as Decision Tree (DT), Support Vector Machine (SVM), Multinomial Naïve Bayes (NB),
or deep neural networks, among others.

We used the lexicon-based approach in the SA processes with the social network data
(tweets from Twitter) as an opinion resource. We built our Arabic sentiment lexicon by
merging nine Arabic lexicons (Bing Liu Lexicon; NRC Emotion Lexicon; MPQA Subjectivity
Lexicon; SemEval-2016 Arabic Lexicon; AEWNA Lexicon; NileULex Lexicon [8,38–42]
previously tested by the research community. The Arabic sentiment lexicon contains
annotation for Arabic words such as “positive”, “negative”, or “neutral”. We used this
lexicon to extract the feature of the tweet’s polarity as the numbers of positive, negative,
and neutral words. Then, we used polarized bag-of-words features, representing a tweet
as a set of words without order, each word being a feature. Then combined these features
with the number of words by polarity. Principally, the Bag of Words (BoW) technique is a
word-frequency approach that counts positive, negative, and neutral words in each tweet to
assign the tweet polarity as “positive” (if positive count—negative count > zero), “negative”
(if positive count—negative count < zero), otherwise it is “neutral”. Subsequently, we
applied four ML classifiers—Decision Tree (DT), Multinomial Naïve Bayes (MNB), Linear
Support Vector Machine (SVM), and Random Forest (RF)—to check the classification
performance of the sentiment analysis.

To apply the sentimental analysis processes, we developed a Sentiment Extraction
algorithm for the SA processes to run in our experiments. Algorithm 2 starts with loading
the Arabic corpus of the text collected from Arabic tweets, which are extracted from the
geo-tweets’ dataset. Subsequently, the approach prepares the Arabic corpus by applying
many sub-processes: (1) filtering tweets to throw away the unnecessary fields and use
the necessary fields (such as: “id”, “text”, “country code”). (2) Remove duplicated tweets.
(3) Clean tweets’ text by removing special characters such as (#, &, %), hyperlinks, punctua-
tion, numbers, Unicode characters, non-ASCII characters, and unnecessary white spaces.
(4) Normalize Arabic characters (Alef, Yaa, . . . ) in tweets’ text. (5) Remove Arabic stop
words such as the Arabic prepositions (Men, Ela, Fe, . . . ). (6) Remove duplicated words
and single-character words as well. (7) Tokenize Tweets’ text. (8) Stem tweets’ words to
rooted words.

Subsequently, the algorithm will run on each tweet’s words to get the tweet’s polarity
by using our Arabic sentiment lexicon to get polarity for each word then run the BoW
technique to set the polarity for each tweet. Finally, the algorithm runs four ML classifiers to
improve the accuracy of the SA process. The algorithm extract features and labels from the
Arabic polarity corpus. Then, it divides the corpus into train and test datasets by splitting
with ratios 80% and 20% consequently. Next, the algorithm vectorizes the training dataset
using the TF-IDF Vectorizer. Following this, the algorithm predicts the features using the
classifier model applied to the test dataset. Finally, a confusion matrix with the classifier’s
scores is outputted such as the precision, recall, f1-score, and accuracy values.
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Algorithm 2: Sentiment Extraction
Input: TC: Tweets Corpus,
AraLex: Arabic Lexicon,
CL: ML Classifiers’ List
Output: Sentiment Results

1 begin
2 TC = loadTweetsCorpus();
3 RemoveDuplicatedTweets(TC);
4 // Prepare corpus;
5 for each tweet in TC do
6 FilterTweetsFields(tweet);
7 CleanTweets(tweet);
8 NormalizeTweets(tweet);
9 RemoveArabicStopWords(tweet);

10 RemoveduplicatedWords(tweet);
11 TokenizeTweetsText(tweet);
12 StemTweetsWords(tweet);
13 // Get tweet’s polarity;
14 GetTweetPolarity(tweet, AraLex);
15 SetTweetPolarity(tweet);
16 end
17 for each classifier in CL do
18 ExtractFeaturesLabels(TC);
19 Train, Test = SplitDataset(TC);
20 for n in uni-gram do
21 Vectorising(Train, TF-IDF);
22 Prediction = Predict(CL, Test);
23 ConfusionMatrix = (precision, recall, f1-score);
24 end
25 end

4. Results and Discussion

Figure 8 illustrates the monthly results from the sentiment analysis of COVID-19
Arabic tweets. Meanwhile, Figure A10 displays the top scores evaluating sentiment analysis
in Arab countries. It shows Arab countries have the most positive/negative/neutral
feelings based on users’ opinions.

Figure 8. SA of COVID-19 Arabic Tweets.
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Moreover, we trained four classic ML algorithms (DT, MNB, SVC, and RF) using
our Geo COVID-19 dataset. Next, we evaluated the results with four sentiment-labeled
Arabic datasets collected from Twitter, as shown in Table 4. Furthermore, we employed an
NLP pre-training model dubbed Bidirectional Encoder Representations from Transformers
(BERT), which was developed to pre-train deep bidirectional representations from the
unlabeled text by conditioning on both left and right contexts in all layers [43]. We used the
Arabic-BERT model (developed by Safaya et al. [44]) trained on our Geo COVID-19 dataset
and evaluated with the same four datasets. We run certain model modification iterations,
assess using the other datasets, and then examine how it affects the overall performance.

Table 4. Sentiment-labelled Arabic satasets.

Dataset Name Total Tweets Pos. Tweets Neg. Tweets

Arabic Sentiment Twitter Corpus (ASTC) [45] 58,751 29,849 28,902

Arabic Sentiment Analysis Dataset (SS2030) [46] 4252 2436 1816

100 k Arabic Reviews [47] 66,666 33,333 33,333

Arabic Speech-Act and Sentiment Corpus of Tweets (ArSAS) [48] 11,784 4400 7384

Figure 9 presents the comparison between results collected after applying ML al-
gorithms trained and evaluated with five Arabic datasets. We used both Unigrams and
Bigrams features with TF-IDF Vectorization. We found that scores are close for both, so
we present unigrams only. It shows the Accuracy measure results of the traditional ML
classifiers for unigram and TF-IDF feature representation. It shows that applying the SVM
and RF classifiers achieved a high score on our Geo-COVID-19 dataset than using other
datasets. The results achieved by some ML classifiers are also higher in performance. We
applied the Arabic-BERT model and compared our findings using the five datasets that
accomplished a higher accuracy than the others, especially with the BERT-mini model.

Figure 9. SA Classifiers’ performance applied on Arabic Datasets.

4.1. Correlation Analysis

Daily, the official health records related to COVID-19 statistics are published by many
official organizations such World Health Organization (WHO), European Centre for Disease
Prevention and Control (ECDC), and Johns Hopkins University (JHU). We collected official
COVID-19 records from ECDC and JHU for world countries during the time frame from
January to November 2020. We implemented many mechanisms for the correlation-based
analysis using occurrence-based to find the correlation between sentiment analysis, official
health providers’ data, lockdown information, and topic frequencies. Figure 10 illustrates
the correlation between sentiment analysis of Arabic tweets related to COVID-19 and the
COVID-19 new cases over the world. It shows that there were some high negative feelings
at the beginning of the COVID-19 pandemic until the second quarter of the year 2020,
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subsequent it was in a steady state while cases increased. In addition, Figure 11 shows
separately the correlation between feelings of the Arab tweets in the Arab countries and
non-Arab countries and the COVID-19 new cases with some differences in both, especially
in the last quarter of 2020.
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Figure 10. Correlation between SA and the Official Health Records.
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Figure 11. Correlation between SA and the Official Health Records in Arab and Non-Arab Countries.

Similarly, Figure A11 illustrates a considerable difference in the correlation between
feelings shown in Arabic tweets and the COVID-19 new cases announced in some countries,
around the world. On average most feelings are equalized between positive and negative
while the number of official new cases of COVID-19 are increased. In response to the
COVID-19 outbreak, governments are imposing several measures against the COVID-19
pandemic such as {School closing}, {Workplace closing}, {Cancel public events}, and {travel
restrictions}. On 23 January 2020, the first COVID-19 pandemic lockdown was initiated in
Wuhan [49]. Since January 2020, most governments throughout the world enacted full or
partial lockdowns to stop the virus from spreading, leaving millions stranded. Moreover, a
third of the world’s population is restricted in some way [50]. From the middle of March
2020, several Arab countries began implementing various types of lockdowns.

Some organizations, such as Oxford University, collect data on 20 indicators to inform
a Risk of Openness Index, which aims to aid countries to understand whether it is safe to
“open up” or “shut down” in their fight against the coronavirus [51]. We got data from the
Oxford dataset related to the lockdown status worldwide. We used data of the “School
closing”, “Workplace closing” and “Cancel public events” indicators as the most important
indicators to feed our mechanism applied in an experiment aimed to find the correlation
between lockdown and the spatial-temporal data found in our Arabic tweets’ dataset.
Figures 12 and 13 displays the comparison between the correlation of the lockdown with
COVID-19 new cases in Arab and non-Arab countries, which present the impact of lockdown
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on the spread of COVID-19 new cases. It shows a negative correlation between the number
of COVID-19 new cases and the number of lockdown days in the Arab region— especially
for the indicator “Cancel Public events”. While, in the non-Arab region, there is a negative
correlation between the number of COVID-19 new cases and the number of lockdown
days—especially for the indicators “Cancel Public events” and “School Closing”.

 

 
Figure 12. Correlation between lockdown and Official COVID-19 New Cases in Arab Countries.

 

  

Figure 13. Correlation between lockdown and Official COVID-19 New Cases in Non-Arab Countries.

Figures 14 and 15 clarify the correlation between lockdown and the sentiment analysis
of Arabic tweets tweeted by users during the time frame from January to November 2020,
although the lockdown started late in Arab countries. The relationship shows different per-
spectives regarding the lockdown indicators and the sentiment of Arabic tweets related to
COVID-19 in Arab and non-Arab countries. For example, they clarify a positive correlation
between the positive feelings shown in Arabic tweets and the number of closing days of a
school lockdown.

Back to the top-topics issue illustrated early in the above sections, we implemented an-
other mechanism to define the correlation between sentiment analysis and topic-frequencies
in a spatial-temporal manner. Subsequently, to have a wide vision of topics found in
Arabic tweets, we clustered them into main top topics as discussed early in Table 3.
Figures 16 and 17 illustrate the relationship between main topics and the sentiment analysis
of Arabic tweets presented those topics in Arab and non-Arab countries. It shows the
positive/negative feelings associated with each topic in that region.
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Figure 14. Correlation between Lockdown and SA in Arab Countries.
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Figure 15. Correlation between Lockdown and SA in Non-Arab Countries.
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Figure 16. Correlation between main topics and SA in Arab countries.
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Figure 17. Correlation between main topics and SA in non-Arab countries.

We ran multiple experiments on our Arabic tweets COVID-19 dataset and the other
data collected from previous experiments to explain the insight obtained from the analysis
of increasingly large datasets. The results could play an essential role in representing our
large-scale dataset with official data resulting early. We provided figures for visualizing data
and findings in an approachable and stimulating way to enable us to extract information,
superior to understand the data, and make more effective decisions. We tried to visualize
the dataset components on world maps to learn COVID-19 pandemic distribution affects
social media users globally. Figures A12–A14 illustrates the distribution of Arabic tweets,
Arabic Hashtags, and Twitter users around the world. They clarify that most of them
originated from Saudi Arabia and Egypt because they have the highest population as well
the highest number of Internet users [1]. Meanwhile, Figure A15 displays the SA of Arabic
tweets from our Geo-dataset over the world. It shows the average sentiment analysis of
Arabic tweets is negative in most countries. Furthermore, Figure A16 illustrates the Word
cloud of Sentiment Analysis over the world.

In addition, Figure A17 shows the distribution of COVID-19 confirmed cases globally,
which emphasizes the known fact that the USA, India, and Brazil had the highest total
number of COVID-19 confirmed cases. Finally, Figure A18 shows the distribution of
the total number of lockdown days around the world based on the indicators used such
as “Cancel Public Events” and “School closure”. Specifically, it shows that most Arabic
countries were in Lockdown for almost the year.

4.2. Discussion

In this research, we developed a novel location inference technique from non-geotagged
tweets based on user profiles and textual content, which resulted in increasing the total
percentage of geotagged tweets from 2% to 46% (about 2.5M tweets). Currently, we are
conducting further research to improve the proposed location inference technique by us-
ing location inference from tweet textual content, such as the technique presented in the
Arabic NER model using Flair embeddings [52]. This aims at increasing the percentage
of produced geotagged tweets by utilizing an NLP process to manipulate the tweet’s
text. Moreover, evaluating our geo-dataset compared with four sentiment-labeled Arabic
datasets (using four ML algorithms and one DL algorithm) shows that it accomplished a
higher accuracy than the others, specifically with the DL model (BERT-mini).

In addition, some of the conducted correlation analysis shows that negative feelings
of Arab Twitter users were raised during this pandemic. Moreover, we illustrated that
there is a correlation between the discussed topics in the Arabic social media, such as
lockdown and travel restrictions, which were enforced by governments, and the number of
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COVID-19 new cases. Furthermore, the analysis showed that a positive correlation exists
between the negative feeling of Arab users and the number of daily confirmed cases of
COVID-19. Moreover, evaluating sentiment analysis in Arab countries shows that Saudi
Arabia, Kuwait, and Egypt have the most positive/negative/neutral feelings based on
users’ opinions.

The correlation analysis in related work was mostly focused on time series analysis
over health data, where we demonstrated in this work that spatio-temporal correlation with
health and social data, can provide us with deeper insights on how people’s sentiments
differ over different topics and subtopics, and with different spatial scales, such as cities,
countries, and regions. Finally, we visualized data and findings to understand the data
components and distribute the effects of using social media related to COVID-19 globally.

5. Conclusions

This paper introduces a comprehensive social data mining approach for deriving
COVID-19-related insights in the Arabic language, with a focus on the correlation between
spatio-temporal social data and health data. In addition, it presented a sentiment analysis
mechanism at multiple levels of spatial granularities and several topic scales. In addition,
a technique to infer geo-information from non-geotagged tweets was developed, which
increased the total percentage of location-enabled tweets from 2% to 46%, superior to most
previous related works. To verify sentiment analysis performance, we applied sentiment-
based classifications at many location resolutions (regions/countries) and some topic
abstraction levels (subtopics and main topics) to derive people’s opinions. Finally, we
conducted many experiments and visualized our results based on the generated geo-
social dataset, sentiment analysis, official health records, and lockdown data worldwide.
Our findings show the great potential of integrating social data mining with other data
sources, such as health data, to predict the evolution of such phenomena. In addition, such
correlation can later be applied to other types of data such as contact tracing and GPS data,
to provide an in-depth understanding of human behavior and the correlation between
social and physical user interactions.

We intend to expand the dataset in the future to include more Arabic social contents
to analyze the most recent periods when the social media users’ focus has changed from
COVID-19 in general to vaccinations. In addition, we plan to conduct further research
to improve the proposed location inference technique by utilizing an NLP process to
manipulate the tweet’s text to increase the percentage of produced geotagged tweets.
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Figure A1. Monthly distribution of tweets and Hashtags.

Figure A2. Sample of Arabic tweets with English translation.
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 Figure A4. Word cloud of the top topics in the COVID-19 Arabic Tweets Dataset.
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Figure A8. Frequency-Occurrence of Some Main Topics in Arab Countries.
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Figure A9. Frequency-Occurrence of Some Main Topics in Non-Arab Countries.

Figure A10. Top Sentiment (Positive/Negative/Neutral) in Arab Countries.
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Figure A11. Correlation between SA and Official Health Records in some countries.
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Figure A12. Distribution of Arabic Tweets.

 

 

Figure A13. Distribution of Arabic Hashtags.
 

 
 
Figure A14. Distribution of Users.
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Figure A15. Sentiment Analysis of Arabic Tweets.

Figure A16. Word Cloud of Sentiment Analysis of Arabic Tweets over the world.

 

 
 
Figure A17. Distribution of COVID-19 Cases.
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Figure A18. Covid-19 Lockdown Days.
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Abstract: With the rise of social media platforms, tourists tend to share their experiences in the form
of texts, photos, and videos on social media. These user-generated contents (UGC) play an important
role in shaping tourism destination images (TDI) and directly affect the decision-making process
of tourists. Among UGCs, photos represent tourists’ visual preferences for a specific area. Paying
attention to the value of photos, several studies have attempted to analyze them using deep learning
technology. However, the research methods that analyze tourism photos using recent deep learning
technology have a limitation in that they cannot properly classify unique photos appearing in specific
tourist attractions with predetermined photo categories such as Places365 or ImageNet dataset or it
takes a lot of time and effort to build a separate training dataset to train the model and to generate
a tourism photo classification category according to a specific tourist destination. The purpose of
this study is to propose a method of automatically classifying tourist photos by tourist attractions by
applying the methods of the image feature vector clustering and the deep learning model. To this
end, first, we collected photos attached to reviews posted by foreign tourists on TripAdvisor. Second,
we embedded individual images as 512-dimensional feature vectors using the VGG16 network pre-
trained with Places365 and reduced them to two dimensions with t-SNE(t-Distributed Stochastic
Neighbor Embedding). Then, clusters were extracted through HDBSCAN(Hierarchical Clustering
and Density-Based Spatial Clustering of Applications with Noise) analysis and set as a regional image
category. Finally, the Siamese Network was applied to remove noise photos within the cluster and
classify photos according to the category. In addition, this study attempts to confirm the validity of
the proposed method by applying it to two representative tourist attractions such as ‘Gyeongbokgung
Palace’ and ‘Insadong’ in Seoul. As a result, it was possible to identify which visual elements of
tourist attractions are attractive to tourists. This method has the advantages in that it is not necessary
to create a classification category in advance, it is possible to flexibly extract categories for each tourist
destination, and it is able to improve classification performance even with a rather small volume of
a dataset.

Keywords: image feature vector; clustering; Siamese Network; automatic classification of tourist
photos; deep learning model

1. Introduction

Recently, as anyone can access social media platforms anytime, anywhere using mobile
devices, a large volume of texts and photos have been shared on the web to communicate
with others. People are freely expressing their thoughts and feelings through text and
photos on social media platforms. Along with this trend, the way in which tourists get
information related to travel attractions and share their experiences is also changing. More
and more tourists share their experiences in the form of texts, photos, and videos on social
media, which serves as an information source for potential tourists [1]. Data posted on
social network services (SNS) is steadily receiving social attention in that it is user-generated
content (UGC). The tourism industry is also paying attention to UGC data to identify new
tourism trends and analyze the image of tourist attractions perceived by tourists [2]. In
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particular, the image of tourist attractions plays an important role when people select
their tourist destination and destination marketing organizations (DMO) perform tourism
marketing [3–6].

In the past, DMOs have played a leading role in shaping the image of tourist desti-
nations. However, due to the popularization of social media platforms in recent years, it
has been recognized that the image of tourist attractions is formed by both UGC and the
contents created by DMOs [7]. Among UGCs, a photo plays an important role in forming
the image of tourist attractions in that it visually reproduces the places [8]. A photo reflects
the mental image of the physical elements experienced by the photographers. In addition,
a photo is a record of a moment to express a mental image of a place in a visual form [9].
Therefore, since these photos contain tourists’ visual preferences for a specific area, they
can reflect actual tourists’ preferences more directly than a few experts [10]. In addition,
potential tourists tend to visit tourist sites that have been exposed to them and take pictures
of visual images that have been projected on them [11].

Paying attention to the value of photos, more and more studies have attempted to
analyze photos on SNS taken by tourists and uncover attractive factors that contribute to the
formation of the image of a tourist destination [1,4,6,12–14]. However, due to the limitations
in technologies, studies on tourism destination images (TDI) using UGC photos encounter
challenges in terms of both the volume of data and the interpretation of results. The
most widely used method is a manual analysis where researchers observe their collected
photos and manually classify them into specific categories. Since this methodology is a
labor-intensive process, there is a limit to the number of photos that can be analyzed, which
makes it difficult to comprehensively analyze tourist attractions.

As computer vision technologies have developed, several studies have identified TDI
from a number of SNS photos using deep learning methods [15–20]. However, they have
limitations in classifying photos that represent unique characteristics of tourist attractions.
They use predetermined photo categories such as Places365 or ImageNet which are de-
signed for general purposes, so they are not appropriate for identifying the uniqueness
of individual attractions. To overcome these limitations, Kang et al. and Yoon and Kang
analyzed the images by generating a tourism photo classification category according to a
specific area and training the model with training datasets for each category [21,22].

Although these existing studies have presented valuable results with the combination
of UGC photos and a deep learning model to extract tourism destination images, studies
are still in their infancy. In particular, studies on extracting distinctive characteristics of
individual tourism attractions are limited. They have focused on analyzing the TDIs of a
nation or a city rather than individual tourist attractions. While they also partially explore
individual tourist’ attractions included in the region, their categories for photo classification
which are based on a national scale or city scale are not appropriate for figuring out the
unique properties of individual tourism attractions.

To solve this problem, we propose a method for automatically building categories for
photo classification using clustering and a Siamese network. This reduces the burden on
the process of creating categories corresponding to each tourism attraction. In addition,
the clustering methodology provides the advantage of establishing categories based on
a data-driven manner. Our framework consists of the following four parts. First, we
collected TripAdvisor photos in reviews posted by foreign tourists in Seoul. Second, we
embedded individual images as 512-dimensional vectors using a VGG16 network pre-
trained with Places365 and reduced these vectors to two dimensions with t-SNE. Third,
to create a category based on visual content that frequently appears in photos taken by
tourists, clusters were extracted through HDBSCAN analysis and they were set an image
category of an attraction. Finally, a Siamese Network was applied to remove noise photos
within the cluster and classify photos according to the category.
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2. Literature Review
2.1. Analysis of Tourist Attractions Using UGC Photos

With the popularization of mobile devices and the rise of social media platforms,
the images of tourist attractions tend to be formed through photos and narratives shared
online. The shared images of tourist attractions are continuously perceived and reproduced
from person to person [12]. As content posted on social media platforms are exposed
to many people, they tend to travel to destinations or attractions that frequently appear
on the SNS. These visual images allow DMOs to get insights into tourist behaviors and
perceptions for marketing. Compared to existing marketing tools, this type of marketing is
recognized as an effective tool that quickly affects the decision-making process of a tourist
while reducing costs [13]. Paying attention to the value of such photos, more and more
studies are attempting to analyze photos taken by tourists and uncover attractive factors of
tourist destinations. Before the rise of the deep learning method in a tourism context, the
predominant method in the analysis of photos is to directly observe them one by one, which
is a manual manner. Agustí et al. and Dinh identified the process of forming a tourism
image in a specific area through the analysis of these photos [1,12]. Stepchenkova et al.
analyzed the difference between the image generated by tourists and the image projected
by DMOs [14]. In the case of direct visual observation, which requires a labor-intensive
process, it is difficult to comprehensively analyze tourist destinations because there is a
limit to the volume of photos that can be analyzed. In addition, there is another limitation
that the research results may be dependent on researchers.

With the rapid development of computer vision and image processing technologies
in recent years, several studies that analyze a large volume of photos using deep learning
models are emerging in the tourism field. Most of the studies have applied a convolutional
neural network (CNN) developed to solve the image classification problem. These studies
have classified photos according to specific categories and uncovered tourists’ perceptions
of specific areas based on their classification ratios.

Most of the studies analyzed tourist photos using a pre-trained model with Places365
which is a dataset specialized in place classification problems [15–20]. However, according
to Kim et al., when using a pre-trained model, there is a problem of misclassifying unique
objects or scenes that appear in photos of local tourist attractions [17]. To overcome this
limitation, other studies that have transferred models to training datasets specialized in
research areas have emerged. Kang et al. and Yoon and Kang analyzed tourism images
in a specific area through transfer learning of a deep learning model after constructing
categories and datasets specialized in that area without using a pre-trained model [21,22].
These studies, which have used categories to classify tourism images, have limitations in
that it is difficult to properly identify the features of local tourist attractions and it takes a
lot of time and effort to build training datasets manually.

2.2. Application of Deep Learning-based Image Embedding and Clustering

Clustering, one of the representative unsupervised learning methodologies, enables us
to discover hidden patterns and structures in data. In order to perform clustering analysis,
a process of extracting features of image and converting them into vectors is required.
Before the rise of the deep learning method, image embedding algorithms that extract fixed
feature points from the image, such as scale-invariant feature transform (SIFT), speeded up
robust feature (SURF), and binary robust independent elementary features (BRIEF), have
been used in this process [23]. With the rapid development of computer vision technology,
CNN-based auto-encoders and embedding model based on the CNN network have been
widely used. The latter methods transform images into vectors through feature maps in
the CNN network pre-trained on specific datasets such as Places365 or ImageNet [24].
Image clustering provides a way for discovering hidden structures or patterns of data in
various fields.

Tapaswi et al. embedded faces based on a deep learning model to determine the
number of characters appearing in the video, then identified the number of clusters through
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hierarchical cluster analysis and derived the number of characters [25]. Gu et al. identified
New York’s fashion trends by embedding street fashion images and applying agglomerative
hierarchical clustering by year [26]. Castellano and Vessio converted the artwork image
into a feature vector with the DenseNet121 network, applied K-means clustering and
auto-encoder to find the cluster, and analyzed the painting style of the artwork through
cluster results [27].

2.3. Application of Siamese Network with Image Embedding

Siamese Network is particularly used in the research of medical care, palm print,
face recognition, object tracking, etc. where it is difficult to obtain a large volume of data.
Siamese Network has been applied to solve these problems. When two or more input
images are given, Siamese Network learns the similarity between them and expresses it as
a numerical distance. That is, if the input images are similar to each other, the distance is
close, and if the input images are different, the distance becomes far. The same principle
can be applied to image classification in various fields.

Schroff et al. developed a FaceNet model learned with triplet loss for face recognition
based on the Siamese Network structure [28]. The FaceNet model embeds an input face
image in 128 dimensions, and then distinguishes between photos of a person’s face and
photos that do not, through the distance between the embedded vectors. Zhong et al.
developed a palm print recognition model using Siamese Network based on the VGG16
network [29]. In this study, they used Siamese Network to convert a long text image
given as input data into a 500-dimensional vector and compared the distances between
the two long text image vectors to determine whether they were identical. Mehmood et al.
developed a model for early detection of Alzheimer’s by utilizing the VGG-16 network-
based Siamese Network [30]. They trained a model using MRI datasets classified into four
types according to the severity of Alzheimer’s and classified the progression of Alzheimer’s
by comparing the distance between embeddings. Bertinetto et al. developed an object
tracking model based on Siamese Network [31]. They embedded the image containing the
object to be tracked and the image to find the object into Siamese Network and identified the
location of a specific object in the image by comparing the similarity between embeddings.
As such, these studies are widely used, especially in cases where it is difficult to secure
sufficient datasets such as long palm print, face recognition, and disease diagnosis. Even in
the tourism field, if the scale of the research target is narrowed down to a specific tourist
area, it may be difficult to secure sufficient data. Therefore, this study also intends to use
the Siamese Network model to improve classification performance with a rather small
volume dataset.

3. Materials and Methods
3.1. Research Process

The analysis process of this study is shown in Figure 1. First, we extracted the photos
posted on TripAdvisor and then selected the photos posted by foreign tourists, excluding
Koreans using the publisher’s country of origin and the language used in writing the
review. Second, we embedded individual images as 512-dimensional feature vectors using
a VGG16 network pre-trained on the Places365 dataset. Third, we reduced each vector to
two-dimension with t-SNE, employed HDBSCAN to cluster these photos, and set this as
an image category. Fourth, we used Siamese Network to remove noise images not included
in categories and classify photos according to the category.

42



ISPRS Int. J. Geo-Inf. 2022, 11, 245ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 5 of 20 
 

 

 

Figure 1. Research Process. 

3.2. Collecting Data 

TripAdvisor (www.tripadvisor.com, last accessed date: September 19th, 2021) is the 

world’s largest travel information platform with more than 260 million monthly users 

[32]. TripAdvisor provides reviews written by visitors to tourist attractions, hotels, and 

restaurants around the world. When you log on to TripAdvisor and search for a country 

or city, you can find information about popular tourist attractions, accommodations, res-

taurants, and activities in that area. If people search for Seoul on TripAdvisor, they can 

find a list of famous tourist attractions in Seoul under the heading ‘Top Attractions in 

Seoul’. If people click on each tourist attraction, they can check the reviews posted by 

tourists who have visited the tourist attractions. In each review, they can identify the user 

nickname, region of origin, the number of posts, star rating, review title, date of visit, type 

of visit, textual body, attached photos, and date of creation. In this study, we collected 

reviews of ‘Gyeongbokgung Palace’ and ‘Insadong’ using Python, and collected photos 

attached to the review, date of visit, and nationality data of the publisher. ‘Gyeong-

bokgung Palace’ is a palace of the Joseon Dynasty located in the city center and is one of 

Figure 1. Research Process.

3.2. Collecting Data

TripAdvisor (www.tripadvisor.com, accessed on 19 September 2021) is the world’s
largest travel information platform with more than 260 million monthly users [32]. Tri-
pAdvisor provides reviews written by visitors to tourist attractions, hotels, and restaurants
around the world. When you log on to TripAdvisor and search for a country or city, you
can find information about popular tourist attractions, accommodations, restaurants, and
activities in that area. If people search for Seoul on TripAdvisor, they can find a list of
famous tourist attractions in Seoul under the heading ‘Top Attractions in Seoul’. If people
click on each tourist attraction, they can check the reviews posted by tourists who have
visited the tourist attractions. In each review, they can identify the user nickname, region
of origin, the number of posts, star rating, review title, date of visit, type of visit, textual
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body, attached photos, and date of creation. In this study, we collected reviews of ‘Gyeong-
bokgung Palace’ and ‘Insadong’ using Python, and collected photos attached to the review,
date of visit, and nationality data of the publisher. ‘Gyeongbokgung Palace’ is a palace of
the Joseon Dynasty located in the city center and is one of the most visited places by foreign
tourists. ‘Insadong’, a distinctive area with a mixture of galleries, traditional restaurants,
modern buildings, and shopping streets, is also a popular place for foreign tourists. In this
study, we only selected the photos posted by foreign tourists using language filtering and
the visitors’ origin information. As the number of inbound tourists dropped sharply in
2020 due to COVID-19, all data before 2020 were used.

3.3. Image Embedding

To analyze image data using deep learning, it is necessary to map the image into an
embedding space. In this case, when a vector is generated by arranging pixel values of an
original image in a row, it is difficult to determine the similarity between images through
distance measurement because the vector does not reflect the case where the same visual
pattern exists at different locations in the picture. As an alternative to this, a method of
extracting a visual pattern of an image and embedding it as a vector can be used.

In this study, we utilized a CNN-based embedding model where vectors were gener-
ated by reflecting the visual content of the photo. Therefore, vectors having similar visual
contents are located close to each other in the embedding space and vice versa. The close
distance between vectors means that the visual contents of the original images are similar.
The CNN-based image classification model is largely divided into two parts: one is to
learn the features of images and the other is to classify images based on the features. The
former consists of a convolutional layer, an activation function, and a pooling layer, while
the latter consists of a fully connected layer and a softmax layer. Since there is no need
for the latter part in the embedding process, we replaced the fully connected layer at the
top of the CNN model with a Global Max pooling layer. In this study, we employed a
VGG16 network pre-trained on Places365 dataset for embedding. Places365 is a benchmark
dataset created by extracting 365 categories from Place datasets consisting of a total of
10 million photos [33]. Since this study tries to analyze photos taken at tourist attractions, a
pre-trained model with Places365 was used.

3.4. Dimension Reduction and Clustering

The major functions of this process are to extract visual contents that frequently
appear in photos taken by tourists and to utilize them as a category. First, we reduced
the 512-dimension to 2-dimension with t-SNE. Second, we employed the HDBSCAN
clustering algorithm to cluster these embeddings. The clustering results showed tourists’
visual preference for a tourism attraction that forms TDI.

The t-SNE is one of the nonlinear methods designed to reduce high-dimensional data to
two or three dimensions based on probability distribution and visualize it [34]. This method
was developed by supplementing the problems of Stochastic Neighbor Embedding [35] and
is focused on maintaining a local structure when reducing dimensions. Here, maintaining
the local structure means reducing the data so that the relationship can be kept even
after the points that are close to each other in the high dimension are projected to the
low dimension. In Equation (1), pij represents the probability that data points xi and xj
existing in a high dimension are neighboring to each other. In Equation (2), qij represents
the probability that xi and xj, which are low-dimensional points corresponding to yi and
yj, are adjacent to each other. The cost function of t-SNE is calculated by Kullback-Leibler
divergence, a function that calculates the difference between probability distributions of
both a high and a low dimension in Equation (3) [36].

pij =
exp

(
− ‖ xi − xj ‖2 /2σ2)

∑k 6=l exp(− ‖ xk − xl ‖2 /2σ2)
(1)
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qij =
exp

(
− ‖ yi − yj ‖2)

∑k 6=l exp
(
− ‖ yi − yj ‖2

) (2)

C = KL(P ‖ Q) = ∑
i

∑
j

pij log
pij

qij
(3)

pij: joint probability that i and j are neighbors in a high dimension
qij: joint probability that i and j are neighbors in a low dimension
xi, xj: high-dimensional data points
yi, yj: low-dimensional data points counterparts of the xi and xj
We employed the HDBSCAN algorithm to identify clusters in embedding space and

utilize them as a category. HDBSCAN has evolved from density-based spatial clustering
with noise (DBSCAN), a density-based clustering algorithm [37]. DBSCAN finds a cluster
of points over a certain density in the entire data point space [38]. Here, the certain density
is defined as the value of Eps indicating the radius and mpts, which is the minimum number
of data points included in the Eps. DBSCAN has two drawbacks, the first being sensitive
to parameters, and the second being that it cannot find clusters with different densities
because it sets thresholds for density. HDBSCAN is an algorithm that compensates for the
shortcomings of DBSCAN, and adds the concept of hierarchical clustering to DBSCAN.
Since HDBSCAN finds clusters by defining only the minimum amount of data without
using a fixed Eps value, it can extract various clusters with different density values.

3.5. Removing Noise Data and Classifying Photos

It may seem that clustering results could replace photo classification in that clusters
are made up of similar visual contents. However, since HDBSCAN works based on density,
the accuracy of clustering tends to be low at the edge of a cluster that has a relatively low
density than the core. This is responsible for two problems. First, noise photos that are not
related to the cluster may be included. Second, noise points located around the boundary
of the cluster may not actually be noise.

To address these problems, we implemented a Siamese network to classify photos
trained with our own dataset made up of photos taken in the research area. Siamese
network consists of more than two identical subnetworks capable of learning patterns from
input vectors [39]. The outputs generated through a Siamese network reflects the similarity
between images. Although the model receives different photos as inputs, the weights in
subnetworks are updated equally because they are combined by the loss function. This
weight fixation means that visually similar images are located close to each other and
vice versa.

In this study, triplet loss was used as a cost function for training the Siamese network,
and semi-hard was used among triplet mining methods. The triplet loss function receives
three types of input data: anchor, positive, and negative. There are three ways to construct
input data: easy triplets, hard triplets, and semi-hard triplets. Schroff et al. revealed that the
model trained using the semi-hard triplets’ method is superior among them [28]. Figure 2
shows the architecture of the model used in the study.

Siamese network learns to position the images with similar visual content close to each
other in vector space and vice versa. Based on this principle, photos can be classified, and
noises can be detected. For this, a target set, a noise set, and a reference set are needed. The
target set is a set of target photos to be classified and labelled according to category items. A
noise set is a set of noise photos that do not belong to the category. The reference set consists
of sample images of each category. Test sets and reference sets were made to consist of a
similar number of photos for each category. The noise set was made with a similar number
of photos to the test set. Photo classification and noise removal are performed through the
following four steps: First, the distance between a target photo and the photo belonging to
the reference set is calculated respectively. Second, the prediction label of the target image is
assigned as a label of a reference photo having a minimum distance in Equation (4). These
processes are repeated for all target images. Third, the distance between a noise photo and
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the photo belonging to the reference set is calculated, respectively. This step is repeated for
all photos in the noise set. As a result, noise photos can be deleted by setting a threshold for
the minimum distance. Fourth, the accuracy of prediction was evaluated as the minimum
distance threshold was changed using the ROC curve. The threshold of the point showing
the best accuracy was selected. The ROC curve is a graph showing how the performance
of the classification system changes according to various thresholds. In this study X and
Y axes of the ROC curve are True Positive Rate (TPR) and False Positive Rate (FPR). TPR
is the percentage of cases where the true label matches the predicted label in the target
set in Equation (5). FPR is the percentage of cases where noise is not classified as noise in
Equation (6). The optimal threshold is the value of the point farthest from Y = X among
points on the ROC curve in Figure 3.
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𝑙(𝑡) = argmin
𝑖

(𝑑(𝑡, 𝑆𝑖,𝑗)) (4) 

𝑙(𝑡): predicted label on a target photo 

t: image embedding of a target image 

𝑆𝑖,𝑗: Embedding of the 𝑗th sample image of category item 𝑖. 

𝑑(𝑥, 𝑦): Euclidean distance function between 𝑥 and 𝑦 

𝑇𝑃𝑅 =
𝑛(𝑇𝐿(𝑖) = 𝑃𝐿(𝑖), 𝑖 ∈ 𝑡𝑒𝑠𝑡𝑠𝑒𝑡)

𝑛(𝑡𝑒𝑠𝑡𝑠𝑒𝑡)
 (5) 

𝐹𝑃𝑅 =
𝑛(𝑇𝐿(𝑖) ≠ 𝑃𝐿(𝑖), 𝑖 ∈ 𝑛𝑜𝑖𝑠𝑒𝑠𝑒𝑡)

𝑛(𝑛𝑜𝑖𝑠𝑒𝑠𝑒𝑡)
 (6) 

𝑇𝐿(𝑖): true label of a photo 

𝑃𝐿(𝑖): predicted label of a photo 

Figure 2. Model architecture based on semi-hard triplet Siamese Network.
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l(t) = argmin
i

(
d
(
t, Si, j

))
(4)

l(t): predicted label on a target photo
t: image embedding of a target image
Si,j: Embedding of the jth sample image of category item i.
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d(x, y): Euclidean distance function between x and y

TPR =
n(TL(i) = PL(i), i ∈ testset)

n(testset)
(5)

FPR =
n(TL(i) 6= PL(i), i ∈ noiseset)

n(noiseset)
(6)

TL(i): true label of a photo
PL(i): predicted label of a photo

4. Results
4.1. Gyeongbokgung Palace

A total of 9940 photos were collected in 10,655 reviews registered on TripAdvisor on
the ‘Gyeongbokgung Palace’ page. Out of a total of 9940 photos, we selected 8188 photos
except for 715 reviews written in Korean. A VGG16 model pre-trained with Places365
embedded each photo in a 512-dimensional vector, and t-SNE reduced the vectors to two
dimensions. We implemented HDBSCAN to cluster these vectors into several groups. The
result is shown in Figure 4, and the number of photos for each cluster is shown in Table 1.
Sixteen clusters were generated and 3824 points were classified as noise.
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Figure 4. Gyeongbokgung Palace photos: (a) two-dimensional visualization; (b) result of HDBSCAN.

Table 1. Number of photos for each cluster generated as a result of HDBSCAN in Gyeongbokgung Palace.

Cluster Number of Photos Cluster Number of Photos

0 189 8 412
1 124 9 381
2 715 10 380
3 358 11 391
4 737 12 239
5 199 13 456
6 146 14 235
7 173 15 183

After inspecting the photos in each cluster, we took two actions. First, if there were
more than two clusters that contained the same visual contents, we integrated them into one.
Second, if there was no similarity between the pictures that formed a cluster, that cluster
was deleted because it is difficult to consider them as a meaningful cluster. Clusters 7
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and 8 were integrated into one cluster because both were composed of photos of ‘Throne’.
Clusters 10 and 12 were also combined into one cluster because both consisted of photos
of the ‘Gate guard changing ceremony’. Clusters 14 and 15 were also integrated into one
cluster because both were composed of photos of ‘Heungnyemun gate’ in the same way.
On the other hand, clusters 11, 12, and 13 were not used to create a category because each
cluster was made up of different photos. As a result, 10 categories were created as follows:
‘Gyeonghoeru Pavilion’, ‘Geunjeongjeon Hall’, ‘Heungnyemun Gate’, ‘Gwanghwamun
Gate’, ‘Hangwomen Pavilion’, ‘National Folk Museum’, ‘Throne’, ‘Hanbok (traditional
dress of Korea)’, ‘Gate guard changing ceremony’, and ‘Tree’.

Siamese network enables us to classify photos according to the previously generated
category and remove noise photos. For this purpose, we trained a Siamese network based
on the VGG16 network using Gyeongbokgung Palace’s photo dataset. In this process, the
training dataset was composed of the photos in each cluster except for those that were
incorrectly included in clusters. Table 2 shows the number of photos included in the
training dataset for each category.

Table 2. Number of training photos by category in Gyeongbokgung Palace.

Category Number of Training Photos

Gyeonghoeru Pavilion 365
Geunjeongjeon Hall 342
Heungnyemun Gate 270
Gwanghwamun Gate 196

Hangwonjeong Pavilion 174
National Folk Museum 101

Throne 156
Hanbok(traditional dress) 145

Gate guard changing ceremony 173
Tree 151

To improve the ability of the model for pattern extraction through nonlinearity, two
convolutional layers were added to the basic structure of the VGG16 network. The model
used in this process had weights pre-trained on Places365. These weights had been fine-
tuned with our own dataset. Figure 5 shows the change in the loss value in the process of
the model training. To prevent overfitting, we trained the model up to epoch 18.
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Figure 5. Loss graph of model training of Gyeongbokgung Palace.

To remove noise photos, it was necessary to identify the optimal threshold value from
the ROC curve. Figure 6a shows the minimum distance between a target photo and the
reference set as a histogram. Figure 6b shows the minimum distance between a target photo
and the reference set as a histogram. Figure 7 represents the ROC curve, and 0.4 which is
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the threshold of the farthest point from Y = X, shown in red X on the graph, was selected
as the optimal value. Figure 7 also shows that TPR was 0.928 and FPR was 0.045, which
related to the accuracy of the model. Compared with Figure 4b, Figure 8 shows that data
points belonging to the same cluster were close to each other and the distances between
different clusters were farther apart. Figures 9 and 10 respectively show the number of
photos and example photos finally classified by items in a category.
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4.2. Insadong

There are 6410 reviews registered on TripAdvisor’s ‘Insadong’ page. Of these, 3695 photos
were collected from 5915 reviews written in a foreign language. Each photo was embedded
as a 512-dimensional vector, reduced to two dimensions using t-SNE, and clustered using
HDBSCAN. Figure 11 shows the result and Table 3 shows the number of photos for each
cluster. Of the total 3659 points, 2568 were classified as noise, and 5 clusters were generated
in Figure 11b. Since the 134 photos belonging to cluster 4 represent different visual contents
such as signs, souvenirs, murals, portraits, and food, the cluster was not considered in the
building category. Four categories were finally created as follows: ‘Ssamzigil’, ‘Insadong
street’, ‘Food and Beverage’, and ‘Souvenir’.
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Figure 11. Insadong photos: (a) two-dimensional visualization; (b) result of HDBSCAN.

Table 3. Number of photos for each cluster generated as a result of HDBSCAN in Insadong.

Cluster Number of Photos

0 158
1 478
2 133
3 168
4 134

Siamese network was used to classify photos according to the previously generated
categories and remove noise photos. For this purpose, we trained the Siamese network
on Insadong’s photo dataset. At this time, the training dataset was organized using the
photos composed of each cluster except for those which were incorrectly included in
clusters. Table 4 shows the number of photos included in the training dataset for each
category. The model used in ‘Insadong’ was also based on the VGG16 network. However,
unlike the model used in ‘Gyeongbokgung Palace’, we fine-tuned the top four layers of the
model without additional convolutional layers. Since ‘Insadong’ had a smaller training
dataset than ‘Gyeongbokgung Palace’, overfitting may occur. Figure 12 shows the loss
value change during model training, and the model trained up to epoch 10 was used to
prevent overfitting.
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Table 4. Number of training photos by category in Insadong.

Category Number of Training Photos

Ssamzigil 150
Insadong Street 126

Food and Beverage 132
Souvenir 137
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Figure 12. Loss graph of model training of Insadong.

To remove the noise photos included in the category, we examined the optimal thresh-
old value through the ROC curve. Figure 13a shows the minimum distance between the
test set and the reference set as a histogram. Figure 13b shows the minimum distance
between the noise set and the reference set as a histogram. Figure 14 shows the ROC curve,
and 0.32, the threshold value of the point farthest from Y = X, corresponding to the red X
on the graph, was selected as the optimal value. Figure 14 also shows that TPR was 0.90
and FPR was 0.057, which related to the accuracy of the model. Figure 15 shows the trained
model and data points classified by threshold. Compared with Figure 11b, Figure 15 shows
that data points belonging to the same cluster were close to each other, and the distances
between different clusters were farther apart. Figures 16 and 17 respectively show the
number of photos and example photos finally classified by category.
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Figure 13. Histogram of Insadong: (a) minimum distance between a target photo set and reference
set; (b) minimum distance between a noise photo and reference set.
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Figure 17. Example photos by category in Insadong.

5. Discussion and Conclusions

As the value of photos posted by tourists is recognized as more and more important
in the tourism field, new approaches to analyzing tourist photos using deep learning
technology are being attempted. The research methods that analyze tourism photos using
recent deep learning technology are two-fold. The first method is that tourism images are
analyzed after classifying tourist photos by predetermined photos classification categories
such as Places365 or ImageNet. The second method is that tourism images are analyzed
according to a tourism photo classification category generated on a city or national scale. In
the former case, there is a shortcoming in that unique photos appearing in specific tourist
attractions cannot be properly classified with a category designed for general purposes. In
the latter case, there are limitations in that it puts a lot of time and effort into building a
category and dataset and has difficulty detecting the locality of tourism attractions.

The purpose of this study is to propose a method for automatically building a category
for each attraction by clustering photos and classifying them with a Siamese network,
rather than classifying them into predetermined categories. In addition, this study attempts
to confirm the validity of the proposed method by applying it to two representative tourist
attractions in Seoul. This study has four steps to clarify the photo classification method for
each tourist attraction and to confirm its validity. First, we collected tourist photos attached
to reviews posted by foreign tourists on TripAdvisor. Second, we embedded photos as
feature vectors in 512 dimensions using the VGG16 network pre-trained with Places365
and reduced them to 2 dimensions using t-SNE. Third, to create a category based on visual
contents that frequently appear in photos taken by tourists, clusters were extracted through
HDBSCAN analysis and they were set as an image category of an attraction. Fourth, we
removed the noises in the cluster through the Siamese network and analyzed the image of
tourist attractions by confirming the number of classified photos in each category.

Using the method proposed in this study, the Tripadvisor photos posted by foreign
tourists in ‘Gyeongbokgung Palace’ and ‘Insadong’ in Seoul, Korea were analyzed. Gyeong-
bokgung Palace is a palace built during the Joseon Dynasty and is one of the representative
tourist attractions located in the downtown area of Seoul. In Gyeongbokgung Palace,
10 categories were created as follows: ‘Geunjeongjeon Hall’, ‘Gyeonghoeru Pavilion’, ‘He-
ungnyemun Gate’, ‘Hyangwonjeong’, ‘National Folk Museum’, ‘Throne’, ‘Hanbok(Korean
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traditional dress)’, ‘Gate guard changing ceremony’ and ‘Tree’ ‘Gwanghwamun Gate’.
Through this, it was possible to check which destination images of ‘Gyeongbokgung Palace’
are preferred by foreign tourists. ‘Insadong’ is also one of the representative tourist attrac-
tions in the downtown area of Seoul. Insadong is an area known as an exhibition center for
Korean traditional arts, antiques, and old ceramics that have been handed down generation
after generation. In Insadong, four categories were created: ‘Ssamzigil’, ‘Insadong street’,
‘Food and Beverage’, and ‘Souvenir’. Through this, it was possible to identify which images
of Insadong are preferred by foreign tourists.

This study is differentiated from the existing studies in the following three aspects.
First, since we make categories based on clustering results, features that make tourism
destinations attractive can be identified more specifically and flexibly in a data-driven
manner. Second, since we set the results of clustering analysis as categories, it is not
necessary to manually build the training dataset. Third, to address the scarcity of data, we
employ a Siamese network that can improve classification performance with a rather small
volume dataset. In the case of the tourism field, if the research area is narrowed down to
a specific tourist attraction, there may be a limit to the amount of data that can be used.
However, since the data used in this study is the photos posted on TripAdvisor, there is a
possibility that various photos may be less mixed because the categories are divided into
tourist destinations, tourist attractions, and activities. Therefore, it is necessary to compare
the photos posted on TripAdvisor with those from other SNS sites that are likely to post
various photos for the same area. In addition, it is necessary to compare a category created
by the proposed method with one by an existing method proposed by previous studies,
which classifies tourist photos by predefined photo categories using Places365 or ImageNet.
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Abstract: The occurrence of street crime is affected by socioeconomic and demographic characteristics
and is also influenced by streetscape conditions. Understanding how the spatial distribution of street
crime is associated with different streetscape features is significant for establishing crime prevention
and city management strategies. Conventional data sources that quantify people on the street
and streetscape characteristics, such as questionnaires, field surveys, or manual audits, are labor-
intensive, time-consuming, and unable to cover a large area with a sufficient spatial resolution.
Emerging cell phone and social media data have been used to measure ambient population, but they
cannot distinguish between the street and indoor populations. This study addresses these limitations
by combining Baidu Street View (BSV) images, deep learning algorithms, and spatial statistical
regression models to examine the influences of people on the street and in the streetscape physical
environment on street crime in a large Chinese city. First, we collected fine-grained street view
images from the Baidu Map website. Then, we constructed a Faster R-CNN network to detect
discrete elements with distinct outlines (such as persons) in each image. From this, we counted the
number of people on the street in every BSV image and finally obtained the community-level total
amounts. Additionally, the PSPNet network was developed for pixel-wise semantic segmentation
to determine the proportions of other streetscape features such as buildings in each BSV image,
based on which we obtained their community-level averages. The quantitative measurement of
people on the street and a set of streetscape features that had potential influences on crime were
finally derived by combining the outputs of two deep learning networks. To account for the spatial
autocorrelation effect and distributional characteristics of crime data, we constructed a set of spatial
lag negative binomial regression models to investigate how three types of street crime (i.e., total crime,
property crime, and violent crime) were affected by the number of people on the street and the
streetscape-built conditions. The models also controlled the effect of socioeconomic and demographic
factors, land use features, the formal surveillance level, and transportation facilities. The models with
people on the street and streetscape environment features had noticeable performance improvements,
demonstrating the necessity for accounting for the effect of these factors when understanding street
crime. Specifically, the number of people on the street had significantly positive impacts on the total
street crime and street property crime. However, no statistically significant impact was found on
street violent crime. The average proportions of the paths, buildings, and trees were associated with
significantly lower street crime among physical streetscape features. Additionally, the statistical
significances of most control variables conformed to previous research findings. This study is the first
to combine Street View images and deep learning algorithms to retrieve the number of people on the
street and the features of the visual streetscape environment to understand street crime.

Keywords: street crime; people on the street; streetscape; Baidu Street View image; spatial lag
negative binomial regression
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1. Introduction

According to environmental criminology, the physical context creates necessary con-
ditions for the confluence of motivated offenders, suitable targets, and the absence of
qualified guardians, which leads to crime occurrence [1,2]. Environmental characteristics
are of great significance for understanding the spatial aggregation of crime. Therefore,
researchers emphasize the understanding of crime formation mechanisms from geography.
They claim it is valuable to reveal crime patterns and provide references for constructing
crime prevention and control strategies [3].

While the significant role of the urban environment in crime has been widely accepted,
data sources applied by previous studies to quantify streetscape characteristics are defective
in some respects. Traditional data-gathering methods including questionnaire surveys [4],
field surveys, and human auditing [5,6] are time-consuming and labor-intensive. These
limitations make them only suitable for conducting studies at several scattered places
and not applicable to large-scale research. Satellite remote sensing images are popular
data used to extract built environment characteristics [7–9]. This kind of data could be
applied to studying a large geographical area. However, these images capture information
from a bird’s eye view and cannot obtain street-level information from the perspective
of human eyes. The low accessibility of large-scale detailed data limits our ability to
systematically measure the urban environment in a quantitative way, finally leaving the
influence mechanism of the visual streetscape context on crime not understood so well.

As a kind of geo-referenced big data, the emerging street view images (SVIs) offer
an excellent chance for diving into a more in-depth look at the associations between the
urban street context and crime. The most significant advantage of SVIs over other data is
that they are captured by cameras set on top of cars driving along streets. Therefore, SVIs
can be adopted to extract street environment features from pedestrians’ views, and they
have the potential to help reveal the most direct connection between streetscape conditions
and crime. In addition, this type of data covers most major cities and is usually open
accessed. SVIs are increasingly mentioned and used by many authors [5,10–14]. However,
most existing research just used SVIs to detect basic physical elements such as roads,
buildings, and vegetation. Based on the extracted information, researchers investigated
how the built environment can help explain crime aggregations [10], whether the street-
level visual environment can be used to classify locations with high-crime and lower-crime
activities [11], and the environmental mechanisms behind crime diversity [12].

Combining SVIs and deep learning algorithms, this study investigates the effect of
people on the street and streetscape features on street crime in a large Chinese city. SVIs
are utilized to extract both physical elements (through a semantic segmentation network)
and the number of people on the street (through an object detection network). The primary
purposes of this study are then (1) how to extract and measure the number of people on
the street, which is an important variable affecting the occurrence of street crime, (2) how
to extract other streetscape environment elements using SVIs, and (3) what the associations
between street crime and people on the street and streetscape conditions is.

We selected street crimes such as snatching and robbery as our crimes of interest
because they are significant threats to people’s property and personal safety. Additionally,
most of the time, they occur in public spaces. They are more likely to be affected by human
activities and environmental features in immediate regions.

2. Literature Review
2.1. Street Crime and People on the Street

The spatial aggregation of crime is a common phenomenon, and it has a sufficient
theoretical and empirical basis. The routine activity theory suggests that the confluence
of motivated offenders, appropriate targets, and lack of competent guardians results in
crimes [1]. Additionally, the convergence of these three elements is significantly influenced
by the spatiotemporal pattern of people’s routine activities, such as traveling for work,
school, and leisure [1].
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People’s daily activities, such as when, where, and what to do in a day, usually
have regular rhythms. An individual stays more often in some areas, such as residences,
workplaces, and favorite shops, while he or she has less chance of staying in other places.
The regularity of people’s behaviors results in various crowd gathering levels in space
and time [15]. Business districts, for example, are densely populated during the day
because people work there. However, these places are less crowded in the evening as
people return home for sleep. Typical residential areas, however, usually have opposite
patterns. They are less crowded during the day but highly crowded in the evening. The
routine activity theory acknowledges that such different human activities result in different
crime opportunities in different places and at different times. This phenomenon could be
explained by the core insight of routine activity theory; that is, there is more significant
potential for people to be victimized or to victimize others when they spend more time
away from the protective environment of their households and families, whether for work,
leisure, or shopping [16]. Researchers have been particularly concerned about the facilities
that attract people in regard to interpersonal crimes. The ambient population attracted by
such facilities enhances the likelihood of the encounter of offenders and victims. Previous
crime research has investigated facilities like bars, subway stations, and parks. For example,
Roncek and Bell analyzed the relationship between bars and block-level crimes. Controlling
the influence of other factors, they found that blocks with bars experienced more crimes
than those without bars [17]. One piece of research by McCord et al. showed that street
robberies tended to occur around subway stations [18]. Groff and McCord analyzed the
spatial correlations between parks and crimes and found that parks attracted crimes [19].
Kubrin et al. pointed out a tight association between lending agencies and property and
violent crimes [20]. These facilities are not necessarily criminogenic by nature; the cluster
of people in these areas leads to high crime rates [21]. Thus, the disparity of crime patterns
in space and time is due to human activity differences [22].

A series of research has proved the significant association between the presence of
people and crime, but the effect is inconclusive. For example, Boivin adopted a transporta-
tion telephone survey to examine the influence of the ambient population on crime in the
Toronto region [23]. Respondents were asked about their visited locations on a typical
weekday. Based on this, researchers inferred respondents’ trip purposes (such as home,
school, shop, work, and others). They then estimated daily population flows between differ-
ent purposes. Their results demonstrated that the population size was positively associated
with crime in some areas; however, the opposite effects were found in other regions which
received visits mainly for shopping, school, and work. Vomfell et al. combined different
sources of population activity (such as social media and taxi flow data) to predict crime
at the census tract level [24]. After accounting for demographic factors, they found that
dynamic population variables had stronger influences on the prediction of property crime
than violent crime.

As noted above, studies have not yet concluded whether an increased human presence
in a given area is associated with an increase or decrease in crime. Boivin explained
that the effect of human presence on crime is greatly determined by the nature of the
crime [23]. The simple presence of people is just enough to restrain some types of crime
by their guardianship effect [25]. However, other research demonstrated that the ambient
population provides targets for offenders; thus, people’s presence will increase criminal
chances [26].

2.2. Street Crime and Streetscape Physical Environment

According to environmental criminology, human activities (including criminal ac-
tivities) are affected by the physical environment. Environmental characteristics are of
great significance for understanding the spatial aggregation of crime [1]. Crime is caused
by characteristics in the location and surrounding areas [27]. These characteristics create
opportunities for potential offenders. When an offender finds an opportunity, and adequate
monitoring is absent, he or she will commit a crime. Crime pattern theory also explains the
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spatial aggregation of crime. Both theories emphasize the impact of crime opportunities in
places [28]. From this point of view, different places have different crime opportunities in
the city. Some places can provide affluent crime opportunities. In comparison, some places
have few crime opportunities, leading to the spatial heterogeneity of crime.

A series of empirical studies has proven the significant role of built environments
having on crime. For example, regions with detached houses were attractive to burglars
because the offenders could easily invade and escape from these houses through doors
and windows [29]. In addition, high-rise residential buildings are also prone to burglary
because these buildings are usually equipped with convenient access channels such as
elevators and corridors. At the same time, their architectural structures are often complex,
providing hiding conditions for perpetrators. Moreover, many residents living here create
rich crime opportunities [30]. Yue et al. analyzed the spatial colocations between different
POI types and burglary, electric bicycle theft, and robbery in Wuhan, China [31]. Their
results demonstrated that e-bike thefts were most likely to occur around stores. Hotels
and primary and secondary schools were less attractive for e-bike thefts. There were many
robberies near banks and stores. In addition, bus stops were also attractive for robberies.

Many studies examined the association between street configurations and crime risks
based on space syntax theory. For example, a study conducted by Jones demonstrated that
when controlling for the effect of demographic factors, isolated and less accessible streets
were more likely to suffer from crimes. At the same time, regions with high permeability
were safer [32]. Other researchers confirmed these results, such as Shu [33] and Yue [34].
Hillier claimed that permeable urban design elements of regular road network structures
(such as liner and well-integrated streets) were safer than closed and impermeable street
layouts (such as cul-de-sacs) [35].

Easy accessibility, inadequate place management, and the presence of people could
create opportunities for crime in a place. Additionally, the presence of physical disorder
elements such as abandoned cars, vacant or dilapidated buildings, litter, and graffiti can
also boost offenders’ motivation to commit crimes [36–38]. Similarly, gangs, begging,
loiterers, prostitution, unruly and rowdy teenagers, public drunkenness, and public drug
use or dealing are disruptive behaviors that indicate social disorder. Signs of social disorder
in a location could also raise crime levels in the immediate areas [39].

2.3. Data Sources and Methods Used in Related Research

Various types of data have been applied in previous research to analyze how the dis-
tribution of street crime varies with the volume of people on the street and the streetscape’s
physical conditions. Basic demographic information extracted from census data is a typical
measurement of potential population exposure to crime in a region. Other similar data
sources include daily travel surveys, activity surveys, and workday census surveys. These
data sources have an apparent drawback: they are time-consuming and labor-intensive
to collect. Survey data usually covers a small region, so it is not applicable for large-area
studies. Additionally, the quality of the survey data also suffers from sample bias. Some
studies also adopted human auditing to collect data for street scenes. Specifically, some
researchers gathered information by on-the-spot investigation, while some researchers
conducted online audits with the help of electronic maps. Researchers can collect infor-
mation in as much detail as possible. However, this has low efficiency, limiting its use.
Additionally, human auditing has an unavoidable subjectivity issue.

The emergence of various big data compensates for the defect of traditional data
sources. In recent years, mobile phone data have been a typical measurement of ambient
population, which is a proxy of the baseline population or population at risk of crime [40].
Mobile phone data usually cover a large area such as an entire city and have high time
resolution. Therefore, they have been adopted by many researchers to explore the spa-
tiotemporal patterns of human activity and social behaviors such as crime [41]. However,
mobile phone data usually have a low spatial resolution, making them unable to differen-
tiate the local population diversity. They cannot measure the actual baseline population,
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leading to unreliable research findings [42]. Additionally, mobile phone data are of low
availability because telecommunication operators usually own them. Geotagged social
media data have also been utilized to evaluate the relationship between human activity
and crime. For example, Hipp et al. used Twitter posts (one tweet per Twitter user per
spatiotemporal unit) to determine the ambient population. They found that the number of
Twitter users was associated with crime, controlling for the guardianship level [43]. Routine
activities of social media users allow researchers to capture population movement directly.
However, social media has drawbacks, as only a tiny proportion of the population is on
Twitter [44]. Metro smart card data, taxi trajectory data, and bicycle trajectory data also
provide excellent opportunities for measuring the mobility of people [45–47]. However,
they are incapable of capturing the movement of pedestrians, which is the main component
of the ambient population.

Previous research has used data such as satellite remote sensing images to measure
the characteristics of the built environment. For example, Patino et al. used remote sensing
images to examine whether a neighborhood’s design elements (such as land cover, structure,
and texture descriptors) were associated with the homicide rate in Medellin, Colombia.
Their results revealed that urban layouts in areas with higher homicide rates tended to
be more crowded and cluttered [9]. Algahtany and Kumar utilized satellite images to
evaluate urban expansion over a decade in Saudi Arabia, based on which they explored
the associations between such expansion and crime. The results demonstrated a significant
relationship between urban expansion and crime. Additionally, the associations were
more remarkable in places with more significant urban growth [48]. Although remote
sensing images usually cover large regions, their most significant limitation is that they are
captured by satellites observing cities from the top view. Therefore, they cannot quantify the
vertical dimensions of the street environment (such as the vertical surface of high buildings
and street canyons). People perceive their surroundings from a horizontal view, while
remote sensing images cannot accurately and comprehensively measure the streetscape
composition complying with people’s real scene perception. Therefore, remote sensing
images are insufficient for digging for the profound influence of streetscape elements on
criminal behaviors.

SVIs have a unique advantage in that they are taken by cameras set upon cars driving
along streets. Therefore, they have the potential to capture systematic and fine-grained
urban landscapes from pedestrians’ points of view. Compared with traditional data sources,
SVIs contain more information, including artificial elements like buildings and roads and
natural elements like trees and the sky [49]. In recent years, SVIs have been used to evaluate
the streetscape environments’ effect on offenders’ decisions about whether, where, and
when to commit crimes. For instance, He et al. measured the associations between the
physical features of the urban residential environment and violent crimes based on Google
Street View (GSV) images [5]. Using an environmental audit tool developed based on
GSV images, they collected environmental factors like physical incivility (e.g., property
damage and abandoned buildings), territorial functioning features (e.g., yard decorations),
and defensible space features. The results demonstrated that the relationship between
the residential built environment and violent crime was significant and GSV images were
reliable for capturing many aspects of the built environment. Hipp et al. used machine
learning methods to extract environment features from GSV images [10]. The results
demonstrated that measuring the built environment through GSV images was effective.
Specifically, auto-oriented elements like vehicles and pavements were positively related to
crime, defensible space elements like the presence of walls had negative associations with
crime, and green space elements like vegetation had positive effects on crime. Khorshidi
used a deep learning service to extract objects from GSV images. Based on this, they
computed census block-level object diversities and modeled crime diversity as a function
of environmental diversity, population diversity, and population size [12]. The results
revealed that environmental diversity extracted from GSV images was more predictive of
crime diversity than commonly used census measures.
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The applicability of SVIs to crime research owes a great deal to the development
of artificial intelligence technology. Modern image processing techniques such as deep
learning networks can fetch precise and detailed elements from the urban space [50].
Fieldwork cannot obtain many elements. For example, it is hard for people to calculate
the proportion of roads in a place [13]. SVIs are not only usable for extracting physical
elements but are also applicable for measuring collective pedestrian volumes [51]. For
example, Chen et al. conducted a large-scale empirical validation study. They found that
pedestrian volumes estimated using SVIs can provide acceptable (Cronbach’s alpha ≥ 0.70)
or good (Cronbach’s alpha ≥ 0.80) levels of accuracy compared with field observation [52].
Other studies also validated SVIs as an efficient and reliable data source for estimating
street-level pedestrian volumes [52,53].

3. Study Area, Data, and Method
3.1. Study Area

This study took place in ZG city. (Under the terms of the confidentiality agreement,
we cannot reveal the city’s true name.) ZG city is located on the southern coast of China,
and it is one of the most developed cities in China. There are 2643 communities in this city,
and 737 of them are within the Outer Ring Expressway Area. These were selected as the
research communities in this study.

3.2. Data
3.2.1. Crime Data

Three years (2017–2019) of official crime data were sourced from the public security
bureau of ZG. We aggregated three crime types, including snatching, pickpocketing, and
theft from the person, to form a general street property crime type. We aggregated robbery,
intentional injury, and assault to form a general street violent crime type. Additionally, we
aggregated street property crime and street violent crime to form a total street crime type.
Figure 1 presents the spatial distributions of the number of total street crimes (Figure 1a),
street property crimes (Figure 1b), and street violent crimes (Figure 1c).

3.2.2. Collect BSV Images and Extract Streetscape Features

Compared with the human audit approach of obtaining streetscape characteristics
from SVIs [5,54], emerging computer vision technologies are time-efficient and objective.
We first collected fine-grained BSV images from the Baidu Map website. Then, we combined
two deep learning networks to extract both people on the street and other built environment
elements from BSVs and included these measures into statistical models.

• Fetch BSVs from the Baidu Map Website

Baidu Street View (BSV) is a map service website providing visual information on
streets in more than 600 cities in China. BSV images were captured by street view cars. The
key components of a street view car are a GPS and fisheye lens. The GPS is used to record
geographic locations when the car is driving on the street, and the fisheye lenses are used
to collect 360◦ street view images. The most significant advantage of street view images
over other data is that they are captured by cameras set on top of cars driving along streets.
Therefore, street view images can be adopted to extract street environment features from
pedestrians’ views, and they have the potential to help reveal the most direct connection
between streetscape conditions and crime.

We took BSV images as a proxy of the streetscape environment. Some basic information
is required to collect the BSVs at a position, including the coordinates (longitude and
latitude), azimuth angle (commonly called the heading angle), and pitch angle. We first
generated sampling points along the street at a uniform interval of 20 m. Based on their
coordinates, we collected fine-grained BSV images. There were 215,760 sample sites in the
study region.
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Figure 1. Dot density maps showing spatial distribution of the number of (a–c) in the study area as
of 2017–2019. Dots were randomly placed in a polygon.
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To be consistent with pedestrians’ directions of eyesight, we collected BSV images in
four horizontal directions at each sample site. Two directions were parallel to the street,
and two directions were vertical to the street, as demonstrated in Figure 2. The pitch angle
of each image was set to 0◦ to meet the way people experience the street environment. We
then downloaded the BSV images through the Baidu Street View API (see Baidu Developer
Platform). Finally, we collected a total of 863,040 images in the study region. The metadata
show that they were all captured between 2017 and 2019, consistent with the crime time. As
an urbanized region, the built environment in the study area did not changed dramatically
during this short period, so the time differences of the BSV images were negligible. Each
BSV image had a field of view of 90◦, so four images together could capture the panorama
of a site.

Figure 2. An example of calculating heading angles of four BSV images at a sample site. Heading
angles of Pictures 2 and 4 are parallel to the street, capturing the front and rear views, while heading
angles of Pictures 1 and 3 are vertical to the street, capturing the left-hand and right-hand views.

This study translated the BSV images into meaningful factors and then incorporated
them into regression models. The urban streetscape is a complex system containing compo-
nents of diverse shapes and sizes. Therefore, we combined two deep learning networks to
extract different and complementary information from each BSV image.

• Object Detection Using the Faster R-CNN Network

Some objects like persons and cars are discrete elements with relatively fixed shapes
and distinct outlines in an image. Therefore, it is practical to measure the count of identifi-
able objects. Faces and license plates are blurred in the Baidu Street View images; therefore,
this study had no privacy or ethical issues. This study applied a pretrained Faster R-CNN
network [55] to perform object detection for BSV images. This network was chosen because
it reached a good balance between prediction accuracy and operational efficiency as a
state-of-the-art deep learning network. Additionally, it was perfectly compatible with the
high resolution of BSV images collected in this study (1024 × 1024 pixels).
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The outputs of a Faster R-CNN network were a set of predicted bounding boxes. Each
box had an associated score indicating the credibility of whether the box contained an
object or not inside and a label determining which category the object belonged to. Based
on the outputs of the Faster R-CNN network, we could count the number of objects in each
category in an image and finally calculate their total amounts in each community.

This research retrieved the number of people on the street in a community according
to the following formula:

Number o f people on the street =
n

∑
i = 1

4

∑
j = 1

Imagep_j (1)

where Imagep_j is the number of people in the image taken in the jth direction among the
four directions at a position and n represents the total number of collecting points within
a community.

The on-street population must be considered when studying street crime. However,
on-street population sizes in different places are difficult to obtain. Pedestrian volume data
have traditionally been collected through field observations, which has many methodolog-
ical limitations, such as being time-consuming, labor-intensive, and inefficient. Various
big data, such as mobile phone data, geotagged social media data, metro smart card data,
and taxi and bicycle trajectory data, are incapable of capturing the movement of pedestri-
ans. Assessing pedestrian volumes automatically from street view images with machine
learning techniques can overcome such limitations, because this approach offers a broad
geographic reach and consistent image acquisition. While SVIs have been recently used
to estimate street-level pedestrian volumes [52,53], this approach has not been applied to
crime research.

• Semantic Segmentation Using the PSPNet Network

Unlike objects with fixed shapes and distinct outlines, sky, grass, and roads may
not have a definitive shape in an image. Therefore, object detection networks are not
applied to these features. This study utilized a semantic segmentation network instead.
After comparing several deep learning models, we chose the widely applied Pyramid
Scene Parsing Network (PSPNet) [56]. Semantic segmentation models generate pixel-wise
predictions and assign each pixel a category label. We measured the proportions of these
features in the image.

By borrowing ideas from the green view index calculation formula developed by
Li et al. [57], which measured the proportion of vegetarians in a location, we calculated the
proportion of a class of objects in a community as follows:

Proportion o f object =
∑n

i = 1 ∑4
j = 1 Imageo_j

∑n
i = 1 ∑4

j = 1 Imaget_j
∗ 100% (2)

where Imageo_j is the number of pixels belonging to one type of object in the image taken in
the jth direction and Imaget_j is the total number of pixels in that image, while n represents
the total number of collecting points within a community.

By combining the results of object detection and the semantic segmentation networks
(see Figure 3), we finally derived eight quantitative measurements of streetscape features.
They were the number of people on the street (per 1000), the average proportion of paths
(%), the average proportion of roads (%), the average proportion of walls (%), the average
proportion of buildings (%), the number of streetlamps (per 1000), the number of traffic
lights (per 1000), and the average proportion of trees (%). The rest of the object categories
were not included in the analysis as they were considered irrelevant to crime in an urban
context. Figure 4 presents the spatial distributions of people on the street and the streetscape
physical features retrieved by BSV images and deep learning methods.

67



ISPRS Int. J. Geo-Inf. 2022, 11, 151

Figure 3. Obtaining object detection and semantic segmentation results of BSV images via Faster
RCNN and PSPNet networks.
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Figure 4. Spatial distributions of people on the street and streetscape physical features retrieved by
BSV images and deep learning methods.
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3.2.3. Control Variables

Data obtained from the Sixth Nationwide Census were used to retrieve socioeconomic
and demographic factors. Land use features were extracted from Gaode Map. Based on the
data provided by Daodaotong Map, we further acquired the features of surveillance and
transportation facilities.

• Socioeconomic and Demographic Factors

We collected the socioeconomic and demographic factors, including the rate of young
people, the rate of highly educated people, the rate of migrant people, and the rate of
renters. Young people are the main perpetrators of crimes [15], so we used young people
(aged 30–45 years) to indicate possible offenders. We used the rate of highly educated
people to approximate the income level, which has a specific association with crime [15,58].
Studies proved that migrants were positively related to crime by increasing instability
and disrupting social order [59]. Therefore, we obtained the rate of migrant people by
calculating the proportion of people whose Hukou was not in ZG city. Similarly, we
considered the rate of renters, as this is also a factor adverse to residential stability and
social organization [59].

• Land Use Features

This study used the number of POIs in each community to proxy the number of
point-level land uses. In addition, we calculated the mixture of POIs to measure the land
use heterogeneity by the adjusted Herfindahl–Hirschman Index [60]:

Mix = 1−
J

∑
j = 1

Pj
2 (3)

where Pj is the proportion of the number of jth type POIs. A Mix close to 1 indicates a
strong land use mixture, while a Mix close to 0 indicates a weak land use mixture. Some
research claimed that a mixed land use pattern could weaken the informal control of
residents and increase crime [61], while some research revealed that a complex land use
composition attracts people and promotes activities, thereby curbing crime by increasing
social control [15,62].

• Formal Surveillance

Police stations are the most basic level of governmental management institutions in
China. They can act as a deterrent to crime [63]. This study used the number of police
stations to proxy the formal surveillance levels.

• Transportation Facilities

This study adopted two transportation facility variables to measure traffic accessibility.
They were the number of bus stops and the number of subway stations. The relationship
between traffic accessibility and crime is complex. Some studies demonstrated that conve-
nient transportation could promote pedestrian activities, enhance natural surveillance, and
deter crimes [15], while some studies proved that transportation facilities attract targets
and act as escape routes, thus providing opportunities for offenders [34,63].

Table 1 lists the summary statistics of the dependent and independent variables used
in this study.

Table 1. Summary statistics of dependent and independent variables.

Variable Mean SD Min Max

Dependent Variables

Number of total street crimes 155.28 183.79 5 1952
Number of street property crimes 126.53 155.67 3 1808
Number of street violent crimes 28.75 34.40 0 306
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Table 1. Cont.

Variable Mean SD Min Max

Control Variables

Rate of young people (%) 26.534 5.908 4.654 47.431
Rate of highly educated people (%) 14.316 12.565 0.000 86.245

Rate of migrant people (%) 42.235 21.494 0.203 98.518
Rate of renters (%) 30.636 23.441 0.000 100.000

Number of POI (per 1000) 0.323 0.283 0.004 2.451
Mixture of POI 0.826 0.074 0.341 0.904

Number of bus stops 1.769 2.121 0 15
Number of subway stations 0.111 0.351 0 3
Number of police stations 1.384 1.524 0 10

Streetscape Variables

Number of people on the street (per 1000) 1.176 1.048 0.043 7.097
Average proportion of paths (%) 0.037 0.086 0.000 1.276
Average proportion of roads (%) 18.939 3.478 5.299 28.953
Average proportion of walls (%) 3.131 2.296 0.085 21.107

Average proportion of buildings (%) 26.218 8.753 4.166 55.116
Number of streetlamps (per 1000) 0.430 0.711 0.014 7.280
Number of traffic lights (per 1000) 0.038 0.042 0 0.377

Average proportion of trees (%) 17.611 6.705 1.519 39.980

3.3. Method

The dependent variables were community-level crime counts, which were over-
dispersed nonnegative integers. Therefore, negative binomial regression models were
adopted in this study to model the associations between the street view variables and the
number of crimes:

ln(Yi) = β0 +
k

∑
k = 0

βkXik +
l

∑
l = 0

βlXil +
m

∑
m = 0

βmXim +
n

∑
n = 0

βnXin +
p

∑
p = 0

βpXip (4)

where Yi represents the crime count in community i, the βs are regression coefficients esti-
mated by the model, indicating the influences of independent variables on the dependent
variable, and Xik, Xil , Xim, Xin, and Xip are independent variables of five categories (socioe-
conomic and demographic factors, land use features, formal surveillance, transportation
facilities, and streetscape features, respectively).

We calculated the Moran’s I indexes of the dependent variables to examine whether
spatial autocorrelation effects existed. The results indicate that all three types of crime
were autocorrelated in space. Therefore, we added a spatial lag into the modal as an
independent variable to address the spatial autocorrelation issue. The spatial lag was
calculated as follows:

Lagi = ∑N
j = 1,i 6=j

Cj

N
(5)

where Lagi is the spatial lag of the dependent variable in community i, j is a neighbor of
community i, N is the total number of neighbors of community i, and Cj is the number of
crimes in community j. In short, the spatial lag of community i measured the average crime
count of its neighbors. In this study, we used the Queen adjacency criterion to determine
the neighbors of community i.

Figure 5 summarizes the workflow of the study, which included three steps: (1) generating
sampling points along the street, based on which fine-grained BSV images were collected
using the Baidu API, (2) extracting streetscape features using an object detection method
(Faster R-CNN) and a semantic segmentation method (PSPNet), and (3) building regression
models to determine the influences of the on-street population and streetscape physical
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environment on street crime, controlling for the effects of socioeconomic and demographic
factors, land use features, and surveillance and transportation facilities.

Figure 5. Workflow of this study.

4. Results

Before running the regression models, we checked all explanatory variables’ VIF
(variable inflation factor) values to check for multicollinearity. The results showed that the
VIF values of all explanatory variables were much smaller than the commonly accepted
threshold of 10 in crime research [64]. Therefore, the results in this study had no serious
multicollinearity issues. Additionally, we standardized all explanatory variables before
incorporating them into the regression models because the covariates had different units
and significant disparities in magnitude. Standardization also makes it easy to compare the
magnitudes of the impacts of different variables [65]. In order to assess the improvements
of model performances after incorporating streetscape variables, we ran baseline models
which did not contain the streetscape variables. We utilized log-likelihood and AIC to
compare the model performances comprehensively. A larger log-likelihood value indicated
a better model fit, while a smaller AIC value indicated a better one.
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Table 2 presents the results of the spatial lag negative binomial regression estimations.
Models (1, 3, and 5) are baseline models which only included the control variables, while
Models (2, 4, and 6) are the full models which contained additional streetscape variables.
Both the log-likelihood and AIC values demonstrated that adding street view variables
improved the model fits. For total street crime, the log-likelihood of Model (2) (−3821.261)
was larger than that of Model (1) (−3837.600), The AIC of Model (2) (7682.521) was smaller
than that of Model (1) (7699.199). For street property crime, the log-likelihood of Model (4)
(−3689.161) was larger than that of Model (3) (−3704.309), and the AIC of Model (4)
(7418.322) was smaller than that of Model (3) (7432.617). For street violent crime, the
log-likelihood of Model (6) (−2592.888) was larger than that of Model (5) (−2608.377), and
the AIC of Model (6) (5225.775) was smaller than that of Model (5) (5240.753). Therefore,
we discuss only the results of the full models in the following section.

Table 2. Results of spatial lag negative binomial regression models with all independent
variables standardized.

Dep. Var. Total Street Crime Street Property Crime Street Violent Crime

Model
(1)

IRR
(Std. Err.)

(2)
IRR

(Std. Err.)

(3)
IRR

(Std. Err.)

(4)
IRR

(Std. Err.)

(5)
IRR

(Std. Err.)

(6)
IRR

(Std. Err.)

Control Variables

Rate of young people 1.046 ** 1.038 ** 1.04 ** 1.032 * 1.08 *** 1.073 ***
(0.019) (0.019) (0.02) (0.019) (0.02) (0.020)

Rate of highly educated people 1.040 ** 1.062 *** 1.04 * 1.059 *** 1.06 *** 1.069 ***
(0.019) (0.021) (0.02) (0.021) (0.02) (0.021)

Rate of migrant people 1.032 1.024 1.03 1.019 1.04 * 1.028
(0.021) (0.021) (0.02) (0.022) (0.02) (0.022)

Rate of renters
1.087 *** 1.086 *** 1.09 *** 1.091 *** 1.05 ** 1.055 **
(0.023) (0.024) (0.02) (0.024) (0.02) (0.023)

Number of POIs
1.188 *** 1.162 *** 1.20 *** 1.166 *** 1.10 *** 1.088 ***
(0.033) (0.033) (0.03) (0.034) (0.03) (0.029)

Mixture of POIs
1.015 1.027 1.01 1.025 1.00 1.013

(0.018) (0.018) (0.02) (0.019) (0.02) (0.019)

Number of subway stations 1.005 1.000 1.01 1.005 0.97 0.963 **
(0.018) (0.018) (0.02) (0.018) (0.02) (0.017)

Number of bus stops 1.034 * 1.004 1.03 * 1.005 1.04 ** 1.014
(0.020) (0.023) (0.02) (0.024) (0.02) (0.024)

Number of police stations 0.984 0.987 0.99 0.989 0.97 0.979
(0.016) (0.016) (0.02) (0.017) (0.02) (0.017)

Streetscape Variables

Number of people on the street 1.078 *** 1.079 *** 1.042
(0.029) (0.030) (0.028)

The average proportion of paths 0.955 ** 0.957 ** 0.960 *
(0.019) (0.020) (0.021)

The average proportion of roads 1.019 1.015 1.037
(0.024) (0.025) (0.026)

The average proportion of walls 0.979 0.975 0.997
(0.021) (0.021) (0.022)

The average proportion of buildings 0.950 * 0.951 * 0.939 **
(0.028) (0.029) (0.029)

Number of streetlamps 0.962 0.957 0.982
(0.028) (0.029) (0.029)

Number of traffic lights 1.042 1.047 1.019
(0.029) (0.030) (0.029)

The average proportion of trees 0.935 *** 0.935 ** 0.928 ***
(0.024) (0.024) (0.025)
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Table 2. Cont.

Dep. Var. Total Street Crime Street Property Crime Street Violent Crime

Model
(1)

IRR
(Std. Err.)

(2)
IRR

(Std. Err.)

(3)
IRR

(Std. Err.)

(4)
IRR

(Std. Err.)

(5)
IRR

(Std. Err.)

(6)
IRR

(Std. Err.)

Spatial lag of dependent variable 1.918 *** 1.851 *** 1.946 *** 1.882 *** 1.997 *** 1.939 ***
(0.064) (0.061) (0.068) (0.065) (0.056) (0.054)

Log-likelihood −3837.600 −3821.261 −3704.309 −3689.161 −2608.377 −2592.888
AIC 7699.199 7682.521 7432.617 7418.322 5240.753 5225.775

Note: The dependent variables are the number of total street crimes, number of street property crimes, and
number of street violent crimes. IRR = incidence rate ratio. ***, **, and * indicate significance at the 1%, 5%, and
10% levels, respectively. In parentheses, the standard errors are given. The intercept terms are not listed. The
likelihood ratio test of α = 0 demonstrates that negative binomial models are more suitable than standard Poisson
models (p < 0.001).

The number of people on the street had the most considerable impact on the total
street crimes and street property crimes among all the streetscape variables. Specifically, a
one standard deviation increase in the number of people on the street was associated with
a 7.8% (IRR = 1.078) increase in the number of total street crimes and a 7.9% (IRR = 1.079)
increase in the number of street property crimes. The number of people on the street also
positively influenced street violent crime, but the effect was not statistically significant.
The average proportion of paths had a significant negative impact on three types of crime.
A one standard deviation increase of this factor was associated with a 4.5% (IRR = 0.955)
decrease in the number of total street crimes, a 4.3% (IRR = 0.957) decrease in the number
of street property crimes, and a 4% (IRR = 0.960) decrease in the number of street violent
crimes. Similarly, the average proportions of buildings and trees were also significantly
and negatively associated with three types of crime. Specifically, a one standard deviation
increase in the average proportion of buildings would result in a 5% (IRR = 0.950) decrease
in the number of all street crimes, a 4.9% (IRR = 0.951) decrease in the number of street
property crimes, and a 6.1% (IRR = 0.939) decrease in the number of street violent crimes.
A one standard deviation increase in the average proportion of trees was associated with
a 6.5% (IRR = 0.935) decrease in the number of total street crimes, a 6.5% (IRR = 0.935)
decrease in the number of street property crimes, and a 7.2% (IRR = 0.928) decrease in
the number of street violent crimes. The average proportion of roads and the number of
traffic lights had positive relationships with the three types of crime, but these relationships
did not reach statistical significance. The average proportion of walls and number of
streetlamps had nonsignificant and negative correlations with the three types of crime.

As for the control variables, the rate of young people, the rate of highly educated
people, the rate of renters, and the number of POIs had significantly positive associations
with the three types of crime. The rate of migrant people, the mixture of POIs, and the
number of bus stops had positive relationships with the three types of crime, but the
effects were not significant. The number of subway stations had a significant negative
association with street violent crime, and its correlations with the other two types of crime
were insignificant. The number of police stations had negative associations with the three
types of crime, but the effects were insignificant.

The spatial lags of the dependent variables had significant and solid positive associa-
tions with the numbers of all types of crime, revealing the spatial autocorrelation effect of
crime events. Therefore, the spatial lag models used in this study were valid.

We used the k-fold cross-validation technique to validate the regression models used in
this study. This technique first divides the total dataset into k parts of equal size, iteratively
excludes one part (called the validation set) at a time, and predicts it with the parts not
excluded (called the training set). At each step, an R2 score can be calculated, measuring
the prediction accuracy of the trained model. Figure 6 presents the results of the cross-
validation R2 score when k was set at different values. When k reached about 30 and above,
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the performance of the three models became stable, with the R2 score reaching above 0.8,
indicating that the models in this study were sufficiently accurate.

Figure 6. Cross-validation R2 score of different fractions of training data for the regression models.

5. Discussion

Overall, the findings of this research are consistent with the previous literature. The
number of people on the street had different effects on different types of crime. The total
street crime and street property crime had significant positive associations with the number
of people on the street, indicating that places with more people on the street have higher
risks for total street crime and street property crime. Although the number of people on
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the street also positively influenced street violent crime, this effect was not significant
statistically (p = 0.128). Therefore, street violent crime in a place would not witness a
remarkable change in the number of people on the street. Such a disparity advocates for
previous theoretical and empirical studies. First, both crime pattern theory and routine
activity theory argue that offenders make rational decisions by balancing the potential
benefits, costs, and risks when committing a crime. In general, offenders tend to commit
crimes where suitable targets are present and capable guardians are absent. However, each
type of crime has unique choice-structuring properties [66]. The influence of the presence
of people in a given area is mainly dependent upon the nature of the crime; that is, the
presence of people has diverse impacts on different types of crime [23]. Street property
crimes, such as snatching, pickpocketing, and theft, have the nature of concealment and
transience. Property crime offenders prefer to “fish in troubled waters” in that they usually
commit crimes in crowded places when people are not paying attention and then flee the
scene quickly. The whole process of committing a crime must be completed rapidly without
being noticed. A thick crowd of people in a location not only offers a lot of targets and
opportunities, but the presence of a dense population can also provide perfect cover for the
whole process of a crime: looking for a target, committing a crime, and fleeing the scene
after a crime. This makes streets with dense populations ideal places for property crime.
This is proven by the fact that property crimes have high exposure rates and low detection
rates [31]. However, street violent crimes such as robbery, intentional injury, and assault do
not happen secretly but usually with sounds of a struggle, making it easy to be spotted and
draw people’s attention. Therefore, these types of crimes are unlikely to happen in crowded
places. Social disorganization theory focuses on the static of the residential population
rather than the environment or the simple magnitude of floating populations [21]. The
theory highlights that the local characteristics in a location improve individual tendencies
toward delinquent behaviors or hinder collective efforts to preserve public order.

Second, the inconsistent influences of people on the street on different types of crime
were also found in previous empirical studies. For example, Vomfell et al. utilized Twitter
and taxi data to help forecast crime [24]. They concluded that using these features can
significantly improve the prediction accuracy of property crime. For violent crime, how-
ever, the spatiotemporal dimension of these features adds very little value. They further
explained that long-term neighborhood structural conditions are the primary influences of
violent crime. Social deprivation, for example, provides the context for violent behaviors.
Therefore, violent crimes commonly take place in locations with poor social cohesion. As
for property crime, it is local opportunities through anonymity that matter, rather than
deprivation. Another study conducted by Malleson and Andresen in Leeds found similar
results; although the study region had a large volume of violent crimes, there was no statis-
tically significant elevation in the risk of violent criminal victimization when considering a
theoretically informed population at risk [47].

The physical environment variables deduced from BSV images also had meaningful
associations with street crime. The average proportion of trees had the most significant
influence on all types of crime among the street view variables. Specifically, the impacts
were all significantly negative. Therefore, places with higher eye-level street green spaces
were associated with less crime. Green spaces have been proven to improve community
cohesion, making people’s desire to survey their surroundings and intervene in an ongoing
crime stronger [67,68]. Well-maintained vegetation in a place can also act as a cue to care,
indicating that inhabitants actively care about their territory and potentially suggesting that
an intruder would be noticed and confronted [69]. Additionally, green spaces, including
trees, parks, and other natural features, could play a relieving effect that can make human
psychological and emotional states calm, improve cognitive functioning, and inhibit people
from committing crimes [70,71]. A series of empirical research has proven green spaces to
be inhabitable to crime [7,67–72].

The average proportion of paths was also negatively associated with all three types
of crime, and the effects were statistically significant. This result supports the previous
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advocation of adopting design principles that facilitate walking and social interaction,
because human activity could help promote a sense of community belonging, which is
beneficial for crime prevention [73]. Places with high proportions of paths provide spaces
for outdoor activity. People living here are more likely to go out and associate with
others. Therefore, people’s anonymity decreases, as there is an opportunity to gain mutual
acquaintance with other residents, enabling social control of inhibiting crime because
unfamiliar people will stand out as strangers in these neighborhoods.

The average proportion of buildings had significantly negative associations with all
three types of crime. As shown in Figure 4e, communities with high average proportions
of buildings are generally dispersed along arterial roads. Buildings extracted from GSVs
in these areas are usually high-rise buildings fronting the street, indicating these districts
are work areas with many employees. Jacobs assumed that such vibrant locations would
have less crime given the presence of many guardians [74]. A similar study about the
associations between the built environment and crime using GSV images demonstrated
that the presence of buildings was generally unrelated to crime, except for robberies [10].

Other street view variables such as the average proportion of roads, the average
proportion of walls, number of streetlamps, and number of traffic lights had no statistically
significant relationships with any of the three types of crime. Therefore, we do not discuss
these variables further.

The spatial lags of the dependent variables significantly impacted all types of crime.
Specifically, according to the results of the full models, a one standard deviation increase
in the spatial lag of the dependent variable was associated with an 85.1% (IRR = 1.851)
increase in the number of total street crimes, an 88.2% (IRR = 1.882) increase in the number
of street property crimes, and a 93.9% (IRR = 1.939) increase in the number of street violent
crimes. These results reveal the widely existing spatial autocorrelation effect of geographic
events. Modeling crime using a spatial regression model is thus necessary.

6. Conclusions

The presence and size of people on the street and physical streetscape characteristics
have close associations with criminal activities [7,8,75]. However, large-scale environment
conditions, especially fine-grained streetscape features, are difficult or expensive to ob-
tain. The absence of precise quantitative data for street scenes leaves the relationship
between crime and the visual characteristics of a streetscape unrevealed [76,77]. This study
integrated BSV images and deep learning methods to retrieve detailed and rich informa-
tion about the streetscape context. Controlling for the spatial autocorrelation effect, we
constructed spatial lag negative binomial regression models to evaluate the influences of
people on the street and the streetscape physical features on crime.

The results of this study are promising. First, the significant improvements in model
performance after incorporating the street view variables demonstrate the necessity for
accounting for the effect of the streetscape context when studying crime. Second, the
number of people on the street had significant positive impacts on the total street crime
and street property crime. However, no significant impacts were found on street violent
crime. Therefore, the effect of human presence on crime is greatly determined by the nature
of the crime. The phenomenon that the same street view variable had different effects on
different types of crime reveals that the study of the general type of crime is insufficient. It
ignores the different occurrence mechanisms of different types of crime. Third, regarding
the physical streetscape features, the average proportion of paths, buildings, and trees had
statistically significant and negative impacts on both the occurrence of street property crime
and street violent crime.

This study is the first attempt at combining street view images and deep learning
algorithms to extract both the on-street population and a series of eye-level physical
streetscape features to investigate street crime. Previous studies could not distinguish
between the street and indoor populations, and they were potentially biased by counting
indoor people for their possible influence on street crime. This study provides evidence that
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streetscape features, including people on the street retrieved from street view images, can
effectively explain street crime. The available street view images provide new opportunities
for gathering large-scale quantitative streetscape characteristics which provide a basis for
place-based crime research.

The presence of people on the street is a prerequisite for the occurrence of a street
crime. Therefore, the on-street population is an essential factor of street crime. Traditional
field observation methods used to collect the pedestrian volume are time-consuming, labor-
intensive, and inefficient, while big data sources like mobile phone data, geotagged social
media data, metro smart card data, and taxi and bicycle trajectory data are incapable of
capturing the movement of pedestrians. Such limitations can be overcome by the method
used in this study. Assessing the pedestrian volume automatically from street view images
with deep learning techniques is a reliable method for determining the on-street population
size. The availability of street view images offers broad geographic coverage. The methods
utilized in this study could be applied to street crime research in other countries and regions.
Researchers from other fields, such as public health, urban vitality, and street design, could
also borrow ideas from this study, because the on-street population and streetscape features
are important in these fields.

This study’s findings not only validate criminology theories but also have implications
for crime prevention and urban planning. Trees have a significantly negative impact
on street crime. Therefore, urban designers may improve the environment by planting
trees. Paths are also a design element found to have a crime deterring effect. Therefore,
this design principle can be adopted to create spaces for outdoor activity. Police patrols
should be deployed in targeted areas with high proportions of young people and renters.
Furthermore, although communities with more POIs promote vitality and have other
advantages, they may also have some unexpected drawbacks, such as street crime.

Several limitations of this research should be noted and addressed in the future. First,
although the street view image is a valuable and accessible data source for determining
the on-street population size, most street view images were captured in the daytime.
Therefore, it cannot be known what the population size on the street was in the evening.
Future studies could use satellite night light data to proxy on-street populations in the
evening, as facilities are typically associated with lights at night [78]. Second, some objects
such as litter, graffiti, broken windows, and property damage are not easily detected
using existing methods. These objects are signs of physical incivilities, which have been
demonstrated to attract crimes. Future studies could collect such fine-scale quantitative data
using the environmental audit approach [5]. Third, apart from the physical environment,
human visual perception of the urban environment can also affect the occurrence of crimes.
Therefore, future research could account for perception [50].
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Abstract: Trees are the key components of urban vegetation in cities. The timely and accurate
identification of existing urban tree species with their location is the most important task for improving
air, water, and land quality; reducing carbon accumulation; mitigating urban heat island effects;
and protecting soil and water balance. Light detection and ranging (LiDAR) is frequently used
for extracting high-resolution structural information regarding tree objects. LiDAR systems are a
cost-effective alternative to the traditional ways of identifying tree species, such as field surveys
and aerial photograph interpretation. The aim of this work was to assess the usage of machine
learning algorithms for classifying the deciduous (broadleaf) and coniferous tree species from 3D
raw LiDAR data on the Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey. First,
ground, building, and low, medium, and high vegetation classes were acquired from raw LiDAR data
using a hierarchical-rule-based classification method. Next, individual tree crowns were segmented
using a mean shift clustering algorithm from high vegetation points. A total of 25 spatial- and
intensity-based features were utilized for support vector machine (SVM), random forest (RF), and
multi-layer perceptron (MLP) classifiers to discriminate deciduous and coniferous tree species in the
urban area. The machine learning-based classification’s overall accuracies were 80%, 83.75%, and
73.75% for the SVM, RF, and MLP classifiers, respectively, in split 70/30 (training/testing). The SVM
and RF algorithms generally gave better classification results than the MLP algorithm for identifying
the urban tree species.

Keywords: machine learning; classification; LiDAR; 3D point cloud; urban trees

1. Introduction

Urban areas have become one of the main habitats for human beings in recent years.
Cities are suffering from various problems, such as air and water pollution, flood risk, and
urban heat island effects, and urban life for citizens is becoming extremely difficult due
to overpopulation and unplanned urbanization. Urban forests, especially trees, provide
a sustainable solution to solve these ecological problems and help to improve the living
conditions of the urban residents [1]. Urban trees are of major importance for the residents,
offering various economic, environmental, health, and aesthetic benefits in urban envi-
ronments [2]. Trees are crucial to improving the air, land, and water quality; absorbing
and mitigating carbon dioxide (CO2); lowering urban temperatures; reducing the storm
water runoff, wind speed, and noise pollution; as well as supporting biodiversity and
providing shelters for different animals [1,3–6]. In addition to these environmental and eco-
logical benefits, urban trees have many social and psychological effects, such as improving
physical/mental health, alleviating life stresses, encouraging residents to build stronger
social relationships, potentially reducing crime, and making neighborhoods more attractive
places [2,7,8]. As a main component of city structures, urban trees decorate parks, roads,
and pavements, provide recreational areas, and create shade, as well as influencing real
estate value [2,4]. Contrary to the numerous benefits for cities and residents, some urban
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trees have some adverse effects, such as causing allergic reactions [9] and environmental
pollution, damaging historical texture, and obstructing the silhouette of cities [2]. Different
tree species face different environmental stresses, so they have different benefits or dis-
advantages for the urban ecology [10,11]. Due to the mostly positive, and few negative,
effects of urban trees, accurate information about individual tree species in cities is im-
portant to enable city planners and local administrators to understand the value of urban
vegetation for ecosystem services. Thus, the detection and monitoring of urban tree species
is necessary for urban planning and protection, disaster management, and sustainable
development of urban areas, and require detailed up-to-date data sources [2,12].

To date, many tree species identification studies have focused on forest areas rather
than urban areas [13]. Urban environments have a complex structure with many different
objects, such as buildings with different types and heights, vegetation on top of buildings,
power lines, temporary objects, paved roads, driveways, road signs, and parking lots, in
comparison with forests, where the surrounding areas are comparatively homogeneous
and the tree crowns are generally densely distributed [13,14]. In urban environments, trees
spatially exist with other urban elements, and they can be in groups of trees or in irregular
spatial designs, as well as being isolated or evenly spaced [15]. Urban trees generally have
a large variation in structural characteristics, according to planting purposes. Urban areas
are faced with specific challenges in tree species identification applications because of the
above mentioned factors [13].

Aerial photo interpretation and field surveys are the two traditional methods used
to identify urban tree species in farraginous urban environments [3]. These traditional
ways are successful in local and small-scale studies, but in fact are labor-intensive, ex-
pensive, time-consuming, and are generally not appropriate for the entire coverage of
large urban areas [3,6,16,17]. Based on specialized photo interpreters’ experience, the large
discrepancies between different interpreters are one of the disadvantages of the aerial photo
interpretation technique. Today, the latest remote-sensing technologies offer a significant
solution to the drawbacks of the traditional methods with their efficient, reliable, rapid, and
repeatable methods for monitoring and analyzing urban tree species. Furthermore, they
enable more cost-effective project budgets, especially for large-scale applications [6,8,11,18].
Over the last few decades, space-borne or airborne multispectral and hyperspectral im-
ages have been utilized for tree species identification [19–22]. However, multispectral and
hyperspectral images have their own limitations, such as inadequate spectral resolution,
shadowing, and obscuring impacts, which are caused by background features, spectral mix-
tures, etc. [21,23,24]. During multispectral and hyperspectral image acquisition, the lighting
conditions change, both in time and in space [25]. In different parts of urban environments,
the same urban tree species can have dissimilar spectral reflectance, or different urban tree
species can have a similar spectral signature in the process of obtaining tree species using
optical remote-sensing methods [21,26,27]. In addition, optical remote-sensing imagery
is generally restricted to obtaining detailed information about the understory due to the
heterogeneity of the urban environment [28]. Recently, active sensing light detection and
ranging (LiDAR) systems have been successfully used in the detection of urban tree species,
providing 3D information with high spatial resolution, returning multiple signals and high
scanning speed [22,28,29]. Airborne light detecting and ranging systems can penetrate
tree crowns, supply geometric and radiometric information, exhibit some of the inner
structure of trees, and collect intensity data [30]. LiDAR capabilities can also be improved
by increasing point density.

In tree species classification studies using LiDAR datasets, the test areas, used data
types, number of classified tree species, and classification methods vary from application
to application. Discrete-return LiDAR data are used in general, but full-waveform LiDAR
data, which use a newer technology, have been used in recent applications for tree species
classification [31–36]. While a LiDAR point cloud can be used alone in the classification
of classic tree species, aerial photographs, satellite images, or hyperspectral images can
be used additionally to a LiDAR point cloud as supplementary data for integrated tree
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species classification applications [37–45]. Raw LiDAR data or gridded LiDAR data, which
enable the direct use of traditional image classification algorithms, can be used for tree
species classification [46–49]. In some tree species classification studies, only deciduous
and coniferous tree species are distinguished, while in others, a large number of different
species are classified [50,51].

Nowadays, machine learning algorithms are used in many remote-sensing appli-
cations, such as change detection [52], monitoring of active wildfires [53], land usage
identification [54], road edge detection [55], ground water potential assessment [56], marine
oil spill detection, prediction, and vulnerability assessment [57], biomass and soil mois-
ture retrievals [58], etc. The support vector machine (SVM), decision tree, random forest
(RF), k-nearest neighbor (KNN), and artificial neural network (ANN) methods, which are
traditional machine learning methods, have been mostly utilized for the classification of
the LiDAR data to acquire tree species [17,59]. Zhang and Liu [47] aimed to analyze the
applicability of LiDAR-derived geometric and intensity metrics to classify adjacent and
dominant tree species using the support vector machine method at the individual tree level
in their study area. Koma et al. [60] examined the object-based classification of urban trees
using full-waveform three-dimensional LiDAR data in Vienna, Austria. The applicability of
the geometric and radiometric features of deciduous trees and the coniferous pine species
in an urban environment have been investigated using a random forest classification algo-
rithm with the combined use of geometric and radiometric features. An overall accuracy
of 87.5% was achieved as the most reliable classification by Koma et al. [60]. LiDAR data
and hyperspectral imagery (0.5 m) were fused to differentiate eight common tree species in
Dian et al. [61] by using vertical, spatial, and spectral features as an input to the classifica-
tion of a support vector machine in Anyang, Henan, China, and a voting procedure was
used to generate a tree species map. Shen and Cao [62] used hyperspectral images and
LiDAR point cloud, which are acquired simultaneously, to classify five tree species with
a RF classifier, aimed at detecting the most important variables for the classification, and
an evaluation of the contribution of combined use of two different datasets. Shi et al. [21]
used an RF classifier to obtain six different tree species and drew attention to the impor-
tance of using 37 different LiDAR features derived under leaf-on and leaf-off conditions.
Kim et al. [63] analyzed the possible usage of LiDAR intensity data using a linear discrimi-
nant function to differentiate broadleaved and coniferous tree species and obtained overall
classification results verifying their success. A methodology for coniferous and deciduous
tree species classification in a forest area using both a k-means and expectation maximation
(EM) classifier with full-waveform LiDAR features was proposed in Reitberger et al. [64],
and a maximum overall accuracy of 85% in a leaf-on situation was reported. Ørka et al. [31]
classified coniferous and deciduous tree species with linear discriminant analysis (LDA) in
a boreal forest reserve in Norway using intensity and ALS-derived structural features and
succeeded with 88% overall classification accuracy.

The primary aim for this research is to assess the potential usage of the support vector
machine, random forest, and multi-layer perceptron machine learning algorithms for the
classification of deciduous and coniferous tree species, using the Davutpasa Campus of
Yildiz Technical University, Istanbul, Turkey as the urban study area.

The paper is subdivided into four main sections. Section 2 defines the materials
and methods, including the study area, used dataset, general workflow, high vegetation
classification, individual tree crown segmentation, feature extraction, urban tree species
classification, and performance analysis subsections. The results and discussion in Section 3
presents an experimental evaluation and analysis of the machine learning-based urban tree
classification process. Finally, Section 4 concludes the work presented in this paper.

2. Materials and Methods
2.1. Study Area

The Davutpasa Campus of Yildiz Technical University, located in the Istanbul province
district in northwest Turkey (41◦01′33” N, 28◦53′21” E), was selected as the urban study
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area and includes buildings of several types and heights, vegetation of different types and
heights, paved roads, driveways, road signs, and parking lots (Figure 1). The selected
urban study area (approximately 4.7 ha) in the Davutpasa Campus of Yildiz Technical
University (approximately 125 ha) was used for testing the performance of SVM, RF, and
MLP machine learning algorithms to discriminate deciduous and coniferous tree species
(Figure 2). In the study area, different types of deciduous trees, such as linden, cherry,
sycamore, mulberry, quince, plum, apple, and locust, and coniferous trees, including red
pine, stone pine, blue spruce, and Norway spruce were available.
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2.2. LiDAR Data and Field Data

The 3D LiDAR point-cloud data used in this study were acquired in September
2013 with a “Riegl LSM-Q680i” full-waveform laser scanner by the Istanbul Metropolitan
Municipality. The LiDAR point cloud was provided in Log ASCII Standard (LAS format)
with an average density of 16 points/m2. The flying height and speed of the helicopter were
approximately 600 m and 148 km/h, respectively. The used LiDAR dataset was acquired at
up to 400,000 Hz pulse repetition frequency (at a near infrared laser wavelength) with a
scanning angle of 60◦ (±30◦). The data were recorded with a rotating polygon mirror in
parallel scan lines with beam divergences of less than or equal to 0.5 mrad. The laser data
were recorded with multiple returns (echoes) and 16-bit uncalibrated intensity information.

The ground-truth data for tree species were acquired by field investigation and photo
interpretation within the study area. The species of each tree in the study area was deter-
mined accurately as deciduous or coniferous.
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2.3. General Workflow

In this research, a tree species classification method from raw 3D LiDAR data based
on SVM, RF, and MLP machine learning algorithms was developed to provide tree species
identification with high efficiency in terms of time and cost for large-scale applications.
As a first step, the ground, building, and low, medium, and high vegetation classes were
acquired from a raw LiDAR point cloud with a hierarchical rule-based classification method;
then, individual tree crowns were segmented using a mean shift clustering algorithm from
high vegetation points. Feature extraction was conducted for each individual tree, and
these features were used to classify the deciduous and coniferous tree species in the urban
study area with SVM, RF, and MLP algorithms. An accuracy assessment for the classified
tree species was carried out. A 10-fold cross-validation and feature importance process with
Mean Decrease Gini (MDG) were also performed to evaluate the stability of the models
and to analyze the effects of the classification features. TerraScan software and the Python
programming language were utilized in this research. The flow chart of the proposed
machine learning-based urban tree species classification process is shown in Figure 3.
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2.4. High Vegetation Classification

The proposed method in this study starts with a classification of the high vegetation
points from raw LiDAR point cloud data. The 3D raw LiDAR point cloud was classified
with a hierarchical rule-based classification method using spatial features. The ground,
building, low vegetation, medium vegetation, high vegetation, low point, air point, and
default classes were obtained based on the standard point classes of the American Society
for Photogrammetry and Remote Sensing (ASPRS) [65]. In the rule-based classification
algorithms, the information about the terrain surface is converted to a set of rules; thus
each terrain class has its own characteristic rules, and the classification is carried out based
on these rules [66,67]. In this study, each individual LiDAR point was classified into the
appropriate classes with point-based rules using spatial features. The details of the used
point-based classification of the LiDAR data with the hierarchical rule-based classification
method to acquire the high vegetation class (using the TerraScan module of TerraSolid
software) can be found in Yastikli and Cetin [68].

2.5. The Segmentation of Individual Tree Crowns

In the segmentation process, the high vegetation points are partitioned into subsets
of neighboring points called “segments”. Individual tree crowns were achieved as a
consequence of the segmentation step. The segmentation process was carried out using the
mean shift clustering algorithm, which was first proposed by Fukunaga and Hostitler in
1975 [69]. Mean shift is an iterative and non-parametric method that shifts each data point
based on the local maxima of density function with Kernel Density Estimation (KDE) [70].
This method chooses a random point as the cluster center from the used dataset, updating
the cluster centers on the condition that the mean of the candidate points should be in
a certain region. This segmentation algorithm automatically sets the number of clusters
according to the bandwidth that determines the size of the region to be searched. The
bandwidth is the most important parameter that needs to be specified in the mean shift
process [71]. The bandwidth can be estimated with manual iterations or by using the
bandwidth function. In this study, the 2D point-based segmentation of high vegetation has
been conducted based on the x and y Cartesian coordinate pair of each raw LiDAR point
to acquire individual tree crowns. The bandwidth parameter was estimated with manual
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iterations, and the high vegetation points were segmented by the flat kernel with a proper
bandwidth of 3. The segmentation processes with mean shift clustering were performed
with the Python programming language (Python 3.6.4), along with scikit-learn library. The
segmentation results could be categorized as correct detection, under-segmentation, over-
segmentation, missed, and noise [72]. The generated segments in this study include both
the under-segmentation, which means multiple crowns were segmented as a single crown,
and over-segmentation, which means a single crown was segmented as multiple crowns.

2.6. Feature Extraction

The extraction of the features to be used in the classification model by applying
statistical analysis is a critical step in the machine learning field [73]. In our proposed
approach (see Figure 1), the classification features were calculated using the height and
intensity information of the LiDAR points, and they were then used as input to the ma-
chine learning-based classification algorithms for the classification of urban tree species.
The spatial- and intensity-based features were obtained from the raw 3D LiDAR point
clouds to differentiate the urban tree species. The determined features were generated for
each tree crown using LiDAR height and intensity information, including minimum and
maximum values, and results of statistical analyses (mean, standard deviation, skewness,
kurtosis, etc.) [11,21,74,75]. In Table 1, the 25 generated features for the classification of
targeted urban tree species using SVM, RF, and MLP algorithms are given. Z indicates the
Z coordinate of the LiDAR points in the national coordinate system, and intensity indicates
the uncalibrated intensity value of the LiDAR points in Table 1.

Table 1. The generated spatial- and intensity-based features from LiDAR data.

LiDAR Data

Spatial-Based Features Intensity-Based Features

Number of points –
Maximum Z Maximum intensity
Minimum Z Minimum intensity

Standard deviation of Z Standard deviation of intensity
Mean Z Mean intensity

Skewness of Z Skewness of intensity
Kurtosis of Z Kurtosis of intensity

Z range Intensity range
5th percentile of Z 5th percentile of intensity
25th percentile of Z 25th percentile of intensity
50th percentile of Z 50th percentile of intensity
75th percentile of Z 75th percentile of intensity
90th percentile of Z 90th percentile of intensity

2.7. The Classification of Urban Tree Species

In the classification step, class labels were assigned to the obtained segments based
on generated feature values. The generated segments on the study area were classified as
deciduous or coniferous trees using machine learning algorithms. Machine learning is a
type of automation as a branch of artificial intelligence, and it works on the function and
structure of algorithms by constructing a data-driven model for estimations from sample
inputs [76]. SVM, RF, and MLP are the chosen machine learning classifiers used in this
study. Information about the used machine learning classifiers and performance analyses
is given in the following subsection.

2.7.1. Support Vector Machine

Support vector machine (SVM) was developed in 1995 by Vladimir Naumovich Vap-
nik [77]. SVM is a non-parametric supervised machine learning algorithm that performs
the classification process based on the statistical learning concept with adaptive compu-
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tational learning [78]. SVMs are very popular kernel-based statistical machine learning
algorithms [79]. Kernel-based methods, such as support vector machines, are the main
subject of a study on classification, clustering, and regression problems [80]. A hyper-
plane or a set of hyperplanes were constructed between groups or observation classes
by support vector machines in an infinite dimensional space to separate the samples [81].
The hyperplane is the decision surface for maximizing the distance to the neighboring
data points in the classes [82,83]. The data points nearest to the obtained hyperplane are
called support vectors [84]. Detecting the best separation hyperplane with the highest
margin distance between the nearest points of the two classes is the objective of the SVM
approach [85]. The linear hyperplane is only sufficient for linearly separable data. If the
data are not linearly separable, the support vector machine method can map the data onto
a higher dimensional space where they are linearly separable with a kernel function, such
as sigmoid, polynomial, normalization, radial basis function (RBF), and Laplacian radial
basis function kernel [79,83].

In the present work, the radial basis function (RBF) kernel was used in SVM algorithm.
The most important C and gamma (G) parameters were analyzed manually in detail, and the
determined C value was 100,000,000, while the gamma value was 5.092462164188164× 10−10.

2.7.2. Random Forest

Random forest (RF) [86] is a widespread, powerful, non-parametric machine learning
algorithm based on the bagging principle of decision tree classifiers [21]. The RF algorithm
provides reliable classifications with the estimations acquired from an ensemble of classifi-
cation and regression trees (CARTs) [72]. The random vectors in RF are used to develop
individual trees consisting of root nodes, internal nodes, branches, and leaf nodes in the
forest. In its simplest form, RF requires the number of trees (n) to constitute the “forest”
and the number of features (m) to be used in each node in the trees [87]. In random forest,
each tree votes for the most popular class at each input instance, and the final classification
is defined by the majority votes of the entire forest trees [87,88]. The RF commonly uses the
Gini index as a splitting criterion to determine which attribute to split during the learning
phase of the tree [89,90]. The impurity level of the samples assigned to a node is measured
with the Gini index [89]. A bootstrap sample, which is two-thirds of the original data,
also known as an “in-of bag” sample, is used in the training of trees, and the one-third
remainder data called as “out-of bag” samples are used in estimating the classification error
and determining the importance of the classification features [6,91].

RF provides a variable importance measure (VIM), which is a key advantage according
to alternative machine learning algorithms [92]. The Mean Decrease Accuracy (MDA) and
Mean Decrease Gini (MDG) are two different VIMs in RF to identify the most relevant
features or perform a feature selection procedure [90,93]. While MDA is the average of the
difference between two out-of-bag test errors, MDG assesses the difference between the
Gini index before and after classification [94].

In this research, n_estimators (the number of decision trees in the forest) and max_features
(the number of features considered for the best split) parameters in the RF algorithm were
analyzed for accurate classification. A total of 150 trees and 10 features at each split were
used as n_estimators and max features, respectively. We also present the feature importance
measures with MDG.

2.7.3. Multi-Layer Perceptron

Today, one of the most popular research topics in the machine learning and artificial
intelligence fields is artificial neural network (ANNs) [95]. Multi-layer perceptron (MLP), a
specific form of ANN, consists of the connection of neurons (the process elements) with
each other in a given order, and each neuron is connected to another neuron in the next
layer with connections that are named as weights [95,96]. Each neuron in a multi-layer
perceptron structure receives an input array, and then generates a single output. MLP has
one input layer, one or more hidden layer, and one output layer [76].
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The information flows from the input to the output layer unidirectionally through the
hidden layers, as MLP is a feed-forward neural network [97]. Each layer has a different
role in a multi-layer perceptron algorithm. The first (input) layer indicates the inputs of
the problem, and the last (output) layer represents the outputs of the problem. The main
computational core of the multi-layer perceptron algorithm is the hidden layers [98]. The
MLP structure used in this study is shown in Figure 4. As can be seen from Figure 4, the
proposed MLP approach has a hidden layer with 20 neurons, as well as an input layer with
25 neurons and an output layer with 2 neurons.
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2.8. Performance Analysis

Evaluation methods are needed to determine the classification success of a model [99].
The performance of the proposed machine learning-based classification model is evaluated
by dividing the used dataset into training/testing samples. The accuracy of the classifi-
cations cannot be truly achieved, if the reference dataset is comparably small, and only a
single split into training and test samples is used [18]. By applying iterative data-splitting,
the cross-validation process allows us to validate the stability of the proposed classification
technique [100]. In cross-validation, first the dataset is split into several different subsets,
then a group is determined as a test set and the remaining groups are used as training
sets, and the process is repeated for all possible training and test sets. Therefore, all the
combinations are tested, and a performance value is acquired with the cross-validation by
taking the average of each split result [101,102].

The classification performance of the used machine learning algorithms was quanti-
tatively assessed with a statistical measurement of accuracy [73]. Equations (1)–(4) show
the computed performance measures: the accuracy, recall, precision, and F1-score for tree
species classification using a confusion matrix [103–105]. Accuracy indicates the ratio
of correctly classified samples to all samples. Recall is used to assess the proportion of
correctly predicted positive samples by the classification algorithm to the total number
of samples that should be recognized as correct. Precision is used to estimate the ratio of
correctly classified positive samples to the total predicted positive samples [106,107]. The
F1-score is calculated with the harmonic mean of recall and precision measures [108]. The
potential values of accuracy, recall, precision, and F1-score range from 0 to 1. The values
closer to 1 describe a better classification performance, and the values closer to 0 express
lower classification results [109]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1− score = 2
Precision× Recall
Precision + Recall

(4)

TP, TN, FP, and FN in Equation (1) define the true positive, true negative, false
positive, and false negative samples, respectively. TP refers to the entities classified correctly
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according to the ground-truth data, and TN defines the entities that were not acquired in
the classification and also do not exist in the ground-truth data. FP represents the entities
that have been obtained with the classification but do not exist in the ground-truth data,
and FN refers to the entities defined as correct in the ground-truth data that were not
acquired in the classification [2,110,111].

In this study, the machine learning-based classification models were formed with 70%
training and 30% test samples. The classification results were interpreted using the accuracy,
recall, precision, and F1-score values on the test dataset (30%). A 10-fold cross-validation
was also used to evaluate the stability of the proposed machine learning-based SVM, RF,
and MLP algorithms for tree species classification. All the segmentation processes of the
high vegetation points, the urban tree species classification, and the performance analysis
in this research were performed in the Jupyter Notebook environment with the Python
programming language (Python 3.6.4), along with scikit-learn library.

3. Results and Discussion

As the first step in the proposed methodology, the high vegetation classification results
acquired with a hierarchical rule-based classification of a three-dimensional raw LiDAR
point cloud using spatial (geometric) features are given in Figure 5. When the point-based
classification results were analyzed, it was clearly seen that the points of high vegetation
were obtained successfully; therefore, almost all the tree points in the study area were
accurately assigned to the high vegetation class.
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Figure 5. Classified high vegetation points in the study area (dense and mixed tree points in
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Individual tree crown segmentation is the second step of the proposed machine
learning-based urban tree species classification after the high vegetation classification
process. A total of 346 tree crowns were obtained using mean shift segmentation (2D kernel
with a proper bandwidth of 3) in the study area as the primary results of 2D point-based
tree crown segmentation. Under- and over-segmented urban trees existed in the study
area, especially in areas where the trees were dense and the tree crowns were mixed with
each other (see the red rectangles in Figure 5). The segmentation accuracy of the tree
crowns was 77% based on ground-truth data. As we were focused on individual trees,
the under-segmented and over-segmented tree crowns were removed from the output of
mean shift segmentation. As a result, 265 individual tree crowns were obtained for the
classification process of tree species (Figure 6). The ground-truth data, which were required
for training and testing the machine learning-based classification models, were created by
manually labeling the obtained individual tree segments as deciduous or coniferous trees
based on visual interpretation and field investigation (Figure 7).
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The segmented individual trees were classified into deciduous or coniferous tree
species based on the spatial- and intensity-related features (see Table 1) of the LiDAR
data with support vector machine, random forest, and multi-layer perceptron machine
learning classification methods using determined parameters and 25 generated features. In
the 3D point-based classification process, 193 deciduous and 72 coniferous trees, in total
265 individual tree crowns, were used. Each classifier (SVM, RF, and MLP) was trained
with the same randomly determined training sample set (185 trees, which was 70% of the
total segmented 265 tree crowns), and the remaining test samples (80 trees, which was 30%
of the total segmented 265 tree crowns) were used to validate the classification performance
of the models (Figure 7).
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The classification results for urban deciduous and coniferous trees using SVM, RF, and
MLP classification models are shown in Figure 8. As mentioned earlier, the classification
results were interpreted by means of accuracy, recall, precision, and F1-score on the test
dataset (30%). The overall accuracies for the proposed machine learning-based classification
of urban tree species with SVM, RF, and MLP classification models are given in Table 2. The
urban tree species classification results obtained from our study area show that the machine
learning methods were able to classify the urban tree species using the 3D raw airborne
LiDAR data with sufficient accuracy. According to the obtained overall classification
accuracies of urban tree species, the RF classifier had the best classification accuracy with
83.75%, while SVM had a 3.75% lower classification accuracy and MLP had a 10% lower
classification accuracy than RF.
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Table 2. Overall accuracy values of the proposed three classification algorithms.

Classifier Overall Accuracy

SVM 80.00%
RF 83.75%

MLP 73.75%

The recall, precision, and F1-score values of each tree species (deciduous and conifer-
ous trees) were also calculated and are shown in Figure 9. According to the recall values,
RF was the best classification method for deciduous trees with a 0.943 recall value in the
study area. The recall values of the SVM and MLP classifiers were also high, similar to the
RF method, and were 0.887 and 0.925, respectively for deciduous trees. Lower recall values
of the SVM, RF, and MLP algorithms were obtained for coniferous trees compared with
deciduous trees in the study area. While the SVM and RF values were quite similar, the
recall of the MLP algorithm was the worst with 0.370. Therefore, MLP is an insufficient
method for the coniferous tree species. Similar precision values (0.825 and 0.833) were
obtained for deciduous trees with the SVM and RF classifiers. MLP was the least successful
classification method for deciduous trees according to the precision values (0.742). For the
coniferous tree species, the RF classifier was the best method with 0.850 precision values.
The values of 0.739 and 0.714 are the lower precision values for the coniferous tree species
using the SVM and MLP methods, respectively, in the study area. Regarding the F1-scores,
the coniferous tree species were classified worse than the deciduous tree species, and all
the classification methods (SVM, RF, and MLP) were the successful for the deciduous tree
species (with values of 0.855, 0.885, and 0.824). For the coniferous tree species, the MLP
classifier was the worst classification method according to the 0.488 F1-score value. RF was
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the best classification method, and SVM was a relatively good algorithm for deciduous
trees with regard to F1-scores (0.723 and 0.680, respectively). In general, the recall, precision,
and F1-score values for the deciduous tree species were higher than for the coniferous tree
species in the study area. Consequently, the SVM, RF, and MLP machine learning classifiers
produced more successful classification results for the deciduous trees species compared
with the coniferous tree species.
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In this study, the classification success of the SVM, RF, and MLP classification models
were tested using cross-validation. A 10-fold cross-validation was performed for the
classification models in order to obtain better confidence classification results, evaluate the
stability of the models, and avoid overfitting, as can be seen in Table 3. The average RF
classification accuracy was the highest (81.54%) with the 10-fold cross-validation, which
was 0.44% higher than SVM and 17.82% higher than the average MLP classification accuracy
(see Table 3). The MLP classifier had the worst average classification accuracy. While the
accuracy of the two urban tree species classified with SVM and RF algorithms was similar,
the accuracy acquired with the MLP algorithm was relatively low compared to these.

Table 3. The 10-fold cross-validation results of the proposed three classification methods.

Classifier 10-Fold Cross-Validation Average Accuracy

SVM 81.10%
RF 81.54%

MLP 63.72%

A feature importance process was also conducted in this study to analyze the impact
of the used 25 spatial- and intensity-based features of the tree species classification with
RF. The Mean Decrease Gini (MDG) was used to indicate the feature importance in the
RF classification (Figure 10). While the most important classification feature among the
25 features is “90th percentile of Z”, the least important classification feature was the
“5th percentile of Z”. “Minimum Z”, “Number of points”, “Z range”, “75th percentile of
Z”, and “Standard deviation of Z” were the next five most important features following
“90th percentile of Z”. Generally, the spatial-based features had a higher importance than
the intensity-based features for the proposed 3D point-based classification according to
MDG in the RF classification.
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The three widely-used machine learning algorithms (SVM, RF, and MLP) were selected
to assess their usage for urban tree species classification. The results of this study provide
preliminary findings for deciduous and coniferous tree species classification using 3D raw
LiDAR data in an urban area. When the performances of our machine learning-based
classification algorithms were analyzed, it was noted that the support vector machine,
and particularly the random forest classifier, discovered reliable solutions, even for the
urban tree objects that showed similar geometrical and textural properties, whereas the
multi-layer perceptron classifier solutions were not competitive (Tables 2 and 3). The
success of the RF classifier against the SVM and MLP classifiers can be explained by the
fact that the RF classifier is suitable for handling unbalanced samples and adds additional
randomness to the classification model during the growing trees as well as searching for
only the best features among a random subset of features in the splitting process of each
node [112–115]. Compared with the SVM and RF classification models, the MLP models
can have numerous weights for optimizing in each iteration [114,116,117]. In addition,
the MLP needs more training data and more parameter tuning in the training stage [117].
Considering these reasons, the MLP classifier is less successful than the SVM and RF
classifiers for the classification of urban tree species.

Most of the tree species classification studies in the literature have used a canopy
height model (CHM) produced from LiDAR points, as well as features derived from
full-waveform LiDAR data for deciduous and coniferous tree species [47,49,118,119]. In
this study, commonly used spatial- and intensity-based features were computed from
a traditional LiDAR dataset without using any reference terrain surface model or any
CHM [11,75,120,121]. The features derived from full-waveform LiDAR data were not used
since the full-waveform information was not available in our LiDAR dataset [21,64]. Based
on deciduous and coniferous tree species classification, the maximum overall classification
accuracy of 85% in Reitberger et al. [64], and the overall classification accuracy of 88%
in Ørka et al. [31] are comparable with our maximum overall classification accuracy of
84% with random forest. However, the k-means and the expectation maximation (EM)
classifier used in Reitberger et al. [64] and the linear discriminant analysis (LDA) classifier
used in Ørka et al. [31] are different from our SVM, RF, and MLP machine learning-
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based classifiers. The full-waveform LiDAR features used in Reitberger et al. [64] and
the structural and echo-based features used in Ørka et al. [31] were not included in our
classification features. The study areas in Reitberger et al. [64] and in Ørka et al. [31] were
selected as forest areas that were not comparable with our urban study area. Considering
the obtained overall accuracy metrics in our urban study area, the proposed machine
learning-based classification algorithms in tree species classification using the 3D raw
LiDAR data were successful.

The number of training and test samples in the study area was relatively small in
comparison with similar studies such as Yu et al. [121] and Nguyen et al. [122], but the
obtained accuracies of the machine learning-based classifications are comparable. The
classification results obtained from our study could serve as the basis for a pilot study in
future deciduous and coniferous tree species classification studies using machine learning
algorithms in large-scale urban applications.

4. Conclusions

In this paper, a machine learning-based 3D LiDAR point cloud classification algorithm
was proposed to classify urban tree species as deciduous or coniferous using SVM, RF,
and MLP. The experimental results indicate that SVM and RF classifications generally
outperform MLP classification. The obtained results could be improved by extending
the size of the used training and test samples, in addition to using full-waveform LiDAR
to a produce larger number of spatial- and intensity-based features for discriminating
deciduous and coniferous tree species in urban environments.

The classification results are encouraging with respect to the difficult study area,
which included heterogeneous urban structures with dense trees in different sizes, ages,
and species. This study offers insights for urban authorities regarding the potential use
of machine learning algorithms for classifying deciduous (broadleaf) and coniferous tree
species from 3D raw LiDAR data in urban environments using spatial- and intensity-
based LiDAR features. Compared with traditional field surveys and aerial photograph
interpretation methods for tree species classification, the proposed approach has essential
benefits, such as automation, especially in terms of reducing the manpower and field study
requirements. Many activities, such as the management, planning, and maintenance of
urban trees, as well as the identification of endemic tree species, can be easily carried out
in urban environments with the proposed machine learning-based 3D raw LiDAR point
classification approach.
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Abstract: Extracting buildings and roads from remote sensing images is very important in the area
of land cover monitoring, which is of great help to urban planning. Currently, a deep learning
method is used by the majority of building and road extraction algorithms. However, for existing
semantic segmentation, it has a limitation on the receptive field of high-resolution remote sensing
images, which means that it can not show the long-distance scene well during pixel classification,
and the image features is compressed during down-sampling, meaning that the detailed information
is lost. In order to address these issues, Hybrid Multi-resolution and Transformer semantic extraction
Network (HMRT) is proposed in this paper, by which a global receptive field for each pixel can be
provided, a small receptive field of convolutional neural networks (CNN) can be overcome, and the
ability of scene understanding can be enhanced well. Firstly, we blend the features by branches of
different resolutions to keep the high-resolution and multi-resolution during down-sampling and
fully retain feature information. Secondly, we introduce the Transformer sequence feature extraction
network and use encoding and decoding to realize that each pixel has the global receptive field. The
recall, F1, OA and MIoU of HMPR obtain 85.32%, 84.88%, 85.99% and 74.19%, respectively, in the
main experiment and reach 91.29%, 90.41%, 91.32% and 84.00%, respectively, in the generalization
experiment, which prove that the method proposed is better than existing methods.

Keywords: segmentation; high resolution; transformer; deep learning

1. Introduction

Land resources have the following qualities as carriers of human existence and devel-
opment: nonrenewable resources, fixed location, and imbalanced distribution [1]. With the
population and economy expanding at such a rapid pace, the amount of available land
resources is gradually diminishing. In modern society, buildings and roads are the basic
components of urban layout, and accurately extracting buildings and roads from remote
sensing satellite images helps to realize the macro-planning of the city [2]. The research
methods for remote sensing images can be divided into two parts: traditional theoretical
calculation methods and artificial intelligence big data analysis methods. The traditional
theoretical calculation method is to extract image texture features through theoretical cal-
culation of each pixel of the image, so as to realize remote sensing image segmentation
and target extraction. Although the traditional method has reached a certain standard in
terms of segmentation accuracy, it needs to manually set the calculation parameters, which
consumes human resources and material resources and lacks in calculation efficiency. On
the contrary, the deep learning method in artificial intelligence can complete the end-to-end
remote sensing image segmentation [3,4] and realize the high-accuracy automatic image
segmentation function without manual intervention [5,6]. The dividends brought by the
big data era have made a qualitative leap in computing efficiency, which results in that
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the computing efficiency has been greatly improved compared to traditional methods.
Therefore, it is of great importance to use the deep learning method in artificial intelligence
to achieve semantic segmentation of remote sensing images.

In the past few years, there have been many works on the semantic segmentation of
remote sensing images. For example, Yuan et al. [7] calculated the texture features and
spectrum of the image using local spectral histograms, linearly combined representative
features using each local spectral histograms, classified the pixel by weight estimation,
and finally realized the segmentation of images. This method could greatly reduce the
feature dimension of the network through subspace projection, and realize that the input
dimension of the network could be selected adaptively. However, the disadvantage is
that only spectral information is used in the calculation process. Li et al. [8] proposed a
watershed algorithm for edge embedding markers, which was used for the segmentation
of high-resolution remote sensing images. The method results in improvements in the two
key steps of segmentation (one is label extraction and the other one is pixel labeling), which
could improve the accuracy of edge segmentation in high-resolution images. Furthermore,
this method used an edge embedding detector to extract edge information with confidence,
which was usually used in situations with weak boundaries and improved the positioning
accuracy of target boundaries. Although the accuracy of the segmentation boundary had
been improved, there are also problems that the detailed feature information is complex
and the interference factors make it difficult to obtain information. Fan et al. [9] found that
these remote sensing segmentation methods rarely use prior information. As a result, he
proposed a new approach based on prior information. A single-point iterative weighted
fuzzy C-means clustering algorithm was used in this method, which solved the data
distribution and the effect of random initialization of cluster centers on the quality of
clustering. The above feature segmentation method can divide remote sensing images
effectively, but there are also problems that exist, such as weak noise resistance, slow speed
of segmentation, manual parameter design, etc., which cannot be used for the task of
automatically segmenting large amounts of data.

Current deep learning is still under development in the area of building and road
extractions. Panboonyuen et al. [10] proposed an enhanced deep convolutional encoding
and decoding network for road segmentation of remote sensing images, combining ELU
activation function [11] and SegNet network [12] to form an end-to-end segmentation
network, and finally through optimizing indicators and removing false road objects to
further improve the overall effect. However, for this method, fewer applications of con-
tinuous feature information are used when extracting roads from remote sensing images,
which led to the interference map and fracture area. Aiming at the problem of loss of
detailed information during the down-sampling process, Sun et al. [13] offered a new
feature fusion strategy based on a full convolutional network with ultra-high resolution
image segmentation, which maximized the fusion of deep-level semantic features and
shallow-level detail information. Combining with this model, the effective digital surface
model was proposed, and the information of high-resolution remote sensing images was
extracted, which improved the accurate segmentation of the full convolutional network.
However, in remote sensing image segmentation, there were problems that the scale of
the target segmentation was inconsistent and the scale of information had not been mined.
In order to solve the problem, Liu et al. [14] proposed a multi-channel deep convolutional
neural network to alleviate the loss of spatial and scale features of segmented targets in
images. Qi et al. [15] proposed a multi-scale convolution and attention mechanism based
on a segmentation model. The attention mechanism, on the other hand, could only capture
the local receptive field. Li et al. [16] proposed to use a two-way attention mechanism
network for semantic segmentation of remote sensing images. One is focused on the spatial
semantic information in the feature map, and the other is on the associated information
between channels. Combining the two-way attention information could effectively improve
the accuracy of segmentation. Lan et al. [17] proposed a global context road automatic
segmentation neural network for road segmentation under complex background and field
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of view occlusion. In the network, a residual cavity convolutional network was used
to provide a wide receptive field. Although with the multi-scale information of a larger
receptive field, for the network, the relevance of the middle layer could not be ignored.
He et al. [18] proposed a hybrid first-order and second-order attention network to enhance
the relevance of feature information in the middle of the network.

In summary, for the above remote sensing image semantic segmentation methods [7–18]
in deep learning, satisfactory results have been achieved. At present, in most semantic seg-
mentation networks, down-sampling of the convolutional neural network (CNN) is used to
extract features. Feature maps are compressed many times during extraction, which results
in the loss of details. Up-sampling by feature maps with missing detailed features makes
it difficult to restore feature maps with high-resolution and classify resolution accurately.
In the process of feature extraction by deep convolutional networks, the receptive field is
limited. Although a larger receptive field can be obtained by the use of hollow convolution
and feature pyramids, the receptive field is still local, understanding of long-distance scenes
cannot be achieved, and pixels cannot be classified precisely. To solve these problems, a Hy-
brid Multi-resolution and Transformer semantic extraction Network (HMRT) is proposed
in this study. In general, this work has made three contributions: (1) The multi-resolution
semantic extraction branch is constructed. In this structure, branches of different resolutions
conduct feature fusion, which not only ensures that high and multi-resolution are kept
during the down-sampling process but also ensures that feature information is retained.
(2) The Transformer sequence feature extraction network is introduced. In this network,
each pixel with a global receptive field is realized by the use of encoding and decoding,
and in the meantime, the location information of the pixel is overlain. The small receptive
field of the convolutional neural network can be overcome and the understanding of a
long-distance scene can be improved. (3) Feature Channels Maximum Element is proposed
to strengthen the class location information, which can effectively improve the accuracy of
segmentation.

2. Methodology

In order to solve the two problems of the loss of details caused by scale compression in
the down-sampling process and the lack of long-distance understanding due to the limita-
tion of the receptive field, this paper proposes a Hybrid Multi-resolution and Transformer
semantic extraction Network (HMRT). The overall framework of the HMRT is shown in
Figure 1. The overall framework of the HMRT proposed in this work is divided into two
parallel branches. The first branch provides the network with different resolution feature
maps. The feature maps of different resolutions are divided into 2 times down-sampling,
4 times down-sampling, and 8 times down-sampling. There are 3 different stages in the
down-sampling process of each resolution feature map. Each stage will map the channel of
the feature map and increase the dimension, and the number of channels are 64, 128, and
256, respectively. Finally, the three feature maps of different resolutions are cross-fused. In
the process of feature map cross-fusion, the feature maps of different scales are sampled
and restored to the input image size, so that the second branch can use these feature maps
directly when the features are merged. The second branch mainly uses a combination of
convolutional neural networks and transformers to extract semantic information from the
global receptive field of the feature map. First, it extracts the local feature map information
of the input image through the convolutional neural network and obtains the 16 times
down-sampled feature map. Next, unlike the current semantic segmentation network, it
uses the Transformer method to continue to encode and decode the 16 times down-sampled
feature map. The advantage of the Transformer encoding and decoding method is to make
the entire feature map perform a global receptive field, which overcomes the limitation
of the receptive field caused by the small convolution kernel of the convolutional neural
network. In addition, the position information of each pixel in the feature map is introduced
in the encoding process, so that each pixel adds semantic information in the position dimen-
sion. In the decoding process, the category high-dimensional mapping matrix is used as the
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query matrix, and the key-value matrix and the numerical matrix are from the output of the
Transformer encoding layer. The structure diagram of the HMRT is shown in Figure 1, and
there are two different dimensional transformations in the network layer. The dimension of
the 3-dimensional feature map indicates the quantity of channels, the height and width of
the feature map. In the 2-dimensional feature map, N represents the number of categories,
and D represents the hidden layer mapping dimension of the Transformer encoding and
decoding network. The upper half of the figure is the multi-resolution semantic extraction
branch, and the lower half is the Transformer semantic extraction branch.
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Figure 1. Hybrid multi-resolution and Transformer semantic extraction network framework.

2.1. Multi-Resolution Semantic Extraction Branch

The significance of the multi-resolution semantic extraction branch is that in the down-
sampling feature extraction process of the convolutional neural network, the maximum
pooling layer or the 3× 3 convolution kernel with a sliding convolution stride of 2 is usually
used for feature map length and width compression. Although rich semantic information is
obtained in this way, it is inevitable that a lot of detailed information is discarded. In order
to intuitively understand the differences in the feature map compression process, we show
three feature compression ways, they are: (1) convolution with a 3× 3 convolution kernel,
a stride of 1, and a padding of 1. (2) Convolution with a 3× 3 convolution kernel, a stride
of 2, and a padding of 1. (3) The maximum pooling with a window of 2× 2 size and a stride
of 2. The visualization effects of the three feature compression ways are shown in Figure 2,
Figure 2a shows the convolution with a stride of 1, Figure 2b shows the convolution with a
stride of 2, Figure 2c shows the maximum pooling with a stride of 2. The size of the input
picture demonstrated in Figure 2 is 512× 512.

As is shown in Figure 2, the convolution with a stride of 1 is the most sufficient for
feature extraction, almost retaining all the feature details in the original image, and the
output feature map size is consistent with the input image specification (512× 512). In the
feature extraction process of the convolution operation with a stride of 2, the size of the
output feature is 256× 256, which is compressed to half of the original input image. When
comparing Figure 2b with Figure 2a, it is not difficult to see that Figure 2b has significantly
less feature information than Figure 2a. Then, compare the output result of the maximum
pooling feature compression in Figure 2c with Figure 2a,b, the image in Figure 2c appears
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jagged and the loss of feature information is more serious than that of Figure 2b. Finally,
we conclude that the semantic information expression capabilities of feature compression
are as follows: the convolution with a stride of 1 is greater than the convolution with a
stride of 2, and the convolution with a stride of 2 is greater than the maximum pooling
operation with a stride of 2.

(a) (b) (c)

Figure 2. Different feature map compression visualization effects: (a) convolution with a stride of 1
(b) convolution with a stride of 1 (c) maximum pooling with a stride of 2.

At present, most of the current convolutional neural networks need to use the maxi-
mum pooling operation with a stride of 2 and use the convolution operations with a stride
of 2 repeatedly in the feature extraction process, which will lead to the loss of detailed
information in the feature map [19,20]. In order to overcome this difficulty, this section
proposes a multi-resolution semantic extraction branch to provide rich multi-resolution
feature maps for the network. The multi-resolution semantic extraction branch proposed
in this section is divided into three branches. The three branches use the same input, but
the input image is down-sampled at different multiples to obtain feature maps of different
resolutions. The three feature maps with different resolutions are 2 times down-sampling,
4 times down-sampling and 8 times down-sampling.

The branch structure of multi-resolution semantic extraction is shown in Figure 3, the
input of the whole branch is a picture of 3× H ×W size. The first branch in Figure 3 is
2 times down-sampling, consisting of a residual module with a stride of 2 and two residual
modules with a stride of 1. The second branch in Figure 3 is 4 times down-sampling,
consisting of two residual modules with a stride of 2 and a residual module with a stride
of 1. The third branch in Figure 3 is 8 times down-sampling, consisting of three residual
modules with a stride of 2. Each branch is composed of three residual modules, and the
three residual modules will gradually increase the number of channel mapping during the
down-sampling process. The number of channel mapping is 64, 128 and 256, respectively.
After the three branches pass through the residual modules with different strides, the down-
sampling feature maps of 2 times, 4 times and 8 times are obtained, respectively. Next, the
feature maps need to be gathered and fused. However, the resolution of the feature maps is
inconsistent, and it needs to be standardized to the same level. Therefore, the feature maps
need to be up-sampled, and the multiple of the up-sampling is the inverse transform of the
down-sampling multiple, which are 2 times up-sampling, 4 times up-sampling, and 8 times
up-sampling, respectively. After sampling on the three branches, feature maps are restored
to the size of the input image and then correspondingly added and fused in the channel
dimension to obtain a feature map of 256× H ×W size. Finally, 1× 1 convolution is used
to map the number of channels of semantic information feature maps containing multiple
resolutions to the number of categories N that can be learned by the model. As a result,
the multi-resolution semantic extraction feature map (N × H ×W) of category information
is obtained.
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Figure 3. Structure diagram of multi-resolution semantic extraction branch.

Many excellent CNNs have appeared in recent years, including ResNet [21], VGG [22]
and GoogLeNet [23]. After considering the amount of parameters and network accuracy,
this work adopts the ResNet-18 basic module as the residual block in the three branches.
The structure of the two residual modules in Figure 3 is shown in Figure 4. This work
uses residual modules with two kinds of strides, the forward propagation of the residual
module with a stride of 1 is shown in Equation (1).

Xout = σ(β(Conv3×3(β(σ(Conv3×3(X))))) + X), (1)

where Conv3×3 is a 3 × 3 convolution with a stride of 1, β is BN, σ is a ReLU activation
function.

The forward propagation of the residual module with a stride of 2 is shown in
Equation (2).

Xout = σ(β(Conv′3×3(β(σ(Conv3×3(X))))) + X), (2)

where Conv3×3 is a 3× 3 convolution with a stride of 2, β is BN, σ is a ReLU activation
function, Conv′3×3 is a 3× 3 convolution with a stride of 1.
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Figure 4. Structure diagram of ResNet-18 residual module.

108



ISPRS Int. J. Geo-Inf. 2022, 11, 165

The specific structure of the multi-resolution semantic extraction branch is shown in
Table 1. The table shows the parameter settings of the six stages (input, first stage, second
stage, third stage, feature convergence and output) of the branch.

Table 1. The specific structure of multi-resolution semantic extraction branch.

Stages Number of
Channels

2 Times
Down-Sampling Branch

4 Times
Down-Sampling Branch

8 Times
Down-Sampling Branch

Input 3 3 × H ×W
The first stage 64 Convolution stride: 2 Convolution stride: 2 Convolution stride: 2

The second stage 128 Convolution stride: 1 Convolution stride: 2 Convolution stride: 2
The third stage 256 Convolution stride: 1 Convolution stride: 1 Convolution stride: 2

Feature convergence 256 2 times up-sampling 4 times up-sampling 8 times up-sampling
N 1 × 1 convolution changes the number of channels

Output N Accumulate to obtain the feature maps of N × H ×W size

2.2. Transformer Semantic Extraction Branch

The significance of the Transformer semantic extraction branch is that the small recep-
tive field of ordinary convolutional neural networks causes a lack of long-distance scene
understanding. Although there have been many methods to improve the problem of small
perception fields, such as enlarging the convolution kernel and using atrous convolution,
they all have certain drawbacks. On the one hand, after enlarging the convolution kernel,
the amount of model parameters and model calculations will increase, which will increase
a lot of computational overhead. It is not a good choice in the case of lack of time and
limited computing resources. On the other hand, although the use of atrous convolution
can expand the receptive field of the original convolution kernel without adding addi-
tional calculations, the atrous convolution is filled with 0 when the convolution kernel is
expanded, resulting in loss of internal details. The atrous convolution is more friendly to
the extraction of large target objects and can capture the long-distance dependence of large
target objects, but the advantages of small target objects are not obvious enough. Since
the 0 padding used by the convolution kernel affects the continuity of the convolution
kernel in the feature extraction process, small target objects are split or ignored, which
affects the effectiveness of small target object extraction. The change in the size of the
receptive field plays a big role in the feature extraction process. A convolution kernel with
a large receptive field can extract the long-distance dependence of a large target, while a
convolution kernel with a small receptive field can extract the complete features of a small
target object. Taking the dimension of the convolution kernel width as an example, the
derivation process of the receptive field is shown in Equation (3).

K′ = K + (K− 1)× (d− 1), (3)

where K is the size and width of the convolution kernel, d is dilation rate, K′ is the size of
the receptive field.

In order to reflect the difference of the receptive fields conveniently and intuitively,
this work designs different sizes of convolution kernels and different sizes of dilation rates
for visualization. The comparison of the receptive fields with different dilation rates and
convolution kernels is shown in Figure 5.

It can be seen that the current semantic segmentation networks have limitations in
the receptive field, so this work combines the Transformer method with global receptive
fields [24–28] to deeply mine the semantic information of the feature maps. On this basis,
a hybrid convolutional neural network (ResNet-18) and a Transformer semantic extraction
branch based on Transformer encoding and decoding are constructed.
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(a) (b) (c)

Figure 5. Comparison of different void rates and convolution kernel receptive fields. (a) Receptive
field of 3× 3 convolution kernel; (b) receptive field of 5× 5 convolution kernel; (c) receptive field of
5× 5 convolution kernel with a dilation rate of 2.

2.2.1. The Overall Framework of Transformer Semantic Extraction Branch

The overall framework of the Transformer semantic extraction branch is composed
of a hybrid convolutional neural network (backbone network) and Transformer encoding
and decoding modules. The structure of this branch is shown in Figure 6, D in the figure is
the mapping dimension, and N is the number of categories. Firstly, the backbone network
adopts ResNet-18 with a sliding window to extract features. Secondly, the backbone
network performs 16 times down-sampling, flattening the feature map in the width and
height dimensions to obtain a feature map with a dimension of (D, H/16, W/16). Next,
we add the obtained feature map to the position coding matrix of the same size and input
the result into the Transformer coding module for global coding. The number of times the
encoding module repeats the encoding is set to 6. Corresponding Transformer decoding
is performed after encoding, and a total of 6 decoding layers are set. The query matrix
of the first decoding layer is provided by the category matrix and the query matrix after
the second layer is the output of the previous decoding layer. In addition, the key-value
matrix and the numerical matrix are also the output of the decoding matrix of the previous
layer. After Transformer encoding and decoding, the feature map with a dimension of (H,
H/16, W/16) is outputted. Then, the last dimension of the feature map is flattened into
two dimensions to obtain a feature map (H, H/16, W/16) with the number of channels of
category N. Next, the new feature map is up-sampled 4 times to obtain the feature map
with a dimension of (H, H/4, W/4). The reason for using 4 times up-sampling is to make
the size of the feature map consistent with the convolution block 1 of the backbone network.
Since the feature map of the convolution block 1 is used to enrich position information, the
fusion of the feature map can help position restoration. Finally, the feature map needs to
be restored to the input image size to achieve pixel-level classification. In the restoration
process, the feature map is up-sampled 4 times to obtain the feature map.
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Figure 6. Structure diagram of Transformer semantic extraction branch.
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2.2.2. The Feature Extraction of Backbone Network

Transformer semantic extraction branch proposed in this section uses a convolutional
neural network as the backbone network for feature extraction. ResNet-18 is used to extract
the deep semantic information of the image, but the structure of ResNet-18 used in this
paper is slightly different from the structure in the original paper.

As shown in Table 2, after the picture of 512× 512 size passes through the convolu-
tion block 1, convolution block 2, convolution block 3, and convolution block 4 that are
consistent with the original paper, a feature map of 32× 32 size can be obtained. Next, the
network maintains this resolution and uses convolution to deepen the extracted features.
Convolution deepening is completed by convolution block 5 and convolution block 5 is
a 3× 3 convolution with a stride of 1 and 256 channels. The final output feature map is
1/16 of the size of the input image, which is twice as large as the output size of the original
backbone network. This maintains a large resolution feature map, which is conducive to
the extraction of richer feature information from Transformer global features. In addition,
the number of channels of the output feature map is also reduced by half. The reason is that
the Transformer connected to the backbone network still has a high-dimensional mapping
channel when it continues to encode and decode. The reduction in the number of channels
in the backbone network can reduce a certain amount of parameters.

Table 2. The specific structure of the backbone network ResNet-18.

Modules The Size of the
Feature Map ResNet-18

Input 512 × 512 -

convolution block 1 256 × 256 7 × 7, Number of channels: 64, Stride: 2, padding
3 × 3, Maximum pooling layer, Stride: 2

convolution block 2 128 × 128 3 × 3, Number of channels: 64, Stride: 2
3 × 3, Number of channels: 64, Stride: 1

convolution block 3 64 × 64 3 × 3, Number of channels: 128, Stride: 2
3 × 3, Number of channels: 128, Stride: 1

convolution block 4 32 × 32 3 × 3, Number of channels: 256, Stride: 2
3 × 3, Number of channels: 128, Stride: 1

convolution block 5 32 × 32 3 × 3, Number of channels: 256, Stride: 1
3 × 3, Number of channels: 128, Stride: 1

2.2.3. Transformer Encoding and Decoding

Transformer encoding and decoding was first proposed by Vaswani et al. [29] for nat-
ural language processing. This method extracts global information from the input feature
map. Inspired by this innovation, this paper transplants and fine-tunes the Transformer to
the semantic segmentation task to make up for the limitations of the convolutional neural
network’s receptive field when performing semantic segmentation. The overall structure
of the improved Transformer in this paper is composed of encoding and decoding, and
the encoding and decoding modules are spliced from the self-attention mechanism into a
multi-head attention mechanism. The structure of the Transformer is shown in Figure 7.

Firstly, the input feature map is the feature map (D, H/16, W/16) extracted by the
backbone network. Secondly, the flattening function maps the last two dimensions into a
one-dimensional vector to obtain a new feature map (D, H/16, W/16). Then the position
coding matrix p ∈ R(D,H/16,W/16) of each pixel in the feature map and the feature map
are superimposed as the input of the coding layer. The coding layer first undergoes the
feature normalization layer to normalize the channel dimensions, and then passes through
different matrix mappings to obtain the query matrix q ∈ R(H/16,W/16,D), the key-value
matrix k ∈ R(H/16,W/16,D), and the numerical matrix v ∈ R(H/16,W/16,D). The calculation
process is shown in Equations (4)–(7). Xinput is the input of the coding layer. ∆ represents
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feature normalization layer. Kq is an encoding layer query matrix mapping function. Kk
is the coding layer key-value matrix mapping function. Kv is the coding layer numerical
matrix mapping function.

X = ∆(Xinput), (4)

q = Kq(X), (5)

k = Kk(X), (6)

v = Kv(X), (7)
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Figure 7. The structure diagram of Transformer encoding and decoding.

After obtaining the query matrix, the key-value matrix and the numerical matrix, the
three matrices are input into the multi-head attention mechanism module for attention
calculation. The multi-head attention mechanism module is obtained by splicing multiple
self-attention mechanism modules (this paper sets the number of heads of the multi-head
attention mechanism to 4). The advantage of having multi-headed attention is that feature
information can be obtained from different branches to enrich semantic information, and
different branches can independently extract features and then merge them, which can
increase the diversity of feature extraction. After the multi-head attention mechanism
module, the output feature map and the feature map before the feature normalization layer
aggregate the original feature map information through jump connection. As is shown
in Equation (8).

Xatten = Γ(q, k, v) + Xinput, (8)
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where Γ represents multi-head attention mechanism module, Xatten is the output of the
multi-head attention mechanism, q, k, v represent the query matrix, key-value matrix, and
numeric matrix of the coding layer, respectively. Xinput is the input of the coding layer.

Then through the feature normalization layer and the fully connected layer, the feature
dimension is mapped to the high dimension. The fully connected mapping is a 4 times
mapping. Finally, the original feature map before entering the full connection is also
aggregated by jump connection to obtain the output feature map of the coding layer
(HW,D). The calculation process is shown in Equation (9).

Xencoder = Π(∆(Xatten)), (9)

where Xencoder is the output of the coding layer, Π represents fully connected mapping,
∆ represents the feature normalization layer, and Xatten is the output of the multi-head
attention mechanism.

The input of the decoding layer is composed of two parts: the output feature map of
the coding layer and category query feature map created based on the number of categories.
The feature layer is normalized before entering the multi-head attention mechanism of the
decoding layer, and then the output feature map of the coding layer is decomposed into a
key-value matrix k′ ∈ R(H/16,W/16,N) and a numerical matrix v′ ∈ R(H/16,W/16,N) through
different matrix mappings. Among them, N is the number of categories. The calculation
process is shown in Equations (10)–(12).

X′encoder = ∆(Xencoder), (10)

k′ = K′k(X′encoder), (11)

v′ = K′v(X′encoder), (12)

where X′encoder is the output of the feature normalization layer, ∆ represents feature nor-
malization layer, Xencoder is the output of the coding layer, K′k represents key-value matrix
mapping function in the decoding layer, K′v represents the numerical matrix mapping
function in the decoding layer.

The decoding layer query matrix q′ ∈ R(H/16,W/16,N) is obtained according to the
category initialization, and the key-value matrix k′ ∈ R(H/16,W/16,N) and the numerical
matrix v′ ∈ R(H/16,W/16,N) are obtained through matrix mapping. Next, we input them
into the multi-head attention mechanism for decoding at the same time, and the decoded
result goes through the feature normalization layer and fully connected mapping. The fully
connected mapping is a 4 times mapping. Then, the first feature of the decoding layer and
the feature map before the feature normalization layer are correspondingly fused. Finally,
the output category feature map of the decoding layer and the input feature map of the
next coding layer are obtained. The calculation process is shown in Equation (13).

Xdecoder = Π(∆(Γ(q′, k′, v′))) + q′, (13)

where Xdecoder is the output of the decoding layer, Π represents fully connected mapping, ∆
represents the feature normalization layer, Γ represents the multi-head attention mechanism
module, q′, k′, v′ are the query matrix, key-value matrix and numerical matrix of the
decoding layer

The structure of the multi-head attention mechanism module is shown in Figure 8.
As shown in Figure 8, query matrix q, key-value matrix k, and numerical matrix v are
inputed. The calculation process of a single attention mechanism is as follows: Firstly, the
key-value matrix and the transpose of the query matrix are multiplied. Secondly, Softmax
is performed at the last of the results obtained. Finally, the result of Softmax and numerical
matrix are multiplied to obtain the attention result. In addition, the multi-head attention
mechanism proposed in this paper splices the single-head attention mechanisms to obtain
the attention mechanism information of different branches.
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The decomposition process of a single self-attention mechanism module is shown in
Figure 8. In the case of inputting three targets, the three targets are calculated by their
corresponding query matrix mapping matrix Wquery, key-value mapping matrix Wkey−value,
and numerical mapping matrix Wnumericlvalue to obtain their respective query matrix, key-
value matrix, and numerical matrix (q1, q2, q3, k1, k2, k3, v1, v2, v3). Next, Softmax calculates
the weights of the target itself and all targets. The calculation process of measure weights is
shown in Equation (14), and the decomposition structure of the calculation process of the
self-attention mechanism is shown in Figure 9.

Weightsi =
qi ∗ kT

i

∑i(qi ∗ kT
i )

, (14)

where Weightsi is the measure weights of the i-th goal, qi represents the query matrix of
the i-th target, ki represents the key-value matrix of the i-th target.

Matrix multiplication 

q k v

Matrix multiplication 

Softmax

Figure 8. The structure diagram of multi-head attention mechanism.
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Figure 9. Decomposition structure diagram of the calculation process of the self-attention mechanism.

114



ISPRS Int. J. Geo-Inf. 2022, 11, 165

Finally, the self weights are obtained by multiplying the weights of each target and
the corresponding numerical matrix. The calculation process is shown in Equation (15).

Attentioni = Weightsi ∗ vi, (15)

where Attentioni is the self weights (Attention information) of the i-th goal, Weightsi is the
measure weights of the i-th goal, vi represents the numerical matrix of the i-th target.

3. Experiment and Result Analysis

In this chapter, experiments were carried out on the Aerial Image Segmentation
Dataset (AISD) [30] and ISPRS 2D Semantic Labeling Contest (ISPRS) [31]; the HMRT
model was compared with many of the best models currently available FCN-8S [32], U-
Net [33], PSPNet [34] and DeeplabV3+ [35]; the overall accuracy rate (OA), recall rate
(Recall), F1-Score and mean intersection over union (MIoU) are used as the quantitative
analysis indicators of the experiment. The results show that HMRT is better than the
comparison model in various assessment indicators.

3.1. Datasets
3.1.1. AISD Dataset

The original images of the AISD dataset were collected from OpenStreetMap online
remote sensing image data, and the semantic segmentation dataset of high resolution
remote sensing images were constructed by manual annotation. AISD included image data
from six regions: Berlin, Chicago, Paris, Potsdam, and Zurich. This paper chose Potsdam
regional data to conduct the experiment, and we named the data set as Potsdam-A. There
are 24 original images and labels with an average size of 3000 × 3000 in Potsdam-A. The
example of the original image and label is shown in Figure 10.

(a) (b)

Figure 10. Original image and label example from Potsdam-A. In (b), the red is building; the blue is
road background; the white is background. (a) image; (b) label.

Because the original image was too large to be directly input to the model training, we
used Python to crop the picture of 3000× 3000 into the picture of 512× 512 and obtained
a total of 1728 pictures finally. In the case of a small amount of data, the generalization
effect was poor and the feature learning ability of the model was weak. Therefore, data
enhancement was needed to ensure that the model has reliable learning capability. The
original data set was randomly flipped horizontally, vertically and rotated by 90 degrees to
expand to 4307 pictures.

3.1.2. ISPRS Dataset

The ISPRS 2D Semantic Labeling Contest dataset is a high-resolution aerial im-
age dataset with complete Semantic Labeling published by the International Society for
Photogram-metry and Remote Sensing (ISPRS). Similarly, we selected the Potsdam region
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in ISPRS to verify the generalization performance of the model, and name the data set
Potsdam-B. Potsdam-B was made up of 38 accurately labeled images and five foregrounds:
impervious surfaces, buildings, low vegetation, tree and car. The example of the original
image and label is shown in Figure 11.

We adopted the same cropping strategy of the Potsdam-A dataset on the Potsdam-B
dataset to obtain 5184 pictures of 512× 512 size.

(a) (b)

Figure 11. Original image and label example from Potsdam-B; (a) image; (b) label.

3.2. Implementation Details

In this experiment, we selected five evaluation indicators, including overall accuracy
rate (OA), recall rate (Recall), F1-Score and intersection over union (IoU). They are as follows:

OA =
TP + TN

P + N
, (16)

Recall =
TP

TP + FN
, (17)

F1 = 2× Precision× Recall
Precision + Recall′

, (18)

Precision =
TP

TP + FP
, (19)

IoU =
TP

TP + FP + FN
. (20)

The cross-entropy loss function (CEloss) was applied to calculate the difference value
between the true value and the predicted value. The model performed backpropagation
and learned the best parameters under the guidance of the difference value. The derivation
process of CEloss is shown in Equation (21):

CEloss(p, q) = − 1
m ∑m

i=1 ∑n
j=1 p(xij)log(q(xij)), (21)

where m is the quantity of samples, n represents the quantity of categories, p(xij) is a
variable (if the category j is the same as the sample i, it is 1, otherwise it is 0), q(xij) is the
probability sample, i is predicted to be class j.

All experiments were carried out on Ubuntu16.04 LTS with a Intel(R)Core(TM)i7-8750F
CPU @2.20 GHz, 16 G of memory (RAM), and a NVIDIA GeForce RTX1060(8 GB). Python
3.8 was used, and the model was built using Pytorch1.0.1. All models were trained for
300 epochs with a batch size of 4, and the initial learning rate was 0.001.

This paper improves the post-processing of model prediction. The model prediction
method adds multi-scale and sliding window splicing, which can significantly improve
prediction results. The execution method of the multi-scale strategy is to enlarge the picture
by 1.0, 1.25, 1.5, 1.75, 2.0 times on the basis of the original predicted picture and then predict.
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After the prediction result is obtained, the size of the picture is reduced to the original
picture size and added to obtain the final prediction result. The sliding window splicing
strategy is to set the stride sliding window to predict the picture according to the rule
from left to right and top to bottom in the upper left corner of the predicted picture. The
schematic diagram of the sliding window splicing prediction strategy is shown in Figure 12.
Figure 12a represents the size of the prediction window, Figure 12b represents the stride
for sliding right, Figure 12c represents the stride for sliding down. In the panning process,
in order to ensure that the entire picture can be predicted by the model and obtain the
output, we set the panning stride to be less than or equal to the prediction window size.
If the stride is smaller than the prediction window, repeated prediction parts will appear.
Therefore, we use the overall summation method to realize the prediction for the repeated
prediction parts.

Prediction window Stride

S
tr

id
e

(a) (b) (c)

Figure 12. Schematic diagram of the sliding window splicing prediction strategy; (a) initial window
postion; (b) stride for sliding right. (c) stride for sliding down.

3.3. Analysis of Results
3.3.1. Evaluation Metrics and Prediction Effect

(1) Main experiment

In order to test the proposed HMRT module, comprehensive experiments were carried
out on the Potsdam-A dataset. The evaluation metrics are shown in Table 3, and a compari-
son of the prediction results is shown in Figure 13. Moreover, ablation experiments were
carried out to verify the effectiveness of the multi-resolution semantic extraction branch.
The network without the multi-resolution semantic extraction branch module was tested
and named HMRT-1.

In Table 3, recall, F1, OA and MIoU of the HMRT obtained 85.32%, 84.88%, 85.99% and
74.19%, respectively. All four indicators were better than the comparison networks [32–35].
Among them, OA reached 85.99%, which was 0.92 higher than DeeplabV3+, and MioU
reached 74.19, which was 1.37 higher than DeeplabV3+.

Table 3. The evaluation metrics on Potsdam-A test set.

Methods Backbone Recall (%) ↑ F1 (%) ↑ OA (%) ↑ MIoU (%) ↑

FCN-8S VGG16 79.99 80.93 83.09 68.55
U-Net - 82.63 82.94 84.49 71.28

PSPNet ResNet-50 83.02 83.57 84.54 72.09
DeeplabV3+ ResNet-50 83.90 84.05 85.07 72.82

HMRT-1 - 85.17 85.14 85.80 73.75
HMRT - 85.32 84.88 85.99 74.19

The IOU of each model on the Potsdam-A test set are illustrated in Table 4. The IOU
indexes of the HMRT were 65.21%, 73.15% and 84.21%, respectively, exceeding the four com-
parison networks [32–35]. The IOU results showed that the HMRT has absolute advantages
in segmentation accuracy.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Comparison of the prediction results on Potsdam-A; (a) the superposition of the image
and the label; (b) FCN-8S; (c) U-Net; (d) PSPNet; (e) DeeplabV3+; (f) HMRT.

Table 4. The IoU results on Potsdam-A test set.

Methods Backbone Background (%) ↑ Road (%) ↑ Building (%) ↑ MIoU (%) ↑

FCN-8S VGG16 59.18 64.10 82.36 68.55
U-Net - 62.29 68.64 82.91 71.28

PSPNet ResNet-50 63.34 71.73 81.21 72.09
DeeplabV3+ ResNet-50 64.15 71.65 82.65 72.82

HMRT-1 - 65.00 72.54 83.71 73.75
HMRT - 65.21 73.15 84.21 74.19

(2) Generalization experimental

To verify the generalization performance of the models proposed in this paper, the
Potsdam-B data set was used for further experiment. The evaluation metrics are shown in
Table 5. In Table 5, the recall, F1, OA and MIoU of HMRT reached 91.29%, 90.41%, 91.32% and
84.00%, respectively. All indicators were at their greatest levels, which could prove that the
model proposed in this paper is not only effective, but has good generalization performance.

Table 5. The evaluation metrics on Potsdam-B test set.

Methods Backbone Recall (%) ↑ F1 (%) ↑ OA (%) ↑ MIoU(%) ↑

FCN-8S VGG16 86.31 85.48 86.86 78.43
U-Net - 87.74 87.41 88.51 80.87

PSPNet ResNet-50 88.74 88.34 88.59 81.02
DeeplabV3+ ResNet-50 88.95 87.73 88.48 81.55

HMRT - 91.29 90.41 91.32 84.00

Moreover, this paper visualizes the prediction results of each model. The comparison
of the prediction results is shown in Figure 14. Figure 14a is the real label, Figure 14b–f
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correspond to the prediction results of FCN-8S, U-Net, PSPNet, DeeplabV3+ and HMRT,
respectively. Through comparison, we can find that the HMRT model proposed in this
paper has a global receptive field, and the segmentation accuracy is higher than that of the
comparison model. The dashed box in the figure highlights the area where the segmentation
effect is obvious.

(a) (b) (c)

(d) (e) (f)

Figure 14. Comparison of the prediction results on Potsdam-B; (a) the superposition of the image
and the label; (b) FCN-8S; (c) U-Net; (d) PSPNet; (e) DeeplabV3+; (f) HMRT.

3.3.2. Quantitative Analysis of Model Prediction Results Promotion Strategy

This work adopted two post-processing methods, multi-scale fusion and sliding
stitching, to improve the prediction accuracy. The multi-scale fusion strategy is to adapt
to different size targets in remote sensing images, and the experimental parameters are
that the predicted picture is magnified by 1.0, 1.25, 1.5, 1.75, 2.0 times, respectively. The
sliding stitching strategy is to alleviate the problem of jagged edges when the pictures
are directly stitched, the experimental parameter is that the step size is half of the sliding
window (512 × 512). Finally, we used the controlled variable method to experiment on the
two post-processing strategies, and each network obtained 4 sets of experimental results.
The results of the quantitative analysis experiment are shown in Table 6.

It is concluded from Table 6 that the two strategies of both multi-scale fusion and
sliding splicing can improve the prediction accuracy to a certain extent, and the prediction
accuracy reaches the highest when the two strategies of multi-scale fusion and sliding
splicing are used at the same time. In order to visually demonstrate the effectiveness of
the post-processing strategy, Figure 15 shows the comparison between the predicted result
without using post-processing strategies and predicted the result using two post-processing
strategies. From the comparison of Figure 15b,c, it can be seen that the post-processing
strategies reduce the stitching traces of splicing pictures, and the outlines of the foreground
target buildings and roads in the picture are clearer.

119



ISPRS Int. J. Geo-Inf. 2022, 11, 165

Table 6. Comparison of multi-scale fusion and sliding splicing prediction quantitative analysis.√
means this post-processing method is adopted, ↑ means the higher, the better.

Methods Multi-Scale Sliding Stitching (%) ↑ F1 (%) ↑ OA (%) ↑ MIoU(%) ↑

FCN-8S

- - 80.93 83.09 68.55√
- 81.05 83.15 68.69

-
√

81.13 83.18 68.97√ √
81.41 83.35 69.22

U-Net

- - 82.94 84.54 71.28√
- 83.06 84.63 71.44

-
√

83.15 84.71 71.51√ √
83.25 84.90 71.73

PSPNet

- - 83.57 84.49 72.09√
- 83.62 84.53 72.18

-
√

83.71 84.61 72.25√ √
84.04 85.04 72.78

DeeplabV3+

- - 84.05 85.17 72.82√
- 84.12 85.21 72.91

-
√

84.18 85.25 72.97√ √
84.30 85.36 73.18

HMRT

- - 84.88 85.58 74.19√
- 85.40 86.55 74.82

-
√

85.48 86.31 74.90√ √
85.79 86.85 75.39

(a) (b) (c)

Figure 15. Comparison of prediction results before and after post-processing; (a) label image;
(b) the predicted result without using post-processing strategies; (c) predicted result using two
post-processing strategies.

4. Conclusions

This paper proposes the HMRT to extract buildings and roads from high resolution
remote sensing images. In comparison with the current networks, HMRT has three advan-
tages: (1) The multi-resolution semantic extraction branch is constructed to use branches
with different resolutions for feature fusion, which ensures that high resolution and multi-
resolution can always be maintained during the down-sampling process, and feature
information is fully retained. It solves the problem that feature map compression leads
to loss of details and the convolutional neural network lacks long-distance scene under-
standing when the current semantic segmentation algorithm uses a convolutional neural
network (CNN) to extract image features. (2) The Transformer sequence feature extraction
network is introduced through which the global receptive field of the feature map can be
obtained, the long-distance dependence of the segmentation target is improved, and the
issue of reduced resolution is solved, which is caused by feature map compression during
the use of convolutional feature extraction. (3) The model has the following advantages,
such as the highest accuracy index, absolute superiority in segmentation accuracy, and
sufficient robust performance.
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However, there are still some shortcomings in the segmentation of buildings and
roads: (1) The use of the Transformer global receptive field to extract features is still in the
development stage, so there is development space in the accuracy of the edge segmentation
of buildings and roads and the structure of the model. (2) The complexity of the parameters
of the Transformer encoder and decoder is high. (3) When the remote sensing image
contains a lot of noise, the accuracy of segmentation will decrease. As a result, we will
optimize HMRT to improve the segmentation accuracy and overcome the problem of a
decrease in segmentation accuracy in case of a lot of noise in remote sensing images.
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Abstract: Recent years have seen rapid progress in target-detection missions, whereas small targets,
dense target distribution, and shadow occlusion continue to hinder progress in the detection of small
targets, such as cars, in remote sensing images. To address this shortcoming, we propose herein a
backbone feature-extraction network called “RepDarkNet” that adds several convolutional layers to
CSPDarkNet53. RepDarkNet considerably improves the overall network accuracy with almost no
increase in inference time. In addition, we propose a multi-scale cross-layer detector that significantly
improves the capability of the network to detect small targets. Finally, a feature fusion network is
proposed to further improve the performance of the algorithm in the AP@0.75 case. Experiments show
that the proposed method dramatically improves detection accuracy, achieving AP = 75.53% for the
Dior-vehicle dataset and mAP = 84.3% for the Dior dataset, both of which exceed the state-of-the-art
level. Finally, we present a series of improvement strategies that justifies our improvement measures.

Keywords: deep learning; convolutional neural network; backbone network; target detection; remote
sensing images

1. Introduction

A basic task in computer vision is target detection, which frames the region of in-
terest in the input image in a bounding box. As space technology continues to develop,
super-resolution remote sensing images are becoming increasingly important. However,
target detection in remote sensing imaging remains a huge challenge and is thus receiving
increasing research attention. According to different imaging bands, remote sensing can
be divided into optical remote sensing, infrared remote sensing, SAR (Synthetic Aperture
Radar), and other categories. Target detection in optical remote sensing images plays an im-
portant role in a wide range of applications such as environmental monitoring, geological
hazard detection, land-use/land-cover (LULC) mapping, geographic information system
(GIS) updating, precision agriculture, and urban planning [1].

In optical remote sensing imaging, targets usually have various orientations because of
the differences in overhead views. Targets in optical remote sensing images thus consume
a small number of target pixels distributed widely across different directions, making them
easily affected by the surrounding environment. For example, vehicles in optical remote
sensing images are often obscured by shadows, as shown in Figure 1. These factors make
the difficult task of target detection in optical remote sensing images a research priority.
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Figure 1. The vehicles in optical remote sensing imagery. Vehicles in (a) are generally below
10 pixels, and in (b) are obscured by shadows. Image in (a) is from the Dior dataset, and (b) from the
HRRSD dataset.

In the last few years, the rise of deep learning has contributed greatly to the devel-
opment of target detection. Good results have been achieved from a series of powerful
target-detection algorithms, such as RCNN [2], Fast RCNN [3], Faster RCNN [4], SSD [5],
YOLO [6,7], and ResNet [8]. However, the performance of these algorithms when applied
to aerial-imaging tasks remains unsatisfactory.

In many convolutional network models, the backbone network is often used to ex-
tract target features, such as color, texture, and scale. The backbone network can provide
several combinations of sensory field sizes and center steps to meet the target-detection
requirements of different scales and classes [9]. Some commonly used backbone net-
works for various computer-vision tasks are VGG [10], ResNet [8], MobileNet [11–13],
and DarkNet [6,7].

To detect small targets, the backbone network plays an important role. A good
backbone network extracts more feature information, but feature information is more
difficult to extract from small targets. However, in optical remote sensing imaging, car
targets may consume fewer than 10 pixels because of the angle of the shot. To detect those
targets in optical remote sensing images, we made the following propositions:

1. Influenced by RepVgg [14], we proposed a backbone network named “RepDarkNet”
that combines training accuracy and detection speed. Experiments show that Rep-
DarkNet performs better when applied to the Dior dataset than do YOLOv3 and
YOLOv4 with DarkNet style as the backbone.

2. We proposed a cross-layer converged network for small targets in optical remote
sensing images. The network contains multi-scale cross-layer detection and feature
fusion networks.

3. Besides, larger input and GIoU [15] were used to improve very-small-target detection
and tested separately by applying them to the Dior-vehicle dataset.

The remainder of this paper is organized as follows: Section 1 introduces related
research on detection in optical remote sensing images. Section 2 describes the proposed
approach to detect small targets. Section 3 describes the experimental design and experi-
mental details, and Section 4 describes the experimental results and analysis. Finally, we
conclude this study in Section 5.

2. Related Work

Usually, the horizontal bounding box (HBB) target-detection method is used for
general scenes and for optical remote sensing target detection. Rabbi et al. [9] used GAN
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(Generative Adversarial Networks) to convert images into super-resolution images and
extract feature information from the images to improve small-target detection. Zhang
et al. [16] proposed a hierarchical robust convolutional neural network (CNN) and built
a large high-resolution target-detection dataset called HRSSD. Adam et al. [17] proposed
YOLT, which evaluates satellite images of arbitrary size at a rate exceeding 0.5 km2/s and
locates small targets (5 pixels) at high resolution.

Optical remote sensing imagery contains mostly densely distributed targets of arbitrary
orientations; therefore, HBB-based targets may overlap significantly. Oriented bracketing
boxes are often used to detect rotating targets when characterizing targets in aerial images.
Ding et al. [18] proposed a rotational region-of-interest learner to convert horizontal regions
of interest to rotational regions of interest. Based on the rotation-sensitive regions, a
rotation position-sensitive region alignment (RPS-RoI-Align) module was proposed to
extract rotation-invariant features from rotation-sensitive regions and thereby facilitate
subsequent classification and regression. Yang et al. [19] proposed a multi-class rotational
detector SCRDet for small, randomly oriented, and intensively distributed targets in aerial
imagery, which improves sensitivity to small targets through a sampling fusion network
that fuses multilayer features with anchored sampling. Finally, Zhou et al. [20] proposed an
anchorless polar-coordinate optical remote sensing target detector (P-RSDet) that provides
competitive detection accuracy by using a simpler target representation model and fewer
regression parameters.

Concerning vehicles in optical remote sensing imagery, numerous researchers have
investigated the characteristics of car targets. Audebert et al. [21] trained a deep, fully
convolutional network on ISPRS Potsdam and the NZAM/ONERA Christchurch datasets,
and used the learned semantic graph to extract the exact vehicle segments, thereby detecting
vehicles by simply extracting connected parts. Zhang et al. [22] proposed a YOLOv3-based
deeply separable attention-guided network for the real-time detection of small vehicle
targets in optical remote sensing imagery. Shi et al. [23] proposed a single-stage anchorless
detection method to detect vehicles in arbitrary directions. This method transforms vehicle
detection into a multitask learning problem that requires the use of a full convolutional
network to directly predict high-level vehicle features.

3. Materials and Methods

This section introduces the backbone network RepDarkNet, which is a multi-scale
cross-layer detector and feature fusion network. In addition, we tested some common
methods to improve the detection rate of small targets.

3.1. Reasons for Choosing DarkNet Style

We chose the DarkNet structure because it combines accuracy and speed. Currently,
backbone networks are carefully designed to include a multi-branch structure, such as
MobileNet [11–13], Inception [24], or DenseNet [25]. They have common characteristics;
for instance, DenseNet makes the topology more complex by connecting lower layers to
many higher layers, and while it offers a high-performance conversion network, it does so
at the cost of a mass of GPUs.

Darknet53 is a simple two-branch network that adds branches in a top-down convolu-
tion process. It is mainly composed of a series of fully designed residual blocks. As can be
seen in Figure 2, the residual block loads the output of the two convolutions plus the output
of a skip connection together as the input information for the next layer of convolution.
The elaborate network layer of DarkNet produces surprisingly fast detection.

In a multi-branch network structure, the paths between branches are not strongly
interdependent, so the structure can be seen as a collection of many paths [26]. On a
small scale, the DarkNet-style network is composed of multiple residual block results,
whereas on a larger scale, it can be seen as five layers, as in Figure 2, where we divide
the backbone network into a five-block structure (R1–R5). In the field of target detection,
deeper network structures tend to be stronger than shallower structures, although building
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multiple branching structures in each residual layer increases training time and detection
time and wastes significant computational resources in return for poor accuracy. Therefore,
implementing such network structures in one big module is a good way to improve them.
YOLOv4 thus makes a breakthrough in accuracy, so we improve on the backbone network
CSPDarkNet.

Figure 2. Details of backbone network. In Rn, when n = 1, layer = 1; when n = 2, layer = 2; when n = 3
or 4, layer = 8; and when n = 5, layer = 4. The purple arrow represents the connection between Rn

and Rn+1 blocks, the output information of Rn is the input information of Rn+1.

3.2. Overview of DarkNet-Style Backbone Network

The proposed RepVGG (re-parameterization VGG) [14] makes VGG shine again in
classification tasks. It is a simple, yet powerful, neural network structure. For target
detection, DarkNet is an excellent and fast framework, but accuracy is what many re-
searchers now focus on. In this work, we continue the simple structure of DarkNet and
design a muti-branch backbone network RepDarkNet (re-plan the branching structure of
DarkNet), the details of which are given in Figure 2, where Rn represents a four-branch
module in RepDarkNet. In the SPP module, the three maxpool layers are of sizes 5, 9, and
13, respectively.

CSPDarkNet is one of the backbone networks of the CSP(Cross-Stage-Partial-connections)
module [7]. If CSPDarkNet is a two-branch structure, RepDarkNet is a simple, but powerful,
three-branch structure. Compared with CSPDarkNet, it adds only one layer of branches
per layer and constitutes a module with the information y = f (x) + g(x) + x, where f (x)
can be expressed as:

fi(x) = Wi·δ(B(x)), (1)

where x is the output of the previous layer, W is the weight information, · indicates
convolution, B is the batch normalization operation, and δ(x) = max(x, 0) is the Relu
function. To explain g(x), we take as an example R2, which contains two residual modules,
each of which can be expressed as:

yi = fi(yi−1) + yi−1. (2)

126



ISPRS Int. J. Geo-Inf. 2022, 11, 158

Given an input value y0, then the first residual output is:

y3 = y2 + f3(y2) (3)

= [y1 + f2(y1)] + f3(y1 + f2(y1)) (4)

= [y0 + f1(y0) + f2(y0 + f1(y0))] + f3(y0 + f1(y0) + f2(y0 + f1(y0))). (5)

Similarly, the second convolution result is g(x) = y6, so:

y6 = y5 + f6(y5) (6)

= [y4 + f5(y4)] + f6(y4 + f5(y4)) (7)

= [y3 + f4(y3) + f5(y3 + f4(y3))] + f6(y3 + f4(y3) + f5(y3 + f4(y3))). (8)

In the process of convolution, CNNs gradually lose the feature information of small
targets, whereas the multi-branch module is built to send the upper-layer information
directly to the deep layer, enriching the feature information of the deep layer network,
especially for small targets. The experimental results also show that RepDarkNet detects
small targets better than other algorithms do.

3.3. Cross-Layer Fusion Network

The cross-layer fusion network consists of two parts: a multi-scale cross-layer detector
and a neck feature fusion network.

In a YOLOv4 network, the YOLO head usually splits the image into 19× 19, 38× 38,
and 76× 76 grids. However, in optical remote sensing images, small targets are usually
smaller than 30 or even 20 pixels; therefore, adding a detection head at a shallow level
is a good way to improve the detection accuracy of small targets, and studies show that
this is feasible [27]. To detect small targets, as shown in Figure 3, N3 does not work well.
Segmenting a 1080× 1080 pixel image into a 76× 76 grid makes for difficult detection
based on the existing feature information. Therefore, a multi-scale cross-layer detector was
designed that takes into account the size of the network and the inference time. The detector
uses only layers N1, N2, and N4 and divides the image into three scales of 19× 19, 38× 38,
and 152× 152 to detect large and small targets in the image during inference. Experiments
show that the multi-scale cross-layer detector is much more effective, especially in detecting
small targets. Figure 4 shows its network structure.

Figure 3. Overviews of multi-scale detection in YOLOv4.
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Figure 4. Overview of multi-scale cross-layer detectors and feature fusion networks.

Inspired by Lim et al. [28], we fused higher-level feature maps from the target feature
layer to provide context for a given feature map of the target to be detected. For example,
in RepDarkNet, given the target features from R2, the contextual features come from the R1
layer, as shown in Figure 4. However, R1 and R2 have different dimensions, so the network
channels are downscaled by downsample in order to ensure that the size of the feature
information is the same on both sides before fusing the features, and the fused feature
information is convolved for detection by a multi-scale cross-layer detector.

3.4. Options for Improving Accuracy of Small-Target Detection
3.4.1. GIoU

As a loss of the Bbox regression, GIoU [15] (Generalized Intersection over Union) is
always less than or equal to IoU [29] (Intersection over Union), where 0 ≤ IoU ≤ 1 and
−1 ≤ GIoU ≤ 1. When the two shapes coincide exactly, GIoU = IoU = 1. GIoU and IoU
can be expressed as:

GIoU = IoU− |C/(A ∪ B)|
|C| , (9)

IoU =
|A ∩ B|
|A ∪ B| , (10)

where A and B are arbitrary shapes. In this algorithm, A and B identify the precision = TP
TP+FP

marker box in the image, and the algorithm predicts the anchor selection box. C is the
minimum closed shape.

Both IoU and GIoU serve as distances between A and B; if |A ∩ B|= 0 , then IoU(A, B) = 0,
so IoU does not indicate whether the two shapes are nearby or far-away.

3.4.2. Larger Input Size

Larger input size increases the size of the target area and makes it easier to preserve
the features of smaller targets. However, increasing the input size takes up more memory
during training. In our experiments, we increased the maximum input size only from
608× 608 to 640× 640 because of experimental constraints. We could also increase the
input size while decreasing the batch value, although this would significantly increase the
training time.

4. Experiments, Results, and Discussion

This section introduces the dataset that we used, the evaluation criteria, the details of
the experiments, and the results. The experimental environment for this work is based on
the Ubuntu 16.04 operating system. The hardware platform was an Intel(R) Xeon(R) Silver
4114 CPU @ 2.2 GHz and a Quadro P4000 8 GB * 2 GPU.
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In the process of training, the momentum is set to 0.949, initial learning rate is set to
0.0013, and batch is set to 64. There are different numbers of iterations for different datasets
for training. In the Dior-vehicle dataset, when the number for training iterations is 3200 and
3600, the learning rate is adjusted to 0.00013 and 0.000013, respectively. We have iterated
4000 times of this algorithm. Finally, in this hardware environment, the training time is
about 12 h.

4.1. Dataset

Dior [30] and NWPU VHR-10 [30] were the datasets used to test our method. To
show more intuitively the results of the algorithm to detect small targets, we tested the
Dior-vehicle [31] dataset using the ablation experiment method.

4.1.1. Dior-Vehicle Dataset

The Dior-vehicle is a separate class of vehicle in Dior; the dataset has mostly small
targets, and car targets consuming fewer than 10 pixels are flagged. Here, we follow
COCO [32] for object-size classification, which small objects area is less than 32 × 32 pixels.
The Dior-vehicle dataset has 6421 images and over 32,000 targets. In our experiments, we
divide the training and test sets in the ratio 6:4. We then test the feasibility of the proposed
method via an ablation experiment [4].

4.1.2. Dior Dataset

Dior is a large-scale benchmark dataset for target detection in optical remote sensing
images consists of 23,463 images and 190,288 instances. It contains 20 categories. In the
experiments reported herein, we use images from “trainval” for training and images from
test for testing. The “trainval” is a TXT document. The author of the Dior dataset wrote the
name of the image which is used for training into this document.

Besides, the size of objects varies over a wide range, not only in terms of spatial
resolution, but also in terms of inter- and intra-class size variation between objects. Next,
the images were obtained under different imaging conditions, weather, seasons, and image
quality, so there are large differences in the targets therein. Some images may have noise
and some targets in motion would be blurred. Finally, it has a high degree of inter-class
similarity and intra-class diversity. These characteristics greatly increase the difficulty
of detection.

If you want to find out more information about the dataset, please visit http://www.
escience.cn/people/gongcheng/DIOR.html, accessed on 7 October 2020.

4.1.3. NWPU VHR-10 Dataset

The NWPU VHR-10 dataset is a research-only public dataset containing 10 classes.
NWPU VHR-10 has 650 positive optical images and 150 negative optical images. In our
experiments, we divided the 650 positive optical images with annotations at a 5:5 rate
to produce a training set and a test set. If you want to find out more information about
the dataset, please http://www.escience.cn/people/gongcheng/NWPU-VHR-10.html
(accessed on 10 May 2021).

4.2. Evaluation Standards

The F1 score, precision, recall, and IoU are also considered in our measurement in
the ablation experiment to test the Dior-vehicle dataset. The formula for IoU is given in
Equation (1), and the F1 score, precision, and recall can be expressed by:

precision =
TP

TP + FP
, (11)

recall =
TP

TP + FN
, (12)
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F1 score =
2(precision× recall)

precision + recall
. (13)

TP, FP, and FN are the number of true positives, false positives, and false negatives,
respectively. In this paper, we use AP (average precision) and mAP (mean average precision)
to evaluate all methods. These can be expressed as follows:

APi =
∫ 1

0
precisioni(ri)d(ri), (14)

mAP =
1
n

n

∑
i=1

APi. (15)

When testing the results, a threshold value for IoU is set, such as 0.5 or 0.75. When the
detected box and the actual annotated box exceed this threshold, they are considered true
positives; otherwise, they are false positives. When the detected box is not present in the
actual annotation, they are false negatives.

4.3. Experimental Results and Analyses
4.3.1. Result of Dior-Vehicle and Analyses

To investigate the impression of the method we used on the detection results, we
used an ablation experiment to test the dataset. As shown in Table 1, “a” represents the
Rep backbone, “b” the larger input, “c” the GIoU, “d” the multi-scale cross-layer detector,
and “e” the feature fusion network. For example, RepDarkNet-A2 uses both “a” and “c”.
RepDarknet-B3 uses all the methods and is our final algorithm.

Table 1. Improvement options and comparison of results.

a b c d e AP@0.5(%) AP@0.75(%)

YOLOv4 - - - - - 60.33 26.35
RepDarkNet-A0

√
- - - - 71.58 34.16

RepDarkNet-A1
√ √

- - - 74.51 38.51
RepDarkNet-A2

√
-

√
- - 74.16 37.10

RepDarkNet-B1
√

- -
√

- 75.82 33.32
RepDarkNet-B2

√
- -

√ √
74.87 35.37

RepDarkNet-B3
√ √ √ √ √

75.52 38.40

In the first step, the RepDarkNet-A0, we add only the RepDarkNet backbone on top of
the YOLOv4 algorithm. As can be seen in Table 1, the AP is greatly improved (60.33–71.58%).
Next, we use larger input and RepDarkNet backbone, and the AP is increased by 2.93%.
Thirdly, we use the GIoU and RepDarkNet backbone, and compared to the RepDarkNet-A0,
the AP is increased by 2.58%. Then, we use RepDarkNet backbone and the multi-scale
cross-layer detector, and compared to the RepDarkNet-A0, the AP is increased by 4.24%.
This is the highest promotion method other than RepDarkNet backbone. In step five, we
use the RepDarkNet backbone, the multi-scale cross-layer detector and the feature fusion
network. Compared to RepDarkNet-B1, AP@50 is 0.95% less, but AP@75 is 2.05% more.
Finally, we added all the methods. The proposed method approaches the best performance
for the Dior-vehicle dataset in both the AP@50 and AP@75 cases. Figure 5 shows the
comparison of loss and mAP between the YOLOv4 and RepDarkNet-B3. It can be seen
that RepDarkNet-B3’s loss value is lower than YOLOv4 after 1200 iterator times. At the
same time, the mAP value is higher than YOLOv4. Besides, Figure 6 shows the variation in
AP@50 and AP@75 for each method.
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Figure 5. YOLOv4 (a) and RepDarkNet-B3 (b) loss comparison.

Figure 6. Comparison of various algorithms in Dior-vehicle.

As can be seen in Figure 7(a1,a2,b1,b2), the YOLOv4 algorithm incorrectly detects the
ship as a car, whereas RepDarkNet accurately frames the car targets of the images. It is
clear from Figure 7(a3,a4,b3,b4) that RepDarkNet detects small targets much better than
YOLOv4 does. The results in Tables 1 and 2 demonstrate the clear improvement offered by
the proposed method for small targets. Figure 7(a5,a6) show that the YOLOv4 algorithm
incorrectly detects road signs as cars, whereas RepDarkNet correctly ignores the road signs.
Considering the inconspicuous markings of the misdetection in Figure 7(a5,a6), we have
marked it with a yellow circle in order for the reader to notice this information more quickly.
This demonstrates that RepDarkNet is more robust than YOLOv4.
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Figure 7. Comparison of detection results between YOLOv4 (a1–a6,c1–c3) and RepDarkNet
(b1–b6,d1–d3).
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Table 2. Comparison of recall, precision, F1-score, and IoU by methods.

Method F1-Score Recall Precision IoU

YOLOv4 58% 59% 57% 42.90%
RepDarkNet-A0 69% 68% 71% 53.89%
RepDarkNet-A1 71% 72% 70% 53.84%
RepDarkNet-A2 72% 72% 71% 54.76%
RepDarkNet-B1 70% 75% 66% 49.38%
RepDarkNet-B2 72% 72% 72% 54.75%
RepDarkNet-B3 72% 70% 77% 59.46%

Furthermore, there are more special categories of vehicles, such as lorries, character-
istics of which are different from those of ordinary cars. In the dataset, although lorries
are also labeled, the number of lorries in the data is relatively much smaller. As shown in
Figure 7(c1,d1), the detection accuracy of our proposed algorithm is higher than that of
YOLOv4 for lorries.

Of course, our algorithm also has some shortcomings. By looking at Figure 7(c2,c3,d2,d3),
we can see that it is easy to mistake containers as cars, regardless of RepDarkNet or YOLOv4.
This is a problem we want to solve in our future research.

Finally, to test the generality of the proposed detector, we directly detect the vehicle
class in the HRRSD dataset [16] without any training using Dior’s weights. The final
detection result of AP = 50.73% was obtained. Although far from expected, this far exceeds
the result of AP = 23.78% obtained by YOLOv4. Of course, we also hope that in future
research, there is a greater breakthrough in the generality performance of the detector.

4.3.2. Results of the Dior Dataset and Analyses

As shown in Table 3, to better display the results, we number each category in
the dataset.

Table 3. Categories in the DIOR dataset and their corresponding numbers.

c1 Airplane c6 Chimney c11 Ground track field c16 Storage tank

c2 Airport c7 Dam c12 Harbor c17 Tennis court

c3 Baseball field c8 Expressway service area c13 Overpass c18 Train station

c4 Basketball court c9 Expressway toll station c14 Ship c19 Vehicle

c5 Bridge c10 Golf court c15 Stadium c20 Windmill

Table 4 shows clearly that the proposed algorithm performs the best for the Dior
dataset, far outperforming other algorithms for the detection of small targets, such as cars
or ships. For relatively large targets, such as bridges or basketball courts, the detection accu-
racy is also improved slightly relative to other algorithms, which demonstrates the strong
applicability of the proposed algorithm. Compared with the YOLOv4 algorithm, most
classes in our test are more accurate, which demonstrates convincingly that RepDarkNet is
an excellent target-detection algorithm.

Figure 8a–i shows visualization results of the proposed method applied to the Dior
dataset. RepDarkNet performs well not only for small targets such as ships, planes, and
storage tanks in the dataset but also for other classes such as tennis and basketball courts.
The results in Table 4 also show that in addition to dam, expressway toll station, tennis
court and train station, the proposed approach produces the best results compared with
other algorithms. Only in dam, expressway toll station and tennis court, YOLOv4 is better
than RepDarkNet.
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Figure 8. Detection results of RepDarkNet in the Dior dataset (a–i).

4.3.3. Results of NWPU VHR-10 and Analyses

Table 5 and Figure 9a–i illustrate the performance of RepDarkNet compared with
those of other published methods when applied to the NWPU VHR-10 dataset. We first
introduce the abbreviations of classes in the Table 5. The categories are Airplane (PL), Ship
(SP), Storage tank (ST), Baseball diamond (BD), Tennis court (TC), Basketball court (BC),
Ground track field (GT), Harbor (HB), Bridge (BR), and Vehicle (VH).
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Table 5. Comparison of results from the NWPU VHR-10 dataset.

Method
AP (%) for Each Target Category

mAP (%)
PL SH ST BD TC BC GT HA BR VE

SSD512
[36] 90.40 60.90 79.80 89.90 82.60 80.60 98.30 73.40 76.70 52.10 78.40

SAPNet
[36] 97.80 87.60 67.20 94.80 99.50 99.50 95.90 96.80 68.00 85.10 89.20

StAN-
Enh
[36]

94.80 79.10 98.20 96.70 89.10 89.60 93.50 91.00 62.70 93.80 88.9

CANet
[35] 100.0 81.9 94.6 90.3 90.7 90.6 99.8 89.8 93.9 89.9 92.2

YOLOv4 99.99 81.33 98.80 97.41 97.40 95.52 99.37 82.27 77.30 93.70 92.31

ours 99.96 93.71 98.07 97.47 99.56 99.17 99.59 84.94 74.24 94.29 94.1

Figure 9. RepDarkNet detection results in the NWPU VHR-10 dataset (a–i).
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The proposed method produces mAP = 94.1%, which is the best performance of all
the methods. Note that no small targets appear in the dataset and that the classes SH, BD,
TC, and VE which are bolded in Table 5 have the highest accuracy in the experimental
results. Overall, mAP is the highest too, which is good evidence of the strong applicability
of our method.

5. Conclusions

We propose a new backbone feature-extraction network called “RepDarkNet” that
provides improved target detection by considering network throughput and computa-
tion time. In addition, for small targets in the vehicle class of optical remote sensing
images, we propose a multi-scale cross-layer detector and feature fusion network.
Finally, in experiments, RepDarkNet achieves AP@0.5 = 75.52% and AP@0.75 = 38.4%,
both of which are near-optimal, and a series of ablation experiments justify our ap-
proach. In extended experiments, RepDarkNet running under Quadro P4000 obtains
mAP = 84.3% when applied to the Dior dataset and mAP = 94.1% when applied to the
NWPU VHR-10 dataset, outperforming other algorithms and demonstrating the broad
applicability of the proposed algorithm. To test the algorithm for generalized rows, we
obtained AP = 50.73% performance in HRRSD dataset using the training weights of
the Dior-vehicle dataset with no other additional training. Under the same conditions,
YOLOv4 obtains AP = 23.78% performance. Thus, in terms of generality, RepDarkNet
is much better than YOLOv4. By optimizing and evaluating the proposed small-target
network models under three datasets (Dior-vehicle, Dior, and NWPU VHR-10), these
results have practical implications for improving detection techniques based on optical
remote sensing images.
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Abstract: The segmentation of cloud and snow in satellite images is a key step for subsequent
image analysis, interpretation, and other applications. In this paper, a cloud and snow segmentation
method based on a deep convolutional neural network (DCNN) with enhanced encoder–decoder
architecture—ED-CNN—is proposed. In this method, the atrous spatial pyramid pooling (ASPP)
module is used to enhance the encoder, while the decoder is enhanced with the fusion of features
from different stages of the encoder, which improves the segmentation accuracy. Comparative
experiments show that the proposed method is superior to DeepLabV3+ with Xception and ResNet50.
Additionally, a rough-labeled dataset containing 23,520 images and fine-labeled data consisting of
310 images from the TH-1 satellite are created, where we studied the relationship between the quality
and quantity of labels and the performance of cloud and snow segmentation. Through experiments
on the same network with different datasets, we found that the cloud and snow segmentation
performance is related more closely to the quantity of labels rather than their quality. Namely, under
the same labeling consumption, using rough-labeled images only performs better than rough-labeled
images plus 10% fine-labeled images.

Keywords: satellite image; semantic segmentation; encoder–decoder; CNN; TH-1; cloud and
snow detection; label quality

1. Introduction

With satellites becoming indispensable infrastructures for the development of the
national economy, the acquisition of remote sensing images (RSIs) has become easier. RSIs
have been widely used in a variety of fields such as infrastructure, agriculture, forestry,
geology, hydrology, transportation, disaster prediction, etc. However, 66.7% of the Earth’s
surface is covered by clouds [1], which is a major factor restricting the application of optical
RSIs. Additionally, due to the similar characteristics (e.g., high reflectivity rate) of cloud
and snow in optical bands, some traditional methods such like threshold-based methods
cannot distinguish them and often lead to misjudgment. This greatly hinders the automatic
processing of RSIs. Furthermore, there is a deeper need to detect cloud and snow such like
the construction of the atmospheric reflectance database, which can be used to serve the
retrieval of atmospheric aerosols [2]. Therefore, it is of great significance to segment cloud
and snow quickly, accurately, and automatically.

A number of image segmentation methods have been proposed since the 1970s, among
which the most classic one is the Otsu [3] proposed by Nobuyuki Otsu in 1979. It uses
the exhaustive method to determine the threshold that results in the maximum variance
between objects in images, thus segmenting images into foreground and background
images. Due to the high reflectivity of clouds in optical bands, we can use the Otsu method
to segment the cloud and background from the visible images. However, cloud and snow
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often share similar characteristics in optical bands, making it hard to distinguish them from
each other, and it is almost impossible to segment cloud from other objects using Otsu all at
once. Although many methods have been proposed to improve the Otsu (such as the multi-
Otsu), they suffer from limitations such as large amount of calculations, low robustness,
etc. Figure 1 shows the cloud segmentation result of the Otsu, where it produces totally
different results on similar images.

Figure 1. The segmentation examples of the Otsu algorithm. (a) Cloud; (b) binarization image; (c) segmentation result.

The cloud and snow segmentation method based on elevation assistance [4] captures
the difference of elevation among cloud, snow, and other objects. The three-dimensional
geometric features of cloud are obtained through the dense matching of multiple images,
after which the differences between clouds and background objects are exploited by com-
paring the existing elevation information. Although this kind of methods has high accuracy,
it involves many conditional and time-consuming operations such as dense matching and
digital elevation model registration.

In recent decades, with the development of pattern recognition and machine learning
technologies, researchers have studied intelligent methods for the cloud segmentation
and have achieved good results. Amato et al. [5] applied a principal component analysis
(PCA) for image cloud detection based on statistical theory. Merchant et al. [6] proposed a
cloud detection algorithm based on full probability Bayes theory. Zhao Xiao [7] used fuzzy
C-Means clustering to complete sample iteration clustering by minimizing the objective
function and used support vector machine (SVM) to perform the classification, which has
the advantage of better segmenting results under the condition of empirical knowledge,
while human intervention greatly hinders the segmentation efficiency. Additionally, there
are sparse perceptual classifiers, automatic codec, and other methods. Generally speaking,
the time cost of machine learning based algorithms increases linearly with the number of
pixels in the image. Therefore, for large-scale RSIs, the operation time of such an algorithm
is often very long and it is hard to satisfy the needs in real-world applications.

Recently, deep learning has made great progress in image classification, image segmen-
tation, object detection, and other vision tasks. In 2015, Long et al. [8] proposed the fully
convolution neural network (FCN) and applied it to image semantic segmentation. Unlike
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the classical CNN, which uses the fully connected layer after the convolution layer to obtain
a fixed length feature vector for classification, FCN operates on images of flexible size and
performs pixel-level segmentation. For example, Shao et al. [9] proposed a method based
on the multiscale feature model MF-CNN, which can detect thin clouds and thick clouds in
RSIs, which results in good detection accuracy on the Landsat 8 data. To summarize, the
methods based on deep learning are emerging in cloud and snow segmentation in RSIs.

ResNet [10] is a feature extraction backbone proposed by He et al., which is built on
the idea of residual learning to solve the problem of gradient disappearance/explosion and
network degradation in traditional CNN (when the number of network increases). ResNet
module bypasses the input information to the output through an additional connection
channel to protect the integrity of the input. The whole network only needs to learn the
part of the difference between input and output, which simplifies the difficulty of learning
when the network deepens and helps to retain more original semantic information.

DeepLab [11–13] are deep learning semantic segmentation models proposed by
Google, which contain encoder–decoder FCN structure and the ASPP module to fuse
multiscale features and make better use of image features (compared to the plain FCN).
The encoder–decoder structure is reintroduced into DeepLabV3. Combining the Xception
backbone [14] and the ASPP module as the encoder, which uses a different expansion rate
of perforated convolution to extract features. After feature fusion and 4× upsampling, it
fuses with the low-level features extracted by Xception in the decoder and 4× upsampling
are used to get the segmentation results. Due to the use of ASPP in DeepLabV3+, it im-
proves the ability of multiscale access to semantic information and achieves state-of-the-art
accuracy on multiple datasets.

TH-1 [15], which is the first generation of the transmission stereo mapping satellite in
China, carries three types of five camera loads, including a three linear array CCD camera,
two-meter resolution panchromatic camera, and ten-meter RGB camera. Our research data
consist of 470 tiles of RSIs with RGB bands taken by the TH-1 satellite from 2018 to 2019.
A total of 200 tiles were collected on 20 September, 2018, while the others were collected
on 5 April 2019. In order to ensure the generalization ability of the network, the selected
images cover various underlying surfaces, acquisition seasons and time phases, considering
different geographical locations, climatic conditions, and cloud features. The geographic
longitude and latitude range is 28◦35′ E–120◦05′ E, 5◦25′ N–60◦05′ N, respectively, covering
different ground surfaces such as deserts, grasslands, cities, and mountains. Additionally, in
order to segment clouds and snow simultaneously, 175 scene images with snow are selected.

The threshold-based methods are still used in the actual production. To solve the
above problems, we propose a cloud and snow segmentation method based on DCNN with
an encoder–decoder structure. Compared with traditional methods, it does not rely on prior
knowledge in feature selection and extraction. We combine the advantages of ResNet50 [10]
and encoder–decoder structure and improve the decoder to realize the simultaneous
segmentation of cloud and snow in RSIs. By improving the network structure, using the
exponential activation function (ELU) [16] and focal loss function [17], our objective is
to get optimization of cloud edge segmentation and enhancement of the generalization
ability of the network. On the other hand, with the DCNN becoming the mainstream
of image semantic segmentation, the production of a high-quality pixel level label for
semantic segmentation has attracted more and more attention. However, accurate image
annotation requires a lot of manpower and the existing datasets are not all fine-labeled. At
present, there are more and more DCNN networks, and the accuracy of image semantic
segmentation is higher and higher, which, however, based on open-source datasets such
as Microsoft COCO [18] and PASCAL-VOC-2012 [19], is mainly studied to innovate the
network structure and improve the segmentation accuracy without analysis on the impact
of label quality and quantity on the results. So, the other direction of this paper is to explore
the influence of different data quality and quantity on the performance of cloud and snow
segmentation on RSIs. Our major research contributions are summarized as follows:
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First, we propose an end-to-end DCNN framework with encoder–decoder architecture,
ED-CNN, which improves the decoder by fusion of features from different encoding stages.
The outputs of ASPP, which after Conv 1 × 1 and 4 × upsampling, are concatenated with
the enhanced low-level features from the enhanced decoder. Then, the concatenated feature
maps are sent to Conv 3 × 3 and 4 × upsampling to recover their original size to segment
the image pixels. Second, we present a TH-1 satellite dataset, which contains 23,520 coarse-
labeled images with annotations. Additionally, a fine-labeled dataset of 300 images is
added to support our experiments. Third, experiments have been conducted based on
different datasets, including TH-1 images of a different temporal phase and Google Earth
images, which demonstrates that the proposed network is superior to DeepLabV3+ with
Xception and the ResNet50 and can be applied to multisource RSIs. Finally, we discuss
the effects of labeling quality and quantity in the dataset through extensive experiments
with the proposed network. It is demonstrated that the performance of cloud and snow
segmentation is positively related mainly to the labeling quantity. Namely, the smaller
rough-labeled dataset plus some fine-labeled images, which is 10% of the total images, is
equal to the larger rough-labeled dataset with the same total image quantity. Furthermore,
under the same labeling consumption, the larger rough-labeled dataset exceeds the smaller
rough-labeled dataset plus a few fine-labeled images.

2. Methodology
2.1. Datasets Establishment

First, we produced a BMP image. The data file of TH-1 RSIs was saved from the TIF for-
mat with four channels to the “BMP” image with a resolution of 6000 pixels × 6000 pixels.
Second, the dataset was divided and the images were cut. The 470 tiles of images were
divided into the training set, the validation set, and the testing set according to the nu-
meric ratio of 3:1:1. Since the original image was large in size and took up too much
memory, it could not be trained directly in the network. Therefore, we cut the images into
patches with 480 pixels × 360 pixels. A total of 23,520 images were generated, including
13,924 training images, 4798 validation images, and 4798 testing images. Third, images
were rough-labeled. Labelme [20] was used to roughly mark the cloud area of each image,
generate JSON files, and convert the JSON files into label marked images with the same
label size in batches. The rough-labeled image and its mask are shown in Figure 1, where
the red color represents the cloud, green represents the snow, and black represents the
background. Fourth, some images were fine-labeled. In order to verify the influence of
the fine annotation image and rough annotation image on the training results (a detailed
description is in Section 2.3.2), 310 extra images were randomly selected and then labeled
carefully to generate JSON files with the time of 6 times that rough-labeling costs on each
image, which were then transformed into labeled images as Step 3. Fine-labeled images
had more accurate edge marking (errors less than 5 pixels). The fine-labeled image and
its mask are shown in Figure 2, where label 1 represents the cloud, label 2 represents the
snow, and label 0 represents the background located in the lower right corner of the image.
Fifth, image preprocessing was performed. In Reference [21] it is proved that the network
performance can be effectively improved by data augmentation. In order to enhance the
generalization ability of the network and prevent overfitting, the dataset was augmented.
The augmentation operations include a vertical flip, horizontal flip, contrast change, etc.
The original and augmented images are shown in Figures 3 and 4.
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Figure 2. The coarse-labeled images and their masks. (a) Cloud; (b) mask; (c)snow; (d) mask;
(e) cloud and snow; (f) mask.

Figure 3. Cont.

145



ISPRS Int. J. Geo-Inf. 2021, 10, 462

Figure 3. The fine-labeled images and their masks. (a) Cloud, (b) rough mask, (c) fine mask, (d) snow, (e) rough mask,
(f) fine mask, (g) cloud and snow, (h) rough mask, and (i) fine mask.

Figure 4. Original and augmented images. (a) Original image, (b) vertical flip, (c) horizontal flip, and
(d) contrast change.

2.2. Methods
2.2.1. Network Backbone

How to extract features from a different kind of RSIs properly and effectively is a
key problem. Cloud and snow in RSIs mostly present a planar structure. Their semantic
information is simple, whereas their detailed information is rich, which puts forward a
high demand for the detail extraction ability. For example, with the parameter amount of
22.8 M [14], Xception has a large number of parameters suitable for segmentation tasks
with many kinds of objects, Meanwhile, it requires huge computational resources and
is difficult to train, thus it is obviously not fully suitable for the task of cloud and snow
segmentation. In this paper, Resnet50 backbone was selected as the encoder to extract
features of cloud and snow (as shown in Figure 5). The parameter size of ResNet50 was
only 0.85 M [10] and more direct connections were added in the network. Considering its
advantages such as less parameters, easy training, and fast convergence, it is more suitable
for cloud and snow segmentation compared to Xception.

Figure 5. Network architecture of the proposed method.
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2.2.2. Enhanced Decoder

In encoder–decoder architectures such like DeepLabV3+, the decoder subnet gradually
recovers the spatial information, which is usually not as powerful as the encoder. In this
regard, besides replacing the backbone to the ResNet50, we added skip connections in the
decoder. To be specific, we selected features in the stages 1, stage 3, stage 4, and stage 5 of
the ResNet50 to construct a top–down connection feature map pyramid, which enriched
the semantic representation of low-level features to better utilize the spatial information as
shown in Figure 5. The low-level feature maps with high resolution and high-level feature
maps with rich semantic information were fused, which can quickly construct the decoder
with better semantic information from 4 stages instead of a single stage without obvious
cost increases.

As Figure 6 shows, first the feature map from stage 5 was 2 × upsampled after 1 × 1
convolution, which was added with the output from stage 4, after 1 × 1 convolution too.
The dimension numbers of these stages were all set to 256, ensuring that these feature maps
could be added. Second, the added feature map was 2 × upsampled the second time to be
the same size of the output from stage 3, then the process was repeated to get the fused
feature map with output from stage 1. Third, the feature map of the enhanced decoder
was concatenated with the feature map generated from the ASPP module after the 3 × 3
convolution, batch-normalization, and ELU operations. Finally, the segmentation map was
obtained by 3 × 3 convolution and 4 × upsampling.

Figure 6. Network workflow of the proposed method ( means element-wise sum).

2.2.3. Loss Function

In practice, there are many kinds of clouds with different shapes. Generally, the
proportion of thin clouds and cirrus clouds is less than that of thick clouds. The training
dataset in this paper also reflected the characteristics of less data of thin clouds, cirrus
clouds, and snow. Cross entropy (CE) loss cannot balance the learning of fewer samples.
Its formula is as follows,

CE(pt) = − log(pt) (1)

Through the combination of different parameters, focal loss [17] can solve the problem
of sample imbalance in the semantic segmentation task, which is an improved version of
the CE loss by adding a weight. Its formula is as follows:
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FL(pt) = −(λ− pt)
γ log(pt) (2)

where λ and γ are two hyperparameters and pt is the prediction probability of the label.
(λ− pt) can be regarded as the weight of Equation (1). The paper [17] sets γ = 2 and λ = 1,
when the prediction of a certain category is accurate, that is, close to 1, the value is close to
0. The more inaccurate the prediction is, that is, close to 0, the closer to 1 it will be. For the
samples that are easy to distinguish, the weight corresponding to the loss will be small,
whereas for objects that are difficult to distinguish, their corresponding weight will be
larger in order to retain the loss value of difficult samples and reduce the loss value of
simple samples. We set γ = 2 and λ = 1.

2.2.4. Activation Function

The exponential linear unit (ELU) was proposed in the paper [16], which can make
the mean value of output close to 0, thus accelerating the convergence of the network and
effectively overcome problems such as gradient vanishing. If the output of a node is X, the
output after passing through the ELU layer is illustrated in Equation (3). We adopted ELU
activation after convolution layers.

f (x) =
{

x, x ≥ 0
α(ex − 1), x < 0.

(3)

2.2.5. Evaluation Metrics

Here we used pixel accuracy (PA) and the mean intersection over union (MIOU) as
the evaluation metrics.

1. P.A: the simplest and direct indicator, which only calculates the ratio of the number
of correctly classified pixels to the number of all pixels. The calculation is shown in
Equation (4).

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(4)

2. MIOU: it calculates the coincidence ratio between the intersection and union of two
sets, that is, the intersection union ratio between real segmentation and algorithm
segmentation. This ratio can be redefined as the number of true positive cases (inter-
sections) divided by the total number (including true positive cases, false negative
cases, and false positive cases (Union)). MIOU is calculated by class, and then aver-
aged. The calculation is shown in Equation (5).

MIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii.
(5)

2.3. Experiments
2.3.1. Experimental Platform

The experimental hardware is the Lenovo workstation with 2.1 GHz CPU frequency
of the Intel Xeon processor, and the GPU is NVIDIA Titan XP. We used the Tensorflow +
Keras framework to build deep learning models. The network training was carried out on
the basis of data augmentation. The initial learning rate was set to 3e−4 and the learning
rate decreasing drop was set to 0.1. Using the ELU activation function and Adam [22]
optimizer, the batch size was set to 8 according to the capability of the GPU.

2.3.2. Group Experiment Settings

We set the experiment into two stages numbered from 0 to 4 shown in Table 1. First, the
performance of a different network was evaluated on dataset 1, which included 23,520 im-
ages. Second, another smaller dataset 2 including 6660 rough-labeled images and 310 fine-
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labeled images was chosen from dataset 1 to explore the influence of the quantity and
quality of image labels on the accuracy of cloud and snow segmentation.

Table 1. Experiment setting.

Group Group Number Data Total Train Validation Test

Stage 1
Dataset 1 0 Rough-labeled 23,520 13,924 4798 4798

Stage 2
Dataset 2

1
Rough-labeled

5000
3000 1000 1000

Fine-labeled 0 0 0

2
Rough-labeled

4700
2700 1000 1000

Fine-labeled 0 0 0

3
Rough-labeled

5010
2700 1000 1000

Fine-labeled 310 0 0

4
Rough-labeled

6660
4660 1000 1000

Fine-labeled 0 0 0

3. Results and Analysis
3.1. Training Process and Results

First, we used dataset 1 to train the proposed network, ResNet50, and Xception for
60 epochs, respectively. Figure 7 shows the loss and accuracy comparison between three
networks on the training set and the validation set. The red line represents the proposed
method, while the yellow and green lines represent ResNet50 and Xception, respectively.

Figure 7. Results of three networks on dataset 1. (a) Training loss; (b) training PA; (c) training MIoU; (d) validation loss; (e)
validation PA; (f) validation MIoU.

Second, dataset 2 of 6660 images was randomly chosen from set 1, dividing into
4660 for the training set, 1000 for the validation set, and 1000 for the testing set. Another
310 fine-labeled images were added to the training set. Four group of experiments were
performed to explore the influence of data use strategy on the proposed network. Figure 8
shows the results.
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Figure 8. Results of the proposed network on dataset 2. (a) Training loss; (b) training PA; (c) training MIoU; (d) validation
loss; (e) validation PA; (f) validation MIoU.

3.2. Comparison and Analysis

First, the testing results of the three methods on dataset 1 are shown in Table 2.
In the testing set of 4798 images, the PA of cloud and snow segmentation obtained by
the proposed method was 90.3%, while the PA of Xception, ResNet50, and DANet [23]
were 87.4%, 89.2%, and 88.9% respectively. The MIoU of the proposed method was 81.1%,
exceeding Xception and ResNet50 by 4.2%, 0.6%, and 0.8% respectively. When the proposed
enhanced decoder was used to enhance low-level features, the PA and MIoU of the network
increased obviously.

Table 2. Results of the three networks on dataset 1.

Method PA MIoU

Xception 87.4 76.9
ResNet50 89.2 80.5

DANet 88.9 80.3
ED-CNN 90.3 81.1

Second, four groups of experiments were conducted on dataset 2 to explore the
influence of different data quality and quantity on the proposed network. The results are
shown in Table 3, in which group 1 and group 2 proved that a 10% reduction in the number
of training data will reduce the overall performance. On the contrary, group 2 and group 3
show that a 10% increase of fine-labeled data replacing the reduction had a slight side effect
on performance. In our opinion, adding different features of data when the training set
is not large enough will lead to the above problem. Additionally, on average, it took six
times as long to label a fine-labeled image than making a rough-labeled image. However,
group 4 shows that 4660 rough-labeled images resulted in better results compared to the
other three groups.
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Table 3. Results of a different data use strategy on dataset 2.

Number
Data Use

PA MIoU
Rough Fine Testing

1 3000 0

1000

88.5 79.3
2 2700 0 87.4 78.0
3 2700 310 87.2 77.4
4 4660 0 88.8 79.4

Finally, the qualitative analysis of typical images was conducted to compare the results
of the proposed method with the Otsu and another two networks (Xception and ResNet50).
Figure 9 shows the comparison results of the traditional Otsu method versus the three
networks, and the red part is the cloud while the green part is snow. It can be found that
when the image illumination conditions were not ideal and the underlying surface contrast
was not high, the Otsu created a false alarm in Figure 9b and it could not segment cloud
and snow at the same time (as in Figure 9d). The reason is that the Otsu algorithm does
not consider the neighborhood information in segmentation and is sensitive to noise. In
Figure 9a,c, Xception missed some pixels and got the wrong result in Figure 9b, while
getting it totally wrong in Figure 9d. The performance of the proposed network was
slightly better than that of the ResNet50 in preserving the spatial details.

Figure 9. Testing results of the proposed method on the TH-1 image acquired from different temporal phases.

Furthermore, TH-1 images from different time-phases are chosen to verify the gen-
eralization performance of the proposed method. The results are shown in Figure 10. It
is demonstrated that the proposed method could accurately segment cloud and snow,
showing a better generalization ability.
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Figure 10. Testing results of the proposed method on the TH-1 image acquired from different
temporal phases. (a) Cloud; (b) snow ground.

4. Conclusions
4.1. The Proposed Method for Cloud and Snow Segmentation

In this paper, we proposed an end-to-end cloud and snow segmentation network
for TH-1 RSIs, which combined the advantages of the encoder–decoder architecture and
the enhanced decoder. On the one hand, it avoided the shortcomings of traditional cloud
detection algorithms (such as they are parameter-dependent, time-consuming, and the
scope of application is limited). It achieved the mIoU of 81.1% on 4798 testing images and
reduced the segmenting time (on a single 480× 360 image) to 49.2 ms, which could basically
meet the requirements of image preprocessing. On the other hand, the enhancement of
the decoder proved to be a useful way to improve the segmentation performance through
exploiting features at different encoder stages, which bridges the gap between different
levels of features. Additional experiments show that this method can be used on images
acquired from different sensors, as shown in Figure 11.

Figure 11. Testing results of the proposed method on a Google Earth image.

There is still room for further improvement in the cloud and snow segmentation
method proposed in this paper, such as improving the training accuracy and using ad-
ditional multisource RSIs for transfer learning. Another research direction is to use mul-
tispectral information to solve the problem of distinguishing cloud, fog, and snow in
mixed regions.

4.2. Influence of Different Datasets on Segmentation Performance

Given a certain network, we found that its segmentation performance was positively
related mainly to the number of training images and labels. Specifically, when the training
time was sufficient, more training images led to higher accuracy, whereas a 10% increase
of fine-labeled data replacing the original rough-labeled reduction had a slight side effect
on performance. Considering fewer categories and a lower complexity of cloud and snow
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segmentation, our conclusion was that when the same labeling time was considered, we
achieved better results by only roughly labeling the data. Instead of spending more manual
resources to make fine-labeled masks, roughly labeling more data can lead to the same
segmentation accuracy.

There is a margin for further research on the effects of label quality and quantity, such
as clarifying the pixel error of coarse-marking labels and exploring the effect of error types
and sizes on cloud and snow segmentation results.
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Abstract: The possibility offered by the current technology to collect and store data sets regarding
public places located on the Earth globe is posing new challenges, as far as the integration of these
data sets is concerned. Analysts usually need to perform such an integration from scratch, without
performing complex and long preprocessing or data-cleaning tasks, as well as without performing
training activities that require tedious and long labeling of data; furthermore, analysts now have to
deal with the popular JSON format and with data sets stored within JSON document stores. This
paper demonstrates that a methodology based on soft integration (i.e., data integration performed
through soft computing and fuzzy sets) can now be effectively applied from scratch, through the
J-CO Framework, which is a stand-alone tool devised to process JSON data sets stored within JSON
document stores, possibly by performing soft querying on data sets. Specifically, the paper provides
the following contributions: (1) It presents a soft-computing technique for integrating data sets
describing public places, without any preliminary pre-processing, cleaning and training, which
can be applied from scratch; (2) it presents current capabilities for soft integration of JSON data
sets, provided by the J-CO Framework; (3) it demonstrates the effectiveness of the soft integration
technique; (4) it shows how a stand-alone tool able to support soft computing (as the J-CO Framework)
can be effective and efficient in performing data-integration tasks from scratch.

Keywords: off-line integration of geo-tagged data sets; data sets about public places; soft integration
methodology; effective soft integration through a stand-along tool

1. Introduction

Integrating geo-spatial information has become a crucial task in the current world.
In fact, in the era of Open Data and Big Data, a plethora of sources can provide both
authoritative and non-authoritative data sets concerning places. The situation is further
complicated by the fact that social media provide people with tools for describing places
in a non-controlled way. For example, Facebook provides its users with the functionality
to define a “page”; a specific category of the page describes a “public place”, such as
restaurants, pubs, air dressers, universities, parks and so on; through its API (Application
Programming Interface), pages could be queried, on the basis of their category, location,
coordinates, and so on. Another interesting service is called Google Places: it is a sub-service
of Google Maps; Google Places API can be used to query its corpus to find places of interest, on
the basis of category, location, and so on; this corpus is built by Google Maps by integrating
both authoritative and non-authoritative data, these latter ones given by users through the
social interface provided by Google Maps.

In the current scenario, it is very easy to collect data sets from multiple sources, such
that these data sets provide geo-tagged information about public places. Since current
APIs of social media and Open-Data portals provide data as (possibly) geo-tagged JSON
documents (JSON stands for JavaScript Object Notation, see [1]), JSON document stores
are the natural storage where to save such data sets. Consequently, integrating geo-
tagged data sets describing public places asks for suitable tools, which are able to work
on JSON document stores. This is the reason why at University of Bergamo (Italy), we
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are devising [2–5] an innovative tool, called J-CO Framework, to perform the complex
integration and querying of (possibly geo-tagged) JSON data sets.

Nevertheless, integrating geo-tagged data sets describing public places is not a novel
problem; in general, traditional approaches rely on machine-learning techniques that
require a preliminary training phase. In [6], the problem was addressed in a different
way, because the context of “online” aggregation was considered; a fuzzy relation was
defined, which provides an easy-to-compute metric that is suitable for online integration of
data about public places; the experiments demonstrated that the approach is effective and
comparable, in terms of effectiveness, with off-line classification techniques. However, the
technique presented in [6] was hard-coded within the software prototype; this fact made
us able to include some pre-processing steps on strings that were performed on the fly,
immediately after place descriptors were acquired. However, the approach seems to be
general and could be applied for integrating data sets in an off-line way too, with data
sets stored within JSON stores. Paradoxically, this apparently small change of context
constitutes a significant challenge: in fact, the straightforward solution could be to still
hard-code the technique into a software tool, but this approach is not coherent with the
world of JSON document stores. We think that exploiting a stand-alone tool able to
query JSON stores is preferable, since it is transparent and comprehensible for analysts;
however, a stand-alone tool for processing JSON data sets is necessarily less flexible than
a programming language. Thus, the challenge is the following: is it possible to identify a
stand-alone tool and adapt the integration technique presented in [6] to the case of off-line
integration of geo-tagged JSON data sets from JSON stores?

The current evolution of J-CO-QL+, the query language of the J-CO Framework, pro-
vides constructs for evaluating membership of JSON documents to fuzzy sets [7–9]. Thus,
the straightforward idea of checking the current capability of J-CO-QL+ for integrating
JSON data sets describing public places has come out: specifically, since J-CO-QL+ is able
to deal with complex soft querying of JSON data sets and the technique presented in [6]
for online integration of data sets concerning public places is based on fuzzy relations, we
had the intuition of mixing the two approaches. In other words, given two sets of place
descriptors represented as JSON documents and stored within a JSON document store, in
this paper, we experiment with the application of the fuzzy technique presented in [6] (to
be precise, a slightly evolved version of it) by means of the J-CO Framework, in an off-line
manner. The goal is to verify that this approach is suitable in an off-line context, without
previous training activities and intervention by humans to label data sets for driving the
learning phase (typical of classification techniques). Definitely, we want to demonstrate that
the availability of a stand-alone tool such as the J-CO Framework, which is able to process
JSON data sets by applying soft computing and fuzzy sets, indeed provides analysts with a
powerful tool to address a problem faced by data analysts, in an effective and (possibly)
efficient way.

Summarizing, the contribution of the paper is manifold: (1) Presenting a soft-computing
technique for integrating data sets describing public places, without any preliminary pre-
processing, cleaning and training, which can be applied from scratch; (2) presenting current
capabilities for soft integration of JSON data sets, as they are provided by J-CO-QL+;
(3) demonstrating the effectiveness of the soft integration technique in a harder context than
that considered in [6]; (4) showing how a stand-alone tool able to support soft computing (as
J-CO-QL+) can be effective and efficient in performing data-integration tasks from scratch.

The paper is organized as follows. Section 2 presents relevant related work concerned
with the paper. Section 3 provides a brief introduction to relevant concepts concerning
fuzzy-set theory. Section 4 introduces the main features of the J-CO Framework. Section 5
precisely explains the addressed problem and introduces the methodology we follow,
which relies on the concept of fuzzy relation. Section 6 presents and discusses the script
written by means of J-CO-QL+, which practically applies the methodology presented in
Section 5; each single instruction is explained, in order to illustrate how it behaves and its
contribution within the script. Section 7 reports the results of an experimental evaluation,
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in which we evaluated effectiveness and, marginally, execution times. Finally, Section 8
draws the conclusions and possible future work.

2. Related Work

This paper embraces two different research lines: soft querying on databases in general
and on JSON document stores in particular (Section 2.1), as well as the integration of data
sets describing public places (Section 2.2).

2.1. Soft Querying on Databases

Providing data users with capabilities for flexibly querying databases is an old chal-
lenge. In particular, when selection conditions can rely on vague predicates, queries
become “soft”, meaning that they are tolerant to thresholds (e.g., given a Boolean predicate
price <= 30 to select cheap products, a product whose price is 30.45 is not selected, while
instead it could be of interest) and selected items could be ranked on the basis of their
relevance to the selection condition. Fuzzy sets appeared as the formal framework to
specify soft selection conditions [10]. Since relational-database technology dominated the
panorama of database technology, many works were conducted to propose an extension of
SQL (the standard query language for relational databases) towards soft querying based
on fuzzy sets. Some popular proposals are SQLf [11,12] (for which we can mention an
attempt to implement it [13]) and its extension named SQLf3 (which copes with constructs
introduced in SQL3), as well as FQUERY for Access [14,15] (designed to operate on databases
managed by Microsoft Access). Among all these proposals, SoftSQL [16–18] provided users
with a statement to define non-trivial “linguistic predicates”, to be used in the extended
SELECT statement to select table rows through linguistic predicates. The interested reader
can find various surveys on the topic [19,20]; in particular, the work [21] is a very large
handbook that summarizes all research work on this topic.

The advent of NoSQL (Not only SQL) databases [22], i.e., databases that do not rely on
the classical relational model, has started a novel era in data management. In particular,
the popularity obtained by the JSON (JavaScript Object Notation) format to represent
any kind of complex data is facing the data engineer with the novel (with respect to
relational databases) concept of “JSON document store”, i.e., a database which stores JSON
documents in a native way. The most famous JSON document store is MongoDB [23],
but many others are available (such as CouchDB [24], exploited within the block-chain
platform called HyperLedger Fabric [25]). As a result, this novel scenario is revamping the
topic of soft querying on databases, this time on NoSQL databases in general and on JSON
document stores in particular.

An extension of MQL, the MongoDB query language, is proposed in [26]; in this exten-
sion, called “fMQL”, “fuzzy labels” can be used to query JSON documents, since they are
equivalent to linguistic predicates; unfortunately, the work [26] does not provide any indi-
cation about how to define fuzzy labels. A further limitation of the proposal is that, for each
single JSON document, only one membership degree is implicitly evaluated (in contrast,
J-CO-QL+ allows for dealing with many membership degrees for each single document).

Finally, the work [27] proposes an approach for soft querying JSON documents: the
corpus of JSON documents is preliminarily translated into fuzzy RDF triples [28]; then, the
query is translated into fSPARQL [29], a fuzzy extension of SPARQL [30]. In our opinion,
this approach is not suitable for processing JSON documents, because it does not work on
the original documents, but on an alternative representation of them.

2.2. Integrating Data Sets Describing Public Places

The topic of aggregating information about public places coming from internet sources
has been investigated in the last decade. Many different approaches have been followed.

For example, the work [31] adopts the DAS technique to integrate data about public
places uniquely by exploiting string similarity on names, in particular by comparing the
two strings without and with tokenization.
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The work [32] compares different string-similarity metrics with various machine
learning methods, to solve the problem of toponym matching. The results demonstrate that
machine learning methods (in particular, classifiers) perform better than string-similarity
metrics. Obviously, they cannot be applied from scratch, without preliminary labeling and
training activities. Similarly, the work [33] exploits a neural network to perform “toponym
matching”, i.e., pairing strings that represent the same location.

The work [34] addresses the problem of “geo-spatial data conflation” (the general
name of the problem addressed in this paper) by adopting an entropy-based technique: the
key idea is to use phonetic transcriptions, to compensate mistakes in writing names.

Another work that can be considered as related to this paper is [35], in which “se-
mantic aligning” of heterogeneous geo-spatial data sets (GDs) is addressed. Specifically,
it proposed an efficient similarity matching technique, which integrates various category
systems simultaneously.

Finally, the closest work to this paper is [6]: this work could be considered the natural
evolution of it. Specifically, a complex fuzzy relation is defined to perform public-place
conflation in an online way. A comparison with a famous classification technique (i.e.,
“Random-Forest” classifiers) was performed, showing that the fuzzy approach is effective
in a comparable way. Here, the definition of the fuzzy relation is improved to cope with
not-cleaned names and addresses, as well as it is applied within the context of the J-CO
Framework for the off-line integration of JSON data sets.

3. Basic Notions on Fuzzy Sets

In [36], Zadeh introduced the Fuzzy-Set Theory. It was rapidly clear that it had (and
still has) an enormous potentiality to be successfully applied to many areas of computer
science, such as decision making, control theory, expert systems, artificial intelligence,
natural-language processing, and so on. Here, we report some basic concepts, which
constitute the basis to understand the main contribution of this paper.

Definition 1. Fuzzy Set. Consider a “universe set” U. A fuzzy set (or type-1 fuzzy set) A in U
(A ⊆ U) is a mapping A : U → [0, 1]. The value A(x) is referred to as the membership degree
of the element x to the fuzzy set A. Alternatively, the notation µA(x) ∈ [0, 1] can be used.

Clearly, given an item x ∈ U, if A(x) = 0, this means that x does not belong at all to
A; an intermediate value 0 < A(x) < 1 means that x partially belongs to A (the greater the
value, the higher its degree of membership); if A(x) = 1, this means that the item x fully
belongs to A.

Consequently, a fuzzy set is “empty” if and only if its membership function is identi-
cally zero for each x ∈ U.

Furthermore, given two fuzzy sets A in U and B in U, they are “equal” (denoted as
A = B), if and only if A(x) = B(x) (alternatively, µA(x) = µB(x)) for all x ∈ U.

Operators on fuzzy sets can be easily defined, by extending the classical operators on
traditional sets.

Definition 2. Union, Intersection and Complement. Consider a universe U and two fuzzy sets
A in U and B in U.

The union of two fuzzy sets A and B, denoted as S = A ∪ B , generates a novel fuzzy
set S whose membership function is S(x) = max(A(x), B(x)), for each x ∈ U (alternatively,
µS(x) = max(µA(x), µB(x))).

The Intersection of two fuzzy sets A and B, denoted as I = A ∩ B , generates a novel fuzzy
set S whose membership function is I(x) = min(A(x), B(x)), for each x ∈ U (alternatively,
µI(x) = min(µA(x), µB(x))).

The Complement of a fuzzy set A, denoted as C = A , generates a novel fuzzy set C whose
membership function is C(x) = 1− A(x), for each x ∈ U (alternatively, µC(x) = 1− µA(x)).
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Classical logical operators are mapped onto operators on fuzzy sets: the OR operator is
mapped onto the union; the AND operator is mapped onto the intersection; the NOT operator
is mapped onto the complement.

Fuzzy sets are useful to represent vague concepts, which characterize many real-life
application contexts. For example, if the universe is the set of people, we could think to
divide them into “young” and “old”. However, is a person whose age is 40 actually young
or old? He/she is a little bit young and a little bit old, neither fully young nor fully old.

Various other operators on fuzzy sets can be defined. In the following definition, we
introduce the “weighted aggregation” operator.

Definition 3. Weighted Aggregation. Given a universe U and two fuzzy sets A in U and B in
U, the weighted aggregation operator W = wagβ(A, B) (with β ∈ [0, 1]) generates a new fuzzy
set W whose membership function is defined as W(x) = β× A(x) + (1− β)× B(x) (alternatively,
µW(x) = β× µA(x) + (1− β)× µB(x)).

Example 1. Through the membership degree, it is possible to denote partial membership of an item
x ∈ U to A; this way, vague linguistic concepts can be modeled. For example, given a public place
p, its membership to the PopularPlaces fuzzy set could be partial, denoting a place that is not so
popular; thus, the membership degree measures its degree of popularity, for example on the basis of
the number of likes obtained on social media.

Suppose that on the same universe of public places, we conceive the CheapRestaurants fuzzy
set, whose membership degree denotes the perception that a public place is cheap (this perception
could be induced by analyzing menus published on social media).

We now illustrate how to aggregate the PopularPlaces and the CheapRestaurants fuzzy sets
to obtain interesting places.

• If we are looking for “popular and cheap restaurants”, we could formulate the search as
“PopularPlaces AND CheapRestaurants” (in terms of fuzzy sets, it is
I = PopularPlaces ∩ CheapRestaurants). Clearly, the lower membership degree deter-
mines the actual relevance of a place p.

• If we are looking for “popular or cheap restaurants”, we could formulate the search as
“PopularPlaces OR CheapRestaurants” (in terms of fuzzy sets, it is S = PopularPlaces ∪
CheapRestaurants). Clearly, the higher membership degree determines the actual relevance
of a place p (a place could be not popular, but highly cheap).

• If we are looking for “popular and possibly cheap restaurants”, we could formulate the
search as “70% PopularPlaces AND 30% CheapRestaurants” (in terms of fuzzy sets, it is
W = wag0.7(PopularPlaces, CheapRestaurants)). Clearly, the final membership degree is
dominated by the degree of popularity, but a popular place that is also a cheap restaurant has a
higher membership degree than a popular place that is not at all a cheap restaurant.

The three above-mentioned searches are examples of “soft queries”, where selection conditions
are expressed in a vague way; the resulting membership degree denotes the “relevance” of an item to
the soft query.

Furthermore, notice that when the names given to fuzzy sets linguistically characterize items
in a proper way, these names can be used in soft conditions to linguistically express them.

Definition 4. Fuzzy Relation. Consider two universes U1 and U2. A fuzzy relation R on U1
and U2, is defined as R : U1 ×U2 → [0, 1]. R(x1, x2) ∈ [0, 1], with x1 ∈ U1 and x2 ∈ U2, is the
membership degree of the relation between x1 and x2; the meaning of the relation is linguistically
expressed by the name of the relation.

Through the concept of fuzzy relation, it is possible to model the strength of a relation
between two items x1 ∈ U1 and x2 ∈ U2. Nevertheless, notice that a fuzzy relation is a
particular case of fuzzy set in the universe U = U1 ×U2. Thus, we can reformulate the
relation as R : U → [0, 1], where x = 〈x1, x2〉 ∈ U; consequently, we can write, in an
equivalent way, either R(x1, x2) or R(〈x1, x2〉).
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In this paper, we work on the universe of JSON documents. So, given a document
d ∈ U, the focus will be on the evaluation of its membership degrees to one or more
fuzzy sets.

4. The J-CO Framework

The J-CO Framework is a suit of software tools able to process JSON data sets, in a
way that is independent of the data source. In fact, it is able to obtain data sets both from
JSON document stores (such as MongoDB) and from web sources. It is built around the
J-CO-QL+ language and it contains various tools, as illustrated in Figure 1.

• The J-CO-QL+ Engine actually processes J-CO-QL+ queries. It obtains data to process
from JSON document stores and from web sources; it is able to store results again into
JSON document stores.

• J-CO-DS is a simplified JSON document store [37]: it is designed to provide users
with the capability of storing large single JSON documents (usually, popular JSON
document stores are not able to deal with very-large single JSON documents). J-CO-
DS does not provide any internal computational capability, i.e., it does not provide a
query language: in fact, it is part of the J-CO Framework, in which the component that
provides computational capabilities is the J-CO-QL+ Engine.

• J-CO-UI is the user interface of the framework. It provides users with a graphical
interface to interactively write J-CO-QL+ queries in a step-by-step way; users can also
inspect intermediate results.

Figure 1. The J-CO Framework.

4.1. The Query Language

J-CO-QL+ is the current evolution of the original J-CO-QL (see [3–5]): as its prede-
cessor, it is designed to provide high-level and declarative statements, which does not
require programming skills to be used; by means of them, it is possible to specify complex
procedures (scripts) that are able to retrieve, integrate, transform and save JSON data sets.
With respect to its predecessor, J-CO-QL+ maintains the same approach, but revises syntax
and semantics of statements, to improve their usability and effectiveness. Hereafter, we
present its data model and its execution model.
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4.1.1. Data Model

Here, we present the data model on which J-CO-QL+ relies.

• The basic item to process is a JSON document. A document is represented within a
pair of braces “{” and “}”; it is a sequence of fields separated by commas.
A field is a “name: value” pair, where “name” is the field name, while “value” is the
value of the field; the name is always enclosed within double quotes (e.g., "name");
the value can be a number, a string (enclosed either within double quotes or single
quotes), a Boolean value, a nested sub-document (enclosed within a pair of braces
“{” and “}”) or an array (enclosed within square brackets “[” and “]”, whose items
can be any kind of JSON value, separated by commas).

• J-CO-QL+ gives a special meaning to root-level fields whose name becomes with “~”;
these names are compliant with JSON naming rules, but J-CO-QL+ considers some of
them in a special way, as illustrated hereafter.

– The root-level ~fuzzysets field is used to represent membership degrees of a
d document to fuzzy sets. It works as a “key-value” map: given a field within
~fuzzysets, the field name is the name of the fuzzy set to which the membership
degree has been evaluated; the value is a real number in the range [0, 1], which
denotes the membership degree. This way, given a d document, it is possible to
represent its membership to many fuzzy sets.

– The root-level ~geometry field represents geometries (also called “geo-tagging”)
of spatial entities represented as JSON documents. In this paper, we do not make
use of geometries (the interested reader can refer to [5]).

• A “collection” is an unordered multi-set of heterogeneous documents, i.e., it can
contain multiple copies of the same document.

4.1.2. Execution Model

The execution model is the same presented in previous publications [5,7]. Hereafter,
we briefly summarize it.

• A “query” q = (i1, i2, . . . , in) is a sequence of instructions ij, with 1 ≤ j ≤ n. A query
is a “pipe of instructions”.

• Each instruction ij receives an input “query-process state” sj−1 and generates a new
query-process state sj.

• A “query-process state” sj (with 0 ≤ j ≤ n) is a tuple sj = 〈tc, IR, DBS, FO, JSF〉.
– tc is called “temporary collection”, since it is a collection of JSON documents that

passes through the pipe of instructions, that contains temporary results of the
query process.

– IR is the “Intermediate-Results databaase”, i.e., a database that is exclusive for
the query process, to store intermediate results to be used later.

– DBS is the set of “database descriptors”, used to handle connections with external
JSON document stores.

– FO is the set of “Fuzzy Operators” defined within the query; they allows for
evaluating membership degrees to fuzzy sets (see Section 6.2).

– JSF is the set of user-defined “JavaScript Functions”; they are defined throughout
the query to complete computational capabilities of the query language (see [38]).

• The initial query-process state is s0 = 〈tc : ∅, IR : ∅, DBS : ∅, FO : ∅, JSF : ∅〉. Each
instruction possibly modifies one member of the query-process state.
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5. Problem and Methodology

In this section, we discuss the premises from which the paper has originated and
introduce the problem we addressed as a case study (Section 5.1). Then, we present the
methodological framework, which this work relies on (Section 5.2).

5.1. Premises and Problem

In [6], a fuzzy method for the online aggregation of POIs (Points of Interest) is pre-
sented. The problem addressed in that paper can be summarized as follows: if a web
application has to integrate descriptors of public places (or POIs) caught on the fly from
external services, the decision whether two descriptors actually describe the same public
place or not must be taken in real time: techniques that require off-line work cannot be used.

In [6], it was proved that the technique can obtain very high levels of accuracy, ab-
solutely comparable with off-line techniques; consequently, here, we argue that the same
technique could be effectively adopted to integrate two data sets describing public places, in
an off-line way. In particular, the novel support for soft querying [7] provided by J-CO-QL+

(the query language of the J-CO Framework) has modified the scenario: in fact, the J-CO
Framework is a stand-alone tool designed for manipulating and querying collections of
JSON data sets. Consequently, it is straightforward to explore the possibility to exploit it
for applying the fuzzy technique presented in [6] for integrating two collections of public-
place descriptors coming from two different sources, by adopting a database approach
(querying data by means of a query language) instead of hard coding the methodology
with a programming language.

Hereafter, we present the problem. Then, Section 5.2 presents an improved formulation
of the fuzzy technique presented in [6] that will be applied in J-CO-QL+ scripts (discussed
in Section 6).

Problem 1. Consider two collections of descriptors D1 and D2. A descriptor d (such that either
d ∈ D1 or d ∈ D2) describes a public place; we assume that d is a tuple whose minimal shape is
d = 〈name, address, lat, lon〉, where d.name is the name of the public place, d.address is the raw
address (i.e., as it is provided by the data source, without any pre-processing or cleaning) of the
public place, while d.lat and d.lon are, respectively, the latitude and longitude of the public place.
Depending on the source, these fields could be missing (either null value or zero-length string).

Supposing that descriptors in D1 and D2 are related to the same municipality, we want to
build the collection SP = {p1, p2, . . . } of pairs of descriptors pi : 〈d1,h, d2,k〉 (with d1,h ∈ D1 and
d2,k ∈ D2) such that it is very likely that d1,h and d2,k actually describe the same public place.

5.2. Fuzzy Relation for Matching Public Places

The key contribution of [6] is a fuzzy relation called MatchingPlaces. Given two
descriptors d1 and d2, it is written as MatchingPlaces(d1, d2). Its membership degree
denotes the possibility that d1 and d2 describe the same place. If we consider the universe
P = D1×D2 of pairs pi : 〈d1,h, d2,k〉, through the MatchingPlaces fuzzy relation we want to
build the fuzzy set PRP in P of Possibly-Relevant Pairs for which the membership degree
of pi is PRP(pi) > 0.

To actually decide whether descriptors in a pi pair actually describe the same public
place, a minimum threshold α ∈ [0, 1] is used to focus on Relevant Pairs RP ⊆ PRP, where
RP(pi) ≥ α.

However, given a descriptor d1,h ∈ D1, it could appear several times in RP, because
there might be many relevant pairs in which it is involved. For each d1,h ∈ D1, the subset
RP1,h ⊆ RP is the set of pairs pi ∈ RP such that p1.d1 = d1,h; if RP1,h is not empty, the pair
p1,h ∈ RP1,h such that RP1,h(p1,h) ≥ RP1,h(pi), for all pi ∈ RP1,h, appears in SP (because
the two paired descriptors are actually supposed to describe the same place).

In the remainder of this section, we introduce the complete formal framework.
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5.2.1. Basic Functions and Relations

The MatchingPlaces fuzzy relation is defined by means of some basic functions and
fuzzy relations.

Given two pairs of coordinates, i.e., lat1, lon1 and lat2, lon2 (denoting latitude and
longitude of two points on the earth globe), the Distance function computes the “Geodesic
Distance” [39] between the two points in km; it is denoted as Distance(lat1, lon1, lat2, lon2).
On this basis, it is possible to define the Close membership function that, given a distance
dist (in km) determines whether the distance denotes that two points are close; it is denoted
as Close(dist); an example of a typical membership function for this concept (the same
exploited in [6]) is depicted in Figure 2: notice that, on the basis of the geodesic distance
between the two points, the membership degree is 1 when the distance is between 0 and
50 m; then, it linearly decreases from 50 up to 1000 m. In Section 6.2, we will define a more
sophisticated membership function.

The Close membership function can be used as the basis for defining the ClosePlaces
fuzzy relation: given two place descriptors d1 and d2, ClosePlaces(d1, d2) = Close(Distance
(d1.lat, d1.lon, d2.lat, d2.lon)).

Figure 2. Sample Close membership function taken from [6].

Given two strings s1 and s2, the Similar fuzzy relation is denoted as Similar(s1, s2). As
a membership function, any string-similarity metric whose value is in the range [0, 1] could
be used; in [6], the Jaro-Winkler similarity metric [40–43] was used; here, we still use it, but
in a more sophisticated way (see Section 6.2).

Based on the Similar relation, which is defined on the universe of strings, it is pos-
sible to define two derived relations that are defined on the universe of descriptor pairs
P = D1 × D2.

The SimilarAddress fuzzy relation denotes the extent to which the address fields of the
two descriptors are similar; it is defined as SimilarAddress(d1, d2) = Similar(d1.address,
d2.address).

The SimilarName fuzzy relation denotes the extent to which the name fields of the two
descriptors are similar; it is defined as SimilarName(d1, d2) = Similar(d1.name, d2.name).

5.2.2. The SameLocation Relation

The MatchingPlaces relation is obtained by previously evaluating the SameLocation
fuzzy relation. It is denoted as SameLocation(d1, d2). Its membership function changes,
depending on the fact that fields concerning geographical aspects (i.e., address and coordi-
nates) in d1 and d2 are missing or not. Hereafter, we provide three different definitions of
the SameLocation relation, one for each sub-case to deal with.

• Case A: missing address(es). If d1.address is missing, or d2.address is missing or both,
but the two pairs of coordinates are available, only these latter ones can be used to
evaluate the SameLocation relation.
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• Case B: missing coordinate(s). When one or more coordinates in d1 and d2 are missing,
but both addresses d1.address and d2.address are available, only these latter ones can
be used to evaluate the SameLocation relation.

• Case C: addresses and coordinates are all available. When in d1 and d2 all geo-
graphical fields (i.e., address and coordinates) are available, they all contribute to the
evaluation of the SameLocation relation.

Once the three cases of interest have been identified, it is possible to define the
SameLocation relation.

Definition 5. Case A. Given two descriptors d1 and d2, for which either d1.address or d2.address
or both are missing, while the lat and lon fields are not null in both d1 and d2, the SameLocation
relation is defined as follows:

SameLocation(d1, d2) = ClosePlaces(d1, d2)

i.e., the membership degree of the SameLocation relation coincides with the membership degree of
the ClosePlaces relation.

Definition 6. Case B. Given two descriptors d1 and d2 for which at least one among d1.lat, d1.lon,
d2.lat and d2.lon is null, while both d1.address and d2.address are available, the SameLocation
relation is defined as follows:

SameLocation(d1, d2) = SimilarAddress(d1, d2)

i.e., the membership degree of the SameLocation relation coincides with the membership degree of
the SimilarAddress relation.

Definition 7. Case C. Given two descriptors d1 and d2, for which all the fields d1.address, d1.lat,
d1.lon, d2.address, d2.lat and d2.lon are available, the SameLocation relation is defined as follows:

SameLocation(d1, d2) = wagβgeo (SimilarAddress(d1, d2), ClosePlaces(d1, d2))

i.e., the membership degree of the SameLocation relation is the weighted aggregation of the Similar
Address relation and of the ClosePlaces relation; βgeo ∈ [0, 1] is the weight of the first term (the
similarity between addresses).

In Section 6.3, we use βgeo = 0.55: this way, the similarity between addresses slightly
prevails over closeness; indeed, if two addresses are very similar, their similarity contributes
more than coordinates; this way, the effect of erroneous coordinates that give rise to high
distances is mitigated.

5.2.3. Global MatchingPlaces Relation

At this point, we can define the global MatchingPlaces relation.

Definition 8. Given two descriptors d1 and d2, for which both fields d1.name and d2.name are
available, and for which the SameLocation relation is defined and SameLocation(d1, d2) ≥ αgeo
(with αgeo ∈ [0, 1]), the MatchingPlaces relation is defined as follows:

MatchingPlaces(d1, d2) = wagβname(SimilarName(d1, d2), SameLocation(d1, d2))

i.e., the membership degree of the MatchingPlaces relation is obtained by aggregating the mem-
bership degrees of the SimilarName relation and of the SameLocation relation, by means of the
weighted aggregator with weight βname for similarity of names.

In Section 6.4, we set βname = 0.6: this way, the similarity between names prevails
over the membership degree of the SameLocation relation. The rationale is the following:
given two similar names, they contribute only for the 60%; the remaining 40% is given
by the geographical contribution. However, in order to avoid the two descriptors whose
geographical contribution is not significant, the αgeo threshold is introduced: if the mem-
bership degree of the SameLocation fuzzy relation is less than αgeo, d1 and d2 are no longer
considered eligible to be the same place: two places can have very similar names (even
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identical—imagine two restaurants of the same chain), but if there is the doubt that they
are reasonably close, they could be a wrong pair. In Section 6.3, we set this threshold as
αgeo = 0.4.

The membership degree of the MatchingPlaces fuzzy relation is used to determine
whether a pair actually belongs to the RP set of relevant pairs, i.e., RP(pi) ≥ α means
MatchingPlaces (p1.d1, p1.d2) ≥ α. In Section 6.4, we set this threshold as α = 0.8, be-
cause in our experiments (see Section 7.1), we found this is the threshold that gives the
best effectiveness.

6. Presenting the Script

In this section, we provide the technical contribution of the paper. Specifically, we
demonstrate how the current version of J-CO-QL+ is able to perform the soft integration of
two collections containing JSON documents that describe public places, obtained from two
different data sources.

6.1. Data Set

A MongoDB database called ijgiDb contains two collections of JSON documents: the
first one is called FacebookDescriptors and its documents are descriptors of pages that
present public places mostly located in the area of Manchester (UK); the second collection is
called GoogleDescriptors and its documents are descriptors of places mostly located in the
area of Manchester (UK) as well, obtained from Google Places. The FacebookDescriptors
collection contains 5738 documents, while the GoogleDesciptors collection contains
5214 documents. Figure 3a shows a sample document in the FacebookDescriptors collec-
tion, while Figure 3b reports a sample document in the GoogleDescriptors collection. The
reader can notice that Facebook descriptors clearly distinguish the address (in the fbStreet
field) from the city name (in the fbCity field) from the ZIP code (in the fbZip field). In con-
trast, within a Google Places descriptor, the content of the gAddress field is less clean, because
it contains the city name too. This also demonstrates that we are working on names and
addresses as they are provided by Facebook and Google Places, without any pre-processing
or cleaning (in [6], addresses were cleaned from numbers and urban designations, such as
“street”). Consequently, here, we are addressing a less favorable situation.

{ 

  "id"       : 266, 

  "idLink"    : "1761andLilysBar" 

  "fbName"    : "1761 & Lily's Bar", 

  "fbCity"    : "Manchester", 

  "fbCountry"  : "United Kingdom",  

  "fbLatitude"  : 53.4802297, 

  "fbLongitude" : -2.2435781, 

  "fbStreet"   : "2 Booth Street", 

  "fbZip"    : "M2 4AT", 

} 

(a)

{ 

"gId"      : "ChIJ--wWob6xe0gRBF_8…", 

"gName"     : "Hope Studios" 

"gAddress"   : "52 Newton Street, Ma…", 

"gCity"     : "Manchester", 

"gLatitude"   : 53.4821537, 

"gLongitude"  : -2.2322586, 

} 

(b)

Figure 3. Examples of documents representing place descriptors. (a) Example of document in the
FacebookDescriptors collection. (b) Example of document in the GoogleDescriptors collection.

6.2. Defining Fuzzy Operators

We start presenting the J-CO-QL+ script. The first part of the script is reported in
Listing 1.

The key concept provided by J-CO-QL+ to evaluate membership degrees of JSON
documents is the concept of “fuzzy operator”. Such an operator is called within soft
conditions: given some actual parameters (expressions based on document fields), the
operator returns a membership degree. This degree will be used to evaluate the overall
membership degree of a document to a specific fuzzy set.
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Listing 1. J-CO-QL+ script: fuzzy operators.

1. CREATE FUZZY OPERATOR Close 
PARAMETERS 

 distance TYPE Float 

PRECONDITION  

distance >= 0 

EVALUATE  

distance 

POLYLINE 

 [ (0.00, 1.00), (0.05, 1.00), (0.20, 0.50), (0.60, 0.10), (1.00, 0.00)  ]; 

 

2. CREATE FUZZY OPERATOR Similar 
PARAMETERS 

 st1 TYPE String, 

 st2 TYPE String 

EVALUATE  

JARO_WINKLER_SIMILARITY(st1, st2) 

POLYLINE  

 [ (0.00, 0.00), (0.60, 0.40), (0.70, 0.80), (0.80, 1.00), (1.00, 1.00)  ]; 

 

3. CREATE FUZZY OPERATOR WeightedAggregationBeta 
PARAMETERS 

 f1   TYPE Float, 

 f2   TYPE Float, 

 beta TYPE Float 

PRECONDITION  

f1   IN_RANGE [0, 1] AND 

 f2   IN_RANGE [0, 1] AND 

 beta IN_RANGE [0, 1] 

EVALUATE  

f1*beta + f2*(1-beta) 

POLYLINE  

 [ (0.00, 0.00), (1.00, 1.00) ]; 

6.2.1. The Close Fuzzy Operator

The instruction on line 1 of the J-CO-QL+ script in Listing 1 defines the Close fuzzy
operator: it evaluates the degree of closeness of two places, on the basis of the distance
between them. Hereafter, we describe the instruction in details.

• The PARAMETERS clause defines the formal parameters of the operator. Specifically,
only the distance parameter is defined.

• The PRECONDITION clause defines a condition on the parameters: if the condition is
not satisfied, the evaluation of the fuzzy operator stops and an error signal is raised.
Specifically, the precondition says that the distance must be no less than 0.

• The EVALUATE clause specifies a mathematical expression on the parameters, whose
value is used as x-axis coordinate against the membership function defined by the
subsequent POLYLINE clause. In the Close fuzzy operator, the expression simply takes
the value of the distance parameter.

• The POLYLINE clause specifies the membership function actually used to compute
the membership value. The function is defined as a polyline, by a sequence of pairs
(xi, yi), where xi can be any real value, while yi ∈ [0, 1]; given two consecutive points
(xi, yi) and (xi+1, yi+1), it must be xi < xi+1. Each pair of consecutive points defines
a segment. Given an x value, if it is between x1 and xn (in the case of n points),
the corresponding y value is considered as a membership degree; if x < x1, the
membership degree is y1; if x > xn, the membership degree is yn.

Figure 4a reports the polyline defined for the Close fuzzy operator. Notice that it is
not the same defined in [6] (reported in Figure 2): in fact, we opted for a function that
immediately penalizes distances that are between 50 m and 600 m, because two places
in the same neighborhood are not perceived as very close when their distance becomes
greater than 100 m.
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(a) (b) (c)

Figure 4. Membership functions for the fuzzy operators in Listing 1. (a) Close; (b) Similar;
(c) WeightedAggregationBeta.

6.2.2. The Similar Fuzzy Operator

The instruction on line 2 of the J-CO-QL+ script in Listing 1 creates the Similar fuzzy
operator. Its goal is to evaluate a membership degree on the basis of the similarity degree
of two strings. The operator is described in detail hereafter.

• The operator receives two parameters, called st1 and st2; they are the two strings
to compare.

• No precondition is specified: in the case of empty or null strings, the operator returns 0
as membership degree, because the similarity degree is 0.

• The EVALUATE clause calls the built-in (i.e., provided by J-CO-QL+) function named
JARO_WINKLER_SIMILARITY, to obtain the similarity degree of the two strings. The
similarity degree is a value in the range [0, 1]. In the case of null or zero-length strings,
the returned similarity degree is 0.

• The POLYLINE clause defines the membership function depicted in Figure 4b. Notice
that it penalizes similarity degrees that are less than 0.7, while membership degrees
that are greater than 0.8 are rewarded: this is due to the sometimes bizarre behavior
of the Jaro-Winkler similarity, that returns high similarity degrees even when strings
only shares some characters, but are not actually similar; furthermore, for strings such
as “The Gray Horse” and “GrayHorse”, the similarity degree is around 0.7, although
they clearly have to be considered very similar. With this shape, we try to compensate
the behavior of the Jaro-Winkler similarity, so as to deal with raw addresses and names
(i.e., not cleaned from articles, numbers, punctuation, and so on).

6.2.3. The WeightedAggregationBeta Fuzzy Operator

The instruction on line 3 of the J-CO-QL+ script in Listing 1 defines the third fuzzy
operator. This is called WeightedAggregationBeta and its goal is to perform the “weighted
aggregation” wagβ (see Definition 3). In fact, J-CO-QL+ does not provide such an operator
in its language; through the WeightedAggregationBeta fuzzy operator, we show how to
introduce novel fuzzy concepts. The fuzzy operator is described in detail hereafter.

• The operator receives three parameters: f1 and f2 are the two values in the range [0, 1]
to aggregate, while beta is the aggregation weight (in the range [0, 1] too) of f1 with
respect to f2.

• The PRECONDITION clause ensures that the actual values of the three parameters are in
the range [0, 1] (notice the IN_RANGE predicate).

• The EVALUATE clause actually performs the weighted aggregation.
• The POLYLINE clause defines a very simple membership function, which is reported in

Figure 4c: it is a straight segment from the point (0, 0) to the point (1, 1); this way, the
value computed by the EVALUATE clause is returned, as it is, as membership degree.

6.3. Retrieving and Pairing Descriptors

Once the three fuzzy operators are defined, it is time to start working on the data set.
This is conducted by the second part of the J-CO-QL+ script, which is reported in Listing 2.
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Listing 2. J-CO-QL+ script: retrieving and joining collections.

4. USE DB ijgiDb 
   ON SERVER MongoDB 'http://127.0.0.1:27017'; 

 

5. JOIN OF COLLECTIONS  
   FacebookDescriptors@ijgiDb AS f, GoogleDescriptors@ijgiDb AS g  

  CASE 

   // Case A: missing address(es) 

   WHERE ( FIELD  .f.fbStreet IS NULL OR  

       FIELD  .g.gAddress IS NULL OR 

           .f.fbStreet = ""    OR 

           .g.gAddress = ""   )   AND       

FIELD .f.fbLatitude IS NOT NULL AND  

      FIELD .f.fbLongitude IS NOT NULL AND  

      FIELD .g.gLatitude  IS NOT NULL AND  

      FIELD .g.gLongitude IS NOT NULL  

    GENERATE 

     CHECK FOR 

FUZZY SET ClosePlaces   USING  

Close ( GEODESIC_DISTANCE( .f.fbLatitude, .f.fbLongitude,  

.g.gLatitude,  .g.gLongitude ) ), 

      FUZZY SET SameLocation  USING ClosePlaces 

     ALPHACUT 0.4 ON SameLocation 

          

   // Case B: missing coordinate(s) 

   WHERE  FIELD  .f.fbStreet   IS NOT NULL AND  

       FIELD  .g.gAddress   IS NOT NULL AND 

           .f.fbStreet   != ""     AND 

           .g.gAddress   != ""     AND  

       ( FIELD .f.fbLatitude IS NULL OR  

        FIELD .f.fbLongitude IS NULL OR 

        FIELD .g.gLatitude  IS NULL OR  

        FIELD .g.gLongitude IS NULL ) 

     GENERATE 

      CHECK FOR  

FUZZY SET SimilarAddress  USING Similar (.f.fbStreet, .g.gAddress),  

       FUZZY SET SameLocation   USING SimilarAddress 

      ALPHACUT 0.4 ON SameLocation 

 

   // Case C: addresses and coordinates all available 

   WHERE  FIELD .f.fbStreet   IS NOT NULL AND 

       FIELD .g.gAddress   IS NOT NULL AND 

           .f.fbStreet   != ""     AND 

           .g.gAddress   != ""     AND  

       FIELD .f.fbLatitude IS NOT NULL AND  

       FIELD .f.fbLongitude IS NOT NULL AND  

       FIELD .g.gLatitude  IS NOT NULL AND  

       FIELD .g.gLongitude IS NOT NULL  

    GENERATE 

     CHECK FOR  

FUZZY SET SimilarAddress  USING Similar ( .f.fbStreet, .g.gAddress ),  

      FUZZY SET ClosePlaces    USING  

Close ( GEODESIC_DISTANCE( .f.fbLatitude, .f.fbLongitude, 

                    .g.gLatitude,  .g.gLongitude ) ), 

FUZZY SET SameLocation   USING  

WeightedAggregationBeta(  MEMBERSHIP_OF(SimilarAddress),  

MEMBERSHIP_OF(ClosePlaces), 0.55 ) 

     ALPHACUT 0.4 ON SameLocation; 

The instruction on line 4 connects the query process to the database. After this
instruction, it will be possible to access the ijgiDb database to retrieve and store collections.

The JOIN OF COLLECTIONS instruction on line 5 retrieves the two source collections
(called FacebookDescriptors and GoogleDescriptors) and creates all possible pairs of
documents contained in the two collections. Then, the subsequent CASE clause evaluates a
pool of conditions on these pairs to possibly evaluate fuzzy sets on the actually-interesting
pairs and discards the others. The instruction is explained in detail hereafter.

• The instruction retrieves the FacebookDescriptors collection from the ijgiDb
database and aliases it as f; similarly, it retrieves the GoogleDescriptors collection
from the same database and aliases it as g.
For each f document from the f collection and for each g document from the g
collection, a new d document is created. This document contains two fields: the first
one is called f and its value is the source f document; the second one is called g
and its value is the source g document. The d document is further processed by the
subsequent CASE clause.
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Figure 5 reports an example of d document, which is obtained by joining the two
sample documents reported in Figure 3; notice the names of the root-level fields.

{ 

"f" : {   

"id"       : 266, 

"idLink"    : "1761andLilysBar" 

"fbName"    : "1761 & Lily's Bar", 

"fbCity"    : "Manchester", 

"fbCountry"  : "United Kingdom",  

"fbLatitude"  : 53.4802297, 

"fbLongitude" : -2.2435781, 

"fbStreet"   : "2 Booth Street", 

"fbZip"    : "M2 4AT", 

}, 

"g"  : { 

"gId"      : "ChIJ--wWob6xe0gRBF_8…", 

"gName"     : "Hope Studios" 

"gAddress"   : "52 Newton Street, Ma…", 

"gCity"     : "Manchester", 

"gLatitude"   : 53.4821537, 

"gLongitude"  : -2.2322586, 

} 

} 

Figure 5. Example of document generated by the JOIN OF COLLECTIONS instruction on line 5 of the
J-CO-QL+ script, before the CASE clause.

• The CASE clause evaluates a pool of selection conditions expressed within a WHERE
clause; if a d document is selected by a condition, it is processed according to the
subsequent sub-clauses. Many WHERE branches are possible: a d document is processed
by the branch associated with the first WHERE condition that it satisfies; if no condition
is satisfied, d is discarded (it will not appear in the output temporary collection).
Specifically, the CASE clause in the instruction on line 5 in Listing 2 contains three WHERE
branches: each of them deals with one of the three situations considered for defining
the SameLocation relation by Definitions 5–7. Hereafter, we separately discuss the
behavior of the three branches.

– The first WHERE branch deals with the case A of the SameLocation fuzzy relation,
defined in Definition 5. The condition is true if either the value for the fbStreet
field is missing or the value for the gAddress field is missing or both are miss-
ing, and all coordinates are available. If a d document meets the condition, the
GENERATE block further processes d through the CHECK FOR clause, whose goal is
to evaluate the membership degrees of d to fuzzy sets.
Specifically, two FUZZY SET branches are present: the former evaluates the
ClosePlaces fuzzy set, the latter evaluates the SameLocation fuzzy set.
The membership degree to the ClosePlaces fuzzy set is obtained by the associ-
ated USING clause: this is a “soft condition”, in which fuzzy operators (such as
those defined in Section 6.2) and fuzzy-set names can be composed by the usual
(fuzzy) logical operators AND, OR and NOT; the resulting membership degree is the
membership degree to the evaluated fuzzy set. If this is the first membership
degree evaluated for d, then d does not have the special ~fuzzysets field: in this
case, the field is added and within it only one single field is present, having the
same name of the evaluated fuzzy set, whose value is the computed membership
degree. In contrast, if the ~fuzzysets field is already present, it is extended with
one extra internal field, describing the membership degree to the new evaluated
fuzzy set.
Specifically, the first branch evaluates the membership degree to the ClosePlaces
fuzzy set, by means of the Close fuzzy operator (see Listing 1), which is called pass-
ing the geodesic distance computed by the GEODESIC_DISTANCE built-in function.
The second FUZZY SET branch evaluates the membership degree to the
SameLocation fuzzy set, by assuming that it coincides with the ClosePlaces
fuzzy set (see Definition 5). Finally, the ALPHACUT clause discards the d doc-
ument from the output temporary collection if its membership degree to the
SameLocation fuzzy set is less than 0.4; remember that this is the αgeo threshold
mentioned within Definition 8. Figure 6a reports a sample document generated
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by the first WHERE branch; notice the presence of the ~fuzzysets field and its
inner fields.

– The second WHERE branch deals with case B of the SameLocation relation (see
Definition 6), i.e., at least one coordinate is null but both addresses are present.
In this case (see Definition 6), the membership degree to the SimilarAddress
fuzzy set is evaluated by means of the Similar fuzzy operator, which evaluates
the fuzzy similarity relation between two strings (in this case, the two addresses).
Then, as defined by Definition 6, the second FUZZY SET branch tells that the
SameLocation fuzzy set coincides with the SimilarAddress fuzzy set. Again, the
ALPHACUT clause puts the d document into the output temporary collection if the
membership degree to the SameLocation fuzzy set is no less than 0.4 (the αgeo
threshold in Definition 8). Figure 6b shows a sample document generated by the
second WHERE branch.

– The third WHERE branch deals with case C of the SameLocation fuzzy relation
(see Definition 7), i.e., both all addresses and all coordinates are available. Con-
sequently, the membership degrees to three different fuzzy sets are evaluated:
the first one is the SimilarAddress fuzzy set, by means of the Similar fuzzy
operator applied to addresses; the second one is the ClosePlaces fuzzy set, by
means of the Close fuzzy operator applied to the geodesic distance between the
two points.
The third FUZZY SET branch evaluates the membership degree to the fuzzy
set named SameLocation: according to Definition 7, it is obtained by calling
the WeightedAggregationBeta fuzzy operator, whose goal is to perform the
weighted aggregation: it receives the two values (in the range [0, 1]) to aggregate
and the β weight.
The USING soft condition calls the WeightedAggregationBeta fuzzy operator,
passing the membership values to the SimilarAddress fuzzy set and to the
ClosePlaces fuzzy set, which are obtained by means of the MEMBERSHIP_OF built-
in function (that extracts the membership degree from within the ~fuzzysets
field). The third parameter is the constant value 0.55: thisis the βgeo weight pre-
sented and discussed in Definition 7. The ALPHACUT clause discards the evaluated
document if its membership degree to the SameLocation fuzzy set is less than 0.4
(the αgeo threshold mentioned in Definition 8).
Figure 6c reports a sample document generated by the third branch; notice that
the ~fuzzysets field has three inner fields.

{ 

"f" : { 

"id"    : 233, 

"idLink" :"pages/Mustaphs/16487095…", 

"fbName"    : "Mustaph's", 

"fbStreet"   : null, 

"fbZip"     : "SK3 9", 

"fbCity"    : "Stockport", 

"fbCountry"  : "United Kingdom", 

"fbLatitude"  : 53.40252971, 

"fbLongitude" : -2.163522497 

}, 

"g" : { 

"gId"   : "ChIJ-ZU5iW-ze0gR7YewCI-…", 

"gName"   : "Mustaphs", 

"gAddress"  : "11 Castle Street, St…", 

"gCity"    : "Stockport", 

"gLatitude" : 53.4024049, 

"gLongitude" : -2.1636548, 

}, 

"~fuzzysets"  : { 

"ClosePlaces"   : 1.0, 

"SameLocation"   : 1.0 

} 

} 

(a)

{ 

"f" : { 

"id"    : 528, 

"idLink" : "bettereastmanchester", 

"fbName" : "East Manchester Leisure…", 

"fbStreet"   : "189 Grey Mare Lane", 

"fbZip"     : "M11 3ND", 

"fbCity"    : "Manchester ", 

"fbCountry"   : "", 

"fbLatitude"  : null, 

"fbLongitude" : null 

}, 

"g" : { 

"gId"   : "ChIJAdYbKW2xe0gRCVJcmIJ…", 

"gName" : "East Manchester Leisure…", 

"gAddress"  : "189 Grey Mare Lane,…", 

"gCity"    : "Manchester", 

"gLatitude" : 53.4775529, 

"gLongitude" : -2.1955198 

},  

"~fuzzysets" : { 

"SameLocation"   : 1.0, 

"SimilarAddress" : 1.0 

  } 

} 

(b)

{ 

 "f" : { 

"id"       : 4193, 

"idLink"    : "FoodCycle-Manchest…", 

"fbName"  : "FoodCycle Manchester", 

   "fbStreet" : "The Roby, 307 Dicken…”, 

"fbCity"    : "Manchester", 

"fbCountry"   : "United Kingdom", 

"fbZip"     : "M13 0NG", 

"fbLatitude"  : 53.4554234, 

"fbLongitude" : -2.205004 

}, 

  "g"  : { 

"gId" : "ChIJ3T0-vdWze0gRBPlxJfafcnY", 

"gName"   : "FoodCycle Manchester", 

"gAddress" : "307 Dickenson Road, M…", 

"gCity"   : "Manchester", 

"gLatitude"  : 53.4552679, 

"gLongitude"  : -2.205912 

}, 

"~fuzzysets"  : { 

"ClosePlaces"   : 0.958144669398663, 

"SameLocation"   : 0.81180003253166, 

"SimilarAddress"  : 0.692063511458657 

} 

} 

(c)

Figure 6. Examples of documents generated by the JOIN OF COLLECTIONS instruction on line 5.
(a) Example for Case A. (b) Example for Case B. (c) Example for Case C.

The temporary collection produced by the instruction on line 5 of Listing 2 contains het-
erogeneous documents, as far as the structure of the ~fuzzysets field is concerned, but all
have the inner SameLocation field, denoting the membership degree to the SameLocation
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fuzzy set; it will be used in the next instruction, to evaluate the membership degree to the
MatchingPlaces fuzzy set.

Furthermore, notice that SameLocation, ClosePlaces and SimilarAddresses are
called “fuzzy sets”, while they were defined in Section 5 as “fuzzy relations”: this is not a
mistake, but the consequence of the fact that JSON documents represent pairs of descriptors;
consequently, fuzzy relation on pairs are translated into fuzzy sets on JSON documents.

6.4. Relevant Pairs

All documents contained in the temporary collection produced by the instruction on
line 5 (Listing 2) have the membership degree to the SameLocation fuzzy set no less than
αgeo = 0.4, as required by Definition 8. The FILTER instruction on line 6 in Listing 3 actually
evaluates the membership degree to the MatchingPlaces fuzzy set, which corresponds
to the MatchingPlces relation defined in Definition 8. The FILTER instruction on line 6 is
described in detail hereafter.

• The FILTER statement takes the temporary collection as input and generates a new
temporary collection by applying a CASE clause. The behavior of this clause is the
same as in the JOIN OF COLLECTIONS statement.

• On line 6, only one WHERE branch is present: if a document does not meet the selection
condition, it is discarded from the output temporary collection.
Specifically, the selection condition selects those documents having both the names in
the two paired descriptors, so as to evaluate the membership degree to the SimilarName
fuzzy set.

• The first FUZZY SET branch in the CHECK FOR clause evaluates the membership degree
to the SimilarName fuzzy set; again, in the USING soft condition, the Similar fuzzy
operator (see Listing 1) is called, this time passing names (instead of addresses).

• The second FUZZY SET branch can finally evaluate the membership degree to the
MatchingPlaces fuzzy set, corresponding to the MatchingPlaces fuzzy relation de-
fined by Definition 8. Remember that the fuzzy relations named SameLocation and
SimilarName are aggregated by means of the weighted aggregation operator. In
Listing 1, we defined the WeightedAggregationBeta fuzzy operator, which here is
used to aggregate the SimilarName fuzzy set and the SameLocation fuzzy set; the
SimilarName fuzzy set weights for the 60% of the final membership degree (this is the
βname weight mentioned in Definition 8), so that similarity between names moderately
prevails over geographical similarity (whose goal is to cofirm that two places having
similar or identical names are actually the same place). The resulting membership
degree becomes the membership degree to the MatchingPlaces fuzzy set.
The three sample documents reported in Figure 6 become as reported in Figure 7;
notice the presence of the MatchingPlaces inner field within the ~fuzzysets field.

Listing 3. J-CO-QL+ script: matching places.

6. FILTER  
  CASE 

   WHERE  WITH .f.fbName, .g.gName  AND 

       KNOWN FUZZY SETS SameLocation  

    GENERATE  

     CHECK FOR  

      FUZZY SET SimilarName   USING Similar( .f.fbName, .g.gName ), 

      FUZZY SET MatchingPlaces  USING  

WeightedAggregationBeta ( MEMBERSHIP_OF (SimilarName),   

MEMBERSHIP_OF (SameLocation),  0.60) 

     ALPHACUT 0.8 ON MatchingPlaces 

     BUILD { 

      .f  : .f, 

      .g  : .g, 

      .rank : MEMBERSHIP_OF(MatchingPlaces)  } 

     DEFUZZIFY; 

 

7. SAVE AS RelevantPairs@ijgiDb; 
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{ 

"f" : { 

"id"    : 233, 

"idLink" :"pages/Mustaphs/16487095…", 

"fbName"    : "Mustaph's", 

"fbStreet"   : null, 

"fbZip"     : "SK3 9", 

"fbCity"    : "Stockport", 

"fbCountry"  : "United Kingdom", 

"fbLatitude"  : 53.40252971, 

"fbLongitude" : -2.163522497 

}, 

"g" : { 

"gId"   : "ChIJ-ZU5iW-ze0gR7YewCI-…", 

"gName" : "Mustaphs", 

"gAddress"  : "11 Castle Street, St…", 

"gCity"    : "Stockport", 

"gLatitude" : 53.4024049, 

"gLongitude" : -2.1636548, 

}, 

"~fuzzysets"  : { 

"ClosePlaces"   : 1.0, 

"MatchingPlaces" : 1.0, 

"SameLocation"   : 1.0, 

"SimilarName"   : 1.0 

} 

} 

(a)

{ 

"f" : { 

"id"    : 528, 

"idLink" : "bettereastmanchester", 

"fbName" : "East Manchester Leisure…", 

"fbStreet"   : "189 Grey Mare Lane", 

"fbZip"     : "M11 3ND", 

"fbCity"    : "Manchester ", 

"fbCountry"  : "", 

"fbLatitude"  : null, 

"fbLongitude" : null 

}, 

"g" : { 

"gId"   : "ChIJAdYbKW2xe0gRCVJcmIJ…", 

"gName" : "East Manchester Leisure…", 

"gAddress"  : "189 Grey Mare Lane,…", 

"gCity"    : "Manchester", 

"gLatitude" : 53.4775529, 

"gLongitude" : -2.1955198 

},  

"~fuzzysets" : { 

   "MatchingPlaces" : 1.0, 

"SameLocation"   : 1.0, 

"SimilarAddress" : 1.0, 

"SimilarName"   : 1.0 

} 

} 

(b)

{ 

 "f" : { 

"id"       : 4193, 

"idLink"    : "FoodCycle-Manchest…", 

"fbName"  : "FoodCycle Manchester", 

   "fbStreet" : "The Roby, 307 Dicken…”, 

"fbCity"    : "Manchester", 

"fbCountry"   : "United Kingdom", 

"fbZip"     : "M13 0NG", 

"fbLatitude"  : 53.4554234, 

"fbLongitude" : -2.205004 

}, 

  "g"  : { 

"gId" : "ChIJ3T0-vdWze0gRBPlxJfafcnY", 

"gName"   : "FoodCycle Manchester", 

"gAddress" : "307 Dickenson Road, M…", 

"gCity"   : "Manchester", 

"gLatitude"   : 53.4552679, 

"gLongitude"  : -2.205912 

}, 

"~fuzzysets"  : { 

"ClosePlaces"   : 0.958144669398663, 

"MatchingPlaces" : 0.924720013012664, 

"SameLocation"   : 0.81180003253166, 

"SimilarAddress" : 0.692063511458657, 

"SimilarName"   : 1.0 

} 

} 

(c)

Figure 7. Examples of documents transformed by the FILTER instruction on line 6 before the BUILD
section. (a) Example for Case A. (b) Example for Case B. (c) Example for Case C.

• At this point, only relevant pairs must be kept, i.e., those pairs whose membership
degree to the MatchingPlaces fuzzy set is no less than α = 0.8. The ALPHACUT clause
does that.

• The final BUILD section (which is optional, this is why it was not present in the JOIN OF
COLLECTIONS instruction on line 5 in Listing 2) restructures all survived documents.
Specifically, a novel rank field is added, whose value is the membership degree to the
MatchingPlaces fuzzy set. This field is necessary, because the subsequent DEFUZZIFY
option discards the ~fuzzysets field (as a consequence, documents are “defuzzified”).
Figure 8 reports the final state of the three sample documents reported in Figure 7.
Notice the presence of the rank field, whose value is the membership degree of the
MatchingPlaces fuzzy set.

{ 

"f"   : { 

"id"    : 233, 

"idLink" :"pages/Mustaphs/16487095…", 

"fbName"    : "Mustaph's", 

"fbStreet"   : null, 

"fbZip"     : "SK3 9", 

"fbCity"    : "Stockport", 

"fbCountry"  : "United Kingdom", 

"fbLatitude"  : 53.40252971, 

"fbLongitude" : -2.163522497 

}, 

"g"   : { 

"gId"   : "ChIJ-ZU5iW-ze0gR7YewCI-…", 

"gName" : "Mustaphs", 

"gAddress"  : "11 Castle Street, St…", 

"gCity"    : "Stockport", 

"gLatitude" : 53.4024049, 

"gLongitude" : -2.1636548, 

}, 

"rank" : 1.0, 

} 

(a)

{ 

"f"   : { 

"id"    : 528, 

"idLink" : "bettereastmanchester", 

"fbName" : "East Manchester Leisure…", 

"fbStreet"   : "189 Grey Mare Lane", 

"fbZip"     : "M11 3ND", 

"fbCity"     : "Manchester ", 

"fbCountry"  : "", 

"fbLatitude"  : null, 

"fbLongitude" : null 

}, 

"g"   : { 

"gId"   : "ChIJAdYbKW2xe0gRCVJcmIJ…", 

"gName" : "East Manchester Leisure…", 

"gAddress"  : "189 Grey Mare Lane,…", 

"gCity"    : "Manchester", 

"gLatitude" : 53.4775529, 

"gLongitude" : -2.1955198 

},  

"rank" : 1.0, 

} 

(b)

{ 

 "f"   : { 

"id"       : 4193, 

"idLink"    : "FoodCycle-Manchest…", 

"fbName"  : "FoodCycle Manchester", 

   "fbStreet" : "The Roby, 307 Dicken…”, 

"fbCity"    : "Manchester", 

"fbCountry"   : "United Kingdom", 

"fbZip"     : "M13 0NG", 

"fbLatitude"  : 53.4554234, 

"fbLongitude" : -2.205004 

}, 

  "g"   : { 

"gId" : "ChIJ3T0-vdWze0gRBPlxJfafcnY", 

"gName"   : "FoodCycle Manchester", 

"gAddress" : "307 Dickenson Road, M…", 

"gCity"   : "Manchester", 

"gLatitude"   : 53.4552679, 

"gLongitude"  : -2.205912 

}, 

"rank" : 0.924720013012664 

} 

(c)

Figure 8. Examples of documents generated by the FILTER instruction on line 6. (a) Example for Case
A. (b) Example for Case B. (c) Example for Case C.

The instruction on line 7 in Listing 3 saves the temporary collection into the ijgiDb
database, with name RelevantPairs. Its documents contain the most promising pairs of
descriptors (remember the RP set mentioned in Section 5.2), but it could happen that, e.g.,
the same Google Places descriptor is associated with more than one Facebook descriptor.
Clearly, it is the case to choose the pair having the highest rank (i.e., building the final SP
set mentioned in Section 5.2). This is discussed in Section 6.5.

6.5. Choosing the Best Pairs

The last part of the J-CO-QL+ script is reported in Listing 4. It actually chooses the
best pairs that involves each single Google Places descriptor obtained by line 6 in Listing 3.
Indeed, the original J-CO-QL language (from which J-CO-QL+ derives) was designed to
cope with this kind of task too (see [3,4]). Hereafter, we briefly describe this last part of
the script.
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• The GET COLLECTION instruction on line 8 again obtains the RelevantPairs collection
from the database, again making it the temporary collection.

• The GROUP instruction on line 9 groups documents in the temporary collection, on
the basis of the gId field, which is the identifier of Google Places descriptors. For
each group, a novel document is generated into the output collection, such that it
has the gId field and an array called gGroup, in which all grouped documents are
reported. This array is sorted in reverse order of value of the rank field within grouped
documents. Figure 9a reports an example of the grouped document.

• The EXPAND instruction on line 10 unnests again all grouped documents. For each
output document, the gPair field is added to the global ones (apart from the expanded
array); this new field contains two inner fields: the item field contains the unnested
document; the position field denotes the position occupied by the unnested item in
the gGroup array.
As a result, the temporary collection generated by line 10 contains as many documents
in the RankedPairs collection, but now they are tagged with the relative order for
Google Places descriptors on the basis of the rank field. Figure 9b reports an example
of an unnested document.

• The FILTER instruction on line 11 actually selects only documents that previously
occupied the first position in their group (based on the reverse order of rank, they are
the ones with the highest rank). The BUILD section builds the same structure again, as
in the RelevantPairs collection. Figure 9c reports an example of resulting document.

• Finally (on line 12) the last temporary collection is saved into the ijgiDb database
with name SamePlaces, which is the desired output of the process.

{ 

"g" : { 

"gId" : "ChIJH7MYbLKze0gRVIeX3GGlHFQ" 

}, 

"gGroup" : [  

{ 

"rank" : 1.0, 

"f" : { 

"id"       : 1773, 

"idLink"    : "TheFootparlour", 

"fbName"    : "The Footparlour", 

"fbCity"     : "Manchester", 

"fbCountry"   : "United Kingdom", 

"fbStreet"   : "448 Burnage Lane", 

"fbZip"     : "M19 1LH", 

"fbLatitude"  : 53.42517, 

"fbLongitude" : -2.20296 

}, 

"g" : { 

"gId" :"ChIJH7MYbLKze0gRVIeX3GGlHFQ", 

"gName"     : "The Foot Parlour", 

"gAddress"   : "448 Burnage Lan…", 

"gCity"     : "Manchester", 

"gLatitude"   : 53.4252831, 

"gLongitude"  : -2.2031884 

} 

},  

{ 

"rank" : 0.810648074150466, 

"f" : { 

"id"      : 1996, 

"idLink"    : "burnageM19", 

"fbName"    : "The Food Box", 

"fbCity"    : "Manchester", 

"fbCountry"   : "United Kingdom", 

"fbStreet"   : "227 Burnage Lane", 

"fbZip"    : "M19 1FN", 

"fbLatitude"  : 53.43231411, 

"fbLongitude" : -2.200215987 

}, 

"g" : { 

"gId" :"ChIJH7MYbLKze0gRVIeX3GGlHFQ", 

"gName"     : "The Foot Parlour", 

"gAddress"   : "448 Burnage Lan…", 

"gCity"     : "Manchester", 

"gLatitude"   : 53.4252831, 

"gLongitude"  : -2.2031884 

} 

} 

] 

} 

(a)

{ 

"g"    : { 

"gId"  : "ChIJH7MYbLKze0gRVIeX3GGlHFQ" 

}, 

"gPair" : { 

 "position" : 1, 

"item"   : { 

"rank" : 1.0, 

"f"   : { 

"id"       : 1773, 

"idLink"    : "TheFootparlour", 

"fbName"    : "The Footparlour", 

"fbCity"     : "Manchester", 

"fbCountry"   : "United Kingdom", 

"fbStreet"   : "448 Burnage Lane", 

"fbZip"     : "M19 1LH", 

"fbLatitude"  : 53.42517, 

"fbLongitude" : -2.20296 

}, 

"g"   : { 

"gId" : "ChIJH7MYbLKze0gRVIeX3GGlHFQ", 

"gName"     : "The Foot Parlour", 

"gAddress"   : "448 Burnage Lane…", 

"gCity"     : "Manchester", 

"gLatitude"   : 53.4252831, 

"gLongitude"  : -2.2031884 

} 

}  

}  

} 

(b)

{ 

"rank" : 1.0, 

"f"   : { 

"id"       : 1773, 

"idLink"    : "TheFootparlour", 

"fbName"    : "The Footparlour", 

"fbCity"     : "Manchester", 

"fbCountry"   : "United Kingdom", 

"fbStreet"   : "448 Burnage Lane", 

"fbZip"     : "M19 1LH", 

"fbLatitude"  : 53.42517, 

"fbLongitude" : -2.20296 

}, 

"g"   : { 

"gId" : "ChIJH7MYbLKze0gRVIeX3GGlHFQ", 

"gName"     : "The Foot Parlour",

 "gAddress"   : "448 Burnage Lane, Ma…", 

"gCity"     : "Manchester", 

"gLatitude"   : 53.4252831, 

"gLongitude"  : -2.2031884 

} 

} 

 

(c)

Figure 9. Examples of documents during selection of BestPairs in Listing 4. (a) Example of document
after GROUP instruction on line 9. (b) Example of document during EXPAND instruction on line 10
before the BUILD clause. (c) Example of document after EXPAND instruction on line 10.
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Listing 4. J-CO-QL+ script: Selecting the best pairs.

8. GET COLLECTION RelevantPairs@ijgiDb; 
 

9. GROUP 
PARTITION WITH .g.gId 

   BY   .g.gId       

INTO .gGroup 

    ORDER BY .rank TYPE NUMERIC DESC; 

 

10. EXPAND 
UNPACK WITH .gGroup 

    ARRAY  .gGroup   

TO    .gPair; 

 

11. FILTER  
CASE WHERE WITH .gPair AND 

         .gPair.position = 1 

    GENERATE 

     BUILD { 

.f   : .gPair.item.f, 

.g    : .gPair.item.g, 

.rank  : .gPair.item.rank }; 

   

12. SAVE AS SamePlaces@ijgiDb; 

7. Experimental Evaluation

In this section, we report a brief evaluation of the results that can be obtained by
the J-CO-QL+ script. We exploited the same data set adopted in [6], related with the
city of Manchester (UK). Remember, from Section 6.1, that the FacebookDescriptors
collection contains 5738 descriptors, while the GoogleDescriptors collection contains
5214 descriptors. Both collections contain descriptors about a variety of different public
places, such as restaurants, pubs, hairdressers, universities, parks and so on.

7.1. Effectiveness

In order to evaluate the effectiveness of the method, we performed a sensitivity
analysis by varying the value of the α threshold from 0.5 to 0.99.

We used the same test set again, which was used in the work [6]: it contained a total
of 400 pairs, selected among the 5738× 5214 total pairs, evaluated by a human as Good or
Bad. We randomly selected 300 pairs from the starting 400 pairs, and from each pair we
extracted the related 300 Google Places descriptors and 300 Facebook descriptors; among all
possible pairs, 103 pairs were labeled as Good pairs (and obviously the remaining 197 were
labeled as Bad).

Then, we run the script on these two reduced collections of descriptors. Table 1 reports
the results of our experiments. Specifically, the first colum reports the single values for the
alpha-cut α; the second and third columns report the number of relevant pairs saved by line
7 of the J-CO-QL+ script (Listing 3) into the RelevantPairs collection and the number of
pairs generated by line 12 of the script (Listing 4) and saved into the SamePlaces collection,
respectively. The, columns from 4 to 7 reports the number TP of true positive pairs, the
number TN of negative pairs, the number FP of false positive pairs and the number FN
of false negative pairs, respectively. Finally, the last three columns reports “Precision”
(defined as TP/(TP + FP)), “Recall” (defined as TP/(TP + FN)) and “Accuracy” (defined
as (TP + TN)/(TP + TN + FP + FN)), respectively. These three latter values are depicted
in Figure 10: the x-axis reports the values of the alpha-cut α parameter; precision is depicted
by the blue line, recall is depicted by the red line and accuracy is depicted by the black line.

Analyzing Table 1 and Figure 10, it is possible to see that the best combination of
values for precision, recall and accuracy were obtained for α = 0.8: precision is 0.962, recall
is 0.981 and accuracy is 0.980. Indeed, this value for α appears to be the best compromise
between the need to keep as many pairs as possible and the fact that those pairs actually
describe the same place, even though names, addresses and coordinates are different. The
reader can further notice that higher values of α give rise to a precision of 1 with poor recall,
while lower values for α give rise to a recall of 1 with poor precision. To conclude this
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analysis, notice that with α = 0.85, the accuracy is the same as the one obtained for α = 0.8;
it could be considered as a valid alternative choice, with better precision but low recall.

Table 1. Sensitivity analysis.

Alpha Cut Relevant Pairs Same Places TP TN FP FN Precision Recall Accuracy

0.50 253 163 103 137 60 0 0.632 1.000 0.800

0.55 178 139 103 161 36 0 0.741 1.000 0.880

0.60 140 124 103 176 21 0 0.831 1.000 0.930

0.65 119 112 103 188 9 0 0.920 1.000 0.970

0.70 110 108 101 190 7 2 0.935 0.981 0.970

0.75 109 107 101 191 6 2 0.944 0.981 0.973

0.80 106 105 101 193 4 2 0.962 0.981 0.980

0.85 98 97 97 197 0 6 1.000 0.942 0.980

0.90 90 90 90 197 0 13 1.000 0.874 0.957

0.95 80 80 80 197 0 23 1.000 0.777 0.923

0.99 71 71 71 197 0 32 1.000 0.689 0.893

Figure 10. Sensitivity analysis of precision, recall and accuracy.

Thus, we can state that the novel formulation for the MatchingPklaces relation and
the complex membership functions adopted for the Similar fuzzy operator and for the
Close fuzzy operator are effective, provided that α = 0.8.

We can consider the results reported in [6] as a baseline for further evaluating the
effectiveness of the novel formulation of the technique.

Remember that the version presented in [6] (for online aggregation) performed pre-
processing tasks on names and addresses, so as to clean them from urban designations
and numbers. In contrast, the present version does not. The main reason is that such a
kind of pre-processing and cleaning is not easy to do within J-CO-QL+ scripts; however,
the flexibility of the CREATE FUZZY OPERATOR statement as far as the possibility to define
complex shapes for membership functions seems to be effective. Consequently, the proper
baseline to consider is the best result presented in [6]. There, a comparison with a machine-
learning technique, namely “Random Forest” classification, was performed, by applying it
on the same data set. Results are reported in Table 2: for the three considered techniques,
precision, recall and F1-score (defined as 2× (precision× recall)/(precision + recall)) are
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reported. Notice that in [6], the proposed technique was as effective as random-forest
classifiers; the current version outperform them, even though names and addresses are
neither pre-processed nor cleaned. Observe that the old version of the fuzzy technique
and the Random-Forest technique, applied on the data set describing public places in
Manchester (UK), obtain the same identical effectiveness; this is why [6] states that the two
techniques are comparable.

Table 2. Comparison with experimental results presented in [6].

Technique Precision Recall F1-Score

Current version 0.962 0.981 0.971
Best of [6] 0.931 0.931 0.931

Random Forest (from [6]) 0.931 0.931 0.931

Consequently, we can say that the current version improves the old one and is suitable
to be executed as a J-CO-QL+ script. Furthermore, it still maintains the advantage provided
by the old version in comparison with classification techniques, i.e., it can be applied from
scratch, without knowing the data set; in contrast, classification techniques ask for a training
step on previously labeled training sets, which is a time-consuming and critical activity.

7.2. About Execution Times

Before concluding this work, we report some considerations about execution times.
Usually, this aspect is not considered in the literature about integration of geographical

data sets: authors were focused on the effectiveness of the proposed techniques, but did not
consider efficiency. However, in our opinion, this is not a negligible aspect for the practical
use of integration techniques, in particular with large data sets to integrate.

In this paper, the goal is neither to provide the most efficient technique, nor to evaluate
execution times of a plethora of techniques proposed in the literature. Here, the goal is to
observe “what to expect” while running the J-CO-QL+ script on a real data set, such as the
one we used for our experiments.

We decided to consider a working environment that could be a common situation:
analysts are equipped with stand-alone PCs, on which they perform their daily activi-
ties. On these PCs, they might have a running instance of MongoDB, which stores their
data sets about geographical places, as well as an installation of the J-CO Framework;
indeed, not necessarily analysts are equipped with super-computers. Consequently, we
run experiments on a laptop PC powered by an Intel quad-Core i7-8550-U processor, run-
ning at 1.80 GHz, equipped with 16 GB RAM and 250 GB Solid-State Drive and running
the Java Virtual Machine version 1.8.0_251 (the J-CO-QL+ Engine is written in the Java
programming language).

Table 3 reports the execution times of the script discussed in this paper. We used the
full data set reporting descriptors of public places located in Manchester (UK). Remember
that it contains 5738 Facebook descriptors and 5214 Google descriptors.

Table 3 reports the execution times observed for each single instruction in the script;
the right-most column reports the cumulative execution time after each instruction. Clearly,
the overall execution time is dominated by the JOIN OF COLLECTIONS instruction, which
actually builds 5738× 5214 = 29, 917, 932 pairs of descriptors; it takes 216.61 s. Looking at
the other instructions they contribute only less than 4 s, so that the overall execution time is
220.804 s, i.e., about 3.6 min.

In terms of user perception, waiting for about 3 min is acceptable in this context, in
which near-real time performances are not expected. Furthermore, we want to remark that
once the two data sets to integrate are available, the J-CO-QL+ script can be applied from
scratch, and a few minutes later the integrated data set is obtained. This is an incredible
advantage if compared with the adoption of classification techniques, because there is no
need to build training sets labeled by humans; this activity can take from several hours
to several days (depending on the size of the training set) and is prone to errors and
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misunderstanding, as well as its effectiveness depends on the way the training sets are
built before labeling.

Table 3. Execution times of the J-CO-QL+ script.

N. Instruction Instruction Time (s) Incremental Time (s)

1 CREATE FUZZY OPERATOR 0.000 0.000
2 CREATE FUZZY OPERATOR 0.000 0.000
3 CREATE FUZZY OPERATOR 0.000 0.000
4 USE DB 0.003 0.003
5 JOIN OF COLLECTIONS 216.661 216.664
6 FILTER 1.262 217.926
7 SAVE AS 0.529 218.455

8 GET COLLECTION 0.106 0.106
9 GROUP 0.035 0.141

10 EXPAND 1.910 2.051
11 FILTER 0.091 2.142
12 SAVE AS 0.207 2.349

Total Time (s) 220.804

8. Conclusions and Future Work

To conclude, it is time to summarize and discuss the contribution of the paper, as well
as to sketch future developments.

8.1. Conclusions

This paper addresses the problem of soft integrating data sets describing public places,
when these data sets are represented as JSON documents and are stored within a JSON
document store. Specifically, fuzzy-set theory provides the formal framework for the
integration methodology presented in the paper: the MatchingPlaces fuzzy relation is
the core of the proposed methodology. Then, the soft integration method is applied in a
practical way by means of the J-CO Framework: a script (or query) written in J-CO-QL+ (the
query language of the J-CO Framework) is written, which implements the soft integration
method, by exploiting its fuzzy capabilities. This is the main contribution of the paper:
showing that a novel stand-alone tool (the J-CO Framework), suitable for performing the
soft integration of geo-tagged JSON data sets stored within JSON document stores, is now
available for analysts and spatial-data engineers.

Hereafter, we would like to perform some considerations.

• The effectiveness that the script obtains is very interesting: with the value of the α
threshold set to α = 0.8, it is possible to obtain the best balance between precision and
recall, which are slightly less than 100%.

• Execution times are good too: less than 4 min to perform the soft integration is
absolutely acceptable (the reader can notice that writing the full script from scratch
takes longer).

• The complex membership functions that it is possible to specify in fuzzy operators (see
Section 6.2) were exploited to deal with bizarre behavior of the Jaro-Winkler string-
similarity metric. In fact, it returns high similarity values for strings that appears
to be very different (in the sense that they do not denote similar names or similar
addresses). However, we experienced also the opposite behavior, i.e., two strings
that were actually very similar obtained not-so-high similarity degree. The complex
membership function that we defined for the Similar fuzzy operator allowed us to
compensate this behavior.

8.2. Future Work

As future works, many activities are planned along the development of the J-CO
Framework and its application to data integration problems.
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• First of all, we are going to complete the extension of all J-CO-QL+ statements with
support for fuzzy concepts. In particular, we are going to address the problem of
defining “soft aggregators” that can be applied on arrays of JSON documents; we will
adopt the same approach followed for defining fuzzy operators.

• Various types of fuzzy sets have been proposed in the literature (for example, Intuition-
istic Fuzzy Sets [44,45] and Type-2 Fuzzy Sets [46–48]. In our perspective evolution,
we plan to extend J-CO-QL+ to support multiple types of fuzzy sets simultaneously.

• Many challenges concerning integration and processing of geo-tagged data sets are
arising. For example, the GeoJSON format [49] represents a geographical information
layer as a unique, giant, JSON document. We conceived the idea of defining a domain-
specific language for querying features within GeoJSON documents [50], which is
translated into J-CO-QL+ scripts. We plan to further explore this idea, by identifying
other application domains and defining novel domain-specific languages to translate
into J-CO-QL+. Indeed, the idea of devising the J-CO Framework came out while
working on an international project [51,52], in which Big Data concerning mobility
had to be collected and processed.

The J-CO Framework is available on a public GitHub repository (https://github.com/
JcoProjectTeam/JcoProjectPage, accessed on 1 September 2022).
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Abstract: Nowadays, with the rise of sensor technology, the amount of spatial and temporal data
is increasing day by day. Modeling data in a structured way and performing effective and efficient
complex queries has become more essential than ever. Online analytical processing (OLAP), devel-
oped for this purpose, provides appropriate data structures and supports querying multidimensional
numeric and alphanumeric data. However, uncertainty and fuzziness are inherent in the data in
many complex database applications, especially in spatiotemporal database applications. Therefore,
there is always a need to support flexible queries and analyses on uncertain and fuzzy data, due to
the nature of the data in these complex spatiotemporal applications. FSOLAP is a new framework
based on fuzzy logic technologies and spatial online analytical processing (SOLAP). In this study, we
use crisp measures as input for this framework, apply fuzzy operations to obtain the membership
functions and fuzzy classes, and then generate fuzzy association rules. Therefore, FSOLAP does
not need to use predefined sets of fuzzy inputs. This paper presents the method used to model the
FSOLAP and manage various types of complex and fuzzy spatiotemporal queries using the FSOLAP
framework. In this context, we describe how to handle non-spatial and fuzzy spatial queries, as well
as spatiotemporal fuzzy query types. Additionally, while FSOLAP primarily includes historical data
and associated queries and analyses, we also describe how to handle predictive fuzzy spatiotemporal
queries, which typically require an inference mechanism.

Keywords: OLAP; fuzzy SOLAP-based framework; fuzzy spatiotemporal queries; fuzzy spatiotem-
poral predictive query; fuzzy query visualization

1. Introduction

Recently, the amount and variety of data used for analytical purposes have greatly
increased. In order to improve the data to be analyzed, it is necessary to use expertise and
a suitable application for the processing and interpretation of these data. For this purpose,
various methods and applications have been developed to analyze large amounts of data.
One of the most common developed applications is online analytical processing (OLAP) [1].
OLAP enables data analysis and query processes to help in decision-making about the data
source. It is a computational method that allows users to quickly and selectively extract
and query data for analysis from different perspectives. OLAP has emerged because classic
databases cannot be used in decision-making and require expertise in data access. While
traditional databases are concerned with the retention of data and the efficient management
of online transactions, OLAP is concerned with the efficient analytics of online data.

In addition, conventional data mining techniques are insufficient in the area of spa-
tiotemporal database applications because they often require intensive computations and
involve complex differential equations and computational algorithms [2]. However, we
need to perform effective and efficient querying with a colossal amount of spatiotemporal
data. One of the widely used geospatial data mining tools is spatial online analytical pro-
cessing (SOLAP), which enables the exploration of data cubes to extract new information
effectively and efficiently [3]. SOLAP can also be defined as a platform supporting fast
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and easy spatiotemporal querying. It allows data mining following a multidimensional
approach comprised of levels of aggregation.

Researchers working with OLAP mainly use numerical and statistical models [4–6],
which generally use precise values as input and output. Furthermore, SOLAP provides
querying and analysis of numeric and alphanumeric multidimensional data. However,
there is a need to support flexible queries on uncertain and fuzzy data, due to the nature of
complex applications such as meteorological and spatiotemporal applications. Uncertainty
and fuzziness are inherent features of most meteorological applications [7]. That is, spatial
and temporal information and various relationships in these applications frequently involve
uncertainty and fuzziness. For example, in describing a rainy region, the region’s boundary
is a fuzzy concept. Likewise, in estimating a weather event, the need to determine its
position at a particular time, or its time of occurrence at a specific location, gives rise to
fuzzy estimations.

The most common reasons for various types of uncertainties in spatiotemporal appli-
cations are:

• Some spatial information is inherently imprecise or fuzzy. The locations of events,
spatial relationships, and various geometric and topological properties usually involve
multiple forms of uncertainty [7].

• Most natural phenomena have fuzzy boundaries due to the transitional nature of
variation in their aspects (e.g., high humidity and low temperature cause precipitation
at a certain altitude) [8–10].

• Obtaining precise data is tedious and unnecessary most of the time, and we may only
be able to give a range of values within which the exact numbers would fall. For
instance, we may need the number of “cloudy” or “partly cloudy” days for some areas
within a certain period. In this request, the user specifies the cloudiness criteria in
linguistic terms instead of giving numeric degrees of cloudiness (e.g., 2/8 or 7/8) [11].

The use of OLAP is mainly related to querying and analyzing historical data, but we
also need to make predictions based on spatiotemporal data. In this study, we describe how
to handle predictive fuzzy spatiotemporal queries that require an inference mechanism. We
also show that various complex queries, including predictive fuzzy spatiotemporal queries,
are effectively and efficiently handled using our fuzzy spatial OLAP framework. We do
this with the support of the association rules and fuzzy inference system (FIS) components
of the FSOLAP framework. In other words, the FIS component included in the FSOLAP
framework supports fuzzy predictive query types.

Spatial–temporal database applications naturally contain hierarchical data structures.
Spatial data include hierarchical breakdowns such as country–region–city, while tempo-
ral data have hierarchical relationships at levels such as year–month–day. SOLAP was
developed to provide effective and efficient analysis and querying of hierarchical data.
Spatial and temporal information and various associations in spatial–temporal applications
frequently involve uncertainty and fuzziness, which are inherent features of most of these
applications [7] (e.g., in describing a rainy region). In addition, since spatial–temporal ap-
plications are complex, they are challenging to analyze with conventional logic approaches.
Fuzzy logic can be used for situations in which conventional logic technologies are ineffec-
tive, such as applications [2,12–21] and systems [22,23] that mathematical models cannot
precisely describe, those with significant uncertainties or contradictory conditions, and
linguistically controlled applications or systems. The concepts of SOLAP and fuzzy logic
can be combined to benefit from both to provide an effective and efficient platform for
spatiotemporal applications. The aim of this study is to propose a new framework, FSOLAP,
to take advantage of both SOLAP and fuzzy logic to provide analytics and querying of
imprecise spatiotemporal data and to extend the framework with inference ability.

Our study aims to find spatiotemporal patterns in data which have spatiotempo-
ral characteristics, in order to perform data analytics and querying. Researchers [24,25]
typically use synthetic or semi-synthetic data to demonstrate the performance of their
compound models in data science applications. The use of synthetic data makes it im-
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possible to represent the true efficiency and accuracy of the model. Validation of the
FSOLAP framework on a big database under the fuzzy spatial–temporal data model is
vital. However, it is not easy to find real data to study. In our study, thanks to the Turkish
State Meteorological Service, we were able to use a real meteorological dataset containing
spatiotemporal features and measurement attributes as a case study to test our framework
and models. It was shown that a fuzzy approach is suitable for handling spatiotemporal
data. Therefore, we present our approach for dealing with different types of fuzzy spa-
tiotemporal queries using FSOLAP. In this context, the FSOLAP framework is modeled,
and the methods for supporting fuzzy non-spatial, fuzzy spatial, and fuzzy spatiotemporal
query types using FSOLAP are explained. In general, the FSOLAP framework includes
SOLAP, a fuzzy module, a fuzzy knowledge base (FKB), and a fuzzy inference system (FIS),
as explained in Section 2.2. This framework allows us to make efficient and flexible fuzzy
queries and analyses on spatiotemporal data.

The main contribution of this study is the development of FSOLAP as a new fuzzy
SOLAP-based framework, allowing effective and efficient analysis and querying of spa-
tiotemporal data. FSOLAP supports the fuzzy spatiotemporal predictive query, which is a
new query type that has not been proposed before, as well as the complex type of fuzzy
spatial queries present in the literature.

More specifically, the contributions of this study are as follows. We propose a fuzzy
SOLAP-based complex system (FSOLAP) for analytics on fuzzy spatiotemporal data and
for predictive analysis of various spatiotemporal events, including support for various
querying capabilities, visualization of data, and analysis. The SOLAP server and its multi-
dimensional expression (MDX) query processor is modified to support various flexible and
complex queries. An optimal number of fuzzification clusters is calculated and integrated
into the FSOLAP framework as an automated process. Moreover, fuzzy sets are generated
automatically and used to create fuzzy association rules. The appropriate minsup and
minconf values related to fuzzy association rule generation are also determined. In addition,
an analysis of the performance of the framework is undertaken using a real meteorological
dataset. Average CPU usage, memory usage, and query execution time for running each
query type included in the FSOLAP framework are measured. A pruning method based on
confidence measures that removes complex rules in the generated fuzzy association rule set
to speed up the inference performance is also applied. Additionally, fuzzy association rule
weighting for rule-based pruning is performed on the generated rules. Thus, we derive
accurate inferences from the fuzzy association rules.

The organization of this paper is as follows. Background information, related works,
proposed architecture, and supported query types are given in Section 2. The execution of
queries and experimental results are explained in Section 3. In Section 4, the results of the
study are discussed and compared with those of previous studies. Finally, in Section 5, the
conclusions and future work are presented.

2. Materials and Methods

Here, we first introduce the related work in Section 2.1 and then explain the FSOLAP
framework and its components in Section 2.2. FSOLAP query management is presented
and the structure of the modules explained in Section 2.3. Brief information about the
dataset used to confirm the performance of the framework is given in Section 2.4. Finally,
we present the supported complex and fuzzy queries in Section 2.5.

2.1. Background and Related Works

The increase in spatial data and human limitations in analyzing spatial data in detail
make querying spatial databases crucial for spatiotemporal applications. In recent years,
many studies [2,5,26] have addressed the issue of performing data mining tasks on data
warehouses. Some of them [26,27] are explicitly interested in mining patterns and asso-
ciation rules in data cubes. For instance, Imieli’nski et al. [27] state that OLAP is closely
intertwined with association rules and shares with association rules the goal of finding
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patterns in the data. Data mining techniques such as association rule mining can be used
together with OLAP to extract knowledge from data cubes. Spatial data mining can be
performed in a spatial data cube as well as in a spatial database. For this purpose, J. Han
constructed GeoMiner [4], a spatial OLAP and data mining system prototype. Another
proposed study [26] considers a framework for mining association rules from data cubes
according to a sum-based aggregate measure, which is more general than frequencies
provided by the count measure. The mining process is guided by a meta-rule, is context-
driven by analysis objectives, and exploits aggregate measures to revisit the definitions
of support and confidence. These studies profit from the hierarchical aspect of cube di-
mensions to mine association rules at different levels of granularity, such as spatial and
temporal hierarchies.

Supporting spatial queries is one of the key features in spatial database management
systems, due to the broad range of applications. Providing these types of queries involves
introducing spatial components such as fuzzy topological relations into relational and
object-relational databases. Fuzzy topological relations between fuzzy regions are explained
in [28] and shown in Figure 1b. The formal definitions of the fuzzy topological relations
can be explained as follows.

Let A be a set of attributes under consideration and let a region be a fuzzy subset
defined in two-dimensional space R2 over A. We can define the membership function of
the region as µ : X×Y× A→ [0, 1], where X and Y are the sets of coordinates defining the
region. Each point (x, y) within the region is assigned a membership value for an attribute
a ∈ A. We show a fuzzy region in Figure 1a, which has a core, an indeterminate boundary,
an exterior, and α− cut levels.

Figure 1. (a) Visualization of a simple fuzzy region. (b) Examples of topological relations between
fuzzy regions.

The concept of the α − cut level region is used to approximate the indeterminate
boundaries of a fuzzy region and is defined as follows:

Rα = {(x, y, a)|µR(x, y, a) ≥ α}(0 < α < 1) (1)

The degree of the fuzzy relation is measured by aggregating the α − cut levels of
fuzzy regions. The basic probability assignment m(Rαi), which can be interpreted as the
probability that Rαi is the true representative of R, is defined as in [29,30]:

m(Rαi) = αi − αi+1, 1 ≤ i ≤ n, n ∈ N, 1 = α1 > α2 > . . . > αn > αn+1 = 0 (2)

Assuming that τ(R, S) is the value representing the topological relation between two
fuzzy regions R and S, and τ(Rαi, Rαj) is the value representing the topological relation
between two α − cut level regions Rαi and Sαj, the general relation between two fuzzy
regions can be determined by

τ(R, S) =
n

∑
i=1

m

∑
j=1

m(Rαi)m(Sαj)τ(Rαi, Sαj) (3)
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For example, the overlap relation between two fuzzy regions can be approximated by
using the formula above as follows:

τ(R, S) =
n

∑
i=1

m

∑
j=1

m(Rαi)m(Sαj)τoverlap(Rαi, Sαj) (4)

Since spatial OLAP querying deals with some concepts expressed in verbal language,
fuzziness is frequently involved in spatial OLAP. Hence, the ability to query spatial data
under fuzziness is an essential characteristic of any spatial database. The studies in [25,31]
discuss the directional and topological relationships in fuzzy concepts. Some earlier
works [24,32] provide a basis for fuzzy querying capabilities based on a binary model to
support queries of this nature. Another study [33] considers unary operators for querying
fuzzy multidimensional databases. The study discusses the properties of unary operators
on fuzzy cubes and investigates the combination of several queries to explore the possibility
of the definition of an algebra to manipulate fuzzy cubes. All these studies mainly focus
on modeling basic fuzzy object types and operations, leaving aside the processing of more
advanced queries.

In existing fuzzy OLAP studies [12–15], OLAP mining and fuzzy data mining are
combined to take advantage of the fact that fuzzy set theory treats numeric values more
naturally, increases understanding, and extracts more generalizable rules. Fuzzy OLAP
is performed on fuzzy multidimensional databases. The multidimensional data model of
data warehouses is extended to manage the imperfect and imprecise data (e.g., cold days)
of the real world. These studies typically focus on finding knowledge about fuzzy spatial
data, but more complex queries (e.g., select cold regions) are not considered.

In studies [16,17] on fuzzy spatial querying, neither SOLAP nor MDX query supports
are used, but an extension to the standard Structured Query Language (SQL) is used to
support spatial and temporal data. The authors combine and extend techniques developed
in spatial and fuzzy data mining to deal with the uncertainty of typical spatial data, though
they were not concerned about the performance side of the queries. In another study [18],
fuzzy logic is integrated into spatial databases to help with decision support and OLAP
query processes. In this study, the design of the fuzzy spatial data warehouse methodology
is presented, but the effectiveness and efficiency are not discussed.

In addition, there are studies [19,20] on the nearest-neighbor and range types of queries
in the field of fuzzy spatial queries. These studies consider range and nearest-neighbor
queries in the context of fuzzy objects with indeterminate boundaries. They show that
processing these types of queries in spatial OLAP is essential, but the query types are too
limited. Support for complex spatial query types is still required.

Special structures have been developed for efficient and effective queries on fuzzy
spatiotemporal data [21,34]. In these studies, novel indexes such as R*-tree [35] and X-
tree [36] were used for efficient and effective queries, but there were no queries showing
the benefits of spatial OLAP.

2.2. FSOLAP Framework

The FSOLAP framework provides for fuzzy spatial–temporal data analytics and flexi-
ble and complex querying. The framework includes a multilayered system architecture that
consists of four layers. The layers are data sources, structured data, logic, and presentation
layers (from the bottom to the top). The system architecture of FSOLAP is represented in
Figure 2.
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Figure 2. Multilayer framework architecture of FSOLAP.

At the bottom of the system, there are text files, database tables, and shape files. These
structures contain the pure data which may be gathered from a web service or collected
from a website. Data are migrated to the structured data layer via extract, transform, and
load (ETL) operations from this layer. ETL operations are mainly related to reading files,
preprocessing data, cleaning data, and validating data operations.

The data layer includes semi-structured or structured data such as a relational database,
fuzzified data, and a fuzzy rule set. ETL output data, the fuzzification phase, and fuzzy
association rule generation are handled in this layer. The upper layer is called the logic
layer, and it requests data from the data layer using SQL or JavaScript Object Notation
(JSON) requests. The data layer returns the requested data via SQL tuples, Java Database
Connectivity (JDBC) result sets, or JSON responses. The data layer also provides fuzzy
querying on PostGIS database data supported by the fuzzy logic module.

The logic layer contains systems that provide spatial, non-spatial, temporal, and fuzzy
data mining tools, and a set of fuzzy functions used for fuzzification/defuzzification. It also
includes data analytics and visualization platforms that help in visual pattern detection.
The reporting tools that provide standard reports on the data are integrated into this layer.
The SOLAP server is another central part of this layer that supports SOLAP data cube
operations and multidimensional expression (MDX) querying. We integrated a fuzzy
inference system and a fuzzy logic module for spatial data mining tasks. The fuzzy logic
module was assembled to support fuzzy operations such as membership calculation, fuzzy
clustering, and fuzzy class identification.

The presentation layer is shown at the top of our proposed architecture in Figure 2.
This layer provides a categorized and simplified system structure. We can demonstrate
the data on a map with a cartography viewer. We can also design a new SOLAP cube
with hierarchies and measurements using the SOLAP data cube designer. In addition, the
SOLAP cube data viewer allows querying of the data using user-friendly query interfaces
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for data selection. The data selection corresponds to the process of obtaining a subcube
from the SOLAP cube via an MDX query. The definition of a subcube is as follows.

Let Ds ⊆ D be a non-empty set of p dimensions {D1, D2, . . . , Dp} from data cube
C(p ≤ d). The p-tuple {Θ1, Θ2, . . . , Θp} defines a subcube on C according to Ds i f f ∀i ∈
{1, . . . , p}, Θi 6= ∅, and there exists a unique j such that Θi ⊆ Aij, which can be visualized
as shown in Figure 3.

Figure 3. Subcube from SOLAP data selection.

Data selection does not always involve running a simple MDX query; it includes
complex fuzzy queries based on the requirements of the data analytics. In data analytics,
a hierarchical query is also necessary for certain situations. In this case, it is essential to
use structures that support hierarchical querying. SOLAP enables querying and analysis of
multidimensional numeric and alphanumeric data. However, there is still a need to support
flexible queries on uncertain and fuzzy data due to the nature of complex applications such
as meteorological and other spatiotemporal applications. The framework supports data
analytics with the management of fuzzy spatiotemporal queries. FSOLAP can handle a
variety of complex queries, including fuzzy spatiotemporal queries, which are dealt with
effectively and efficiently using our FSOLAP framework.

2.3. FSOLAP Query Management

This section describes the architecture and query types that support fuzzy spatiotem-
poral queries on spatial OLAP-based structures. In the FSOLAP framework, we typically
achieve query management through two main structures, as shown in Figure 4. One
of these is the data layer, where we prepare, format, and query data. The other is the
query module, which contains the frontend presented to the user for querying and query
management components.

2.3.1. Data Layer

The raw data are structured after ETL operations and inserted into the PostgreSQL
database at the data layer. SOLAP cube metadata are constructed by using the data in the
database via the SOLAP cube designer. Then, for each attribute in SOLAP, the appropriate
number of clusters is specified using X-means clustering [37].

X-means clustering is a variation of K-means clustering that refines cluster assignments
by repeatedly attempting subdivision and keeping the best resulting splits, until some
criterion is reached [37]. Algorithm 1, for X-means clustering, consists mainly of two
operations repeated until completion.
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Algorithm 1 Algorithm of X-means Clustering

Input: given sets of data to be clustered: d1, . . . , dn
Output: K ← number of clusters

1: Improve-Params← run conventional K-means to convergence
2: Improve-Structure← find out if and where new centroids should appear
3: if K > Kmax then
4: stop and report best scoring model found during the search
5: else if K <= Kmax then
6: Go to 1
7: end if
8: return K

The objective function of K-means is as follows:

J =
k

∑
j=1

n

∑
i=1
|| xj

i − cj ||2 (5)

where || xj
i − cj ||2 is a chosen distance measure between a data point xj

i and the cluster
centre cj, which is an indicator of the distance of the n data points from their respective
cluster centres.

The determined number of clusters is used as input when fuzzifying each attribute
with the fuzzy c-means (FCM) clustering algorithm [38,39].

Figure 4. FSOLAP query management.

FCM is based on minimization of the following objective function:

Jm =
N

∑
i=1

C

∑
j=1

uij || xi − cj ||2, 1 ≤ m < ∞ (6)

where m is any real number greater than 1, uij is the degree of membership of xi in the
cluster j, xi is the ith value of d-dimensional measured data, cj is the d-dimension center of
the cluster, and || ∗ || is any norm expressing the similarity between any measured data
point and the center [39]. Fuzzy partitioning is carried out through an iterative optimization
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of the objective function shown above, updating the membership uij and the cluster centers
uj by:

uij =


 1

∑C
k=1 uij(

||xi−cj ||
||xi−ck || )

2
m−1 )


 (7)

cj =
∑N

i=1 um
ij · xi

∑N
i=1 um

ij
(8)

This iteration will stop when maxij = |u(k+1)
ij − u(k)

ij | < δ , where δ is a termination
criterion between 0 and 1, whereas k represents the iteration steps. This procedure con-
verges to a local minimum or a saddle point of Jm [39]. The algorithm is composed of the
following steps:

1. Initialize U = [uij] matrix, U(0)

2. At k-step: calculate the center vectors C(k) = [cj] with U(k)

cj =
∑N

i=1 um
ij · xi

∑N
i=1 um

ij
(9)

3. Update U(k), U(k+1)

uij =


 1

∑C
k=1 uij(

||xi−cj ||
||xi−ck || )

2
m−1 )


 (10)

4. If || U(k+1) −U(k) ||< δ then STOP, otherwise return to step 2.

After determining the fuzzy clusters and membership functions, fuzzy association
rules are generated on the fuzzified attributes with the FP-growth algorithm [40]. Associa-
tion finds rules about items that appear together in an event such as a purchase transaction.

The problem of association rule mining is defined as follows. Let I = {i1, i2, · · ·, in}
be a set of n binary attributes called items. Let D = {t1, t2, · · ·, tm} be a set of transactions
called the database. Each transaction in D has a unique transaction ID and contains a subset
of the items in I. A rule is defined as an implication of the form X ⇒ Y, where X, Y ⊆ I.
A rule is defined only between a set and a single item, X ⇒ ij for ij ∈ I. Every rule is
composed of two different sets of items, also known as itemsets, X and Y, where:

• X is called the antecedent or left-hand side (LHS);
• Y is called the consequent or right-hand side (RHS).

A heuristic approach is applied to generate a proper number of association rules.
First, a different number of rules is generated by parametrically changing the minsup and
minconf values for the FP-growth algorithm. After running FP-growth, the generated
ruleset is tested with test data for making inferences. Then, the accuracy values of the
inferences produced with the test data are calculated. Finally, the proper number of fuzzy
association rules is obtained when no change in the accuracy is calculated according to the
number of rules. However, this ruleset may contain duplicative rules. We need to reduce
the number of rules with confidence-based rule pruning to prevent duplication. We used a
rule-based pruning algorithm [41] that removes the unnecessarily complex rules, as shown
in Algorithm 2.
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Algorithm 2 Algorithm of Fuzzy Association Rule Pruning Based on Confidence

Input: given the sets of several length rules: S1, . . . , SL
L←max length(RL), l = 1, . . . , M
J is an empty set

Output: RB: pruned fuzzy association rule base with reduced number of rules
1: for i = L, . . . , 2 do
2: for all RεSi do
3: for all R′εSi−1 do
4: if size(R′ ∩ R) = i then
5: J ← J ∪ index of R′

6: end if
7: end for
8: if max(FC(RJ)) > FC(R)) − ε then
9: delete R from the rule base RB

10: end if
11: end for
12: end for
13: return RB

The pruning method compares the most comprehensive rules with shorter ones. A
general rule which contains more minor rules is removed from the rule base when the
maximal confidence of a fuzzy association rule (FC) value of the more minor rules is higher
than the FC value of the broad rule minus ε, the correction factor (initially set to 2 percent).
This rule pruning method offers shorter rules in the rule base. Although the pruned rule
base contains fewer rules, the new classifier has the same classification accuracy as the
unpruned rule base.

The fact that pruned rules have different weights during inference is a factor that
affects accuracy. Results produced by association rules that make inferences for the same
attribute in proportion to their weights should be considered. For this reason, a weighting
process for the rules in the association rule set was performed. This study uses an interest
measure called Rule Power Factor (RPF) [42] to give weight to each fuzzy association rule
and to mine the fuzzy association rule between them. The equation of the RPF is as follows:

RFP(X → Y) = support(X ∪Y) ∗ con f idence(X ∪Y) (11)

where support and confidence are defined as follows:

support(X → Y) =
number of tuples containing both X and Y

total number of tuples
(12)

con f idence(X → Y) =
number of tuples containing both X and Y

number of tuples containing X
(13)

2.3.2. Query Module

The query module (QM) is the component which handles query operations. Basically,
it includes a fuzzy module (FM), a fuzzy knowledge base (FKB), a fuzzy inference system
(FIS), a query parser (QPr), a query processor (QPc), and a query interface (QIn), as shown
in Figure 4. User queries are entered into the system via the query interface. The QIn
component receives user queries and sends these queries to the QPr. After the query is
evaluated, the query results are displayed to the user.

There are two user interfaces for querying meteorological phenomena and meteo-
rological data. Before querying meteorological phenomena, it is necessary to determine
the association rules of related phenomena. For this purpose, the rules regarding the
meteorological phenomenon can be defined with the expert rule definition interface shown
in Figure 5.
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Figure 5. Expert rule definition UI.

In this interface, after the type and fuzzy class of a phenomenon are determined, the
fuzzy association rule is produced by selecting the meteorological attribute and fuzzy class
that are the antecedents of the relevant event. These fuzzy association rules are stored in
the FKB and then used in the meteorological phenomenon inquiry interface, as shown in
Figure 6.

Figure 6. Meteorological phenomena query UI.

In addition, meteorological data can be queried by selecting the attribute and the
spatial and temporal criteria using the interface, as shown in Figure 7. The query results
are represented in a list, and the spatial information is shown on a map.
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Figure 7. Meteorological data query UI.

In the meteorological phenomenon inquiry process, the association rules of the relevant
event are selected from the FKB. In the antecedent part of these rules, fuzzy attributes
and classes are determined and used as query criteria. The user can insert the spatial and
temporal conditions into the requirements of the MDX query. Query results are fetched after
executing the built MDX query on the SOLAP server. Again, query results are displayed in
a list, and spatial information is shown on a map. Figure 8 shows how the selected criteria
are used in the interface when building the MDX query.

Figure 8. Sample MDX of meteorological data query.

The QPr component parses and interprets the user query and determines which
elements will process the query. The QPc module works as a subcomponent responsible for
running the query on the related systems and collecting and displaying the results. In other
words, the QPc component plays a coordinating role in query processing. QPc performs
the communication and interactions between the SOLAP, the FIS, and the fuzzy module. It
receives user queries, analyzes them, sends requests to the SOLAP and/or to the FKB/FM,
retrieves the results, and sends them to the query interface.

The fuzzy module is the component that provides crisp-to-fuzzy or fuzzy-to-crisp
transformations using fuzzification and defuzzification operations. In this module, using
the FCM algorithm, fuzzy clustering is performed to generate membership classes and
determine membership values. FCM needs the number of clusters as a parameter. Therefore,
we used X-means clustering to determine the appropriate number of clusters and to cross-
check the cluster with elbow [43] and silhouette [44] methods. In addition, the definitions
of uncertain types, similarity relations, and membership functions are stored in the fuzzy
data map.

The fuzzy knowledge base (FKB) produces and stores fuzzy association rules. After
fuzzifying the meteorological data on SOLAP, the fuzzy association rules are generated
with the FP-growth algorithm and stored in the FKB. The resulting extensive list of rules is
pruned using a confidence-measure-based pruning method [41] for performance improve-
ment. The rules in the FKB are used in the case of inference as input for the FIS.
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The FIS is utilized to support prediction-type queries. While querying, the fuzzy
association rule required for each criterion is requested from the FKB and sent to the FIS. In
addition, the FM provides the fuzzy membership classes and membership values required
for the values in the query as input to the FIS. This interface works as follows. A′ = F(x0),
where x0 is a crisp value defined in the input universe ∪, A0 is a fuzzy set defined in
the same universe, and F is a fuzzifier operator. The FIS is based on the application of
the generalized modus ponens, an extension of the classical modus ponens proposed by
Zadeh, where:

(If X is A then Y is B) ∩ (X is A′)
(Y is B′) (14)

where X and Y are linguistic variables, A and B are fuzzy sets, and B′ is the output fuzzy
set inferred. To achieve this, the system firstly obtains the degree of matching of each rule
by applying a conjunctive operator, and then infers the output fuzzy sets by means of a
fuzzy implication operator. The FIS produces the same number of output fuzzy sets as the
number of rules collected in the FKB.

The SOLAP server acts as a database server for objects and provides an application
that stores measurement results, including spatiotemporal hierarchies, and supports MDX
query types. We used the GeoMondrian SOLAP server [45] in our system. After the ETL
process, the meteorological data are inserted onto the spatial OLAP server. These data are
stored on the spatial OLAP server as spatial, temporal, and measurement-value hierarchies.
The spatial hierarchy has region, city, and station breakdowns. Spatial hierarchy can be
achieved with a foreign key, as in classical relational databases, or with a minimum bounded
rectangle (MBR) structure supporting the spatial structure. The temporal hierarchy is
organized according to year, month, and day divisions. Furthermore, each measurement
result is available in a hierarchical structure in SOLAP.

We extended the MDX query and modified the GeoMondrian SOLAP server to support
fuzzy queries. In general, the user asks for the fuzzy spatial or non-spatial objects that
meet the conditions of the predefined rules within a specified time interval, when querying.
The rules can be evaluated by examining the topological relations between fuzzy regions
and fuzzy objects. To support this, the fuzzify_measure and fuzzify_geo methods are
implemented in the MDX query processor of the SOLAP server. The fuzzify_measure
method uses the hierarchy for the non-spatial attributes, while the fuzzify_geo method uses
the hierarchy for the spatial attributes. The spatial hierarchy is used while detecting the
fuzzy relationships such as around, inside, covers, etc., of two different spatial data items
that are related to each other, using the fuzzify_geo method. To develop these methods,
the geomondrian.jar Java library [45], which is used by the GeoMondrian SOLAP server
for querying, was edited. We modified the MondrianServerImpl.java, Query.java, and
Parser.java classes in this Java library by adding fuzzify_measure and fuzzify_geo methods.
The MondrianServerImpl.java class contains keywords such as Filter, Member, Where, etc.,
which are used in the query. The fuzzify_measure and fuzzify_geo methods are inserted
as keywords to this class. The Query.java class parses the MDX query with the help of
the Parser.java class, then determines the query parts and parameters. While parsing the
MDX query in the Parser.java class, fuzzy methods are identified using the keywords
defined in the MondrianServerImpl.java class. The fuzzy module is integrated with its
API while implementing these methods. The parameters of the methods are fuzzified in
the fuzzy module via the API. The query results are fetched by processing the fuzzified
parameter, and the fuzzy criterion is entered into the query with the relevant operator.
While the query processor creates an MDX query, it fuzzifies the parameters that are
associated with fuzzy methods and transforms them into a standard MDX query. In the
query process, attributes are fuzzified via the fuzzy module and made suitable for the MDX
query structure. Similarly, geometric features are fuzzified during queries and handled
using the spatial functions provided with PostGIS.
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The algorithm for implementing queries is given in Algorithm 3, and some sample
queries are defined in Section 2.5.

Algorithm 3 The generic query evaluation algorithm

Input: The user query with set of column members CLN and predicates PR
Output: Set of retrieved/predicted objects RSL

Initialization:
FTp ← {} //fuzzy membership terms
FAR← {} //fuzzy association rules
SPt ← {} //spatial terms
NSPt ← {} //non-spatial terms, measurement
Ds ← {} //SOLAP data cube query result holder
SO ← {} //satisfying-objects

1: Retrieve and Parse (query)
2: if query includes prediction predicate(PR) then
3: Send query to FKB with (CLN, PR)
4: Transfer to FIS with (CLN, PR)
5: FAR← Retrieve fuzzy association rules from FKB with (CLN, PR)
6: FTp ← Retrieve fuzzy memberships from FM with (CLN, PR)
7: SPt ← Defuzzify spatial predicates with (CLN)
8: NSPt ← Defuzzify non-spatial predicates with (PR)
9: Ds ← Query spatial temporal data from SOLAP with (SPt, NSPt)

10: SO ←Make prediction with (FAR, FTp, Ds)
11: return SO
12: else
13: if query is spatial then
14: SPt ← Defuzzify spatial predicates with (CLN)
15: NSPt ← Defuzzify non-spatial predicates with (PR)
16: Ds ← Query spatial temporal data from SOLAP with (SPt, NSPt)
17: SO ← Fuzzify satisfying objects with (Ds)
18: return SO
19: else
20: NSPt ← Defuzzify non-spatial predicates with (PR)
21: Ds ← Query spatial temporal data from SOLAP with (NSPt)
22: SO ← Fuzzify satisfying objects with (Ds)
23: return SO
24: end if
25: end if

2.4. Data Sets

In this study, we utilized a spatiotemporal database including real meteorological mea-
surements that have been observed and collected in Turkey over many years. The spatial
extent of Turkey is 36◦ N to 42◦ N in latitude and from 26◦ E to 45◦ E in longitude. The
meteorological data measurement interval of the study was 1970 to 2017. There are seven
geographical regions in Turkey. These geographical regions are separated according to their
climate, location, flora and fauna, human habitat, agricultural diversities, transportation,
topography, etc. The names of the regions are: Mediterranean, Black Sea, Marmara, Aegean,
Central Anatolia, Eastern Anatolian, and Southeastern Anatolia. There are meteorological
measurement data in our meteorological database from 1161 meteorological observation
stations. These stations were selected from different geographical regions. Sample data
from different meteorological stations are given in Table 1.
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Table 1. Meteorological station samples from station database table.

Station No Station Name City Town Latitude (◦) Longitude (◦) Altitude (m)

17038 Trabzon Trabzon Ortahisar 40.99 39.78 39
17040 Rize Rize Merkez 41.04 40.50 3
17050 Edirne Edirne Merkez 41.67 26.55 51
17064 İstanbul İstanbul Kartal 40.91 29.15 18

Tables in the Meteorological Database

In this study, we used database tables containing ten types of meteorological mea-
surements for our various queries. The types of meteorological measurements were: daily
vapor pressure, daily hours of sunshine, daily maximum speed and direction of the wind,
daily average actual pressure, daily average cloudiness, daily average relative humidity,
daily average speed of the wind, daily average temperature, daily total rainfall—manual
and daily total rainfall—omgi. The database table names of the measurement types and the
details of each measurement are described in Table 2.

Table 2. Database tables and descriptions.

Table Name Description Units

station Station code, names, city, and coordinates latitude, longitude, and altitude
vapor-pressure Daily vapor pressure hectopascal (1 hPa = 100 Pa)
sunshine-hour Daily hours of sunshine hours

speed-direction-wind Daily max speed and direction of the wind meter/second and direction
average-pressure Daily average actual pressure hectopascal (1 hPa = 100 Pa)

cloudiness Daily average cloudiness 8 octa
average-humidity Daily average relative humidity percentage

average-speed-wind Daily average speed of the wind meter per second
average-temperature Daily average temperature celsius
total-rainfall-manual Daily total rainfall—manual kg per meter square

total-rainfall-omgi Daily total rainfall—omgi kg per meter square

These tables contain daily measurements from 1 January 1970 to 1 January 2017. Each
table record consists of a station number, measurement type, measurement date, and
measurement value. Sample data for the daily average speed of the wind are given in
Table 3.

Table 3. Sample data for daily average wind speed table.

Station No Station Name Year Month Day The Daily Average Speed of Wind (m/s)

8541 HASSA 1977 1 1 1.3
8541 HASSA 1977 1 2 1.1
8541 HASSA 1977 1 3 3.1
8541 HASSA 1977 1 4 3.4

2.5. Supported Query Types

After illustrating the architecture of the proposed environment for fuzzy spatiotem-
poral querying, we apply the following procedures to handle the various query types
employing the given components.

2.5.1. Fuzzy Non-Spatial Query

This query type asks for fuzzy data not dealing with spatial attributes. The QM, the
FM, and the SOLAP server components are working in the execution step and the query
flow is given in Figure 9:

1. The QM retrieves the user query, parses it, and sends it to the FM.
2. The QM asks the SOLAP server for data using the query. The objects retrieved by the

QM are sent to the FM component to fuzzify the result.
3. Fuzzified query results are displayed in the QM component.
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Figure 9. Fuzzy non-spatial query flow.

Query 1: Find all the cities at risk of flooding.
The query is expressed in MDX, which is an OLAP query language which provides

a specialized syntax for querying and manipulating the multidimensional data stored in
OLAP cubes [46]. While it is possible to translate some of these queries into traditional SQL,
this would frequently require the synthesis of clumsy SQL expressions, even for elementary
MDX expressions. Furthermore, many OLAP vendors have used MDX, and it has become
the standard for OLAP systems. While it is not an open standard, it is embraced by a wide
range of OLAP vendors. Therefore, we extended MDX with fuzzy operators and wrote the
query specified above in MDX form, using the query parameters shown in Figure 10.

Figure 10. Fuzzy non-spatial query.

To query the database, we first need to defuzzfy the fuzzy expression part of the
query. The query processor requests the FM to defuzzify the fuzzy expression in the query.
The fuzzy term is defuzzified according to the fuzzy membership function, as shown in
Figure 11. The heavy class in the query has a triangular-shaped membership function
defined by the triple (7.5, 8.5, 9.5) that overlaps the membership function of the overmuch
class in the range [7.5, 8.5]. In this case, the heavy class includes measurements between
8.0 and 9.5. The query processor of the GeoMondrian rearranges the MDX query with the
crisp values after defuzzification and executes it in the SOLAP server. As a result of the
query on the SOLAP server, the results matching the searched criteria contain crisp data.
We again fuzzify the crisp values in the resulting data with the help of the FM. Here, the
fuzzification subcomponent in the FM includes a triangular or trapezoidal membership
function for each measurement result. It generates fuzzy class and membership values as
output, using the crisp value of input from the relevant membership function. Finally, the
results are displayed to the user, including fuzzy terms. For our example, we show the R1
and R4 records in Table 4 as the query result that meets the criteria.
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Figure 11. Rainfall membership classes.

Suppose we execute this query in a relational database. In that case, we need to
thoroughly scan all records, because it is necessary to calculate the rainfall value and find
the queried value by grouping based on the city within the station measurement records.
The cost of scanning all the data and grouping them is critical; the query execution time
is related to the number of records in the database. In the FSOLAP environment, it is not
necessary to access all records for the objects that satisfy the query criteria, due to the help
of the hierarchical structure. The calculation of the measurements of the cities with which
the stations are connected does not imply such a cost. Therefore, the cost of searching
rainy stations is limited to the number of stations registered in the database, and the query
execution time is less than the relational database query execution time.

Table 4. Sample data for rainfall in database.

ID Date City Crisp Val. Fuzzy Val.

R1 19 August 2016 Ankara 8.6 heavy (0.7)
R2 19 August 2016 Konya 4.9 low (0.7)
R3 19 August 2016 Adana 4.1 very-low (0.6)
R4 19 August 2016 Rize 8.8 heavy (0.8)

2.5.2. Fuzzy Spatial Query

Fuzzy spatial queries allow the user to interrogate fuzzy spatial objects and their
relationships. The QM, the FM, and the SOLAP server components are employed to fetch
query results, as shown in Figure 12. The user asks for the objects that have topological
relations with the entities under inquiry.

Figure 12. Fuzzy spatial query flow.

Query 2: Retrieve the appropriate cities for the installation of a solar power plant
A fuzzy rule definition uses linguistic values, as shown below in the FKB regarding

suitable places for solar power plants.

i f c i t y . sunshine_hour i s high and c i t y . p o s i t i o n i s south
then c i t y . solar_power i s

high

Figure 13 shows how we implemented the MDX query with the parameters entered
from the query interface.
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Figure 13. Fuzzy spatial query.

In this query, regions in the south of Turkey with a very high sunshine duration are
considered. The intersection of areas with positionally high sunshine hour and south
fields are taken into account. We explained the operational structure of the fuzzify_measure
method in the previous query. Here, the fuzzify_geo method is also used. This method is
run on the FM and determines the overlap relation between two geometric objects given as
parameters. There are as many accesses in the query process as the number of stations in
the database. On the other hand, the execution time for the relational database query, given
in the following, can be longer due to the averaging of sunshine hour measurements and
joining these with the stations.

SELECT c . name_1 , r . month , r . day , AVG( sunshine_hour )
FROM m e t _ d a t a _ r a i n f a l l r , t r _ c i t y c ,

m e t e o r o l o g i c a l _ s t a t i o n 3 s , t r _ r e g i o n rg
WHERE s . id=r . s t a t i o n _ i d AND s . c i t y _ i d =c . gid

AND rg . id=c . region_id AND c . region_id in ( 5 , 7 )
GROUP BY c . name_1 , r . month , r . day HAVING AVG( sunshine_hour ) >7

In this query, cities with an average daily sunshine duration of more than seven hours
are regarded as having a high sunshine duration. These cities are in the Mediterranean and
Southeastern Anatolia regions in the south of the country.

2.5.3. Fuzzy Spatiotemporal Query

In this type of query, the user asks for the fuzzy spatial objects that meet the conditions
of the predefined rules within a specified time interval. The rules can be evaluated by an
examination of the topological relations between fuzzy regions and fuzzy objects. The
query flow is shown in Figure 14.
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Figure 14. Fuzzy spatiotemporal query flow.

Query 3: Retrieve locations around Ankara that were at high risk of freezing between 7
January 2012 and 14 January 2012.

The FKB contains the following fuzzy rule definition that uses linguistic values regard-
ing freezing events.

i f c i t y . temperature i s cold and c i t y . c loudiness i s c l e a r
then c i t y . f r e e z e _ r i s k i s

high

The query syntax’s implementation in MDX is represented in Figure 15.

Figure 15. Fuzzy spatiotemporal query.

In addition to the previous query, we can make more specific queries using date
attribute conditions. The handling of the fuzzy predicates in the query operation is the
same as for the fuzzy spatial query. For the distance attribute, the membership classes
in the fuzzy data map are NEAR, CLOSE, and AROUND. We create these fuzzy classes
by calculating the paired distances for the geometric data of the stations and applying
fuzzy clustering of these values. However, the date predicate greatly reduces the amount
of data to be retrieved from the database. As we mentioned earlier, this situation, which
requires a full scan of an index-less relational database, is easily handled using the temporal
hierarchy in the SOLAP environment. The execution time of the query depends on the
number of stations in the database. Relational database systems must be fully searched for
temperature and cloudiness between the given dates. In this case, the query execution time
is proportional to the number of records and the number of stations in the database.
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2.5.4. Fuzzy Spatiotemporal Predictive Query

This type of query asks for fuzzy spatial relations and a specified time with inference.
The QM, the FM, the FIS, the FKB, and the SOLAP server components are employed to
fetch query results, and the query flow is shown in Figure 16. The QM retrieves the user
query, parses it, and sends it to the FM for defuzzification. If the QM detects the inference
operand in the query, it sends the conditions to the FKB for inference. When the FKB
receives the request from the QM, it determines the fuzzy association rules and sends them
to the FIS, and the FIS obtains membership classes/functions from the fuzzy data map
subcomponent. The FIS makes predictions with the given parameters and the collected
knowledge, and then it sends the inference back to the QM.

Figure 16. Fuzzy spatiotemporal predictive query flow.

Query 4: Is there a possibility of a windstorm around Izmir during the last week of December?
The FKB contains the following rules for meteorological events that occur depending

on wind speed.

i f s t a t i o n . windspeed i s high then c i t y . storm_occurrence i s
p o s s i b l e

i f s t a t i o n . windspeed i s high and a c t u a l _ p r e s s u r e i s low
then c i t y . storm_occurrence i s high−

p o s s i b l e

Unlike other query types, the antecedent part of the association rules is not used in the
FKB as a criterion when considering predictive queries. Since the purpose here is to predict
the conditions that are the antecedents of the meteorological phenomenon in question, we
do not include these fields in the query. Other fuzzy attributes are used as criteria in the
MDX query. In addition, the spatial and temporal criteria entered into the interface are used
for querying. When the QM detects the PREDICT expression in the query, it recognizes that
the query requires an inference mechanism. The MDX query constructed with the criteria
entered into the meteorological phenomenon query UI is illustrated in Figure 17.

We previously mentioned that the fuzzy association rules which are expert-defined
are stored in the FKB. The fuzzy association rules defined for the relevant phenomenon are
chosen in the meteorological phenomenon inquiry. The antecedent of each rule is used to
look for the fuzzy attribute and membership class found in the consequent part of the fuzzy
association rules. In other words, the rules which include these antecedents in the FKB
are selected as a consequence of the rules in the fuzzy association rules, and this process is
demonstrated in Figure 18.
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Figure 17. Fuzzy spatiotemporal predictive query.

Figure 18. Fuzzy spatiotemporal predictive query execution: step 1.

We create inferences for each row fetched from the MDX query by running the rules
selected from the fuzzy association rule set in the FIS, as shown in Figure 19. The minimum
value is calculated by multiplying the results by the weight value of each association
rule. The same fuzzy class result is determined by taking the maximum value among the
minimum values. If the result value meets the expected criteria, the relevant MDX query
result row is marked as satisfied. The results marked as satisfied are shown on the results
list and the map.
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Figure 19. Fuzzy spatiotemporal predictive query execution: step 2.

A sample inference is given in Figure 20. In this example, consider a current situation
where the relative humidity is 48%, the temperature is +25◦, and the cloudiness is 3/8. We
want to predict the sunshine hours using this information. The relative humidity of 48% is
translated into the linguistic variable value of {0.3, 0.7, 0, 0, 0} which can be interpreted as
“less, normal”. Similarly, linguistic translation can be given as “hot, boiling” for temperature
and “partly sunny, partly cloudy” for cloudiness. After all the input variables have been
converted to linguistic variable values, the fuzzy inference step can identify the rules that
apply to the current situation and can compute the values of the output linguistic variable.
As seen in the figure, the five rules of thumb can be translated into a fuzzy rule base using
these linguistic terms to describe the meteorological prediction. The rules are selected
according to the consequent part. There are three proper rules which have a sunshine hours
consequent and can be used for inference. After the rules are executed, the center of gravity
method is used to calculate the final predicted value.

Figure 20. A sample inference.

3. Experimental Results
3.1. Platform

We achieved reasonable performance of the prototype application in the environment
and with the specifications, technology, and tools specified below.
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• Application development environment: Eclipse IDE 2021-03;
• System: Windows 10 x64, Intel i5-7200U CPU, 16 GB RAM;
• Java: 1.8.0-281, Java HotSpot Client 64-bit Server VM 25.281-b09;
• SOLAP: GeoMondrian 1.0 Server;
• DBMS: PostgreSQL 13.3 64-bit;
• FIS: jFuzzyLogic.jar;
• Data Size: approximately 10 GB data consisting of 1161 stations and 15 M records for

each measurements (15 M × 10 measurement types).

3.2. Performance Results

We measured the average CPU usage, memory usage, and execution time by running
each query type in the fuzzy SOLAP-based framework and the PostgreSQL database. Here,
average CPU usage is the average CPU usage rate measured during querying. Similarly,
average memory usage is the average memory usage measured in megabytes (MB) during
querying. The execution time is the average of the measurements obtained over several
query runs.

First, we addressed some of the high-level factors that affect the query performance
with regard to CPU usage, memory usage, and execution time. Data size directly affects
the performance of the query because the query uses one or more tables with millions
of rows or more. Joins are another factor affecting performance; if the query joins two
tables, increasing the row count of the result set substantially, the query is likely to be slow.
Aggregations also affect performance, as combining multiple rows to produce a result
requires more computation than simply retrieving those rows.

In addition to obtaining this information, we also performed the roll-up function
provided by SOLAP for aggregating with the UNION operator in relational database
queries. In this case, aggregating N dimensions requires N such unions in an SQL query.
Another essential issue to consider in terms of query performance is that of cross-tabulations.
While SOLAP supports such operations naturally, SQL requires an even more complicated
combination of unions and GROUP BY clauses for cross-tabulations. An N-dimensional
cross-tabulation requires a 2N-way union of 2N different GROUP BY operators to build the
underlying representation. In most relational databases, this results in 2N scans of the data
and 2N sorts or hashes.

The CPU usage for the queries was measured over several query runs, and the average
CPU usage for all query types was calculated. The results are given in Table 5.

Table 5. Comparision of average CPU usages between FSOLAP and relational database SQL queries.

FSOLAP Query Ave. CPU Usage (%) Relational Database SQL Query Ave. CPU Usage (%)

Query1 29.2 33.7
Query2 30.3 36.6
Query3 30.1 31.3
Query4 30.9 Not Supported

The average CPU usages of the FSOLAP-based query and the relational database
query are compared in the column chart shown in Figure 21.
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Figure 21. Average CPU usages of FSOLAP and relational database SQL queries.

Similar to the computational power requirement, the measurement results for the
average memory usage are given in Table 6.

Table 6. Comparision of average memory usages between FSOLAP and relational database
SQL queries.

FSOLAP Query Ave. Memory Usage (MB) Relational Database SQL Query
Ave. Memory Usage (MB)

Query1 150 278
Query2 228 330
Query3 115 229
Query4 217 Not Supported

The average memory usages of the queries are represented graphically in Figure 22.
According to this chart, relational database queries consume more memory than FSOLAP-
based queries.

A comparison of the execution times of the queries was used as part of the performance
testing, and the results are shown in Table 7.

Table 7. Comparison of average execution times between FSOLAP and relational database
SQL queries.

FSOLAP Query Ave. Execution Time (ms) Relational Database SQL Query
Ave. Execution Time (ms)

Query1 596,480 1,630,362
Query2 257,054 643,642
Query3 18,314 172,303
Query4 183,717 Not Supported
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Figure 22. Average memory usage of FSOLAP and relational database SQL queries.

We have shown the time spent between starting the query and finishing the query
graphically for each query in Figure 23. The graph shows that relational database queries
have a longer execution time.

Figure 23. Execution times of FSOLAP and relational database SQL queries.

The implementation of Query 1 in the relational database requires the having avg
operation as an aggregation for all cities. This requires a great deal of CPU and memory
resource usage. Along with these, it also causes a long query time. Query 2 requires
having avg as an aggregation along with a spatial search. A spatial data search uses index
matches with the join operand in the query. This query requires more CPU and memory
than other queries, but the query time is comparatively less than Query 1 since the query
has a spatial restriction. Query 3, on the other hand, is better in terms of resource usage as
it possesses additional time restrictions compared to Query 2, but it also takes less query
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time. The aggregation process in the queries involves the CPU usage, the union, and the
join operands, affecting the memory usage. According to the query criteria, the amount of
data in the query process determines the query time. When we evaluate the performance
tests in general, we observe that FSOLAP-based query operations require fewer resources
and less time than relational database queries. While we obtain adequate CPU and memory
usage results, especially in queries containing spatial and temporal criteria, we obtain better
results in terms of execution time. In addition, FSOLAP performs well in prediction-type
queries, which are not supported for relational database queries.

Based on our experimental analysis and considering all the parameters mentioned,
FSOLAP-based querying is preferred over relational database querying, as FSOLAP offers
scalability with low resource usage.

4. Discussion

In this paper, we introduced FSOLAP as a new fuzzy SOLAP-based framework to
compound the advantages of fuzzy and SOLAP concepts and explained how it supports
complex fuzzy spatial queries. We tested the efficiency and effectiveness of FSOLAP in
a meteorological application with spatial and temporal hierarchical data, using fuzzy
spatial and fuzzy spatiotemporal query types. Moreover, we showed that the fuzzy logic
approach is an effective approach for complex applications such as spatiotemporal data
with fuzzy spatial queries containing fuzzy terms. In addition, we explained how we
handled fuzzy spatiotemporal predictive queries using the inference capability, which has
not been previously discussed in the literature. We integrated these queries into FSOLAP
with the use of an FIS. It was shown that FSOLAP handles queries effectively and efficiently
using fewer resources compared to a relational database system, based on average CPU
usage, average memory usage, and average execution time for each type of query. While
SOLAP handles hierarchical data naturally, SQL does so with the union operator, which
requires high CPU and memory usage as the test results showed. Similarly, SOLAP handles
the operation performed by SQL using the group by statement with its core functionality. In
extensive performance tests, complex queries structurally containing a group by statement
have been shown to require less CPU and memory usage in FSOLAP compared to SQL
queries. The average CPU and memory usage of queries during execution is proportionally
similar, but the query execution time does not have the same trend. This is because the
criteria for query types are determined by the amount of data the query retrieves and
processes. As the number of restrictions in query types increased, query execution time
decreased inversely.

Related studies on fuzzy SOLAP-based data mining and querying were investigated
with regard to whether they have the following concepts or features: fuzziness, OLAP,
SOLAP, data mining, inference, temporal querying, fuzzy querying, fuzzy spatial querying,
fuzzy predictive querying, high visualization, easy use and performance evaluation. A
system known as a fuzzy storage assignment system (FSAS) that provides fuzziness, OLAP,
data mining, inference, and fuzzy querying based on fuzzy OLAP was proposed in the
study by Lam et al. [15]. Their study was aimed at increasing the availability of decision
support data and converting human knowledge into a system for tackling the storage
location assignment problem. In another study, David et al. [18] researched fuzzy spatial
data warehouses. They proposed a model that supports fuzziness, OLAP, SOLAP, data
mining, inference, fuzzy querying, and fuzzy spatial querying. Their work represented a
part of the Intelligent Geographical Project (IGP), which integrated fuzzy logic with spatial
databases to help in the decision support and OLAP querying processes. Boutkhoum
and Hanine [13] also developed software for complex decision-making problems. The
software implementation was an integrated decision-making prototype based on an OLAP
system and multicriteria analysis (MCA) to generate a hybrid analysis process dealing with
complex multicriteria decision-making situations. Their proposal included fuzziness, OLAP,
data mining, inference, temporal querying, and fuzzy querying. Ladner et al. [17] studied
the use of fuzzy set approaches in spatial data mining to integrate their GIDB geospatial
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system. They presented an approach to discovering association rules for fuzzy spatial data
where they were interested in correlations of spatially related data such as directional or
geometric relationships of soil types. They combined and extended techniques developed
in spatial and fuzzy data mining to deal with the uncertainty found in typical spatial data,
supporting fuzziness, data mining, inference, fuzzy querying, and fuzzy spatial querying.
FSOLAP and some related approaches in the literature are compared according to their
concepts and characteristics in Table 8.

Table 8. Comparision of FSOLAP and existing approaches.

FSAS [15] IGP [18] OLAP MCA [13] GIDB [17] FSOLAP

Fuzziness X X X X X
OLAP X X X X
SOLAP X X X
Data Mining X X X X X
Inference X X X X X
Temporal Querying X X
Fuzzy Querying X X X X X
Fuzzy Spatial Querying X X X
Fuzzy Predictive Querying X
High Visualization X X
Performance Evaluation X
Easy to Use X X

Although the FSOLAP framework brings together the strengths of fuzzy and SOLAP
concepts for spatiotemporal applications and offers effective and efficient querying, it
has difficulty in defining the expert rules in the representative application domain. As
shown in the example queries, the expert-defined rules that the queries refer to must
be defined in the system by domain experts. This situation makes it difficult for naïve
users to use the framework without the help of a domain expert. Moreover, although
FSOLAP provides some visualization, this functionality needs improvement as it is a
spatiotemporal application. Future studies aimed at making the framework easy to use can
be applied in this context. The realization of these studies would also make it possible to use
this framework of analysis and inference in different fields such as agriculture, maritime
transport, and others. For example, in the field of agriculture, a future study may develop
an early warning system that can alert farmers by mapping the risk of frost.

5. Conclusions

This study proposed a framework based on fuzzy SOLAP (FSOLAP) to analyze fuzzy
spatiotemporal data and make predictive analyses of various spatiotemporal events. To
achieve this, fuzzy and SOLAP were harmonized to take advantage of the strengths of these
two concepts. Moreover, an inference capability was added to the framework to support the
predictive type of queries. In summary, some modifications of the SOLAP server and MDX
queries were implemented, fuzzification operations were performed, association rules were
generated, and pruning and weighting rules were applied to assemble the framework. Then,
the performance of the framework was represented by non-spatial, spatial, spatiotemporal,
and predictive fuzzy complex queries. We used a case study of a real database involving
meteorological objects with specific spatial and temporal attributes. This study showed that
the use of fuzzy concepts and SOLAP for spatiotemporal applications was effective and
efficient, which was confirmed by both the implementation of query types and performance
tests. Features provided by FSOLAP were compared with features in related works, and
FSOLAP was shown to have a much broader functionality than the approaches used in
similar studies in the literature. Making the framework easy to use for naïve users and
enabling it to be utilized in other fields are suggested as avenues for future studies.

The main objective of this paper was to describe a generic fuzzy querying approach
to process complex and flexible queries using the FSOLAP framework. We also aimed to
manage uncertainty in spatiotemporal database applications when querying the database.
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A real-life database that involves meteorological objects with certain spatial and temporal
attributes was used as a case study. The proposed mechanism was implemented and
several implementation issues that arose when querying the database were discussed.

This study used meteorological aspects and geographic data as spatiotemporal objects.
Furthermore, the inference system in the fuzzy SOLAP environment integrated the model
with a fuzzy inference system for allowing prediction over spatiotemporal data. As a result,
a fuzzy spatiotemporal predictive query could be executed by using the framework.

Modeling and querying spatiotemporal data requires further research in future studies.
The model and method presented in this study could be adjusted and/or extended to other
fields of application such as agriculture, environment, etc. We implemented some of
the fuzzy methods needed in this study, but the set of fuzzy methods should be further
extended to different areas. This study implemented a generic fuzzy querying approach
to process complex and fuzzy queries using our FSOLAP framework. In this context, the
framework supports non-spatial and fuzzy spatial queries as well as fuzzy spatiotemporal
query types. The processing of fuzzy aggregation queries and the corresponding algorithms
may be studied in future work to explain the involvement of fuzzy spatial hierarchical
relationships among members in the computation of the aggregation of numerical measures.
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CPU Central Processing Unit
ETL Extract, Transform, and Load
FCM Fuzzy c-Means
FIS Fuzzy Inference System
FM Fuzzy Module
FKB Fuzzy Knowledge Base
FP Frequent Pattern
JDBC Java Database Connectivity
JSON JavaScript Object Notation
MBR Minimum Bounded Rectangle
MDX Multidimensional Expression
OLAP Online Analytical Processing
RPF Rule Power Factor
SOLAP Spatial Online Analytical Processing
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SQL Structured Query Language
QPr Query Parser
QPc Query Processor
QIn Query Interface
UI User Interface
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Abstract: Distinct, alternative forms of geosemantics, whose classification is often ill-defined, emerge
in the management of geospatial information. This paper proposes a workflow to identify patterns in
the different practices and methods dealing with geoinformation. From a meta-review of the state of
the art in geosemantics, this paper first pinpoints “keywords” representing key concepts, challenges,
methods, and technologies. Then, we illustrate several case studies, following the categorization into
implicit, formal, and powerful (i.e., soft) semantics depending on the kind of their input. Finally, we
associate the case studies with the previously identified keywords and compute their similarities
in order to ascertain if distinguishing methodologies, techniques, and challenges can be related to
the three distinct forms of semantics. The outcomes of the analysis sheds some light on the diverse
methods and technologies that are more suited to model and deal with specific forms of geosemantics.

Keywords: geosemantics; implicit semantics; formal semantics; powerful semantics

1. Introduction

Semantics is cornerstone in state-of-the-art data management, notwithstanding the
specific domain; without semantics, we would helplessly drown in a deluge of unintelli-
gible Big Data. Let aside the enormous literature on this topic in the field of Linguistics
and, even before that, in Philosophy, representing and managing semantics is frequently
regarded to as the solution to heterogeneity in data retrieval and exploitation in Computer
Science (CS) [1–3]. This paper relates to a specific domain in the landscape of semantics-
aware CS, i.e., geospatial information provided in the form of both data and metadata.
This is a particularly challenging domain as the non-textual nature of most geospatial data
means that the indexing practices of generalist search engines are ineffective; hence the
need for semantics representation and management.

Both Sheth et al. [4] and Uschold [5] provide a coarse-grained categorization of seman-
tics; the latter includes the following four categories: (i) implicit semantics, (ii) informally
expressed semantics, (iii) formally expressed semantics for human consumption, and (iv)
formally expressed semantics for machine processing. In practice, the first three levels fall
in the first category defined in [4], which proposes the following classification:

Implicit semantics is the semantics not explicitly represented, i.e., not directly usable by
machines to derive new knowledge.

Formal semantics when semantics is represented in some sort of formalism, in order to be
machine readable and processable, e.g., in the form of ontologies.

Powerful (soft) semantics when semantics is represented in forms that enable overcom-
ing crisp set-based formalisms, allowing representing degrees of memberships and
certainty, e.g., by using fuzzy approaches and contextual time-varying semantics.

In our opinion, the second classification not only includes the first one but, at the
same time, empowers the fourth level of the first by offering two distinct representation
classifications, opening towards methods that better mimic the human soft and flexible
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approaches to reasoning and decision making. This is the main motivation for adopting
this second classification method, exporting its concepts in the geospatial domain and
reflecting them in the forthcoming Sections of this paper. Albeit there is apparently a broad
spectrum of technologies that fall under the umbrella of each of these categories (in fact,
Almeida et al. [6] elaborate on the notion of semantic continuum), we will discuss their
common traits.

As regards high level categorization of the forms of semantics, Gärdenfors [7] distin-
guishes between “symbolic”, “associationist”, and “conceptual”, providing the latter with
a spatial characterization. His cognitive spaces feature interesting analogies with notions
that are typical of the geospatial domain (e.g., spatial intersection). Still, non-symbolic
approaches are mostly contained in the category of implicit semantics according to the
classification by Sheth.

The ultimate purpose of this work is to provide the reader with awareness of directions
on the main issues, challenges, and possible solutions to address the different categories
of semantics defined by Sheth in the domain of geoinformation. In a nutshell, this paper
outlines which technologies are more appropriate to consider when tackling a given
research problem. The importance of this topic for the geospatial community is attested
by the increasing relevance of semantics as the ”glue” between heterogeneous thematic
domains and also across their individual workflows. On the one hand, inter-disciplinary
interoperability requires mapping of the individual terminologies used for annotating data.
On the other, effective discovery and provision of geospatial data requires fine-grained
characterization of resources (i.e., semantic metadata) not only for data, but also for services,
APIs, instruments, data providers, etc.

The hypothesis behind our work is that Sheth’s three forms of semantics are also
reflected in the geosemantics context. The objective of our paper is then to identify tech-
nologies, methodologies, challenges, and solutions that are distinctive for the implicit, the
formal, and the powerful geosemantics in order to orient the reader in problem solving. To
achieve this, by analyzing recent reviews and editorial papers on geosemantics, we first
mine which are the main technologies, methodologies, research challenges, and solutions
presented by the authors, regarding them as keywords (Section 2.3).

Successively, we perform a two-step analysis by first discussing selected case studies
involving the management of implicit, formal, and powerful geosemantics. The choice of
the case studies has been performed by taking into account both their belonging to one of
the semantic categories of Sheth (depending on the characteristics of their inputs) and the
variety and representativeness of application domains as outlined in [8]. Specifically, the
varied and most representative applications to which geomatics can be put include urban
planning, disaster management, assessment of biodiversity, and land administration. We
then associate the keywords with the case studies and assess whether Sheth’s categories
are characterized by distinguishing keywords, i.e., specific methods, technologies and
solutions, thus allowing for a more distinctive clustering of the keywords with respect to
what emerged from the metareview in Section 2.3.

A contribution of this paper is also the methodological workflow we followed in order to
characterize the forms of semantics in geoinformation with their preferred/elective approaches.

2. Materials and Methods

This Section is organized as follows: Section 2.1 details our aim and the workflow we
followed to confirm our hypothesis. Section 2.2 explains the categorization of semantics in the
main reference work [4] inspiring this paper; then, Section 2.3 presents a meta-analysis of the
literature on geosemantics as discussed in recent surveys and review papers. Sections 2.4–2.6
present the case studies we selected according to the criteria expressed above.

2.1. Workflow

In this work, we aim at investigating whether the three forms of semantics by
Sheth et al. [4] can be related to distinguishing methodologies, techniques, and knowl-
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edge sources among those found in the literature on geospatial information. This is by
no means a foregone conclusion and these distinguishing methodologies may not be the
same as in other contexts. In fact, the geospatial domain sometimes diverges from current
trends because of its specificities (e.g., proposing service-oriented architectures as opposed
to resource-oriented ones).

To this aim, we define the workflow whose main phases are depicted in Figure 1:
Top-left, a meta-review of recent surveys of papers illustrating applications of geospatial
information management is performed (Section 2.3). The meta-review allows for identi-
fying topics, research challenges, and solutions; these are considered to be keywords and
represented on the right side of Figure 2. On the top-right hand side, assuming as starting
point of our analysis the aforementioned three forms of semantics (whose definitions are
clarified in Section 2.2), we select and analyze several case studies, categorizing them
according to these three forms of semantics on the basis of the characteristics of their
inputs (Sections 2.4–2.6).

Figure 1. Depiction of the workflow followed.

Finally, in order to substantiate the hypothesis behind this work—that Sheth’s cat-
egories are also reflected in the geosemantics context—the results yielded by the two
previous independent phases are cross-referenced in order to compute a similarity matrix
on the basis of the keywords associated with the case studies. Specifically, this is achieved
by verifying that the intra-similarities (similarity degrees between pairs of case studies
belonging to the same form of geosemantics) are greater than the inter-similarity degrees
between pairs of study cases classified as different forms of geosemantics. The greater the
intra-similarity with respect to the inter-similarity, the more distinctive the methods and
technologies characterizing the three forms of geosemantics.

2.2. Three Shades of Semantics

Looking at geosemantics through the lenses proposed by Sheth allows for categorizing
in a minimal set of classes the broad (and ever-growing) landscape of topics (comprising
both methods and technologies) that populate this domain. Otherwise, the implications of
information source heterogeneity (as far as genre and nature are concerned), information
multidimensionality, and domain knowledge dependency easily yield a multiplicity of
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classes that configures a semantic continuum à la Almeida [6]. Since data source het-
erogeneity, cross-domain interaction, data/process imperfection, and big data volumes
are common traits in the geospatial domain, distinguishing between implicit, formal, and
powerful semantics allows us to divide the presented case studies in three categories with a
clear solution of continuity.

Implicit semantics refers to the kind that is implicit in data and that is not represented
explicitly in any machine-processable syntax. It is typically related to concepts and rela-
tionships between them that are not represented in a formal way but are embedded in
multimedia documents, i.e., their “meaning is conveyed based on a shared understanding
derived from human consensus” [5]. These can be natural language documents, multi-
spectral images, time series of measurements, video frame sequences, audio recordings,
undocumented tabular data, etc. The main objective of extracting implicit semantics is to
cope with the inherent ambiguity characterizing it. In fact, terms in texts, visual aspects
in images, etc., can mean different things depending on both context and knowledge of
people [9]. It should be noted that implicit does not mean missing a knowledge-based
underpinning but that the latter does not (or cannot) be given a formal representation, such
as in the assessment by a domain expert.

In more general terms, we can state that semantics that are represented in some
well-formed syntax (governed by syntax rules) is referred to as formal semantics. In 2001,
Berners-Lee et al. [10] stated that “The Semantic Web is an extension of the current web in
which information is given well-defined meaning, better enabling computers and people to
work in cooperation”. As such, the Semantic Web (SW) is the most apparent embodiment
of semantics in the field of Internet-mediated contents and applications. Here, the inflection
we give to this term is that of formal semantics, specifically those provided by decidable
fragments of First-Order Logic (FOL) [11]. In fact, “formal” is the category name that
Sheth et al. give to this kind of semantics [4], analogous to “formal semantics for machine-
processing” in Uschold’s categorization [5]. Explicit representations of formal semantics
include knowledge graphs, ontologies, and the like.

Finally, Sheth et al. introduce the concept of powerful semantics, intended as formal
semantics which is empowered with the ability to represent not only precise and well-
defined concepts and relationships, but also imprecise and uncertain concepts and gradual
relationships, whose meaning can be subjective, vague, and variable depending on several
contextual conditions [12]. The ability of formal frameworks to represent and manage
powerful semantics is indeed aimed at performing approximate and qualitative reasoning
in order to discover implicit concepts and relationships, possibly uncertain and imprecise
too, although accurate enough to be useful to solve some needed task.

2.3. A Meta-Analysis Perspective

Timothy Tambassi, in his Preface to the book “The Philosophy of GIS” [13], pointed
out that the literature on GIS is heterogeneous and scattered, primarily because of the
multiple branches of knowledge that use, manage, and create geographic information. This
is also true for geosemantics, whose literature configures a conceptual ‘forest’ of issues,
topics, technologies, methodologies, challenges, and solutions where it is easy to loose
orientation. To frame approaches in the field of geosemantics, we have taken into account
some stimulating overview papers on this subject which appeared in the last decade and
tried to examine and categorize the topics, research challenges, and solutions described. It
is a meta-analysis exercise that considered the papers described in the following.

Kokla et al. [14] offers a comprehensive review of the contributions that represent a
progress in geospatial semantics since 2015; it focuses around two main topics, i.e., informa-
tion modeling (ontologies and their development) and (latent) knowledge elicitation (from
unstructured or semi-structured content, based in particular on textual contents). This
paper reviews more than 150 works; among them are papers that present categorizations
of methods and approaches to geosemantics, such as [15–19]. Other cited contributions
report on the efforts for describing the methods at hand: [20–32]. Furthermore, in this
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review the reader can find many works that exemplify the former within a great number of
applications; among these [33–55].

Hu [56] provides an overview and a review of important contributions dealing
with six major research areas in geospatial semantics, i.e., “semantic interoperability
and ontologies” [16,24,38,57–70] , “digital gazetteers” [71–86] , “Geographic Informa-
tion Retrieval” [32,87–106], “geospatial Semantic Web and Linked Data” [43,107–114],
“place semantics” [47,115–121], “cognitive geographic concepts and qualitative reason-
ing” [70,119–124].

Janowicz et al. [125] is a rich overview of the geosemantics landscape focusing on some
selected topics that the authors deem of particular interest; the contributions reviewed are
organized according to these. With respect to the question on what kinds of Geospatial
Classes should be distinguished, they cite [16–18,63,65,66,68,126–129]; instead, the question
on how to reference Geospatial Phenomena is supported by [113,123,130–132]. Discov-
ering events and accounting for geographic change are faced and fostered in [133–136],
Handling places and moving object trajectories is dealt with in [70,77,90,133,137–143]. The
following papers are cited with reference to comparison, alignment, and translation of
Geospatial Classes [15,69,90,144–149]. Finally, the issues raised by processing, publishing,
and retrieving geodata are tackled by in [150–156].

The approach changes in [157]: Rather than reviewing papers dealing with projects
and issues related to geosemantics, it reviews ideas rooted in cognitive science and linguis-
tics for sketching their application to semantics of geographic information. It discusses
notions from 1990 to 2010 and shows why and how these ideas have been productive for
dealing with semantics.

We also considered a couple of papers that are not strictly reviews but, in our opinion,
are worth being included as they offer a landscape of trends and contributions in geoseman-
tics. Janowicz et al. [112], an editorial paper on the Semantic Web, outlines the research field
of geospatial semantics, highlights major research directions and trends, and takes a glance
at future challenges. Another editorial paper [158], considers VGI (Voluntary Geographic
Information) and claims that geospatial Linked Data and Knowledge Graphs, when used
for implementing intelligent data search, can result in precise data-sharing services.

The less recent work we considered is [159], where the author observes that the main
approaches to overcome semantic heterogeneity rely on ontologies that, having a priori
definitions, are decontextualized. On the contrary, he affirms that semantics reconciliation
needs to take into account context-based meanings. Since “meaning and context are
dynamically emergent from activity and interaction, determined in the moment and in the
doing”. He further highlights the limitations of representational approaches. In fact, the
latter assume that context is stable, delimited information that can be known and encoded
in just another information layer or another ontology in an information system. These are
the reasons why this work encourages non-representational modelling formalisms to cope
with semantic interoperability in sharing and integrating geographic information.

By analyzing the above overviews, we have extracted a list of terms that the authors
pinpointed as topics of interest, research challenges, or solutions, which we regard as
keywords. The correspondence between the keywords and the respective originating
reviews can be found in supplementary material. The keywords are listed on the right side
of the diagram in Figure 2. The list is wide enough to suggest how large is the playground
offered by geosemantics.

Still, this list may be biased, being based on authors’ views and reviews of a rapidly
evolving literature, and some terms can have overlapping meanings. For instance, more
recent reviews, such as Kokla et al. [14], produced an increase in this term list, due to the
emergence of mobile and social applications, IoT, AI, etc. in the last five years. These
research fields introduced novel concepts, such as lightweight ontologies. This increase
is also due to the paradigm shift, dating back in 2012 [20], from the general-purpose
Web to communities and their specific perspectives, pushed in turn by the movement
of Critical GIS [160]. With reference to the notion of Digital Earth, in [161] the authors
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solicited “a network of theories that fosters interoperability without giving up on semantic
heterogeneity”. As such, it is possible that more recent works may further populate the list
in Figure 2.

In the papers we examined, the authors suggested a grouping of these keywords
according to some categories, listed on the left side of the diagram. Some keywords can
be related to multiple categories as they can be good suggestions in diverse application
scenarios. As an example, term “gazetteers” has been presented in some works as dealing
with either “geospatial Semantic Web” or “elicitation of semantic information”; “domain
ontologies” have been used in works coping with “geo-semantics formalization” and
“semantic interoperability”. On the other hand, there are categories that can be tackled with
multiple strategies; for example, geosemantics issues falling under category “cognitive
geographic concepts” have been dealt with in projects on either “events-change discovery”,
“place-based GIS”, or “qualitative reasoning”.

Figure 2 makes it apparent that the categories on the left are not associated with
distinguishing topics and solutions on the right, i.e., the reviews did not succeed in letting
patterns emerge in the geosemantics “forest”, thus making order in the diverse practices.

Figure 2. Diagram connecting keywords in geosemantics (right) and their categorization (left), as
found in the reviews taken into consideration.

2.4. Implicit Geosemantics

In [14], the extraction of implicit geosemantics is named “elicitation of semantic in-
formation”. Under this interpretation, the term is used in a broader sense to encompass
processes aimed to make latent knowledge explicit from unstructured or semi-structured
contents. These processes focus on eliciting a structured representation of information
in various forms, such as semantic metadata, links to ontology concepts, collections of
topics, geotagged maps and images, etc. Sources of implicit geosemantics are multimedia
documents, in the form of unstructured and semi-structured textual documents, pictures
taken from cameras, images from remote sensing, audio and video files. In most cases,
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metadata are available but are generally insufficient to representing and understanding
the contents.

Typically, unstructured texts, posts in social networks, and news streams may refer
to geographic names into their contents to describe events, points of interest (POIs), and
places. The discipline that extracts geographic contents from unstructured and semistruc-
tured texts in order to index them and enable the evaluation of both content and spatial
queries is Geographic Information Retrieval (GIR) [87]. Images are another potential source
of geosemantic information. Photos may depict geographic places without explicitly men-
tioning their name or geolocation. With regard to video files, we can consider TV news
reporting events relative to specific geographic areas. Finally, remote sensing images may
contain representations of the status of the environment with respect to the occurrence
of geo-temporal phenomena and events going on in a given area. The segmentation of
images in order to extract geographic footprints of places and events can be performed
by applying spatio-temporal analysis. The latter is primarily based on (i) domain experts’
knowledge; (ii) statistical and machine learning approaches, or (iii) hybrid approaches
combining the previous two [162].

Some important challenges of implicit geosemantics extraction within multimedia
documents are related to three main objectives:

(i) reconciling the place and space conceptualizations of geosemantics: while the “platial”
(based on place) perspective is usually defined within texts by textual place names,
linguistic descriptions, and the semantic relationships between places, the spatial
perspective typical of georeferenced maps explicitly represents the geometries by their
coordinates, distances, topology, and directions, but mostly lack descriptions of their
meanings. This reconciliation from platial to spatial and vice-versa requires modeling
uncertainty of the recognition process;

(ii) increasing human perception of the semantics of geoinformation by considering users’
spatial, temporal, and content needs and preferences. This amounts to identifying
and summarizing geographic contents on the basis of distinct spatial, temporal, and
content granularities;

(iii) enhancing interoperability of the geoinformation semantics representation in order
to be able to re-use it within different contexts and applications. This is achieved by
adopting standards and domain/task/application ontologies.

Basically, artificial intelligence approaches comprising different methodologies (such
as soft computing, clustering, genetic algorithms, geostatistic analysis, neural networks,
support vector machines, and the like) are applied to extract implicit semantics from
multimedia documents. Knowledge bases are used to support the analysis: These may
take the form of gazetteers, DBpedia (https://wiki.dbpedia.org/ accessed on 1 April
2021), generic and domain thesauri such as WordNet (https://wordnet.princeton.edu/
accessed on 1 April 2021), geo ontologies, and thematic geospatial information. In the
following, we present some case studies focused on to the above challenges which consider
different genres of geographic contents (basically, objects, events and moving objects’
trajectories) within distinct categories of multimedia documents (textual documents and
social media posts).

A synoptic view of the four case studies dealing with an implicit form of semantics
is reported in Table 1: Besides the identifier of the case study, its acronym, and a brief
description, the table reports the type of input, the method it applies, the type of generated
output, and its potential use. It can be noticed that the type of input is either unstructured
textual documents or social media documents, a kind of data that typically contain the
implicit form of semantics. It can be also noticed that the outputs contain more explicit
geosemantics, constituted by geofootprints of documents, spatio-temporal clusters of
events, trajectories, and georeferenced placenames.

As for the application domains that are covered by the case studies, that in
Section 2.4.1 is related to retrieval of georeferenced information, providing urban planners
with effective means for mining knowledge of territorial resources. The case study in
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Section 2.4.2 performs trajectory mining to support mobility planning for tourists. The
case study in Section 2.4.4 sows that disaster management can be fostered by timely event
detection and, finally, the case study in Section 2.4.4 is about geo-gazetteer creation from
VGI, in support of land administration.

2.4.1. From “Place” to “Space”: Representing Uncertainty of Geoinformation within Texts
to Support Geographic Information Retrieval

In [163], a GIR system was proposed that allows for extracting implicit geosemantics
within contents of textual documents through the identification of fuzzy geographic footprints,
i.e., the distinct locations on Earth referred to by documents.

The GIR model applies soft computing methods; specifically, the evaluation of multiple
bipolar criteria [164,165] aggregated based on a p-norm operator [166] to extract the fuzzy
footprints of documents representing their geographic focus. In a nutshell, some criteria
have a positive influence on the selection of geographic names within the text as footprints
of a document (for example, when the initial characters of the term is a capital letter, when
the term occurrence is close to positive anchor terms such as “street”, “city”, “nation”,
etc.). Others have a negative influence (for example when the term is preceded by negative
anchor terms such as “Sir”, “Mr”, “Mrs”, etc.).

The prototypical system, has the classic structure of an Information Retrieval System
(IRS) [163], consisting of two main components: the Indexing Module and the Retrieval
Module. The Indexing Module has two main sub-modules: the Full-Text Indexing and the
GeoIndexing sub-modules. The former performs full text indexing of the documents to rep-
resent their significant contents, and generates the textual inverted index to enable content
based searches. Instead, the GeoIndexing sub-module identifies the fuzzy footprints of
documents by the support of a knowledge base that comprises both a geo-ontology and a
rule-base that encodes the heuristic knowledge required to cope with geo/non-geo ambigu-
ities during geoparsing, and with geo/geo ambiguities during geocoding. An example of
geo/non-geo ambiguity is the case of a place name having also a non geographic meaning
such as “Nice” (France), “Crema, Brindisi” (Italy), and “Of” (Turkey). Instead, geo/geo
ambiguities are due to distinct locations on Earth having the same place name, such as
Rome, Paris, London, etc.). The disambiguation rules take into account both the geographic
context, based on the shared assumption that “close places are more closely related than
far places”, and the textual context, based on the consideration that distinct geographic
names appearing close in text are also closely related in geographic space. This way, place
names within documents are associated with a fuzzy footprint in the geographic space,
thus reconciling the two conceptualizations of geosemantics and enabling both content and
spatial searchers.
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2.4.2. Detecting Periodic/Episodic Events from Social Networks with Desired
Spatio-Temporal Granularity

The paper by [167] proposes an approach to discover events of interest from social
media by modeling the distinct spatio-temporal granularity. The main characteristic of
this study is flexibility in detecting events characterized by either an hypothetical periodic
or episodic timestamp, thus allowing confirming a priori knowledge of their possible
geotemporal regularities. Given a set of sources of spatio-temporal information, such as
Twitter, the methodology first performs a focused crawling of the selected social media
contents to collect candidate messages related to an event of interest; successively, the
collected messages are analyzed by means of an original, density-based spatio-temporal
clustering algorithm. The latter is defined by extending the DBSCAN algorithm to group
messages densely located in the spatio-temporal domain. Its output is a set of spatio-
temporal clusters with arbitrary shapes: these identify the areas on Earth where an event
matching the keywords (i.e., the parameters used to filter the messages) occurred within a
given time span, possibly with a given periodicity.

The exploration is interactive and multi-granular, allowing analysts to customize not
only the topics of interest, i.e., the category, but also the time period and the spatial density
so as to fit different spatio-temporal scales. One can specify (i) a set of keywords of interest
to filter the messages about an event or a topic (e.g., traffic jam, hurricane, landslide, football
match), (ii) the desired granularity of the time period of analysis (such as each day, month,
year) and (iii) the desired spatial granularity needed to form a cluster, defined by spatio-
temporal density of messages. Each cluster generated by the algorithm can be identified
by the list of the most representative keywords that were found in the messages of the
cluster, thus representing the cluster’s semantics. The use of thesauri [168] helps identify
the more general terms expressing the meaning of the specific terms found in individual
messages of the cluster. As far as the representation of the geographic footprint of each
cluster is concerned, a convex hull can be computed from the geographic coordinates of
the messages in each cluster to obtain a polygon representation of the geo-footprint.

2.4.3. Discovering and Summarizing Moving Object Trajectories from Twitter

The work described in [169] proposes an approach to identify, track, and analyze pop-
ular tours of tourists visiting a Region Of Interest (ROI) based on the Tweets they publish.

The solution is constituted by two main suites of tools: the FollowMe suite for tourist
identification and tracking and the TripsAnalysis suite for popular tour mining.

The FollowMe suite allows users to submit spatial queries to the Twitter API to find
hang tweets, i.e., tweets posted in the area of the monitored airports. For each user identified
by means of hang tweets, the FollowMe suite queries (through the Twitter API) his/her
timeline, i.e., the history of tweets posted by the user, to get tweets tracked.

Given a ROI, trips that occur in the ROI are reconstructed and extracted by querying
hang tweets and tracked tweets previously stored in the local data base. Reconstructed
trips are represented by a list of geographic coordinates, ordered according to message
creation time and are exported through the web service interface.

The Trip Analysis Suite performs the activities of knowledge discovery on trips col-
lected by the FollowMe Suite. A knowledge-based trajectory clustering method allows
analyzing trips based on customizable semantics. The analyst can specify both the de-
sired granularity and semantics of the analysis by providing a vector layer of geographic
slots (geo-slots) of interest. These are drawn from external interoperable sources that the
algorithm exploits to conflate the trips’ points to ease their grouping. For example, it is
possible to conflate and then analyse trips with respect to the visited municipalities, regions,
countries, city’s neighborhoods, ZIP codes, etc. This way, the algorithm first geo-partitions
the trips represented based on the ordered sequence of geographic coordinates into a
conflated trip representation consisting of an ordered sequence of geo-slot identifiers, i.e., a
string. This way, different geo-slots partitions provide different interpretations, scales, and
semantics of the analysis.
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The conflated trips can be easily clustered using a complete-link hierarchical trajectory
clustering algorithm using a string-similarity matching. Matching is applied to the con-
catenated identifiers of the geo-slots in the conflated trips’ representation. Finally, popular
tours can be identified by selecting a partition of the clusters’ hierarchy by specifying either
a threshold on the minimum desired inter-similarity of conflated trips within a popular
tour, or a minimum number of trips that a popular tour must contain.

2.4.4. Creation of Geographic Gazetteers by Volunteered Geographic Information Analysis

Constructing geographic gazetteers is very costly in terms of human effort and, once
created, they need to be constantly updated. The work [81] proposes to exploit data
science for the extraction of semantic information on toponyms, places, and POIs from
big geoinformation created by volunteers on the Web, specifically from geotagged Flickr
pictures. The aim is to enrich and update current gazetteers by automatically creating
digital gazeeteers of georeferenced place names such as “city center”, “shopping district”,
and POIs associated with keywords and geofootprints. The ultimate purpose is to support
diverse applications, such as geographic information retrieval (GIR), digital library services,
and systems using spatio-temporal knowledge. The geographic footprints are extracted
from the GPS locations of Flicker pictures while place descriptions are distilled from their
tags. Close GPS locations associated with similar textual descriptions created by distinct
volunteers are assumed as identifying the same place. These locations are generally not
perfectly matching but usually have a cluster structure in space. This suggested the authors
to use a distance-decaying function to measure the membership of candidate point locations
assigned to a place so as to present an intuitive user reputation model for trust evaluation.

2.5. Formal Geosemantics

The reason the use case in Section 2.5.1 is exemplar to the transition from implicit to
formal geosemantics is twofold. On the one hand, it upholds ontologies as the formalization
means, offering less constrained expressiveness to the modeling of geospatial entities;
on the other, it tackles a research issue, that of next generation maps, that has roots in
cartography and, as such, is typically bound to the interpretation of implicit information
mediated by the domain expertise of end users. Most applications of semantics to
geospatial information use ”lowercase” semantics, such as that of SKOS vocabularies [170]
which are not harnessing full expressiveness of ontology languages; others mistake RDF
encoding for semantics. Instead, it is important to keep in mind that far more expressive
modeling criteria (ontology languages) and inference tools (reasoners) exist. Section 2.5.1
provides both a conceptual model for geo-entities and an exemplar implementation.

Discovery, in the sense of “retrieval of geospatial information”, is largely dependent
on metadata. In turn, semantic characterization of metadata is regarded to as the pri-
mary means to achieve interoperability [171] in a domain that is otherwise fraught with
heterogeneities [14,56]. Unleashing this potential typically amounts to relating metadata
items to entities in the Web of Data (the Linked Open Data Cloud: https://lod-cloud.net/
accessed on 1 April 2021), such as terms from SKOS vocabularies, people and organizations
in FOAF representations [172], etc. Whereas this step may not be strictly necessary for
semantics-aware discovery [173], leveraging on these categories of data structures can
easily yield semantics-aware resource descriptions. The advantages of this practice are
manifold. On the one hand, these data structures may greatly improve user experience in
metadata production. On the other hand, traditional metadata can be enriched in order to
enable smarter discovery criteria. This is the focus of Section 2.5.2.

Let aside the aforementioned virtuous data structures, there is a large corpus of
web-accessible data structures that does not take advantage of ontologies expressed in
OWL/OWL2, such as those mentioned above, or schema languages compatible with them
(e.g., RDF Schema). As an example, consider the Microdata that is typically embedded in
web pages or the XML/JSON data structures that are often used in the enactment of APIs.
Section 2.5.3 proposes creation of “semantic twins” of JSON data structures to allow for
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transparently accessing heterogeneous data sources. It should be noted that although we
already considered the JSON format in the previous Section, in this context the semantics
underlying the JSON data (its implicit schema) is made explicit by the mapping to RDF,
assuming an interpretation. Some of the (augmneted) information contained in the RDF
data structures could be fed back to the original JSON ones so as to realize a JSON-LD [174]
representation of resources.

Finally, Section 2.5.4 describes a model for semantic mediation with the aim of im-
proving geospatial discovery, e.g., by exploiting the smarter metadata originating from
creation methodologies akin to those presented in Sections 2.5.2 and 2.5.3. In fact, it is
apparent that discovery constitutes a “crucial first step” in the enactment of Spatial Data
Infrastructures (SDIs) and nevertheless is “mostly neglected and approached following
old paradigms” [112]. Beside harnessing the richer information entailed by semantic char-
acterization of metadata, another key objective of this practice is to implement geospatial
data management as a machine-processable API, thus fostering FAIR access to geospatial
resources [175]. The rationale for this is that it makes little sense to strive for semantic
characterization of metadata and not accomplish the last mile toward their full exploitation
by automated agents. The synoptic view of the case studies analysed in relation to formal
geosemantics is reported in Table 2.

2.5.1. Holistic Map Representation with Geographic Scenarios

The work in [176] illustrates Geographic Scenarios [177], a notion developed on the basis
of General System Theory [178] integrating spatial, process, and relational information
related to geographical elements and georeferenced events. In contrast with reductionist
approaches (such as those dividing geo-entities into themes), Geographic Scenarios propose
a holistic view that should be better suited to represent hierarchical connections among
geo-entities. Moreover, by favoring space over time, state-of-the-art GIS may fall sort of
portraying dynamic relationships and causalities.

Basing the conceptual framework of Geographic Scenarios on an ontology allows for
expressing multi-hierarchy categorizations and fuzzy boundaries, portraying diverse and
complex entities at different scales and dimensions. Geo-characterization is the process by
means of which scenarios as well as their individual components are assigned properties
and relationships not only on the basis of traditional notions, such as regionalization and
classification, but also according to ecology and human-orientation (that are often regarded
to as mere thematic dimensions). Events are made first-class citizens in the ontological
modeling of geographic scenarios, thus allowing attribution of dynamic relationships
between geo-entities.

From a technical viewpoint, the realization that is presented combines relational
data with ontology classes and properties by applying SWRL rules [179]; the resulting
information is stored in a graph database for querying. Whereas the proposed example
does not fully demonstrate the augmented capabilities of geographic scenarios, modularity
of the possible semantic underpinning (the ontology) and the scalable solution for storage
(a graph database) suggest more extensive implementations.
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2.5.2. Ex-Ante and Ex-Post Semantic Characterization of Metadata

In the last decade, our work group has been tasked with the development of the SDI
for a national flagship project on marine research. The key approaches were (i) creation of a
decentralized network of nodes providing data [180] and (ii) the extensive use of semantics-
aware technologies in metadata management [181]. The latter entailed development of a
metadata editor that could easily adapt to the ever-changing landscape of metadata formats
and profiles [182].

Since no tool in the state-of-the-art allowed for this degree of flexibility, we decided
to develop EDI, a brand new metadata editor [183]. Beside allowing for an extremely
user-friendly interface for metadata provision, the tool allows for both compliance with any
XML or text-based metadata format as well as pluggability of heterogeneous RDF-based
resources (made available as SPARQL [184] endpoints) as the reference data sources for
providing auto-completion functionalities. This feature allows for the integration of a broad
range of third-party data structures (e.g., code lists, controlled vocabularies, gazetteers,
and registries) in the Web of Data.

Field values can also be generated on demand, can duplicate the content of another
field, and even use generic XPath functions in order to mix-and-match values taken from
the output XML document. Finally, this output document can be fed into an arbitrary chain
of XSLT transformations (e.g., to generate a text-based output, such as JSON). All these
functionalities are governed by a template, expressed in XML, that regulates production
of the output document, defines the external data sources to be accessed via SPARQL, etc.
Please refer to [185] for a comprehensive description of the template language.

Addressing semantic augmentation of metadata at editing-time (i.e., ex-ante) leaves an
enormous amount of resource descriptions not featuring this important characteristic. As a
consequence of this, important capabilities enabled by semantically enriched metadata (e.g.,
multilingualism, query expansion) could not be implemented by geoportals in discovery
workflows. Then, we started working on offline, ex-post semantic lift of metadata records
and realized it was possible to employ templates the other way around to search traditional
XML metadata for correspondences in RDF data sources. The resulting application, named
Liftboy, is described in [186] and made available on GitHub (https://github.com/IREA-
CNR-MI/liftboy-python accessed on 1 April 2021) in its newer, improved implementation.

As a final note, we want to stress the importance of semantic characterization of
metadata. Typically, this is seen as a solution to semantic heterogeneity and an opportu-
nity for applying query expansion in information retrieval (in [186] the authors provide
examples for both of these). In our opinion, semantic metadata can serve a higher purpose,
that of “normalizing” resource description by conflation into a kind of pointer instead
of repeatedly duplicating metadata property values (such as keywords, names, e-mail
addresses of people, etc.) that frequently lead to inconsistencies, a practice we named
metadata delegation [187]. It would be easier if all references to a keyword provided by
a well-known controlled vocabulary were tagged with a unique identifier for that term
(the URI of a skos:Concept [170]), if all references to a researcher pointed to her FOAF
record [172], creating a web of decentralized metadata.

2.5.3. Exploiting Non-Rdf Data Structures for Semantic Metadata Creation

This case study builds on a software named SPARQL-Generate (https://ci.mines-
stetienne.fr/sparql-generate/ accessed on 1 April 2021) [188] that extends the syntax of
SPARQL 1.1 [189] with constructs that allow for extracting data from heterogeneous data
structures and generating RDF descriptions. The application to the geospatial domain we
describe is production of metadata for samples (also called specimens) in the International
Geo Sample Number (IGSN) format [190]. The target data structures are the entities made
available by the European Long Term Ecological Research Network (eLTER) in its Sites and
Data Registry (DEIMS-SDR) [191,192] (specifically, the entities representing activities, sites,
and sensors).
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We wanted to build on EDI, the metadata editor presented in the previous Section,
but the originating sources are in JSON format and thus could not be directly integrated
in the autocompletion functionalities provided by the former. We then decided to create
RDF descriptions as signpost for the aforementioned entities and relate samples to them by
plugging-in these RDF “semantic twins” in a custom EDI template. Then, the metadata
maintainer can access the HTML5 interface generated by the EDI client and select the
entities in the originating data structures via the many widgets made available by the
software, drawing information from external data structures.

2.5.4. Semantic Mediation for FAIR Access to Resources

This case study considers the articulation of geospatial discovery as a web API in order
to make catalogs accessible by automated agents. One may argue that the Catalogue Service
for the Web (CSW) by OGC [193] serves this purpose and, of course, when the automated
agent knows where the endpoint is and which protocol to use, resource harvesting and
search are straightforward. Still, when the agent only knows the homepage of the data
provider and no information on the protocol applying, these operations may get difficult
to achieve.

The problem (and the link to the subject of this paper, i.e., semantics) is that the
Web, as experienced by human agents, is unlike web APIs in that there is a semantic gap
to be bridged [194] before machines can fully participate. Overcoming this gap requires
internalizing the key principles of REST (REpresentational State Transfer) as expressed by
Roy Fielding in his Ph.D. dissertation [195]; specifically:

1. identification of resources
2. self-descriptive messages
3. hypermedia as the engine of application state

Please refer to Chapter 5 of the dissertation for an explanation of these. The attentive
reader may already have spotted how the breadth of this research topic can be extended so
as to encompass FAIR (Findable, Accessible, Interoperable, and Reusable) practices [175].

Since their inception, the FAIR principles have been deeply rooted in the notion of
machine-actionability. Among the technologies for a machine-actionable Web, it is generally
acknowledged that, despite the apparent differences, there is a broad overlapping between
REST principles and FAIR practices (FORCE11 Guiding Principles for Findable, Accessible,
Interoperable and Re-usable Data Publishing: https://www.force11.org/fairprinciples 1
April 2021). In fact [196], the machine-actionable behaviors of REST match the requirements
of (at least) the first three letters in “FAIR”, as both recur to specification of semantics for
their enactment and both rely on resolvable identifiers.

In order to achieve machine-actionability for geospatial services, the European Plate
Observing System research infrastructure [197,198] exploits Hydra [199], an RDF vocabu-
lary that is capable of expressing the mechanics of APIs in a way that is both intelligible
to automated agents and also semantically rich. Please refer to the Hydra Core Vocab-
ulary (https://www.hydra-cg.com/spec/latest/core 1 April 2021) for a more thorough
descriptions of the features of this formalism.

The potential of this characterization of APIs is apparent. As an example, search for
processing services matching a given set of parameters, such as the Normalized Differ-
ence Vegetation Index (NDVI) for a specific bounding box can greatly take advantage of
semantics-aware service description [200]. Moreover, automated workflow composition
on the basis of more precisely defined inputs and outputs can be easier than with other
technologies [201].

2.6. Powerful Geosemantics

There are concepts and relationships in the real world that are intrinsically imprecise
and fuzzy, due to their gradual nature. This characteristic is particularly evident in the
geographic context, in which natural entities and spatio-temporal phenomena are charac-
terized by blurred and time-varying contours. For instance, it is impossible to encode in a
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classic ontology based on OWL vague concepts like “most streets in Naples center are very
narrow”, which involve some fuzziness for which a crisp definition does not make sense.
What is the size of a street that makes it “narrow”? This is a matter of degrees depending
on a subjective interpretation and, certainly, there is not a crisp transition between a street
being large and narrow that may be agreed upon by all observers. The term most means that
there are exceptions, i.e., a few streets are large, but its hard to quantify a crisp percentage.
Furthermore there may be cases in which one needs to define a fuzzy concept hierarchy, a
fuzzy taxonomy, in which a class is a specialization to a degree of several super classes such
as “In Italy churches, beside being (1) places of worship, are often (0.8) historical buildings”.
Furthermore, it may be necessary to define fuzzy relationships between concepts such as
in “bell towers are very close to churches”.

Another possible source of imperfection occurs when an ontology is used for quality
assurance to tag observations such as in Citizen Science (CS) projects. Such projects are
at present a common practice to collect geospatial data in many domains such as natural
sciences by involving volunteers to create georeferenced observations of objects of interest.
A volunteer may be not completely sure about his/her observation, which is the case of
epistemic uncertainty. This may happen because (s)he does not have adequate knowledge
of the problem or because of deficiencies in the means of observation. This may also happen
when the domain knowledge is precise.

Finally, there are more complex situations that may involve both ill-defined knowledge
and epistemic uncertainty [202].

To cope with the above issues, powerful semantics approaches are needed which
“extend” classic ontologies with the ability to represent and manage uncertainty and
imprecision: To this end, the literature proposes soft ontologies [12]. In particular, there are
three main groups defined on the basis of the probabilistic, the fuzzy, and the possibilistic
or evidential frameworks. They have been adopted for extending propositional logic with
probability, possibility, belief, or truth of a statement.

Fuzzy ontologies have been defined to model ill-defined knowledge with several
purposes, depending on the kind of imperfection they need to represent and manage in the
application [202]. Although a standard representation of a fuzzy ontology is still to come,
a lot of researches have fuzzified the existing Description Logics (DL) and have defined
fuzzy DL reasoners. The most up-to-date and complete fuzzyDL ontology reasoner has
been proposed in [203].

To model epistemic uncertainty, fuzzy ontologies have been defined within a possi-
bilistic framework that deals with certainty and possibility degrees of truth thus modeling
the epistemic uncertainty characterizing experts’ subjective knowledge and the evaluation
of the certainty of this knowledge. To this end, several possibilistic DL reasoners have been
defined [204], which allow for representing and reasoning on uncertain statements such as
“It is possible that this town is an Historic Area”. To this end, each concept, relation, and
axiom is associated with a real value u in (0, 1] representing its certainty level.

Nevertheless, fuzzy ontologies do not allow to model the time varying nature of
concepts and their context-dependent meaning. Specifically, most geographic concepts are
represented by prototypes that vary with time: The prototypical modern city to an Italian
person has changed during centuries, and it different for Chinese people. Fuzzy set theory
cannot completely model how humans use concepts, in particular the fact that their mean-
ing is influenced by context and states that vary with human knowledge in time. To this
end, the framework known as state-context-property (SCOP) based on quantum mechan-
ics [205] has been defined to map elements taken from operational foundations of quantum
mechanics (like states, measurements, and observables) onto concepts and contexts.

In the following Subsections, we recap three case studies exploiting powerful semantics.
Their synoptic view is reported in Table 3. They have been selected as representative of distinct
application domains such as the creation of biodiversity observations (Section 2.6.1), remote
sensing to aid disaster management (Section 2.6.2), and dynamic urban planning (Section 2.6.3).
The first two of them exploit a fuzzy ontology enconding epistemic uncertainty of volunteers
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when creating georeferenced observations (i.e., VGI) and the vague and incomplete knowledge
of experts when interpreting a phenomenon from remote sensing evidence, respectively. By
representing epistemic uncertainty and vagueness of knowledge, it is possible to model the
distinct quality of the results of a decision process.

The last case study illustrates the application of the SCOP framework to model
retrieval of maps within a GIR with increasing precision, achieved by exploiting the
varying states of knowledge of user needs.

2.6.1. A Fuzzy Ontology to Support Volunteered Geographic Information Creation
and Search

Within the Space4agri [206] project, agronomists surveyed agronomic fields by tagging
the observed crops and their phenological growth stages based on an agronomic ontol-
ogy [207]. In this process, texts or pictures were added to report a difficulty or doubt of the
agronomists when selecting a phenological growth stage from the ontology. This is due to
different reasons:

• doubt in interpreting the meaning of the descriptions in the ontology;
• difficulty to distinguish the characteristic aspects of a phenological stage in the ob-

served crop sample, because of a deficiency of the observation means (e.g., a far point
of view);

• hesitancy to select a unique growth stage for several observed crop samples close in
space within the same parcel, because of variability of their characteristics.

This suggested the need for extending the classic ontology-based reasoning by rep-
resenting the epistemic uncertainty of the agronomists in creating VGI items (i.e., when
selecting tags from the ontology [207]). Specifically, volunteers can create georeferenced
annotations of crops they are observing in situ with the support of a fuzzy ontology. They
are bound to select linguistic predicates, possibly fuzzy, to tag the observed crops and
with each selected predicate they can associate a degree d in [0,1] representing the overall
deficiency of their observation. This way, they can represent epistemic uncertainty due
to both limitations of the means of observation (e.g., a far point of view, low resolution
of the means of observation) and difficulty of precisely quantifying some properties of
the observed crops. The linguistic predicates such as “crop has large leaf”, “crop has long
stamen”, “crop has many branches” describe possibly fuzzy properties of the distinct kinds
of crops: For example, a rice crop during its germination can appear with “elongated and
thin branches” and “very small seeds”. The semantics of these linguistic predicates can
be defined by level-1 fuzzy sets (whose membership degrees are numeric in the range
[0,1]). The fuzzy ontology can then explicitly represent linguistic concepts in both symbolic
form (encoded by the linguistic terms “large”, “long”, “many”) and quantitative form.
The latter is expressed by the membership functions defined on the numeric domains of
the properties: For example, “large” is defined with a membership function on numeric
values in cm. In the fuzzy ontology, compatibility between linguistic predicates is rep-
resented by Level-2 fuzzy relations, i.e., fuzzy sets on multidimensional basic domains
whose membership degrees are not numbers but linguistic values. Fuzzy relations between
linguistic predicates are used to perform approximate reasoning in the fuzzy ontology to
automatically classify the crops, possibly into distinct types with different membership
degrees. The defect degrees are interpreted as minimum thresholds, i.e., uncertainty levels,
on the compatibility degrees between the linguistic predicates so that the final membership
to a type of crop is modified by epistemic uncertainty. When formulating queries to the
database of georeferenced crop observations, for example, requesting to map ”rice crop
fields”, the stored observations can be mapped Onto different shades of color depending
on their membership degrees to type “rice crop”, thus accounting for both fuzziness and
observation uncertainty.
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2.6.2. Fuzzy Ontology to Support Remote Sensing Image Interpretation

In remote sensing, Geographic Object-Based Image Analysis (GEOBIA) groups tech-
niques aiming at segmenting and classifying objects and phenomena (represented by
groups of pixels sharing common properties) in satellite images based on image analysis
procedures that rely on a priori expert knowledge [35]. In recent years, application of on-
tologies enconding experts’ knowledge is emerging [14]. Ontologies are used to associate
some perceived concepts with their data representation [35]. A widely applied approach
to detect the geographic footprint of environmental phenomena is to compute spectral
indexes (SI) maps. SI values integrate reflectance measurements at different wavelengths
into a synthetic feature that can highlight some perceived aspects of the phenomenon in
each pixel. SI maps are then segmented to identify target phenomena, such as vegetation
presence and vigor (biomass presence, Leaf Area Index, Chlorophyll content, etc.), bare soil
condition, and soil properties composition, burned areas, water presence, and so on. The
segmentation consists of thresholding the pixel SI values by different thresholds specified
in the ontology to define the different environmental phenomena.

Nevertheless, using the same ontology to segment a given phenomenon such as ”green
areas” in a new image may cause inaccuracies with many omissions and commission errors,
since the value of the threshold must be tuned depending on several factors, such as the
context and observation conditions. In fact, accurate calibration is needed to set a proper
threshold for each study area. Thus uncertainty and imprecision must be represented
since the kind of knowledge is perceptual by very nature [35]. These are the reasons why
powerful semantics approaches are appealing. In fact, these techniques allow for explicit
representation of perceptual characteristics of phenomena in images by means of fuzzy
ontologies. Thus, they can cope with the limitations of both traditional GEOBIA solutions
using ontologies and machine learning techniques requiring huge amounts of training data
often unavailable.

In [162], an approach based on powerful semantics was proposed to map standing
water areas from optical multispectral remote sensing images. Ill-defined knowledge of
experts on the perceptual characteristics of standing water within optical images is repre-
sented by defining fuzzy sets on spectral indexes identified as features. The membership
functions of these fuzzy sets relax the crisp segmentation thresholds defined in the vast
literature on standing water mapping so as to tolerate imprecision and uncertainty. A
fuzzy ontology is thus defined describing standing water in terms of fuzzy sets on spectral
indexes. For each spatial unit with given values of spectral indexes, partial evidence de-
grees of standing water are computed by evaluating the membership degrees to the fuzzy
sets in the fuzzy ontology. Finally, the partial evidence degrees in each spatial unit are
combined by applying a fuzzy aggregation operator, learnt by a shallow machine learning
algorithm trained on a small reference data set. Beside not requiring big training data,
the approach offers the advantage of explicating the criteria used to map standing water,
allowing discovering how many spectral indexes, which of them, and to which extent they
contributed to map standing water in each spatial unit. The fuzzy ontology with new fuzzy
relationships between fuzzy concepts.

2.6.3. State-Context-Property Framework to Model Human Interaction within a
Geographic Information Retrieval System

According to [208], human-computer interaction is based on the exchange of words
(or graphical tokens on maps) which are interpreted in the context of the conversation.
The words used may originally have a broad meaning; through conversation the context
becomes more precise and the concepts obtain more specific meanings. The authors present
a proof of concept that shows the selection of several predetermined map types (e.g., street
map, political map, map for hiking, ski routes) in a GIR by formalizing their approach in
SCOP [205]. Specifically, SCOP is applied to predict an answer to the question: “Which
map is appropriate for a given context?” where the context is declined as the intended
purpose of the user.
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A concept and a context serve as input parameters to the inference model that cal-
culates the collapsed state and returns it. In this collapsed state, probability values for
prototypes of the concept can be calculated. A use case is illustrated, in which a user states
to a GIR query interface that she needs a map, without stating the kind of map. So far the
concept ”map” is in ground state, where all maps have some non-zero probability to be
relevant. The user then states the intended usage that is to go on a bicycling trip. Now
the state of the concept “map” collapses into a bicycling map. The user interaction may
continue to indicate the region where the trip is planned, and this new information further
restricts the map to an area. The application of SCOP is still at its early stage; it needs
further developments and investigations to be practically applied, but its potential is great
as far as prototypical modeling of contexts and states is concerned.

3. Results and Discussion

To organize the material, we started from the notion of semantics as a function that
maps the world of syntax onto the world of meaning, in analogy with the studies on
denotational semantics [209]. Once put on these lenses, we analyzed the presented case
studies considering the original information they dealt with (syntactic objects with a
certain amount of semantics), the meaning that is extracted and formalized (the new
semantic objects), and the techniques that are applied to map the former onto the latter
(the incremental semantic mapping function). This analysis of the case studies is presented
in Table 4, where each row resumes one of them.

The first two columns identify the case study by indicating the corresponding sub-
section and a short name. In the columns that follow, one can find information about the
mapping of the input information onto the new semantic objects: Specifically, column
3 contains the description of the input information pertaining the case study; column 4
provides the incremental semantic function that is used to map the original information
with partial semantics onto the output with augmented meaning; finally, column 5 indicates
the final information, i.e., the semantic domain of the case study. Column 6 indicates
the delta between the input and output information; finally, column 7 enumerates the
keywords, among those on the right side of Figure 2, that can be related to the case study:
The more relevant keywords are in bold font and are assigned a weight w = 2 in the analysis
that follows.

Here, complexity degree is intended as the level at which semantics is made explicit
in either the input or the output data structures considered by the specific case study.
Specifically, the complexity degree is an integer in the range 1–7, following the principle
of indiscernibility of Miller [210]. The general criterion for attributing this value is that
complexity lower than 4 accounts for objects presenting scarce or no machine understand-
able information about their meaning; values between 4 and 7 indicate that meaning is
more and more machine understandable and processable. For instance, the most simple
case is that of unstructured text (complexity = 1), such as in case study 3.1 where input
is constituted by free text keywords. The degree increases when more information is
added such as in case study 3.2 and 3.3 (complexity = 2) where input is enriched both by
the presence of structure (JSON documents) and by geographic coordinates. When the
previous information is further augmented, complexity increases (complexity = 3) such
as in the output data of case study 3.1 where uncertainty degrees are added. The next
step in explication of semantics may involve schema information or categorization of data
(complexity = 4). Then, when relationships among the entities (topological, order, metric,
broader/narrower) are taken into account, complexity increases to 5. Complexity is 6 when
vague and uncertain concepts and relationships are represented. Finally, when information
can be generated by approximate reasoning or has fully reached semantic interoperability,
complexity is 7.
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The four case studies presented in Section 2.4 share the same type of input geoinfor-
mation, which is essentially not explicit, being dispersed within unstructured and loosely
structured texts. In the output geoinformation of these case studies, semantics is made
explicit but not always in a standard, interoperable format; because of this, it may be
difficult or even impossible to reuse the results in different contexts.

The first case study in Section 2.5 portrays a model exploiting semantics at its full
potential, via ontologies. The second applies to semi-structured geoinformation in the form
of metadata, possibly compliant with OGC standards. The third case study involves struc-
tured (JSON) and semi-structured (HTML) information that lacks the relations between
the entities involved (e.g., between descriptions of sensors and the corresponding points
of contact) and, in general, can not be easily reused in a Web of Data context. Finally, the
fourth case study applies to unstructured information intended to the human agent (i.e., the
specification of computer interaction protocols). For each of these, the output is information
that can be shared and reused in an interoperable way by enabling querying and retrieval
in a Linked Data perspective. The first two case studies in Section 2.6 involve explicit and
rich geoinformation in the form of soft ontologies, while the last case study uses the SCOP
formalism. All these case studies enable qualitative and approximate reasoning to deduce
novel geoinformation automatically.

A preliminary observation that can be made is that complexity of the inputs is lower
for the case studies in Section 2.4, medium for those in Section 2.5, and maximum for
the case studies in Section 2.6. The same for the outputs. More insights come from cross-
referencing of the case studies and the keywords listed on the right of Figure 2, yielding the
representation in Figure 3. This last figure illustrates the weighted associations between case
studies and keywords: Case studies within the same Section (i.e., associated with the same
form of geosemantics) are characterized by shades of the same color (yellow for implicit,
blue for formal, and grey for powerful geosemantics). On the x axis, the length of the bar
represents the different importance of the method/technique in the case study while the
pair hue-color uniquely identifies both the case study and its belonging semantic category. It
can be visually noticed that the case studies classified in the same form of geosemantics are
mostly associated with distinctive keywords. For example, the case studies in Section 2.6
(powerful geosemantics) are associated with “Non-representational formalisms”, “Task
ontologies”, and “Qualitative reasoning”. Nevertheless, some keywords (e.g., “Semantic
enrichment/tagging/annotation”) are associated with case studies classified in ”adjacent”
forms of semantics.

To confirm the conjecture suggested by Figure 3, i.e., that the three geosemantics
forms are good categorizations for the keywords, we also computed the similarity measure
known as Jaccard coefficient between any pair of case studies on the basis of the afore-
mentioned weighted keywords, as shown in Figure 4. The figure clearly shows that the
intra-similarities (regarding pairs of case studies belonging to the same form of geoseman-
tics, grouped within the colored rectangles) are greater than the inter-similarity degrees
between pairs of case studies classified as different forms of geosemantics (i.e., appearing
outside the colored rectangles).

It can be noticed that all case studies have greatest intra-similarity with another case
study of the same geosemantics form. Only case studies in the yellow group share some
inter-similarity with those of the blue group, which is anyway an order of magnitude lower
than the intra-similarity. Specifically, as far as the case studies dealing with the implicit
form of geosemantics are concerned, their overall intra-similarity, computed as percentage
of shared keywords among all the case studies of the same category, reaches 54.3%, while
their overall inter-similarity with any other case study of the others two categories is only
1.7%; as far as the case studies dealing with the explicit form are concerned, they have
an overall intra-similarity of 58% and an overall inter-similarity of 2.6%; finally the case
studies dealing with the powerful form have overall intra-similarity of 37% and an overall
inter-similarity of only 0.9%. These findings confirm our hypothesis that the three forms
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of semantics are characterized by distinguishing techniques, methods, and knowledge
sources in the geospatial domain.

Figure 3. Case studies and the keywords representing their main activities and technologies.

Figure 4. Jaccard similarity between study cases represented as fuzzy sets of keywords.

Besides revealing the distinguishing features of the geosemantics forms, we also found
in this analysis that case studies related to implicit and formal semantics have many activi-
ties in common, identified by the shared keywords “Thematic spatial and temporal perspec-
tives”, “semantic enrichment/tagging/annotation”, “Gazetteers (GeoNames)/temporal
gazetteers”, and “Geographic Information Retrieval”. Formal and powerful semantics
share “Semantics-driven user interfaces/interaction paradigms/...”, “ontology based infor-
mation extraction”, “Application ontologes”, “Ontology for encoding”, and “Ontology for
modeling”. This means that there is not a clear-cut partition between the forms of semantics.
This shows that a “semantic continuum” is present, gently blending the groups, moving
from implicit to powerful semantics. Conversely, the approaches related to powerful and
implicit semantics share no keywords. These findings reveal that the ordering of categories
introduced by Sheth [4] also seems to emerge from our analysis even in the context of
geographic information.
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Figure 5 provides an even more synoptic view on the relations between the keywords
and the three forms of semantics, complementing Figure 2 with the findings described
in this section. In fact, the figure clearly visualizes that, once the keywords are grouped
according to the forms of semantics that are associated with the case studies presented
in this paper, they are much more clustered. This means that patterns emerge in the
geosemantics “forest”, thus making order among the diverse practices.

Figure 5. Comparison between the grouping of keywords in Figure 2 (on the right-hand side) and
the grouping induced by the three forms of geosemantics (via the case studies) makes it apparent
their greater distinguishing power.

Of course, this analysis can be enriched both by extending the meta-review to encom-
pass more methodologies, techniques, and knowledge bases and by analyzing other case
studies in the literature. Nevertheless we think that this contribution has the merit of setting
a methodological workflow to characterize the forms of semantics in geoinformation and
their preferred/elective approaches.

4. Conclusions

This paper applied the categories of semantics defined by Sheth to the domain of
geoinformation in order to orient the reader in problem solving. We first analyzed recent
reviews and editorial papers on geosemantics, mining which are the main technologies,
methodologies, research challenges, and solutions presented by the authors. Then, we
discussed selected case studies for the implicit, formal, and powerful geosemantics, re-
spectively. The two-step analysis culminates with cross-referencing these two sources in
order to confirm that the three forms of geosemantics are characterized by distinguishing
techniques, methods, and knowledge sources.

The subsistence of this conjecture is attested by the Jaccard distances computed
between members of the same/different categories of semantics (see Figure 4). This can
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also be visually assessed by looking at Figures 3 and 5. In the latter, it is also apparent that
there are fringe keywords associated with ”adjacent” categories (i.e., categories with similar
semantics explicitation degrees). This paper contributes to structuring the approaches
to semantics in geoinformation, partitioning the semantic continuum suggested in [6] in
discrete, distinguishing techniques and methods.

Further insight may come from categorizing in the three forms of semantics the papers
considered in the meta-review (Section 2.3) according to the associated keywords. Future
work will also investigate scaling-up of the workflow by applying content representa-
tion methods used in information retrieval. In fact, these can automatically identify the
keywords from the text of the reviewed literature.
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CS Citizen Science
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FOAF Friend Of A Friend
FOL First-Order Logic
GEOBIA GEographic Object-Based Image Analysis
GIR Geographic Information Retrieval
IGSN International Geo-Sampling Number
IRS Information Retrieval System
NDVI Normalized Difference Vegetation Index
NER Named Entity Recognition
PID Persistent IDentifier
POI Point Of Interest
REST REpresentational State Transfer
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SEM Simple Event Model
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